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SUMMARY 

    In this thesis, a hybrid numerical method was developed to study the flow-induced 

deformation of capsules. Based on the numerical model proposed, the transient 

deformation of capsules, which consist of Newtonian liquid drops enclosed by elastic 

membranes, in simple shear flow was studied. Effects of membrane bending stiffness, 

inertia and shear rate on the capsule deformation were investigated.  

    In the hybrid method, the immersed boundary concept was developed in the 

framework of the lattice Boltzmann method, and the multi-block strategy was 

employed to improve the accuracy and efficiency of the simulation. The present 

method was validated by comparison with several benchmark computations. The 

results showed that the present method is accurate and efficient in simulating two-

dimensional solid and elastic boundaries interacting with fluids.  

    Based on the hybrid method, the transient deformation of two-dimensional liquid 

capsules, enclosed by elastic membranes with bending rigidity, in shear flow was 

studied. The results showed that for capsules with minimum bending-energy 

configurations having uniform curvature, the membrane carries out tank-treading 

motion. For elliptical and biconcave capsules with resting shapes as minimum 

bending-energy configurations, it was quite interesting to find that with the bending 

stiffness increasing or the shear rate decreasing, the capsules’ motion changes from 

tank-treading mode to tumbling mode, and resembles Jeffery’s tumbling mode at 

large bending stiffness.  

    Inertia effect on the transient deformation of two-dimensional liquid-filled capsule 

with elastic membrane in simple shear flow was studied. The simulation results 
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showed that the inertia effect gives rise to a transient process, in which the capsule 

elongation and inclination overshoot and then show dampened oscillations towards 

the steady states. Inertia effect also promotes the steady deformation, and decreases 

the tank treading frequency of the capsule. Furthermore, inertia strongly affects the 

flow structure and vorticity field around and inside the capsule.       

The hybrid method was extended to three-dimensional, and a finite element model 

was incorporated to obtain the forces acting on the membrane nodes of the three-

dimensional capsule which was discretized into flat triangular elements. The present 

method was validated by studying the transient deformation of initially spherical and 

oblate spheroidal capsules with various membrane laws under shear flow. The 

transient deformation of capsules with initially biconcave disk shape was also 

simulated. The unsteady tank treading motion was followed for a whole period in the 

present work.  

   The dynamic motion of three-dimensional capsules in shear flow was investigated. 

The results showed that spherical capsules deform to stationary configurations and 

then the membranes rotate around the liquid inside (steady tank-treading motion). 

Such a steady mode was not observed for non-spherical capsules. It was shown that 

with the shear rate decreasing, the motion of non-spherical capsules changes from the 

swinging mode (the capsule undergoes periodic shape deformation and inclination 

oscillation while its membrane is rotating around the liquid inside) to tumbling mode. 
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Chapter 1 Introduction 

1.1 General background 

Capsules consisting of thin elastic or incompressible membranes enclosing viscous 

Newtonian liquid are often employed as models for many kinds of particles, including 

biological cells, eggs, lipid vesicles, etc. The flow-induced deformation of such a 

capsule has attracted much attention in the past few decades. The physics involved is 

important not only in fundamental research, but also in medical and industrial 

applications. For example, in blood diseases like cerebral malaria and sickle cell 

anemia, red blood cells lose their ability to deform and often block the capillaries due 

to the membranes becoming stiffer. To design clinical therapies for such blood 

diseases, it is necessary to understand how the interfacial mechanical properties affect 

the deformation of cells under flow. The knowledge is also important in other areas 

like microencapsulation to design capsules with desired properties. Furthermore, it is 

the first step to model more complex flow situations which involve capsule 

suspensions, such as human microcirculation, cell filtration and drug delivery.    

 

1.2 Motion of a capsule in shear flow 

1.2.1 Different motion modes  

The dynamic motion of a capsule under shear flow has been studied experimentally, 

theoretically and numerically. Two types of motion are well-known: the tank-treading 

mode and the tumbling mode.  
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In the tank-treading mode, the capsule deforms to a steady configuration then the 

membrane rotates around the liquid inside. Schmid-Schönbein and Wells (1969), as 

well as Goldsmith (1971) were the first to experimentally demonstrate that red blood 

cells carry out tank-treading motion in shear flow, when the matrix fluid is much 

more viscous than the internal liquid of the cell and the shear rate is high. The tank-

treading motion has also been observed in subsequent experiments of red blood cells 

(Fischer et al. 1978; Tran-Song-Tay et al.1984) or vesicles (de Hass et al. 1997) in 

shear flow. Vesicles are liquid-filled capsules with incompressible membrane, which 

has no shear elasticity. With small deformation theory, Barthès-Biesel (1980) as well 

as Barthès-Biesel and Rallison (1981) first predicted the tank-treading motion of 

spherical liquid-filled capsules with elastic or incompressible membranes in shear 

flow. The tank-treading motion has also been observed in studies by numerical 

simulation (Pozrikis 1995; Kraus et al. 1996; Eggleton and Popel 1998; Lac et al. 

2004). The numerical simulations were not limited to small deformation. 

In the tumbling mode, a capsule flips continuously. The tumbling motion of red 

blood cells in shear flow has been observed in experiments when the viscosity ratio of 

the internal liquid to the external liquid is high (Pfafferott et al. 1985) or the shear rate 

is low (Abkarian et al. 2007). The tumbling motion has also been observed, on non-

spherical capsules, in studies by theoretical analysis (Keller and Skalak 1982; Misbah 

2006; Skotheim and Secomb, 2007) as well as by numerical simulation (Ramanujan 

and Pozrikis 1998; Biben and Misbah 2003; Beaucourt et al. 2004). 

    Besides these two modes, a new “swinging” mode has been observed in recent 

experiments for non-spherical capsules (Walter 2001; Abkarian et al. 2007). The 
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swinging mode is similar to the tank-treading mode, because the capsule’s membrane 

also rotates around the liquid inside. The difference from the tank-treading mode is 

that when the membrane is rotating, the capsule undergoes periodic shape 

deformation and inclination oscillation.  The swinging mode has also been predicted 

theoretically (Misbah, 2006; Abkarian et al. 2007; Skotheim and Secomb, 2007; 

Noguchi and Gompper 2007) and numerically (Ramanujan and Pozrikis 1998; 

Noguchi and Gompper 2007). 

    The dynamic motion of a capsule under shear flow has been studied extensively. 

Several factors have been identified important in determining a capsule’s motion 

mode, including the viscosity ratio of the internal fluid and the external fluid, the 

membrane viscosity, the membrane bending stiffness and the shear rate. 

 

1.2.2 Effect of viscosity ratio 

    In shear flow, it has been found that capsules immersed in a low viscosity fluid 

tumble continuously, and capsules immersed in a fluid with sufficiently high viscosity 

carry out tank-treading motion. Goldsmith and Marlow (1972) were the first to 

experimentally observe this phenomenon on red blood cells. Later on, Pfafferott et al. 

(1985) found in experiments that when a red cell was subjected to shear flow, it 

underwent tank-treading motion approximately when the viscosity ratio (defined as 

the ratio of the internal fluid viscosity to the external fluid viscosity in this thesis) was 

less than two, and tumbling motion for higher viscosity ratios. 

    Keller and Skalak (1982) theoretically analyzed the dynamic motion of an 

ellipsoidal capsule in simple shear flow. It was found that for a capsule with a given 



Chapter 1 Introduction 

 4

geometry, the transition from tank-treading mode to tumbling mode depends on the 

viscosity ratio between internal fluid and external fluid, and it is independent of shear 

rate. In Keller and Skalak’s theory, the capsule was assumed to have a fixed shape. 

Rioual et al. (2004) also predicted this viscosity ratio induced transition with another 

analytical model, which was based on general considerations and does not resort to 

the explicit computation of the full hydrodynamic field inside and outside the vesicle. 

This viscosity ratio dependent transition has also been recovered in numerical 

studies by Pozrikidis and co-workers (Ramanujan and Pozrikids, 1998; Pozrikidis, 

2003) with boundary element method, as well as by Misbah and co-workers (Biben 

and Misbah, 2003; Beaucourt et al. 2004) with advected-field approach.  

 

1.2.3 Effect of membrane viscosity 

    Barthès-Biesel and Sgaier (1985) theoretically studied liquid-filled capsules with 

viscoelastic membranes in shear flow. A regular perturbation solution of initially 

spherical capsules undergoing small deformation was obtained. It was found that with 

a purely viscous membrane (infinite relaxation time) the capsule deforms into an 

ellipsoid with a continuous tumbling motion; when the membrane relaxation time was 

of the same order as the shear time, the particle reaches a steady ellipsoidal shape 

with an inclination angle between 0° and 45°. 

Noguchi and Gompper (2004, 2005, 2007) numerically studied vesicles with 

viscous membranes in simple shear flow. It was found that increasing the viscosity of 



Chapter 1 Introduction 

 5

membrane will cause the capsule’s motion change from tank-treading mode to 

tumbling mode.  

In fact, the tank-treading to tumbling transition may be induced by either 

increasing the viscosity ratio or increasing the membrane viscosity. In both cases due 

to the fact that the viscosity increases, the transfer of shear torque to the membrane 

(or its underlying bulk) becomes more and more difficult (because of increasing 

dissipation), and then the capsule would behave like a solid body which then 

undergoes tumbling. 

 

1.2.4 Effect of membrane bending stiffness 

For liquid filled capsules enclosed by elastic membrane, flow induced deformation 

causes the development of not only in-plane elastic tensions, but also bending 

moments accompanied by transverse shear tensions. The interfacial bending moments 

develop physically due to the non-zero membrane thickness; the bending moments 

may also be generated because the membrane has a preferred configuration due to its 

certain structure. The bending moments is expressed by a constitutive law which 

involves the instantaneous Cartesian curvature tensor, curvature of the minimum 

bending-energy configuration, and the bending modulus. The bending modulus is 

generally independent of the in-plane elasticity modulus, and describes the flexural 

stiffness of the membrane.  

For fluid capsules enclosed by lipid-bilayer membrane, such as red blood cells, the 

bending stiffness has been found to be quite important in determining the equilibrium 

configuration and shape oscillations (Fung, 1965; Lipowsky, 1991). For non-



Chapter 1 Introduction 

 6

equilibrium conditions such as capsules under flow, membrane bending rigidity also 

plays a significant role in avoiding the development of wrinkling and folding. For 

capsules whose membrane has a preferred configuration, it can be expected that 

bending stiffness will ensure that the capsule shape should not deviate greatly from its 

preferred profile. It is thus meaningful to investigate the effect of bending stiffness on 

the flow-induced deformation of liquid filled capsules enclosed by elastic membrane.     

However, the bending effect has not been explored much and most previous studies 

neglected bending resistance. The numerical study of Pozrikidis (2001) of liquid-

filled elastic capsules in simple shear flow, as well as Kwak and Pozrikids (2001) of 

axisymmtric capsules in uniaxial extensional flow showed that bending stiffness has 

significant rounding effect on the steady configuration of capsules. However, an 

important restriction in their studies was the requirement that the minimum bending-

energy shape has uniform curvature. So far, there is no study on the transient 

deformation of elastic capsules whose minimum bending-energy configuration has 

non-uniform curvature.       

 

1.2.5 Effect of shear rate 

For a capsule in shear flow, it has been long recognized that the deformation of the 

capsule will be larger at higher shear rate. In the well know theory of Keller and 

Skalak (1982), it was found that for a capsule with a given geometry, the transition 

from tank-treading mode to tumbling mode depends on the viscosity ratio and it was 

independent of shear rate.  
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Recently, Walter et al. (2001) studied synthetic microcapsules, which were not 

perfectly spherical, in shear flow by experiment. It was found that during the tank-

treading motion of the membrane, the capsule undergoes periodic shape deformation 

and inclination oscillation; the inclination oscillation amplitude increases as the shear 

rate decreases. Similar motion has also been found on red blood cells in shear flow by 

Abkarian et al. (2007): the cells present an oscillation of their inclination 

superimposed to the tank-treading motion, and the tank-treading-to-tumbling 

transition can be triggered by decreasing the shear rate. These novel experimental 

findings show that in shear flow, the dynamics of these capsules depends not only on 

viscosity ratio, but also on shear rate. Obviously, these findings cannot be recovered 

by the theory of Keller and Skakak (1982), which assumed a fixed configuration of 

the capsule. 

Only recently, there are some pioneering analyses on these phenomena. Based on 

Keller and Skalak’s theory, and further assuming that the membrane elastic energy 

undergoes a periodic variation during the tank-treading motion, the above 

experimental findings can be successfully predicted by the theoretical model of 

Skotheim and Secomb (2007) and Abkarian et al. (2007). Noguchi and Gompper 

(2007) numerically studied the three-dimensional vesicles with viscous membranes. It 

was also found that there is a shear-rate induced transition of vesicles’ motion from 

swinging mode to tumbling mode. For liquid-filled capsules with elastic membrane, 

the shear-rate induced transition of capsules’ motion has not been reported in studies 

with which take the capsule deformation into account.  

 



Chapter 1 Introduction 

 8

1.3 Numerical methods  

    In the dynamic motion of capsules under flow, the fluid-structure interaction plays 

a key role, which makes theoretical analysis quite difficult. There are several reasons 

for these difficulties (Barthès-Biesel, 1980): First, the flow problem needs to be 

represented by an Eulerian reference system and the capsule solid mechanics problem 

needs a Lagrangian reference system; and the switch between the two representations 

is rather complex during the flow-induced deformation of the capsules. Second, the 

position of the capsule membrane, where to impose boundary conditions, is not 

known a priori. Also, the large elastic deformation theory, which is very complex, 

needs to be used. Due to these difficulties, in most theoretical studies (Barthès-Biesel, 

1980; Barthès-Biesel and Rallison, 1981; Keller and Skalak, 1982; Skotheim and 

Secomb, 2007; Abkarian et al. 2007), simple geometry or small deformation of the 

capsules was assumed. As an alternative approach, numerical simulation has attracted 

much attention and various numerical methods have been developed. 

 

1.3.1 Arbitrary Lagrangian Eulerian method 

The arbitrary Lagrangian Eulerian (ALE) method (Hirt. et al., 1974; Liu and 

Kawachi, 1999; Yue et al., 2007) is a direct strategy to treat fluid-structure interaction, 

and it is based on body-fitted grid. The boundary of the fluid domain moves with the 

motion of the fluid-structure interface, and the mesh is reconstructed. The ALE 

method has been applied to study the bubble growth by Yue et al. (2007). The ALE 

method has high-order accuracy but is very computationally expensive. For capsules 
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with complex geometry or under large deformation, the re-meshing procedure would 

be very difficult and time-consuming. 

 

1.3.2 Advected-field method 

The advected-field method, directly inspired by the phase-field approach, was 

proposed by Biben and Misbah (2003). The local membrane incompressibility is 

imposed to the phase-field approach, and the shear elasticity of the membrane is not 

taken into account.  Thus the advected-field method is very suitable to deal with the 

deformation of vesicles, which are liquid drops enclosed by incompressible 

membranes. However, vesicles are different from capsules which are liquid drops 

enclosed by elastic membranes. The advected-field approach has been applied to 

study the tank-treading to tumbling transition of vesicles due to the viscosity contrast 

(Biben and Misbah, 2003; Beaucourt et al. 2004). 

  

1.3.3 Boundary element method  

The boundary element method (BEM) (Pozrikidis, 1992) is most prevailing for 

studying capsule deformation in Stokes flow. One significant advantage of BEM is 

that the governing equations are solved only on the capsule interface, and thus the 

geometrical dimension of the problem can be reduced by one. With BEM, Pozrikidis 

and co-workers (Pozrikids, 1995; Ramanujan and Pozrikidis, 1998; Pozrikidis, 2001; 

Pozrikids, 2003) and Lac et al. (2004) have studied the transient deformation of 

capsules with various shapes and membrane properties, and obtained results 
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consistent with experiments. The BEM is valid for creeping flow conditions.  For 

capsules with complex shapes, like the biconcave disk, the simulation of tank treading 

motion was of limited duration because of numerical instabilities due to grid 

degradation (Ramanujan and Pozrikidis, 1998; Pozrikidis, 2003).  

 

1.3.4 Immersed boundary method 

The immersed boundary method (IBM) developed by Peskin (1977; 2002) to 

simulate blood flow in the heart, is a kind of fixed grid method. In this method, a 

force density is distributed to the Cartesian mesh in the vicinity of the moving 

boundary in order to account for the effect of the boundary.  

The immersed boundary method was originally developed for modeling 

interaction between incompressible viscous fluid and elastic boundary, and the force 

density is calculated from the boundary’s constitutive law. However, it has been 

extended to deal with solid body by Goldstein (1993) and Saiki (1996) by employing 

a feedback forcing system. The disadvantages of this system are: it causes spurious 

oscillations and introduces two free parameters which must be determined by the flow 

conditions. Later, Mohd-Yusof (1997) and Fadlun (2000) proposed the direct forcing 

method, which has been proven to be more efficient and can be used at higher 

Reynolds number flows. Distributing force density on a narrow region near the 

boundary is an inherent feature of the immersed boundary method. This feature 

makes it necessary to use fine mesh near the boundary, especially at higher Reynolds 

number flows.  
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    The IBM has been applied to study the deformation of three-dimensional and 

liquid-filled capsules with elastic membranes in simple shear flow by Eggleton and 

Popel (1998).  In their study, uniform Cartisian mesh was employed, and the capsule 

response was followed for short times due to heavy computational load. 

 

1.3.5 Lattice Boltzmann method 

    Unlike traditional CFD methods (e.g., FDM and FVM), the lattice Boltzmann 

method (LBM) is based on the microscopic kinetic equation for the particle 

distribution function and from the function, the macroscopic quantities can be 

obtained. The kinetic nature provides LBM some merits. Firstly, it’s easy to program. 

Since the simple collision step and streaming step can recover the non-linear 

macroscopic advection terms, basically, only a loop of the two simple steps is 

implemented in LBM programs. Secondly, in LBM, the pressure satisfies a simple 

equation of state when simulating the incompressible flows. Hence, it’s not necessary 

to solve the Poission equation by the iteration or relaxation methods as in usual CFD 

methods when simulating the incompressible flows. The explicit and non-iterative 

nature of LBM makes the numerical method easy to be parallelized (Chen et al., 

1996).  

    Over the past two decades, the LBM has achieved great progress in fluid dynamics 

studies (Chen and Doolen, 1998; Yu et al. 2003). The LBM can simulate 

incompressible flows (Succi et al., 1991; Hou and Zou, 1995) and compressible flows 

(Yan et al., 1999; Sun 2000; Hinton et al. 2001). The LBM has also been successfully 

applied to multi-phase/multi-component flows (Grunau et al., 1993; Luo and Girimaji, 
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2002 and 2003; Asinari and Luo, 2008), flows through porous media (Chen et al., 

1991; Pan et al. 2004; Ginzburg 2008), turbulence flows (Benzi and Succi, 1990; 

Teixeira, 1998; Yu et al., 2006) and particulate flows (Ladd 1994a and 1994b; Qi and 

Luo, 2003).  

    The numerical mesh for the standard LBM is the uniform Cartesian grid, which 

makes LBM not so efficient (case of uniform fine grid) or accurate (case of uniform 

coarse grid) to achieve high resolution in regions involving large gradient of macro-

dynamic variables. Filippova and Hanel (1998, 2000) employed locally refined 

patches for uniform Cartesian grid in their studies. That means some finer grids are 

superposed on the basic, coarser grid. Yu and co-workers (Yu et al., 2002; Yu and 

Girimaji, 2006) (2002) suggested a multi-block method for viscous flows slightly 

different from Fillippova and Hanel (1998). The whole computational domain was 

decomposed into several sub-domains. Some sub-domains adopt fine meshes, the 

others adopt coarse meshes. The coupling of solutions on different meshes is identical 

to that of Fillippova and Hanel (1998) except the high order fitting for spatial and 

temporal interpolation is employed when transfer the information from coarse block 

to nearby fine grid. Another approach, the Taylor series expansion and least squares 

based lattice Boltzmann method (TLLBM), was proposed by Shu et al. (2003). This 

method can also be applied to study flow problems using non-uniform mesh. With 

these approaches, the computational accuracy and efficiency of lattice Boltzmann 

method has been substantially improved. 

    The lattice Boltzmann method has been combined with immersed boundary 

method, named immersed-boundary lattice Boltzmann method (IB-LBM), by Feng 
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and Michaelides (2004, 2005) for solving rigid particles flow. Peng et al. (2006) 

applied the multi-block strategy in the IB-LBM, based on the multi-relaxation-time 

collision scheme of d’Humières (1992) as well as Lallemand and Luo (2000), and 

studied flow past two-dimensional stationary solid boundaries. The combined method 

may be promising in studying the deformation of liquid-filled capsules with elastic 

membranes.       

 

1.4 Objectives and scopes 

 The aim of the present study was to develop an efficient numerical method and 

apply this method to study the deformation of liquid-filled capsules with elastic 

membranes in shear flow. More specific aims were:  

1) To develop an accurate and efficient numerical method for simulating fluid-

structure interaction problems. The method should be general and could be applied to 

study flow-induced deformation capsules with arbitrary shapes and various types of 

membrane constitutive laws. Furthermore, the method should be able to take the 

inertia effect into account. 

2) To apply the proposed method to study the effect of membrane bending stiffness 

on the transient deformation liquid-filled elastic capsules in shear flow. For the first 

time, the dynamic motion of capsules with non-spherical minimum bending energy 

shapes, under various bending rigidity and shear rates would be considered.  

    3) To apply the proposed method to study dynamic motion of liquid-filled elastic 

capsules in shear flow. For the first time, the effects of inertia would be considered. 

The inertia effects on the transient deformation process, steady configuration and tank 
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treading frequency of the capsule, as well as the flow structure and vorticity field 

around and inside the capsule, would be studied in detail.    

4) To apply the proposed method to study the transient deformation of three-

dimensional liquid-filled capsules with elastic membranes in shear flow under a broad 

range of shear rates. For the first time, the shear rate induced transition of a capsule’s 

motion from tank-treading mode to tumbling mode would be explored. 

 

The numerical method developed in the present study would enable one to study 

flow-induced deformation capsules with arbitrary shapes and various types of 

membrane constitutive laws, and the method would be able to take the inertia effect 

into account. The results of the present study may be meaningful in understanding 

how the mechanical properties of the membrane, as well as the flow condition, affect 

the dynamic motion of capsules under flow.  The knowledge would enable 

researchers to use the observed dynamics to measure capsule properties, or use the 

simulations to suggest parameter regimes for experiments where the properties can be 

most sensitively deduced. The knowledge may also be useful in biomedical therapy 

design, as well as in the microencapsulation industry. 

 

   Because phenomenon of the deformation of capsules under flow is very complex, it 

is not practical to consider all the factors in the present numerical studies. There are 

some assumptions in our study: 1) the internal fluid of the capsule was assumed to be 

similar to the matrix fluid; 2) the membrane viscosity of the capsule was neglected. 

The effects of viscosity ratio and membrane viscosity have been discussed earlier. 



Chapter 1 Introduction 

 15

1.5 Outline of the thesis 

In chapter 2, a two-dimensional numerical method was developed for modeling the 

interactions between an incompressible viscous fluid and moving solid or elastic 

boundaries. The method was tested by the simulations of flow past a circular cylinder, 

two cylinders moving with respect to each other, flow around a hovering wing and a 

circular capsule deforming in simple shear flow.  

    In chapter 3, the transient deformation of two-dimensional liquid-filled capsules 

enclosed by elastic membranes with bending rigidity in shear flow was studied 

numerically, using the method developed in chapter 2. The deformation of capsules 

with initially circular, elliptical and biconcave resting shapes was studied; the 

capsules’ minimum bending-energy configurations were considered as either 

uniform-curvature shapes (like circle or flat plate) or their initially resting shapes. 

    In chapter 4, the transient deformation of two-dimensional liquid-filled capsules 

with elastic membranes was studied in simple shear flow at small and moderate 

Reynolds numbers. Inertia effect on the transient deformation process, steady 

configuration and tank treading frequency of a capsule, as well as the flow structure 

and vorticity field around and inside a capsule were studied.    

    In chapter 5, a three-dimensional hybrid method was proposed to study the 

transient deformation of liquid filled capsules with elastic membranes under flow. 

The method was validated by studying the transient deformation of initially spherical 

and oblate-spheroidal capsules with various membrane constitutive laws under shear 

flow. The effects of inertia on the deformation of three-dimensional capsules in shear 
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flow, and the deformation of three-dimensional capsules with complex shapes were 

also studied. 

    In chapter 6, the dynamic motion of three-dimensional liquid-filled capsules with 

elastic membranes in shear flow was investigated, by the numerical method 

developed in chapter 5. The dynamic motion of capsules with initially spherical, 

oblate spheroidal and biconcave discoid unstressed shapes was studied, under a broad 

range of shear rates. 
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Chapter 2 A Two-dimensional Hybrid Immersed 

Boundary and Multi-block Lattice Boltzmann 

Method* 

 
 

     The present study of capsules deformation in simple shear flow involves fluid-

structure interaction. It is still a challenge to achieve both accuracy and efficiency in 

simulating fluid-structure interaction. For numerical methods based on body-fitted 

grid, such as arbitrary Lagrangian Eulerian (ALE) method, the mesh is reconstructed 

with the motion of the structure. It has high order accuracy but is very 

computationally expensive. For fixed grid methods, such as the immersed boundary 

method, re-meshing is not needed, only the variables on the Cartesian mesh near the 

moving boundary are treated so that the effect of the boundary is considered. 

However, fine mesh near the moving boundary is needed in the fixed grid methods.  

     In this chapter, a two-dimensional hybrid numerical method is developed for 

modeling the interactions between incompressible viscous fluid and moving 

boundaries. The principle of this method is introducing the immersed boundary 

concept in the framework of the lattice Boltzmann method. In order to improve the 

accuracy and efficiency of the simulation, the multi-block strategy is employed so 

that the mesh near moving boundaries is refined. Besides elastic boundary with a 
                                                 
* Parts of this chapter have been published as “Sui, Y., Chew, Y. T., Roy, P. and Low H. T., A hybrid 
immersed-boundary and multi-block lattice Boltzmann method for simulating fluid and moving-
boundaries interactions, Int. J. Numer. Meth. Fluids, 53: 1727-1754, 2007.” Parts of this chapter have 
been published as “Sui, Y., Chew, Y. T. and Low, H. T., A lattice Boltzmann study on the large 
deformation of red blood cells in shear flow, Int. J. Mod. Phys. C, 18: 993-1011, 2007.”   
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constitutive law, the method can also efficiently simulate solid moving-boundary 

interacting with fluid by employing the direct forcing technique. The present method 

is validated by the simulations of flow past a circular cylinder, two cylinders moving 

with respect to each other, flow around a hovering wing, as well as the deformation of 

circular capsules in simple shear flow. 

 

2.1 Numerical method 

2.1.1 The lattice Boltzmann method 

     The lattice Boltzmann method is a kinetic-based approach for simulating fluid 

flows. It has been developed from the lattice-gas automata and got rapid progress in 

recent years (Chen and Doolen, 1998; Yu et al., 2003). The lattice Boltzmann method 

decomposes the continuous fluid flow into pockets of fluid particles which can only 

stay at rest or move to one of the neighboring nodes. The D2Q9 model using a square 

lattice with nine possible velocities (see Figure 2.1) is one of the commonly used 

models in two-dimensional simulation, in which the discrete lattice Boltzmann 

equation has the form of: 

                            1( , ) ( , ) [ ( , ) ( , )]eq
i i i i if t t t f t f t f t

τ
+ Δ + Δ − = − −x e x x x                    (2.1) 

where ( , )if tx  is the distribution function for particles with velocity ie at position x 

and time t, tΔ  is the lattice time interval, ( , )eq
if tx  is the equilibrium distribution 

function and τ  is the non-dimensional relaxation time. 

     In the D2Q9 model, the fluid particles have the possible discrete velocities stated 

as follows: 



Chapter 2 A Hybrid Immersed Boundary and Multi-block Lattice Boltzmann Method 

 19

                                                            0 (0,0)=e  

                               (cos[ ( 1) / 2],sin[ ( 1) / 2])i i i cπ π= − −e   for i=1-4 

                        2(cos[ ( 9 / 2) / 2],sin[ ( 9 / 2) / 2])i i i cπ π= − −e  for i=5-8                (2.2) 

where /c x t= Δ Δ and xΔ is the lattice spacing. 

     The equilibrium distribution function ( , )eq
if tx  in the lattice Boltzmann equation is 

obtained by expanding the Maxwell-Boltzmann distribution function in Taylor series 

of velocity up to second-order. It is in the form of: 

                                                 ( , )eq
i if E ρ= u                                                            (2.3) 

                            with 
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                                       (2.5)                             

and 3/ccs = is the sound speed.  

The Lattice Boltzmann Equation can recover the incompressible Navier-Stokes 

equation by Chapman-Enskog Expansion. The relaxation time in LBE is related to the 

kinematic viscosity in Navier-Stokes equation in the form of: 

                                               tcs Δ−= 2)
2
1(τν                                                           (2.6) 

It is known that the numerical error in the LBM is proportional to the square of a 

computational Mach number, Ma = Uc/cs, where Uc is the characteristic velocity. 

Therefore, it is important to choose a relaxation time that keeps the Mach number 
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much smaller than unity. 

Once the particle density distribution is known, the fluid density and momentum 

are calculated, using: 

                                                    ∑=
i

ifρ                                                                (2.7) 

                                                 i i
i

fρ =∑u e                                                               (2.8) 

 

2.1.2 The Multi-block strategy 

Recently, there has been a growing interest in employing the Cartesian grid for 

complex flow problems. In the standard lattice Boltzmann method, a uniform 

Cartesian mesh is employed. A challenge of the uniform grid is to offer high 

resolution near a solid body and to place the outer boundary far away from the body 

without wasting the grid resolution elsewhere.  

    Nannelli and Succi (1992) proposed the finite volume lattice Boltzmann scheme to 

handle Cartesian non-uniform grids. Based on an interpolation strategy, some studies 

also extended the LBGK method to curvilinear grids (He and Doolen 1997a, 1997b). 

However, if numerical mesh spacing is very different from the “molecular” lattice, 

the accuracy of the scheme may decrease in the regions of high gradients of macro-

dynamic variables (Filippova and Hanel, 2000).  

    Filippova and Hanel (1998, 2000) employed locally refined patches for uniform 

Cartesian grid in their studies. That means some finer grids are superposed on the 

basic, coarser grid. Yu and co-workers (Yu et al., 2002; Yu and Girimaji, 2006) 

suggested a multi-block method for viscous flows slightly different from Fillippova 
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and Hanel (1998). The whole computational domain was decomposed into several 

sub-domains. Some sub-domains adopt fine meshes, the others adopt coarse meshes. 

The coupling of solutions on different meshes is identical to that of Fillippova and 

Hanel (1998) except the high order fitting for spatial and temporal interpolation is 

employed when transfer the information from coarse block to nearby fine grid. The 

computational efficiency of lattice Boltzmann method has been substantially 

improved by the multi-block strategy.  

    In the present paper, the multi-block lattice Boltzmann method proposed by Yu et 

al. (2002) is employed. The computational domain is divided into blocks which are 

connected through the interface. In each block, the constant lattice spacing equals the 

lattice time interval. On the interface between blocks, the exchange of variables 

follows a certain relation so that the mass and momentum are conserved and the stress 

is continuous across the interface. 

     Consider a two-block system to explain the idea of the multi-block method. The 

ratio of lattice space between the two blocks is defined as: 

                                                                   c

f

xm
x
Δ

=
Δ

                                                 (2.9) 

where Δxc and Δxf are the lattice space of the coarse and fine mesh blocks respectively. 

For a given lattice space, the fluid viscosity can be obtained from Equation (2.6). In 

order to keep a constant viscosity, the relaxation parameter τf in fine mesh and τc in 

coarse mesh, must satisfy the following relation: 

                                                           1 1( )
2 2f cmτ τ= + −                                         (2.10) 
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The variables and their derivatives on the grid must be continues across the block 

interface. To keep this continuity, the relation of the density distribution function in 

the neighboring blocks is proposed as: 

                                               , ,1 [ ]
1

c eq f f eq fc
i i i i

f

f f m f fτ
τ

−
= + −

−
                             (2.11) 

                                               , ,1
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ff eq c c eq c
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f f f f
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τ
τ
−

= + −
−

                             (2.12) 

where if  is the post-collision density distribution function. 

     The typical structure of interface is illustrated in Figure 2.2. The fine block 

boundary, line MN, is in the interior of the coarse block. The coarse block boundary, 

line AB, is in the interior of the fine block. This arrangement is convenient for 

information exchange. On the boundary of fine block MN, there is no information on 

the grid points denoted by the solid symbol ● in Figure 2.2. It is obtained from spatial 

interpolation based on the information on the grid nodes denoted by the open symbol 

○ on the line MN. A symmetric, cubic spline spatial fitting (Yu et al., 2002) is used to 

avoid spatial asymmetry caused by interpolation: 

                          2 3( ) i i i if x a b x c x d x= + + + ,   1i ix x x− ≤ ≤ ,   i = 1, …, n              (2.13)                     

where the constants (ai, bi, ci, di) are determined by using the continuity conditions of 

f , f ′ , f ′′and suitable end conditions such as zero second derivative for f .          

Because the fluid particle has the same streaming velocity on each block, the 

computation marches m steps on the fine-mesh block for every one step on the 

coarse-mesh block. On the fine block MN, temporal interpolation is needed to 
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obtain 1/( , MN)n mf tα
+ . A three-point Lagrangian formula (Yu et al., 2002) is used for 

temporal interpolation.  

                                                
3
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−∑ ∏                                        (2.14) 

2.1.3 The immersed boundary method 

    In the immersed boundary method (Peskin, 1977 and 2002; Lallemand et al. 2007; 

Peng and Luo, 2008), two different sets of coordinate system are used. The fluid 

region is represented by fixed Cartesian grids and the moving boundary immersed in 

the fluid is decomposed into a set of Lagrangian points. The Lagrangian points are 

advected by the flow field. The fluid-structure interaction is modeled by distributing a 

force density to the Cartesian mesh in the vicinity of the moving boundary in order to 

account for the effect of the boundary.  

     To explain the immersed boundary method, we consider a mass-less elastic 

filament with boundary Γ immersed in the fluid domain Ω (see Figure 2.3). The fluid 

domain Ω is represented by Eulerian coordinates x, while the boundary of the 

filament Γ, is represented by Lagrangian coordinates s. Any position on the filament 

can be written as X(s, t). The term F(s, t) represents the filament force density, which 

is a combination of internal link force induced by deformation and external force. The 

term f(x, t) represents the fluid body force density.        

     The non-slip boundary condition is satisfied by letting the flexible structure move 

at the same velocity as the fluid around it. That is: 

                                                     ( , ) ( ( , ), )t t t
t

∂
=

∂
X s u X s                                          (2.15) 
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     This motion will cause the filament to deform. The boundary force density F(s, t) 

is obtained from the constitutive law of the filament, and distributed to the fluid mesh 

points near it by a smoothed version of the Dirac Delta function, written as follow:  

                                         ( , ) ( , ) ( ( , ))t t t dδ
Γ

= −∫f x F s x X s s                                       (2.16) 

where 

                                       
⎪⎩
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r
π

δ     
2
2

>
≤

r
r                                      (2.17)  

in which r equals the distance between the Lagrange and Eulerian nodes divided by 

the Eulerian grid space. For two-dimensional case, the smoothed version of Dirac 

Delta function can be written as:  

                                         ( ) ( ) ( )ij ij ijx x y yδ δ δ− = − −X X                                      (2.18) 

     The same smoothed version of the Dirac Delta function is used to obtain the 

velocities of the Lagrangian nodes on the moving boundary. The mathematical form 

can be written as follows, which illustrates the implementation of Equation (2.15): 

                                          ( , ) ( ( , ))t t d
t

δ
Ω

∂
= −

∂ ∫
X u x x X s x                                         (2.19) 

     The immersed boundary method is originally developed for modeling interaction 

between incompressible viscous fluid and elastic boundary with a constitutive law. 

However, it has been extended to solve solid body immersed in fluid by several 

researchers. The key procedure is how to generate the force density. Goldstein et al. 

(1993) and Saiki et al. (1996) proposed a feedback forcing system. However, it causes 

spurious oscillations and introduces two free parameters which must be determined 

by the flow conditions. 
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     Mohd-Yusof (1997) and Fadlun et al. (2000) proposed the direct forcing method, 

which has been proven to be more efficient and can be used at higher Reynolds 

number flows. The Navier-Stokes equation with a force density in discrete form is 

written as: 

                                        
1

1
, , ,( )

n n
n n n n ni i
j j i i i jj i

u u u u p u
t

ρ μ
+

+−
+ = − + +

Δ
f                          (2.20) 

If the boundary condition at t = tn+1 can be imposed, the force density can be directly 

obtained from: 

                                         
1

1
, , ,( )

n n
n n n n ni i
i j j i i i jj

u u u u p u
t

ρ μ
+

+ −
= + + −

Δ
f                           (2.21) 

     Recently, Feng et al. (2005) has proposed a new direct forcing scheme, in which at 

t = tn+1 the velocity at the Lagrangian point equals the velocity of the solid boundary 

at the same point, 1n
iU + . Thus the force density is calculated from: 

                                   
1

1
, , ,( )

n n
n n n n ni i
i j j i i i jj

U u u u p u
t

ρ μ
+

+ −
= + + −

Δ
f                            (2.22) 

In the original presentation of the method by Mohd-Yusof (1997) and Fadlun et al. 

(2000), instead of creating a set of Lagrangian boundary points, the force density was 

computed for a regular node. This node was a point where the velocity was defined 

when a staging grid was used, or simply a velocity point next to the boundary. The 

new scheme of Feng et al. (2005) is more efficient for moving boundary problems. 

2.1.4 The hybrid immersed boundary and multi-block lattice 

Boltzmann method  

     In the present section, the immersed boundary method is combined with the multi-

block lattice Boltzmann method. In order to solve the flow field with a force density, 
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the lattice Boltzmann equation must be modified. Several forms of LBE which can 

handle a force density have been proposed. Guo’s approach (Guo et al., 2002) is more 

accurate for unsteady flow with force changing with time and space, in which the 

modified lattice Boltzmann equation is in the form of: 

                     1( , ) ( , ) [ ( , ) ( , )]eq
i i i i i if t t t f t f t f t tF

τ
+ Δ + Δ − = − − + Δx e x x x                (2.23) 

where                                      *( , )eq
i if E ρ= u                                                         (2.24) 

with                                   * 1
2i i

i
f tρ = + Δ∑u e f                                                       (2.25) 
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e u e u e f                                      (2.26) 

     In the computation in this chapter, a two-grid system is employed. The lattice 

space ratio between coarse and fine grids equals two.  The solid or elastic boundaries 

are immersed in the fine mesh block. The present procedure for multi-block 

computation is very similar to that proposed by Yu et al. (2002). The only difference 

exists in the computation on the fine mesh block. That is a subroutine implementing 

the immersed boundary method is added before the streaming and collision steps. The 

computational sequence has been shown in Figure 2.4. 

 

2.2 Validation of the numerical method 

2.2.1 Flow passing a circular cylinder 

     The flow past a circular cylinder is a standard benchmark computation for testing 

many numerical methods. This case is used to validate our method for solving fluid-
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solid boundary problem. The Reynolds number, drag coefficient, lift coefficient and 

Strouhal number are defined as: 

Re U Dρ
μ
∞=  

20.5
d

d
FC
U Dρ ∞

=  

20.5
l

l
FC
U Dρ ∞

=  

                                                  f DSt
U∞

=                                                    (2.27) 

where ρ is the fluid density; μ is the fluid viscosity; U∞ is the incoming velocity, D is 

the diameter of the cylinder; Fd and Fl are the drag and lift forces, and f is the 

oscillation frequency.  The drag and lift forces can be simply obtained by looking at 

the x or y component of the force applied by the boundary to the fluid. These of 

course, are equal to the negative of the drag and lift, by Newton’s third law of motion. 

     The flow is computed at Reynolds number of 100 and 200 using computational 

domain of 30 × 20. Such size of computational domain has been employed by other 

researchers, for example Russell and Wang (JCP 2003). The diameter of the cylinder 

is 1 and its center is located at [10, 10]; ρ = 1, U∞ = 0.1. The mesh and block system is 

illustrated in Figure 2.5. The fine mesh block covers the area from 8 to 16 in x-axis 

and 8 to 12 in y-axis, which is about 5.3% of the whole computational domain by area. 

In the fine block, Δxf  = Δyf = Δtf  = 0.02. The other area is covered by coarse mesh 

blocks, in which Δxc = Δyc =Δtc = 0.04. On the far field boundary, the incoming 

velocity is set to be the velocity boundary condition and the density distribution 

function is set at its equilibrium state.  
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     Figure 2.6 (a) and (b) present the drag and lift coefficients evolution history. The 

oscillation frequency of drag is twice that of lift. The stream-function and pressure 

contours are presented in Figure 2.7 (a, b) and Figure 2.8 (a, b). Figure 2.9 (a, b) 

presents the vorticity contour around the cylinder. The Karman vortex street is 

observed in the wake. From Figures 2.7 to 2.9, it is clear that the variables at the 

interface between blocks are continuous. 

     The drag coefficient, lift coefficient and Strouhal number are compared with that 

of previous literatures in Table 2.1. It shows that the present results are within the 

range of values reported by previous studies.  

     To demonstrate that the results are grid-independent, numerical simulation for 

several grids with different sizes were carried out, with the same two-block system. 

The drag coefficient is used as an indicator for this study. From the results in Table 

2.2, the grid resolution of Δxf  = Δyf = 0.02 is sufficient to capture the important 

characteristics. 

With a fine mesh system covering the whole computational domain, which is 

actually the original immersed boundary lattice Boltzmann method, a numerical study 

is carried out on flow past a cylinder at Re = 100. The drag coefficient, lift coefficient 

and Strouhal number are found to be 1.436, 0.343 and 0.166 respectively, which are 

nearly the same as that of the present multi-block method. However, only about 5.3% 

of the computational area is covered by fine mesh with the present multi-block 

method. Computational effort is saved by using less mesh, and furthermore one time 

step on coarse mesh needs two time steps in fine mesh. The computational effort 

saved is estimated as: 
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(5.3% 2 0( )) 2 (100% 5.3%)1 0.71
(100% 2 0( )) 2

ib
ib

× + × + −
− ≈

× + ×
 

where 0(ib) is the computational effort incurred by implementing the immersed 

boundary condition, which is a small value compared with the fluid field computation 

effort. Conversely, it can be expected that under the same computational effort, the 

present method gives more accurate result as the near boundary region is covered 

with fine mesh.   

2.2.2 Two circular cylinders moving with respect to each other 

     This example is used to test the present method in simulating solid moving 

boundaries immersed in fluid. It has been previously studied by Russell and Wang 

(2003), as well as Xu and Wang (2006). The initial geometry (Figure 2.10) is the 

same as theirs, and so is the far-field rigid wall boundary condition.  The fine mesh 

block, with bold solid line as the boundary in Figure 2.10, covers the area from -3 to 

19 in x-axis and -2 to 3.6 in y-axis. The other area is covered with coarse mesh. The 

grid resolutions in both blocks are the same as that in Section 2.2.1. The diameter of 

both cylinders equals 1, which is also the characteristic length. Each cylinder, 

oscillates for two periods about its initial position and then moves with respect to 

each other at the characteristic velocity U = 0.025 and Re = 40. Compared with Xu 

and Wang (2006) the same characteristic length is used, however the current 

characteristic velocity is 1/40 of theirs; so the time scale is 40 times of theirs. The 

position of the upper cylinder is: 

                                           
416 sin( ) 0 640

160
32 0.025 640 1280

u

t t
x

t t

π
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⎧ − ≤ ≤⎪= ⎨
⎪ − ≤ ≤⎩
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                                           1.5uy =                                                                          (2.28) 

The position of the lower cylinder is: 
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0.025 16 640 1280
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t t
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⎧ ≤ ≤⎪= ⎨
⎪ − ≤ ≤⎩

 

                                           0ly =                                                                             (2.29) 

    A non-equilibrium extrapolation method proposed by Guo et al. (2002) has been 

used to treat the rigid wall boundary condition in this section as well as Sections 2.2.3. 

    Figure 2.11(a) presents the vorticity contour when the two cylinders are closest to 

each other, at t = 960; Figure 2.11(b) shows the vorticity field at t = 1280, when the 

cylinders are separated from each other by a distance of 16. These results 

qualitatively agree with that of Xu and Wang. 

    The developing history of the drag and lift coefficients of the upper cylinder is 

shown in Figure 2.12(a, b), using the same time scale as Xu and Wang. Very good 

quantitative agreement is observed. From the results it is seen that the drag force 

increases when the two cylinders are approaching each other, which means they are 

repulsive. However, they are attracting each other when they move away in close 

proximity, because the drag force decreases.  

This case is further studied with the original immersed boundary lattice Boltzmann 

method (IBLBM), which employs uniform mesh for the whole computational domain. 

The grid resolution (IBLBM) is the same as that of the fine block in this section. The 

temporal evolution of drag and lift coefficients is shown in Figure 2.12(a, b). It is 

seen that they are nearly the same as the results by the present multi-block method. 

However, only 24.1% of the computational domain is covered by fine mesh in the 
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current method; thus computational effort is saved, though not as much as that of 

Section 2.2.1.  

2.2.3 Flow around a hovering wing 

    A rigid wing undergoing both translational and rotational motion within a rigid box 

is studied as a more stringent case to validate the present method. The wing has an 

elliptical shape with chord length c and aspect ratio e. Its positions in one period are 

shown in Figure 2.13. Mathematically, it is governed by: 

                                                       0
2( ) 0.5 (1 cos )tA t A
T
π

= +  

                                                    0
2( ) (1 sin( ))tt
T
πα α ζ= − −                                   (2.30) 

 where A(t) is the displacement of the wing center with amplitude A0, α(t) is the angle 

of attack with amplitude 2α0, T is the flapping period and ζ is the phase difference. 

The inclination angle of the stroke plane is β (Figure 2.13). In the present study, the 

parameters are: c = 1, e = 4, A0 = 2.5, α0 = π/4, T = 50π, ζ = 0 and β = π/3. The 

characteristic length is c, the velocity scale is πA0/T and the Reynolds number is 

πA0c/Tν, which equals 157. This example has been previously studied by Xu and 

Wang (2006); the only difference is that the present characteristic velocity is 1/20 of 

theirs and thus the present time scale is 20 times of theirs.    

    The present rigid box ranges from -10 to 6 in both x-axis and y-axis, which is also 

the computational domain. The fine mesh system covers the area from 8 to 13 in x-

axis and 8 to 14 in y-axis. The other area is covered with coarse mesh. The grid 

resolutions in fine block are Δxf  = Δyf = Δtf  = 1/64, and Δxc = Δyc =Δtc = 1/32 in 

coarse block. Further refinement of the mesh gives nearly the same results.    
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    Figure 2.14 presents four images of the vorticity field near the wing within one 

period. A pair of vortex with different mode are created and shed from the leading 

and trailing edges of the wing. The vorticity results are very similar to Xu and Wang, 

and its physical meaning was given in detail by Wang (2000).  

The temporal evolution of the drag and lift coefficients of the hovering wing is 

plotted in Figure 2.15(a, b), using the same time scale as Xu and Wang. Reasonable 

quantitative agreement is observed.        

 

2.2.4 Deformation of a circular capsule in simple shear flow 

The deformation of a circular capsule with elastic membrane is studied in simple 

shear flow, to validate the present numerical method for simulating the interaction 

between incompressible viscous fluids and elastic moving boundaries with 

constitutive laws. For a flexible capsule subjected to a shear flow, the non-slip 

boundary condition is satisfied by letting the flexible membrane move at the same 

velocity as the fluid around it. This motion will cause the capsule to deform. The 

boundary force is obtained from the constitutive law of the capsule membrane. 

According to Newton’s second law when the capsule membrane is massless, the 

membrane force equals the opposite of the fluid force. The opposite of the membrane 

force is then distributed to the fluid mesh points near it by a smoothed version of the 

Dirac Delta function to account the effect of the boundary. 

The capsule is initially unstressed, and filled with Newtonian liquid similar to that 

outside. The capsule’s membrane follows Hooke’s law, which in the form of: 
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0

( )( 1)H l tE
l

τ ∂
= −

∂
                                            (2.31) 

where E represents the interfacial elasticity modulus, the term l(t) is the instantaneous 

arc distance along the membrane, and the term l0 represents the initial arc distance 

along the unstressed membrane. Thus at any time t, the membrane tension τH is a 

function of arc distance around the membrane contour. 

    The dimension of the capsule is at the order of 10 μm, which results in very small 

Reynolds number. One dimensionless parameter, the dimensionless shear rate, is 

identified to play an essential role in determining the capsule deformation. The 

dimensionless shear rate G, which determines the relative importance of shearing and 

elasticity, in the form of: 

                                                             kaG
E
μ

=                                                      (2.32) 

where μ is the viscosity of the surrounding fluid, k is the shear rate of the flow at 

infinity and the term a is the radius of the capsule. 

The deformation of the capsule is described by the Taylor shape parameter, which 

is defined as: 

                                                     xy
L BD
L B
−

=
+

                                                    (2.33)  

where L and B are the length and width respectively of a capsule. They are computed 

by the approach of Breyiannis et al. (2000). It involves mapping a deformed capsule 

to an ellipse that shares the tensor of the moments of inertia, where L and B denote 

the axis lengths of the ellipse. The principal direction of this tensor is identified with 

the capsule inclination. 
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    In the present study, all variables are normalized by the characteristic length 2a, 

velocity 2ka, time 1/k, and tension μka. The Reynolds number based on above 

characteristic length and velocity is 0.05, which is in the range of normal 

physiological conditions. The membrane shear elasticity modulus varied so that 

different dimensionless shear rates, up to 0.4, are simulated. The computational 

domain ranges from 0 to 16a in both x-axis and y-axis. The capsule is at the center of 

the domain, and its membrane is equally discretized into 150 Lagrangian nodes. The 

fine mesh block covers from 5a to 11a in both axes. The other area is covered with 

coarse mesh. The grid resolutions in fine and coarse block are Δxf = Δyf = 0.05a and 

Δxc = Δyc = 0.1a, respectively. The characteristic velocity is set to be 1 × 10-4, so that 

the relaxation parameters in coarse block and fine block are 0.62 and 0.74, 

respectively.    

From the present results, it is found that the capsule deforms to a steady shape and 

then membrane rotates around the liquid inside (tank-treading motion). Figure 2.16 

presents the streamline pattern inside and outside the capsule at steady state, for G = 

0.04. A single eddy inside the cell and recirculating external flows are observed.  

The time evolution of the capsule deformation parameter Dxy and inclination angle 

θ (with respect to x-axis) are presented in Figures 2.17(a, b), and compared with 

previous results of Breyiannis and Pozrikidis (2000) by boundary element method. 

Good quantitative agreements are observed.  It is seen the time taken to achieve 

steady shape is shorter if the dimensionless shear-rate is lower. A lower shear rate 

means the ratio between elastic and shear forces is larger (Equation 2.32), thus the 

capsule only needs to deform a little to generate enough elastic force to balance the 
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viscous shear-force. The result (Figure 2.17(a)) also shows that at bigger shear rate G, 

the deformation parameter Dxy at steady state is larger and the inclination angle 

(Figure 2.17(b)) is smaller. That is, the initially-circular capsule is more deformed 

and aligned with the flow as would be expected.   

To demonstrate that the results are grid-independent, numerical simulation were 

carried out for G = 0.0125 and 0.125, with the same two-block system. The diameter 

of the circular capsule 2a was covered by 20, 40 or 60 lattice spaces of the fine mesh 

block. The temporal evolution of Taylor deformation parameter Dxy was used as an 

indicator for this study. From the result plotted in Figure 2.18, the grid resolution of 

Δxf  = Δyf = 0.05a is sufficient to capture the important characteristics. The effect of 

computational domain on capsules deformation was also studied under this grid 

resolution and the result is presented in Figure 2.19. It is shown that a square 

computational domain with side 16a is large enough to neglect the boundary effect. 

 

2.3 Concluding remarks 

     A two-dimensional hybrid immersed-boundary and multi-block lattice Boltzmann 

method is presented to simulate moving boundaries interacting with incompressible 

viscous fluid. The present method preserves the advantages of the immersed-

boundary method and lattice-Boltzmann method; and at the same time improves their 

accuracy and efficiency by employing a multi-block strategy.  

The present method can accurately and efficiently simulate solid moving 

boundaries interacting with fluids; this is achieved by employing the direct forcing 

technique. Three benchmark computations were carried out to validate this capacity: 
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flow past a circular cylinder, two cylinders moving with respect to each other, and 

flow around a hovering wing.  

The deformation of a circular liquid-filled capsule with elastic membrane in simple 

shear flow was also studied. The present results agree very well with previously 

published results, and show the present method reliable for simulating the interaction 

between incompressible viscous fluids and elastic moving boundaries with 

constitutive laws. 
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Re = 100 Re = 200  

Cd Cl St Cd Cl St 

Lai and Peskin (2000) 1.4473 0.3299 0.165 - - 0.190 

Russel and Wang (2003) 1.43 0.339 0.175 1.45 0.75 0.202 

Xu and Wang (2006) 1.423 0.34 0.171 1.42 0.66 0.202 

Chew and Shu (2002) 1.3668 0.375 0.164 - - - 

Present 1.438 0.344 0.166 1.449 0.709 0.197 

Table 2.1 Comparison with previous studies on flow past a circular cylinder 
 

 

Grid resolution in fine block Re = 100 Re = 200 

1/30 

1/40 

1/50 

1/60 

1/70 

1.454 

1.443 

1.438 

1.436 

1.435 

1.459 

1.451 

1.449 

1.448 

1.448 

Table 2.2 Drag coefficients for different grid size 
 

 

 Cd Cl St 

Cylinder without filament 1.438 0.344 0.166 

Cylinder with filament 1.406 0.396 0.156 

Table 2.3 Comparison of flow characteristics for flow past a circular cylinder 
with and without a downstream filament 
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Figure 2.1 D2Q9 lattice model 
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Figure 2.2 Interface structures between two blocks 
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Figure 2.3 An elastic boundary immersed in a fluid 
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set initial conditions in all blocks

stream in coarse blocks

caculate macro variables in coarse blocks

collision in coarse blocks

transfer information in coarse blocks to fine blocks

Spatial interpolation for points in file blocks and store them for temporal interpolation

stream in fine blocks

caculate macro variables in fine blocks

collision in fine blocks

compute boundary force and distribute force

values on boundaries of fine blocks are obtained by temporal interpolation

same time level as coarse blocks
no

transfer information in fine blocks to coarse blocks on boundaries

terminate computation
no

 

Figure 2.4 General computational procedure 
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Figure 2.5 Illustration of mesh and block system on the computational domain of flow 
past a circular cylinder. The block area is adjusted and the mesh density is reduced by 

a factor of 25 for clarity 
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                                   (a)                                                                    (b) 
Figure 2.6 Evolution of force coefficients for flow past a circular cylinder at Re = 100 

and 200: (a) drag, (b) lift 
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                                                                       (b) 
Figure 2.7 Stream function contour for flow past a circular cylinder at: (a) Re = 100, 

(b) Re = 200 
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(b) 

Figure 2.8 Pressure contours for flow past a circular cylinder at: (a) Re = 100, (b) Re 
= 200 
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(b) 

Figure 2.9 Vorticity contours for flow past a circular cylinder at: (a) Re = 100, (b) Re 
= 200 
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Figure 2.10 Computational geometry for two cylinders moving respect to each other 
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(b) 

Figure 2.11 Vorticity fields around two cylinder moving with respect to each other; (a) 
cylinders are closest to each other; (b) cylinders are separated by a distance of 16 
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(b) 

Figure 2.12 Temporal evolution of (a) Lift and (b) Drag coefficients for the upper 
cylinder in flow around two cylinder moving respect to each other 
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Figure 2.13 Positions of a hovering wing in one period. The solid ellipses represent 

the downstroke phase and the dotted ellipses represent the upstroke phase 
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(a) t = 0.25T                                          (b) t = 0.44T 
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Figure 2.14 Vorticity fields around a hovering wing at four different instants in a 
period 
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Figure 2.15 Temporal evolution of (a) Drag and (b) Lift coefficients for flow around a 
hovering wing at Re = 157 
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Figure 2.16 The streamline pattern inside and outside the capsule at steady state 

for G = 0.04 
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Figure 2.17 Temporal evolution of : (a) Taylor deformation parameter; (b) orientation 

angle. _______, present method; ●, boundary element method (Breyiannis and 
Pozrikidis, 2000). 
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Figure 2.18 Temporal evolution of Taylor deformation parameter for different grid 

resolutions 
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Figure 2.19 Temporal evolution of Taylor deformation parameter for different size of 

computational domains 
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Chapter 3 Effect of Membrane Bending Stiffness on 

the Deformation of Two-dimensional Capsules in 

Shear Flow* 

 

For liquid filled capsules enclosed by elastic membrane, flow induced deformation 

causes the development of not only in-plane elastic tensions, but also bending 

moments accompanied by transverse shear tensions. The bending stiffness has been 

found quite important in determining the equilibrium configuration and shape 

oscillations of capsules, as well as in avoiding the development of wrinkling and 

folding of capsules under flow. A numerical study of Pozrikidis (2001) showed that 

bending stiffness has significant effect on the steady configuration of elastic capsules 

in simple shear flow. However, an important restriction was the requirement that the 

minimum bending-energy shape has uniform curvature. So far, there is no study on 

the transient deformation of elastic capsules whose minimum bending-energy 

configuration has non-uniform curvature.       

In this chapter, the transient deformation of two-dimensional elastic capsules, filled 

with a Newtonian liquid similar to that outside, is studied numerically under simple 

shear flow condition. The purpose of the present study is to investigate the effect of 

membrane bending stiffness on the deformation of such capsules. The deformation of 

capsules with initially circular, elliptical and biconcave resting shapes was studied; 
                                                 
* The results of this chapter have been published as “Sui, Y., Chew, Y. T., Roy, P., Chen. X. B. and 
Low H. T., Transient deformation of elastic capsules in shear flow: effect of membrane bending 
stiffness, Phys. Rev. E, 75: 066301, 2007.” 
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the capsules’ minimum bending-energy configurations were considered as either 

uniform-curvature shapes (like circle or flat plate) or their initially resting shapes.  

The present study is based on the hybrid method proposed in Chapter 2. In this 

approach the flow field is solved by the lattice Boltzmann method, the fluid-capsule 

interaction is solved by the immersed boundary method, and the multi-block strategy 

is used to refine the mesh around the deforming capsule. The present model has been 

validated in Chapter 2, in which the bending stiffness is not considered.             

    One must acknowledge that the two-dimensional model is a large simplification; 

however, previous studies (Zhou and Pozrikidis, 1995; Biben and Misbah, 2003; 

Beaucourt et al., 2004) have provide sufficient grounds which show that two-

dimensional study maintains most common features of the two-dimensional capsule 

motion, for example the transition from tank treading mode to tumbling mode.    

 

3.1 Numerical model 

3.1.1. Membrane mechanics 

In the present study, the deformation of a two-dimensional capsule is considered to 

be subjected to the two dimensional incident shear flow along the x-axis, ( ,0)ky=u ,  

as illustrated in Figure 3.1. The unit tangent vector t  is pointing in the direction of 

increasing arc length and n  is the unit normal vector pointing into the ambient fluid. 

   During the capsule deformation, the velocity across the interface is continuous in 

order to satisfy the non-slip condition. But there is a jump of the interfacial tension 

ΔF , which is in the form of (Pozrikidis, 2003a): 
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                                    Δ ( )n t d dF F q
dl dl

τ= Δ + Δ = − = − +
TF n t t n                            (3.1)            

where T  is the membrane tension, consisting of the in-plane tension τ  and 

transverse shear tension q . Expanding out the derivatives of the products on the left-

hand side of Equation (3.1), and using the relations 

                                                           d
dl

τ= −
t n                                                        (3.2) 

                                                            d
dl

τ=n t                                                         (3.3) 

where κ  is the curvature of the membrane curvature, the normal and tangential loads 

in Equation (3.1) are in the form of:  

                                                       n dqF
dl

κτ= −                                                     (3.4) 

                                                     t dF q
dl
τ κ= − −                                                    (3.5) 

    The in-plane tension τ  is obtained from the membrane’s constitutive law. In the 

present study, Hooke’s law is employed due to its simplicity; however it is sufficient 

to take deformability into account. It has the form:  

                                                     
0

( )( 1)l tE
l

τ ∂
= −

∂
                                              (3.6) 

where E represents the interfacial elasticity modulus, the term l(t) is the instantaneous 

arc distance along the membrane, and the term l0 represents the initial arc distance 

along the unstressed membrane. Thus at any time t, the membrane tension τH is a 

function of arc distance around the membrane contour. The Hooke’s law is only valid 

for small deformation. However, the Hooke’s law has been employed in previous 

studies on flow induced deformation of capsules (Breyiannis and Pozrikidis, 2000). 
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For large capsule deformation, it will describe the relation of membrane strain and 

stress in an exaggerated or understated way (Breyiannis and Pozrikidis, 2000). 

    The transverse shear tension q , is expressed in terms of bending moment m : 

                                                                dmq
dl

=                                                       (3.7) 

    The bending moment is given by: 

                                                   0( ( ) ( ))Bm E l lκ κ= −                                                (3.8) 

where BE  is the bending modulus, ( )lκ  is the instantaneous membrane curvature and 

0 ( )lκ   is the curvature of membrane at minimum bending-energy configuration 

(Steigmann et al., 1997).  

In the present simulation, there is no special constraint for the volume of the 

capsule. The results show that the volume change during capsule deformation is less 

then 0.1%.                                                                                                                                                       

Due to the small length scale (10-6 – 10-5 m) of the capsule and the small 

surrounding fluid velocity (10-3 – 10-2 m/s), the inertia effect is neglected. Two 

dimensionless parameters are identified to play an essential role in determining the 

capsule deformation. One is the dimensionless shear rate G , which determines the 

relative importance of shearing and elasticity, in the form of: 

                                                             kaG
E
μ

=                                                        (3.9) 

where μ  is the viscosity of the surrounding fluid, k  is the shear rate and the term a  

is the equivalent radius, in the form of 0.5= (  / )a capsule area π . Another important 

parameter is the reduced ratio of bending to elasticity moduli, in the form of:       
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                                                            2
B

b
EE

a E
=                                                     (3.10) 

3.1.2. Numerical method 

 The present study is based on the hybrid method proposed in Chapter 2. The 

computational domain ranged from 0 to 16a  in both x -axis and y -axis. Numerical 

experiment showed that the size of this computational domain is large enough to 

neglect the boundary effect. The capsule was at the center of the domain, and its 

membrane was equally discretized into 160 Lagrangian nodes. The fine mesh block 

covered from 5a  to 11a  in both axes. The other area was covered with coarse mesh. 

The grid resolutions in fine and coarse block were 

0.05f fx y aΔ = Δ = and 0.1f fx y aΔ = Δ = , respectively. Grid-independent study 

showed that this mesh density was sufficient.  

 

3.2 Results and discussion 

3.2.1 Initially circular capsules 

The deformation of capsules with initially circular shape in simple shear flow is 

studied. The initial shape is also the resting shape concerning the in-plane tension.  

The results presented in this section corresponds to capsules whose initial shape is 

also the minimum bending-energy profile. Capsules with flat minimum bending-

energy shape are found to behave in a similar way.  

In the present study, all variables are normalized by the characteristic length 2a , 

velocity 2ka , and time1/ k . The Reynolds number based on the above characteristic 
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length and velocity was 0.05. The membrane shear elasticity modulus was varied so 

that different dimensionless shear rates were obtained and studied. The characteristic 

velocity was set to be 1 × 10-4, so that the relaxation parameters in coarse block and 

fine block were 0.62 and 0.74, respectively.   

    The present results show that the capsules deform to steady shapes and then the 

membrane rotate around the liquid inside (tank-treading motion). Figure 3.2(a) 

presents a family of configurations of steady deformed capsules for reduced bending 

modulus 0 0.4bE = ∼ at the dimensionless shear rate 0.04G = . As expected, the effect 

of bending stiffness is apparent. It restricts the global deformation of capsules, and 

locally prevents the development of highly curved shapes at the two tips. With the 

increase of the bending modulus, the shapes of the steady deformed capsules become 

closer to a circle and the orientations become less aligned with the flow direction. If 

the shear rate is higher, as shown in Figure 3.2(b) for 0.125G = , it is seen that the 

capsules are more deformed for the same reduced bending modulus.  

To quantitatively illustrate the effect of bending stiffness on the capsules 

deformation, the temporal evolution of the Taylor deformation parameter and 

inclination angle (with respect to x -axis) are presented in Figure 3.3, for 0.04G =  

and 0.125. The quantitative results confirm that increased bending stiffness reduces 

the capsule deformation and makes it less aligned with the flow. It is also seen that 

the time taken to achieve steady shape is shorter under lower dimensionless shear rate 

or higher reduced bending modulus. That is because the capsule only needs to deform 

a little to generate enough elastic force to balance the viscous shear force.  
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After the capsule deforms to a steady configuration, its membrane rotates around 

the liquid inside with periodT . The normalized tank treading frequency, 4 /( )f kTπ= , 

is presented in Figure 3.4 for various bending modulus at 0.04G =  and 0.125. It is 

seen that, with increasing bending modulus, the dimensionless frequency 

asymptotically approaches towards the value of unity, corresponding to that of a solid 

circular cylinder in simple shear flow.    

 

3.2.2 Initially elliptical capsules 

    In this section, the deformation of initially elliptical capsules, with a semi-major to 

semi-minor axes ratio of 2:1 and equivalent radius a , is simulated. The capsules are 

initially unstressed concerning the in-plane tension. Various resting configurations 

concerning the bending moments are considered: uniform curvature shapes (circle 

and flat plate) and non-uniform curvature shape (the initially elliptical configuration). 

The computational domain, block system, mesh resolutions and characteristic scales 

are the same as that in the previous section. 

First considered are capsules with the minimum bending-energy shape having 

uniform curvature shape which is circular. The area of the circle is the same as that of 

the initially elliptical capsule. Figure 3.5(a, b) presents the configurations of steady 

deformed capsules with the reduced bending modulus increasing up to 0.2, at the 

dimensionless shear rate 0.04G =  and 0.125, respectively. The overall deformation 

of the capsules is quite similar to that of the initially circular capsules. As the bending 

modulus increases, the steady configurations of capsules tend to become circular. 

Figure 3.6(a, b) presents the steady Taylor deformation parameters and inclination 
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angles of capsules with different bending modulus ratios. It is shown from the results 

that as bE  increases, the Taylor deformation parameter decreases while the 

inclination angle increases monotonically. The minimum bending-energy shape 

having uniform curvature, which is flat, has also been studied. It was found that they 

behave in a similar way.     

For a capsule membrane with a certain structure, composing for example of 

polymeric or proteinic networks, the membrane may prefer a certain resting 

configuration concerning the bending moments, due to the membrane structure. This 

preferred minimum bending-energy configuration may have non-uniform curvature. 

However, the transient deformation of elastic capsules with minimum bending-energy 

configuration having non-uniform curvature has not been studied so far. In this 

Section, the capsules’ initially elliptical shape is chosen as the minimum bending-

energy configuration. The present membrane model is able to describe the in-plane 

elasticity and bending moments, but it does not represent the polymerized structures 

of the membrane. 

Without bending stiffness, a capsule deforms to a stationary shape with a finite 

inclination angle; then the membrane rotates around the liquid inside, as presented in 

Figure 3.7(a). When there is bending stiffness, it will try to keep the instantaneous 

curvature of the capsule akin to its initial curvature. 

From the present results, it is interesting to find that with a finite but small bending 

modulus, the membrane still carries out tank treading motion. However, two 

protrusions develop on the membrane and rotate around the liquid inside, as presented 

in Figure 3.7(b, c) for 0.005bE =  and 0.02, respectively. The animation of the capsule 
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contours shows that the capsule inclination is undergoing periodic oscillation while 

the membrane with protrusions rotates.  These observations are different from that of 

a capsule without bending stiffness or with a minimum bending-energy shape of 

uniform-curvature. As the bending modulus increases, the protrusions become larger 

(see Figure 3.7), and so does the oscillation amplitude of the capsule’s inclination 

angle. 

When the reduced bending modulus reached 0.06, the motion of the capsule has 

changed from tank treading mode to tumbling mode accompanied with periodic 

deformation. Figure 3.8 presents a series of capsule contours for 0.06bE =  

and 0.04G = , at the dimensionless time kt  = 0, 1.6, 6.4 and 8. The symbol ● 

represents the same Lagrangian node on the membrane. From the results, it is seen 

that the capsule is undergoing tumbling motion. It is elongated or compressed by the 

shear flow periodically. 

With further increase in bending stiffness the tumbling motion continues, but the 

capsule is hardly deformed and behaves like a rigid body. Figure 3.9 presents the 

capsule contour for 0.4bE =  and 0.04G =  at kt  = 0, 2 and 6.4. It is seen that the 

capsule tumbles without visible shape changes. 

Figure 3.10 presents the temporal evolution of the capsule inclination angle for 

various bending modulus at 0.04G = . It is seen that without bending stiffness 

( 0bE = ), a steady tank treading mode is achieved; with a finite but small bending 

stiffness ( 0.005bE = , 0.02 and 0.04), the capsule’s orientation undergoes oscillation 

with amplitude increasing as the bending modulus increases. Further increasing the 

bending rigidity ( 0.06bE =  and 0.4) causes the mode transition, that is the oscillation 
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amplitude is larger thanπ . Figure 3.10 shows that the transition happens between 

0.04bE =  and 0.06. For a rigid ellipse rotating in two dimensional shear flow at 

vanishing Reynold number, its orbit can be predicted by Jeffery’s theory (Jeffery, 

1922). The angular rotation is given by: 

                                                    1
2tan ( tan )

1
rktr

r
θ −=

+
                                      (3.11) 

where r  is the aspect ratio, which equals 2 in the present study. Jeffery’s solution is 

plotted in Figure 3.10. For 0.06bE = , the capsule is undergoing tumbling motion. 

However due to its deformability, the result departs largely from Jeffery’s theory. 

For 0.4bE =  when the deformation of the capsule is small, reasonable quantitative 

agreement is observed, which confirms that the capsule tumbles like a rigid body. 

Simulation for capsules with various bending modulus for dimensionless shear rate 

0.125G =  has also been carried out. It was found that the behavior of the capsules is 

similar to that for 0.04G = . However, the critical bending modulus for modes 

transition is higher.  

Through the above observations, it is found that with the bending stiffness 

increasing, the motion of a capsule can be divided into four sequential stages: 1) 

steady tank treading mode (at zero bending stiffness); 2) tank treading with 

orientation oscillation and shape deformation (at finite but small bending stiffness); 3) 

tumbling with periodic shape deformation (at moderate bending stiffness); 4) 

tumbling like a rigid body (at large bending stiffness).  The motion of the capsule at 

stage 2 seems similar to the "vacillating-breathing" mode, which is theoretically 

predicted by Misbah (2006). 
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Without bending stiffness, the shear elasticity of the capsule membrane can only 

resist membrane in-plane stretching. Thus the shear torque can be easily transferred to 

the membrane, which will lead to steady tank treading motion. However, transition to 

tumbling may be triggered for cases where: a) the viscosity contrast is large enough; b) 

the membrane viscosity is increased. In both cases due to the fact that the viscosity 

increases, the transfer of shear torque to the membrane becomes more and more 

difficult; and then the capsule would behave like a solid body which undergoes 

tumbling. 

In this section, the elliptical capsule’s initial shape is the minimum bending-energy 

shape. Due to the bending stiffness, the membrane’s instantaneous curvature ( )lκ  

must keep akin to 0 ( )lκ , the curvature of the elliptical shape. This will restrict the 

deformability of the capsule. In shear flow, with the bending stiffness increasing, it 

becomes more and more difficult for the capsule to deform. Thus it becomes more 

difficult for the shear torque to be transferred to the membrane; and then the capsule 

will undergo tumbling motion. With a large bending stiffness, the capsule is hardly 

able to deform and thus tumbles like a rigid body. 

    With the initial shape considered as the minimum bending energy shape, the 

deformation of initially elliptical capsules with 0.01bE =  is studied under various 

dimensionless shear rates. Figure 3.11 presents snapshots of capsules’ profiles during 

the deformation. Figure 3.12 presents the temporal evolution of the capsule 

inclination angle for various dimensionless shear rates at 0.01bE = . It is interesting to 

find that decreasing the shear rates will also result in a transition of the capsule’s 

motion mode, from tank treading to tumbling. That is because when the shear rate 
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decreases, the relative importance of membrane bending rigidity and shear elasticity 

will increase, which makes the capsule relatively solidified.  

 

3.2.3 Initially biconcave capsules 

The biconcave capsule has an initial shape (Pozrikidis, 2003b) given by: 

                                                       sinx aα χ=  

                          
2 4(0.207 2.003sin 1.123sin )cos

2
y aα χ χ χ= + −

                       (3.12) 

where α  is the cell radius ratio which equals 1.39 for a red blood cell, and the 

parameter χ  ranges from 0.5π−  to 1.5π . This shape is the cross section of a three 

dimensional red blood cell with equivalent radius a . Its two dimensional equivalent 

radius is 0.74a . The capsules are initially unstressed concerning the in-plane tension. 

Various minimum bending-energy configurations, including uniform curvature 

shapes (circle and flat plate) and non-uniform curvature shape (the initially bi-

concave configuration), are studied. The computational domain, block system, and 

mesh resolutions are the same as that in previous sections. The characteristic length is 

the equivalent diameter of the biconcave capsule, which equals 1.48a . The 

characteristic velocity is1.48ka , and the Reynolds number is at 0.027.   

The deformation of capsules with circular minimum bending-energy shape is first 

considered. The area of the circle is the same as that of the biconcave capsule. Figure 

3.13 presents the configurations of steady deformed capsules with the reduced 

bending modulus increasing up to 0.1, at the dimensionless shear rate 0.025G = . The 

rounding effect is apparent. As the bending modulus increases, the circularity of the 
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steady deformed capsules increases. Capsules with flat resting shape concerning the 

bending moments have also been studied. Similar phenomenon was observed.     

Also studied is the deformation of capsules with the initially biconcave shape as 

the minimum bending-energy configuration. Figure 3.14 presents the capsule profiles 

at different time for 0.015bE =  and 0.025G = . From the results it is seen that the 

capsule still carries out motion of the tank treading mode. Protrusions develop along 

the membrane and rotate around the internal liquid.  The animation of the capsule 

configurations shows that the capsule inclination is undergoing periodic oscillation 

while the membrane rotates.  The oscillation amplitude increases with the bending 

modulus increasing and finally the motion changes to tumbling mode. 

 Figure 3.15 presents a family of capsule contours for 0.02bE = , at the 

dimensionless time kt = 0, 1.26, 7.38, 14.22 and 15.66. The results show that the 

capsule is tumbling continuously. The animation of the capsule contours shows that 

the tumbling motion is accompanied by periodic deformation. The capsule is 

elongated (illustrated in Figure 3.15b) or compressed (illustrated in Figure 3.15d) by 

the shear flow. Further increasing the bending stiffness makes the capsule carry out 

rigid-body like tumbling motion, which resembles Jeffery’s mode, as illustrated in 

Figure 3.16 for 0.2bE = . 

Figure 3.17(a) presents the temporal evolution of the capsule inclination angle for 

various bending modulus at 0.025G = . It is seen that for low bending modulus, the 

inclination is undergoing small oscillations. The oscillation amplitude increases as the 

bending modulus increases, and finally causes the change from tank treading to 

tumbling modes. The result shows that this transition happens between 0.015bE =  
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and 0.02. During the tumbling motion, the capsule rotates faster when perpendicular 

to the flow and slower when aligned with the flow direction. For 0.2bE =  in which 

the deformation of the capsule is small, the orbit of the capsule is compared with 

Jeffery’s theory. In Equation (3.7), the aspect ratio is determined following the 

approach of Goldsmith and Marlow (1972), as well as Ramanujan and Pozrikids 

(1998). That is, it is chosen so that the numerical tumbling period matches that 

predicted by theory. Satisfactory quantitative agreement is observed in Figure 3.17(a). 

It has been shown in previous studies (Zhou and Pozrikidis, 1995; Sui et al., 2007) 

that a two-dimensional biconcave capsule achieves a steady tank-treading mode 

without bending stiffness. In the present section, a four-stage motion, similar to that 

in Section 3.2.2, is found for a biconcave capsule with various bending stiffness. The 

physical mechanism should also be the same.     

It is well known that red blood cell membrane is strongly resistant to area dilatation. 

The membrane model employed here does allow area dilatation. However, the present 

methodology allows incorporation of incompressible membrane models. With the 

Hooke’s law used in the present study, by increasing the membrane stiffness, a case 

with membrane incompressibility can be approximated. This case was studied with 

0.0025G =  under various bending stiffness. The maximum membrane area change 

was within 0.5%. The temporal evolution of the capsule inclination angle is presented 

in Figure 3.17(b). The capsule motion is closely similar to that for 0.025G =  and so 

is the transition to tumbling mode. However, the critical bending modulus for motion 

transition is lower.    
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    With the initial shape considered as the minimum bending energy shape, the 

deformation of initially elliptical capsules with 0.01bE =  is studied under various 

shear rates. Figure 3.18 presents snapshots of capsules’ profiles during the 

deformation under dimensionless shear rate 0.04G = , 0.02, 0.01 and 0.001. Figure 

3.19 presents the temporal evolution of the capsule inclination angle under these 

dimensionless shear rates. Similar to the deformation of elliptical capsules, unsteady 

tank treading motion is observed for 0.04G = and 0.02. The tank-treading-to-

tumbling transition is between 0.02G = and 0.01. For very small shear rate, the 

capsule carry out rigid-body like tumbling motion, as illustrated in Figure 3.18 (d). 

For 0.001G =  the deformation of the capsule is small, the capsule’ orbit is compared 

with Jeffery’s theory. 

     

3.3 Concluding remarks 

    The effect of interfacial bending stiffness on the deformation of liquid capsules 

enclosed by elastic membranes in shear flow has been studied numerically, using an 

improved immersed boundary-lattice Boltzmann method. Initially circular, elliptical 

and biconcave capsules with various minimum bending-energy shapes, including 

circular, flat plate, or their initially resting shapes have been studied. The results show 

that for capsules with minimum bending-energy configurations having uniform 

curvature (circular, flat plate), the steady deformed shapes are more rounded with 

increasing bending stiffness. For initially elliptical and biconcave capsules with their 

initial configurations as the minimum bending-energy shapes, it is interesting to find 

that with the bending stiffness increasing or the shear rate decreasing, the capsules’ 
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behavior change from tank-treading mode to tumbling mode, and achieves Jeffery’s 

tumbling mode with a large bending stiffness. The present study shows that, besides 

viscosity ratio and membrane viscosity, the membrane bending stiffness may be 

another factor which can lead to the transition of a capsule’s motion from tank 

treading to tumbling.    
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Figure 3.1 Schematic illustration of a two-dimensional capsule in simple shear flow 
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Figure 3.2 Contours of steady deformed capsules with circular initial shape for 
various bending modulus at dimensionless shear rate: (a) 0.04G = ; (b) 0.125G =  
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Figure 3.3 Temporal evolution of Taylor deformation parameter for: (a) 0.04G = ; 

(b) 0.125G = ; and inclination angle for: (c) 0.04G = ; (d) 0.125G =  
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Figure 3.4 The normalized tank treading frequency for various reduced bending 

modulus at 0.04G =  and 0.125 
 
 
 

X

Y

3 3.5 4 4.5 5

3.5

4

4.5

5

Eb = 0
Eb = 0.01
Eb = 0.025
Eb = 0.05
Eb = 0.1
Eb = 0.2

X

Y

3 3.5 4 4.5 5

3.5

4

4.5

5

Eb = 0
Eb = 0.01
Eb = 0.025
Eb = 0.05
Eb = 0.1
Eb = 0.2

                                   (a)                                                                    (b)
 

 
Figure 3.5 Configurations of steady deformed capsules with elliptical initial shape 

and circular minimum bending-energy configuration under various bending modulus 
at dimensionless shear rate: (a) 0.04G = ; (b) 0.125G =  
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Figure 3.6 Steady (a) Taylor deformation parameters; (b) inclination angles of 

capsules with different reduced bending modulus at 0.04G =  and 0.125 
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Figure 3.7 Tank treading motion of capsules with the elliptical initial shape as the 
minimum bending-energy configuration at different bending modulus at 0.04G =  
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Figure 3.8 Rotating and deforming of a capsule with the elliptical initial shape as the 
minimum bending-energy configuration at 0.06bE =  and 0.04G = . Corresponding 

dimensionless time are kt = (a) 0, (b) 1.6, (c) 6.4, (d) 8 

kt = 0
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kt = 6.4

 
Figure 3.9 Rotating and deforming of a capsule with the elliptical initial shape as the 

minimum bending-energy configuration at 0.4bE = and 0.04G =  
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Figure 3.10 Evolution of inclination angle of capsules with the elliptical initial shape 

as the minimum bending-energy configuration at 0.04G =  
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Figure 3.11 Instantaneous snapshots of elliptical capsules’ profiles during 
deformation at 0.01bE = , (a) 0.04G = ; (b) 0.0125G = ; (a) 0.00625G = ; (d) 

0.001G =  
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Figure 3.12 Evolution of inclination angle of capsules with the elliptical initial shape 

as the minimum bending-energy configuration at 0.01bE =  
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Figure 3.13 Equilibrium shapes of initially biconcave capsules with circular minimum 
bending-energy configuration at reduced bending modulus bE = (a) 0, (b) 0.005, (c) 

0.02, (d) 0.1 at 0.025G =  
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Figure 3.14 Tank treading and deforming of a capsule with the elliptical biconcave 
shape as the minimum bending-energy configuration at 0.015bE = and 0.025G =  

(a) (b) (c)

(d) (e)

 
Figure 3.15 Rotating and deforming of a capsule with the elliptical biconcave shape 

as the minimum bending-energy configuration at 0.02bE = and 0.025G = . 
Corresponding dimensionless times are kt =  (a) 0, (b) 1.26, (c) 7.38, (d) 14.22, 

(e)15.66 
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Figure 3.16 Rotating and deforming of a capsule with the elliptical biconcave shape 

as the minimum bending-energy configuration at 0.2bE = and 0.025G =  
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Figure 3.17 Evolution of inclination angle of capsules with the biconcave initial shape 

as the minimum bending-energy configuration at: (a) 0.025G = ; (b) 0.0025G =  
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Figure 3.18 Instantaneous snapshots of biconcave capsules’ profiles during 

deformation at 0.01bE = , (a) 0.04G = ; (b) 0.02G = ; (a) 0.01G = ; (d) 0.001G =  
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Figure 3.19 Evolution of inclination angle of capsules with the biconcave initial shape 

as the minimum bending-energy configuration at 0.01bE =  
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Chapter 4 Inertia Effect on the Deformation of 

Two-dimensional Capsules in Simple Shear Flow* 

 

The deformation of an elastic capsule under simple shear flow has been studied 

extensively in the past by experimental observation, theoretical analysis or numerical 

simulation.  Previous researchers have found that there are some factors which play 

important roles in determining the capsule behaviour in shear field. These factors 

include the capsule’s membrane bending rigidity, membrane viscosity and the 

viscosity ratio of the internal and external liquids. However, the effects of inertia on 

the deformation of an elastic capsule and the flow field around it have so far not been 

explored in simple shear flow. In a related area, Sheth and Pozrikidis (1995) 

conducted numerical simulations and found that inertia tends to promote the 

deformation of liquid drops in simple shear flow. Subsequently, Lee and Pozrikidis 

(2006) found that inertia gives rise to an initial transient process. However, it is 

known that liquid drops do not have membranes and have constant surface tension. 

Liquid drops are thus different from the present topic of study, which is on the 

deformation of liquid filled capsules with elastic membranes.  

In this chapter, the transient deformation of two-dimensional liquid-filled capsules 

is simulated in simple shear flow at small and moderate Reynolds numbers up to Re = 

                                                 
* The results of this chapter have been accepted and will be published as “Sui, Y., Chew, Y. T., Roy, P. 
and Low H. T., Inertia effect on the transient deformation of elastic capsules in simple shear flow, 
Comput. Fluids, 38: 49-59, 2009.” 
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100. The capsule is modeled as a closed elastic membrane, filled with a Newtonian 

liquid similar to that outside. The membrane model follows Hooke’s law. The present 

simulations are carried out with the hybrid method developed in Chapter 2. The 

purpose of the present study is to investigate the inertia effect on the transient 

deformation of the elastic capsule, as well as the flow pattern around and inside it.  

                

4.1 Numerical model 

 

In the present study, a two-dimensional capsule is considered to be subjected to a 

linear shear flow along the x-axis, as illustrated in Figure 4.1. The numerical model 

employed in this chapter is nearly identical to that in chapter 3, in which the modeling 

details can be found, and the only difference is that the membrane bending stiffness is 

neglected. The capsule’s membrane follows Hooke’s law, as defined by Equation 3.6.   

In the present study of the capsules’ dynamic motion, the capsule membrane is 

assumed quite thin compared with the dimension of the capsule. Thus the bending 

moments are neglected as it is small compared with the shear elasticity effect.  It 

should be noted that the bending stiffness is important in determining the static 

configuration of capsules.  

Finally, the membrane load of an elastic capsule has the form, similar to that of 

Breyiannis and Pozrikidis (2000): 

                                              ( )d d
dl dl

ττ κτ= − = −F t n t                                        (4.1)        



Chapter 4 Inertia Effect on the Deformation of 2D Capsules 

 83

For drops without surfactant (Sheth and Pozrikidis, 1995), due to the constant 

interfacial tension τ, the tangential force in Equation 4.1 vanishes.                        

    In the simulations, two dimensionless parameters are identified to play an essential 

role in determining the capsule deformation and flow structure. One is the 

dimensionless shear rate G, which determines the relative importance of shearing and 

elasticity, defined in Chapter 3, Equation 3.9. Another important parameter is the 

Reynolds number which is the ratio of inertia force to viscous force, defined as:       

                                                (2 )(2 )Re UL ka aρ ρ
μ μ

= =                                           (4.2) 

where ρ is the fluid density, U represents the characteristic velocity and D is a 

characteristic length    

    The present study is based on the hybrid method proposed in Chapter 2. In this 

approach the flow field is solved by the lattice Boltzmann method, the fluid-capsule 

interaction is solved by the immersed boundary method, and the multi-block strategy 

is used to refine the mesh around the deforming capsule. The method is capable to 

take the inertia effect into account because it solves the lattice Boltzmann equation, 

which can recover the full Navier-Stokes equation. In study of micro-capsules, for 

example in Chapter 3, the resulted Reynolds number is less than 0.1, thus inertia 

effect is negligible.    

 

4.2 Results and discussion 

The deformation of capsules with initially circular and elliptical resting shapes 

(shapes at which the in-plane tension around the membrane is zero everywhere) in 
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simple shear flow is studied, at various dimensionless shear rates and Reynolds 

numbers. All cases considered in the present study are for shear rate G below the 

critical values, in which the capsules can achieve steady profiles. Around and above 

the critical values, the deformation of the capsules will be very large and high 

curvature regions will develop, and mesh refinement is needed. The results presented 

in this section correspond to capsules with circular resting shape. Capsules with 

elliptical resting shape (semimajor to semiminor axes ratio 2:1) are found to behave 

in a similar way. 

 

4.2.1 Numerical performance 

    The present study is on the deformation of a capsule in infinite simple shear flow. 

It is quite important to choose a computational domain which is large enough to 

neglect the boundary effect and a sufficient grid resolution to get convergent results. 

Numerical simulations are carried out under various computational domain sizes and 

grid resolutions to test the performance of the numerical method. The temporal 

evolution of the capsule’s Taylor shape parameter Dxy and the capsule’s inclination 

angle (with respect to x-axis) are chosen as indicators.  

First studied is the computational domain effect. The square computational 

domains with side length of 12a, 16a and 20a are tested. The capsule is at the center 

of the domain, and its membrane is discretized into 160 Lagrangian nodes equally-

spaced with respect to arc length around the membrane contour. The fine mesh block 

covers a small square box with side length 6a and center coinciding with that of the 

computational domain. The other area is covered with coarse mesh. The grid 
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resolutions in fine and coarse block are Δxf = Δyf = 0.05a and Δxc = Δyc = 0.1a, 

respectively. In the present study, the initial flow field is chosen to be the unperturbed 

simple shear flow. The density distribution functions are set to be the equilibrium 

values. During the computation, the outer boundary condition is set to be the 

unperturbed simple shear flow. A non-equilibrium extrapolation method proposed by 

Guo et al. (2002) is used to treat this boundary condition. The temporal evolution of 

Taylor shape parameter and capsule inclination angle under various domain sizes at 

Re = 100 is presented in Figure 4.2(a) and Figure 4.2(b) respectively. It is shown that 

a square computational domain with side 16a is large enough to neglect the boundary 

effect.      

    Grid convergence study was carried out on the computational domain with side 16a. 

The diameter of the circular capsule 2a was covered by 30, 40 or 50 lattice spaces of 

the fine mesh block, and the capsule membrane was discretized into 120, 160 or 200 

Lagrangian nodes equally-spaced with respect to arc length, respectively. The ratio of 

the marker spacing to grid width was kept to be about 0.79. The temporal evolution of 

Taylor shape parameter and capsule inclination angle under various grid resolutions 

at Re = 100 is presented in Figure 4.3(a) and Figure 4.3(b). From the result it is seen 

that the grid resolution of Δxf  = Δyf = 0.05a is sufficient to capture the important 

characteristics. With the same mesh resolution, the capsule membrane was discretized 

into 240 Lagrangian nodes. The temporal evolution of Taylor shape parameter and 

capsule inclination angle (Figure 4.3) nearly coincide for the two discretizations. 

Thus for all cases considered in this paper, the computational domain is a square box 

with side length 16a, the grid resolution is Δxf  = Δyf = 0.05a, and the capsule 
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membrane is discretized into 160 Lagrangian nodes equally-spaced with respect to 

arc length.  

The deformation of capsules in simple shear flow at vanishing Reynolds numbers 

was studied by the present authors with the same numerical model in Chapter 2; the 

results were compared with that in published literatures. Satisfactory agreements were 

observed which validated the present model. With the multi-block technique, the 

typical computational time for a case is around 10 hours (on the SVU linux 64 

cluster). 

   

4.2.2 The capsule deformation 

 
The deformation of capsules under various dimensionless shear rates and Reynolds 

numbers is simulated. As soon as the capsules are immersed into the unperturbed 

linear shear field, they start to elongate. Figure 4.4 shows the effect of Reynolds 

number on the temporal evolution of the Taylor shape parameter of the capsule under 

various dimensionless shear rates. From the results it is seen that before the capsules 

achieve steady states, there is a transient process due to the inertia effect, especially at 

higher Reynolds numbers and lower dimensionless shear rates. This phenomenon is 

quite different from that of capsule deformation in simple shear flow at zero Reynolds 

number, in which the capsules achieve steady states monotonically. In the transient 

period, the Taylor shape parameter shows dampened oscillations. Under the same 

dimensionless shear rates, the oscillation amplitudes increase with increasing 

Reynolds number, and so does the transient period. Similar transient process, which is 

due to the effect of inertia, has been observed for liquid drops in the study of 
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Pozrikidis and coauthors (Sheth and Pozrikidis, 1995; Lee and Pozrikidis, 2006). In 

the study of Sheth and Pozrikidis, continued deformation of the drops was observed 

when the Taylor shape parameter exceeded 0.6. The present results for capsules 

shows that even the Taylor shape parameter exceeds 0.75, the capsule could still 

deform to a steady shape. This is because of the different interfacial properties of 

drops and elastic capsules. After the transient period, the capsules achieve steady 

configurations. Through comparison of the steady Taylor shape parameters at 

different Reynolds numbers, it is found that the inertia effect promotes the capsule 

deformation. The curves in Figure 4.4(a) are for Re = 1, for which the inertia effect 

would not be large. Nevertheless, some differences are perceptible when compared 

with those without inertia, especially at higher shear rates.  

    Figure 4.5 presents the temporal evolution of the inclination angle (with respect to 

x-axis) of the capsule under various dimensionless shear rates and Reynolds numbers. 

Similar to that of the Taylor shape parameter, a transient process which is especially 

apparent at higher Reynolds numbers and lower dimensionless shear rates is observed. 

An interesting phenomenon, which also documents the importance of inertia, is that 

the capsule inclination exceeds 45 degrees and even approaches 90 degrees at higher 

Reynolds numbers. This is impossible for capsule deformation in simple shear flow 

without inertia, in which the capsule inclination has a maximum limit of 45 degrees 

(Barthès-Biesel, 1980). In Figure 4.5(a), it was found that the present results for Re = 

1 are very different from that of Breyiannis and Pozrikids (2000). This is because 

their results is for Re = 0 by the boundary element method. This shows that the 

inclination is sensitive to inertia effect.  
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To give a more direct illustration of the inertia effect on capsule deformation, the 

steady configurations of capsules with constant dimensionless shear rates at various 

Reynolds numbers are presented in Figure 4.6. The results show that inertia promotes 

capsule elongation. In Figure 4.6 (b), it is seen that at Re = 100, the capsule is highly 

elongated and dimples formed at the middle, which makes the capsule look like the 

cross section of a dumbbell. This is quite different for capsules under large elongation 

in simple shear flow without inertia, in which the capsule are more slender at the two 

ends. As for the capsule inclination, it is seen that for G = 0.003125 the inclination 

angle is larger at higher Reynolds numbers; however, this is not apparent for G = 0.04. 

In all the cases considered, the capsule finally achieves steady shapes and then the 

membrane rotates around the liquid inside (tank treading motion). The tank treading 

velocity and tank treading frequency of the capsules under various Reynolds numbers 

are studied. The tank treading frequency is calculated by: f = 2π/T, where T is the 

time for the capsule membrane to rotate for a whole circle. The tank treading 

frequency is normalized by the shear rate k. From the results presented in Figure 4.7, 

it is seen that the tank treading velocity decreases with increasing Reynolds number. 

As the capsule elongation is larger at higher Reynolds number, the tank treading 

frequency will be further lower (Figure 4.7b); that is, inertia slows the membrane 

rotation.   
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4.2.3 Flow structure and vorticity field  

  

The flow structure around and inside a capsule may be of interest in areas such as 

drug delivery to estimate the mass transport. From the present results, it is found that 

inertia has large effect on the flow pattern around and inside a capsule. Figures 4.8(a - 

d) present the streamline patterns and velocity vectors for G = 0.003125, at different 

Reynolds numbers. The bold solid line represents the capsule interface. It is seen that 

the interface forms a closed streamline, with the arrow showing the direction of tank 

treading. This confirms that the capsules have achieved steady states. Single eddies 

formed inside the capsule and recirculating regions are observed at the two ends of 

the capsule. The intensity of the velocity field is presented by velocity vectors shown 

in the figures. Around the cell, the velocity magnitude decreases with increasing 

Reynolds. 

Figures 4.9(a - d) present the result for higher G = 0.04, at various Reynolds 

numbers. The capsule deformation is larger and most flow features are similar to that 

in Figure 4.8. However, it is quite interesting to find in Figure 4.9(d) that the internal 

flow separates at the high curvature regions and two secondary eddies have developed. 

The inertia has caused flow separation.       

Also studied is the effect of inertia on the vorticity field around and inside a 

capsule. Vorticity is produced on the interface due to the elastic tension and fluid 

viscosity, then it is advected by the surrounding fluid, and at the same time diffuses 

into the fluid.  Figures 4.10(a - d) and Figures 4.11(a - d) present the three-

dimensional and contour plots of vorticity magnitude for G = 0.003125 and 0.04, at 
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various Reynolds numbers. The vorticity is normalized by the shear rate k. The bold 

solid line represents the capsule interface. In all cases studied, it is found that the 

maximum vorticity appears at the region with highest curvature. From the three-

dimensional contour plots of vorticity magnitude, it is seen that with increasing 

Reynolds number, the vorticity magnitude increases. At higher Reynolds numbers, 

the convective effect is more prevalent and the vorticity gradient is larger on the 

interface. 

 

4.3 Concluding remarks 

 

By combining the immersed boundary method with the multi-block lattice 

Boltzmann model, the transient deformation of a cylindrical liquid-filled capsule with 

elastic membrane is studied in simple shear flow at small and moderate Reynolds 

numbers. The purpose of the study is to investigate the inertia effect on the transient 

deformation of the elastic capsule and the flow structure around it.  

The simulation results show that the inertia effect gives rise to a transient process, 

in which the capsule elongation and inclination overshoot and then show dampened 

oscillations towards the steady states. Inertia effect also promotes the steady 

deformation, and decreases the tank treading frequency of the capsule. Inertia effect 

strongly affects not only the capsule deformation, but also the flow pattern. There is 

flow separation inside the capsule. Also, the vorticity magnitude and gradient on the 

capsule interface increase with increasing Reynolds number.       
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The present model is general in that it can be implemented to capsules with 

arbitrary resting configurations and membrane constitutive laws. The present 

simulation is two-dimensional, and quantitative differences may arise if three-

dimensional simulations are carried out. However, the major conclusion of the 

present investigation is expected to hold in three-dimensional study.  
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Figure 4.1 Schematic illustration of a two-dimensional circular capsule in simple 
shear flow 
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Figure 4.2 Temporal evolution of the capsule’s (a) Taylor shape parameter; (b) 
inclination angle under various domain sizes at Re = 100 



Chapter 4 Inertia Effect on the Deformation of 2D Capsules 

 94

(a) 

kt

D
xy

10 20 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

30
40
50

G = 0.04

G = 0.003125

 

(b) 

kt

θ/
π

5 10 15 20 25 30
0.1

0.15

0.2

0.25

0.3

0.35

30
40
50

G = 0.04

G = 0.003125

 

Figure 4.3 Temporal evolution of the capsule’s (a) Taylor shape parameter; (b) 
inclination angle under various grid resolutions at Re = 100 
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Figure 4.4 Effect of Reynolds number on the evolution of Taylor shape parameter of 

the capsule under various simensionless shear rates. (a) Re = 1 (● is the result of 
Breyiannis and Pozrikids (2000) for Re = 0); (b) Re = 10; (c) Re = 50; (d) Re = 100 
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Figure 4.5 Effect of Reynolds number on the evolution of inclination angle of the 

capsule under various simensionless shear rates. (a) Re = 1(● is the result of 
Breyiannis and Pozrikids (2000) for Re = 0); (b) Re = 10; (c) Re = 50; (d) Re = 100 
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Figure 4.6 Steady configurations of capsules at various Reynolds numbers.(a) G = 

0.003125; (b) G = 0.04 
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Figure 4.7 (a) Averge tank treading velocity; (b) tank treading frequency of capsules 

at various dimensionless shear rates and Reynolds numbers 
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Figure 4.8 Stream patterns and velocity vectors around the capsule for G = 0.003125. 
(a) Re = 1; (b) Re = 10; (c) Re = 50; (d) Re = 100 
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Figure 4.9 Stream patterns and velocity vectors around the capsule for G = 0.04. (a) 
Re = 1; (b) Re = 10; (c) Re = 50; (d) Re = 100 
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Figure 4.10 Three-dimensional and contour plots of vorticity for G = 0.003125 at (a) 
Re = 1; (b) Re = 10; (c) Re = 50; (d) Re = 100 
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Figure 4.11 Three-dimensional and contour plots of vorticity for G = 0.04 at (a) Re = 
1; (b) Re = 10; (c) Re = 50; (d) Re = 100 
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Chapter 5 A Hybrid Method to Study Flow-induced 

Deformation of Three-Dimensional Capsules* 

 

The hybrid immersed boundary and multi-block lattice Boltzmann method, 

developed in Chapter 2, is capable to study the flow-induced deformation of two-

dimensional capsules. However, real capsules are three-dimensional. Although two-

dimensional simulation shares a number of common features with three-dimensional 

study, it must be noted that for flow-induced deformation of capsules, two-

dimensional simulation is a large simplification and may miss some features. Two-

dimensional membrane model can not suitably describe real three-dimensional 

capsule membrane properties. Furthermore, the numerical modeling capsules in two 

and three dimensions are very different. Three-dimensional numerical modeling is 

much more complicated. The main difficulty comes from modeling the capsule 

interface. For example, the membrane of a two-dimensional capsule is an elastic ring, 

and it is not difficult to discretized it into a set of line elements. The membrane 

tension can also be easily obtained from the strain of the line elements. For three-

dimensional capsules, the discretization of the membrane involves plane elements, 

and the approach to obtain the membrane tension is not so straightforward as that of 

two-dimensional study. 

                                                 
* The results in this chapter have been accepted and will be published as “Sui, Y., Chew, Y. T., Roy, P. 
and Low, H. T., A hybrid method to study flow-induced deformation of three-dimensional capsules, J. 
Comput. Phys., 228: 6351-6371, 2008.” 
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In this chapter, the IB-LBM with multi-block strategy of Chapter 2, is extended to 

three-dimensional simulation. The new idea incorporated is discretizing the three-

dimensional capsule membrane into unstructured flat triangular elements, and 

incorporating a finite element model (Charrier et al., 1989; Shrivastava and Tang, 

1993) into the multi-block IB-LBM to obtain the forces acting on the membrane 

nodes. 

The present method is validated by studying the transient deformation of initially 

spherical and oblate spheroidal capsules with various membrane constitutive laws 

under shear flow. The versatility of the present method is demonstrated by studying 

the deformation of capsules with inertia effects, and the deformation of capsules with 

very complex shape like the biconcave discoid.  

 

5.1. Membrane model 

 

    Three different membrane laws are tested. The three-dimensional capsule is 

discretized into flat triangular elements. The forces acting on the membrane nodes are 

obtained from a finite element model. 

  

5.1.1 Membrane constitutive laws 

In the present study, three different membrane constitutive laws are employed and 

tested. The capsule membranes are usually relatively thin, and thus the thickness can 
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be neglected.  A simple constitutive equation is the neo-Hookean (NH) law, with 

strain energy function having the form: 

                                          1
2

1 1( 1 )
6 1

NHW E I
I

= − +
+

                                            (5.1) 

where E is the surface shear elasticity modulus, and I1 and I2 are the first and second 

strain invariants, with 2 2 2
1 1 2 2 1 22, ( ) 1I Iλ λ λ λ= + − = − . The term λ1 and λ2 are the 

principle strains, which are eigenvalues of the deformation tensor and represent the 

principle stretching ratios. The NH law corresponds to membranes made of 

polymerized material. The area dilation is unrestricted and is compensated by the 

thinning of the membrane.  

The zero-thickness (ZT) shell equation is another version of the neo-Hookean (NH) 

law, which has been used by Ramanujan and Pozrikidis (1998): 

                                2
1 2 2

1 1[ log( 1) log ( 1)]
6 2

ZTW E I I I= − + + +                             (5.2) 

The two strain energy functions (Equation 5.1 and 5.2) are equivalent for small 

deformation. 

Another constitutive equation is the Skalak’s law (SK) proposed by Skalak et al. 

(1973) to model the membrane of red blood cells: 

                                     2 2
1 1 2 2

1 1 1( )
4 2 8

SKW E I I I CEI= + − +                                    (5.3) 

In the right hand side of the equation, the first term represents the shear effects, and 

second term accounts for the area dilation. The term C is the ratio between shear 

elasticity modulus and area dilation modulus, which is quite large for incompressible 

biological membranes. 
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5.1.2 Membrane disretization 

The three-dimensional capsule membrane is discretized into flat triangular 

elements. The triangulation procedure is similar to that of Ramanujan and Pozrikidis 

(1998). To discretize the unstressed interface, each triangular face of a regular 

octahedron is subdivided into 4n triangular elements. These elements are then 

projected radically onto a sphere. The geometry of each element is described by its 

three vertices. The discretization of a sphere surface is shown in Figure 5.1(a). For 

oblate spheroid with aspect ratio b/a, the mapping system is stated as: 

                                     , , ( / )obl obl oblx Rx y Ry z b a Rz= = =                                   (5.4) 

For the biconcave discoid, which is chosen to be the shape of red blood cell at rest, 

the mapping system is as follows: 

              2 0.5 2 4, , 0.5 (1 ) (0.207 2.003 1.123 )rbc rbc rbcx Rx y Ry z R r r r= = = − + −          (5.5) 

where 2 2 2r x z= + , the term R in Equation 5.4 and 5.5 is the adjusting factor to keep 

the capsule volume constant. The discretization of a biconcave discoid surface is 

shown in Figure 5.1(b). Re-meshing is not needed during the computation, as the 

membrane is elastic and the elastic modulus will avoid the membrane points from 

being too far apart. 

 

5.1.3 Finite element membrane model 

A finite element membrane model is employed to obtain the forces acting at the 

discrete nodes of the membrane. In this section, only a brief description of this model 

is given. The detailed treatment can be found in Charrier et al. (1989) as well as 

Shrivastava and Tang (1993).  
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In the finite element model, the membrane of the capsule is represented by a 

patchwork of flat triangular elements which remain flat after deformation, and the 

load on an element is represented by concentrated loads on the membrane nodes. 

Only in-plane stresses and strains exist. In the three-dimensional deformation of the 

capsule, the membrane elements do not stay in the same plane after being displaced. 

In this model, the deformed element is transformed to the plane of the undeformed 

element, so that the relative displacement of the nodes and the corresponding forces 

are easily determined. The equations developed for the force exerted at the nodes of 

an element of the deformed membrane are given in the plane of the element.  

The displacements are approximated by linear shape functions in the plane of the 

element with coordinates (x’, y’). They are described by: ( ', ') ' 'x y ax by cχ = + + . The 

unknown coefficients a, b, and c are determined using known values of the 

displacements at the three nodes of the element. After the displacements of the three 

nodes of an element are known, its state of strain λ1 and λ2 can be obtained. The 

relation of membrane strain and membrane energy is governed by the constitutive law, 

which is determined by the membrane materials. With a constitutive law chosen, one 

can follow the usual finite element procedure and derive the relations between nodal 

forces and nodal displacements. The principle of virtual work is used to calculate the 

forces at the three nodes of an element, which are finally in the form of: 

                                     { } 1 2

1 2
x e e

W WF V V
u u
λ λ

λ λ
∂ ∂∂ ∂⎧ ⎫ ⎧ ⎫= +⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭

 

                                     { } 1 2

1 2
x e e

W WF V V
v v
λ λ

λ λ
∂ ∂∂ ∂⎧ ⎫ ⎧ ⎫= +⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂⎩ ⎭ ⎩ ⎭

                                (5.6) 
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where {Fx} and  {Fy}are the nodal forces in the x and y directions corresponding to 

the current deformed state of the membrane element, Ve  is the original area of the 

element, and W is the strain energy density. 

Because each node of the discrete membrane belongs to more than one element, the 

resultant force on a node is the sum of the forces exerted by the m elements attached 

to the node. So far, the force calculated is the fluid force acting on the capsule 

membrane. Its equal and opposite counterpart is the force acting on the fluid. It is 

distributed to the surrounding fluid by the approach described by the immersed 

boundary method. 

 

5.2 Numerical Method 

 

    In the present hybrid approach, several methods are combined to simulate the flow- 

induced deformation of three-dimensional capsules. The immersed boundary concept 

is introduced into the framework of lattice Boltzmann method. The multi-block 

strategy is employed to refine the mesh near the capsule to increase the accuracy and 

efficiency of computation. The finite element membrane model, described in the 

previous section, is incorporated to obtain the membrane forces of the immersed 

boundary method. 

 

5.2.1 The immersed boundary method 

     In the immersed boundary method of Peskin (1977, 2002), a force density is 

distributed to the Cartesian mesh in the vicinity of the moving boundary in order to 
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account for the effect of the boundary. The general idea of the immersed boundary 

method has been explained in detail in Chapter 2. 

    In this chapter of the three-dimensional computation, the non-slip boundary 

condition is satisfied by letting the flexible membrane move at the same velocity as 

the fluid around it. That is: 

                                                     ( , ) ( ( , ), )t t t
t

∂
=

∂
X s u X s                                            (5.7) 

This motion will cause the capsule to deform. The membrane force density F(s, t) is 

obtained from the finite element membrane model discussed in Section 5.1.3, and is 

distributed to the fluid mesh points near it by:  

                                         ( , ) ( , ) ( ( , ))t t t dδ
Γ

= −∫f x F s x X s s                                         (5.8) 

where δ is a smoothed approximation of the Dirac Delta function. In the present three-

dimensional study, it is chosen to be:  

                           ( ( , )) ( ( , )) ( ( , )) ( ( , ))t x X t y Y t z Z tδ δ δ δ− = − − −x X s s s s                 (5.9) 

 where 

                                          
⎪⎩

⎪
⎨
⎧

+=
0

))
2

cos(1(
4
1

)(
r

r
π

δ     
2
2

>
≤

r
r                                   (5.10)  

    The same approximation function is used to obtain the velocities of the Lagrangian 

nodes on the moving boundary. The mathematical form can be written as follows: 

                                          ( , ) ( ( , ))t t d
t

δ
Ω

∂
= −

∂ ∫
X u x x X s x                                         (5.11) 
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5.2.2 The multi-block lattice Boltzmann method 

     In the lattice Boltzmann method, the D3Q19 model (see Figure 5.2) is one of the 

commonly used models in three-dimensional simulation, in which the discrete lattice 

Boltzmann equation has the form of: 

                            1( , ) ( , ) [ ( , ) ( , )]eq
i i i i if t t t f t f t f t

τ
+ Δ + Δ − = − −x e x x x                   (5.12) 

where ( , )if tx  is the distribution function for particles with velocity ie at position x 

and time t, tΔ  is the lattice time interval, ( , )eq
if tx  is the equilibrium distribution 

function and τ  is the non-dimensional relaxation time. 

     In the D3Q19 model, the fluid particles have the possible discrete velocities stated 

as follows: 

                        

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18[ , , , , , , , , , , , , , , , , , , ]
0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1

− − − − −⎡ ⎤
⎢ ⎥= − − − − −⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

e e e e e e e e e e e e e e e e e e e

(5.13) 

     The equilibrium distribution function ( , )eq
if tx  is in the form of: 

                                                 ( , )eq
i if E ρ= u                                                          (5.14) 

                            with 
2

2 4

: ( )( , ) [1 ]
2
i i s

i i
s s

cE
c c

ρ ω ρ −⋅
= + +

uu e e Ie uu                             (5.15) 

where iω  is the weighing factor, it equals 1/3 for 0i = , 1/18 for 1 6i = ∼  and 1/36 for 

7 18i = ∼ . The term sc  represents the sound speed, and equals /( 3 )x tΔ Δ . 

    The relaxation time is related to the kinematic viscosity in Navier-Stokes equation 

in the form of: 
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                                               tcs Δ−= 2)
2
1(τν                                                         (5.16) 

    Once the particle density distribution is known, the fluid density and momentum 

are calculated, using: 

                                          ∑=
i

ifρ  , i i
i

fρ =∑u e                                                (5.17) 

     In this chapter, the multi-block lattice Boltzmann method proposed by Yu and 

Girimaji (2006) is employed. The computational domain is divided into blocks which 

are connected through the interface. On the interface between blocks, the exchange of 

variables follows a certain relation so that the mass and momentum are conserved and 

the stress is continuous across the interface. 

     Consider a two-block system to explain the idea of the multi-block method. The 

ratio of lattice space between the two blocks is defined as: /c fm x x= Δ Δ , where Δxc 

and Δxf are the lattice space of the coarse and fine mesh blocks respectively. For a 

given lattice space, the fluid viscosity can be obtained from Equation 5.16. In order to 

keep a constant viscosity, the relaxation parameter τf in fine mesh and τc in coarse 

mesh, must satisfy the following relation: 0.5 ( 0.5)f cmτ τ= + − . The variables and 

their derivatives on the grid must be continues across the block interface. To keep this 

continuity, the relation of the density distribution function in the neighboring blocks 

is proposed as: 

               , ,1 [ ]
1

c eq f f eq fc
i i i i

f

f f m f fτ
τ

−
= + −

−
  , , ,1

[ ]
( 1)

ff eq c c eq c
i i i i

c

f f f f
m
τ
τ
−

= + −
−

    (5.18) 

where if  is the post-collision density distribution function. 
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     The typical structure of interface is illustrated in Figure 5.3. The fine block 

boundary MN, is in the interior of the coarse block. The coarse block boundary AB, is 

in the interior of the fine block. This arrangement is convenient for information 

exchange. Here, MN and AB represent planes projected onto the paper. On the 

boundary of fine block MN, there is no information on the grid points denoted by the 

solid symbol ● in Figure 5.3. It is obtained from spatial interpolation based on the 

information on the grid nodes denoted by the open symbol ○ on MN. The symmetric, 

2D cubic spline spatial fitting of Yu and Girimaji (2006) is employed. Because the 

fluid particle has the same streaming velocity on each block, the computation 

marches m steps on the fine-mesh block for every one step on the coarse-mesh block. 

On the fine block boundary MN, temporal interpolation is needed to 

obtain 1/( , MN)n mf tα
+ . The three-point Lagrangian formula of Yu and Girimaji (2006) 

is employed for temporal interpolation.  

 

5.2.3 The hybrid method  

     In the present paper, the immersed boundary method is combined with the multi-

block lattice Boltzmann method. The membrane forces of the immersed boundary 

method are obtained from the finite element membrane model. In order to solve the 

flow field with a force density the lattice Boltzmann equation must be modified. 

Several forms of LBE which can handle a force density have been proposed. Guo’s 

approach (2001) is employed as it is accurate for unsteady flow with force changing 

with time and space, in which the modified lattice Boltzmann equation is in the form 

of: 
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                     1( , ) ( , ) [ ( , ) ( , )]eq
i i i i i if t t t f t f t f t tF

τ
+ Δ + Δ − = − − + Δx e x x x                (5.19) 

where                                          *( , )eq
i if E ρ= u                                                     (5.20) 

with                                       * 1
2i i

i
f tρ = + Δ∑u e f                                                   (5.21) 

                                    2 4

( )1(1 ) [ ]
2

i i
i i i

s s

F
c c

ω
τ

− ⋅
= − + ⋅

e u e u e f                                      (5.22) 

   In the computation in this chapter, a two-grid system is employed. The lattice space 

ratio between coarse and fine grids equals two.  The capsules are immersed in the fine 

mesh block. The present procedure for multi-block computation is very similar to that 

proposed by Yu and Girimaji (2006). The only difference exists in the computation 

on the fine mesh block. That is, a subroutine implementing the immersed boundary 

method is added before the streaming and collision steps.    

 

5.3. Results and Discussion 

 

    The present method is applied to simulate the deformation of spherical, oblate 

spheroidal and biconcave discoid capsules in simple shear flow. The capsules are 

unstressed at their initial shapes. The internal and external fluids have the same 

property. The dimensionless shear rate is defined as: /G ka Eμ= , where μ is the 

viscosity of the surrounding fluid, k is the shear rate, E is the shear elasticity of the 

membrane. The equivalent radius a is defined as: 1/3(3 / 4 )a V π= , where V is capsule 
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volume. The Reynolds number in the present study is defined as: Re ( ) /ka aμ ρ= , 

where ρ is the density of the surrounding fluid.     

 

5.3.1 Spherical capsules  

5.3.1.1 Neo-Hookean membrane 

To validate the present method, the transient deformation of spherical capsules in 

unbounded simple shear flow (illustrated in Figure 5.4) is studied. It has been well 

studied by Pozrikidis (1995) with ZT membrane law and Lac et al. (2004) with NH 

membrane law. In the present section, the capsule membrane follows NH law. The 

Reynolds number is at 0.025. 

It is important to choose a computational domain which is large enough to neglect 

the boundary effect and has sufficient grid resolution to obtain convergent results. 

Numerical simulations are carried out under various computational domain sizes and 

grid resolutions. The temporal evolution of the capsule’s Taylor shape parameter Dxz 

is chosen as the indicator. It is defined as: Dxz = (L - B)/(L + B), where L and B are 

the semimajor and semiminor lengths of the capsule in the plane of shear (Lac et al., 

2004). The dimensionless shear rate is chosen to be G = 0.2, at which the deformation 

is large. 

The computational domain is a cubic box. The capsule is at the center of the 

domain, and its membrane is discretized into 8192 triangular elements connecting 

4098 nodes. The fine mesh block covers a small cubic box, which has a side length of 

4a and its center is coinciding with that of the computational domain. The other area 

is covered with coarse mesh. The grid resolutions in the fine and coarse blocks are 
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Δxf = Δyf = a/12 and Δxc = Δyc = a/6, respectively. The computational domains with 

outer boundary length of 8a, 10a and 12a are tested. The outer boundary condition is 

set to be the unperturbed simple shear flow. The temporal evolutions of Taylor shape 

parameter under various domain sizes at G = 0.2 are presented in Figure 5.5(a). It is 

shown that a cubic computational domain with side 10a is large enough to neglect the 

boundary effect.  

Grid convergence study is carried out on the computational domain with side 10a. 

The diameter of the spherical capsule 2a was covered by 20, 24 or 32 lattice spaces of 

the fine mesh block. With the finest mesh, the capsule membrane is disretzed into 

32768 flat triangular elements connecting 16386 nodes. The temporal evolutions of 

Taylor shape parameter under various grid resolutions at G = 0.2 is presented in 

Figure 5.5 (b). From the result it is seen that the grid resolution of Δxf  = Δyf = a/12, 

with the capsule membrane discretized into 8192 triangular elements connecting 4098 

nodes, is sufficient to capture the important characteristics. This computational 

domain and grid resolution are used in the simulations presented in this section and 

Section 5.3.2. 

Another simulation is done for the same capsule and shear rate, using uniform 

mesh resolution of Δxf  = Δyf = a/12 covering the whole computational domain, which 

is actually the original IB-LBM. It is seen that the temporal evolution of Taylor shape 

parameter curve (Figure 5.5b) nearly coincide with that of the present multi-block IB-

LBM. In the present method, only 6.4% of the computational domain is covered with 

fine mesh, thus quite a lot of computational effort is saved.     
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The deformation of spherical capsules with the dimensionless shear rate G ranging 

from 0.0125 to 0.2 is studied. The results show that after being immersed in the flow, 

a capsule deforms to a steady shape and inclination; then the membrane rotates 

around the liquid inside (tank-treading motion). These observations are similar to 

those reported by Pozrikidis (1995) and Lac et al. (2004). For G = 0.0125, the steady 

deformed capsule and the flow field around the capsule’s cross section in the plane of 

shear is presented in Figure 5.6. It is observed that the cross section of the capsule 

resembles a closed streamline which shows that the capsule has achieved a steady 

shape. Recirculating regions are found at two ends of the capsule. When comparing 

the flow pattern with that of 2D circular capsules, it is interesting to find that they are 

very similar, which shows that 2D study share some common features with the 3D 

study. 

The temporal evolutions of the capsules’ Taylor deformation parameter Dxz are 

presented in Figure 5.7 (a), and are compared with the results of Lac et al. (2004) who 

used the boundary element method. The present model has considered inertia, but due 

to the very small Reynolds number of 0.025, the inertia effect is negligible. Good 

quantitative agreements are observed. It is seen the time taken to achieve steady shape 

is shorter if the dimensionless shear rate is lower. A lower shear rate means the ratio 

between elastic and shear forces is larger, thus the capsule only needs to deform a 

little to generate enough elastic force to balance the viscous shear force. At small 

dimensionless shear rates, the steady Taylor shape parameter is compared with that 

predicted by Barthes-Biesel (1980) who used the second order small-deformation 

theory. For G = 0.0125 and 0.025, the agreement is satisfactory (Figure 5.7a). For G = 
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0.05, due to the relatively large deformation, the agreement is not good as the small 

deformation theory is not valid. 

Figure 5.7(b) presents the temporal evolution of the capsule’s inclination angle 

(with respect to x-axis). With the shear rate increasing, the capsules are observed to 

be more aligned with the flow. At low shear rates, the steady inclinations of the 

present simulation agree well with that predicted by Barthes-Biesel (1980) using 

second order small-deformation theory. 

    After the capsules have achieved steady shapes, their cross sections in x-z plane are 

presented in Figure 5.8. It is seen that at low shear rates, the capsules are slightly 

deformed and their cross sections are elliptical; at high shear rates, the cross sections 

of the deformed capsules are slender and sigmoidal.  

 

5.3.1.2 Skalak membrane 

As another validation of the present method, the transient deformation of spherical 

capsules with Skalak membrane in unbounded shear flow is studied. The moduli ratio 

C in Equation 5.3 is chosen to be 1 i. e. the same as that of Lac et al. (2004) who used 

the BEM. The Reynolds number in the present study equals 0.025. The computational 

domain and grid resolution are the same as that in the last section. 

Similar to the results of previous Section 5.3.1.1, the capsule deforms to a steady 

shape and then the membrane carries out tank-treading motion. The temporal 

evolutions of the capsules’ Taylor deformation parameter are presented in Figure 5.9 

(a). The steady values are compared with the previous results reported by Lac et al. 

(2004) using boundary element method. Satisfactory agreements are observed with 
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the results of Lac et al. whose capillary number ε is related to the dimensionless shear 

rate G of the present study by: ε = 2G. Figure 5.9 (b) presents the temporal evolution 

of the capsule’s inclination angle. However there is no previous result with SK 

membrane available for comparison. It is seen that with the shear rate increasing, the 

capsules are more aligned with the flow. 

 

5.3.1.3 Spherical capsules with large inertia  

    To demonstrate the versatility of the present method, the deformation of capsules 

with inertia effects is studied. The linear shear flow past spherical capsules with neo-

Hookean membranes is studied at Reynolds number ranging from 0.25 to 25. To our 

knowledge, the effect of inertia on the transient deformation of three-dimensional 

liquid-filled capsules with elastic membranes has not been explored so far. 

   The linear shear flow is generated by two solid walls moving in opposite directions. 

The computational domain is a cubic box with length 8a, which is the distance 

between the two moving walls. The capsule is at the center of the domain. The 

boundary conditions at the upper and lower planes of the computational domain are 

set as solid walls moving in opposite directions. Periodic boundary conditions are 

employed on the other four boundary planes. For Re = 0.25 and 2.5, the fine mesh 

block covers from 2a to 6a in all axes. The grid resolutions in coarse and fine blocks 

and the disretization of the membrane are the same as those in the previous sections. 

For Re = 10 and 25, the fine mesh block covers from 1.5a to 6.5a in all axes, and the 

grid resolutions are: Δxc  = Δyc = a/8, Δxf  = Δyf = a/16. The membrane is discretized 
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into 32768 flat triangular elements connecting 16386 nodes. Grid convergence studies 

showed that the mesh resolutions are sufficient. 

The temporal evolutions of the capsules’ Taylor shape parameter and inclination 

angle are presented in Figure 5.10(a, b) for G = 0.05 and in Figure 5.11(a, b) for G = 

0.1, with Reynolds number ranging from 0.025 to 25. At moderate Reynolds numbers, 

it is quite interesting to find that before the capsules achieve steady states, there is a 

transient process due to the inertia effect, especially apparent at higher Reynolds 

numbers. This phenomenon is quite different from that of capsule deformation in 

simple shear flow at vanishing Reynolds number, in which the capsules achieve 

steady states monotonically. In the transient period, the Taylor shape parameter and 

capsule inclination show dampened oscillations. Under the same dimensionless shear 

rates, the dimensionless transient period increase with increasing Reynolds number. 

Similar transient process, which is due to the effect of inertia, has been observed for 

two-dimensional capsules in simple shear flow in Chapter 4. 

After the transient period, the capsules achieve steady configurations. Through 

comparison of the steady Taylor shape parameters at different Reynolds numbers, it is 

found that the inertia effect promotes the capsule deformation. It is also found that the 

curves for Re = 0.25 are comparable with that for Re = 0.025, which may suggest that 

the inertia effect on the capsule deformation is still very small up to Re = 0.25. 

For all cases considered, the capsule achieves a steady state. The flow fields in the 

plane of shear around the cross sections of the capsules for G = 0.1 are plotted in 

Figure 5.12 for different Reynolds number from 0.25 to 25. It is seen that the cross 

sections of the capsules, which are represented by bold solid lines, resemble closed 
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streamlines. This shows that the capsules have achieved steady shapes. Through 

comparison of the flow field, it is found that inertia has significant effect. For 

example, the size of recirculating regions increases with the Reynolds number 

increasing. This is similar to that observed for two-dimensional capsules in Chapter 4. 

It is also interesting to investigate steady three-dimensional configuration of the 

capsules at various Reynolds numbers. Figure 5.13 presents the steady profiles of 

capsules at Re = 0.25, 2.5, 10 and 25 at dimensionless shear rate G = 0.1. The 

corresponding cross-sections of the capsules can be found in the previous Figure 5.12. 

At small Re = 0.25, the capsule achieves an ellipsoidal shape. However at moderate 

Re = 25, the steady shape looks very different. It resembles a flat disk, with two ends 

of large curvature pointing upwards or downwards.    

In general, it can be found that the results for three-dimensional capsules indicate 

an initial transient process, which is qualitatively similar to that of two-dimensional 

capsules (in chapter 4). Also, inertia significantly affects the steady shape of both 

two-dimensional and three-dimensional capsules. These may suggest that two-

dimensional and three-dimensional capsules behave qualitatively similar under the 

effect of inertia.  

 

5.3.2 Oblate spheroidal capsules  

As a further validation of the present method, the transient deformation of oblate 

spheriodal capsules, with major to minor axes ratio of 10:9 and 2:1, in shear flow is 

studied. These cases are more challenging than those in the previous section because 

of the more complicated capsule shapes. In this section, the capsules membrane 
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follows zero-thickness law, same as that of Ramanujan and Pozrikidis (1998) who 

used BEM. The Reynolds number in the present study is at 0.025. The computational 

domain and grid resolution is this section is the same as that in the previous sections. 

For a spherical capsule in shear flow, the capsule deforms and then the membrane 

performs tank treading around the liquid inside. During this tank treading motion, the 

shape and inclination of the capsule remains unchanged. The motion of oblate 

spheroidal capsules is different. It has been observed that after a transient stage, the 

capsule membrane rotates around the liquid inside; during this tank treading motion, 

the capsule undergoes periodical shape deformation and inclination oscillation. The 

results are similar to those predicted by Ramanujan and Pozrikidis (1998). For a 

capsule with major to minor axes ratio of 10:9 at G = 0.1, the snapshots of the 

capsule’s cross section in the plane of shear during the unsteady tank treading motion 

are presented in Figure 5.14. It is seen that the capsule are changing shape and 

inclination while its membrane is rotating round the liquid inside.  

The temporal evolutions of the capsules’ Taylor deformation parameter and 

inclination angle are presented in Figure 5.15(a, b) for capsules with major to minor 

axes ratio of 10:9 at G = 0.1 and 0.2. The results of a more oblate capsule is presented 

in Figure 5.16(a, b), which are for capsules with major to minor axes ratio of 2:1 at G 

= 0.2. The results of Ramanujan and Pozrikidis (1998) are also presented in Figure 

5.15(a) and Figure 5.16(a). Satisfactory agreements are observed. 
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5.3.3 Biconcave discoid capsules  

    For biconcave capsules, whose shape resembles that of red blood cells, it is 

expected that they will carry out tank treading motion in simple shear flow if the 

internal liquid is same as that outside and the shear rate is large (Ramanujan and 

Pozrikidis, 1998). However, due to the complex geometry of the capsule, numerical 

instabilities were encountered in previous computations, and the behaviour was 

followed for an initial short stage (Ramanujan and Pozrikidis, 1998; Eggleton and 

Popel, 1998). So far, the tank treading motion for three-dimensional biconcave 

capsules has not been fully recovered by numerical simulation.                                                                    

To demonstrate the capacity of the present method, the deformation of capsules 

with biconcave shape is studied in simple shear flow in this section. The membrane of 

the capsule follows Skalak’s law (Equation 5.3), in which the moduli ratio C is 

chosen to be 200 to take the membrane incompressibility into account. The 

computational domain is a cubic box with side length 10a. The fine mesh block 

covers from 2a to 8a in all axes, and the grid resolutions are: Δxc  = Δyc = Δzc = a/8, 

Δxf  = Δyf = Δzf =a/16. The membrane is discretized into 32768 flat triangular elements 

connecting 16386 nodes, which is sufficient to capture the important characteristics. 

Simulations are carried out for the deformation of capsules at G = 0.6, 0.9 and 1.2, 

with Re = 0.25. The tank treading motion (the membrane rotates around the liquid 

inside) is observed. Similar to that of oblate spheroidal capsules, during this tank 

treading motion, the capsule undergoes periodic shape deformation and inclination 

oscillation. This unsteady tank-treading motion had been expected by Ramanujan and 
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Pozrikidis (1998) in their study in which the motion was followed for an initial short 

stage.  

The temporal evolution of the capsules’ inclination angle is presented in Figure 

5.17. To illustrate the capsules’ shape evolution during this unsteady tank-treading 

motion, the snapshots of the capsule’ profiles at G = 0.9 are presently in Figure 5.18 

at sequential dimensionless times. The legends at the lower right of the figures 

represent the cross sections of the capsule in the plane of shear. The diamond symbol 

represents the same membrane node which is moving. It is seen from Figure 5.18 that 

during the membrane rotating around the liquid inside, the capsule is changing its 

shape and inclination. It is interesting to find that when the capsule is most elongated, 

its width (in y direction) is smallest, and vice visa. This phenomenon can also be 

observed from Figure 5.19, in which the temporal evolution of the capsule’s length 

and width is presented. The simulation is stopped after the capsule membrane has 

been rotating for a whole period. For all cases in this section, the membrane area 

change is within 1% and the capsule volume change is within 0.2% during the 

computation.        

 

5.4 Concluding remarks 

 

A hybrid method is proposed to study the flow-induced deformation of three-

dimensional, liquid-filled capsules with elastic membranes. In the present approach, 

the immersed boundary concept is incorporated into the lattice Boltzmann method, 

the multi-block strategy is employed to refine the mesh near the capsule, and a finite 
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element model is incorporated to obtain the forces acting on the membrane nodes of 

the three-dimensional capsule which is discretized into flat triangular elements. The 

present method was validated by studying the transient deformation of initially 

spherical and oblate spheroidal capsules with various membrane laws under shear 

flow. The present results agree well with published theoretical or numerical results. 

Compared with the original immersed boundary-lattice Boltzmann method, the 

present method is much more efficient. The present method is capable to take the 

inertia effect into account. This was demonstrated by studying the deformation of 

spherical capsules in shear flow at moderate Reynolds numbers, which has not be 

investigated so far. It was found that inertia has significant effects on the transient 

deforming process and steady configurations of capsules, as well as on the flow field. 

The transient deformation of capsules with initially biconcave disk shape was also 

simulated. The unsteady tank treading motion was followed for a whole period in the 

present work. Due to numerical instabilities encountered in previous computations, 

this motion has not been fully recovered by numerical simulation so far.  
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Figure 5.1 Discretization of (a) a sphere; (b) a biconcave disk shape 
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Figure 5.2 D3Q19 model 
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Figure 5.3 Interface structures between two blocks 
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Figure 5.4 Illustration of a capsule in simple shear flow 
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Figure 5.5 Temporal evolution of the capsule’s Taylor shape parameter at G = 0.2 
under various (a) computational domain sizes; (b) grid resolutions 



Chapter 5 A Hybrid Method to Study the Deformation of 3D Capsules 

 131

 
 

Figure 5.6 Steady deformed capsule and the flow field around the cross section of the 
capsule in the plane of shear (x-z plane) 
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Figure 5.7 Temporal evolution of (a) Taylor shape parameter; (b) inclination angle of 
the initially spherical capsules with NH membranes. The symbols ♦ represent the 

results of Lac et al. (2004) with the boundary element method. The straight horizontal 
bold line represents the predictions of the second order small-deformation theory of 

Barthès-Biesel  (1980) for G = 0.0125, 0.025, 0.05 
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Figure 5.8 Cross sections of the steady formed capsules in the plane of shear 
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Figure 5.9 Temporal evolution of (a) Taylor shape parameter; (b) inclination angle of 
the initially spherical capsules with SK membranes. The straight horizontal bold line 

represents results of Lac et al. (2004) 
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Figure 5.10 Temporal evolution of (a) Taylor shape parameter; (b) inclination angle 

of spherical capsules with NH membrane at G = 0.05 under various Reynolds 
numbers 
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Figure 5.11 Temporal evolution of (a) Taylor shape parameter; (b) inclination angle 

of spherical capsules with NH membrane at G = 0.1 under various Reynolds numbers 
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Figure 5.12 Flow fields in the plane of shear (x-z plane) around the cross sections of 

the capsules for G = 0.1 at Re = (a) 0.25; (b) 2.5; (c) 10 and (d) 25 
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Figure 5.13 Three-dimensional steady profiles of the capsules at Re = (a) 0.25; (b) 2.5; 

(c) 10; (d) 25 
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Figure 5.14 Snapshots of an initially oblate spheroidal capsule’s cross section in the 
plane of shear during the tank treading motion. The symbol ● represents the same 

membrane node which is moving 
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Figure 5.15 Temporal evolution of (a) Taylor shape parameter; (b) inclination angle 

of oblate spheroidal capsules with semimajor to semiminor axes ratio of 10:9 
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Figure 5.16 Temporal evolution of (a) Taylor shape parameter; (b) inclination angle 
of oblate spheroidal capsules with semimajor to semiminor axes ratio of 2:1 
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Figure 5.17 Temporal evolution of the inclination angle of the initially biconcave 

capsule 
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Figure 5.18 Snapshots of the capsule during the tank-treading motion. The diamond 
symbol represents the same membrane node on the capsule’s cross section in the 

plane of shear 
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Figure 5.19 Temporal evolution of the capsule’s length and width 
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Chapter 6 A Shear Rate Induced Swinging-to- 

Tumbling Transition of Three-dimensional Elastic 

Capsules in Shear Flow* 

 

    In Chapter 5, a hybrid method was proposed to study the flow-induced deformation 

of three-dimensional capsules. The method was validated by studying capsules with 

various initial shapes and membrane models. In this chapter, the dynamic motion of 

three-dimensional capsules in shear flow is studied, with an emphasis on investigating 

the relation between shear rate and the capsule’s motion mode. 

It has been long recognized that in shear flow, capsules immersed in a low 

viscosity fluid tumble continuously, and capsules immersed in a fluid with 

sufficiently high viscosity carry out tank-treading motion. In order to study the 

physics involved, Keller and Skalak (1982) theoretically analyzed the deformation of 

an ellipsoidal capsule in simple shear flow. It was found that for a capsule with a 

given geometry, the transition from tank-treading mode to tumbling mode depends on 

the viscosity ratio between internal fluid and external fluid, and it was independent of 

shear rate.  

Only recently, Walter et al. (2001) studied synthetic microcapsules in shear flow 

experimentally. It was found that during the tank-treading motion of the membrane, 

                                                 
* The results of this chapter have been published as “Sui, Y., Low, H. T., Chew, Y. T. and Roy, P., Tank-
treading, swinging and tumbling of liquid-filled elastic capsules in shear flow, Phys. Rev. E, 77: 
016310, 2008.” 
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the capsule undergoes periodic shape deformation and inclination oscillation; the 

inclination oscillation amplitude increases as the shear rate decreases. Similar motion 

has also been found for red blood cells in shear flow (Abkarian et al. 2007): the cells 

present an oscillation of their inclination superimposed to the tank-treading motion, 

and the tank-treading-to-tumbling transition can be triggered by decreasing the shear 

rate. These novel experimental findings show that in shear flow, the mode transition 

of these capsules depends not only on viscosity ratio, but also on shear rate. This 

contradicts the well-known theory of Keller and Skalak (1982). To our knowledge, 

for three-dimensional liquid-filled capsules with elastic membrane, the shear-rate 

induced transition of capsules’ motion has not been reported in studies which take 

into account the deformation of the capsules.  

In this chapter, the dynamic motion of three-dimensional capsules in shear flow is 

investigated by direct numerical simulation. The capsules are modeled as enclosed 

elastic membranes filled with Newtonian liquid same as that outside. The capsule 

membrane is assumed to be infinitely thin and the bending stiffness is neglected. The 

dynamic motion of initially spherical, oblate spheroidal and biconcave discoid 

capsules with various membrane constitutive laws is considered. The present 

numerical study is based on the hybrid method, which has been described in detail 

and well calibrated in Chapter 5. 
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6.1. Initially spherical capsules 

 

     The transient deformation of initially spherical capsules in unbounded simple 

shear flow is studied, under various dimensionless shear rates. The capsules are 

unstressed at their initial shape. Due to the small length scale of the capsule, the 

Reynolds number is at the order of 0.1, and the inertia effect can be neglected. The 

dimensionless shear rate plays an essential role in determining the capsule 

deformation. It is defined as: /G ka Eμ= , where the term μ is the viscosity of the 

surrounding fluid, k is the shear rate, E is the shear elasticity of the membrane. The 

term a is the equivalent radius, in the form of: 1/3(3 / 4 )a V π= , where the term V is 

capsule volume.    

    In the present simulation, the computational domain is a cubic box with side-length 

10a. Numerical experiment shows that it is large enough to neglect the boundary 

effect. The capsule is at the center of the domain, and its membrane is discretized into 

8192 flat triangular elements connecting 4098 membrane nodes. The fine mesh block 

covered from 3a to 7a in all axes. The other domain was covered with coarse mesh. 

The grid resolutions in fine and coarse block were Δxf = Δyf = Δzf = a/12 and Δxc = 

Δyc = Δzc =a/6, respectively. Grid-independent study (in chapter 5) showed that this 

mesh density was sufficient.  

First studied is the deformation of initially spherical capsules with ZT membrane 

(given by Equation 5.2). The dimensionless shear rate G ranges from 0.0125 to 0.2. 

The present results show that after immersed in the flow, a capsule deforms to a 

steady profile, and then the membrane rotates around the liquid inside (steady tank-
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treading motion). These are similar to the results reported by Ramanujan and 

Pozrikidis (1998) and Lac et al. (2004). For G = 0.05, the steady deformed capsule 

and the flow field around the capsule’s cross section in the plane of shear are 

presented in Figure 6.1. It is observed that the cross section of the capsule resembles a 

closed streamline. Recirculating regions are found at two ends of the capsule. 

The deformation of the capsule is measured by the Taylor deformation parameter 

Dxz , which is defined as Dxz = (L - B)/(L + B), where L and B are the length and 

width of the capsule in the plane of shear. The temporal evolutions of the capsules’ 

Taylor deformation parameter are presented in Figure 6.2(a). It is seen that the time 

taken to achieve steady shape is shorter if the dimensionless shear rate is lower. A 

lower shear rate means the ratio between elastic and shear forces is larger, thus the 

capsule only needs to deform a little to generate enough elastic force to balance the 

viscous shear force. The present results were compared with that of Ramanujan and 

Pozrikidis (1998), in which the same case was studied with the boundary element 

method. The differences of the results are within 5%, which further validated the 

present numerical model. Figure 6.2(b) presents the temporal evolutions of the 

capsules’ inclination angle (with respect to x-axis) in the plane of shear. With the 

shear rate increasing, the capsules are observed to be more aligned with the flow.  

The ZT law corresponds to membranes made of polymerized material. The area 

dilation is unrestricted. For above cases, the maximum membrane area change ranges 

from 0.4% for G = 0.0125 to 23.5% for G = 0.2. The membranes of biological cells 

are usually incompressible; for example red blood cells, which membrane follows SK 

law (given in Equation 5.3). The deformation of initially spherical capsules with SK 
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membrane is studied. The moduli ratio C is chosen to be 100 in order to take the 

membrane-area incompressibility into account. For capsules with SK membrane, the 

steady configuration of the capsule and the time taken to achieve a steady shape 

depends not only on the dimensionless shear rate, but also on the moduli ratio. A 

small dimensionless shear rate or a large moduli ratio will restrict the capsule 

deformation and shorten the time it takes to achieve a steady shape. The temporal 

evolutions of the capsules’ Taylor deformation parameter Dxz and the inclination 

angle are presented in Figure 6.3. From the results, it is seen that the overall behavior 

of the capsules is qualitatively similar to that of capsules with ZT membrane. The 

steady tank-treading mode of the capsule is achieved after an initial transient stage. 

The membrane area changes for capsules with SK membrane are much smaller than 

those with ZT membrane. At G = 0.3, the membrane area change is within 1.8%.   

    From above results and discussion, it is found that for the spherical capsule in shear 

flow, it will always achieve a steady tank-treading motion after an initial transient 

stage.   

 

6.2. Initially oblate spheroidal capsules 

 

    Perfectly spherical capsules are hardly encountered in practice. In this section, 

the deformation of oblate spheroidal capsules, with aspect ratios of 10:9, 3:2 and 2:1, 

is studied in unbounded shear flow under various dimensionless shear rates. The 
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computational domain, block system and grid resolutions are the same as that in 

Section 6.1. 

6.2.1. Swinging motion 

First studied is the motion of capsules with ZT membrane. From the results, it is 

observed that at large shear rates, the capsules undergo an unsteady “swinging” 

motion, in which while the capsules’ membranes are rotating around the liquid inside, 

the capsules undergo periodic shape deformation and inclination oscillation. For a 

capsule with aspect ratio of 3:2 at G = 0.2, its snapshots of the cross section (in the 

plane of shear) during the swinging motion are presented in Figure 6.4(a). The 

snapshots of the capsule’s 3D profiles are presented in Figure 6.5, which gives a 

clearer illustration of the swinging motion.  

The cross sections of the same capsule at G = 0.05 during the swinging motion are 

presented in Figure 6.4(b). It is seen from the results that the deformation of the 

capsule is smaller compared with that at G = 0.2, however, the inclination oscillation 

amplitude becomes larger. In the experiment of Walter et al. (2001), the dynamic 

motion of synthetic microcapsules with polymerized membrane was studied under 

shear flow conditions. It was found that the capsules undergo a similar swinging 

motion at large shear rates. It was also observed that as the shear rate decreases, the 

capsules’ inclination oscillation amplitude increases. It is exciting that the present 

results qualitatively agree with experimental observations. In the experimental study, 

the matrix fluid is much more viscous than the liquid inside the capsule. However, the 

same case can not be studied by the current method, which can only consider capsules 

with the internal fluid viscosity same as that outside.    
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6.2.2. Swinging-to-tumbling transition 

With the shear rate further decreased to G = 0.0125, the snapshots of the same 

capsule’s cross sections are presented in Figure 6.4(c). It is quite interesting to find 

that the capsule’s motion has changed from swinging to tumbling.      

To give a more quantitative description of the capsules’ motion, the temporal 

evolutions of the capsule’s Taylor shape parameter and inclination angle in the plane 

of shear are presented in Figure 6.6. It is seen that the evolution curves undergo 

oscillations. The oscillation amplitudes of the Taylor shape parameter and inclination 

angle under different shear rates are presented in Figure 6.7. It is found from the 

results that within the swinging region, the oscillation amplitudes increase with the 

shear rate decreasing. The mode transition happens between G = 0.025 and G = 

0.0125, below which the oscillation amplitude the inclination angle equals π, which 

indicates than the capsule is tumbling. 

The dynamic motion of oblate spheroidal capsules, with aspect ratios of 10:9 and 

2:1, is also studied under various dimensionless shear rates. The temporal evolutions 

of the capsules’ inclination angle in the plane of shear are presented in Figure 6.8. 

From the results, it is seen that the behavior of the capsules are similar to that of the 

capsule with aspect ratio of 3:2. With the shear rate decreasing, the capsules’ 

inclination oscillation amplitude increases, and finally triggers the transition from 

swinging to tumbling. 

It must be noted that the deformation of oblate spheroidal capsules with NH 

membrane has been studied by Ramanujan and Pozrikidis (1998) with boundary 

element method. All shear rates considered in their study falls into the swinging 
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region. Within this region, the present results are comparable to those of Ramanujan 

and Pozrikidis. 

In the recent experiment of Abkarian et al. (2007) on red blood cells in shear flow, 

it is observed that the cells present an oscillation of their inclination superimposed to 

the tank-treading motion, and tank-treading-to-tumbling transition can be triggered by 

decreasing the shear rate. These novel findings can not be covered by the well-known 

theory of Keller and Skalak (1982), in which the capsule is assumed to have a fixed 

ellipsoidal shape with moving membrane. The present study is the first direct 

numerical simulation which predicts the shear rate induced transition. 

It is well known that the membrane of red blood cells is strongly resistant to 

membrane area dilation. Here, the oblate spheroidal capsules with SK membrane and 

moduli ratio C = 100, are employed as a simplified model of the red blood cells. The 

dynamic motion of capsules with aspect ratios of 10:9, 3:2 and 2:1 is studied. For all 

cases considered, the shear-rate decreasing induced transition from swinging to 

tumbling is observed. The temporal evolutions of the inclination angle in the plane of 

shear are presented in Figure 6.9, for the capsule with aspect ratio of 3:2. Similar 

results are obtained for capsules with aspect ratios of 10:9 and 2:1.    

In the theory of Skotheim and Secomb (2007), the swinging-to-tumbling transition 

of an elastic capsule was found to occur via a narrow intermittent regime of 

successive swinging and tumbling. Abkarian et al. (2007) also observed this 

phenomenon in the experiment. In Figure 6.10, the temporal evolution of the 

inclination angle, for a capsule with NH membrane and aspect ratio 3:2, is presented 

at G = 0.0221 and 0.0225, which is actually near the transition region of shear rate. It 
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is seen that in the initial stage, the capsule carries out alternate tumbling and swinging 

motions, which shows some similarities to the intermittent mode of Skotheim and 

Secomb (2007), as well as Abkarian et al. (2007). After this initial stage, only 

swinging motion is observed. Similar behaviour has also been observed for elastic 

capsules with SK membrane and aspect ratios of 10:9 and 2:1. In much longer 

computation, wrinkles of the membrane due to a lack of bending resistance became 

severe and the computation results tended to become unreliable. Thus the present 

simulations may suggest that the swinging-to-tumbling transition of an elastic 

capsule occurs via a narrow intermittent regime of successive swinging and tumbling, 

similar to that of Skotheim and Secomb; however, there is not sufficient evidence in 

the present study to conclude that the present capsules carried out a steady 

intermittent motion.  

 

6.3. Initially biconcave discoid capsules 

 

In this section, a periodic file of initially biconcave discoid capsules with Skalak 

membrane, as a model of red blood cells, are considered in wall-bounded shear flow. 

The linear shear flow is generated by two solid walls, with distance 5a, moving in 

opposite directions, as illustrated in Figure 6.11. The Reynolds number equals 0.1 so 

that Stokes flow condition is satisfied. The computational domain is a cuboid box 

with side length 6a in x-axis, and 5a in y-axis and z-axis. The capsule is at the center 

of the domain. The boundary conditions at the upper and lower planes of the 

computational domain are set as solid walls moving in opposite directions. Periodic 
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boundary conditions are employed on the flow and spanwise directions. Uniform grid 

is employed, with a grid resolution of Δx  = Δy = Δz = a/16. The capsule membrane is 

discretized into 32768 flat triangular elements connecting 16386 nodes. Grid 

convergence studies showed that the mesh resolutions are sufficient. In the present 

study, the ratio between the capsule membrane area dilation modulus and shear 

elasticity modulus is chosen to be large enough to keep the membrane area change 

within 0.5%, however not too large to make the computation diverge (Eggleton and 

Popel, 1998). With the dimensionless shear rate ranging from 0.0005 to 2.8, the 

moduli ratio C ranges from 1 to 400. For all cases considered, the cell volume 

changes are also within 0.5%.  

 

6.3.1. Swinging motion 

In the present study, first considered are the dynamic motion of biconcave discoid 

capsules in simple shear flow at shear rates: G = 0.47 ~ 2.8. From the simulation 

results, it is found that the capsule deforms to oblate ellipsoidal shapes and then the 

membrane rotates around the internal liquid. During this tank-treading motion, the 

capsule inclination oscillates periodically and the capsule profile undergoes periodic 

vacillating-breathing deformation. These behaviors are consistent with the swinging 

mode reported by Abkarian et al. (2007). The transient 3D and 2D profiles of the 

capsule during the swinging motion at G = 1.87 are presented in Figure 6.12. In the 

2D images of the capsule in x-z plane, which is parallel to the shear plane, the black 

dots represent the same material point on the capsule membrane. From the 2D images, 

it is noted that the capsule inclination is changing while the capsule membrane is 
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rotating around the liquid inside. It is also not difficult to observe the vacillating-

breathing deformation of the capsule from the 2D images in x-y plane, which is 

parallel to the solid moving wall, as well as from the 3D profiles of the capsule. 

The temporal evolutions of the capsule’s length, width and thickness under various 

dimensionless shear rates are presented in Figure 6.13. The temporal evolutions of the 

capsule’s middle cross section in the plane of shear are presented in Figure 6.14. At 

larger shear rate, the capsule is more elongated and more aligned with the flow 

direction. With the shear rate ranges from 0.47 to 2.8, the capsule inclination 

oscillation amplitude is in the range of 2.9 ~ 3.5 degrees. Further increasing the 

dimensionless shear rate increases the capsule elongation and decreases the swinging 

amplitude. However, the steady tank treading mode of the capsule is not observed. 

Instead, the capsule carries out a swinging motion. The swinging mode could also be 

called unsteady tank-treading mode because when the membrane is rotating around 

the liquid inside (tank-treading), the capsule undergoes periodic shape deformation 

and inclination oscillation.  

The average time T for the capsule membrane to complete a rotation is computed to 

obtain the unsteady tank treading frequency by 2 /f Tπ= . When normalized by the 

shear rate k, the non-dimensional frequency f/k is presented in Figure 6.15. It is found 

that the normalized tank treading frequency is higher at lower dimensionless shear 

rate, and ranges from 0.20 to 0.24 with the dimensionless shear rate ranging from 

0.47 to 2.8. Tran-Son-Tay et al. (1984) found experimentally that for younger red 

blood cells suspend in a medium of comparable viscosity, f/k equals 0.22. It is thus 
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encouraging that the present numerical modelling gives realistic estimates of the tank 

treading frequency. 

 

6.3.2. Swinging-to-tumbling transition     

  

The dynamic motion of initially biconcave discoid capsules in simple shear flow at 

moderate and small dimensionless shear rates is considered. Figure 6.16 presents the 

temporal evolutions of the inclination of the capsule’s middle cross section in the 

plane of shear at G = 0.0045, 0.015 and 0.045. It is seen that at G = 0.045, the capsule 

still carries out swinging motion with amplitude much bigger than that presented in 

Figure 6.14. At G = 0.015, the capsule shows initial tumbling and then swinging 

motion, similar to that of initially oblate spheroidal capsules in previous section. With 

further decreasing the shear rate, the cell’s motion falls into tumbling region, as 

shown in Figure 6.16 for G = 0.0045. The 3D profiles of the capsules during the 

tumbling motion at G = 0.0005 are presented in Figure 6.17. Due to a lack of 

membrane bending stiffness, wrinkles develop on the cell interface. The 3D profiles 

of the capsule are symmetric with respect to x-z plane. 

 

6.4. Discussion 

 

From the results of the present direct numerical simulation, it is found that the 

steady tank treading motion is only observed for initially spherical capsules. Similar 

motion for initially spherical capsules has been reported by Pozrikids (1995), 
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Ramanujan and Pozrikidis (1998), and Lac et al. (2004). For non-spherical capsules, 

for example initially oblate spheroidal or biconcave discoid capsules, they only carry 

out swinging motion at large shear rate as described in previous sections. In the study 

of Ramanujan and Pozrikidis (1998) of non-spherical capsules with elastic 

membranes in simple shear flow, swinging motion of the capsules, similar to the 

present study, was observed.  

This is due to the fact that for spherical capsules, the material points on the 

membrane are equivalent, because of their initially spherical equilibrium shape; but 

for initially non-spherical capsules, they are not the case. Assuming both spherical 

and non-spherical capsules could achieve steady tank-treading mode. For spherical 

capsule, the membrane elastic energy can keep unchanged during the motion, because 

of the equivalent membrane points, and thus the steady mode can be maintained. 

However, for non-spherical capsules, during the tank treading motion, the membrane 

shear elastic energy undergoes periodic variation, and passes two minima in one 

period due to the symmetry of the initial reference shape. This is actually the so called 

“shape memory effect”, which is due to the non-spherical initial minimum energy 

shape and the shear elasticity, and has been observed in Fischer’s experiment (2004). 

The variation of the membrane elastic energy will provide a perturbation force to the 

steady tank-treading mode, and the steady motion can not be maintained. The initially 

non-spherical capsule thus can only carries out swinging motion in shear flow when 

the shear rate is high.  

For liquid-filled capsules with elastic membranes, it has been long recognized that 

the tank treading to tumbling transition can be induced by increasing the internal 
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liquid viscosity or membrane viscosity of the cell. In both cases due to the fact that 

the viscosity increases, the transfer of shear torque to the membrane becomes more 

and more difficult; and then the capsule would behave like a solid body which 

undergoes tumbling motion. 

Recently, the experimental findings of Abkarian et al. (2007) for red blood cells, as 

well as the present numerical results for non-spherical capsules show that in shear 

flow, the swinging-to-tumbling transition can be induced by lowering the shear rate. 

This contradicts with well-known theory of Keller and Skalak’s (1982). In fact, the 

shear rate induced transition, is also due to the shape memory effect of the three-

dimensional capsules. 

In Keller and Skalak’s theory, the capsule is assumed to have a fixed ellipsoidal 

shape during the membrane tank treading motion, and the membrane elastic energy 

was kept unchanged. These assumptions actually have excluded the shape memory 

effect. Based on the fixed-shape theoretical model of Keller and Skalak (1982), and 

further assumed that the membrane elastic energy undergoes a periodic variation 

during the tank-treading motion (which actually includes the shape memory effect), 

both the swinging motion and shear rate induced swinging-to-tumbling transition can 

be successfully predicted by the recent theoretical model of Skotheim and Secomb 

(2007), as well as Abkarian et al. (2007). However, it is not so realistic that the 

capsule can simultaneously keep its shape unchanged while its membrane elastic 

energy changing. The present study is by direct numerical simulation and relaxes all 

these assumptions.   



Chapter 6 A Shear Rate Induced Swinging-to-Tumbling Transition 

 163

Lowering the shear rate could induce the swinging-to-tumbling transition. This is 

due to the shape memory effect of the three-dimensional capsules. When the shear 

rate is very small, the fluid shear force acting on the capsule membrane is not big 

enough to drive the membrane tank treading up the elastic energy gradient. The 

capsule is then relatively solidified and can only tumble like a rigid body. 

It is also interesting to observe that the shear rate induced transition of a capsule’s 

motion from tank-treading mode to tumbling mode was observed in three-

dimensional non-spherical but not in the two-dimensional non-circular capsules. This 

is because of the differences of geometry and thus mechanics of two-dimensional and 

three-dimensional capsules. For two-dimensional capsules, the interfacial elasticity 

modulus can only resist stretching or compression, not like the membrane shear 

elasticity of three-dimensional capsules. The transverse shear tension of the two-

dimensional capsule is related to the membrane bending moment. When bending 

rigidity is neglected, two-dimensional capsule can not resist any shear deformation 

and thus behave qualitatively different with three-dimensional non-spherical capsules. 

The computational load for the present three-dimensional is very heavy. Even with 

the multi-block technique, the typical computational time ranges from one day for a 

steady case to around four weeks for the unsteady biconcave discoid case (running on 

SVU linux 64 cluster). 
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6.5. Concluding remarks 

 

    The dynamic motion of capsules in shear flow is studied by direct numerical 

simulation. The capsules consist of Newtonian liquid droplets enclosed by elastic 

membranes with or without considering the membrane-area incompressibility. The 

dynamic motion of capsules with initially spherical, oblate spheroidal and biconcave 

discoid unstressed shapes is studied, under various shear rates. The results show that 

spherical capsules deform to stationary shapes and achieve steady tank-treading 

motion. Such a steady mode has not been observed for non-spherical capsules. At 

large shear rates, non-spherical capsules carry out a swinging motion, in which a 

capsule undergoes periodic shape deformation and inclination oscillation while its 

membrane is rotating around the liquid inside. With the shear rate decreasing, the 

capsules’ inclination oscillation amplitude increases, and finally triggers the 

swinging-to-tumbling transition.  
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Figure 6.1 Steady deformed capsule and the flow field around the cross section of the 
capsule in the plane of shear at G = 0.05 
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Figure 6.2 Temporal evolutions of the (a) Taylor shape parameter, (b) inclination 
angle of the initially spherical capsules with ZT membrane 
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Figure 6.3 Temporal evolutions of the (a) Taylor shape parameter, (b) inclination 
angle of the initially spherical capsules with SK membrane at C = 100 
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Figure 6.4 Membrane profiles in the plane of shear for initially oblate spheroidal 
capsules with aspect ratio of 3:2. (a) 0.2G = ; (b) 0.05G = ; (c) 0.0125G =  
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Figure 6.5 3D profiles of the capsule (in Fig. 6(a)) during the swinging motion. The 
dimensionless time kt = (a) 3; (b) 5; (c) 7; (d) 9; (e) 11; (f) 13 
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Figure 6.6 Temporal evolutions of the (a) Taylor shape parameter, (b) inclination 
angle of the initially oblate spheroidal capsules (aspect ratio 3:2) with ZT membrane 
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Figure 6.7 Oscillation amplitudes of the (a) Taylor shape parameter, (b) inclination 

angle of the initially oblate spheroidal capsules (aspect ratio 3:2) with ZT membrane 
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Figure 6.8 Temporal evolutions of the inclination angle of the initially oblate 
spheroidal capsules with ZT membrane, the aspect ratios are (a) 10:9; (b) 2:1 
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Figure 6.9 Temporal evolutions of the inclination angle of the initially oblate 

spheroidal capsules (aspect ratio 3:2) with SK membrane at C = 100 
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Figure 6.10 Temporal evolutions of the inclination angle of the initially oblate 
spheroidal capsules (aspect ratio 3:2) with ZT membrane at G = (a) 0.0221; (b) 

0.0225 
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Figure 6.11 A periodic suspension of initially biconcave-discoid cells in shear flow 
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Figure 6.12 Profiles of the ghost cell in the swinging motion at G = 1.87 and kt = (a) 
5; (b) 9; (c) 13; (d) 17 
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Figure 6.13 Temporal evolution of the ghost cell’s length (L1), width (L2) and 

thickness (L3)  under various dimensionless shear rates 
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Figure 6.14 Temporal evolution of the inclination angle of the ghost cell’s middle 

cross section (in the plane of shear) under various dimensionless shear rates 
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Figure 6.15 Tank-treading frequency of the ghost cell membrane under various 

dimensionless shear rates 
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Figure 6.16 Temporal evolution of the inclination angle of the ghost cell’s middle 

cross section (in the plane of shear) under various dimensionless shear rates 
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Figure 6.17 3D profiles of the ghost cell during the tumbling motion. The 
dimensionless time kt = (a) 2; (b) 6; (c) 9; (d) 11; (e) 13 and G = 0.0005 
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Chapter 7 Conclusions and Recommendations 

 

7.1 Conclusions 

 

    A hybrid method, combining the immersed boundary method and the multi-block 

lattice Boltzmann method, was proposed to simulate moving boundaries interacting 

with incompressible viscous fluid. The present method preserves the advantages of 

the immersed boundary method and lattice Boltzmann method; and at the same time 

improves their accuracy and efficiency by employing a multi-block strategy. Besides 

dealing with elastic boundaries interacting with fluid, the method can also efficiently 

simulate solid moving boundaries; this is achieved by employing the direct forcing 

technique. Four benchmark computations were carried out to validate the present 

method: flow past a circular cylinder, two cylinders moving with respect to each other, 

flow around a hovering wing, and the deformation of a circular liquid-filled elastic 

capsule in simple shear flow. The results agree well with published literatures and 

show that the present numerical method could be an alternative approach for the 

simulation of fluid/structure interactions. 

 

    Based on the hybrid approach proposed, the effect of membrane bending stiffness 

on the deformation of two-dimensional liquid-filled capsules enclosed by elastic 

membranes, was investigated numerically in simple shear flow. The deformation of 
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capsules with initially circular, elliptical and biconcave resting shapes was studied; 

the capsules’ minimum bending-energy configurations were considered as either 

uniform-curvature shapes (like circle or flat plate) or their initially resting shapes. The 

results show that for capsules with minimum bending-energy configurations having 

uniform curvature (circle or flat plate), the membrane carries out tank-treading 

motion; and the steady deformed shapes become more rounded if the bending 

stiffness is increased. For elliptical and biconcave capsules with resting shapes as 

minimum bending-energy configurations, it is quite interesting to find that with the 

bending stiffness increasing or the shear rate decreasing, the capsules’ motion 

changes from tank-treading mode to tumbling mode, and resembles Jeffery’s 

tumbling mode at large bending stiffness. The present study shows that, besides 

viscosity ratio and membrane viscosity, the membrane bending stiffness may be 

another factor which can lead to the transition of a capsule’s motion from tank 

treading to tumbling. 

 

Based on the hybrid approach proposed, the effect of inertia on the transient 

deformation of two-dimensional liquid-filled elastic capsules and the flow structure 

around them, was investigated numerically in simple shear flow. The simulation 

results show that the inertia effect gives rise to a transient process, in which the 

capsule elongation and inclination overshoot and then show dampened oscillations 

towards the steady states. Inertia effect also promotes the steady deformation, and 

decreases the tank treading frequency of the capsule. Inertia strongly affects not only 

the capsule deformation, but also the flow pattern. There is flow separation inside the 
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capsule. Also, the vorticity magnitude and gradient on the capsule interface increase 

with increasing Reynolds number.       

 

    The proposed hybrid method was extended to three-dimensional to study the flow-

induced deformation of liquid-filled capsules with elastic membranes. The membrane 

of the three-dimensional capsule was discretized into unstructured flat triangular 

elements, and a finite element model was incorporated to obtain the forces acting on 

the membrane nodes. The present method was validated by studying the transient 

deformation of initially spherical and oblate spheroidal capsules with various 

membrane laws under shear flow. The present results agree well with published 

theoretical or numerical results. Compared with the original immersed boundary-

lattice Boltzmann method, the present method is much more efficient. The present 

method is capable to take the inertia effect into account. This was demonstrated by 

studying the deformation of spherical capsules in shear flow at moderate Reynolds 

numbers. The transient deformation of capsules with initially biconcave disk shape 

was also simulated. The unsteady tank treading motion was followed for a whole 

period in the present work. Due to numerical instabilities encountered in previous 

computations, this motion has not been fully recovered by numerical simulation so far.  

 

    Based on the three-dimensional hybrid approach proposed, the dynamic motion of 

three-dimensional capsules in shear flow is studied by direct numerical simulation. 

The capsules consist of Newtonian liquid droplets enclosed by elastic membranes 

with or without considering the membrane-area incompressibility. The dynamic 
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motion of capsules with initially spherical, oblate spheroidal and biconcave discoid 

unstressed shapes was studied, under various shear rates. The results show that 

spherical capsules deform to stationary shapes and achieve steady tank-treading 

motion. At large shear rates, non-spherical capsules carry out a swinging motion, in 

which a capsule undergoes periodic shape deformation and inclination oscillation 

while its membrane is rotating around the liquid inside. With the shear rate decreasing, 

the capsules’ inclination oscillation amplitude increases, and finally triggers the 

swinging-to-tumbling transition.  

 

7.2 Recommendations 

 

In the present study, because the immersed boundary method was employed, the 

simulations were restricted to capsules with the internal fluid viscosity same to that 

outside. In the future work, the present method could be improved to relax this 

assumption. This may be achieved by replacing the immersed boundary method with 

the front-tracking method (Unverdi and Tryggvason, 1992; Lallemand et al. 2007). 

This would point to a broader application of the numerical studies, for example, to 

use the observed dynamics to measure capsule properties, or use the simulations to 

suggest parameter regimes for experiments where the properties can be most 

sensitively deduced. 

    The membrane models in the present study do not incorporate the membrane 

viscosity effect. For some capsules, for example the red blood cells, the energy 
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dissipation due to the membrane viscosity has been shown experimentally to be 

between 2 and 4 times the dissipation in the cytoplasm (Fischer, 1980; Tran-Song-

Tay et al. 1984). Thus it is needed to consider the membrane viscosity in the future 

work, when the simulation is carried out to model the red blood cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Reference 

 186

Reference 

Abkarian, M., Faivre, M. and Viallat, A., Swinging of red blood cells under shear 

flow, Phys. Rev. Lett., 98: 188302, 2007. 

Asinari, P. and Luo, L.-S., A consistent lattice Boltzmann equation with baroclinic 

coupling for mixtures, J. Comput. Phys., 227: 38785-3895, 2008. 

Barthès-Biesel, D., Motion of spherical microcapsule freely suspended in a linear 

shear flow, J. Fluid Mech., 100: 831-853, 1980. 

Barthès-Biesel, D. and Rallison, J. M., The time-dependent deformation of a capsule 

freely suspended in a linear shear flow, J. Fluid Mech., 113: 251-267, 1981. 

Barthès-Biesel, D. and Sgaier, H., Role of membrane viscosity in the orientation and 

deformation of a spherical capsule suspended in shear flow, J. Fluid Mech., 160: 

119-135, 1985. 

Beaucourt, J., Rioual, F., Séon, T., Biben, T. and Misbah, C., Steady to unsteady 

dynamics of a vesicle in a flow, Phys. Rev. E,  69: 011906, 2004. 

Benzi, R. and Succi, S., 2-dimensional turbulence with the lattice Boltzmann equation, 

J. of Phys. A, 23: L1-L5, 1990. 

Bhatnagar, P. L., Gross, E. P. and Krook, M., A model for collision processes in 

gases. I. Small amplitude processes in charged and neutral one-component 

systems, Phys. Rev. 94: 511-525, 1954. 

Biben, T. and Misbah, C., Tumbling of vesicles under shear flow within an advected-

field approach, Phys. Rev. E, 67: 031908, 2003. 

Breyiannis, G. and Pozrikidis, C., Simple shear flow of suspensions of elastic 

capsules, Theor. & Comp. Fluid Dyn., 13: 327-347, 2000. 



Reference 

 187

Charrier, J. M., Shrivastava, S. and Wu, R., Free and constrained inflation of elastic 

membranes in relation to thermoforming non-axisymmetric problems, J. Strain 

Anal., 24: 55-74, 1989. 

Chen, S.Y., Diemer, K, Doolen, D, Eggert, K., Fu, C., Gutman, S. and Travis, B. J., 

Lattice Gas Automata for flow through porous-media, Physica D., 47: 72-84, 

1991. 

Chen, S., Martinez, D. and Mei, R., On boundary conditions in lattice Boltzmann 

methods, Phys. Fluids, 8(9): 2527-2536, 1996. 

Chen, S. and Doolen, G. D., Lattice Boltzmann method for fluid flows, Ann. Rev. 

Fluid Mech., 30: 329–364, 1998.  

Chew, Y. T., Shu, C. and Niu, X. D., Simulation of unsteady and incompressible 

flows by using taylor series expansion- and least square- based lattice Boltzmann 

method, Int. J. Mod. Phys. C, 13: 719-738, 2002. 

Chien, S., Red cell deformability and its relevance to blood flow, Annu. Rev. Physiol., 

49: 177-192, 1987. 

de Haas, K. H., Blom, C., van den Ende, D., Duits, M. H. G. and Mellema, J., 

Deformation of giant lipid bilayer vesicles in shear flow, Phys. Rev. E, 56: 7132-

7137, 1997. 

d’Humières, D., Generalized lattice-Boltzmann equations, Prog. Astronaut. Aeronaut., 

159: 450-458, 1992. 

Eggleton, C. D. and Popel, A. S., Large deformation of red blood cell ghosts in a 

simple shear flow, Phys. Fluids, 10 (8): 1834-1845, 1998.  



Reference 

 188

Fadlun, E. A., Verzicco, R., Orlandi, P. and Mohd-Yusof, J., Combined immersed-

boundary finite-difference methods for three-dimensional complex flow 

simulations, J. Comput. Phys., 161: 35-60, 2000. 

Feng, Z. G. and  Michaelides, E. E., The immersed boundary-lattice boltzmann 

method for solving fluid-particles interaction problems, J. Comput. Phys., 195: 

602-628, 2004. 

Feng, Z. G. and  Michaelides, E. E., Proteus: a direct forcing method in the 

simulations of particulate flows, J. Comput. Phys., 202: 20-51, 2005. 

Filippova, O. and Hänel, D., Grid refinement for lattice-BGK models, J. Comput. 

Phys., 147: 219-228, 1998. 

Filippova, O. and Hanel, D., Acceleration of Lattice-BGK Schemes with Grid 

Refinement, J. Comput. Phys., 165: 407-427, 2000. 

Fisher, T. M., On the energy dissipation in a tank-treading human red blood cell, 

Biophys. J., 32: 863-868, 1980. 

Fisher, T. M., Shape memory of red blood cells, Biophys. J., 86: 3304-3313, 2004. 

Fischer, T. M., Stöhr-Liesen, M. and Schmid-Schönbein, H.,  The red cell as a fluid 

droplet: tank tread-like motion of the human erythrocyte membrane in shear flow, 

Science, 202: 894-896 (1978). 

Fung, Y. C., Foundations of Solid Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 

1965. 

Ginzburg, I., Consistent lattice Boltzmann schemes for the Brinkman model of porous 

flow and infinite Chapman-Enskog expansion, Phys. Rev. E, 77: 066704, 2008. 



Reference 

 189

Goldsmith, H. L., Deformation of human red cells in tube flow, Biorheology, 7: 235-

242, 1971. 

Goldsmith, H. L. and Marlow, J., Flow behavior of erythrocytes. I. Rotation and 

deformation in dilute suspensions, Proc. R. Soc. Lond. B., 182: 351-384, 1972. 

Goldstein, D., Handler, R. and Sirovich, L., Modeling a no-slip flow boundary with 

an external force field, J. Comput. Phys., 105: 354-366, 1993.  

Grunau, D., Chen, S., and Eggert, K., A lattice Boltzmann model for multiphase fluid 

flows, Phys. Fluids A, 5: 2557-2562, 1993. 

Gunstensen, A. K., Rothman, D. H., Zaleski, S. and Zanetti G., Lattice Boltamann 

model of immiscible fluids, Phys. Rev. A, 43: 4320-4327, 1991. 

Guo, Z. L., Zheng, C. G. and Shi, B. C., Discrete lattice effects on the forcing term in 

the lattice Boltzmann method, Phys. Rev. E, 65: 046308, 2002. 

Guo, Z. L., Zheng, C. G. and Shi, B. C., Non-equilibrium extrapolation method for 

velocity and pressure boundary conditions in the lattice Boltzmann method, 

Chinese Physics, 11: 366-374, 2002. 

He, X. and Doolen, G., Lattice Boltzmann method on curvilinear coordinates system: 

Flow around a circular cylinder, J. Comput. Phys., 134: 306-315, 1997a. 

He, X. and Doolen, G., Lattice Boltzmann method on a curvilinear coordinate system: 

Vortex shedding behind a circular cylinder, Phys. Rev. E, 56: 434-440, 1997b. 

Hinton, F.L., Rosenbluth, M.N., Wong, S.K., Lin-Liu, Y.R. and Miller, R.L., Modified 

lattice Boltzmann method for compressible fluid simulations, Phys Rev E, 63: 

061212, 2001. 



Reference 

 190

Hirt, C.W., Amsden, A.A. and Cook, J.L., An arbitrary Lagrangian–Eulerian 

computing method for all flow speeds, J. Comput. Phys., 14: 227–253, 1974. 

Hou, S., Zou, Q., Chen, S., Doolen, G. and Cogley, A. C., Simulation of cavity flow 

by the lattice boltzmann method, J. of Comp. Phys., 118: 329-347, 1995. 

Jeffery, J. B., The motion of ellipsoidal particles immersed in a viscous fluid, Proc. R. 

Soc. London A, 102: 161-179, 1922. 

Kwak, S. and Pozrikids, C., Effect of membrane bending stiffness on the 

axisymmetric deformation of capsules in uniaxial extensional flow, Phys. Fluids, 

13: 1234-1242, 2001 

Keller, S. R. and Skalak, R., Motion of a tank-treading ellipsoid particle in a shear 

flow, J. Fluid Mech., 120: 27-47, 1982. 

Kraus, M., Wintz, W., Seifert, U. and Lipowsky, R., Fluid vesicles in shear flow, 

Phys. Rev. Lett., 77: 3685-3688, 1996. 

Lac, E., Barthes-Biesel, D., Pelekasis, N. A. and Tsamopoulos, J., Spherical capsules 

in three-dimensional unbounded Stokes flows: effect of the membrane 

constitutive law and onset of buckling, J. Fluid Mech. 516 (2004) 303-334.  

Ladd, A.J.C., Numerical simulations of particulate suspensions via a discretized 

Boltzmann equation Part I. Theoretical foundation, J. Fluid. Mech., 271: 285–310, 

1994a. 

Ladd, A.J.C., Numerical simulations of particulate suspensions via a discretized 

Boltzmann equation. Part II. Numerical results, J. Fluid. Mech., 271: 311–339, 

1994b. 



Reference 

 191

Lai, M. C. and Peskin, C. S., An immersed boundary method with formal second-

order accuracy and reduced numerical viscosity, J. Comput. Phys., 160: 705-719, 

2000. 

Lallemand, P. and Luo, L.-S., Theory of the lattice Boltzmann method: dispersion, 

dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61: 6546–

6562, 2000. 

Lallemand, P., Luo, L.-S. and Peng, Y., A lattice Boltzmann front-tracking method 

for interface dynamics with surface tension in two dimensions, J. Comput. Phys., 

226: 1367-1384, 2007. 

Lee, J. and Pozrikidis, C., Effect of surfactants on the deformation of drops and 

bubbles in Navier-Stokes flow, Comput. Fluids, 35: 43-60, 2006. 

Lipowsky, R., The conformation of membranes, Nature, 349: 475-481, 1991. 

Liu, H. and Kawachi, K., A numerical study of undulatory swimming, J. Comput. 

Phys., 155: 223–247, 1999. 

Luo, L.-S. and Girimaji, S.S., Lattice Boltzmann model for binary mixtures, Phys Rev 

E, 66:035301, 2002. 

Luo, L.-S. and Girimaji, S.S., Theory of the lattice Boltzmann method: Two-fluid 

model for binary mixtures, Phys Rev E, 67:036302, 2003. 

Misbah, C., Vacillating breathing and tumbling of vesicles under shear flow, Phys. 

Rev. Lett., 96: 028104, 2006.  

Mohd-Yusof, J., Combined immersed-boundary/B-spline methods for simulations of 

flow in complex geometries, Annual Research Briefs (Center for Turbulence 

Research, NASA Ames and Stanford University), 317-327, 1997. 



Reference 

 192

Nannelli, F. and Succi, S., The lattice Boltzmann equation on irregular lattices, J. Stat. 

Phys., 68: 401-407, 1992. 

Niu, X. D., Chew, Y. T. and Shu, C., Simulation of flows around an impulsively 

started circular cylinder by taylor series expansion- and least squares-based lattice 

Boltzmann method, J. Comput. Phys., 188: 176-193, 2003.  

Noguchi, H. and Gompper, G., Fluid vesicles with viscous membranes in shear flow, 

Phys. Rev. Lett., 93: 258102, 2004. 

Noguchi, H. and Gompper, G., Dynamics of fluid vesicles in shear flow: effect of 

membrane viscosity and thermal fluctuations, Phys. Rev. E, 72: 011901, 2005. 

Noguchi, H. and Gompper, G., Swinging and tumbling of fluid vesicles in shear flow, 

Phys. Rev. Lett., 98: 128103, 2007.  

Pan, C., Hilpert, M. and Miller, C.T., Lattice-Boltzmann simulation of two-phase 

flow in porous media, Water Resour. Res., 40: W01501, 2004. 

Peng, Y., Shu, C., Chew, Y. T., Niu, X. D. and Lu, X. Y., Application of multi-block 

approach in the immersed boundary-lattice Boltzmann method for viscous fluid 

flows, J. Comput. Phys., 218: 460-478, 2006. 

Peng, Y. and Luo, L.-S., A comparative study of immersed-boundary and interpolated 

bounce-back methods in LBE, Progress Comput. Fluid Dyna., 8: 156-167, 2008. 

Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys. 25: 

220–252, 1977. 

Peskin, C. S., The immersed boundary method, Acta Numer., 11: 479–517, 2002. 

Pfafferott, C., Nash, G. B. and Meiselman, H. J., Red blood cell deformation in shear 

flow, J. Biophys. Soc., 47: 695–704, 1985. 



Reference 

 193

Pozrikidis, C., Boundary integral and singularity methods for linearized viscous flow, 

Cambridge University Press, 1992. 

Pozrikidis, C., Finite deformation of liquid capsules enclosed by elastic membranes in 

simple shear flow, J. Fluid Mech.,  297: 123-152, 1995. 

Pozrikidis, C., Effect of membrane bending stiffness on the deformation of capsules 

in simple shear flow, J. Fluid Mech., 440: 269-291, 2001. 

Pozrikidis, C., Modeling and simulation of capsules and biological cells, Chapman & 

Hall/CRC, London, 2003a. 

Pozrikidis, C., Numerical simulation of the flow-induced deformation of red blood 

cells, Annals Biomed. Eng., 31: 1194-1205, 2003b. 

Qi, D. and Luo L-S. Rotational and orientational behaviour of a three-dimensional 

spheroidal particles in Couette flow, J. Fluid Mech., 447:201–203, 2003. 

Ramamurti, R. and Sandberg, W.C., A three-dimensional computational study of the 

aerodynamic mechanisms of insect flight, J. Exp. Biol., 205: 1507–1518, 2002. 

Ramanujan, S. and Pozrikidis, C., Deformation of liquid capsules enclosed by elastic 

membranes in simple shear flow: Large deformations and the effect of capsule 

viscosity, J. Fluid Mech., 361:117-143, 1998.  

Rao, P. R., Zahalak, G. I. and Sutera, S. P., Large deformations of elastic cylindrical 

capsules in shear flows, J. Fluid Mech., 179: 283-305, 1994. 

Rioual, F., Biben, T. and Misbah, C., Analytical analysis of a vesicle tumbling   

Russell, D. and Wang, Z. J., A Cartesian grid method for modeling multiple moving 

objects in 2D incompressible viscous flow, J. Comput. Phys., 191: 177-205, 2003. 



Reference 

 194

Saiki E. M. and Biringen, S., Numerical simulation of a cylinder in uniform flow: 

Application of a virtual boundary method, J. Comput. Phys., 123: 450-465, 1996.  

Schmid-Schönbein, H. and Wells, R. E., Fluid drop like transition of erythrocyte 

under  shear stress, Science, 165: 288-291, 1969.  

Sheth, K. and Pozrikidis, C., Effects of inertia on the deformation of liquid drops in 

simple shear flow, Comput. Fluids, 24: 101-119, 1995. 

Shrivastava, S. and Tang, J., Large deformation finite element analysis of non-linear 

viscoelastic membranes with reference to thermoforming, J. Strain Anal., 28: 31-

51, 1993. 

Shu, C., Niu, X. D. and Chew, Y. T., Taylor-series expansion and least squares-based 

lattice Boltzmann method: Two-dimensional formulation and its applications, 

Phys. Rev. E., 65: 036708, 2002. 

Skalak, R., Tozeren, A., Zarda, R. P. and  Chien, S., Strain energy function of red 

blood cell membranes, Biophys. J., 13: 245-264, 1973. 

Skotheim, J. M. and Secomb, T. W., Red blood cells and other nonspherical capsules 

in shear flow: oscillation dynamics and the tank-treading-to-tumbling transition, 

Phys. Rev. Lett., 98: 078301, 2007.  

Steigmann, D. J. and Ogden, R. W., Plane deformations of elastic solids with intrinsic 

boundary elasticity,  Proc. R. Soc. London A, 453: 853-877, 1997. 

Succi, S., Benzi, R. and Higuera, F., The lattice Boltzmann equation- A new tool for 

computational fluid dynamics, Physica D, 47: 219-230, 1991. 



Reference 

 195

Sui, Y., Chew, Y. T., Roy, P. and Low H. T., A hybrid immersed-boundary and multi-

block lattice Boltzmann method for simulating fluid and moving-boundaries 

interactions, Int. J. Numer. Meth. Fluids, 53: 1727-1754, 2007. 

Sui, Y., Chew, Y. T. and Low, H. T., A lattice Boltzmann study on the large 

deformation of red blood cells in shear flow, Int. J. Mod. Phys. C, 18: 993-1011, 

2007. 

Sui, Y., Chew, Y. T., Roy, P., Chen. X. B. and Low H. T., Transient deformation of 

elastic capsules in shear flow: effect of membrane bending stiffness, Phys. Rev. E, 

75: 066301, 2007. 

Sui, Y., Low, H. T., Chew, Y. T. and Roy, P., Tank-treading, swinging and tumbling of 

liquid-filled elastic capsules in shear flow, Phys. Rev. E, 77: 016310, 2008. 

Sui, Y., Chew, Y. T., Roy, P. and Low H. T., Inertia effect on the transient deformation 

of elastic capsules in simple shear flow, Comput. Fluids, 38: 49-59, 2009. 

Sui, Y., Chew, Y. T., Roy, P. and Low, H. T., A hybrid method to study flow-induced 

deformation of three-dimensional capsules, J. Comput. Phys., 228: 6351-6371, 

2008. 

Sun, C., Simulations of compressible flows with strong shocks by an adaptive lattice 

Boltzmann model, J Comput Phys, 161:70–84, 2000. 

Teixeira, C. M., Incorporating turbulence models into the lattice-Boltzmann method, 

Int. J. Mod. Phys. C, 9: 1159-1175, 1998. 

Tran-Son-Tay, R., Sutera, S. P. and Rao, P. R., Determination of red blood cell 

membrane viscosity from rheoscopic observations of tank-treading motion, Biophys. 

J., 46: 65-72, 1984. 



Reference 

 196

Unverdi, S. O. and Tryggvason, G., A front-tracking method for viscous, 

incompressible, multi-fluid flows, J. Comput. Phys., 100: 25-37, 1992. 

Walter, A., Rehage, H. and Leonhard, H., Shear induced deformation of 

microcapsules: shape oscillations and membrane folding, Colloids Surf. A, 183–

185: 123-132, 2001. 

Wang, Z. J., Two dimensional mechanism for insect hovering, Phys. Rev. Lett., 85: 

002216, 2000. 

Xu, S. and Wang, Z. J., An immersed interface method for simulating the interaction 

of a fluid with moving boundaries, J. Comput. Phys., 216: 454-493, 2006. 

Yan, G., Chen, Y. and Hu, S., Simple lattice Boltzmann model for simulating flows 

with shock wave, Phys Rev E, 59:454 – 459, 1999. 

Yu, D., Mei, R., Luo, L. and Shyy, W., Viscous flow computations with the method 

of lattice Boltzmann equation, Progress in Aerospace Sciences, 39: 329-367, 

2003. 

Yu, D., Mei, R. and Shyy, W., A multi-block lattice Boltzmann method for viscous 

fluid flows, Int. J. Numer. Meth. Fluids, 39: 99–120, 2002. 

Yu, D. and Girimaji, S. S., Multi-block lattice Boltzmann method: Extension to 3D 

and validation in turbulence, Physica A., 362: 118-124, 2006. 

Yu, H., Luo, L.-S. and Girimaji, S.S., LES of turbulent square jet flow using an MRT 

lattice Boltzmann model, Comput. Fluids, 35: 957-965, 2006. 

Yue, P., Feng, J. J., Bertelo, C. A. and Hu, H. H., An arbitrary Lagrangian-Eulerian 

method for simulating bubble growth in polymer foaming, J. Comput. Phys., 226: 

2229-2249, 2007. 



Reference 

 197

Zhou, H. and Pozrikidis, C., Deformation of liquid capsules with incompressible 

interfaces in simple shear flow, J. Fluid Mech., 283: 175-200, 1995. 

 

 

 

 

 

 

 


	coverpage_soft.pdf
	thesis.pdf

