
SKYLINE/PREFERENCE QUERY PROCESSING

ENG PIN KWANG
(Master of Science, NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ACKNOWLEDGEMENTS

The first person I would like to thank is my supervisor, Associate Professor Tan

Kian Lee. I have been under his supervision and guidance as early as 1997 when I

worked on my third year project. Over the years, he has taught me many things

about research, especially how to craft a good research paper. I am truly grateful

for his help during these years. Without his constant support and understanding,

I believe I would not have reached this far today. I would also like to express

my thanks to the following people: Professor Ooi Beng Chin who provides many

useful suggestions and help on my Ph.D work, Dr. Chan Chee Yong whom I have

many fruitful discussions for the work on evaluating skyline queries with partially-

ordered domains, Dr. Barbara Catania for many invaluable suggestions for the

work on pareto preference queries, Mr. Sim Hua Soon for his help with the work on

numerical preference queries, Associate Professor Stan Jarzabek who has helped me

a lot over the years and has inspired me to a great extent, and Dr. Anirban Mondal

whose constant encouragement is a great help to me in completing my dissertation.

Last of all, I would like to thank my family, especially my wife, Helen, for being

understanding and patient with me throughout this period.

ii

CONTENTS

Acknowledgements i

Summary vi

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.1.1 Personalization of Database Queries 1

1.1.2 Supporting Preference Queries in Database Systems 3

1.1.3 Types of Preference Queries Addressed 5

1.2 Contributions . 8

1.3 Thesis Outline . 10

2 Preliminaries 12

2.1 A Preference Framework for Relational Database Systems 12

2.1.1 Preferences . 12

2.1.2 Base Preference Constructors 13

2.1.3 Complex Preference Constructors 17

iii

2.1.4 The Best-Matches-Only (BMO) Model 19

2.2 Related Work . 20

2.2.1 Qualitative Approach . 20

2.2.2 Quantitative Approach . 35

2.2.3 Other Approaches . 42

3 Progressive Skyline Computation 45

3.1 The Skyline Operator . 46

3.2 Progressive Skyline Computation Algorithms 47

3.2.1 Bitmap: A Bitmap-based Algorithm 47

3.2.2 Index: A B+-tree-based Algorithm 57

3.2.3 Discussion . 64

3.3 Performance Study . 69

3.3.1 Experimental Setup . 69

3.3.2 Experimental Results on the MAX Annotation 71

3.3.3 Experimental Results using MAX/DIFF Annotations 81

3.4 Summary . 88

4 Skyline Computation with Partially Ordered Domains 89

4.1 Motivation . 90

4.2 An Interval-based Approach . 92

4.2.1 Basic Idea . 92

4.2.2 Definitions . 94

4.2.3 Domain Mapping Function 95

4.2.4 Algorithm BBS . 96

4.2.5 Algorithm BBS+ . 97

4.2.6 Algorithm SDC . 98

4.2.7 Algorithm SDC+ . 104

4.2.8 Optimizing Dominance Classification 108

4.3 Performance Study . 111

iv

4.3.1 Response Time & Progressiveness 113

4.3.2 Effect of Poset Structure . 116

4.3.3 Other Experiments . 117

4.4 Summary . 118

5 Evaluating Pareto Preference Queries in Relational Database
Systems 120

5.1 A Bitmap-based Approach . 122

5.1.1 Construction of the Bitmap Structure 122

5.1.2 Evaluating Pareto Preference Queries 124

5.2 A R-tree-based Approach . 129

5.2.1 The Pref-Tree Structure . 130

5.2.2 Insertion and Deletion Operations 133

5.2.3 Evaluation of Pareto Queries 135

5.3 A B-tree-based Approach . 138

5.3.1 The Model . 138

5.3.2 The Pareto Algorithm . 141

5.4 Performance Study . 154

5.4.1 Initial Response Time . 157

5.4.2 Progressiveness of the Algorithms 160

5.4.3 Other Experiments . 162

5.5 Summary . 165

6 Evaluation of Numerical Preference Queries with Linear
Scoring Functions 166

6.1 Preliminaries . 167

6.2 A Generic Partition-based Framework and Algorithm 168

6.2.1 Partition-based Framework 168

6.2.2 Other Issues . 173

6.3 Index-based Partitioning Strategies 175

6.3.1 R-tree Based Cluster Partitioning 175

v

6.3.2 Quad-tree Based Grid Partitioning 177

6.3.3 B-tree Based Edge Partitioning 178

6.4 Performance Study . 179

6.4.1 Experimental Setup . 179

6.4.2 Initial Response Time . 182

6.4.3 Progressiveness of the Algorithms 186

6.4.4 Comparing the Overall Runtime 189

6.4.5 Effect of Dataset Size . 190

6.4.6 Evaluation Against the PREFER System 191

6.5 Summary . 194

7 Conclusion and Future Work 196

7.1 Contributions . 197

7.2 Discussion . 199

7.3 Future Work . 203

Bibliography 205

Appendix A 215

Appendix B 219

vi

SUMMARY

Many decision support applications are characterized by several features: (1) the

query is typically based on multiple criteria; (2) there is no single optimal answer (or

answer set); (3) because of (2), users are typically looking for satisficing answers; (4)

for the same query, different users, dictated by their personal preferences, may find

different answers meeting their needs. Relational database technology is ill-suited

for supporting such applications because it only selects results that exactly match

the user’s criteria. Ideally, users should be able to pose preference queries which

embed their personal preferences to the database system which then attempts to

find all the best matches.

The need to support preference queries has recently led to the proposal of

several preference frameworks for relational database systems. In this dissertation,

we address performance issues associated with the implementation of features of

these frameworks. Specifically, we study the evaluation of three specific types of

preference queries and propose several approaches for evaluating them efficiently.

All our approaches allow preference queries to be evaluated over a large dataset in

a limited main memory environment. Moreover, they are progressive and are able

to provide a fast initial response time.

vii

The first type of preference queries we address is skyline queries which allow

users to specify their preferences in terms of whether they favor low, high or differ-

ent values of the attributes. We propose two online algorithms for evaluating such

queries. One uses a bitmap structure while the other uses a transformation mecha-

nism and a B+-tree. Our performance study indicates that our second approach is

superior in most cases. We also address the issue of evaluating skyline queries with

partially-ordered domains. Our solution is to transform each partially-ordered at-

tribute into a two-integer domain that allows us to exploit index-based algorithms

to compute skyline queries on the transformed space. Based on this framework, we

propose three novel algorithms and evaluate their performance. Our results show

that our proposed techniques outperform existing approaches by a wide margin.

The second type of preference queries we address is a general form of skyline

queries call pareto queries. Pareto queries support a wider range of base preferences

and therefore allow a broader class of preferences to be specified. We propose three

approaches for evaluating pareto queries. The first is a non-trivial extension of

our bitmap scheme for evaluating skyline queries. The second adopts a tree struc-

ture similar to the R-tree. The third relies solely on single-dimensional indexes.

The results from our performance study show that the third approach is the most

attractive in terms of progressiveness and initial response time.

The third type of preference queries we address is numerical preference queries

where preferences are specified indirectly using scoring functions. The scoring

function is used to compute a score for each record in the database and answers

are returned ordered by scores. We devise a fast partition-based query processing

framework for evaluating such queries. We propose and analyze several index-

based partitioning strategies. The comparative results from our performance study

confirm the effectiveness of our proposed schemes.

viii

LIST OF TABLES

2.1 Hotels relation. 14

2.2 Hotels relation with normalized values. 19

4.1 Experimental parameters and values used. 112

5.1 Hotels relation (from chapter 2). 121

5.2 Construction costs. 164

ix

LIST OF FIGURES

1.1 Skyline example. 6

2.1 Merge step of the divide and conquer algorithm. 24

2.2 The NN algorithm. 27

2.3 The BBS algorithm. 28

2.4 BBS variants. 29

3.1 An example to illustrate the bitmap-based method. 49

3.2 Bitmap-based skyline computation algorithm. 51

3.3 A bit-slice index entry. 54

3.4 An example to illustrate bit-slice segmentation. 56

3.5 An example to illustrate the index-based method. 58

3.6 Index-based skyline computation algorithm. 62

3.7 Skyline sizes for the MAX annotation. 71

3.8 Effect of segmentation on the Bitmap scheme. 72

3.9 Actual runtime. 73

3.10 Interval timings for anti-correlated databases. 77

3.11 Interval timings for correlated databases. 77

3.12 Interval timings for independent databases. 77

3.13 Effects of buffer size and number of distinct values per dimension. . 79

x

3.14 Comparing database size (the timings indicate overall runtime). . . 81

3.15 Skyline sizes (using only 1 DIFF annotation). 82

3.16 Actual runtime (using 1 DIFF annotation). 83

3.17 Interval timings for anti-correlated databases. 85

3.18 Interval timings for correlated databases. 85

3.19 Interval timings for independent databases. 85

3.20 Skyline sizes (for more than 1 DIFF annotations). 86

3.21 Using more than 1 DIFF annotations. 87

4.1 Example of domain transformation. 91

4.2 Algorithm BBS. 96

4.3 Algorithm BBS+. 98

4.4 Example poset(D,¹). 99

4.5 Dominance Graph DG. 100

4.6 Algorithm SDC. 101

4.7 Algorithm SDC+. 107

4.8 Optimizing dominance classification. 109

4.9 Algorithm to optimize spanning tree. 111

4.10 Varying the number of numerical/set-valued attributes. 114

4.11 Effect of poset structure. 117

4.12 Results of other experiments. 118

5.1 Bitmap example. 123

5.2 Modified Bitmap algorithm. 125

5.3 AROUND preference. 127

5.4 Pref-Tree example. 133

5.5 Pref-Tree algorithm. 136

5.6 List of entries for the running example. 140

5.7 The main algorithm. 142

5.8 Function findMaximal. 143

xi

5.9 Rationale for the second step. 144

5.10 Illustration of findMaximal. 146

5.11 Procedure updateBitmap. 147

5.12 Illustration of updateBitmap. 149

5.13 Evaluation of query with 3 preferences. 149

5.14 Subsequent iteration. 151

5.15 First 100 results, independent datasets. 157

5.16 Interval timings, independent datasets. 160

5.17 Other experiments. 162

6.1 A running example. 170

6.2 The query processing algorithm. 172

6.3 Example on how the framework works. 173

6.4 Traversing the R-tree in order. 176

6.5 An example for R-tree traversal. 177

6.6 Illustration of hierarchical grid partitioning. 178

6.7 Illustration of edge partitioning. 178

6.8 Timings of first 100 points for independent datasets. 183

6.9 Timings of first 100 points for correlated datasets. 184

6.10 Timings of first 100 points for anti-correlated datasets. 185

6.11 Interval timings for independent datasets. 186

6.12 Interval timings for correlated datasets. 188

6.13 Interval timings for anti-correlated datasets. 188

6.14 Actual runtime. 190

6.15 Varying the size of the datasets. 190

6.16 Interval timings for d = 5. 193

6.17 Actual runtime. 193

6.18 Constraint preference query. 194

1

CHAPTER 1

Introduction

1.1 Motivation

1.1.1 Personalization of Database Queries

Providing personalized e-services is gradually becoming a norm in today’s highly

competitive environment [30]. Many companies are starting to provide personalized

Business-To-Consumer (B2C) and Business-To-Business (B2B) e-services to build

a closer tie with their customers and retain their loyalty. The popularity of person-

alized e-services can be largely attributed to the unpleasant experience encountered

by users when looking for information in the World Wide Web (WWW).

Take e-procurement as an example. Electronic catalogues of large sites fre-

quently offer millions of products for sale which necessitate the assistance of a

search engine. However, many of these search engines are back-ended by relational

database systems that are only capable of selecting products that exactly match

the users’ search conditions. This frequently leads to the ‘no match’ effect where

the query comes up empty. Subsequently, users are forced to try new queries, with

possibly weaker criteria such as using ‘or’-conditions. However, now they get the

other extreme – ‘flooding’ effect, where the query comes up with too many results,

most of which are irrelevant to them. Such a search process is long and arduous

and is a primary cause of users’ frustration.

2

We find that most applications that exhibit such effects are typically decision

support applications characterized by the following features:

1. User queries are typically based on multiple, possibly conflicting, criteria. For

example, a house hunter may be interested in cheap houses near the beach.

Clearly, houses near the beach are expected to be more expensive.

2. Unlike conventional applications, there may be no single optimal answer (or

answer set). For our house hunter, it is unlikely that there exists a house that

is both cheap and near to the beach. Instead, one can expect to find houses

nearer to the beach to be more expensive.

3. Because of the second point, users are typically looking for satisficing answers

that best match their criteria.

4. Even for the same query, different users, dictated by their personal prefer-

ences, may find different answers appealing. For example, our house hunter

may be willing to pay more to be nearer to the beach. As such, it is important

that all the best alternatives are presented to the users.

From the above features, we can see that relational databases are ill-suited

for supporting such applications. A relational query selects only results that ex-

actly match the user’s criteria or it selects nothing. To support such applications,

database systems have to be enhanced to support best match searches, personalized

to individual’s desires and tastes. Users should be allowed to pose personalized

database queries i.e. preference queries, which embed their personal preferences.

The database system would then attempt to find the perfect matches from the

database and should there be none, all the best alternatives are automatically re-

trieved. Such an approach effectively combats the ‘no match’ and ‘flooding’ effects,

creating an enhanced browsing experience for the users.

3

1.1.2 Supporting Preference Queries in Database Systems

The need to integrate preferences with database technology has not gone unnoticed

by the database community. This has recently led to a widespread interest in en-

hancing the query capabilities of relational database systems to support preference

queries. While the semantics of evaluating a standard, concrete database query is

well defined i.e. extract all results that match the conditions exactly, the semantics

of evaluating a preference query is still open to interpretations. However, a consen-

sus on this issue seems to have been reached which is exemplified in several recent

work such as [9], [26] and [65]. Before we formally define the problem of evaluating

a preference query in a relational database system, we first define what we mean

by dominance:

Definition 1.1 (Dominance). Given a set of user specified preferences P in query

Q, we say a point x dominates another point y if all attribute values of x is as good

as y’s and at least one of them is strictly better than y’s with respect to P .

Definition 1.2 (Preference Query Problem). Given a relation R(A1, . . . , Ad)

containing |R| data points, a preference query Q selects a subset S of points from

R that are not dominated by any other points in the same relation. Points in S

are commonly referred to as the maximal points of R with respect to query Q.

The reason behind retrieving non-dominated points as results of a preference

query is due to an important property of these points. Given a set of maximal points

S, for any monotone scoring function R → R, if p ∈ R maximizes that scoring

function, then p ∈ S. In simpler terms, no matter how the user emphasizes his/her

preferences, he/she can always find his/her favorites in S. In our house hunting

example, no matter how our house hunter emphasizes his preferences towards price

of the houses or their distances from the beach, he will always find his favorite in S.

Additional, for every point p ∈ S, there exists a monotone scoring function that p

maximizes. Since a scoring function represents the preferences of some user, every

point in S may potentially be someone’s favorite.

4

Intuitively, the set of maximal points, S, represents the set of satisficing answers

that we describe in the previous subsection. They form the best alternatives to

a user’s preference query because no matter what their preferences are and how

these preferences are emphasized, an appealing answer can always be found in S.

Therefore, enhancing database systems with the capability to retrieve maximal

points which are based on user preferences provides a means in which preference

queries can be supported in these systems. How to retrieve S efficiently is the key

objective of this dissertation.

The preference query problem is not something new. It is analogous to the

multiobjective optimization problem well-known in operations research [87, 95].

In fact, it is really the maximum vector problem placed in a database context.

The maximum vector problem is originally proposed in [72] and it involves finding

all maxima of a set of points. Although the maximum vector problem has been

studied earlier, solving it in the database context as the preference query problem

introduces new challenges.

First, the preference queries have to be evaluated over a large (although fi-

nite) dataset with limited main memory. As discussed in [9], the algorithms for

solving the maximum vector problem perform terribly in the database context be-

cause of the limited memory environment. Second, as most applications supporting

preference queries are interactive in nature, it is important that first answers are

returned as quickly as possible. For example, a psychology study [88] shows that

users tend to accept response times of up to three seconds and will only tolerate

longer runtime for more difficult tasks. Finally, if a preference query results in a

large answer set, the user is unlikely to examine all the results. To conserve valu-

able computational resources, partial results should be returned to users initially

and more results computed upon users’ request. This allows users to terminate the

processing prematurely as soon as they are satisfied with the partial answers, sav-

ing precious resources in computation. In other words, answers should be returned

progressively. This is particularly important in high-traffic web sites or mobile

5

environments where resources are even more constrained.

The above challenges clearly signal the need for new ways of approaching the

maximum vector problem in the database context. This is also the focus of this

dissertation. Our goal is to devise efficient structures and algorithms that are

progressive and have a fast initial response time for evaluating preference queries

in relational database systems. We note that the evaluation of preference queries

is potentially more expensive than hard selection relational queries because the

non-monotonic nature of preferences generally leads to more complex evaluation

strategies.

Before we describe our specific contributions, we shall briefly describe the type

of preference queries we will be addressing in this dissertation (the respective pref-

erences will be defined formally in the next chapter).

1.1.3 Types of Preference Queries Addressed

Skyline Queries

Skyline queries is first introduced in [9] and a Skyline Of clause is proposed as

an extension to SQL. In a skyline query, users specify their preferences in terms

of whether they favor low, high or different values of the attributes. All specified

preferences are also regarded as equally important. The classic hotel example is

shown in Figure 1.1. In this example, assume that the Hotel relation has two

attributes, Price and Distance, representing the room rates of hotels and their

distances to the beach respectively. Further assume that a tourist is interested in

cheap hotels (preference for low values of Price) near to the beach (preference for

low values of Distance).

Figure 1.1(a) shows the skyline query while Figure 1.1(b) shows the skyline

of hotels. Hotels that belong to the skyline are represented by bold points that

are connected in the graph. The rest of the hotels are dominated in terms of

price and distance to the beach by at least one hotel that belongs to the skyline.

Intuitively, those hotels that are part of the skyline are also the maximal points. As

6

SELECT *

FROM Hotels

SKYLINE OF Price MIN,

Distance MIN;

(a) Skyline query

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

di
st

an
ce

 f
ro

m
 c

ity
 (

km
)

price ($)

(b) Skyline of hotels

Figure 1.1: Skyline example.

the example illustrates, skyline queries allow a user to specify his/her preferences

directly in the query. The construct allows multiple preferences to be combined in

parallel and is highly composable with relational algebra.

Pareto Queries

Although skyline queries is an important class of preference queries, they are fairly

limited in expressiveness. Users are only allowed to specify whether they favor low,

high or different values of the attributes. Consider our tourist example. Assume

that our Hotel relation further contains two attributes, golf distance and area,

representing each hotel’s distance to the nearest golf facility and the area the hotel

is located respectively. Now, what if the tourist is also interested in hotels that are

within 5km of a golf facility and are located in the uptown area? Such preferences

cannot be expressed in a skyline query. In [65], Kießling presented a preference

model for database systems and together with Köstler in [68], constructed a rich

query language called Preference SQL as an extension to SQL. Kießling’s prefer-

ence model allows a more general form of skyline queries call pareto queries to be

expressed. For example, our tourist can specify his new query in Preference SQL

as follows:

SELECT *

FROM Hotels

PREFERRING LOWEST(price) AND LOWEST(distance)

AND golf_dist BETWEEN [0,5] AND

area IN (‘uptown’);

7

The pareto query allows a set of base preferences such as LOWEST, BETWEEN

and IN to be directly specified on various attributes and it combines them through

an AND operator to signify that all the constituent preferences are equally impor-

tant. As our example illustrates, pareto queries can potentially cover a broader

class of preference queries.

Numerical Preference Queries

In numerical preference queries, preferences are specified indirectly using scoring

functions. A user expresses his/her preferences by assigning weights to various

attributes of interest. The system then computes a score for each data point

according to some specific function of the given weights. A data point x is more

preferred than another point y if x has a higher score than y. For example, our

tourist might view the price of hotels and their distances to the beach as more

important compared to the rest of the attributes. Hence, he assigns a weight of

0.4 each to both attributes while setting equal and low weights to the rest. The

system then computes the score for each hotel and output the top scoring ones.

An analogous approach has also been applied for multiobjective optimization

problems in operations research where a multiobjective problem is first transformed

into a mono-objective one before solving. In the context of our preference query

problem, one can imagine that all attributes of interest are “compressed” into a

single representative attribute, the score. Therefore, there is only one attribute for

comparison and a point x dominates another point y if x has a higher score than y.

The maximal points are, thus, the set of points with the highest scores.

In practice, this set of maximal points are generally too small a set to choose

from. This lead to the proposal of the top-k query model where the best k answers

are returned. Since k is user-definable, this might result in some non-maximal

points being returned. Nonetheless, numerical preference queries are popular in

several database and information retrieval applications, especially those that re-

quire multi-feature or full-text searches.

8

1.2 Contributions

In this dissertation, we address the issue of computational efficiency of the pref-

erence query problem. We adopt the preference framework presented in [65] and

propose several algorithms and data structures that are suitable for answering

preference queries efficiently in relational database systems. All our approaches

are completely progressive and provide a fast initial response time by returning an-

swers as soon as they become available. The specific contributions are as follows:

1. We propose two techniques for solving skyline queries. The first technique,

called Bitmap, is completely non-blocking and exploits a bitmap structure to

quickly identify whether a point belongs to the skyline or not. The second

technique, called Index, exploits a transformation mechanism and a B+-tree

index to return skyline points in batches. All the techniques are implemented

and an extensive performance study is conducted to compare their perfor-

mance against three existing algorithms. Our experimental studies show that

Index is superior in most cases while Bitmap performs well for small number

of distinct values per attribute as well as for large number of skyline points.

2. We study the evaluation of skyline queries with partially-ordered attributes.

Because such attributes lack a total ordering, traditional index-based evalua-

tion algorithms that are designed for totally-ordered attributes can no longer

prune the space as effectively. Our solution is to transform each partially-

ordered attribute into a two-integer domain that allows us to exploit index-

based algorithms to compute skyline queries on the transformed space. Based

on this framework, we propose three novel algorithms. We implemented the

proposed schemes and evaluated their performance. Our results show that

our proposed techniques outperform existing approaches by a wide margin

(between a factor of 2 and 16). To the best of our knowledge, this is the first

work that examines the problem of evaluating skyline queries with partially-

ordered domains.

9

3. We propose three approaches for evaluating pareto queries. The first ap-

proach is a non-trivial extension of our Bitmap technique for solving skyline

queries. Taking advantage of the fact that bitwise operation is fast, this

approach can achieve a high level of efficiency. However, because bitmap

indexes incur a relatively high storage and maintenance cost in practice, the

application of this approach is limited to static databases such as data ware-

houses where updates are rare and queries frequent. To deal with dynamic

databases, we propose the second approach which is a tree structure similar

to the R-tree. By sacrificing some efficiency, it provides a space efficient so-

lution with a lower maintenance cost compared to the first approach. While

these two approaches are essentially multi-dimensional indexes, our third ap-

proach is based only on single-dimension indexes such as the B+-tree.

While it requires a single dimensional index to be built for each attribute,

these indexes are still comparably cheaper to maintain than a single multi-

dimensional index. Moreover, since most commercial DBMS support at least

one type of single-dimensional index, this approach can be easily integrated

into existing database systems. We also conducted an extensive experimental

study on the effectiveness of our three approaches against existing techniques.

Our results indicate that the last approach is the most attractive in terms of

progressiveness and initial response time.

4. We devise a fast partition-based query processing framework for evaluating

numerical preference queries. We propose and analyze several index-based

partitioning strategies. Index-based approaches are attractive because most

indexes inherently partition the databases and hence save the cost to partition

the database at runtime. We also performed an extensive experimental study

to compare the performance of our algorithm against existing approaches.

The comparative results confirm the effectiveness of our proposed schemes.

10

1.3 Thesis Outline

The thesis is organized as follows:

• Chapter 2 describes the preference framework that we adopt in this disserta-

tion. The framework is proposed by Kießling in [65]. It is a semantically rich

preference model for database systems, based on preferences as strict partial

orders. Related work are also reviewed. These related work can generally be

divided into two groups with one group adopting a qualitative approach while

the other adopting a quantitative approach to supporting preference queries.

Other related approaches to supporting user preferences are also described.

• Chapter 3 presents our two approaches to evaluating skyline queries. We

describe how the skyline is computed progressively using our data structures

and algorithms and address several important issues pertaining to our ap-

proaches. Results from the performance study conducted to evaluate the

effectiveness of our algorithms are also presented.

• Chapter 4 presents our framework for evaluating skyline queries with partially-

ordered domains. Based on the framework, we describe three novel algorithms

for evaluating skyline queries involving partially-ordered attribute domains.

Results from the performance study conducted to evaluate the effectiveness

of the algorithms are also presented.

• Chapter 5 presents our three approaches to evaluating pareto queries. We

describe the data structures and algorithms used in the various approaches.

We prove the correctness of our algorithms and analyze their performance

through an extensive experimental study. Findings based on the study are

also presented.

• Chapter 6 presents our partition based framework and algorithm for evaluat-

ing numerical preference queries. We describe salient features of our frame-

work that enable such queries to be processed efficiently. We also analyze

11

several index-based partitioning strategies. Results from our experimental

studies showing the effectiveness of our framework are also presented.

• We conclude our work in Chapter 7 with a summary of our contributions.

We also provide directions for future work.

We note that a preliminary version of Chapter 3 was published in the Proceed-

ings of the 27th International Conference on Very Large Data Bases, Roma, Italy,

in September, 2001 [97]. Its expanded version was published in Data & Knowl-

edge Engineering, Volume 46, Number 2, in 2003 [34]. A preliminary version of

Chapter 4 was accepted for publication in the Proceedings of the 21st International

Conference on Data Engineering, Tokyo, Japan, in April, 2005 [17]. Its expanded

version was accepted for publication in the Proceedings of the 24th ACM SIGMOD

International Conference on Management of Data, Baltimore, Maryland, in June,

2005 [18]. A preliminary version of Chapter 6 was published in the Proceedings

of the 19th International Conference on Data Engineering, Bangalore, India, in

March, 2003 [32]. Expanded versions of Chapters 5 and 6 are currently under

review [33, 35].

12

CHAPTER 2

Preliminaries

In this chapter, we first describe the preference framework that we have adopted

for our work. The framework is proposed in [65] for database systems. It is a

powerful framework based on modeling preferences as strict partial orders. We give

an overview of the framework, focusing only on those aspects of the framework that

are relevant for the scope of our work. Full details can be found in [65]. The rest

of the chapter will then review related work which are grouped according to the

approach they use to support preference queries.

2.1 A Preference Framework for Relational

Database Systems

2.1.1 Preferences

Consider a dataset D having a set of attributes A = {A1, A2, . . ., Ak}. Let the

domain of Aj be dom(Aj) for 1 ≤ j ≤ k and dom(A) = ×Aj∈A dom(Aj).

Definition 2.1 (Preference). A preference on the set of attributes A is defined

as P = (A, <P) where <P ⊆ dom(A)× dom(A) is a strict partial order.

Hence, <P is irreflexive, anti-symmetric and transitive. Following the notation

in [65], we write “x <P y” to mean y is more preferred than x for x, y ∈ dom(A)

although we occasionally use the term “y dominates x” for the same meaning.

Also, if x and y are unranked, we mean ¬(x <P y) ∧ ¬(y <P x).

13

The preference P can also be represented as a directed acyclic graph G called

better-than graph. Several quality notions can be defined between two values x

and y in G: we say y is a predecessor of x if x <P y. If y has no predecessor, it

is maximal and defined to be at level 1. Otherwise, y is at level j if the longest

path between y and a maximal value has j − 1 edges. Finally, we say x and y

are unranked if there is no directed path between them. These quality notions are

used for unordered domains. For ordered domains, a continuous distance function

is used instead of the discrete level function to distinguish the levels.

The maximal values of a preference P forms the results of a preference query

and is defined formally as follows:

Definition 2.2 (Maximal values). The maximal values of P = (A, <P) is given

by the set {v ∈ dom(A) | ¬∃w ∈ dom(A) : v <P w}.

For specifying preferences, [65] promotes a constructor-based approach where

constructors, acting as preference templates, are used to instantiate the various

types of preferences. These constructors are further divided into base and com-

plex constructors. A base constructor instantiates a base preference and is clas-

sified as non-numerical or numerical, depending on whether the domain of the

attributes under consideration is unordered or ordered respectively. On the other

hand, a complex constructor inductively creates complex preferences by combin-

ing the base preferences. In [65], a pre-defined set of constructors are proposed.

They are considered valuable for personalized searches based on practical experi-

ences gained from e-shopping applications [68]. New constructors can be added as

required by the application domain. We describe these constructors next.

2.1.2 Base Preference Constructors

The base constructors are divided into two sets, one for each type of domain. We

shall repeat the formal definitions from [65] here and illustrate them with examples.

For ease of illustration, we shall use the sample hotel relation shown in Table 2.1.

14

Id Rates Area Stars

1 280 midtown 2
2 190 uptown 3
3 308 midtown 3
4 314 midtown 4
5 257 uptown 2

Table 2.1: Hotels relation.

The attributes of the relation consist of the hotel’s id, the starting rates of a

room, the area the hotel is in and the ratings of the hotel represented by the number

of stars. The domain of the attribute area is {uptown, midtown, downtown} while

the domain of other attributes are integers.

Non-numerical Base Preference Constructors

POS preference: P := POS(A, POS-set = {v1, . . . , vm})

Formal: Let POS-set ⊆ dom(A) be finite. P is a POS preference if x <P y iff

x 6∈ POS-set ∧ y ∈ POS-set.

Intuition: A POS preference specifies that some desired values should be from a

set of favorites v1, . . . , vm ∈ dom(A), called positive values. If this is not possible,

instead of returning nothing, any other value from dom(A) is returned.

Example: POS(area, {downtown, midtown}). Hotels 1, 3 and 4 are returned as

the answers since they are located in midtown (which is in the POS-set).

NEG preference: P := NEG(A, NEG-set = {v1, . . . , vm})

Formal: Let NEG-set ⊆ dom(A) be finite. P is a NEG preference if x <P y iff

y 6∈ NEG-set ∧ x ∈ NEG-set.

Intuition: A NEG preference specifies that the desired values should not be from

a set of dislikes v1, . . . , vm ∈ dom(A), called negative values. If this is not possible,

instead of returning nothing, any disliked value is returned.

Example: NEG(area, {uptown}). For this NEG preference, uptown is the dis-

liked value. Hence, hotels 1, 3 and 4 are returned as the answers since the area

they are located in are not in the NEG-set.

15

POS/NEG preference: P := POS/NEG(A, POS-set = {v1, . . . , vm}; NEG-

set = {vm+1, . . . , vm+n})

Formal: Let POS-set, NEG-set ⊆ dom(A) be finite and disjoint. P is called a

POS/NEG preference if x <P y iff (x ∈ NEG-set ∧ y 6∈ NEG-set) ∨ (x 6∈ NEG-set

∧ x 6∈ POS-set ∧ y ∈ POS-set).

Example: POS/NEG(area, {downtown}; {uptown}). POS/NEG preference is a

combination of the previous preferences. Thus, hotels 1, 3 and 4 are the answers

as the area they are located in do not belong to the NEG-set.

POS/POS preference: P := POS/POS(A, POS1-set = {v1, . . . , vm}; POS2-

set = {vm+1, . . . , vm+n})

Formal: Let POS1-set, POS2-set ⊆ dom(A) be finite and disjoint. POS-1 set are

the favorite values, POS2-set are the second-best alternatives. P is called POS/POS

preference, if x <P y iff (x ∈ POS2-set ∧ y ∈ POS1-set) ∨ (x 6∈ POS1-set ∧ x 6∈
POS2-set ∧ y ∈ POS2-set) ∨ (x 6∈ POS1-set ∧ x 6∈ POS2-set ∧ y ∈ POS1-set).

Example: POS/POS(area, {downtown}; {uptown}). A POS/POS preference al-

lows the specification of optimal values (POS1-set) and alternative values (POS2-

set). Since there are no hotels in downtown, hotels 2 and 5 which are the second-

best alternatives are returned as the answers.

EXPLICIT preference: P := EXPLICIT(A, explicit-graph{(v1, v2), . . .})

Formal: Let explicit-graph = (v1, v2), . . . represents a finite acyclic better-than

graph, where vi ∈ dom(A). Let V be the set of all vi occurring in the explicit-graph.

We induce a strict partial order S = (V, <S) on V as follows: each pair (vi, vj)

∈ the explicit-graph means that vi <S vj, and vi <S vj ∧ vj <S vk implies vi <S

vk. P is an EXPLICIT preference if for x, y ∈ dom(A), x <P y iff x <S y ∨ (x 6∈
range(<S) ∧ y ∈ range(<S)).

Example: EXPLICIT(area, {(uptown, downtown), (midtown, uptown)}. An

EXPLICIT preference allows the explicit specification of any better-than relation-

ships. In this query, the user prefers downtown to uptown and uptown to midtown.

The EXPLICIT-graph is: downtown (level 1) → uptown → midtown (level 3).

16

Thus, hotels 2 and 5 are returned as the answers since they are in uptown (as

compared to the rest of the hotels which are in the midtown area).

Numerical Base Preference Constructors

AROUND preference: P := AROUND(A, z)

Formal: Given a value z ∈ dom(A), ∀v ∈ dom(A) we define distance(v, z) =

abs(v−z). P is an AROUND preference if x <P y iff distance(x, z) > distance(y, z).

If distance(x, z) = distance(y, z) and x 6= y, then x and y are unranked.

Example: AROUND(rates, 250). AROUND preference favors values that are

close to a target value. Here, hotel 5 is the answer as its rate is nearest to 250 in

terms of the distance function.

BETWEEN preference: P := BETWEEN(A, [low,up])

Formal: Given an interval [low, up] ∈ dom(A) × dom(A), low ≤ up, ∀v ∈
dom(A), we define distance(v, [low, up]) = if v ∈ [low, up] then 0 else if v < low

then low - v else v - up. P is a BETWEEN preference if x <P y iff distance(x,

[low, up]) > distance(y, [low, up]). If distance(x, [low, up]) = distance(y, [low,

up]) and x 6= y, then x and y are unranked.

Example: BETWEEN(rates, [200, 220]). A BETWEEN preference prefers val-

ues close to some specified interval. Thus, hotel 2 is returned as the answer as it is

nearest to the minimum preferred rate of 200 in terms of the distance function.

LOWEST, HIGHEST preference: P := LOWEST(A), HIGHEST(A)

Formal: P is called LOWEST preference if x <P y iff x > y while P is called

HIGHEST preference if x <P y iff x < y, for x, y ∈ dom(A).

Example: LOWEST(stars) and HIGHEST(stars) return hotels {1, 5} and 4 as

answers because these are hotels with the lowest and highest ratings respectively.

SCORE preference: P := SCORE(A, f)

Formal: Given a scoring function f: dom(A) → R. If ‘<’ is the familiar ‘less-

than’ order on R, then P is a SCORE preference if for x, y ∈ dom(A): x <P y iff

f(x) < f(y).

17

Example: Assume a scoring function f = 0.1 × rates, then SCORE(rates, f)

will return hotel 4 as the answer because it gives the highest score.

2.1.3 Complex Preference Constructors

A complex preference is inductively combined from the base preferences using com-

plex preference constructors. In [65], several complex preference constructors are

proposed. However, for the scope of this dissertation, we will only consider a sub-

set of these constructors. For ease of presentation, the definitions are based on

two preferences (generalization to more preferences is straightforward). Moreover,

we shall assume that all the constituent preferences in a complex preference are

declared on disjoint sets of attributes.

Pareto preference: P := P1 ⊗ P2

Formal: Assume two preferences P1 = (A1, <P1) and P2 = (A2, <P2). For

x = (x1, x2) and y = (y1, y2) ∈ dom(A1) × dom(A2), we define x <P1⊗P2 y iff

(x1 <P1 y1 ∧ (x2 <P2 y2 ∨ x2 = y2)) ∨ (x2 <P2 y2 ∧ (x1 <P1 y1 ∨ x1 = y1)).

Intuition: A pareto preference considers all its constituent preferences as equally

important preferences. Hence, for a data tuple t1 to dominate another tuple t2,

it cannot be worse than t2 for any attributes.

Example: HIGHEST(stars) ⊗ AROUND(rate, 200) ⊗ POS(area, {uptown}).
Hotels 2 and 4 are returned as the answers. Hotel 1 is dominated by hotels 2 and

5 because all its attribute values are either equal or worse than hotels 2 and 5

with respect to the pareto preference. Hotels 3 and 5 are dominated by hotel 2.

Although hotel 3 has the same ratings as hotel 2, its rates are much higher than the

ideal 200 than hotel 2 and its location is not in one of the favored areas. For hotel 5,

although it is located in the uptown area, it ratings and rates are both worse than

hotel 2 with respect to the HIGHEST and AROUND preferences respectively.

Grouped preference: P groupby A

Formal: Let preference P = (A1, <P). For x = (x1, x2) and y = (y1, y2) ∈
dom(A1) × dom(A2), we define x <P groupby A2 y iff x1 <P y1 ∧ x2 = y2.

18

A grouped preference P is evaluated in grouped mode where grouping is done with

respect to equal A2-values. One common use of grouped preferences is to specify

skyline queries [9] which we will describe next.

Skyline preference: P := (P1 ⊗ P2) groupby DIFF

Formal: Follows from the definitions of pareto and grouped preferences where P1

and P2 is each restricted to either a LOWEST or a HIGHEST base preference and

DIFF represents the set of attributes (may be ∅) for which grouping is to be done.

Intuition: Without the DIFF attributes, the skyline preference is simply a pareto

preference consisting of only HIGHEST and LOWEST base preferences. The in-

clusion of DIFF attributes means that we want to retrieve the best values (based

on the HIGHEST and LOWEST base preferences) with respect to each distinct

value of the DIFF attributes.

Example: LOWEST(rates) groupby stars. There are three groups: two 2-stars

hotels, two 3-stars hotels and one 4-stars hotel. Among the 2-stars hotels, hotel

5 dominates hotel 1 because it has lower rates. Among the 3-stars hotels, hotel 2

dominates hotel 3 because it has lower rates and there is no comparison for 4-stars

hotels. Hence, hotels 2, 4 and 5 are returned as the answers.

Numerical preference: P := rank(F)(P1, P2)

Formal: Assume that P1 := SCORE(A1, f1), P2 := SCORE(A2, f2) and F is a

combining function: R×R→ R. If ‘<’ denotes the familiar ‘less-than’ order on

R, then for x = (x1, x2) and y = (y1, y2) ∈ dom(A1)×dom(A2), x <rank(F)(P1,P2) y

iff F (f1(x1), f2(x2)) < F (f1(y1), f2(y2)).

Example: Let us assume that the rates and stars attribute values in Table 2.1

are range normalized as follows. Let minA and maxA be the minimum and max-

imum values of some attribute A respectively. We assume that minA and maxA

are captured in the DBMS’s catalog. Then, we can range normalize a value v of A

by maxA−v
maxA−minA

. In this example, we shall assume that the maximum and minimum

values of attributes rates and stars are the maximum and minimum values of the

respective attributes in Table 2.1. Normalized values of attributes rates and stars

19

are shown in Table 2.2. Let P1 := SCORE(rates, f1) where f1 = 0.2 × v1, v1 ∈
dom(rates) and P2 := SCORE(stars, f2) where f2 = 0.8× v2, v2 ∈ dom(stars).

Let F = SCORE(rates, f1) + SCORE(stars, f2). The scores computed using F

for the sample relation is also shown in Table 2.2. From the table, we can see that

hotel 4 has the highest score and is returned as the answer.

Id Rates Area Stars Score

1 0.27 midtown 0.0 0.05
2 1.00 uptown 0.5 0.60
3 0.05 midtown 0.5 0.41
4 0.00 midtown 1.0 0.80
5 0.46 uptown 0.0 0.09

Table 2.2: Hotels relation with normalized values.

2.1.4 The Best-Matches-Only (BMO) Model

In [65], the evaluation of preference queries is based on a Best-Matches-Only (BMO)

query model and works conceptually as follows [51]:

• Given a preference query Q, find all perfect matches from the relation with

respect to the preferences specified in Q.

• If no perfect matches exist for Q, retrieve all best matching alternatives, but

nothing worse.

In the BMO model, maximal values are retrieved from the relation. Since these

values may not be perfect matches, query relaxation is implicit in the evaluation.

Moreover, all non-maximal values are also eliminated during the evaluation. Hence,

only the best matching answers are retrieved. It is not difficult to see that the BMO

query model is an excellent candidate for solving the preference query problem and

we adopt its operational semantics throughout this dissertation.

20

2.2 Related Work

There are two main approaches to handling preferences in the context of database

queries. In the qualitative approach, preferences between tuples are typically ex-

pressed directly using binary preference relations. These approaches provide ways

of composing preferences with other query constructs and extend the query seman-

tics to handle preferences. In the quantitative approach, preferences are reflected

indirectly using scoring functions. A scoring function associates a numeric score

to each tuple where a high score would mean that the tuple is more preferred and

best matches the user’s preferences. However, we note that scoring functions are

generally less expressive and thus, this approach is limited in its applicability. We

shall now present related work pertaining to both approaches as well as work that

are generally related to supporting user’s preferences but which do not fall in any

of the two approaches.

2.2.1 Qualitative Approach

Frameworks and Query Languages

One of the earliest work on qualitative preference queries is [73]. The authors

propose an extension to the domain relational calculus [74] to express preferences

in queries. A prefer clause is introduced to qualify a standard database query. For

example, a user can specify: Given a set of tuples that satisfy condition C, prefer

those satisfying condition P. Clearly, C represents the hard constraints while P is

the user’s preferences. Its operational semantics is to first evaluate the query based

just on condition C. Then, the prefer clause i.e. P is applied to the answers. If

application of P results in no answers, the prefer clause is ignored and all answers

prior to the application of P are returned. Otherwise, results satisfying both C

and P are returned.

[73] also addresses the issue of composability by illustrating how preferences

can be combined and prioritized The authors also discuss how to handle maxi-

21

mum/minimum value preferences through aggregate functions. However, as each

preference condition is evaluated in a boolean manner, this approach is limited in

expressiveness. Moreover, efficiency issues for the evaluation and optimization of

preference queries are also not addressed.

A recent preference framework similar to Kießling’s framework [65] is indepen-

dently proposed by Chomicki [25, 26]. Chomicki introduces a logical framework

having the same view of preferences as strict partial order, but expressing pref-

erences more generally as logical formulas. He studies various classes of these

formulas and proposes a relational operator called winnow for retrieving the pre-

ferred tuples. Winnow offers a declarative semantics and is used for composing

preference relation i.e. the order the preference induces over the potential answers,

with relational algebra. Although sharing the view that preferences should be strict

partial order, Chomicki has also found useful preferences that violate the order and

has proposed ways of accommodating them.

Although winnow is a rich model, it can be complex to understand how to

express preferences and compose them in this model. Moreover, it is not clear how

an efficient implementation of winnow can be realized in a relational system as

no practical implementation like Preference SQL [68] is given. Only the scope of

various potential algorithms suitable for implementing winnow is examined in [26].

Besides Chomicki’s framework, several work [44, 45, 67, 70] also adopt a logical

approach to preferences. However, they are studied in the context of deductive

databases. These related work all propose extending Datalog with clausally-defined

preference relations and describe declarative and operation semantics for these

extensions. Although techniques that are proposed from these work can potentially

be applied to the relational data model, the adaption is challenging as most of them

either adopt special evaluation mechanisms or the preferences addressed are limited

only to rule priorities.

22

Evaluating Skyline Queries

The skyline operator is first proposed in [9] for evaluating skyline queries in re-

lational database systems. The operator has a clear partial-order semantics and

is composable with relational algebra. Many recent work has proposed efficient,

secondary-memory and relationally well-behaved algorithms for evaluating skyline

queries. We review them in this subsection. Throughout our discussion of the

algorithms, we shall consider our data model as consisting of a set of data tu-

ples. However, we will occasionally consider this set of data tuples as a set of

multi-dimensional points whenever it makes the discussion clearer. Furthermore,

we shall assume that the skyline queries consist of only LOWEST preferences i.e.,

the users favor low values for each attribute or dimension of the dataset.

Block Nested Loop (BNL) Algorithm [9]

The block nested loop algorithm is an iterative algorithm that repeatedly scans a

set of tuples. In each iteration, a window of incomparable tuples are kept in the

main memory. When a tuple p is read from the input relation, p is compared with

the tuples in the window. There are three possible outcomes:

1. If p is dominated by a tuple in the window, it means that p cannot be in the

skyline. Thus, p is discarded.

2. If p dominates one or more tuples in the window, these tuples are eliminated

(since they cannot be in the skyline), and p is inserted into the window.

3. If p is incomparable with all tuples in the window (i.e., it neither dominates

nor being dominated), it is either inserted into the window if there is sufficient

room in the window, or written to a temporary file on disk.

At the end of each iteration, those tuples in the window that have been compared

against all tuples that have been written out to the temporary file are certain to

be in the skyline, and hence can be returned to the user (and removed from the

23

window). In the next iteration, the algorithm will proceed in the same manner with

the remaining tuples in the window and the temporary file as the input relation.

One of the most expensive process in the algorithm is the time spent to compare

a tuple with the tuples in the window. To speed up these comparisons, the tuples in

the window are organized as a self-organizing list. When a tuple q of the window is

found to dominate another tuple, then q is moved to the beginning of the window.

In this way, tuples that are highly dominant will float to the top of the window,

and subsequent input tuples will be compared against them first.

The key strength of the algorithm is its wide applicability as it does not require

the data to be indexed or sorted. Its key weakness is its lack of progressiveness. It

is also not attractive in terms of producing fast initial response time as it requires

at least one pass over the input relation before a set of results can be identified.

Divide and Conquer (DC) Algorithm [9]

The DC algorithm is an extension of the basic two-way divide and conquer algo-

rithm for computing maximal vectors [72, 89]. The algorithm employs a m-way

partitioning strategy for computing skylines and works as follows.

• Compute the α-quantiles of a set of input tuples along a certain attribute.

Split the tuples into m partitions such that each partition fits in the memory.

Let these partitions be P1, . . . , Pm.

• Compute the skyline Si of partition Pi, 1 ≤ i ≤ m, using any known main

memory algorithm.

• Compute the overall skyline as the result of merging Si pairwise. Within the

merge operation, m-way partitioning is applied so that all sub-partitions can

be merged in main memory. We note that the recursive applications of the

m-way partitioning pick different attributes for splitting. It is also interesting

to note that some pairs of merging can be skipped as tuples within these pairs

are already incomparable.

24

An example of the merge step using 2-way partitioning is illustrated in Figure 2.1

using the skyline example from Figure 1.1. The dataset has been partitioned into

four sub-partitions using the median of the price and distance attributes. The

local skyline of each sub-partition are represented by connected bold points while

the final skyline is represented by those bold points with enclosing square boxes

in the graph. Notice that we do not need to merge sub-partitions P1,2 and P2,1

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

di
st

an
ce

 f
ro

m
 c

ity
 (

km
)

price ($)

P1,1 P2,1

P1,2 P2,2

Figure 2.1: Merge step of the divide and conquer algorithm.

because tuples of these two sub-partitions are incomparable. Sub-partitions P1,1 is

first merged with P2,1 to give R1. Then, P1,2 is merged with P2,2, resulting in R2.

Finally, P1,1 is merged with R2 resulting in R3. The resulting set of tuples is given

by R1 ∪R3. Note that the merging is recursive i.e. merging two sub-partitions will

require both partitions to be further partitioned and the merging terminates when

all relevant attributes have been considered or one of the partitions is empty or

contains only one tuple.

Like the block nested loop scheme, the divide and conquer technique cannot

produce the skyline progressively. Moreover, it is not expected to perform well for

small memory systems as it requires the partitions to be in-memory.

The Sort-Filter-Skyline (SFS) Algorithm [27]

In [27], Chomicki et. al. propose a variation of the block nested loop algorithm

which works as follows. First, the dataset is sorted using a monotone preference

function over the skyline attributes. Subsequent processing steps is similar to the

25

block nested loop algorithm except for three key differences: 1) tuples are inserted

into the window in ascending order of their scores, 2) instead of checking whether a

candidate tuple dominates a tuple in the window and vice versa, it is only necessary

to check the latter case, and 3) if a candidate tuple is not dominated by any tuples

in the window and no tuples has been written to the temporary file yet, then the

candidate tuple is guaranteed to be in the skyline and can be output immediately.

The last difference allows the sort-filter-skyline algorithm to exhibit some form

of progressiveness (the progressiveness is paused once the window is full). Moreover,

for a complete skyline, at least one scan of the dataset is required as it is possible

that the last tuple (the one with the highest score) is in the skyline.

Using B-trees [9]

The computation of the skyline can also be facilitated by index structures. In [9],

a method based on B-tree is described. Assuming that each tuple has j attributes

and there is an index for every attribute, the skyline can be computed as follows.

• Scan all the indexes simultaneously i.e. the first entry from each index is

retrieved first followed by the second entry from each index and so on. This

continues until a match occurs. The match represents the first tuple whose

id is seen by all the indexes during the scan.

• Let a1, a2, . . . , aj be the attribute values of the first match. For each index i,

it is scanned further to retrieve additional entries that have the same value

as ai, for 1 ≤ i ≤ j. This may result in further matches. Next, compare

the matches pairwise and remove those that are dominated. The remaining

matches are definitely part of the skyline and can be returned immediately,

providing a fast initial response time.

• Scan the index entries of the first attribute’s index. If a tuple has not been

seen before (i.e., the index entries of this tuple have not been examined prior

to the first match), it is definitely not in the skyline and can be eliminated. If

26

any of the indexes contain an index entry to this tuple prior to the first match,

then the tuple may or may not be in the skyline. To determine whether it is

in the skyline, an existing skyline algorithm can be applied.

A critical factor that will affect the performance of this algorithm is how fast the

first match can be found. If a match is found late (which is likely to be the case

for large number of attributes), it will result in a high initial response time. Fur-

thermore, since a large number of index entries would have already been examined,

a larger number of tuples will have to be retrieved and processed using the alter-

native algorithm, reducing its overall efficiency. Nevertheless, we can expect this

algorithm to perform well in general, when the skyline is small and the first match

can be found quickly.

The Nearest Neighbor (NN) Algorithm [69]

NN is a divide and conquer algorithm that uses nearest neighbor searches for com-

puting the skyline. The algorithm starts by computing the nearest neighbor of

an ideal point e.g. the origin of the data universe. The authors propose using a

multi-dimensional index such as the R-tree [50]. As proven in [69], this nearest

neighbor is guaranteed to be in the skyline. It is then used to partition the search

space such that processing is required only on j regions where j is the number of

dimensions. Subsequent processing is carried in a similar way on each region i.e.

find the nearest neighbor of that region and then use it for partitioning the region

into sub-regions. This continues until all regions have been investigated.

As an example, consider the skyline query in Figure 1.1. The algorithm starts

by searching for the nearest neighbor of the origin using some monotonic distance

function. This is illustrated in Figure 2.2(a). The nearest neighbor is NN1. Let

(nx, ny) denotes the coordinates of NN1. NN1 splits the data space into three

regions. Let a region be denoted by [x1, x2) [y1, y2) where (x1, y1) and (x2, y2)

denote the coordinates of the lower left and upper right corners of the region

respectively. Since region 3, [nx,∞) [ny,∞), contains points having greater or

27

equal x and y values than NN1, they are dominated by NN1 and hence need not

be considered further. Only region 1 = [0,∞) [0, ny) and region 2 = [0, nx) [0,∞)

can possibly contain skyline points and hence they will be processed next. Assume

di
st

an
ce

 f
ro

m
 c

ity
 (

km
)

price ($)

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

Region 1

Region 2

Region 3

NN1

(a) First step of algorithm

di
st

an
ce

 f
ro

m
 c

ity
 (

km
)

price ($)

 0

 0.5

 1

 1.5

 2

 0 50 100 150 200

Region 1

Region 2

Region 3

NN1

NN2

2a

2b2c

(b) Second step of algorithm

Figure 2.2: The NN algorithm.

that region 2 is processed next. Again, we look for the nearest neighbor of this

region to the origin. In Figure 2.2(b), it is the point NN2. Following the same

strategy as the previous step, NN2 is used to partition region 2 into sub-regions

and further processing carried on sub-regions 2a and 2c. A region is not processed

further if it is empty. This continues until all skyline points are found.

As noted in [69], NN partitioning for more than 2 dimensions may result in

duplicate skyline points to be found. The authors propose several ways to eliminate

these duplicates. Nonetheless, the presence of duplicates means that certain access

paths are traversed multiple times, resulting in redundant work. Moreover, as

shown in [85, 86], the NN algorithm also has a large space overhead.

The Branch and Bound Algorithm (BBS) [85, 86]

In [85], the authors adopt the idea of using nearest neighbors for skyline com-

putation and propose a branch and bound algorithm (BBS) that is I/O optimal

(hence, avoids the need to handle duplicates) and has a smaller space overhead

than NN. Similar to NN, the data is assumed to be indexed by R-trees (although

the algorithm is applicable to any multi-dimensional index).

The algorithm starts by inserting all entries of the root node of the R-tree into

a heap H. Entries in the heap are sorted in ascending order of their distances

28

to the origin. For an intermediate entry, coordinates of its lower left corner are

used for computing the distance while for a data point, its actual dimensional

values are used. The top entry of H is then removed for further investigation. If

it is dominated by any skyline points, it would be discarded. Otherwise, for an

intermediate entry, it would be expanded and its child entries are added to the

heap if they are also not dominated by any existing skyline points. For a data

entry, it is guaranteed to be a skyline point and can be output immediately. All

found skyline points are kept in a list S for subsequent checking. The next entry

from the heap is then picked and similarly processed. This continues until the heap

contains no entries, which terminates the algorithm.

As an example, consider Figure 2.3. Figure 2.3(a) shows the dataset we used for

this example (ten points, labelled a to j) and Figure 2.3(b) shows the corresponding

R-tree with node capacity 3. An intermediate entry ei represents the minimum

bounding rectangle (MBR) of a lower level node and the leaf entries store the data

points. Assume that the distances are computed using the L1 norm i.e. the distance

c

e

f

b

a

d

h

i

j

g

N1

N2

N3

N4

N5 N6

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10 11 12

y

x

(a) Sample dataset.

cba

e2 e3 e4

e5 e6

N1 N2 N3 N4

d e f h i jg

e1

R

N5
N6

(b) R-tree for dataset.

Figure 2.3: The BBS algorithm.

of a data point is the sum of its coordinates. For an intermediate entry, the distance

is the sum of its lower-left corner point’s coordinates. The algorithm starts from

the root node of the R-tree and inserts entries (e5,4) and (e6,8) into the heap (the

number in each pair represents the distance). Since e5 has the smallest distance, it

is removed from the heap and as there is currently no skyline points to compare,

it is expanded into entries (e2,7) and (e1,9) which are also not dominated by any

29

skyline points and hence are inserted into the heap. Next, (e2,7) is removed from

the heap and expanded into leaf entries (d,7) and (e,11) which are inserted into the

heap. Now, the next entry removed from the heap will be (d,7). Since it is a data

point, it is guaranteed to be a skyline point and can be output. Subsequently, it

is inserted into a separate list S for checking against future entries. The process

then repeats and continues until the heap is empty. The answers for this example

are points a, d, f .

We shall now briefly described two variants of the BBS algorithm. The first

is the divide and conquer skyline (DSCSkyline) algorithm [75] and the second

is the depth first skyline (DFS) algorithm [76]. Both work propose the check-

ing of dominance between intermediate entries to improve the pruning power.

Recall that BBS only checks the dominance between a skyline point and inter-

mediate entries/data points, but not between entries. Formally, let the MBR

of an entry e in a d-dimensional space be given by [x1, x2, . . . , xd],[y1, y2, . . . , yd]

(the lower-left and upper-right corner points respectively). Consider the d points:

p1 = (x1, y2, y3, . . . , yd), p2 = (y1, x2, y3, . . . , yd), . . ., pd = (y1, y2, . . . , xd). The dom-

inance region of e, DR(e) = DR(p1) ∪ DR(p2) ∪ . . .∪ DR(Pd). Any entry, g, that

falls within DR(e) i.e. g is dominated by at least one of {p1, . . . , pd}, is dominated

by e. This is illustrated in Figure 2.4(a) for a 2-dimensional space. Entries e2 and

e3 are dominated by e1 because they are dominated by p1 and p2 respectively.

e1

e2

e3

p1

p2

y

x
(a) Entry dominance.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

���
���
���

���
���
���

�
�
�

�
�
������
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���

���
���
���
���
���
���
���

x

y

R1

R2
0

R3

e

(b) DCSkyline principle.

Figure 2.4: BBS variants.

30

The first algorithm, DCSkyline, is only applicable for two dimensional spaces

and is based on a divide and conquer paradigm. Similar to BBS, it starts by

expanding the root node. From these entries, it finds the one with the shortest

distance to the origin and uses its lower-left corner point to divide the data uni-

verse into regions. This is depicted in Figure 2.4(b) where the lower-left corner of

entry e is used to divide the data space into three regions. Next, the algorithm is

recursively applied to find the local skylines in regions R1 and R2, whose answers

are guaranteed to be in the global skyline. This, however, does not hold for region

R3. Instead, the search for skyline points is recursively applied on region R′
3 which

is the region in R3 that is restricted by the right-most skyline point of R1 and the

left-most skyline point of R2. This continues until all the skyline points are found.

The second algorithm, DFS, is based on the depth first search paradigm. The

difference between DFS and BBS is the way DFS expands an intermediate entry.

When an intermediate entry is expanded, all child entries are first checked against

each other and any dominated entries removed. The remaining child entries are

then inserted into the heap if it is not dominated by any skyline point (as in the

original BBS algorithm) as well as any entry in the heap (a step which is specific to

DFS). The rest of the steps are similar to BBS. [76] also describes how the memory

usage can be reduced for two dimensional spaces when using the DFS approach.

Distributed Skyline Computation [4, 6]

In [6], Balke et. al. focus on computing the skyline in a distributed environment

(specifically, web information systems). They assume that each distributed web

source associates a numerical score value to each object in the source and provides

two basic ways of accessing its objects. For sorted access, objects are returned

sorted by score. For random access, scores of independent objects can be retrieved

in any order depending on which objects are desired.

For example, assume that scores can be associated with the food quality and

service level of restaurants in a certain city. A person looking for a restaurant

31

might query two web sources where the first returns a list of restaurants sorted on

food quality scores while the second returns a list of restaurants sorted on service

level scores. In this scenario, a restaurant A dominates another restaurant B if the

scores for food quality and service level of A is as good as B and either its food

quality or service level is strict better than B. Such a query is analogous to the

traditional skyline query by considering food quality and service level as attributes

of restaurants (the respective scores are thus the attribute values) and a HIGHEST

preference is specified on each of these attributes.

The authors adopt a similar approach as the B-tree approach. Each source is

scanned using sorted access simultaneously until a match occurs. Then, random

access is used subsequently for retrieving missing scores of objects that are par-

tially seen. These retrieved objects are then compared pairwise and non-dominated

objects returned. The authors also propose several heuristics to enhance their algo-

rithm. A modified version of their algorithm which includes handling of categorical

data is described in [4]. Finally, in [3], they adapt their algorithm to include answer-

ing of top-k queries (that has only a single objective function) to queries involving

any number of objective functions (the extreme being a skyline query). However,

their approach requires that all database objects be numerically scored.

Discussion on Existing Techniques for Skyline Computation

In terms of progressiveness, both BNL and DC require at least one scan of the

dataset before some initial answers are returned. For SFS, if we factor in the

sorting process, then initial answers will be delayed due to the sorting. Otherwise,

answers can be returned progressively. Using B-trees, the initial answers are highly

dependent on when the first match occurs. Even if the initial answers happen to

be returned quickly, the algorithm might stall as it need to apply a main-memory

skyline algorithm (typically BNL or DC) which is batch-based. This argument also

applies to the distributed skyline computation due to its similarity with the B-tree

technique. Finally, both NN and BBS (as well as its variants) can return initial

32

answers quickly and are progressive as well.

Although all existing algorithms support skyline queries involving HIGHEST

and LOWEST preferences, their support for DIFF attributes vary. Assume that

a DIFF attribute Aj is specified in a skyline query. If Aj has k distinct attribute

values, then a skyline will have to be computed for each of the k values. A straight-

forward approach would be to group the data tuples into k groups based on their

attribute values for Aj and then compute the skyline for each group. Such an ap-

proach, however, will prevent results from being returned progressively. A simple

workaround would be to show the user the partial skyline of each group and then

update the partial skylines progressively as evaluation continues. Note that it is

important that the skyline points returned are not temporary i.e. false hits that

will be subsequently replaced.

BNL, DC and SFS can support DIFF attributes without any problem. For the

B-tree and distributed skyline computation techniques, it is not clear how DIFF

attributes will be supported as this is not explicitly addressed in the original work.

As mentioned in [69], NN cannot support DIFF attributes. For BBS (and its

variants), an approach is proposed in [86]. However, it is important to note that

as each entry in the multi-dimensional index can potentially contain data tuples of

different distinct values, the pruning power of such approaches is greatly reduced.

In the worst case, no pruning of intermediate entries is possible and the algorithm

degenerates into a block-nested loop algorithm.

Finally, while most recent work focus on efficient algorithms for skyline com-

putation, there are also several work closely related to skyline queries. In [42],

Godfrey describes how to estimate the cardinality of skyline queries. In [43], the

authors extend the semantics of skyline queries to make them more expressive.

Finally, [62] examines the computation of a thick skyline which is similar to the

traditional skyline except it includes neighboring points of a certain ε-distance.

33

Evaluating Pareto Preference Queries

As we mentioned in the first chapter, skyline queries and the more general pareto

queries are instances of the maximum vector problem proposed by Kung et. al.

[72]. Early work on solving the maximum vector problem typically assume that

the data fit into the main memory. Algorithms devised include divide and conquer

paradigm [72], parallel algorithms [91, 96] and those that are specifically designed

to target at 2 or very large number of dimensions [79]. However, none of these

algorithms deal explicitly with the case where the dataset cannot fit into the main

memory. In fact, most of them are not applicable in such situations [9].

Since pareto queries are a more general form of skyline queries, it is natural

to extend existing algorithms for skyline queries to pareto queries. However, it

is important to note that not all skyline evaluation strategies can be extended to

answer pareto queries. This is because some of the existing skyline algorithms

assume that the underlying domain is ordered. In contrast, pareto queries may

consist of preferences specified on unordered domains as well.

We shall now consider the applicability of existing skyline algorithms. First,

the block nested loop algorithm is clearly applicable due to the generality of its

operational semantics. For the divide and conquer algorithm, it is not suitable

because it is not possible to find good medians for the m-way partitioning. For the

sort-filter-skyline algorithm, it is also not suitable because it is not possible to do

sorting on the unordered domains. It is possible to extend the B-trees technique

and we will address this in chapter 5. For NN and BBS (including its variants),

they are not applicable because they rely on spatial indexes which are not suitable

for handling preferences specified on unordered attributes e.g. it does not make

sense to have a spatial relationship between different color values.

Another approach to evaluating pareto queries which is adopted in Preference

SQL [68] is to translate the queries into standard SQL and submit them to the rela-

tional database system for evaluation. This approach, however, is not an ideal one

because the extensiveness of the various preferences makes it difficult to integrate

34

preference mechanisms within a relational engine. Moreover, this might result in a

poorer performance. For example, in [9], the authors show experimentally that a

skyline query that is translated into a nested SQL query takes longer to evaluate

than those approaches that extend the capability of the relational engine directly.

To this end, recent work [51] are starting to focus on optimizing preference queries

algebraically through a tighter integration of the preference query optimizer and

the SQL optimizer. In most cases, the underlying evaluation algorithm for pareto

preferences is just a block nested loop algorithm. Clearly, more efficient algorithms

are needed for evaluating pareto queries.

In [100], the authors propose a Best operator that can be used to answer pareto

preference queries (as well as other complex preferences). The basic idea is to

organize the search space such that the number of comparisons between tuples is

minimized. Contrary to BNL, the Best operator does not require the preference

relation to be a strict partial order. We shall now describe the Best operator.

The evaluation process is divided into a number of phases where each phase, i,

makes multiple scans over a set of candidate tuples, Ci, producing a set of answers,

Outi. During the scan, tuples that are dominated by some tuple t are stored in a

set Dt. In the first phase, the set of candidate tuples, C1, consists of all tuples in

the relation. The first tuple, t, is designated as the selected tuple and is compared

with the rest of the tuples in the relation. Tuples dominated by t are placed in

Dt while those that neither dominate t nor are dominated by t are placed in an

unresolved set U1. However, if a tuple s dominates t, t will be placed in the set Ds

and the process continues with s as the selected tuple. At the end of the first scan,

the selected tuple is compared with tuples in U1 that it has not yet been compared

with to eliminate any tuples it dominates. The selected tuple is then output as

the answer (and stored in Out1). The tuples in U1 then become the candidate set

and the procedure repeats in a similar manner until U1 = ∅ which also ends the

first phase. In each subsequent phase, i, the procedure is similar except that the

candidate set is made up of tuples from the sets Dt, for each t ∈ Outi−1. We note

35

that since we only consider preference relation of a strict partial order in our work,

executing the first phase of the algorithm for Best is sufficient. Subsequent phases

are necessary only if the preference relation does not follow a strict partial order.

A special data structure, called the β-tree [99], is built while executing the basic

algorithm. In fact, the authors propose that the β-tree be pre-built and stored so

that it can be used to efficiently answer queries of the same preference relation.

Management issues of the β-tree is addressed in [101]. While the β-tree can be

a useful index for preference queries, there could be many preference relations,

requiring many β-trees to be built and stored, which may not be feasible. Moreover,

the basic algorithm is not disk-based and there is no reported evaluation of the

algorithm to show that it is effective, especially for large datasets. Nonetheless,

the algorithm clearly requires at least one scan through the relation, making it

unattractive for producing fast initial response time.

2.2.2 Quantitative Approach

Theoretical Frameworks and Models [2]

In [2], Agrawal and Wimmers present a framework for expressing and combining

preferences in the quantitative approach. The paper essentially lays the theoretical

foundations for a preference framework. In the framework, user preferences are

specified using preference functions that map data tuples to scores. The authors

propose a generic combine operation (which has a closure property) for combining

preferences and illustrated the flexibility of their framework using real-life applica-

tions. However, they do not provide any declarative semantics of their preference

queries in the paper.

In [71], a framework that integrates personalization and database queries using

structured user profiles is proposed for database systems. The authors propose a

preference model that relies on scores and numerical ranking. Given a standard

query, the system first extracts the top k preferences from the profile of the user.

Then, the preferences are integrated into the query to produce a new personal-

36

ized query that will produce answers that satisfy m top preferences and at least l

preferences from the remaining k −m ones.

The PREFER System [56] and the Onion Technique [20]

The work that explicitly deals with algorithmic issues associated with the imple-

mentation of features of the framework in [2] is [56]. The authors propose an algo-

rithm to evaluate preference queries expressed as linear sums of the attribute val-

ues. They also develop a system called PREFER on top of a commercial database

system to demonstrate the practicality of their approach. This approach is fur-

ther extended in [58] where they develop a meta-broker system called MERGE for

merging ranked results from multiple data sources [46]. In the PREFER system,

a weighted preference function is applied directly on the attributes and is given by

a1A1 +a2A2 + . . .+ajAj where A1, . . . , Aj are attributes of a relation and a1, . . . , aj

are the weights the user assigns to the attributes (other types of preference func-

tions are addressed in [57]). In general, a higher weight for an attribute implies

that the user “values more” about that attribute.

For efficient processing of preference queries, a set of materialized views are

produced based on some predetermined preference vectors. In this way, answers to

queries with similar preferences can be delivered quickly. The idea is to compute

the smallest prefix of the view that has to be read to find the top tuple that satisfies

the query; this process is repeated to retrieve the next top scoring tuple, and so on.

For the scheme to perform well, sufficient views must be materialized. This incurs

additional storage overhead, and raises the problem of picking the optimal views.

Moreover, it is effective only if the users are expected to share similar preference

functions. Furthermore, there is no guarantee of correctness as long as the view

corresponding to the user preference vectors is not materialized, i.e., in this case,

it can only provide approximate answers.

The closest work to PREFER is by Chang et. al. [20]. They propose an in-

dexing technique called the “Onion” technique to speed up evaluation of linear

37

optimization queries. The scheme precomputes a set of convex hulls of the tuples:

the first (outermost) convex hull is computed on the entire dataset, the second

convex hull is on the remaining data, and so on. Answers can be obtained pro-

gressively by scanning the convex hulls beginning from the first convex hull until

such numbers of tuples as specified by the users. This is possible because the first

answer is definitely in the first convex hull. While the technique can provide first

answers quickly, each convex hull also contains many tuples that are not in the

answer set. Thus, the cost to scan the convex hulls one at a time can increase the

overall processing cost. Comparison between the Onion technique and PREFER

is discussed extensively in [58] where PREFER is also shown to outperform the

Onion technique.

It is interesting to note that the convex hull is a subset of the skyline. While the

convex hull contains only points that may be optimal for a linear scoring function,

the skyline contains all points that may be optimal for any monotonic scoring

functions. The computation of the convex hull has been studied extensively [89]

but most of these algorithms require that the dataset be resident in main memory.

Recently, [8] proposes a branch and bound algorithm for finding the convex hull of

large datasets indexed by R-trees.

Evaluating Top-k Queries

Evaluation of top-k queries has been studied extensively in the last decade and

there is a large body of work in this area. We shall classify these work generally

into three categories, according to the context the work originally assume.

Top-k Queries over Multiple Data Sources

This category addresses the evaluation of ranked queries when the information

about each object of interest is distributed across multiple data sources. Systems

that evaluate such queries are typically middleware systems that are built on top

of other subsystems and integrate results from them. These subsystems usually

38

contain heterogeneous data e.g. one could be a text repository while another is

a multimedia repository. The data in these subsystems are also inherently fuzzy.

As a result, these subsystems return graded sets consisting of pairs (x,g) where x

represents the object and g is the grade (real number in [0,1]) that measures how

closely match x is to the subquery. To answer a compound query, an aggregation

function (or scoring function) is adopted to combine the respective scores to obtain

an overall score. The k top scoring objects are then returned.

There are two ways of accessing objects in a subsystem. The first is sorted access

where the middleware system asks the subsystem to return a list of objects sorted

by their grades. These objects can be returned in batches e.g. in tens. The second

is random access where the middleware system requests for the grade of a specific

object from the subsystem. Performance of the algorithms is typically measured in

terms of the total number of objects obtained from the various subsystems under

sorted and random access.

For ease of discussion of the algorithms, we shall assume that the database has

N objects each with attributes A1, . . . , Aj. Each object, R, has attribute values

a1, . . . , aj for attributes A1, . . . , Aj respectively where ai ∈ [0,1] for 1 ≤ i ≤ j.

We shall think of this database as consisting of j sorted lists, L1, . . . , Lj. Each

sorted list, Li, consists of N entries each of the form (R,ai). Each list is sorted in

descending order of the ai values.

One of the first algorithm in the literature is Fagin’s algorithm (FA) [36, 37]. It

works as follows. First, the sorted lists are accessed in parallel using sorted access

i.e. the first entry of each list is picked followed by the second entry and so on,

until there are at least k “matches”. A match represents an object that has been

seen in each of the j lists. Second, for each seen object, R, find the value of its

ith attribute by doing a random access on list Li. Of course, we need not do this

for the matches since we already know all their attribute values. Finally, apply the

aggregation function f(R) = f(a1, . . . , aj) on each object R that has been seen to

compute its score. The highest scoring k objects are subsequently output (with

39

ties broken arbitrary). A similar approach to FA is proposed by Chaudhuri and

Gravano [21] using “filter conditions”. For example, it is possible to specify a query

to a subsystem asking for objects with grade 0.9 or higher in [21].

However, there are situations where FA performs poorly. In response to this,

Fagin et. al. propose the threshold algorithm (TA) in [38, 39]. It works as follows.

First, do sorted access of each of the sorted list in parallel. As each object R is

seen in sorted access from any of the lists, retrieve the rest of the attribute values

of R by doing random access on the other lists. Then, compute the score of R.

R is kept, together with its score, if its score is one of the k highest seen so far

(ties are broken arbitrary to ensure that only k objects and their scores are kept in

memory at any time). For each list, let xi be the attribute value of the last object

seen in Li under sorted access. A threshold value is then computed by applying

the aggregation function on (x1, . . . , xj). Once there are at least k objects whose

scores are at least equal to the threshold value, the algorithm terminates and the

k highest scoring objects are output. Nepal and Ramakrishna [82] independently

discover an algorithm similar to TA. They focus mainly on the min aggregation

function in their work. Moreover, their notion of optimality is weaker than TA.

In [48], the authors propose an enhanced version of TA called Quick Combine

(QC) by using heuristics that can potentially speed up the evaluation. The algo-

rithm works as follows. Initially, QC retrieves the first m entries from each list and

computes an indicator value, 4i, for list i. If xi is the attribute value of the last

object retrieved from Li and yi is the attribute value of the mth object retrieved

prior to xi, then 4i is given by wi · (yi − xi) where wi is an optional weight given

by the user for Li to indicate its relative importance compared to the other lists.

Thus, 4i indicates the rate of change of values for Li and is used to control which

list to retrieve values from during query processing. Subsequent steps are similar

to TA except when deciding which list to pick the next entry from in sorted access,

the one with the larger 4i (ties broken arbitrary) will be accessed first. 4i is also

continuously updated during evaluation.

40

There are also several variations of the above algorithms which are designed

to handle specific restrictions that may be imposed by the environment. The first

scenario is when sorted access is restricted. For example, several web repositories

in the Internet only support random access. Work in this area include [12, 39, 78].

The basic idea behind their approaches is that when calculating the threshold value,

for those lists where sorted access is restricted, xi is assigned a value of 1. The

second scenario is when random access is restricted. For example, the subsystems

may be search engines which always return sorted lists of results. Work in this area

include [39, 49, 104].

It is interesting to note that although the above algorithms are targeted at an

environment with multiple data sources (possibly distributed), they can be adapted

to evaluate numerical preference queries in a centralized database system. In fact,

we can view all the data as residing in a single relation with one column representing

the object id and the other columns are the attributes of the object. The lists can

be further viewed as indexes e.g. B+-trees which enable entries to be accessed in

sorted order of descending attribute values and also in random order by making

direct searches through the indexes. Moreover, as discussed in [40, 41], it is possible

to modify the aggregation function to incorporate user preferences.

Top-k Queries in Relational Systems

Traditionally, top-k queries over relational database systems are evaluated using a

cursor-based approach. The entire query is submitted to the database system and

then the top k results are extracted through a cursor. However, this can result

in long response times as well as redundant work done by the database engine.

In [13, 14], Carey et. al. propose extending SQL with a STOP AFTER clause to

support top-k queries and they describe how traditional DBMS can be extended to

provide integrated support for such queries, which can lead to orders-of-magnitude

improvements in many cases. A new operator, the Stop operator, is proposed for

encapsulating the function of the STOP AFTER clause. Additional strategies for

41

processing STOP AFTER queries are described in [15] and [31]. It is important to

note that scoring in such queries is done through the traditional SQL ORDER BY

clause. Consequently, if the scoring function is not based on the column values,

then at least one sequential scan of the database is required.

[11, 22] study the evaluation of top-k queries over relational databases for a

wide variety of scoring functions. They call such queries top-k selection queries.

A top-k selection query consists of a set of target values and the database system

uses some scoring function e.g. Euclidean distance to decide how closely each tuple

in the database matches with the target values in the query. The basic idea is to

translate a top-k query into a range query that can be evaluated efficiently by the

system. The difficulty here is how to determine the right range query. To this end,

the authors make use of statistics available to the DBMS to map the top-k query

into a suitable range that will encapsulate the k best matches. A similar approach

but using sampling is proposed in [24]. The query model used in [24] is also slightly

different as the focus is on returning approximate answers to the query.

While a top-k selection query selects ranked tuples from a single relation, a

top-k join query selects ranked tuples from the results of a join operation. [81] dis-

cusses the general problem of doing top-k joins while [59, 60] propose a progressive

algorithm for evaluating top-k join queries in relational databases.

Finally, it is important to note the difference between a top-k selection query

and a numerical preference query. In the top-k selection query, target values are

specified and scores are computed with respect to the target values. On the other

hand, a numerical preference query returns the top k answers that maximize a

given linear function over the relation’s attributes.

Top-k Queries in Other Contexts

Finally, we shall briefly examine the application of top-k queries in other contexts.

In [19], the authors address the issue of supporting expensive predicates for top-k

queries. For example, a user can specify his/her preference for attribute size by

42

fuzzy predicates such as large. An algorithm called MPro is proposed to evaluate

such queries with minimal number of “probes”. [5] proposes an algorithm for mobile

environments which have strict real-time constraints. [106] examines the issue of

making a top-k view runtime self-maintainable with high probability. [23, 77] look

at optimizing top-k queries on multimedia and web repositories while [16] addresses

the issue of query refinement of top-k queries.

2.2.3 Other Approaches

We shall now briefly cover some approaches that are generally not classified as

quantitative or qualitative but do support user preferences in some way.

Nearest Neighbor Searches

Given a multi-dimensional point p and a distance metric, a nearest neighbor search

returns points closest to p, in ascending order of their distances. To date, there is a

large body of work on evaluating nearest neighbor queries, particularly, on finding

the k Nearest Neighbors (KNN) of some focal point (see e.g. [7, 102] and references

therein). Existing database algorithms typically employ a R-tree (or some other

partitioning strategies) for indexing the data and adopt a branch and bound ap-

proach for evaluating nearest neighbor queries. In [93], a depth-first algorithm is

proposed. It starts from the root node and recursively visits nodes nearest to the

query point. Nodes further than existing nearest neighbors are pruned. In [54, 55],

best-first algorithms are proposed. They store visited nodes in a heap and follow

those closest to the query point.

Nearest neighbor search is not an effective mechanism for supporting user pref-

erences directly. For example, a nearest neighbor search for an ideal house that

costs $0 and distance 0km from the beach would certainly return some interesting

answers but would neglect those that are extremely cheap but further from the

beach. Furthermore, non-interesting houses that are already dominated by others

may be returned. However, nearest neighbor searches can be invaluable as a mech-

43

anism to support evaluation of preference queries. This is exemplified by existing

skyline algorithms that utilize nearest neighbors for partitioning and pruning.

Optimization Under Parametric Aggregation Constraints

A recent work [47] addresses pareto queries. The authors study a new class of

queries called OPAC (Optimization under Parametric Aggregation Constraints)

queries that retrieve tuples based on the constraints specified on the tuples’ at-

tributes. For example, a project leader might request for a set of developers having

the smallest total salaries with total number of years of experience no less than ten.

However, the context of their work is not directly related to ours because our focus

is on individual attribute values while [47] considers attribute values collectively.

Cooperative Query Answering

While preference queries allow users to specify his/her preferences up front, coop-

erative query answering (CQA) [63, 64] allows a user to specify his/her query as

usual and remedy the case when the query is unsuccessful. Some techniques provide

additional information to the user to help him/her crafts follow-up queries. Other

techniques create the follow-up queries automatically by augmenting the original

queries and resubmitting them to the system again. In either case, these CQA ap-

proaches provide limited means by which the user can specify his/her preferences

with regard to specific components of the query. An example of a cooperative

information system is CoBase [28] which allows adding of preferences realized as

conditions to the query. If no exact matching answers are found for the query, the

system relaxes the conditions till some approximate answers are found. A broader

survey of CQA can be found in [80].

Preferences in Artificial Intelligence

Preferences has also been extensively studied in artificial intelligence. For exam-

ple, preference reasoning [10, 98, 103] focuses on developing mechanisms for making

44

inferences about preferences and solving configuration or decision problems. Intel-

ligent databases seek to embed preferences and priorities into the semantics. A

central notion in these work is the ceteris paribus [52] preference: preferring one

situation/solution/tuple to another, all else being equal. As with the logical ap-

proach to preferences, these work can potentially be applied to the relational data

model but a detailed study for adapting these approaches remains still to be done.

45

CHAPTER 3

Progressive Skyline Computation

In this chapter, we shall focus on the progressive computation of the skyline. Recall

that the skyline of a set of points S are those points in S that are not dominated by

any other points. In a skyline query, users specify whether they prefer high, low or

different values of various attributes. While the skyline has been studied previously

as the maximum vector problem [72], adapting existing algorithms proposed for the

maximum vector problem to the relational database context is challenging because

most do not handle situations where the dataset does not fit into main memory.

Moreover, most existing algorithms that evaluate skyline queries in the database

context are batch-oriented. We further note that the domains of the attributes in

a skyline query must have a natural total ordering e.g. integers and floats. In the

next chapter, we consider the case where the domains may be partially ordered.

This chapter is organized as follows. First, we shall introduce the skyline op-

erator as originally proposed in [9]. We shall adopt terminology similar to [9] so

that our discussion is consistent with existing work. Then, in the following two

sections, we present two novel indexing algorithms to compute the skyline of a set

of points progressively. Section 3.3 presents our extensive experimental study and

the last section provides a summary for this chapter.

46

3.1 The Skyline Operator

To the best of our knowledge, the first work that addresses skyline queries in the

context of databases is [9] where Borzsonyi et. al. extended the SQL’s SELECT

statement by an optional SKYLINE OF clause. As described in [9], the SKYLINE

OF clause is evaluated after the SELECT ... FROM ... WHERE ... GROUP BY ...

HAVING ... part of the query, but before the ORDER BY clause (and STOP AFTER if

supported). The SKYLINE OF clause selects points that are not dominated by other

points. Formally, a point p = (p1, . . . , pk, pk+1, . . . , pl, pl+1, . . . , pm, pm+1, . . . , pn)

dominates another point q = (q1, . . . , qk, qk+1, . . . , ql, ql+1, . . . , qm, qm+1, . . . , qn) for

the query:

SKYLINE OF d1, MIN, . . ., dk MIN, dk+1 MAX, . . ., dl MAX, dl+1 DIFF, . . ., dm DIFF

if the following three conditions hold:

pi ≤ qi for all i = 1, . . . , k

pi ≥ qi for all i = k + 1, . . . , l

pi = qi for all i = l + 1, . . . , m

In the SKYLINE OF clause, the MIN and MAX annotations mean that the correspond-

ing dimensions should be minimized and maximized respectively, and the DIFF an-

notation denotes that two points with different values for the same dimension may

both be part of the skyline i.e. that dimension is ignored in the comparison if they

have the same value. For ease of presentation, we have put the MIN dimensions

first and DIFF dimensions last although it does not make a difference how they are

arranged. Note that if pi = qi for all i = 1, . . . , m, then p and q are incomparable

and both are part of the skyline.

As an example, consider a tourist who is looking for a hotel and wishes that

both price and distance be minimized. The query can be written in SQL as follows:

SELECT *

FROM hotels

WHERE rating > 2

SKYLINE OF price MIN, distance MIN;

where hotels (hotelid, address, typeOfRoom, rating, price, distance) is a

47

relation on hotel information. rating represents the rating of the hotel (here, we

assume its type is integer, and the value represents the number of stars). price

captures the room rates, and distance indicates the distance from the hotel to the

city. Should the user want to maximize the value of an attribute (e.g., one may

want to maximize the rating), then the MAX annotation can be used. Similarly, the

user may use the DIFF annotation to indicate that two hotels with different room

types are acceptable.

3.2 Progressive Skyline Computation Algorithms

In this section, we propose our two novel indexing methods to compute the skyline

progressively. For pedagogical reasons, we shall assume that the database, D,

contains |D| d-dimensional points. Moreover, we assume that the skyline operation

involves all the d dimensions, and that dimension i has ki distinct values, 1 ≤ i ≤ d.

Let aij denote the jth distinct value of the ith dimension. Without loss of generality,

we assume that ai1 > ai2 > . . . > aiki
. In addition, we assume that the domains

for all dimensions are the same and are totally ordered. In presenting the proposed

schemes, we shall also restrict our discussion to the MAX annotation only. Towards

the end of this section, we shall discuss how the schemes can be easily generalized

to handle skyline queries involving fewer than d dimensions, other annotations (i.e.,

MIN and DIFF), as well as other related issues.

3.2.1 Bitmap: A Bitmap-based Algorithm

To support progressive skyline computation, for each point examined, the Bitmap

scheme asks the question: “Is this point dominated by another point?”. The point

is an interesting point if the answer is negative, and we can return it immediately.

As such, the method is completely non-blocking, and the initial response time is

short compared to existing schemes. Intuitively, to realize this, we need to examine

all points in the database. We avoid this by exploiting a bitmap structure. Since

48

bitwise operations are fast, we can efficiently determine whether a point is an

interesting point or not. We now describe how the bitmap structure is constructed.

Construction of the Bitmap Structure

Assume that the domain of all dimensions are integral values. Consider a point

x = (x1, . . . , xd). We use ki bits to represent xi. ki is the number of distinct

values of dimension i. Let the jth bit of the ki bits corresponds to aij. Note that

since we are considering the MAX annotation, the first bit corresponds to ai1 (which

corresponds to the largest value in the dimension), the second bit corresponds to

ai2 (which corresponds to the second largest value), and so on. If xi is the aiqth

distinct value of dimension i, then the ki bits representing xi are set as follows: bits

1 to q − 1 are set to 0, and bits q to ki are set to 1. By setting the respective ki

bits for each xi value, x can be represented as a m-bit vector where m =
∑d

i=1 ki.

For efficient computation, the array of vectors obtained from all points are

transposed into an array of bit-slices and stored as slices in secondary storage in

descending order of the dimensional values. However, we note that the bitmap

structure can impose a large space as well as high processing overheads for non-

discrete domains or domains with large cardinality. We shall address these issues

towards the end of this section.

Example 3.1. Figure 3.1 shows an example. Here, we have a table containing

four 3 dimensional data points (Figure 3.1(a)). The first dimension has 4 distinct

values (4, 3, 2, 1), the second dimension has 3 distinct values (3, 2, 1) and the

third dimension has 2 distinct values (2, 1). The corresponding bitmap structure is

shown in Figure 3.1(b). Consider the second point (3 2 1). The value in its first

dimension is 3, which is the second largest value. So, only the bit corresponding to

4 is set to 0, while the rest are set to 1, resulting in the sequence 0111. Similarly,

for the second dimension, its value is 2, and so only the bits corresponding to values

larger than 2 (in this case, only one of them which has value 3) will be set to 0,

while the rest are set to 1. This leads to the sequence 011. Finally, using the same

49

logic, the bit sequence corresponding to the third dimension is 01.

d1 d2 d3

d2 d3d1

d2

XORbit−slice

0 0 1
0 1 1
0 0 1
1 1 1

3 2 1

1
1
1
0

[1,3)

(a) Data points (b) The corresponding bitmap structure (c) exclusive or operation

1 1 2
3 2 1
4 1 1
2 3 2

4 3 2 1

0 0 0 1
0 1 1 1
1 1 1 1
0 0 1 1

3 2 1 2 1

0 0 1
0 1 1
0 0 1
1 1 1

1 1
0 1
0 1
1 1

Figure 3.1: An example to illustrate the bitmap-based method.

In Figure 3.1(b), we also illustrate how a bit-slice looks like. Let us now examine

an important property of these bit-slices.

Property 3.1. Assume that dimension i has ki distinct values, ai1, . . . , aiki
where

ai1 > ai2 > . . . > aiki
. Let BSaij

denotes the bit-slice for the jth distinct value, aij,

of dimension i. Then, the 1s in BSaij
represent those points having values greater

or equal to aij for dimension i while the 1s of the immediate preceding bit-slice

of BSaij
i.e. the bit-slice for the (j−1)th distinct value (for j > 1), represent points

having values strictly greater than aij for dimension i.

For example, consider the bit-slice for second distinct value of the first dimension

in Figure 3.1(b). From the bit-slice for value 3 of the first dimension, we know that

the second and third points have values greater or equal to 3. On the other hand,

its immediate preceding bit-slice tells us that only the third point has value strictly

greater than 3. This brings us to an important theorem:

Theorem 3.1. Given any two distinct bit-slices BSaij
and BSaik

where aij > aik,

executing a bitwise exclusive or operation between them will result in a bit-slice

whose 1s represent those points having values in the range of [aik, aij).

Proof. WLOG, consider a point that is represented by the nth bit in the bit-slices.

Assume that it has value aiq for dimension i. First, if aiq < aik, then bit n in bit-

slices BSaij
and BSaik

will be set to 0. Hence, bit n will remain 0 in the resulting

50

exclusive-ored bit-slice, indicating that aiq is not in the range of [aik, aij). Second,

if aiq ≥ aij, then bit n in bit-slices BSaij
and BSaik

will be set to 1. Hence, bit

n will be set to 0 in the resultant bit-slice, indicating that aiq is not in the range

of [aik, aij). Finally, if aik ≤ aiq < aij, then bit n is set to 0 in bit-slice BSaij
but

set to 1 in bit-slice BSaik
. Hence, bit n will be set to 1 in the resultant bit-slice,

indicating that aiq is indeed in the range of [aik, aij).

An example is illustrated in Figure 3.1(c). We execute a bitwise exclusive or

operation on the bit-slices for values 3 and 1 of the second dimension, resulting

in the bit-slice whose 1s indicate points with values in the range of [1, 3). As we

will see later, this theorem is frequently applied to derive the bit-slices required for

evaluation e.g. to derive the bit-slice whose 1s represent points having the same

value for a specific dimension (as shown by the following).

Corollary 3.1. Let BSaij
be the immediate preceding bit-slice of BSaik

. Executing

a bitwise exclusive or operation between these two bit-slices will result in a bit-slice

whose 1s represent those points having only values aik for dimension i.

In order to facilitate our subsequent discussion on query evaluation we shall now

present a number of definitions. Note that di represents dimension i of the dataset

for 1 ≤ i ≤ d.

Definition 3.1. Let BitSlice(aij, di) be the bit-slice for value aij in dimension i.

The 1s in the bit-slice represent those points having values ≥ aij for dimension i.

Definition 3.2. Let PreSlice(aij, di) be the bit-slice that immediately precedes

value aij in dimension i. Intuitively, the 1s of this bit-slice represent points having

values > aij for dimension i. If there is no preceding bit-slice, PreSlice(aij, di) is

equal to 0.

For example, in Figure 3.1(b), BitSlice(2, d2) refers to the bit-slice of the second

dimension where the 1s represent points having values ≥ 2 i.e. 0101. On the same

figure, PreSlice(2, d2) refers to the bit-slice of the second dimension where the 1s

represent points having values > 2 i.e. 0001.

51

Due to the unique way in which our bitmap is structured, only the bit-slice

for the first distinct value, ai1, will consist of 1s representing points having values

equal to ai1. In general, the bit-slice whose 1s represent points having a specific

value for a particular dimension will have to be derived and is defined as follows.

Definition 3.3. Let OrigSlice(aij, di) be the bit-slice which is derived by executing

a bitwise exclusive or operation on BitSlice(aij, di) and PreSlice(aij, di). From

Corollary 3.1, the 1s of this bit-slice represent points having values aij.

Evaluating Skyline Queries

We shall now describe how to use the bitmap structure to evaluate a skyline query.

Figure 3.2 gives the algorithmic description of the proposed Bitmap technique. The

algorithm starts by looping through each point x in the database. For each point

in the database, BitSlice(xi, di) are retrieved from the bitmap structure for each

dimensional value of x and bitwise and together (line 5). Similarly, PreSlice(xi, di)

are retrieved from the bitmap structure for each dimensional value of x and bitwise

or together (line 6). The two resultant bit-slices, SA and SB respectively, are then

bitwise and together (line 7). The resultant bit-slice, SC is then checked (lines 8-9).

If it is zero, we can conclude that no points in the database dominates x i.e. x is a

skyline point and we output x.

Algorithm Bitmap
1. foreach point x = (x1, x2, . . . , xd) in the database
2. SA ← 1 // set each bit of SA to 1
3. SB ← 0
4. for i = 1 to d
5. SA ← SA & BitSlice(xi, di)
6. SB ← SB | PreSlice(xi, di)
7. SC ← SA & SB

8. if SC == 0
9. output x

Figure 3.2: Bitmap-based skyline computation algorithm.

52

The following result demonstrates that given any skyline query, the Bitmap

algorithm correctly derives the bit-slice, SC , which indicates whether any points in

the dataset dominates the candidate point x.

Theorem 3.2. Consider a d-dimensional dataset. Assume a skyline query Q spec-

ifying the MAX annotation on each dimension di, for 1 ≤ i ≤ d. For a candidate

point x = (x1, x2, . . . , xd), the Bitmap algorithm correctly computes the bit-slice SC

whose 1s indicate only points that dominate x.

Proof. Let us first examine the properties of bit-slices SA and SB:

SA = BitSlice(x1, d1) & BitSlice(x2, d2) & . . . & BitSlice(xd, dd)

where & represents the bitwise and operation. Thus, SA has the property that the

nth bit is set to 1 iff each dimensional value of the nth point has value greater or

equal to the value of the corresponding dimension in x. In other words, the 1s in

SA represent points having dimensional values strictly better or equal to x.

SB = PreSlice(x1, d1) | PreSlice(x2, d2) | . . . | PreSlice(xd, dd)

where | represents the bitwise or operation. Thus, SB has the property that the

nth bit is set to 1 iff the nth point has some of its dimensions’ values strictly greater

than the value of the corresponding dimension in x. In other words, the 1s in SB

represent those points whose dimensional values are strictly greater than x for at

least one of their dimensions. Next, we examine the property of bit-slice SC which

is derived from bit-slice SA and SB:

SC = SA & SB

Thus, SC has the property that the nth bit is set to 1 iff each dimensional value of

the nth point has value greater than or equal to the corresponding dimension’s value

in x and some of its dimensions’ values are strictly greater than the corresponding

dimension’s value in x. Hence, if SC is not zero, we can conclude that there exists a

point that is as good or better than x in all dimensions and better than x in at least

one dimension i.e. x is dominated by some points. Conversely, if the resultant bit-

slice is zero, it tells us that there is NO such point in the database that dominates

x. Thus, the 1s in SC can only represent points that dominate x.

53

Example 3.2. Referring to our example in Figure 3.1. we now illustrate how to

determine whether the second point (3, 2, 1) is in the skyline or not. First, we

derive bit-slice SA:

SA = 0110 & 0101 & 1111 = 0100

Next, we derive bit-slice SB:

SB = 0010 | 0001 | 1001 = 1011

Finally, we carry out the bitwise and operation of SA and SB:

SC = 0100 & 1011 = 0000

Since the answer is zero, no points in the database dominates (3, 2, 1). Thus,

it is in the skyline. This example clearly shows that as each point is examined, we

can determine easily whether it is in the skyline!

Before we discuss about efficiency issues of the Bitmap algorithm, let us consider

the following result.

Theorem 3.3. Let D be the set of points in the database. Suppose there are d

dimensions, and dimension i has ki distinct values, 1 ≤ i ≤ d. Moreover, let

aij denotes the jth distinct value of the ith dimension. WLOG, we assume that

ai1 > ai2 > . . . > aiki
. Given a candidate point x = (x1, x2, . . . , xd), the Bitmap

algorithm needs to examine at most 2d bit-slices to determine whether x is in the

skyline or not. In addition, there are a total of at most 2d - 1 bitwise operations

(i.e., d bitwise and and (d - 1) bitwise or operations).

Proof. In the Bitmap algorithm, we need to compute the bit-slices SA, SB and

SC . Bit-slice SA is the resultant bit-slice from the bitwise and operations on

BitSlice(x1, d1), BitSlice(x2, d2), . . . , BitSlice(xd, dd). Hence, it needs to examine

d slices and there are d−1 and operations. Bit-slice SB is the resultant bit-slice from

the bitwise or operations on PreSlice(x1, d1), P reSlice(x2, d2), . . . , P reSlice(xd, dd).

Hence, it needs to examine d slices and there are d− 1 or operations. For bit-slice

SC , it is the result of executing a bitwise and operation on SA and SB. Therefore,

the algorithm needs to examine a total of at most 2d bit-slices and there are a total

of at most d− 1 + d− 1 + 1 i.e. 2d− 1 bitwise operations.

54

Although the number of bit-slices that need to be examined and operated on

is proportional to the number of dimensions involved in the skyline query (which

is typically less than 10), the size of the bit-slice itself can have an impact on

performance. The size of each bit-slice depends on the number of points. A large

dataset will result in large bit-slices even though we are using only one binary bit

per point. As an example, our experimental datasets typically consist of 100000

points. These require 100000 bits each i.e., 12.5 KB of storage for each bit-slice.

Consequently, during query evaluation, a high I/O as well as CPU cost is incurred

to retrieve the bit-slices and execute the bitwise operations on them. To this end,

we propose the following two optimizations to make the algorithm more efficient.

Bit-slice Segmentation

We propose that each bit-slice be segmented in a manner similar to that discussed

in [83, 92]. The general idea is to break the bit-slice for a value xi into segments

such that each segment can fit into a disk page. The optimal size of each segment

is application specific and has to be determined experimentally (which is what

we have done for our experimental studies). Next, for each segmented bit-slice,

we create a bit-slice index entry to reference the various segments. Figure 3.3

illustrates a typical bit-slice index entry for the value xi.

0101 1111 0000 0111 0001 0000

..........−1 0−11−1 0

flag disk pointer

xi

segment info

segmented bit−slice

Figure 3.3: A bit-slice index entry.

Each index entry resides in a B-tree leaf page and may be followed by successive

leaf pages if the size of the entry is too large to fit into a single leaf node. Each

entry consists of a set of segment information blocks each containing two attributes.

The first is an indicator flag while the second is a disk pointer to a segment of the

55

bit-slice on disk. The flag can take on three possible values. A value of 1 indicates

that the segment has all its bits set to 1 while 0 indicates that all its bits are set to

0. A value of -1 indicates a mixture of 1s and 0s in the segment. We can represent

the flag using two binary bits. Assuming a typical disk pointer of 8 bytes i.e. 64

bits, the size of each segment information block is thus 66 bits. Given the size of

each segment information block, we can then calculate the extra storage incurred.

Now, instead of retrieving and processing the whole bit-slice in one shot, we

now process segments of each required bit-slice in an incremental fashion. The

advantage here is that it is now not necessary to examine all the segments of the bit-

slice. For example, after applying the bitmap algorithm on the first segment of each

required bit-slice, if the resulting bit-slice is not zero, we can immediately conclude

that the current point is dominated by some other points without examining the

rest of the segments. Furthermore, if we encounter a segment whose flag is set to

1 or 0, we do not even need to retrieve the segment, thus reducing a substantial

amount of I/O cost.

As an example, Figure 3.4 shows the bit-slices and the index entries for the first

dimension of Figure 3.1(b). Figure 3.4(a) shows the case when no segmentation is

applied to the bit-slices while Figure 3.4(b) shows the case when segmentation is

applied. Notice that with segmentation, there is one disk pointer for each segment.

However, not every segment needs to be accessed. For example, since the last index

entry has both its flags set to 1, there is no need to retrieve the segments as the flags

indicate that they all have their bits set to 1, thereby saving a few I/Os. Hence,

we believe that with segmentation, the performance of our bitmap algorithm can

improve substantially and we adopt it in our implementation.

Skyline Cache

We propose another simple enhancement to our Bitmap algorithm by maintaining

a list of skyline points found during processing. Subsequently, before the bitmap

structure is consulted, a point is checked against this list of cached skyline points

56

0010 0110 0111 1111

3 2 1 4 0 −1

file containing
bit−slices

00 10 01 10 01 11 11 11

4

index entries

−13 2 1 1 1 1−1−1

(b) With segmentation (assuming 2 bits per segment)(a) Without segmentation

Figure 3.4: An example to illustrate bit-slice segmentation.

first. If any of the cached skyline points dominates it, the point will be elimi-

nated. Otherwise, the normal Bitmap algorithm is applied to determine whether

any points dominates the point under consideration. Caching of skyline points is

particularly useful in situations where the number of skyline points is small as most

of them can fit in the cache. This will further lead to the elimination of a large

number of non-skyline points without consulting the bitmap structure, thus saving

a significant amount of time.

Before we end this subsection, we would like to comment on the space efficiency

of our bitmap structure. As we mentioned earlier, a large dataset will result in large

bit-slices that will take up a substantial amount of secondary storage. Furthermore,

if the domains are non-discrete or have large cardinalities, the space requirement is

even higher. For non-discrete domains, we propose that their values be converted

to discrete values whenever possible. For example, if an attribute is the price of

some commodity in dollars and cents, the values stored in the bitmap structure

will be the total number of cents instead. However, if the number of digits after

the decimal point is large, it may be impractical to use the bitmap structure at all.

For sparse bit-slices, a possible solution is to use compression. For example,

run-length encoding can be used to reduce the number of bits stored or in some

cases, we can store the actual ids rather than using bits to conserve space. We

believe that compression along the lines of [105] will be the most helpful in our

work. However, it is important to note that our bitmap structure is augmented

with additional information to speed up query evaluation and thus differs from

existing implementations. Most notably, the density of the bit-slices increases as

57

the values get smaller, ending with a bit-slice consisting of only 1s for the smallest

value. Since our main focus in this dissertation is on the efficiency aspects of those

structures and algorithms suitable for evaluating skyline queries, addressing the

issue of space overhead (which is an important topic on its own) is beyond the

scope of this dissertation.

3.2.2 Index: A B+-tree-based Algorithm

The Index scheme exploits a transformation mechanism that maps high dimensional

points into single dimensional space and a B+-tree structure [29] to index the

transformed points. It assumes that the domains for all dimensions are in the range

[0,1]. Towards the end of the section, we shall discuss how to handle databases

whose dimensions’ domains are different. The scheme works as follows. Let x =

(x1, x2, . . . , xd) be an arbitrary point. Let xmax be the largest value among all the

d dimensions of the data point. Let the corresponding dimension for xmax be dmax.

The data point is mapped to y over a single dimensional space as follows

y = dmax + xmax (3.1)

We note that the transformation actually organizes the data space into different

partitions based on the dimension which has the largest value, and provides an

ordering within each partition. After the transformation, any single dimensional

indexing structure can be used to index the transformed values. We adopt the

B+-tree structure in our implementation. However, we assume that the B+-tree

leaf nodes are linked to both the left and right siblings [90]. Moreover, we assume

that the high dimensional points are kept at the leaf nodes of the tree.

We note that the transformation in Equation 3.1 is a special case of the more

general transformation function used in iMinMax(θ) [84]. This makes the pro-

posed approach more attractive. First, B+-tree is readily available in all existing

commercial database systems. Second, we are not advocating a transformation

function that is specially tailored to skyline queries. Instead, as shown in [84, 107],

58

similar transformation function can be used to support range and nearest neighbor

queries. This means that we only need one index structure to support all three

types of queries! Before we present the algorithm for progressive skyline computa-

tion, we shall illustrate the idea with an example.

Example 3.3. Consider the example shown in Figure 3.5. The data consist of

a set of 3 dimensional points whose domains for all dimensions are in the range

of [0,1]. If a point’s maximum value among all its three dimensions is its first

dimensional value, the transformation mechanism will place this point in the first

partition. At the end of the transformation, each data point will be located in only

one of the partitions, depending on the dimension having the point’s maximum

value among all its three dimensions. In the figure, we show the content of the

partitions after the transformation (without showing the tree structure). Note

that in the figure, each partition is sorted in non-ascending order of the maximum

value in that dimension. This can be interpreted as scanning the partition from

the last leaf node (and backward) within each partition. We note that we will need

an additional pointer to the data point if there are other dimensions that are not

indexed (i.e., not used in any skyline operation).

(0.9, 0.8, 0.6)
(0.9, 0.5, 0.7)
(0.9, 0.2, 0.1)
(0.8, 0.7, 0.7)

(0.2, 0.2, 0.2)
(0.2, 0.1, 0.1)
(0.1, 0.1, 0.1)

(0.3, 0.4, 0.5)
(0.2, 0.1, 0.3)
(0.2, 0.2, 0.3)

(0.3, 0.4, 0.2)
(0.2, 0.4, 0.1)
(0.1, 0.3, 0.2)

(0.1, 0.5, 0.9)
(0.8, 0.8, 0.9)
(0.7, 0.6, 0.9)
(0.2, 0.1, 0.9)

dimension 1 dimension 2 dimension 3

(0.7, 0.8, 0.5)

(0.6, 0.6, 0.6)
(0.5, 0.6, 0.6)

(0.5, 0.8, 0.6)

Figure 3.5: An example to illustrate the index-based method.

We make several interesting (and important) observations. First, we note that

the interesting (and potentially dominant) points are largely at the top. In fact,

we can identify some interesting points by simply looking at points with the largest

values in each dimension. In our example, there are 7 points (3 from dimension 1,

59

and 4 from dimension 3) that have the maximum value of 0.9 in some dimensions.

Among them, it is clear that (0.8,0.8,0.9) in dimension 3 is in the skyline. This

means that we can provide very fast initial response time to the user!

Second, we can prune away some of the points easily without examining them.

This follows from the fact that if the minimum value among all dimensions in a

point is larger than the maximum value among all dimensions in another point,

then the first point dominates the second. Clearly, the larger the minimum value

is, the more points we can prune. In our example, clearly (0.8,0.8,0.9) dominates

all points whose maximum value is smaller than 0.8. So, all such points need not be

examined. Since the structure is organized in sorted order based on the maximum

value, this means that we do not need to examine the points to remove them. This

translates to saving in I/O cost, and is in contrast with existing algorithms that

require the entire database to be scanned at least once.

Third, in the worst case, we can apply existing techniques by scanning the leaf

nodes. Even with this strategy, we can expect a gain over existing schemes, since

only the dimensions are involved. Fourth, we can clearly optimize the internal

structure by ordering the points with the same maximum value by the minimum

values. In other words, we further order the points with the same maximum value

using values from the other dimensions so that the most potential points are an-

alyzed first in each batch. Fifth, unlike sort-based algorithm which may require

large main memory (as dominating points can be far apart), the proposed scheme

(as noted in the first point) will not suffer the same problem. As such, we expect

the scheme to perform well even with a small amount of memory.

Some of the above observations can be summarized in the following results.

Theorem 3.4 says that some points can be pruned. Theorem 3.5 says that skyline

points can be obtained from points with the largest value. Theorem 3.6 further

shows that if we are to examine points in descending order of the largest values,

then we can find skyline points (from these points) without considering those with

smaller values. This is important for a progressive approach since users will typ-

60

ically be interested only in the first few skyline points in order get a big picture

of the interesting options. Note that it is possible to have multiple points with

the same transformed value, and so, the collection of points should be considered

collectively when determining the skyline points.

Theorem 3.4. Consider two points x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd).

Let xmax = maxd
i=1(xi), xmin = mind

i=1(xi), and ymax = maxd
i=1(yi). Let xmin occurs

at dimension dmin, and ymax occurs at dimension dmax. Then, if xmin > ymax, x

dominates y.

Proof. Since xi ≥ xmin > ymax ≥ yi, it follows that xi ≥ yi, for all i. Moreover,

xmin = xdmin
> ymax and ymax = ydmax ≥ ydmin

, it implies that xdmin
> ydmin

. In

other words, there is at least one dimension of x that is better than the correspond-

ing dimension of y. Thus, x dominates y.

Theorem 3.5. Let D be a database containing |D| d-dimensional points. We

define m as

m =
|D|

max
i=1

(
d

max
j=1

xij)

where xij corresponds to the value of the jth dimension of the ith point. We define

M as follows

M = {(x1, x2, . . . , xd)|(x1, x2, . . . , xd) ∈ D ∧ d
max
i=1

xi = m}

Let SD be the skyline of D, and SM be the skyline of M . Then, SM ⊆ SD.

Proof. Let x = (x1, x2, . . . , xd) ∈ SM be an arbitrary skyline point of M . Now, we

have xk = m for some k. For all points in D −M , we have

m′ =
|D|−|M |
max
i=1

(
d

max
j=1

xij)

We note that m′ < m. As such, none of the points in D −M dominates x. This

means that x is also a skyline point in D, i.e., SM ⊆ SD.

61

Theorem 3.6. Let D be a database containing |D| d-dimensional points. Let

there be k distinct values in the dimensions of the points in D. Let m1 denotes the

maximum value, m2 denotes the second largest value, and so on, and finally, mk

denotes the minimum value. Moreover, let us split the database D into k partitions,

P1, . . . , Pk, such that

Pi = {(x1, x2, . . . , xd)|(x1, x2, . . . , xd) ∈ D ∧ d
max
j=1

xj = mi}

Let SD be the skyline of D, and Si be the skyline of Pi. Let us compute SD by

examining partitions in the order P1, P2 . . . , Pk. Then, when we are examining

Pj, we can determine whether points in Sj are in SD without having to look at

Pj+1, . . . , Pk.

Proof (By Induction). The theorem is true for the first step, i.e., examining P1.

This follows from Theorem 3.5. Suppose the theorem is true for step j. Now,

consider step j + 1. In this case, we already have the skyline points of par-

titions P1, . . . , Pj (after step j). We are now examining partition Pj+1. Let

x = (x1, x2, . . . , xd) ∈ Sj+1 be an arbitrary skyline point of Pj+1. Now, we have

xq = mj+1 for some q. For all points in Pj+2 ∪ . . . ∪ Pk, we have

m′ =
|Pj+2|+...+|Pk|

max
i=1

(
d

max
j=1

xij)

We note that m′ < mj+1. As such, none of the points in Pj+2 ∪ . . .∪ Pk dominates

x. This means that we do not need to consider partitions Pj+2 ∪ . . . ∪ Pk when we

are determining whether points in Sj+1 are skyline points of D.

We are now ready to look at the algorithm. Figure 3.6 shows the algorithmic

description of our proposed index-based scheme. For clarity, we have assumed

that everything fits in memory. In our implementation, should the number of

incomparable points be too large to fit into the memory, we have adopted the

nested loop approach. Essentially, subsequent incomparable points are written out

to a temporary output file. The points in the output file will then be processed in

62

a subsequent iteration as in the nested loop approach.

The algorithm is highly abstracted. We shall briefly discuss the routines and

variables. fi is a flag that indicates whether dimension i still needs to be searched.

When fi is set to false, it means that all subsequent points are dominated by some

point, and so, partition i need not be searched any further. Routine maxValue(t)

returns the maximum value among all dimensions of t. Similarly, minValue(t) re-

Algorithm Index

1. for i = 1 to d
2. fi ← true
3. ti ← traverseTreeMax(root, i)
4. maxi ← maxValue(ti)
5. mini ← minValue(ti)

6. mn← maxd
i=1 mini

7. mx← maxd
i=1 maxi

8. for i = 1 to d
9. if mn > maxi

10. fi ← false

11. j ← 1
12. S ← ∅
13. while some partitions’ fi value is true
14. for i = 1 to d
15. if maxi == mx
16. Pj ← ti
17. Sj ← ∅
18. ti ← getNextLeftElement(ti)
19. while (maxV alue(ti) == mx)
20. mn← max(mn, minValue(ti))
21. Pj ← Pj ∪ ti
22. ti ← getNextLeftElement(ti)
23. maxi ← maxValue(ti)
24. Sj ←computePartitionSkyline(Pj)
25. S ← S ∪ computeNewSkyline(Sj, S)
26. j ← j + 1
27. mx← maxd

i=1 maxi

28. for i = 1 to d
29. if mn > maxi

30. fi ← false

Figure 3.6: Index-based skyline computation algorithm.

63

turns the minimum value among all dimensions of t. traverseTreeMax(root,i) is

a routine that traverses the B+-tree to obtain the point with the largest value in di-

mension i. Routine getNextLeftElement(t) returns the left element of t (if the el-

ement is in the left sibling node, then the sibling node will have to be accessed first).

Routine computePartitionSkyline(P) computes the skyline for a set of points P .

Any existing algorithms [9] can be used for the computation. In our implementa-

tion, we use the block nested loop algorithm. Routine computeNewSkyline(Sj, S)
computes the new skyline points to be obtained from Sj and the current skyline

points S. Note that the routine also returns these points to the user. It may also

involve accessing the data points if not all dimensions are stored at the leaf nodes

of the tree.

Steps 1-5 begin the search at the last element of each partition. In step 6, we

identify the threshold whereby points are guaranteed to be dominated. This is

given by mn, the maximum value among all the minimum values in the dimensions

of all seen points. Step 7 provides the value (stored in mx) to identify the group of

points whose maximum value among all dimensions must take on. Steps 8-10 do

the first pruning to eliminate any partitions that need not be searched. Steps 11-30

proceed on to locate any skyline points as follows. While there are more partitions

to be searched (i.e. some partitions’ fi value is true), the search continues by picking

the points that have the current maximum value equal to mx and storing them in

a separate partition Pj (steps 14-23). At the same time, mn is updated to reflect

the maximum value among all the minimum values of the points examined so far.

A higher value will result in fewer partitions that need to be searched subsequently.

Next, the skyline of the points in the new partition, Pj is determined (step 24).

This new set of skyline points are then compared with the skyline points found so

far because some of these new skyline points may be dominated by the current list

of skyline points (step 25). Finally, the threshold is updated and more dimensions

may be eliminated as a result (steps 26-30). The process repeats itself by looking

for the next group of points to examine.

64

3.2.3 Discussion

Both the Bitmap and Index schemes are expected to produce fast initial response

time. While Bitmap produces the skyline points one at a time, the Index scheme

generates them in bursts (since it examines collection of points together). In terms

of overall efficiency, we can expect the Bitmap scheme to be effective for small

number of distinct values per dimension, and its performance to degrade as the

number of distinct values per dimension increases. Nevertheless, because it is able

to return first few answers quickly, it is a competitive algorithm that cannot be

ignored totally. On the other hand, the effectiveness of the Index scheme, like all

index-based schemes, depends on the selectivity of the skyline operation – if there

are a few skyline points, its performance is expected to be superior; otherwise, it

may not perform as well. We further note that the scheme requires a B+-tree index

structure to be constructed for every combination of the dimensions of interest.

This may lead to the construction of too many indexes which is not feasible. There

are ways to extend the scheme so that a single 5 or 10 dimensional index is sufficient

but this is beyond the scope of this dissertation.

In our presentation of the proposed schemes, we have imposed some restrictions

on the domains of the dimensions, annotations, etc. Here, we shall discuss how the

schemes can be easily generalized.

Other Domains

In our discussion, we have assumed that all dimensions have the same domain. Very

often, different dimensions will have different domains. In our tourist example, the

domain of the price dimension is the set of real numbers, while the domain of

the rating dimension is just the enumerative set containing integers 1 to 5. The

Bitmap scheme can handle dimensions with different domains except for those that

are non-discrete or have large cardinalities where they can only be supported to a

certain extent. For the Index scheme, to handle dimensions with different domains,

we need to normalize all domains to a common one, e.g., [0,1]. We note that since

65

normalization of a dimension relies on the maximum and minimum values of that

dimension, adding a new data point with a higher maximum or lower minimum

value of that dimension will require that normalized dimension to be renormalized.

In view of this problem, we propose that predetermined maximum and minimum

values based on domain knowledge be used initially for normalization. These values

should be fairly stable i.e. unlikely to change, hence reducing the frequency of

renormalization. However, should either the maximum or minimum value changes,

then renormalization will be inevitable.

Number of Attributes in a Skyline Query

So far, we have assumed that all the d dimensions of a point are used in the

skyline query. Given a point with d dimensions, it is often the case that only d′

(≤ d) dimensions will be used in the SKYLINE OF clause. In fact, we note that the

actual number of dimensions used in an arbitrary skyline query may be different

at different time and by different user. Let the actual number of dimensions used

be d′′. Clearly, d′′ ≤ d′ ≤ d. For the Bitmap scheme, we propose that the bitmap

structure be built for all the d′ dimensions. For a query that specifies d′′ dimensions,

the Bitmap scheme requires minimal changes – all we need is to examine only the

bit-slices that correspond to the d′′ dimensions.

Similarly, for the Index scheme, only values obtained from the d′ dimensions

need to be transformed and indexed. For a query with d′′ dimensions, it depends

on whether the index for the d′′ dimensions exists. If it does, the Index scheme can

be applied directly. Otherwise, alternative algorithms have to be used.

Other Annotations

We have considered only the MAX annotation. Here, we discuss how the MIN and

DIFF annotations can be supported.

Let us first examine how to support the MIN annotation for the Bitmap scheme.

Since the 1s in BitSlice(xi, di) represent points having values ≥ xi for dimension i,

66

executing a bitwise not on it will result in the bit-slice whose 1s represent points

having values < xi. On the other hand, since the 1s in PreSlice(xi, di) represent

points having values > xi for dimension i, executing a bitwise not on it will result

in the bit-slice whose 1s represent points having values ≤ xi. Hence, the three key

bit-slices SA, SB and SC for a candidate point x = (x1, x2, . . . , xd) can be computed

as follows:

SA = ¬PreSlice(x1, d1) & ¬PreSlice(x2, d2) & . . . & ¬PreSlice(xd, dd)

SB = ¬BitSlice(x1, d1) | ¬BitSlice(x2, d2) | . . . | ¬BitSlice(xd, dd)

SC = SA & SB

where ¬ represents the bitwise not operation. Similar to the MAX annotation, if SC

is zero, then x is in the skyline.

For the DIFF annotation, it is only meaningful in a skyline query if it is used

in conjunction with at least a MAX or MIN annotation. Otherwise, the standard

group-by operation is sufficient. For the Bitmap scheme, no change to the bitmap

structure is required. During evaluation, if dimension i has a DIFF annotation,

then OrigSlice(xi, di) will be used. Recall that OrigSlice(xi, di) is derived by exe-

cuting a bitwise exclusive or on BitSlice(xi, di) and PreSlice(xi, di). We shall now

describe how the three key bit-slices SA, SB and SC are computed. For simplicity,

we assume that the MAX annotation occurs for dimensions 1 to k while the DIFF

annotation occurs for the remaining dimensions (i.e., k + 1 to d). To determine

whether a candidate point x = (x1, x2, . . . , xd) is in the skyline, we compute:

SA = BitSlice(x1, d1) & BitSlice(x2, d2) & . . . & BitSlice(xk, dk) &

OrigSlice(xk+1, dk+1) & . . . & OrigSlice(xd, dd)

SA now has the property that the nth bit is set to 1 if and only if the nth point has

values greater or equal to x for each corresponding dimension in the MAX annotation,

67

and has the same value as x for each dimension in the DIFF annotation.

SB = PreSlice(x1, d1) | PreSlice(x2, d2) | . . . | PreSlice(xk, dk) &

OrigSlice(xk+1, dk+1) & . . . & OrigSlice(xd, dd)

SB now has the property that the nth bit is set to 1 if and only if the nth point

has some dimensions (in the MAX annotation) whose values are strictly greater than

the corresponding values in x, and has the same value as x for each dimension in

the DIFF annotation.

Therefore, the resultant bit-slice SA & SB has the property that the nth bit

is set to 1 if and only if the nth point has each MAX annotated dimension’s value

greater or equal to the corresponding value in x and at least one of these values

is strictly greater than the corresponding value in x, and has the same value as

x for each dimension which is DIFF annotated. Hence, we can conclude that the

nth point dominates x. Conversely, if the resultant bit-slice has a value of zero, no

points in the database dominates x and thus, x is in the skyline.

To support the MIN annotation for the Index scheme, we can transform the

original value. For example, if the domain of dimension i is [0,1], and the value

of dimension i for a point is x (0 ≤ x ≤ 1), we can represent x by (1 - x). The

proposed scheme remains unchanged. For the DIFF annotation, notice that the

values for each dimension is already grouped by the B+-tree structure. Hence,

the same algorithm can be used except that the pruning optimization cannot be

applied on those dimensions annotated with DIFF. Finally, we note that it is not

likely that a single dimension be used for both MIN and MAX annotations. Thus,

typically, we only need to keep one partition for the Index scheme. In the unlikely

case that a dimension may be used for both, we will have to keep two partitions

for this dimension.

68

Selection Predicates

Our schemes do not deal with any selection predicates directly. Consider our tourist

example again; it is likely for our tourist to specify additional predicates in the

query, e.g., price < 200 and/or rating >= 3. Clearly, these predicates can be

considered while computing the skyline. For the Bitmap scheme, we only need

to check the bitmap structure if the point satisfies the conditions; otherwise, they

can be pruned away immediately. For the Index scheme, there is also no need to

examine points whose values in the dimensions corresponding to the predicates are

outside of the targeted range. However, we note that in general, interchanging the

order of selection predicates and preference clauses is not a trivial issue [26, 51]

and further investigations on this are required as future work.

Updates on Proposed Structures

We now discuss how updates to the data points are managed in our proposed

schemes. For the Bitmap scheme, recall that our bitmap structure is augmented

with additional information to speed up subsequent processing. Thus, any update

operation will generally result in modifications of several bit-slices, and in the worst

case, all the bit-slices. First, if a new data point is added, we need to update the bit-

slices of each dimension based on the way our augmented bit-slices are constructed.

If the bit-slice for a particular value does not exist, we would need to create a new

bit-slice for that value and update the rest of the bit-slices accordingly. Second, if a

data point is deleted, we do not shift the other data points to fill the gap. Instead,

the space is replaced by a “tombstone” in the data file. Then, we set the respective

bits for the deleted point to zero and update any affected bit-slices accordingly.

Third, for modifications, we first find the bit-slice of the original value and update

all the respective bits of the affected bit-slices. Next, we find the bit-slice of the

new value and update all the necessary bit-slices. Again, if no bit-slice exists for

the new value, a new one has to be constructed. For the Index scheme, since

we have chosen to use a B+-tree for the underlying structure, the insert, modify

69

and delete algorithms are similar to the B+-tree algorithms. We note that since

this disseration’s main focus is on efficiency issues pertaining to the evaluation of

preference/skyline queries, maintenance issues are only addressed at a preliminary

level here while leaving future work to address such issues in depth.

3.3 Performance Study

To evaluate the effectiveness of our proposed skyline algorithms, we conducted an

extensive set of experiments to study their performance. This section reports the

experimental setup and our findings.

3.3.1 Experimental Setup

All the experiments are carried out on a Pentium III PC with a 866 MHz processor

and 128 MB of main memory running the Linux operating system. We implemented

the proposed Bitmap scheme (denoted Bitmap) and the Index scheme (denoted

Index). As comparisons, we also implemented the three algorithms proposed in [9]:

the block nested loop algorithm where the window is organized as a self-organizing

list (denoted BNL), the M-way divide and conquer algorithm (denoted DC), and

the B-tree-based scheme (denoted BTree). For BTree, we employ the block nested

loop algorithm for cases where it is not possible to determine a skyline point solely

through the index. All algorithms are implemented in C++.

The databases used in all our experiments are generated in a similar way as

described in [9]. Each database contains 100000 tuples, each of size 100 bytes and

are stored in flat files. Each tuple has d attributes and one additional “bulk”

attribute that is packed with garbage characters to ensure the tuple is 100 bytes

long. For ease of presentation, we shall regard each tuple as a d-dimensional point

i.e. we ignore the “bulk” attribute in our discussion. Hence, a tuple of dimension 2

is actually one with 3 attributes (2 attributes for experimental purposes and 1

“bulk” attribute) in our implementation.

70

However, we differ from [9] in that we use integers instead of doubles. We

modified the generator used in [9] to generate integers in the range of [1,100] for our

experiments i.e. we restricted the number of distinct values per attribute. Although

we are using highly discretized domains, our techniques can be extended to handle

continuous domains as in [9]. Three types of databases are generated:

• Independent databases

Attribute values of tuples in an independent database are generated using a

uniform distribution.

• Correlated databases

In a correlated database, tuples whose values are good in one dimension are

also good in other dimensions.

• Anti-correlated databases

In an anti-correlated database, tuples whose values are good in one dimension

are bad in one or all of the other dimensions. For example, prices of land are

lower when they are further away from the city center.

In our study, we shall first focus on skyline queries that look for tuples that

have high values in all d dimensions i.e., the MAX annotation. In other words, a

tuple x dominates a tuple y if all d dimensions of x is at least as large as the

corresponding dimensions of y and at least one dimension of x is strictly larger

than the corresponding dimension of y. This is because we expect the MAX and MIN

annotations to be most frequently used. Towards the end of this section, we will

show the results of experiments using a mixture of MAX and DIFF annotations.

Figure 3.7 shows the sizes of the skylines for different types of databases using

different number of dimensions for the MAX annotation. From the figure, we observe

that the number of skyline points increases as the number of dimensions increases.

It is interesting to note that these values are similar to [9] despite the fact that

we are using only distinct integer values for the dimensions. An exception is for a

2 dimensional correlated database. Upon investigation, we discovered that this is

71

due to a larger number of equivalent skyline points in the database. In general, we

can expect the number of skyline points to increase as the number of dimensions

increases. Furthermore, we can also see that the size of the skyline for correlated

databases is fairly small while it is fairly large for anti-correlated databases, with

independent databases somewhere in between.

Dimension Correlated Independent Anti-Correlated

2 17 9 35
3 3 15 397
4 6 127 2790
5 9 347 10240
6 36 1328 22716
7 61 2831 38117
8 101 7918 51719
9 185 13223 63782
10 215 22367 73200

Figure 3.7: Skyline sizes for the MAX annotation.

3.3.2 Experimental Results on the MAX Annotation

We describe the results of our experiments on the MAX annotation in this subsection.

Experimental results on other annotations will be discussed in the next subsection.

Experiment 1: Effect of segmentation on the Bitmap scheme

Before we evaluate the performance of the various algorithms, we conducted an

experiment to first analyze the effect of segmentation on the Bitmap scheme. For

this experiment, we implemented two versions of the Bitmap algorithm – one using

segmented bit-slices while the other using unsegmented bit-slices. Furthermore,

we included the skyline cache extension in both implementations. We compare

the time taken for each type of database (independent, correlated, anti-correlated)

using tuples of dimensions 2, 5, 8 and 10 while maintaining 1 MB of main memory

throughout the experiments. Figure 3.8 shows the results of the experiment.

From Figure 3.8, we observe that with segmentation, Bitmap performs generally

72

 0

 1

 2

 3

 4

 5

 6

10852

tim
e

(s
)

Number of dimensions

without segmentation
with segmentation

(a) Correlated

 0

 40

 80

 120

 160

 200

 240

 280

 320

 360

 400

10852

tim
e

(s
)

Number of dimensions

without segmentation
with segmentation

(b) Anti-correlated

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

10852

tim
e

(s
)

Number of dimensions

without segmentation
with segmentation

(c) Independent

Figure 3.8: Effect of segmentation on the Bitmap scheme.

better. This is clearly illustrated in Figures 3.8(a) and (c) where Bitmap with seg-

mentation outperforms the one without segmentation for all dimensions. However,

in Figure 3.8(b), we observe that Bitmap with segmentation performs worse for

a 10 dimensional anti-correlated database. This is because in an anti-correlated

database, the number of skyline points are significantly higher (especially when

the number of dimensions is large). Recall that in the Bitmap scheme with seg-

mentation, if the point under consideration is a skyline point, the Bitmap scheme

can only determine this after it has examined all the segments. A larger number

of skyline points implies that more segments need to be examined and thus the

overheads from accessing the bit-slice index entries as well as the bit-slice segments

become significant. However, the overall results do indicate that segmentation has

a beneficial effect. Hence, for all subsequent experiments, we use the segmentation

optimization as well as the skyline cache extension in our Bitmap scheme.

Experiment 2: Comparing the overall runtime performance

In this experiment, we examine the total amount of time needed by each algorithm

(BNL, Bitmap, Index, DC, BTree) to find the skyline. We recorded the time

taken by each algorithm for each type of database (independent, correlated, anti-

correlated) using tuples of dimensions 2, 5, 8 and 10 while maintaining 1 MB of

main memory throughout the experiments. Figure 3.9 shows the results.

73

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

10852

tim
e

(s
)

Number of dimensions

BNL
Bitmap

Index
DC

BTree

(a) Correlated

 0

 203

 406

 609

 812

 1015

 1218

 1421

 1624

 1827

 2030

10852

tim
e

(s
)

Number of dimensions

BNL
Bitmap

Index
DC

BTree

(b) Anti-correlated

 0

 32

 64

 96

 128

 160

 192

 224

 256

 288

 320

10852

tim
e

(s
)

Number of dimensions

BNL
Bitmap

Index
DC

BTree

(c) Independent

Figure 3.9: Actual runtime.

Figure 3.9(a) shows the runtime performance for correlated databases. From

the figure, we can see that both BNL and Index perform better than the rest of the

algorithms. This is because the number of skyline points in correlated databases

is small. This is advantageous for BNL since most of the skyline points can fit into

the window and subsequently used for eliminating a large number of tuples from

the input. Index is also able to take advantage of this situation. Recall that in

our Index scheme, the set of leaf nodes that are processed first usually contain the

most dominating points. Thus, when the skyline is small, only a few leaf nodes

will need to be scanned, reducing the time taken significantly.

Both DC and Bitmap are not favorable to use in this case because the overheads

arising from doing the merging in DC and loading the bit-slices in Bitmap are

significant compared to the processing time. Nevertheless, our Bitmap scheme is

still substantially better than DC, especially for high dimensions. For BTree, it is

only good when the dimensions are small. This is because for correlated databases

of low dimensions, the time required to find the first match is relatively small as

the values in all the dimensions are fairly close. Its performance deteriorates at

higher dimensions due to an increase in the skyline sizes.

A different scenario arises for anti-correlated databases as can be seen in Fig-

ure 3.9(b). BNL now performs badly for high dimensions (> 5). Again, this is

due to the number of skyline points in the databases. As illustrated earlier, the

74

number of skyline points in an anti-correlated database is fairly large. This has an

adverse effect on BNL, indicating that BNL is only good if the size of the skyline

is small. This is consistent with the study done in [9]. We also observe that both

DC and Bitmap perform relatively well compared to the rest. On the other hand,

Index performs well initially for small dimensions, but decreases as the number of

dimensions increases. Recall that Index is highly dependent on the selectivity of

the skyline operations. Hence, it is expected to perform badly when there is a

large number of skyline points. It is interesting to note that despite the fact that

both Bitmap and Index are index-based schemes, their performance do not decrease

rapidly when the number of skyline points increases. In particular, Bitmap remains

competitively close to DC throughout. As for BTree, although it is still able to

perform well for small dimensions, its performance decreases drastically once the

number of dimensions exceeds 5. This is inevitable as the attribute values of all

dimensions in an anti-correlated database are fairly far apart, thus incurring a high

search cost for the first match.

Figure 3.9(c) shows the runtime performance for independent databases of var-

ious dimensions. From the figure, we can see that Index now performs the best

among all the algorithms. This is a direct consequence of having fewer skyline

points in an independent database. The performance of the rest of the algorithms

remains relatively unchanged compared to anti-correlated database except that

they take shorter time due to fewer skyline points. However, we note an interest-

ing result that differs from the trend at dimension 10, where BTree outperforms

BNL. This is because the number of skyline points is nearly double the window size

used for BNL. As a result, more than 1 iteration is required to find all the skyline

points for BNL. Recall that for BTree, BNL is used as an alternative algorithm when

it is not possible to determine the skyline point solely through the index. However,

as many tuples are eliminated using the index of the B-tree, the tuples that are

subsequently processed by BNL can all fit into the window, resulting in a shorter

runtime. We note that such a case does not arise for BTree when the number of

75

skyline points is very large (as in an anti-correlated database). This is because even

after the initial elimination using the B-tree index, the number of tuples that need

to be processed subsequently by BNL remains fairly large and usually will require

more than 1 iteration, making it performs worse than BNL.

From the results, we can draw the following conclusions. First, in most cases,

either Bitmap or Index provides the best performance. The only exception is for

the anti-correlated database; however, even in this case, Bitmap is only marginally

worse. Second, when the number of dimensions is small or the number of skyline

points is small, the Index scheme is superior than the rest of the algorithms. Finally,

the Bitmap scheme performs well for large number of skyline points.

Experiment 3: Comparing % of answers returned at intervals

In this experiment, we examine the performance of the algorithms in terms of how

fast answers are returned progressively. Recall that the main focus of our two pro-

posed schemes is fast progressive computation of skyline points. This experiment

will thus illustrate how effective our algorithms are in terms of producing fast ini-

tial response time. Similar to the previous experiment, we tested the algorithms

using different types of databases and varying the number of dimensions used while

maintaining a buffer size of 1 MB. However, besides keeping track of the overall

runtime, we also recorded the time taken for each algorithm to output the first

answer (close to 0%) as well as 20%, 40%, 60%, 80% and 100% of the answers.

Figures 3.10, 3.11 and 3.12 show our results for anti-correlated, correlated and

independent databases respectively.

Figure 3.10 shows the results for anti-correlated databases. From the results,

several observations can be made. First, when the number of dimensions is small

(< 5), both BNL and Index perform well. This is because the databases with

smaller dimensions usually have fewer skyline points, thus enabling BNL and Index

to perform faster. Second, when the number of dimensions increases (and hence the

number of skyline points), both Bitmap and Index can produce tuples much faster

76

than the other algorithms. In fact, the first answer from Bitmap and Index is almost

instantaneous! This clearly illustrates that both our schemes can progressively

compute skyline points much faster than the other algorithms. In particular, our

Index scheme is significantly faster than Bitmap when the number of dimensions is

small. Bitmap, on the other hand, is useful when the number of dimensions is large

although Index is still able to produce the first 40% of the answers marginally faster

than Bitmap. Third, DC remains constant for all dimensions. This is because DC

is a blocking algorithm and can only start producing answers when it completes

its execution. BNL, on the other hand, can start producing answers after the first

iteration when all tuples in the database have been examined. However, it is still

very much slower than Bitmap and Index which do not require one pass through

the database to produce the first few answers. Lastly, although BTree can produce

the first tuple much faster than BNL for high dimensions, it is still slow compared

to Bitmap and Index. Furthermore, its performance degrades rapidly, making it an

undesirable option for progressive skyline computation.

From the results of the experiments on correlated databases (Figure 3.11), we

can see that both BNL and Index perform better that DC and Bitmap for all di-

mensions while BTree is good for dimensions fewer than 5. As mentioned earlier,

correlated databases have relatively fewer skyline points. Thus, BNL, Index and

BTree perform well in this situation. Bitmap and DC, on the other hand, are much

slower due to the overheads involved. However, we observe that Bitmap still per-

forms better than DC for all dimensions. Finally, notice that BTree does not work

well for high dimensions (around 10) and may even be outperformed by Bitmap.

Figure 3.12 shows the results for independent databases. First, both Index and

Bitmap still produce skyline points progressively faster than the rest of the algo-

rithms. Furthermore, Index now outperforms Bitmap by a wider margin for high

dimensions. This is because the number of skyline points is still small for high di-

mensional independent databases as compared to using anti-correlated databases.

Second, both Bitmap and DC perform poorly for low dimensional independent

77

 0

 1

 2

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(a) dimension = 2

 0

 14

 28

 42

 56

 70

 84

 98

 112

 126

 140

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(b) dimension = 5

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(c) dimension = 10

Figure 3.10: Interval timings for anti-correlated databases.

 0

 1

 2

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(a) dimension = 2

 0

 1

 2

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(b) dimension = 5

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(c) dimension = 10

Figure 3.11: Interval timings for correlated databases.

 0

 1

 2

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(a) dimension = 2

 0

 1

 2

 3

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(b) dimension = 5

 0

 32

 64

 96

 128

 160

 192

 224

 256

 288

 320

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(c) dimension = 10

Figure 3.12: Interval timings for independent databases.

78

databases due to the overheads involved. On the contrary, BNL and BTree per-

form better for small dimensions but drop drastically as the number of dimensions

increases. This is again the direct consequence of larger number of skyline points

in high dimensional databases.

In summary, we believe that Bitmap and Index are useful for progressive skyline

computation. In particular, the performance of Index and its robustness to different

types of databases of varying dimensions makes it a more attractive option.

Experiment 4: Effect of buffer size

This experiment analyzes the effect of buffer space on the various algorithms. We

varied the size of the main-memory buffers from 100 KB (1% the size of the

database) to 10 MB (100% the size of the database). For this experiment, we

use an anti-correlated database with the dimension of the tuples equal to 5. For

DC, because we are using integers as attribute values in our datasets, the partitions

created by the algorithm cannot go beyond a certain size and an alternative algo-

rithm, BNL, is used to process such partitions before returning them to DC. This

invariably results in very high runtime. Thus, we omit its results for buffer size

less than 0.3 MB. Figure 3.13(a) shows the results when the buffer size is varied.

From Figure 3.13(a), we can see that as the buffer size increases from 0.1 MB

to 10 MB, the performance of BNL and BTree is good initially, but decreases

subsequently. On the other hand, the performance of Index and DC remains fairly

consistent while the performance of Bitmap improves as the buffer size is increased.

For BNL, a larger buffer implies that the window size is also larger. However, since

BNL is CPU-bound, a larger memory actually results in more comparisons, thereby

increasing the overall runtime. This is also consistent with the results of [9]. The

effect is similar for BTree which makes use of BNL as its alternative algorithm.

However, the impact is smaller as a number of tuples are eliminated using the

indexes. On the other hand, larger memory is beneficial to Bitmap as more bit-

slices can be resident in memory. This results in fewer I/Os thereby improving the

79

overall performance. However, we will not see a big jump in performance since the

large size of the bit-slices will cause the extra buffer space to be taken up quickly

with just a few bit-slices. For DC, the results actually differ significantly from

that of [9] where the performance improves when the buffer size increases. This is

because our implementation of DC has to be augmented to deal with integral values

for our experiments. Fewer I/Os are incurred by our implementation of DC because

we stop the partitioning whenever we hit a partition where all its tuples have the

same value in a dimension (which is common when using integral values) and

apply a block nested loop algorithm on that partition. Therefore, fewer I/Os are

incurred and the effect of memory thus diminishes. Finally, for Index, the increase

in memory allows more skyline points to be held in memory, thereby helping to

eliminate more tuples without accessing the disk. However, when the memory is

large, the skyline points held in memory is also larger and more processing time

is incurred. Nevertheless, we note that this effect is minimal to Index, making it a

feasible option whether the memory is scarce or not.

 0

 15

 30

 45

 60

 75

 90

 105

 120

 135

 150

10.03.01.00.30.1

tim
e

(s
)

Buffer size (MB)

BNL
Bitmap

Index
DC

BTree

(a) Varying size of buffer

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

10000010080604020105

tim
e

(s
)

Number of distinct values

BNL
Bitmap

Index
DC

BTree

(b) Varying number of distinct values

Figure 3.13: Effects of buffer size and number of distinct values per dimension.

80

Experiment 5: Effect of number of distinct values per dimension

In this experiment, we vary the number of distinct values of each dimension. Recall

that if the number of distinct values is large, the Bitmap scheme will need to do

a lot more processing than the other algorithms. For this experiment, we use a

5 dimensional anti-correlated database and 1 MB of main memory buffer. For

completeness, we also include the results where the number of distinct values is

100000 for BNL, Index and DC (Bitmap is not tested for this instance as it is expected

to perform badly). This is analogous to the situation where the dimension values

are doubles as in [9]. Figure 3.13(b) shows the results.

We can observe that as the number of distinct values increases, the performance

of BNL, BTree and Bitmap become worse while the response times of DC and Index

just increase slightly. First, when the number of distinct values is small, the number

of skyline points decreases. In our experiments, the number of skyline points for 20

distinct values is about 3000 compare to 10000 for 100 distinct values. The smaller

number of skyline points enables BNL to perform better than the rest, especially for

small number of distinct values. Recall that our Index scheme operates on groups

of points (with the same maximum value). Hence, when the number of distinct

values is small, the number of points per group increases. It is interesting to note

that Index still performs well in this case. This is because even though the initial

processing now takes a longer time due to a larger group size, but this also means

that the subsequent elimination of a group results in the elimination of more tuples

as well. This is why Index still performs well in this case. DC, on the other hand,

remains fairly consistent as it is independent of the number of distinct values in the

datasets. Finally, Bitmap does not perform as well as we have expected although

the runtime has reduced significantly. This is due to the processing overheads. For

each tuple, Bitmap has to access the bit-slices for each dimension, which are fairly

large and time consuming to process. However, we can expect the performance of

Bitmap to improve for even smaller sets of distinct values.

81

Experiment 6: Effect of database size

In this experiment, we examine the performance of the various algorithms when the

size of the database is varied. Figure 3.14 shows the time taken to find the skyline

for a data size of 10000 points of a 5 dimensional anti-correlated database. For

comparison, we also show the time for the same type of database but containing

100000 points in the same figure. We have also investigated other point sizes but

as their relative performance are similar to using 100000 points, we do not show

them here.

Algorithm 10000 points 100000 points

BNL 3.0s 137.0s
Bitmap 1.0s 54.0s
Index 2.0s 32.0s
DC 3.0s 22.0s

BTree 2.0s 94.0s

Figure 3.14: Comparing database size (the timings indicate overall runtime).

From Figure 3.14, we observe that there is no significant difference in the rela-

tive performance among the algorithms when the database size is small. However,

we can see from the results that BNL and BTree do not scale well. On the other

hand, DC is able to sustain relatively good performance but it is unable to produce

initial answers fast. Our proposed algorithms, especially Index, can handle large

databases while maintaining a relatively good performance in terms of progressive

computations. Therefore, both the Bitmap and Index schemes remain attractive

in environments where datasets are large and anti-correlated and progressive com-

putation is important for the applications.

3.3.3 Experimental Results using MAX/DIFF Annotations

The experiments so far use a uniform annotation (MAX) for all the dimensions of the

skyline queries. We also conducted several experiments to analyze the performance

of the various algorithms when the dimensions have different annotations. However,

82

due to space constraints, we only present an illustrative set of results from these

experiments. The first two sets of results compare the overall runtime performance

of the various algorithms as well as their ability to provide fast initial response for

skyline queries having a different annotation for only one of the dimensions. The

last set of results presents our findings for cases where the number of dimensions

with a different annotation is more than one.

For simplicity, we only consider two annotations in our skyline queries – DIFF

and MAX (since MIN is similar to MAX). Figure 3.15 shows the size of the skylines for

different types of databases when we restrict the number of dimensions for DIFF to

1 while annotating the rest of the dimensions as MAX. The last column indicates the

number of dimensions used for each annotation. Notice that the number of skyline

points has increased significantly compared to the case where MAX annotation is used

for all dimensions of the queries. This is expected since the number of maximum

values in a dimension is fewer than the number of distinct values in the same

dimension. Consequently, this leads to more incomparable tuples since two tuples

with different values for a dimension with the DIFF annotation may both be part

of the skyline.

Dimension Independent Correlated Anti-Correlated Annotations

2 1004 175 470 1 MAX 1 DIFF
5 6033 2524 30339 4 MAX 1 DIFF
8 37403 8828 82394 7 MAX 1 DIFF
10 64093 14435 94258 9 MAX 1 DIFF

Figure 3.15: Skyline sizes (using only 1 DIFF annotation).

Experiment 1: Overall runtime performance

Figure 3.16 shows the performance of the various algorithms in terms of overall

runtime when we set one of the annotations in the queries to be DIFF. We use

the same experimental settings as Experiment 2 of the previous subsection. From

Figure 3.16(a) which shows the results on correlated databases, we observe that

DC, BNL and BTree all perform well initially for small dimensions but deteriorate

83

rapidly for higher dimensions. In particular, DC’s performance is the worst among

the three due to the high overheads arising from the partitioning and merging

process. Index, on the other hand, outperforms all the other algorithms while

Bitmap is worse when the number of dimensions is small, but significantly improved

for larger dimensions. This is expected since our earlier experiments have shown

that Index performs well when there are fewer skyline points while Bitmap is good

when the number of skyline points is high. Lastly, we observe that by setting one

of the annotation to DIFF, the increase in the number of skyline points has resulted

in worse performance for DC, BNL and BTree while both Index and Bitmap can still

maintain a relatively good performance.

 0

 26

 52

 78

 104

 130

 156

 182

 208

 234

 260

10852

tim
e

(s
)

Number of dimensions

BNL
Bitmap

Index
DC

BTree

(a) Correlated

 0

 290

 580

 870

 1160

 1450

 1740

 2030

 2320

 2610

 2900

10852

tim
e

(s
)

Number of dimensions

BNL
Bitmap

Index
DC

BTree

(b) Anti-correlated

 0

 170

 340

 510

 680

 850

 1020

 1190

 1360

 1530

 1700

10852

tim
e

(s
)

Number of dimensions

BNL
Bitmap

Index
DC

BTree

(c) Independent

Figure 3.16: Actual runtime (using 1 DIFF annotation).

Figure 3.16(b) shows the results when anti-correlated databases are used. An

important point to note is that the number of skyline points is very high, even

reaching to 90% of the database size for a 10 dimensional database. First, Bitmap

now outperforms the rest of the algorithms when the number of dimensions is high.

Recall that in Bitmap, it only needs to find out if any points dominates the one under

consideration. As such, it does not require the knowledge of all the skyline points

found so far. However, Index, BNL and BTree need to compare with the current set

of skyline points found during processing. Hence, if this set is large (as in the case

here), it will invariably incur a high runtime penalty. Following the same line of

argument, DC which also does not need to compare with the current set of skyline

84

points, is expected to perform well. This is verified by our results. However, since

the partition size during merging is now larger, its performance decreases slightly.

Finally, we observe from Figure 3.16(c) that the performance remains relatively

unchanged for independent databases except that all the algorithms take shorter

time and Index’s performance is closer to DC due to lower number of skyline points.

In summary, both Index and Bitmap are able to perform well despite using

different annotations in the queries. Furthermore, both can outperform the existing

algorithms in terms of overall runtime.

Experiment 2: Performance of progressive skyline computation

Figures 3.17, 3.18 and 3.19 show the performance of the algorithms in terms of

how fast answers are returned progressively. We use the same settings as in the

experiments for uniform annotations. We make the following observations. First,

both Index and Bitmap are able to progressively output skyline points for all types of

databases. More importantly, their ability to provide fast initial answers have not

diminished with the inclusion of a different annotation. Second, Index outperforms

the rest of the algorithms in terms of returning initial answers when using correlated

databases. Its performance deteriorates for high dimensional independent and anti-

correlated databases due to a larger number of skyline points in these databases.

It is interesting to note that Index is still able to produce the first 20% of the

answers quickly under such circumstances. Third, Bitmap, contrary to Index, is able

to provide progressively fast computation of skyline points for high dimensional

independent and anti-correlated databases. The explanation is similar to that

discussed in the previous analysis for overall runtime.

Fourth, because DC is a blocking algorithm, despite its good runtime perfor-

mance when the number of skyline points is high, it is not feasible in environments

that require fast initial answers. Fifth, although BTree is still able to produce

the first few answers very quickly, its performance drops drastically, making it an

unattractive option. Lastly, BNL is only good when the number of skyline points

85

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(a) dimension = 2

 0

 60

 120

 180

 240

 300

 360

 420

 480

 540

 600

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(b) dimension = 5

 0

 290

 580

 870

 1160

 1450

 1740

 2030

 2320

 2610

 2900

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(c) dimension = 10

Figure 3.17: Interval timings for anti-correlated databases.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(a) dimension = 2

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(b) dimension = 5

 0

 26

 52

 78

 104

 130

 156

 182

 208

 234

 260

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(c) dimension = 10

Figure 3.18: Interval timings for correlated databases.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(a) dimension = 2

 0

 6

 12

 18

 24

 30

 36

 42

 48

 54

 60

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(b) dimension = 5

 0

 170

 340

 510

 680

 850

 1020

 1190

 1360

 1530

 1700

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(c) dimension = 10

Figure 3.19: Interval timings for independent databases.

86

is relatively small. Even though it can start producing some answers after the first

scan through the database, the initial response still pales in comparison to Index

and Bitmap. The above observations clearly illustrate the effectiveness of our algo-

rithms in returning initial answers. More importantly, the experiments show that

the use of different annotations has not significantly affected the ability to return

answers progressively for both algorithms. Hence, we believe that both Index and

Bitmap are attractive solutions for progressive skyline computation, regardless of

the annotations used.

Experiment 3: Using more than 1 DIFF annotations

Figure 3.20 shows the sizes of the skylines for various types of databases when

more than one dimension of the queries are annotated with DIFF. The last column

shows the number of dimensions for each annotation. Notice that the number of

skyline points has increased tremendously. In particular, nearly all the tuples in

a 10 dimensional database are skyline points! Intuitively, we can expect all the

algorithms to perform badly. However, we note that it is uncommon for users to

pose queries involving more than 1 DIFF annotation as it generally results in so

many answers that it is hardly useful. Hence, we will only present a representing

set of results obtained from the experiments.

Figure 3.21 shows a representative set of results obtained from using queries

with more than 1 DIFF annotation. Figure 3.21(a) shows the overall runtime per-

formance using independent databases for evaluation. Figures 3.21(b), (c) and

(d) show the interval timings using 5 dimensional anti-correlated, correlated and

independent databases respectively.

Dimension Independent Correlated Anti-Correlated Annotations

2 1004 175 470 1 MAX 1 DIFF
5 48815 26116 74455 3 MAX 2 DIFF
8 88342 57093 98252 6 MAX 2 DIFF
10 99924 99068 99989 7 MAX 3 DIFF

Figure 3.20: Skyline sizes (for more than 1 DIFF annotations).

87

 0

 320

 640

 960

 1280

 1600

 1920

 2240

 2560

 2880

 3200

10852

tim
e

(s
)

Number of dimensions

BNL
Bitmap

Index
DC

BTree

(a) Actual runtime, independent

 0

 210

 420

 630

 840

 1050

 1260

 1470

 1680

 1890

 2100

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(b) Interval, anti-correlated, dimension = 5

 0

 60

 120

 180

 240

 300

 360

 420

 480

 540

 600

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(c) Interval, correlated, dimension = 5

 0

 130

 260

 390

 520

 650

 780

 910

 1040

 1170

 1300

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
Bitmap

Index
DC

BTree

(d) Interval, independent, dimension = 5

Figure 3.21: Using more than 1 DIFF annotations.

From Figure 3.21(a), the results remain relatively unchanged from using only 1

DIFF annotation in the queries except that the overall runtime has increased sig-

nificantly. From Figures 3.21(b), (c) and (d), the results do not differ significantly

as well. Both Index and Bitmap are still able to provide fast initial response. Fur-

thermore, Index is able to provide the first 20% to 40% of the answers faster than

Bitmap. In conclusion, despite using more than 1 DIFF annotation in the queries,

the overall performance remains relatively unchanged. In particular, Bitmap be-

comes a more attractive option in the face of higher number of skyline points

88

resulting from using more DIFF annotations in the queries.

3.4 Summary

In this chapter, we have presented two novel algorithms to compute the skyline

of a set of points. The main feature of the algorithms is that they can produce

skyline points progressively. The first algorithm, the Bitmap scheme, is completely

non-blocking and exploits a bitmap structure to quickly identify whether a point

is an interesting point or not. The second method, the Index scheme, exploits a

transformation mechanism and a B+-tree index to return skyline points in batches.

Our extensive performance study shows that the proposed algorithms provide

quick initial response time as compared to existing algorithms. Moreover, both

schemes can also outperform existing techniques in terms of total response time.

While the Index scheme is superior in most cases, the Bitmap scheme performs

well when the number of distinct values per dimension is small (<10) as well as

when the number of skyline points is large.

89

CHAPTER 4

Skyline Computation with Partially
Ordered Domains

In the last chapter, we propose two schemes for progressive skyline computation.

These schemes as well as existing techniques for skyline computation all require that

the domains of the attributes in the skyline query to have a natural ordering e.g.

integers or floats. Partially-ordered attribute domains which include interval data

(e.g., temporal data), type/class hierarchies, and set-valued domains, have not been

considered. For example, a hotel may also store a set of interesting places within

its vicinity, and a tourist may prefer a hotel that is more centralized, i.e., a hotel

containing a superset of interesting places or amenities (e.g., gift shop, gymnasium,

saloon, sauna, etc.) is preferred.

As another example, categorical data involving roles are typically partially or-

dered, e.g., in an employee table, there is a hierarchy of reporting structure (project

member reports to their project leader who in turn is accountable to the depart-

ment head and so on) as well as incomparable roles (while the Heads of the man-

ufacturing department and the finance department report to the president of the

organization, they do not dominate one another).

For totally-ordered attribute domains, our proposed schemes in the previous

chapter as well as recent index-based algorithms like NN algorithm [69] and BBS

algorithm [85] have been shown to be superior over the nested-loop approach. How-

90

ever, because of the lack of a total ordering for partially-ordered attribute domains,

it is unclear if index-based schemes can still maintain their competitiveness given

that their effectiveness to prune the search space are reduced. To the best of our

knowledge, this issue has not been investigated by any of the previous related work.

In this chapter, we address the novel and important problem of evaluating

skyline queries involving partially-ordered attribute domains. This chapter is or-

ganized as follows. We motivate our approach in the first section. Section 4.2

is the main section of the chapter where we present our evaluation algorithms.

We present our experimental results in section 4.3. Finally, we conclude with a

summary of our results in the last section.

4.1 Motivation

In this section, we consider the possible evaluation strategies and motivate our

proposed algorithms for processing skyline queries with partially-ordered attribute

domains. For convenience, we refer to such queries as Partially-Ordered Skyline

queries (or POS-queries) in contrast to the Totally-Ordered Skyline queries (or

TOS-queries) that involve only totally-ordered attribute domains.

The most direct method to process POS-queries is to apply the well-known block

nested loop approach (BNL) [9], which is the simplest and most versatile approach

that works for all types of attribute domains. However, the performance of BNL

has been shown to be inferior to that of index-based approaches (as shown in the

previous chapter) due to the pruning effectiveness of index-based methods. Another

limitation of BNL is that it is a “blocking” algorithm and lacks progressiveness (i.e.,

answers can only be returned after all the skyline points are computed).

Another strategy to evaluate POS-queries is to try to leverage the effective-

ness of previous index-based approaches for TOS-queries by first transforming the

partially-ordered attribute domains into totally-ordered domains such that the par-

tial ordering of the original domains are “preserved” in the transformed domains.

The most obvious transformation technique is to map each partially-ordered at-

91

tribute domain into a set of boolean attribute domains, as illustrated by the fol-

lowing simple example.

a
b

d
c

Aa

d

cb

1
1

0
0

1
0

A1 A2

1
0

Figure 4.1: Example of domain transformation.

Example 4.1. Consider the simple poset shown in Figure 4.1 for an attribute A

consisting of four domain values {a, b, c, d} indicated by the nodes in the DAG

representation shown. Attribute A can be transformed into a set of two boolean-

valued attributes {A1, A2} depicted by the mapping tables. Each pair of values for

A1 and A2 are assigned in such a way that two pairs of values do not dominate

each other if their original values are at the same level in the DAG and one pair

dominates another pair if the first pair’s original value is at a higher level in the

DAG than the second pair. Thus, given two records r and r′, r.A dominates r′.A if

r also dominates r′ in the transformed domain (i.e., r.A1 dominates r′.A1 and r.A2

dominates r′.A2).

By applying a suitable partial-to-total domain mapping to each partially-ordered

attribute, the collection of transformed attributes is now amenable to be indexed

using one of the efficient techniques proposed for TOS-queries (e.g., [69, 85]).

This transformation is particularly convenient for set-valued attribute domains.

However, this boolean transformation suffers from the well-known “dimensionality

curse” problem when the size of the partially-ordered attribute domain is large,

which will be transformed to a large number of boolean-valued attributes. Thus,

the simple boolean mapping is not suitable for index-based methods.

92

4.2 An Interval-based Approach

To both enable the use of efficient index-based techniques (that are designed for

totally-ordered attributes) as well as avoid the “dimensionality curse” problem with

using simple domain transformations, the approach that we propose is a “middle-

ground” solution that is based on using an approximate, space-efficient domain

transformation. In a nutshell, our approach is based on using an approximate

interval representation (in the form of a pair of integer attributes) for each partially-

ordered attribute. This strategy, which increases the dimensionality by one for

each partially-ordered attribute, provides a reasonable and practical approximate

domain mapping that is amenable to efficient indexing. We shall now present

three novel algorithms, namely, BBS+, SDC, and SDC+, that are all based on the

interval-domain mapping idea to process POS-queries.

4.2.1 Basic Idea

For each partially-ordered attribute Ai with domain Di, our approach constructs a

one-to-one domain mapping fi that transforms each value v ∈ Di into an interval

fi(v) ∈ N×N, where N denotes the set of natural numbers. The domain mapping

fi is defined such that for any pair of distinct values v, v′ ∈ Di, if fi(v) contains

fi(v
′) i.e. the interval fi(v

′) falls within the interval fi(v), then v dominates v′.

Example 4.2. Consider again the poset for attribute A in Figure 4.1. We can

construct the following mapping f :

f(v) =

[0, 3] if v = a,

[0, 2] if v = b,

[1, 3] if v = c,

[1, 2] if v = d.

Consider values b and c which are dominated by a according to the poset. Using

the mapping function f , we can see that their intervals contain the interval of a.

93

In general, since the transformed values fi(v) is an approximate representation

of the actual values v, it is possible for a pair of transformed attribute values to

be incomparable (i.e., neither one of the transformed values contains the other)

even though the original attribute values are actually comparable. This implies

that when skyline points are computed using the transformed attribute values,

it is possible to have false positives – points that are considered skylines in the

transformed domains but are actually not skylines in the original domains. A false

positive is detected when we find that it is dominated by another skyline point

based on the original attribute values. While appropriate domain mappings can be

constructed for the special case of hierarchical partial orders (i.e., trees) to avoid

false positives, false positives are generally inevitable for non-hierarchical partial

orders. Therefore, skyline computation algorithms that are based on approximate

domain representations need to take into account of false positives. The idea of

our proposed algorithms comprises two main steps:

(S1) For each partially-ordered attribute Ai, construct a domain mapping function

fi to transform its domain values v to fi(v). This effectively replaces each Ai

attribute with two integer-domain attributes.

(S2) Organize the transformed data using an efficient indexing method, and use it

to compute the skyline points taking into account of possible false positives.

Any existing index-based skyline computation algorithms can be used in our

framework. As BBS [85] has been shown to be very efficient for TOS-queries, we

adopted it in this work. Our first algorithm, BBS+, which is the least progressive,

is a simple extension of BBS that explicitly detects for false positives as the skyline

points are computed. Both our second and third algorithms, SDC and SDC+,

exploit properties of domain mappings to avoid unnecessary dominance checkings.

While SDC stratifies the data at runtime, SDC+ creates the strata offline. SDC+ is

the most progressive, and processes the data in stages in such a way that there are

no false positives in the intermediate results.

94

4.2.2 Definitions

We first introduce some notations and definitions. Let A = {A1, A2, . . . , An} denote

the set of attributes of interest, where A = Atotal ∪ Apartial with Atotal and Apartial

denote, respectively, the subset of totally- and partially-ordered attributes. For

each attribute Ai ∈ A, we use (Di,¹i) to denote the partially order set (or poset)

for its domain values Di. Each ¹i is a reflexive, anti-symmetric, and transitive

binary relation on Di. We denote by ≺i the strict ordering associated with Di; i.e.,

y ≺i x if y ¹i x and x 6= y. Given x, y ∈ Di, x and y are said to be comparable if

either y ≺i x or x ≺i y; otherwise, they are said to be incomparable. We say that x

dominates y if y ≺i x. A value v ∈ Di is a maximal value (minimal value) if there

is no value v′ ∈ Di such that v ≺i v′ (v′ ≺i v).

Consider a finite set of data records R over the set of attributes in A; i.e.,

R ⊆ D1 ×D2 × . . .×Dn. Given two records r1, r2 ∈ R, we say that r1 dominates

r2, denoted by r2 ≺ r1, if (1) r2.Ai ¹i r1.Ai for each attribute Ai ∈ A, and (2)

there exists some Aj ∈ A such that r2.Aj ≺i r1.Aj.

Each partial order (Di,¹i) can be represented by a DAG Gi = (Di, Ei), where

(v, w) ∈ Ei if w ¹i v and there does not exist another value x ∈ Di such that

w ¹i x ¹i v. For finite domains, this DAG is also known as the Hasse diagram.

For simplicity and without loss of generality, we assume that Gi is a single connected

component.

For each partially-ordered attribute Ai ∈ Apartial with domain Di, let fi : Di →
N×N denotes the mapping function constructed for Ai that maps each value v ∈ Di

into some interval of values (i.e., fi(v) = [v1, v2], v1, v2 ∈ N) such that for any pair

of distinct values v, v′ ∈ Di, if the interval fi(v) contains the interval fi(v
′), then v

dominates v′.

Based on the transformed values for partially-ordered attributes, we can define

a more restrictive form of dominance, called m-dominance, as follows. Given two

records r1, r2 ∈ R, we say that r1 m-dominates r2, denoted by r2 ≺m r1, if (1)

r2.Ai ¹i r1.Ai for each attribute Ai ∈ Atotal; (2) fi(r2.Ai) is equal to or contained

95

in fi(r1.Ai) for each attribute Ai ∈ Apartial; and (3) there exists (a) some Aj ∈ Atotal

such that r2.Aj ≺j r1.Aj, or (b) some Aj ∈ Apartial such that fj(r2.Aj) is contained

in fj(r1.Aj). Observe that m-dominance is a stronger form of dominance in that if

r2 ≺m r1, then r2 ≺ r1; but the converse does not necessarily hold.

The definition of dominance between records can be further generalized to be-

tween a record r ∈ R and a subset of records e ⊆ R as follows: we say that

r dominates e (r m-dominates e), denoted by e ≺ r (e ≺m r), if r dominates

(m-dominates) each record in e.

4.2.3 Domain Mapping Function

For each partially-ordered attribute Ai, the domain mapping function fi that we

use to transform its domain Di is adapted from the encoding scheme of [1] and

works as follows: a spanning tree STi is first computed from the DAG Gi, and STi

is then traversed in postorder with each node v being assigned a unique postorder

number post(v). Then, fi(v) is given by [x, y], where y = post(v) and x is the

smallest postorder number assigned to a descendant of v. This mapping scheme

satisfies the following domain mapping property :

Property 4.1. If (v, v′) ∈ Ei is also an edge in the spanning tree STi, then fi(v)

contains fi(v
′).

It follows that given any two nodes v and v′ in Gi, fi(v) contains fi(v
′) iff there

is a path from v to v′ in the spanning tree STi.

Example 4.3. Refer again to the poset for attribute A in Figure 4.1. The domain

mapping function f for A is constructed as follows. Let the spanning tree computed

from the poset be equivalent to the DAG shown but without the edge (c, d). Then,

the postorder numbers assigned to a, b, c, and d are respectively, 4, 2, 3, and 1;

and their respective assigned interval values are [1, 4], [1, 2], [3, 3], and [1, 1].

Note that there are other alternative schemes that could be used for the domain

mapping function (e.g., [108]). However, as our focus is mainly on skyline compu-

96

tation algorithms, we have selected a simple mapping function for our work here.

Towards the end of this section, we describe how to optimize the spanning tree

construction to improve the efficiency and progressiveness of skyline computation.

4.2.4 Algorithm BBS

We shall first review the BBS algorithm which our proposed algorithms are based

upon. An overview of the BBS algorithm [85], is shown in Figure 4.2. The set

of skyline points is computed by invoking BBS(R, ∅), where R is a R-tree index

and S, which represents an intermediate set of computed skyline points, is initial-

ized to the empty set1. The algorithm recursively traverses the R-tree, performs

Algorithm BBS(T ,S)
Input: T is a R-tree

S is an intermediate set of skyline points
Output: Set of skyline points
1. Initialize heap H to be empty
2. Insert all entries in the root node of T into heap H
3. while H is not empty do
4. Remove top entry e from H
5. if e is an internal entry then
6. if e is not dominated by any entry in S then
7. foreach child entry ei of e do
8. if ei is not dominated by any entry in S then
9. insert ei into H
10. else
11. S = UpdateSkylines(e,S)
12. return S

Algorithm UpdateSkylines(e,S)
Input: e is a data point in some leaf node of a R-tree

S is an intermediate set of skyline points
Output: Return an updated set S
1. foreach p ∈ S do
2. if e is dominated by p then
3. return S
4. insert e into S
5. return S

Figure 4.2: Algorithm BBS.

1We present a slightly more general form of the BBS algorithm (with an input parameter S)
to facilitate later presentation of enhanced variants of BBS.

97

a nearest neighbor search to find regions/points that are not dominated by the

current skyline points in S, and inserts these into a main-memory heap structure

H. Because BBS visits entries in ascending order of their distances from the origin,

each computed point is guaranteed to be a skyline point and can be returned to

the user immediately.

In both algorithm BBS as well as our proposed algorithms, we shall refer to

the data points maintained in S as intermediate skyline points. In the case of BBS

(which deals with only totally-ordered attributes), an intermediate skyline point is

guaranteed to be a definite skyline point; thus, once a point is inserted into S, it

can be output immediately. On the other hand, for two of our proposed algorithms

(BBS+ and SDC), the intermediate skyline points in S could be false positives and

would need to be subsequently detected and eliminated from S. Note that our

proposed algorithms are based on the framework of BBS shown in Figure 4.2 with

modifications mainly to the UpdateSkylines function.

4.2.5 Algorithm BBS+

We shall now present our first algorithm, called BBS+, which represents the sim-

plest extension of BBS to process POS-queries. Algorithm BBS+ is similar to BBS

(shown in Figure 4.2) except for the following two changes shown in Figure 4.3.

First, since the R-tree index used in BBS+ is based on transformed attribute do-

mains for partially-ordered attributes, the two dominance comparisons in BBS

(steps 6 and 8) are replaced with m-dominance comparisons in BBS+. Second,

since there could be false positives in the set of intermediate skyline points main-

tained in S, the UpdateSkylines function in BBS+ needs to detect and remove

any false positives (steps 4-5) while comparing the new data point e against the

intermediate skyline points in S.

98

Algorithm BBS+(T ,S)
Same as Algorithm BBS in Figure 4.2 except that each “dominated”
comparison is replaced by a “m-dominated” comparison.

Algorithm UpdateSkylines(e,S)
Input: e is a data point in some leaf node of a R-tree

S is an intermediate set of skyline points
Output: Return an updated set S
1. foreach p ∈ S do
2. if e is dominated by p then
3. return S
4. else if p is dominated by e then
5. delete p from S
6. insert e into S
7. return S

Figure 4.3: Algorithm BBS+.

4.2.6 Algorithm SDC

In this section, we present our second algorithm, called SDC, which improves over

BBS+ in terms of both speed (by avoiding unnecessary checkings for dominance) as

well as progressiveness (by separating the intermediate skyline points into definite

skylines and potential false positives).

One major drawback of BBS+ is that it is a non-progressive algorithm due

to the possibility of false positives in the computed intermediate skyline points.

Another limitation of BBS+ is that it can incur many unnecessary comparisons for

dominance; in the worst case, the UpdateSkylines function might need to compare

the new data point e against every intermediate skyline point in S.

Dominance Classification

To overcome the limitations of BBS+, Algorithm SDC (Stratification by Dominance

Classification) exploits two simple characterizations of partially-ordered attribute

values based on their domain mapping functions.

Recall that for each partially-ordered attribute Ai, its domain mapping function

fi is defined using the spanning tree STi constructed from its partial order DAG

Gi = (Di, Ei). We can classify each value in Di based on its relationship with

99

incoming and outgoing values (w.r.t. Gi and STi) in two ways as follows. A value

v ∈ Di is said to be completely covered if every directed incoming path to v in Gi

is also in STi; otherwise, v is said to be partially covered. A value v ∈ Di is said to

be completely covering if every directed outgoing path from v in Gi is also in STi;

otherwise, v is said to be partially covering.

Example 4.4. Consider the poset (D,¹) with D = {a, b, . . ., j} in Figure 4.4,

where the edges included in (excluded from) its spanning tree are indicated by solid

(dotted) arrows. The set of values {a, b, c, d, f, h} are partially covering; and the

set of values {f, g, h, i, j} are partially covered.

a

b c d

g h

ji

fe

Figure 4.4: Example poset(D,¹).

The above classifications of attribute values can be easily generalized to data

points as follows. A data point r ∈ R is said to be completely covered if the value

of each of its partially-ordered attributes is completely covered; otherwise, r is said

to be partially covered. Similarly, r ∈ R is said to be completely covering if the

value of each of its partially-ordered attributes is completely covering; otherwise,

r is said to be partially covering.

Based on these two orthogonal classifications, given a set of data points S, S

can be partitioned into four disjoint subsets:

S = Sc,c ∪ Sc,p ∪ Sp,c ∪ Sp,p

100

where each Si,j denotes the subset of points in S that are (1) partially covered

(resp. completely covered) if i = p (resp. i = c), and (2) partially covering (resp.

completely covering) if j = p (resp. j = c). The dominance relationship among

the four subsets of data points are depicted by the dominance graph shown in

Figure 4.5.

c,p

c,c

p,c

p,p

Figure 4.5: Dominance Graph DG.

Lemma 4.1. A data point p ∈ Si,j can dominate another data point p′ ∈ Si′,j′

iff there is a directed edge (normal or bold) from node (i, j) to node (i′, j′) in the

dominance graph DG shown in Figure 4.5.

Observe that the dominance relationship among the four subsets in Figure 4.5 is

reflexive, anti-symmetric, and transitive. The significance of the bold edges will

be explained in later subsections. In the following subsections, we present three

optimizations used in SDC that are based on the properties of the dominance graph.

Minimizing Dominance Comparisons

To avoid unnecessary dominance comparisons, SDC exploits Lemma 4.1 to organize

the intermediate set of skyline points into four subsets. In contrast to BBS+ which

compares each new leaf entry e against all the intermediate skyline points in S,

SDC only compares e against the necessary subsets of intermediate skyline points.

Referring to SDC’s UpdateSkylines function in Figure 4.6, step 1 first deter-

mines the category, denoted by Si,j, of the input leaf entry e. Once this is known,

101

Algorithm SDC(T ,S)
Same as Algorithm BBS+ in Figure 4.3.

Algorithm UpdateSkylines(e,S)
Input: e is a data point in some leaf node of a R-tree

S is an intermediate set of skyline points,
where S = Sc,c ∪ Sc,p ∪ Sp,c ∪ Sp,p

Output: Return an updated set S
1. Let (i, j) be the category that e belongs, i, j ∈ {c, p}
2. Let C = {(x, y) | edge from (x, y) to (i, j) in DG}
3. Let C ′ = {(p, y) | edge from (i, j) to (p, y) in DG}
4. foreach p ∈ Sx,y, (x, y) ∈ C ∪ C ′

5. ret = CompareDominance(e, p)
6. if ret == 1
7. return S
8. else if ret == -1
9. delete p from Sx,y

10. insert e into Si,j

11. return S

Algorithm CompareDominance(x,y)
Input: x and y are two data points.
Output: Return -1 if x dominates y, or

1 if x is dominated by y, or
0 if neither x nor y dominates each other.

1. if x is m-dominated by y
2. return 1
3. else if y is m-dominated by x
4. return -1
5. if x is partially covering and y is partially covered
6. if x is dominated by y
7. return 1
8. else if y is dominated by x
9. return -1
10. return 0

Figure 4.6: Algorithm SDC.

102

step 2 then selects the categories of data points, denoted by C, that can possibly

dominate e (based on Lemma 4.1), and step 3 selects the categories of data points,

denoted by C ′, that e can possibly dominate (to be explained later). Steps 4-9

then compare e against the intermediate skyline points that belong to the selected

categories by using an optimized function called CompareDominance. This func-

tion accepts two input data points x and y and returns −1 if x dominates y, 1 if y

dominates x, and 0 otherwise; the details of CompareDominance are elaborated in

the next subsection.

Optimizing Dominance Comparisons

The second optimization in SDC aims to maximize the use of dominance compar-

isons that are based on the transformed domains (i.e., m-dominance comparisons)

over dominance comparisons that are based on the original domains for partially-

ordered attributes. This optimization is useful when dominance comparisons based

on the original domains (e.g., set-valued domains) are more expensive to evaluate

than dominance comparisons based on the transformed domains which involve two

integer comparisons. Therefore, to improve performance for such cases, the more

costly dominance comparisons involving the original domains for partially-ordered

attributes should be used only as a last resort.

SDC exploits the following property to maximize m-dominance comparisons:

Lemma 4.2. If x is a completely covering point or y is a completely covered point,

then x dominates y iff x m-dominates y.

This lemma is depicted by the bold edges in Figure 4.5: if p ∈ Si,j, p′ ∈ Si′,j′ ,

and there is a bold edge from (i, j) to (i′, j′) in DG, then p dominates p′ iff p

m-dominates p′.

We briefly explain the correctness of the above lemma. Clearly, if x m-dominates

y, then by the domain mapping property, x must necessarily dominate y. On the

other hand, if x dominates y, then for each partially-ordered attribute Ai ∈ Apartial,

there is at least one directed path p from x.Ai to y.Ai in Gi. Since x is a completely

103

covering point or y is a completely covered point, this implies that the path p

must also be in STi which means that fi(x.Ai) contains fi(y.Ai); therefore, x m-

dominates y.

Based on Lemma 4.2, SDC performs dominance comparisons in the function

UpdateSkylines by using a new function called CompareDominance (shown in Fig-

ure 4.6). CompareDominance first compares x and y using m-dominance, and only

when the points are incomparable in terms of m-dominance but could be compa-

rable in terms of dominance (by Lemma 4.2), CompareDominance then resorts to

comparing them using their original domain values.

Enabling Progressive Computation

The third optimization in SDC aims to enable skyline points to be computed pro-

gressively. SDC exploits the following property to identify definite skyline points

from the intermediate skyline points.

Lemma 4.3. An intermediate skyline point that is completely covered is a definite

skyline point.

The correctness of the above lemma is based on the property of the BBS algo-

rithm [85], and Lemmas 4.1 and 4.2. Briefly, an immediate corollary of Lemma 4.1

is that completely covered points (i.e., Sc,p ∪ Sc,c) cannot be dominated by par-

tially covered points (i.e., Sp,p ∪ Sp,c). Combining this result with Lemma 4.2,

it follows from the property of the BBS algorithm [85] that if p and p′ are com-

pletely covered data points such that p is removed from the heap before p′, then

p cannot be dominated by p′. This implies that if a newly generated intermediate

skyline point is a completely covered point that is not m-dominated by existing

intermediate skyline points, then it is necessarily also not dominated by existing

intermediate skyline points and it is therefore a definite skyline point.

Therefore, based on Lemma 4.3, the UpdateSkylines function in SDC is op-

timized by checking for false positives only from intermediate skyline points that

are partially covered; this explains step 3 of SDC’s UpdateSkylines which selects

104

the categories of data points (denoted by C ′) that the input data point e could

dominate. Thus, SDC is more efficient than BBS+ which checks for false positives

from all the intermediate skyline points in S.

More importantly, SDC enables the set of skyline points to be computed pro-

gressively: each newly determined intermediate skyline point e that is completely

covered (i.e., e ∈ Sc,c ∪ Sc,p) can be output immediately since it is a definite

skyline point.

4.2.7 Algorithm SDC+

In this section, we present our third algorithm, called SDC+, which aims to fur-

ther increase the progressiveness of SDC. Recall that SDC essentially organizes the

intermediate skyline points into two strata at runtime - the completely covered

intermediate skyline points (stratum 1) and the intermediate skyline points that

are partially covered (stratum 2). While skyline points in stratum 1 can be pro-

gressively returned, those in stratum 2 could be false positives and therefore need

to be compared against all the intermediate skyline points to verify that they are

indeed definite skyline points. This limitation restricts the progressiveness of SDC

since the skyline points in stratum 1 are generally only a small percentage of the

entire set of intermediate skyline points found during evaluation (as indicated by

our experimental results). To increase progressiveness, SDC+ statically partitions

the data into two or more strata.

Data Stratification

In SDC+, the set of data points R is partitioned into a sequence of subsets called

strata < R0, R1, · · · , Rk > for some value k, such that each Ri ⊆ R and
⋃k

i=0 Ri =

R. By judiciously partitioning the data into separate strata, the skyline points

can be computed one stratum at a time starting from R0 to Rk such that each

“local” skyline point in a stratum Ri cannot be dominated by skyline points in

the succeeding strata (i.e., Rj, j > i), which therefore guarantees that none of the

105

computed skyline points from each stratum are false positives (as explained earlier).

Thus, by computing skyline points from a sequence of smaller subsets instead of

from a single large set, the skyline computation becomes more progressive.

An obvious strategy is to organize the data points based on the dominance graph

into the following sequence of four strata: < Rc,p, Rc,c, Rp,p, Rp,c >. However, as

the last two strata Rp,p and Rp,c are generally large which limits progressiveness,

SDC+ further refines the last two strata based on the notion of uncovered level of

attribute values and data points.

We define the uncovered level of an attribute value v ∈ Di, denoted by L(v),

as the maximum number of edges in a directed path to v that are in Gi but not in

STi. The uncovered level of each value v can be computed recursively as follows:

L(v) =

0 if v is a maximal value in Di,

max
(w,v)∈Ei

{L(w) + c(w, v)} otherwise.
(4.1)

where c(w, v) = 0 if (w, v) is an edge in STi, and c(w, v) = 1 otherwise.

Example 4.5. Consider again the poset (D,¹) in Figure 4.4. We have L(v) = 0

if v ∈ {a, b, c, d, e}, L(v) = 1 if v ∈ {f, g, h, j}, and L(v) = 2 if v = i.

The uncovered level of a data point r, denoted by L(r), is defined as the maxi-

mum of the uncovered levels of its partially-ordered attribute values; i.e.,

L(r) = max
Ai∈Apartial

{L(r.Ai)}

The notion of uncovered level is useful for refining the dominance relationship

among partially covered points as given by the following result.

Lemma 4.4. A partially covered data point p cannot dominate another partially

covered data point p′ if L(p) > L(p′).

The correctness of the above lemma follows from the fact that for any pair of

attribute values v, v′ ∈ Di, v dominates v′ iff there is a directed path from v to v′

in Gi. Lemma 4.4 provides a simple and effective way to further partition the data

106

points in the strata Rp,p and Rp,c to increase progressiveness. Rp,p is partitioned

into k = max
r∈Rp,p

{L(r)} strata, where each stratum Ri
p,p, 1 ≤ i ≤ k, represents the

subset of data points in Rp,p with an uncovered level of i. It follows from Lemma 4.4

that intermediate skyline points from stratum Ri
p,p will not be dominated by any

data point in Rj
p,p, j > i. Similarly, Rp,c is partitioned into k′ = max

r∈Rp,c

{L(r)} strata,

where each stratum Ri
p,c, 1 ≤ i ≤ k′, represents the subset of data points in Rp,c

with an uncovered level of i.

Thus, SDC+ partitions the data points in R into (k + k′ + 2) strata, where the

data points in each stratum Ri
x,y is (conceptually) indexed using a separate R-tree

T i
x,y. The strata is processed in the following sequence: < Rc,p, Rc,c, R1

p,p, R1
p,c,

R2
p,p, R2

p,c, . . . > as shown in Figure 4.7. Each stratum is processed by calling

the function SDC+-sub with two input parameters: the R-tree T for the stratum,

and the intermediate set of skyline points S computed so far. The set of skyline

points returned by SDC+-sub for the input stratum can be output immediately as

they are all definite skyline points. For the special cases of strata Rc,p and Rc,c,

the intermediate skyline points (which are completely covered) can be output even

earlier: by Lemma 4.3, each intermediate skyline point e is a definite skyline point

and can be output before it is inserted into L (step 12 in Figure 4.7). Note that

SDC+-sub is similar to BBS+ except for some minor changes.

SDC+ progressively computes the skyline points in ascending order of their

uncovered levels starting with the completely covered data points in Rc,p and Rc,c

(which have uncovered level of 0) in steps 1 and 2. Steps 3-7 compute the partially

covered skyline points. SDC+ organizes the computed skyline points using two main

sets: S stores the definite skyline points computed from the processed strata, while

L stores the skyline points computed from the current stratum being processed

(which could contain false positives). Thus, the UpdateSkylines function in SDC+

processes an input data point e against L and S separately. First, e is compared

against L (steps 1-6) to both check if e could be dominated by the points in L as

well as check if there are any false positives in L that could be dominated by e.

107

Algorithm SDC+(T)
Input: T = {Tc,p, Tc,c, T

1
p,p . . . T k

p,p, T
1
p,c . . . T k′

p,c}
is a set of (k + k′ + 2) R-trees.

Output: Set of skyline points
1. S = SDC+-sub(Tc,p, ∅)
2. S = S ∪ SDC+-sub(Tc,c, S)
3. for i = 1 to max{k, k′}
4. if i ≤ k
5. S = S ∪ SDC+-sub(T i

p,p, S)
6. if i ≤ k′

7. S = S ∪ SDC+-sub(T i
p,c, S)

8. return S

Algorithm SDC+-sub(T ,S)
Input: T is a R-tree.

S is an intermediate set of skyline points.
Output: Return an updated set L.
1. Initialize L to be empty
1-10. Same as Algorithm BBS+ in Figure 4.3 except that in

steps 6 and 8, S is replaced by S ∪ L.
11. L = UpdateSkylines(e,S,L)
12. return L

Algorithm UpdateSkylines(e,S,L)
Input: e is a data point in some leaf node of a R-tree.

S is an intermediate set of skyline points,
where S = Sc,c ∪ Sc,p ∪ Sp,c ∪ Sp,p.
L is the set of skyline points generated from the current stratum.

Output: Return an updated set L.
1. foreach p ∈ L
2. ret = CompareDominance(e,p)
3. if ret == 1
4. return L
5. else if ret == -1
6. Delete p from L
7. Let (i,j) be the category that e belongs, i, j ∈ {c, p}
8. Let C = {(x, y) | edge from (x, y) to (i, j) in DG, (x, y) 6= (i, j)}
9. foreach p ∈ Sx,y, (x, y) ∈ C
10. if CompareDominance(e, p) == 1
11. return L
12. Insert e to L
13. return L

Algorithm CompareDominance(x, y)
Same as that in Algorithm SDC in Figure 4.6.

Figure 4.7: Algorithm SDC+.

108

Next, e is compared against S (steps 7-11) to check if e could be dominated by the

points in S. SDC+ uses the same CompareDominance function as SDC.

Although each stratum is conceptually indexed independently by a separate

R-tree, multiple consecutive strata can actually be indexed using a single R-tree

by including an additional stratum number attribute for indexing to facilitate the

conceptual approach of processing the sequence of strata.

4.2.8 Optimizing Dominance Classification

In this subsection, we present our final optimization technique, which is applicable

to both SDC and SDC+, that aims to reduce the number of dominance comparisons

and maximize the use of m-dominance comparisons. The idea is to optimize the

construction of the spanning tree for each partially-ordered attribute to maximize

the occurrence of certain dominance categories of attribute values over others.

The following example illustrates the effect of the spanning tree structure on the

dominance classification of the attribute values.

Example 4.6. Consider the two almost similar spanning trees ST and ST ′ that

differ by only one edge for the same DAG in Figures 4.8(a) and (b). The solid

edges represent the edges that are in the spanning tree, and the dotted edges

represent the edges that are in the DAG but excluded from the spanning tree.

Completely and partially covered values are represented by shaded and unshaded

nodes, respectively; and completely and partially covering values are represented by

nodes with thick and thin lines, respectively. We observe the following differences:

(1) b, d, and f are completely covering in ST but partially covering in ST ′; and

(2) e and g are partially covering in ST but completely covering in ST ′.

The above example shows that the dominance classification of the values for an

attribute can be varied (to some extent) by changing the structure of the spanning

tree constructed from the DAG representation of its poset.

More generally, the structure of the DAG determines whether the nodes are

completely or partially covered, while the structure of the spanning tree determines

109

a

e

g

h

f

d

cb

(a) ST (b) ST’

a

e

g

h

f

d

cb

Figure 4.8: Optimizing dominance classification.

whether the nodes are completely or partially covering. Specifically, a node v in a

DAG G is a partially covered node in any spanning tree of G if v or an ancestor of

v has multiple incoming edges in G; otherwise, v is a completely covered node in

any spanning tree of G. The choice of the edges included in the spanning tree will

determine whether the nodes are partially or completely covering. In particular,

if an edge (v, w) is excluded from the spanning tree, then each ancestor node of v

(including v itself) will be partially covering.

Thus, the spanning tree can affect the relative number of nodes between the cat-

egories (p, c) and (p, p), and between the categories (c, c) and (c, p). Comparing the

two categories (p, p) and (p, c), having more data points in (p, p) relative to (p, c)

can reduce the number of dominance comparisons since data points in (p, p) need

not be compared against data points in (c, c) (refer to Figure 4.5). On the other

hand, having more data points in (p, c) can maximize the use of m-dominance com-

parisons, whereas comparisons involving data points in (p, p) must be performed

in terms of the actual domain values. Thus, the two categories (p, p) and (p, c)

have different tradeoffs. Comparing the categories (c, p) and (c, c), having more

data points in (c, c) relative to (c, p) is better for performance because it not only

reduces the number of dominance comparisons (since points in (c, c) need not be

compared against points in (p, p)), but it also enables all the comparisons to be

done using m-dominance. Thus, it is better to maximize the number of (c, c) nodes

110

relative to the number of (p, c) nodes in the spanning tree.

Based on the above analysis, there are two main strategies, referred to as

MinPC and MaxPC, for optimizing the spanning tree construction. In the first

strategy, MinPC, we minimize the number of (p, c) nodes relative to the number

of (p, p) nodes. In the second strategy, MaxPC, we maximize the number of (p, c)

nodes relative to the number of (p, p) nodes.

For the above strategies, the primary optimization criterion is to minimize (or

maximize) the number of (p, c) nodes (relative to the number of (p, p) nodes), and

maximizing the number of (c, c) nodes (relative to the number of (c, p) nodes) is

used as a secondary criterion (see Figure 4.9). In Fig. 4.8, the spanning trees ST

and ST ′ are created using the MaxPC and MinPC strategies, respectively.

Note that we have also experimented with two other variations of the above

strategies, where the primary and secondary optimization criteria are swapped.

Our experimental results indicate that these variations performed worse than their

counterpart strategies, showing that minimizing the number of (p, c) nodes is more

important than minimizing the number of (c, c) nodes.

Algorithm OptimizeSpanningTree in Figure 4.9 takes as input the poset of a

partially-ordered attribute, G = (D,E), and computes a spanning tree ST from

G that is optimized based on the MinPC strategy2. Steps 1-6 of the algorithm

first initializes the spanning tree ST to be the input DAG G and classifies the

nodes into either completely or partially covered nodes, with a default completely

covering classification. The classification is computed by a topological traversal

of ST since the category of a node depends on the categories of its ancestor (but

not descendant) nodes as explained earlier. Next, steps 7-17 then constructs a

spanning tree by using a greedy heuristic to delete edges to minimize the number

of (p, c) nodes. Here, parent(v) denote the set of parent nodes of a node v in

ST . PCSetv(w) denote the set of nodes in category (p, c) that would become in

category (p, p) when all the incoming edges to v, except for (w, v), are deleted from

2Changing the comparison operator in step 9 to ≤ would result in the MaxPC strategy.

111

ST . In other words, PCSetv(w) is the set of nodes in category (p, c) such that

each node is an ancestor of some node in parent(v)− {w}. CCSetv(w) is defined

similarly for nodes in category (c, c) that would become nodes in category (c, p).

We use SDC-MinPC and SDC-MaxPC, to denote SDC that is optimized us-

ing the MinPC and MaxPC strategies, respectively. SDC+-MinPC and SDC+-

MaxPC are defined similarly.

Algorithm OptimizeSpanningTree(G)
Input: G = (D,E) is the DAG representation of a poset

for a partially-ordered attribute.
Output: A spanning tree ST
1. Initialize ST to be G
2. foreach node v in ST in topological order
3. if v has more than one parent in ST or

v’s parent is classified as (p, c) in ST
4. Classify v as (p, c)
5. else
6. Classify v as (c, c)
7. Let V = {v ∈ D| |parent(v)| > 1}
8. while V is not empty
9. Choose v ∈ V , w ∈ parent(v) such that

|PCSetv(w)| ≥ |PCSetv′(w
′)|, ∀v′ ∈ V, w′ ∈ parent(v′)

Break ties by choosing v ∈ V , w ∈ parent(v) such that
|CCSetv(w)| ≤ |CCSetv′(w

′)|, ∀v′ ∈ V , w′ ∈ parent(v′)
10. foreach u ∈ parent(v), u 6= w
11. Delete (u, v) from ST
12. Update u’s classification from (x, y) to (x, p)
13. foreach u ∈ PCSetv(w)
14. Update u’s classification to (p, p)
15. foreach u ∈ CCSetv(w)
16. Update u’s classification to (c, p)
17. Delete v from V
18. return ST

Figure 4.9: Algorithm to optimize spanning tree.

4.3 Performance Study

To evaluate the effectiveness of our proposed algorithms, we conducted an extensive

set of experiments to study their performance. Our results show that our proposed

algorithms (BBS+, SDC, and SDC+) outperform existing techniques by a wide

112

margin, with SDC+-MinPC, which is SDC+ using the MinPC strategy to optimize

dominance classification, giving the best performance in terms of both response

time as well as progressiveness.

Data Sets: We generated synthetic data sets by varying the number of attributes,

the correlation among the attributes, the complexity of the posets for partially-

ordered attributes, and the size of the data sets. The parameters and their values

used are shown in Table 4.1. The first value listed is the default value. In our exper-

imental presentations, default parameter values are used unless stated otherwise.

Parameter Values
|Atotal|, # of totally-ordered attributes 2, 1, 4
|Apartial|, # of partially-ordered attributes 1, 2
Attribute correlation independent,

anti-correlated
Poset size (# nodes) 450, 1000
Poset height (# levels) 6, 13
Data size (# data points) 500K, 1000K

Table 4.1: Experimental parameters and values used.

For totally-ordered attributes, we used integer values from the domain (0, 1000],

where values are generated as described in [9] with possible correlation among

different attributes. For partially-ordered attributes, we used set-valued attributes

where dominance is based on set containment. The poset for each partially-ordered

attribute is created by first generating a forest of trees, by varying the number of

trees, their heights and branching factors. Next, the poset is then formed by

randomly connecting nodes among the trees, such that two nodes can be linked

only if their levels differ by one. The density of edges in the poset is controlled by

the number of iterations of adding inter-tree edges and the probability of adding

an edge for a node. The domain of the set-valued attribute values is then derived

from the constructed poset. Each data point is generated by choosing a random

attribute value from its domain; in particular, for a partially-ordered attribute, a

value is selected by randomly choosing a node from its domain’s poset.

113

Algorithms: We compared our proposed techniques (denoted by BBS+, SDC, and

SDC+), and two variants of the block nested-loop algorithm, denoted by BNL and

BNL+. BNL is the basic algorithm proposed in [9], while BNL+ is our optimized

extension of BNL that works in a two-stage filter-and-postprocess manner as fol-

lows. First, BNL+ executes the standard BNL algorithm (using the transformed

attribute values) to quickly obtain a set of intermediate skyline points (possibly

with false positives), which is then pipelined to a second BNL algorithm (using

the actual attribute values) to eliminate any false positives. We also evaluated the

effectiveness of our dominance classification optimization strategies (MinPC and

MaxPC) on SDC and SDC+. For our proposed algorithms, the transformed data

values are indexed using R∗-trees with page sizes of 4K bytes and node capacity of

50. Each R-tree index is constructed by first scanning the data points to extract the

distinct domain values of each partially-ordered attribute. Their posets are then

constructed, and each value in each poset is then mapped to an integer interval.

Finally, the data points are then indexed with a R-tree on the set of totally-ordered

attribute values and the transformed partially-ordered attribute values. Note that

each entry in the index nodes has two additional bits indicating whether the entry

is partially/completely covered/covering. The posets are therefore not needed once

the index is built.

Our experiments were carried out on a Pentium 4 PC with a 2.4 GHz processor

and 256 MB of main memory running the Linux operating system.

4.3.1 Response Time & Progressiveness

In this experiment, we examine the performance of the various algorithms in re-

turning first answers as well as how fast all answers are returned progressively. For

each algorithm, we recorded the time it took to output various percentages of the

answers (20%, 40%, 60%, 80% and 100%), as well as the time it took to output the

first answer (close to 0%). Although we also captured the time to output every 10

answers, up to 100, we found that the timings are generally the same as the time

114

to output the first tuple and hence, the time to output the first answer is sufficient

to illustrate the response time of the initial set of answers returned. Figure 4.10(a)

illustrates the performance when 2 numerical attributes and 1 set-valued attribute

are used. In Figures 4.10(b) and (c), we compare the algorithms’ performance when

the queries consist of more set-valued and numerical attributes respectively.

 0

 26

 52

 78

 104

 130

 156

 182

 208

 234

 260

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+

SDC
SDC+

(a) 2 numerical and 1 set

 0

 283

 566

 849

 1132

 1415

 1698

 1981

 2264

 2547

 2830

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+

SDC
SDC+

(b) 1 numerical and 2 set

 0

 72

 144

 216

 288

 360

 432

 504

 576

 648

 720

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+

SDC
SDC+

(c) 4 numerical and 1 set

Figure 4.10: Varying the number of numerical/set-valued attributes.

From Figure 4.10(a), we can see that SDC and SDC+ have fast initial response

times and are progressive. Among them, SDC+ has the best overall performance.

There are 662 skyline points and 561 false positives in this experimental run. For

BBS+, it is not progressive because it cannot output any answers as they become

available due to the possibility of false positives. Instead, each available answer has

to be checked against the current skyline using actual set representation to ensure

that it is not a false positive. Nonetheless, its performance is still better than the

block nested loop algorithms.

For SDC, it is progressive as it can immediately output those intermediate

skyline points that are completely covered. Furthermore, to find skyline points

efficiently, intermediate skyline points are organized into subsets and m-dominance

comparisons are used whenever possible. Comparing with BBS+, this results in a

59% drop in actual set-valued comparisons. Consequently, the initial set of answers

can be found very quickly and since most of them are definite skyline points, they

can be output immediately. However, as processing continues, its progressiveness

115

drops as remaining skyline points belong to Sp,p and hence, cannot be output

immediately. Moreover, since the various subsets are getting bigger as processing

continues, this results in more comparisons and hence a poorer performance towards

the end.

For SDC+, it is clear that it is more progressive and produces answers faster

than SDC. This is because the initial set of strata being processed consists of

points belonging only to Sc,p and Sc,c and hence, any answer found can be output

immediately. Since 80% of the skyline points belong to Sc,p, this explains why

SDC+ can output the first 80% of the answers significantly faster. Moreover, we

found that SDC+ incurs 30% fewer actual set-valued comparisons and 16% fewer

m-dominance comparisons compared to SDC. This is because in SDC+, data points

belonging to subsets Sc,p and Sc,c (which have the highest potential of being in the

skyline) are processed first while in SDC, the data points can belong to any subsets.

Consequently, more comparisons which do not result in any meaningful outcome

are incurred for SDC. Thus, SDC+ has a better overall performance than SDC.

For BNL, its performance is relatively poor throughout as comparing using

actual set representation is more expensive than comparing numerical values on

the transformed data. This explains why BNL+ can outperform BNL even though

it requires a post-processing step.

Consider Figures 4.10(b) and (c) where we increase the number of set-valued

and numerical attributes respectively. It is a well known fact in the literature that

the number of skyline points increases with increasing number of attributes. For

example, with 4 numerical attributes and 1 set-valued attribute, the number of

skyline points is 8831 with 9990 false positives. Moreover, adding an additional

set attribute increases the skyline points more rapidly than adding a numerical

attribute. For example, in Figure 4.10(b), an additional set-valued attribute alone

increases the number of skyline points to 9203. As illustrated from these figures,

the runtime of the algorithms increases with more numerical/set-valued attributes

although their relative performance remain similar. Notice that SDC can be slower

116

than BBS+ after 60% of the answers are output. Furthermore, its progressiveness

drops with increasing number of skyline points. This is because there are now

more skyline points belonging to subsets Sp,p and Sp,c (they cannot be output

immediately), resulting in more comparisons and thus, the progressiveness drops.

Finally, notice in Figure 4.10(c) that BNL+’s performance is worse than BNL. Since

each set-valued attribute is transformed to two numerical attributes, BNL+ now

needs to find the skyline for a 6 numerical attributes dataset which by itself, is time-

consuming. Coupled with a post-processing step using actual set representation,

this results in a poorer performance compared to BNL.

Finally, by looking at the time 100% of the results are produced, we observe

the algorithms’ performance in terms of overall runtime. We can see that SDC+

has the best overall runtime as it incurs fewer dominance comparisons compared

to the rest.

4.3.2 Effect of Poset Structure

Size of poset. Figure 4.11(a) shows the performance of the various algorithms

when we increase the size of the poset from the default value of 450 nodes (in

Fig. 4.10(a)) to 1000 nodes. We observe that the performance of our proposed

algorithms remain relatively unchanged except for a slight increase in runtime for

both SDC and SDC+. Increasing the size of the poset has the effect of increasing the

number of skyline points. For example, there are 1051 skyline points and 1881 false

positives in this experiment. This, in turn, affects the runtime of the algorithms.

We can see that BNL+ is most significantly affected by this as it now performs

worse than BNL.

Height of poset. Figure 4.11(b) shows the performance of the various algorithms

when we increase the height of the poset to 13 by generating a tall and relatively

sparse poset to make the number of answers comparable to Figure 4.10(a). This

results in 25 strata for SDC+. Again, the relative performance is unchanged com-

pared to previous experiments. However, notice that both BNLand BNL+ has a

117

higher runtime. This is because a poset with more levels results in sets whose

cardinalities are larger. Consequently, the set comparisons become more expensive

and this has the largest impact on both BNL and BNL+.

 0

 22

 44

 66

 88

 110

 132

 154

 176

 198

 220

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+

SDC
SDC+

(a) Increasing poset size

 0

 31

 62

 93

 124

 155

 186

 217

 248

 279

 310

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+

SDC
SDC+

(b) Increasing poset height

Figure 4.11: Effect of poset structure.

4.3.3 Other Experiments

Effect of Optimized Dominance Classification. Figure 4.12(a) compares the

effect of optimizing the dominance classification for SDC+. From the figure, we

can see that SDC+-MaxPC has only slight improvement over SDC+ while a more

significant improvement is observed in SDC+-MinPC. This significant improve-

ment is due to the decrease in the number of dominance comparisons involving

data points in the category (c, c). We also conducted experiments comparing SDC

against SDC-MinPC and SDC-MaxPC, and our results (not shown) indicate that

the impact of optimized dominance classification on SDC is not too significant.

Effect of Large Dataset. Figure 4.12(b) shows the results when the size of the

dataset is increased to one million data points. We see that the overall runtime

for all the algorithms have increased significantly due to the need to process more

data tuples. However, both SDC and SDC+ still maintain an advantage over the

118

rest by being able to produce nearly all the answers before the rest do so.

Effect of Anti-correlated Attributes. Figure 4.12(c) shows the results when

the totally-ordered attributes are anti-correlated. This means that if a numerical

attribute of a data point has a low value for one attribute, it would have another

attribute with high value and so on. From the figure, the relative performance

of the various algorithms remains unchanged except for higher runtime. This is

because anti-correlation increases the number of skyline points. For example, in

this experiment, there are 898 answers compared to 662 when the attributes are

independent. With more skyline points, the overall runtime of all algorithms are

thus higher compared to the case when independent attributes are used.

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

SDC+
SDC+-maxPC
SDC+-minPC

(a) Optimizing dominance clas-
sification

 0

 52

 104

 156

 208

 260

 312

 364

 416

 468

 520

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+

SDC
SDC+

(b) Increasing size of data set

 0

 27

 54

 81

 108

 135

 162

 189

 216

 243

 270

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

BNL
BNL+
BBS+

SDC
SDC+

(c) Anti-correlated dataset

Figure 4.12: Results of other experiments.

4.4 Summary

In this chapter, we have addressed the novel problem of evaluating skyline queries

with partially-ordered attributes. Our solution transforms each partially-ordered

attribute into a two-integer domain that enables us to exploit index-based algo-

rithms to compute skyline queries on the transformed space. Based on the frame-

work, we have proposed three novel algorithms: BBS+ is a straightforward exten-

sion of BBS, and SDC and SDC+ are optimized versions that handle false positives

and facilitates progressive evaluation. Our extensive performance study show that

119

our proposed algorithms (BBS+, SDC, and SDC+) outperform existing techniques

by a wide margin (between a factor of 2 and 16), with SDC+-MinPC, which is

SDC+ using the MinPC strategy to optimize dominance classification, giving the

best performance in terms of both response time as well as progressiveness. To the

best of our knowledge, this is the first work that examines the problem of evaluating

skyline queries with partially-ordered domains.

120

CHAPTER 5

Evaluating Pareto Preference Queries in
Relational Database Systems

In the last two chapters, we examine the evaluation of skyline queries. Although

skyline queries is an important class of preference queries, they are limited in

expressiveness. Skyline queries only allow users to specify whether they prefer

low, high or different values of an entity. For example, a tourist can specify that

he prefers cheap hotels close to the beach but would not be able to express that

he also prefers hotels less than 500m away from a metro and preferably affiliated

with hotel-chains that he is familiar with (e.g., a Hyatt, Hilton or Sheraton). Such

queries, however, can be modelled using the framework described in chapter 2 as

pareto preference queries.

In this chapter, we examine the efficient evaluation of pareto preference queries

in the context of the framework proposed in [65] and described in section 2.1. The

pareto preferences we address in our work are based on the set of base preferences

proposed in the framework with the exclusion of the EXPLICIT and SCORE base

preferences. The EXPLICIT preference is excluded because it is not commonly

used in practice while the SCORE preference is more applicable to the quantitative

approach which will be addressed in the next chapter.

We propose three approaches for evaluating pareto preference queries efficiently

in relational database systems. Our schemes have two notable features:

121

1. Using the set of base preferences proposed in the framework, our approaches

can evaluate any combination of these base preferences expressed as a pareto

preference. This means that a broad range of pareto preferences can be

supported. Moreover, our approaches also allow preferences to be specified

on both ordered and unordered attributes.

2. Unlike existing techniques, our schemes are completely non-blocking and pro-

vide a fast initial response time by returning answers as soon as they become

available. This allows the users to terminate the processing prematurely as

soon as (s)he is satisfied with the partial answers, saving precious resources

in computation.

To demonstrate the effectiveness of our approaches, we conducted an extensive

performance study comparing our approaches against existing techniques. The

results show that our schemes are able to progressively return answers to pareto

preference queries efficiently.

For ease of illustration, we shall use the sample hotel relation in chapter 2 as

our running example. For convenience, we reproduce the relation in Table 5.1.

Id Rates Area Stars

1 280 midtown 2
2 190 uptown 3
3 308 midtown 3
4 314 midtown 4
5 257 uptown 2

Table 5.1: Hotels relation (from chapter 2).

The attributes consist of the hotel’s id, the starting rates of a room, the area

the hotel is in and the ratings of the hotel represented by the number of stars. The

domain of the attribute area is {uptown, midtown, downtown} while the domain

of other attributes are integers. Throughout our examples, we will consider the

evaluation of the following query which in preference SQL [68] is:

122

SELECT *

FROM Hotels

PREFERRING rates AROUND(200) AND HIGHEST(stars) AND

area IN (‘uptown’)

Here, the user is interested in hotels whose rates are around $200 but whose rat-

ings are as high as possible and preferably in the uptown area. As described in

subsection 2.1.3 in the example for pareto preferences, hotels 2 and 4 are returned

as answers. For ease of presentation of our approaches, we shall assume a database

D having d attributes A = {A1, . . . , An, An+1, . . . , Ad} and |D| tuples. WLOG, let

the first n attributes be ordered attributes while the rest are unordered attributes.

This chapter is organized as follows. Section 5.1 describes a non-trivial extension

of our Bitmap algorithm for evaluating skyline queries to evaluating pareto queries.

In section 5.2, we describe a tree-based approach which is more space efficient

than the first approach but with a small penalty to the runtime efficiency. Then,

section 5.3 describes our third approach which is based purely on single-dimensional

indexes and thus provides an easy integration with existing database systems. We

present our extensive experimental study in section 5.4 and provide a summary in

the last section.

5.1 A Bitmap-based Approach

Our first approach generalizes the bitmap approach described in chapter 3 for

evaluating skyline queries. We adopt a similar evaluation strategy by taking each

tuple from the relation and determine whether any tuples dominates it from the

bitmap structure. A tuple can be returned immediately as an answer if no tuples

are found to dominate it, resulting in a fast initial response time.

5.1.1 Construction of the Bitmap Structure

Assume that each attribute Ai has ki distinct values, 1 ≤ i ≤ d. Let aij denotes

the jth distinct value of the ith attribute. WLOG, we assume for each ordered

123

attribute that ai1 > ai2 > . . . > aiki
.

The construction of the bitmap structure is similar to that discussed in chapter 3

with one notable difference. Consider a tuple x = (x1, . . . , xd). Again, ki bits are

used to represent xi. Let the qth bit of the ki bits correspond to aiq where aiq = xi.

First, bits 1 to q − 1 are set to 0 as usual. Next, we would set bits q to ki to 1.

However, if the attribute under consideration is unordered, then, instead of setting

bits q to ki to 1, we will only set bit q to 1. Furthermore, the resulting bit-slices

for unordered attributes are stored arbitrarily as compared to a descending order

for ordered attributes.

Example 5.1. Figure 5.1 shows the bitmap structure created for the relation in

Table 5.1. Consider hotel 1. Since the rate is 280, the bits corresponding to 314

and 308 are set to 0, while the other bits are set to 1. Similarly, since the value

of the stars attribute is 2, bits corresponding to values greater than 2 will be

set to 0, while the rest are set to 1. Lastly, for unordered attribute area, the bit

corresponding to value midtown is set to 1 while leaving the rest of the bits 0.

1
1
1
1
1

0
1
1
1
0

0
1
0
0
0

1
0
0
1
0

0
1
1
0
1

uptown

Area

midtown

1
1
1
1
1

1
1
1
0
1

0
1
1
0
1

0
1
1
0
0

0
1
0
0
0

24

Stars

3

Rates

190257280308314

Figure 5.1: Bitmap example.

Property 3.1, Theorem 3.1, Corollary 3.1, Definitions 3.1 and 3.2 are also appli-

cable here except that they are meaningful only for ordered attributes. However,

we augment Definition 3.1 i.e. BitSlice(aij, Ai) to include unordered attributes.

Specifically, if the attribute Ai is unordered, then the 1s in BitSlice(aij, Ai) rep-

resent those tuples having just value aij for Ai. On the other hand, if Ai is an

ordered attribute, then they represent those tuples having values ≥ aij. For exam-

ple, in Figure 5.1, BitSlice(midtown, area) refers to the bit-slice for the attribute

124

area where the 1s represent hotels in the midtown area i.e. 10110. The following

definition is introduced specifically for the evaluation of pareto queries.

Definition 5.1. Let Pi be a base preference specified on attribute Ai. Assume a

candidate tuple x = (x1, . . . , xd) where xi is the value for attribute Ai. We define

BitSlice≥Pi
(xi, Ai) to be the bit-slice whose 1s represent tuples having values aij

for attribute Ai where xi <Pi
aij ∨ xi = aij i.e. these tuples have values for Ai

that are either better than or equal to xi with respect to preference Pi. Likewise,

we define BitSlice>Pi
(xi, Ai) to be the bit-slice whose 1s represent tuples having

values aij for attribute Ai where xi <Pi
aij i.e. these tuples have values for Ai that

are better than xi with respect to preference Pi.

5.1.2 Evaluating Pareto Preference Queries

We shall now describe how to use the bitmap structure to evaluate a pareto query.

Figure 5.2 is a modified version of the Bitmap algorithm for evaluating a pareto

preference query. The query consists of a set of preferences, P = P1, . . . , Pd, where

preference Pi is specified on attribute Ai. & and | represent the bitwise and and

or operations respectively.

The algorithm starts by looping through each tuple in the dataset. The main

part of the algorithm (steps 4-7) is to derive bit-slice SC whose 1s represent tuples

in the dataset that dominate the candidate tuple x. The algorithm derives two

bit-slices SA and SB simultaneously (steps 4-6). SA is the result of executing a

bitwise and operation on BitSlice≥Pi
(xi, Ai) for each preference Pi (step 5) while

SB is the result of executing a bitwise or operation on BitSlice>Pi
(xi, Ai) for each

preference Pi (step 6). This is followed by executing another bitwise and operation

between SA and SB and assigning it to bit-slice SC (step 7). Finally, in steps 8-9,

the algorithm checks whether SC is zero. If it is, it tells us that there is no tuple

in the dataset that is more preferred than x and we can conclude that x is one of

the answers and output it.

The following result demonstrates that given any pareto preference query, the

125

Algorithm Bitmap
Input: Dataset D, Preferences P = P1, . . . , Pd

1. foreach x = (x1, . . . , xd) ∈ D
2. SA ← 1 // set each bit of SA to 1
3. SB ← 0
4. foreach Pi ∈ P
5. SA ← SA & BitSlice≥Pi

(xi, Ai)
6. SB ← SB | BitSlice>Pi

(xi, Ai)
7. SC ← SA & SB

8. if SC == 0
9. output x

Figure 5.2: Modified Bitmap algorithm.

algorithm correctly derives bit-slice SC which indicates whether any tuples in the

dataset dominates the candidate tuple.

Theorem 5.1. Consider a dataset D with d attributes A1, . . . , Ad. Assume a pareto

preference query Q specifying preference Pi on attribute Ai for 1 ≤ i ≤ d. Assuming

that BitSlice>Pi
(xi, Ai) and BitSlice≥Pi

(xi, Ai) are computed correctly for each

preference Pi. Then, the 1s in bit-slice SC indicate only tuples that dominate the

candidate tuple x = (x1, . . . , xd).

Proof. Let us first examine the properties of bit-slices SA and SB:

SA = BitSlice≥P1(x1, A1) & BitSlice≥P2(x2, A2) & . . . & BitSlice≥Pd
(xd, Ad)

where & represents the bitwise and operation. Thus, SA has the property that

the nth bit is set to 1 iff the nth tuple, n = (n1, . . . , nd), has the property:

∀i xi <Pi
ni ∨ xi = ni.

SB = BitSlice>P1(x1, A1) | BitSlice>P2(x2, A2) | . . . | BitSlice>Pd
(xd, Ad)

where | represents the bitwise or operation. Thus, SB has the property that the

nth bit is set to 1 iff the nth tuple has the property: ∃k xk <Pk
nk for 1 ≤ k ≤ d.

Next, we examine the property of bit-slice SC , derived from bit-slices SA and SB:

SC = SA & SB

Thus, SC , has the property that the nth bit is set to 1 iff the nth tuple has the

property: ∀i xi <Pi
ni ∨xi = ni and ∃k xk <Pk

nk for 1 ≤ k ≤ d i.e. each attribute

value of the nth tuple is better than or equal to the corresponding attribute value

126

in x and some of its attribute values are strictly better. Hence, we can conclude

that x <P n. Thus, the 1s in SC can only represent tuples that dominate x.

Theorem 5.1 relies on the fact that given a candidate tuple having value xi for

attribute Ai, BitSlice>Pi
(xi, Ai) and BitSlice≥Pi

(xi, Ai) are derived correctly for

the preference Pi. We shall now discuss the derivation of these bit-slices for some

of the base preferences, focusing on those that will be used later for illustration.

The rest are described in Appendix A. Throughout the discussion, we will assume

that preference Pi is specified on attribute Ai and xi is the value for attribute Ai

of a candidate tuple.

AROUND. Let Pi be AROUND(Ai,z). If xi is equal to z, there is no way any

tuples can have a value for Ai that is strictly better than xi. Hence, we set

BitSlice>Pi
(xi, Ai) to 0 while BitSlice≥Pi

(xi, Ai) is equal to OrigSlice(xi, Ai). If

xi is not equal to z, we derive BitSlice>Pi
(xi, Ai) as follows. First, we compute

distance(xi, z). Then, we retrieve the bit-slice for value aiv, the smallest value

≥ z + distance(xi, z) that exists in the bitmap for Ai. Next, we retrieve the bit-

slice for value aiu, the smallest value > z − distance(xi, z) from the same bitmap.

These two bit-slices are illustrated in Figure 5.3 (the black stripes) for the case

where the value of aiv is xi. BitSlice>Pi
(xi, Ai) is then the result of executing a

bitwise exclusive or operation between these two bit-slices. From Theorem 3.1,

the 1s in BitSlice>Pi
(xi, Ai) would represent tuples having values in the range of

[aiu, aiv) for attribute Ai. In Figure 5.3, values with a corresponding bit-slice in

the shaded region fall in the range [aiu, aiv). We now show that the distances of

these values to z is strictly less than distance(xi, z).

Theorem 5.2. Let t be a tuple whose value ti is in the range of [aiu, aiv) for

attribute Ai. Then, distance(ti, z) < distance(xi, z).

Proof. First, aiu ≤ ti < aiv. Since aiu is the smallest value greater than

z − distance(xi, z) that exists in the bitmap for Ai, ti ≥ aiu > z − distance(xi, z)

i.e. distance(xi, z) > −(ti−z). On the other hand, aiv is the smallest value greater

127

or equal to z + distance(xi, z) in the same bitmap. Let w be the next smallest

value after aiv that exists in the bitmap. If aiv = z + distance(xi, z), then it is

obvious that ti < z + distance(xi, z). However, if aiv > z + distance(xi, z), then

w < z + distance(xi, z) < aiv. Since ti is some value that exists in the bitmap,

it must be less than or equal to w. In other words, ti < z + distance(xi, z).

Hence, we can conclude that if ti < aiv, ti < z + distance(xi, z). This means

that distance(xi, z) > ti − z. Therefore, distance(xi, z) > distance(ti, z) i.e. the

distance of ti to z will always be shorter than distance(xi, z).

xiz + distance(, z) xiz − distance(, z)

z

....

ai1 aiv aiu

xi distance(xi, z)

Figure 5.3: AROUND preference.

Finally, to derive BitSlice≥Pi
(xi, Ai), we simply execute a bitwise or operation

on BitSlice>Pi
(xi, Ai) and OrigSlice(xi, Ai). Using the hotel relation in Table 5.1

and the bitmap structure in Figure 5.1, assume that Pi is AROUND(rate,200) and

the candidate tuple is hotel 1 having rates 280. The distance between the rates of

hotel 1 and the desired value is 80. From the bitmap structure, value aiu is given

by 190 since it is the smallest value greater than 120 while value aiv is given by 280

since it is the smallest value greater or equal to 280. Hence BitSlice>Pi
(xi, Ai) is

given by 10110 ∧ 11111 = 01001 where ∧ is the bitwise exclusive or operation.

Thus, only hotels 2 and 5 have rates closer to 200 than hotel 1. BitSlice≥Pi
(xi, Ai)

is then given by 01001 | 10000 = 11001. Now consider hotel 4 whose rates is 314.

BitSlice>Pi
(xi, Ai) is given by 00010 ∧ 11111 = 11101, indicating that hotels 1,

2, 3 and 5 have rates closer to 200 than hotel 4. BitSlice≥Pi
(xi, Ai) is then given

by 11101 | 00010 = 11111.

HIGHEST. Let the preference Pi be HIGHEST. This is similar to applying the

128

MAX annotation on the attribute Ai as in a skyline query. Hence, as discussed

in chapter 3, the 1s in BitSlice>Pi
(xi, Ai) should represent tuples having values

> xi for Ai. Therefore, we can simply retrieve PreSlice(xi, Ai) since its 1s also

represent tuples having values > xi for Ai. If PreSlice(xi, Ai) does not exist, then

BitSlice>Pi
(xi, Ai) is set to zero. On the other hand, the 1s in BitSlice≥Pi

(xi, Ai)

should represent tuples having values ≥ xi for Ai. This is given by BitSlice(xi, Ai)

as its 1s also represent tuples having values ≥ xi for Ai. As an example, consider

the relation in Table 5.1 and the bitmap structure shown in Figure 5.1. Assume

that Pi is HIGHEST(stars) and the candidate tuple is hotel 1 whose number

of stars is 2. BitSlice>Pi
(xi, Ai) is given by PreSlice(2, stars) i.e. 01110 while

BitSlice≥Pi
(xi, Ai) is given by BitSlice(2, stars) i.e. 11111. Now, consider hotel 4

which has 4 stars. BitSlice≥Pi
(xi, Ai) is given by BitSlice(4, stars) i.e. 00010 and

since there is no preceding bit-slice, BitSlice>Pi
(xi, Ai) is given by 00000.

POS. Let Pi be POS(Ai,{v1, . . . , vm}). To derive BitSlice>Pi
(xi, Ai), we first check

whether xi is in the POS-set. If it is, then no tuples can have a value better than

xi for Ai and BitSlice>Pi
(xi, Ai) is set to zero while BitSlice≥Pi

(xi, Ai) is given by

BitSlice(xi, Ai). However, if xi is not in the POS-set, the values that are strictly

better than xi are those that are in the POS-set. Hence, BitSlice>Pi
(xi, Ai) =

BitSlice(v1, Ai) | . . . | BitSlice(vm, Ai). In other words, we retrieve the bit-slice

of each value in the POS-set and execute a bitwise or on them. If a value does not

exist in the bitmap, its bit-slice is set to zero. For BitSlice≥Pi
(xi, Ai), we simply

execute a bitwise or between BitSlice>Pi
(xi, Ai) and BitSlice(xi, Ai).

Using the hotel relation in Table 5.1 and the bitmap structure shown in Fig-

ure 5.1, let Pi be POS(area, {uptown}) and the candidate tuple be hotel 1. Since

hotel 1 is located in midtown which is not in the POS-set, BitSlice>Pi
(xi, Ai)

is given by the bit-slice for uptown i.e. 01001, and BitSlice≥Pi
(xi, Ai) is given

by 01001 | 10110 = 11111. Now, consider hotel 4 located in the midtown area.

BitSlice>Pi
(xi, Ai) is also given by 01001 and BitSlice≥Pi

(xi, Ai) is given by 01001

| 10110 = 11111. We shall now show the evaluation of a pareto preference query.

129

Example 5.2. Consider our running example’s query: AROUND(rates, 200) ⊗
HIGHEST(stars) ⊗ POS(area, {uptown}). We shall consider hotels 1 and 4 as

candidate tuples. The derivation of BitSlice>Pi
(xi, Ai) and BitSlice≥Pi

(xi, Ai) for

the constituent preferences are shown as examples when describing the derivation

of these two bit-slices for the respective base preferences. Consider hotel 1 first. SA

is given by 11001 & 11111 & 11111 = 11001 while SB is given by 01001 | 01110
| 01001 = 01111. Hence, SC is given by 11001 & 01111 = 01001. Since SC is not

zero, hotel 1 is not an answer. In fact, SC also indicates that it is dominated by

hotels 2 and 5. Next, consider hotel 4. SA is given by 11111 & 00010 & 11111

= 00010 while SB is given by 11101 | 00000 | 01001 = 11101. Then, SC is given

by 00010 & 11101 = 00000. Hence, we can conclude that hotel 4 is an answer as

it is not dominated by any other hotels.

Similar to the original scheme for computing skylines, this approach requires a

considerable amount of storage and has high index maintenance costs, especially

for dynamic databases. These generally limit the approach to environments such as

data warehouses where updates are rare and queries frequent. Nonetheless, its high

level of performance (as shown in our experimental study) still makes it the most

attractive option in environments where it strives best. In view of the limitations

of the bitmap approach, we shall now introduce our tree-based approach, suitable

for dynamic databases.

5.2 A R-tree-based Approach

To support preference query processing for dynamic databases, we propose a tree-

based approach that is more space efficient than our bitmap approach. The key

challenge in designing the tree structure is the need to index both ordered and

unordered attributes at the same time. To this end, we propose Pref-Tree which

stands for Preference-Tree. Although sharing similar features as the R-tree [50],

the design of the Pref-Tree is most closely related to the RD-tree [53]. The RD-tree,

130

a variant of the R-tree, is an index structure for set-valued attributes. The Pref-

Tree can also be regarded as a special form of the RD-tree, specifically designed

for the efficient evaluation of preference queries.

Preference query evaluation, however, is analogous to the bitmap approach;

we take each tuple t of the relation and traverse every branch of the Pref-Tree to

the data tuples to check whether any tuple dominates t. If there is none, we can

immediately output t, resulting in a progressive approach. Although this approach

seems to be computationally expensive, this may not be the case. The search

is made efficient using the set inclusion relation that is inherent in the Pref-Tree

structure. It allows entire branches of the tree to be rejected during evaluation,

thereby effectively reducing the search space. Moreover, through a careful design

of the keys in the Pref-Tree, our tree structure is highly tunable, allowing a graceful

tradeoff between efficiency and index space. We shall begin by discussing our Pref-

Tree index structure. This will be followed by a description on how the Pref-Tree

index is used to efficiently evaluate pareto preference queries.

5.2.1 The Pref-Tree Structure

Leaf nodes in the Pref-Tree contain entries of the form (bounding set, disk pointer).

The disk pointer points to a distinct subset T of the data tuples in D that are stored

in secondary storage. The bounding set is analogous to the bounding box of a

R-tree and consists of d sets s1, . . . , sd. To create the set si, we take the value of

attribute Ai of each tuple t ∈ T and union them.

Non-leaf nodes contain entries of the form (bounding set, child pointer). The

child pointer points to the child node of an entry while the bounding set is the

union of the bounding sets of all entries in the child node of that entry. Since the

attribute values represented in the bounding sets of the leaf nodes are contained in

the bounding sets of the non-leaf nodes, the transitive set inclusion relation, that

is the key to Pref-Tree’s efficiency, exists.

An important issue that needs to be addressed is the representation of the

131

bounding set. While it may be possible to represent the sets directly by storing the

actual attribute values in the nodes, this approach is impractical for large datasets.

Furthermore, not all bounding sets are of the same size. This means that keeping

the size of the bounding sets fixed may not be space efficient. Based on the criteria

described in [53] for key representation, we have to choose a representation that

1) keeps the bounding set small. This allows each node to contain more entries,

thereby increasing the fanout and reducing the height of the tree; 2) be as complete

as possible i.e. each set should minimize the number of attribute values that do not

exist in the data tuples covered by the set; 3) supports computations necessary for

evaluating preference queries efficiently.

For the Pref-Tree, we adopt two different representations for the individual sets

of a bounding set. One is for representing ordered attribute values while the other

is for representing unordered attribute values.

Ordered Attributes. For an ordered attribute, its values are represented as

rangesets as described in [53]. A rangeset is an ordered list of m disjoint ranges

{[a1, b1], [a2, b2], . . ., [am,bm]} where ai ≤ bi and bi < aj whenever i < j. For

example, S = {[257, 280], [308, 314]}. Efficient algorithms for computing rangesets

can be found in [53]. Notice that the value of m can be used to tune the Pref-Tree.

A large value for m approximates the actual values more closely but increases the

size of the node, thereby reducing fanout. Thus, while the algorithm may end up

examining more nodes, the search space might be pruned more effectively. On the

other hand, a smaller value for m provides a better fanout but results in a less

effective pruning of the search space.

Unordered Attributes. For an unordered attribute, its values are represented

as signatures as described in [61]. Each value is represented by a b-bit signature in

which k of the bits are set randomly. A set, S, is then represented by superimposing

i.e. taking a bitwise or of the signatures of the values in S. We call the resulting

signature the set signature of S. Given the set signature of S, we can easily

determine whether a value x exists in the set S by executing (signature of x &

132

¬ signature of S) and checking whether the result is equal to zero. A result of

zero means that x exists in the set S. Note that & and ¬ represent the bitwise

and and not operations respectively. Although the set signature can be used to

represent a lot of values, it has a limitation. We cannot assume that the signatures

of distinct sets are also distinct as the combined signature of all values in a set may

also include the signature of other values. An example will make this clear.

Consider the sample relation in Table 5.1. Let the value of b and k be 5 and

2 respectively and the signatures of the domain values of attribute area are as

follows: uptown is 10010, midtown is 00101 and downtown is 00110. If the set

S is {uptown, midtown}, then its set signature would be 10010 | 00101 = 10111.

Notice that the set signature of S also includes the signature of downtown. These

extra values are known as false drops. As we will see later, the presence of false

drops has a bearing on efficiency as it can lead the search into paths which would

be avoided if false drops are not possible.

Similar to using rangesets, b and k can be used to tune the Pref-Tree. Different

values of b and k will result in different probabilities of false drops occurring. On

one hand, we can choose a high value for b and a relatively low value for k so that

chances of false drops are lower. However, this would increase the size of an entry,

reducing the fanout of the tree. On the other hand, bad values for b and k can

result in many false drops, reducing the effectiveness of the Pref-Tree. In summary,

by using different number of ranges in a rangeset or different values b and k for a

signature, a graceful tradeoff between efficiency and index size can be achieved.

Example 5.3. Figure 5.4 shows the Pref-Tree structure for the hotel relation in

Table 5.1. We have assumed an artificial number of 2 entries per node and 1 range

per rangeset. For ease of illustration, we assume that there are no false drops in the

representation of the unordered attribute values and show the actual values rather

than the signatures. Consider the first entry of node N11 (on the left). The range

of the rates attribute is computed by merging the ranges [280,280] and [257,257] of

the entries in node N111. This is done similarly for the stars attribute. However,

133

since both ranges for the stars attribute in node N111 are the same, the resulting

range for the stars attribute in node N11 is also [2,2]. As for the attribute area,

the union of values midtown and uptown in node N111 is stored in node N11. In

the actual representation, a bitwise or operation is executed on the signatures of

midtown and uptown and the combined signature stored in node N11.

1 5 3 4 2

rates = {[190, 190]}
area = {uptown}
stars = {[3, 3]}

rates = {[190, 190]}
area = {uptown}
stars = {[3, 3]}

rates = {[190, 190]}
area = {uptown}
stars = {[3, 3]}

rates = {[257,280]}
area = {uptown,midtown}
stars = {[2,2]}

rates = {[308,314]}
area = {midtown}
stars = {[3,4]}

rates = {[257,314]}
area = {uptown,midtown}
stars = {[2,4]}

rates = {[280, 280]}
area = {midtown}
stars = {[2, 2]}

rates = {[257, 257]}
area = {uptown}
stars = {[2, 2]}

rates = {[308, 308]}
area = {midtown}
stars = {[3, 3]}

rates = {[314, 314]}
area = {midtown}
stars = {[4, 4]}

N112

N1

N12

N121

N11

N111

Figure 5.4: Pref-Tree example.

5.2.2 Insertion and Deletion Operations

We shall now briefly describe the insertion and deletion operations of the Pref-

Tree. We do not show the algorithms as they are analogous to the R-tree and

RD-tree. To insert a new tuple, t, the insertion algorithm starts by examining the

bounding set of each entry of the root node. For each attribute Ai, the respective

attribute value, ti of t, is compared against the set si of the bounding set. If si is a

rangeset, the algorithm computes the shortest distance between ti and each range

in the rangeset. For a range r = [a,b], the distance between ti and r is given by

min(abs(a − ti), abs(b − ti)). In the case where a ≤ ti ≤ b, the distance is zero.

Intuitively, the distance is also the least enlargement required for this rangeset.

On the other hand, if si is a set signature, the algorithm simply checks whether ti

exists from the signature. If ti exists, it sets the distance to 0, 1 otherwise. After

the algorithm computes the respective distance for each attribute of each entry,

134

a skyline operation is executed to eliminate those entries that are dominated by

some other entries (si is strictly better than sj if the distance computed for si is

shorter than that of sj). We then arbitrarily choose one of the remaining entries

to be processed next. The same procedure is used for subsequent non-leaf nodes

until a leaf node is reached and the tuple inserted. Then, the bounding sets of the

parent nodes are modified (either adjusting the ranges in the rangeset or adding

the new signature to the set signature) all the way up to the root.

As an example, consider the insertion of a new 3 star hotel, hotel 6, located in

the uptown area and having rates of 200. The insertion algorithm first checks the

entries in N1. Hotel 6’s area and stars attribute values occur in the respective

sets of the bounding set of both entries. However, the distances computed on the

rates show that the second entry (on the right) requires the minimum enlargement.

As such, the right subtree is chosen. Subsequently, it is inserted in node N121 and

the parent nodes are updated to (rates=[190,200], area={uptown}, stars=[3,3]).

We make use of the quadratic-cost R-tree node splitting algorithm whenever an

overflow occurs during an insertion. To split a node, we need to split each si of the

bounding set of the node. The heuristic we adopt is as follows. If si is a rangeset,

we distribute the ranges evenly between the nodes (making any range adjustments

if necessary). If si is a set signature, we could compare the signature of each value

in the domain with the set signature to check which values belong to si before

re-distributing the values between the nodes. However, this is computationally

expensive, especially when the attribute’s domain is large. Instead, we choose to

duplicate the set signature and add it to the new node. Obviously, this will lead

to more false drops for subsequent queries and may reduce the effectiveness of the

Pref-Tree. One possible solution is to rebuild all the set signatures periodically.

As for deletion, we first search for the tuple in the Pref-Tree and delete it

from the leaf node. Next, we re-adjust the bounding set in all the parent nodes.

The heuristics we adopt are similar to those for insertion. However, following the

same argument in RD-tree, we do not restructure the tree to guarantee a minimum

135

number of entries in each node.

Before we discuss our strategies for query evaluation, we would like to mention

that our insertion and deletion heuristics are still preliminary at the moment. We

are currently considering other heuristics for more efficient insertion and deletion

operations as well as a more thorough analysis of these two operations, but this

largely remains as future work.

5.2.3 Evaluation of Pareto Queries

Figure 5.5 shows the algorithmic description of our approach. The algorithm con-

tinuously picks a candidate tuple t from the dataset D and then traverses the

Pref-Tree having the root node r to see if any tuples dominates t. If there is none,

then t is output. The key method in the algorithm is function isDominated (also

illustrated in Figure 5.5). It is essentially a backtracking algorithm to search the

Pref-Tree. We shall briefly discuss the routines it uses. isLeafNode(n) returns

true if n is a leaf node, false otherwise. dominates(x, t, P) returns true if tuple

x dominates tuple t based on preferences P , false otherwise.

canDominate(t, e, P) (also illustrated in Figure 5.5) is used to drive the

search. It returns true if some tuples covered by the bounding set of an entry

can potentially dominate t. It relies on two important subroutines. The first is

strictlyDominates(e.si, ti, pi) which uses the set si of entry e to determine

whether some tuples covered by e have values that are strictly better than ti for

Ai. The heuristics used depend on the preferences under consideration. We shall

now illustrate some of these heuristics using examples (full details can be found in

Appendix B).

Consider the preference AROUND(Ai, 50). Let ti be the value of attribute Ai

of the candidate tuple. Assuming that the respective rangeset in e is given by [5,10]

and ti = 20. From the rangeset, we can see that the shortest distance any tuples

covered by e has distance 40 to the desired value whereas the candidate tuple’s

distance is 30. Hence, the routine returns false as no tuples covered by e has a

136

value for Ai that can result in a better distance. As another example, consider the

preference POS(Ai, {x}). We first check whether ti is in the POS-set. If it is, then

no tuples covered by e can have a value strictly better than ti for Ai and false is

returned. Otherwise, we check whether x exists in the respective set signature. If

the value exists, true is returned. Due to the presence of false drops, x may be

falsely deduced to be in the set signature. Consequently, this will result in more

searching but the correctness of our algorithm is not affected.

Algorithm Pref-Tree
Input: Dataset D, Root node r, Preferences P
1. foreach t in D
2. if not isDominated(t, r, P)
3. output t

Function isDominated(t, n, P)
Input: Candidate tuple t, Pref-Tree node n, Preferences P
1. if isLeafNode(n)
2. foreach tuple x in n.data
3. if dominates(x, t, P)
4. return true
5. return false
6. foreach entry ei in n.entries
7. if canDominate(t, ei, P)
8. if isDominated(t, ei.child, P)
9. return true
10. return false

Function canDominate(t, e, P)
Input: Tuple t, Node’s entry e, Preferences P
1. hasBetter = false
2. foreach pi ∈ P
3. if strictlyDominates(e.si, ti, pi)
4. hasBetter = true
5. else if not valueExist(e.si, ti)
6. return false
7. return hasBetter

Figure 5.5: Pref-Tree algorithm.

The second routine is valueExist(e.si, ti) which simply determines whether

ti exists in one of the ranges in the rangeset or in the set signature, depending

on the type of attribute. Again, false drops might cause the routine to claim that

137

a value exists when it does not. This also does not affect the correctness of our

algorithm but could result in more traversals.

We now describe the function isDominated. Steps 6-10 handle the case when

a non-leaf node is encountered. For each entry in the node, it checks whether

there is any possibility of t being dominated by some tuples. If there is such a

possibility, the child node is retrieved and checked (steps 7-8). Eventually, if a leaf

node is reached, the actual tuples are retrieved and checked against t to see if any

of them dominates it (steps 1-5). The following shows an important property of

our Pref-Tree algorithm.

Theorem 5.3. The Pref-Tree algorithm correctly retrieves the desired results over

a dataset of size n and requires O(n2) time in the worst case.

Proof. Given a candidate tuple t, the algorithm traverses the Pref-Tree to deter-

mine whether any tuples dominates t. In the worst case, each and every branch of

the Pref-Tree is traversed. This is equivalent to comparing t against all tuples in

the dataset. Hence, if some tuples dominate t, t will be eliminated. Otherwise, t

will eventually be compared against all tuples before being output, ensuring that

the desired results are returned. Moreover, our algorithm takes the conservative

approach to ensure correctness by ensuring that extra branches are searched when-

ever the presence of false drops might affect the correctness of the results. Lastly,

in the worst case, all tuples in the dataset are not dominated by any other tuple.

Hence, n2 tuple comparisons are required, resulting in O(n2) time.

We now illustrate how the Pref-Tree structure shown in Figure 5.4 is used for

answering the sample pareto query on the hotel relation in Table 5.1.

Example 5.4. Consider our running example’s query: AROUND(rates, 200) ⊗
HIGHEST(stars) ⊗ POS(area, {uptown}). Assume that hotel 1 is currently the

candidate tuple. We start with the root node’s first entry (on the left). Since the

bounding set indicates that there could be a hotel with better rates, stars and area

i.e. some tuples it covers can dominate hotel 1, we traverse the left subtree and

138

examines the first entry of node N11. Again, it indicates that there is a possibility

that some tuples it covers can dominate hotel 1 and so we move to node N111. Since

this is a leaf node, we retrieve the data tuples and compare them with hotel 1. Since

hotel 5 dominates hotel 1, the search is terminated. Now, let us consider hotel 4.

Similarly, we start with the first entry of node N1 and then examine the first entry

of node N11. However, since the rangeset of its stars attribute is [2,2] while that of

hotel 4 is 4. There is no way any tuples covered by this entry can dominate hotel 4.

Thus, we skip that branch and check the second entry. Since the second entry

indicates that some of its tuples might dominate hotel 4, we check the first entry

of node N112. As this is a leaf node, we retrieve the data tuples and compare with

hotel 4. Since no tuples can dominate hotel 4, we check the second entry which

gives us the same result and we then backtrack to the second entry of the root

node. In this entry, the rangeset of the stars attribute is strictly lower than that

of hotel 4. Hence, there is no way any tuples covered by the entry can dominate

hotel 4 and hence hotel 4 is output as an answer.

5.3 A B-tree-based Approach

The previous two approaches each utilizes a multi-dimensional index structure for

processing pareto queries. In this section, we introduce our third approach which

is based only on single-dimensional indexes e.g. B+-trees. While it requires a

single dimensional index to be built for each attribute that may be queried, these

indexes are still comparably cheaper to maintain than a single multi-dimensional

index. Moreover, since most commercial DBMS support at least one type of single-

dimensional index, this approach is easy to integrate into existing database systems.

5.3.1 The Model

Given the dataset D with d attributes A1, . . . , Ad, assume that each tuple ti ∈ D,

for 1 ≤ i ≤ |D|, is given a unique tuple id (tid) which is equal to i. We shall also

139

assume that for each attribute Aj, a single-dimensional index, indexj, is created

to index attribute Aj’s values. While our approach does not depend on the type

of index used, we adopted the B+-tree index in our work as it is available in all

commercial DBMS. From the index of Aj, we can derive a list of entries of the form

<tid, value> where tid is the tuple id of some tuple ti ∈ D and value is ti’s value

for Aj (denoted by ti.Aj). Each list of entries has the following properties:

Property 5.1. For each tuple ti ∈ D, 1 ≤ i ≤ |D|, there exists one and only one

entry with content <i, ti.Aj> in list j, 1 ≤ j ≤ d. Thus, there are |D| entries in

each list.

Property 5.2. Assume that a base preference Pj is specified on attribute Aj. Let

Lp denotes a sublist of entries that are derived from the index of Aj such that each

entry in Lp has the same entry value p. For any two sublists of entries, Lp and Lq,

where p 6= q, we write Lp ≈ Lq to mean that the values of the entries in Lp and Lq

are incomparable with respect to Pj and either Lp can be derived first or Lq. On the

other hand, we write Lp < Lq if the value of the entries in Lq is more preferred i.e.

strictly better than those in Lp. In this case, Lq must be derived before Lp. Now, if

Aj has k distinct values (v1, . . . , vk), the list of entries is derived from the index of

Aj in such a way that

Lv1≈ . . .≈Lvg <. . .< Lvh
≈ . . .≈ Lvi

< Lvj
≈ . . .≈ Lvk

where values of entries in Lvj
to Lvk

are incomparable to each other but all of them

are more preferred than the next set of incomparable values in the entries starting

from Lvh
to Lvi

and so on. We call such an order the maximal order 1.

It is relatively easy to derive the entries in the maximal order when the under-

lying index is the B+-tree. For example, if a HIGHEST preference is specified on

an attribute, we just need to scan the leaf nodes of the B+-tree in non-ascending

order of the attribute values to create the entries in maximal order. Note that

these entries are not pre-computed but are created on the fly during query evalu-

1We note that the maximal order is also an instance of a weak order. Deriving objects in
non-increasing weak order is also known as sorted access [38, 48, 49].

140

ation. Since our approach only requires that the entries form a maximal order but

is independent of how they are derived from the indexes, we shall assume for now

that entries derived from the indexes always form a maximal order. Towards the

end of this section, we describe how this is achieved using the B+-tree indexes for

each base preference.

Example 5.5. Consider our hotel relation in Table 5.1. Assume that an index

is constructed for the three attributes rates, area and stars. Figure 5.6 shows

the list of entries derived from the indexes based on the preferences specified in

our sample pareto query. For the stars attribute, the entries are ordered in non-

ascending order of the attribute values. For the rates attribute, the ordering is

based on the difference between a hotel’s rate and the ideal rate of 200 e.g. hotel 2’s

rate is only $200 - $190 = $10 lesser than the ideal $200. This is followed by hotel 5,

with the second smallest difference of $57 and so on. In other words, entries whose

values have the smallest differences are derived first. For the area attribute, we can

see that hotels in the favored area (uptown) are derived first. As an example of the

case where derived entries are incomparable, consider the base preference specified

on area to be POS(area,{uptown, midtown}) instead. In this case, it does not

matter whether entries for hotels 2 and 5 or entries for hotels 1, 3 and 4 are derived

first, although entries having the same value should be derived consecutively e.g.

deriving hotel 2, followed by hotel 3, then hotel 5 is not allowed in this case.

tid

1 midtown
3 midtown
4 midtown

Area

2 uptown
5 uptown

POS(uptown)

tid

2 190
5 257
1 280
3 308
4 314

Rates

AROUND(200)

tid Stars

4 4
2 3
3 3
1 2
5 2

HIGHEST

Figure 5.6: List of entries for the running example.

141

5.3.2 The Pareto Algorithm

We shall now present our algorithm for evaluating pareto preference queries, assum-

ing that entries are derived from the indexes in maximal order. WLOG, we assume

that the query consists of d preferences, one for each attribute of D. For conve-

nience, we shall call the set of answer tuples from evaluating the pareto preference

query to be maximal tuples.

Data Structures

We shall first describe the auxiliary structures used in our algorithm. The first

structure is a bitmap containing a single array of |D| bits. The ith bit of the

bitmap represents tuple ti and is set to 1 when ti is either found to be a maximal

tuple or is found to be dominated by a maximal tuple. The bitmap is used to

determine when the algorithm can terminate as well as to reduce the search space

in each iteration.

The second structure is a hash table that keeps a record of the number of times

a tid is “seen”. Whenever the algorithm examines an entry derived from any of

the indexes during evaluation, the tid of that entry is considered “seen” and the

number of times this tid is seen is incremented by one in the hash table. The hash

table is used for detecting a match. A match occurs when the number of times

a tid is seen is equal to the number of preferences specified. The tuple whose tid

results in a match, called the matched tuple, represents a potential maximal tuple.

Lastly, for each index, indexj, we store a bitmap structure, seenj, consisting of

|D| bits for that index. Similar to the first structure, the ith bit of seenj is used

to represent tuple ti. However, it is set to 1 only when the entry containing the

tid of ti is derived from indexj. Its purpose is to support the updating of the first

bitmap structure.

142

The Main Algorithm

Figure 5.7 gives the algorithmic description of our approach. The first bitmap struc-

ture described in the previous subsection is denoted by bitmap while the hash table

is denoted by htable in the algorithm. After initializing, the algorithm proceeds

in a number of iterations. Each iteration adopts a search-and-reduce strategy

which is made up of two phases. The first phase is used to search for some maximal

tuples to output while the second phase uses the maximal tuples found in the first

phase to reduce the search space for subsequent iterations by updating bitmap. The

algorithm terminates when all bits in bitmap are set to 1 which indicates that each

tuple in D is either output (because it is a maximal tuple) or eliminated (by some

maximal tuples). Notice that the algorithm is progressive as only a subset of the

maximal tuples are output in each iteration. We now describe the 2 key phases.

Algorithm Pareto
Input: Preferences P = (P1, . . . , Pd)
1. // initialization
2. set bitmap to 0 and htable to empty
3. while number of 1s bits in bitmap 6= |D|
4. // phase 1
5. results← findMaximal(bitmap, htable, P)
6. // output results
7. foreach t ∈ results, output t as an answer
8. // phase 2
9. updateBitmap(bitmap, results, P)

Figure 5.7: The main algorithm.

Phase 1: Searching for maximal tuples

The approach we adopt for finding maximal tuples in this phase is similar that

proposed in [6, 49]. However, as the context and overall strategy of our work is

different from them, similar results that are repeated here will be presented within

the context of our framework.

Figure 5.8 depicts the details of function findMaximal. The function consists

of two main steps. The first step (lines 3-11) is an adaptation of the first step of

143

Fagin’s A0 algorithm [36]. In this step, entries are derived simultaneously from the

indexes for processing i.e. the first entry from each index is derived first followed by

the second entry from each index and so on. Routine getNextEntry is responsible

for deriving the entries from the indexes in maximal order (line 6). It uses bitmap

to decide whether an entry can be discarded i.e. when the corresponding bit for

the entry’s tid is set to 1 in bitmap, or returned to findMaximal for processing.

seenj and vj are then updated with the returned entry’s tid and value respectively

(line 7). Function updateHTable is called next to update htable (line 8). After

every update, the function returns a boolean flag to indicate whether a match has

occurred. If a match occurs, the matched tuple, te.tid, is retrieved for inclusion into

the list of results, anslist, before exiting the first step (lines 9-11).

Function findMaximal
Input: Bitmap bitmap, Hash table htable

Preferences P = (P1, . . . , Pd)
Output: A set of maximal tuples
1. anslist← ∅; match← false
2. // Step 1
3. while not match
4. for j = 1 to d
5. if indexj has entries to derive then
6. e← getNextEntry(bitmap, indexj, Pj)
7. seenj.set(e.tid); vj ← e.value
8. match← updateHTable(htable, e.tid)
9. if match then
10. anslist← anslist ∪ te.tid
11. break
12. // Step 2
13. for j = 1 to d
14. while value of next entry from indexj = vj

15. e← getNextEntry(bitmap, indexj, Pj)
16. seenj.set(e.tid)
17. match← updateHTable(htable, e.tid)
18. if match then anslist← anslist ∪ te.tid
19. remove dominated tuples from anslist
20. return anslist

Figure 5.8: Function findMaximal.

144

Definition 5.2 (Matched tuple). Let Lj denote the list of entries derived from

the index of attribute Aj, for 1 ≤ j ≤ d. A matched tuple is a tuple in D whose

tid is seen in each Lj when the entries are derived from the indexes simultaneously.

Since each entry is derived only once in this phase, the tid is seen exactly d times.

In step 2 (lines 13-18), the processing is similar to step 1 except that only entries

with values vj are derived from indexj for processing. After step 2 is completed,

any tuples in anslist that are dominated by some other tuples in the same list

are removed (line 19). This ensures that the final tuples returned (line 20) do not

dominate each other.

We shall now show that the tuples retrieved by findMaximal in the first itera-

tion of the algorithm are a subset of the maximal tuples of the query. Subsequent

iterations will be discussed after we have described the second phase. For a start,

we would like to show the rationale for the second step since the first step alone

seems sufficient to determine maximal tuples. An example would make this clear.

Figure 5.9(a) shows a dataset having 2 attributes and 3 data tuples. Assume that

the query consists of HIGHEST preferences specified on both attributes. We show

the entries derived from the indexes in Figure 5.9(b). Notice that the first match

occurs at tid 2. However, tuple 2 is not a maximal tuple as it is dominated by

tuple 1. We note, that the first step is sufficient if each tuple in the dataset has

distinct attribute values from each other, but such cases are uncommon in practice.

2 80 90
3 90 70

1 80 95

tid tid tid

3 90
2 80

1 95
2 90

1 80 3 70
(a) dataset

A1 A2 A1 A2

(b) derived entries

Figure 5.9: Rationale for the second step.

Let us place the above scenario into perspective. Let tp be the matched tuple

found in step 1 and tq be a tuple whose tid is seen in step 1 but does not result in

a match. This means that tq has at least one attribute value, say tq.Aj, that might

be 1) strictly worse than tp.Aj or 2) incomparable to tp.Aj or 3) equal to tp.Aj. In

145

the first two cases, there are no way tq can dominate tp but such a possibility exists

in the third case. The purpose of the second step is thus to retrieve tuples that

fall in the third case. Before we show that the tuples returned by findMaximal are

indeed maximal tuples of the query, we first state an important lemma:

Lemma 5.1. After the execution of findMaximal, a tuple whose tid is not seen

cannot dominate the tuples in anslist.

Proof (By contradiction). Let tp be a tuple whose tid is not seen after the execution

of findMaximal but dominates at least one tuple, tq, in anslist. To dominate tq, tp

must have at least one of its attribute values, say tp.Aj, strictly better than tq.Aj.

However, since entries are derived in maximal order from the indexes, this means

that the tid of tp has to be seen during the execution of findMaximal. Therefore,

tp cannot dominate any tuples in anslist.

Lemma 5.2. Only maximal tuples are returned by function findMaximal in anslist.

Proof (By contradiction). Assume that there exists a tuple tp ∈ anslist that is not

a maximal tuple. This means that there must exist some tuple tq that dominates

tp. Due to Lemma 5.1, the tid of tq must be seen. Now, if the tid of tq results in a

match in either step 1 or 2, tq would have been retrieved and compared with tuples

in anslist, causing tp to be eliminated. Therefore, the tid of tq is seen but does not

result in a match. This also means that at least one of the attribute values of tq

is either incomparable or strictly worse than the corresponding attribute value of

the tuples in anslist. In either case, tq cannot dominate tp. Thus, tq cannot exist

and we can conclude that the tuples in anslist are maximal tuples.

Example 5.6. We shall now illustrate the first phase of the first iteration of our

Pareto algorithm using our running example (see Figure 5.10). In the first step of

findMaximal, entries are derived from the indexes simultaneously. The first match

occurs on tid 2. Hotel 2 is thus retrieved and stored in anslist. In the second

step, an additional entry is derived from the index of stars as it has the same

value as its last derived entry i.e. 3. Since there is no further matches, hotel 2

146

tid Rates tid Area tid Stars

seen1: 10010 seen2: 10010 seen3: 01110

2 uptown2 190 4 4

4 midtown

3 midtown

1 midtown

5 uptown

5 2

1 2

3 3

2 3

4 314

3 308

1 280

5 257

Figure 5.10: Illustration of findMaximal.

is returned and subsequently output as an answer. On the same figure, we also

show the current content of seenj where j = 1, 2, and 3 represents the content for

attributes rates, area and stars respectively. The dashed lines separate entries

that have been examined from those that have not.

Phase 2: Reducing the search space

The main purpose of the second phase is to use the maximal tuples found in the first

phase to identify those tuples that are dominated by them. Since these dominated

tuples cannot be part of the answers, we want to exclude them from subsequent

processing. Moreover, we would also want to exclude the maximal tuples found in

the first phase from subsequent iterations as they are incomparable to those tuples

that they cannot dominate. These exclusions essentially reduce the search space

for later iterations. We shall now present an important lemma that will help us

identify those tuples we want to exclude:

Lemma 5.3. Let x be a maximal tuple where x.Aj denotes the value of attribute

Aj, for 1 ≤ j ≤ d. If entries are derived from each index up to but excluding the

entry containing x.Aj, then tuples whose tids are currently seen cannot possibly

be dominated by x. Furthermore, if we exclude from the set of unseen tids, those

tids of tuples that have incomparable attribute values as x.Aj, then a tid that still

remains unseen is either dominated by x or has the same values as x.

Proof. Because entries are derived in maximal order, a tuple whose tid is seen will

have at least one of its attribute values either strictly better or incomparable to the

corresponding attribute value of x. In either case, x cannot dominate the tuple.

147

On the other hand, if we exclude from the unseen tids, those tids of tuples that

have attribute values that are incomparable to x’s, the remaining set of unseen tids

are tids of tuples that have attribute values that are equal or strictly worse than

x’s. Hence, they are either dominated by x or have the same values as x.

The reduction of the search space is achieved by manipulating the global bitmap

structure, bitmap. Recall that in phase 1, as entries are derived from the indexes,

bitmap is used to determine whether a derived entry needs to be processed or it

can be skipped. Hence, by indicating on bitmap those tuples that can be excluded

from subsequent evaluation, the entries of these tuples will be skipped in the first

phase of subsequent iterations, making the search in phase 1 more efficient.

Procedure updateBitmap
Input: Bitmap bitmap, L = {ti} for 1 ≤ i ≤ |L|,

Preferences P = (P1, . . . , Pd)
1. foreach tuple x ∈ L
2. seenset← 0
3. for j = 1 to d
4. tempj ← seenj // make a copy of seenj

5. end← current position of indexj

6. reset indexj such that next derived entry
starts from the first entry with value x.Aj

7. do
8. e← getNextEntry(bitmap, indexj, Pj)
9. tempj.reset(e.tid) // ‘unsee’ the tid
10. pos← current position of indexj

11. while pos 6= end
12. addUnrank(indexj, tempj, x.Aj, Pj)
13. seenset = seenset | tempj

14. // update bitmap
15. bitmap← bitmap | ! seenset
16. // update seenj using the updated bitmap
17. b← ! bitmap
18. for j = 1 to d
19. seenj ← seenj & b

Figure 5.11: Procedure updateBitmap.

Phase 2 is realized in routine updateBitmap. Figure 5.11 shows the algorithmic

description of this routine. The list L contains the maximal tuples found in phase 1

of the current iteration. For each maximal tuple, x, the algorithm re-derives en-

148

tries starting from the one with value x.Aj until the last derived entry examined

in phase 1 (lines 4-11). As entries are re-derived, a local copy of seenj, tempj,

is updated by setting the respective bits for the tids of the entries to 0. This is

equivalent to deriving entries from the index up to but excluding the entry contain-

ing value x.Aj. Subsequently, tempj is updated by routine addUnrank to include

the tids of tuples having attribute values that are incomparable to x.Aj (line 12).

It is then bitwise OR with seenset (line 13). seenset, thus, captures the tids of

tuples that either have strictly better or incomparable values to x.Aj. Eventually,

by executing a bitwise not operation on seenset (line 15), seenset now indicates

tids of tuples that have the same attribute values as x or are dominated by x (by

Lemma 5.3). Executing a bitwise OR with bitmap subsequently will update bitmap

to include the tids of tuples having the same attribute values as x as well as tuples

x dominates.

Once all the maximal tuples in L have been processed, the updated bitmap

is used to update the individual seenj. This is necessary because if a tid is now

excluded from subsequent processing (as indicated in bitmap), it should not be

considered during the processing of seenj i.e. the corresponding bit in seenj should

be set to 0. This step can be carried out efficiently by executing a bitwise and

operation between seenj and a copy of the negation of bitmap (lines 17-19). This

completes the second phase.

Example 5.7. Refer to Figure 5.12. The maximal tuple found in the first phase

is hotel 2 (190, uptown, 3). First, updateBitmap will re-start from the first entries

containing the values 190, uptown and 3 for attributes rates, area and stars

respectively (entries below the bold line in Figure 5.12). As it derives the entries

from each index, a duplicate copy of seenj, tempj, is updated and eventually bitwise

OR with seenset. The final state of tempi for each attribute is shown in the figure as

well. Finally, by executing a bitwise NOT on seenset followed by a bitwise OR with

bitmap, bitmap is now updated to reflect the tids of tuples that can be ignored in

subsequent iterations. Specifically, these are tuples 1, 2, 3 and 5. Tuple 2 is the

149

original maximal tuple while tuples 1, 3 and 5 are dominated by tuple 2. The final

content of seenset and bitmap are also shown in Figure 5.12.

tid Rates tid Area tid Stars

seen1: 10010 seen2: 10010 seen3: 01110

temp1: 00000 temp2: 00000 temp3: 01000

2 uptown2 190 4 4

4 midtown

3 midtown

1 midtown

5 uptown

5 2

1 2

3 3

2 3

4 314

3 308

1 280

5 257 seenset = 01000

bitmap = 10111

Figure 5.12: Illustration of updateBitmap.

Notice that procedure updateBitmap is called for each maximal tuple found

in the current iteration. This could be computationally expensive if the current

iteration finds many maximal tuples. One possible solution might be to do the

“unseening” process once using the best attribute value for each attribute of the

maximal tuples. Such a solution, however, only works for the case when the query

consists of 2 preferences. Consider Figure 5.13, which shows 3 sets of derived

entries. Assume that the query consists of 3 HIGHEST preferences. The first

match occurs for tid 1. Next, based on the value of the last entry derived for each

index, an additional entry is derived for index 3 i.e. (2, 60). Consequently, two

maximal tuples are found (tuples 1 and 2). If we now use the best attribute value

for the “unseening” process i.e. (90, 80, 70), tid 3 would be considered unseen and

eliminated from subsequent consideration. However, neither tuple 1 nor tuple 2

dominates tuple 3.

2 90 1 80 1 70

3 80

1 70

4 50 4 50

3 60

2 70

4 50

2 60

3 60

tid A1 tid A2 tid A3

Figure 5.13: Evaluation of query with 3 preferences.

We now discuss an approach which works relatively well in our experimental

study in solving the aforementioned problem. It works in a similar way as what we

have just described, using the best attribute values among all the maximal tuples.

150

To overcome the problem when the query consists of more than 2 preferences, after

we completed the “unseening” process using the new attribute values, for each

maximal tuple, we derive entries from each indexes until we reach the same point

if we were to do the “unseening” process for just that tuple. After this, we “unsee”

the tids just seen for the tuple in the usual way. The rest of the maximal tuples

are then processed in a similar way.

We would also like to point out a subtle point regarding incomparable values.

Recall that in Figure 5.11, routine addUnrank indicates on tempj the tids of tuples

having values that are incomparable to x.Aj. If x.Aj has many incomparable values,

this step becomes computationally expensive. Such a scenario always occurs when

preferences are specified on unordered attributes. For example, consider a NEG

preference specifying a single disliked value v for some attribute Aj. If a maximal

tuple having value w 6= v for Aj is found, addUnrank has to look for tids of tuples

which do not have values w or v for Aj. This set of tids is usually very large

unless the dataset contains many tuples having values w or v for Aj. This makes

addUnrank a very expensive operation. However, we can exploit the fact that

preferences specified on unordered attributes usually have very few levels in their

better than graphs.

We now show how this problem is solved for the NEG preference discussed

earlier. Other types of related preferences can be solved in a similar way. First,

prior to evaluating the query, we find the tids of tuples having value v first and

set on a separate bitmap, pre, the bits corresponding to these tids. Subsequently,

when we need to find the incomparable values of w, we first execute a bitwise NOT

on a copy of pre. Next, we look for tids of tuples having values w and set their

corresponding bits in pre to 0. Therefore, tids of tuples having values incomparable

to w will be marked in that copy of pre and we can use it to update tempj. From

our experimental study, we found that this approach is very effective in handling

preferences that are specified on unordered attributes.

Subsequent iterations of the algorithm are executed in a similar manner by

151

repeating both phases. However, as a result of updating bitmap in phase 2 of each

iteration, phase 1 of the next iteration will have fewer entries to process. This

makes the overall processing more efficient.

Example 5.8. A simple illustration of a subsequent iteration is shown in Fig-

ure 5.14. We show the updated seenj as well as bitmap in the figure. Entries are

tid Rates tid Area tid Stars

seen1: 00000 seen2: 00000 seen3: 01000

2 uptown2 190 4 4

4 midtown

3 midtown

1 midtown

5 uptown

5 2

1 2

3 3

2 3

4 314

3 308

1 280

5 257

bitmap: 10111

Figure 5.14: Subsequent iteration.

derived starting from the ones after the dashed lines. Since bitmap indicates that

tuples 1, 2, 3 and 5 should be ignored, entries for tid 1 is skipped for all attributes

and entries for tid 3 is skipped for attributes rates and area while entry for tid 5

is skipped for attribute stars. A match occurs on tid 4 in this iteration and is

determined to be a maximal tuple. At the end of this iteration, bitmap will contain

only 1s bits and the algorithm terminates.

Analysis of the Pareto Algorithm

Theorem 5.4 (Correctness and Completeness). The algorithm always termi-

nates and outputs all and only the maximal tuples of the pareto preference query.

Proof. We first prove by induction that the algorithm outputs only maximal tuples

in each iteration.

Basis Step: We have shown in Lemma 5.2 that only maximal tuples are output

in the first iteration.

Induction Hypothesis: Assume that the Pareto algorithm outputs only maximal

tuples in each iteration up to the nth iteration. Thus, at the end of this iteration,

bitmap would indicate the tids of maximal tuples found in this and earlier iterations

as well as those tuples dominated by them.

152

Induction Step: Consider the (n + 1)th iteration. Let tp be a tuple that is

dominated by a maximal tuple tq. Clearly, at least one attribute value of tp must

be strictly worse than the corresponding attribute value of tq while the rest of the

attribute values are either equal or strictly worse than the corresponding attribute

values of tq. We need to show that in this iteration, tp is not output if A) tq is

found in an earlier iteration; B) tq is to be found in the current iteration; C) tq is

to be found in a later iteration.

First, if tq is found in an earlier iteration, by the induction hypothesis, the tid

of tp would be reflected in bitmap, causing its entries to be ignored in the current

iteration. Hence, tp can never be output if tq is found in an earlier iteration.

Consider case B. For tp to have any chance of being output in this iteration, a

match has to occur for tp. Assuming that a match does occur for tp. Since tq is also

found in the current iteration, it will eventually be compared to tp and found to

dominate tp. Hence, tp can never be output if tq is found in the current iteration.

Now, consider case C. Since each attribute value of tp is either equal or strictly

worse than the corresponding attribute value of tq, a match cannot possibly occur

for tp without occurring for tq as well. As tq is to be found in a later iteration, tp

can never be output in the current iteration. This completes the proof and we can

conclude that our Pareto algorithm only outputs maximal tuples in each iteration.

Our Pareto algorithm always terminates because at the end of each iteration,

bitmap is always updated to include the tids of the maximal tuples found in the

current iteration and those tuples they dominate. Those tuples having tids whose

corresponding bits in bitmap are not set will have at least one attribute value which

is incomparable or strictly better than the maximal tuples found. Subsequently,

they are not ignored during evaluation and will result in a match or found to be

eliminated, causing their corresponding bits to be set to 1. Hence, all bits in bitmap

would be eventually set to 1 after which the algorithm terminates.

Finally, the algorithm never misses a maximal tuple. Consider a maximal tuple,

tp, that is not yet determined to be a maximal tuple in the current iteration.

153

Clearly, for each maximal tuple tq found in the current iteration, at least one of

the attribute values of tp must be incomparable or strictly better than that of tq’s.

Consequently, its tid will not be indicated in bitmap at the end of this iteration.

Therefore, in subsequent iterations, entries containing its tids will be processed

and a match will occur for tp which is then determined to be a maximal tuple.

Theorem 5.5 (Optimality). The Pareto algorithm retrieves and processes an

optimal number of data tuples in each iteration.

Proof. Data tuples are only retrieved in the first phase of the Pareto Algorithm.

We have shown that the matched tuple retrieved in step 1 is not guaranteed to

be one of the answers and more tuples may have to be retrieved in step 2. By

Lemma 5.2, at least one of the tuples retrieved in either one of these steps will be

a maximal tuple. Moreover, each retrieved tuple (whether it is a maximal tuple

or dominated by a maximal tuple) would be marked in bitmap and thus will not

be retrieved again in subsequent iterations. This means that the number of tuples

retrieved in phase 1 of an iteration has to be the minimum and hence the optimal

number of tuples that has to be retrieved.

Theorem 5.6 (No redundancy). Each maximal tuple of the pareto preference

query is output only once.

Proof. After each maximal tuple is output, its tid will be indicated in bitmap.

Subsequently, its tid is always ignored during evaluation and will never result in a

match again. Therefore, each maximal tuple will only be output once.

Theorem 5.7. The Pareto algorithm requires O(n2) time in the worst case for a

dataset of size n.

Proof. In the worst case, all tuples in the dataset are not dominated by any other

tuple. Hence, all tuples will eventually be compared with each other i.e. n2 com-

parisons are required, resulting in O(n2) time.

154

Deriving Entries for the Base Preferences

We now discuss how to derive entries in maximal order from the B+-tree indexes

for the base preferences:

Base preferences on ordered attributes. First, for the AROUND preference,

we start with the index entry in the B+-tree that has a value that is closest to

the desired value (in the case of a tie, we arbitrary choose one). To derive the

next entry, we examine the neighboring index entries of the previous index entry

as they are guaranteed to have the next shortest distance. Deriving entries for

the BETWEEN preference is analogous to that for AROUND preference except

that the distance is measured from the range instead of a desired value. For a

HIGHEST (LOWEST) preference, we examine the B+-tree index entries in non-

ascending (non-descending) order of attribute values.

Base preferences on unordered attributes. For these set of base preferences,

we can derive the entries from the indexes in a generic way. We first build a better

than graph for the respective preference. Then, we retrieve those index entries

having values that are in the highest level of the graph first, followed by those in

the second level and so on. For example, if the preference is POS(Aj, {v}), we

start with the B+-tree index entries having values v followed by those with values

not equal to v.

5.4 Performance Study

To evaluate the effectiveness of our proposed algorithms, we conducted an extensive

set of experiments to study its performance. All experiments are carried out on a

Pentium 4 PC with a 2.4 GHz processor and 256 MB of main memory running the

Linux operating system. Besides implementing our proposed algorithms: Bitmap

(bitmap), Pref-Tree (ptree) and B-tree (index), we also adapted the Block Nested

Loop algorithm (bnl) in [9] to handle pareto preference queries, and implemented a

disk-based version of the Best operator proposed in [100] (best). We also extended

155

the B-tree algorithm proposed in [9] to handle pareto preference queries (btree).

The extended B-tree algorithm works as follows. The first part of the algorithm is

similar to the first phase of our B-tree approach. However, as the original algorithm

does not handle incomparable values, we extended the first phase as follows. Let

vj be the value of the last retrieved entry of indexj when the first match occurs.

Then, in the second step, besides deriving entries having the same value as vj from

indexj, any derived entry with an incomparable value to vj will also be processed

as well. At the end of this step, any tids not seen by now cannot be a maximal

tuple. The remaining set of seen tids are then used to retrieve the actual data

tuples and a block nested loop algorithm applied on them to find the rest of the

maximal tuples.

The datasets used in all our experiments are generated in a similar way as

described in [9, 97]. Each dataset contains 100000 tuples, each of size 300 bytes.

Each tuple has 10 attributes of type integer and one “bulk” attribute that is packed

with garbage characters to ensure the tuple is 300 bytes long (the “bulk” attribute

is ignored during processing). There are 7 ordered attributes and 3 unordered

attributes. The domain of ordered attributes is (0, 1000] while the domain of

unordered attributes is (0, 200]. Three types of datasets are generated: (1) in the

independent datasets, attribute values of tuples are generated using a uniform

distribution; (2) in a correlated dataset, tuples whose attribute values are good

in one attribute are also good in other attributes and (3) in an anti-correlated

dataset, tuples whose values are good in one attribute are bad in one or all of the

other attributes. Details on the generation of the datasets can be found in [9].

Test queries consist of either 2, 3 or 4 preferences. The preferences used for or-

dered attributes are AROUND, BETWEEN, HIGHEST and LOWEST while pref-

erences POS, NEG, POS/NEG and POS/POS are used for unordered attributes.

We briefly describe how the preferences are generated. For the AROUND prefer-

ence, a number in the range of (0, 1000] is picked randomly as the desired value.

The BETWEEN preference is similar; a number in the range of (0, 1000] is chosen

156

as the low value and a value between (0, 50] is randomly generated to indicate the

spread. The up value is thus the sum of the low value and the spread. For the

non-numerical preferences, the respective set(s) of values for each preference range

from 1 to 5 values, with each value in the range of (0, 200].

We generate 100 queries each for queries containing 2, 3 and 4 preferences for

each type of dataset. However, we notice that the number of results for each

query can vary widely, ranging from a few hundred to a few thousand answers.

The number of results can affect the runtime drastically. For example, when there

are fewer number of results, bnl is very fast since the desired tuples can all fit in

memory. For larger number of results, bnl is extremely slow as more iterations

are required. best is also slow for large number of results as it needs to scan the

unresolved set once per result. Since we are recording the average timing over a

set of queries, we want to avoid the extreme cases. We do this by running the 100

queries first and then extracting those queries whose total number of results fall in

a certain range. For queries with 2 and 3 preferences, the range is 100 to 1000 while

the range for queries with 4 preferences is 1000 to 10000. The selected queries are

then re-run and their average timings computed. We believe that this will result

in a fairer comparison between the various algorithms. We also do not test beyond

5 preferences since it is unlikely for a user to give so many preferences in a single

query. Moreover, as the number of preferences increases, the number of results

increases rapidly. For example, for a pareto query consisting of 5 preferences, the

results may be as high as 50000. That is already half the size of the dataset and

hence not meaningful in general.

For the B-tree based algorithms (index and btree), one index for each attribute

is created prior to running the experiments. For best, a B+-tree index is used for

storing unresolved tuples during query evaluation and we maintain a window size

of 1MB for bnl as it is shown in [9] that bnl performs well with this amount of

memory. We also conducted a set of sensitivity studies on the parameters to be

used for bitmap and ptree prior to running the main experiments. However, due

157

to space constraints, we are not able to present them here. For bitmap, we use a

default of 10 segments of 10000 bits each for each attribute value. For ptree, the

default number of ranges in a rangeset is set to 5 while the size of the signature is

256 bits and 3 bits are used to represent each value. The default page size is 4K

and the resulting node size is 432 bytes.

We conducted the experiments on various types of datasets. However, since

the relative performance of the algorithms are similar, we will only present one

representative set of results which is based on independent datasets.

5.4.1 Initial Response Time

In this experiment, we examine the performance of the various algorithms in re-

turning first few answers quickly. We recorded the time each algorithm took to

output every 10 answers, up to 100 answers. Returning initial answers quickly

is important since most users will generally be interested in the top few results

that are returned first. We tested the algorithms using 2, 3 and 4 preferences.

Figure 5.15 shows the results for independent datasets.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Number of answers output

bnl
best

btree
index

bitmap
ptree

(a) 2 preferences

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Number of answers output

bnl
best

btree
index

bitmap
ptree

(b) 3 preferences

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Number of answers output

bnl
best

btree
index

bitmap
ptree

(c) 4 preferences

Figure 5.15: First 100 results, independent datasets.

From Figure 5.15, we can see that all our proposed algorithms are able to return

the first few answers very quickly. In fact, the first answer is almost instantaneous

in most experiments. Furthermore, all three algorithms’ performance in terms of

returning first answers are mildly affected by the number of preferences specified in

158

the queries. Among the three proposed algorithms, index has the best performance

in terms of returning first answers. The key contributing factor is the existence

of preferences on unordered attributes. Recall that in index, after a match occurs

when scanning the indexes simultaneously, each index is further scanned for entries

containing the same values as the match’s. Since there are fewer distinct values for

unordered attributes, this results in more entries being derived for them. Moreover,

most of these entries are pointing to actual answer tuples. For example, for a POS

preference, the entries containing the desired values (specified in the preference) are

derived first. Since no other tuples can possibly dominate the tuples referenced by

these entries, this means that these entries are actually pointing to actual answer

tuples. Subsequently, the first phase alone is sufficient to produce the first 100

answers. This is why index can, in general, produce the initial answers very quickly.

For bitmap and ptree, their performance in terms of producing first answers are

fairly close, with ptree equal or slower than bitmap. The slower response observed

in ptree is largely due to processing queries involving NEG preferences. For NEG

preferences, if a candidate tuple’s attribute value is in the NEG-set, the approach

will conservatively assume at each node that there is a possibility that some tuples

covered by the node have respective attribute values that are strictly better than

the candidate tuple’s value. This generally results in more branches to be traversed,

affecting ptree’s overall performance. An interesting observation is the ‘staircase’

pattern that is occasionally observed for both algorithms. This is because the

performance of both algorithms are affected by the clustering of the dataset. If a

set of tuples that are accessed consecutively from the dataset are all answer tuples

to the query, the time interval between the output of these answers will be hardly

noticeable. Such a case arise prominently for Figures 5.15(a) and 5.15(b) where

there are several small batches of consecutive answers.

For btree, its performance is good when few preferences are specified. This

is due to the way btree handles incomparable values. If the first match has an

attribute value that has many incomparable values, a lot of entries need to be

159

derived and processed after the match occurs. Consequently, with more preferences,

the overheads add up, resulting in a poorer performance. For best, it is also able to

produce the first set of answers fairly fast but does take some substantial amount of

time to generate all the 100 results. Recall that best keeps a set of unresolved tuples

at the end of each iteration. The unresolved set is large if results with low selectivity

is encountered as few tuples are eliminated. Thus, the next iteration will be slow

since a large number of tuples need to be examined again. This explains why it

cannot generate first answers very quickly. Notice that best’s ability to return first

answers is not severely affected by the increase in the number of preferences in the

queries. However, it does occasionally exhibit the ‘staircase’ pattern. In best, if an

initial selected tuple is not an answer tuple, it would be replaced during evaluation,

the replacing tuple has to be later compared with tuples in the unresolved set that

have yet to be compared with it. This results in a longer time to determine an

answer. On the other hand, if an initial selected tuple is an answer tuple or one

that is quickly replaced with an actual answer tuple, a shorter time is needed to

output the answer. Therefore, the ‘staircase’ pattern results if there exists batches

of answer tuples or tuples that are quickly replaced with actual answer tuples.

bnl’s performance is the worst. Besides having to make at least one scan through

the dataset, we found that it performs badly when there are preferences specified

on unordered attributes as they usually result in more answer tuples. This causes

more tuples to be kept in the buffer and subsequently, more comparisons are in-

curred, reducing its efficiency. Finally, we note that the performance of the various

algorithms is generally faster for the case of 3 preferences compared to 2 prefer-

ences. Upon investigation, we found that this is because most of the 2 preference

queries we extract our timings from have larger number of answers, hence, a higher

runtime. However, we can expect the performance for 2 preference queries to be

better in practice as the number of answers is generally smaller.

In summary, the results show that our schemes are able to produce the first few

answers quickly, especially in the case of index, making them suitable for online,

160

interactive applications that require a fast initial response.

5.4.2 Progressiveness of the Algorithms

In this experiment, instead of examining just the time to output the first 100

results, we examine the performance of the schemes in terms of how fast all the

answers are returned progressively. We ran the experiments using the 3 sets of test

queries and recorded the average time taken for each algorithm to output the first

tuple (close to 0%), 20%, 40%, 60%, 80% and 100% of the answers. Figure 5.16

shows our results for independent datasets.

 0

 3

 6

 9

 12

 15

 18

 21

 24

 27

 30

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

bnl
best

btree
index

bitmap
ptree

(a) 2 preferences

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

bnl
best

btree
index

bitmap
ptree

(b) 3 preferences

 0

 4

 8

 12

 16

 20

 24

 28

 32

 36

 40

 44

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

bnl
best

btree
index

bitmap
ptree

(c) 4 preferences

Figure 5.16: Interval timings, independent datasets.

From the figure, several observations can be made. First, the runtimes of all

algorithms increase with increasing number of preferences. It is well known in

the literature that the number of answers increases with increasing number of

preferences specified in the queries. Consequently, more time is required to find all

the answers and higher runtimes are expected (the exception is queries with three

specified preferences which we have explained why in the previous experiment).

Among all the algorithms, index is able to produce answers progressively faster

than the rest. Recall that in phase two of index, we exploited the fact that prefer-

ences specified on unordered attributes usually have very few levels in their better-

than graphs. Thus, we do some pre-computation prior to evaluating each query

to speed up the subsequent processing. Consequently, this has made the overall

161

processing very efficient which we observed in several of our experiments.

For bitmap, although it is able to produce first answers fairly quickly, its perfor-

mance in terms of producing answers progressively is poorer. This is due to the size

of each bit-slice being large and thus causes a substantial amount of I/Os as well

as processing cost to be incurred. However, notice that bitmap is less affected when

the number of preferences increases (although still poorer than index). This is a

direct consequence of not needing to retrieve and compare actual tuples in bitmap.

Hence, its performance does not drop as significantly compared to the rest.

For ptree, its performance in terms of progressiveness is generally poorer com-

pared to the rest. However, it is still able to produce 30% to 60% of the answers

significantly faster than bnl and best which require at least one scan of the original

dataset and multiple scans of subsets of the dataset. Furthermore, its progressive-

ness does not drop drastically when the number of preferences increases.

For btree, its performance is again worse for larger number of preferences. But,

this time, it is due to the large number of tids that have accumulated in the first

phase of the algorithm (especially when a lot of entries with incomparable values

are involved). This implies that many tuples will have to be retrieved and processed

by the block nested loop algorithm, causing a drop in performance.

For bnl, its performance is relatively unchanged compared to the previous ex-

periment. In the case of 2 and 3 preferences, the number of answers of our test

queries are not very large and most can fit in the window of bnl. Hence, after one

scan of the original dataset, all the answers are captured in the window and output

at almost the same time. For the case of 4 preferences, there are more answers and

hence, more scans are required, resulting in less uniform timings.

For best, we can observe that the first 20% of the answers are usually produced

less progressively. This is because in the initial scans of best, there are still quite a

number of non-answer tuples. Hence, more comparisons are incurred, resulting in

less progressiveness in the beginning. As more non-answer tuples are eliminated,

the unresolved set will get smaller and processing efficiency improves. Such a

162

pattern, however, is hardly noticeable for large number of preferences. This is

because there are now more answer tuples and hence, the unresolved set remains

large and its progressiveness does not improve as illustrated in Figure 5.16(c).

Finally, by looking at the time 100% of the results are produced, we can ob-

serve the algorithms’ performance in terms of overall runtime. We can see that

index outperforms the rest of the algorithms in terms of overall runtime. bitmap

is good for large number of preferences while ptree is the worst in terms of overall

runtime. Although bitmap and ptree are not particularly attractive in terms of

overall runtimes, we believe that their progressive nature will still make them at-

tractive options in interactive environments. In summary, the results show that our

proposed schemes are able to produce answers progressively with index having the

best overall performance. This makes them attractive approaches for evaluating

pareto preference queries.

5.4.3 Other Experiments

We also conducted other types of experiments. For brevity, we will present only a

representative set of results here (see Figure 5.17).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

bnl
best

btree
index

bitmap
ptree

(a) Anti-correlated dataset

 0

 36

 72

 108

 144

 180

 216

 252

 288

 324

 360

 0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Number of answers output

bnl
best

btree
index

bitmap
ptree

(b) 1 million tuples

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 20 40 60 80 100

tim
e

(s
)

% of answers output

bnl
best

btree
index

bitmap
ptree

(c) Skyline queries

Figure 5.17: Other experiments.

First, Figure 5.17(a) shows the interval timings for an anti-correlated dataset

using queries consisting of 4 preferences. The experimental setup is similar to pre-

vious experiments on independent datasets. From the figure, we can observe that

163

the relative performance of the various algorithms remains relatively unchanged

compared to using independent datasets except for higher runtimes. This is con-

sistent with the observation in [9] where anti-correlated datasets generally result

in more answers and hence, higher runtimes. It is interesting to note that bitmap’s

performance is now relatively close to that of index’s, indicating the suitability of

bitmap in answering queries that typically result in a larger number of answers.

Second, Figure 5.17(b) shows the results for returning the first 100 answers for

an anti-correlated dataset consisting of one million tuples. The queries used consist

of 3 preferences. The goal of this experiment is to test the scalability of the various

algorithms. For the figure, we can see that all our proposed schemes are able to

outperform the rest of the algorithms. The first answer produced remains almost

instantaneous. index performs the best again. However, ptree now performs better

than bitmap. This is because for a one million tuples dataset, the bit-slice becomes

even larger and hence the overheads of manipulating them become significant,

causing a drop in performance for bitmap. For btree, it took 4s to produce the first

answer and its performance deteriorates rapidly subsequently. This is because for

a large dataset, the initial scan will result in a larger number of index entries being

retrieved and hence the subsequent block nested loop algorithm has to evaluate

a larger number of tuples, resulting in a poorer performance. For best, it took

10s to produce the first answer but subsequent processing is relatively fast as the

unresolved set gets smaller. Lastly, bnl’s performance is the worst as more tuples

result in more comparisons which has a detrimental effect on its performance.

Third, Figure 5.17(c) shows the results for progressive skyline computation on

an anti-correlated dataset using queries consisting of 5 preferences. For this exper-

iment, we use a combination of LOWEST and HIGHEST preferences and capture

the interval timings. From the figure, we can see that index does not perform

well for skyline queries compared to bitmap and ptree. In fact, ptree is the more

progressive algorithm compared to the rest. Recall that index is particularly effec-

tive in evaluating queries which have preferences specified on unordered attributes.

164

The advantage is lost for skyline queries because the preferences are all specified

on ordered attributes. This results in more iterations of the two phases, resulting

in a drop in progressiveness. On the other hand, for ptree, it is fairly easy and

efficient to determine whether any tuples covered by a node strictly dominates a

candidate tuple. Since the preferences are only HIGHEST and LOWEST, only the

largest and smallest value of the rangeset is used for checking respectively. This

speeds up the processing substantially. The relative performance of bitmap, bnl

and btree remains unchanged compared to the experiments conducted for skyline

queries in chapter 3. It is important to note that bitmap’s performance is relatively

poorer compared to those experiments because we do not apply the ‘early skyline’

heuristic (described in [9]) here. Moreover, the absence of preferences on unordered

attributes, which is an important cause of slowdown in bnl and btree, results in a

better performance for both algorithms. However, the absence of such preferences

has no significant impact on best. Hence, its overall progressiveness for skyline

queries remains relatively similar to previous experiments.

Finally, Table 5.2 shows the construction cost of our proposed schemes as well

as their space consumption for an independent dataset. We can see that the cost

Build time (s) Index size (MB)

index 5 12
ptree 17 34

bitmap 54 92

Table 5.2: Construction costs.

and storage required for bitmap is very much higher than the rest. This is the

reason why the Bitmap scheme can only operate in more restrictive environments

such as data warehouses. On the other hand, ptree is more space efficient and thus

suitable for dynamic databases, although less efficient than bitmap. However, index

is clearly the best here and is suitable for most environments.

In summary, this set of experimental results show that our algorithms are not

only applicable for different data distributions, but are scalable and general enough

to address even skyline queries.

165

It is important to note that while index appears to be the clear winner in most

cases, we must not neglect the fact that it does not perform well for skyline queries.

Hence, in an environment where a large percentage of pareto queries are skyline

queries, index might not be the best option. Instead, bitmap and ptree could be

used. However, while bitmap is, in general, faster than ptree, it is costly in terms of

storage and is most suitable for static databases only. In such a scenario, if space is

an important issue or the databases are dynamic, then ptree could be an attractive

option if some loss in efficiency can be tolerated.

5.5 Summary

In this chapter, we have presented three approaches that can evaluate a broad

range of pareto preference queries efficiently. Besides providing a fast initial re-

sponse time, they can also return answers progressively to conserve computational

resources. The first exploits a bitmap structure while the second adopts a struc-

ture similar to the R-tree. The third approach relies only the existence of single-

dimensional indexes such as the B+-tree index which is commonly available in most

commercial DBMS. We also conducted an extensive performance study to evaluate

the effectiveness of our approaches against existing techniques. Our results show

that the third approach is the most effective in terms of initial response time and

progressiveness in most cases.

166

CHAPTER 6

Evaluation of Numerical Preference
Queries with Linear Scoring Functions

The previous three chapters have dealt explicitly with qualitative preference queries

which specify preferences between tuples directly using binary preference relations.

In this chapter, we consider quantitative preference queries which specify prefer-

ences indirectly using scoring functions. The scoring function is used to assign a

score to each tuple. The tuples can then be ranked according to scores and returned

to the users as answers.

A straightforward approach to evaluate such numerical preference queries would

be to look at each tuple, compute its score and then order the tuples by scores before

returning. However, this approach is not only inefficient but the answers can only

be returned upon complete evaluation of the query.

In this chapter, we focus our attention on evaluating numerical preference

queries utilizing only linear scoring functions over a relational database system.

We first provide some background information in section 6.1. Then, we propose

our efficient partition-based framework and algorithm that can return answers pro-

gressively as the query is being evaluated (section 6.2). A progressive approach is

particularly attractive for preference queries since users will typically be interested

only in the top few answers. Besides providing users with short initial response

time, the system can also better utilize its resources – should the user chooses to

167

terminate as soon as (s)he identifies the set of satisfactory answers, there is no need

to expend resources to complete the evaluation of the query.

Next, we propose three index-based partitioning strategies in section 6.3. Index-

based approaches are preferred as most indexes inherently partition the databases

(and hence saving the cost to partition the database at runtime), and are suit-

able for dynamic databases. Finally, we present our extensive performance study

in section 6.4 where we evaluate our proposed approaches against existing algo-

rithms [38, 48] which have to be adapted for answering numerical preference queries.

We also evaluated our work against the PREFER system [56] which is capable of

answering numerical preference queries. A summary is provided in the final section

of this chapter.

6.1 Preliminaries

In the preference model proposed in [65] and described in section 2.1, preferences

specified using scoring functions are known as numerical preferences. Consider

a relation R having a set of d attributes. Each attribute Aj of R for 1 ≤ j ≤ d

has an associated domain of values, dom(Aj). Recall that in the framework, a

numerical preference P on all d attributes of R is defined as:

P := rankF (SCORE(A1, f1), . . . , SCORE(Ad, fd))

where fj is a scoring function on attribute Aj, SCORE(Aj, fj) is the SCORE base

preference and F : R × . . . × R → R is the combining function. If ‘<’ denotes

the familiar ‘less than’ order on R, then, for any two records x = (x1, . . . , xd)

and y = (y1, . . . , yd) ∈ dom(A1) × . . . dom(Ad), y is ranked higher than x iff

F (f1(x1), . . . , fd(xd)) < F (f1(y1), . . . , fd(yd)).

For ease of reference, we shall refer to the attributes of a relation as dimensions,

i.e., each record with d attributes can be seen as a point in the d-dimensional

space. WLOG, we shall assume that the user specifies his (her) preferences on all d

168

dimensions. We discuss how to handle queries specified for fewer than d dimensions

in the next section. We also assume that each dimension is normalized to a common

range e.g. [0,1].

We adopt the linear scoring function for our work as it is commonly used for an-

swering preference queries. Let (w1, . . . , wd) be the preference vector that represents

the weights (importance) of dimensions A1, . . . , Ad respectively where
∑d

j=1 wj = 1

and 0 ≤ wj ≤ 1. For example, a tourist who is looking for budget hotel near the

city may place more importance on rates and give a weight of 70% to rates, and 30%

to distance. Let x = (x1, . . . , xd) be a record in the relation. Then, SCORE(Aj,

fj) is given by xj · wj where xj and wj represent the value and weight given for

dimension j. Hence, the score of x is the result of applying the combining function

F :
∑d

j=1 SCORE(Aj, fj) i.e.
∑d

j=1 xj · wj.

We note that values in the dimension can either be maximized or minimized. For

example, for a tourist, the hotel rates and distance from city should be minimized,

while the rating (e.g., 3 stars, 4 stars) should be maximized. For simplicity, we

shall assume that each dimension is to be maximized.

6.2 A Generic Partition-based Framework and

Algorithm

In this section, we present our proposed partition-based framework and algorithm

for evaluating numerical preference queries.

6.2.1 Partition-based Framework

The partition-based framework splits a dataset into partitions. The scheme is

independent of how partitions are generated, and we shall defer the discussion on

partitioning strategies to the next section. Once the partitions are created, we

represent each partition by two “corner” points of its bounding box. We select

these points such that given any set of weights, their scores bound the possible

scores of all points in their partitions. Note that the “corner” points need not

physically exist. We call the scores derived from these corner points as the upper

169

and lower bounds of a partition and they are defined as follows:

Definition 6.1 (Upper bound of a partition). Consider a partition C contain-

ing a set of d dimensional data points. Let |C| denotes the size of C and pij denotes

the value of dimension j of point i where 1 ≤ i ≤ |C| and 1 ≤ j ≤ d. The upper

bound corner point is given by point UP, (x1, x2, . . . , xd), where xj = max
|C|
i=1pij. In

other words, for each dimension, we pick the highest value among all the points in

the partition for that dimension to form the corner point. We say that the upper

bound of C is given by the score obtained from UP. Intuitively, the score of UP

will provide an upper bound for the scores of the points in the partition.

Definition 6.2 (Lower bound of a partition). Following the same idea as

Definition 6.1, we can create the lower bound corner point LP, (x1, x2, . . . , xd),

such that xj = min
|C|
i=1pij for 1 ≤ i ≤ |C| and 1 ≤ j ≤ d. This time, we pick the

lowest value among all the points in the partition for each dimension to form the

corner point. We say that the lower bound of C is given by the score obtained from

LP. Consequently, the score of LP will provide a lower bound for the scores of the

points in the partition.

Example 6.1. Consider the set of 8 3-dimensional data points shown in Fig-

ure 6.1(a). Assuming that the weights are 0.3 for dimension 1, 0.4 for dimension 2

and 0.3 for dimension 3. The last column of the table shows the score for each data

point based on the weights. In Figure 6.1(b), we show three partitions. Consider

the first partition of Figure 6.1(b). From Definition 6.1, the upper bound corner

point is given by (90, 90, 90). The first dimension of this point has value 90 be-

cause it is the maximum value among all the first dimension of each point in the

partition. The values of the other two dimensions are derived in the same manner.

Then, following Definition 6.2, we can get the lower bound corner point which is

given by (40, 40, 50).

Before we describe the query processing algorithm, we first define two important

theorems that present the intuition behind the algorithm.

170

50 90 50

80 80 90

90 40 60

40 50 90

90 80 80 30 10 80

10 20 10

20 10 10

90 40 60

40 50 90

30 10 80

10 20 10

20 10 10

90 80 80

data points

50 90 50

80 80 90

score

61

59

37

66

83

14

13

83

(a) data points

partition 1 partition 2 partition 3

(b) after partitioning

Figure 6.1: A running example.

Theorem 6.1. Consider two partitions C1 and C2. Let lb1 denote the lower bound

of C1 and ub2, the upper bound of C2. If ub2 < lb1, then no points in C2 can have

a score greater or equal to any points in C1. In other words, all points in C1 are

ranked higher than those points in C2.

Proof (By contradiction). Assuming that ub2 < lb1 and there exists a point p in

C2 having a score scorep greater or equal to some points in C1. In other words,

scorep ≥ lb1. Since ub2 < lb1, this also means that scorep > ub2. However, since

ub2 bounds the maximum possible score for C2, it is impossible to have such a

point p in C2. Thus, if ub2 < lb1, no points in C2 can have a score greater than any

points in C1.

Theorem 6.2. Again, consider the two partitions C1 and C2. If ub2 ≥ lb1, we

cannot be sure that all points in C2 will have a higher score than the points in C1.

However, any points in C1 whose scores are greater than ub2 are guaranteed to rank

higher than all points in C2.

Proof. We first divide C1 into 2 sub-partitions. The first sub-partition contains

points having scores greater than ub2 while the second sub-partition contains points

with scores less than or equal to ub2. Since the scores of points in the first sub-

partition is always greater than ub2, following Theorem 6.1, they are guaranteed

to rank higher than points in the second sub-partition and C2.

The above two theorems essentially give us the key to efficiency as well as

to return answers progressively. First, we can order the partitions so that we

171

can examine those partitions that are likely to contain higher scoring points first.

Second, we can return some answers without examining all partitions. For example,

consider two partitions C1 and C2. If they obey Theorem 6.1, then we can return

points in C1 without examining points in C2. If the number of points in C1 is

sufficient to meet the user’s need, we do not even need to evaluate partition C2.

On the other hand, if they obey Theorem 6.2, we can return points in the first

sub-partition of C1 immediately as answers.

We are now ready to look at the algorithm. Figure 6.2 shows the algorithmic

description of our query processing strategy. The algorithm is highly abstracted.

The input to the algorithm is a set of unordered partitions. We shall briefly dis-

cuss the routines and variables. ci denotes partition i of the data points. Rou-

tine order(C) orders a set of partitions in non-ascending order of their upper

bounds. addTuples(S, c) adds the data points in partition c to a partition S.

lowerBound(S) and upperBound(S) find the lower and upper bounds of a parti-

tion S respectively. score(p) calculates the score of a data point based on a set

of user specified weights. Finally, routine flush(S) is used to output all points in

partition S in non-ascending order of the points’ scores. As points are output from

S, they are also removed from S at the same time.

Steps 2–3 initialize the algorithm. It first creates an empty partition S for

storing data points that are potential answers. Next, it orders the partitions based

on their upper bounds (step 3) in non-ascending order. We shall see in the next

section how the partitions can be ordered as they are examined (when we discussed

index-based partitioning strategies).

Steps 4–15 present the main part of the algorithm. Steps 4–5 add the tuples in

the first partition to S and find the lower bound of S. As the points are added to

S, they will be ordered in non-ascending order of their scores. Subsequently, any

retrieval of points from S will also retrieve them in non-ascending order of their

scores. Then, for each partition, steps 7–8 apply Theorem 6.1 by checking if the

upper bound of the current partition is smaller than the lower bound of S. If it

172

Query Processing Algorithm
Input: A set of partitions C = {c1, c2, . . . , cn}
Output: Tuples in descending order of scores
1. // initialization
2. S ← ∅
3. C ′ = order(C) // C ′ = {c′1, c′2, . . . , c′n}

4. addTuples(S, c′1)
5. lb← lowerBound(S)
6. foreach c in c′2, c

′
3, . . . , c

′
n

7. if upperBound(c) < lb // apply Theorem 6.1
8. flush(S)
9. else
10. foreach p in S // apply Theorem 6.2
11. if score(p) > upperBound(c)
12. output p
13. addTuples(S, c)
14. lb← lowerBound(S)
15. flush(S)

Figure 6.2: The query processing algorithm.

is, it outputs all the points in S. Otherwise, Theorem 6.2 is applied (steps 10–12)

by outputting (and removing) those points in S whose scores are greater than the

upper bound of the partition under consideration. Next, the points in the current

partition is added to S and the new lower bound of S calculated (steps 13–14).

The whole process is repeated until all the partitions are processed.1

Notice that partition S is built dynamically and it is frequently accessed for ap-

plying the theorems and re-calculating the bounds and scores of points. Therefore,

in our actual implementation, we maintain S as a multimap whose keys are scores

of the points and the values are either pointers to the data points (if they are stored

in memory) or disk offsets indicating the position of the points in a temporary file

(if the points are stored on disk, as in the case when the memory buffer is full).

This ensures that our implementation is highly efficient.

Example 6.2. Continuing with Example 6.1, we illustrate the query processing

1For ease of presentation, we have assumed that all points are to be returned according to
their scores. For top-k preference queries, we can easily terminate the algorithm once the top-k
answers are returned.

173

using Figure 6.3. Figure 6.3(a) shows the partitions after ordering them based on

their upper bounds. Consider partition 1. UP is (90, 90, 90) and the upper bound

is given by 90 × 0.3 + 90 × 0.4 + 90 × 0.3 = 90. LP is (40, 40, 50) and the lower

bound is given by 40 × 0.3 + 40 × 0.4 + 50 × 0.3 = 43. At the start of the first

iteration, records in the first partition is added to partition S. This is illustrated

in Figure 6.3(b). From the figure, since the upper bound of the second partition is

less than the lower bound of S, by Theorem 6.1, all the records in S are output (in

sorted order based on their scores). The content of the second partition are then

added to partition S. In the second iteration (shown in Figure 6.3(c)), since the

third partition’s upper bound is again less than the upper bound of S, all records

in S can be output. The whole process then repeats itself till the required number

of records are output. As shown, the framework returns answers progressively.

data points

Partition 2:

score

30 10 80 37

Lower bound: 37

Upper bound: 37

(b) The first iteration

data points score

50 90 50

80 80 90

90 40 60
40 50 90
90 80 80

66

83

61
59
83

Upper bound: 90

Lower bound: 43

S:

data points

Partition 3:

10 20 10

20 10 10

score

Upper bound: 17

Lower bound: 10

14

10

data points score

30 10 80 37

Lower bound: 37

Upper bound: 37

S:

(c) The second iteration

data points

Partition 2:

score

30 10 80 37

Lower bound: 37

Upper bound: 37

Partition 1:

data points score

50 90 50

80 80 90

90 40 60
40 50 90
90 80 80

66

83

61
59
83

Upper bound: 90

Lower bound: 43

(a) before processing

data points

Partition 3:

10 20 10

20 10 10

score

Upper bound: 17

Lower bound: 10

14

13

Figure 6.3: Example on how the framework works.

6.2.2 Other Issues

In the above discussions on the proposed framework, we have imposed some re-

strictions on the domains and number of dimensions etc. Here, we shall discuss

174

how the scheme can be generalized:

1. Other domains. We have assumed that all dimensions have the same do-

main. Very often, different dimensions will have different domains. For exam-

ple, for a hotel relation, the domain of the price dimension is the set of real

numbers, while the domain of the rating dimension is just the enumerative

set containing integers 1 to 5. To handle dimensions with different domains,

we only need to normalize all domains to a common one, e.g., [0,1].

2. Number of dimensions. We have assumed that all the d dimensions are

used in the numerical preference query. For a query with fewer than d di-

mensions, we can set the weights of the other non-specified dimensions to 0.

In this case, the proposed algorithm can be used without changes.

3. Maximal and minimal dimensional values. We have considered only

dimensions whose values are to be maximized. For dimensions that need to

be minimized, we simply transform the original value. For example, if the

domain of dimension j is [0,1], and the value of a record in dimension j is k

(0 ≤ k ≤ 1), we can represent k by (1 - k). The proposed algorithm remains

unchanged. We note that, in most applications, it is not likely that values

for a single dimension are to be maximized and minimized at the same time.

For example, we would want to minimize the hotel rates and not maximize.

Thus, typically, we only need to keep one set of partitions. In the unlikely

case that a dimension may be used for both, we will have to keep separate

partitions for our proposed scheme.

4. Selection predicates. The proposed scheme do not deal with any selec-

tion predicates directly. For example, it is likely that a tourist will specify

additional predicates in the query, e.g., price < 200 and/or rating >= 3.

Clearly, these predicates can be considered while evaluating the preference

query. In fact, with such constraints, the proposed scheme can be optimized

to examine only relevant partitions, i.e., partitions whose points are outside

175

of the targeted range can be pruned away. Take the predicate rating >= 3

as an example. As we are ordering the partitions during the initialization

phase of the query evaluation, those partitions whose upper bound corner

points’ rating values < 3 can be removed from further processing. However,

we note that in general, mixing selection predicates in a preference query is

not a trivial issue [26, 51] and further investigations on this are required as

future work.

6.3 Index-based Partitioning Strategies

In presenting the proposed partition-based framework, we have assumed that par-

titions are already generated. While we can scan the database and generate the

partitions at runtime, this is not an efficient solution. Generating the partitions

apriori (e.g., using a clustering strategy) may also not be practical especially if

the database is frequently being updated. In this section, we shall look at three

partitioning strategies that are supported by indexes. We shall also look at how

these structures can be traversed to provide the ordering for the partitions (without

explicitly sorting them apriori).

6.3.1 R-tree Based Cluster Partitioning

Our first partition-based algorithm, R-tree based partitioning, employs the R-

tree [50] to index the d-dimensional points. The MBRs held at each leaf node

of the R-tree essentially provide “natural” clusters for the points indexed by the

R-tree. Hence, for each MBR, we can find its UP and LP as well as the correspond-

ing upper and lower bounds. Now, one straightforward strategy is to access the

MBRs and order them based on their upper bounds (see line 3 of the framework

in Figure 6.2). This, however, can be computationally expensive and unnecessary

(especially if the users choose to terminate as soon as (s)he gets some answers).

Instead, we can traverse the tree to access these clusters in the proper order (accord-

176

ing to the upper bounds produced by the MBRs). Figure 6.4 shows the traversal

algorithm.2

The algorithm is highly abstracted. Routine Enqueue(Q,N,S) inserts node N

with upper bound S into queue Q. We note that the operation sorts the elements

in Q and ordered them in non-ascending order of their upper bounds. Routine

Dequeue(Q) removes the first element from queue Q, i.e., the element with the

highest score. Function isLeafNode(N) returns true if node N is a leaf node and

false otherwise. Finally, function score(p) computes the score of the point p.

R-tree Ordered Traversal

1. Enqueue(Q, Root, 1)
2. while Q 6= ∅
3. node ← Dequeue(Q)
4. if isLeafNode(node)
5. load data page pointed by node
6. else
7. foreach (MBR, ptr) in node
8. S ← score(MBR’s top right corner point)
9. Enqueue(Q,MBR,S)

Figure 6.4: Traversing the R-tree in order.

To illustrate, consider the sample dataset (only the MBRs are shown - the

points are bound within the lowest level MBRs) shown in Figure 6.5(a). The

corresponding R-tree is shown in Figure 6.5(b). Initially, the root node is queued.

Then both its entries, MBRs 1 and 2 are examined. Let score(MBR x) be the

upper bound of MBR x. Suppose score(MBR 1) > score(MBR 2). Both MBRs

are queued with MBR 1 in the front of the queue. Next, MBR 1 is dequeued,

and MBRs 11 and 12 are examined. Suppose score(MBR 11) > score(MBR 2) >

score(MBR 12). Then, after insertion, the order in the queue will be MBR 11,

MBR 2 and MBR 12. Finally, when MBR 11 is examined, suppose its entries

MBRs 111 and 112 both have scores higher than MBR 2. They are then inserted

to the beginning of the queue. Eventually, MBR 111 (say with score higher than

2The algorithm only shows the traversal of the tree to retrieve partitions in a certain order.
For evaluating preference queries, it should be integrated with the framework in Figure 6.2.

177

MBR 112) will be dequeued, and its points examined (as in the framework in

Figure 6.2). This process is repeated as the R-tree is traversed for more partitions

to be accessed.

2
21

22

211

212

221222

1

11

12

111

112

121

122

(a) Data space

1 2

11 12 21 22

111 112 121 122 211 212 221 222

(b) R-tree

Figure 6.5: An example for R-tree traversal.

6.3.2 Quad-tree Based Grid Partitioning

The main problem with the R-tree based partitioning technique is that it may

result in partitions that overlap. This will mean that more partitions have to be

examined before answers can be returned. An alternative approach is to adopt

a hierarchical grid partitioning strategy. We begin with a grid cell that contains

all points. For each grid cell that contains more than a certain number of points,

we further partition it into four disjoint sub-grid cells. This process is recursively

applied until a grid cell is small enough (in terms of the number of data points in it).

Grid cells that do not contain any points are removed. The grid based scheme can

be easily supported by a Quad-tree [94]. An example of the partitioning strategy is

illustrated in Figure 6.6 using a 2-dimensional dataset. There are 7 data points and

we assume that each grid cell cannot contain more than 2 data points. Since the

initial number of data points exceeds the limit allowed (Figure 6.6(a)), the original

grid cell is sub-divided into 4 sub-grid cells (Figure 6.6(b)). Next, since grid cell 11

exceeds the limit allowed, it is further divided into 4 sub-grid cells (Figure 6.6(c)).

Finally, as grid cell 114 is empty, it is removed and a Quad-tree is built using the

remaining 6 grid cells. The traversal algorithm for the Quad-tree to access grid

178

cells that are in non-ascending order of the upper bounds is exactly the same as

that of the R-tree based scheme.

1 111 112

113 114

12

1413

12

1413

11

(a) (b) (c)

Figure 6.6: Illustration of hierarchical grid partitioning.

6.3.3 B-tree Based Edge Partitioning

In our final partitioning strategy, we partition the data points based on their

“edges”. An “edge” of a data point refers to the maximum or minimum value

among all dimensions of the point. Since we assume that values in each dimension

should be maximized, we partition points based on the maximum value in any of

their dimensions. In other words, let (x1, x2, . . . , xd) and (y1, y2, . . . , yd) be two

points in a partition. Then,
∣∣maxd

i=1 xi −maxd
i=1 yi

∣∣ ≤ ε where ε indicates the max-

imum difference allowed between maximum values of points in the same partition.

Figure 6.7 shows an example of edge partitioning where ε = 1. Figure 6.7(a) shows

a set of 5 3-dimensional points while Figure 6.7(b) shows the partitions created.

Consider partition 1. Both points are in the same partition because the difference

of their maximum values among all dimensions (90 and 89 respectively) is 1.

10 20 55

40 54 43

10 20 55

85 89 83

77 80 69

(a) data points

data points

40 54 43 partition 1 partition 2 partition 3

77 80 69

(b) after partitioning

85 89 83
90 88 88

90 88 88

Figure 6.7: Illustration of edge partitioning.

There are two main advantages of adopting such a strategy. First, the partitions

179

created generally have more distinct upper and lower bounds. This can improve the

efficiency of the query processing. Compare partitions 1 and 2 in Figure 6.7(b). The

lower bound point of partition 1 is given by the point (85, 88, 83). Hence, the lowest

score for any points in partition 1 has to be greater than 83 (given any preference

vectors). On the other hand, the upper bound point of partition 2 is given by the

point (77, 80, 69). Thus, the highest score for any points in this partition is less

than 80. Subsequently, during query processing, Theorem 6.1 can be applied to

output all points in partition 1, providing a fast initial response. Second, R-tree

and Quad-tree are known to be inefficient for high-dimensional data due to the

curse of dimensionality. However, since an edge is in a single dimensional space,

we can adopt a single dimensional index to index the points, taking advantage of

all the useful properties provided by the single dimensional access method.

For our work, we build a B+-tree as follows. Let (x1, x2, . . . , xd) be an arbitrary

point. Let xmax be the largest value among all the d dimensions of the data point.

The data point is then indexed using xmax as the key. Hence, the boundaries

between the partitions are now delineated by key values whose difference exceed ε.

Some bookkeeping is also done to track the boundaries so that partitions can be

accessed in order of non-ascending upper bounds.

6.4 Performance Study

To evaluate the effectiveness of our proposed approaches, we conducted an ex-

tensive set of experiments to study their performance. This section reports the

experimental setup and our findings.

6.4.1 Experimental Setup

All experiments are carried out on a Pentium III PC with a 866 MHz processor

and 128 MB of main memory running the Linux operating system.

We implemented our proposed query processing framework together with the

180

various index-based partitioning strategies. We shall denote the R-tree based ap-

proach as rtree, the Quad-tree based approach as quadtree and the B-tree based

approach as btree. We compare the proposed schemes against the followings:

• Threshold algorithm (denoted ta). We adapted the threshold algorithm3

in [38] as follows. Assume a d-dimensional dataset with an index for each

dimension. ta begins by scanning all the indexes simultaneously i.e. the first

index entry of each index is accessed first, followed by the second index entry

of each index and so on). As an index entry for a record r is retrieved, other

index entries of r are also retrieved from the other indexes (which may involve

doing random accesses to disk) and r’s score is computed. The index entry

of r and its associated score is then kept in memory. At the same time, ta

keeps track of the last entry seen in each index and computes a threshold

value from these entries. Let xi, where 1 ≤ i ≤ d, denotes the last indexed

value seen for index i and F , the combining function. Then, the threshold

value is given by F (x1, x2, . . . , xd). Whenever a seen index entry’s score is

greater than the threshold value, its data record is retrieved and output. It

has been proved in [38] that the output will be in descending order of scores.

• Quick-Combine (denoted qc). In [48], the authors proposed a basic version

which is similar to ta and a full version of the algorithm which we adapted

as follows. Again, assume a d-dimensional dataset with an index for each

dimension. Initially, qc retrieves the first m entries from each index and com-

putes an indicator value, 4i, for index i. If xi is the last index entry retrieved

and yi is the mth entry that is retrieved prior to xi in index i, then 4i is given

by wi · (yi − xi) where wi is the weight specified for dimension i. Next, other

index entries from other indexes corresponding to each of the m index entries

are loaded and their scores computed. Then, similar to ta, a threshold value

is computed and any seen records whose scores are greater than the threshold

3We note that an earlier algorithm, Fagin’s algorithm (FA) [36], is not used as it is shown
in [38] that the threshold algorithm is optimal in a much stronger sense than FA.

181

value are output. The most favoured index (based on 4i) is accessed next.

However, before the other index entries corresponding to this new index entry

are retrieved, the threshold value is computed again and records that now

have higher scores are output. Finally, the index entries are retrieved and a

new 4 is computed for that index. The algorithm then picks the next index

entry from the most favoured index for evaluation and this continues until

the top k answers are output. We note that an improved version of Quick-

Combine, proposed in [5, 49], is not adapted because it does not guarantee

the exact order of the top k matches. Although it would be interesting to see

a comparison using Quick-Combine for the case that all answers need to be

found, we have omitted it in this dissertation to maintain consistency across

the experiments in which all algorithms will produce answers that are ranked

in non-ascending order of their scores.

• Enhanced sort based algorithm (denoted sort). This scheme makes a single

pass over the dataset, and range-partitions the records into k partitions based

on the scores obtained from the preference function. Assuming that parti-

tion i contains records whose scores are less than partition j for i < j, we can

read partition j first, followed by partition j−1 and so on. As each partition

is read, the records are sorted, and can be returned to users immediately.

The datasets used in all our experiments are generated in a similar way as

described in [9]. Each dataset contains 100000 records, each of size 300 bytes.

Each record has d dimensions of type double (in the range of [0.0, 1.0)) and one

“bulk” attribute that is packed with garbage characters to ensure the record is 300

bytes (the “bulk” attribute is ignored during processing). Three types of datasets

are generated: (1) In the independent datasets, attribute values of records are

generated using a uniform distribution; (2) In a correlated dataset, records whose

attribute values are good in one dimension are also good in other dimensions. For

example, in a Hotels database, hotels that have higher ratings have higher room

rates; (3) In an anti-correlated dataset, records whose values are good in one

182

dimension are bad in one or all of the other dimensions.

Each test query is generated by assigning a weight, wi, in the range of [0.0, 1.0)

to each of the d dimensions such that
∑d

i=1 wi = 1. We assume the weights for the

various dimensions follow a Zipf-like distribution [109]. Each weight for a query is

generated as follows:

wi =
1

iγ ·∑d
j=1

1
jγ

where γ is the Zipf factor of the Zipfian distribution. When γ = 0, we have the

uniform distribution. When γ = 1, we have the highly nonuniform Zipf distribu-

tion. We believe that the Zipf distribution provides a good approximate model to

the way weights are assigned because in practice, each user is usually focused on

just a few key attributes which are given higher weights while assigning much lower

weights to the rest of the attributes. In all our experiments, we set the Zipf factor

to a default value of 0.8. We note that the answers to queries in all our experiments

are returned ordered by non-ascending score values.

We first conducted some experimental study to tune the parameters used in the

schemes. For quadtree, the maximum size of each grid cell is set to 2000 while for

btree, ε is set to 0.001. For qc, the value of m is 100 while for sort, 10 partitions

are used for range-partitioning.

6.4.2 Initial Response Time

In this experiment, we examine the performance of the various schemes in returning

first few answers quickly. We recorded the time (rounded to the nearest second)

each scheme took to output every 10 answers, up to 100 answers. We tested the

approaches using different datasets (independent, correlated, anti-correlated) using

records of dimensions 2, 5 and 8. Figures 6.8, 6.9 and 6.10 show our results for

independent, correlated and anti-correlated datasets respectively.

Figure 6.8 shows the results for independent datasets. From the results, sev-

eral observations can be made. First, all three of our proposed schemes produce

the initial answers very quickly (instantaneous in some cases). However, btree is

183

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Points found

rtree
quadtree

btree
ta
qc

sort

(a) dimension = 2

0

2

4

6

8

10

12

14

16

18

20

22

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Points found

rtree
quadtree

btree
ta
qc

sort

(b) dimension = 5

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Points found

rtree
quadtree

btree
ta
qc

sort

(c) dimension = 8

Figure 6.8: Timings of first 100 points for independent datasets.

generally slower for high dimensions. This is because when the number of dimen-

sions increases, the probability of a dimension having the maximum value increases.

Consequently, the upper bound of each partition in the btree will be much higher

than the scores of its records. Hence, more partitions have to be examined before

returning the first few answers, causing btree to perform slightly slower.

Second, sort’s performance is relatively stable for all dimensions. This is because

in all these cases, sorting of the first partition is sufficient to produce the answers

as the partition generally contains more than 100 records. ta and qc, on the other

hand, perform best when the number of dimensions is small (<5) but become

worse as the number of dimensions increases. This is a direct consequence of

having fewer indexes to scan when the number of dimensions is small, thereby

enabling it to produce first answers faster. We also observed that qc generally

produces first answers slower than ta. Recall that qc uses a heuristic approach to

determine which index should be accessed next during query evaluation. We found

that indexes whose dimensions are given higher weights have indicator values that

remain relatively high even after many of their entries are accessed. Although

this results in the retrieval of many potentially high scoring records, but since the

threshold value is now decreasing at a slower rate, most of these seen records’ scores

will be below the current threshold value most of the time and cannot be output.

Therefore, many index entries (and records) from those favoured indexes have to

184

be accessed before their indicator values drop sufficiently low for other indexes to

be accessed to reduce the threshold value further. This explains why qc has a much

higher initial response time.

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Points found

rtree
quadtree

btree
ta
qc

sort

(a) dimension = 2

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Points found

rtree
quadtree

btree
ta
qc

sort

(b) dimension = 5

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Points found

rtree
quadtree

btree
ta
qc

sort

(c) dimension = 8

Figure 6.9: Timings of first 100 points for correlated datasets.

Figure 6.9 shows the results for correlated datasets. From the figure, we can

see that the relative performance of the techniques remains unchanged compared

to using independent datasets except that they took a shorter time. All our three

proposed schemes perform well. This is because for correlated datasets, the bounds

of the partitions are much closer to the scores of their records. Hence, examining

the first few partitions after they are ordered is sufficient to find the first answers,

resulting in a fast initial response. sort’s performance only shows minor differences

since the first answers can again be located by just sorting the first partition. ta’s

performance is also better as the index entries of most of the top scoring records

are retrieved from the indexes first in correlated datasets. This reduces the initial

scanning time significantly and thus its performance is better. For qc, although

only 1 or 2 indexes are mainly accessed initially (see previous paragraph), some of

these seen records (about 20 of them) have scores that are higher than the initial

high threshold value and are thus output early, providing a faster initial response.

Figure 6.10 shows the results for anti-correlated datasets. From the figure, the

relative performance of the various schemes remains unchanged compared to using

the independent datasets except that they took a longer time. In anti-correlated

185

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Points found

rtree
quadtree

btree
ta
qc

sort

(a) dimension = 2

0

2

4

6

8

10

12

14

16

18

20

22

24

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Points found

rtree
quadtree

btree
ta
qc

sort

(b) dimension = 5

0

5

10

15

20

25

30

35

40

45

50

55

0 10 20 30 40 50 60 70 80 90 100

tim
e

(s
)

Points found

rtree
quadtree

btree
ta
qc

sort

(c) dimension = 8

Figure 6.10: Timings of first 100 points for anti-correlated datasets.

datasets, the dimensions’ values vary widely. This causes the bounds of the parti-

tions to differ widely from the scores of the records they contain. For example, in a

8-dimensional dataset, the bounds of the first few partitions produced by quadtree

are in the range of 0.8-0.9 while the records’ scores in these partitions are only in

the range of 0.5-0.6. Therefore, the first few partitions that are processed generally

do not produce any answers but they will incur a runtime penalty. This explains

why our proposed schemes generally took a slightly longer time to produce the first

answers. For sort, its performance remains fairly consistent again for the same rea-

sons discussed in previous paragraphs. For ta and qc, their performance is good for

low dimensions. However, ta’s performance degrades rapidly for high dimensions.

This is because besides having to access more indexes for high dimensional data,

a higher scanning cost is also incurred in ta as the index entries accessed initially

usually do not result in high scoring records. In contrast, qc is less affected as it is

designed to counter problems encountered in non-uniform datasets.

In summary, all our proposed schemes are able to perform as well as or better

than the reference techniques in terms of returning first answers. Therefore, they

are attractive options in interactive applications where the first few answers are

crucial to answering the users’ queries. In particular, the R-tree and Quad-tree

schemes are the overall winners in this aspect.

It is interesting to note that the average time to produce every 10 answers (up to

186

100) is relatively constant for most schemes. This is because we tested the schemes

using a lightly-loaded system for a single user. We believe that the deviation will be

more obvious in a multi-user, heavily loaded system. However, based on the current

results, we are confident that our proposed schemes will continue to perform well

under such circumstances.

6.4.3 Progressiveness of the Algorithms

In this experiment, instead of examining just the time to output the first 100

results, we examine the performance of the schemes in terms of how fast all the

answers are returned progressively. We tested the schemes using different datasets

(independent, correlated, anti-correlated) using records of dimensions 2, 5 and 8.

However, besides keeping track of the overall runtime, we also recorded the time

taken for each algorithm to output the first tuple (close to 0%), 20%, 40%, 60%,

80% and 100% of the answers. All timings are rounded to the nearest second.

Figures 6.11, 6.12 and 6.13 show our results for independent, correlated and anti-

correlated datasets respectively.

0

2

4

6

8

10

12

14

16

18

20

22

0 20 40 60 80 100

tim
e

(s
)

% of answers output

rtree
quadtree

btree
ta
qc

sort

(a) dimension = 2

0

4

8

12

16

20

24

28

32

36

40

0 20 40 60 80 100

tim
e

(s
)

% of answers output

rtree
quadtree

btree
ta
qc

sort

(b) dimension = 5

0

7

14

21

28

35

42

49

56

63

70

0 20 40 60 80 100

tim
e

(s
)

% of answers output

rtree
quadtree

btree
ta
qc

sort

(c) dimension = 8

Figure 6.11: Interval timings for independent datasets.

Figure 6.11 shows the results for independent datasets. From the figure, several

observations can be made. First, rtree outperforms the rest of the schemes when

the number of dimensions is small (<5). However, it is less progressive for high

dimensions. This is because when the number of dimensions increases, there are

187

more overlaps in the partitions. Consequently, each partition has a higher mixture

of high and low scoring records and significant overhead is required to manage

those low scoring records, causing a drop in performance. quadtree also performs

well for small dimensions but degrades rapidly for higher dimensions. This is

because as the number of dimensions increases, the number of grid cells produced

by the hierarchical partitioning decreases. Consequently, each grid cell contains

more records, each with a higher mixture of high and low scoring records. Thus,

more time is spent processing each grid cell and managing the low scoring records,

causing the performance to decrease. For btree, it is generally slower than rtree

and quadtree because the bounds of partitions from rtree and quadtree are generally

tighter than those produced from btree. Consequently, higher processing overheads

are incurred in btree. However, we note that btree is not severely affected by high

dimensionality. This is because it does not make use of the spatiality of the data

for its partitioning.

Second, sort’s performance is relatively good compared to ta and qc and re-

mains consistent for the various dimensions. On the other hand, ta and qc are

characterized by a high initial response time for high dimensions. This is again a

direct consequence of having to access more indexes for higher dimensions. It is

interesting to note that ta and qc take a substantial amount of time to output the

first 20% of the answers while their progressiveness are better subsequently. Recall

that in ta and qc, when an index entry of a record r is accessed from an index,

random accesses are made to other indexes to retrieve other index entries of r so

that r’s score can be computed. Moreover, not all of these records are immediately

output (if their scores are below the current threshold). However, the I/O overhead

incurred is significant enough to cause the first 20% of the answers to be output

slower. Then, by the time 20% of the answers are output, a substantial number of

records and their scores would have already been computed and hence answers can

be output at a faster rate subsequently.

Figure 6.12 shows the results for correlated datasets. Again, the relative per-

188

formance of the various schemes is similar to using independent datasets except

that they took a shorter time. We note that in correlated datasets, the bounds of

the partitions in rtree, quadtree and btree are generally closer to the scores of their

records. Hence, the three proposed schemes perform better. However, rtree is now

the clear winner. sort’s performance remains consistent while ta and qc are able to

return initial answers faster although their progressiveness remain relatively similar

to using independent datasets.

0

2

4

6

8

10

12

14

16

18

20

0 20 40 60 80 100

tim
e

(s
)

% of answers output

rtree
quadtree

btree
ta
qc

sort

(a) dimension = 2

0

4

8

12

16

20

24

28

32

36

40

44

0 20 40 60 80 100

tim
e

(s
)

% of answers output

rtree
quadtree

btree
ta
qc

sort

(b) dimension = 5

0

8

16

24

32

40

48

56

64

72

80

0 20 40 60 80 100
tim

e
(s

)
% of answers output

rtree
quadtree

btree
ta
qc

sort

(c) dimension = 8

Figure 6.12: Interval timings for correlated datasets.

0

2

4

6

8

10

12

14

16

18

20

22

0 20 40 60 80 100

tim
e

(s
)

% of answers output

rtree
quadtree

btree
ta
qc

sort

(a) dimension = 2

0

3

6

9

12

15

18

21

24

27

30

33

36

0 20 40 60 80 100

tim
e

(s
)

% of answers output

rtree
quadtree

btree
ta
qc

sort

(b) dimension = 5

0

7

14

21

28

35

42

49

56

63

70

0 20 40 60 80 100

tim
e

(s
)

% of answers output

rtree
quadtree

btree
ta
qc

sort

(c) dimension = 8

Figure 6.13: Interval timings for anti-correlated datasets.

Finally, Figure 6.13 shows the results for anti-correlated datasets. Again, the

relative performance of the various schemes remains relatively unchanged compared

to independent datasets except that they took a longer time. Recall that in anti-

correlated datasets, the bounds of the partitions in rtree, quadtree and btree are very

189

much higher than the scores of their records. As such, there are more processing

overheads and thus they take a longer time. However, all our three schemes are

able to produce at least the first 20% of the answers faster than the rest, with rtree

having the best overall performance. This clearly indicates the effectiveness of our

schemes in answering numerical preference queries.

For sort, its performance is again consistent with previous experiments although

we note a deviation from the norm when the number of dimensions is greater than 5.

Upon investigation, we found that the number of records per partition after the

initial scan is quite uneven. Hence, those larger partitions took a much longer time

than usual resulting in a slight drop in performance. Finally, for ta and qc, we can

see that they now take a substantial amount of time to produce even the initial set

of answers. By the time the initial scan completes, a lot of records’ entries would

have been accessed and the scores of their respective records computed. Hence,

answers are produced at a faster rate even for the first 20% of the answers as

compared to using other types of datasets.

In summary, the results show that our proposed schemes besides being able to

produce first answers fast, are also effective in producing answers progressively to

the extent of returning all the results sorted by score. In particular, our R-tree

scheme remains the most attractive option by outperforming the rest in most cases

for different datasets of varying dimensions.

6.4.4 Comparing the Overall Runtime

In this experiment, we examine the total amount of time needed by each scheme.

We tested the algorithms for each type of dataset (independent, correlated, anti-

correlated) using records of dimensions 2, 5 and 8. Figure 6.14 shows the results

of the experiment.

From the figure, we can see that our schemes outperform ta and qc for every

dimension and for each type of dataset. We also observe that sort outperforms our

proposed schemes in some cases. This is expected since our schemes are designed

190

0

7

14

21

28

35

42

49

56

63

70

2 5 8

tim
e

(s
)

Number of dimensions

rtree
quadtree

btree
ta
qc

sort

(a) Independent

0

8

16

24

32

40

48

56

64

72

80

2 5 8

tim
e

(s
)

Number of dimensions

rtree
quadtree

btree
ta
qc

sort

(b) Correlated

0

7

14

21

28

35

42

49

56

63

70

2 5 8

tim
e

(s
)

Number of dimensions

rtree
quadtree

btree
ta
qc

sort

(c) Anti-correlated

Figure 6.14: Actual runtime.

to return initial answers quickly rather than achieving a low overall runtime. The

R-tree scheme, in particular, is able to outperform the rest in most cases. In

conclusion, the results show that our proposed schemes not only can return answers

progressively, but can outperform the other techniques in terms of overall runtime.

6.4.5 Effect of Dataset Size

In this experiment, we examine the effect of varying the size of the datasets.

We recorded the time each scheme took to output the first 100 answers using 5-

dimensional datasets (independent, correlated and anti-correlated) containing 50K,

100K, 200K and 500K records. Figure 6.15 shows the results of the experiment.

 0

 9

 18

 27

 36

 45

 54

 63

 72

 81

 90

50K 100K 200K 500K

tim
e

fo
r

fi
rs

t 1
00

 r
es

ul
ts

 (
s)

Number of records

rtree
quadtree

btree
ta
qc

sort

(a) Independent

 0

 7

 14

 21

 28

 35

 42

 49

 56

 63

 70

50K 100K 200K 500K

tim
e

fo
r

fi
rs

t 1
00

 r
es

ul
ts

 (
s)

Number of records

rtree
quadtree

btree
ta
qc

sort

(b) Correlated

 0

 12

 24

 36

 48

 60

 72

 84

 96

 108

 120

50K 100K 200K 500K

tim
e

fo
r

fi
rs

t 1
00

 r
es

ul
ts

 (
s)

Number of records

rtree
quadtree

btree
ta
qc

sort

(c) Anti-correlated

Figure 6.15: Varying the size of the datasets.

From the figure, we can see that all our schemes outperform the reference tech-

191

niques when we vary the size of each type of dataset. rtree and quadtree, in par-

ticular, have a very short initial response time compared to btree. This clearly

indicates the scalability of our proposed schemes. ta and qc, on the other hand,

perform badly, especially for independent and anti-correlated datasets. This is

expected since our prior experiments already indicate that both schemes will not

perform well for these cases. This effect is even more pronounced as we increase

the size of the datasets as this incurs an even higher initial scanning cost for them,

lowering their performance further. For sort, the need to scan the dataset at least

once makes it unattractive for applications that require fast answers, especially in

the case when the dataset is large. In summary, the results show that our proposed

schemes are still able to produce first answers efficiently even though the datasets

can be very large. In particular, the R-tree and Quad-tree based schemes are the

most suitable for handling various type of datasets of varying sizes.

6.4.6 Evaluation Against the PREFER System

To further study the effectiveness of the proposed schemes, we also set up an

experiment to evaluate them against the PREFER system [56]. PREFER is a

“middleware” that sits on top of a DBMS. We adapted the source code provided

by the authors to run on Microsoft Access 97 database. We also implemented

the Quad-tree and B-tree based schemes as middlewares for evaluation against

PREFER. For quadtree and btree, instead of building the trees, we only store the

partitions, and order them at runtime (as presented in the framework in Figure 6.2).

We did not compare with rtree as there are too many clusters to manage. In any

case, since the R-tree based scheme has been shown to outperform quadtree and

btree in most cases, the performance between PREFER and quadtree and btree

would be sufficient to reflect the effectiveness of the proposed preference query

processing framework. All the algorithms are programmed using Java and the data

access is done by using the JDBC-ODBC bridge to connect to the Microsoft Access

97 database. The experiments are conducted on a Pentium 266 MHz machine

192

with 64 MB of RAM and 4 GB of harddisk space. In PREFER, a query to the

middleware requires (1+d) SQL queries. For quadtree and btree, every partition

requires one SQL query.

We note that PREFER operates with materialized views of predetermined pref-

erence vectors. As such, queries with similar preference vectors can be quickly

answered by the views. However, PREFER does not guarantee correctness if the

view of a preference query is not materialized, i.e., it only produces approximate

answers for such queries. We used the same datasets and queries as in the earlier

experiments. For PREFER, we used 30 views. This results in almost 30 times the

storage space than the proposed schemes. We evaluated two versions of PREFER.

In the first case, denoted PREFER-OPT, we created additional views correspond-

ing to the preference vectors of the queries. This allows us to study PREFER at

its optimal performance. The second version, denoted PREFER, answers queries

based on only the 30 views that are materialized.

Figure 6.16 shows the rate at which answers are returned for the various schemes.

We only present the results for d = 5; other dimensions show similar results. First,

as expected, PREFER is worse than PREFER-OPT. This is because PREFER has

to incur more time to determine the next watermark when the preference vectors

of queries do not match those used in the materialized views. Second, we note

that quadtree and btree perform generally better than PREFER for independent

and correlated datasets; for anti-correlated dataset, PREFER is generally superior.

However, in all cases, both quadtree and btree can provide the first few tuples al-

most instantly, while PREFER based schemes suffer a delay. While the proposed

schemes only need to fetch the first partition, the PREFER based schemes require

some start-up overhead to determine the best view to use, and to determine the

first watermark.

The total time results for varying dimensions are shown in Figure 6.17. We

have compared quadtree and btree with PREFER-OPT (since PREFER is worse

than PREFER-OPT). As shown, it is interesting to note that both quadtree and

193

btree perform as well as PREFER-OPT. In fact, btree is almost always slightly

better than PREFER-OPT. The poor show of PREFER-OPT is attributed to the

need to recompute the watermark.

0

40

80

120

160

200

240

0 20 40 60 80 100

T
im

e
(s

)

% of answers output

quadtree
btree

PREFER
PREFER-OPT

(a) Independent

0

40

80

120

160

200

240

0 20 40 60 80 100

T
im

e
(s

)

% of answers output

quadtree
btree

PREFER
PREFER-OPT

(b) Correlated

0

40

80

120

160

200

240

0 20 40 60 80 100

T
im

e
(s

)

% of answers output

quadtree
btree

PREFER
PREFER-OPT

(c) Anti-correlated

Figure 6.16: Interval timings for d = 5.

100

150

200

250

300

350

400

2 5 8

T
im

e
(s

)

Number of dimensions

quadtree
btree

PREFER-OPT

(a) Independent

100

150

200

250

300

350

2 5 8

T
im

e
(s

)

Number of dimensions

quadtree
btree

PREFER-OPT

(b) Correlated

100

150

200

250

300

350

2 5 8

T
im

e
(s

)

Number of dimensions

quadtree
btree

PREFER-OPT

(c) Anti-correlated

Figure 6.17: Actual runtime.

Finally, we evaluated the proposed methods against PREFER-OPT on a con-

straint query that retrieves only 10% of the answer tuples. The number of dimen-

sions used is 5, and the dataset is anti-correlated. This constraint is placed on one

single dimension only (of the form 0.8 ≤ d1 ≤ 0.9 where d1 represents the first

dimension). As shown in Figure 6.18, quadtree turns out to be the best strategy

here since it can pick out the relevant partitions quickly. While btree outperforms

PREFER-OPT, it is inferior to quadtree as more answers are returned. This is be-

cause the “edge” is used as the partitioning criterion. As such, the sets of partitions

194

to be pruned is much smaller. PREFER-OPT is the worst scheme as it is unable

to exploit the constraints to prune away any unwanted answers - the pruning has

to be done after answers are obtained.

0

40

80

120

160

200

240

0 20 40 60 80 100

T
im

e
(s

)

% of answers output

quadtree
btree

PREFER-OPT

Figure 6.18: Constraint preference query.

To summarize, the proposed schemes not only can outperform PREFER, but

they guarantee correctness of answers, and are capable of dealing with ad-hoc

queries (with wide range of preference vectors) as well as queries involving con-

straints. In addition, they do not require a substantial amount of storage to main-

tain multiple views.

6.5 Summary

In this chapter, we have presented a partition-based framework for evaluating nu-

merical preference queries. We have also proposed three index-based partitioning

schemes: the first uses clusters obtained from the leaf nodes of a R-tree as parti-

tions, the second adopts a hierarchical grid partitioning technique using a Quad-

tree, and the third partitions the data based on the maximum/minimum values

of the attributes to be indexed by a B-tree. We also conducted an extensive per-

formance study that showed the efficiency of the proposed schemes. Our results

show that the proposed schemes provide short initial response time and return first

few answers very quickly. Moreover, the schemes outperform existing techniques

195

in terms of total response time. We also evaluated our work against the PREFER

system [56] which can be used directly to answer preference queries. Our evaluation

against PREFER further confirms the effectiveness of our proposed schemes.

196

CHAPTER 7

Conclusion and Future Work

Skyline and preference query processing over relational database systems is an

emerging domain of research. Traditional database queries based on exact match

semantics frequently result in either the ‘no match’ effect where no answers are

found or the ‘flooding’ effect where too many answers (mostly irrelevant) are re-

turned. Such effects are clearly undesirable and is a source of frustration for users

browsing databases for interesting information.

Supporting best match searches in the form of skyline and preference queries out-

line in this thesis provides a means to overcome the aforementioned effects. While

several preference frameworks for database systems have been proposed recently,

efficient structures and algorithms for evaluating such queries are still lacking. In

this dissertation, several novel approaches to evaluating skyline, pareto and nu-

merical preference queries over relational database systems are proposed. All the

proposed schemes share two common notable features that are clearly important

in today’s applications:

1. All the techniques provide a fast initial response time by returning answers as

soon as they become available. This is particularly important for interactive

applications where the first few answers returned are sufficient for the users

to form a big picture of the available options.

197

2. All the techniques are progressive i.e. they do not attempt to find all the

answers in one shot. Instead, partial results are computed and returned to

users initially and more results computed on demand. This allows users to

terminate the processing prematurely as soon as (s)he is satisfied with the

partial answers, saving precious resources in computation.

All the proposed schemes are further analyzed empirically through extensive ex-

perimental studies and the results indicate that the proposed schemes are indeed

promising. We shall now reiterate specific contributions of this thesis.

7.1 Contributions

In chapter 3, we have considered the progressive computation of skylines and have

proposed two algorithms for evaluating such skyline queries. The first approach

(Bitmap) takes advantage of the fact that bitwise operation is fast and exploits a

bitmap structure to quickly identify whether a point is in the skyline. The second

approach (Index) exploits a transformation mechanism and a B+-tree index to

determine skyline points in bursts. We implemented the algorithms and evaluated

them against existing techniques. We also conducted several experiments involving

mix annotations which is largely ignored in most existing work. Our results indicate

that our Index scheme is superior in most cases while Bitmap performs well for

small number of distinct values per dimension as well as in cases where the number

of skyline points is large.

Like most existing work, our work on progressive skyline computation deals ex-

clusively with totally-ordered attribute domains. Evaluating skyline queries where

domains might be partially-ordered such as set-valued domains are considered in

chapter 4. We propose a framework to compute such skyline queries. The basic

idea is to (a) transform each partially-ordered attribute domain into two integer-

domain attributes, (b) organize the transformed attributes in an existing indexing

method, and compute the skyline answers via the index. We also propose three

198

algorithms based on the above framework. BBS+ is an adaption of BBS but lacks

progressiveness. SDC exploits the properties of domain mappings to avoid un-

necessary dominance checking. Finally, SDC+ is an optimized version of SDC. We

implemented our proposed approaches and evaluated their performance against the

block nested loop algorithm (and its variant). Our results show that our proposed

techniques outperform the block nested loop algorithms by a wide margin (between

a factor of 2 to 16), with SDC+-MinPC (an optimized variant of SDC+) offering

the best performance both in terms of response time as well as progressiveness.

We then turn our attention to evaluating pareto queries (which is more general

than skyline queries) in chapter 5. Pareto queries support a wider range of base

preferences and therefore allow a broader class of preferences to be specified. This

problem is challenging because existing techniques are mainly batch-oriented and

only a limited subset of existing skyline strategies can be extended to answer the

more general pareto queries. We propose three approaches for evaluating pareto

queries. The first is a non-trivial extension of our Bitmap scheme for evaluat-

ing skyline queries. However, it suffers from the same problems of high storage

and maintenance costs as in the original scheme and hence is limited to static

databases such as data warehouses where updates are rare and queries frequent.

To deal with dynamic databases, we propose the second approach which is a tree

structure similar to the R-tree. By sacrificing some efficiency, it provides a more

space efficient solution with a lower maintenance cost compared to the first ap-

proach. While these two approaches are essentially multi-dimensional indexes, the

third approach is based solely on single-dimensional indexes. This makes it rela-

tively easy to integrate into existing database systems compared to the first two

approaches. However, it requires a single dimensional index to be built for each

attribute that may be queried. We also conducted an extensive performance study

to evaluate their performance against existing techniques. Overall, our results indi-

cate that the last approach which is based on single-dimensional indexes is the most

attractive option in terms of progressiveness and initial response time. However, it

199

is important to note that this approach is less effective in answering skyline queries

than the other two approaches. Thus, it is not suitable for applications that need

to process pareto queries consisting of a large proportion of skyline queries.

Finally, in chapter 6, we examine the evaluation of numerical preference queries

based on linear scoring functions. We present an efficient partition-based frame-

work that can return answers progressively. The basic idea is to represent each

partition by two “corner” points of its bounding box: the point with the maximum

score and the one with the minimum score. The partitions can then be scanned in

the order given by descending values of the scores obtained from the maximum cor-

ner point of each partition. By using the maximum and minimum corner values, we

can easily determine whether records that have been seen so far have scores higher

than records that have not been accessed. Those (seen) records with higher values

can be returned as answers immediately. We also propose three index-based parti-

tioning strategies. Index-based approaches are preferred as most indexes inherently

partition the database. The three strategies are based on the R-tree, Quad-tree

and edges i.e. maximum/minimum value of the attributes. We implemented the

proposed algorithms and evaluated their performance against existing algorithms

which have to be adapted for answering numerical preference queries. We also eval-

uated our schemes against the PREFER system. The comparative results confirm

the effectiveness of our proposed evaluation framework and algorithms.

7.2 Discussion

For this dissertation, we have introduced three different type of preference queries as

well as various techniques requiring different data structures or indexes to evaluate

the respective type of queries. So, is there a single universal technique or structure

or index that can be used to answer all the various type of preference queries?

Our answer is yes and that strategy is the block nested loop algorithm which is

the most versatile not only in answering preference queries but in other type of

database queries as well.

200

However, this versatility comes at a price. The block nested loop algorithm is

generally not progressive and has poor initial response time because it needs to

make at least one pass through the dataset. This has severe implications as most

decision support applications today are dealing with very large dataset (making

even a single pass extremely time consuming) and users of these applications are

generally expecting to see results in a matter of seconds (short initial response

time). In other words, while the block nested loop algorithm is versatile, it is not

necessary the best approach to adopt in today’s applications.

Then, do we have to implement all the structures and indexes we proposed in

this dissertation in order to cater for the various type of preference queries? Our

answer is no. It is impossible to have all the different data structures and indexes

implemented in a single database system to answer the different type of preference

queries as the cost (storage and updates) will be too costly. However, it is important

to note that it is highly unlikely that every application is going to support each and

every type of preferences. Trying to make an application support each and every

type of preferences would make the application too complex to implement and due

to the non-monotonous nature of preferences, it is difficult to achieve a high level

of efficiency in answering all the various type of preference queries.

Therefore, what we have done in this dissertation is to come up with a reper-

toire of techniques and structures for evaluating preference queries that we can

implement for an application depending on the level of support for preferences the

application requires. For the rest of this section, we shall discuss how to go about

selecting the appropriate techniques based on the requirements of the applications.

Firstly, most applications generally adopt either a quantitative way or a qual-

itative way when it comes to specifying preferences. Recall that a qualitative

preference query specifies preferences between tuples directly using binary prefer-

ence relations while a quantitative preference query specify preferences indirectly

using scoring functions. Although scoring functions are generally less expressive,

it is relatively straightforward when it comes to evaluating such queries, especially

201

when linear scoring functions are used. Hence, it is not surprising to see a number

of applications making use of linear scoring functions as a means of supporting

users’ preferences.

Based on the way preferences are going to be specified in the application, we

can immediately narrow down the type of techniques to use. Consider the case

where the application chooses to adopt the quantitative approach. In this case, our

partition-based framework and algorithm can be used. For our framework, we have

proposed three index-based partitioning strategies. The first strategy utilizes the

MBRs of a R-tree as “natural” partitions for the algorithm. This strategy is good

if there is already an existing R-tree built on the application’s data (thus saving

the cost of building the index). In fact, if there is any existing multi-dimensional

index on the data that can provide “natural” partitions for the algorithm, it can

also be used in a similar way as the R-tree strategy.

In the absence of existing indexes that can provide “natural” partitions, we

have two further choices which will involve creating “artificial” partitions. Now, if

the number of attributes on which preferences can be specified is small (< 10), we

can use the quad-tree based grid partitioning strategy. Otherwise, the B-tree based

edge partitioning technique should be used as it avoids the curse of dimensionality

that will occur if the number of attributes on which preferences can be specified

on is high. We note that since both are indexes, they can also be used to support

other functions e.g. range queries by the application as well.

Now, consider the case where the application decides to support qualitative

preferences. We can view this support from two angles. A simple support will

come in the form of skyline queries. Skyline queries can be furthered divided into

two categories – queries that involve only totally ordered attributes and queries that

involve both totally ordered and partially ordered attributes. In the first situation,

we can choose to implement either our Bitmap approach or our Index approach.

The Bitmap approach should be used for situations where data is more static (due

to the maintenance issues that come with it) and when the skyline queries involve

202

a large number of dimensions. Otherwise, the Index approach should be used

as our experimental study has shown that it is the more superior algorithm. In

the second situation where evaluation has to take into account partially ordered

attributes, then SDC+with MinPC strategy should be used as our experimental

study shows that it gives the best performance in terms of both response time as

well as progressiveness.

A complex support for qualitative preferences will come in the form of pareto

queries (which includes skyline queries as well). Without a doubt, pareto queries

are the most expressive preference queries addressed so far in this dissertation but

are also the most complex. We feel that if skyline queries are sufficient in supporting

users’ preference queries, then applications should stick to skyline queries and use

the simpler evaluation strategies that come with it as they are easier to implement.

However, we have proposed three approaches to handle pareto queries should the

application decides to support such queries. Each approach has its strengths and

weaknesses and which one to use depends very much on the situation on hand.

We propose using the B-tree based approach as the default as our experimental

studies show that it is the more superior approach for most cases. However, if a

large percentage of pareto queries are skyline queries, we propose that either the

Bitmap-based or the R-tree based approach be used. Although the Bitmap-based

approach is relatively fast, it should be restricted to databases where data are static

such as data warehouses due to its weakness in handling updates. In the absence

of such conditions, then the R-tree based approach should be the most appropriate

approach to adopt.

In closing, we would like to re-iterate that it is almost infeasible for an ap-

plication to support every type of preferences. As such, our approach to solving

the preference problem by introducing a repertoire of techniques and structures in

this dissertation will enable applications to pick the most appropriate strategies

pertaining to their desired level of support for users’ preferences. We believe that

each of our approaches will in one way or another be able to find an application

203

where it can support users’ preferences efficiently.

7.3 Future Work

There are four major directions on which we will focus our future research: First,

we would like to develop cost models for skyline evaluation. Given the variety of

algorithms available for evaluating skyline queries, a cost model would be invaluable

as it will allow the optimizer to pick the right schemes for different situations. We

plan to first tackle the problem of estimating the cardinality of skyline queries.

Some preliminary work has been done in [42] and we hope to build on these work.

Next, we would devise a cost model for the various algorithms and analyze how

the optimizer can be extended to produce query plans that integrate the skyline

operator with other relational operators.

A second direction of our research is to explore the tradeoffs of using different

domain mapping functions for skyline computation with partially-ordered domains.

We will also examine the evaluation of other skyline-related queries that involved

such domains. We are currently exploring efficient methods to update the domain

mappings and indexes when the data points are modified.

A third direction of our research is to examine space and maintenance aspects

of our qualitative approaches. These aspects are not dealt with in detail in this

dissertation as the focus is on evaluation strategies. First, our bitmap structure

imposes a large space as well as high processing overheads for non-discrete at-

tributes or attributes with large cardinality. We plan to examine the possibility

of using compressed bitmaps in our approach. Given that our bitmap structure

is augmented with additional information, this would necessitate the proposal of

new compression techniques suitable for our approach. Second, we would like do

a thorough analysis of the insert, delete and update operations of our preference

tree structure.

The final direction of our future research is to extend our work to address more

types of complex preferences in the preference framework e.g. prioritized preferences

204

as well as other algorithmic aspects of the framework. An immediate issue has to do

with skyline and pareto queries having a widespread bad reputation of returning

a large number of results. One solution to this problem is to use indifference

relations as suggested in [26] but this will generally result in compositions where the

preference relation is no longer of a strict partial ordering. This could potentially

impact the efficiency of most algorithms as they rely on the transitivity of the

preference relation. In [66], Kießling proposes the enriching of preferences with

substitutable values semantics (SV-semantics) which will preserve the strict partial

order property. We believe that our current approaches are extensible to include

SV-semantics and are currently working on this.

205

BIBLIOGRAPHY

[1] R. Agrawal, A. Borgida, and H.V. Jagadish. Efficient management of transi-

tive relationships in large data and knowledge bases. In SIGMOD’89, pages

253–262, 1989.

[2] R. Agrawal and E.L. Wimmers. A framework for expressing and combining

preferences. In SIGMOD’00, pages 297–306, 2000.

[3] W. Balke and U. Güntzer. Multi-objective query processing for database

systems. In VLDB’04, pages 936–947, 2004.

[4] W. Balke and U. Güntzer. Supporting skyline queries on categorical data in

web information systems. In IMSA’04, pages 42–47, 2004.

[5] W. Balke, U. Güntzer, and W. Kießling. On real-time top k querying for

mobile services. In CoopIS/DOA/ODBASE, pages 125–143, 2002.

[6] W. Balke, U. Güntzer, and X. Zheng. Efficient distributed skylining for web

information systems. In EDBT’04, pages 256–273, 2004.

[7] S. Berchtold, C. Böhm, D.A. Keim, and H. Kriegel. A cost model for nearest

neighbor search in high-dimensional data space. In PODS’97, pages 78–89,

1997.

206

[8] C. Böhm and H. Kriegel. Determining the convex hull in large multidimen-

sional databases. In DaWaK’01, pages 294–306, 2001.

[9] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In

ICDE’01, pages 421–430, 2001.

[10] C. Boutilier, R.I. Brafman, H.H. Hoos, and D. Poole. Reasoning with condi-

tional ceteris paribus preference statements. In UAI’99, pages 71–80, 1999.

[11] N. Bruno, S. Chaudhuri, and L. Gravano. Top-k selection queries over re-

lational databases: Mapping strategies and performance evaluation. TODS,

27(2):153–187, 2002.

[12] N. Bruno, L. Gravano, and A. Marian. Evaluating top-k queries over web-

accessible databases. In ICDE’02, pages 369–380, 2002.

[13] M.J. Carey and D. Kossmann. On saying “enough already!” in sql. In

SIGMOD’97, pages 219–230, 1997.

[14] M.J. Carey and D. Kossmann. Processing top n and bottom n queries. IEEE

Data Engineering Bulletin, 20(3):12–19, 1997.

[15] M.J. Carey and D. Kossmann. Reducing the braking distance of an sql query

engine. In VLDB’98, pages 158–169, 1998.

[16] K. Chakrabarti, M. Ortega-Binderberger, S. Mehrotra, and K. Porkaew.

Evaluating refined queries in top-k retrieval systems. TKDE, 16(2):256–270,

2004.

[17] C.Y. Chan, P.K. Eng, and K.L. Tan. Efficient processing of skyline queries

with partially-ordered domains. In ICDE’05, 2005. accepted for publication.

[18] C.Y. Chan, P.K. Eng, and K.L. Tan. Stratified computation of skylines with

partially-ordered domains. In SIGMOD’05, 2005. accepted for publication.

207

[19] C. Chang and S. Hwang. Minimal probing: Supporting expensive predicates

for top-k queries. In SIGMOD’02, pages 346–357, 2002.

[20] Y.C. Chang, L. Bergman, V. Castelli, C.S. Li, M.L. Lo, and J. Smith. The

onion technique: Indexing for linear optimization queries. In SIGMOD’00,

pages 391–402, 2000.

[21] S. Chaudhuri and L. Gravano. Optimizing queries over multimedia reposito-

ries. In SIGMOD’96, pages 91–102, 1996.

[22] S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In

VLDB’99, pages 397–410, 1999.

[23] S. Chaudhuri, L. Gravano, and A. Marian. Optimizing top-k selection queries

over multimedia repositories. TKDE, 16(8):992–1009, 2004.

[24] C. Chen and Y. Ling. A sampling-based estimator for top-k query. In

ICDE’02, pages 617–627, 2002.

[25] J. Chomicki. Querying with intrinsic preferences. In EDBT’02, pages 34–51,

2002.

[26] J. Chomicki. Preference formulas in relational queries. TODS, 28(4):427–466,

2003.

[27] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang. Skyline with presorting. In

ICDE’03, pages 717–816, 2003.

[28] W. Chu, H. Yang, K. Chiang, M. Minock, G. Chow, and C. Larson. Cobase:

A scalable and extensible cooperative information system. JIIS, 6(2/3):223–

259, 1996.

[29] D. Comer. The ubiquitous b-tree. ACM Computing Surveys, 11(2):121–137,

1979.

208

[30] D. Crawford, editor. Special issue of the Communications of the ACM on

Personalization, volume 43, August 2000.

[31] D. Donjerkovic and R. Ramakrishnan. Probabilistic optimization of top n

queries. In VLDB’99, pages 411–422, 1999.

[32] P.K. Eng, B.C. Ooi, H.S. Sim, and K.L. Tan. Preference-driven query pro-

cessing. In ICDE’03, pages 671–673, 2003.

[33] P.K. Eng, B.C. Ooi, H.S. Sim, and K.L. Tan. Efficient evaluation of numerical

preference queries with linear scoring functions. Submitted for review, 2005.

[34] P.K. Eng, B.C. Ooi, and K.L. Tan. Indexing for progressive skyline compu-

tation. DKE, 46(2):169–201, 2003.

[35] P.K. Eng, B.C. Ooi, and K.L. Tan. Progressive algorithms for answering

pareto preference queries. Submitted for review, 2005.

[36] R. Fagin. Combining fuzzy information from multiple systems. In PODS’96,

pages 216–226, 1996.

[37] R. Fagin. Combining fuzzy information from multiple systems. JCSS,

58(1):83–99, 1999.

[38] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for mid-

dleware. In PODS’01, pages 297–306, 2001.

[39] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for mid-

dleware. JCSS, 66(4):614–656, 2003.

[40] R. Fagin and E.L. Wimmers. Incorporating user preferences in multimedia

queries. In ICDT’97, pages 247–261, 1997.

[41] R. Fagin and E.L. Wimmers. A formula for incorporating weights into scoring

rules. TCS, 239(2):309–338, 2000.

209

[42] P. Godfrey. Skyline cardinality for relational processing. In FoIKS’04, pages

78–97, 2004.

[43] P. Godfrey and W. Ning. Relational preference queries via stable skyline.

Technical Report CS-2004-03, York University, 2004.

[44] K. Govindarajan, B. Jayaraman, and S. Mantha. Preference logic program-

ming. In ICLP’95, pages 731–745, 1995.

[45] K. Govindarajan, B. Jayaraman, and S. Mantha. Preference queries in de-

ductive databases. New Generation Computing, 19(1):57–86, 2000.

[46] L. Gravano and H. Garcia-Molina. Merging ranks from heterogeneous inter-

net sources. In VLDB’97, pages 196–205, 1997.

[47] S. Guha, D. Gunopulos, N. Koudas, D. Srivastava, and M. Vlachos. Ef-

ficient approximation of optimization queries under parametric aggregation

constraints. In VLDB’03, pages 778–789, 2003.

[48] U. Güntzer, W. Balke, and W. Kießling. Optimizing multi-feature queries

for image databases. In VLDB’00, pages 419–428, 2000.

[49] U. Güntzer, W. Balke, and W. Kießling. Towards efficient multi-feature

queries in heterogeneous environments. In ITCC’01, pages 622–628, 2001.

[50] A. Guttman. R-trees: A dynamic index structure for spatial searching. In

SIGMOD’84, pages 47–57, 1984.

[51] B. Hafenrichter and W. Kießling. Optimization of relational preference

queries. In ADC’05, pages 175–184, 2005.

[52] S.O. Hansson. What is ceteris paribus preference. Journal of Philosophical

Logic, 25(3):307–332, 1996.

[53] J.M. Hellerstein and A. Pfeffer. The rd-tree: An index structure for sets.

Technical Report 1252, University of Wisconsin at Madison, 1994.

210

[54] A. Henrich. A distance scan algorithm for spatial access structures. In ACM-

GIS’94, pages 136–143, 1994.

[55] G. Hjaltason and H. Samet. Distance browsing in spatial databases. TODS,

24(2):265–318, 1999.

[56] V. Hristidis, N. Koudas, and Y. Papakonstantinou. Prefer: A system for the

efficient execution of multi-parametric ranked queries. In SIGMOD’01, pages

259–270, 2001.

[57] V. Hristidis and Y. Papakonstantinou. Merging results from multi-parametric

ranked queries. Technical Report 174, UCSD, 2001.

[58] V. Hristidis and Y. Papakonstantinou. Algorithms and applications for an-

swering ranked queries using ranked views. VLDB Journal, 13(1):49–70,

2004.

[59] I.F. Ilyas, W.G. Aref, and A.K. Elmagarmid. Supporting top-k join queries

in relational databases. In VLDB’03, pages 754–765, 2003.

[60] I.F. Ilyas, W.G. Aref, and A.K. Elmagarmid. Supporting top-k join queries

in relational databases. VLDB Journal, 13(3):207–221, 2004.

[61] Y. Ishikawa, H. Kitagawa, and N. Ohbo. Evaluation of signature files as set

access facilities in oodbs. In SIGMOD’93, pages 247–256, 1993.

[62] W. Jin, J. Han, and M. Ester. Mining thick skylines over large databases. In

PKDD’04, pages 255–266, 2004.

[63] S.J. Kaplan. Appropriate responses to inappropriate questions. In Elements

of Discourse Understanding, pages 127–144. Cambridge University Press,

1981.

[64] S.J. Kaplan. Cooperative responses from a portable natural language query

system. AI, 19(2):165–187, 1982.

211

[65] W. Kießling. Foundations of preferences in database systems. In VLDB’02,

pages 311–322, 2002.

[66] W. Kießling. Preference queries with sv-semantics. In COMAD’05, pages

15–26, 2005.

[67] W. Kießling and G. Köstler. Database reasoning - a deductive framework

for solving large and complex problems by means of subsumption. In IS/KI,

pages 118–138, 1994.

[68] W. Kießling and G. Köstler. Preference sql - design, implementation, expe-

riences. In VLDB’02, pages 990–1001, 2002.

[69] D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online

algorithm for skyline queries. In VLDB’02, pages 275–286, 2002.

[70] G. Köstler, W. Kießling, H. Thöne, and U. Güntzer. Fixpoint iteration with

subsumption in deductive databases. JIIS, 4(2):123–148, 1995.

[71] G. Koutrika and Y.E. Ioannidis. Personalization of queries in database sys-

tems. In ICDE’04, pages 597–608, 2004.

[72] H.T. Kung, F. Luccio, and F.P. Preparata. On finding the maxima of a set

of vectors. JACM, 22(4):469–476, 1975.

[73] M. Lacroix and P. Lavency. Preferences: Putting more knowledge into

queries. In VLDB’87, pages 217–225, 1987.

[74] M. Lacroix and A. Pirotte. Domain-oriented relational languages. In

VLDB’77, pages 370–378, 1977.

[75] H.X. Lu, Y. Luo, and X. Lin. An optimal divide-conquer algorithm for 2d

skyline queries. In ADBIS’03, pages 46–60, 2003.

[76] Y. Luo, H.X. Lu, and X. Lin. A scalable and i/o optimal skyline processing

algorithm. In WAIM’04, pages 218–228, 2004.

212

[77] L.P. Mahalingam and K.S. Candan. Query optimization in the presence of

top-k predicates. In MIS’01, pages 31–40, 2001.

[78] A. Marian, N. Bruno, and L. Gravano. Evaluating top-k queries over web-

accessible databases. TODS, 29(2):319–362, 2004.

[79] J. Matousek. Computing dominances in En. Information Processing Letters,

38(5):277–278, 1991.

[80] J. Minker. An overview of cooperative answering in databases. In FQAS’98,

pages 283–285, 1998.

[81] A. Natsev, Y. Chang, J.R. Smith, C. Li, and J.S. Vitter. Supporting incre-

mental join queries on ranked inputs. In VLDB’01, pages 281–290, 2001.

[82] S.N. Nepal and M.V. Ramakrishna. Query processing issues in image (mul-

timedia) databases. In ICDE’99, pages 22–29, 1999.

[83] P.E. O’Neil and D. Quass. Improved query performance with variant indexes.

In SIGMOD’97, pages 38–49, 1997.

[84] B.C. Ooi, K.L. Tan, C. Yu, and S. Bressan. Indexing the edge: a simple

and yet efficient approach to high-dimensional indexing. In PODS’00, pages

166–174, 2000.

[85] D. Papadias, Y. Tao, G. Fu, and B. Seeger. An optimal and progressive

algorithm for skyline queries. In SIGMOD’03, pages 467–478, 2003.

[86] D. Papadias, Y. Tao, F. Greg, and B. Seeger. Progressive skyline computation

in database systems. TODS, 2005. accepted for publication.

[87] C.H. Papadimitriou and M. Yannakakis. Multiobjective query optimization.

In PODS’01, pages 1–10, 2001.

[88] E. Pöppel. A hierarchical model of temporal perception. Journal of Trends

in Cognitive Science, 1(2):56–61, 1997.

213

[89] F.P. Preparata and M.I. Shamos. Computational Geometry: An Introduction.

Springer-Verlag, 1985.

[90] R. Ramakrishnan and J. Gehrke. Database Management Systems. McGraw-

Hill, 1999.

[91] C. Rhee, S. K. Dhall, and S. Lakshmivarahan. The minimum weight domi-

nating set problem for permutation graphs is in nc. Journal of Parallel and

Distributed Computing, 28(2):109–112, 1995.

[92] D. Rinfret, P.E. O’Neil, and E.J. O’Neil. Bit-sliced index arithmetic. In

SIGMOD’01, 2001.

[93] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In

SIGMOD’95, pages 71–79, 1995.

[94] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-

Wesley, 1989.

[95] R.E. Steuer. Multiple criteria Optimization. Wiley, New York, 1986.

[96] I. Stojmenovic and M. Miyakawa. An optimal parallel algorithm for solving

the maximal elements problem in the plane. Parallel Computing, 7(2):249–

251, 1988.

[97] K.L. Tan, P.K. Eng, and B.C. Ooi. Efficient progressive skyline computation.

In VLDB’01, pages 301–310, 2001.

[98] S. Tan and J. Pearl. Specification and evaluation of preferences under uncer-

tainty. In KR’94, pages 530–539, 1994.

[99] R. Torlone and P. Ciaccia. Finding the best when it’s a matter of preference.

In SEBD’02, pages 347–360, 2002.

[100] R. Torlone and P. Ciaccia. Which are my preferred items? In PReC’02,

pages 1–9, 2002.

214

[101] R. Torlone and P. Ciaccia. Management of user preferences in data intensive

applications. In SEBD’03, pages 257–268, 2003.

[102] P. Tsaparas. Nearest neighbor search in multidimensional spaces. Techni-

cal Report 319-02, Department of Computer Science, University of Toronto,

1999.

[103] M.P. Wellman and J. Doyle. Preferential semantics for goals. In AAAI’91,

pages 698–703, 1991.

[104] E.L. Wimmers, L.M. Haas, M.T. Roth, and C. Braendli. Using fagin’s algo-

rithm for merging ranked results in multimedia middleware. In CoopIS’99,

pages 267–278, 1999.

[105] K. Wu, E.J. Otoo, and A. Shoshani. On the performance of bitmap indices

for high cardinality attributes. In VLDB’04, pages 24–35, 2004.

[106] K. Yi, H. Yu, J. Yang, G. Xia, and Y. Chen. Efficient maintenance of mate-

rialized top-k views. In ICDE’03, pages 189–200, 2003.

[107] C. Yu. High Dimensional Indexing. PhD thesis, Department of Computer

Science, National University of Singapore, July 2001.

[108] Y. Zibin and J.Y. Gil. Efficient subtyping tests with pq-encoding. In OOP-

SLA’01, pages 96–107, 2001.

[109] G.K. Zipf. Human Behavior and the Principle of Least Effort. Addison

Wesley, 1949.

215

APPENDIX A

Derivation of Bit-Slices for the Base Preferences

This appendix describes the derivation of bit-slices BitSlice>Pi
(xi, Ai) and

BitSlice≥Pi
(xi, Ai) for those base preferences not covered in section 5.1.2. Through-

out, we will assume that preference Pi is specified on attribute Ai and xi is the

value for attribute Ai of a candidate tuple.

Numerical Base Preferences

BETWEEN. Let the preference Pi be BETWEEN(Ai, [low,up]). The derivation

is similar to the AROUND preference. If low ≤ xi ≤ up, we set BitSlice>Pi
(xi, Ai)

to zero and BitSlice≥Pi
(xi, Ai) to OrigSlice(xi, Ai). Otherwise, we first compute

distance(xi, [low, up]). Then, we retrieve the bit-slice whose value is the smallest

value ≥ up + distance(xi, [low, up]) that exists in the bitmap for Ai. Next, we re-

trieve the bit-slice whose value is the smallest value > low− distance(xi, [low, up])

from the same bitmap. BitSlice>Pi
(xi, Ai) is the result of executing a bitwise exclu-

sive or operation on both bit-slices. From Theorem 3.1, the 1s in BitSlice>Pi
(xi, Ai)

would also represent tuples having values in the range of [aiu, aiv) for Ai. To derive

BitSlice≥Pi
(xi, Ai), we execute a bitwise or operation between BitSlice>Pi

(xi, Ai)

and OrigSlice(xi, Ai).

216

We shall now show why the derived BitSlice>Pi
(xi, Ai) has the property that

the nth bit is set to 1 iff the attribute value for Ai of the nth tuple has a shorter

distance to [low,up] than xi.

Assume that there exists a tuple y having value yi for attribute Ai which is set

to 1 in BitSlice>Pi
(xi, Ai) but has distance(yi, [low, up]) ≥ distance(xi, [low, up]).

Let aiv be the smallest value ≥ up + distance(xi, [low, up]) and aiu is the smallest

value > low − distance(xi, [low, up]) that exist in the bitmap for Ai. Since y

is set to 1 in BitSlice>Pi
(xi, Ai), yi cannot lies between low and up, and aiu ≤

yi < aiv. Thus, there are two cases to consider when distance(yi, [low, up]) ≥
distance(xi, [low, up]). First, if yi > up, then yi ≥ up + distance(xi, [low, up]).

Since aiv is the smallest value ≥ up + distance(xi, [low, up]), yi ≥ aiv. Second, if

yi < low, then yi ≤ low − distance(xi, [low, up]). Since aiu is the smallest value

> low − distance(xi, [low, up]), yi < aiu. Therefore, when distance(yi, [low, up]) ≥
distance(xi, [low, up]), yi ≥ aiv or yi < aiu. This is a contradiction since aiu ≤ yi <

aiv. Hence, when a tuple is set to 1 in BitSlice>Pi
(xi, Ai), its value yi for attribute

Ai must have a shorter distance to [low,up] than xi.

LOWEST. Let the preference Pi be LOWEST. The 1s in BitSlice>Pi
(xi, Ai)

should represent tuples having values < xi for Ai. Since the 1s in BitSlice(xi, Ai)

represent tuples having values≥ xi for Ai, executing a bitwise not on it will result in

the bit-slice whose 1s represent tuples having values < xi for Ai. The resultant bit-

slice is thus BitSlice>Pi
(xi, Ai). On the other hand, the 1s in BitSlice≥Pi

(xi, Ai)

should represent tuples having values ≤ xi for Ai. Since the 1s in PreSlice(xi, Ai)

represent tuples having values > xi for Ai, executing a bitwise not on it will re-

sult in the bit-slice whose 1s represent tuples having values ≤ xi for Ai. This

is thus BitSlice≥Pi
(xi, Ai). In the absence of PreSlice(xi, Ai), all the bits in

BitSlice≥Pi
(xi, Ai) are set to 1.

217

Non-Numerical Base Preferences

For the non-numerical base preferences, we will only describe the derivation of

BitSlice>Pi
(xi, Ai). BitSlice≥Pi

(xi, Ai) can be easily derived by executing a bitwise

or operation between BitSlice>Pi
(xi, Ai) and BitSlice(xi, Ai). We will also assume

that there are corresponding bit-slices for values specified in the preferences. In the

case where a specified value does not have a corresponding bit-slice in the bitmap,

its bit-slice is assumed to be zero.

NEG. Let Pi be NEG(Ai, {v1, . . . , vm}). To derived BitSlice>Pi
(xi, Ai), we first

check whether xi is in the NEG-set. If it does not exist, then we can conclude

that no other tuples can have a value strictly better than xi for Ai and hence,

BitSlice>Pi
(xi, Ai) is set to zero. However, if xi exists in the NEG-set, then all

values not in the NEG-set will be strictly better than xi. Thus, by executing

a bitwise or on the bit-slice of each value in the NEG-set followed by a bitwise

not operation on the resultant bit-slice, we get a bit-slice whose 1s represent

tuples having values that are strictly better than xi for Ai. In other words, if

L = BitSlice(v1, Ai) | . . . | BitSlice(vm, Ai), BitSlice>Pi
(xi, Ai) is derived by

executing a bitwise not operation on L.

POS/NEG. Let Pi be POS/NEG(Ai,{v1, . . . , vm};{vm+1, . . . , vm+n}). First, if xi

is in the POS-set, then no tuples can have a value strictly better than xi for Ai.

Hence, BitSlice>Pi
(xi, Ai) is set to zero. Second, if xi is not in the POS-set but

in the NEG-set, then those values not in the NEG-set are strictly better than

xi. Similar to the NEG preference, we derive L = BitSlice(vm+1, Ai) | . . . |
BitSlice(vm+n, Ai) and BitSlice>Pi

(xi, Ai) is given by executing a bitwise not op-

eration on L. Third, if xi belongs to neither POS-set nor NEG-set, only values

in the POS-set can be strictly better than xi. Similar to the POS preference,

BitSlice>Pi
(xi, Ai) = BitSlice(v1, Ai) | . . . | BitSlice(vm, Ai).

POS/POS. Let Pi be POS/POS(Ai,{v1, . . . , vm};{vm+1, . . . , vm+n}). First, if xi

is in POS1-set, then no tuples can have a value strictly better than xi for Ai and

BitSlice>Pi
(xi, Ai) is set to zero. Second, if xi is in POS2-set, only values in POS1-

218

set can be better than xi. Hence, BitSlice>Pi
(xi, Ai) = BitSlice(v1, Ai) | . . . |

BitSlice(vm, Ai). Third, if xi is neither in POS1-set nor POS2-set, the only val-

ues that can be better than xi must be from POS1-set and POS2-set. Thus,

BitSlice>Pi
(xi, Ai) is given by BitSlice(v1, Ai) | . . . | BitSlice(vm, Ai) |

BitSlice(vm+1, Ai) | . . . | BitSlice(vm+n, Ai).

219

APPENDIX B

Strictly Dominates Semantics of the Pref-Tree

Algorithm

In the Pref-Tree algorithm (Figure 5.5), the strictlyDominates routine uses the

set si of an entry e to determine whether it is possible for some tuples covered by

e to be strictly better than the candidate tuple x with respect to attribute Ai and

preference Pi. Different heuristics are adopted for each base preference. In this

appendix, we shall describe the heuristics we used. Throughout, we shall use xi to

represent the candidate tuple’s value for attribute Ai and si the set for attribute

Ai in the bounding set of an entry e. Pi is the base preference specified on Ai.

Numerical Base Preferences

Since numerical base preferences are specified on ordered attributes, the set si is

a rangeset of the form {[a1, b1], [a2, b2], . . ., [am,bm]} where ai ≤ bi and bi < aj

whenever i < j. m denotes the number of ranges in the rangeset.

AROUND. Let the preference be AROUND(Ai, z). We first determine the min-

imum distance, mindisti, of each range in the rangeset and the desired value z for

1 ≤ i ≤ m. The distance between a range [ai, bi] and value z is 0 if ai ≤ z ≤ bi or

min(abs(ai − z), abs(bi − z)) otherwise. Next, we determine p = minm
i=1mindisti.

220

Intuitively, this is the shortest distance to z any tuples covered by e can have for

attribute Ai. Next, we determine the distance(xi, z). Thus, if p < distance(xi, z),

it is possible that some tuples covered by e have values for Ai that are strictly

better than xi.

BETWEEN. Let the preference be BETWEEN(Ai,[low,up]). The heuristic used

is exactly the same as the AROUND preference except that distances are computed

with respect to the range [low,up] instead of z.

HIGHEST, LOWEST. For the HIGHEST preference, we simply compare the

largest value in the rangeset, bm, against xi. If bm > xi, then it is possible that

some tuples covered by e have values for Ai that are strictly better than xi. For

the LOWEST preference, the heuristic is similar except that we check whether a1,

the smallest value in the rangeset, is strictly less than xi.

Non-Numerical Base Preferences

Since non-numerical base preferences are specified on unordered attributes, the set

si is a set signature which is a combination of the signatures of values covered by si.

POS. For the POS preference, we first check whether xi is in the POS-set. If it is,

then no tuples can have a value for Ai that is strictly better than xi. Otherwise,

only values in the POS-set can be strictly better than xi. Thus, we check whether

any values in the POS-set exists in si. If there is, it indicates that there is a

possibility that some tuples covered by e have values for Ai that are strictly better

than xi. In the presence of false drops, values from the POS-set might be falsely

deduced to be in si, resulting in the searching of additional branches that can be

avoided. However, this does not affect the correctness of the algorithm.

NEG. For the NEG preference, we first check whether xi is in the NEG-set. If

it is not, then we can conclude that no tuples can have a value for Ai that is

strictly better than xi. Consider the case where xi is in the NEG-set. We can

take values that are not in the NEG-set from the domain of Ai and check whether

they are in si. However, this is not only computationally expensive, especially for

221

large domains, but in the presence of false drops, a value that does not exist in

the NEG-set might be falsely deduced to be in si when in fact, it does not. This

could cause the search to exclude a branch that it should search. Hence, we take

the conservative approach and assume that when xi is in the NEG-set, there is a

possibility that some tuples covered by e have values for Ai that are strictly better

than xi.

POS/NEG. There are three cases to consider. First, xi is in the POS-set. In this

case, no tuples can have a value for Ai that is strictly better than xi. Second, xi is

in the NEG-set. Similar to the NEG preference, we take the conservative approach

by assuming that some tuples covered by e have values for Ai that are strictly

better than xi. Lastly, if xi is in neither POS-set nor NEG-set, then only values in

the POS-set can be strictly better than xi. We thus use the heuristic adopted for

the POS preference in this case.

POS/POS. There are also three cases to consider. First, xi is in the POS1-set. In

this case, no tuples can have a value for Ai that is strictly better than xi. Second,

xi is in the POS2-set. Since only values in the POS1-set can be strictly better

than xi, we adopt the same heuristics used in the POS preference. Lastly, if xi

is in neither POS1-set nor POS2-set, then only values in POS1-set and POS2-set

can be strictly better than xi. Thus, we adopt the heuristic used for the POS

preference except that the POS-set now consists of values from the POS1-set and

the POS2-set.

