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Summary

Stream processing engines are application-independent, specially designed query

engines to process high-volume, real-time data streams. In recent years, many stream

processing engines have been developed and employed by business entities to provide

stream processing service over the Internet. However, due to the inherent limita-

tions of those stream processing engines, these entities suffer from scalability, over-

investment and availability problems. A system incorporating those entities, pro-

moting joint cooperation can achieve better system resource utilization, economical

efficiency and scalability. In this thesis, we present the architecture of a scalable dis-

tributed stream processing system made up of loosely coupled entities. It provides

two layers of services: the query layer service and the data layer service.

The query layer service is to dynamically distribute queries to the most appropri-

ate entity for processing to achieve load balance and minimize communication cost.

This service is backed by a number of coordinators, which are special entities orga-

nized into a hierarchical structure. The query distribution problem is modelled as

a graph partitioning problem and we leverage existing graph partitioning algorithms

and derive a hierarchical graph partitioning algorithm to achieve load balance among

the entities as well as minimum communication cost in transferring the data streams.

We address the problem of fast incoming new queries (streaming queries) by employ-

ing an effective query routing scheme to route new coming queries to a suitable entity.



A runtime adaptive query redistribution mechanism is devised to adapt to the change

of the environment like stream rates, user surging requests, etc. to enhance system

performance during runtime.

Data dissemination is often neglected by existing stream processing systems. In

many situations, especially in the wide-area, the network is the stream bottleneck.

In our system, we identify this problem and address the problem of how to efficiently

transfer data streams to various geographically dispersed stream processing entities.

This is one aim of the data layer service besides providing query evaluation services

to clients. In our system, stream processing entities are urged to collaborate in data

dissemination besides evaluating assigned queries, rather than relying on the source

nodes sorely in data dissemination. Cooperation trees for data dissemination are

built and specially designed routing queries are employed to represent data interest

of entities, which facilitate data dissemination from one entity to another selectively.

We design experiments to test the effectiveness of our proposed techniques and

our simulation results show the efficiency and superiority of our proposed techniques

with respect to those traditional ones.

viii
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Chapter 1

Introduction

1.1 Background and Motivation

In recent years, a new class of applications which operates on high-volume, real-time

continuous streaming data has emerged. These applications have presences in various

domains, including financial monitoring, large-scaled environment monitoring, net-

work management, sensor networks, traffic control, etc. Different with the traditional

database management systems(DBMSs) which are based on the “store-then-process”

model, stream processing systems require results to be computed continuously over a

long period of time and new results to be returned incrementally once they are avail-

able. That is why the queries in these systems are usually referred to as “Continuous

Queries”. It has been widely accepted that traditional DBMSs are inadequate for

stream processing [Aba03, BBDW02, Cha03]. Thus a lot of work has been devoted to

1



CHAPTER 1. INTRODUCTION 2

developing stream processing engines [Car02, MSHR02, Cha03, The03, Che03], which

are application-independent, specially-designed query engines to evaluate continuous

queries. All these stream processing engines support complex continuous queries over

push-based data streams, though they may adopt different data model and processing

model during evaluation.

Due to the popularity of these stream-oriented applications, we foresee that there

will be a lot of business entities that provide stream processing service to clients over

the Internet. They charge clients for the service provided based on the computational

power consumed. Since each entity is under a single adminstration, it installs and

runs its own stream processing engine based on its business choice. The engine can be

a centralized one like TelegraphCQ [Cha03], which is easy to deploy and maintain, or

a distributed one like Aurora* [Che03], which offers significant computational power

compared to the centralized one. Note an entity employs a cluster of processors to

deploy a distributed stream processing engine. Regardless of what stream processing

engine an entity installs, the system appears to be a black box to clients. Clients

submit their queries to those entities through some graphic user interface and each

entity processes client queries independently using its own stream processing engine.

There are several problems faced by each individual entity under this model:

• The scalability problem. For each entity, the capacity for the stream processing

engine is limited, which is supposed to be sufficient to handle the expected
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number of queries submitted by clients to the system. However, accidental

request surges from clients may cause the system overloaded, which results

in long user perceived delays and leads to client dissatisfaction. Moreover,

even if the number of queries remains constant, data streams can be bursty,

with unpredictable peaks during which the load may exceed available system

resources.

• The over-investment problem. To cope with accidental surging client requests

and bursty data streams, one entity may opt to invest a lot in hardware to

upgrade the system. However, for most of the time the system resource is

excessive and is not economical from business perspective.

• The availability problem. Though many stream processing engines are fault

tolerant, special mechanisms to deal with system failure are needed, which is

complex and costy. Moreover, some events like system reboots, software upgrade

etc. are inevitable. But for a service provider, this kind of service interruptions

may lead to loss of clients. The over-investment problem may easily arise when

an entity tries to cope with this availability problem.

Moreover, to those authorities concerning system resource utilization like network

bandwidth consumption, the system utilization factor for this model is low. A lot

of data streams are flooding in the network, many of which are redundant. To en-

hance overall system resource utilization, achieve better economic efficiency as well
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as to provide better service to end users, a more ambitious service is to incorporate

numerous heterogeneous entities to form a federation. The federation exploits the

processing power and capabilities of each individual entity as they cooperate in query

evaluation as well as stream data dissemination and can achieve optimal performance

under various situations. For example, for those with not enough capacity to handle

surging client numbers themselves, they can be assured that their service will not be

compromised as they have a strong backup - the whole federation. Also there is no

service interruption once they are in the federation; they can rely on other entities to

continue providing stream processing service when they temporarily go offline. Busi-

ness entities need not worry about over-investment as their investments get remedied

even if they do not have enough clients themselves. Furthermore, as the distribution

of queries is optimized from the system level, bandwidth consumption will be low and

the overall system performance improves. Therefore, either from the perspective of

each individual service provider or the perspective of system resource utilization, this

model provides a win-win solution.

However, this problem is challenging and poses several issues to be solved:

• How heterogeneous entities are organized in the federation. Currently dis-

tributed stream processing technologies are not applicable to this problem. In

a distributed stream processing engine, processors are interconnected by a fast

local network and are highly coupled, i.e. they use the same data model and
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processing model in order to cooperate in evaluating client queries. For our con-

text, entities are heterogenous and it is impractical for each of them to surrender

its administration and install a uniform stream processing engine. Furthermore,

extensive communication among processors may occur during the query evalu-

ation process for a distributed stream processing system. Notably this is not

feasible in a WAN context due to long latencies.

• How client queries are distributed among the entities. The distribution of

queries should achieve maximum system utilization and minimum processing

latencies. Load balancing among the entities is another important considera-

tion. To the best of our knowledge, there is no prior work done that addresses

both of these two aspects.

• How data streams are transferred to various entities. Much work on stream

processing has focused on how to efficiently process the continuous queries but

very little has been done with how to efficiently transfer newly generated data

to the entities for processing.

1.2 Contributions

In this thesis, we present a new architectural design of a distributed stream processing

system. Our contributions are:
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• Our system leverages the power of each individual stream processing entity and

incorporates them into an Internet-scale distributed stream processing system.

The entities are loosely coupled, choosing stream processing engines according

to their business choice independently. The system is easy to deploy as no

modification on single site stream processing engines is needed.

• We identify two important issues to be addressed for the design of such a system

and model them as two layers of services, namely, the query layer service and

the data layer service. These two layers are orthogonal in terms of target(query

v.s. data) and member(coordinator v.s. entities) and we employ a modular

approach to design the services on these two layers.

• The service on the query layer is to dynamically distribute queries to the most

appropriate entity for processing, with the aim to optimize the system per-

formance. This service is carried out by a number of coordinators, which are

organized into a hierarchical structure. The query distribution problem is mod-

elled as a hierarchical graph partitioning problem and we leverage the existing

algorithms to achieve load balance among the entities as well as minimize com-

munication cost in transferring the data streams.

• We address the problem of fast incoming new queries (streaming queries) by

employing an effective query routing scheme to route the new coming queries to

a suitable entity. A runtime adaptive query redistribution mechanism is devised
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to adapt to the change of the environmental conditions like stream rates, user

surging requests, etc. to enhance system performance during runtime.

• In our system, we identify and address the problem of how to efficiently transfer

data streams to various stream processing entities which are geographically

dispersed. In our system, stream processing entities are urged to collaborate

in data dissemination, rather than relying on the source nodes sorely. Data

dissemination trees are constructed and specially designed routing queries are

employed to selectively disseminate data from one node to another.

• We design experiments to test the effectiveness of our proposed techniques.

A simulation system is implemented and our simulation results demonstrate

significant performance gains with respect to traditional techniques.

1.3 Thesis Roadmap

The rest of the thesis is organized as follows. Chapter 2 reviews some related work

and provides more background on this problem. Chapter 3 presents the detailed prob-

lem analysis and an overview of the system architecture. Core techniques addressing

the various challenges at the query layer are presented in Chapter 4 , followed by the

detailed design of the data layer in Chapter 5. Chapter 6 gives an extensive perfor-

mance study of the various techniques proposed in this thesis. Chapter 7 concludes
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the thesis and discusses the future work.



Chapter 2

Related Work

Our work is related to several research areas, namely, publish/subscibe system, stream

processing systems, data dissemination and graph partitioning. In this chapter, let

us review some of the related work to have a better understanding of our problem.

2.1 Publish/Subscribe System

In a publish-subscribe system, senders label each message with the name of a topic

(“publish”), rather than addressing it to specific recipients. The messaging system

then sends the message to all eligible systems that have asked to receive messages

on that topic (“subscribe”). To some extent, the publisher resembles the source

nodes and the subscriber resembles the entities in our context. However, in a pub-

lish/subscribe system, a node can be both a publisher and a subscriber, which is not

9
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possible for our case. SIFT [YGM99] is a selective document dissemination system

which allows users to subscribe to text documents by specifying a set of weighted

keywords. It was one of the earliest projects to suggest the reversal of roles of queries

and data in filtering systems through the use of an inverted index on the queries.

Some other systems like [FJL+01], model messages as attribute-value pairs, and al-

low user profiles to contain a set of predicates over the values of those attributes.

In [OJW03, SDR03, ARS04], clients subscribe to some data with precision require-

ments and the system exploits the precision requirements to do filtering on data

streams thus reduce bandwidth consumption. Recently there is an increasing interest

in XML filtering for publish/subscribe systems as XML provides more expressive-

ness in specifying data interests, resulting in more accurate filtering of messages.

XFilter [AF00] and YFilter [Dia03] are two XML-document filtering engines that ef-

ficiently group and apply XPath queries over incoming documents. In [DRF04], the

authors presented a distributed system providing large-scale XML dissemination ser-

vice leveraging YFilter. This system is composed of many brokers which accept client

queries specified in XPath statements and route new messages to clients when they

match the XPath statements using YFilter. However, this problem has several differ-

ences with ours. Firstly, the focuses of these two systems are totally different. The

prior one is to provide data dissemination service to clients, thus it focuses on how to

efficiently distribute data to distributed brokers and then to a large number of clients.
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On the contrary, our system aims to provide stream processing services with a num-

ber of single site stream processing entities over the internet. How to distribute client

queries to those entities for processing is of paramount importance. Data dissemi-

nation from source nodes to various entities is a pre-requisite for stream processing.

Secondly, the data dissemination system does not support complex queries, therefore

the problem of load balance among the brokers is overlooked. However, for our sys-

tem, to achieve optimal system resource utilization, load balance is a critical factor to

take into account. Last but not least, many techniques proposed in [DRF04] are only

applicable in the XML context like routing query construction etc., we need more

generic algorithms in our problem.

2.2 Stream Processing System

Stream processing systems aim to process client queries on stream data. Different

with ubiquitous query processing systems, stream processing systems allow client to

submit queries which are executed for a potentially long period and notify clients when

new results from the incoming streams are available. To distinguish those queries

in stream processing systems from their counterparts in ubiquitous query processing

systems, they are usually referred to as Continuous Queries(or CQs) [LPT99, BW01].

The core issue of such systems is how to devise novel algorithms to efficiently and

effectively evaluate the continuous queries submitted by clients. Earlier work on
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stream processing system focuses on centralized ones while later many distributed

systems are proposed to address the scalability problem.

2.2.1 Centralized Stream Processing

The earliest work is Tapestry [TGNO92], which supports continuous queries on append-

only relational databases. OpenCQ [LPT99] is a system integrating distributed het-

erogeneous information sources and supports continuous queries. It uses a processing

algorithm based on incremental view maintenance. NiagaraCQ [CDTW00] is another

system supporting continuous queries for monitoring persistent data sets spread over a

wide-area network, e.g. web sites over the internet. It addresses scalability issue of the

system in terms of number of queries that can be supported by the system by propos-

ing techniques to group similar queries together for evaluation. CACQ [MSHR02]

is a system designed to process a large number of continuous queries. Based on

Eddy [AH00], it realized adaptive processing, dynamically reordering operators to

cope with changes of arriving data properties and selectivity. This approach is fol-

lowed by many distributed stream processing systems. TelegraphCQ [Cha03] is a

new implementation based on the prototype of CACQ, with the focus on support

for shared, continuous query processing over query and data stream. Other central-

ized stream processing systems include STREAM [The03], Aurora [Aba03], etc. All

these stream processing engines can be installed inside an entity to provide stream
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processing services to clients.

2.2.2 Distributed Stream Processing

Clearly there is a limit to the number of queries that can be handled by a single

entity, no matter how efficient the algorithm the system utilized is. Recently, there

have been several attempts to extend the single-site model to multi-set, distributed

models and environments. PeerCQ [GL03] and CQ-Buddy [NST03] are two decen-

tralized continuous query processing systems in peer-to-peer network. PeerCQ is an

information monitoring system which uses continuous queries to express monitoring

requests. The system performs service partitioning and load balancing using P2P

framework. In CQ-Buddy, there is a simple model to measure the similarity between

queries and similar queries are executed together within one server. Also it takes

the differences in capabilities of peers into account and balances their loads. Both of

these two systems are in the peer-to-peer network context and utilize the standard

P2P framework for search, communication etc. For example, queries are routed in

the network to find a suitable node for processing. This is not viable in our context

for query distribution. The reasons are threefolds. Firstly, query routing in the WAN

context is too costy. The scale of our system is so large that millions of queries are

running in it at any moment. Network conditions deteriorate dramatically if such a

number of queries are routing inside. Secondly, queries are joining/leaving the system
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frequently due to the large base number and query routing tends to take a while to

finish. It is not scalable to the fast changing query stream. Last but not least, query

routing is prone to achieve local optimal rather than global optimal, while overall

system efficiency is one of our design goals.

In [Che03], the authors introduced Aurora, a centralized stream processor. A

large-scaled distributed stream processing system is then built using Aurora*, which

is a distributed version of Aurora, and Medusa, which is an infrastructure supporting

federated operations across Aurora* s. Client queries are decomposed into operators,

which are dynamically distributed among nodes of Aurora* or even among Aurora*

for processing. This system provides three key features, namely “a scalable communi-

cation infrastructure, adaptive load management and high availability”. Our system

has similar goals as Medusa and is motivated by it. However, there are several different

challenges we face in our system. For example, besides considering load management

among entities, we should also consider how to distribute queries to achieve system ef-

ficiency like minimal bandwidth consumption, etc. Moreover, queries are distributed

in the granularity of operators among multiple processors inside an Aurora* and

between Aurora* s(as federated operations) for processing. The advantage of this ap-

proach is it exploits the commonality among queries and common operators can be

processed in a shared manner thus the performance is improved. Nevertheless, this

approach requires all the processors in the system adopt the same stream processing

model and synchronize between each other during the processing of a query. In other
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words, the processors are tightly coupled. Though it is appropriate to deploy such a

stream processing system inside an entity, it is not applicable to the WAN context.

The reason is threefolds. Firstly, entities are heterogenous in terms of stream process-

ing engines. Different engines use different data model and processing model and are

highly incompatible. Secondly, even for entities adopting the same stream processing

engine, each entity is an administrative autonomy. Though they are willing to join

the system to achieve better performance and economical efficiency, it is unlikely they

will surrender their autonomy and allow their processors to be tightly coupled. This

also brings extra effort to re-engineer current single site stream processing engines

to solve the synchronization in a WAN context. Last but not least, due to the large

scale of our system, queries are submitted to/withdrawn from the system in a high

rate, i.e. queries are streaming. Distributing queries in the granularity of operators

at the system level may incur too much overhead and is too complex to scale well.

Another recent paper [AC04] describes a distributed query processing system on

stream data. The system exploits the knowledge of network characteristics (e.g.,

topology, bandwidth etc.) when deciding on the network locations where the query

operators are executed. This network-aware operator placement, however, is done sep-

arately for each query and does not make use of the relationships among queries to

share their computation. Neither the load of each processor is considered. Recently re-

searchers working on sensor network tossed a term called in-network query processing
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which denotes data processing that takes place inside the sensor network. It is essen-

tially a kind of distributed stream processing system. Madden et al. [MSHR02] were

the first to study in-network process. They focused on simple aggregation queries,

whose execution can be distributed over an arbitrarily large set of sensor nodes. They

introduced a routing strategy that imposes a spanning tree onto the network: data is

aggregated at every internal node in the routing tree. The work [BB03] introduced an

adaptive and decentralized algorithm that progressively refines the placement of op-

erators of a single query by walking through neighbor nodes thus reduces data traffic.

In [SMW05] the authors address in-network query processing for queries involving

possibly expensive conjunctive filters and joins and consider the problem of placing

operators along the nodes of a sensor network hierarchy so as to minimize the compu-

tation and data transmission. The techniques proposed in these distributed systems

are not applicable to our system due to different context. Nevertheless, they provide

some insights on factors to take into accounts when we design the query distribution

scheme for our system, like network location of the entity, query characteristics, etc.

To conclude, stream processing receives a lot of attention from the database com-

munity and many algorithms to address the efficient processing and the scalability

problem have been proposed. They provide some guidelines and insights when we

are designing algorithms for our system. For example, these existing systems usually

subsume a new incoming query into one existing query group to exploit the similarity
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among the queries. This motivates us to use a graph partition algorithm to clus-

ter similar queries to one entity for processing. However, all the studies on stream

processing have overlooked two important issues: how to efficiently route fast data

streams to the wide distributed stream processing entities and how to route incoming

queries to the most suitable entity at runtime.

2.3 Data Dissemination

The topic of data dissemination was first introduced by the network community. The

earliest approach is to use multicast [AD93] to disseminate data. Multicast allows

data from one source to be sent to multiple receivers and is bandwidth-efficient. How-

ever, due to the fact that it relies on the network layer paradigm, it is not flexible.

This has led to a lot of work on application-level multicast(or content-based multicast)

e.g. [CRZ00, ZZJ+01, CDKR02, Ban03, BS04]. In application-level multicast, mem-

bers of a multicast group typically self-organized into an overlay topology, over which

dissemination trees are created. The earlier work typically assumes a traditional mul-

ticast model, where all members of one multicast group have exactly the same interest

and there is no filtering of data during the dissemination to reduce bandwidth con-

sumption. Some following work focuses on how to reduce bandwidth consumption

during dissemination by exploring the overlay structure [Cas03, KRAV03]. Most re-

cently, researcher becomes aware of the relationship among queries. Semcast [PC05]
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utilizes the relationship between clients’ profiles like containment and partial over-

lap, and places similar ones in the same channel, for which a dissemination tree is

built. In this way a number of dissemination trees are avoided. There is some work

concentrating on how the dissemination tree is constructed also [SDR03, SRS02]. In

these two papers, the authors introduced the notion fidelity, which is defined as the

percentage of time that the data value at one node conforms to its coherency require-

ment. The nodes with more stringent coherency requirements are placed at the top

of the dissemination tree while the less stringent ones are placed at the bottom. Note

that filtering is done during data dissemination at the intermediate servers and these

two approaches are more scalable and efficient. Nevertheless, they deal with a subset

of queries with less expressiveness and generally are not applicable to systems with

more expressive queries like continuous queries.

To conclude, work related to multicast dissemination systems focuses on how data

should be disseminated, with great interests in constructing the overlay structure

which facilitates the dissemination. In our problem, we incorporate the power of

data dissemination into a distributed stream processing system to improve system

utilization.
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2.4 Graph Partitioning

Graph partitioning is a fundamental problem and has been studied extensively in a

lot of literatures. The aim of graph partition is to partition the vertices in a graph

into several subsets such that some objectives are met. The objectives can be:

• The load of each partition is equal or conforms to some pre-defined ratios.

• The weight sum of edges spanning subsets is minimum.

• Or both.

We can see there are some similarities between the graph partitioning problem and

our query distribution problem, which motivates us to model the latter as a graph

partitioning problem and use existing well-developed algorithms to solve it.

It is known that the graph partitioning problem with both load balance and min-

imal edge cut requirements is NP-Complete. Nevertheless a lot of heuristics are

proposed which work well in practice. Earlier work focuses on static graph partition

and dynamic graph repartitioning [KL70, KK98a, SKK97]. To scale to larger graphs,

parallel graph partition algorithms have been proposed [KK98b, WCE97, HL95]. K.

Schloegel et al. surveyed various graph partitioning algorithms in the application of

scientific computing in [SKK03]. To the best of our knowledge, no prior work has

used graph partitioning algorithms to solve the query distribution problem. We lever-

age these well-studied algorithms and adapt them to fit in our problem context. A
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hierarchical query partitioning algorithm is proposed in this thesis, which is derived

from previous work. It utilizes the hierarchical structure of the coordinator tree(see

chapter 4.1 for more details) and can cope with the large scale of the system, in terms

of query number as well as number of entities(number of partitions).



Chapter 3

Problem Formulation and System

Overview

In this chapter, we present a detailed analysis of our problem and an overview of our

system to solve the problem.

3.1 System Model

The objective of our system is to provide a service to evaluate complex continuous

queries for a large number of clients over the Internet. This service relies on the

numerous stream processing entities which are geographically dispersed. Each entity

is a single administration domain and it independently makes the choice to install any

sort of stream processing engine. Different stream processing engines may use different

21
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data model and query evaluation model and are not compatible. Some entities may

employ a cluster of processors to deploy a distributed stream processing engine. These

processors are highly coupled and from our system’s perspective they are indivisible.

To ease the presentation, the terms “node” and “entity” will be used interchangeable

hereafter, referring to one single administrative site using its own stream processing

engine. As we can see, entities are heterogeneous in terms of both processing model

and processing power. Different with the processors in one entity which are connected

by LAN, entities are widely distributed and interconnected by the Internet to form

an overlay network. We assume this overlay network resembles the structure of the

Internet, i.e., In the overlay network, besides the stream processing entities, there are

a number of stream sources that continuously generate data streams. Stream sources

are widely distributed and may reside at any location over the Internet.

Client requests on the stream data are specified in a high level SQL-like queries

like the ones in [The03]. Clients dynamically submit/withdraw their queries to/from

the system through a graphic user interface and the system appears like a black box

to them. Our system ensures client queries will be processed at an appropriate node

that results in best system performance and the desired data will be delivered to the

respective client in time. Clients are notified by some means like popup windows or

emails for new query results. Figure 3.1 provides a overview of such a system.

Different with the nodes in traditional Peer-to-Peer network, entities in our system

are expected to be much more robust and stable. This assumption is based on the
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Figure 3.1: System model

fact that each entity itself is a stream processing service provider thus is robust to

failures as a basic business requirement. They can utilize various mechanisms like

backup servers, fault tolerant stream processing engines [SHB04], etc. to achieve

system robustness, which are out of the scope of this thesis. The direct consequence

of robust entities is that entities are unlikely to leave the system due to failure; they

actively request departure before they leave. Moreover, entities join our system to

form a federation to achieve better economical efficiency and provide better service

to attract more clients. They are paid for their contribution to the system using

their otherwise excessive computational power and are charged for consuming system

resources which themselves lack to cope with surging client requests. It is not likely

that some entities will purposely leave the system except some unusual situations like
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server restart, system upgrading, etc. Also for every entity in the federation, they

are prohibited from frequent join/leave activities, which is an obligation they agreed

on before they can join the federation. Therefore, we assume the frequency of active

entity departures is low.

To realize such a system, there are mainly two issues that arise to be addressed:

How client queries are handled by the system and how stream data is disseminated

from sources to various entities.

3.1.1 Query Distribution

When new queries arrive, our system has to assign them to an appropriate node for

processing. One goal of our system is to achieve better system resource utilization,

therefore load balance among the nodes are important. Either overloading or under-

loading will result in sub-optimal system performance, which leads to long processing

latencies to clients. This kind of processing latencies should be avoided especially

for mission critical, real-time monitoring applications. Moreover, query distribution

can affect the communication cost incurred for transferring data streams from source

nodes to entities. For example, assigning queries requesting one specific data stream

to one entity avoids transferring that stream to many entities, which is the case if

these queries are distributed randomly among entities. Figure 3.2 and Figure 3.3

depict two scenarios to illustrate how query distribution affects communication cost.
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The source node s are generating two types of data streams, namely stream S1 and

S2. Q1 and Q3 have request data stream S1 while Q2 and Q4 have interest in stream

S2. The first distribution strategy assigns Q1 and Q2 to node P1 and Q3 and Q4

to P2, which results in transmission of S1, S2 to both P1 and P2. On the contrary,

the second distribution strategy assigns Q1 and Q3 to entity P1 and Q2 and Q4 to

P2. In this case only S1(S2) is transferred to P1(P2), respectively. Due to the huge

volume and continuous nature of data streams, how to minimize the communication

cost of the system by optimizing query distribution is of paramount importance. Re-

duction in the communication cost not only improves the quality of the network, but

also reduces the burden of each entity to receive useless information. Interestingly

prior work either focus on ensuring load balancing [Bab04, XZH05] or minimizing

communication cost [AC04] but not both.

n1

Q1

S1 S2

n2

S1 S2

S1, S2

Q2

S

Q3 Q4

S1, S2

Figure 3.2: Query distribution with overlap of data interest

As discussed in Section 2.2.2, assigning queries in terms of operators among entities
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Figure 3.3: Query distribution without overlap of data interest

is not appropriate for our context. Therefore, our system opts to assign queries as a

whole to entities and relies on the robustness and strength of each single site stream

processing engine inside each entity to further optimize performance. Later we will

see that our query assignment algorithm tends to assign similar queries to one entity,

which implies high potential for further optimization inside each entity.

This problem we are facing is different from the “query routing” in peer-to-peer

or distributed database systems. In these systems, query routing refers to routing

queries to a location where the required data of the queries resides. However, in

our context the relationship between data and queries is the opposite. We fix the

location to run a query, which then in turn determines whether newly generated

data should be routed to that location to avoid flooding the network. Therefore, the

desired location to process one query from the system’s perspective is a place resulting

minimal additional communication cost and better system resource utilization. To
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achieve system level/global optimality, we adopt a coordinator-based strategy, which

exploits network locality and is easier (than say DHT) to support load balancing.

3.1.2 Data Stream Transport

As data sources and entities are inherently dispersed, data streams need to be trans-

ferred from data sources to entities for processing. Data stream transport refers to

this process. However, this aspect of stream processing has been overlooked. Most of

existing distributed stream processing systems [AC04, XZH05] adopted a flat system

structure as illustrated in Figure 3.4. Functionally each entity plays a uniform role

in the system thus data streams are pushed directly from various sources to each of

them indifferently. As a result, each data source has to transmit every update of a

single stream to all entities concurrently. In order to scale up to a large number of

clients like millions of clients like our system does, the number of entities employed by

the system must be large, say thousands of them. If such a flat structure is adopted,

for each update of a single data stream, the source has to send a copy to thousands

of entities. For a source node generating thousands of data streams, which is not

uncommon like in [BW01, AC04, SDR03], it becomes the bottleneck of the whole

system.

As we have seen, previous work has neglected this problem and relied solely on

the sources to transfer the streaming data to all the entities. This approach not
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only increases the workload of the sources which consequently makes them the poten-

tial bottleneck of the whole system, but also stresses the whole network by sending

messages redundantly. To solve this problem, we propose a cooperation approach

which employs the stream processing entities in data dissemination rather than rely-

ing solely on the source nodes themselves. In this scheme, the entities are organized

in a hierarchical structure, which is widely adopted in large scale data dissemination

system. Figure 3.5 illustrates the hierarchical structure. Essential it is a composition

of trees, whose number depends on the number of stream sources. In each tree, a

stream data source node is at the top of the tree, which keeps generating new data

to be disseminated. Below the source node are the various stream processing entities

which cooperates to disseminate data besides evaluating client queries. Each parent

entity is responsible to transfer the upstream data to its child entities. In this way,

the number of nodes the source nodes need to transfer the data is limited thus the

problem of overloaded source nodes is resolved. Moreover, stream data is transferred
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according to the data interest of the child nodes: only those data streams matching

the data interest of the child nodes will be transferred. Redundant transmissions are

eliminated to reduce the communication cost.

3.2 System Overview

From above discussion, we can see that our system needs to two services: the query

management service and the data management service:

• The query management service deals with queries submitted to the system by

clients, including distributing queries to entities for processing, adaptively re-

distribute queries during runtime for better performance, managing new joining
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Figure 3.6: The two-layer services

queries as well as query updates. This service is provided by various coordina-

tors in the system.

• The data management service focuses on data, including client query processing

and data stream dissemination. This service is backed by those entities in our

system.

Note that these two services are orthogonal in terms of target(query v.s. data)

and member(coordinator v.s. entities). Thus we refer to them as “the two-layer

services”, which are illustrated in Figure 3.6. The techniques used in these two layers

are presented in detail in the following chapters.

Query distribution is done by a number of coordinators, which are special stream

processing entities in our system. Note the terms “Entity” and “Coordinator” are

used to differentiate the logical roles of an entity in the system in this thesis. Nodes
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Figure 3.7: The Three-layer Network

are clustered into several groups based on their network localities and one node in each

group is selected as the coordinator for this group. Each coordinator is in charge of

its group, responsible for query management in this group. From this perspective, our

system is composed of three layers of network: the coordinator layer, the entity layer

and the client layer. Figure 3.7 demonstrates the three-layer network architecture of

the system. The number of nodes in each layer is increasing downwards.

Besides evaluating queries, entities in the system cooperates on stream data dis-

semination. Cooperation trees are built to facilitate data dissemination and entities

participates in these trees based on their data interest. which is represented by rout-

ing queries. To avoid flooding the network, data interest of an entity is represented

by a local routing query. The data interest of a subtree of the cooperation tree is

represented by a tree routing query, which is the aggregation of the local routing

queries of entities in the subtree. Only data that passes those routing queries are
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disseminated.

Figure 3.8 presents the architectural design of each entity in the our system. It

contains the following modules.

Stream Processing Engine: This module is constructed by using any single

site stream processing engine that has been developed, such as TelegraphCQ [Cha03],

STREAM [The03], Aurora [Aba03], etc. It facilitates continuous query evaluation in

an entity.

Data Manager: This module is responsible to selectively route data to the

descendants or the local stream processing engine. The routing is based on the data

interest of the destinations. It is guaranteed that all the data of interest to the

destination would be transferred.

Query Manager: All the controls of the queries is handled by this module.

The coordinators in the query layer communicates with entities/coordinators via this

module.

Cooperation Manager: This module is responsible to assist the construction of

cooperation trees. The exact operations depend on the cooperation tree construction

strategy.

Catalog Manager: This module maintains the catalog.

Communication Module: This module provides an interface for this entity to

communicate with other entities.
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Figure 3.8: Architecture of an entity

The modules in the dotted box are the additional components needed for entities

joining our system. They provide a kind of wrapper over the stream processing engine

to avail an entity to be part of the “Federation” and enjoy the benefits of it.

3.3 Chapter Summary

In this chapter, we discussed the system model of our problem first. Two issues

that arise in order to realize such a system are presented: the query distribution

and the data stream transport. Query distribution should achieve load balance as
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well as minimize communication cost of the system. Data stream transport is an

issue that has been overlooked in related work, relying on the source nodes sorely

for streaming data transfer. We identify and address this issue by introducing a

hierarchical structure of entities, promoting collaboration among them for stream

data transport. The overview of the system is then presented. It has two layers of

services(query layer and data layer) and three lays of networks(coordinator, entity

and client). The architecture of the entity in our system is illustrated. The following

chapter will elaborate more on the two layers of services of our system.



Chapter 4

Query Layer Design

In this chapter, we present the design of the query layer. The query layer provides

query management service in our system. It deals with the queries submitted to the

system by clients, including distributing queries to entities for processing, adaptively

redistribute queries during runtime for better performance, managing new joining

queries as well as query updates. The challenge of this layer lies on the following

issues.

• The load of the entities should be balanced during the initial query distribution

as well as during runtime. Load balancing ensures the good system utilization

and small processing delay of client queries.

• Queries distribution should be done in a manner that the commonality of queries

running at different entities should be minimized, i.e. query distribution should

35
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result in a clustering effect. Queries at one node should have great commonality

while at different node should have as little commonality as possible. This clus-

tering effect not only increases the opportunity query optimization can exploit

during evaluation at each single site stream processing engine, but also reduces

communication cost as the transfer of data required to evaluate similar queries

at one node can be shared.

• The system has to handle the arrival of new queries and the removal of old

queries. Continuous queries are potentially long running queries; that does not

mean the update frequency of these queries is low. On the contrary, due to the

large scale of the system, we expect the frequency of query joins and drop offs is

high. The continuous update of queries is referred to as query streaming. Query

distribution and information update should be done efficiently with minimal

overhead to accommodate the fast changing nature of queries.

• One characteristic of the stream data is that the volume of a stream is highly

fluctuating. Such fluctuations not only change the network condition but also

deteriorate previous optimal stream processing performance. Thus a mechanism

to adapt to network changes and data stream characteristics is vital to achieve

runtime optimum performance. Thus queries are redistributed based on some

guidelines to maintain load balancing and minimal communication cost.
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To address the issues mentioned above, we decompose the query management

service into a number of subtasks like initial query distribution, runtime adaptive

query re-distribution, query streaming (query join/drop off) handling, etc. Essentially

all these tasks are to assign the streaming queries to a desirable entity for processing.

All these subtasks are carried out by coordinators of the system, which forms a

network themselves. In the rest of this chapter, we will look at the design of the

coordinator network in section 4.1 and then various techniques devised to cope with

each subtask of this layer.

4.1 Coordinator Network

4.1.1 Coordinator Modeling

In our system, we adopt a coordinator-based approach for the query distribution.

As mentioned above, queries are streaming. To accommodate the fast arriving rate

of queries, multiple coordinators are required. These coordinators are special nodes

selected from stream processing entities in the system, which play the coordinator role

as well as the stream processor role. We assume separate resources of these entities

are reserved for these two roles for simplicity and they are compensated for their

additional contribution as Coordinators to the system. There are several alternatives

to model those coordinators and their relationship.
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Figure 4.1: The naive replication approach

Coordinators as Replicas

A naive approach is to model these coordinators as replicas as illustrated in Figure 4.1.

In this model, every coordinator maintains information about every entity in the sys-

tem, which is needed for query distribution. The information at each coordinator is

identical so they are replicas of each other. In Figure 4.1, there are three replicated co-

ordinators, which forms another layer named “Coordinator Layer” above the “Entity

Layer”. Utilizing the global information/statistics it keeps track of, each coordinator

can independently decide the most suitable entity for any specific query. Also due

to the uniformity of coordinators, incoming queries can be submitted through any of

them for distribution. Load balancing among the entities is easy to achieve since each

coordinator has complete information about the load of every entity in the system.

The main drawback of this approach is the storage space required to keep track of the

information of the entire system at each replicas. Moreover, the highly volatile nature
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of such information worsens the situation by introducing large amount of communi-

cation and maintenance overhead. When queries stream in and out of the system,

every replicated coordinator needs to synchronize its information with other repli-

cates to keep its information accurate and updated. Such synchronization is resource

consumptive and prohibitive for a large number of coordinators.

Coordinators as Peers

Another approach is to divide the system into several regions and each coordinator

is in charge of one region. The division can take the geographical location of each

entity into account and nearby entities are clustered to form one group. One entity in

each group is selected as the coordinator. This approach is illustrated in Figure 4.2.

Each coordinator has complete knowledge of the statistics/information of his own

domain to make query distribution decisions inside its domain. When a new query is
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submitted to an coordinator, the coordinator first checks if it can accommodate this

query in its domain without incurring much additional cost. If not, it will ask for

help from other coordinators. In this approach, the amount of information maintained

by each coordinator is reduced dramatically and the intensive synchronization among

coordinates is avoided. Note the extreme case for this modelling is each group contains

only one node, i.e. the coordinator itself. This modelling resembles the super-peer

model in Peer-to-Peer architecture and various techniques like random walk [GMS04]

can be applied. Nevertheless, this approach has the same inherent disadvantage as

the query routing in P2P network. Since each coordinator has no knowledge about

other domains, the query distribution process may take a long time to settle the final

location of a query. Also the distribution tends to achieve local rather than global

optimization due to lack of global knowledge.

Our Hierarchical Modeling

We propose a hierarchical structure to model the coordinators. It is derived from

the second alternative. Nodes are clustered into domains based on their network

localities and within each domain one node is elected to act as the coordinator. These

coordinators form another layer above the entity layer as in alternative 2. However,

nodes on that layer are also clustered into groups and one node is selected as the

coordinator for each group. This process continues level by level recursively until one

single node remains. This node is referred to as the root node. Figure 4.3 is a simple
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Figure 4.3: Hierarchical structure of coordinators

example to illustrate this process. On the bottom entity layer, there are nine entities

which are clustered into three domains. One coordinator is selected for each cluster

(denoted using dark circles) and these three nodes constitute the first coordinator

layer. Within this coordinator layer, these nodes are clustered into one group and

one node (denoted using a dark circle) is named as the coordinator for this group,

which forms one higher coordinator layer. Since it is the only member of the top

coordinator layer, this process ceases.

For those nodes on the coordinator layers, all of them are coordinators actually.

We use the term “super coordinator” to denote the node in charge of each domain

on these layers and “ordinary coordinators” to denote the rest. A super coordinator

is responsible to distribute queries among the nodes in its domain for further distri-

bution. For the coordinators on the bottom coordinator layer(“coordinator layer 1”

in Figure 4.3), they are responsible to distribute queries to the entities in their own
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domain and it indicates the end of the query distribution process. As we can see, the

scope of information needed in order to make query distribution decisions increases

from bottom to top. For the coordinators on the coordinator layer 1, they only need

to maintain information about the entities in its domain. For each super coordinator,

the information maintained is the aggregation of that maintained by every node in

its domain. Therefore, for the top level coordinator, it has to possess an overview of

the whole system. This is necessary in order to achieve optimal at system level.

Figure 4.4 is another representation of this modelling using a tree structure. The

leaf nodes of the tree are the stream processing entities and the rest are coordinators.

We refer to those coordinator nodes whose child nodes are entities in the tree as leaf

coordinators. A parent node in the tree is the (super) coordinator of all of its children

nodes, i.e. all the sibling nodes constitute a cluster and the parent node of them is

the coordinator (super coordinator for non-leaf sibling nodes).
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The root coordinator has complete knowledge of the queries running in the sys-

tem. Clearly it may becomes the potential bottleneck of the system. To alleviate

this scalability problem, we devise a novel technique which coarsens the information

maintained by the super coordinators at each level. This technique is derived from

approximation techniques [BS04] and tries to omit those less important details while

capturing the main characteristic of the original information. The coarsened infor-

mation provides a kind of summary of the information for each node in one domain,

which is sufficient for the super coordinator to make an optimal query distribution

decision. New queries are submitted to the root coordinator and then is routed down

level by level until it finally reaches an entity, which will be responsible for its eval-

uation as well as result notification. The hierarchical tree structure determines the

complexity of information updated by the arrival or removal of a query is O(log N),

as only those coordinators on the path from the affected leaf coordinator to the root

need to update their information.

Although in our design, all queries have to be routed through the root coordinator,

it is still scalable to the fast query stream. There are two factors which determines

the processing delay of the root coordinator for distributing a single query: the num-

ber of nodes the root coordinator can pass the query (potential candidate for data

forwarding) and the time to check the suitability of each node. The number of nodes

it can pass the query is a tunable parameter of our system as it is determined by the

number of nodes in each cluster. The root can adapt to sudden surging of the query



CHAPTER 4. QUERY LAYER DESIGN 44

stream at runtime by reducing the number of nodes in its cluster thus alleviate the

burden of excessive checking. Moreover, checking is done based on the information

which is specially coarsened to speed up the checking process. From both of these

two aspects the root coordinator is unlikely to become the bottleneck of the system.

Judging from the computation power of prevailing servers in reality, one root coor-

dinator is sufficient to handle up to 10,000 new arriving queries per second(please

refer to section 6.3 for more detail), which is an appropriate estimated figure for our

system. Even if the rate of the query stream exceeds this estimate and is too fast

to be handled by the root coordinator alone, a replicated root coordinator could be

deployed. Note that the number of replicas is dependant on the rate of the queries

stream, rather than the number of entities in the system as the naive replication

scheme is. Without loss of generality, we restrict our discussion to only one root

coordinator for simplicity in this thesis.

4.1.2 Coordinator Tree Construction

The coordinators are organized into a hierarchical tree structure as illustrated in

Figure 4.4 and we refer to this structure as the coordinator tree. In this section, we

will present the coordinator tree construction algorithm.

The coordinator tree construction algorithm should exploit the locality of the

entities, keep the tree balance as well as accommodate the join/leave of the entities.
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Note that the departure rate of entities is low and departures are explicitly requested

by leaving entities as discussed in section 3.1. We adapted a distributed mechanism

proposed in [SBK02] which is able to construct tree incrementally and dynamically.

Moreover, this mechanism is capable of maintaining a tree with following properties,

which exactly fits our requirements:

1. The number of child nodes for a coordinator at each level is between k and

ck − 1, with the only exception of the root node which can have less than k

children.

2. Parent is the center of its cluster, i.e. with the minimum average delay to all

the other nodes in its cluster. Note this property ensures the locality of nodes

are utilized.

The procedure of tree construction is as follows:

• When a new entity requests to join the system, its request will first be directed

to the root coordinator. For each node in the coordinator tree when it receives

the joining request, if it is a leaf coordinator, it will add the joining node to

its cluster. Otherwise, it identifies one ordinary coordinator in his cluster i.e.

a child node in the coordinator tree, that is closest to the joining node and

forwards the joining request to that coordinator.

• When a node intends to leave the system, it will send a message to its parent

node which is meant for job handover. The parent will decide how to redistribute
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its jobs to the remaining child nodes. If this node is also a coordinator, a new

coordinator which resides at the center of the remaining nodes in the cluster is

selected to replace it.

• If a coordinator realizes the number of its children exceeds ck−1, it will partition

its domain into two with equal sizes such that the radii of the two domains are

minimized. The center of the two domains are selected as two new coordinators,

replacing the original super coordinator in the upper coordinator layer. Note

this process may propagate to the the root coordinator.

• If the number of children of a coordinator x falls below k, x will send a merge

request to the closest sibling say y. The two domains are merged and y continues

to be the coordinator of the new domain while x is downgraded from coordinator

to a ordinary node. However, the scale of our system tends to expand therefore

cluster mergers are delayed and are not propagated to upper coordinator layer

to avoid redundant work.

• Periodically a new parent will be selected if the current coordinator is no longer

the center among its domain.
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4.2 Query Distribution

In this section, we present how queries are distributed among the entities using the

coordinator network. First we discuss the goals for the query distribution and then

present our model to solve the problem. Thereafter initial query distribution, online

query routing and adaptive query redistribution schemes will be elaborated respec-

tively.

4.2.1 Goals to Achieve

There are essentially two goals to achieve for query distribution: balance the load

among the entities and minimize the communication cost.

• Balance the load among the entities. Load balancing ensures the good system

utilization and results in small average processing delays of client queries. In

this thesis, we focus on the CPU load and will study multi-object load balancing

in future work. We assume the relative computational capability of each entity

joined our system is known. This can be done by choosing one entity as the

standard, assigning a value 1 to represent its capability and acting as a basis

to measure the rest. If another entity is k times more powerful than this basic

entity, i.e. the evaluation time for one query at this entity is 1/k of that at the

standard entity, the computation capability of this entity is represented as k. In

this way, the total computational power of the system can be estimated as the
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sum of all these capability values. Similarly, the load of a query is estimated

as the CPU time that will be consumed to evaluate this query at the standard

entity. Hence if the total query load is L and the total computational power

of the system is C, the expected load that should be allocated to a entity with

capability value k is k · L
C
. However, absolute load balancing is too stringent

to implement in reality. Instead of achieving absolute load balancing, a certain

degree of load imbalance among the entities is tolerable. In our system, the

load allocated to each entity should not exceed h% of its expected value, where

h is a system parameter. Thus the load for each node is denoted by:

(1 + h%) ∗ k · L

C
(4.1)

• Minimize the total communication cost. The communication cost has two com-

ponents: the cost to transfer streams from the sources to every destination

entity and the cost to transfer query results from each entity to clients. As

claimed in [Bab04], most queries posed by clients in data stream applications

contains filters and aggregations. Users are commonly interested in specific por-

tions or some global overviews of the data, rather than consuming each update

of the stream data. For example, most of the queries submitted by clients at

http://www.traderbot.com return less than 10 result items, with the highest

update rate of 1 update per minute. On the contrary, the data sources contain
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more than 20,000 items, with the highest update rate of 1 update per second.

Clearly the cost to transfer streams from the sources to entities dominates the

overall cost. In our problem, we focus on minimize the first portion of the to-

tal cost. In our experiments, the ratio of output rate to input rate is chosen

uniformly from 0.1% to 1%.

Unlike multicast which transfers data streams to each member in the multicast

group, our system delivers the data streams selectively to avoid flooding the network

with redundant or useless data. The data interest of an entity is the union of the

data needed to evaluate all the queries allocated to it. Intuitively, for each tuple

that is to be disseminated, it is desirable to disseminate it to as few entities as pos-

sible, for the sake of communication cost. This implies that we should minimize the

commonality of the data interest among the entities to reduce communication cost,

which has been illustrated by Figure 3.2 and Figure 3.3 in Section 3.1.1. Another

way to explain the above phenomenon is that the query distribution strategy should

result in specialization, i.e. each entity will be specialized in evaluating one sort of

queries, requesting a particular portion of the data streams, and queries at different

entities have little overlap of data interest. One side effect of this strategy is that

the performance of the single site stream processing engines installed at each entity

are improved significantly as most of them have optimization mechanisms to exploit

the commonality of running queries. This is another motivation to distribute a group
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of similar queries to a stream processing entity for processing. Therefore, the main

saving in communication cost is gained from eliminating redundant data transmis-

sions, which is achieved by query clustering, assigning one cluster to a single node.

For example, for one specific stream, originally it is disseminated to 1000 nodes for

processing. However, after query distribution, it may only be sent to 10 nodes, which

is a great improvement in performance. Compared with this, the communication cost

between sources to nodes are relatively less important. To simplify our problem and

its modeling, we omit the source-node distance information in our model, which may

be addressed in future work.

4.2.2 Problem Modelling

As we can see from above analysis, query distribution is essentially a partition prob-

lem: Queries are partitioned into N groups with minimal data interest overlap among

them, where N is the total number of entities in the system. Also the load of each

partition is conformed to the capability of the assigned entity. To solve this problem,

we model it as a graph partitioning problem. We construct a query graph for the

queries submitted to the system and then employ a graph partitioning algorithm to

solve the query distribution problem.

In the query graph, each vertex represents a query and the edge between two

vertices represents the overlap of data interest between these two queries. Each edge
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is weighted with the estimated arrival rate (bytes/second) of the data which these

two connected vertices (queries) have mutual interest. Vertices are weighted with

the estimated computational load that the query would impose on the basic entity.

These weights can be estimated based on previous collected statistics and may be re-

estimated at runtime using new statistics. Figure 4.5 illustrates a simple query graph.

This query graph comprises 5 queries and the weights of the vertices and edges are

drawn around them. If, for example, we have to distribute the queries to two entities

with equal processing capabilities for processing. We consider two distribution plans:

(1) allocate Q3 and Q4 to one entity and the rest to another; (2) allocate Q3 and

Q5 to one entity and the rest to another. Note both the two plans can achieve load

balance, resulting in two partitions with load 4 each. However, plan (2) has a smaller

communication cost, where only 3 (bytes/second) of data are duplicately transferred

to both nodes, while 8 (bytes/second) of data are duplicately transferred in plan (1).

Q1 Q5

Q4

Q2

Q3

1

1

2

2

2

10 2

8
1

Figure 4.5: Example query graph
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With the query graph, we can model the query distribution problem as a graph

partitioning problem formally as follows:

Given a graph G = (V, E) and the weights on the vertices and edges,

partition V into k disjoint partitions such that each partition has a spec-

ified amount of vertex weights and the weighted edge cut, i.e. the total

weight of the edges connecting vertices in different partitions, is mini-

mized.

Note the two goals of query distribution, namely load balance and minimizing com-

munication cost are inherently embedded in this graph partitioning problem.

The graph partitioning problem is NP-hard but has been extensively studied in

a wide context [SKK03], such as data mining, spatial databases, VLSI design etc.

However, there are a number of notable differences of the problem in our context

from previous studies:

• The semantic of the graph is different. In our problem, the edges of the graph

represent the overlap of the data interest among different queries, while in prior

work, they represent the amount of communication between the vertices.

• Traditional graph partitioning algorithms do not consider how to assign re-

sulting partitions to processors. The reason is processors are all connected by

fast local network and are uniform in terms of network locations. However, as
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entities in our system would cooperate in stream dissemination and they are

geographically dispersed, maintaining dataflow locality is critical to minimizing

communication cost.For example, if a few partitions have very large overlap in

their data interest, distributing them to a few nearby entities can achieve better

dataflow locality than distributing them to a few faraway nodes.

• To enhance the scalability of the partitioning algorithm, parallel algorithms are

used to do the graph partition, in the hope to reduce processing time. However

these existing parallel algorithms are not applicable in our context. The reason

is in previous work, processors are assumed to be connected by a fast local

network [SKK03] thus the frequent communications between processors during

the partitioning process are tolerable. Nevertheless, our system is built on WAN

so the communication cost among the coordinators is too high to bear.

The differences listed above render the existing solutions inadequate to solve our

problem. A customized graph partitioning algorithm which takes those difference

into account is needed.

4.2.3 Initial Query Distribution

In this section, we present several initial query distribution algorithms. One naive

query distribution algorithm is to distribute the query to where it is submitted to the
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system until the load balance constraint is violated. If that happens, the query is re-

distributed to a random node without reaching its expected workload. This algorithm

is simple and fast, and can ensure no node is overloaded. The obvious problem of it

is this algorithm does not utilize the data interest information of queries thus results

in poor clustering quality of query distribution.

Let us consider another greedy algorithm. This algorithm assigns queries to en-

tities one by one as they are submitted to the system and takes a greedy approach

such that a new query is assigned to an entity with the least additional communica-

tion cost. Also for each node, a load limit 4.1 is imposed to ensure the load balance

constraint is not compromised. The only problem with this approach is the quality

of the solution given by this algorithm is not guaranteed and largely dependent on

the sequence the queries are distributed.

With the query graph modeling, another initial query distribution algorithm is the

centralized graph partitioning algorithm. In this algorithm, a central node collects

all queries initially in the system and build a query graph for them. Then queries

are distributed using a generic graph partition algorithm based on the partition it

belongs. Since both load balance and data interest of queries are taken into account

in the query graph modeling, this algorithm is believed to perform better than the

previous two. However, the problem is efficiency: an centralized approach can hardly

scale well and impose too much overhead in gathering all information to the central

node.
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Since both the queries and their distribution would be updated during runtime,

the quality of initial query distribution becomes less critical. Therefore, we prefer a

fast algorithm with reasonably good solution quality to slow algorithms even if they

may lead to initial optimal solutions. Also a distributed algorithm with moderate

communication among entities is more desirable than centralized one for efficiency.

With those considerations above, we devise a hierarchical graph partitioning al-

gorithm that is specially designed to fit the hierarchical structure of the coordinator

tree. There are two phases for this algorithm: the bottom-up phase and the top-down

phase.

The Bottom-up Phase

The bottom-up phase is essentially the preparation phase for query distribution: it

gathers the necessary information and makes it ready for the top-down phase, which

actually allocates queries to entities. Assume initially queries reside at the entities

through with they are submitted to the system. Each leaf coordinator first collects

the queries from the entities in its domain. The original locations of these queries are

tagged for future reference. A query graph is then generated by each leaf coordinator

for the queries collected. Recall that a vertex in the graph represents a query and

the weight of it is the estimated work load to evaluate it in the basic entity. The

weight of an edge between a pair of vertices is estimated based on the overlap of

their data interest as discussed in 4.2.2. Later we will see that the data interest of a
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query can be represented using a routing query (essentially a selection query), which

will be presented in detail in Section 5.2. For now we assume the weight of an edge

is the estimated arrival rate of those tuples that requested by both queries. With

the query graph established, the coordinator passes this information to its parent in

the coordinator tree, which integrates query graphs from children to construction its

own query graph after receiving all query graphs from its children. Note this process

can run in parallel in different subtrees thus accelerates the bottom-up phase. This

process continues upwards until the root coordinator is reached, which will build a

query graph containing all the queries submitted to the system.

One thing special about our algorithm is that instead of passing the entire query

graph to its parent coordinator in the coordinator tree, each coordinator coarsens the

query graph before submission. By the word “coarsen” we mean that some subsets of

the vertices are collapsed, using a new vertex to represent that subset in the original

graph. The weight of the new vertex is the weight sum of the collapsed vertices and

the data interest of the new vertex is the union of that of the collapsed vertices. The

routing query of this vertex is obtained by aggregating the routing queries of these

vertices. Those edges internally connecting the collapsed vertices are omitted and

the weights of those external edges are updated accordingly. The new query graph is

more “coarser” compared to the original one and the number of vertices is reduced.

Figure 4.6 is a simple example to illustrate query graph coarsening. The graph has

four vertices, standing for four queries. The weights of vertices and edges are drawn
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around them. Since Q1 and Q2 have great mutual data interest, reflected by the “10”

edge weight, they collapse to form a new vertex Q1′ in the coarsened query graph.

Similarly, Q3 and Q4 forms a new vertex Q2′ in the new graph. After coarsening, the

number of vertices is reduced to 2 from originally 4 and the weight of a new vertex is

the sum of the weights of vertices constituting it.

Q1

Q4

Q2

Q3

12

10

2

8

2 2

(a) Before coarsening

2

Q1'

Q2'

4

3

(b) After coarsening

Figure 4.6: Query Graph Coarsening

There are two important issues regarding graph coarsening: the coarsening degree,

i.e. how coarse is the new graph and how to choose subsets of vertices to be coarsened.

• The coarsening degree is a tunable parameter and we use a threshold vmax to

control it. Assume the number of vertices in the original graph is |V |. If vmax=1,

all the vertices are collapsed into one and the new graph is the coarsest one,

i.e. it provides little information about the original graph. On the contrary,
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if vmax=|V |, then all vertices are reserved in the new graph and it retains all

the information of the original one. Clearly, the value of vmax should be in the

range of 1 and |V | to reduce the scale of the query graph while retaining useful

information. In our scheme, we set vmax as |V |/f , where f is the fanout of the

parent coordinator in the coordinator tree, i.e. the number of coordinators in

a domain on the coordinator layers. The underlying heuristic of this choice is

to make the average number of vertices in the query graph constructed by each

coordinator equal.

• To choose the subsets of vertices to be collapsed, we partition the graph using

traditional graph partitioning algorithm [SKK03] into vmax partitions. This al-

gorithm ensures the sum of edge weights of those edges connecting vertices from

different partitions is minimum. That means the edges connecting vertices in

the same partition have relatively larger weights. Since edge weights denote the

commonality of data interest between vertices, this partition algorithm clus-

ters similar queries into one partition. The intuition is that vertices with great

commonalities tend to be assigned together to an entity or coordinator in the

second top-down phase.
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The Top-down Phase

The top-down phase of the query distribution algorithm is to partition the query

graph, assigning each partition to child coordinators or entities to implement query

distribution. When the root coordinator has constructed the global query graph,

the top-down phase of query distribution starts. The root coordinator partitions the

graph into f partitions, one for each of its children. The partitioning is done based

on the total computational capabilities of the entities within the scope of each child

coordinator to achieve load balancing. An algorithm similar to the one in [SKK97] is

used. This algorithm claims to partition the graph into partitions with pre-determined

vertices weight sum while maintaining the edge cut of different partitions small. Once

the partitions are ready, they are distributed to the child coordinators based on the

estimated workload of each partition. For each child coordinator receiving a partition

of the query graph, what it does is to “uncoarsen” the subgraph assigned to it one

level back. For each vertex in the coarsened query graph, it maintains the information

like what it is composed of, the origins of the vertices constituting this vertex, etc.

“Uncoarsening” refers to the process in which each coarsened vertex is converted and

represented by the vertices composing it. It is the opposite process of “coarsening”,

resulting in a finer-grained query graph with more vertices in it. After the vertices

are uncoarsened, the resulting graphs is partitioned as done in the root coordinator.

This procedure repeats at each level downwards until the entity layer is reached,
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which indicates the complete of the query distribution algorithm. Again this proce-

dure can run in parallel for different subtrees of the coordinator tree to reduce running

time.

After running the query distribution algorithm, the actual migration of queries

happens at the entity layer. At the end of this process, the load of queries allocated

to each entity conforms to its processing capability as the query graphs are always

partitioned with explicitly specified loads for each partition at each level of the hi-

erarchical coordinator tree. Moreover, queries are distributed to different regions of

the entity overlay network with minimal overlaps of data interest between different

regions at each level. This clustering effect helps to maintain dataflow locality when

data streams are disseminated from data sources. Hence our initial objectives of query

distribution are perfectly achieved by the two-phase query distribution algorithm.

4.2.4 Online Query Routing

Unlike prior studies which assume queries are relatively stable or updated infrequently,

our system addresses the problem of streaming queries. Queries are submitted to the

system during runtime and due to the large scale of our system, they forms the

query stream. To solve this problem, we employ a query routing algorithm using our

hierarchical coordinator tree.
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Note that after the initial query distribution phase, every coordinator in the co-

ordinator tree has knowledge about the queries running in its domain, in the form

of a coarsened query graph. For example, the root coordinator has knowledge about

all the queries running since its domain is the whole system. This information at

each coordinator is utilized for online query routing, which is another benefit of our

query distribution algorithm. A newly-submitted query is first routed to the root

coordinator. Based on the information of the queries running at each subtree, the

root coordinator routes the query to one of its children, whose running queries have

the greatest commonalities with the new query. The routing then continues level by

level downwards until the query is assigned to an entity on the entity layer. Note

that we relax the load balancing constraint on each entity during query routing ten-

tatively in order to reduce the complexity of query routing thus to adapt to the fast

query stream. The adaptive query redistribution can easily notice the unbalancing

workload and redistribute workload among entities.

4.2.5 Adaptive Query Redistribution

During runtime, the characteristics of data streams are likely to change, like stream

rate. Hence initial allocation of queries may become suboptimal. Moreover online

query routing may introduce workload imbalance among the entities. Therefore,

adaptive adjustment of query distribution during runtime is necessary. Again we
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utilize the hierarchical coordinator tree and employ a hierarchical scheme. The adap-

tation operates in rounds and each round is initiated periodically by the root coordi-

nator.

After making query redistribution decisions at own layer, the root coordinator

transfers the change of each partition to each of its children. The child coordinator

obtains the finer-grained information of the vertices newly allocated to it by uncoars-

ening them. Then the same procedure is carried out by the child coordinator to make

query redistribution decisions. This process continues until the leaf coordinator fin-

ishes its query redistribution. Again, the actual migration of queries happen after all

redistribution decisions are made and is done in the entity layer.

The adaptive redistribution algorithm in each coordinator is composed of two

phases: load re-balancing followed by distribution refinement.

Load Re-balancing Phase

In the load re-balancing phase, each coordinator tries to re-balance the load among

its children. However, there are a few other considerations besides re-balancing the

load:

• Minimize the overlap in data interest between different partitions. This is one

of the objective of the query distribution algorithm and the load re-balancing

phase should not compromise the quality of the partitions too much in order to

balance the load among partitions.
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• Minimize the query migration time. Since each query may contain stateful

operations during runtime, like MAX, MIN, AGGREGATION, etc., the state

of these operators have to be migrated together with the query. To avoid large

overhead, we should minimize the number of queries that need to be reallocated.

To re-balance the load, there are a few possible approaches. One approach is to

repartition the query graph from scratch. This approach can achieve good partition-

ing quality. However not only the decision making time is relative large, but also

the query migration time is unacceptable due to the large number of query realloca-

tions. Another alternative is to remove some vertices from the overloaded partitions

and add them to some underloaded ones, without considering the commonalities of

data interest between these partitions. This approach can achieve small query mi-

gration time and decision making time. However, communication efficiency might be

unsatisfactory due to the deterioration of query clustering.

We employ a diffusion approach, which is a compromise of the two extreme ap-

proaches mentioned above. In the diffusion approach, the move of vertices are re-

stricted to those between connected partitions, i.e. only those vertices that have edges

connecting vertices in another partition are allowed to move to that partition. Under

this guideline, queries are migrated to those partitions that have some commonalities

with them and the effect of query clustering is preserved. Our query redistribution

algorithm is presented in Algorithm 1. The “diffusion solution” specifies the load mij
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that should be migrated from a partition Si to another partition Sj for each i, j. We

adopt the method proposed in [HB95] to derive a diffusion solution, such that the

Euclidean norm of the transferred load is minimized which reflects small number of

query movements.

Algorithm 1: Adaptive load re-balance

begin1

Compute the diffusion solution mij for every i, j pair;2

while there exists an mij > 0 do3

Randomly select a pair i, j such that mij > 0;4

V ← vertices in Si whose benefits differ up to x% from the largest5

benefit;
Vd ← the dirty vertices in V ;6

if Vd = ∅ then Vd ← V ;7

Migrate the vertex v ∈ Vd from Si to Sj such that it is of the largest8

load density and mij is larger than 90% of its weight ;

end9

In this algorithm, several factors are taken into account when deciding which

vertices are to be migrated.

• Benefit of migration. The benefit of a vertex migrated from Si to Sj is equal

to the amount of weighted edge cuts that can be reduced by the migration. To

achieve good partition quality, our algorithm tends to migrate those vertices

with large benefits.

• Dirty vertices. As migration of vertices is carried at the end of each round,

a vertex is called dirty if it has been decided to be migrated in the earlier

iterations of the adaptation round. We give these dirty vertices higher priority
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for migration in the following iterations as migrating them again would not

increase additional query migration cost

• Load density. Load density of a vertex is equal to the weight divided by the size

of its state. We favor migrating the denser ones because it may result in less

state movement. The value of x in line 5 can be used to trade partition quality

for lower migration cost. With a larger x value, we can consider more vertices

with lower migration benefit.

Figure 4.7 is a simple example to illustrate load re-balance. There are four queries

which are groups into two partitions, namely P1 and P2. However, during runtime

the load of Q1 increases to 5 and load imbalance among these two partitions occurs.

To resolve this problem, Q2 is migrated from P1 to P2. The benefit of this migration

is 7.
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Figure 4.7: Load Re-balance
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Distribution Refinement Phase

The distribution refinement is carried out after the load re-balancing phase. This

phase tries to see whether the quality of the current partitioning can be improved

without violating the load balance constraint. It aims to reduce the weighted edge

cut while maintains the load balance condition inherited from the load re-balancing

phase. Again the border vertices are visited randomly and checked to see whether it

has any of the properties:

1. Migrating the vertex back to its original partition can maintain load balance

and the weighted edge cut remains the same.

2. Migrating the vertex to another partition can decrease the current weighted

edge cut without violating load balance constraint.

3. Migrating the vertex to another partition can improve the load balance while

maintaining the current weighted edge cut.

If a vertex has one of the properties above, it is migrated.

4.3 Chapter Summary

In this chapter, we present the detailed design of the query layer. The query layer

provides query management service in the system. Its task can be decomposed into

several subtasks, like initial query distribution, online query routing and adaptive
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query redistribution. These tasks are carried out by various coordinators in the sys-

tem, which are organized in a hierarchical structure. We model the query distribution

problem as a graph partition problem and devise a novel hierarchical graph partition

algorithm to distribute queries to entities, leveraging the hierarchical structure of

the coordinators. This algorithm not only achieves the goals of query distribution,

namely, load balance among the entities and minimizing communication cost, but

also naturally distributes the necessary information needed for online query routing

and adaptive query redistribution to those coordinators. The online query routing

algorithm can efficiently handle streaming queries and assign them to the most appro-

priate entity for processing. The adaptive query redistribution algorithm addresses

the problem of suboptimal performance due to changing conditions at runtime. It

allows the system to adjust the query distribution to adapt to runtime environment

so as to achieve optimal performance.



Chapter 5

Data Layer Design

The data layer, as the name suggests, focuses on how data in the system is managed.

It provides two types of services essentially: client query processing and data stream

dissemination. Client query processing is the basic function of our system and is

supported by various stream processing engines installed at each entity. Despite of

the heterogeneities of the stream processing engines, they are capable of evaluating

queries submitted to the system with newly generated data and deliver query results

to the respective clients. Data stream dissemination is a prerequisite for the query

processing service, as it transfers the necessary data to individual entities for query

evaluation. In this thesis, we focus on the data stream dissemination service provided

by our system and rely on the stream processing engines to provide the client query

processing service.

Once the locations for running the queries are fixed, we need to decide how data

68
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streams are transferred from source nodes to the place where they are consumed. This

is the data stream dissemination service provided by the data layer. A naive source-

based approach for data stream dissemination is all data streams are disseminated

from source nodes directly to stream processing entities. As mentioned in 3.1.2,

entities in our system cooperate on data stream dissemination by participating in

the cooperation trees rather than relying on the source nodes solely (Please refer to

section 3.1.2 for a discussion of these two algorithms). To avoid flooding the network,

each parent node in the cooperation trees only disseminates the data interesting to

each of its descendants. In the rest of this chapter, we will see how cooperation

trees are constructed and how data interest of entities is represented in our system

to facilitate data filtering.

5.1 Cooperation Trees Construction

For each source node, one cooperation tree is constructed, with the source node as the

root of the tree. Based on its data interest, an entity decides whether to participate

in one particular cooperation tree.

Each tree is generated dynamically as follows. Firstly, a degree constraint is posed

to each node based on its capability. This degree decides the maximum child nodes

that entity can have for data dissemination. As data dissemination consumes system

resources, the more powerful an entity is, the more number of child node it can



CHAPTER 5. DATA LAYER DESIGN 70

support. Each cooperation tree is constructed dynamically, with nodes joining and

leaving meanwhile. Let us see two scenarios for node joining/leaving the cooperation

tree respectively.

5.1.1 Joining a Cooperation Tree

Joining a cooperation tree occurs when a new query that requests a stream from a

source s starts running at a node ni while ni is not a member of that cooperation

tree. We say ni is not covered by that particular cooperation tree rooted by s. ni

initiates a request to join that tree to the source node s. If s still has an available

degree, ni would be directly placed under s. Otherwise, s would search for a child

node nj that has the least communication latency with ni. If the latency between s

and ni is smaller than that between s and nj, ni will be placed as the child of s and

nj will be downgraded as a child of ni. Otherwise, ni’s request will be directed to

nj who will then repeat the above procedure. The whole procedure stops when ni is

added to the tree. This whole process is illustrated by Algorithm 2.

5.1.2 Leaving a Cooperation Tree

A node may leave a cooperation tree when the data disseminated from s in this tree

is no longer necessary for that node. Similar to joining the tree, a request to leave the

tree is initiated by the particular node. The request together with the information
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Algorithm 2: HandleJoiningRequest(rq)

begin1

if there is a free output degree then2

Add the requesting processor ni as a child node in the cooperation tree;3

Reduce the available degree by 1;4

else5

Find the child node nj that is closest to ni;6

if ni is closer to me than nj is then7

Add ni as a child node;8

Make nj a child node of ni;9

else10

Run HandleJoiningRequest(rq) at nj;11

end12

of ni’s children is sent to ni’s parent, say nj. nj will select one of ni’s children nk

to replace ni such that nk has the lowest communication latency with nj. The other

children of ni will automatically become child nodes of nk and will be notified about

this change from nk. To avoid frequent joining and leaving due to change of running

queries, each entity will be locked in the trees for a period after it issues a request for

leaving to s. Only after this period when it still does not need those data streams,

would it be allowed to leave.

Algorithm 3: HandleLeavingRequest(rq)

begin1

Find the child node nk of the requesting node ni that is closest to this node;2

Delete ni from child nodes;3

Add nk as a child node;4

Notify nk and other child node of ni about the change to update5

information;
end6
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5.2 Routing Query Constructions

Each cooperation tree is composed of entities with mutual data interest in the data

streams generated by the tree root. However, that does not mean those entities

are interested with every update of those data streams. Therefore, transferring every

update to all the entities may result in redundant communications and waste network

recourses. In our system, we use routing queries to represent the data interest of each

entity and only those tuples that can pass the routing query are delivered to the

corresponding entities. Note that routing queries are not queries that submitted by

clients. Instead, the routing query for an entity is derived from the queries running

at it. In this section, we will see how routing queries are constructed from the queries

running at one entity and how they facilitate data dissemination in the system.

For each entity, there are two types of routing queries: the local routing query

and the tree routing query.

• A Local routing query is constructed using queries running in the stream

processing engine of the entity. It essentially provides a filtering mechanism on

top of the engine; only those data tuples needed to evaluate the running queries

are routed to the engine for further processing.

• Tree routing queries are used to route data to the child nodes in the cooper-

ation tree. There is one tree routing query for each child, which summarizes the
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data interest of the entire subtree rooted at that child node. With this knowl-

edge, a node can decide whether an incoming data tuple should be forwarded

to one child node based on its tree routing query.

These two types of queries are closely related. Local routing queries are the bases

for constructing tree routing queries. Under our scheme, each interior node of the

cooperation tree submits a tree routing query to its parent which is an aggregation

of the tree routing queries from its children and its local routing query.

Data interest of each query is specified by its selection predicates (normally in the

“where” clause for SQL-like queries). One natural way to construct a local routing

query is to extract the selection predicates from the local running queries and incorpo-

rate them using disjunctions. Since each tree routing query is the union/aggregation

of all the local routing queries of the entities in the subtree(including its own), those

nodes at the top of a cooperation tree thus have a large number of selection pred-

icates in their tree routing queries. This imposes a high filtering and maintenance

workload to those entities. Some work on data filtering [FJL+01, SDR03] proposed

some optimization techniques like sharing evaluation of predicates etc. to alleviate

this problem. However, they are not efficient in our context due to the large scale of

our system. The large number of queries submitted by clients accounts for the large

number of unique selection predicates which renders those optimizations inefficient.

Our system constructs routing queries using another approach, which is based
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on data space partition. We partition the data space into multiple subspaces by

dividing each data stream into multiple substreams. Those substreams are denoted

by SS={ss1, ss2, ..., ss|ss|}. Local routing queries are represented as a bit vector

v ∈ {0, 1}|SS|, where |SS| is the total number of substreams. The value of an element

of v is:

v[i] =





1 if this query has data interest in substream ssi,

0 otherwise.

(5.1)

Under this scheme, it is very easy to implement query aggregation. A simple

“OR” operation on two bit vectors results in the union of them. Tree routing queries

are constructed by using union of local routing queries. Thus a tree routing query

for an entity is constructed by repeating the “OR” operation on all the tree routing

queries(vectors) of its child nodes as well as its local routing query. This can be done

efficiently as only bit operations are involved. Also with this presentation, all routing

queries are of the same size, regardless how many descendants one node may have in

the cooperation tree. Furthermore, compression techniques like [Teu78, BK91] can

be easily applied to reduce the size of the bit vectors to save space.

When a tuple arrives at one node, it is matched against its tree routing queries

of its children and then sent to those child nodes whose routing queries request that

tuple. Note this checking is composed of two steps: 1) search for the subspace(the

substreams) that covers a specific point(the tuple) in the data space; 2) check whether
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any of the positions representing these substreams in the vector has a “1” value for

each routing query. Step 1 can be solved by existing techniques, such as R-Tree [Bec90]

and step 2 is straight forward, with some checking on the bit vectors.

We can see that there is a tradeoff between filtering power and filtering over-

head. Filtering power refers to the ability to identify those irrelevant tuples of the

data streams for forwarding while filtering overhead is the computation cycles(system

resource) allocated to do the extra filtering at each node. To achieve the highest fil-

tering power, we should partition each stream to as many substreams as possible. For

example, we can partition a stream into many substreams by using different combi-

nations of distinct attribute values of the stream. Let us see an example. Suppose the

original stream has two attributes(say a and b), each can take two distinct values(say

1 and 2) which follows a uniform distribution. To obtain extreme filtering power, we

can partition it to 4 substreams, as illustrated in Table 5.1. As they are the smallest

substreams that can be derived, we call them the finest substreams. With this parti-

tion, only those tuples having exact matching values to the selection predicates of the

child nodes are forwarded and the rate of each such substream is only one quarter of

the original rate. Thus a lot irrelevant tuples are filtered out. On the contrary, let us

consider another conservative partition strategy that only 1 substream is needed, i.e.

no partition is required. In this case, no matter what values the attributes of a tuple

from the stream may take, as long as a child node has running queries requesting data

on either attribute a or b of this stream, this tuple is forwarded to it, with actually
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only 1/4 the chance that this tuple is indeed relevant.

Substream No. Attribute values Rate(Ratio of the original Rate)

1 a = 1 and b = 1 0.25
2 a = 1 and b = 2 0.25
3 a = 2 and b = 1 0.25
4 a = 2 and b = 2 0.25

Table 5.1: Substreams

Though filtering power is a desirable property, too many substreams may impose

too much overhead on the operations of routing queries. For example, based on the

partition strategy like 5.1, the number of those finest substreams is exponential to the

number of attributes, with the distinct values of each attribute as the base. Clearly

this is not viable in reality for our system where thousands of data streams, each of

which may take hundreds of values, are generated continuously. In [RLW+02], a few

clustering algorithms are studied in the context of clustering cells(analogous to the

finest substreams in our problem) of a regular grid(analogous to the original streams)

in event space for a content-based publish/subscribe system. We adopt the K-Means

cluster algorithm in our system to cluster these finest substreams into coarser grained

ones, which is claimed to perform the best in [RLW+02]. Although we use static

clustering in our experiments, it can be easily to be turned into an adaptive scheme

by periodically invoking the K-Means algorithm, which is iterative inherently.
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5.3 Chapter Summary

In this chapter, the design of the data layer of our system is presented. The data

layer mainly provides two types of services: client query processing and data stream

dissemination. Client query processing services is backed by various stream processing

engines installed in each entity. Each entity notifies a client when new results of his

query is available. The data dissemination service is our focus in this thesis, which

is neglected in previous work. We observe that the source nodes may become the

bottleneck of the whole system if we rely solely on them for data dissemination. Thus

we employ a cooperative approach to solve this problem. Entities in the system

participates in cooperation trees based on its data interest and cooperate in data

dissemination. We present the cooperation tree construction algorithm in 5.1. To

avoid flooding the network, data interest of an entity is represented by a local routing

query. The data interest of a subtree of the cooperation tree is represented by a tree

routing query, which is the aggregation of the local routing queries of entities in the

subtree. Only data that passes those routing queries are forwarded.



Chapter 6

Experimental Study

To study the performance of various proposed techniques in our system, we imple-

mented a simulator using C to simulate the communication between stream process-

ing entities. In this chapter, we present the experimental results obtained by running

simulations. First the experiment settings will be introduced. Then we demonstrate

the results of query distribution, including initial query distribution, adaptive query

redistribution and query routing in section 6.2. Section 6.3 shows the results for co-

operative stream dissemination. A short summary concludes this chapter afterwards.

6.1 Experiment Settings

A network topology with 4096 nodes is generated using the GT-ITM topology gen-

erator. The Transit-Stub model, which resembles the Internet structure, is used. For

78
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a detailed discussion of the Transit-Stub model, please refer to the user manual at

http://www-static.cc.gatech.edu/projects/gtitm/. There are three types of nodes in

the topology: data sources, stream processing entities and routers. We randomly

choose 100 and 256 nodes for the first two types respectively and the rest acts as

routers. We have repeated experiments on different topology with 4096 nodes and

different data sources and entities. The results of these experiments are similar to

the one presented in this section.

Table 6.1 summarized the various parameters of our system and their default

values.

Parameter Name Description Default Value

N Total number of nodes in the topology 4096
S The number of nodes generating streams 100
E The number of stream processing entities 256
C Coordinator Cluster size in the coordinator tree 4
F Fan-out for the cooperation tree 8
|SS| Total substream number 20,000
ri Stream rate for substream i 1-10 bytes/second
g Client query groups 20

qsi The number of substreams requested by a query i 100-200
q The number of queries in our system 5,000-60,000

a time The interval between two adaptive rounds 50 seconds

Table 6.1: System Parameter

Note that all the streams in our system are pre-partitioned into 20,000 substreams

and are randomly distributed among 100 source nodes. We introduce the concept of

client query groups to simulate the clustering effect of user behaviors. Each group
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has different data hot spots and is represented by a permutation of the substreams.

The number of substreams requested by a query is uniformly chosen between 100

and 200 and the substreams requested by queries within a group follow a zipfian

distribution with θ = 0.8. Different θ and g are tested and the results are similar.

The workload of a query is simulated by the sum of input stream rates, which varies

form 1 byte/second to 10 byte/second randomly. Number of queries in our system

various from 5,000 to 60,000, to test performances under different system load. All

simulations are run on a Linux server with an Intel 2.8GHz CPU.

6.2 Query Distribution

6.2.1 Initial Query Distribution

In this experiment, we look at the performance of the initial query distribution scheme.

Recap that we introduce a novel hierarchical graph partitioning algorithm for initial

query distribution. To illustrate its efficiency, it is compared with other three ap-

proaches:

1. Naive. This approach focuses on the load balance among nodes. It distributes

queries to entities in a way that the workload of entities are balanced while it

does not consider the data interest of queries during distribution.

2. Greedy. This approach assigns queries to entities one by one and takes a greedy
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approach such that a new query is assigned to an entity with the least additional

communication cost. Also for each node, a load limit 4.1 is imposed to ensure

the load balance constraint is not compromised.

3. Centralized. This approach designates a central node which collects all queries

and distributes them using a centralized graph partition algorithm. Both load

balance and data interest of queries are taken into account.

The metric for evaluating the query distribution schemes is unit-time communi-

cation cost. It is calculated by adding up the values of the per unit message transfer

rate on each link times the latency of this link. This metric is widely used in network-

related research. Figure 6.1(a) depicts the unit-time communication cost for all four

approaches. We can see that the Naive approach (denoted by asterisk) performs the

worst. This is because the Naive approach ignores the data interest of queries when

allocating queries, which misses out the opportunity for further optimization. The

Greedy approach (denoted by blank circles) works much better than Naive does as it

considers the data interest of queries during query distribution. Nevertheless, the two

graph partition approaches, namely centralized and hierarchical approach (denoted

by X and solid box respectively in the figure), perform similarly and are far better

than the rest. The reason is that query distribution in these two approaches is done

with a comprehensive knowledge of all the queries in the system while the Greedy

approach assigns one query at a time. Moreover, the performance of our hierarchical
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approach is very close to the centralized approach. This indicates the error introduced

by the query graph coarsening is negligible.

The centralized approach results in smallest communication cost and is the best

approach from partition quality perspective. To further compare the centralized ap-

proach with our scheme, the response time and total time of these two approaches

are recorded and presented in Figure 6.1(b). Note the response time and total time

for the centralized approach is the same as one node is responsible for the whole

process while the response time for our approach is smaller than the total time due to

parallelism. From the graph, it can be seen that both the response time (denoted by

blank circle) and total time (denoted by solid box) for our hierarchical query distri-

bution algorithm is much less than that of the centralized approach (denoted by X).

Its response time is smaller because query distribution under different subtrees of the

coordinator tree can run in parallel. To understand why the total time for the hierar-

chical approach is smaller, let us see an example. Suppose the query graph contains

n vertices. The complexity for graph partitioning algorithm is in O(n2). Therefore

the total time to partition this graph is k ∗n2 where k is a constant. Now if we divide

the graph into two subgraphs with vertices numbers n1 and n2 respectively and then

run the graph partition algorithm. In this case the total time to partition the graph

is k ∗ (n2
1 + n2

2), which is smaller than k ∗ n2. In our hierarchical algorithm, each co-

ordinator partitions a subgraph of the original graph in a similar way thus the total

time of it is also smaller than the centralized approach. One point to note that since
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the complexity for graph partitioning algorithm is in O(n2), the centralized approach

may not be practical when the number of queries in the system is huge. However,

the response time of the hierarchical query distribution algorithm remains viable.

6.2.2 Adaptive Query Redistribution

In this section, we present two experiments designed to study the effectiveness of the

adaptive query redistribution scheme.

In the above experiment, we assume accurate statistics can be obtained to facil-

itate the query distribution. However, in reality apriori statistics are hard to collect

and may be obsolete during runtime. We rely on our adaptive query redistribution

algorithm to dynamically adjust the query distribution to cope with this situation. In

this experiment, we use a random initial query allocation scheme to model the effect

of inaccurate statistics. Three situations are examined in this experiment:

1. NA-Inaccurate. The apriori statistics are inaccurate and no adaptation is car-

ried out.

2. A-Inaccurate. The apriori statistics are inaccurate and adaptive query distri-

bution is done in rounds.

3. A-Accurate. The apriori statistics are accurate and adaptive query distribution

is done in rounds.
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In this experiment, we assume the statistics are static. From the Figure 6.2(a)

and Figure 6.2(b), we can see both communication cost and the standard deviation of

workload are refined with the number of adaptation rounds: The communication cost

keeps decreasing and the workload distribution is more balanced. This experiment

shows the capability and effectiveness of our adaptive query redistribution algorithm

to cope with inaccurate statistics.

In the second experiment, we drop the assumption that the statistics are static to

model the fluctuation of stream rates during runtime. In the simulation, we randomly

choose 5% of the total substreams, i.e. 1000 substreams, and increase(denoted by “I”)

or decrease(denoted by “D”) their rates by a factor of 10. Note load imbalance among

the entities occurs when data stream rate changes as workload is estimated by the

rate of incoming streams. Again three schemes are compared in this experiment:

1. No Adaptive. As the name suggests, no adaptation is done.

2. Adaptive. Use our adaptive query redistribution algorithm to adjust query

distribution.

3. Repartitioning. Centralized graph partitioning algorithm is used to repartition

the query graph from scratch. This approach represents the best result of query

distribution for each particular time point.

Figure 6.3(a) and Figure 6.3(b) illustrate the communication cost and the standard

deviation of the load in the system. The statistics are recorded every 200 seconds,
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right after one adaptation round(remember the adaptation interval is 50 seconds). As

expected, the No Adaptive scheme (denoted by X in the figure) performs the worst in

terms of both load balancing and communication cost. The adaptive query redistri-

bution algorithm (denoted by blank box) performs close to centralized repartitioning

(denoted by solid box). With adaptation, communication cost is slightly larger than

the centralized one and the load of the system is always balanced, no matter how

the load of the whole system changes. With the smaller overhead compared to the

centralized repartitioning approach, our adaptive query redistribution algorithm can

achieve reasonably good performance thus it is preferred.

6.2.3 Query Routing

The experiments under this section are designed to study the performance of the

query routing algorithm. In the first experiment, we consider the consequence of

adding new queries to the system. Initially the system has 30,000 queries running.

We add 1,500 queries into the system incrementally at a 200 seconds interval and

record the statistics at the end of each interval. Two statistics are recorded, namely

unit-time communication cost and the standard deviation of loads among entities.

Three schemes are compared in this experiment:

1. Random. New queries are randomly assigned to entities without considering its

data interest. However, the load limited imposed on each entity is not violated
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by the assignment.

2. Online. Use the online query routing algorithm described in Section 4.2.4.

3. Online-Adaptive. Besides the online routing algorithm, adaptive query redis-

tribution is running also.

The Random scheme (denoted by blank box) performs worst in terms of commu-

nication cost: its communication cost keeps increasing with more queries added in

the system. The Online scheme (denoted by X) maintains the same communication

cost while the communication cost of Online-Adaptive (denoted by solid box) drops

slightly thanks to its ability to refine the query partitioning. However, in terms of

load balance, Online performs worst as we allow load imbalance to exist in our online

query routing algorithm to reduce routing overhead. Online-Adaptive again performs

the best of three as it is able to re-balance the load distribution among nodes while

sustaining the good partition quality.

In the second experiment, we want to see the scalability of the query routing al-

gorithm to fast query streams. We vary C, the coordinator cluster size while keeping

other settings similar to the first experiment. Two important statistics are collected:

the communication cost of the system and the time needed for the root coordinator

to distribute one query. The communication cost captures the quality of query distri-

bution while the time for routing one query can be used to compute the throughput
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of the root coordinator, i.e. the maximum query rate the root coordinator can han-

dle. The throughput of the root coordinator is an indication of the scalability of the

query routing algorithm as the root coordinator is the only potential bottleneck of

our system. Figure 6.5(a) shows the communication cost of the system with different

cluster size C. It is shown that the smaller the cluster size, the larger the communi-

cation cost. With a smaller cluster size, the depth of the coordinator tree is larger.

As query graph coarsening is done at each level, the graph at the root coordinator is

coarser, which results in inferior partition quality. Figure 6.5(b) shows relationship

between the throughput of the root coordinator and different Cs. It is a inverse rela-

tionship: throughput decreases with increasing C. This is reasonable as with a larger

cluster size, the root coordinator has more choices to route the query thus more time

is needed to check the suitability of each candidate, which implies lower throughput.

From the above two figures, we can see a tradeoff between query distribution quality

and query stream throughput. A smaller C favors high query stream throughput,

with compromise in system performance. How to adaptively adjust the value of C is

an interesting topic for future work.

6.3 Cooperative Stream Dissemination

In this experiment, we examine the performance of our cooperative stream dissemi-

nation scheme. It is compared with a traditional source-based scheme, where all data



CHAPTER 6. EXPERIMENTAL STUDY 93

 0

 1000

 2000

 3000

 4000

 5000

 6000

10 20 30 40 50 60

C
om

m
. C

os
t (

by
te

s/
se

c)

# of Queries (*1K)

Source-based
Tree-based

(a) Comm. Cost

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

10 20 30 40 50 60

T
hr

ou
gh

pu
t (

tu
pl

es
/s

ec
)

# of Queries (*1K)

Source-based
Tree-based

(b) Throughput of source nodes

Figure 6.6: Stream Dissemination



CHAPTER 6. EXPERIMENTAL STUDY 94

streams are disseminated from source nodes directly to stream processing entities.

Similar to our cooperation tree scheme, in this source-based scheme stream process-

ing entities notifies the source nodes about their data interest using routing queries

and only those tuples that can pass the routing queries are forwarded. Two metrics

are used to compare the performance of these two schemes: the unit-time communi-

cation cost and the throughput of source nodes. The throughput of the source nodes

is measured by the maximum stream rate that can be handled by the source node in

the system. It is computed by:

Throughput =
1

max(time to disseminate one tuple)
(6.1)

Note the time to disseminate one tuple consists two portions: the time to matching

the tuple to the routing query of each entity and the time to pack and send out the

tuple to those successful entities. In our simulation, we set the average time to pack

and forward a tuple to be 100us, which is a relative value without diminishing the

validity of our conclusion.

The results of these two metrics shown in Figure 6.6(a) and Figure 6.6(b) demon-

strate the superiority of our cooperative stream dissemination scheme (it is called

tree-based in the figure, denoted by the curve with blank boxes) over the source-

based scheme (the curve with X). It imposes less communication cost while attains

higher throughput. The reason for this is the source-based scheme relies solely on
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the source nodes to disseminate stream data. For each newly generated tuple at one

source node, the source node matches it against the routing queries from every entities

in the system and forwards it. On the contrary for our scheme the source node has

a limited number of child nodes. Clearly our scheme can achieve higher throughput.

The communication cost is smaller is because the transfer of each tuple is shared in

our scheme. Consider two entities which are far from a source node while are close

two each other. In the source-based scheme, two packages from the source node are

transferred separately. In our scheme, one package is sent out from the source node to

one entity first and the receiving entity forwards the package to the other entity near

it. Therefore the long route from source node to the entities is shared in some way,

which results in smaller communication cost. To conclude, our cooperative stream

dissemination performs better than the traditional source-based schemes, in terms of

lower communication cost as well as higher source nodes throughput.

6.4 Chapter Summary

In this chapter, we study the performance of various algorithms proposed in this

thesis. A simulation of the system is implemented and the simulation results show the

effectiveness of these algorithms, which are hierarchical graph partitioning, adaptive

query re-distribution, online query routing as well as cooperative stream processing.

The effectiveness of these algorithms makes the future development and deployment
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of our system in a real network environment viable.



Chapter 7

Conclusion and Future Work

7.1 Summary

Stream processing engines are application-independent, specially designed query en-

gines to process high-volume, real-time data streams. In recent year, many stream

processing engines have been developed and employed by business entities to provide

stream processing service over the internet. However, due to the inherent limita-

tions of those stream processing engines, these entities suffer from scalability, over-

investment and availability problems. A system incorporating those entities, pro-

moting joint cooperation can achieve better system resource utilization, economical

efficiency and scalability. In this thesis, we present the architecture of a scalable

distributed stream processing system made up of loosely coupled entities. The aim

of this system is to provide stream processing service to clients in an Internet scale.

97
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Our system incorporates the processing capability of each individual stream process-

ing entity into an Internet-scale distributed stream processing system, which exploits

the aggregated bandwidth and processing power. Entities in the system are loosely

coupled and can be heterogeneous in terms of stream processing engines thus exist-

ing well-developed singe site stream processing engines can be utilized without much

modification. Unlike previous work on distributed stream processing systems which

overlooked the data dissemination from source nodes to various stream processing

engines, our system provides two layers of services: the query layer and data layer.

The query layer service is to dynamically distribute queries to the most appropriate

entity for processing to achieve load balance and minimize communication cost. This

service is backed by a number of coordinators, which are special entities organized

into a hierarchical structure. The query distribution problem is modelled as a graph

partitioning problem and we leverage existing graph partitioning algorithms and de-

rived a hierarchical graph partitioning algorithms to achieve load balance among the

entities as well as minimum communication cost in transferring the data streams. The

problem of fast incoming new queries (streaming queries) is addressed by employing

an effective query routing scheme to route the new coming queries to a suitable entity.

A runtime adaptive query redistribution mechanism is devised to adapt to the change

of the environment like stream rates, user surging requests, etc. to enhance system

performance during runtime.

Data dissemination is often neglected by existing stream processing systems. In
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many situations, especially in the wide-area, the network is the stream bottleneck.

In our system, we identify this problem and address the problem of how to efficiently

transfer data streams to various geographically dispersed stream processing entities.

This is one aim of the data layer service besides providing query evaluation to clients.

In our system, stream processing entities are urged to collaborate in data dissemi-

nation besides evaluating assigned queries, rather than relying on the source nodes

sorely in data dissemination. Cooperation trees for data dissemination are built and

specially designed routing queries are employed to represent data interest of nodes,

which facilitate data dissemination from one node to another selectively.

We design experiments to test the effectiveness of our proposed techniques. A

simulation of the system is implemented and our simulation results demonstrate sig-

nificant performance gains with respect to traditional techniques.

7.2 Future Work

The design of this system is complex and there are some interesting issues that we

can explore in future research. Some directions are:

• We can further exploit the query distribution problem to incorporate the sit-

uation when the locations of some queries are restricted, i.e. only subsets of

the entities they can be assigned to. Such cases can occur due to user QoS

requirements, entity computational power as well as requirements on specially
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designed stream processing engines for some queries.

• Our query distribution model does not take the communication cost between

source nodes and processing entities into account. Our assumption is that

the main saving in communication cost is gained from eliminating redundant

data transmissions, which is achieved by query clustering, assigning one cluster

to a single node. Nevertheless, we may further improve the performance by

capturing source-node distances in our model.

• Currently the data space is pre-partitioned into several subspaces and this par-

tition is static. A dynamic data space partitioning algorithm will be useful to

adapt to environment changes during runtime.

• We have implemented simulations to test the effectiveness of various techniques.

It would be interesting if we can develop the whole system and deploy it in a

real network environment and verify the validity of the results presented here.

• More in-depth research on the business model of this system is needed, like how

entities are compensated and charged, etc.
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