
INCREMENTAL PROCESSING OF TWIG QUERIES

MANESH SUBHASH

(B.E. - Computer Science and Engineering, V.T.U. Karnataka, India)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628875?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgments

I thank my supervisor Prof. Chan Chee Yong for his continued support, encouragement

and direction. I would also like to thank the professors who have taught me courses

related to databases. It has indeed kept me motivated and focused on research related

to databases.

I thank my dad Prof. Subhash Jacob, my mentor for all these years, for everything he has

been to me. I would like to say a big thanks to my family and friends, whose continuous

backing helps me to achieve my goals. This thesis would not have been possible without

the omnipresent faith of my dear Sravanthy. Finally, God, whose blessing of good health

has helped me complete this thesis at this hour.

ii

Contents

Acknowledgments ii

Summary ix

1 Introduction 1

1.1 Querying the XML database . 1

1.2 Thesis Contributions . 4

1.3 Thesis Organization . 5

2 Related Work 6

2.1 XML query processing using structural and holistic joins 7

2.2 Selectivity Estimation of Twig Queries 9

2.3 Incremental validation of XML schema 9

2.4 Discussion . 10

3 Querying using pre-computations 12

3.1 Preliminaries . 12

3.2 The pre-computation model . 13

3.3 Definitions and data structures . 17

3.3.1 The probe:A pre-computation data structure 17

3.3.2 Representation of XML query . 19

iii

3.4 Overview of NodeMatch and PathMatch algorithms 20

3.5 The NodeMatch Algorithm . 21

3.6 Incremental maintenance of NodeMatch 29

3.6.1 Insertion of a complete sub-tree using NodeMatch 30

3.6.2 Deletion of a complete sub-tree using NodeMatch 32

3.6.3 Complexity analysis of NodeMatch algorithm 35

3.7 The PathMatch algorithm . 37

3.8 Incremental maintenance of PathMatch 38

3.8.1 Insertion of a complete sub-tree using PathMatch 39

3.8.2 Deletion of a complete sub-tree using PathMatch 40

3.8.3 Complexity analysis of PathMatch algorithm 41

4 Experimental study 43

4.1 Experimental setup . 43

4.1.1 The data-sets . 44

4.1.2 The boolean twig queries and update operations 45

4.2 Experiments and Results . 47

4.2.1 Performance on various queries 48

4.2.2 Update Performance . 50

4.2.3 Validation Time . 51

4.2.4 Comparison of Space Requirements 54

4.2.5 Update times for varying Fan-out with constant Depth 55

4.2.6 Update times for varying depth with constant fan-out 56

4.2.7 Scalability Comparison . 58

4.3 Summary . 59

5 Conclusion 62

iv

A Niagara XML Data Generator 64

A.1 Configuration file template . 64

v

List of Figures

1.1 Example of a XML document represented as a tree 2

1.2 Example of a reduced XML document 2

1.3 Example of a Twig query . 3

3.1 Another example of a Twig query . 13

3.2 Recursive procedure to check if a solution exists. 14

3.3 Example of node storing the maximal subtree match 14

3.4 Pre-computation of an XML document for query Q 15

3.5 The structure of a stored probe . 18

3.6 Use of the two lists in the probe structure 18

3.7 NodeMatch and PathMatch storing probes 21

3.8 Function find pattern() . 24

3.9 Function create probe() . 25

3.10 Function prune probe . 25

3.11 Function set next position() . 25

3.12 Function forward to next level() . 27

3.13 Function find best match and store() . 27

3.14 Function check for extension() . 28

3.15 Function compute counts and merge() 28

3.16 Function insert subtree() for NodeMatch 31

vi

3.17 Function correct parent increment() for NodeMatch 31

3.18 Function delete subtree() for NodeMatch 33

3.19 Function find desc matches() . 34

3.20 Function correct parent decrement() . 34

3.21 Function check for extension new() . 38

3.22 Function check ancestor exists() . 39

3.23 Function delete subtree() for PathMatch 40

4.1 Pre-computations for Data-set1 on Queries Q1-Q6 48

4.2 Pre-computations for Data-set2 on Queries Q1-Q6 48

4.3 Pre-computations for Data-set3 on Queries Q1-Q6 49

4.4 Pre-computations for Data-set1 on Queries Q7-Q15 49

4.5 Pre-computations for Data-set2 on Queries Q7-Q15 50

4.6 Pre-computations for Data-set3 on Queries Q7-Q15 50

4.7 Delete operations on Data-set1 . 51

4.8 Delete operations on Data-set2 . 52

4.9 Delete operations on Data-set3 . 52

4.10 Validation time for delete operations. 53

4.11 Insert operations on Data-set1 . 53

4.12 Insert operations on Data-set2 . 54

4.13 Insert operations on Data-set3 . 54

4.14 Memory requirements for increased repetition of element tags 55

4.15 Effect of varying the fan-out on delete operations 56

4.16 Effect of varying the fan-out on insert operations 56

4.17 Effect of varying the depth on delete operations 57

4.18 Effect of varying the depth on insert operations 57

vii

4.19 Pre-computation on large data-sets . 58

4.20 Delete operations on large data-sets . 58

4.21 Insert operations on large data-sets . 59

viii

Summary

Queries on XML databases are typically expressed as a twig pattern. The XML database

in itself can be modelled into a tree representation. The query processing problem then

reduces to finding all occurrences of these twig patterns in this tree representation of

the XML database. In this thesis, we develop two algorithms that use pre-computation

techniques to answer boolean twig queries on XML databases. The goal here is to

determine if a pattern exists in the database rather than retrieve all the matching

data corresponding to the query. We extend the pre-computation algorithms to include

support for update operations such as inserts and deletes of sub-trees on the XML

database. We use the technique of incremental maintenance to support efficient and

feasible updates of the pre-computations. The two algorithms differ in the degree of

pre-computations stored. In the first algorithm, only those nodes that match any node

of the query store the pre-computations. In the second algorithm, any node that lies

in between nodes of a solution stores the pre-computations. This essential difference is

critical to the performance of the updates. The pre-computations at intermediate nodes

prevents the costly ’downward search’ of the XML database. The proposed algorithms

have been implemented and experimental results have been collected and analyzed using

various data-sets and queries.

ix

Chapter 1

Introduction

1.1 Querying the XML database

The eXtensible Markup Language (XML) [4] standardized by the W3C [6] has gained

tremendous popularity as both an information representation format and as an informa-

tion exchange medium. The need to store, process and maintain large volumes of XML

data have resulted in the database community developing specialized solutions to meet

these challenges. Early efforts saw the extensions of techniques in relational databases

[19, 30, 26] and object oriented databases [22] being applied for the semi-structured

XML data. The inherent semi-structured property have limited this extension leading

to the development of database architectures such as Tamino[25], Timber [20] and Natix

[18] that have re-created a different form of a database that is characterized by natural

properties of a database system while tuned to the properties of XML.

The XML data is hierarchical in structure and can be logically modelled as a tree

(assuming IDREFS [4] are ignored). The nodes represent the XML elements and the

edges represent the relationships between the elements. The leaf nodes correspond to

the values and attributes of its parent node. Figure 1.1 illustrates an example of a XML

document modelled as XML tree.

1

Car

Color Make

SUV Honda Red

Car

Volkswagon

Car

Golf

Make LMV

Vehicle

Make Color

Opel White

Figure 1.1: Example of a XML document represented as a tree

We can reduce this XML tree to contain only structural relationships. In this rep-

resentation, each node in the tree contains in itself an element tag (the structural data)

and its values and attributes (element data). For example, consider the element tag

‘Make’ shown in Figure 1.1. It has a value of ‘Honda’ and an attribute with value

‘SUV’. The content and attribute values can be stored as part of the node matching the

element tag. Using this representation the revised XML tree corresponding to Figure

1.1 is shown in Figure 1.2.

Car

ColorMake

SUVHonda Red

Car

Volkswagon

Car

Golf

Make LMV

Vehicle

Make Color

Opel White

Stored in parent nodeNode of XML Tree

Figure 1.2: Example of a reduced XML document

Languages such as XPath [3] and XQuery [5] have been developed into standards

that can be used to query data from the tree structured XML documents. These can be

used for both structure and element data. Suppose we are given the XQuery expression

Car[cc = “2.2L”]//Make = “Toyota” (1.1)

2

It can be represented into a tree with root element ‘Car’ that has a child element named

‘cc’ having a content of “2.2L” and has a descendant element named ‘Make’ that has

a content of “Toyota”. This tree is called the ‘Twig query’ pattern for the XQuery

expression of Equation 1.1. Figure 1.3 shows the twig query pattern.

Car

//

Makecc

2.2L toyota

Value of the parent NodeNode of XML Tree

Figure 1.3: Example of a Twig query

Twig queries [9] (tree pattern queries) have been used to query the structural part

[27] of XML documents. The structural join [7] and holistic twig join [11] algorithms

that use twig queries have been developed to query native XML databases using the

languages mentioned above. In our study we will use the twig query representation to

specify a query pattern.

The fundamental problem of querying a database is to retrieve those elements that

match the query. While searching the entire database for matching solutions is a trivial

method, one can use several optimization aids such as structural summaries, for example,

indexes and views [23, 15, 8]. We can also use cached pre-computations [13], semantic

information in order to provide a quicker and much more efficient querying system.

Our Problem statement: Given a twig query pattern, we are required to determine

if it exists in a given XML Document. Once the answer has been determined, upon

the repeated execution of the same twig query, we should be able to answer the query

with-out having to scan the complete document again. We are to answer such repeated

queries using pre-computations. When the document is updated we must still be able to

determine if a twig query pattern exists with out scanning the data again. This requires

3

incremental maintenance of the pre-computations stored. Additionally, with the usage

of pre-computations we would like to obtain information such as the number of pattern

matches that exist in the XML Document and some information regarding the extent

of the query pattern that matches the document.

1.2 Thesis Contributions

Queries that determine if a pattern exists are known as ‘boolean queries’. The counts

related to boolean queries can help in estimating statistics and characteristics of the

document at hand. Boolean queries are useful in a publisher subscriber system [12],

where a subscriber is sent only those publications that match certain conditions. Boolean

queries can also be useful in secure dissemination of XML documents. The boolean

queries can be used to check if the filtered secure XML document violates any security

conditions. Generally, boolean queries are applicable for all situations that check for

existence of a pattern.

Our first contribution is the development of an algorithm that pre-computes the

result of the execution of a boolean query. A pre-computation can be defined as infor-

mation that is collected and stored while searching for the solution the first time the

query is executed. During the first search, some data is stored at various parts of the

document. This ensures that a repeated query can be directly answered using the pre-

computations. The idea of a pre-computation is effective as every-time a user queries

for some data or to check if a pattern exists, the entire document does not have to be

searched. The pre-computation is trivial as we only need to store a single entry speci-

fying whether a query matches or not. The non-triviality arises from the fact that the

document is subjected to updates. This leads to our second contribution. We provide

the extensions to the pre-computation algorithm so that the pre-computed information

can be maintained incrementally up-on the occurrence of updates without having to

4

re-compute the solution again. Our third contribution is an alternative algorithm that

results in a larger number of pre-computations being stored. With this added infor-

mation, one can also precisely determine the extent of partial query matches, further

describing the nature of data. To see the importance, let us consider a simple illustra-

tion. Consider a query with two sub-trees to match. Suppose only one of two sub-trees

of a query is matched in the document, then we retain that information. Now suppose

the other sub-tree is added to the existing document, we are expected to immediately

detect the presence of the solution without having to search for the sub-tree that has

already been found. Using the second algorithm we can also obtain paths to all pattern

matches. We give a theoretical complexity analysis of the algorithms followed by an

experimental study of the performance of these algorithms on varied data-sets.

1.3 Thesis Organization

The rest of this thesis is organized as follows, in chapter 2, we present the related

work, in chapter 3, we present some background information and describe the pre-

computation model along with two pre-computation based query processing algorithms.

It also includes a section on the complexity analysis for the various operations using these

two algorithms. In chapter 4 we present the experimental setup and the experimental

results obtained. Lastly,we provide our conclusion and directions for future research.

5

Chapter 2

Related Work

In this chapter we bring forth the various techniques that have been used for query

processing and incremental maintenance. The problem of query execution over a XML

database has been well studied, methodologies such as [7, 11, 19, 27, 20] have been

implemented as solutions. The usage of structural summaries such as indexes have

further optimized these solutions [23, 15]. In our study we are not trying to optimize

these existing query execution methods, instead we are using a novel approach using

pre-computations to answer queries.

This approach of using pre-computations appear similar to query result caching

[13, 14, 29] and view materialization [8, 21]. The concept of the cache is that its contents

are valid so long as the data is not modified. Upon updates it requires invalidations and

re-fetching of results. In our scheme, we re-use the pre-computations on the occurrence

of updates. The boolean queries used in this paper can be directly related to the domain

of publisher subscriber system of XML documents [12]. A document is required to be

published if it matches the pattern specified by the subscriber. Our scheme can be used

in this model, even when the document is subjected to updates, we are able to determine

if the document is required to be published without expensive re-computations.

Another core related work is in the area of schema validation of XML documents

6

[24, 10]. The problem in the case of schema validation is to determine whether the

content of a given document matches a predefined DTD [2](schema). Here too, the

complexity lies in determining, if a correct document still retains its correctness upon

updates. The works of [24] and [10] can be referred to for solutions to this problem.

While in our scheme we are trying to determine if a small tree pattern (twig) exists

in the document, the schema matching problem can be thought of as validating the

existence of many such twig patterns. [24, 10] too use pre-computed structures to

enable incremental validation. In the remainder of this section we shall introduce some

of the above mentioned methods and describe how our methodology resembles it or is

inspired from it.

2.1 XML query processing using structural and holistic

joins

Query processing using twig patterns on XML databases involves two essential steps,

one, breaking down the twig query into a set of binary structural relationships and

determine sets of data that match them and two, stitching together these basic matches

to form the complete solution. For solving the first part of identifying the basic structural

relationship matches, there have been several algorithms that have been proposed (refer

to [11] for a complete list). Most of these algorithms rely on the labeling scheme used

to identify the matching nodes. The positional representation labeling scheme [7, 11]

can be used to identify parent-child and ancestor-descendant relationships present in

an XML document in constant time. For the second part related to stitching together

the matches, some efficient join ordering algorithms are required. In [11] the holistic

twig join algorithm was proposed to reduce the impact of very large intermediate results

produced in the first matching part, many of which are not part of the final solution.

7

In that paper, the authors proposed a method that would produce an intermediate

match only if it was certain to be part of a solution. While the optimal execution of

these algorithms can be aided with the use of indexes [17], it is still processed a query

at a time and repeated joins need to be performed. The join ordering is a serious

performance factor and detailed analysis and statistics of the nature of the database

need to be gathered. Thus, while the simplicity of the algorithm appears to be in the

determination of structural relationships, for it to be optimal, it requires several other

performance aids.

Let us consider how these algorithms measure up to frequent updates. One critical

issue is the support from the labeling scheme. As illustrated in the prime number

labeling scheme [28], leaving gaps between labels is not a very feasible idea. Re-labeling

is an expensive task. Also, as mentioned earlier the histograms and statistics about the

data needs to be continuously updated and maintained upon updates. Lastly, frequent

queries and similar queries are re-executed against the database unless this processing

scheme is merged with some form of query caching.

In our algorithm, we de-couple the labeling scheme from the query processing. We

also support optimal retrieval of solutions to frequent queries. In addition, our algorithm

is designed to scale-up to dynamic XML documents. It must be mentioned that while

our scheme targets boolean queries, the structural and holistic twig join algorithms

are capable of retrieving the exact solutions. While in the experimental sections of

[7] mention that tree-traversal algorithms have been considered inefficient, for boolean

queries we show that the pre-computation based algorithms are indeed competitive and

efficient.

8

2.2 Selectivity Estimation of Twig Queries

Given a XML document it is useful to understand the characteristics of the data. In-

formation such as frequency of elements, patterns, join cost estimates etc. can optimize

query processing. [16] uses a summary data structure to estimate the number of twiglets

(small twigs) matches. It uses the individual estimate of twiglets to come up with an es-

timate for any twig query. This method uses a correlated subpath tree structure to repre-

sent the frequencies. This structure is maintained along frequently occurring sub-paths.

While this estimation solution is part of the exciting set of approximation algorithms

present in today’s literature, it has not given any direction to how these structures are

maintained upon frequent updates on an dynamic database.

In our algorithm, we provide the exact number of solution matches that are available

at any subtree of the document. We also illustrate in the algorithm how these counts

can be updated with a complexity of O(d) where d is the depth of the tree. In addition,

we can consider the counts of twig matches of a query providing an approximate result

to another query similar to it. For example, if a new query QA is a sub-set of another

query QB. By sub-set we mean that the twig query pattern QA that is to be matched

is present as a sub-tree of another query QB. In this case, the lower bound of the query

QA count is the count of the query QB.

2.3 Incremental validation of XML schema

Consider a XML database that conforms to a XML schema [2]. The XML Schema

impose structural constraints on the structure of the database. When updates on the

database occurs, one needs to check if any of the constraints are violated. Re-validation

of the entire database for each update would be a very costly operation. Using pre-

computations, this cost can be drastically reduced. The algorithms presented in [24, 10]

9

are examples of this method.

The problem we are trying to solve is a much simpler problem. While the entire

schema could be thought of as a large set of twigs that must exist in the database.

We are trying to determine if a solution to such a query exists. The former problem

is compounded by the fact that there could exist some nodes that match a query and

but is a partial match of the query. This may imply a violation of the schema. In a

boolean query one occurrence of a solution is enough for satisfy the query, where as

in the schema validation scheme, every occurrence of a node that belongs to a query

implies that a complete solution using that node is to be found.

2.4 Discussion

The XML query processing methods such as Structural joins [7] and Holistic twig joins

[11] are essentially used to retrieve the set of matching solutions. These require indexes

on all the elements to be matched and perform a set of join operations to return the

results. In contrast we are only trying to determine solutions to boolean queries. Thus,

ours is a simpler problem. Determining the exact number of counts of a pattern in a

given document is part of actually searching the query. [16] has given us an idea on how

pre-computed values on twiglets(small queries) are used in conjunction to determine an

estimated result set size. In our case, we are actually trying to determine exact counts of

the number of solutions. This directly implies that, if the count is greater than zero, the

boolean query returns true indicating a pattern match otherwise returns false indicating

that there is no solution present in the document. The incremental validation of XML

schema [24] and[10] has to ensure that every schema rule is completely matched in the

document. It also has to ensure that if some nodes that match a query exists, then it

must be part of a complete solution. This problem we are trying to solve only checks to

see if one such solution exists. In the following chapter we describe how our approach

10

finds solutions to the boolean query.

11

Chapter 3

Querying using pre-computations

3.1 Preliminaries

Finding all matches of a query twig pattern in an XML database is a core operation

in XML query processing, both in relational implementations of XML databases and

in native XML databases. Given a query twig pattern Q and an XML document D,

a match of Q in D is identified by a mapping from nodes in Q to nodes in D, such

that: (i) query node matches the corresponding database nodes, and (ii) the structural

(parent-child and ancestor-descendant) relationships between query nodes are satisfied

by the corresponding database nodes.

A boolean query is a query that determines if the query pattern matches the docu-

ment. The answer to the boolean query Q with n nodes to match is stored at the root of

the document D. The root of document D also contains the count of matching solutions

to the query Q. In this thesis, we consider the boolean twig pattern matching problem:

Given a query twig pattern Q, and an XML database D , compute the answer to Q

on D that represents the solution indicating whether the pattern exists and if it exists

the total number of solutions available in D, but not the actual data nodes. While the

boolean query can express any type of query, we will omit those queries that require

12

ordering and contains repetitions of element nodes. We however give some direction how

these types of queries can be handled in the conclusion of this thesis. As an extension

we also determine the maximal extent to which solutions are present in the database.

Intuitively, partial matches of queries can contribute to statistics too. Also, we could

devise a method to use these partial matches by checking if the solution of a new query is

present as a subset of the result of a previously executed query. Figure 3.1 is an example

of a twig query that is used to match all Red Honda SUVs of the XML document shown

in Figure 1.1.

Car

//

ColorMake

SUVHonda Red

Value of the parent NodeNode of XML Tree

Figure 3.1: Another example of a Twig query

Consider, for e.g., the query twig pattern in Figure 3.1. The nodes in D that match

the root of Q(’Car’) stores the number of pattern matches that exist using its sub-tree.

This information is also sent to the root of the document D. After the pre-computation

phase, if query Q is re-executed, the root of the document D contains the answer to Q.

3.2 The pre-computation model

The objective of the pre-computation is to determine if the query match can be found

in the document and to store that information. Thus we need to define how this search

is to be performed and what information needs to be pre-computed and stored.

The pre-computation is carried out by executing a recursive procedure in a depth

first manner over the XML tree. After a complete recursive traversal of the document,

all nodes that participate in any solution of the query will store information about

13

that query. Figure 3.2 illustrates how a recursive process can be used to determine the

existence of the twig query match.

Figure 3.2: Recursive procedure to check if a solution exists.

Given a boolean query(Q), we are trying to determine at the each node(say N), the

maximal solution of the query that is matched by node N’s sub-tree(Sub-tree(N)). By

Sub-tree(N), we mean node N, its children nodes and all its descendants. Figure 3.3

shows an example of a node storing the maximal subtree.

b

d

e

f

i

f

m

For a pattern
/b//e/f/i, the e
node will store
the solution
returned by the
left branch that
matches /f/i
instead of the
right branch
that matches
only /f.

Figure 3.3: Example of node storing the maximal subtree match

At the root node of the document, we store the result of the query, that is whether

14

the complete twig query pattern has been matched by this document. At each of the

nodes of the document that matches the query, the count of the total number of complete

sub-tree matches for each descendant position of the query is also stored. This count

helps us determine the total number of solutions that match the query. We illustrate

this idea using the following example. Consider the XML tree and the query shown in

Figure 3.4. We have shown the state of the document tree before and after the pre-

computations. We notice that the sub-tree of the nodes that are marked with a ‘C’

contain complete sub-tree matches of the query from the position it matches, where as

nodes that are marked with a ‘P’ only match the query Q. For example, The sub-tree

of the node of the document with the tag ‘cc’ that has been marked with a ‘C’ contains

the complete subtree of ‘cc’ of query Q. We also notice that the root of the document

contains a pre-computed value indicating if a solution to the boolean query Q exists.

Honda

Node of XML Tree Stored in parent
Car

Makecc

2.2L Toyota

//

Query Q

Car

colorMake

SUV red

Sports

Porsche

Car

Golf

Make 6 speed

Vehicle

Make cc

Toyota 2.2L

Document D before pre-computation

P

P

Car

colorMake

SUVHonda Red

P

Sports

Porsche

C

CC

Car

Golf
C

R

Make 6 speed

Vehicle

Make cc

Toyota

C

Document D after pre-computation

2.2L

PP Matches Q, Pre-computation stored

CC Complete sub-tree exists, Pre-computation
stored

R Solution exists

Figure 3.4: Pre-computation of an XML document for query Q

15

The use of pre-computed information not only lies in answering repeated queries.

It can be effectively used to re-compute the pre-computations upon updates without

having to scan through the entire document again. This is determined by the kind of

information that is pre-computed and stored at the nodes summarizing the structure

of the entire document. Thus the amount of pre-computed information stored greatly

influences the effort required to re-compute information upon updates. In our model we

are presented with two choices.

• Only nodes that participate in a solution store any pre-computations, we develop

this into the NodeMatch model.

• Apart from matching nodes, all the nodes that lie in a path of a solution (interme-

diate nodes) store information, this is modelled into the PathMatch technique.

The difference in these two methods appear when updates operations are performed.

If the intermediate nodes store information then re-computing the new state is easy as

all information required to re-compute will be present in the level at which the updates

occur. In the case of only participating nodes storing pre-computations, certain searches

of pre-computed information in the sub-tree affected are required. However, both these

methods are better than having to search the entire document again, This advantage is

gained by paying the cost of extra storage for the pre-computations.

In summary, given a node that matches the query(Q[1..n]) at Qi we need store some

pre-computed information that captures this information. we store a data-structure

representing the maximum matching sub-tree of QN . It is maximal in that all the

possible children and descendant matches to the query is stored in the pre-computation.

Additionally, if the query contains descendant positions to be matched, we store the

count of the number of matches for each such complete descendant sub-tree 1. In section

1Explained in the algorithm

16

3.3.1, we describe the structure of the pre-computed data.

3.3 Definitions and data structures

The Pre-computation phase is a recursive procedure that is executed in order identify the

nodes at which pre-computations are to be stored. This is done by calling the method

find pattern (Figure 3.8). This phase is common to both NodeMatch and PathMatch.

After the complete recursive cycle, all nodes that completely or partially participate in

any solution of the query will store information about that query.

3.3.1 The probe:A pre-computation data structure

The probe is a data structure that is used to collect the information regarding the

participation of nodes in the solutions. The probe contains in it two arrays that are

used to represent the query tree. They are used to mark the nodes of the query that

are matched by the sub-tree of node N at which the probe is stored and the number of

such matches. These two arrays are used as follows,

• The first array is a bit array that is used to indicate the positions at which the

sub-tree of N match the query.

• The second array is an integer array that is used for storing the counts for each

matching query position.

The probe also contains a count of the number of complete sub-tree matches that exist

from N. For example, suppose N matches the query(Q[1..n]) at Qi, then the counter

stores the number of complete subtree matches of Qi that can be found in the subtree of

N. The probe also contains two lists, a next position child list and a next position desc

list. The next position child list contains the next children that the probe needs to find

to extend its solution. Similarly, the next position desc list has the list of descendants

17

Car

Makecc

2.2L Toyota

//

Query Q

Car cc 2.2L Make Toyota

0 1 2 3 4Array index

F TT F F Bit array used for matches

Integer array containing counts

Query positions 0-4

0 11 0 0

2 next_position_child list

next_position_desc list3

1 Total_solution_count

Probe stored at ‘cc’

1 Position_of_Match

Figure 3.5: The structure of a stored probe

b

d

e

f

i

f

m

For the pattern e[f/i]//m,
the probe at node ‘e’ has
the next_position_child list
containing ‘f’ and the
next_position_desc list
containing ‘m’.

Figure 3.6: Use of the two lists in the probe structure

that are to be matched for the solution to be complete. For example, during the pre-

computation phase, the state of these lists is shown in Figure 3.6. For the document and

query shown in Figure 3.4 consider the node with element tag ‘cc’ that has a content of

‘2.2L’. The probe that is stored at ‘cc’ is shown in Figure 3.5.

The number of matches of each of these nodes in the list is stored in the integer

array mentioned above. This count is used to determine the total number of solutions

that exist at a subtree. For example, consider the query //Car[//Red]/Honda. For

a node N that matches ’Car’, its next position child will have ’Honda’ and the count

18

will be the number of children of N that match ’Honda’ and its next position desc will

have ’Red’ and the count for the ’Red’ list will have the number of ’Red’ descendants

N has in its sub-tree. The probe contains a value called the position of match. This

value represents the position at which the node matches the query. For example, the

probe shown in Figure 3.5 contains this value as ’1’ because ’cc’ is in position 1 of the

array used to represent the query. Lastly, the total solution count is an integer that

stored the total number of pattern matches of the sub-tree of the query starting at the

position of match. For a node that matches the root of the query, this value contains

the total number of complete solutions to the query that is present in the entire sub-tree

of the node.

When we are required to extend this model to support queries that contain repetitive

elements, we could use an array of probes, each indicating the corresponding position

of match.

3.3.2 Representation of XML query

The given XML query Q is modelled into an XML tree named Qt, Thus, the solution

to the query Q, lies in determining if Qt is present as a pattern of nodes of D. We also

label the nodes of Qt using the range numbering scheme as described in [11]. If Qt is

traversed using a pre-order traversal and written into an array named Aq[0..n] where n

is the size of the number of nodes in Qt, Given a node of this query tree labeled Qi,

we can determine its entire subtree using the indices obtained using the start and end

labels of Qi. This property can be used to check if a complete sub-tree exists. The order

of elements as provided by the pre-order traversal is used to store the query Q in the

probes mentioned earlier.

19

3.4 Overview of NodeMatch and PathMatch algorithms

NodeMatch and PathMatch can be used to process a given boolean twig query against

an XML document. As described in section 3.2, NodeMatch stores pre-computations

only at the nodes that match the query where as PathMatch stores probes at nodes that

match the query and along the path from the root of the document to each of these nodes

that match the query. Thus, an important difference that exists between the two models

is in the number of probes stored. These additional probes stored will help in faster

incremental maintenance of updates. These also allow us to trace the path from the

root of the document to every solution that exists in the document. Figure 3.7 shows an

example query and the probes stored in a part of an XML document. The key intuition

behind NodeMatch can be explained as follows. The entire document is scanned once,

resulting in pre-computations being stored at all the required nodes. Additionally, the

root of the document stores the result of the query. When the document is subjected

to updates, the pre-computations at the nodes that lie along the path from the node

at which the update is done to the root of the document are updated to reflect the

new state. Updates at a node that does not store a probe can require searching its

sub-tree this is a potential performance bottleneck of NodeMatch. In contrast, with

PathMatch if there is a solution in the sub-tree of a node then it must store a probe.

This avoids searching the sub-tree which could be computationally expensive. The idea

with PathMatch is to avoid searches down the XML document tree, and restricting all

operations to work up the XML document tree along the path to the root. The complete

comparison of NodeMatch and PathMatch is provided in section 4.3.

20

Figure 3.7: NodeMatch and PathMatch storing probes

3.5 The NodeMatch Algorithm

The NodeMatch algorithm, stores minimal pre-computations that help in quick response

to queries in addition to supporting incremental maintenance of the pre-computations

when subjected to updates. If updates are not required to be supported, the solution is

trivial and just needs a one time traversal. However, the objective here is to be able to

support updates and incrementally maintain the pre-computed information. NodeMatch

stores pre-computations only at nodes that directly match the query and at the root

of the document. An example of a document that has pre-computed the solutions to

a query Q using NodeMatch is shown in Figure 3.4. The first phase is to perform the

traversal of the document and determine all these nodes that need to store the pre-

computations. In addition, we also determine all the existing solutions, its count and

the different partial matches. We describe the details in the following sub-section.

The Initial pre-computation phase of NodeMatch:

We introduce below the procedure to find all results of a Query Q and pre-compute

the information that is going to be used in later queries and during updates. Given a

query Q, a document D that has been parsed into a tree representation with root Rt,

21

the procedure find pattern (Figure 3.8) is executed. This results in all the nodes that

participate in the solutions of this query Q storing the pre-computations. If the root of

the query Qr is matched at Nr, then Nr will contain the number of solutions to Q that

exist in sub-tree(Nr). For a single instance of the execution of find pattern the following

steps are carried out.

If the node N matches a node Qn of the query, the different possibilities that can

occur are discussed below as cases and follow the if-else sequence of the algorithm.

1. Case 1: Node matches the query and is the first node to match. Create a new probe

and initialize it using the function create probe (Figure 3.9). The create probe

function marks a nodes presence and populates the next position child/desc lists

using the query.

2. Case 2: From the received probe, the node could extend a solution.

• Case 2a: Node is one of the next children to be matched for the probe. Mark

its position in the probe, set it to be stored , also set the next positions to

be matched using the set next position method (Figure 3.11) .

• Case 2b: Node is one of the next descendants to be matched for the probe.

Mark its position in the probe, set it to be stored , also set the next posi-

tions to be matched using the set next position method (Figure 3.11) . Cases

2a and 2b can be merged into one condition as: if node matches either the

next position child/desc. But for now has been retained separately for ex-

tension purposes.

• Case 2c: The current probe is not extended by this node match, but as its

descendants (if any) can match, it may have to be retained. If it has any de-

scendants to match in its next position desc list It is marked to be forwarded.

The next position child list is cleared. Else It is marked as not forwarded.

22

3. Case 3: The node is a match, but does not extend the previous probe. (i.e. the

new probe flag is still true) Create a new probe and initialize it using create probe

(Figure 3.9).

4. Case 4: If the node does not match any node in query pattern, then probes that

do not have any descendants to be matched can be stopped from propagating

any further. For this purpose the prune probe method (Figure 3.10) is used. The

prune probe method checks whether the probe’s next position desc list is empty,

if so, it is marked as not forward otherwise set it is set to be forwarded and

next position child list is cleared.

As per the current logic only one new probe can be created, this is because of the

assumption that a node can match only at one position in the query pattern. It must

also be noted that only one position can be extended too, thus at any point only one

probe is stored per query. As an extension, if the query pattern is permitted to have

multiple occurrences, then, new probes could be created for each new position for which

no solution currently extends.

Now that we have determined whether the probe is be forwarded and if a new probe

is to be created, we can create the final set of probes to be forwarded to its children using

the current probe that has been marked to be forwarded. This functionality is provided

by the forward to next level method (Figure 3.12). It is further explained below.

For each child of N, execute find pattern using the probe thats marked to be for-

warded. From the returned set of probes, we compute the probe that need to be stored

at this node by merging the multiple subtree matches from different children into in-

formation in a single probe. This is done using the find best match and store method

(Figure 3.13). This also involves maintaining the counts. It returns the probe that need

to be returned to the parent node of N.

23

1: Function find pattern(Node N, Query Q, Probe P)
2: initialize flag new probe to true
3: if N matches any node Qn of Q then
4: {Case 1:}
5: if probe is empty then
6: Call create probe(N, Q, Qn)
7: else
8: Initialize flag new probe to true {Case 2:}
9: if (N = ANY Pr→next position child) then

10: Update Pr to include N {Case 2a:}
11: Mark Probe to be stored
12: Call set next positions(Pr, N, Q, Qn)
13: Set new probe to false
14: else if (N = ’//’ Match in Pr and N present in Pr→next position desc) then
15: {Case 2b:}
16: Update Pr to include N
17: Mark Probe to be stored
18: Call set next positions(Pr, N, Q, Qn)
19: Set new probe to false
20: else if (new position Match) then
21: {Case 2c:}
22: {If the current probe has any descendants to match, the current probe can

continue to find descendants}
23: if Pr→next position desc is empty then
24: Mark probe Pr as not forward
25: Call set next positions(Pr, N, Q, Qn)
26: else
27: Mark Pr as forward
28: Set Pr→next position child to empty
29: end if
30: end if
31: if (new probe is true) then
32: Call create probe(N, Q, Qn) {Case 3:}
33: end if
34: end if
35: { end of check if empty probe}
36: else
37: Call prune probes() {N does not match any Node}
38: end if
39: Probe finalProbe = forward to next level(N, Q, P)
40: RETURN finalProbe
41: End of function find pattern

Figure 3.8: Function find pattern()

24

1: Function create probe(Node N, Query Q, QueryPosition Qn)
2: Create Probe Pr
3: Set position of match in Pr to be Qn

4: Mark Pr to be stored
5: Call set next positions(Pr, N, Q, Qn)
6: End of function create probe()

Figure 3.9: Function create probe()

1: Function prune probe()
2: for each probe Pr in P[] do
3: if Pr→next position desc is empty then
4: Mark probe Pr as not forward
5: Call set next positions(Pr, N, Q, Qn)
6: else
7: Set Pr→next position child to empty
8: Mark Pr as forward
9: end if

10: end for
11: End of function prune probe()

Figure 3.10: Function prune probe

1: Function set next positions (Probe Pr, Node N, Query Q, QueryNode
Qn)

2: {check if N is a descendent waiting to be found}
3: if N IN Pr→next position desc then
4: remove N from Pr→next position desc
5: end if
6: if Qn is leaf of Q and Pr→next position desc is empty then
7: Set Pr to not forward
8: end if
9: if Pr set to not forward then

10: set Pr→next postions child to empty
11: Return
12: end if
13: initialize Pr→next position child to empty
14: {From Q, set the next children positions to be found}
15: for all children Qnc ’/’ of Qn do
16: Add to Pr→next position child Qnc

17: end for
18: {From Q add the next descendants of Qn to be found}
19: for all descendants Qnd ’//’ of Qn do
20: Add to Pr→next position desc Qn

21: end for
22: End function set next position

Figure 3.11: Function set next position()

25

The function set next positions (Figure 3.11) populates the next position child/desc

lists in addition to providing some minor processing logic. Its inputs are the current

node N, the probe Pr, the query Q and the position of the current match Qn

If Qn is a descendant node match and is currently in the next position desc list it

is removed as it need not be matched now for extending the current probe. However, it

is important to realize that, if the current node N was not part of the solution, another

node Nd in the subtree(N) could match Qn. Thus, to arrive at the correct number

of solutions available at a node, the method find best match and store (Figure 3.13)

contains logic that maintains counts for number of matches for each of these complete

subtree matches for descendant positions in Q.

Suppose the node matched a leaf node of the pattern, then no further propagation

is required if its next position desc list is empty.

If the probe is not to be forwarded then clear its lists, other wise this method is used

to fill the next positions that need to be matched. Firstly clear the next postion child

list. Each child node of node Qn of pattern Q is added to the next position child list of

Pr. Each descendant of Qn that is to be matched is added to the next position desc list

of Pr.

The function find best match and store (Figure 3.13) collects the probes that N sent

to its children, and tries to find out the best possible extension to the solution. The

intuition here is that, if a child node extends a larger subtree of the solution, retain that

as the best possible match, which could later result in a complete solution. The probe

’finalProbe’ will be returned to the parent of this node. This probe contains the count

(desc position count) of complete subtree matches for each descendant position in query

Q. The desc position count counters are stored in the array representation of the query

tree in the probe.

From the list of forwarded probes, we need to check if solution extensions ex-

26

1: Function forward to next level(Node N, Query Q, Probe P)
2: Create a probe MPr
3: Copy probe P marked as forward to MPr
4: for each child Nc of N do
5: retProbes[c] = find pattern(Nc, Q, MPr)
6: end for
7: Probe finalProbe = find best match and store(N, MPr, retProbes[])
8: RETURN finalProbe
9: End of function forward to next level

Figure 3.12: Function forward to next level()

1: Function find best match and store (Node N, Probe Pi, RetProbes[])
2: Create a probe called finalProbe
3: initialize next child counts[], next desc counts[], total solution count of finalProbe

to zero.
4: for Each Qc IN Pi→next position child do
5: Set childFlag to true {childFlag to indicate extension of child solution}
6: Call check for extension(Pi, Qc, childFlag)
7: end for
8: for Each Qd IN Pi→next position desc do
9: Set childFlag to false

10: Call check for extension(Pi, Qd, childFlag)
11: end for
12: Call compute counts and merge(Pi, Qn)
13: if Pi marked to be stored then
14: Store the Pi→tree, Pi→desc positions count[], next child counts[] and

Pi→total solution count into finalProbe
15: Store finalProbe at N.
16: end if
17: RETURN finalPRobe
18: End function find best match and store

Figure 3.13: Function find best match and store()

ist. The check for extension function (Figure 3.14) performs this task. The childFlag

parameter determines if we are checking for an extension of a next position child or

next position desc.

In check for extension function (Figure 3.14), given a Probe Pi , check all the re-

turned probes from each child. Suppose, the return probe of child ’a’ extended the

solution using next position child ’1’, and so did child ’b’, then depending on whether

’a’ or ’b’ has a more complete solution, the matching information from it is copied.

Also suppose the return probe of child ’a’ extended the solution using next position child

27

1: Function check for extension(Probe Pn, Query Node Qx, Flag childFlag)
2: for Each RPi IN RetProbe[1..n]→probe do
3: {RetProbes[i] or RPi refers to the probe of the ith child of N}
4: if Qx matched in RPi then
5: {This probe has been extended by RPi}
6: if number of matched nodes at Subtree(Qx) in RPi > Matched nodes in Sub-

tree at Qx of Pn then
7: Copy all matched nodes of the sub-tree(Qx) of RPi into Pn

8: end if
9: if Subtree(Qx) in RPi is complete then

10: if childFlag == true then
11: Increment next child counts[Qx] by 1
12: else
13: Increment next desc counts[Qx] by RPi → total solution count
14: end if
15: end if
16: end if
17: end for
18: End of function check for extension

Figure 3.14: Function check for extension()

1: Function compute counts and merge(Probe Pi, Query Node Qn)
2: if Pi is a complete match at Qn then
3: {Compute the total number of solutions}
4: if Qn is a leaf then
5: Set total number solution count to 1
6: else
7: Set Pi→total solution count = product of all next child counts[],

next desc counts[]
8: end if
9: end if

10: End of compute counts and merge

Figure 3.15: Function compute counts and merge()

28

’1’, and another child extended the same probe using next position child ’2’ or next position desc

’x’ , then this represents a twig in the query, hence is merged.

Regarding the counts, we maintain a few counters, one of them is the total solution count.

This counter stores the total number of complete subtree(Qn) matches that can be found

in the subtree(N). Another set of counters desc position count are used to store the total

number of complete descendant subtree (i.e. if query Q has a descendant ’x’ which has

its own subtree, then this counter stores the total number of matches for subtree(x))

matches of the query Q that have been found at N. The desc position count values are

propagated until the root of the document.

If the probes obtained from its children contains the entire subtree from its position,

the total number of solutions is equal to the product of the non-zero counts available at

each of the next position child and the desc position count for each next position desc.

These calculations are performed by the compute counts and merge method (Figure

3.15).

The nodes that match the root of the query will now store the information indicating

if a complete pattern can be found in its subtree and the corresponding counts. All

complete solutions are propagated towards the root of the document and from which

the existence of a solution and the complete count can be obtained.

3.6 Incremental maintenance of NodeMatch

In this section we discuss the procedures to incrementally maintain the pre-computations

that have been stored using the NodeMatch technique. The following types of updates

can occur in any XML database.

1. Deletion of an entire subtree of N

2. Deletion of a partial(intermediate) subtree of N

29

3. Insert of subtree at a leaf node or as new child

4. Insert of subtree at intermediate nodes.

5. Updates on existing nodes.

. For the current discussion we will omit cases 2,4 and 5.

The essential operations involved in incrementally maintaining the pre-computed

values are identifying the nodes affected, the recalculations to be performed and the

propagation of the recalculations. The efficiency of an incremental maintenance scheme

lies in re-using presently stable information and re-computing the new state with minimal

re-calculation. We shall now present the algorithms to support the updates operations.

3.6.1 Insertion of a complete sub-tree using NodeMatch

The insert operations have implication that new solutions to the queries exist in the

new subtree and also include the possibility of extending other partial solutions present

in the existing document. While adding a single node as a leaf node is as simple as

checking if it is present in its parent’s next position child/desc list or any of its ancestor’s

next postition desc list, the insert of entire subtree can be handled a little differently

than adding one node at a time. We can execute the find pattern method (Figure 3.8)

against the new sub-tree and collect the entire pre-computation information at the root

of the new sub-tree. This is stored using a probe called the insert probe. Now the

addition of this sub-tree with pre-computations is similar to adding a single leaf node.

The details are given the algorithm describing the insert subtree function (Figure 3.16).

Once the parent re-computes its status, it must correct the information stored in its

path to the root by passing the insert probe to all those nodes. This is done using the

correct parent increment function (Figure 3.17).

The correct parent increment function (Figure 3.17) essentially recomputes the to-

30

1: Function insert subtree(Tree T)
2: Call find pattern(T, Q)
3: Set Nr to root of T
4: Initialize desc position cnt[] to zero
5: if Nr matches a next position child Qc of Parent(Nr) then
6: if Subtree(Qc) in Nr is complete then
7: SET up forward to true
8: end if
9: end if

10: Copy to insert probe.desc position count the values in desc position count[] of Nr

11: if Nr matches a next position desc Qd of Parent(N) then
12: Copy to insert probe.desc position count[Qd] the value in total solution count of

Nr

13: end if
14: Call Parent(N).correct parent increment(insert probe, up forward, N)
15: End of function insert subtree

Figure 3.16: Function insert subtree() for NodeMatch

1: Function correct parent increment(insert probe, flag up forward, N)
2: if up forward is true then
3: increment next child count(N) by 1
4: if total solution count == 0 then
5: {No complete solution found yet}
6: Copy sub-tree Qn into the stored probe at N
7: if new child does not complete parents subtree then
8: set up forward as false
9: end if

10: end if
11: end if
12: for each descendant position Qd of Q do
13: if desc pos match[Qd] == 0 then
14: Copy probe subtree of Qd stored at N
15: end if
16: increment desc position count[Qd] by insert probe.desc position count[Qd]
17: end for
18: calculate new total solution cnt
19: update insert probe if new solutions are found.
20: if N not root then
21: Call Parent(N).correct parent increment (insert probe, up forward, Current

Node)
22: end if
23: End of function correct parent increment

Figure 3.17: Function correct parent increment() for NodeMatch

31

tal solution count at each node on the path of the new sub-tree till the root of the

document. if the up forward flag is true, it corrects the counts corresponding to the

next position child list. It also determines if this has lead to the probe at Np becoming

a complete sub-tree. Otherwise, at Np, the counts corresponding to the complete de-

scendant matches in the new sub-tree are added to the current counts. Finally the new

total solution count is computed and stored. If the new data has lead to new solutions

at Np, these new solutions are added to the insert probe. The recursive call continues

till the root of the document is reached.

3.6.2 Deletion of a complete sub-tree using NodeMatch

The delete subtree receives a Node N as input, It needs to delete all the nodes in its

sub-tree and also update all the probes in its parent and ancestors that have solutions

extended by the sub-tree of N. The key intuition is that, only descendent matches need

to be propagated upwards in the subtree being deleted, because the parent-child solution

can be extended only by the root of the sub-tree being deleted. The idea is as follows, we

will only propagate complete descendent subtree matches. The count of matches for the

descendent position in the query are sent to N’s Parent/Anscestors. This number will

then be deducted from the counts stored at those nodes. If the new count at any of N’s

Parent/Ancestor is zero, then the descendent match and its subtree in the stored probe

is deleted. Also if the possible parent/child solution is deleted then the flag up forward

is used to inform the parent of N.

The function delete subtree (Figure 3.18) creates a probe called delete probe. This

probe contains the counts that represents the number of complete subtree matches of

the descendants that are present in the deleted position of the subtree. For each child

we execute find desc matches (Figure 3.19).

The find desc matches function (Figure 3.19) recursively gets the counts for the

32

1: Function delete subtree(Node N)
2: create an empty delete probe
3: Set up forward to false
4: {Try to determine the number of complete descendant matches for each possible

descendant position of Q}
5: for each child Nc of N do
6: find desc matches(Nc, delete probe)
7: end for
8: if N matches a next position desc Qd of Parent(N) then
9: Copy to delete probe.desc position count[Qd] the value in total solution count of

N
10: end if
11: if N matches a next position child Qc of Parent(N) then
12: if Probe at N matches complete subtree(Qc) then
13: Copy to delete probe.child position count[Qc] the value in total solution count

of N
14: Set up forward to true
15: end if
16: end if
17: Call Parent(N).correct parent decrement(delete probe, up forward, N)
18: End of function delete subtree

Figure 3.18: Function delete subtree() for NodeMatch

number of complete subtree matches of any descendent position Qd of Q. This is obtained

by finding the first probe on each path from the root of the subtree being deleted to its

leaf. The counts are copied into the delete probe. These counts need to be deducted in

from the total solution counts of N’s parent/ancestors.

The correct parent decrement function (Figure 3.20) updates the counts stored in

the parent nodes and the ancestors. If the upward flag is true it implies that its child

node (The root of the sub-tree being deleted) no longer extends its solution. The

next child count for N is decremented by one. If the count reaches zero that subtree

is deleted from the probe stored. The parent also decrements each descendant count

present in the delete probe and similar to the case of the child, if any descendant count

reaches zero, its information is deleted from the probe. Lastly the total solution count

is recalculated. Now forward the new information and status of the solution counts to

its parent. This propagates till the root.

33

1: Function find desc matches (Node N, Probe delete probe)
2: if N is leaf and has no probe then
3: RETURN
4: end if
5: if N has a stored probe then
6: Copy to desc position cnt[QP] the value in total solution count of the stored probe
7: RETURN
8: else
9: for each child Nc of N do

10: set delete probe.desc position count[] to find desc matches(Nc, delete probe)
11: end for
12: end if
13: End of function find desc matches

Figure 3.19: Function find desc matches()

1: Function correct parent decrement(Probe delete probe, flag up forward,
Node N)

2: if up forward is true then
3: if (child pos cnt(N) − 1) == 0 then
4: make total solution count as zero
5: delete from probe subtree of N
6: decrement next child count(N) by 1
7: set up forward as false
8: end if
9: end if

10: for each descendant position Qd in Q do
11: decrement desc position count[Qd] by delete probe.desc position count[Qd]
12: if desc position count[Qd] == 0 then
13: delete from probe subtree of Qd

14: end if
15: end for
16: calculate new total solution cnt
17: if the deletion has resulted in other solutions becoming invalid, add these counts to

delete probe.
18: if N not root then
19: Call Parent(N).correct parent decrement(delete probe, up forward, Current

Node)
20: end if
21: End of function correct parent decrement

Figure 3.20: Function correct parent decrement()

34

3.6.3 Complexity analysis of NodeMatch algorithm

The pre-computation phase:

The pre-computation process involves traversing the entire document and hence its

complexity would be determined by the depth ‘d’ of the document and the fan out ‘f’

of each node. Its also determined by the number of times the iterations in find pattern

are executed. If a single descendant node is to be matched, the number of solutions that

need to be extended at the worst case is still equal to 1.

Let’s now consider a query Q with qn nodes and x descendant nodes and average

of qc child nodes at each level. The overall computation complexity of the find pattern

method can be expressed as d*f*(f*qn). The ‘d*f’ component appears from the depth

first search, the ‘f*qn’ for the analysis of the probes collected from a nodes children.

The space complexity of the find pattern method can be analyzed from two aspects,

run time and actual storage. The run time memory in the worst case will be the size

required to store N instances of probes. This occurs if all nodes of the document match

the query. In general for a set of n nodes of a document D, a query with nq nodes can

at-most store n probes. Optimizations can be made, so as to not store zero counts, and

store only the subtree of Q that matches N)

The final storage at each node that matches a node in the query will be the size of

the probe Sp. Given the document D, if there are m nodes that match the query plus

the one probe at the root, then we can expect the size required to be at-least (m+1)*Sp.

Complexity of the incremental maintenance

Insertion of nodes/entire subtree:

Case (i) only one node Sr is being added or a subtree rooted at Sr being added that does

not extend any descendant solutions. If node Sr matches Q as a child position match,

then a maximum complexity of depth ’d’ node operations is involved. This includes,

35

the calculation of the new total solution count in case it’s a complete extension to the

solution and the updates of all nodes on its path till the root.

Case(ii) Adding a complete subtree that includes descendent matches. The complexity

for update involves one complete search in the subtree St, and upward propagation cost

of d, where d is the level of Parent(N) in the tree. At each node, the time spent is

equal to the number of its next position child/desc stored and includes the time spent

to recalculate the total solution count and the update of probes.

Deletion of a node/entire subtree:

Let us consider two cases, one where the sub-tree being deleted does not have any de-

scendant matches and the other with descendant matches.

Case(i) : Sub-tree has only parent-child extensions to solution. In this case the com-

plexity is restricted to the node N at which the deletion takes place. The parent(N)

will simply have to check if N extends any of its complete solutions, if so then it must

reduce its count in next position child by 1, leading to a complexity O(1) operation and

re-computes the total solution count which has a complexity of (x+qc), where ‘x’ is the

number of descendants and qc, the number of child nodes in query Q. The parent needs

to inform its ancestors about the new solution count. Hence up to d-2 propagations

might be needed. Even in the case that the deletion results in no invalidations of solu-

tion extending from Parent(N), the complexity is the same.

Case(ii) Subtree extends descendant solutions. If the subtree has a depth of Sd and a

branching factor Sb, then with a complexity of Sd * Sb we can determine at N the count

of number of complete descendant solutions that had been extended by subtree(N). In

reality, this number will be lesser as a probe is likely to be encountered before reaching

the leaf nodes on every path from N. A further effort of at-most (d-2) would be required

to calculate the new counts and propagate them towards the root of the document.

36

3.7 The PathMatch algorithm

In the earlier scheme NodeMatch, we saw that only those nodes that participated in a

solution stored the pre-computations. Another alternative is for all nodes in the path

of a solution to store the same pre-computed information. As a large portion of the

logic is essentially the same we do not repeat it here. Instead we just refer to functions

mentioned in NodeMatch and provide extensions where applicable.

The Initial pre-computation phase of PathMatch

The initial pre-computation phase is not very different from that of NodeMatch’s find pattern

function (Figure 3.8).

The only difference is in case ‘4’ of the find pattern function, i.e, given a probe

that does not match any node. The NodeMatch model does not mark the probe to be

stored but marks it to be forwarded. If we are going to store information at intermediate

nodes too, we will mark any probe that is forwarded as stored, provided it’s descendants

match some extension. As an alternative, we can do without the mark as stored flag and

instead, when the probe returns, probes that have not been extended can be deleted.

One of the interesting situations is when there are descendant node matches and

the complete sub-tree of that descendant is matched. We propagate the count of

the number of such descendants back to the parent/ancestor using a set of counts

(desc position count), we need to store this at all the intermediate nodes as well. We

are only interested in the counts of complete subtree solutions for each descendant at

the intermediate nodes, this would suffice as the intermediate node will anyways not

participate in parent child relationship. The implication of this is that this intermediate

node is of interest only to its parent/ancestor node to which some new subtree that

extends its next position child is added/deleted.

To summarize, the changes to the NodeMatch algorithm for it to store pre-computed

37

1: Function check for extension new(Probe Pn, Query Node Qx, Flag child-
Flag)

2: Set flag extends soln to false
3: for Each RPi IN RetProbe[1..n]→probe do
4: {RetProbes[i] or RPi refers to the ith probe of the ith child of N}
5: if Qx matched in RPi then
6: {This probe has been extended by RPi}
7: Set extends soln to true
8: if number of matched nodes at Subtree(Qx) in RPi > Matched nodes in Sub-

tree at Qx of Pn then
9: Copy all matched nodes of the sub-tree(Qx) of RPi into Pn

10: end if
11: if Subtree(Qx) in RPi is complete then
12: if childFlag == true then
13: Increment next child counts[Qx] by 1
14: else
15: Increment next desc counts[Qx] by RPi →total solution count
16: end if
17: end if
18: end if
19: end for
20: if extends soln == true then
21: Mark Pn to be stored
22: end if
23: End of function check for extension new

Figure 3.21: Function check for extension new()

information at intermediate nodes is essentially one step. In the function check for extension

(Figure 3.14) we use a flag ‘extends soln‘. If the solution is extended by any of the

nodes children, it is set to true and this probe is marked to be stored. Once it is

marked to be stored, the compute counts and merge function (Figure 3.15) ensures that

the pre-computations are stored at the intermediate nodes. The modified algorithm for

check for extension (Figure 3.14) is given below in Figure 3.21.

3.8 Incremental maintenance of PathMatch

As discussed in NodeMatch, we shall cover the insertion and deletion of entire sub-

trees on the existing document D. The essential operations involved in incrementally

maintaining the pre-computed values remain the same.

38

1: Function check ancestor exists()(Probe insert Probe, Node N
2: if insert probe has complete solution then
3: RETURN true {A path must exist to the root}
4: end if
5: Make a list of descendant query positions desclist that have counts > 0
6: Set starting node Stn as parent(N)
7: while Stn is not the root of D do
8: if node matches any of the desclist then
9: RETURN true

10: end if
11: Stn = Parent(Stn)
12: end while
13: RETURN false
14: End of function check ancestor exists

Figure 3.22: Function check ancestor exists()

3.8.1 Insertion of a complete sub-tree using PathMatch

As in NodeMatch, we use the find pattern method (Figure 3.8) to pre-compute informa-

tion in the new sub-tree being added. However, we need to make a minor modification.

For PathMatch, the find pattern method stores intermediate probes only if the informa-

tion it contains is used by some ancestor node. In this case, if we have a intermediate

node that contains a descendant match without any ancestor present in the new subtree,

before deleting it we need ascertain that no ancestor exists in the main document along

the path of the insert operation. To support this, the find pattern method is passed an

additional pointer that points to the parent node at which the new subtree is being in-

serted. The remaining operations are the same. After the insert probe is computed, we

use the method of check ancestor exists (Figure 3.22) to determine if intermediate nodes

are required to be created. If it returns true, while using the correct parent increment

function (Figure 3.17), all the nodes till an ancestor/another intermediate is encountered

will store a copy of the insert probe.

39

1: Function delete subtree(Node N)
2: if N → ProbeisNULL then
3: RETURN
4: end if
5: Set delete probe as copy of N → Probe
6: Set up forward to false
7: if N matches a next position child Qc of Parent(N) then
8: if Probe at N matches complete subtree(Qc) then
9: Set up forward to true

10: end if
11: end if
12: Call Parent(N).correct parent decrement(delete probe, up forward, N)
13: delete intermediate probes that are not used anymore.
14: End of function delete subtree

Figure 3.23: Function delete subtree() for PathMatch

3.8.2 Deletion of a complete sub-tree using PathMatch

As in NodeMatch, The delete subtree method (Figure 3.23) receives a Node N as input,

It needs to delete all the nodes in its sub-tree and also update all the probes in its parent

and ancestors that have solutions extended by the sub-tree of N. The key difference in

this method is that, unlike NodeMatch, we do not have to search the sub-tree being

deleted to create the delete probe. If the node whose sub-tree is being deleted does

not contain a probe, it implies that no solutions extend using its sub-tree. Thus, no

recalculations needs to be done and only the actual deletion of the nodes are required. If

it contains a probe, that probe is itself the delete probe. Like, in the case of NodeMatch,

we determine if it is an extension of a parent-child solution, in which case we use the

flag up forward. The other operations performed are the decrements of descendant

counts and the recalculation of the total solution counts. Additionally, due to the sub-

tree being deleted, probes at the intermediate nodes along the path to the root of the

document may be rendered useless, these are deleted. When the delete probe reaches

the root, we can get the total count of the number of solutions that have reduced due to

the delete operation. This is deducted from the total number of solutions to the query.

40

3.8.3 Complexity analysis of PathMatch algorithm

The pre-computation phase:

The pre-computation phase of PathMatch is not very different from that of NodeMatch.

Both the methods use the find pattern method. The additional complexity in the case

of PathMatch arises from having to determine if an intermediate node is required to

store a probe. The cost of each of these checks is O(d) where ‘d’ is the depth of the

intermediate node. Looking at complexity in terms of storage, we are storing a larger

number of probes compared to NodeMatch. The count of extra probes can be determined

by the number of times the check on whether an intermediate probe needs to be stored

returns true.

The insert operation

The insert operation in the case that a single node is being added, we only need to check

the node is an extension of its parent’s solution. In this case, ‘d’ node operations that

re-compute the total solution count is required. If an entire sub-tree is being added,

then the complexity arises in executing the find pattern method in the new sub-tree.

In addition, We also need to determine the intermediate nodes that are to be stored in

the new subtree, and the new intermediate nodes that are to be created in the existing

document tree. This complexity is O(d), where d is the depth of the intermediate node

after the sub-tree has been inserted to the document.

The delete operation

The complexity of the deletion of a node or entire sub-tree with or without descendant

matches are now the same. The total cost involved is equal to the cost for recomputing

the total solution count at each node from the parent node of the delete operation till

the root of the document. If we encountered an intermediate node that has no positive

41

counts for any of the descendant position, it is deleted. However, if a descendant position

count becomes zero, we need to ascertain that there is some ancestor of this node that

uses one of the other positive descendant match counts. The cost of this equates to ’d’

node operations where ’d’ is the depth of the intermediate node.

42

Chapter 4

Experimental study

In this chapter, we discuss the various experiments that we have used to identify the

different trade-offs between the two schemes and the different performance factors. We

try to bring forth all the decision parameters that need to be considered before deciding

on using one of the two schemes. We outline the different data-sets, queries and update

operations in section 4.1. The results obtained for the various experiments are discussed

in section 4.2. Finally, we summarize our findings in section 4.3.

4.1 Experimental setup

We implemented both the algorithms NodeMatch and PathMatch in its entirety using

the C++ programming language. The experiments were carried out on an Intel 1.3GHz

Centrino processor with 256 MB main memory. The machine runs on the Redhat

9.0 operating system. The code has been compiled using the 3.2.2 version of the gcc

compiler. The experiments are designed to highlight the applicability and efficiency

of the pre-computation based methods, additionally we try to identify the tradeoffs

between the two pre-computation algorithms. The amount of pre-computation stored

is highly dependent on the nature of the database and the queries. Thus, to be fair

43

to both the algorithms, we perform tests on three different data-sets that vary in their

properties of fan-out, depth, recursion of elements but has the same number of elements.

Additionally, we run a large mix of queries against them. We also include the results

that illustrate the scalability of the schemes over larger data-sets.

4.1.1 The data-sets

The data-sets used for the experiments are all synthetic data-sets that have been gen-

erated by using the Niagara XML Data Generator [1]. The template configuration file

used for these data-sets is provided in the Appendix A1. Here, we provide a broad idea

of the general nature of each data-set and the influence of their properties on the two

algorithms. The data-sets are summarized in Table 4.1.

Data-set1: Low fan-out, large depth.

This data-set will test the capacity to handle descendant matches and the influence the

large depth has on the number of intermediate nodes stored. We shall also see how the

incremental maintenance during updates varies for both the algorithms. We use a depth

equal to 8, with an average fan-out of 4.

Data-set2: Large fan-out, low depth.

In this data-set we use an average fan-out of 27, with a depth of 4. This data-set brings

out the lesser role that intermediate nodes have to play in case of documents with low

depth. It also restricts the kind of ancestor-descendant queries that can be matched.

Data-set3: Average depth and fan-out.

This data-set forms an intermediate type of data-set in comparison to the above two. It

uses a height of 5 with an average fan-out of 13. This neutral data-set is used to obtain

the average results of the performance of the two algorithms.

Data-set4: Data-set with 100,000 elements.

1Adapted from the Niagara XML Data Generator package

44

Data-sets
Data − set # of Elements Depth Avg. Fan-out

1 21875 8 4
2 21875 4 27
3 21875 5 13
4 100000 4 75
5 300000 4 100

Table 4.1: The data-sets used in the experiments.

This data-set has a depth of 5 and an average fan-out of 75. This data-set is primarily

used to illustrate the ability of NodeMatch and PathMatch to handle large data-sets.

Data-set5: Data-set with 300,000 elements.

This data-set has a depth of 5 and an average fan-out of 100, This data-set too like

data-set 4 is used for experiments that illustrate the scalability of both the schemes to

handle large data-sets.

All the above data-sets include recursion of elements and semi-structured properties.

The data-sets 1, 2 and 3 operate on an average of 20000 elements.

4.1.2 The boolean twig queries and update operations

This section details the various types of queries that are executed against the three

variations of the data-set. We use the labels of P, C, A, D and N to represent Parent,

Child, Ancestor, Descendant and N respectively . A P → C implies that C is a child

of P, similarly, A → D is used to express A is an ancestor of D. A → DC means that

A is an ancestor of D and has a child C. We first generate queries that involve only

parent-child relationships. This set of queries forms ‘Query set1’ as shown in Table 4.2.

The second set of queries ‘Query set2’ involve both parent-child and ancestor-descendant

relationships to be matched. Query set2 is shown in Table 4.3. Lastly, we create a set of

update operations (Query set3) that are to be performed on a previously pre-computed

document. Query set3 is shown in Table 4.4. For ‘Query set3’, we shall use a standard

query to perform the initial pre-computation, This standard query has both ancestor-

45

Query set1
Query Description

Q1 Small twigs with a node and two children (P → CC)
Q2 Twigs with a large number of children (P → CCCCCC)
Q3 Twigs with large depth (P → P → P → P → P → C)
Q4 Bushy queries
Q5 Queries that have a partial match
Q6 Queries with no matching solution

Table 4.2: Query set1 containing only parent-child matches.

Query set2
Query Description

Q7 Single descendant twig (A → D)
Q8 Twig with one descendant and one child (A → DC)
Q9 Twig with multiple descendant matches (A → DDDCC)
Q10 multilevel descendant matches (A → D → D → D)
Q11 Parent, child and descendant to match, with a sub-tree at descendant
Q12 Multiple descendant sub-trees to match
Q13 Descendant match at deep nested level
Q14 Queries that have a partial match
Q15 Queries with no matching solution

Table 4.3: Query set2, queries with descendant matches.

descendant and parent-child relationships to match. We gather results such as time

taken to perform pre-computations and the time-taken on answering repetitive queries.

Other time measurements include the update operations of insert and deletes. We also

measure the amount of memory used to store the pre-computations.

Query set3
Query Description

I1 Insert of a single node that participates in a solution
I2 Insert of a single node that does not participate in a solution
I3 Insert of a entire sub-tree that has no solutions
I4 Insert of a entire sub-tree that contains complete and partial solutions
D1 Deletion of a single node that participates in a solution
D2 Deletion of a single node that does not participate in a solution.
D3 Deletion of a entire sub-tree that has no solutions
D4 Deletion of a entire sub-tree that contains complete and partial solutions

Table 4.4: Query set3, Operations that test incremental maintenance of updates.

46

4.2 Experiments and Results

We performed the following set of experiments using the various data-sets and queries

mentioned in the experimental setup section. For each of these experiments discussed

below, we obtained the results from runs of both the algorithms.

Pre-computation times for various queries: We ran the queries Q1-Q15 listed in

Tables 4.2 and 4.3 on data-set 1, data-set 2 and data-set 3 (Table 4.1).

Update performance: We ran the various insert and delete operations listed in Table

4.4 on data-set 1, data-set 2 and data-set 3 (Table 4.1). For the delete operation, we

obtain an additional result that splits the time taken to perform the delete into two

components, update time and validation time. Update time is the time taken to per-

form the actual updates of the pre-computations. Validation Time is the time taken to

compute only the result of the operation.

Comparison of space requirements: The memory used in NodeMatch and Path-

Match directly corresponds to the number of probes stored in each case. The number

of probes stored depend directly on the number of nodes that match a query. In this

experiment we vary the percentage of nodes that contain repeated element tags.

Experiments that determine the effect of varying fan-out on updates: Here

we vary the fan-out of the data-set while holding the depth constant.

Experiments that determine the effect of varying depth on updates:. Here we

vary the depth of the data-set while holding the fan-out constant.

Scalability comparison:Queries and update operations are executed on data-set 3,

data-set 4 and data-set 5 (Table 4.1) to illustrate the times taken for these operations

on large data-sets.

47

4.2.1 Performance on various queries

As mentioned in the experimental setup, we ran NodeMatch and PathMatch on the

three different data-sets using queries Q1-Q15 described in Tables 4.2 and 4.3.

Pre-computation times for parent-child queries:

Figures 4.1, 4.2 and 4.3 show the run-times obtained for the queries Q1-Q6 that in-

volve only parent-child relationships on data-sets 1, 2 and 3 respectively. As expected,

PathMatch takes more time than NodeMatch to evaluate most of the queries. This is

attributed to the following reason, PathMatch tries to determine whether the probes

being processed at nodes that do not match the query are to be stored as intermediate

probes.

Figure 4.1: Pre-computations for Data-set1 on Queries Q1-Q6

Figure 4.2: Pre-computations for Data-set2 on Queries Q1-Q6

48

Figure 4.3: Pre-computations for Data-set3 on Queries Q1-Q6

Pre-computation times for queries including ancestor-descendant matches:

The pre-computation times for the queries Q7-Q15 involving ancestor-descendant matches

are shown in the Figures 4.4, 4.5 and 4.6. Here too we observe the same delay in the

PathMatch algorithm. We also notice that, as the number of elements of the document

processed is the same, there is not much of a difference across the pre-computation times

of the different queries. Any difference can be contributed to larger query twigs leading

longer iterations during processing of each node. Also, it can be noticed that queries

with a larger number of descendant positions like Q9 and Q12 take longer times than

the others.

Figure 4.4: Pre-computations for Data-set1 on Queries Q7-Q15

49

Figure 4.5: Pre-computations for Data-set2 on Queries Q7-Q15

Figure 4.6: Pre-computations for Data-set3 on Queries Q7-Q15

4.2.2 Update Performance

We pre-computed the result for Q11 on data-set1, data-set2 and data-set3(Table 4.1).

We performed the various update operations on this pre-computed data. If there is

no pre-computations stored for a given query then delete operations do not affect the

existing state of the document. Inserts can change the state of the document only if the

new data being added contains matches to the query.

Deletion of nodes and sub-trees

The time taken to update the pre-computations stored upon deletion is shown in Figures

4.7, 4.8 and 4.9. The graphs corresponding to the three data-sets data-set1, data-set2

and data-set3(Table 4.1) illustrate that there is not much difference between computa-

50

tion times required by the two algorithms for the case that a single node that matches the

query is deleted at the leaf node. This is reasonable as both the algorithms essentially

perform the same operations that correspond to updating the nodes along the path to

the root. For the cases where the root of the sub-tree being deleted does not match the

query, we see that PathMatch is distinctly faster as no changes to any pre-computations

of the ancestors are required. NodeMatch, on the other-hand has to ensure that no

solutions exist in the sub-tree being deleted and hence is considerably slower. For such

cases, we find that NodeMatch is slower by more than an order of 10 times as compared

to PathMatch. If the root of the sub-tree being deleted matches the query, NodeMatch

is comparable in performance to PathMatch. In this case, the re-computations are done

at the ancestors and parent nodes for the NodeMatch scheme and additionally at the

intermediate nodes for the PathMatch scheme.

Figure 4.7: Delete operations on Data-set1

4.2.3 Validation Time

This describes how the times observed for the delete operations in Figures 4.7-4.9 can

be seen as two components, one that determines if a solution still exists after a delete

operation and two, the actual updates of the pre-computations stored. In this section

we show the running times taken to answer the query asking if a solution exists upon

51

Figure 4.8: Delete operations on Data-set2

Figure 4.9: Delete operations on Data-set3

the occurrence of a delete operation. Here we are assuming that the updates on the

pre-computations are deferred. i.e. we just need to determine whether the solution still

exists after the proposed delete operation is performed and we do not update the pre-

computations stored. As shown in Figure 4.10, PathMatch is faster than NodeMatch.

We note that NodeMatch spends time searching a sub-tree that contains no solutions,

where as PathMatch knows this information by just checking if the root node of the

delete operation contains a pre-computation probe. We need to take note that we are

only considering cases in which the root node of the sub-tree being deleted is not a

matching child node of the probe in its parent. If the root node matches the a child

position of its parents probe, the performance of PathMatch will reduce to that of the

52

regular delete operation as the entire re-computations will be required to determine if a

solution exists.

Figure 4.10: Validation time for delete operations.

Insertion of nodes and sub-trees

Similar to delete, we ran the insert operations described in table 4.4 on the three data-

sets described in Table 4.1 and the results are shown in Figures 4.11, 4.12 and 4.13.

The insert operations take nearly the same time for both NodeMatch and PathMatch as

both the methods essentially update the same set of nodes along the path to the root.

PathMatch takes slightly longer as intermediate probes too have to be updated.

Figure 4.11: Insert operations on Data-set1

53

Figure 4.12: Insert operations on Data-set2

Figure 4.13: Insert operations on Data-set3

4.2.4 Comparison of Space Requirements

To get an estimate of the amount of memory required to store the pre-computations

we vary the percentage of elements that have repeated tags. This leads to an increased

number of element nodes matching the query, hence more pre-computed elements. We

have used query Q11 to get a count of the number of probes stored. We measured

the number of probes stored for various number of repeated elements in a data-set of

20000 elements. The results obtained by varying the percentage of repeated element tags

between 0.05% to 0.4 % is shown in Figure 4.14. Generally, the PathMatch algorithm will

store nearly twice as many probes as NodeMatch, This is because all the nodes between

a pair of ancestor-descendant matches in the query store the probes. Additionally along

54

each path from root to leaf, all the nodes between a match and the root of the document

also store probes.

To the define two extremes in the number of probes stored, we consider two cases.

Case(i) All the leaf nodes of a document matches a descendant position of a query. In

this case, all the nodes in the tree would store pre-computed probes for PathMatch. In

case of NodeMatch, apart from the root, only the leaf nodes would store the probes.

Case(ii) There are no descendants to match in query and the query has its root matching

the root of the document or the root’s immediate children. In this case, both NodeMatch

and PathMatch store the same number of probes.

Figure 4.14: Memory requirements for increased repetition of element tags

4.2.5 Update times for varying Fan-out with constant Depth

In this section, we determine the influence of the fan-out of the data-set on the time

required to perform the update operations. We used a data-set with a depth of 4

and varied the average fan-out. We used fan-outs of 6, 12, 22 and 42, these resulted

in documents that contained 262, 1575, 9700, 70515 element nodes respectively. We

obtain the times for the delete and insert operations as shown in Figures 4.15 and 4.16

respectively. As seen from Figures 4.15, the delete times increases considerably with

increase in fan-out. For the data-set with fan-out 6, the root of the sub-tree being

deleted contained a probe, hence both the algorithms executed with similar execution

55

times. Looking at the insert operations (Figure 4.16), we see that there is a little or

no increase in insert times with increasing fan-out. This is because during inserts only

parent nodes and ancestor nodes are accessed.

Figure 4.15: Effect of varying the fan-out on delete operations

Figure 4.16: Effect of varying the fan-out on insert operations

4.2.6 Update times for varying depth with constant fan-out

To determine the influence of depth of the XML document on the time required for the

update operations. We used a data-set of with an average fan-out of 6 and varied the

depth. We used depth values of 4, 5, 6 and 7, these resulted in documents that contained

262, 1550, 10570, 56690 element nodes respectively. We obtain the times for the delete

56

and insert operations as shown in Figures 4.17 and 4.18. We observe that for documents

with increasing depth the delete operations take longer. We also see that there is a

very sharp increase for NodeMatch as the depth increases. This is as expected. From

the level at which the updates take place, with increased depth there are a much larger

number of paths that NodeMatch needs to check to determine solutions existing in the

sub-tree being deleted. For the insert operations we see that, both NodeMatch and

PathMatch take nearly the same time, with increasing depth we see a gradual increase

in the time taken for the updates.

Figure 4.17: Effect of varying the depth on delete operations

Figure 4.18: Effect of varying the depth on insert operations

57

4.2.7 Scalability Comparison

We test the scalability of the two algorithms in terms of time taken for performing the

pre-computations, insert of sub-trees and deletes of sub-trees. We vary the number of

elements in the XML document. Here we use data-set 3, data-set 4 and data-set 5

(Table 4.1). They contain around 20000, 100000, 300000 elements respectively. The

results obtained have been summarized in the graphs shown in Figures 4.19, 4.20 and

4.21.

Figure 4.19: Pre-computation on large data-sets

Figure 4.20: Delete operations on large data-sets

The value for the pre-computation of 20000 data-set is nearly a fifth of that of the

100000 data-set which in turn takes nearly a third of the time taken for the 300000 data-

58

Figure 4.21: Insert operations on large data-sets

sets. This shows that the complexity of the pre-computation phase in proportional to

the number of elements in the database. Figure 4.21 shows the performance on inserts,

we see that even on large data-sets the time taken for both the algorithms is nearly

constant and is affected only by the depth of the tree at which the insert operation is

performed.

4.3 Summary

We summarize the trade offs and strengths of NodeMatch and PathMatch using Table

4.5. In the table, we describe the various factors that affect the performance of both the

algorithms. We also briefly summarize the essential differences between NodeMatch and

PathMatch in executing operations such pre-computations, inserts and deletes. From

all the experimental results we have gathered we find that NodeMatch is faster than

PathMatch in pre-computation phase and for insert operations. However, for both pre-

computations and inserts, NodeMatch and PathMatch differ only by an order of few

milli-seconds (around 10-20). In contrast, PathMatch is generally faster than Node-

Match for delete operations by more than an order of 10 times. PathMatch also has

the advantage that for delete operations we can choose to validate the existence of the

solution to a query before actually updating the pre-computations. PathMatch has the

59

clear advantage that all the operations are bottom-up, that is from leaf to the root. This

avoids costly sub-tree searching operations that affects NodeMatch. Thus, given enough

memory, PathMatch can provide excellent performance for dynamic XML databases.

60

NodeMatch Vs PathMatch
Factor/operation NodeMatch PathMatch
Pre-computation Faster, lesser memory needed Slower more memory needed
Insert operation Update only matching parent,

ancestors nodes. If no matches
present then same time re-
quirements for both.

Update matching parent, an-
cestor and intermediate nodes.

Delete operation with-
out matches

Slow, requires searching in
sub-tree being deleted.

Very fast, as no probe is stored
at the root of sub-tree being
deleted, nothing is done.

Delete operation with
matches

Slow, searching sub-tree re-
quired. Comparable to Path-
Match only if root of sub-
tree being deleted contains a
probe.

Fast, as root of sub-tree con-
tains a probe that is used to
update the ancestors till the
root.

Larger Data-set Constant increase as Path-
Match in pre-computations
and inserts. Suffers more in
deletes.

More number of probes to
be stored assuming more
matches.

Increased Depth Suffers during deletes, as a
delete at a level nearer to the
root involves a larger sub-tree
to be searched.

More ancestors are checked to
determine if a probe is to be
stored. Larger number of in-
termediate nodes stored

Increased Fan-out Pre-computation takes longer,
increases same rate as Path-
Match. No effect on insert.
Deletes take longer for same
reason as increased depth

Pre-computations take longer.
No effect on delete or insert

Repetition of labels Number of additional probes
stored equals the number of
repeated labels matching the
query

Increased number of probes
being stored as intermediates
are stored across a larger num-
ber of paths.

Deferred delete Can answer query only after
searching the sub-tree being
deleted

Can answer query immedi-
ately if the root of the sub-tree
does not match a child posi-
tion of the probe of its parent.

Trace solutions to ac-
cess actual nodes of a
solution

Theoretically possible, re-
quired searches in sub-trees
with matching nodes.

Possible, as there are paths to
all solutions from the probe at
the root of the document.

Table 4.5: The comparison of NodeMatch and PathMatch

61

Chapter 5

Conclusion

In this thesis, we have presented two algorithms that uses pre-computations to answer

frequent queries against dynamic XML databases. We focused on computing solutions

to boolean twig query patterns. For boolean queries, we are only required to determine

the existence of a given twig query in an XML document and do not have to retrieve

the actual data nodes that match the query. We also compute the number of solutions

that are present in the document against which the query is executed.

As with any pre-computed information it is subjected to the curse of updates. We

use a methodology of incremental maintenance in order to maintain the correctness

of the pre-computed information upon updates to the document on which the pre-

computations are built. The challenges we have faced in this task include determining

what pre-computed information is to be stored and where to store it. Another critical

challenge was to limit the number of nodes that need to be accessed in order to update

the pre-computations when the XML document is subjected to updates.

We designed a data structure called the ‘probe’ that contains enough information to

determine the extent of the pattern match of a twig query that is present in the entire

sub-tree of any given node of the XML document. The first algorithm presented called

NodeMatch stored pre-computation probes only at the nodes that matched the query.

62

In the second algorithm named PathMatch we store the pre-computation probes along

all the intermediate nodes between ancestor-descendant matches of a twig query. Probes

are also stored along the root of the document to every complete twig query match that

exists.

With the development of PathMatch, we have a pre-computation based algorithm that

only accesses nodes in the leaf to root manner. Thus the complexity of update operations

are governed by the height of the XML document tree. The NodeMatch algorithm on

the other-hand is seen to be faster for the pre-computations phase and for inserts. Thus,

if the document is not going to be subject to many delete operations it might be feasible

to use NodeMatch instead of PathMatch.

Future direction:

The current research can be extended to include support for recursive query elements

and ordering. There are various applications in which pre-computations of queries can

be efficient. A few possible directions include the publisher-subscriber system and XML

document access control. Using PathMatch, we can trace the path from the root to the

nodes that contain the solution. Thus the complete records of matching solutions can

be retrieved. We also observed that for the purpose of boolean twig queries, NodeMatch

is equally competitive and suffers only from having to search the sub-tree upon deletes.

We could extend NodeMatch to include additional information at each probe stored at a

node to represent its sub-tree. Future work can also include compressing the information

stored and the re-use of pre-computations stored in one query to solve another query.

We conclude this thesis by emphasizing that pre-computations are an effective way

to provide results to repetitive queries and that incremental maintenance provides the

efficiency required upon the updates for pre-computation based query processing to be

a reality.

63

Appendix A

Niagara XML Data Generator

A.1 Configuration file template

Prefix of filename for generated documents

Random number generator seed

Number of documents to generate

Number of levels in the path tree (n)
Minimum fan-out of level 0 of path tree (root) �Maximum fan-out of level 0
Minimum fan-out of level 1 �Maximum fan-out of level 1
...
Minimum fan-out of level (n-2) �Maximum fan-out of level (n-2) {Level (n-1) is the
leaf level}

Fraction of internal path tree nodes with direct recursion in the tag name.
Fraction of internal path tree nodes with indirect recursion in the tag name.
Fraction of internal path tree nodes with repetition in the tag name.
Fraction of leaf path tree nodes with repetition in the tag name.
Fraction of path tree nodes with repetition in the tag name(internal or leaf).

Total number of XML elements to generate (per document)
Zipf value (skew) of element frequency distribution
Assignment of element frequencies to path tree nodes (asc/desc/rand)
Spread of element frequency distribution around average (non-determinism).

Number of distinct text words to generate
Total number of text words to generate (over all documents)
Zipf value (skew) of text word frequency distribution
Probability of an internal node element of the path tree having text word(s)
Probability of an leaf node element of the path tree having text word(s)
Maximum number of text words per element

64

Bibliography

[1] Niagara XML Data Generator(2001), http://www.cs.wisc.edu/niagara.

[2] XML Schema W3C recommendation(2001), http://www.w3.org/tr/xmlschema-2.

[3] W3C(1999) XML path language (XPath) 1.0, http://www.w3.org/tr/xpath.

[4] W3C(2000) Extensible markup language(XML)-1.0,2nd. edn,

http://www.w3.org/TR/REC-xml/.

[5] W3C(2003) XQuery 1.0:An XML Query language,

http://www.w3.org/TR/xquery/.

[6] World Wide Web Consortium (W3C), http://www.w3.org.

[7] Structural Joins: A Primitive for Efficient XML Query Pattern Matching. In

ICDE ’02: Proceedings of the 18th International Conference on Data Engineering

(ICDE’02), page 141. IEEE Computer Society, 2002.

[8] Serge Abiteboul, Jason McHugh, Michael Rys, Vasilis Vassalos, and Janet L.

Wiener. Incremental Maintenance for Materialized Views over Semistructured

Data. In VLDB ’98: Proceedings of the 24rd International Conference on Very

Large Data Bases, pages 38–49. Morgan Kaufmann Publishers Inc., 1998.

[9] Sihem Amer-Yahia, SungRan Cho, Laks V. S. Lakshmanan, and Divesh Srivastava.

Minimization of tree pattern queries. SIGMOD Rec., 30(2):497–508, 2001.

65

[10] Denilson Barbosa, Alberto O. Mendelzon, Leonid Libkin, Laurent Mignet, and

Marcelo Arenas. Efficient Incremental Validation of XML Documents. In ICDE

’04: Proceedings of the 20th International Conference on Data Engineering, page

671. IEEE Computer Society, 2004.

[11] Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal

XML pattern matching. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, pages 310–321. ACM Press, 2002.

[12] C.-Y. Chan, P. Felber, M. Garofalakis, and R. Rastogi. Efficient Filtering of XML

documents with XPath Expressions. In ICDE ’02: Proceedings of the 18th Inter-

national Conference on Data Engineering (ICDE’02), page 235. IEEE Computer

Society, 2002.

[13] Li Chen, Elke A. Rundensteiner, and Song Wang. XCache: a semantic caching

system for XML queries. In SIGMOD ’02: Proceedings of the 2002 ACM SIGMOD

international conference on Management of data, pages 618–618. ACM Press, 2002.

[14] Li Chen, Song Wang, Elizabeth Cash, Burke Ryder, Ian Hobbs, and Elke A. Run-

densteiner. A fine-grained replacement strategy for XML query cache. In WIDM

’02: Proceedings of the 4th international workshop on Web information and data

management, pages 76–83. ACM Press, 2002.

[15] Qun Chen, Andrew Lim, and Kian Win Ong. D(k)-index: an adaptive structural

summary for graph-structured data. In SIGMOD ’03: Proceedings of the 2003

ACM SIGMOD international conference on Management of data, pages 134–144.

ACM Press, 2003.

[16] Zhiyuan Chen, H. V. Jagadish, Flip Korn, Nick Koudas, S. Muthukrishnan, Ray-

mond T. Ng, and Divesh Srivastava. Counting Twig Matches in a Tree. In Pro-

66

ceedings of the 17th International Conference on Data Engineering, pages 595–604.

IEEE Computer Society, 2001.

[17] Shu-Yao Chien, Zografoula Vagena, Donghui Zhang, Vassilis J. Tsotras, and Carlo

Zaniolo. Efficient Structural Joins on Indexed XML Documents. In VLDB, pages

263–274, 2002.

[18] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, and

T. Westmann. Anatomy of a native XML base management system. The VLDB

Journal, 11(4):292–314, 2002.

[19] Daniela Florescu and Donald Kossmann. Storing and Querying XML Data using

an RDMBS. IEEE Data Eng. Bull., 22(3):27–34, 1999.

[20] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L. V. S. Lakshmanan, A. Nierman,

S. Paparizos, J. M. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu.

TIMBER: A native XML database. The VLDB Journal, 11(4):274–291, 2002.

[21] Hyunchul Kang, Hosang Sung, and ChanHo Moon. Deferred incremental refresh of

XML materialized views: algorithms and performance evaluation. In CRPITS’17:

Proceedings of the Fourteenth Australasian database conference on Database tech-

nologies 2003, pages 217–226. Australian Computer Society, Inc., 2003.

[22] Jason McHugh, Serge Abiteboul, Roy Goldman, Dallas Quass, and Jennifer Widom.

Lore: a database management system for semistructured data. SIGMOD Rec.,

26(3):54–66, 1997.

[23] Tova Milo and Dan Suciu. Index Structures for Path Expressions. In ICDT ’99:

Proceeding of the 7th International Conference on Database Theory, pages 277–295.

Springer-Verlag, 1999.

67

[24] Yannis Papakonstantinou and Victor Vianu. Incremental Validation of XML

Documents. In ICDT ’03: Proceedings of the 9th International Conference on

Database Theory, pages 47–63. Springer-Verlag, 2002.

[25] Harald Schöning. Tamino - A DBMS designed for XML. In Proceedings of the 17th

International Conference on Data Engineering, pages 149–154. IEEE Computer

Society, 2001.

[26] Igor Tatarinov, Stratis D. Viglas, Kevin Beyer, Jayavel Shanmugasundaram, Eu-

gene Shekita, and Chun Zhang. Storing and Querying Ordered XML Using a

Relational Database System. In SIGMOD ’02: Proceedings of the 2002 ACM SIG-

MOD international conference on Management of data, pages 204–215. ACM Press,

2002.

[27] Zografoula Vagena, Mirella M. Moro, and Vassilis J. Tsotras. Twig query pro-

cessing over graph-structured XML data. In WebDB ’04: Proceedings of the 7th

International Workshop on the Web and Databases, pages 43–48. ACM Press, 2004.

[28] Xiaodong Wu, Mong Li Lee, and Wynne Hsu. A Prime Number Labeling Scheme

for Dynamic Ordered XML Trees. In ICDE ’04, Proceedings of the 20th Interna-

tional Conference on Data Engineering, page 66. IEEE Computer Society, 2004.

[29] Liang Huai Yang, Mong-Li Lee, and Wynne Hsu. Efficient Mining of XML Query

Patterns for Caching. In VLDB, pages 69–80, 2003.

[30] Masatoshi Yoshikawa, Toshiyuki Amagasa, Takeyuki Shimura, and Shunsuke Ue-

mura. XRel: a path-based approach to storage and retrieval of XML documents

using relational databases. ACM Trans. Inter. Tech., 1(1):110–141, 2001.

68

