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Summary

Rapid advancements in positioning systems such as GPS technology and wireless com-
muni cations enabl e accurate tracking of continuously moving objects. This development
poses new challenges to database technology since maintaining up-to-date information
regarding the location of moving objectsincurs an enormous amount of updates. Further-
more, some applications require high degree of concurrent operations, which introduces
more difficulties for indexing technology. In this thesis, we shall examine a simple yet
efficient technique in moving objects indexing.

Most of existing techniques for indexing moving objects depend on the use of a
minimum bounding rectangle (MBR) in a multi-dimensional index structure such as
the R-tree. The association of moving speeds with its MBR often causes large over-
laps among MBRs. This problem becomes more severe as the number of concurrent
operations increases due to lock contention. Thus, it cannot handle heavy update load
and high degree concurrent update efficiently. We observe that due to the movement
of objects and the need to support fast and frequent concurrent operations, MBR is a
stumbling block to performance. To address the problem, we believe that indexes based

on hash functions are good aternatives, since they are able to provide quickly update



and do not suffer from the overlapping problem. However, region based retrieval must
be supported. Consequently, we propose a“new”, simple structure based on the Buddy-
tree, named Buddy*-tree. The Buddy*-tree is a hierarchical structure without the notion
of tight bounding spaces. In the proposed structure, a moving object is stored as a snap-
shot, which is composed of its position and velocity at a certain timestamp. The status
of an indexed object is not changed unless there is an update for it. Instead of cap-
turing speed in an MBR, we enlarge the query rectangle to handle future queries. To
support concurrent operations efficiently we employ sibling pointers like the B-link-tree
and R-link-tree in the Buddy*-tree. An extensive experimental study was conducted and
the results show that our proposed structure outperforms existing structures such as the
TPR*-tree and B”-tree by awide margin. To this end, we believe that our contributions

have successfully addressed some of the issues of moving objects indexing techniques.



CHAPTER 1

| ntroduction

Database management system (DBMS) has become a standard tool to assist in maintain-
ing and utilizing large collection of data. To facilitate efficient accessto the data records,
index structures are used. Anindex is adata structure that organizes datarecords on disk
to optimize certain kinds of retrieval operations [45]. To index single-dimensional data,
hash functions (e.g. [29] and [19]) and the B*-tree [16] are widely recognised as the
most efficient indexes.

During the last decade, spatial databases have become increasingly important in
many application areas such as multimedia, medical imaging, CAD, geography, or molec-
ular biology. Spatial databases contain multi-dimensional data or high-dimensional data
which require much more sophisticate access methods. To support efficient retrieval in
such databases, many indexes have been proposed ([20] and [8]).

With rapid advancements in positioning systems (e.g. GPS technology), sensing
technologies, and wireless communications in recent years, spatio-temporal databases

that manage large volumes of dynamic objects have attracted the attention of researchers.



In order to track accurately the movement of thousands of mobile objectsin such databases,
to develop techniques of efficient storage and retrieval of moving objects is an urgent
need. In addition, some applications such as traffic control system and wireless com-
munication aso require the support for high concurrent operations. These requirements
have posed new challenges to database technology. Indeed, this topic has received sig-

nificant interest in recent years.

1.1 Motivation

Mobile objects move in (typically two or three-dimensional) space. As such, traditional
index techniques for multi-dimensional data are a natural foundation upon which to de-
vise an index for moving objects. Indeed, most index structures for moving objects
are developed by making suitable modifications to appropriate multi-dimensional index
structures.

A standard technique for indexing objects with spatial extent is to create a minimum
bounding rectangle (MBR) around the object, and then to index the MBR rather than
the object itself. Since most index structures cannot deal with the complexity of object
shape, the MBR provides a simple, indexable representation at the cost of some (hope-
fully, not too many) false positives. Many multi-dimensional index structures, including
in particular the R-tree [22] and its derivatives (e.g. [53] and [2]), follow such an ap-
proach.

Moving objects, even if they are modeled as points, arein different locationsin space
at different times. In an index valid over some period of time, if we wish to make sure
to locate a moving object, we can do so by means of a bounding rectangle around the
location of the object within this period of time. To handle the mobility of objects, most

gpatio-tempora indexes also have explicit notions of object velocity, and make linear,



or more sophisticated, extrapolations on object position as a function of time. But an
MBR is still required to make sure that a search query does not suffer a false dismissal.
Among such techniques, the TPR-tree [49] is one of the most popular indexes. The TPR-
tree (the Time Parameterized R-tree), an R-tree based structure, adopts the idea from
[54] to model positions of the moving objects as functions of time with the velocities as
parameters. While the use of linear rather than constant functions may reduce the need
for updates by a factor of three [15], and provides query support for current and future
gueries, performance remains a problem. Various strategies have since been proposed to
improve the performance of the TPR-tree such as[59].

Individual updates on the R-tree based structures, such as the TPR-tree, tend to be
costly due to modification of MBRs and long duration splitting process of nodes. Fre-
guent tree ascents caused by node splitting and propagation of MBR updates lead to
costly lock conflicts. The concurrency control algorithms of the R-trees, such as the R-
link-tree[32], are not able to adequately handle a high degree of concurrent accesses that
involve updates. This causes us to question about the need of MBR in a highly mobile
database, where moving objects change positions frequently. That is, can we do without
the bounding rectangles?

Another problem of the TPR-tree is the use of enlarged MBRs by taking speed and
the last update timeinto consideration during query processing. The enlarged MBRs can
cause severe overlap between them — the degree of which is much more severe than the
MBR overlapping problem in the R-tree. The problem liesin thefact that the information
about velocity isembedded in the MBRs. Instead of embedding the vel ocity information
with the MBR, can we capture it into the query?

In this thesis, we attempt to address these difficulties by redefining the problem of

indexing mobile objects.



1.2 Objectives and Contributions

Our idea is that, instead of embedding the velocity information within the index, we
attempt to capture it in the query. Now, instead of point objects ballooning into large
MBRs, we will have point queries being turned into rectangular range queries. On the
surface, this appears to make no difference in terms of performance — so one wonders
why bother to make this equivalence transformation?

It turns out that the benefit we get is that we can now build much simpler indexes
— we only need to consider static objects rather than mobile objects. Simpler multi-
dimensional structures are essential to support high update loads. In particular, we pro-
pose a simple indexing structure based on the Buddy-tree [52] — the Buddy*-tree. The
bounding rectangles in the internal nodes are not minimum, and are based on the pre-
partitioned cells. They are different sizes, and the union of the lower level bounding
spaces spans the bounding space of the parent.

To allow concurrent modifications, we adapt the concurrency control mechanism of
the R-link-tree. Since the Buddy*-tree is a space partitioning-based method, it does not
suffer from the high-update cost of the R-tree, and due to the decoupling of velocity
information from bounding rectangles, it does not suffer from the overlap problem of the
TPR-tree.

Our work makes the following contributions:

1. The proposed structure does not suffer from the MBR overlap problem and hence

is able to support more efficient update and range queries for moving object;

2. Node entries only contain space information, and are relatively small, permitting
a larger fanout and requiring less storage space than competing techniques. This

also leads to better performance.

3. An extremely aggressive lock release policy can be applied to obtain high con-



currency, through the use of a secondary right link traversal process. Since high
update rates are common for mobile objects, this high concurrency renders the

Buddy*-tree even more attractive.

The contribution is not so much on the design of a new structure, but insights on simple
and yet elegant solutions in solving the difficult problem of moving object indexing,
which has received a great amount of attention lately.

The rest of this thesis will give a detailed description of the above contributions.
Experimental studies were conducted, and the results show that the Buddy*-treeis much
more efficient than the TPR*-tree [59], an improved variant of the TPR-tree, and the
B*-tree based B*-tree [26].

1.3 Layout

Thethesisis organized as follows.

e Chapter 2 surveys previous index techniques for single-demensional and multi-
dimensional objects and moving objects, as well as techniques for concurrency

control for index trees.
e Chapter 3 describes the structure and concurrency control of the Buddy*-tree.
e Chapter 4 introduces the operations and algorithms of the Buddy*-tree.
e Chapter 5 describes a careful experimental evaluation.

e We conclude our work in Chapter 6 with somefinal thoughts and a summary of our
contributions. We also discuss some limitations and provide directions for future

work.



CHAPTER 2

Preliminaries

In this chapter, we review some existing structures that are relevant to our work, and
existing index structure concurrency control mechanisms that our concurrency control is
based upon.

Since mobile objects move in (typicaly two or three-dimensional) space, traditional
index techniques are a natural foundation upon which to devise an index for moving ob-
jects. Indeed, most index structures for moving objects have been developed by making
suitable modifications to appropriate single-dimensional and multi-dimensional index
structures. Therefore, in this chapter, we review some traditional indexing techniques

first.

2.1 Single-dimensional Indexing Techniques

In this section, we introduce some popular indexes for single-dimensional data.



21.1 TheBt-tree

For disk-based databases, 1/0 accesses dominate the overall operational cost, hence, the
main design goal for index structures is to reduce data page accesses. The widely used
B*-tree [16], a variant of the B-tree [1], requires as many node accesses as the number
of levels to retrieve a data item. The B*-tree (as shown in Figure 2.1) is a multi-way
balanced and dynamic index tree in which the internal nodes direct the search and the
leaf nodes contain the data entries. To facilitate range search efficiently, the leaf nodes
are organized into adoubly linked list. The B*-tree as awhole is dynamic and adaptive

to datavolume. It isrobust and efficient.

30

7 |19 39| 43

Figure 2.1: An Example of B™-Tree

2.1.2 Hash Structures

The basic idea of hash-based indexing techniques is to use a hash function, which maps
values in a search field into a range of bucket numbers. Random accesses on the hash
structure are fast. However, the hash structure cannot support range searches. Further,
skew distributions may cause collisions and cause the performance to degrade.

The Extendible Hashing [19], a dynamic hashing method, employs a directory to
support dynamic growth and shrinkage of data volume and handle data skewness more
effectively (see Figure 2.2). When overflow occurs, instead of chaining the overflow

page or rehashes, it splits the bucket into two and double the directory to hold the new
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Figure 2.2: An Example of Extendible Hashing

bucket. Since the growth of the directory is always in power of two, it can be very large
if the hash function is not sufficiently random. Fortunately, the directory sizeis not very
large in terms of storage requirement.

The Linear Hashing [36] is another dynamic hashing technique, an alternative to
Extendible Hashing (see Figure 2.3). It handles the problem of long overflow chains
without directory. The dynamic hash table grows one slot at atime asit splits the nodes
in predefined linear order. Since the buckets can be ordered sequentially, allowing the
bucket address to be calculated from a base address, no directory is required. Overflow
chainisallowed in Linear Hashing, thus, if the data distribution is very skewed, overflow

chains could cause its performance to be worse than that of Extendible Hashing.

2.2 Multi-dimensional Index Techniques

Many multi-dimensional indexes have been proposed to support applications in spatial

and scientific databases. In this section, we provide review on general multi-dimensional
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Figure 2.3: An Example of Linear Hashing

indexing.

Existing multi-dimensional index techniques can betraditionally classified into Space
Partitioning-Based and Data Partitioning-Based index structure.

A Space Partitioning(SP)-Based approach recursively partitions a data space into
digoint subspaces. The subspaces (often referred to as regions, buckets) are accessed
by means of ahierarchical structure (search tree) or some d-dimensional hash functions.
Popular SP index structures include the k-d-B-tree [46], the Grid File [41], the R"-tree
[53], the LSD-tree [23], the hB-tree [38], the Buddy-tree [52], the VAM k-d-treg[56], the
VAMsplit R-tree [62]), the VP-tree [11], the MVP-tree [9], etc.

A Data Partitioning(DP)-Based approach partitions the data into subpartitions based
on proximity such that each subpartition can fit into a page. The hierarchical index is
constructed based on space bounding, where the parent data space bounds the subspaces.
As such, it is a'so known as bounding region (BR) approach. In such indexes, BRs may
or may not overlap. In the case where BRs do not overlap, spatial objects have to clipped
and stored in multipleleaf nodes. The R-tree[22] isone of the earliest Data Partitioning-

Based indexes which all the other DP approaches are derived from. The shape of the
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bounding region can be rectangle (also referred as bounding box) (the R-tree, the R*-
tree [2], the TV-tree [35], the X-tree [7]) or sphere (the SStree [63], the SSt-tree [33])
and both of the two shapes (the SR-tree [28]).

Alternatively, we can classify the multi-dimensional index techniques into Feature-
Based and Metric-Based techniques.

The feature based techniques split the space or partition the data based on the feature
values along each independent dimension. The distance function used to compute the
distance among the objects or between the objects and the query pointsis transparent to
feature based techniques. 1n the SP-based index structures, feature based approaches in-
clude the k-d-B-tree, the R*-tree, the LSD-tree, the hB-tree, the Buddy-tree, the VAM k-
d-tree, the VAMsplit R-tree. In the DP-based index structures, feature based approaches
include the R-tree, the R*-tree, the TV-tree, the X-tree.

The metric based techniques split the space or partition the data based on the dis-
tances from database objects to one or more suitably chosen pivot points. This technique
is senditive to the distance function. Popular distance based structures include the SS
tree, the VP-tree, the MV P-tree and the M-tree [14].

Hybrid approaches have also been proposed to combine the advantages of different
techniques and improve the performance (the Pyramid-tree [6], the Hybrid-tree [10], the
|Q-tree [5]).

Here we introduce and briefly discuss most popular index structures.

2.2.1 TheGrid File

The Grid File is a multi-dimensional index structure based on extendible hashing. It
employs a directory and a grid-like partition of the space. In each dimension, the Grid
Fileuses (d — 1)-dimensiona hyperplanes paralel to the axis to divide the whole space

into subspaces, called grid cells. The mapping from grid cells to data buckets is n-to-
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Figure 2.4: An Example of Grid File

1, that is to say, each grid cell is associated to only one data bucket, but one bucket
may contain the regions of several adjacent buddy grid cells (see Figure 2.4). The bucket
management system uses the data structure of d 1-dimensional arrays called linear scales
to describe the partition in each dimension. Another structure is a d-dimensional array
called directory. Each element in the directory is an entry to the corresponding data
bucket. It is used to maintain the dynamic mapping between grid cells and data buckets.
Linear scalesare usually kept in the main memory, while the directory is kept on the disk
duetoitssize.

The Grid File guarantees that a single match query can be answered with two disk
accesses. one read on the directory to get the bucket pointer and the other read on the

data bucket. For arange query, al grid cells which intersect the query region and their
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corresponding data buckets are inspected.

When a data bucket is overflowing and only one grid cell is associated to the bucket,
a split of the grid cell occurs. Both grid cell and data bucket are split, and linear scales
and directory are updated. If the Grid File maintains an equal-distant interval between
each partitioning hyperplane in every dimension, there is no requirement to maintain
linear scales. A simple hash function is used instead. In such case, a split of agrid cell
isalso asplit of scalein this dimension, which will cause the directory to doublein size.

To reduce the split of directory and increase the space utilization some variances of
Grid File (e.g. the Two-Level Grid File [24], the Multilevel Grid File [61] and the Twin
Grid File [25]) have been proposed.

2.2.2 TheR-Tree

The R-Tree The R-tree is a multi-dimensional generalization of the B*-tree, a dy-
namic, multi-way and balanced tree. As shown in Figure 2.5, in an R-tree leaf node,
an entry consists of the pointer to the object and a d-dimensional bounding rectangle
covering its data object. An entry in a non-leaf node contains a pointer to its child, a
lower level node, and a bounding rectangle which covers all the rectangles in the child
node. All the bounding rectangles are tight, so call MBRs, short for minimal bound-
ing rectangles. The union of the MBRs on the same level may not be the whole space.
Furthermore, there might be overlaps among the MBRs.

To do arange search, which isto retrieve all the objects that intersect a given query
window, the algorithm descends the tree starting from root and recursively traverses
down the subtree whose MBR intersects the query window. When aleaf node isreached,
all the objectsinside are examined and qualified ones for the query window are returned.

Toinsert an object, such arecursive process starting from the root is done until reach-

ing aleaf node: choose a subtree whose MBR needs | east enlargement to enclose the new
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Figure 2.5: An Example of R-Tree

object. The new object then is added into the leaf node and the MBRs aong the search

path must be adjusted for the new object. If the node overflows, a split occurs.

The R*-Tree The R*-tree is avariant of the R-tree. The objective of the R*-treeisto
reduce the area, margin and overlap of the directory rectangle. New insertion, split algo-
rithms and forced reinsertion strategy are introduced. Contrary to the R-tree where only
areais considered, overlap, margin and area are considered in the insertion algorithm of
the R*-tree. The R*-tree outperforms the R-tree particularly if the data is non-uniformly

distributed.
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Other variants of the R-tree are proposed to overcome the problem of the overlapping
covering rectangles of theinternal nodes of the R-tree, including the R -tree, the Buddy-
tree and the X-tree. The R™-tree and the Buddy-tree avoid overlapping by employing SP

method, and the objective of the X-treeisto reduce overlap for increasing dimensionality.

The Buddy-Tree The Buddy-tree is a dynamic hashing scheme with a tree-structured
directory. It inherits the idea of MBR from the R-tree, however, it behaves as a SP-
based structure. A Buddy-tree is constructed by cutting the space recursively into two
subspaces of equal size with hyperplanes perpendicular to the axis of each dimension.
The subspaces are recursively partitioned until the points inside one subspace fit within
a single page on disk. Besides a space partition, each internal node in the Buddy-tree
correspondsto an MBR, whichisaminimal rectanglethat coversall the points accessible
by this node. Figure 2.6 gives an example of a 3-level Buddy-tree, where the space
partitions are showed by plain rectangles and the MBRs by shadowed rectangles. Asin
all tree-based structures, the leaves point to the records of points on disk.

To insert anew point, the MBRs along the path from root to the target |eaf node must
be adjusted to guarantee that the new point is under cover. If anode is full, the space
partition is halved and the MBRs are calculated for the two new partitions.

Since the Buddy-tree does not allow overlap among the space partition, the MBRs
on the same tree level are mutually digoint. Therefore, although the idea of MBRs is
similar to R-tree, the Buddy-tree guarantees single-path search for insertions, deletions
and exact match queries, contrary to the multi-path searching behavior in the R-tree. And
compared to the k-d-B-tree, the Buddy-tree offers better performance for range query due
to that the MBRs help to filtrate unqualified nodes. Additionally, the performance of the
Buddy-tree is almost independent of the sequence of insertions, which is an essential
drawback of previous tree-structures (such as the k-d-B-tree or the hB-trege).

One problem of the Buddy-tree is the relatively low fanout, since it maintains both
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Figure 2.6: An Example of a 3-level Buddy-Tree
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gpace partition and MBR in each entry. To solve this problem, a representation of the
rectangles which is similar to that of the so-called hash-trees ([43], [44]) was suggested.
That is, to employ two hash values (lower left and upper right corners), instead of two
d-dimensional points, to represent a rectangle. Another disadvantage of the Buddy-tree
isthat although it does not suffer from the problem of forced splits, skewed data possibly
introduces empty or nearly empty regions as well, since a subspace is aways split at the

median position.

The X-Tree The X-tree (eXtended node tree) is designed to solve the problem of high
overlap and poor performance of R*-tree in high-dimensional databases by using larger
fanout. The notion of supernode with variable size isintroduced to keep the directory as
flat as possible. Furthermore, the main objective of the insertion and split algorithm is

to avoid those splits that would result in high overlap. The two concepts, supernode and
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overlap-free split, improve the performance of point query in the X-tree.

2.2.3 Useof Bounding Spheres

TheSS-Tree The SS-treeisadistance-based variant of the R-tree. It usesd-dimensional
spheres as BRsinstead of bounding rectangles. Ininsertion algorithm, the choice of sub-
tree is dependant on the distance between the new entry and the centroid of the node.
The structure of the SS-tree enhance the performance of nearest neighbor queries, since
on average the minimum distance of a query point from a bounding sphere is lower than
that from a bounding rectangle. Furthermore, since the SS-tree stores only the centroid
and radius for each entry in the node instead of the bounding rectangle, it only requires
nearly half storage compared to the R*-tree. Hence, it increases the fanout and reduces
the height of the tree. The SS*-tree is a variant of SS-tree, which uses k-means clus-
tering algorithm as the split heuristic. An approximately smallest enclosing sphere is

employed in the tree and it is atighter bounding sphere than that of the SS-tree.

TheSR-Tree The performance of bounding rectangles and bounding spheres are com-
pared and analyzed in [28]. The conclusion is (1) Bounding rectangles divide points into
smaller volume regions. However they tend to have longer diameters than bounding
spheres, especialy in high-dimensional space. Since the lengths of region diameters
have more effects on the performance of nearest neighbor queries, SS-trees, which use
bounding spheres for the region shape, outperforms the R*-trees; (2) Bounding spheres
divide pointsinto short-diameter regions. However they tend to have larger volumesthan
bounding rectangles. Since large volumes tend to cause more overlap, bounding rectan-
gles are advantageous in terms of volume. The SR-tree (sphere/rectangle-tree) [28] com-
bines bounding spheres with bounding rectangles, as the properties are complementary

to each other. The characteristic of SR-tree is that it partitions points into regions with
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small volumes (rectangles) and short diameters (spheres). Compared to the SS-tree, the
SR-tree’s smaller regions reduce overlap. Compared to the R*-tree, its shorter diameters
enhance the performance of nearest neighbor queries. However, the SR-tree suffers from
the fanout problem. Since it stores more information than the SS-tree and R*-tree do,

the reduction of fanout may require more nodes to be read during query processing.

2.2.4 Thek-d-Tree

The k-d-Tree The k-d-tree (k-dimensional tree) [3, 4], a main memory index struc-
ture, isabinary tree designed to index multi-dimensional data points. Most of SP-based
hierarchical structures are derived from the k-d-tree. The k-d-tree is constructed by re-
cursively partitioning point sets using hyperplanes that are perpendicular to one of the
coordinate system axes. An internal node in the tree stores a data point and the dimen-
sion the data value is used to partition the data space. The child nodes, which contain
the left and right (or up and down) subspaces of their parent respectively, are again parti-
tioned using planes through a different dimension. An example of the k-d-tree is shown

inFigure 2.7.

The k-d-B-Tree The k-d-B-tree is one of the earliest disk-based multi-dimensional
index structures. It combines the properties of the adaptive k-d-tree and the B-tree,
which we have introduced in the last section. Like a B-tree, the k-d-B-tree is a disk
based and height-balanced tree. The structureis constructed by dividing the search space
into subregions, which are represented by a k-d-tree (see Figure 2.8). B-tree like pages
management is employed in the k-d-B-tree. If a node (a disk page) overflows, the tree
chooses one dimension to split. In other words, a (d— 1)-dimension hyperplaneis chosen
to split the space into two nonoverlapping subregions. It is noticeabl e that the subregions

on the same tree level are mutually digoint. The digointness of the subspacesis also the
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Figure 2.7: An Example of k-d-Tree

distinctive characteristics of all the SP-based approach. A split of the internal node may
also affect the regions in the subtree, which have to be split by this hyperplane as well.
Since such forced splits of the k-d-B-tree may cause empty or nearly empty nodes, it
is not possible to have a lower bound on the occupancy node to guarantee the storage
utilization. Furthermore, the high cost in cascading splitting is another problem, causing

the tree to be sparse.
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The VAM k-d-Tree and VAMsplit R-tree The VAM k-d-tree (Variance, Approxi-
mately Median k-d-tree) is a refinement of the adaptive k-d-tree. It chooses the dimen-
sion with the largest variance to split instead of choosing the dimension with the greatest
spread. The split position is approximately the median. The VAMsplit R-tree is derived
from such an optimized k-d-tree. Since the VAMsplit R-tree provides more information
such as upper and lower bounds on each dimension (characteristic as a R-tree) than the

VAM k-d-tree, it reduces the I/O cost in searching.

2.2.5 Indexesfor High-dimensional Databases

In the last subsection, we reviewed index techniques for multi-dimensional databases.
These indexes have been designed primarily for low-dimensional databases, and hence

most of them suffer from the *dimensionality curse'. In this subsection, we shall briefly
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review some existing works that have been designed or extended specifically for high-

dimensional databases.

The TV-Tree The TV-tree (Telescopic-Vector tree), an R*-tree based index, is one of
the first index structures for high-dimensional databases. The main idea is to reduce
dimensionality based on important attributes. That is, the TV-tree telescopes active di-
mensions by activating a variable (typically small) number of dimensions for indexing.
Since more entries can be stored in anode, the TV-tree reduces the effect of the ‘dimen-

sionality curse'.

The MVP-Tree The MVP-tree (Multi-Vantage Point-tree) is a distance-based index-
ing for high-dimensional space. It isan extension of the VP-tree, which partitions a data
set according to the distance between the data and the reference (vantage) point, and uses
median value of such distances as a separator to choose appropriate path for insertion.
The MVP-tree extends the idea by introducing multiple vantage points. Another im-
provement is that the distances between parent nodes and child nodes are pre-computed

in order to reduce the number of distance computations at query time.

TheM-Tree IntheM-treethe objectsareindexed in metric space and the datastructure
is parametric on the distance function. The design of the M-tree is based on the princi-
ples of both metric tree and spatial access methods, which leads to the optimization of
reducing both /O cost (by using the R-tree like structure) and the number of distance
computations (by exploiting the triangle inequality). The distance-based characteristic

makes the approach appropriate for similarity range and nearest neighbor queries.

TheHybrid-Tree The Hybrid-tree is a feature based index. It mixes ideas from both
DP-based and SP-based structures. Similar to the SP-based approaches, the Hybrid-
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tree always splits a node using a single dimension and stores the partition information
inside the index nodes as the k-d-trees. Compared to the pure SP-based, the Hybrid tree
keeps two split positions and the indexed subspaces need not be mutually disjoint. The
tree operations (search, insertion and deletion) are performed like a DP-based index by

treating the subspaces as BRsin a DP-based data structure.

TheVA-File The VA-File (Vector Approximation File) [60] employs the compressing
technique in indexing for high-dimension database. It is simple and yet efficient. The
VA-File divides the data space into 2° rectangular cells where b is a user specified num-
ber of bits. A unigue bit-string of length b is allocated for each cell. And data points
(vectors) that fall into acell are approximated by the corresponding bit-string. Similarity
queries are performed by scanning the VA-File, which keeps the array of compact bit-
strings, to find the potential candidates (filtering step), and then accesses the vectors for
further checking. In a very high-dimensiona situation, the VA-File outperforms most
tree structures since most hierarchical indexes suffer from the dimensionality curse and

their performance deteriorate rapidly when the number of dimensions gets higher.

The A-Tree The A-tree [48] combines positive aspects of the VA-File and SR-tree
by applying both partitioning and approximation techniques. The basic idea of the A-
tree isto store acompressed representation of bounding boxes of child nodesin the inner
nodes by using virtual bounding rectangles (VBRs) which contain and approximate BRs
or data objects by quantization. Since VBRS can be represented rather compactly, the
fanout of the treeishigger and consequently thetreeis ableto achieve better performance
than the VA-File and SR-tree (as shown in [48]). However, the effect is similar to that of
the X-tree, and is only effective up to certain number of dimension. Further, thisis good
only for databases that are fairly static, since insertion and deletion may cause bounding

regions to change and affect the relative addressing.
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2.3 Index and Query of Moving Objects

Thereis along stream of research on the management and indexing of spatial and tem-
pora data, which eventually led to the study of spatio-temporal data management. Since
the traditional index techniques for multi-dimensional data such as the R-tree and its
descendants cannot support heavy update efficiently and do not support queries on the
future state of moving objects, several efficient spatio-temporal presentation and access
methods [31, 57, 42] as well as approaches of querying for moving objects [30, 13]
were proposed. All these approaches are based on the static index techniques we have
discussed in the last two sections. In this section, we introduce several popular access

methods and index structures for mobile objects.

MOST MOST [54] is one of the earliest spatio-temporal data models. It proposes to
address the problem of representing moving objects in database systems by representing
the position of moving objects as afunction of time and the motion vector as an attribute.
By treating time as one dimension, moving objects in d-dimension space can be indexed
in (d+ 1)-dimension. Hence, near future state of an object can be queried. However this

work did not propose any detailed access or processing method.

The TPR-Tree The TPR-tree (the Time Parameterized R-tree) [50] is an R-tree based
index that has been designed to handle objects and predictive queries. The underlying
idea of the TPR-tree is conceptually similar to MOST. Velocity vectors of objects or
MBRs as well as the dynamic MBRs at current time are stored in the tree with the time
as one attribute, as shown in Figure 2.9. At a non-leaf node, the velocity vector of the
MBR is determined as the maximum value of velocities in each direction in the subtree
and such velocity vector is called a velocity bounding rectangle (VBR). The VBR often

causes the associated MBR to change its position; the different edge velocities will even
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(b) The TPR-tree (V R denotesthe VBR and MBR at timet; P consists of position and velocity vector)
Figure 2.9: An Example of TPR-Tree

cause an object or an MBR to grow with time.

The query behavior of the TPR-tree is similar to that of the R-tree. To handle the
near future query with query time¢,, when an MBR with time attribute ¢ is examined for
the query window, it is enlarged based on the VBR and the time distance between ¢ and
tq. The algorithms of insertion and deletion for the TPR-tree are based on those of the
R*-tree. The method of maintaining dynamic MBRs in the TPR-tree grantees that the
MBRs aways enclose the underlying objects or MBRs with time. However the dynamic

MBRs are not necessarily tight. When an object is inserted or removed, the MBR of its
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parent node is tightened. But the other nodes that are not affected by the insertion or
deletion are not adjusted.

The TPR-tree provides efficient support for querying of the current and future posi-
tion of moving objects. However, it inherits the property of multi-path traversal of the
R-tree, and the different edge velocities cause an object or an MBR to grow, resulting in
more severe overlap, thus, degrades the performance.

[58] proposesageneral framework for Time-Parameterized queriesin spatio-temporal
database based on the TPR-tree. The concept of “influence time” T; v isintroduced to
compute the expiry time of the current result. By treating 7y as the distance metric,
some types of TP query (e.g. window query) can be reduced to nearest neighbor query,

for which branch-and-bound algorithm [47] is employed.

The TPR*-Tree A performance study of the TPR-tree in [59] shows that the TPR-
tree is far from being optimal by the means of the average number of node accesses
for queries. Subsequently, the TPR*-tree was proposed to improve the TPR-tree by
employing a new set of insertion and deletion algorithms.

In the insertion algorithm of the TPR*-tree, a QP (priority queue) is maintained
to record the candidates paths which have been inspected. By visiting the descendant
nodes, the TPR*-tree extends the paths in QP until that a global optimal solution is
chosen, while the TPR-tree only chooses a local optimal path. In the node splitting
algorithm, a set of worst objects whose removal benefits the parent node the most are
removed and reinserted into the tree. These strategies improve the performance of the
TPR-tree, however, additional 1/0 operations are incurred during updates, and since the
core features of the TPR-tree, such as coupling of VBR to the MBR, remain. The query
performance is achieved at the expense of costlier updates, which require the lock to be
held for alonger period in concurrent operations, hence lock contention is expected to

be more severe.
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TheB*-Tree The B*-tree [26] is a B™-tree structure that makes use of transformation
for indexing moving objects in asingle-dimensional space. The main idea are lineariza-
tion of the locations and vectors of moving objects using space-filling curve and indexing
of transformed data pointsin asingle B*-tree. In the B*-tree, the objects are partitioned
based on time, but indexed in the same space. Insertions and deletions are straight-
forward and are similar to those of the B*-tree. However, the index rolls on time based
on the update interval to keep the index size stable. Range queries and predictive queries
involve multiple traversal due to the partitioning on time. The B*-tree is shown to be
very efficient for range and kNN queries as it does not have the problem of enlarging
MBRs over time. Further, it does not have the time consuming splitting problem. The
concurrency control based on the B-link-tree [34] is adopted in the B*-tree. However,

unlike R-tree based indexes, the B*-tree is not scalable in terms of dimensionality.

Other Structures Indexes based on hashing have been proposed to handle moving
objects (e.g. [55] and [12]). In [55], the data space is partitioned into a set of small
cells (subspaces). A moving object is stored in a corresponding cell based on its latest
position. However, no detailed information such as exact position and velocity is stored.
The database is updated only if an object moves to a new cell and asks for an update.
To find the right cell for a certain object, a set of Location Pre-processing parts (LPs)
isused. LPs work based on hashing functions, from which the cell that contains the
target object can be found and accessed from the index. (In [55], the indexing method
employed is Quad-tree Hashing. The space is organized as a quad-tree [51], in which
each leaf node contains the objects inside the associated cell at current time. A node fits
to adata page and splitsif overflowing.) One challenge of this approach is that the LPs
have to know the current structure of the index, which is dynamic. Another limitation
isthat the index only provides approximate locations for the indexed objects, henceit is

not suitable for the applications that require exact locations or velocities of objects.
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Some other novel indexes for moving objects have been proposed. However most
methods are only suitable in particular environment. For example, Kalashnikov et.al.
[27] proposed a new idea of indexing the continuous queries instead of indexing the
moving objects to efficiently answer continuous queries based on the assumption that
the queries are more stable compared to moving objects. The authors claimed that the
guery index may use any spatial index structure (e.g. the R-tree). However, this approach
is specifically designed for continuous queries and is not suitable for other application.

Hybrid structures have al so been proposed. For instance, in [17], hashing on the grid
cells is used to manage hot moving objects in memory, while the TPR-tree is used to
manage cold moving objects on disk, as away to provide efficient support for frequent

updates.

2.4 Concurrency intheB-Treeand R-Tree

In order to provide correct result for concurrent operations, earlier works on concurrency
of the B*-tree employ top-down lock-coupling. Lock-coupling implies that during de-
scending the tree, the lock on the parent node can only be released after the lock on the
child node is granted. Obviously, the update operations can be blocked by coupled read
locks during tree ascent. Furthermore, if an update operation backing up the tree also
employs lock-coupling, dead lock occurs.

The B-link-tree [34] was subsequently proposed to solve the problem. The structure
of the B*-tree is dightly modified to offer no block search for multiple searches and
updates. In aB-link-tree, every node keeps aright link pointing to the right sibling node
in the same level. On each level all the nodes buildup aright link chain and the nodes
are ordered by their keys. In the modified structure, when a search process without lock-

coupling goes down in the tree, it will not missany splits, sinceit will aware of a split by
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comparing the keys and hereby visits the new split node along theright link chain before
the new nodeisinstalled into the tree.

The R-link-tree [32] employs the similar modification for the R-tree. The main dif-
ference between the R-tree and the B-tree isthat keysin the R-tree do not keep the order.
Therefore, a structural addition LSN (logical sequence number) isintroduced. A unique
L SN within the tree is assigned to each node and an expected LSN is kept in each en-
try of the internal nodes. If a node is split, the new split out node is inserted into the
right link chain and it holds the old node’s LSN. The original node is assigned a new
LSN which is higher than the old one. Before the new node installed, the expect LSN
in the corresponding entry of the parent node is not updated. The split of a node can be
detected by comparing the expect LSN taken from the entry in the parent node with the
actual LSN in this node. If the latter is higher than the former, there is an uninstalled
split. Travel along the right link chain, therefore, is necessary. The traversal is termi-
nated if meeting anode with an LSN equal to the expect LSN. Another differenceisthat
if the bounding rectangle in the leaf node is changed, we must propagate the change to
its ancestor nodes. This process employs down-top lock-coupling.

The locking strategies of the B-link-tree and R-link-tree are deadlock-free since
there's always only one lock in the B-link-tree, and the R-link-tree only employs lock-

coupling in the down-top process.
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CHAPTER 3
The Buddy™*-Tree

3.1 Motivation

A popular approach indexing spacial objectsisto employ MBRs (such as the R-tree and
itsvariants). In order to adapt such indexesfor moving objects, VBRs (velocity bounding
boxes) are stored with MBRs (such asthe TPR-tree and TPR*-tree). One shortcoming of
MBR-based index isthat the overlaps among the nodesin the samelevel leadsto possible
multi-path search to retrieve an object. Inthe TPR-tree, due to the existence of VBRS, the
MBRs keep enlarging as time progresses, and the overlapping problem becomes more
and more severe. The TPR*-tree made some changes to alleviate the problem but, as an
MBR/VBR-based index, it still suffers from the MBR overlapping problem.

Consider the example shown in Figure 3.1. Thisisatypical representation of mov-
ing objects using an MBR. The arrows denote the velocity of each object, broken up
into components along the axes to obtain what are called velocity bounding rectangles
(VBRs). The length of an arrow denotes the absolute value of velocity in the direction.
Note that vel ocities are associated not just with the data objects, but also with the MBRs.
MBR velocities are independently assigned to each boundary of the MBR, and is the

maximum of the velocitiesin that direction in any of itsincluded objects.



29

AY ALY
!B, B, B,
! B, i g
LN S
i
3 T
! B,
L] 82 o ] o+ I
X X
(a) MBRs (b) MBRs after one time unit

Figure 3.1: MBRs vs Speed

Suppose that all the MBRs and VBRs are tightened and each object is inserted into
an optimized node (following the algorithm of the TPR*-tree), asin Figure 3.1 (a). One
time unit later, the MBRs have expanded as shown in Figure 3.1 (b). At thistime, the
MBRs overlap each other, and do not tightly bound their constituent points any more.
This problem becomes even more severe as time progresses since the overlapped area
among MBRs B, B; and B3 becomesincreasingly larger.

Figure 3.2 shows the overlap ratios (the sum of area of all the MBRs / the area of
union of all MBRs) at leaf level in a TPR*-tree with time elapsed. In this experiment,
we use a uniform data set with 500K moving objects spreading in a 1000 x 1000 space,
and the speed of objects are randomly chosen in range O to 3. There are no update
operations in the experiment period. The overlap ratio increases quickly as time passes.
In fact, we can make the following observation:

Let 24(0), 2%(0) be the lower bound and upper bound of some MBR respectively
on dimension i at time 0, and ', %" be the minimum and maximum velocity of it on
dimension i . After ¢ time units, the volume of this MBR is V' = [I%, (z%(¢) — #(2)).

)

Since z!(t) = #L(0) + 4. - t and z¥(t) = z*(0) + 4" - t, the volume of MBR can be
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rewritten as V = 1L, [(z%(0) — z}(0)) + (@) — 4.) - t]. Therefore,

)

That is, 27 isO(t*).

The probability of any MBR being accessed by a random point search query, as-
suming uniform distributions, is proportional to the volume of the MBR. Therefore the
expected number of MBRs accessed at any level of the index tree is proportional to the

sum of their volumes. Thisleadsto the following Lemma:

Lemma 1. Therate of increase of the expected number of MBRs to be accessed at some

level 1isO(t4 1), wheret isthe elapsed time and d is the dimensionality.

Asfor concurrent operation, another disadvantage of MBRsfor indexing moving ob-
jectsis that an insertion in aleaf node even without split may involve several internd
nodes, since a backing up process for modifying the MBRs or VBRs of it's ancestor
nodes is necessary. In concurrent operations, locks on internal nodes affect the through-

put a lot. Since update operations are quite frequent in moving objects database, the
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backing up process seriously reduces the performance.

To overcome the challenges described above, we propose acomplementary technique
described in Section 3.2 for indexing mobile objects. We concretize these ideas into
an index structure we call the Buddy*-tree, a variant of the well-known Buddy-tree, in
Section 3.3. Issues of concurrency are important for good performance in an update-
intensive environment, such as one would expect with moving objects. These issues are

studied in the last part of this chapter.

3.2 Using Velocity for Query Expansion

Our central ideais that movement of objects can be handled by expanding queries rather
than actually perturbing objects in the index. To know how much to expand a query by,
we need to know what the velocities of the objects are, so these must also be stored. But
al of this information can be stored as a static snapshot, taken at some time ¢,.;. We
store, in the index, the velocities and positions of all objects at this reference time.

Asin so many other moving object index structures, we use linear interpolation to
estimate object position at times other than ¢,.,. The position of an object at time ¢ can
be calculated by the function x(t) = x(t,cf) + U X (t — tres)-

Since we index the objects at a reference time which is some time after current time,
the enlargement of query window involvestwo cases: (1) if query timet, isbeforet, .,
the location must be brought back to an earlier time (as shown in Figure 3.3 (a)); (2)
otherwise, the location must be forwarded to a later time (as shown in Figure 3.3 (b)).
Based on this, we can suitably enlarge a query as follows: Suppose the query is g with
query window [gz!, gz¥] (i = 0,1, ...d — 1,where d is dimension of the space), and the

query timeist,, the enlarged query window [eqz!, eqx?] is obtained as ([26]):
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Figure 3.3: Two Cases of Query Window Enlargement (p; isthe indexed location at ¢,
of objects and p, isthe actual location at ¢,)

l qrt + @l (tyep —tg)  ifty < tres
eqr; =

qrl + (—a) - (ty — trey) otherwise

u qxﬁ + ’l_l:? : (t'r'ef - tq) lftq < t'ref
eqr; =

gt + (—L) - (ty — tres) otherwise
whereu! and u? are the minimum and maximum velocities respectively of objectsinside
the query window in dimension i. Note that we would ideally have liked to enlarge the
query by precisely the velocities of the objects included in the query. But this raises a
chicken and egg problem, since the whole purpose is to determine which objects arein
the query. We get around this problem by separately keeping track of the minimum and

maximum velocities in each region.

Theorem 1. Enlargement of query window provides the correct answer.

Proof. Suppose ¢ is an origina query with query time ¢, and query window R = [¢z!,
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qry] (1 =0,1,..d—1), let S, bethe set of pointsreturned by the original query. We also
denote S, as the set of points returned by query ¢’ with query time ¢,., and enlarged
query window R’ calculated by the above formula. We wish to show that S, = S,.;.

For any point « € S, let «(t,) and x(t,.s) be its positions at time t, and t,.¢
respectively, we show x(t,.s) isreturned by our algorithm.

First, we suppose that ¢,.; > t,. x(t,) and x(t,.s) arerelated by x(t,.r) = x(t,) +
U - At, where At = t,.; — t, > 0. If wecan prove z(t,.r) € R, then enlarged query ¢’
will return .

We use the same representation as the above formula for R, R’ and the minimum
and maximum velocities of objectsinside R. Noticethat x € .S, and v is velocity of x,
thus 4} < @; < 4! and gz} < x(t,); < qz¥. At > 0 (i = 0,1,...d — 1). Therefore,
gl 4 - At < @(ty); + U, - At < qa¥ + 4@ - Aty e eqrl < x(trep): < eqal, hence
we have z(t,.r) € R'. We can provethat «(t,.r) € R whent,., < t, smilarly. Hence,
Sy C Sref-

For any pointx € S,.r wehavex € S, since every candidate point will be examined
and unqualified ones will be removed. Thatis S,.; C S,

Therefore, S, = S,.y, i.e. enlargement of query window providesthe correct answer.

O

Our overall index structure is thus to create a number of snapshot indexes, each at
a selected reference time point. Queries with respect to times that lie between these
reference points are resolved by using the closest time reference and extrapolating lin-
early using the formulae above. Thisisillustrated in Figure 3.4. Figure 3.4 (a) showsthe
snapshots of the objects at referencetimet,.; and also illustrates the contents of the three
subspacesin theindex. Figure 3.4 (b) shows the status of objects and index one time unit
after ¢,.;, where the dark points denote the snapshots and the light points denote the real

locations of objects at thistime. Consider the object p in Figure 3.4 (a), which isindexed
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Figure 3.4: Indexing Moving Objects with Snapshots

in the node with space S, based onitslocation at timet,. ;. Although after one time unit,
p’s actual position isinside space S; (p’ in Figure 3.4 (b)), it is till stored in S7, since
we are only interested in the positions of objects at time ¢,.. .

With the passage of time, we use different reference time points to index objects,
which are called timestamps, denoted as ¢;,, t,, ti,,.... We let the timestamps aways
be the medial time in a whole update interval. If the maximal update interval of the
index is T,;, and index is constructed at time O, then, the first ¢, is 7,;/2, second is
T, x 3/2 and so on. Given an object whose updated time is ¢, we will index it at the
([tu/Tui]+1)thtimestamp. For example, if T,,; = 120, ¢, = 130, since |t,/T,;|+1 = 2,
we will index this object using the second timestamp, that is¢, = T,; x 3/2 = 180. After
determining the indexed timestamp, we can cal culate the object’s position at ¢; according
to its position and velocity at ¢,. The position at ¢; and velocity compose the snapshot,
which is used to insert the object into the index. After every T,,; time, the old ¢; expires
and all new incoming objects are inserted using the new ¢;. In some operations (such as
deletion), we might have the old status of an object and want to find it in the index. For
example, given an object p, whose updated timeis ¢, (p) and the location and vel ocity at

timet,(p) areaso available, to retrieve it from the index, we first use the above function
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to calculate the timestamp ¢, for ¢, (p), followed by computing the snapshot that we have
used to index p, and finally, search the index for such snapshot. The search algorithmis

to be introduced in Chapter 4.

3.3 Structure of Buddy*-Tree

Given that we have a set of static points to index in each snapshot, and given the impor-
tance of fast update, we choose the Buddy-tree [52] asthe basic structure of our proposed
index. The index tree is constructed by cutting the space recursively into two subspaces
of equal size with hyperplanes perpendicular to the axis of each dimension. Each sub-
space is recursively partitioned until the points in the subspace fit within a single page
on disk.

We make several aterations to this basic Buddy-tree structure to suit our needs. We
call the new index structure a Buddy*-tree. A traditional Buddy-tree createstight bound-
ing rectangles around the data points in each node, as shown in Figure 3.5 (a). Although
the MBRs help in the efficiency in query operation, one disadvantage is that insertion
and deletion of an object (no node splitting or merging occurs) probably changes the
MBR of the located leaf node. Furthermore, if the MBR of a child node is changed, the
parent node should be visited to adjust its MBR. Consider such an examplein Figure 3.5
(b). After object p isinserted into the leaf node with MBR B,, B, isenlarged to B, and,
asaresult, the MBR of the parent node B, isenlarged to Bj, aswell. It is sameto delete
operations. Therefore, backing up the tree is a potential part of an insert or delete pro-
cess. It is notable that a backing up process costs alot in high degree concurrency, since
visiting and locking an internal node is very likely to block other threads operation and,
hence, reduces the degree of concurrency. Since such tight MBRs are costly to update,

we choose instead to use loose bounding. Specifically, we partition space, and use the
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entire space partition as the bounding rectangle for indexing purposes (see Figure 3.5
(c)), thus completely avoiding the need for bounding rectangle update (as illustrated in
Figure 3.5 (d), an insertion of object does not make any change to the bounding spaces
in the tree), at the cost of having some bounding rectangles be unnecessarily large (and
hence require needless access at search time). We call this a Loose Bounding Space
(LBYS) associated with the index tree node. Although the MBR outperformsthe LBSin
guery operation, to achieve efficient update and high degree concurrency LBSis a better
choice. Furthermore, since the LBS is same as the space partition, for the Buddy*-tree
thereis no need to maintain additional information in the node entries. Therefore, we can
gain a higher fanout which benefits the performance by reducing node accesses. Addi-
tionally, another reason to support this choiceis for concurrency control purpose, which
is discussed |ater.

To know how much to expand a query rectangle by, we need knowledge of the min-
imum and maximum velocities in each node. A naive method is using the global maxi-
mum speed to enlarge the query window. However this method might introduce unnec-
essary node access. We improve it by maintaining a list of local maximum velocities
for all the index nodes. This information is computed for each node and then stored in
the main memory at our first visit of that node. In the search process for arange query,
when we visit anode, and need to determine which children of thisnode to visit, we thus
have available to us not just the bounding rectangles for each child, but also the extremal
velocities of objectsin it.

To support high degree concurrent operations on Buddy*-tree, we absorb the idea
of right links among each level from B-link-tree [34] and R-link-tree [32]. Thus, at
any given level all nodes are chained into a singly-linked list. The Buddy*-tree, like
the R-tree, is a multi-dimensional index structure, and hence does not have a natural

ordering of keys at each level available in the case of a B-tree. To solve this problem,
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Figure 3.5: The difference of bounding methods between Buddy-Tree and Buddy*-Tree

[32] assigned an additional parameter LSN as the timestamp to each node and recorded
the expected L SNs of the child nodes in each entry. The LSN is used to detect the split
and determine where to stop when moving right along the right link chain. However, this
structural addition is not required in the Buddy*-tree since we are guaranteed not to have
overlaps between nodes. Instead, any lexicographic ordering of keys, constructed by
following the path from root to leaf, will suffice. We can then rely upon these sideways
links to delay the upward propagation of node splits, thereby allowing update operations
to give up locks on ancestor nodes quickly rather than having to retain them against the
possibility of a node split.

Figure 3.6 (a) shows an example of the Buddy*-treein 2-dimensional space, with the
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Figure 3.6: An Example of the Structure of Buddy*-Tree

corresponding data space illustrated in Figure 3.6 (b). The first capital letter in a node
denotesthe LBS of it, followed by the entries with key LBS (expected LBS for the child
node) or points.

Figure 3.7 shows an example in a Buddy*-tree fragment of how to detect an unin-
stalled split. Consider the second entry in the parent node V,, in figure 3.7(a). It points
to node V3, where the key LBS in the entry (.S;) is same as the actual LBS found in V3.
Thisisthe normal case. However, there can be another case due to delayed propagation
of node splits. Consider the first entry with key LBS Sy, which points to node N; with
LBS S, where S7 is a subspace of S;. N; has aright link to node N,, which also has
LBS that is a subspace of S;. Continuing farther along right links, N3 is the first node
that does not overlap .S;. Thisstopstheright link traversal. All the nodes encountered in

the right traversal, up to and excluding the last node, are covered by asingle entry in the
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Figure 3.7: An Example of Uninstalled Split in Buddy*-Tree

parent, and must all be explored during a search, until such time as the split isinstalled
at the parent node, with separate entries for each child.

A Buddy-tree may not be balanced due to the property that each directory node in
it contains at least two entries. However, the Buddy*-tree is height balanced since it
omits the more-than-one-entry property. Due to the frequent movement of objects strict
adherence to certain “fill-factor” is not only quite redundant, it is not cost effective and
it will unnecessarily slow down the concurrent operations. From the observation we
made at the experimental study, leaf nodes of the Buddy*-tree are about 63%-76% filled,
while internal nodes are 35%-67% filled. The occupancy rate is comparable to multi-

dimensional indexes such as the R-tree.

3.4 Locking Protocols

The top nodes in an index structure can become hot-spots for concurrency as each of
multiple processes need to access these en route to various leaf nodes and data. Locking
protocols for tree indexes have been studied extensively. We use the following variation

of atree protocol for concurrency:

1. Top-down: In traversal of the tree top-down, only one lock is required at atime,

that is, we release the lock of parent before we lock the child. For example, in
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Figure 3.8 we lock node NV and obtain pointer to N;. Then werelease lock of Np
and request lock for V;. Thisis more aggressive than typical tree locking, which
will continue to hold the lock on Np until it receives lock on NV;. The worrisome
case due to such an early lock release on our part is that a user gets the pointer to
node N, fromits parent Np but N; is subsequently updated (and split) by another
inserter before the user gets access to it. In this case, the user will subsequently
detect the update by comparing the LBS in the entry of parent level with LBS in
N;. For instance, if asplit has occurred, it will be found as discussed above in the

example shown in Figure 3.7.

s [ [ [Pl [T TP -

N N,

1 2

Figure 3.8: An Example of Lock Protocol

. Left-to-right: In traversal of the right link chain, only one lock is required at a
time. The examplein Figure 3.8 isthat we get the right link from the left node NV,
and release the lock before we apply lock for the right node N,. The reason for
correctness is similar to case (1). Right link chain can help to solve the problem
if any other thread overtakes us and splits the node before we reach it. Entriesin
the original node can only move right, hence, when we keep looking right it is
impossible for us to miss the object or the entry even if we hold only one lock at

any time.

. Bottom-up: Toinstall changes (node splits), we have to move back up thetree. In
this backing up process, we employ lock-coupling. For example, in Figure 3.8 if

we have updated node N; and should back up the tree from it, we must hold the
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write-lock of child node N; until we obtain write-lock of the parent Np. Lock-
coupling avoids the situation that another inserter causing a split overtakes us and
installs the split before us, and finally we install our changes without being aware

of the other inserter.

Dueto the use of right links, we have in effect rendered node splitting (and merging)
atomic at each level. In conjunction with thelocking described above, it iseasy to seethat
thetree will appear consistent at all timesto any user. Furthermore, the locking protocols
are deadlock-free. Thisis because only onelock isheld at atime except during back-up.
But during back-up, the process only moves upwards: after locking anode it never seeks

to lock anode below it. Due to this ordering, we are guaranteed to be deadl ock-free.

3.5 Consistency and Recovery

The highest degree of transactional isolation is defined as Degree 3 consistency or re-
peatable read (RR) isolation 2[21]. Thisisacommon requirement for concurrent access
in database systems. A simple solution would be to lock all involved leaf nodes, that is
to lock the leaf nodesin which several entries are returned by the search for the duration
of the entire transaction. Thisis not sufficient due to the phantom insertions [18].

The phantom problem can occur with a tree locking protocol on an index, including
the specific protocol we described above. To solve the phantom problem, the B-link-tree
employs key-range locking (key-value locking) [39] and R-link-tree uses a simplified
form of predicate locks [18]. Notice that the Buddy*-tree is a space-partition based

index, there is no gap among the subspaces covered by al leaf nodes, that is, the whole

MTransaction T is degree 3 consistency if (1) T does not overwrite dirty data of other transactions; (2
)T does not commit any writes before EOT (end of the transaction); (3) T does not read dirty data of other
transactions; (4) Other transactions do not dirty any dataread by T before T compl etes.

Repeatable read implies that if a search operation is run twice within the same transaction it must
return the exact same result (even if that result set is empty).
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space is covered by leaf nodes. Therefore, we are able to employ asimpler solution: we
simply retain locks on leaf nodes until the end of transaction, thereby ensuring that no
one can modify these nodes. Since we use LBS that completely cover pace partitions,
thisis sufficient to guarantee repeatabl e reads.

Consider the example using MBRsin Figure 3.9. At the beginning, the query range R
intersects leaf MBR B; and Bs (Figure 3.9 (a)). Later, the insertion of object p enlarges
B, (Figure 3.9 (b)) and causesit to intersect R so that arepeat search of R will find p in
the result. Avoiding this problem isnot easy, and requires the use of expensive predicate
locksin general. In contrast, the situation with the Buddy*-tree is shown in Figure 3.10.
Thereis no gap among the subspaces covered by |leaf nodes and if welock the leaf nodes
corresponding to S7, S, and S5 the whole query range is accordingly “locked”, and no

inserter can make any update inside R. Thus repeatabl e reads are guaranteed.

B 1
B, 2 B, D B,
[ ]
R R
B3 B3
@ (b)

Figure 3.9: An Example of Phantom in R-Link-Tree

We take in the recovery method of R-link-tree based on the idea from [40] and [37].
The brief idea is to divide an update operation into contents-changing and structure-
modifying part and employ a logical undo and redo. For the content-change, which
involves the update on a leaf, write-ahead-logging (WAL ) is used for recovery purpose.
Asfor structure-modification, which may be anode split or update of any internal nodes,
it does not have to be locked until the initiating transaction commits and can be visible

immediately, i.e. if an atomic action such as split is committed, it will not roll back even



Figure 3.10: An Example of RR in Buddy*-Tree

if the initiating transaction fails.
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CHAPTER 4

Buddy™*-Tree Operations

In this chapter, we will describe the individual operations on the Buddy*-tree.
4.1 Querying

Buddy*-tree enlarges query range instead of enlarging MBRs. The formulae to calculate
the enlarged window were presented in Section 3.2. These formulae require knowledge
of minimum and maximum object velocities. Rather than computing these globally,
we do this on a per node basis, suitably enlarging the query window when determining
whether there is the possibility of overlap with a node.

Pseudocode for the range query algorithm is shown in Algorithm 1 and 2. The pro-
cedure Range_Search() isrecursively called to examine a candidate node beginning from
theroot. During thevisit of each node, if thisisan interior node, its child nodes are added

into the tobeVisited list, when they are identified as having possible overlaps with the

Algorithm 1 Range Query(Root, 1)
[* Input: Root is the root node. r is the query including query window, the predictive
time (¢,,.) and the query time (¢,)*/

1: [ :=theindexed space

2: Range_Search(r, Root, l)

3: r_unlock(all the locked leaf node)
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suitably expanded query region. And then, Range_Search() is called for al the nodesin
thelist. If thisis aleaf node, candidate matching data points are returned. Next, aright
link isfollowed and additional linked nodes are visited as needed.

R

Figure 4.1: An Example of Range Query

N8 s,
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N N, N, N, S S
() A Buddy*-tree fragment (b) Space partition

Figure 4.2: An Example of Uninstalled Split in Buddy*-Tree

Figure 4.1 gives a range query example. Suppose part of the index is shown as
in Figure 4.2 and the query range is r, illustrated in Figure 4.1. First, the function
Range_Search is called for root node N, and its LBS \S,. LBSs of the three entries .5,
Sy and S3 are compared with the query range R+, R, R3 respectively, suitably expanded
based on the time stamps and the recorded vel ocity extremein these entries. Thefirst and
third entries are qualified and the child node pointers inside are added into tobeVisited
list with their LBS S; and S5. We call procedure Range_Search for N; and N, in turn.

As aleaf node, NV; is checked and qualified object entries are returned to the user.

The current LBS of N; is .S}, which is not equal to .S;, which means that node N; has
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Algorithm 2 Range Search(r, IV, [)

[* Input: r isthe query window. /N and [ are the pointer of the node to be examined and
its LBS obtained from its parent node, respectively*/

=

10:
11:
12:
13:
14.
15:
16:
17:

18:
19:
20:
21.

22:
23:
24.
25:
26:
27
28:

© % N o

r_lock(V)
if NV ismarked by thisthread then
UnMark(N)
end if
for each entry e in N that e. L BS overlaps R, obtained by enlarging r according to
the time difference and extremal velocitiesin e.node do
if N isnot aleaf nodethen
Add(tobeVisited, (e.node, e.LBS))
Mark(e.node)
else
output qualified pointsin e
end if
end for
if N isnot leaf then
r_unlock(NV)
end if
while tobeVisited is not empty do
(N, ') := Get(tobeVisit) Il get next child N’ which isto bevisited, I’ isthe LBS
added to the list together with N’
Range_Search(r, N', I')
end while
if N.LBS isnot equal to! /* there existsasplit of N hasn’t been instaled */ then
traversetheright link chain starting at Vv to first node whose LBS is not contained
inl
for each node M aong the chain except the last one do
r_lock(M)
I''=M.LBS
r_unlock(M)
Range_Search(r, M, 1)
end for
end if
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split. So itsright link isfollowed and N, isreached. LBS S7 of N, is contained in S,
hence, it is tested by the query window for qualified object entries as if it were part of
original node ;. Continuing along right links, V5 is next reached and the fact that its
LBS S, isnot part of S; completes the right traversal.

Consider such a case in the above example—after Np isvisited, node N; and N, are
added into tobeVisited list and if before we visit V4, other users delete some points
which causes N3 merge with N4, then when it isour turn to visit /Vy, it has already been
deleted. To avoid such problem we mark anode if it isadded into the tobeVisited list in
guery process (line 8 in Algorithm 2) and remove our mark for this node when we obtain

thelock for it (line 3). To delete anode, the marks for it must be check (see Section 4.3).

4.2 Insertion

The insert process of the Buddy*-tree consists of three main steps as outlined in Al-
gorithm 3. First, the snapshot of the object must be computed, i.e. the location at #,
according to its location and velocity at the update time ¢, and it is put in an entry (line
1). Second, we must locate the leaf node NV that the object (snapshot) should be inserted
into, following a procedure similar to that for search described above. The path from
root to the leaf V isnoted (line 2). Third, the actual insertion is performed (line 4) after
locking [V, using the algorithm Insert_Entry().

The function of Insert_Entry(s, N) (outlined in Algorithm 4) is to insert the entry

s into the node N. A possible situation is that after we locate N and before we lock

Algorithm 3 Insert(p,t,)
[* Input: p isthe point to insert and ¢,, isthe operation time */
1. s := theentry containing p’s snapshot according to ¢,, and ¢,
2. N := Locate(root, s, path)
3 w_lock(N)
4: Insert_Entry(s, N)
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it, another inserter overtakes us and splits V. To ensure correctness in this case, before
putting s in N, we must check whether it is the right node to insert, i.e. whether N’s
LBS covers s’s (line 1). If not so, which means that V is split, we move right, hence
Move_Right(s, V) is called (line 2). The function of Move_Right(s, N) (outlined in
Algorithm 5) isto find anodein the right link chain beginning from N, which is suitable
for s. Then, sissimply put inthe new N that is returned by Move_Right() if thereisany

empty entry (line 4-7). Otherwise, asplit is caused by the overflow (line 8-27).

Algorithm 4 Insert_Entry(s, N)
[* Input: s isthe entry containing a point or a branch to install into node V. Node N as
input iswrite-locked and it is unlocked after the procedure, */

1. if N.LBS doesn't cover s.LBS [* N hasbeen split */ then
2. N :=MoveRight(N, s.LBS)

3 end if

4: if find an empty entry e in IV then
5 putsine

6. N.num+ +
7
8
9

w_unlock(N)
. else
Node_Intlz(newN)
10.  Split_-Node(N, newN)
11:  if N isnot theroot then

12: P := N’sparent node /* get information from the memoried path */
13: w_lock(P)

14: if P.LBS doesn't cover N.LLBS [* P has been split */ then

15: P :=Move Right(P, N.LBS)

16: end if

17: w_unlock(V)

18: update LBS in the corresponding entry in P for N

19: s’ :=the entry containing new N

20 Insert_Entry(s’, P)

21 w_lock(NNV)

22: Insert_Entry(s, V)

23:  €se

24 Node_Intlz(P)

25: insert N and newN in P and make it new root for the index tree
26: Insert_Entry(s, N)

27, endif

28 end if
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Algorithm 5 Move Right(V, s)
[* Input: N isthe beginning node in the right travel and s is the entry with the wanted
point or LBS. The procedure will releaselock for original NV and write-lock the new N*/

1: while N.LBS doesnot cover s.LBS do
2. tempN = N’sright link

3 w_unlock(V)

4. N =tempN

5 w_ock(N)

6: end while

Algorithm 6 Split_Node(N, newN)
[* Input: N isthe node to split and new N is a new empty node for split purpose. The
write-lock for IV isaready hold and will kept in the entire procedure*/
1. splitdim = Choose_Spl_Dim(N)
2. split the LBS and repartition pointers between N and new N according to splitdim
3. insert new N into theright link chain next to V

The LBS S of an overflowed node NV is split into two equal sized parts S; and Ss,
where S; occupiesthe origina node N and S, isassigned as LBS to anew node newN.
The split dimension ischosen by turnin rotation, and the split position isthe median. The
new node new N isfirstly inserted into the right link chain of N. The above processis
donein function Split_Node() (Algorithm 6). At this stage, the LBS in the corresponding
entry of N's parent node is not updated, but any concurrent accesses can reach new N
through the right link chain from N. After that, we install the split into the parent if
N isnot theroot (line 11-22). The parent node P of N is accessed (line 12), using the
root-to-leaf path remembered from line 2 of Algorithm 3. Since P is possibly split by
some other users after our last access, we should check P’s LBS with that of NV and
newN (line 14). If N’sLBSis not a subspace of P’s, we can conclude that P has been
split. Theright link chain beginning with P is searched to reach the real parent node for
N and newN (line 15). N'sLBSisupdated in P (line 18) and the entry with new node
newN isinstalled (line 19-20). This new entry installation could cause node P to split,

and so on recursively until a node with empty entry is reached or the root is split (line
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23). In the latter case anew root is created (line 24-25).

4.3 Deletion

Deletionissimilar to insertion; first locate the key value at leaf level and then deleteit. It
is possible that this causes the leaf node to have very few (non-empty) entries left. Such
underflow is handled in the Buddy*-tree by merging it with its buddy, where the buddy
has few enough entries itself.

Node splits and merges require “backing up” the tree at a potential loss of concur-
rency. For the more common case of node splits, we have described in detail how to use
right-links to manage node splits with minimal impact on concurrency. For the less com-
mon case of node merges, the same ideas apply, in reverse order. That isto say, when a
node merger is to be undertaken of two buddy nodes, first fix the entry at the parent to
point only to the “left” buddy. At this stage, the “right” buddy is no longer linked from
the parent, but is only accessible by right linking from its buddy. Then actually perform
the node merge into the left buddy and eliminate the right buddy. The algorithm details
are aong the lines described for insertion above (shown in Algorithm 7, 8, 9 and 10).

Notethat, for typical scenarioswith moving objects, updates are much more frequent
than pure insertions or deletions. While performing a node merge is possible agorith-
mically, from an engineering perspective we are frequently better off leaving aone the

underflowed node since it is quite likely to fill up again after awhile.
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Algorithm 7 Delete(p,t,)

[* Input: p isthe point to delete and ¢,, isthe last update time of p */

1
2.

s := the entry containing p’s snapshot according to ¢,, and ¢,
N := Locate(root, s, path)

3: w_lock(V)

4:

Del_Entry(s, N)

Algorithm 8 Del _Entry(s, V)

[* Input: s isthe entry containing a point or a branch to delete from node N. Node N as
input iswrite-locked and it is unlocked after the procedure. */

1

T N A =
N O ONRO

18:
19:
20:
21
22:
23
24.
25:
26:
27
28:
29:
30:
31

if N.LBS doesn't cover s.LBS [* N hasbeen split */ then
N :=Move Right(VV, s.LBS)
end if
if find the entry s in NV then
delete s from N
N.num — —
end if
if N.num < MinFill and N’sright neighbor = NU LL then
M := N’sright neighbor
w_lock(M)
if IsBuddy(V, M) and N.num + M.num < Fanout [* merge N and M */ then
P := N’sparent node
w_lock(P)
if P.LBS doesn't cover N.LLBS [* P has been split */ then
P :=Move Right(P, N.LBS)
end if
e1.LBS := e1.LBS + e5.LBS lle; and e, are entriesin P for child nodes NV
and M respectively
Del_Entry(es, P)
Merge_ Node(N, M)
w_unlock(P)
Del_Node(M)
else
w_unlock(M)
end if
end if
if N istheroot and N.num = 1then
make N’s child the root
Del _Node(V)
else
w_unlock (V)
end if
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Algorithm 9 Merge Node(N, M)
[* Input: M isthe node to be merged into N. The write-locks for V and M are already
hold and will kept in the entire procedure, i.e., they are still locked after the procedure*/
1: update N.LB.S by merging the LBSsof N and M
2: copy al the no-empty entriesfrom M to N
3. copy theright link of M to NV

Algorithm 10 Del _Node(V)
[* Input: N isthe node to be deleted*/

if N ismarked by any thread // IV in acertain tobeVisited list then
put N into tobe Del list //the nodes in tobe Del list will be deleted periodically
w_unlock(V)

. else
delete this node

end if
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CHAPTERS

Experimental Evaluation

In this chapter, we perform experimental study to evaluate the performance of the
Buddy*-tree and present the results.

We implemented the Buddy*-tree, and compared its performance to that of the TPR*-
tree and B*-tree. All of these structures were implemented in C. All experiments were
conducted on asingle CPU 3G PentiumlV Personal Computer with 1 G bytes of memory.

We ran two sets of experiments, one with a single thread of activity, and another
with multiple concurrent threads. In both sets of experiments we use synthetic uniform
datasets. The position of each object in the data set is chosen randomly in a 1000 x 1000
gpace. Each object movesin arandomly chosen direction with arandomly chosen speed
ranging from 0 to 3. We constructed the index at time 0. For the test on the effect of data
distributions, we use the network dataset [49]. The parameters used in the experiments

are summarized in Table 5.1, and the default values are highlighted in bold.
5.1 Storage Requirement

Storage requirement is an important issue for database index. Firstly, a comparatively
smaller size index can be whole cached in the main memory to improve performance.

Secondly, asmaller sizeindex means|ess data pages (nodes), such that, it reducesthe |/O



Parameter Setting

Page size 4K

Max update interval 60,120,180,240
Max predictive interval 120

Query window size 10,20,...,100
Number of queries 200

Dataset size 100K,...,500K,...1M
Number of threads 248,...,64,128,256
Number of operations per thread | 200

Data distributions uniform, network

Table 5.1: Parameters and Settings

cost due to an operation such as query or update may visit fewer nodes. The fanout of an
internal index node plays a most important role in the storage requirement. Obviously,
if the size of the information maintained for a child node is smaller, there’'s more child

nodes can be kept in one internal index nodes.
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Figure 5.1: Storage Requirement

In aBuddy*-treeinternal entry, the space partition iskept for the child node (at least 8
Bytes for 2-dimensional space). We use the global speed for enlarging the query space,

and hence speed local to each LBS is not stored. We observe in the experiments that
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local speeds only improve the performance slightly since most maximum local speeds
are close to the global maximum speeds. As for B®-tree, each entry contains a 64bit
key (8 Bytes). However, a TPR*-tree internal node stores MBRs and VBRs for each
child entry (24 Bytes for 2-dimensional space). The storage requirement of the indexes
isshownin Figure5.1. Asanticipated, TPR*-tree requires more than twice storage space

of the others, which are comparable.

5.2 Single Thread Experiments

In this part there is only one thread in the experiments. We study the performance of the

Buddy*-tree by comparing /O cost and CPU cost to TPR*-tree and B*-tree.

5.2.1 Effect of Dataset Size

First, we study the range query performance with different sizes of dataset by comparing
the costs when the number of moving objects in the dataset varies from 100K to 1M. 200
window queries with size 10 are issued after the index running for an entire maximum
update interval of 120 time units. The predictive intervals of the queries are randomly
chosen in the range from 0 to 120. Figure 5.2 shows the average cost of 1/O operation
and CPU time per query for the three inspected indexes.

As expected, the results show that the window query costs of al the indexes increase
with the number of objects. However, The increasing speed of the TPR*-tree is much
higher than that of the others. When there are 1M objects in the dataset, the cost of the
TPR*-tree is nearly 3 times over that of the B*-tree and more than 5 times over that of
the Buddy*-tree. The explanation of thisresult is asfollows. The Buddy*-tree is a space
partition based index whose range query cost increases mainly due to the number of

objectsinside the range. However, with increasing number of data, the TPR*-tree suffers
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Figure 5.2: Effect of Dataset Size on Range Query Performance

seriously from the overlap among MBRs. Furthermore, the small fanout also limits the
performance of the TPR*-tree. The B*-tree employs a space filling curve to map objects
in 2-dimensional space to single dimension space. The curveiscut into aset of intervals
by a query window. To search for all the intervals we must “jump” among the subtrees,
and during such jumps several internal nodes are likely to be visited more than once.

This behavior introduces afew more |1/O operations.

5.2.2 Effect of Query Size

We next investigate the performance of the indexes with respect to query size.

In the experiments we vary the query window size from 10 to 100 on a dataset of
size 500K. The same 200 queries with predictive interval randomly chosen from 0 to
120 areissued in the three indexes after they run for 120 time units. As shown in Figure
5.3, query costs of all the indexes increase with the query window size. This behavior is
straightforward, since alarger window covers more objects and accordingly, more index
nodes will be accessed and examined. However, the TPR*-tree degenerates considerably
over the other indexes. This is attributed to the overlap problem of TPR*-tree. Since

alarger query window contains more overlaps of the MBRs, and hence, more accesses
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of nodes result. The B*-tree costs a little more than the Buddy*-tree does. As can
be observed, with query window increasing, the gap between B*-tree and Buddy*-tree
declines. With query window size 10, the Buddy*-tree reduces the query cost by about
50% compared to that of the B*-tree and this performance gap is only about 10% when
the window size increases to 100. This is because that in the query process on B*-tree,
alarger query window tends to get a smaller set of longer intervals of the space curves
rather than alarger set of shorter intervals in a smaller window. This reduces the high

cost of “jumps’ in away.
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Figure 5.3: Effect of Query Window Sizes on Range Query Performance

5.2.3 Effect of Updates

In this subsection, we compare the average update cost of Buddy*-tree against the TPR*-
tree and the B*-tree.

First, to study the update costs of the indexes evolving with the passage of time,
we compute the average update cost of the three indexes after every 50K updates in a
500K dataset. Note that each update involves an insertion and a deletion and leave the
size of the tree unchanged. Figure 5.4 summarizes the results, showing that TPR*-tree

degrades considerably faster than the B*-tree and Buddy*-tree, which are comparable.
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The reason is that each deletion entails a search to retrieve the object to remove and
since the behavior of multiple path travel in the TPR*-tree, the cost of search inevitably
increases with time due to the continuous enlargements of the MBRs which are not
updated as time passes. Fortunately, the update cost approaches a saturation point after
some time as the enlargement of MBRs grows at a much slower pace due to the overall
coverage. In contrast, we observe that the average update costs of B*-tree and Buddy*-
tree are not very sensitive with respect to elapse time. Thisis because that in the B*-tree
and Buddy*-tree, an insertion or deletion only travel down one path by comparing the
key (avauein B*-tree and a rectangle or a point in Buddy*-tree). No matter how large
the dataset is, only the nodes along the path from root to the leaf node that contains the
desired object are accessed. Thus, the number of 1/0s only depends on the height of the

tree and does not change much over time. In fact, they are ailmost time independent.
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Figure 5.4: Effect of Time Elapsed on Update Cost

We next compare the update performance of indexes with respect to the size of
dataset. In this experiment, we vary the number of objects in the dataset from 100K
to 1M, and investigate the average update costs after the indexes running for a maximum
update interval of 120 time units. Figure 5.5 shows the update cost as a function of the

number of moving objects.
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Figure 5.5: Effect of Dataset Size on Update Cost

As shown in the figure, an update in the B*-tree or Buddy*-tree only incurs several
I/Osand the cost is not affected alot by the size of dataset. Thereason isthat theretrieval
of an object in B*-tree or Buddy*-tree is single-path and, thus, the number of 1/Os only
depends on the height of the tree. Only when the increasing data size causes the tree
to grow, an update in the two indexes will incur about 2 more I/Os. However, in this
experiment, when the range of dataset size is varied from 100K to 1M, both the B*-tree
and the Buddy*-tree remain 3-level tall, hence, no change of the update costsis observed.

We observe that the performance of the TPR*-tree degrades with the increasing size
of the dataset. The explanationisthat inthe TPR*-tree, traversing multi-path isinevitable
dueto the overlaps among MBRs. Theincrease in data size causestheincrease in density
of objects, resulting in more overlap and higher update cost. The performance curve of
TPR*-tree can be observed at the point of ‘900K’ due to the growth of the tree from 3
levelsto 4 levels. The TPR*-tree grows faster than the others due to the smaller fanout

of it.
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5.2.4 Effect of Update Interval Length

In this experiment, we study the effect of maximum update interval length on the update
performance of indexes. Figure 5.6 shows the average update costs after the indexes
run for one maximum update interval, varying from 60 to 240. Observe that the B*-tree
and Buddy*-tree are not affected by the length of maximum update interval, whereas
the TPR*-tree degrades fairly quickly. As we have discussed above, this is because the
number of 1/Os of these two indexes only depends on the height of the tree and does
not change over time. As the update interval increases, MBRs in TPR*-tree keep en-

larging; overlaps among them become more severe. Therefore the update cost increases

significantly.
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Figure 5.6: Effect of Maximum Update Interval

5.2.5 Effect of Data Distribution

This experiment uses the network dataset to study the effect of data distribution on the
indexes. The dataset is generated by an existing data generator, where objects move in
aroad network of two-way routes that connect a given number of uniformly distributed
destinations[49]. The dataset contains 500K objects, that are placed at random positions

on routes and are assigned at random to one of three groups of objects with maximum
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speeds of 0.75, 1.5, and 3. Objects accelerate as they leave a destination, and they
decelerate as they approach a destination. Whenever an object reaches its destination, a
new destination is assigned to it at random.

Figure 5.7 summarizes the average range query costs of the three indexes when the
number of destinationsin the simulated network of routesisvaried. Decreasing the num-
ber of destinations adds skew to the distribution of the object positions and their velocity
vectors. Thus, uniform data is an extreme case. As shown, increased skew leads to a
decrease in the range query cost in the TPR*-tree. Thisis expected because when there
are more objects with similar velocities, they are easier to be bounded into rectangles
that have small velocity extents and aso are not too big. The results are consistent with
the performance of the TPR-tree reported in [49]. As expected, the performance of the
B*-tree is not affected by the data skew because objects are stored using space-filling
curves and hence, the density has less of an effect on the index. Observe that the range
query cost of the Buddy*-tree firstly increases with the number of destinations and after
the point that the number of destination is 300, the cost descends. A main reason for this
interesting behavior isthat the data distribution affects two factors, which make contrary
effects on the performance of the Buddy*-tree — (i) with the increasing skewness of the
dataset, the objects inside the same data page tend to possess more similar velocities,
which leads to less enlargements of the query windows during the range queries and
thus, less cost of queries; (ii)since the split algorithm of the Buddy*-tree is not adaptive
for data distribution, skewed dataset may introduce empty or nearly empty data nodes
for the index, resulting in poor disk utilization and hence cause the decline in query per-
formance. As shown, when the dataset is very skewed (the number of destinationsisless
than 300), the cost decreases with the skewness of dataset because factor (i) dominates
the performance. After the turning point of 300, factor (ii) affect the performance alittle

more, therefore the cost decreases with number of destinations.
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Figure 5.7: Effect of Data Distribution on Range Query Performance

5.3 Multiple Thread Experiments

In this part we compare the performance of indexes on concurrent operations. We used
multi-thread programs on the PC to ssimulate multi-user environment. We implemented
B-link for B*-tree. We note that the TPR*-tree employs different update algorithms from
the TPR-tree (e.g. remove and reinsert a set of entries in split algorithm), it cannot
grantee RR (repeatable read) even if we implement R-link for it. Designing a new and
efficient concurrency control mechanism for the TPR*-tree is possible, but not straight-
forward. For baseline comparison purposes, we simply locked the whole TPR*-tree for
concurrency control. For illustration purposes, we also implemented the R-link structure
for the TPR-tree, and show its performance in Section 5.3.2.

In the following experiments, each thread issues 200 operations, and the default

workload of each thread contains the same number of queries and updates.
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5.3.1 Effect of Number of Threads

First, weinvestigate the effect of the number of threads. Figure 5.8 shows the throughput
and response time for the indexes by varying the thread number from 2 to 256 (each

thread issues 100 queries and 100 updates).
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Figure 5.8: Effect of Threads on Concurrent Operations

All the indexes reach the highest throughput at around 8 threads and thereafter show
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deteriorating performance as the number of threadsisincreased. Measuring the decline
as we go from 8 to 256 threads, we find this decrease to be only 6.5% for Buddy*-tree,
but 24.5% and 24.6% for B*-tree and TPR*-tree respectively. Since the Buddy*-tree
has been designed for high concurrency, its superior performance with multiple threads
validates our design. The decline in performance of the TPR*-tree is aso to be expected.
The surprise is the decline in performance of the B*-tree in spite of the use of B-link
chain for high concurrency. The main reason for this is that a lot of “jumps’ in the
B~-tree for range query increase the number of accesses of and locks on internal nodes,
which reduces the degree of concurrency.

Note that we measured multi-thread operation on asingle-CPU PC, on which differ-
ent threads could not be really run at the same time. We believe that in areal concurrent
environment both B*-tree and Buddy*-tree will provide even better performance, com-
pared to the TPR*-tree.

The resultsfor response time show the impact of concurrency even more starkly. The
response time of TPR*-tree with 256 threads is about 240 times of that with 2 threads.
This ratio approximately 200 and 100 for B*-tree and Buddy*-tree respectively.

To study the update performance with respect to the number of threads, in this ex-
periment, we vary the thread number from 2 to 256, where each thread is assigned a
workload of 200 updates.

The throughput and response time for the indexes are summarized in Figure 5.9. The
throughput of the TPR*-tree and the B*-tree descend with the thread number increasing.
As shown in Figure 5.10, with the increase of threads number, average update 1/0s of
al the indexes are not effected much. Therefore, we can conclude that the degenerations
of the TPR*-tree and B*-tree are not caused by 1/0 operations, but caused by lock con-
tention. As before, the degradation of the TPR*-tree is to be expected. However, the

performance of the B*-tree is much below expectation. The main reason is that, there're
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three subtrees for different timestamps in the B*-tree and the insertions at a same time
only involve one of the subtrees, that is, al the insertions “crowd” in 1/3 part of the
index tree. The crowd becomes more severe with threads number increasing, resulting
in more access conflicts and hence lower degree of concurrency. In contrast, the perfor-
mance of the Buddy*-tree is aimost not affected by the thread number due to the right
link structure, and quicker release of locks due to simpler split and no bounding box

update.
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Figure 5.10: Effect of Threads on Update 1/0 Cost

Note that, 1/0 cost of TPR*-tree in Figure 5.10 is not consistent with that in Figure
5.4. Thisis because that al the updates in Figure 5.10 issue at a same time, and the
MBRs are not enlarged by time. While, updates in Figure 5.4 spread randomly in a
period of 120 time units and the MBRs keep enlarging due to time elapsing and hence

|/O cost increases.



5.3.2 Effect of Dataset Size

We next investigate the performance of the indexes with different numbers of moving
objects on concurrent operations. In these experiments, the throughput and response

time are compared after running 64 threads on the dataset whose size varies from 100K

to 1M.

300

250

200

150

Throughput

100

50

4.5

3.5

2.5

15

Response time (s)

0.5

TPR-link-tree ——
- TPR*-tree mmmm

B*-tree mmmmm
Buddy*-tree 1

ddddddidi

100 200 300 400 500 600 700 800 900 1000
Number of moving objects (K)
(a) Throughput

i

TPR-link-tree 3
TPR*-tree mmm
B*-tree mmmmm
Buddy*-tree

100 200 300 400 500 600 700 800 900 1000
Number of moving objects (K)
(b) Response time

Figure 5.11: Effect of Data Size on Concurrent Operations



Throughput

Throughput

400 T T T T T T T T T
TPR*-tree
350 B*-tree = ]
Buddy*-tree - -
300 B M B M ] n 1
250 1
200 1
150 | 1
100 | 1
50 1
0
100 200 300 400 500 600 700 800 900 1000
Number of moving objects (K)
(a) Throughput
2 T T T T T T T T T T
TPR*-tree
B*-tree £
Buddy*-tree
15 ¢ 1
1 - .
05 r 1
0

100 200 300 400 500 600 700 800 900 1000
Number of moving objects (K)
(b) Response time

Figure 5.12: Effect of Data Size on Concurrent Updates

68



69

Asshown in Figure 5.11, the performance of all indexes reduces with the increasing
number of moving objects. This is straightforward, since the larger the dataset is, the
more nodes an index contains and the more 1/O operations a query or update brings.
However the Buddy*-tree outperforms the other indexes for both throughput and re-
sponse time. As before, TPR*-tree is the worst, because that small fanout and overlap
cause poor range query performance. However, its performance is comparable to the
TPR-tree whose more efficient R-link based concurrent accesses are being compromised

by poorer query efficiency.
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Figure 5.13: Effect of Data Size on Update /O Cost

Also, we conduct experiments to study the effect of data size on concurrent updates.
The setting of this experiment is same with that of the last one, except that the workloads
only contain updates. From Figure 5.13, we can see that the average update 1/0O costs of
three indexes do not affected obviously by the dataset size. TPR*-tree costs about twice
of the others do. However, compared to the performance showed in Figure 5.5, the cost
of TPR*-treein this experiment is much lower and does not degrade much with data size

increasing. As before, this is due to the different distribution of updates with respect
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to time. The B*-tree and the Buddy*-tree achieve almost the same /O performance.
Whereas, the results summarized in Figure 5.12 shows that Buddy*-tree outperforms
B*-treein the throughput and response time. This attributesto that the right links enable
the Buddy*-tree to handle concurrent updates efficiently, however, the B*-tree suffers
from the “crowd” problem. The concurrent performance of TPR*-tree is still the worst.

Thisiswithout doubt, since the highest I/0O cost and worst concurrency control of it.

The performance study in this chapter shows that the Buddy*-tree outperforms the
TPR*-tree and the B*-tree in both single-thread experiments and experiments with con-
current operations. Especially for high degree concurrent operations, B*-tree outper-

forms the other two indexes by awide margin.
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CHAPTER 6

Conclusion

In thisthesis, we investigated the problem of indexing for moving objects. We presented
athoroughly review of traditional index structures and existing indexing techniques for
mobile objects. In order to support frequent updates and concurrent operations, we pro-
posed a space partitioned based index structure Buddy*-tree, a generalization of Buddy-
tree, for indexing mobile objects.

The central idea is to use an adaptive query expansion technique to allow for object
motion, while indexing only static snapshots. Therefore, we only need to consider static
objects rather than mobile objects. So we can choose a multidimensional structure with
good update properties. Buddy-tree, as a well performed SP based index, thus, is used
asthe basic for our new index. We create a Buddy*-tree based on a standard Buddy-tree
with two key differences. First, the LBSs (loose bounding spaces) are employed instead
of the MBRs (minimum bounding rectangles). This strategy benefits both the update
process and concurrent operations, at the cost of having some bounding rectangles be

unnecessarily large. However, the cost is worthy, which is verified by the experiment
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results in Chapter 5. Secondly, since high update rates are common for mobile objects,
aright link structure is additionally used to permit high concurrency. We make use of
the properties of Buddy*-tree to realize concurrent control without any other structure
additional (such as LSN in R-lint-tree). An object is partitioned to an index node based
on its location at a certain reference time, and is stored as a snapshot consisting of ve-
locity vector and location with the timestamp. To handle future range query, we employ
guery window enlargement instead of MBRs enlargement in TPR-tree. We also proved
that these two methods of enlargement create the same query results.

The main advantages of our proposed index structure are as follows:

1) As a space partitioned based structure without MBRs, it does not suffer from the
overlap problem and henceis able to support more efficient update and range queries for
moving objects;

2) According to the presentation method of Buddy*-tree, node entries only contain
space information for the subtree or objects, and are relatively small, permitting a larger
fanout and requiring less storage space than competing techniques such asthe TPR*-tree.
This also leads to better performance.

3) An extremely aggressive lock release policy can be applied to obtain high con-
currency, through the use of a secondary right link traversal process. Since high update
rates are common for mobile objects, this high concurrency renders the Buddy*-tree even
more attractive.

These advantages are verified by the experiments. The performance study shows that
the Buddy*-tree outperforms the TPR*-tree and the B*-tree. Thisis even more strongly
the case when multiple concurrent operations are applied.

The main limitation of Buddy*-tree, which is inherited from Buddy-tree, is the stor-
age utilization for skewed data. Since we employ almost the same split algorithm with

that of Buddy-tree —when a node overflows, the corresponding space is always split into
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two subspaces of equal size. Skewed data, thus, will introduce empty or nearly empty
nodes. Therefore, in the future work, we will try to study the split strategy (such as com-
bining with the split idea of VAM k-d-tree) to improve storage utilization for skewed

data without much effect on query performance.
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