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Summary  

Made up of brain micro-vessel endothelial cells, blood brain barrier (BBB) is a 

physiologic barrier between the blood and the central nervous system (CNS). It 

provides neurons with nutrition and isolates the CNS from toxic chemicals in the 

blood. However, it also severely restricts the delivery of therapeutic agents into the 

brain. Paclitaxel, one of the most widely used anti-cancer drugs, has limited 

application in treating brain tumor because of the existence of BBB. Of various 

strategies developed to enhance drug delivery to the brain, nanoparticles of 

biodegradable polymers show great potential because they can conquer BBB 

non-invasively and achieve prolonged pharmacological action of drug molecules. 

In this research, paclitaxel loaded poly (D,L-lactide-co- glicolide) (PLGA) 

nanoparticles were fabricated using single emulsion technique. The emphasis was put 

on the effect of surfactants of nanoparticles. Chemical surfactant polyvinyl alcohol 

(PVA) and natural surfactants DPPC, vitamin E TPGS were used. Nanoparticles of 

sizes around 250nm with narrow size distribution and negative surface charge were 

achieved. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) 

images showed the morphologies of these nanoparticles. It was found that vitamin E 

TPGS emulsified nanoparticles had much higher encapsulation efficiency than the 

other two batches. All batches of nanoparticles had sustained in vitro release in about 

a month. Cell viability study was carried out using rat glioma cell line C6 to test 

paclitaxel loaded nanoparticles’ potential to treat brain tumor. It was found that time 
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and concentration had effect on the viability.  

Cell uptake and confocal laser scanning microscopic studies revealed that fluorescent 

marker coumarin-6 loaded PLGA nanoparticles were ready to cross the in vitro BBB 

model- Madin-Darby Canine Kidney (MDCK) cell line, but the uptake percentage 

was affected by surfactants. Particle size effect on cellular uptake was also studied 

using fluorescent polystyrene nanoparticles with uniform particle sizes. In vivo 

experiment was carried out subsequently. PLGA nanoparticles were overcoated with 

tween 80 before injecting to the tail vein of the rats. Fluorescence was detected both 

in rat brain vessels and tissues under fluorescence microscope. 

MRI contrast agent Gadolinium-DTPA loaded biodegradable nanoparticles were also 

developed for future non-invasive in vivo imaging. Besides size, morphology, drug 

entrapment and in vitro release study, MRI characteristics of Gd-DTPA encapsulated 

nanoparticles were also investigated.  

Overall, this research conducted systematic investigation on feasibility of 

nanoparticles of biodegradable polymers for drug delivery across the blood brain 

barrier. It was found that emulsifiers and particle size played an important part on 

nanoparticles’ ability to cross BBB. Preliminary research on MRI contrast agent 

Gd-DTPA encapsulated nanoparticles for future non-invasive in vivo imaging was 

also investigated. These results will provide comprehensive information on 

nanoparticles of biodegradable polymers as potential drug carriers to treat brain 

cancer and brain related diseases such as AIDS.     

 vii
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BBB Blood brain barrier 
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Chapter 1 

Introduction 

1.1 Background 

Brain cancer is caused by uncontrolled cell growth in the brain. It can be divided into two 

categories: the primary brain cancer which is originated within the brain and the 

secondary brain cancer which is originated from cells in other parts of the body and 

migrate to the brain (oncology channel). Although a lot of efforts have been exerted, 

brain cancer still remains one of the most difficult diseases to treat mainly because the 

existence of the blood brain barrier. The blood brain barrier (BBB) is a physiological 

mechanism that alters the permeability of the brain capillaries so that some substances 

such as the toxins and drugs are prevented from entering the brain while necessary 

nutrition is allowed to enter freely. Although BBB plays an important role in maintaining 

a homeostatic environment for the brain, it also represents a main obstacle for 

chemotherapy of brain diseases. Paclitaxel, a widely used anticancer drug, has limited 

application in treating brain tumors because of its poor solubility and BBB permeability. 

Due to its low solubility, paclitaxel is often administered together with Cremophor EL as 

a co-solvent which can cause a lot of side effects (Weiss, 1990; Kongshaug, 1991; Dorr, 

1994; Fjallskog, 1993).  P-glycoprotein, which is abundantly distributed in the BBB, 

serves as a biochemical barrier and is responsible for paclitaxel’s poor brain permeability. 

Various carriers have been developed to formulate paclitaxel without the toxic co-solvent 

(Singla et al., 2002), among which nanoparticles of biodegradable polymers seem to be 
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an ideal option. However, little information can be found from literature about efficient 

brain delivery of paclitaxel loaded nanoparticles. On the contrary, nanoparticle 

formulation for enhanced brain drug delivery often uses water soluble drugs such as 

darlagin, doxorubicin as model drug due to their poor bioavailability (Schroeder et al., 

1998; Gulyaev et al., 1999). 

In previous studies, poly(butylcyanoacrylate) (PBCA) was often used as working 

polymer for enhanced drug delivery to cross the blood brain barrier. However, PBCA is 

not authorized and may have toxicity effects on CNS (Oliver, et al, 1999; Davis, 2000). 

Therefore, it is of significance to choose a polymer with more favorable properties to 

develop nanoparticles. Poly (D,L-lactide-co-glycolide) (PLGA), a widely used 

biodegradable polymer which has been approved by Food and Drug Administration 

(FDA), is a good candidate. Due to its unique advantages over other polymers such as 

biodegradability, biocompatibility and ability for sustained release, PLGA has been 

broadly applied in drug delivery. 

Apart from the nature of polymers, proper surfactant and particle size are two important 

factors that can affect nanoparticles’ fate both in vitro and in vivo. It was found that 

nanoparticles overcoated with some chemical surfactants such as poloxamer 407, 

poloxamer 188 and polysorbate 80 could yield much higher uptake by bovine brain 

microvessel endothelial cells (Borchard et al, 1994). Researchers also found that particle 

size could significantly affect cellular and tissue uptake. The uptake efficiency of 

nanoparticles was much higher than that of microparticles (Panyam and Labhasetwar, 
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2003). However, very limited studies have been carried out for the application of natural 

surfactant and particle size effect on brain delivery. 

When in vivo experiments are carried out to evaluate drug delivery to the brain, indirect 

or invasive methods such as the hot-plate test, tail-flick test and fluorescent brain slice are 

often adopted (Kreuter et al., 1995; Ramge et al., 1999; Sun et al., 2003). These methods 

help us to know the efficiency of drug carriers in vivo qualitatively.  However, the 

specific delivery site can not be assessed readily. As a high contrast imaging instrument, 

magnetic resonance imaging (MRI) is very useful in medical field. Contrast agent such as 

iron oxide and gadolinium-DTPA can be used to enhance the imaging significantly. By 

encapsulating MRI contrast agent into the nanoparticles, it is possible to visualize the 

exact site of nanoparticles in vivo with a noninvasive way. Up to now, only two very 

recent papers presented similar ideas of using Gd-DTPA encapsulated microparticles for 

bladder imaging (Faranesh et al., 2004; Chen et al., 2005). No literature has been found 

about using positive contrast agent Gd-DTPA loaded nanoparticles for brain imaging.      

1.2 Objectives 

A series of experiments will be carried out to investigate the feasibility of PLGA 

nanoparticles to cross the BBB both in vitro and in vivo. The research will be focused on 

surfactant coating technique and particle size effect.  The potential for treating brain 

cancers with therapeutic agent paclitaxel loaded PLGA nanoparticles will also be 

investigated by cell line experiment. Besides, MRI contrast agent Gd-DTPA loaded 

nanoparticles of biodegradable polymers are also developed for future investigation of 

non-invasive imaging of nanoparticles in vivo. 
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In the therapeutic agent/fluorescence loaded nanoparticles study, paclitaxel or fluorescent 

marker coumarin-6 loaded PLGA nanoparticles will be fabricated using the 

extraction/evaporation method. Two natural surfactants: vitamin E TPGS and DPPC (1,2- 

dipalmitoyl-sn-glycerol-3-phospatidylchlorine) will be tried as novel emulsifiers and 

surface coating during the fabrication process compared with traditional emulsifier PVA 

(polyvinyl alcohol). Particle size and size distribution will be measured with the laser 

light scattering (LLS) system. Surface charge will be determined by the zeta potential 

analyzer. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) 

allow us to get a close look at the particle morphology. Encapsulation efficiency and in 

vitro release of paclitaxel from the nanoapheres are measured by the high performance 

liquid chromatography (HPLC). MDCK (Madin-Darby canine kidney) cell line will be 

used as a simple in vitro BBB model for uptake study of fluorescence loaded PLGA 

nanoparticles. Direct evidence of cellular uptake of nanoparticles will be presented by 

confocal study. Particle size effect will also be detected by MDCK cell uptake 

experiment using commercially available fluorescent polystyrene nanoparticles with 

uniform particle sizes. The potential for drug loaded PLGA nanoparticles to treat brain 

tumors will be verified by cell viability study using MTT assay with rat brain tumor cell 

line C6 as the model. Finally, preliminary in vivo study will also be carried out by 

observing brain tissue slice under fluorescence microscopy after injection of fluorescence 

loaded PLGA nanoparticles to the rats. 

In the MRI contrast agent loaded nanoparticles study, Gd-DTPA loaded nanoparticles of 

biodegradable polymers such as PLGA and MPEG-PLA will be developed with different 

fabrication methods. The achieved nanoparticles with favorable properties will be 
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characterized by LLS, zeta potential analyzer and SEM. Inductively coupled plasma - 

optical emission spectrometer (ICP-OES) will be used to measure drug entrapment and in 

vitro release profiles. MRI characteristics of the contrast agent loaded nanoparticles will 

also be investigated.  

1.3 Thesis Organization 

The body of this thesis is made up of seven chapters. Chapter 1 gives a brief introduction 

to the project. It comprises of the general background as well as the objectives of the 

proposed project. Chapter 2 is literature review on brain cancer, blood brain barrier, 

paclitaxel and various technologies to fabricate nanoparticles. Known research on 

nanoparticles to enhance CNS drug delivery will also be described in this chapter. In 

chapter 3, the materials and methods used in all experiments are recorded. The 

experimental results and discussions are presented in chapter 4 and chapter 5. In chapter 

4 and 5, we present the results of applying paclitaxel and fluorescence marker loaded 

nanoparticles of biodegradable polymers respectively for treating brain cancer cells and 

enhancing brain drug delivery. In chapter 6, we develop novel MRI contrast agent loaded 

nanoparticles for imaging purpose. Conclusion drawn from the project and 

recommendations for future work are presented in chapter 7.   
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Chapter 2 

Literature Review 

2.1 Paclitaxel and Its Limitations in Modern Chemotherapy 

Discovered in 1971(Wani et al., 1971) and first approved by US FDA in 1992 for 

treatment of ovarian cancer, paclitaxel becomes one of the most promising anti-cancer 

drugs that can deal with a wide spectrum of cancers such as ovarian, breast and non-small 

cell lung cancers. It also has application in treating brain related diseases like AIDS (Feng 

& Shu, 2003; Lopes et al., 1993; Donehower et al., 1987; Panchagnula, 1998). Paclitaxel 

exerts its effect by blocking the replication of cancer cells in the late G2-mitotic phase. 

The interaction between paclitaxel and cells makes microtubules dysfunctional and leads 

to apoptosis of cancer cells (Horwitz, 1992). 

Despite the effectiveness of paclitaxel in chemotherapy, it also has quite a few limitations. 

These are also limitations in current chemotherapy.  The reasons mainly lie in the 

following four aspects:  

(1) Availability. Paclitaxel was extracted from the bark of very slow-growing west 

yew with low extraction rate (<0.04%) (Cragg, 1991). In order to solve the 

problem, alternative sources for preparation of semi-synthetic taxol and taxol 

analogues have been found, such as needles and twigs of English yew trees or 

Chinese red bean yew trees. Unlike the bark, the needles can regenerate and 

provide a continuous source for production (Horwitz, 1992). However, efficient 
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and low-cost ways of large-scale synthesis of paclitaxel still remains a challenge. 

(2) Dosage form and toxicity. In 1971, Wall and his colleagues first reported the 

structure of taxol and its cytotoxicity to KB cell line and mouse leukemia cells 

(Wani, 1971). It is obvious that paclitaxel has some benzene rings and other 

hydrophobic structures (refer to Fig 2.1 below), which lead to its low water 

solubility of less than 0.5mg/L. There is no way for direct injection of paclitaxel 

by dissolving it in distilled water, the only dosage form available in clinical 

administration uses Cremophor EL and dehydrated alcohol as adjuvant, which is 

rather toxic and can cause serious side effects such as hypersensitivity reaction, 

neurotoxicity, cardiotoxicity and nephrotoxicity (Weiss, 1990; Kongshaug, 1991; 

Dorr, 1994; Fjallskog, 1993 ). 

                         

                                 Fig 2.1 Chemical structure of paclitaxel    

(3) Drug Resistance and bioavailability. It has been found that paclitaxel is able to 

induce the multidrug resistance (MDR) phenotype with overexpression of P-

glycoprotein (P-gp) (Horwitz, 1992; Roy & Horwitz, 1985; Greenberger et al., 

1987; Drion et al., 1996). P-gp exists in the cell membrane and serves as a kind of 

efflux pump that can prevent drugs and other toxic substances from entering cells 
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(Gatmaitan & Arias, 1993). P-gp is widely distributed in many tissues, such as 

gastro-intestinal tract, kidney and blood brain barrier. It has already been found 

that paclitaxel has a rather high affinity for P-gp transporter. Another problem is 

when drugs are administered, especially orally, they have to withstand metabolic 

barriers before reaching the blood system. There are a lot of digestive enzymes 

throughout the GI tract which can degrade drugs and further result in a low 

bioavailability.  

(4) Targeted and controlled release. Although paclitaxel has excellent effect on tumor 

cells, it can also harm normal cells, especially cells that divide quickly such as the 

bone marrow and lining of the GI tract. Many dangerous side effects may be 

caused by this kind of non-specific action, such as loss of hair, fussy thinking and 

difficult concentrating. Another problem is that in order to achieve therapeutic 

effect, drug concentration should be between the therapeutic level, i.e., above the 

minimum effective level but below the toxic level. Thus the initial burst should be 

lowered to achieve a prolonged and sustained release. Besides, drugs may be cell-

cycle or cell-growth-phase specific. Thus, cell-cycle specific drugs can be 

developed to achieve maximum effect (Ratain et al., 1990). Briefly, the desired 

pharmacokinetics is to release a sufficient quantity of drugs at the right time, the 

correct location and over a long period of time. 

2.2 Brain Cancers and Blood Brain Barrier (BBB) 

2.2.1 Brain Cancers and Cancer Treatment 

Cancer is a group of diseases characterized by uncontrolled cell division leading to 
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growth of abnormal tissues. Cancer can spread from its original site to other parts of the 

body and can be fatal (Web definitions for cancer). Every year, more than 10 million 

people are diagnosed with cancer and 6 million people die of cancer, which accounts for 

12% of deaths worldwide. Although brain cancers are rare cancers which represent only 

1.5% of all cancers, the death rate of brain cancers is very high. Moreover, brain cancer 

also ranks second in all childhood cancers, representing 21% of childhood cancer cases 

(American Cancer Society). There are basically two kinds of brain tumors. One is 

primary brain tumors which start in the brain, the other is metastatic brain tumors which 

are cancers from other parts of the body that can spread to the brain and cause secondary 

tumor through a process called metastasis. The cells of a metastatic brain tumor resemble 

the cells of the organ where the tumor startes, not brain cells. 

Like other cancers, effective treatments of brain cancers include surgery, radiotherapy, 

chemotherapy, hormone therapy, biotherapy, and immunotherapy (Oncology, 2002). Two 

or more methods are often used in combination to achieve better effects. Surgery is the 

primary method for treatment of brain tumors that can be removed without damaging 

critical neurological functions. Radiation therapy and chemotherapy are often combined 

with surgery as secondary and adjuvant treatment. However, severe side effects often 

accompany these treatments. One of the most important factors that limit brain cancer 

chemotherapy is due to the existence of the blood brain barrier. 

2.2.2 Introduction to the Blood Brain Barrier 

2.2.2.1 History of Blood Brain Barrier 
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The concept of blood brain barrier was first raised by the German scientist Paul Ehrlich 

in 1885(Enrlich, 1885). After that, many studies have been carried out on this important 

physiologic barrier. Table 2.1 gives a brief summary of the research history on BBB.  

Table 2.1 Summary of BBB History 
Discoverer             Time                                       Main Point 
Ehrlich P                1885            i.v. injection of acidic vital dyes stain all rabbits body      
                                                  except brain and spinal cord (Enrlich, 1885)                                                  

Lewandowsky        1900          coin the term blood-brain barrier while studying potassium                              
                                                  ferrocyannide penetration into the brain (BBB history) 
 Goldmann EE        1909           i.v. injection of trypan blue to cerebrospinal fluid stains  
                                                  entire brain but not the internal organs(Goldmann, 1909) 
Gautier& Stern       1920s          bile salt, morphine and bromide appear in CSF while bile 
                                                   pigment, epinephrine and curare not after i.v. injection 
Broman                   1941           tight junction not the astrocytic end forms barrier function 
                                                   of BBB (BBB history) 
Reese& Karnovsky 1967          visulize BBB using electron microscope & traceable  
Reese et al.              1970          proteins, revealing the protein diffuse past astrocytic 
                                                  end feet and stop at tight junction (Reese & karnovsky, 
                                                  1967; Reese et al., 1970) 
Weiler-Guttler        1989           characteristics of BBB; studies in molecular biology of  
                                                  BBB, cloning and sequencing glucose transporter gene 
                                                  (weiler-Guttler et al., 1989) 
Muldoon LL           1999           BBB is a physiologic barrier (Muldoon et al., 1999) 

 

2.2.2.2 Structure and Function of the Blood Brain Barrier 

The blood brain barrier is created by tight apposition of endothelial cells lining blood 

vessels in the brain and is surrounded by astrocyte foot process. A thin basement 

membrane surrounds the endothelial cells and associated pericytes, providing mechanical 

support as well as a barrier function. The part in the circle in Fig 2.2 is the BBB site. 

There are quite a few important differences between the ultrastructure of brain blood 

vessels and systemic blood vessels. The brain capillaries lack fenestration that exists in 
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other systemic capillaries, instead, the membrane of the endothelial cells in the brain is 

fused into tight junctions, forming continuous, uninterrupted structures. These endothelial 

tight junctions are the anatomical site of BBB and play an important role in preventing 

the free exchange of substances between blood and brain (Brightman & Reese, 1969; 

Reese et al., 1970).The tight junctions result in a much higher transendothelial electrical 

resistance than other tissues (>50 times), which makes the BBB more hydrophobic and 

reduces the aqueous based paracellular transport (Lo et al., 2001). BBB also possesses 

specific enzyme systems, glucose transporters and protein receptors, which indicates its 

special mechanisms in exchanging substances.  Moreover, blood brain barrier is 

incorporated with many efflux proteins such as P-glycoprotein (P-gp), multidrug 

resistance protein (MRP). These proteins are responsible for ATP-dependent outward 

transport of a wide range of substances, including many therapeutic agents (Crone, 1971).  

The major function of the blood brain barrier is to protect the brain from possible toxins 

while supply it with necessary nutrients. Thus it acts both as an impermeable wall and a 

selective sieve (Betz, 1992). Due to its special structures mentioned above, blood brain 

barrier effectively filters most ionized, water-soluble molecules greater than 180 Daltons 

and substances that are substrates of its efflux system. Only small, lipophilic molecules 

can cross the BBB (Lee,2001;Kroll& Neuwelt, 1998). Several mechanisms are known to 

be involved in the transport of substances across BBB. Only a few substances such as 

water can enter the brain using the paracellular route because of the existence of the tight 

junction. Lipophilic molecules can cross BBB by simple diffusion through transcellular 

pathway. Lipophilicity and hydrogen bonding potential determine the ability of molecules 

to cross BBB (Egleton& Davis, 1997). However, a large family of lipid soluble 
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substances is also substrates of efflux P-gp system thus results in poor brain uptake 

(Tamai& Tsuji, 2000). BBB’s selectivity also indicates that a specific carrier system 

exists to transport small polar solutes such as glucose (Begley, 1996). Carrier mediated 

transport in BBB is a major system for endogenous substances and nutrients to enter the 

brain. Finally, endocytic mechanisms, whether specific or adsorptive, are responsible for 

the transport of large proteins and peptides across BBB. 

2.2.2.3 In Vitro and In Vivo Models of Blood Brain Barrier 

(a) In Vitro BBB Models 

In vitro BBB models can only represent part of the properties of in vivo BBB and they 

share some basic characteristics. Currently, three types of brain capillary endothelial cell 

culture are essentially in use: primary cultures, cell line and co-culture systems.  

Isolated brain capillaries represent the first developed and closest to in vivo system of in 

vitro BBB models (Joo, 1992; Pardridge, 1998). The system next closest is primary brain 

endothelial cells (BEC) isolated from or grow out of brain capillary fragment. However, 

due to the difficulty to prepare primary BEC, a number of immortalized cells have been 

developed to act as in vitro BBB model.  At present, there are more than 15 different cell 

line models, including immortalized bovine BEC lines, porcine BEC lines, murine cell 

lines, primary rat BECs and human cell lines (Durieu et al., 1991; Teifel and Friedl, 1996; 

Wijsman and Shievers ,1998; Mooradian and Diglio, 1991; Muruganandam et al.,1997). 

The last in vitro BBB model is the co-culture system which consists of a co-culture of 

brain capillary endothelial cells on one side of a filter and astrocytes on the other. The 
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strong correlation between this model and in vivo situation demonstrates it an important 

tool for studying the drug delivery to the blood brain barrier (Dehauck et.al., 2000). 

 

(b) In Vivo Techniques 

The most common techniques for in vivo study of blood brain barrier include the 

intravenous injection method, the brain efflux index (BEI), the brain perfusion and the 

micro-dialysis. Table 2.2 below gives a brief summary of these methods. 

Table 2.2 Summary of in vivo techniques to study BBB 
   Methods                                                                Description  
  i.v. injection                  “gold standard” for all BBB work; inject solute intravenously,  
                                         determine solute concentration in brain, plasma and CSF at 
                                         different times; system intact, reflect true in vivo situation;  
                                         complexity often affects data.  
                                         Representative work: Ehlich, 1885 
 
brain efflux index            defined as “amount of drug effluxed at BBB” over “amount of 
                                         drug injected into the brain”; involve direct microinjection of 
                                         test solute and reference tracers into the brain; can be used to 
                                         investigate mechanisms of brain-to-blood efflux. 
                                         Representative work: Kakee et al., 1996 
 
in situ brain perfusion      replace circulation to brain via direct infusion of saline with  
                                         solute of known concentration to the brain or major vessels for 
                                         a known interval, perfusion is stopped at set time and amount 
                                         of solute in brain is determined; relative simple to study kinetics 
                                         of brain uptake, transport or permeability constants. 
                                         Representative work: Takasato et al., 1984; Smith, 1996  
 
micro-dialysis                   physiological perfusate is pumped through the semi-permeable   
                                          microdialysis probes in CNS, compounds in extracellular fluid 
                                          diffuse into perfusate and their concentration can be measured 
                                          by HPLC, thus tissue concentration of solutes can be measured; 
                                          quantitatively determine transport across BBB and brain influx 
                                          and efflux kinetics; invasive, can cause dysfunction of BBB. 
                                          Representative work: Wang & Welty, 1996  
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2.2.2.4 Strategies to Conquer the Blood Brain Barrier 

While the characteristics of blood brain barrier provide a formidable obstacle for drug 

delivery to CNS, it is not insurmountable. A variety of strategies have been developed to 

enhance drug delivery to the brain (Misra et.al., 2003). They can mainly be divided in 

two categories: BBB manipulation and drug manipulation.  

(a) BBB Manipulation 

Methods that belong to the BBB manipulation include: osmotic disruption of BBB, 

biochemical methods to open BBB and alternative routes to overcome BBB. 

Rapoport et al. demonstrated that intracarotid injection of inert hypertonic solutions such 

as arabinose would artificially create osmotic pressure and resulted in more than 20 folds 

increase in brain concentration of hydrophilic drugs (Rapoport et.al., 1978). In contrast to 

osmotic disruption of BBB, biochemical methods can selectively open brain tumor 

capillaries and are potentially safer. Sanovich et al. discovered increased permeability of 

BBB to lanthanum due to the administration of the bradykinin analog RMP-7 (Sanovich 

et al., 1995). However, disruption of BBB will cause unexpected damage to the brain 

such as entering of toxins, abnormal neuronal functions and altered glucose uptake 

(Miller, 2002). The last method is to develop methodologies not relying on the 

cardiovascular system, thus bypass BBB altogether. Alternative routes include 

intraventricular, intrathecal, olfactory route and direct brain interstitial delivery (Misra et 

al., 2003). Slow rate of drug distribution, clinical incidence of hemorrhage and CNS 
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infection, active nasal enzyme activity need to be overcome in further investigation of 

this method. 

(b) Drug Manipulation 

Drug manipulation includes prodrug, lipophilic analogs, chemical drug delivery, carrier 

mediated drug delivery and receptor/vector mediated drug delivery. Prodrug is 

pharmacologically inactive compounds by modification of the parent drug. After 

administration, prodrug comes to site of action more readily and maintains for a longer 

time due to its own characteristics; the drug will then convert to its active form to take 

effect by a single activating step. Lipophilic analogs allow drugs to become more lipid 

soluble, thus can increase its ability to cross the BBB. One example of this is the 

liposome. PEGylated immuno-liposomes can cross the BBB in vivo through receptor 

mediated transport (Huwyler et. al., 1997). Chemical drug delivery is to target active 

biologic molecules to certain sites based on predictable enzyme activation. Carrier, 

receptor and vector mediated drug delivery to the brain brings in the chimeric peptide 

technology, where non-transportable drugs such as peptide are conjugated to a BBB 

transport vectors. Nanoparticles have become one of the most popular and promising 

vectors for drug transportation across the blood brain barrier (Kreuter et. al., 1995; 

Peppas and Blanchette, 2004).  

2.3 Nanoparticles of Biodegradable Polymers for Drug Delivery 

Nanoparticles are colloidal particles of sizes ranging from 1nm to 1000nm. Drugs are 

dissolved, entrapped or encapsulated in the particles (Lockman et al., 2002). The use of 
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nanoparticles for drug delivery offers several advantages which include improved 

bioavailability through sustained release, protection of drugs from degradation and 

premature inactivation, reduced toxicity to normal cells through targeted delivery by 

surface modifications of the nanoparticles and increased ability to conquer the P-

glycoprotein through masking the drug from being recognized by P-gp. There has been 

wide research on nanoparticles of biodegradable polymers for drug delivery. 

2.3.1 Basic Information of Biodegradable Polymers  

Biodegradable polymers are widely used for drug delivery and controlled release because 

they eliminate the need of removing delivery systems after administration. Drugs are 

released from polymer matrix by diffusion, polymer degradation or erosion. Various 

kinds of biodegradable polymers have been developed and summarized in table 2.3 

(Uhrich et.al., 1999). 

Table 2.3 Summary of biodegradable polymers for drug delivery 
   Type                                              Description& Representative Polymers  
 Biopolymers             natural polymers, especially poly(saccharide) family, such as starch, 
                                   cellulose, chitosan. 
 
 Poly(esters)               best studied biodegradable system with product in clinical use; can 
                                   be synthesized using ring-opening polymerization; representative 
                                   polymers include poly(lactic acid), poly (glycolic acid) and their  
                                   copolymers, poly (ethylene glycol) block copolymers. 
 
 Poly(ortho esters)      allow release of drugs after polymer chain hydrolysis, research on 
                                   this polymer focuses on  adding polyols to diketene acetals such as 
                                   3,9-diethylidene-2,4,8,10-tetraoxaspiro[5.5] undecane(DETOSU) 
 
 Poly(anhydrides)      allow heterogeneous erosion and mainly undergo surface erosion; 
                                   prepared by melt-condensation polymerization; representative poly- 
                                   mers are based on p-(carboxyphenoxy) propane (CPP), sebacic 
                                   acid (SA) and p-(carboxyphenoxy) hexane (CPH). 
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 Poly(amides)             amino acid-derived polymers, mainly deliver low molecular weight 
                                   drugs; degradation rate depends on hydrophilicity of amino acid; 
                                   representative polymers include poly(lactic acid-co-lysine) (PLAL). 
 
 Phosphorus-              can perform substitution reactions; have unique inorganic P-N 
Containing Polymer   backbones; representative polymers include poly(phosphazenes) 
                                   and poly(phosphoesters). 
 

Among all the biodegradable polymers used for drug delivery, poly(lactic acid-co-

glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) block copolymers receive wide 

attention and investigation. Both of them are FDA approved polymers and have been 

used in clinical trials (Beck et. al., 1983). They are especially broadly used in fabricating 

micro and nano spheres as drug carriers for controlled release. Fig 2.2 below shows the 

chemical structures of PLA, PLGA, PEG and PEG included diblock copolymer MPEG-

PLA. 

                   (a)            (b)    

                (c)             (d) 

Fig 2.2 Chemical structures of PEG(a), MPEG-PLA(b), PLA(c) and PLGA(d)  

PLGA is the copolymers of lactic and glycolic acid (PLA and PGA). It has faster 

degradation rate than that of PLA and its degradation products are natural metabolites 

(Leong and Langer, 1987). The degradation rate of PLGA varies within months with 

different L:G ratios. Release from PLGA microcapsules and microspheres has been 

emphasized since steroids have low permeability in PLGA (Beck et.al., 1983). It is 
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suggested that the release kinetics of the microparticles are initial diffusion plus a later 

combined erosion and diffusion ( Leong and Langer, 1987). 

PEG and its high molecular weight form PEO (poly(ethylene oxide)) have very good 

biocompatibility. Due to its hydrophilic nature, PEG also has good protein resistivity 

(Kwon and Kataoka, 1995; Torchilin and Papisov, 1994). Proteins will have longer 

circulation time and avoid being taken up by the RES system in the body by attaching 

PEG chains to the surface of them. Many groups also have a deep investigation on PEG 

block copolymers. Methoxy poly(ethylene glycol)-poly(lactide acid) (MPEG-PLA)  is the 

diblock copolymer of PLA and methoxy PEG. MPEG-PLA possesses amphiphilic 

structures thus have surfactant properties. The inclusion of PEG into copolymers will 

help them to have more favorable properties to be used as drug carriers. For example, 

MPEG-PLA nanoparticles have more blood circulation time than that of PLA 

nanoparticles in vivo (Gref et al., 1994). Other PEG block copolymers such as triblock 

PLA-PEG-PLA and multi-block copolymer of L-lactide and ethylene oxide have also 

been developed (Uhrich et al.,1999). 

2.3.2 Manufacture Techniques of Nanoparticles  

Various methods have been developed to fabricate nanoparticles. Basically, they are 

either by dispersing preformed polymers or by polymerizing monomers (Feng and Chien, 

2003). Some common methods for fabricating nanoparticles are summarized below. 

(1) Solvent evaporation/extraction process. This method includes single emulsion and 

double (multiple) emulsion. Single emulsion, which is also referred to as oil-in-water 
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(o/w) method, is often used to encapsulate hydrophobic drugs. Briefly, the preformed 

polymer and drug are dissolved or dispersed in a water immiscible organic solvent such 

as dichloromethane (DCM) and chloroform. After sonication, the organic phase is slowly 

poured into water phase containing amphiphilic emulsifiers. The mixture then undergoes 

high-speed homogenization. Then the organic phase is evaporated or extracted before 

centrifuging to remove the excess emulsifiers. The final product is obtained by drying the 

emulsion under suitable conditions. For encapsulating hydrophilic drugs such as proteins 

and peptides, double emulsion (water-in-oil-in-water) is often used. This method is most 

similar to that of single emulsion except that the aqueous solution of the drug is added to 

the polymer contained organic solvent with sonication to form the first w/o emulsion 

before putting that into the water phase (Jain, 2000). 

(2) Spontaneous emulsification/solvent diffusion process. This method is sometimes 

referred to as the nanoprecipitation method. Polymer and drug (either hydrophobic or 

hydrophilic) are dissolved or dispersed in a mixture of water soluble organic solvent such 

as acetone and water-insoluble solvent such as DCM. Then the organic phase is added to 

the aqueous phase drop by drop. Nanoparticles are formed at the same time. The 

spontaneous diffusion of water-soluble solvent creates an interfacial turbulence between 

oil and water phase leading to the formation of smaller particles (Dong and Feng, 2004).  

(3) Spray Drying. Spray drying is a fast and convenient method suitable for mass 

production. It is appropriate for both hydrophilic and hydrophobic drugs and less 

dependent on polymer species (Wagenaar and Muller, 1994). Briefly, drugs are suspended 

or dissolved in organic solution where polymer is also dissolved. Then the mixture is 
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spray dried to produce particles. 

(4) Phase separation method (coacervation). This method is applicable to both 

hydrophilic and hydrophobic drugs. Briefly, polymer is dissolved in an organic solvent 

before the drug is dissolved or dispersed in it. Then an organic nonsolvent is added to the 

above system with stirring to extract the polymer solvent. Due to the phase separation, 

the polymer forms soft coacervate droplets entrapping the drug. Then the system is 

transferred to another organic nonsolvent of large amount to harden the particles and 

form final product (Jain, 2000).  

(5) Polymerization of monomers. Polymerization includes emulsion polymerization and 

interfacial polymerization. Emulsion polymerization builds up a chain of polymers from 

single monomers. The process initiates by radical or ion formation and residual monomer 

is removed by filtration. The finally formed nanoparticles can act as drug carriers by drug 

adsorption. Interfacial polymerization happens when monomer-contained organic phase 

and aqueous phase are brought together by mechanical force. This process can 

encapsulate drugs by adding them with monomer in the organic phase (Couvreur et al., 

1979; Lockman et al, 2002). 

Other methods include salting out, superficial fluid spraying, solid lipid nanoparticles etc. 

Polymer type, co-polymer ratio, drug loading level, mechanical strength level, emulsifiers 

added, temperature, pH, molecular weight etc. exert effect together to determine the 

characteristics of nanoparticles (Feng and Chien, 2003). 
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2.3.3 Current Research on Biodegradable Nanoparticles across BBB 

Of so many strategies discussed previously to conquer the blood brain barrier and treat 

brain tumors, nanoparticles seem to be a strong candidate due to their biocompatibility, 

possibility for sustained release and ability to mask the P-gp efflux system. Lockman et al. 

summarized the ideal properties of polymeric nanoparticles across the BBB, which 

includes: nontoxic, biodegradable/biocompatible of the polymers; nonthrombogenic and 

nonimmunogenic to human body; small particle size (<100nm); BBB targeting; stable in 

blood; prolonged circulation time; ability to escape reticuloendothelial system (RES) etc. 

(Lockman et al., 2002). 

 Up to now, many researches have been carried out on polymeric and lipid nanoparticles 

to cross the blood brain barrier. Table 2.4 below gives a summary of various drugs loaded 

nanoparticles being delivered to the brain. Among them, polysorbate 80 or tween 80 

coated polybutylcyanoacrylate (PBCA) nanoparticles are the most well studied system 

which has successfully delivered a number of therapeutic agents such as hexapeptide 

dalargin, doxorubicin, loperamide and amitriptyline to the brain of rats or mice. 

Polysorbate coated nanoparticles not only deliver these drugs that normally can’t cross 

BBB but also increase the plasma half-life of these drugs due to their favorable surface 

characteristics. Moreover, CNS availability of these drugs also increases through 

sustained release (Kreuter, 2001; Alyautdin et al., 1997, Schroder and Sabel, 1996; 

Gulyaev et al., 1999, Chen et al., 2004). Despite the success of tween 80 coated PBCA 

nanoparticles being transported to the brain, there is always dispute on whether the 

polysorbate coated PBCA nanoparticles have toxic effect on BBB. Oliver et al. suggested 
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that the breakdown of PBCA nanoparticles by ubiquitous esterases would cause toxic 

effect on BBB based on a co-culture system. They also observed a mortality of mice (3 to 

4 out of 10 mice) caused by PBCA nanoparticles. Thus they proposed the possibility of 

nonspecifically opening of tight junctions between endothelial cells in brain 

microvasculature by PBCA nanoparticles. However, Gelperina et al. reported no 

mortality or weight loss of  rats after injection of doxorubicin loaded PBCA nanoparticles 

with polysorbate 80 as surface coating and the authors suggested the toxicity of 

doxorubicin loaded nanoparticles were similar or even lower than that of pure 

doxorubicin. By investigating the mechanisms of how PBCA nanoparticles deliver drugs 

across BBB, Kreuter et al. also suggested there was no toxicity effect of nanoparticles on 

BBB (Oliver, et al., 1999; Gelperina et al., 2002; Kreuter et al., 2003). 

Table 2.4 Summary of drug loaded biodegradable nanoparticles across BBB 
  NP Matrix       Drug       Surfactant        Size(nm)              Results                
   PBCA           dalargin     tween 80            260       increased latency by 50% in analgesia  
                                                                                  study (Schroder et at., 1996) 
 
   PBCA           loperamide tween 80          290        increased latency by 60% in analgesia 
                                                                                  Study (Alyautdin et al., 1997) 
 
   PBCA           doxorubicin tween 80         270        ~6mg drug/g brain at 2-5 hours, vs.  
                                                                                  0 without carriers (Gulyaev et al., 1999) 
    
   stearic acid    doxorubicin Epikuron 200   90         ~1/4 of plasma with drug after 4 hour 
                                                                                   vs.0 in brain without carrier(Fundaro, 
                                                                                   et al., 2000) 
 
  Emulsifying         --         PEG-thiamine    67          65% injected does (ID) in circulation,     
  Wax & Brij 78                                                          0.5% ID in brain after 6 hours via i.v. 
                                                                                   injection, facilitated binding to BBB 
                                                                                   thiamine transporters, no significant 
                                                                                   enhance in brain uptake (Lockman, 
                                                                                   et al., 2003) 
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PLA            FITC-dextran   tween80    ~200           observed fluorescence in rat brain 
                                                                                   after i.v. injection of fluorescent 
                                                                                   dextran loaded NPs (Sun, et al,2004) 
 
Emulsifying    paclitaxel       tween 60   ~60            significant increase in brain uptake in 
Wax & Brij 78                                                           in vitro cell line experiment & in situ 
                                                                                  brain perfusion. ( Koziara et al., 2004) 
 

Apart from polysorbate surface coatings such as polysorbate 20, 40, 60, 80, 85, many 

other coatings have also been tried by researchers such as PEG, poloxamer 407, 

poloxamer 338, polaxamer 188 (Borchardt, 1994). Although they showed prolonged 

circulation and increased uptake in in vitro BBB models, they failed to have the same 

effect in in vivo systems (Chen, et al., 2004). 

To date, the exact mechanism of nanoparticles across BBB hasn’t yet been known. 

However, it is highly possible that nanoparticles may be endocytosed or transcytosed 

through endothelial cells. Polysorbate 80 is believed to be an anchor of Apo E protein 

which can help nanoparticles mimic lipoproteins and interact with LDL receptors in 

endothelial cells leading to their uptake by brain endothelial cells (Kreuter, 2004). 

2.4 Magnetic Resonance Imaging (MRI) and MRI Contrast Agent 

2.4.1 Basic Principles of MRI 

Magnetic resonance imaging (MRI) is to apply the phenomenon of nuclear magnetic 

resonance (NMR) to the field of imaging. The first MRI test was made in 1977, four 

years after the first NMR image was obtained by Paul Lauterbur. MRI is a technique that 

relies on the inherent magnetic properties of molecules in the body. Protons from water 

molecules will shift their orientations and form a net magnetization vector when a strong 
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static magnetic field B0 is applied to the body. A radiofrequency (RF) pulse, which 

ranges from approximately 10 to 200MHz, is used to knock some of the protons out of 

alignment. Weak radio signals will be released by protons as they shift back to their 

aligned position after the radio transmitter is turned off. Different tissues will have 

different strength and duration of these signals, thus the quantity of water in each tissue 

can be determined. Then the computer will use different slices to generate a 3D image. 

Basically, an MRI system consists of a magnet assembly, RF coils, a computer and a 

display device. MRI is a safe and powerful imaging tool with high resolution and can 

detect regions that can’t be detected by other imaging tools such as CT, X-ray. MRI can 

also be used to detect tumors since it can tell the differences between normal and diseased 

tissues.  

                               

2.4.2 Important Parameters of MRI 

It is important to understand the three principal parameters of MRI: proton density (PD), 

T1 relaxation time and T2 relaxation time. They are fundamentally different from and 

independent of each other. Through changing the type of RF pulse sequence and times, 

images weighted by each of the three parameters can be obtained (Bushong, 2003). 

(1) Proton Density. Proton density, also referred to as hydrogen density, is the 

concentration of mobile hydrogen within tissues. The amplitude of the initial MR signal 

is related to the proton density in the tissue being imaged. If there is more hydrogen, 

stronger MR signal may be expected. The MR signal also depends on how hydrogen is 

bound within a molecule. The received MR signal only originates from loosely bound 
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mobile hydrogen and tightly bound hydrogen only has a weak signal. 

(2) T1 relaxation time. T1 relaxation time, which is also called longitudinal time, or spin-

lattice relaxation time, is the time needed to align protons in a static magnetic field. T1 

constant indicates the speed of the spinning nuclei to emit their absorbed RF into the 

surrounding tissues. T1 is a tissue specific time constant and the value ranges from 

milliseconds to several seconds. For example, the average T1 for soft tissue is 600ms. T1 

is longer in solids than in liquids. Generally, for T1 weighted images, tissue with short T1 

appears bright while tissue with long T1 appears dark. The reciprocal of T1, 1/T1 is 

called longitudinal relaxation rate, which can also be represented by the symbol R1 in the 

unit of ms-1. The slop of R1 over contrast agent concentration is called longitudinal 

relaxivity. 

(3) T2 relaxation time. T2 relaxation time is transverse time, or spin-spin relaxation time, 

which is the time needed for protons to lose their coherent energy in an NMR 

measurement. T2 represents a loss of transverse magnetization. T1 and T2 are 

independent; however, T2 relaxation time never exceeds T1 in a given tissue. Generally 

speaking, for T2 weighted images, tissue with short T2 appears dark while tissue with 

long T2 appears bright. Similarly, 1/T2 equals the transverse relaxation rate R2 and the 

slop of R2 over contrast agent concentration is called transverse relaxivity. 

Besides the three parameters above, T2* is often used to combine the real T2 of tissues 

and the magnetic field inhomogeneities. 
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2.4.3 Introduction to MRI Contrast Agent 

The addition of contrast agent by injection before or during MRI procedure can improve 

the sensitivity and specificity of the images obtained. Briefly, there are two kinds of 

contrast agent: positive contrast agents and negative contrast agents (MRI technology 

website). 

(1) Positive contrast agents (appearing bright on MRI). They are typically small 

molecular weight compounds containing gadolinium, manganese or iron as active 

elements which have unpaired electron in outer shells. They act predominantly on T1 

relaxation, which results in signal enhancement. The most common and commercial 

available products of positive contrast include Gadopentate dimeglumine (Gd-

DTPA), Gadoterate meglumine (Gd-DOTA), Gadodiamide (Gd-DTPA-BMA) etc. 

Gd-DTPA received approval from FDA in 1988 (Runge, 2000) and has been widely 

used in neuron and whole body imaging. Fig 2.6 below shows the chemical structure 

of Gd-DTPA from Sigma with a molecular weight of 547.57. 

 

(2) Negative contrast agent (appearing dark on MRI). They are small particulate 

aggregates often termed superparamagnetic iron oxide (SPIO). They act 

predominantly on T2 relaxation, which results in signal reduction. However, particles 

smaller than 300nm also produce substantial T1 relaxation. Fig 2.3 below also gives 

the chemical structure of a widely used negative contrast agent Fe3O4-dextran. 
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                   Fig 2.3 Chemical structures of Gd-DTPA and Fe3O4-dextran 

In addition, macromolecular paramagnetic contrast agents, ultrasmall superparamagentic 

iron oxide (USPIO) particles are also studied world wide in multicenter clinical trials. 

Runge et al. had an excellent review on contrast agent used in brain disease (Runge et al., 

1997). Moreover, a wide variety of vector and carrier molecules, including antibodies, 

peptides, proteins, polysaccharides, liposomes and nanoparticles have been developed to 

deliver magnetic labels to specific sites (Schmiedl et al.,1989; Wang et al., 1990; Runge, 

2001; Morel et al., 1998; Faranesh et al., 2004). Recently, some groups begin to do 

research on gadolinium loaded nanoparticles not only for imaging but also for neutron 

capture therapy since gadolinium itself has effect on tumor cells (Shikata et al., 2002; 

Oyewumi et al., 2004; Watanabe, et al., 2002). 
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Chapter 3 

Materials and Methods 

3.1 Materials 

Paclitaxel was purchased from Dabur India Limited, India and Hande Biotechnology Inc. 

(Kunming, China). Poly (D,L-lactide-co-glycolide) (PLGA, 50:50, MW 40000-75000), 

Cormarin-6, polyvinyl alcohol (PVA, MW 30000-70000), Gadolinium 

Diethylenetriaminepenta-acetic Acid (Gd-DTPA, MW 547.57), MTT([3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide]), Trypsin-EDTA and gelatin 

(type B, 225 bloom), Hank’s Balanced Salt Solution (HBSS), Penicillin Streptomycin, 

Dulbecco's Modification of Eagle's Medium (DMEM), and Phosphate Buffer Solution 

(PBS)  were purchased from Sigma-Aldrich Chemical Co., Singapore. Vitamin E 

succinate with polyethylene glycol 1000 (Vitamin E TPGS) was provided by Eastman 

Chemical Company (TN, USA). DPPC (1,2-dipalmitoyl-sn-glycerol-3-

phospatidylchlorine) was purchased from Avanti Polar Lipid, Inc. (Alabaster, A1, USA). 

Tween 80 was provided by ICN Biomedicals, Inc. (Ohio, USA).  Commercial fluorescent 

polymer microsphere suspension or dyed polymer microsphere suspension (polymers 

include polystyrene (PS), polystyrene divinylbenzene (PSDVB), or other styrene 

copolymers) was bought from Duke Scientific Corporation (CA, USA). Dichloromethane 

(DCM, analytical grade) and acetone were purchased from Mallinckrodt Company (MO, 

USA). Acetonitrile for HPLC/ Spectro use (FW=41.05) was purchased from Tedia 

Company, Inc (Fairfield, OH, USA). Madin-Darby canine kidney (MDCK) epithelial cell 
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line was purchased from American Type Culture Collection (Manassas, VA, USA) and 

passages 58-70 were used. Rat glioma cell line C6 was also purchased from the same 

company. Fetal calf serum was purchased from Hyclone Company (UT, USA). Mounting 

medium was provided by Dako Corporation (CA, USA). PI (propidium iodide) was 

purchased from Molecular Probes, Singapore. Triton® X-100 was purchased from BDH 

limited (Poole, England). Male Sprague Dawley rats, 180-220 gm each and 6-8 week old, 

were supplied by the Laboratory Animals Centre of Singapore and maintained at the 

Animal Holding Unit of NUS. Deionized water produced by Millipore (Millipore 

Corporation, Bedford, OH, USA) was used throughout the whole experiment. MPEG-

PLA was provided by Mr. Dong Yuancai and Mr. Zhang Zhiping.  

3.2 Methods 

3.2.1 Preparation of Nanoparticles 

3.2.1.1 Preparation of Paclitaxel/fluorescence Loaded Nanoparticles- Single 

Emulsion 

The PLGA nanoparticles were prepared by the oil-in-water solvent evaporation/ 

extraction technique. Altogether three samples were prepared: PVA emulsified 

nanoparticles, PVA &DPPC emulsified nanoparticles, vitamin E TPGS emulsified 

nanoparticles. Briefly, Paclitaxel 5.5mg and PLGA 110 mg were dissolved in 8 mL 

dichloromethane (DCM). DPPC 30mg was also dissolved in DCM. The resulted organic 

solution was then votexted for half a minute. The dissolved oil phase mixture was then 

poured slowly into the aqueous phase containing different emulsifiers (either 0.6 g PVA 
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or 36 mg Vitamin E TPGS dissolved in 120mL de-ionized water). The resulting emulsion 

was sonicated with an energy output of 25 W in a continuous mode for 90s.The formed 

oil in water emulsion was then stirred overnight at room temperature with the magnetic 

stirrer to evaporate the organic solvent (DCM). The produced nanoparticles were 

collected by centrifugation (11500 rpm, 12 min, 20°C) and washed with de-ionized water 

three times to remove excessive emulsifiers. The frozen product was then freeze-dried at 

-51 °C to get into fine powders of nanoparticles and kept in a vacuum desiccator for 

future use. 

The fluorescent nanoparticles were prepared using the same method above while 0.55mg 

cormarin-6 was used as fluorescent marker instead of paclitaxel. Since coumarin-6 was 

light sensitive, the whole process should be done in dark. 

3.2.1.2 Preparation of Gd-DTPA Loaded Nanoparticles- Nanoprecipitation  

Nanoprecipitation can be used to encapsulate both hydrophilic and hydrophobic 

substances. Briefly, 75mg polymer (PLGA or MPEG-PLA) was dissolved in 5mL 

acetone. 0.3mL Gd-DTPA (15% w/v) was suspended in the polymer solution and 

sonicated for about 20 seconds. The resulted suspension was added drop by drop using a 

syringe to 25mL water with 100mg F-68. The formed emulsion was then stirred 

overnight at room temperature with the magnetic stirrer to evaporate the organic solvent. 

The nanoparticles were collected by centrifugation (12,000rpm, 18°C, 60 min) and 

washed with de-ionized water twice to remove excessive Gd-DTPA and F-68. Finally, 

the frozen product was then freeze-dried at -51°C to get into fine powders of 

nanoparticles.. 

 30



3.2.1.3 Preparation of Gd-DTPA Loaded Nanoparticles- Double Emulsion 

Double emulsion is often used to encapsulate hydrophilic substances. Briefly, 75mg 

polymer was dissolved in 5mL DCM, 0.3mL Gd-DTPA (15% w/v) was then added to the 

oil phase. The resulting solution was sonicated for 40s, and then added to 30mL water 

with certain emulsifier. The water-in-oil-in-water suspension was sonicated for 90 

seconds. The formed emulsion was then stirred overnight at room temperature with the 

magnetic stirrer to evaporate the organic solvent (DCM). The produced nanoparticles 

were collected by centrifugation (11500 rpm, 15 min, 12 0C) and washed with de-ionized 

water three times to remove excessive emulsifiers. The frozen product was then freeze-

dried at -51 0C to get into fine powders of nanoparticles. 

3.2.2 Characterization of Nanoparticles 

3.2.2.1 Size and Size Distribution 

Particle size and size distribution were measured by laser light scattering system with 

particle size analyzer (90 Plus, Brookhaven Instruments, Huntsville, NY, USA) at 25ºC 

with a scattering angle of 90º. For the measurement, ~0.lmL nanoparticle suspension 

before freeze-drying was dispersed in 1 mL de-ionized water in a plastic cuvette, which 

was sonicated for 1minute. The cuvette was wiped clean and placed inside the machine 

for measurement. The laser will shine through the cuvette and take the reading. 

Information gathered would determine the mean diameter and size distribution which is 

also known as polydispersity.  

3.2.2.2 Particle Morphology 
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(a) Scanning Electron Microscopy (SEM)/Field Emission Scanning Electron   

Microscopy (FESEM) 

The particle size, shape and surface morphology of the nanoparticles prepared earlier 

could be characterized by SEM/FESEM (Jeol, JSM-5600 LV, Irfan View software).A 

small spatula of the sample was placed on to a black double-sided sticky tape, taped to 

the SEM/FESEM stud. They were then coated with platinum, performed in an Auto Fine 

Coater for 40s in a vacuum at a current intensity of 40mA (JFC-1300, JEOL, USA) 

before SEM/FESEM analysis. After SEM/FESEM captured the images, the sizes of the 

particles could be measured using Irfan view software. 

(b) Atomic Force Microscopy (AFM) 

The surface morphology and particle size could also be characterized by AFM 

(MultimodeTM Scanning Probe Microscope, Digital Instruments, USA). The 

nanoparticles were attached to double side sticky tape before atomic force microscopy 

(AFM) was conducted. Thereafter, AFM images were obtained by Nanoscope Ⅲ a 

(Digital Instrument, Santa Barbara, CA, USA) in tapping mode. The cantilever oscillated 

at its proper frequency (~300 KHz) and the driven amplitude was ~130 mV. 

3.2.2.3 Surface Charge 

Surface Charge was measured using ZetaPlusTMZeta Potential Analyzer (Brookhaven 

Instrument Corp, Holtsville, NY). Briefly, ~0.1mL nanoparticles suspension before 

freezedrying was dispersed in 1 mL water, which was followed by sonication for 1min. 

Then the mixture was poured into a plastic cuvette. The zeta potential of products was 
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measured with palladium electrodes, which was cleaned with de-ioned water before 

inserting into the cuvette. The cuvette was then placed inside the analyzer for surface 

charge analysis and the mean of the five readings was taken. 

3.2.3 Encapsulation Efficiency and Drug Entrapment 

3.2.3.1 Encapsulation Efficiency and Drug Entrapment of Paclitaxel loaded   

Nanoparticles 

This experiment was performed in triplicates using high performance liquid 

chromatography (HPLC) (Agilent LC1100) to determine the concentration of paclitaxel. 

A reverse phase Inertsil ® ODS-3 column (150x 4.6 mm i.d., pore size 5µm, GL Science, 

Tolyo, Japan) was used. 3 mg nanoparticles were dissolved in 1 mL DCM to extract 

paclitaxel from the nanoparticles. DCM was allowed to evaporate overnight. 3 mL 

acetonitrile/ water (50:50, v/v) was added and the solution was votexed for 1 min. After 

that, the sample was transferred to HPLC vials. The formulations that were used to 

calculate EE and drug entrapment were:   

Encapsulation Efficiency (EE) (%) = a/b×100; 

Drug Entrapment (%) =a/c×100 

where a is the amount of drug in nanospheres; b is the amount of drug used for 

fabrication; c is the amount of nanospheres. To avoid the influence of inefficient 

extraction, the extraction efficiency was also measured in this experiment. Briefly, certain 

amount of pure paclitaxel similar to the amount loaded in the corresponding amount of 

nanospheres and 3 mg placebo nanoparticles were dissolved in 1mL DCM. 3 mL of 
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acetonitrile/water were added and the same extraction procedure was done as described 

above. The resulting factor was 100%, which means no loss in the extraction procedure. 

3.2.3.2 Encapsulation Efficiency and Drug Entrapment of Gd-DTPA loaded 

Nanoparticles 

This experiment was studied by inductively coupled plasma-optical emission 

spectrometry (ICP-OES) and was done in triplicates. Briefly, 25 mg nanoparticles were 

dissolved in 3mL DCM and votexed for 1min. DCM was evaporated overnight. 3mL of 

Millipore water was added to extract Gd-DTPA. Then the samples were filtered by 

0.22µm filter. The concentration of Gd was determined by ICP-OES. 

3.2.4 In Vitro Release 

3.2.4.1 In Vitro Release of Paclitaxel Loaded Nanoparticles 

The release of paclitaxel from the nanoparticles was measured using high performance 

liquid chromatography (HPLC). 5 mg paclitaxel loaded nanoparticles were weighed into 

individual centrifuge tubes and suspended in 10 mL of fresh PBS (pH=7.4). The tubes 

were placed in a 37oC orbital shaker water bath and shaken horizontally at 120 min-1. The 

experiment was done in duplicates. The tubes were taken out at particular time intervals 

and centrifuged at 12000, 18oC, 18 minutes. The supernatant was removed and taken for 

in vitro release analysis. The precipitated nanoparticles were re-suspended in 10 mL PBS, 

sonicated, vortexed and placed back into the water bath shaker. Paclitaxel in the 

supernatant was extracted in 1 mL DCM in a separation funnel. The funnel was shaken 

consistently and 2 layers would form. The top layer contained water while the bottom 
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layer contained DCM and the extracted paclitaxel. DCM was collected and allowed to 

evaporate overnight. 3 mL of acetonitrile/ water (50:50,v/v) was added after evaporation 

and conditions for HPLC analysis were the same as mentioned above. Similarly, the 

extraction recovery coefficient was also measured using the same method mentioned 

above except that paclitaxel was in aqueous phase instead of dissolving in DCM directly. 

The extraction factor was around 80% and the data obtained for in vitro analysis was 

corrected accordingly. 

3.2.4.2 In Vitro Release of Gd-DTPA Loaded Nanoparticles 

This experiment was done in a similar way as the in vitro release of paclitaxel loaded 

nanoparticles. Briefly, 30mg nanoparticles were suspended in 5mL PBS. At pre-

determined time the samples were centrifuged and the supernatant was taken out for 

analysis. Since the Gd-DTPA released much faster than paclitaxel, the release file was 

obtained within 48 hours. The resulted released gadolinium in PBS was measured 

directly by ICP-OES. The study was also carried out in duplicates. 

 3.2.5 Cell Line Experiments 

3.2.5.1 Cell Culture 

The glioma cells C6 and MDCK were grown in 25 mL flasks, and maintained in a 

humidified 5% CO2/95% air incubator at 370C in medium (DMEM+10% FBS+5% 

penicillin G). The medium was changed every two days until the cells reached 80-90% 

confluence. After that, the cells were harvested with trypsin.  
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3.2.5.2 Trypsinization Procedures of the Cells 

The aim of trypsinization was to detach the cells from the bottle wall and collect the cells 

to transfer to the 96-well plate and estimate the density of the cells. Cells seeded in 

culture flasks were observed every 2 days, culture medium were changed every 2 days till 

cells reached ~85% confluence. The PBS and medium were warmed in the 37oC water 

bath. Trypsin should not be warmed up as heat could inactivate the enzyme. The medium 

was removed from the culture flask and the flask wall was washed with 5 mL PBS twice. 

1 mL trypsin was added to the bottle and shaken gently before removing them. Then 1 

mL trypsin was added again and incubated for about several minutes at 37oC, 5% CO2 

until detached cells were seen floating in trypsin. 5.5 mL medium was introduced to the 

bottle and pipette was used to make the cells even distributed. It was then transferred to a 

small centrifuge tube and centrifuged 800rpm, 6 minutes. The supernatant was discarded 

and the pellets were evenly suspended in 4.5 mL medium. 100µl cell suspension was 

taken out to estimate the density under the microscope. The cell density is: the sum of the 

cells in the four squares (4x4)/4*104cells/mL.  

3.2.5.3 Cell Viability Study/Cytotoxicity Study 

Cell viability/cytotoxicity study can be done with the MTT assay. The aim of this study 

was to measure quantitatively how much cells would be killed with the drug-loaded 

nanoparticles. Cell viability of nanoparticles with no drug and pure drug should also be 

tested as control. First, seed cells on 96 well plate (seeding density=1.3x104 cells/well) 

and wait for cells to grow until 80% confluence. Then, HBSS (Hank’s Balanced Salt 

Solution) stock with H2O and PBS [since both HBSS and PBS are concentrated (10x), 
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need to dilute using 1 part of HBSS to 9 part of PBS (1 part of PBS to 9 part of Millipore 

water)] was prepared. The cells with prepared HBSS medium were equilibrated and 

incubated for 1 hour. Then the HBSS was removed and nanoparticle suspensions, pure 

drug solution in DMEM were added. After incubating for a pre-determined time, the 

suspension was removed and washed with PBS twice. MTT solution was prepared by 

diluting concentrated MTT with PBS to 5mg/mL. MTT is light sensitive, henceforth must 

protect the stock bottle from light. After that, 90µl DMEM medium and 10µl MTT were 

added into the plate. The cells were incubated for 4 hours. After which, purple ppt was 

seen. Remove the media without removing the bluish ppt. Then dissolve the ppt with 

DMSO solution of 200µl each well. After that, the plate was placed inside a micro-plate 

reader and read the absorbance using 560 nm filter.  

3.2.5.4 Cell Uptake Study 

The aim of the cell uptake study was to find out how much fluorescence loaded 

nanoparticles would be taken by the cells. The previous step was similar to the procedure 

taken by the viability study until the cells had been treated with HBSS and incubated for 

1hour. In the mean time, nanoparticles with different sizes and different surface coatings 

were prepared and suspended in Millipore water. The particle suspensions were sonicated 

so that the particles would not settle at the bottom. The experiment on the 96 well plate 

was planned to include negative controls (cells only with no particles added), positive 

controls and samples. HBSS was then removed from the wells and incubated with 100 µl 

of the particle suspensions added to designated wells for 4 hours at 37oC. After 

incubation, particle suspensions and HBSS were removed only from the sample wells and 
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from the cell-only wells respectively. The cells in the sample wells and negative control 

wells were washed 3 times with PBS, mainly to remove excess nanoparticles that were 

not taken up by the cells. To the positive controls which should equivalent to 100% initial 

particle suspension seeded, 50 µl of triton/0.2M NaOH were added. 50µl PBS and 50 µl 

0.5% triton/0.2 M NaOH were added to the samples and cell-only wells. The plate was 

then scanned with a microplate reader (excitation wavelength 430 nm, emission 

wavelength 485 nm) to measure the amount of fluorescence in each well.   

3.2.5.5 Fluorescence Microscopy and Confocal Study 

The aim of fluorescence microscopy and confocal study was to give direct evidence that 

nanoparticles had really come into the cells. The MDCK cells were seeded in the 24-well 

assay white plate with coverglass seated in each well. The cells were incubated at 37oC, 

5% CO2. The medium was changed every two days until the cells reached 70% 

confluence for all wells. When the required confluence was reached, the medium was 

removed from the plate and replaced with 500µl fresh HBSS. Cells were equilibrated by 

incubating at 37oC, 5% CO2 for 1 hour. In the mean while, certain concentration 

nanoparticles were prepared and suspended in HBSS. The particle suspensions were 

sonicated so as to ensure even distribution and the particles did not settle at the bottom. 

HBSS was then removed from the plates and incubated with the particle suspension for 4 

hours. After incubation, the particle suspension and HBSS were removed from each well. 

500µl ethanol was added to fix the cells. Then the plate was placed in the incubator for 

20 minutes. After that, the ethanol was removed and the cells were washed with PBS for 

3 times. 200µl PBS was re-added and 20~30µl propidium iodide (PI) was added to stain 

the nucleus. The plate was placed in the incubator for another 40 minutes. After 
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incubation, PI was removed and the wells were washed with PBS for three times. 2~3 

drops of mounting medium were added to the cells. At last, cells could be examined 

under the fluorescence microscope or confocal microscope (Zeiss LSM 410, Germany) 

equipped with imaging software, Fluoview FV300. 

3.2.6 Animal Study 

Healthy rats were divided into three groups in in vivo experiments. One group was treated 

as control and would inject only 0.9%(w/v) NaCl saline. In the other two groups, the rats 

were intravenously injected with fluorescent nanoparticle solutions coated or uncoated 

with tween 80. After injection, the rats would be placed in the cage for 1.5 hours and the 

blood vessels of the rats would be rinsed before sacrificing them to bring out the brain. 

The bought-out rats’ brains were put into 4% paraformaldehyde solution to be fixed. 

After that, tissue freezer was used to freeze the brain tissues.  Cyrostat (Leica, CM3050) 

was used to cut the tissue into slices of 10 µm thick. The resulted slices would be 

observed under fluorescence microscopy. 

3.2.7 MRI Characterization  

The MRI characterization of Gd-DTPA encapsulated nanoparticles and the calibration 

curve of pure Gd-DTPA were measured on a 1.5T scanner with a head coil using a 

clinical MRI machine, National University Hospital (SIMENS). Briefly, Gd-DTPA 

encapsulated nanoparticle samples of a certain concentration and standard Gd-DTPA 

solution ranging in concentrations from 0 to 2mM were prepared both in water and in 

gelatin. Then they had a MR scanning with the following parameters: slide thickness = 

 39



5mm, TR ranging from 25ms to 6400ms, TE=12ms, FOV=180 and FOV phase= 100%. 

The surrounding temperature remained at 22oC in all experiments to reduce the effect of 

temperature dependence on relaxation rate. Signal intensities were measured from a 

region of interest in the center of the samples and would be transferred through a self-

developed program by NUH staff to get the corresponding T1, T2 values. Then their 

characteristics were analyzed.  
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Chapter 4 

In Vitro Study of Paclitaxel Loaded PLGA Nanoparticles to 

Treat Brain Cancer Cells 

4.1 Novel Formulation of PLGA Nanoparticles with Natural Emulsifiers 

Emulsifiers, also known as surfactants, play an important part in the process of 

fabricating nanoparticles. The emulsifier serves to ‘link’ up the oil phase and the aqueous 

phase during the formulation process (Mu and Feng, 2002). This linkage between the two 

immiscible phases stabilizes the emulsion and allows the formation of nanoparticles. This 

emulsion is possible since the emulsifier, which contains both hydrophilic and 

hydrophobic parts, helps to stabilize the dispersed or dissolved polymer and drug 

molecules by keeping them ‘apart’ and hence prevents the aggregation of these particles. 

Moreover, the remaining emulsifiers on the nanoparticle surface serves as surfactant may 

further affect nanoparticles’ characteristics.  

Compared with traditional chemical emulsifier PVA, novel natural emulsifiers vitamin E 

TPGS and DPPC have more advantages. Both of them are natural surfactants which are 

biocompatible and do no harm to human body while residual PVA on the nanoparticles’ 

surface may cause some side effects. Moreover, both vitamin E TPGS and DPPC have 

amphiphilic structures, which make them good candidates to act as emulsifiers and 

surface coatings. Fig 4.1 below shows the chemical structures of PVA, vitamin E TPGS 

and DPPC. 
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    Fig 4.1 Chemical structure of PVA, vitamin E TPGS and DPPC 
 

Vitamin E TPGS is a water-soluble derivative of natural vitamin E, formed by 

esterification of vitamin E succinate with polyethylene glycol 1000. It has dual nature 

with part of the molecule showing hydrophobicity while another part showing 

hydrophilicity. From Fig 4.1 above, it can be seen that the polyethylene glycol portion 

(indicated in the circle) acts as the hydrophilic polar head and the tocopherol succinate 

portion (on the other end) behaves as the lipophilic tail. Vitamin E TPGS can not only 

dissolve well in water but also in oil. This special structure property suggests its potential 

application as emulsifier. Unlike PVA, vitamin E TPGS can form solution with water at a 

concentration of up to 20% (w/w), beyond which high viscosity liquid crystalline phases 

begin to form. However, the critical micelle concentration (CMC) of TPGS is only about 

0.02 wt% in water beyond which TPGS will begin to form micelles and continue to form 

low viscosity solutions till reach the concentration of 20%. If the concentration of TPGS 
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is too low in water, it won’t act as an emulsifier. However, if it is too high, TPGS tends to 

self-assemble to form micelles and change the state in the aqueous dispersing phase. Mu 

and Feng found that the optimal concentration for TPGS as emulsifier was 0.02%-0.03%, 

which resulted in best nanoparticle yield and size (Mu and Feng, 2003).  

In the same way, natural phospholipid DPPC also has amphiphilic structure. From the 

chemical structure of DPPC in Fig 4.1, it is clear that DPPC has a hydrophilic head (the 

part in the circle) and a hydrocarbon tail. In the following experiments, these two novel 

emulsifiers will be used to fabricate the paclitaxel/fluorescence loaded nanoparticles of 

biodegradable PLGA nanoparticles and their potential to cross the blood brain barrier and 

to treat brain tumor will also be investigated. 

4.1  Size, Size Distribution and Surface Charge  

Table 4.1 Size, polydispersity and zeta potential of 5% paclitaxel loaded PLGA     
nanoparticles with different emulsifiers 

Matrix/Emulsifier Particle Size (nm) Polydispersity Zeta Potential (mV) 

PLGA /PVA 267.3 0.076 -13.80 

PLGA/DPPC&PVA 245.2 0.066 -15.70 

PLGA/vitamin E TPGS 284.8 0.048 -28.82 

Table 4.1 above shows the particle size, size distribution and surface charge of 5% 

paclitaxel loaded PLGA nanoparticles (5.5mg paclitaxel plus 110mg PLGA during 

fabrication) with different emulsifiers. Solvent extraction /evaporation (single emulsion) 

method was used to fabricate these nanoparticles.  Altogether three batches of particles 

were fabricated and would be used for further investigations including PVA emulsified 

nanoparticles, DPPC emulsified nanoparticles with PVA as co-emulsifier in water phase 
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and vitamine E TPGS emulsified nanoprticles. The particle size and polydispersity were 

determined by LLS (laser light scattering). Zeta potential was determined by zeta 

potential analyzer. From the table, it can be seen that nanoparticles with size less than 

300nm and a negative surface charge were achieved.  

4.2.1 Particle Size and Size Distribution 

Prior to fabricating the DPPC emulsified nanoparticles with PVA as co-emulsifier, the 

effect of DPPC alone as emulsifier both in water phase and oil phase was also 

investigated. Although DPPC possesses amphiphilic structures, it doesn’t dissolve very 

well in the water phase, which reduces the effectiveness of its emulsifying efficiency. 

The size of the particle with DPPC as emulsifier in water phase was around 1700nm. 

Usually, nanoparticles for drug delivery to the brain are of diameter less than 400nm 

(Chen et al., 2004). Therefore it was not favorable for the purpose of crossing BBB. 

Although DPPC can dissolve well in the oil phase, the particle size of DPPC as emulsifier 

in the oil phase was still as much as 1000nm, which was still too large for our 

investigation purpose. The large particle size may be caused by the relative small 

molecular weight of DPPC which is only 734. Finally, we used DPPC as emulsifier in the 

oil phase and PVA in the water phase as co-emulsifier.  From Table 4.1, it is clear to see 

that nanoparticles fabricated by this way not only has favorable size but also has good 

surface characteristics.  

From table 4.1, it can also be seen that DPPC & PVA emulsified nanoparticles have a 

smaller particle size than that of naked PVA emulsified nanoprticles. The results may be  
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due to the additive effect of co-surfactant (Kreuter, 1994). The combination of PVA and 

DPPC increases the emulsifying efficiency, thus makes smaller size of the nanoparticles. 

Moreover, the polymer matrix PLGA was also dissolved in the oil phase; DPPC served 

not only as emulsifier but also part of the matrix and would affect nanoparticles’ surface 

characteristics.  

Vitamin E TPGS emulsified nanoparticles have a larger particle size than other two 

formulations. This may be due to the differences in the chemical structure of TPGS and 

PVA. From Fig 4.1, it can be seen PVA has a long linear chain structure with a high 

molecular weight up to 30,000-70,000, which makes it an effective emulsifier in 

stabilizing the oil droplets to form small nanoparticles. However, the molecular weight of 

vitamin E TPGS is only 1,513, which is less than 1/20 of that of PVA, thus makes TPGS 

emulsified nanoparticles have larger particle size. However, considering the amount of 

TPGS used in the fabrication (36mg) compared with PVA (600mg), we can still think the 

emulsifying efficiency of vitamin E TPGS is higher than that of PVA.  

The size distribution was measured by laser light scattering system. In this system, the 

size distribution was specified in the light scattering intensity and polydispersity was 

defined as the log normal distribution width of the particle diameter. From Table 4.1, it 

can be seen that for all the three formulations, a narrow size distribution of 0.048~0.076 

was achieved, which means the size of the nanoparticles is very uniform. This point can 

also be further confirmed by the SEM pictures shown below. 
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4.2.2 Surface Charge Study 

Zeta potential is an indicator of nanoparticles’ surface charge, which also determines the 

stability of nanoparticles in dispersion. Moreover, zeta potential can affect the 

characteristics of tissues. Lockman et al discovered recently that cationic and high 

concentration anionic nanoparticles would disrupt the integrity and permeability of the 

blood brain barrier while neutral and low concentration anionic nanoparticles would not. 

Thus only neutral and low concentration anionic nanoparticles were suitable to be used as 

drug carrier to the brain. They also discovered that the brain uptake rates of low 

concentration anionic nanoparticles were superior to that of neutral and cationic 

formulations at the same concentration (Lockman et al., 2004). 

The surface charge of nanoparticles was measured by the Brookhaven zeta potential 

analyzer in this project. From Table 4.1, it could be seen that all three batches of 

nanoparticles were negatively charged which were suitable for brain uptake in low 

concentrations. The negative surface charge could be attributed to the presence of ionized 

carboxyl groups on nanoparticles’ surface (Sahoo et al., 2002). Stolnik et al. reported that 

the zeta potential of naked PLGA nanoparticles without any PVA in neutral buffers was 

about -45mV (Stolnik et al., 1995). This high negative charge was primarily due to the 

uncapped end carboxyl groups of the polymer at particle surface. 

 Our samples showed a much lower negative charge than naked PLGA. For PVA 

emulsified nanoparticles, the zeta potential was -13.80mV, DPPC&PVA emulsified 

nanoparticles was -15.70mV, vitamin E TPGS emulsified nanoparticles was –28.82mV. 

The reduction in negative charge on particle surface should be attributed to the shielding 
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effect of the remaining emulsifier on particle surface which serves as surface coating or 

surfactant. Coating nanoparticles with these amphiphilic materials shields the surface 

charge and moves the shear plane outwards from the particle surface (Sahoo et al., 2002). 

It was found that a fraction of PVA used as emulsifier would form a stable inter-

connected network with the polymer at interface during nanoparticle fabrication and 

would not be removed via the washing process (Carrio et al., 1991; Boury et al., 1995). 

For DPPC, because of its relative low solubility in water and blending with polymer in 

the oil phase during fabrication, a considerable fraction of it will also be remained in the 

particle surface. Feng & Huang found a dominant DPPC remained in DPPC emulsified 

nanoparticle surface using XPS (X-ray Photon Spectroscopy) detection (Feng and Huang, 

2001). For vitamin E TPGS emulsified PLGA nanoparticles, they had a higher negative 

zeta potential than the other two batches but still lower than that of naked PLGA 

nanoparticles. This may due to the good solubility of TPGS in water and the small 

amount used (only 36 mg compared with 600mg PVA) during fabrication so that they can 

be relatively easily washed away. However, the lower negative zeta potential of vitamin 

E TPGS emulsified nanoparticles than naked PLGA nanoparticles indicates the existence 

of remaining TPGS on particle surface.  

4.3   Surface and Bulk Morphology 

Besides size, size distribution and surface charge, surface and bulk morphology of 

nanoparticles is also very important because it determines the drug release kinetics from 

the nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy 

(AFM) in tapping mode were used to give both general and specific morphology of the 
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nanoparticles. SEM needs prior coating of platinum on the surface of nanoparticles and 

can demonstrate morphology of bulk nanoparticles. As the voltage of instruments 

decreases, SEM images of higher amplification can be achieved without damaging the 

samples. In contrary to SEM, AFM doesn’t need sample coating and can provide much 

higher resolution than SEM, thus more detailed surface morphology can be achieved. 

AFM can also demonstrate 3-D morphology of the nanoparticles.  

Fig 4.2 to Fig 4.4 demonstrates the SEM and AFM images of all three batches of 

nanoparticles. From SEM, it can be seen that all nanoparticles had fine spherical shapes 

and smooth surfaces. There were some club-shaped things among nanoparticles, which 

was the drug that hadn’t been encapsulated but remained on the surface of nanoparticles. 

AFM reveals the fine structures of nanoparticle surface and clear 3-D morphological 

images of spherical nanoparticles.  It can also be seen that there was no aggregation or 

adhesion among nanoparticles. Although the multi-particle AFM images showed smooth 

surface as seen below, some researchers have done single particle zoom in (Mu & Feng, 

2003) and particle sectioning analysis (Feng & Huang, 2000), which substantiated the 

existence of complex topography of nanoparticles indicating  micro-caves and pores on 

the surface instead of simple smooth morphology. Though the structure of the 

nanoparticles could be quite complex, the relative smooth surface could be shown as an 

evidence to support the assumption that the release of drug from nanospheres might be 

caused by both polymer erosion and drug diffusion.  
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Fig 4.2 SEM and AFM images of PVA emulsified PLGA nanoparticles (5% drug loading) 
 

              

Fig 4.3 SEM and AFM images of PVA & DPPC co-emulsified PLGA nanoparticles (5% 
drug loading) 

 

Fig 4.4 SEM and AFM images of vitamin E TPGS emulsified PLGA nanoparticles (5% 
drug loading) 
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4.4      Encapsulation Efficiency of Paclitaxel Loaded Nanoparticles 

Encapsulation efficiency (EE) is the parameter to characterize the fraction of drugs 

incorporated into the nanoparticles compared with the original amount used in fabrication. 

EE is important in developing drug carriers since too low EE will prevent the mass 

production of drug loaded devices, especially for those expensive drugs such as paclitaxel. 

In this experiment, high performance liquid chromatography (HPLC) was used to 

measure the encapsulation efficiency of paclitaxel in PLGA nanoparticles and the 

experiment was done in triplicate.  

From Fig 4.5 below, we can see all three batches of nanoparticles obtained favorable EE 

value. For PVA emulsified nanoparticles, the encapsulation efficiency was 58.42%, for 

DPPC&PVA emulsified nanoparticles, EE value was 45.71% and the encapsulation 

efficiency of vitamin E TPGS emulsified nanoparticles was 92.30%. The relative high 

encapsulation efficiency is attributed to the physiochemical characteristics of the drugs 

encapsulated. During the process of forming solid nanoparticles with 

extraction/evaporation method, not only organic solvent, but also the polymer and drug 

will partition or diffuse from internal organic phase to external aqueous phase, which 

results in the loss of drugs. Just as introduced previously, paclitaxel is very hydrophobic, 

thus most of it would stay in the polymer matrix even after repeated washing during 

fabrication. For hydrophilic drugs, the encapsulation efficiency won’t be that high with 

the same extraction/evaporation method (Jain, 2000). 

Besides the drug encapsulated, EE is also influenced by the polymer, the emulsifier, the 

method used to fabricate nanoparticles and the particle size. Generally, the larger the 
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particles, the higher the encapsulation efficiency and our result is correspondent with this 

principle. Vitamin E TPGS emulsified nanoparticles had the largest particle size and they 

also had the highest EE value. On the other hand, DPPC& PVA emulsified nanoparticles 

had the smallest particle size and they got the smallest encapsulation efficiency. 

From Fig 4.5, we can also discover that the encapsulation efficiency of vitamin E TPGS 

emulsified nanoparticles is much higher than the other two batches. Although size may 

affect EE as discussed above, other factors such as the effect of emulsifiers must also be 

considered for this significant improvement. Vitamin E TPGS has large and bulky 

surface areas in its hydrophilic polar head portion and lipophilic alkyl tail, which might 

account for its effectiveness in preventing the partition or diffusion of hydrophobic 

paclitaxel from internal polymer matrix to external phase. The high encapsulation 

efficiency of vitamin E TPGS emulsified nanoparticles also improves the current solvent 

extraction/evaporation method (Mu and Feng, 2002).  
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Fig 4.5 Encapsulation efficiency of PVA, DPPC and vitamin E TPGS emulsified PLGA 
nanoparticles(5% paclitaxel loading, n=3) 
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4.5      In Vitro Release Profile of Paclitaxel from Nanoparticles 

One of the greatest advantages of applying nanoparticles as drug delivery device is the 

possibility of achieving “controlled release”. By releasing drugs in a sustained manner, 

the drug concentration will be maintained within therapeutic index thus to reduce 

administration times and prolong the action of drug molecules. In vitro release kinetics is 

a very important parameter to measure the drug loaded devices.  

Fig 4.6 shows the in vitro release profile of the three batches of nanoparticles after 

corrected with the extraction efficiency factor. The experiment was carried out in the 

phosphate buffer solution (PBS) of pH=7.4 at 37oC in an orbital shaker as the simple 

simulation of human body environment. Release in about 1 month was measured. All 

batches of nanoparticles had a similar release profile with an initial burst in the first few 

days and later slow and sustained release in a nearly constant rate. For PVA emulsified 

nanoparticles, the initial burst was quite high with over 40% of drugs in the first three 

days; for DPPC&PVA emulsified nanoparticles, the initial burst was around 30% while 

vitamin E TPGS emulsified nanoparticles had the smallest initial burst of  less than 20%. 

After 25 days, PVA emulsified nanoparticles released around 68% of all encapsulated 

drugs; DPPC& PVA emulsified nanoparticles released around 60% and vitamin E TPGS 

emulsified nanoparticle released the least percentage of around 40%. However, we can 

not say vitamin E TPGS emulsified nanoparticles released the least amount of drug since 

the encapsulation efficiency of it is much higher. 

Recall the SEM pictures, not all drug molecules have been encapsulated into the 

nanospheres, there were some on the surface of the nanoparticles. The initial burst could 
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be caused by the diffusion release of paclitaxel distributed on or near the surface of 

nanospheres. Afterwards, the release rates slowed down because it needed time for 

paclitaxel to diffuse out from relative inner shell of nanoparticles. Swelling of the 

nanoparticles, which was caused by the absorption of the PBS solution, could also have 

occurred, leading to the release of drugs via dissolution. Since the degradation of 

polymers is very slow, the main mechanisms for drug release should be diffusion and 

matrix swelling. 

The differences in initial burst and releasing rate of the three batches of nanoparticles 

may be caused by different properties of the emulsifiers. The addition of DPPC in 

fabrication formed a layer of coating on nanoparticles’ surface, thus reduced the micro-

caves and micro-pores on nanoparticle surface. Therefore, both the initial burst and 

release rate decreased for DPPC&PVA emulsified nanoparticles compared with naked 

PVA emulsified nanoparticles. Although smaller particles usually result in faster 

releasing rate, the DPPC&PVA emulsified nanoparticles with smaller particle size still 

had slower rate than PVA emulsified nanoparticles because the effects of emulsifier 

dominated over the releasing procedure.  For vitamin E TPGS emulsified nanoparticles, 

firstly, their relative large particle size resulted in slower release rate; secondly, the 

ability for TPGS to dissolve well in both water and oil phase together with their bulky 

chains helped PLGA and paclitaxel have better interaction in fabrication thus further 

reduced the releasing rate. Although neutral PBS can act as a simple simulation of human 

body, it could not replace the real in vivo situation. Different pH values, ions and various 

proteins in blood can affect the release profile a lot (Verma et al., 2005).  
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Fig 4.6 In vitro release profile of PVA, DPPC, vitamin E TPGS emulsified nanoparticles 

(5% paclitaxel loading)   

 

4.6      Cell Culture of Rat Brain Tumor Cell Line C6 

C6 is a kind of rat glial tumor cell line, which was used as a model cell line to study the 

cell viability in this project. Fig 4.7 below is the image of C6 cell line after 3 days’ 

culture. This picture was also taken with the Olympus 1X700 optical microscope in 

chemotherapeutic engineering lab, NUS.   
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Fig 4.7 Morphology of rat brain glioma cell line C6 reaching ~50% confluence after ~ 3 
days’ culture 

4.7      Cell Viability Study 

To evaluate the potential of paclitaxel loaded nanoparticles to treat brain cancer, cell 

viability study was carried out using MTT assay with rat brain cancer cell line C6 as the 

model cell line. MTT assay is a laboratory test for measuring cellular proliferation (cell 

growth). MTT is added to a cell culture and is modified into a dye by enzymes associated 

metabolic activity in a live cell.  The cell viability of commercial paclitaxel product 

Taxol® was also tested to do a comparison with the paclitaxel loaded nanoparticles.  

Fig 4.8 and Fig 4.9 show the concentration effect and time effect in cell viability study of 

paclitaxel loaded nanoparticles and Taxol®. The initial drug loading was 5%. In the 

concentration study, three concentrations of loaded paclitaxel or Taxol® were tested: 

0.25µg/mL, 2.5µg/mL and 25µg/mL. The cell viability of corresponding placebo 

nanoparticles was also tested as control. The incubation time for this study was 24 hours. 

For the time effect study, the drug concentration remained at 0.25µg/mL while the 
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incubation time varied from 24 hours to 72 hours. Placebo nanoparticles were also tested 

in the time effect study. 

It is quite clear that with the increase of concentration and time, the cell viability 

decreases. Drug loaded nanoparticles showed a comparable effect in killing cancer cells 

of pure taxol® in the concentration and time intervals tested.  

In the concentration effect study, C6 cells had about 80% viability at the concentration of 

0.25µg/mL; when the drug concentration increased to 25µg/mL, this value decreased to 

about 60%, which indicated that concentration had much effect in cell viability. Similar 

trend has also been found by other groups using doxorubicin loaded PLGA microparticles 

(Lin et al., 2005). If the drug concentration goes to a too high value, the toxic adjuvant 

Cremophor EL of taxol® might also begin to kill cells and it will be hard to compare the 

effect of paclitaxel loaded nanoparticles and taxol®itself. Although drug loaded 

nanoparticles and pure taxol® showed comparable effect in killing C6 brain cancer cells, 

the particle formulation has more advantages considering only around 10% of the drug 

released from the particles in 24 hours in the in vitro release profile. This augment might 

be caused by the increased uptake percentage of the particles than pure taxol®. Due to the 

existence of P-gp, it is very difficult for pure drug to enter cells. However, the 

nanoparticle formulation can mask the characteristics of P-gp and easily enter the cells. 

For the time effect study, similarly, cell viability was around 80% after incubating for 24 

hours at the concentration of 0.25µg/mL. However, after 72 hours, cell viability 

decreased to only about 50% at the same concentration. It is thus can be seen longer time 

with even lower concentration may exert great effect on cell viability. This might be 
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caused by the release of paclitaxel from nanoparticles, especially in the first several days 

when the initial burst happens. We can also discover from the two figures that vitamin E 

TPGS emulsified nanoparticles have the relative lowest cell viability in different 

concentrations and time. The higher mortality of C6 cells to TPGS emulsified 

nanoparticles may be caused by the high cellular uptake of the drug loaded nanoparticles 

compared with other batches of nanoparticles and pure drug. The comparison of cellular 

uptake study will be discussed later. Moreover, the placebo PLGA nanoparticles with 

different emulsifiers all showed no cytotoxic effect on cells in this study, which indicated 

that it was the drug released not the nanoparticles themselves that killed the cells. All 

these results demonstrate paclitaxel loaded PLGA nanoparticles as a potential tool to treat 

brain cancers. 

Cell Viability (Concentration)

0%

20%

40%

60%

80%

100%

120%

0.25 2.5 25

concentration(ug/mL)

ce
ll 

vi
ab

ili
ty

 p
er

ce
nt

ag
e

taxol
PVA
DPPC
VE
Placebo-PVA
Placebo-DPPC
Placebo-VE

 
Fig 4.8 C6 cell viability study of pure taxol, 5% paclitaxel loaded and no drug loaded 
(placebo) PLGA nanoparticles with different emulsifiers in different concentrations, 
incubation time=24h. (n=6)  
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Fig 4.9 C6 cell viability study of pure taxol, 5% paclitaxel loaded and no-drug loaded 
(placebo) PLGA nanoparticles with different emulsifiers in different time intervals. 
Concentration=0.25 µg/mL (n=6)  
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Chapter 5 

In Vitro and In Vivo Uptake Study of Fluorescence Loaded 

Polymeric Nanoparticles to Cross the Blood Brain Barrier 

Blood brain barrier plays an important part in preventing the drug from entering the brain 

freely. The uptake experiment of fluorescent marker loaded nanoparticles through simple 

in vitro BBB model and in vivo can give direct evidence of nanoparticles’ possible ability 

to enter the brain. 

5.1 MDCK Cell Line as In Vitro BBB Model 

In this project, MDCK (Madin-Darby canine kidney), a well characterized model for 

many biological functions, was used as the simple in vitro model of the blood brain 

barrier for cell uptake experiment. This cell line is endowed with the ability to form 

polarized monolayers that express tight junctions in the apical side. MDCK cells also 

produce many of the enzymes found in the brain endothelial cells. Under appropriate 

culture condition, monolayers with tightness comparable to that found in the brain 

endothelial cells can be obtained within days of culture. MDCK monolayers represent a 

relatively simple model for the screening of compounds that are transported passively 

across the blood-brain barrier. Although other systems such as the primary brain 

microvessel cells and co-culture system are also used in BBB investigation (Borchard et 

al., 1994), it is relatively difficult to maintain these systems compared with MDCK 

system. Fig 5.1 shows the morphology of MDCK cell line of about 80% confluence after 
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5 days’ culture. This image was taken with the Olympus 1X700 optical microscope in 

chemotherapeutic engineering lab, NUS. 

                        
 
 Fig 5.1 Morphology of MDCK cell line reaching ~80% confluence after ~5 days’ culture  
 

5.2     Cell Uptake Study 

Cell uptake study is to validate the ability of nanoparticles to cross the in vitro BBB 

model.  MDCK cell line was used as a simple simulation of the in vitro blood brain 

barrier in this experiment. 

5.2.1 Surfactant Effect 

In order to test the effect of emulsifiers on cellular uptake of nanoparticles, fluorescent 

marker coumarin-6 was encapsulated into the PLGA nanoparticles with different 

emulsifiers using single emulsion method. The resulting nanoparticles had similar 

particle size, size distribution and zeta potential to the paclitaxel loaded nanoparticles. 

The quantitative uptake percentage could be obtained via microplate reader.  
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To prevent the misinterpretation of nanoparticle uptake data due to the dissociation or 

leaching of coumarin-6 directly into the cells, in vitro release of fluorescent marker was 

also carried out using microplate reader within 24 hours. It was found that less than 0.5% 

of coumarin-6 released from all batches of nanoparticles during this period. Since the 

incubation time was only 4 hours in this experiment, so the released fluorescent marker 

can be neglected. Lu et al. also detected similar low release of coumarin-6 from 

nanoparticles in vitro with different pH buffers using fluorescent column HPLC (Lu et al., 

2005). Moreover, the relative inertia of coumarin-6 encapsulated in PLGA nanoparticles 

guaranteed the dye not to leak out under the physiological conditions or under the acidic 

endo-lysosome compartment (Panyam et al., 2003). Actually, coumarin-6 encapsulated 

nanoparticles are widely used in cell uptake experiment (Khin and Feng, 2005; Davda 

and Labhasetwar, 2002; Panyam et al., 2002). 

Fig 5.2 below shows the cell uptake percentage of PLGA nanoparticles with different 

emulsifiers after 4 hours’ incubation with the particle concentration of 250µg/mL. 

Generally, 4 hours is enough for cells expressing brain structure to reach their highest 

uptake percentage (Ramge et al., 2000). 29.4% PVA emulsified nanoparticles were taken 

up by MDCK cells, the uptake percentage of DPPC&PVA emulsified nanoparticles was 

41.0% and vitamin E TPGS emulsified nanoparticles exerted the highest uptake 

percentage of up to 63.8%, which was more than 2 folds of PVA emulsified nanoparticles. 

This difference in the uptake percentage is mainly caused by the surfactant on particle 

surface. PVA is a kind of chemical surfactant and the remaining PVA on particle surface 

may reduce the intracellular uptake because it makes the particle surface more 

hydrophilic, thus becomes difficult to interact with the hydrophobic cell membrane. On 
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the other hand, DPPC is a kind of natural lipid surfactant and DPPC coated nanoparticles 

are not only nontoxic but also help to enhance the cellular uptake since the lipid has 

similar structure as cell membrane. Fenart et al. reported similar research on 

phospholipids DMPC coated nanoparticles which showed enhanced ability to cross BBB 

without degradation (Fenart et al., 1999). For vitamin E TPGS emulsified nanoparticles, 

the remaining TPGS on particle surface formed a natural surfactant layer which not only 

had enhanced interaction with cells but also inhibited the P-glycoprotein on the MDCK 

membrane surface (Dintaman and Silverman, 1999). All of these can account for the 

highest cell uptake of TPGS emulsified nanoparticles. 
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 Fig 5.2 MDCK cellular uptake of PLGA nanoparticles with different emulsifiers, 
incubation time = 4 hours, concentration = 250 µg/mL. (n=6) 
 

5.2.2 Particle Size Effect 

Besides surfactant, particle size also plays a key role in adhesion and interaction with 

biological cells (Foster et al., 2001), especially for cells that express tight junctions such 
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as MDCK cell line used in this experiment. Although the PLGA nanoparticles showed 

favorable cellular uptake with their particle size within 200nm to 300nm, it is necessary 

to do further investigation on particle size effect so that we can develop more favorable 

nanoparticles for brain drug delivery. Commercial fluorescent polystyrene (PS) 

nanoparticles with various uniform sizes were used in this investigation. The tested sizes 

included 20nm, 57nm, 100nm, 200nm, 510nm. All particles had a negative surface 

charge.  The incubation time for nanoparticles was also 4 hours. Three different 

concentrations: 50µg/mL, 250 µg/mL, 500 µg/mL were used to validate the result.  

Fig 5.3 below showed the MDCK cellular uptake profile of different concentration PS 

nanoparticles with uniform sizes within 20nm~ 510nm. The fluorescent PS nanoparticles 

are suitable for the cell uptake study since the encapsulated fluorescence also releases 

very slowly and would not cause false reading (Kin and Feng, 2005). Obviously, the cell 

uptake percentage of PS nanoparticles was much lower than PLGA nanoparticles. The 

highest cellular uptake of PS nanoparticles was only about 16%. This should mainly be 

caused by different characteristics of the two polymers. Unlike PLGA, PS, which is often 

used to produce plastic bags, is not biodegradable or biocompatible. However, PS can 

produce nanoparticles with various uniform sizes, especially very small sizes, so it also 

has wide application in scientific research. Another reason for the low uptake of PS 

nanoparticles might be the lack of proper surfactant on particle surface.  

From Fig 5.3, we can see in the whole concentration range, the 57 nm PS nanoparticles 

showed the highest uptake percentage and 20nm, 500nm nanoparticles showed the lowest 

uptake percentage compared with other sizes. 100nm and 200nm nanoparticles showed 

 63



quite similar uptake percentage which was between the highest and the lowest. The 

results implied particle size around 60nm may have the best uptake percentage by cells 

expressing tight junctions. This might be caused by the combination of several 

mechanisms to uptake particles of this size including paracellular passage, endocytotic 

uptake and phagocytosis. It has been reported that phagocytic uptake took place with a 

cut-off size of about 500nm. For nanoparticles of lower size, they can also be taken up by 

fluid phase endocytosis (Suh et al., 1998; Foster et al., 2001).  Particle size of 500nm or 

above might be too large for drug delivery to brain.  The surprisingly low uptake 

percentage of the 20nm nanoparticles might be caused by the aggregation of the particles 

due to their too small size. The result of the experiment showed that particle size for brain 

delivery was not necessarily the smaller, the better. An optimal particle size is very 

important for cellular uptake. 
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5.3 MDCK cellular uptake profile of fluorescent polystyrene nanoparticles with uniform 
particle sizes (n=6), the concentration unit is µg/mL, the size unit is nm. 
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5.3  Confocal Study 

From above studies, the cellular uptake percentage of PLGA nanoparticles with different 

emulsifiers was investigated quantitatively using microplate reader. To give direct 

evidence that nanoparticles had really come into the cells instead of just attaching to them, 

confocal laser scanning microscopy was used to visualize the internalization of 

nanoparticles. Fig 5.4 below shows the confocal images of nanoparticles into MDCK cell 

line. The nuclei of cells were stained red with PI (propidium iodide) while the 

nanoparticle had a fluorescence of green. We can see from the pictures that most 

nanoparticles had internalized the cytoplasma of the cells and vitamin E TPGS emulsified 

nanoparticles had the thickest layer of drugs internalized. No fluorescence could be 

detected by the control cells not exposed to coumarin-6 loaded nanoparticles and the 

placebo nanoparticles, which meant no false reading was caused by auto fluorescent of 

the cells or the polymers.  
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Fig 5.4 Confocal images of fluorescence loaded PLGA nanoparticles with different 
emulsifiers. (a) PVA emulsified nanoparticles (b) DPPC& PVA emulsified nanoparticles 
(c) vitamin E TPGS emulsified nanoparticles 

 

 

5.4  In Vivo Study with Rat Models   

Although in vitro studies have shown great potential for PLGA nanoparticles to cross the 

blood brain barrier, it is necessary to carry out in vivo study to validate this assumption. 

Male Sprague Dawley rats of around 200g in weight were used as animal model. From 

previous study, we can see all batches of nanoparticles had favorable characteristics, of 

which vitamin E TPGS emulsified PLGA nanoparticles had the best cellular uptake in 

vitro, so it was used as model nanoparticles. Coumarin-6 was used as fluorescent marker 

due to its relative inertial property in physiologic environment and very low release rate 

mentioned previously (Panyam et al., 2003). It is also reported that polysorbate coating 

on nanoparticles plays a very important role in brain targeting and polysorbate 20, 40, 60, 

80, 85 (tween 20, 40, 60, 80, 85) are the only kinds of surface coating that can effectively 

help nanoparticles across the blood brain barrier in vivo (Kreuter, 2001). Thus the model 
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PLGA nanoparticles were overcoated with tween 80 and centrifuged to remove excess 

coatings before injecting to the animal models. 0.3 mL nanoparticle suspension in 

0.9%(w/v) NaCl saline was injected intravenously to the rat tail. After 90 minutes, rats 

were killed and their residual blood was rinsed before their brains were fixed and cut into 

tissue slices. Besides tween 80 coated PLGA nanoparticles, naked PLGA nanoparticles 

and pure saline were also injected to control rat groups. No mortality of rats was observed 

after injection of coumarin-6 loaded PLGA nanoparticles, which indicated the safety of 

using PLGA nanoparticles as drug carriers.  

The prepared brain tissue slices were observed under fluorescence microscope. Tween 80 

coated PLGA nanoparticles had significant fluorescence as shown in Fig 5.5 while the 

control groups of pure saline and naked PLGA nanoparticles injected in rat brain tissues 

showed no fluorescence under the same fluorescence intensity and exposure time. This 

indicates that the rat brain tissue has no or very weak auto-fluorescence and tween 80 is 

very important in brain targeting and crossing BBB. This result is quite correspondent 

with researches of Sun et al. who investigated the FITC-dextran loaded PLA 

nanoparticles to cross the BBB in vivo (Sun, et al., 2004).  From Fig 5.5, it was quite 

clear the blood vessels of rat brain had more fluorescence. This is easy to understand 

since the particle solution was injected through venous vessels. We can also find that the 

surrounding brain tissues were stained, which indicated the potential of nanoparticles 

across the blood brain barrier and migrated from the ‘blood’ to the ‘brain’.  Our study 

gave direct evidence of fluorescence-loaded PLGA nanoparticles to be delivered to the 

brain intravenously and had the potential to cross the blood brain barrier. 
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Fig 5.5 Fluorescence microscope image rat brain tissue after injection with tween-80 
coated PLGA nanoparticles. (bar =10µm)  
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Chapter 6 

Formulation and Characterization of Gadolinium-DTPA 

Encapsulated Nanoparticles for Potential In Vivo Imaging 

6.1 Significance to Develop MRI Contrast Agent Gd-DTPA 

Encapsulated Biodegradable Nanoparticles 

In previous studies, we used invasive histological method of tissue analysis to investigate 

the potential of nanoparticles to cross the blood brain barrier in vivo by injecting 

fluorescent marker loaded nanoparticles intravenously and observing the resulting brain 

tissue slice directly under fluorescence microscope. Other indirect methods such as tail 

flick (Alyautdin et al., 1997), hot plate (Schroeder et al., 1998) have also been adopted by 

other groups. However, all these methods can not continuously assess the delivery and 

distribution of particles in vivo. Thus it is necessary to develop a kind of noninvasive and 

continuous monitoring technique to evaluate the in vivo behavior of nanoparticles. Due to 

its high spatial and temporal resolution, magnetic resonance imaging (MRI) becomes a 

good candidate for non-invasive imaging. To enhance the MR images’ contrast, various 

contrast agents are often used, of which the chelated paramagnetic gadolinium Gd-DTPA 

is the most widely adopted due to its good effect and low toxicity.  By encapsulating the 

MRI contrast agent into the nanoparticles of biodegradable polymers, we can thus have 

the potential to achieve the monitoring of local drug delivery and release kinetics in vivo. 

And this would also greatly enhance the value of particle based drug delivery systems 
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(Chen et al., 2005). The following investigations tested the feasibility of encapsulating 

Gd-DTPA into biodegradable nanoparticles and their MRI characteristics in vitro.  

6.2   Size, Size Distribution, Zeta Potential Study 

 Table 6.1 Size, size distribution and surface charge of Gd-DTPA encapsulated 
nanoparticles with various formulations  
Type         Size (nm) polydispersity zeta potential(mV)
PLGA(NP*)          398.3 0.230 -18.95 

PLGA(DE*)+TPGS          3000.0 0.085 -20.34 

PLGA(DE*)+PVA          269.0 0.073 -17.13 

PLGA +salt(NP*)          234.4 0.209 -15.15 

MPEG-PLA(NP*) 
 
MPEG-PLA(DE*)       

         106.2 
 
         252.3  

0.161 
 
0.142 

-15.04 
 
-14.31 

* DE= double emulsion, NP=nanoprecipitation 

Table 6.1 summarized the particle size, size distribution and surface charge of Gd-DTPA 

encapsulated nanoparticles. Double emulsion and nanoprecipitation methods were used to 

encapsulate the hydrophilic Gd-DTPA. Besides PLGA, MPEG-PLA with PEG ratio of 

10% was also used since the existence of PEG chains made the co-polymer more 

hydrophilic and have better interactions with Gd-DTPA. Different emulsifiers PVA and 

vitamin E TPGS were also tried.  

Unlike single/double emulsion, the process of nanoprecipitation doesn’t need any 

emulsifiers to form the nanoparticle droplets. The Gd-DTPA encapsulated PLGA 

nanoparticles using nanoprecipitation had a relative larger particle size than other batches 
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of nanoparticles. However, after adding some salt such as Na2HPO4 in the water phase 

during the fabrication process, the particle size decreased a lot. This may be caused by 

the added ions and the changed pH in aqueous phase (Govender et al., 1999, Peltonen et 

al., 2004). Compared with PLGA, Gd-DTPA encapsulated MPEG-PLA nanoparticles had 

much smaller particle size of around 100nm. Dong and Feng also reported small particle 

size of paclitaxel loaded MPEG-PLA nanoparticles using nanoprecipitation (Dong and 

Feng, 2004). The smaller particle size is favorable for the purpose of crossing blood brain 

barrier just as discussed above. 

From table 6.1, we can also find emulsifiers play an important role in determining the 

particle size in the double emulsion methods, even more significant than in single 

emulsion. For PVA emulsified PLGA nanoparticles, the size was 269.0nm, which was 

comparable with the size of nanoparticles using single emulsion we developed previously. 

However, for vitamin E TPGS emulsified PLGA nanoparticles using double emulsion, 

the size was as much as 3µm. Just as discussed previously, this should be caused by the 

relative low molecular weight of TPGS, which makes it less efficient to form smaller 

particle size.  

The size distribution of all batches of nanoparticles varied from 0.073 to 0.230. Generally, 

double emulsion method resulted in a smaller size distribution than nanoprecipitation. 

We can also see from table 6.1 that all batches of nanoparticles had a negative surface 

charge and MPEG-PLA nanoparticles had smaller negative charge than PLGA 

nanoparticles. This might be caused by the presence of more carboxyl groups of PLGA at 

the particle surface. 
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6.3   Morphology of Gd-DTPA Encapsulated Nanoparticles 

FESEM pictures were taken to give a direct and close observation of the nanoparticles. 

Compared with SEM, FESEM has higher resolution and can give clearer image of 

samples with small particle size. Fig 6.1 showed the FESEM images of Gd-DTPA 

encapsulated PLGA and MPEG-PLA nanoparticles using double emulsion method or 

nanoprecipitation method. The FESEM confirmed the results of laser light scattering 

(LLS) that MPEG-PLA nanoparticles using nanoprecipitation had small particle size 

around 100nm. For other batches, the particle sizes were between 200~400nm. All 

batches of nanoparticles had spherical shape. However, some particles, such as the PLGA 

nanoparticles using double emulsion showed a sticky state, which might be caused by the 

aggregation of particles. For MPEG-PLA nanoparticles using double emulsion, there 

seemed to be some foggy things around the nanoparticles. This might be the Gd-DTPA 

on or near the surface of the nanoparticles, since most of the hydrophilic PEG chain was 

on the surface of the nanoparticles.  

        
                            (a)                                                                     (b)  
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                        (c)                                                                           (d) 

Fig 6.1 FESEM images of Gd-DTPA encapsulated nanoparticles.(a) PLGA nanoparticles 
using double emulsion, bar=1µm (b) PLGA nanoparticles using nanoprecipitation, 
bar=1µm (c) MPEG-PLA nanoparticles using double emulsion, bar=100nm (d)MPEG-
PLA nanoparticles using nanoprecipitation, bar=1µm  

 

6.4 Drug Entrapment and In Vitro Release Profile of Gd-DTPA 

Encapsulated Nanoparticles 

6.4.1 Drug Entrapment Study 

Table 6.2 Drug entrapment of Gd-DTPA encapsulated nanoparticles with various 
formulations 
Type                                                   Drug Entrapment (%)                    
PLGA(NP*)                                                      <0.5                               

PLGA(DE*)+TPGS                                          1.51 

PLGA(DE*)+PVA                                            0.64 

PLGA +salt(NP*)                                              <0.5 

MPEG-PLA(NP*)                                              0.96                                 
 
MPEG-PLA(DE*)                                              1.32     
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One of the limiting factors to develop nanoparticle based drug carriers is the low 

encapsulation efficiency and drug entrapment. Drug entrapment is an important 

parameter since higher drug entrapment could help to decrease the dose of nanoparticles 

used for further in vivo experiment.  In this experiment, ICP-OES was used to measure 

the content of Gd-DTPA in nanoparticles. Table 6.2 summarizes the drug entrapment of 

Gd-DTPA encapsulated nanoparticles. All of them showed very low entrapment. Due to 

the large amount of Gd-DTPA used during fabrication (45mg Gd-DTPA with 75 mg 

polymer), the encapsulation efficiency for all batches was also very low (<3%). For 

PLGA nanoparticles fabricated by nanoprecipitation, the entrapment was too low (<0.5%) 

and did not have meanings in further application. When drug loaded PLGA nanoparticles 

were fabricated with double emulsion, the drug entrapment increased. Vitamin E TPGS 

emulsified PLGA nanoparticles had the drug entrapment of 1.51%, meaning 100mg 

nanoparticles had 1.51mg drug encapsulated. However, considering the size of the 

particle, which was about 3µm, it is not suitable to develop this kind of particles for 

monitoring their BBB crossing kinetics. For MPEG-PLA nanoparticles, the drug 

entrapment was higher than that of PLGA nanoparticles with comparable or even smaller 

particle size. Thus the following experiments would be based on Gd-DTPA encapsulated 

MPEG-PLA nanoparticles using double emulsion or nanoprecipitation.  

In order to find out the loss of Gd-DTPA in the process of centrifugation, the content of 

Gd-DTPA in the surpernatant was also measured using ICP-OES. For all samples, in the 

first wash, around 80% Gd-DTPA was lost in the supernatant instead of being 

encapsulated into the polymer matrix. This might be caused by the hydrophilicity of Gd-

DTPA, thus hard to be encapsulated or just adhered to the particle surface loosely. In the 
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subsequent washes, the supernatant contained much smaller amount of free Gd-DTPA 

than the first wash, which was less than 3%. Other loss of Gd-DTPA might happen 

during the fabrication process. From these results, we can see that the later two washes of 

nanoparticles can not be skipped in order to guarantee most of the Gd-DTPA was 

encapsulated in the polymer matrix instead of attaching to the surface. 

6.4.2 In Vitro Release Kinetics  

In vitro release of Gd-DTPA from MPEG-PLA nanospheres was investigated in PBS 

solution (pH=7.4) at 37oC in an orbital shaker. This experiment was carried out within 48 

hours. The Gd-DTPA encapsulated MPEG-PLA nanoparticles, which were fabricated by 

either double emulsion or nanoprecipitation, were chosen to take the in vitro release test 

since they had relative higher drug entrapment and favorable particle size.  

Both of the particles showed sustained release with an initial burst as shown in Fig 6.2. 

The initial burst might be caused by the relative easy release of Gd-DTPA near or on the 

particle surface. It is obvious that nanoparticles using double emulsion (DE) had a slower 

release rate than nanoparticles using nanoprecipitation (NP). For DE nanoparticles, less 

than 40% Gd-DTPA was released at the end of 48 hours while this value for NP 

nanoparticle was more than 50%. The reasons might be that MPEG-PLA nanoparticles 

fabricated by nanoprecipitation had much smaller particle size than particles by double 

emulsion. The smaller particles had higher surface area to volume ratio, thus could have a 

higher release rate.   
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Overall, Gd-DTPA encapsulated MPEG-PLA nanoparticles showed favorable release 

profile. However, the release kinetics might be different in in vivo situation since many 

enzymes exist in the body which can cut off the polymer chain and speed the release rate. 

In Vitro Release of Gd-DTPA from Nanoparticles
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Fig 6.2 In vitro release profile of Gd-DTPA encapsulated MPEG-PLA nanoparticles. 
DE=double emulsion, NP=nanoprecipitation. 
 
 
 

6.5   MRI Characterization 

Gd-DTPA encapsulated nanoparticles were detected and differentiated by MRI. The MRI 

study was carried out on a 1.5 T scanner with a head coil. Since Gd-DTPA is a kind of 

T1-weighted positive contrast agent, T1 relaxation time was measured and converted to 

the R1 relaxation rate, which equals to 1/T1.  

6.5.1 Calibration Curve of pure Gd-DTPA In Vitro 

T1 relaxation time of pure Gd-DTPA in different concentrations were measured and 

converted to R1 relaxation rate to produce the calibration curve. The Gd concentration 
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was ranging from 0 to 0.2mM. Inversion recovery gradient-echo images were acquired to 

measure T1. The imaging parameters were set as follows: slide thickness=5mm, TR= 25-

6400 ms and TE=12ms. Fig 6.3 shows the calibration curve of Gd-DTPA dissolved in 

water. The six concentrations can be fit into a straight line with high linear correlation 

coefficient of up to 0.9981 and the equation to describe the line was y=4.0077x+0.3148, 

where x is the Gd concentration in millimole/liter and y is the R1 relaxation rate in s-1. 

The slope 4.007 is actually the relaxivity of the contrast agent. 

Although dispersing Gd-DTPA in water is the simplest way to have the MRI test, water 

can not mimic the characteristics of tissues well and nanoparticles can settle down in 

water after a period of time which will make the measurement difficult. Therefore Gd-

DTPA was dispersed in 8% gelatin (w/v) to make another calibration curve and 

compared with the calibration curve which dissolved Gd-DTPA in water. Gelatin can not 

only help to make the nanoparticles evenly distributed in subsequent experiments but also 

can mimic the tissues better. From Fig 6.4, we can see after being dispersed in the gelatin 

gel, the concentration of Gd and R1 relaxation rate still have a linear relationship. The 

linear correlation coefficient was also very high of up to 0.9991. The equation to describe 

the relationship was y=4.9229x+0.716. We can discover the relaxivity of Gd-DTPA in 

gelatin is higher than that in water. 
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Fig 6.3 Calibration curve of Gd concentration to R1 relaxation rate in water using pure 
Gd-DTPA 
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Fig 6.4 Calibration curve of Gd concentration to R1 relaxation rate in gelatin using pure 
Gd-DTPA 
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6.5.2 Relaxation Rate Characteristics of Gd-DTPA Encapsulated 

Nanoparticles  

The R1 relaxation rate of Gd-DTPA loaded nanoparticles was investigated to study the 

effect of polymer encapsulation. Nanoparticles in both water and gelatin are investigated. 

Gd-DTPA encapsulated nanoparticles were dispersed in the water and gelatin at the 

concentration of 40mg/ml. T1 was measured using the same MRI parameters as 

mentioned above. T1 relaxation time of pure water and blank nanoparticles were also 

measured and converted to R1 relaxation rate. From Fig 6.5, we can discover that pure 

water and blank MPEG-PLA nanoparticles without any drugs had a very low relaxation 

rate compared with Gd-DTPA encapsulated nanoparticles. Therefore the R1 relaxation 

rate of drug loaded nanoparticles is mainly caused by the Gd-DTPA encapsulated. Using 

the calibration curve above, the relaxation rate can be converted to the Gd concentration. 

For nanoparticles fabricated by nanoprecipitation, the converted Gd concentration was 

0.363mM and for nanoparticles by double emulsion, the converted concentration was 

0.684mM. However, considering the drug entrapment which was measured by ICP-OES, 

the Gd concentration for nanoprecipitation and double emulsion nanoparticles should be 

0.70mM and 0.96 mM, respectively. This result showed that after encapsulating into the 

polymer matrix, the R1 relaxation rate of Gd-DTPA decreased. This reduction in R1 

relaxation rate might be caused by the shielding effect of the polymer. Encapsulated Gd-

DTPA was prevented by the surrounding polymer from interacting with the hydrogen 

atoms. 
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Just as mentioned previously, gelatin gel can simulate the tissue characteristics and help 

to prevent the nanoparticles from settling down. 8% gelatin (w/v) was prepared to embed 

the nanoparticles as described by Faranesh et al.(Faranesh et al., 2004) . From Fig 6.6, we 

can see pure gelatin and blank polymeric nanoparticles in gelatin also exerted only small 

relaxation rate, although it was larger than that of water. The R1 relaxation rate of pure 

gelatin was similar to the value reported by Chen et al. (Chen, et al., 2005). In the same 

way, the R1 relaxation rate can be converted to Gd concentration using the calibration 

curve. For nanoprecipitated and double emulsified nanoparticles, the converted 

concentration was 0.267mM and 0.413mM, respectively. It is also smaller than the actual 

concentration of encapsulated Gd-DTPA measured by ICP-OES previously (0.70mM for 

nanoprecipitated MPEG-PLA nanoparticles and 0.96 mM for double emulsified MPEG-

PLA nanoparticles). This also might be caused by the shielding effect of the polymer. Fig 

6.7 shows the MRI images of the Gd-DTPA encapsulated MPEG-PLA nanoparticles and 

the blank nanoparticles both in water and in gelatin. 

From these experiments, we can conclude that positive MRI contrast agent Gd-DTPA can 

still exert their effect after being encapsulated into the biodegradable polymers. However, 

after encapsulating, their R1 relaxation rate decreased due to limited access of water to 

the contrast agent.  
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Fig 6.5 R1 relaxation rate of water, blank MPEG-PLA nanoparticles without Gd-DTPA, 
Gd-DTPA encapsulated nanoparticles using nanoprecipitation and Gd-DTPA 
encapsulated nanoparticles using double emulsion suspended in water  
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Fig 6.6 R1 relaxation rate of gelatin, blank MPEG-PLA nanoparticles without Gd-DTPA, 
Gd-DTPA encapsulated nanoparticles using nanoprecipitation and Gd-DTPA 
encapsulated nanoparticles using double emulsion suspended in gelatin  
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Fig 6.7 MRI images of Gd-DTPA encapsulated MPEG-PLA nanoparticles, from left to 
right: 1. blank nanoparticle in water, 2. blank nanoparticles in gelatin, 3. Gd-DTPA 
loaded nanoparticles using nanoprecipitation in water, 4.  Gd-DTPA loaded nanoparticles 
using nanoprecipitation in gelatin, 5. Gd-DTPA loaded nanoparticles using double 
emulsion in water, 6. Gd-DTPA loaded nanoparticles using double emulsion in gelatin. 
TR= 800ms; TE =12ms, 256x256, 0.7mm in-plane and 5mm slice thickness 
 
 

The above experiments investigated the in vitro characteristics of MRI contrast agent Gd-

DTPA encapsulated nanoparticles of biodegradable polymers. The particle size, drug 

entrapment, in vitro releases and MRI effect were tested. These particles have favorable 

characteristics and can be used for further in vivo investigation.  
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Chapter 7 

Conclusions and Recommendations 

7.1 Conclusions 

In this study, we investigated the feasibility of biodegradable PLGA nanoparticles to treat 

brain cancer and cross the blood brain barrier both in vitro and in vivo. Paclitaxel, a 

widely used anti-cancer drug was used as the model drug. The emphasis was put on the 

effect of emulsifiers and surfactants of the nanoparticle formulation. Two natural 

surfactants, DPPC and vitamin E TPGS were used and compared with the traditional 

chemical surfactant PVA. It was found that all batches of nanoparticles had a favorable 

particle size ranging from 245.2nm to 282.8nm. They also had a narrow size distribution 

and negative surface charge. SEM and AFM images revealed that all batches of 

nanoparticles had smooth surface morphology. Moreover, encapsulation efficiency (EE) 

experiment showed that vitamin E TPGS emulsified nanoparticles had a very high EE 

value of 92.30% while the EE values for PVA and DPPC emulsified nanoparticles were 

58.42% and 45.71% respectively. Our in vitro release study demonstrated that PVA 

emulsified nanoparticles showed the fastest release rate of up to 68% while vitamin E 

TPGS emulsified nanoparticles only released about 40% drug during 25 days. Then cell 

viability study was carried out by employing rat glioma cell C6 as the model cancer cell 

line. It was revealed that compared with pure taxol® , paclitaxel loaded nanoparticles had 

comparable effect to kill cancer cells. Our results also showed that both time and 
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concentration had effects on the cell viability to drug loaded nanoparticles and pure 

taxol®.  Longer time and higher concentration would result in less cell viability. 

Fluorescent marker coumarin-6 was incorporated into the PLGA nanoparticles with 

various emulsifiers to carry out the cellular uptake study on MDCK cell line which was 

used as a simple in vitro BBB model. It was found that vitamin E TPGS emulsified 

nanoparticles had the highest cell uptake concentration of 63.8%, which was more than 

two folds of the PVA emulsified nanoparticles. Confocal microscopy was also carried out 

to give direct evidence of the internalization of nanoparticles to the cells. On the other 

hand, commercial fluorescent polystyrene nanoparticles with uniform sizes ranging from 

20nm to 500nm were used to test the size effect on cell uptake. It was found that the 

50nm nanoparticles had the highest uptake percentage by MDCK cell lines. Finally, after 

over coated with tween 80, the fluorescent PLGA nanoparticles were injected into rat 

from tail vein and the brain tissues were cut to slices to observe under fluorescence 

microscope. Fluorescence was observed both in blood vessels and surrounding tissues in 

the brain, which indicated PLGA nanoparticles had the potential to cross BBB in vivo 

with proper emulsifiers and surface coatings. 

MRI contrast agent Gd-DTPA encapsulated biodegradable nanoparticles have also been 

developed for future noninvasive in vivo imaging.  MPEG-PLA was used to fabricate 

nanoparticles using both double emulsion and nanoprecipitation since they exerted 

favorable size of 100~300nm and relative higher drug entrapment. In vitro release was 

also carried out within 48 hours and about 40% gadolinium was released out. MRI 

characterization revealed that both longitudinal and transverse relaxation rate of the Gd-
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DTPA encapsulated nanoparticles were reduced compared with same amount of pure Gd-

DTPA, which might be caused by the reduced access of water to the contrast agent.  

7.2 Recommendations 

In previous study, we used MDCK cell line as a simple BBB model to investigate the 

uptake experiment, furthermore, we should use more accurate model such as the co-

culture system to clarify the mechanism of the particles getting out of the endothelial 

cells of the brain vessels and entering the brain parenchyma. We have also demonstrated 

qualitatively with histological tissue analysis that it is possible for biodegradable PLGA 

nanoparticles with proper emulsifiers and surface coatings to cross the blood brain barrier 

in rat models. In the future, quantitative bio-distribution study of model drug (such as 

paclitaxel) loaded nanoparticles in animals should be tested.  

We have also had preliminary research on MRI contrast agent Gd-DTPA encapsulated 

nanoparticles for potential in vivo imaging. The study so far has been done in vitro. The 

in vivo imaging should be carried out in the future study.  
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