
INDEXING FOR MOVING OBJECTS

Guo Shuqiao

Bachelor of Science
Fudan University, China

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628879?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

Acknowledgement

I would like to take this opportunity to express my gratitude to all those who gave me the

possibility to complete this thesis. First of all, I am so much grateful to my supervisors

Prof. Ooi Beng Chin and Dr. Huang Zhiyong, for their guidance, encouragement and

constant support. Their advice, insights and comments have helped me tremendously in

all the time of research for and writing of this thesis in NUS. I would also like to thank

Prof. Jagadish for his valuable suggestions and help during the research, and to thank Dr.

Chan Chee Yong for his guidance and kindness as my mentor during my first semester

in NUS. I sincerely wish to thank NUS and SoC for providing scholarship and facilities

for my study.

Also, my acknowledgements go out to Lin Dan, Cui Bin, Dai Bingtian, Pavan Kumar

B Sathyanarayan, Yao Zhen, Cao Xia, Song Yaxiao, Li Shuaicheng, Xiang Shili, Chen

Chao, and all my colleagues in Database Group for their willing to help in my research.

They have given me quite a lot happy hours. It is my pleasure to get to know all of them

and working together with them. Special thanks go to Ni Yuan, Liu Chengliang, Huang

Yicheng and Yu Jie for their great help in various ways. Their support and friendship

make my life more enjoyable.

iii

Foremost, I would like to express my deep appreciation to my family, especially my

beloved parents. They always share my good and bad experiences, my gains and pains,

my happiness and sadness. Their support, understanding, patience and love accompany

me and encourage me whenever and wherever.

CONTENTS

Acknowledgement ii

Summary ix

1 Introduction 1

1.1 Motivation . 2

1.2 Objectives and Contributions . 4

1.3 Layout . 5

2 Preliminaries 6

2.1 Single-dimensional Indexing Techniques 6

2.1.1 The B+-tree . 7

2.1.2 Hash Structures . 7

2.2 Multi-dimensional Index Techniques 8

2.2.1 The Grid File . 10

2.2.2 The R-Tree . 12

2.2.3 Use of Bounding Spheres . 16

iv

v

2.2.4 The k-d-Tree . 17

2.2.5 Indexes for High-dimensional Databases 19

2.3 Index and Query of Moving Objects 22

2.4 Concurrency in the B-Tree and R-Tree 26

3 The Buddy∗-Tree 28

3.1 Motivation . 28

3.2 Using Velocity for Query Expansion 31

3.3 Structure of Buddy∗-Tree . 35

3.4 Locking Protocols . 39

3.5 Consistency and Recovery . 41

4 Buddy∗-Tree Operations 44

4.1 Querying . 44

4.2 Insertion . 47

4.3 Deletion . 50

5 Experimental Evaluation 53

5.1 Storage Requirement . 53

5.2 Single Thread Experiments . 55

5.2.1 Effect of Dataset Size . 55

5.2.2 Effect of Query Size . 56

5.2.3 Effect of Updates . 57

5.2.4 Effect of Update Interval Length 60

5.2.5 Effect of Data Distribution . 60

5.3 Multiple Thread Experiments . 62

5.3.1 Effect of Number of Threads 63

5.3.2 Effect of Dataset Size . 67

vi

6 Conclusion 71

LIST OF FIGURES

2.1 An Example of B+-Tree . 7

2.2 An Example of Extendible Hashing 8

2.3 An Example of Linear Hashing . 9

2.4 An Example of Grid File . 11

2.5 An Example of R-Tree . 13

2.6 An Example of a 3-level Buddy-Tree 15

2.7 An Example of k-d-Tree . 18

2.8 An Example of a 3-level k-d-B-Tree 19

2.9 An Example of TPR-Tree . 23

3.1 MBRs vs Speed . 29

3.2 Overlap vs Time for Leaf Level MBRs 30

3.3 Two cases of Query Window Enlargement 32

3.4 Indexing Moving Objects with Snapshots 34

3.5 The difference of bounding methods between Buddy-Tree and Buddy∗-

Tree . 37

vii

viii

3.6 An Example of the Structure of Buddy∗-Tree 38

3.7 An Example of Uninstalled Split in Buddy∗-Tree 39

3.8 An Example of Lock Protocol . 40

3.9 An Example of Phantom in R-Link-Tree 42

3.10 An Example of RR in Buddy∗-Tree . 43

4.1 An Example of Range Query . 45

4.2 An Example of Uninstalled Split in Buddy∗-Tree 45

5.1 Storage Requirement . 54

5.2 Effect of Dataset Size on Range Query Performance 56

5.3 Effect of Query Window Sizes on Range Query Performance 57

5.4 Effect of Time Elapsed on Update Cost 58

5.5 Effect of Dataset Size on Update Cost 59

5.6 Effect of Maximum Update Interval 60

5.7 Effect of Data Distribution on Range Query Performance 62

5.8 Effect of Threads on Concurrent Operations 63

5.9 Effect of Threads on Concurrent Updates 65

5.10 Effect of Threads on Update I/O Cost 66

5.11 Effect of Data Size on Concurrent Operations 67

5.12 Effect of Data Size on Concurrent Updates 68

5.13 Effect of Data Size on Update I/O Cost 69

ix

Summary

Rapid advancements in positioning systems such as GPS technology and wireless com-

munications enable accurate tracking of continuously moving objects. This development

poses new challenges to database technology since maintaining up-to-date information

regarding the location of moving objects incurs an enormous amount of updates. Further-

more, some applications require high degree of concurrent operations, which introduces

more difficulties for indexing technology. In this thesis, we shall examine a simple yet

efficient technique in moving objects indexing.

Most of existing techniques for indexing moving objects depend on the use of a

minimum bounding rectangle (MBR) in a multi-dimensional index structure such as

the R-tree. The association of moving speeds with its MBR often causes large over-

laps among MBRs. This problem becomes more severe as the number of concurrent

operations increases due to lock contention. Thus, it cannot handle heavy update load

and high degree concurrent update efficiently. We observe that due to the movement

of objects and the need to support fast and frequent concurrent operations, MBR is a

stumbling block to performance. To address the problem, we believe that indexes based

on hash functions are good alternatives, since they are able to provide quickly update

x

and do not suffer from the overlapping problem. However, region based retrieval must

be supported. Consequently, we propose a “new”, simple structure based on the Buddy-

tree, named Buddy∗-tree. The Buddy∗-tree is a hierarchical structure without the notion

of tight bounding spaces. In the proposed structure, a moving object is stored as a snap-

shot, which is composed of its position and velocity at a certain timestamp. The status

of an indexed object is not changed unless there is an update for it. Instead of cap-

turing speed in an MBR, we enlarge the query rectangle to handle future queries. To

support concurrent operations efficiently we employ sibling pointers like the B-link-tree

and R-link-tree in the Buddy∗-tree. An extensive experimental study was conducted and

the results show that our proposed structure outperforms existing structures such as the

TPR∗-tree and Bx-tree by a wide margin. To this end, we believe that our contributions

have successfully addressed some of the issues of moving objects indexing techniques.

CHAPTER 1

Introduction

Database management system (DBMS) has become a standard tool to assist in maintain-

ing and utilizing large collection of data. To facilitate efficient access to the data records,

index structures are used. An index is a data structure that organizes data records on disk

to optimize certain kinds of retrieval operations [45]. To index single-dimensional data,

hash functions (e.g. [29] and [19]) and the B+-tree [16] are widely recognised as the

most efficient indexes.

During the last decade, spatial databases have become increasingly important in

many application areas such as multimedia, medical imaging, CAD, geography, or molec-

ular biology. Spatial databases contain multi-dimensional data or high-dimensional data

which require much more sophisticate access methods. To support efficient retrieval in

such databases, many indexes have been proposed ([20] and [8]).

With rapid advancements in positioning systems (e.g. GPS technology), sensing

technologies, and wireless communications in recent years, spatio-temporal databases

that manage large volumes of dynamic objects have attracted the attention of researchers.

1

2

In order to track accurately the movement of thousands of mobile objects in such databases,

to develop techniques of efficient storage and retrieval of moving objects is an urgent

need. In addition, some applications such as traffic control system and wireless com-

munication also require the support for high concurrent operations. These requirements

have posed new challenges to database technology. Indeed, this topic has received sig-

nificant interest in recent years.

1.1 Motivation

Mobile objects move in (typically two or three-dimensional) space. As such, traditional

index techniques for multi-dimensional data are a natural foundation upon which to de-

vise an index for moving objects. Indeed, most index structures for moving objects

are developed by making suitable modifications to appropriate multi-dimensional index

structures.

A standard technique for indexing objects with spatial extent is to create a minimum

bounding rectangle (MBR) around the object, and then to index the MBR rather than

the object itself. Since most index structures cannot deal with the complexity of object

shape, the MBR provides a simple, indexable representation at the cost of some (hope-

fully, not too many) false positives. Many multi-dimensional index structures, including

in particular the R-tree [22] and its derivatives (e.g. [53] and [2]), follow such an ap-

proach.

Moving objects, even if they are modeled as points, are in different locations in space

at different times. In an index valid over some period of time, if we wish to make sure

to locate a moving object, we can do so by means of a bounding rectangle around the

location of the object within this period of time. To handle the mobility of objects, most

spatio-temporal indexes also have explicit notions of object velocity, and make linear,

3

or more sophisticated, extrapolations on object position as a function of time. But an

MBR is still required to make sure that a search query does not suffer a false dismissal.

Among such techniques, the TPR-tree [49] is one of the most popular indexes. The TPR-

tree (the Time Parameterized R-tree), an R-tree based structure, adopts the idea from

[54] to model positions of the moving objects as functions of time with the velocities as

parameters. While the use of linear rather than constant functions may reduce the need

for updates by a factor of three [15], and provides query support for current and future

queries, performance remains a problem. Various strategies have since been proposed to

improve the performance of the TPR-tree such as [59].

Individual updates on the R-tree based structures, such as the TPR-tree, tend to be

costly due to modification of MBRs and long duration splitting process of nodes. Fre-

quent tree ascents caused by node splitting and propagation of MBR updates lead to

costly lock conflicts. The concurrency control algorithms of the R-trees, such as the R-

link-tree [32], are not able to adequately handle a high degree of concurrent accesses that

involve updates. This causes us to question about the need of MBR in a highly mobile

database, where moving objects change positions frequently. That is, can we do without

the bounding rectangles?

Another problem of the TPR-tree is the use of enlarged MBRs by taking speed and

the last update time into consideration during query processing. The enlarged MBRs can

cause severe overlap between them – the degree of which is much more severe than the

MBR overlapping problem in the R-tree. The problem lies in the fact that the information

about velocity is embedded in the MBRs. Instead of embedding the velocity information

with the MBR, can we capture it into the query?

In this thesis, we attempt to address these difficulties by redefining the problem of

indexing mobile objects.

4

1.2 Objectives and Contributions

Our idea is that, instead of embedding the velocity information within the index, we

attempt to capture it in the query. Now, instead of point objects ballooning into large

MBRs, we will have point queries being turned into rectangular range queries. On the

surface, this appears to make no difference in terms of performance – so one wonders

why bother to make this equivalence transformation?

It turns out that the benefit we get is that we can now build much simpler indexes

– we only need to consider static objects rather than mobile objects. Simpler multi-

dimensional structures are essential to support high update loads. In particular, we pro-

pose a simple indexing structure based on the Buddy-tree [52] – the Buddy∗-tree. The

bounding rectangles in the internal nodes are not minimum, and are based on the pre-

partitioned cells. They are different sizes, and the union of the lower level bounding

spaces spans the bounding space of the parent.

To allow concurrent modifications, we adapt the concurrency control mechanism of

the R-link-tree. Since the Buddy∗-tree is a space partitioning-based method, it does not

suffer from the high-update cost of the R-tree, and due to the decoupling of velocity

information from bounding rectangles, it does not suffer from the overlap problem of the

TPR-tree.

Our work makes the following contributions:

1. The proposed structure does not suffer from the MBR overlap problem and hence

is able to support more efficient update and range queries for moving object;

2. Node entries only contain space information, and are relatively small, permitting

a larger fanout and requiring less storage space than competing techniques. This

also leads to better performance.

3. An extremely aggressive lock release policy can be applied to obtain high con-

5

currency, through the use of a secondary right link traversal process. Since high

update rates are common for mobile objects, this high concurrency renders the

Buddy∗-tree even more attractive.

The contribution is not so much on the design of a new structure, but insights on simple

and yet elegant solutions in solving the difficult problem of moving object indexing,

which has received a great amount of attention lately.

The rest of this thesis will give a detailed description of the above contributions.

Experimental studies were conducted, and the results show that the Buddy∗-tree is much

more efficient than the TPR∗-tree [59], an improved variant of the TPR-tree, and the

B+-tree based Bx-tree [26].

1.3 Layout

The thesis is organized as follows.

• Chapter 2 surveys previous index techniques for single-demensional and multi-

dimensional objects and moving objects, as well as techniques for concurrency

control for index trees.

• Chapter 3 describes the structure and concurrency control of the Buddy∗-tree.

• Chapter 4 introduces the operations and algorithms of the Buddy∗-tree.

• Chapter 5 describes a careful experimental evaluation.

• We conclude our work in Chapter 6 with some final thoughts and a summary of our

contributions. We also discuss some limitations and provide directions for future

work.

6

CHAPTER 2

Preliminaries

In this chapter, we review some existing structures that are relevant to our work, and

existing index structure concurrency control mechanisms that our concurrency control is

based upon.

Since mobile objects move in (typically two or three-dimensional) space, traditional

index techniques are a natural foundation upon which to devise an index for moving ob-

jects. Indeed, most index structures for moving objects have been developed by making

suitable modifications to appropriate single-dimensional and multi-dimensional index

structures. Therefore, in this chapter, we review some traditional indexing techniques

first.

2.1 Single-dimensional Indexing Techniques

In this section, we introduce some popular indexes for single-dimensional data.

7

2.1.1 The B+-tree

For disk-based databases, I/O accesses dominate the overall operational cost, hence, the

main design goal for index structures is to reduce data page accesses. The widely used

B+-tree [16], a variant of the B-tree [1], requires as many node accesses as the number

of levels to retrieve a data item. The B+-tree (as shown in Figure 2.1) is a multi-way

balanced and dynamic index tree in which the internal nodes direct the search and the

leaf nodes contain the data entries. To facilitate range search efficiently, the leaf nodes

are organized into a doubly linked list. The B+-tree as a whole is dynamic and adaptive

to data volume. It is robust and efficient.

1 2 7 32 36 3921 298 12 19

7 19 39 43

30

40 43 ...

Figure 2.1: An Example of B+-Tree

2.1.2 Hash Structures

The basic idea of hash-based indexing techniques is to use a hash function, which maps

values in a search field into a range of bucket numbers. Random accesses on the hash

structure are fast. However, the hash structure cannot support range searches. Further,

skew distributions may cause collisions and cause the performance to degrade.

The Extendible Hashing [19], a dynamic hashing method, employs a directory to

support dynamic growth and shrinkage of data volume and handle data skewness more

effectively (see Figure 2.2). When overflow occurs, instead of chaining the overflow

page or rehashes, it splits the bucket into two and double the directory to hold the new

8

8000 32 16

1 21 9 17

10 2

19 11

12 28

001

010

011

100

101

110

111

3

2

2

3

3

15 7 31 233

3
Global Depth Local Depth

Direcotry

Figure 2.2: An Example of Extendible Hashing

bucket. Since the growth of the directory is always in power of two, it can be very large

if the hash function is not sufficiently random. Fortunately, the directory size is not very

large in terms of storage requirement.

The Linear Hashing [36] is another dynamic hashing technique, an alternative to

Extendible Hashing (see Figure 2.3). It handles the problem of long overflow chains

without directory. The dynamic hash table grows one slot at a time as it splits the nodes

in predefined linear order. Since the buckets can be ordered sequentially, allowing the

bucket address to be calculated from a base address, no directory is required. Overflow

chain is allowed in Linear Hashing, thus, if the data distribution is very skewed, overflow

chains could cause its performance to be worse than that of Extendible Hashing.

2.2 Multi-dimensional Index Techniques

Many multi-dimensional indexes have been proposed to support applications in spatial

and scientific databases. In this section, we provide review on general multi-dimensional

9

8 32 16

1 21 9

10 2

19 15 11 7 31

h0

Primary Pages

00

01

10

11

Overflow Pages

8 32 12 16

1 21 9

10 2

19 15 11 7

h0

Primary Pages

00

01

10

11

1200

h1

000

001

010

011

100

h1

000

001

010

011

100

After Inserting key value k with h(k) = 31 (Next = 1)Before Insertion (Next = 0)

Figure 2.3: An Example of Linear Hashing

indexing.

Existing multi-dimensional index techniques can be traditionally classified into Space

Partitioning-Based and Data Partitioning-Based index structure.

A Space Partitioning(SP)-Based approach recursively partitions a data space into

disjoint subspaces. The subspaces (often referred to as regions, buckets) are accessed

by means of a hierarchical structure (search tree) or some d-dimensional hash functions.

Popular SP index structures include the k-d-B-tree [46], the Grid File [41], the R+-tree

[53], the LSD-tree [23], the hB-tree [38], the Buddy-tree [52], the VAM k-d-tree[56], the

VAMsplit R-tree [62]), the VP-tree [11], the MVP-tree [9], etc.

A Data Partitioning(DP)-Based approach partitions the data into subpartitions based

on proximity such that each subpartition can fit into a page. The hierarchical index is

constructed based on space bounding, where the parent data space bounds the subspaces.

As such, it is also known as bounding region (BR) approach. In such indexes, BRs may

or may not overlap. In the case where BRs do not overlap, spatial objects have to clipped

and stored in multiple leaf nodes. The R-tree [22] is one of the earliest Data Partitioning-

Based indexes which all the other DP approaches are derived from. The shape of the

10

bounding region can be rectangle (also referred as bounding box) (the R-tree, the R*-

tree [2], the TV-tree [35], the X-tree [7]) or sphere (the SS-tree [63], the SS+-tree [33])

and both of the two shapes (the SR-tree [28]).

Alternatively, we can classify the multi-dimensional index techniques into Feature-

Based and Metric-Based techniques.

The feature based techniques split the space or partition the data based on the feature

values along each independent dimension. The distance function used to compute the

distance among the objects or between the objects and the query points is transparent to

feature based techniques. In the SP-based index structures, feature based approaches in-

clude the k-d-B-tree, the R+-tree, the LSD-tree, the hB-tree, the Buddy-tree, the VAM k-

d-tree, the VAMsplit R-tree. In the DP-based index structures, feature based approaches

include the R-tree, the R*-tree, the TV-tree, the X-tree.

The metric based techniques split the space or partition the data based on the dis-

tances from database objects to one or more suitably chosen pivot points. This technique

is sensitive to the distance function. Popular distance based structures include the SS-

tree, the VP-tree, the MVP-tree and the M-tree [14].

Hybrid approaches have also been proposed to combine the advantages of different

techniques and improve the performance (the Pyramid-tree [6], the Hybrid-tree [10], the

IQ-tree [5]).

Here we introduce and briefly discuss most popular index structures.

2.2.1 The Grid File

The Grid File is a multi-dimensional index structure based on extendible hashing. It

employs a directory and a grid-like partition of the space. In each dimension, the Grid

File uses (d − 1)-dimensional hyperplanes parallel to the axis to divide the whole space

into subspaces, called grid cells. The mapping from grid cells to data buckets is n-to-

11

X-scale

Y-scale

Directory

data buckets

Figure 2.4: An Example of Grid File

1, that is to say, each grid cell is associated to only one data bucket, but one bucket

may contain the regions of several adjacent buddy grid cells (see Figure 2.4). The bucket

management system uses the data structure of d 1-dimensional arrays called linear scales

to describe the partition in each dimension. Another structure is a d-dimensional array

called directory. Each element in the directory is an entry to the corresponding data

bucket. It is used to maintain the dynamic mapping between grid cells and data buckets.

Linear scales are usually kept in the main memory, while the directory is kept on the disk

due to its size.

The Grid File guarantees that a single match query can be answered with two disk

accesses: one read on the directory to get the bucket pointer and the other read on the

data bucket. For a range query, all grid cells which intersect the query region and their

12

corresponding data buckets are inspected.

When a data bucket is overflowing and only one grid cell is associated to the bucket,

a split of the grid cell occurs. Both grid cell and data bucket are split, and linear scales

and directory are updated. If the Grid File maintains an equal-distant interval between

each partitioning hyperplane in every dimension, there is no requirement to maintain

linear scales. A simple hash function is used instead. In such case, a split of a grid cell

is also a split of scale in this dimension, which will cause the directory to double in size.

To reduce the split of directory and increase the space utilization some variances of

Grid File (e.g. the Two-Level Grid File [24], the Multilevel Grid File [61] and the Twin

Grid File [25]) have been proposed.

2.2.2 The R-Tree

The R-Tree The R-tree is a multi-dimensional generalization of the B+-tree, a dy-

namic, multi-way and balanced tree. As shown in Figure 2.5, in an R-tree leaf node,

an entry consists of the pointer to the object and a d-dimensional bounding rectangle

covering its data object. An entry in a non-leaf node contains a pointer to its child, a

lower level node, and a bounding rectangle which covers all the rectangles in the child

node. All the bounding rectangles are tight, so call MBRs, short for minimal bound-

ing rectangles. The union of the MBRs on the same level may not be the whole space.

Furthermore, there might be overlaps among the MBRs.

To do a range search, which is to retrieve all the objects that intersect a given query

window, the algorithm descends the tree starting from root and recursively traverses

down the subtree whose MBR intersects the query window. When a leaf node is reached,

all the objects inside are examined and qualified ones for the query window are returned.

To insert an object, such a recursive process starting from the root is done until reach-

ing a leaf node: choose a subtree whose MBR needs least enlargement to enclose the new

13

P1
P2

R1

R2

R3

R4 R5

R6

R7

R8

P10

P6

P13

P4

P
5

P12

P
14

P7

P
11

P
3

P
15 P

19

P9P
8

P
17

P
16

P
18

(a) A planar representation

R1 R2

R3 R4 R5 R6 R7 R8

P1 P2 P10 P6 P13 P4 P6 P18 P7 P11 P14P12 P3 P15 P19 P8 P9 P17P16

(b) The R-tree

Figure 2.5: An Example of R-Tree

object. The new object then is added into the leaf node and the MBRs along the search

path must be adjusted for the new object. If the node overflows, a split occurs.

The R∗-Tree The R∗-tree is a variant of the R-tree. The objective of the R∗-tree is to

reduce the area, margin and overlap of the directory rectangle. New insertion, split algo-

rithms and forced reinsertion strategy are introduced. Contrary to the R-tree where only

area is considered, overlap, margin and area are considered in the insertion algorithm of

the R∗-tree. The R∗-tree outperforms the R-tree particularly if the data is non-uniformly

distributed.

14

Other variants of the R-tree are proposed to overcome the problem of the overlapping

covering rectangles of the internal nodes of the R-tree, including the R+-tree, the Buddy-

tree and the X-tree. The R+-tree and the Buddy-tree avoid overlapping by employing SP

method, and the objective of the X-tree is to reduce overlap for increasing dimensionality.

The Buddy-Tree The Buddy-tree is a dynamic hashing scheme with a tree-structured

directory. It inherits the idea of MBR from the R-tree, however, it behaves as a SP-

based structure. A Buddy-tree is constructed by cutting the space recursively into two

subspaces of equal size with hyperplanes perpendicular to the axis of each dimension.

The subspaces are recursively partitioned until the points inside one subspace fit within

a single page on disk. Besides a space partition, each internal node in the Buddy-tree

corresponds to an MBR, which is a minimal rectangle that covers all the points accessible

by this node. Figure 2.6 gives an example of a 3-level Buddy-tree, where the space

partitions are showed by plain rectangles and the MBRs by shadowed rectangles. As in

all tree-based structures, the leaves point to the records of points on disk.

To insert a new point, the MBRs along the path from root to the target leaf node must

be adjusted to guarantee that the new point is under cover. If a node is full, the space

partition is halved and the MBRs are calculated for the two new partitions.

Since the Buddy-tree does not allow overlap among the space partition, the MBRs

on the same tree level are mutually disjoint. Therefore, although the idea of MBRs is

similar to R-tree, the Buddy-tree guarantees single-path search for insertions, deletions

and exact match queries, contrary to the multi-path searching behavior in the R-tree. And

compared to the k-d-B-tree, the Buddy-tree offers better performance for range query due

to that the MBRs help to filtrate unqualified nodes. Additionally, the performance of the

Buddy-tree is almost independent of the sequence of insertions, which is an essential

drawback of previous tree-structures (such as the k-d-B-tree or the hB-tree).

One problem of the Buddy-tree is the relatively low fanout, since it maintains both

15

Leaf level

MBRs

Figure 2.6: An Example of a 3-level Buddy-Tree

space partition and MBR in each entry. To solve this problem, a representation of the

rectangles which is similar to that of the so-called hash-trees ([43], [44]) was suggested.

That is, to employ two hash values (lower left and upper right corners), instead of two

d-dimensional points, to represent a rectangle. Another disadvantage of the Buddy-tree

is that although it does not suffer from the problem of forced splits, skewed data possibly

introduces empty or nearly empty regions as well, since a subspace is always split at the

median position.

The X-Tree The X-tree (eXtended node tree) is designed to solve the problem of high

overlap and poor performance of R∗-tree in high-dimensional databases by using larger

fanout. The notion of supernode with variable size is introduced to keep the directory as

flat as possible. Furthermore, the main objective of the insertion and split algorithm is

to avoid those splits that would result in high overlap. The two concepts, supernode and

16

overlap-free split, improve the performance of point query in the X-tree.

2.2.3 Use of Bounding Spheres

The SS-Tree The SS-tree is a distance-based variant of the R-tree. It uses d-dimensional

spheres as BRs instead of bounding rectangles. In insertion algorithm, the choice of sub-

tree is dependant on the distance between the new entry and the centroid of the node.

The structure of the SS-tree enhance the performance of nearest neighbor queries, since

on average the minimum distance of a query point from a bounding sphere is lower than

that from a bounding rectangle. Furthermore, since the SS-tree stores only the centroid

and radius for each entry in the node instead of the bounding rectangle, it only requires

nearly half storage compared to the R∗-tree. Hence, it increases the fanout and reduces

the height of the tree. The SS+-tree is a variant of SS-tree, which uses k-means clus-

tering algorithm as the split heuristic. An approximately smallest enclosing sphere is

employed in the tree and it is a tighter bounding sphere than that of the SS-tree.

The SR-Tree The performance of bounding rectangles and bounding spheres are com-

pared and analyzed in [28]. The conclusion is (1) Bounding rectangles divide points into

smaller volume regions. However they tend to have longer diameters than bounding

spheres, especially in high-dimensional space. Since the lengths of region diameters

have more effects on the performance of nearest neighbor queries, SS-trees, which use

bounding spheres for the region shape, outperforms the R∗-trees; (2) Bounding spheres

divide points into short-diameter regions. However they tend to have larger volumes than

bounding rectangles. Since large volumes tend to cause more overlap, bounding rectan-

gles are advantageous in terms of volume. The SR-tree (sphere/rectangle-tree) [28] com-

bines bounding spheres with bounding rectangles, as the properties are complementary

to each other. The characteristic of SR-tree is that it partitions points into regions with

17

small volumes (rectangles) and short diameters (spheres). Compared to the SS-tree, the

SR-tree’s smaller regions reduce overlap. Compared to the R*-tree, its shorter diameters

enhance the performance of nearest neighbor queries. However, the SR-tree suffers from

the fanout problem. Since it stores more information than the SS-tree and R*-tree do,

the reduction of fanout may require more nodes to be read during query processing.

2.2.4 The k-d-Tree

The k-d-Tree The k-d-tree (k-dimensional tree) [3, 4], a main memory index struc-

ture, is a binary tree designed to index multi-dimensional data points. Most of SP-based

hierarchical structures are derived from the k-d-tree. The k-d-tree is constructed by re-

cursively partitioning point sets using hyperplanes that are perpendicular to one of the

coordinate system axes. An internal node in the tree stores a data point and the dimen-

sion the data value is used to partition the data space. The child nodes, which contain

the left and right (or up and down) subspaces of their parent respectively, are again parti-

tioned using planes through a different dimension. An example of the k-d-tree is shown

in Figure 2.7.

The k-d-B-Tree The k-d-B-tree is one of the earliest disk-based multi-dimensional

index structures. It combines the properties of the adaptive k-d-tree and the B-tree,

which we have introduced in the last section. Like a B-tree, the k-d-B-tree is a disk

based and height-balanced tree. The structure is constructed by dividing the search space

into subregions, which are represented by a k-d-tree (see Figure 2.8). B-tree like pages

management is employed in the k-d-B-tree. If a node (a disk page) overflows, the tree

chooses one dimension to split. In other words, a (d−1)-dimension hyperplane is chosen

to split the space into two nonoverlapping subregions. It is noticeable that the subregions

on the same tree level are mutually disjoint. The disjointness of the subspaces is also the

18

P1

P2

P7

P4

P5
P9

P3

P8
P6

(a) A planar representation

P1.X

P2.Y P4.Y

P3.X P7.X P5.X P6.X

P9.Y P8.Y

(b) The k-d-tree

Figure 2.7: An Example of k-d-Tree

distinctive characteristics of all the SP-based approach. A split of the internal node may

also affect the regions in the subtree, which have to be split by this hyperplane as well.

Since such forced splits of the k-d-B-tree may cause empty or nearly empty nodes, it

is not possible to have a lower bound on the occupancy node to guarantee the storage

utilization. Furthermore, the high cost in cascading splitting is another problem, causing

the tree to be sparse.

19

Leaf level

Figure 2.8: An Example of a 3-level k-d-B-Tree

The VAM k-d-Tree and VAMsplit R-tree The VAM k-d-tree (Variance, Approxi-

mately Median k-d-tree) is a refinement of the adaptive k-d-tree. It chooses the dimen-

sion with the largest variance to split instead of choosing the dimension with the greatest

spread. The split position is approximately the median. The VAMsplit R-tree is derived

from such an optimized k-d-tree. Since the VAMsplit R-tree provides more information

such as upper and lower bounds on each dimension (characteristic as a R-tree) than the

VAM k-d-tree, it reduces the I/O cost in searching.

2.2.5 Indexes for High-dimensional Databases

In the last subsection, we reviewed index techniques for multi-dimensional databases.

These indexes have been designed primarily for low-dimensional databases, and hence

most of them suffer from the ‘dimensionality curse’. In this subsection, we shall briefly

20

review some existing works that have been designed or extended specifically for high-

dimensional databases.

The TV-Tree The TV-tree (Telescopic-Vector tree), an R∗-tree based index, is one of

the first index structures for high-dimensional databases. The main idea is to reduce

dimensionality based on important attributes. That is, the TV-tree telescopes active di-

mensions by activating a variable (typically small) number of dimensions for indexing.

Since more entries can be stored in a node, the TV-tree reduces the effect of the ‘dimen-

sionality curse’.

The MVP-Tree The MVP-tree (Multi-Vantage Point-tree) is a distance-based index-

ing for high-dimensional space. It is an extension of the VP-tree, which partitions a data

set according to the distance between the data and the reference (vantage) point, and uses

median value of such distances as a separator to choose appropriate path for insertion.

The MVP-tree extends the idea by introducing multiple vantage points. Another im-

provement is that the distances between parent nodes and child nodes are pre-computed

in order to reduce the number of distance computations at query time.

The M-Tree In the M-tree the objects are indexed in metric space and the data structure

is parametric on the distance function. The design of the M-tree is based on the princi-

ples of both metric tree and spatial access methods, which leads to the optimization of

reducing both I/O cost (by using the R-tree like structure) and the number of distance

computations (by exploiting the triangle inequality). The distance-based characteristic

makes the approach appropriate for similarity range and nearest neighbor queries.

The Hybrid-Tree The Hybrid-tree is a feature based index. It mixes ideas from both

DP-based and SP-based structures. Similar to the SP-based approaches, the Hybrid-

21

tree always splits a node using a single dimension and stores the partition information

inside the index nodes as the k-d-trees. Compared to the pure SP-based, the Hybrid tree

keeps two split positions and the indexed subspaces need not be mutually disjoint. The

tree operations (search, insertion and deletion) are performed like a DP-based index by

treating the subspaces as BRs in a DP-based data structure.

The VA-File The VA-File (Vector Approximation File) [60] employs the compressing

technique in indexing for high-dimension database. It is simple and yet efficient. The

VA-File divides the data space into 2b rectangular cells where b is a user specified num-

ber of bits. A unique bit-string of length b is allocated for each cell. And data points

(vectors) that fall into a cell are approximated by the corresponding bit-string. Similarity

queries are performed by scanning the VA-File, which keeps the array of compact bit-

strings, to find the potential candidates (filtering step), and then accesses the vectors for

further checking. In a very high-dimensional situation, the VA-File outperforms most

tree structures since most hierarchical indexes suffer from the dimensionality curse and

their performance deteriorate rapidly when the number of dimensions gets higher.

The A-Tree The A-tree [48] combines positive aspects of the VA-File and SR-tree

by applying both partitioning and approximation techniques. The basic idea of the A-

tree is to store a compressed representation of bounding boxes of child nodes in the inner

nodes by using virtual bounding rectangles (VBRs) which contain and approximate BRs

or data objects by quantization. Since VBRs can be represented rather compactly, the

fanout of the tree is bigger and consequently the tree is able to achieve better performance

than the VA-File and SR-tree (as shown in [48]). However, the effect is similar to that of

the X-tree, and is only effective up to certain number of dimension. Further, this is good

only for databases that are fairly static, since insertion and deletion may cause bounding

regions to change and affect the relative addressing.

22

2.3 Index and Query of Moving Objects

There is a long stream of research on the management and indexing of spatial and tem-

poral data, which eventually led to the study of spatio-temporal data management. Since

the traditional index techniques for multi-dimensional data such as the R-tree and its

descendants cannot support heavy update efficiently and do not support queries on the

future state of moving objects, several efficient spatio-temporal presentation and access

methods [31, 57, 42] as well as approaches of querying for moving objects [30, 13]

were proposed. All these approaches are based on the static index techniques we have

discussed in the last two sections. In this section, we introduce several popular access

methods and index structures for mobile objects.

MOST MOST [54] is one of the earliest spatio-temporal data models. It proposes to

address the problem of representing moving objects in database systems by representing

the position of moving objects as a function of time and the motion vector as an attribute.

By treating time as one dimension, moving objects in d-dimension space can be indexed

in (d+1)-dimension. Hence, near future state of an object can be queried. However this

work did not propose any detailed access or processing method.

The TPR-Tree The TPR-tree (the Time Parameterized R-tree) [50] is an R-tree based

index that has been designed to handle objects and predictive queries. The underlying

idea of the TPR-tree is conceptually similar to MOST. Velocity vectors of objects or

MBRs as well as the dynamic MBRs at current time are stored in the tree with the time

as one attribute, as shown in Figure 2.9. At a non-leaf node, the velocity vector of the

MBR is determined as the maximum value of velocities in each direction in the subtree

and such velocity vector is called a velocity bounding rectangle (VBR). The VBR often

causes the associated MBR to change its position; the different edge velocities will even

23

P
1

P
2

R1

R2

R3

R4

R5

R6

P10

P6

P
13

P4

P5

P12

P7

P
11

P3

P9

P8

R7

(a) A planar representation

VR
1
VR

2

VR
3
VR

4
VR

5
VR

6
VR

7

P
1

P
2

P
10

P
6

P
13

P
4

P
5

P
7

P
11

P
12

P
3

P
8

P
9

(b) The TPR-tree (V R denotes the VBR and MBR at time t; P consists of position and velocity vector)

Figure 2.9: An Example of TPR-Tree

cause an object or an MBR to grow with time.

The query behavior of the TPR-tree is similar to that of the R-tree. To handle the

near future query with query time tq, when an MBR with time attribute t is examined for

the query window, it is enlarged based on the VBR and the time distance between t and

tq. The algorithms of insertion and deletion for the TPR-tree are based on those of the

R∗-tree. The method of maintaining dynamic MBRs in the TPR-tree grantees that the

MBRs always enclose the underlying objects or MBRs with time. However the dynamic

MBRs are not necessarily tight. When an object is inserted or removed, the MBR of its

24

parent node is tightened. But the other nodes that are not affected by the insertion or

deletion are not adjusted.

The TPR-tree provides efficient support for querying of the current and future posi-

tion of moving objects. However, it inherits the property of multi-path traversal of the

R-tree, and the different edge velocities cause an object or an MBR to grow, resulting in

more severe overlap, thus, degrades the performance.

[58] proposes a general framework for Time-Parameterized queries in spatio-temporal

database based on the TPR-tree. The concept of “influence time” TINF is introduced to

compute the expiry time of the current result. By treating TINF as the distance metric,

some types of TP query (e.g. window query) can be reduced to nearest neighbor query,

for which branch-and-bound algorithm [47] is employed.

The TPR∗-Tree A performance study of the TPR-tree in [59] shows that the TPR-

tree is far from being optimal by the means of the average number of node accesses

for queries. Subsequently, the TPR*-tree was proposed to improve the TPR-tree by

employing a new set of insertion and deletion algorithms.

In the insertion algorithm of the TPR∗-tree, a QP (priority queue) is maintained

to record the candidates paths which have been inspected. By visiting the descendant

nodes, the TPR∗-tree extends the paths in QP until that a global optimal solution is

chosen, while the TPR-tree only chooses a local optimal path. In the node splitting

algorithm, a set of worst objects whose removal benefits the parent node the most are

removed and reinserted into the tree. These strategies improve the performance of the

TPR-tree, however, additional I/O operations are incurred during updates, and since the

core features of the TPR-tree, such as coupling of VBR to the MBR, remain. The query

performance is achieved at the expense of costlier updates, which require the lock to be

held for a longer period in concurrent operations, hence lock contention is expected to

be more severe.

25

The Bx-Tree The Bx-tree [26] is a B+-tree structure that makes use of transformation

for indexing moving objects in a single-dimensional space. The main idea are lineariza-

tion of the locations and vectors of moving objects using space-filling curve and indexing

of transformed data points in a single B+-tree. In the Bx-tree, the objects are partitioned

based on time, but indexed in the same space. Insertions and deletions are straight-

forward and are similar to those of the B+-tree. However, the index rolls on time based

on the update interval to keep the index size stable. Range queries and predictive queries

involve multiple traversal due to the partitioning on time. The Bx-tree is shown to be

very efficient for range and kNN queries as it does not have the problem of enlarging

MBRs over time. Further, it does not have the time consuming splitting problem. The

concurrency control based on the B-link-tree [34] is adopted in the Bx-tree. However,

unlike R-tree based indexes, the Bx-tree is not scalable in terms of dimensionality.

Other Structures Indexes based on hashing have been proposed to handle moving

objects (e.g. [55] and [12]). In [55], the data space is partitioned into a set of small

cells (subspaces). A moving object is stored in a corresponding cell based on its latest

position. However, no detailed information such as exact position and velocity is stored.

The database is updated only if an object moves to a new cell and asks for an update.

To find the right cell for a certain object, a set of Location Pre-processing parts (LPs)

is used. LPs work based on hashing functions, from which the cell that contains the

target object can be found and accessed from the index. (In [55], the indexing method

employed is Quad-tree Hashing. The space is organized as a quad-tree [51], in which

each leaf node contains the objects inside the associated cell at current time. A node fits

to a data page and splits if overflowing.) One challenge of this approach is that the LPs

have to know the current structure of the index, which is dynamic. Another limitation

is that the index only provides approximate locations for the indexed objects, hence it is

not suitable for the applications that require exact locations or velocities of objects.

26

Some other novel indexes for moving objects have been proposed. However most

methods are only suitable in particular environment. For example, Kalashnikov et.al.

[27] proposed a new idea of indexing the continuous queries instead of indexing the

moving objects to efficiently answer continuous queries based on the assumption that

the queries are more stable compared to moving objects. The authors claimed that the

query index may use any spatial index structure (e.g. the R-tree). However, this approach

is specifically designed for continuous queries and is not suitable for other application.

Hybrid structures have also been proposed. For instance, in [17], hashing on the grid

cells is used to manage hot moving objects in memory, while the TPR-tree is used to

manage cold moving objects on disk, as a way to provide efficient support for frequent

updates.

2.4 Concurrency in the B-Tree and R-Tree

In order to provide correct result for concurrent operations, earlier works on concurrency

of the B+-tree employ top-down lock-coupling. Lock-coupling implies that during de-

scending the tree, the lock on the parent node can only be released after the lock on the

child node is granted. Obviously, the update operations can be blocked by coupled read

locks during tree ascent. Furthermore, if an update operation backing up the tree also

employs lock-coupling, dead lock occurs.

The B-link-tree [34] was subsequently proposed to solve the problem. The structure

of the B+-tree is slightly modified to offer no block search for multiple searches and

updates. In a B-link-tree, every node keeps a right link pointing to the right sibling node

in the same level. On each level all the nodes buildup a right link chain and the nodes

are ordered by their keys. In the modified structure, when a search process without lock-

coupling goes down in the tree, it will not miss any splits, since it will aware of a split by

27

comparing the keys and hereby visits the new split node along the right link chain before

the new node is installed into the tree.

The R-link-tree [32] employs the similar modification for the R-tree. The main dif-

ference between the R-tree and the B-tree is that keys in the R-tree do not keep the order.

Therefore, a structural addition LSN (logical sequence number) is introduced. A unique

LSN within the tree is assigned to each node and an expected LSN is kept in each en-

try of the internal nodes. If a node is split, the new split out node is inserted into the

right link chain and it holds the old node’s LSN. The original node is assigned a new

LSN which is higher than the old one. Before the new node installed, the expect LSN

in the corresponding entry of the parent node is not updated. The split of a node can be

detected by comparing the expect LSN taken from the entry in the parent node with the

actual LSN in this node. If the latter is higher than the former, there is an uninstalled

split. Travel along the right link chain, therefore, is necessary. The traversal is termi-

nated if meeting a node with an LSN equal to the expect LSN. Another difference is that

if the bounding rectangle in the leaf node is changed, we must propagate the change to

its ancestor nodes. This process employs down-top lock-coupling.

The locking strategies of the B-link-tree and R-link-tree are deadlock-free since

there’s always only one lock in the B-link-tree, and the R-link-tree only employs lock-

coupling in the down-top process.

28

CHAPTER 3

The Buddy∗-Tree

3.1 Motivation

A popular approach indexing spacial objects is to employ MBRs (such as the R-tree and

its variants). In order to adapt such indexes for moving objects, VBRs (velocity bounding

boxes) are stored with MBRs (such as the TPR-tree and TPR∗-tree). One shortcoming of

MBR-based index is that the overlaps among the nodes in the same level leads to possible

multi-path search to retrieve an object. In the TPR-tree, due to the existence of VBRs, the

MBRs keep enlarging as time progresses, and the overlapping problem becomes more

and more severe. The TPR*-tree made some changes to alleviate the problem but, as an

MBR/VBR-based index, it still suffers from the MBR overlapping problem.

Consider the example shown in Figure 3.1. This is a typical representation of mov-

ing objects using an MBR. The arrows denote the velocity of each object, broken up

into components along the axes to obtain what are called velocity bounding rectangles

(VBRs). The length of an arrow denotes the absolute value of velocity in the direction.

Note that velocities are associated not just with the data objects, but also with the MBRs.

MBR velocities are independently assigned to each boundary of the MBR, and is the

maximum of the velocities in that direction in any of its included objects.

29

B1

B2

B
3

X

Y

(a) MBRs

B
1

B
2

B
3

X

Y

(b) MBRs after one time unit

Figure 3.1: MBRs vs Speed

Suppose that all the MBRs and VBRs are tightened and each object is inserted into

an optimized node (following the algorithm of the TPR*-tree), as in Figure 3.1 (a). One

time unit later, the MBRs have expanded as shown in Figure 3.1 (b). At this time, the

MBRs overlap each other, and do not tightly bound their constituent points any more.

This problem becomes even more severe as time progresses since the overlapped area

among MBRs B1, B2 and B3 becomes increasingly larger.

Figure 3.2 shows the overlap ratios (the sum of area of all the MBRs / the area of

union of all MBRs) at leaf level in a TPR*-tree with time elapsed. In this experiment,

we use a uniform data set with 500K moving objects spreading in a 1000 × 1000 space,

and the speed of objects are randomly chosen in range 0 to 3. There are no update

operations in the experiment period. The overlap ratio increases quickly as time passes.

In fact, we can make the following observation:

Let xl
i(0), xu

i (0) be the lower bound and upper bound of some MBR respectively

on dimension i at time 0, and �ul
i, �u

u
i be the minimum and maximum velocity of it on

dimension i . After t time units, the volume of this MBR is V =
∏d

i=1(x
u
i (t) − xl

i(t)).

Since xl
i(t) = xl

i(0) + �ul
i · t and xu

i (t) = xu
i (0) + �uu

i · t, the volume of MBR can be

30

 0

 50

 100

 150

 200

 250

 300

 0 10 20 30 40 50

O
ve

rla
pe

 r
at

io

Time Elapsed

Figure 3.2: Overlap vs Time for Leaf Level MBRs

rewritten as V =
∏d

i=1[(x
u
i (0) − xl

i(0)) + (�uu
i − �ul

i) · t]. Therefore,

∂V

∂t
=

d∑
i=1

{(�uu
i − �ul

i) ·
d∏

i′=1,i′ �=i

[(x′u
i − x′l

i) + (�u′u
i − �u′l

i) · t]}

That is, ∂V
∂t

is O(td−1).

The probability of any MBR being accessed by a random point search query, as-

suming uniform distributions, is proportional to the volume of the MBR. Therefore the

expected number of MBRs accessed at any level of the index tree is proportional to the

sum of their volumes. This leads to the following Lemma:

Lemma 1. The rate of increase of the expected number of MBRs to be accessed at some

level l is O(td−1), where t is the elapsed time and d is the dimensionality.

As for concurrent operation, another disadvantage of MBRs for indexing moving ob-

jects is that an insertion in a leaf node even without split may involve several internal

nodes, since a backing up process for modifying the MBRs or VBRs of it’s ancestor

nodes is necessary. In concurrent operations, locks on internal nodes affect the through-

put a lot. Since update operations are quite frequent in moving objects database, the

31

backing up process seriously reduces the performance.

To overcome the challenges described above, we propose a complementary technique

described in Section 3.2 for indexing mobile objects. We concretize these ideas into

an index structure we call the Buddy∗-tree, a variant of the well-known Buddy-tree, in

Section 3.3. Issues of concurrency are important for good performance in an update-

intensive environment, such as one would expect with moving objects. These issues are

studied in the last part of this chapter.

3.2 Using Velocity for Query Expansion

Our central idea is that movement of objects can be handled by expanding queries rather

than actually perturbing objects in the index. To know how much to expand a query by,

we need to know what the velocities of the objects are, so these must also be stored. But

all of this information can be stored as a static snapshot, taken at some time tref . We

store, in the index, the velocities and positions of all objects at this reference time.

As in so many other moving object index structures, we use linear interpolation to

estimate object position at times other than tref . The position of an object at time t can

be calculated by the function x(t) = x(tref) + �v × (t − tref).

Since we index the objects at a reference time which is some time after current time,

the enlargement of query window involves two cases: (1) if query time tq is before tref ,

the location must be brought back to an earlier time (as shown in Figure 3.3 (a)); (2)

otherwise, the location must be forwarded to a later time (as shown in Figure 3.3 (b)).

Based on this, we can suitably enlarge a query as follows: Suppose the query is q with

query window [qxl
i, qxu

i] (i = 0, 1, ...d − 1,where d is dimension of the space), and the

query time is tq, the enlarged query window [eqxl
i, eqxu

i] is obtained as ([26]):

32

v1x

v1y

v2y

v2x

p1

p1'

p2'

p2

ux
l ux

u

uy
u

uy
l

q1

eq1

(a) tq < tref

v3x

v3y

v4y

v4x

p3

p3'
p4'

p4

ux
lux

u

uy
u

uy
l

q2

eq2

(b) tq ≥ tref

Figure 3.3: Two Cases of Query Window Enlargement (pi is the indexed location at tref

of objects and p′i is the actual location at tq)

eqxl
i =

⎧⎪⎪⎨
⎪⎪⎩

qxl
i + �ul

i · (tref − tq) iftq < tref

qxl
i + (−�uu

i) · (tq − tref) otherwise

eqxu
i =

⎧⎪⎪⎨
⎪⎪⎩

qxu
i + �uu

i · (tref − tq) iftq < tref

qxu
i + (−�ul

i) · (tq − tref) otherwise

where ul
i and uu

i are the minimum and maximum velocities respectively of objects inside

the query window in dimension i. Note that we would ideally have liked to enlarge the

query by precisely the velocities of the objects included in the query. But this raises a

chicken and egg problem, since the whole purpose is to determine which objects are in

the query. We get around this problem by separately keeping track of the minimum and

maximum velocities in each region.

Theorem 1. Enlargement of query window provides the correct answer.

Proof. Suppose q is an original query with query time tq and query window R = [qxl
i,

33

qxu
i] (i = 0, 1, ...d−1), let Sq be the set of points returned by the original query. We also

denote Sref as the set of points returned by query q′ with query time tref and enlarged

query window R′ calculated by the above formula. We wish to show that Sq = Sref .

For any point x ∈ Sq, let x(tq) and x(tref) be its positions at time tq and tref

respectively, we show x(tref) is returned by our algorithm.

First, we suppose that tref > tq. x(tq) and x(tref) are related by x(tref) = x(tq) +

�v · ∆t, where ∆t = tref − tq > 0. If we can prove x(tref) ∈ R′, then enlarged query q′

will return x.

We use the same representation as the above formula for R, R′ and the minimum

and maximum velocities of objects inside R. Notice that x ∈ Sq and �v is velocity of x,

thus �ul
i ≤ �vi ≤ �uu

i and qxl
i ≤ x(tq)i ≤ qxu

i . ∆t > 0 (i = 0, 1, ...d − 1). Therefore,

qxl
i + �ul

i · ∆t ≤ x(tq)i + �vi · ∆t ≤ qxu
i + �uu

i · ∆t, i.e. eqxl
i ≤ x(tref)i ≤ eqxu

i , hence

we have x(tref) ∈ R′. We can prove that x(tref) ∈ R′ when tref ≤ tq similarly. Hence,

Sq ⊆ Sref .

For any point x ∈ Sref we have x ∈ Sq, since every candidate point will be examined

and unqualified ones will be removed. That is Sref ⊆ Sq

Therefore, Sq = Sref , i.e. enlargement of query window provides the correct answer.

Our overall index structure is thus to create a number of snapshot indexes, each at

a selected reference time point. Queries with respect to times that lie between these

reference points are resolved by using the closest time reference and extrapolating lin-

early using the formulae above. This is illustrated in Figure 3.4. Figure 3.4 (a) shows the

snapshots of the objects at reference time tref and also illustrates the contents of the three

subspaces in the index. Figure 3.4 (b) shows the status of objects and index one time unit

after tref , where the dark points denote the snapshots and the light points denote the real

locations of objects at this time. Consider the object p in Figure 3.4 (a), which is indexed

34

S1

S3

S2

p

(a) Snapshots at time tref

S
1

S3

S
2

p

p'

(b) Snapshots at time tref + 1

Figure 3.4: Indexing Moving Objects with Snapshots

in the node with space S1 based on its location at time tref . Although after one time unit,

p’s actual position is inside space S3 (p′ in Figure 3.4 (b)), it is still stored in S1, since

we are only interested in the positions of objects at time tref .

With the passage of time, we use different reference time points to index objects,

which are called timestamps, denoted as tl1 , tl2 , tl3 ,. . . . We let the timestamps always

be the medial time in a whole update interval. If the maximal update interval of the

index is Tui, and index is constructed at time 0, then, the first tl is Tui/2, second is

Tui × 3/2 and so on. Given an object whose updated time is tu, we will index it at the

(�tu/Tui�+1)th timestamp. For example, if Tui = 120, tu = 130, since �tu/Tui�+1 = 2,

we will index this object using the second timestamp, that is tl = Tui × 3/2 = 180. After

determining the indexed timestamp, we can calculate the object’s position at tl according

to its position and velocity at tu. The position at tl and velocity compose the snapshot,

which is used to insert the object into the index. After every Tui time, the old tl expires

and all new incoming objects are inserted using the new tl. In some operations (such as

deletion), we might have the old status of an object and want to find it in the index. For

example, given an object p, whose updated time is tu(p) and the location and velocity at

time tu(p) are also available, to retrieve it from the index, we first use the above function

35

to calculate the timestamp tl for tu(p), followed by computing the snapshot that we have

used to index p, and finally, search the index for such snapshot. The search algorithm is

to be introduced in Chapter 4.

3.3 Structure of Buddy∗-Tree

Given that we have a set of static points to index in each snapshot, and given the impor-

tance of fast update, we choose the Buddy-tree [52] as the basic structure of our proposed

index. The index tree is constructed by cutting the space recursively into two subspaces

of equal size with hyperplanes perpendicular to the axis of each dimension. Each sub-

space is recursively partitioned until the points in the subspace fit within a single page

on disk.

We make several alterations to this basic Buddy-tree structure to suit our needs. We

call the new index structure a Buddy∗-tree. A traditional Buddy-tree creates tight bound-

ing rectangles around the data points in each node, as shown in Figure 3.5 (a). Although

the MBRs help in the efficiency in query operation, one disadvantage is that insertion

and deletion of an object (no node splitting or merging occurs) probably changes the

MBR of the located leaf node. Furthermore, if the MBR of a child node is changed, the

parent node should be visited to adjust its MBR. Consider such an example in Figure 3.5

(b). After object p is inserted into the leaf node with MBR B2, B2 is enlarged to B′
2 and,

as a result, the MBR of the parent node B0 is enlarged to B′
0 as well. It is same to delete

operations. Therefore, backing up the tree is a potential part of an insert or delete pro-

cess. It is notable that a backing up process costs a lot in high degree concurrency, since

visiting and locking an internal node is very likely to block other threads’ operation and,

hence, reduces the degree of concurrency. Since such tight MBRs are costly to update,

we choose instead to use loose bounding. Specifically, we partition space, and use the

36

entire space partition as the bounding rectangle for indexing purposes (see Figure 3.5

(c)), thus completely avoiding the need for bounding rectangle update (as illustrated in

Figure 3.5 (d), an insertion of object does not make any change to the bounding spaces

in the tree), at the cost of having some bounding rectangles be unnecessarily large (and

hence require needless access at search time). We call this a Loose Bounding Space

(LBS) associated with the index tree node. Although the MBR outperforms the LBS in

query operation, to achieve efficient update and high degree concurrency LBS is a better

choice. Furthermore, since the LBS is same as the space partition, for the Buddy∗-tree

there is no need to maintain additional information in the node entries. Therefore, we can

gain a higher fanout which benefits the performance by reducing node accesses. Addi-

tionally, another reason to support this choice is for concurrency control purpose, which

is discussed later.

To know how much to expand a query rectangle by, we need knowledge of the min-

imum and maximum velocities in each node. A naive method is using the global maxi-

mum speed to enlarge the query window. However this method might introduce unnec-

essary node access. We improve it by maintaining a list of local maximum velocities

for all the index nodes. This information is computed for each node and then stored in

the main memory at our first visit of that node. In the search process for a range query,

when we visit a node, and need to determine which children of this node to visit, we thus

have available to us not just the bounding rectangles for each child, but also the extremal

velocities of objects in it.

To support high degree concurrent operations on Buddy∗-tree, we absorb the idea

of right links among each level from B-link-tree [34] and R-link-tree [32]. Thus, at

any given level all nodes are chained into a singly-linked list. The Buddy∗-tree, like

the R-tree, is a multi-dimensional index structure, and hence does not have a natural

ordering of keys at each level available in the case of a B-tree. To solve this problem,

37

B0

B1

B2

B3

(a) MBRs of Buddy-tree

B0'

B1

B2'

B3
p

(b) Insertion in MBRs

S0

S2

S1 S3

(c) LBSs of Buddy∗-tree

S0

S2

S1 S3

p

(d) Insertion in LBSs

Figure 3.5: The difference of bounding methods between Buddy-Tree and Buddy∗-Tree

[32] assigned an additional parameter LSN as the timestamp to each node and recorded

the expected LSNs of the child nodes in each entry. The LSN is used to detect the split

and determine where to stop when moving right along the right link chain. However, this

structural addition is not required in the Buddy∗-tree since we are guaranteed not to have

overlaps between nodes. Instead, any lexicographic ordering of keys, constructed by

following the path from root to leaf, will suffice. We can then rely upon these sideways

links to delay the upward propagation of node splits, thereby allowing update operations

to give up locks on ancestor nodes quickly rather than having to retain them against the

possibility of a node split.

Figure 3.6 (a) shows an example of the Buddy∗-tree in 2-dimensional space, with the

38

S6 S7

S1 S3 S5 S2 S4

P1 P2 P7 P9 P12 P3 P8 P13 P5 P10 P15P11 P4 P6 P14

S0

S6 S7

S1 S3 S5 S2 S4

(a) The Buddy∗-tree

P1

P
2

P10

P6

P13

P4

P
5

P
12

P14

P7
P11

P3

P
15

P9

P
8

S0S6 S7

S3 S5

S1 S2

S4

(b) A planar representation

Figure 3.6: An Example of the Structure of Buddy∗-Tree

corresponding data space illustrated in Figure 3.6 (b). The first capital letter in a node

denotes the LBS of it, followed by the entries with key LBS (expected LBS for the child

node) or points.

Figure 3.7 shows an example in a Buddy∗-tree fragment of how to detect an unin-

stalled split. Consider the second entry in the parent node Np in figure 3.7(a). It points

to node N3, where the key LBS in the entry (S2) is same as the actual LBS found in N3.

This is the normal case. However, there can be another case due to delayed propagation

of node splits. Consider the first entry with key LBS S1, which points to node N1 with

LBS S ′
1, where S ′

1 is a subspace of S1. N1 has a right link to node N2, which also has

LBS that is a subspace of S1. Continuing farther along right links, N3 is the first node

that does not overlap S1. This stops the right link traversal. All the nodes encountered in

the right traversal, up to and excluding the last node, are covered by a single entry in the

39

S
1

S
2

S
3S0

S1"S1' S2

Np

N1 N2 N3

S3
...

N4

(a) A Buddy∗-tree fragment

S1

S2

S3

S2

S3

S1'

S1"

S0

(b) Space partition

Figure 3.7: An Example of Uninstalled Split in Buddy∗-Tree

parent, and must all be explored during a search, until such time as the split is installed

at the parent node, with separate entries for each child.

A Buddy-tree may not be balanced due to the property that each directory node in

it contains at least two entries. However, the Buddy∗-tree is height balanced since it

omits the more-than-one-entry property. Due to the frequent movement of objects strict

adherence to certain “fill-factor” is not only quite redundant, it is not cost effective and

it will unnecessarily slow down the concurrent operations. From the observation we

made at the experimental study, leaf nodes of the Buddy∗-tree are about 63%-76% filled,

while internal nodes are 35%-67% filled. The occupancy rate is comparable to multi-

dimensional indexes such as the R-tree.

3.4 Locking Protocols

The top nodes in an index structure can become hot-spots for concurrency as each of

multiple processes need to access these en route to various leaf nodes and data. Locking

protocols for tree indexes have been studied extensively. We use the following variation

of a tree protocol for concurrency:

1. Top-down: In traversal of the tree top-down, only one lock is required at a time,

that is, we release the lock of parent before we lock the child. For example, in

40

Figure 3.8 we lock node NP and obtain pointer to N1. Then we release lock of NP

and request lock for N1. This is more aggressive than typical tree locking, which

will continue to hold the lock on NP until it receives lock on N1. The worrisome

case due to such an early lock release on our part is that a user gets the pointer to

node N1 from its parent NP but N1 is subsequently updated (and split) by another

inserter before the user gets access to it. In this case, the user will subsequently

detect the update by comparing the LBS in the entry of parent level with LBS in

N1. For instance, if a split has occurred, it will be found as discussed above in the

example shown in Figure 3.7.

S
1S0

S1"S1'

Np

N1 N2

...

Figure 3.8: An Example of Lock Protocol

2. Left-to-right: In traversal of the right link chain, only one lock is required at a

time. The example in Figure 3.8 is that we get the right link from the left node N1

and release the lock before we apply lock for the right node N2. The reason for

correctness is similar to case (1). Right link chain can help to solve the problem

if any other thread overtakes us and splits the node before we reach it. Entries in

the original node can only move right, hence, when we keep looking right it is

impossible for us to miss the object or the entry even if we hold only one lock at

any time.

3. Bottom-up: To install changes (node splits), we have to move back up the tree. In

this backing up process, we employ lock-coupling. For example, in Figure 3.8 if

we have updated node N1 and should back up the tree from it, we must hold the

41

write-lock of child node N1 until we obtain write-lock of the parent NP . Lock-

coupling avoids the situation that another inserter causing a split overtakes us and

installs the split before us, and finally we install our changes without being aware

of the other inserter.

Due to the use of right links, we have in effect rendered node splitting (and merging)

atomic at each level. In conjunction with the locking described above, it is easy to see that

the tree will appear consistent at all times to any user. Furthermore, the locking protocols

are deadlock-free. This is because only one lock is held at a time except during back-up.

But during back-up, the process only moves upwards: after locking a node it never seeks

to lock a node below it. Due to this ordering, we are guaranteed to be deadlock-free.

3.5 Consistency and Recovery

The highest degree of transactional isolation is defined as Degree 3 consistency 1or re-

peatable read (RR) isolation 2[21]. This is a common requirement for concurrent access

in database systems. A simple solution would be to lock all involved leaf nodes, that is

to lock the leaf nodes in which several entries are returned by the search for the duration

of the entire transaction. This is not sufficient due to the phantom insertions [18].

The phantom problem can occur with a tree locking protocol on an index, including

the specific protocol we described above. To solve the phantom problem, the B-link-tree

employs key-range locking (key-value locking) [39] and R-link-tree uses a simplified

form of predicate locks [18]. Notice that the Buddy∗-tree is a space-partition based

index, there is no gap among the subspaces covered by all leaf nodes, that is, the whole

1Transaction T is degree 3 consistency if (1) T does not overwrite dirty data of other transactions; (2
)T does not commit any writes before EOT (end of the transaction); (3) T does not read dirty data of other
transactions; (4) Other transactions do not dirty any data read by T before T completes.

2Repeatable read implies that if a search operation is run twice within the same transaction it must
return the exact same result (even if that result set is empty).

42

space is covered by leaf nodes. Therefore, we are able to employ a simpler solution: we

simply retain locks on leaf nodes until the end of transaction, thereby ensuring that no

one can modify these nodes. Since we use LBS that completely cover pace partitions,

this is sufficient to guarantee repeatable reads.

Consider the example using MBRs in Figure 3.9. At the beginning, the query range R

intersects leaf MBR B1 and B3 (Figure 3.9 (a)). Later, the insertion of object p enlarges

B2 (Figure 3.9 (b)) and causes it to intersect R so that a repeat search of R will find p in

the result. Avoiding this problem is not easy, and requires the use of expensive predicate

locks in general. In contrast, the situation with the Buddy∗-tree is shown in Figure 3.10.

There is no gap among the subspaces covered by leaf nodes and if we lock the leaf nodes

corresponding to S1, S2 and S3 the whole query range is accordingly “locked”, and no

inserter can make any update inside R. Thus repeatable reads are guaranteed.

R

B1

B3

R

B1
B2

B3

B2'
p

(a) (b)

Figure 3.9: An Example of Phantom in R-Link-Tree

We take in the recovery method of R-link-tree based on the idea from [40] and [37].

The brief idea is to divide an update operation into contents-changing and structure-

modifying part and employ a logical undo and redo. For the content-change, which

involves the update on a leaf, write-ahead-logging (WAL) is used for recovery purpose.

As for structure-modification, which may be a node split or update of any internal nodes,

it does not have to be locked until the initiating transaction commits and can be visible

immediately, i.e. if an atomic action such as split is committed, it will not roll back even

43

R

S1

S3

S2

Figure 3.10: An Example of RR in Buddy∗-Tree

if the initiating transaction fails.

44

CHAPTER 4

Buddy∗-Tree Operations

In this chapter, we will describe the individual operations on the Buddy∗-tree.

4.1 Querying

Buddy∗-tree enlarges query range instead of enlarging MBRs. The formulae to calculate

the enlarged window were presented in Section 3.2. These formulae require knowledge

of minimum and maximum object velocities. Rather than computing these globally,

we do this on a per node basis, suitably enlarging the query window when determining

whether there is the possibility of overlap with a node.

Pseudocode for the range query algorithm is shown in Algorithm 1 and 2. The pro-

cedure Range Search() is recursively called to examine a candidate node beginning from

the root. During the visit of each node, if this is an interior node, its child nodes are added

into the tobeV isited list, when they are identified as having possible overlaps with the

Algorithm 1 Range Query(Root, r)
/* Input: Root is the root node. r is the query including query window, the predictive
time (tpre) and the query time (tq)*/

1: l := the indexed space
2: Range Search(r, Root, l)
3: r unlock(all the locked leaf node)

45

suitably expanded query region. And then, Range Search() is called for all the nodes in

the list. If this is a leaf node, candidate matching data points are returned. Next, a right

link is followed and additional linked nodes are visited as needed.

r

R1

R2

R3

Figure 4.1: An Example of Range Query

S
1

S
2

S
3S0

S1"S1' S2

Np

N1 N2 N3

S3
...

N4

(a) A Buddy∗-tree fragment

S1

S2

S3

S2

S3

S1'

S1"

S0

(b) Space partition

Figure 4.2: An Example of Uninstalled Split in Buddy∗-Tree

Figure 4.1 gives a range query example. Suppose part of the index is shown as

in Figure 4.2 and the query range is r, illustrated in Figure 4.1. First, the function

Range Search is called for root node Np and its LBS S0. LBSs of the three entries S1,

S2 and S3 are compared with the query range R1, R2, R3 respectively, suitably expanded

based on the time stamps and the recorded velocity extreme in these entries. The first and

third entries are qualified and the child node pointers inside are added into tobeV isited

list with their LBS S1 and S3. We call procedure Range Search for N1 and N4 in turn.

As a leaf node, N1 is checked and qualified object entries are returned to the user.

The current LBS of N1 is S ′
1, which is not equal to S1, which means that node N1 has

46

Algorithm 2 Range Search(r, N , l)
/* Input: r is the query window. N and l are the pointer of the node to be examined and
its LBS obtained from its parent node, respectively*/

1: r lock(N)
2: if N is marked by this thread then
3: UnMark(N)
4: end if
5: for each entry e in N that e.LBS overlaps R, obtained by enlarging r according to

the time difference and extremal velocities in e.node do
6: if N is not a leaf node then
7: Add(tobeV isited, (e.node, e.LBS))
8: Mark(e.node)
9: else

10: output qualified points in e
11: end if
12: end for
13: if N is not leaf then
14: r unlock(N)
15: end if
16: while tobeV isited is not empty do
17: (N ′, l′) := Get(tobeV isit) // get next child N ′ which is to be visited, l′ is the LBS

added to the list together with N ′

18: Range Search(r,N ′, l′)
19: end while
20: if N.LBS is not equal to l /* there exists a split of N hasn’t been installed */ then
21: traverse the right link chain starting at N to first node whose LBS is not contained

in l
22: for each node M along the chain except the last one do
23: r lock(M)
24: l′ := M.LBS
25: r unlock(M)
26: Range Search(r, M , l)
27: end for
28: end if

47

split. So its right link is followed and N2 is reached. LBS S ′′
1 of N2 is contained in S1,

hence, it is tested by the query window for qualified object entries as if it were part of

original node N1. Continuing along right links, N3 is next reached and the fact that its

LBS S2 is not part of S1 completes the right traversal.

Consider such a case in the above example–after NP is visited, node N1 and N4 are

added into tobeV isited list and if before we visit N4, other users delete some points

which causes N3 merge with N4, then when it is our turn to visit N4, it has already been

deleted. To avoid such problem we mark a node if it is added into the tobeV isited list in

query process (line 8 in Algorithm 2) and remove our mark for this node when we obtain

the lock for it (line 3). To delete a node, the marks for it must be check (see Section 4.3).

4.2 Insertion

The insert process of the Buddy∗-tree consists of three main steps as outlined in Al-

gorithm 3. First, the snapshot of the object must be computed, i.e. the location at tl,

according to its location and velocity at the update time tu and it is put in an entry (line

1). Second, we must locate the leaf node N that the object (snapshot) should be inserted

into, following a procedure similar to that for search described above. The path from

root to the leaf N is noted (line 2). Third, the actual insertion is performed (line 4) after

locking N , using the algorithm Insert Entry().

The function of Insert Entry(s, N) (outlined in Algorithm 4) is to insert the entry

s into the node N . A possible situation is that after we locate N and before we lock

Algorithm 3 Insert(p,tu)
/* Input: p is the point to insert and tu is the operation time */

1: s := the entry containing p’s snapshot according to tu and tl
2: N := Locate(root, s, path)
3: w lock(N)
4: Insert Entry(s, N)

48

it, another inserter overtakes us and splits N . To ensure correctness in this case, before

putting s in N , we must check whether it is the right node to insert, i.e. whether N ’s

LBS covers s’s (line 1). If not so, which means that N is split, we move right, hence

Move Right(s, N) is called (line 2). The function of Move Right(s, N) (outlined in

Algorithm 5) is to find a node in the right link chain beginning from N , which is suitable

for s. Then, s is simply put in the new N that is returned by Move Right() if there is any

empty entry (line 4-7). Otherwise, a split is caused by the overflow (line 8-27).

Algorithm 4 Insert Entry(s, N)
/* Input: s is the entry containing a point or a branch to install into node N . Node N as
input is write-locked and it is unlocked after the procedure, */

1: if N.LBS doesn’t cover s.LBS /* N has been split */ then
2: N := Move Right(N , s.LBS)
3: end if
4: if find an empty entry e in N then
5: put s in e
6: N.num + +
7: w unlock(N)
8: else
9: Node Intlz(newN)

10: Split Node(N , newN)
11: if N is not the root then
12: P := N ’s parent node /* get information from the memoried path */
13: w lock(P)
14: if P.LBS doesn’t cover N.LBS /* P has been split */ then
15: P := Move Right(P , N .LBS)
16: end if
17: w unlock(N)
18: update LBS in the corresponding entry in P for N
19: s′ := the entry containing newN
20: Insert Entry(s′, P)
21: w lock(N)
22: Insert Entry(s, N)
23: else
24: Node Intlz(P)
25: insert N and newN in P and make it new root for the index tree
26: Insert Entry(s, N)
27: end if
28: end if

49

Algorithm 5 Move Right(N , s)
/* Input: N is the beginning node in the right travel and s is the entry with the wanted
point or LBS. The procedure will release lock for original N and write-lock the new N*/

1: while N.LBS does not cover s.LBS do
2: tempN := N ’s right link
3: w unlock(N)
4: N := tempN
5: w lock(N)
6: end while

Algorithm 6 Split Node(N,newN)
/* Input: N is the node to split and newN is a new empty node for split purpose. The
write-lock for N is already hold and will kept in the entire procedure*/

1: splitdim := Choose Spl Dim(N)
2: split the LBS and repartition pointers between N and newN according to splitdim
3: insert newN into the right link chain next to N

The LBS S of an overflowed node N is split into two equal sized parts S1 and S2,

where S1 occupies the original node N and S2 is assigned as LBS to a new node newN .

The split dimension is chosen by turn in rotation, and the split position is the median. The

new node newN is firstly inserted into the right link chain of N . The above process is

done in function Split Node() (Algorithm 6). At this stage, the LBS in the corresponding

entry of N ’s parent node is not updated, but any concurrent accesses can reach newN

through the right link chain from N . After that, we install the split into the parent if

N is not the root (line 11-22). The parent node P of N is accessed (line 12), using the

root-to-leaf path remembered from line 2 of Algorithm 3. Since P is possibly split by

some other users after our last access, we should check P ’s LBS with that of N and

newN (line 14). If N ’s LBS is not a subspace of P ’s, we can conclude that P has been

split. The right link chain beginning with P is searched to reach the real parent node for

N and newN (line 15). N ’s LBS is updated in P (line 18) and the entry with new node

newN is installed (line 19-20). This new entry installation could cause node P to split,

and so on recursively until a node with empty entry is reached or the root is split (line

50

23). In the latter case a new root is created (line 24-25).

4.3 Deletion

Deletion is similar to insertion; first locate the key value at leaf level and then delete it. It

is possible that this causes the leaf node to have very few (non-empty) entries left. Such

underflow is handled in the Buddy∗-tree by merging it with its buddy, where the buddy

has few enough entries itself.

Node splits and merges require “backing up” the tree at a potential loss of concur-

rency. For the more common case of node splits, we have described in detail how to use

right-links to manage node splits with minimal impact on concurrency. For the less com-

mon case of node merges, the same ideas apply, in reverse order. That is to say, when a

node merger is to be undertaken of two buddy nodes, first fix the entry at the parent to

point only to the “left” buddy. At this stage, the “right” buddy is no longer linked from

the parent, but is only accessible by right linking from its buddy. Then actually perform

the node merge into the left buddy and eliminate the right buddy. The algorithm details

are along the lines described for insertion above (shown in Algorithm 7, 8, 9 and 10).

Note that, for typical scenarios with moving objects, updates are much more frequent

than pure insertions or deletions. While performing a node merge is possible algorith-

mically, from an engineering perspective we are frequently better off leaving alone the

underflowed node since it is quite likely to fill up again after a while.

51

Algorithm 7 Delete(p,tu)
/* Input: p is the point to delete and tu is the last update time of p */

1: s := the entry containing p’s snapshot according to tu and tl
2: N := Locate(root, s, path)
3: w lock(N)
4: Del Entry(s, N)

Algorithm 8 Del Entry(s, N)
/* Input: s is the entry containing a point or a branch to delete from node N . Node N as
input is write-locked and it is unlocked after the procedure. */

1: if N.LBS doesn’t cover s.LBS /* N has been split */ then
2: N := Move Right(N , s.LBS)
3: end if
4: if find the entry s in N then
5: delete s from N
6: N.num −−
7: end if
8: if N.num < MinFill and N ’s right neighbor �= NULL then
9: M := N ’s right neighbor

10: w lock(M)
11: if IsBuddy(N , M) and N.num+M.num ≤ Fanout /* merge N and M */ then
12: P := N ’s parent node
13: w lock(P)
14: if P.LBS doesn’t cover N.LBS /* P has been split */ then
15: P := Move Right(P , N .LBS)
16: end if
17: e1.LBS := e1.LBS + e2.LBS //e1 and e2 are entries in P for child nodes N

and M respectively
18: Del Entry(e2, P)
19: Merge Node(N , M)
20: w unlock(P)
21: Del Node(M)
22: else
23: w unlock(M)
24: end if
25: end if
26: if N is the root and N.num = 1 then
27: make N ’s child the root
28: Del Node(N)
29: else
30: w unlock(N)
31: end if

52

Algorithm 9 Merge Node(N,M)
/* Input: M is the node to be merged into N . The write-locks for N and M are already
hold and will kept in the entire procedure, i.e., they are still locked after the procedure*/

1: update N.LBS by merging the LBSs of N and M
2: copy all the no-empty entries from M to N
3: copy the right link of M to N

Algorithm 10 Del Node(N)
/* Input: N is the node to be deleted*/

1: if N is marked by any thread //N in a certain tobeV isited list then
2: put N into tobeDel list //the nodes in tobeDel list will be deleted periodically
3: w unlock(N)
4: else
5: delete this node
6: end if

53

CHAPTER 5

Experimental Evaluation

In this chapter, we perform experimental study to evaluate the performance of the

Buddy∗-tree and present the results.

We implemented the Buddy∗-tree, and compared its performance to that of the TPR∗-

tree and Bx-tree. All of these structures were implemented in C. All experiments were

conducted on a single CPU 3G PentiumIV Personal Computer with 1 G bytes of memory.

We ran two sets of experiments, one with a single thread of activity, and another

with multiple concurrent threads. In both sets of experiments we use synthetic uniform

datasets. The position of each object in the data set is chosen randomly in a 1000× 1000

space. Each object moves in a randomly chosen direction with a randomly chosen speed

ranging from 0 to 3. We constructed the index at time 0. For the test on the effect of data

distributions, we use the network dataset [49]. The parameters used in the experiments

are summarized in Table 5.1, and the default values are highlighted in bold.

5.1 Storage Requirement

Storage requirement is an important issue for database index. Firstly, a comparatively

smaller size index can be whole cached in the main memory to improve performance.

Secondly, a smaller size index means less data pages (nodes), such that, it reduces the I/O

54

Parameter Setting
Page size 4K
Max update interval 60,120,180,240
Max predictive interval 120
Query window size 10,20,...,100
Number of queries 200
Dataset size 100K,...,500K,...1M
Number of threads 2,4,8,...,64,128,256
Number of operations per thread 200
Data distributions uniform, network

Table 5.1: Parameters and Settings

cost due to an operation such as query or update may visit fewer nodes. The fanout of an

internal index node plays a most important role in the storage requirement. Obviously,

if the size of the information maintained for a child node is smaller, there’s more child

nodes can be kept in one internal index nodes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

1000900800700600500400300200100

S
to

ra
ge

 s
pa

ce
c

on
 d

is
k

(K
by

te
s)

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

Figure 5.1: Storage Requirement

In a Buddy∗-tree internal entry, the space partition is kept for the child node (at least 8

Bytes for 2-dimensional space). We use the global speed for enlarging the query space,

and hence speed local to each LBS is not stored. We observe in the experiments that

55

local speeds only improve the performance slightly since most maximum local speeds

are close to the global maximum speeds. As for Bx-tree, each entry contains a 64bit

key (8 Bytes). However, a TPR∗-tree internal node stores MBRs and VBRs for each

child entry (24 Bytes for 2-dimensional space). The storage requirement of the indexes

is shown in Figure 5.1. As anticipated, TPR∗-tree requires more than twice storage space

of the others, which are comparable.

5.2 Single Thread Experiments

In this part there is only one thread in the experiments. We study the performance of the

Buddy∗-tree by comparing I/O cost and CPU cost to TPR∗-tree and Bx-tree.

5.2.1 Effect of Dataset Size

First, we study the range query performance with different sizes of dataset by comparing

the costs when the number of moving objects in the dataset varies from 100K to 1M. 200

window queries with size 10 are issued after the index running for an entire maximum

update interval of 120 time units. The predictive intervals of the queries are randomly

chosen in the range from 0 to 120. Figure 5.2 shows the average cost of I/O operation

and CPU time per query for the three inspected indexes.

As expected, the results show that the window query costs of all the indexes increase

with the number of objects. However, The increasing speed of the TPR∗-tree is much

higher than that of the others. When there are 1M objects in the dataset, the cost of the

TPR∗-tree is nearly 3 times over that of the Bx-tree and more than 5 times over that of

the Buddy∗-tree. The explanation of this result is as follows. The Buddy∗-tree is a space

partition based index whose range query cost increases mainly due to the number of

objects inside the range. However, with increasing number of data, the TPR∗-tree suffers

56

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 q
ue

ry
 I/

O
s

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

(a) I/O cost

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 q
ue

ry
 C

P
U

 ti
m

e
(s

)

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

(b) CPU time

Figure 5.2: Effect of Dataset Size on Range Query Performance

seriously from the overlap among MBRs. Furthermore, the small fanout also limits the

performance of the TPR∗-tree. The Bx-tree employs a space filling curve to map objects

in 2-dimensional space to single dimension space. The curve is cut into a set of intervals

by a query window. To search for all the intervals we must “jump” among the subtrees,

and during such jumps several internal nodes are likely to be visited more than once.

This behavior introduces a few more I/O operations.

5.2.2 Effect of Query Size

We next investigate the performance of the indexes with respect to query size.

In the experiments we vary the query window size from 10 to 100 on a dataset of

size 500K. The same 200 queries with predictive interval randomly chosen from 0 to

120 are issued in the three indexes after they run for 120 time units. As shown in Figure

5.3, query costs of all the indexes increase with the query window size. This behavior is

straightforward, since a larger window covers more objects and accordingly, more index

nodes will be accessed and examined. However, the TPR∗-tree degenerates considerably

over the other indexes. This is attributed to the overlap problem of TPR∗-tree. Since

a larger query window contains more overlaps of the MBRs, and hence, more accesses

57

of nodes result. The Bx-tree costs a little more than the Buddy∗-tree does. As can

be observed, with query window increasing, the gap between Bx-tree and Buddy∗-tree

declines. With query window size 10, the Buddy∗-tree reduces the query cost by about

50% compared to that of the Bx-tree and this performance gap is only about 10% when

the window size increases to 100. This is because that in the query process on Bx-tree,

a larger query window tends to get a smaller set of longer intervals of the space curves

rather than a larger set of shorter intervals in a smaller window. This reduces the high

cost of “jumps” in a way.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 q
ue

ry
 I/

O
s

Range query window size

TPR*-tree
Bx-tree

Buddy*-tree

(a) I/O cost

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 q
ue

ry
 C

P
U

 ti
m

e
(s

)

Range query window size

TPR*-tree
Bx-tree

Buddy*-tree

(b) CPU time

Figure 5.3: Effect of Query Window Sizes on Range Query Performance

5.2.3 Effect of Updates

In this subsection, we compare the average update cost of Buddy∗-tree against the TPR∗-

tree and the Bx-tree.

First, to study the update costs of the indexes evolving with the passage of time,

we compute the average update cost of the three indexes after every 50K updates in a

500K dataset. Note that each update involves an insertion and a deletion and leave the

size of the tree unchanged. Figure 5.4 summarizes the results, showing that TPR∗-tree

degrades considerably faster than the Bx-tree and Buddy∗-tree, which are comparable.

58

The reason is that each deletion entails a search to retrieve the object to remove and

since the behavior of multiple path travel in the TPR∗-tree, the cost of search inevitably

increases with time due to the continuous enlargements of the MBRs which are not

updated as time passes. Fortunately, the update cost approaches a saturation point after

some time as the enlargement of MBRs grows at a much slower pace due to the overall

coverage. In contrast, we observe that the average update costs of Bx-tree and Buddy∗-

tree are not very sensitive with respect to elapse time. This is because that in the Bx-tree

and Buddy∗-tree, an insertion or deletion only travel down one path by comparing the

key (a value in Bx-tree and a rectangle or a point in Buddy∗-tree). No matter how large

the dataset is, only the nodes along the path from root to the leaf node that contains the

desired object are accessed. Thus, the number of I/Os only depends on the height of the

tree and does not change much over time. In fact, they are almost time independent.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 u
pd

at
e

I/O
s

Number of updates (K)

TPR*-tree
Bx-tree

Buddy*-tree

(a) I/O cost

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 50 100 150 200 250 300 350 400 450 500

A
ve

ra
ge

 u
pd

at
e

C
P

U
 ti

m
e(

s)

Number of updates (K)

TPR*-tree
Bx-tree

Buddy*-tree

(b) CPU time

Figure 5.4: Effect of Time Elapsed on Update Cost

We next compare the update performance of indexes with respect to the size of

dataset. In this experiment, we vary the number of objects in the dataset from 100K

to 1M, and investigate the average update costs after the indexes running for a maximum

update interval of 120 time units. Figure 5.5 shows the update cost as a function of the

number of moving objects.

59

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 u
pd

at
e

I/O
s

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

(a) I/O cost

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 u
pd

at
e

C
P

U
 ti

m
e

(s
)

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

(b) CPU time

Figure 5.5: Effect of Dataset Size on Update Cost

As shown in the figure, an update in the Bx-tree or Buddy∗-tree only incurs several

I/Os and the cost is not affected a lot by the size of dataset. The reason is that the retrieval

of an object in Bx-tree or Buddy∗-tree is single-path and, thus, the number of I/Os only

depends on the height of the tree. Only when the increasing data size causes the tree

to grow, an update in the two indexes will incur about 2 more I/Os. However, in this

experiment, when the range of dataset size is varied from 100K to 1M, both the Bx-tree

and the Buddy∗-tree remain 3-level tall, hence, no change of the update costs is observed.

We observe that the performance of the TPR∗-tree degrades with the increasing size

of the dataset. The explanation is that in the TPR∗-tree, traversing multi-path is inevitable

due to the overlaps among MBRs. The increase in data size causes the increase in density

of objects, resulting in more overlap and higher update cost. The performance curve of

TPR∗-tree can be observed at the point of ‘900K’ due to the growth of the tree from 3

levels to 4 levels. The TPR∗-tree grows faster than the others due to the smaller fanout

of it.

60

5.2.4 Effect of Update Interval Length

In this experiment, we study the effect of maximum update interval length on the update

performance of indexes. Figure 5.6 shows the average update costs after the indexes

run for one maximum update interval, varying from 60 to 240. Observe that the Bx-tree

and Buddy∗-tree are not affected by the length of maximum update interval, whereas

the TPR∗-tree degrades fairly quickly. As we have discussed above, this is because the

number of I/Os of these two indexes only depends on the height of the tree and does

not change over time. As the update interval increases, MBRs in TPR∗-tree keep en-

larging; overlaps among them become more severe. Therefore the update cost increases

significantly.

 0

 20

 40

 60

 80

 100

 120

 140

 60 80 100 120 140 160 180 200 220 240

A
ve

ra
ge

 u
pd

at
e

I/O
s

Maximum update interval

TPR*-tree
Bx-tree

Buddy*-tree

(a) I/O cost

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 60 80 100 120 140 160 180 200 220 240

A
ve

ra
ge

 u
pd

at
e

C
P

U
 ti

m
e

(s
)

Maximum update interval

TPR*-link-tree
Bx-tree

Buddy*-tree

(b) CPU time

Figure 5.6: Effect of Maximum Update Interval

5.2.5 Effect of Data Distribution

This experiment uses the network dataset to study the effect of data distribution on the

indexes. The dataset is generated by an existing data generator, where objects move in

a road network of two-way routes that connect a given number of uniformly distributed

destinations [49]. The dataset contains 500K objects, that are placed at random positions

on routes and are assigned at random to one of three groups of objects with maximum

61

speeds of 0.75, 1.5, and 3. Objects accelerate as they leave a destination, and they

decelerate as they approach a destination. Whenever an object reaches its destination, a

new destination is assigned to it at random.

Figure 5.7 summarizes the average range query costs of the three indexes when the

number of destinations in the simulated network of routes is varied. Decreasing the num-

ber of destinations adds skew to the distribution of the object positions and their velocity

vectors. Thus, uniform data is an extreme case. As shown, increased skew leads to a

decrease in the range query cost in the TPR∗-tree. This is expected because when there

are more objects with similar velocities, they are easier to be bounded into rectangles

that have small velocity extents and also are not too big. The results are consistent with

the performance of the TPR-tree reported in [49]. As expected, the performance of the

Bx-tree is not affected by the data skew because objects are stored using space-filling

curves and hence, the density has less of an effect on the index. Observe that the range

query cost of the Buddy∗-tree firstly increases with the number of destinations and after

the point that the number of destination is 300, the cost descends. A main reason for this

interesting behavior is that the data distribution affects two factors, which make contrary

effects on the performance of the Buddy∗-tree – (i) with the increasing skewness of the

dataset, the objects inside the same data page tend to possess more similar velocities,

which leads to less enlargements of the query windows during the range queries and

thus, less cost of queries; (ii)since the split algorithm of the Buddy∗-tree is not adaptive

for data distribution, skewed dataset may introduce empty or nearly empty data nodes

for the index, resulting in poor disk utilization and hence cause the decline in query per-

formance. As shown, when the dataset is very skewed (the number of destinations is less

than 300), the cost decreases with the skewness of dataset because factor (i) dominates

the performance. After the turning point of 300, factor (ii) affect the performance a little

more, therefore the cost decreases with number of destinations.

62

 0

 200

 400

 600

 800

 1000

Uniform100040030020015010050

A
ve

ra
ge

 q
ue

ry
 I/

O
s

Number of destinations

TPR*-tree
Bx-tree

Buddy*-tree

(a) I/O cost

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

Uniform100040030020015010050

A
ve

ra
ge

 q
ue

ry
 C

P
U

 ti
m

e
(s

)

Number of destinations

TPR*-tree
Bx-tree

Buddy*-tree

(b) CPU time

Figure 5.7: Effect of Data Distribution on Range Query Performance

5.3 Multiple Thread Experiments

In this part we compare the performance of indexes on concurrent operations. We used

multi-thread programs on the PC to simulate multi-user environment. We implemented

B-link for Bx-tree. We note that the TPR∗-tree employs different update algorithms from

the TPR-tree (e.g. remove and reinsert a set of entries in split algorithm), it cannot

grantee RR (repeatable read) even if we implement R-link for it. Designing a new and

efficient concurrency control mechanism for the TPR∗-tree is possible, but not straight-

forward. For baseline comparison purposes, we simply locked the whole TPR∗-tree for

concurrency control. For illustration purposes, we also implemented the R-link structure

for the TPR-tree, and show its performance in Section 5.3.2.

In the following experiments, each thread issues 200 operations, and the default

workload of each thread contains the same number of queries and updates.

63

5.3.1 Effect of Number of Threads

First, we investigate the effect of the number of threads. Figure 5.8 shows the throughput

and response time for the indexes by varying the thread number from 2 to 256 (each

thread issues 100 queries and 100 updates).

 0

 20

 40

 60

 80

 100

 120

 140

256128643216842

T
hr

ou
gh

pu
t

Number of threads

TPR*-tree
Bx-tree

Buddy*-tree

(a) Throughput

 0

 2

 4

 6

 8

 10

 12

256128643216842

R
es

po
ns

e
tim

e
(s

)

Number of threads

TPR*-tree
Bx-tree

Buddy*-tree

(b) Response time

Figure 5.8: Effect of Threads on Concurrent Operations

All the indexes reach the highest throughput at around 8 threads and thereafter show

64

deteriorating performance as the number of threads is increased. Measuring the decline

as we go from 8 to 256 threads, we find this decrease to be only 6.5% for Buddy∗-tree,

but 24.5% and 24.6% for Bx-tree and TPR∗-tree respectively. Since the Buddy∗-tree

has been designed for high concurrency, its superior performance with multiple threads

validates our design. The decline in performance of the TPR∗-tree is also to be expected.

The surprise is the decline in performance of the Bx-tree in spite of the use of B-link

chain for high concurrency. The main reason for this is that a lot of “jumps” in the

Bx-tree for range query increase the number of accesses of and locks on internal nodes,

which reduces the degree of concurrency.

Note that we measured multi-thread operation on a single-CPU PC, on which differ-

ent threads could not be really run at the same time. We believe that in a real concurrent

environment both Bx-tree and Buddy∗-tree will provide even better performance, com-

pared to the TPR∗-tree.

The results for response time show the impact of concurrency even more starkly. The

response time of TPR∗-tree with 256 threads is about 240 times of that with 2 threads.

This ratio approximately 200 and 100 for Bx-tree and Buddy∗-tree respectively.

To study the update performance with respect to the number of threads, in this ex-

periment, we vary the thread number from 2 to 256, where each thread is assigned a

workload of 200 updates.

The throughput and response time for the indexes are summarized in Figure 5.9. The

throughput of the TPR∗-tree and the Bx-tree descend with the thread number increasing.

As shown in Figure 5.10, with the increase of threads number, average update I/Os of

all the indexes are not effected much. Therefore, we can conclude that the degenerations

of the TPR∗-tree and Bx-tree are not caused by I/O operations, but caused by lock con-

tention. As before, the degradation of the TPR∗-tree is to be expected. However, the

performance of the Bx-tree is much below expectation. The main reason is that, there’re

65

 0

 50

 100

 150

 200

 250

 300

 350

 400

256128643216842

T
hr

ou
gh

pu
t

Number of threads

TPR*-tree
Bx-tree

Buddy*-tree

(a) Throughput

 0

 1

 2

 3

 4

 5

 6

 7

 8

256128643216842

T
hr

ou
gh

pu
t

Number of threads

TPR*-tree
Bx-tree

Buddy*-tree

(b) Response time

Figure 5.9: Effect of Threads on Concurrent Updates

66

three subtrees for different timestamps in the Bx-tree and the insertions at a same time

only involve one of the subtrees, that is, all the insertions “crowd” in 1/3 part of the

index tree. The crowd becomes more severe with threads number increasing, resulting

in more access conflicts and hence lower degree of concurrency. In contrast, the perfor-

mance of the Buddy∗-tree is almost not affected by the thread number due to the right

link structure, and quicker release of locks due to simpler split and no bounding box

update.

 0

 5

 10

 15

 20

 25

256128643216842

A
ve

ra
ge

 u
pd

at
e

I/O
s

Number of update threads

TPR*-tree
Bx-tree

Buddy*-tree

Figure 5.10: Effect of Threads on Update I/O Cost

Note that, I/O cost of TPR∗-tree in Figure 5.10 is not consistent with that in Figure

5.4. This is because that all the updates in Figure 5.10 issue at a same time, and the

MBRs are not enlarged by time. While, updates in Figure 5.4 spread randomly in a

period of 120 time units and the MBRs keep enlarging due to time elapsing and hence

I/O cost increases.

67

5.3.2 Effect of Dataset Size

We next investigate the performance of the indexes with different numbers of moving

objects on concurrent operations. In these experiments, the throughput and response

time are compared after running 64 threads on the dataset whose size varies from 100K

to 1M.

 0

 50

 100

 150

 200

 250

 300

1000900800700600500400300200100

T
hr

ou
gh

pu
t

Number of moving objects (K)

TPR-link-tree
TPR*-tree

Bx-tree
Buddy*-tree

(a) Throughput

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

1000900800700600500400300200100

R
es

po
ns

e
tim

e
(s

)

Number of moving objects (K)

TPR-link-tree
TPR*-tree

Bx-tree
Buddy*-tree

(b) Response time

Figure 5.11: Effect of Data Size on Concurrent Operations

68

 0

 50

 100

 150

 200

 250

 300

 350

 400

1000900800700600500400300200100

T
hr

ou
gh

pu
t

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

(a) Throughput

 0

 0.5

 1

 1.5

 2

1000900800700600500400300200100

T
hr

ou
gh

pu
t

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

(b) Response time

Figure 5.12: Effect of Data Size on Concurrent Updates

69

As shown in Figure 5.11, the performance of all indexes reduces with the increasing

number of moving objects. This is straightforward, since the larger the dataset is, the

more nodes an index contains and the more I/O operations a query or update brings.

However the Buddy∗-tree outperforms the other indexes for both throughput and re-

sponse time. As before, TPR∗-tree is the worst, because that small fanout and overlap

cause poor range query performance. However, its performance is comparable to the

TPR-tree whose more efficient R-link based concurrent accesses are being compromised

by poorer query efficiency.

 0

 5

 10

 15

 20

 25

 30

 35

 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 u
pd

at
e

I/O
s

Number of moving objects (K)

TPR*-tree
Bx-tree

Buddy*-tree

Figure 5.13: Effect of Data Size on Update I/O Cost

Also, we conduct experiments to study the effect of data size on concurrent updates.

The setting of this experiment is same with that of the last one, except that the workloads

only contain updates. From Figure 5.13, we can see that the average update I/O costs of

three indexes do not affected obviously by the dataset size. TPR∗-tree costs about twice

of the others do. However, compared to the performance showed in Figure 5.5, the cost

of TPR∗-tree in this experiment is much lower and does not degrade much with data size

increasing. As before, this is due to the different distribution of updates with respect

70

to time. The Bx-tree and the Buddy∗-tree achieve almost the same I/O performance.

Whereas, the results summarized in Figure 5.12 shows that Buddy∗-tree outperforms

Bx-tree in the throughput and response time. This attributes to that the right links enable

the Buddy∗-tree to handle concurrent updates efficiently, however, the Bx-tree suffers

from the “crowd” problem. The concurrent performance of TPR∗-tree is still the worst.

This is without doubt, since the highest I/O cost and worst concurrency control of it.

The performance study in this chapter shows that the Buddy∗-tree outperforms the

TPR∗-tree and the Bx-tree in both single-thread experiments and experiments with con-

current operations. Especially for high degree concurrent operations, Bx-tree outper-

forms the other two indexes by a wide margin.

71

CHAPTER 6

Conclusion

In this thesis, we investigated the problem of indexing for moving objects. We presented

a thoroughly review of traditional index structures and existing indexing techniques for

mobile objects. In order to support frequent updates and concurrent operations, we pro-

posed a space partitioned based index structure Buddy∗-tree, a generalization of Buddy-

tree, for indexing mobile objects.

The central idea is to use an adaptive query expansion technique to allow for object

motion, while indexing only static snapshots. Therefore, we only need to consider static

objects rather than mobile objects. So we can choose a multidimensional structure with

good update properties. Buddy-tree, as a well performed SP based index, thus, is used

as the basic for our new index. We create a Buddy∗-tree based on a standard Buddy-tree

with two key differences. First, the LBSs (loose bounding spaces) are employed instead

of the MBRs (minimum bounding rectangles). This strategy benefits both the update

process and concurrent operations, at the cost of having some bounding rectangles be

unnecessarily large. However, the cost is worthy, which is verified by the experiment

72

results in Chapter 5. Secondly, since high update rates are common for mobile objects,

a right link structure is additionally used to permit high concurrency. We make use of

the properties of Buddy∗-tree to realize concurrent control without any other structure

additional (such as LSN in R-lint-tree). An object is partitioned to an index node based

on its location at a certain reference time, and is stored as a snapshot consisting of ve-

locity vector and location with the timestamp. To handle future range query, we employ

query window enlargement instead of MBRs enlargement in TPR-tree. We also proved

that these two methods of enlargement create the same query results.

The main advantages of our proposed index structure are as follows:

1) As a space partitioned based structure without MBRs, it does not suffer from the

overlap problem and hence is able to support more efficient update and range queries for

moving objects;

2) According to the presentation method of Buddy∗-tree, node entries only contain

space information for the subtree or objects, and are relatively small, permitting a larger

fanout and requiring less storage space than competing techniques such as the TPR∗-tree.

This also leads to better performance.

3) An extremely aggressive lock release policy can be applied to obtain high con-

currency, through the use of a secondary right link traversal process. Since high update

rates are common for mobile objects, this high concurrency renders the Buddy∗-tree even

more attractive.

These advantages are verified by the experiments. The performance study shows that

the Buddy∗-tree outperforms the TPR∗-tree and the Bx-tree. This is even more strongly

the case when multiple concurrent operations are applied.

The main limitation of Buddy∗-tree, which is inherited from Buddy-tree, is the stor-

age utilization for skewed data. Since we employ almost the same split algorithm with

that of Buddy-tree – when a node overflows, the corresponding space is always split into

73

two subspaces of equal size. Skewed data, thus, will introduce empty or nearly empty

nodes. Therefore, in the future work, we will try to study the split strategy (such as com-

bining with the split idea of VAM k-d-tree) to improve storage utilization for skewed

data without much effect on query performance.

BIBLIOGRAPHY

[1] R. Bayer and E. M. McCreight. Organization and maintenance of large ordered

indexes. Acta Informatica, 1(3):173–189, 1972.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: an efficient

and robust access method for points and rectangles. In the Proceedings of ACM

SIGMOD international Conference on Management of Data, pages 322–331, 1990.

[3] J. L. Bentley. Multidimensional binary search trees used for associative searching.

Communications of the ACM, pages 509–517, 1975.

[4] J. L. Bentley and J. H. Friedman. Data structures for range searching. ACM Com-

puting Surveys, 11(4):397–409, 1979.

[5] S. Berchtold, C. Bohm, H. V. Jagadish, H.-P. Kriegel, and J. Sander. Independent

Quantization: An index compression technique for high-dimensional data spaces.

In the Proceedings of the International Conference on Data Engineering, pages

577–588, 2000.

74

75

[6] S. Berchtold, C. Bohm, and H.-P. Kriegel. The pyramid-technique: Towards break-

ing the curse of dimensionality. In the Proceedings of ACM SIGMOD International

Conference on Management of Data, pages 142–153, 1998.

[7] S. Berchtold, D. A. Keim, and H.-P. Kriegel. The X-Tree: An index structure for

high-dimensional data. In the Proceedings of International Conference on Very

Large Databases, pages 28–39, 1996.

[8] C. Bohm, S. Berchtold, and D. Keim”. Searching in high-dimensional spaces:

index structures for improving the performance of multimedia databases. ACM

Computing Surveys, 33(3):322–373, 2001.

[9] T. Bozkaya and M. Ozsoyoglu. Distance-based indexing for high-dimensional met-

ric spaces. In the Proceedings of ACM SIGMOD International Conference on Man-

agement of Data, pages 357–368, 1997.

[10] K. Chakrabarti and S. Mehrotra. The Hybrid Tree: An index structure for high

dimensional feature spaces. In the Proceedings of the International Conference on

Data Engineering, pages 440–447, 1999.

[11] T. Chiueh. Content-Based Image Indexing. In the Proceedings of the 20th Interna-

tional Conference of Very Large Data Bases, pages 582–593, 1994.

[12] H. D. Chon, D. Agrawal, and A. E. Abbadi. Using space-time grid for efficient

management of moving objects. In the Proceedings of the 2nd ACM international

workshop on Data engineering for wireless and mobile access (MobiDE), pages

59–65, 2001.

[13] H. D. Chon, D. Agrawal, and A. E. Abbadi. Range and kNN query processing

for moving objects in grid model. Mobile Networks and Applications(MONET),

8(3):401–412, 2003.

76

[14] P. Ciaccia, M. Patella, and P. Zezula. M-Tree: An efficient access method for

similarity search in metric spaces. In the Proceedings of International Conference

of Very Large Data Bases, pages 426–435, 1997.

[15] A. Civilis, C. S. Jensen, J. Nenortaite, and S.Pakalnis. Efficient tracking of moving

objects with precision guarantees. DB Technical Report TR-5, 2004.

[16] D. Comer. The ubiquitous B-Tree. ACM Computing Surveys, 11(2):121–137, 1979.

[17] B. Cui, D. Lin, and K. L. Tan. Towards optimal utilization of main memory for

moving object indexing. In the Proceedings of the 10th International Conference

on Database Systems for Advanced Applications, pages 600–611, 2005.

[18] K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of con-

sistency and predicate locks in a database system. Communications of the ACM,

19(11):624–633, 1976.

[19] R. Fagin, J. Nievergelt, N. Pippenger, and H. R. Strong. Extendible hashing - a

fast access method for dynamic files. ACM Transactions on Database Systems,

4(3):315–344, 1979.

[20] V. Gaede and O. Gunther. Multidimensional access methods. ACM Computing

Surveys, 30(2), 1998.

[21] J. Gray. Notes on database operating systems. Operating Systems - An Ad-

vanced Course, number 66 in Lecture Notes in Computer Science, pages 393–481,

Springer-Verlag, 1978.

[22] A. Guttman. R-Trees: A dynamic index structure for spatial searching. In the

Proceedings of ACM SIGMOD International Conference on Management of Data,

pages 47–57, 1984.

77

[23] A. Henrich, H.-W. Six, and P. Widmayer. The LSD-Tree: spatial access to mul-

tidimensional point and non-point objects. In the Proceedings of International

Conference of Very Large Data Bases, pages 45–53, 1989.

[24] K. Hinrichs. Implementation of the Grid File: design concepts and experiences.

BIT, 25(4):569–592, 1985.

[25] A. Hutflesz, H.-W. Six, and P. Widmayer. The Twin Grid File: space otimizing

access schemes. In the Proceedings of ACM SIGMOD International Conference

on Management of Data, pages 183–190, 1988.

[26] C. S. Jensen, D. Lin, and B. C. Ooi. Query and update efficient B+-Tree based

indexing of moving objects. In the Proceedings of International Conference on

Very Large Data Bases, pages 768–779, 2004.

[27] D. V. Kalashnikov, S. Prabhakar, S. Hambrusch, and W. Aref. Efficient evaluation

of continuous range queries on moving objects. In the Proceedings of the 13th In-

ternational Conference on Database and Expert Systems Applications, pages 731–

740, 2002.

[28] N. Katayama and S. Satoh. The SR-Tree: An index structure for high-dimensional

nearest neighbor queries. In the Proceedings of ACM SIGMOD International Con-

ference on Management of Data, pages 369–380, 1997.

[29] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, 1973.

[30] G. Kollios, D. Gunopulos, and V. J. Tsotras. Nearest neighbor queries in a mobile

environment. In the Proceedings of the International Workshop on Spatio-Temporal

Database Management, pages 119–134, 1999.

[31] G. Kollios, D. Gunopulos, and V. J. Tsotras. On indexing mobile objects. pages

261–272, 1999.

78

[32] M. Kornacker and D. Banks. High-concurrency locking in R-Trees. In the Pro-

ceedings of the 21st International Conference on Very Large Data Bases, pages

134–145, 1995.

[33] R. Kurniawati, J. S. Jin, and J. A. Shepherd. The SS+-Tree: An improved index

structure for similarity searches in a high-dimensional feature space. In the Pro-

ceedings of Storage and Retrieval for Image and Video Databases, pages 516–523,

1997.

[34] P. Lehman and S. Yao. Efficient locking for concurrent operations on b-trees. ACM-

TODS, 6(4), 1981.

[35] K. Lin, H. V. Jagadish, and C. Faloutsos. The TV-Tree: An index structure for high-

dimensional data. The International Journal on Very Large Data Bases, 3(4):517–

542, 1994.

[36] W. Litwin. Linear hashing: A new tool for file and table addressing. In the Proceed-

ings of the 6th International Conference on Very Large Data Bases, pages 212–223,

1980.

[37] D. Lomet and B. Salzberg. Access method concurrency with recovery. In the

Proceedings of the ACM SIGMOD International Conference on the Management

of Data, pages 351–360, 1992.

[38] D. B. Lomet and B. Salzberg. The hB-tree: a multi-attribute indexing method

with good guaranteed performance. ACM Transactions on Database Systems,

15(4):625–658, 1990.

[39] C. Mohan. ARIES/KVL: A key-value locking method for concurrency control of

multiaction transactions operating on B-Tree indexes. In the Proceedings of the

16th International Conference on Very Large Data Bases, pages 392–405, 1990.

79

[40] C. Mohan and F. Levine. ARIES/IM: An efficient and high concurrency index

management method using write-ahead logging. In the Proceedings of the ACM

SIGMOD International Conference on the Management of Data, pages 371–380,

1992.

[41] J. Nievergelt, H. Hinterberger, and K. C. Sevcik. The Grid File: An adaptable, sym-

metric multikey file structure. ACM Transactions on Database Systems, 9(1):38–

71, 1984.

[42] B. C. Ooi, K. L. Tan, and C. Yu. Frequent update and efficient retrieval: an oxy-

moron on moving object indexes? In the Proceedings of International Web GIS

Workshop.

[43] E. J. Otoo. Balanced multidimensional extendible hash tree. In the Proceedings

of the 5th ACM SIGACT-SIGMOD Symposium on Principles of Database Systems,

pages 100–113. ACM, 1986.

[44] A. M. Ouksel. The interpolation-based grid file. In the Proceedings of the 4th ACM

SIGACT-SIGMOD Symposium on Principles of Database Systems, pages 20–27.

ACM, 1985.

[45] R. Ramakrishnan and J. Gehrke. Database management system (third edition).

[46] J. T. Robinson. The k-d-B-tree: a search structure for large multidimensional dy-

namic indexes. In the Proceedings of ACM SIGMOD International Conference on

Management of Data, pages 10–18, 1981.

[47] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In the

Proceedings of ACM SIGMOD International Conference on Management of Data,

pages 71–79, 1995.

80

[48] Y. Sakurai, M. Yoshikawa, S. Uemura, and H. Kojima. The A-Tree: An index struc-

ture for high-dimensional spaces using relative approximation. In the Proceedings

of International Conference of Very Large Data Bases, pages 516–526, 2000.

[49] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the posi-

tions of continuously moving objects. In the Proceedings of ACM SIGMOD Inter-

national Conference on Mangement of Data, pages 331–342, 2000.

[50] S. Saltenis, C. S. Jensen, S. T. Leutenegger, and M. A. Lopez. Indexing the posi-

tions of continuously moving objects. In the Proceedings of ACM SIGMOD Inter-

national Conference on Mangement of Data, pages 331–342, 2000.

[51] H. Samet. The Quadtree and related hierarchical data structures. ACM Computing

Surveys, pages 187–260, 1984.

[52] B. Seeger and H. P. Krieger. The buddy-tree: An efficient and robust access method

for spatial data base systems. In the Proceedings of International Conference on

Very Large Data Bases, pages 590–601, 1990.

[53] T. Sellis, N. Roussopoulos, and C. Faloutsos. The R+-Tree: a dynamic index for

multi-dimensional objects. In the Proceedings of the 13th International Conference

of Very Large Data Bases, pages 507–518, 1987.

[54] A. P. Sistla, O. Wolfson, S. Chamberlain, and S. Dao. Modeling and querying

moving objects. In the Proceedings of the International Conference on Data Engi-

neering, pages 422–432, 1997.

[55] Z. Song and N. Roussopoulos. Hashing moving objects. In the Proceedings of the

2nd International Conference on Mobile Data Management, pages 161–172, 2001.

[56] R. F. Sproull. Refinements to nearest-neighbor searching in k-dimensional trees.

Algorithmica, 6(4):579–589, 1991.

81

[57] Y. Tao and D. Papadias. MV3R-Tree: A spatio-temporal access method for times-

tamp and interval queries. The International Journal on Very Large Data Bases,

pages 431–440, 2001.

[58] Y. Tao and D. Papadias. Time-parameterized queries in spatio-temporal databases.

In the Proceedings of the ACM SIGMOD international conference on Management

of data, pages 334–345, 2002.

[59] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An optimized spatio-temporal ac-

cess method for predictive queries. In the Proceedings of International Conference

of Very Large Data Bases, pages 790–801, 2003.

[60] R. Weber, H. J. Schek, and S. Blott. A quantitative analysis and performance study

for similarity-search methods in high-dimensional spaces. In the Proceedings of

International Conference of Very Large Data Bases, pages 426–435, 1998.

[61] K.-Y. Whang and R. Krishnamurthy. The multilevel grid file - a dynamic hierar-

chical multidimensional file structure. In the Proceedings of the 2nd International

Symposium on Database Systems for Advanced Applications, pages 449–459, 1991.

[62] D. A. White and R. Jain. Similarity indexing: Algorithms and performance. In

the Proceedings of Storage and Retrieval for Image and Video Databases, pages

62–75, 1996.

[63] D. A. White and R. Jain. Similarity indexing with the SS-Tree. In the Proceedings

of the International Conference on Data Engineering, pages 516–523, 1996.

