
MULTI-DIMENSIONAL VOLUME RENDERING FOR
PC-BASED MEDICAL SIMULATION

ZHENLAN WANG

NATIONAL UNIVERSITY OF SINGAPORE

2005

MULTI-DIMENSIONAL VOLUME RENDERING
FOR PC-BASED MEDICAL SIMULATION

ZHENLAN WANG
(B.Eng, Xian Jiaotong University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2005

Acknowledgements

I am grateful to many people for their help and support in the course of this research. First of

all, I would like to express my sincerest gratitude to my supervisor Dr. Ang Chuan Heng for

his patient guidance and constructive advice throughout the duration of my research. I would

also like to express my deepest appreciation to my co-supervisors, Prof. Teoh Swee Hin from

Dept. Mechanical Engineering, NUS and Prof. Wieslaw L. Nowinski from Biomedical

Imaging Lab, for their guidance and support.

I would like to take this opportunity to give special thanks to Dr. Chui Chee Kong for his

countless encouragement and valuable advice at key times, without which this research

cannot be completed.

In addition, I would like to thank my colleagues and friends, Hua Wei, Chen Xuesong, Li

Zirui, Yang Yanjiang and Jeremy Teo, in the I2R, BIL and VSW group for their friendship

and help in both my work and life.

Special thank also goes to Dr. Goh P.S. and Mr. Christopher Au of National University

Hospital (NUH), Singapore for the dynamic MRI data and Prof. J.H. Anderson of Johns

Hopkins University School of Medicine, USA for the phantom head data, and their medical

advice.

i

ACKNOWLEDGEMENTS

I would like to express my gratitude to the National University of Singapore for providing

me with the scholarship in the early years of this research.

Finally, I would like to thank my parents and my wife for their love and encouragement. I

dedicate this dissertation to them.

ii

Contents

Acknowledgements i

Contents iii

Summary vii

List of Tables ix

List of Figures xii

Publication xviii

Chapter 1

Introduction 1

1.1 Background 1

1.2 Medical Image Modalities 2

1.3 Visualization of Medical Images 5

1.4 Volume Rendering versus Surface Rendering 9

1.5 Organization 11

Chapter 2

Volume Rendering - Literature Review 13

2.1 Introduction 13

2.2 Mathematical Models for Volume Rendering 14

2.3 Three-Dimensional Volume Rendering 19

2.3.1 Fundamental 3D Volume Rendering Algorithms and Optimizations 19
2.3.2 Parallel Volume Rendering 27
2.3.3 Hardware-Assisted Volume Rendering 28

2.4 Four-Dimensional Volume Rendering 30

iii

CONTENTS

Chapter 3

Dynamic Linear Level Octree for Time-Varying Volume Rendering 36
3.1 Introduction 36

3.2 Linear Level Octree 37

3.2.1 Review of Octree in Volume Rendering 37
3.2.2 LLO Labeling Scheme 39
3.2.3 LLO Generation 43

3.3 LLO-Based 3D Volume Rendering 48

3.3.1 Overview 48
3.3.2 LLO Traversal 49
3.3.3 Adaptive Rendering 53

3.4 Dynamic Linear Level Octree 56

3.4.1 Overview 56
3.4.2 DLLO Generation 57
3.4.3 DLLO-Based 4D Volume Rendering 62

3.5 Results and Discussion 64

3.6 Summary 93

Chapter 4

Cluster-Based Time-Varying Volume Rendering 94
4.1 Introduction 94

4.2 Overview of the Algorithm 96

4.3 Encoding 97

4.3.1 Division 98
4.3.2 Clustering 99
4.3.3 Data Output 107
4.3.4 Additional Processing 111

4.4 Rendering – the Decoding Process 112

4.4.1 MVD Rendering Algorithm 112
4.4.2 Underlying Volume Renderers 115

4.5 Global Coherence 117

4.6 Results and Discussion 119

4.7 Summary 150

iv

CONTENTS

Chapter 5

Medical Simulation Application in Image-Guided Surgeries 151
5.1 Introduction 151

5.2 Interventional Radiology Procedures 153

5.2.1 Background 153
5.2.2 Catheterization Simulator 153

5.3 Microsurgical Simulation System 155

5.3.1 Background 155
5.3.2 Craniotomy Simulator 156

5.4 Virtual Spine Workstation 161

5.4.1 Background 161
5.4.2 Vertebroplasty Simulator 162

5.5 Summary 165

Chapter 6

Discussion 166

6.1 Introduction 166

6.2 Comparison of Time-Varying Volume Rendering Algorithms 167

6.3 DLLO-Based and Cluster-Based Time-Varying Volume Rendering Algorithms 170

6.4 Time-Varying Volume Rendering Parallelization 174

6.4.1 Parallelization of DLLO-Based 4D Volume Rendering 177
6.4.2 Parallelization of Cluster-Based 4D Volume Rendering 182

Chapter 7

Conclusion 186

7.1 Summary 186

7.2 Future Work 189

References 190

v

CONTENTS

Appendix A

Space and Time Complexity of Linear Level Octree A-1
A.1 Space Savings of Linear Level Octree A-1

A.2 Complexity Analysis of the LLO Generation Algorithm A-3

Appendix B

LLO-based Multimodality Volume Rendering B-1

B.1 Introduction B-1

B.2 Method B-2

Appendix C

Error Metrics Computation in DLLO C-1

C.1 Introduction C-1

C.2 General Variance Computation C-1

C.3 Octant Variance Computation C-4

C.4 Computation of the Normalized Euclidean Distance between Octants C-4

vi

Summary

Four-dimensional volume rendering is a method of displaying a time-series of volumetric

data as an animated two-dimensional image. With the development of diagnostic imaging

technology, the contemporary medical modalities not only can image the internal organs or

structures of a human body in more and more details, but are also able to capture the dynamic

activity of a human body over a period time. Visualization of the four-dimensional/time-

varying volume data is meaningful for clinicians for better diagnosis and treatment but it also

poses a new challenge to the computer graphics technology due to the tremendous increase in

the size of data and computational expense. Therefore, there is an urge to seek for a cost

effective solution for this task.

This thesis describes two new four-dimensional volume rendering algorithms. Both of them

are characterized by using a data decomposition technique to take advantage of the four-

dimensional features of time-varying volume data, while they also have their distinct

advantages. For the first method, a new data structure called dynamic linear level octree is

proposed for efficient rendering. It is effective in exploiting both the spatial and temporal

coherence of time-varying data. The second method explores more extensively on ways to

reduce the space requirement and uses global coherence to achieve higher performance. The

variants of the two algorithms in thread-level parallelism also increase their potential in

performance improvement and the scope of applications. In comparison with conventional

rendering methods, both algorithms are superior in terms of both speed optimization and

vii

SUMMARY

space reduction. The two algorithms have also been successfully used in our medical

simulation systems to provide interactive and real-time four-dimensional volume rendering

on personal computers.

viii

List of Tables

S/N Description Page

Table 3.1 Linear level octree traversal sequence 50

Table 3.2 Termination conditions of the differencing algorithm 59

Table 3.3 Experimental time-varying volume datasets 65

Table 3.4 DLLO conversion of the HAND dataset under three different
temporal error tolerances (spatial error tolerance was 0.0) 67

Table 3.5 DLLO conversion of the BREAST dataset under three different
temporal error tolerances (spatial error tolerance was 0.0) 67

Table 3.6 DLLO conversion of the HEART I dataset under three different
temporal error tolerances (spatial error tolerance was 0.0) 67

Table 3.7 DLLO conversion of the HEART II dataset under three different
temporal error tolerances (spatial error tolerance was 0.0) 68

Table 3.8 DLLO conversion of the ABDOMEN dataset under three different
temporal error tolerances (spatial error tolerance was 0.0) 68

Table 3.9 Cycle timing (in seconds) and speedup of DLLO-based rendering
under different error tolerances (HAND dataset) 75

Table 3.10 Cycle timing (in seconds) and speedup of DLLO-based rendering
under different error tolerances (BREAST dataset) 76

Table 3.11 Cycle timing (in seconds) and speedup of DLLO-based rendering
under different error tolerances (HEART I dataset) 77

Table 3.12 Cycle timing (in seconds) and speedup of DLLO-based rendering
under different error tolerances (HEART II dataset) 78

Table 3.13 Cycle timing (in seconds) and speedup of DLLO-based rendering
under different error tolerances (ABDOMEN dataset) 79

Table 3.14 Cycle timing (in seconds) and speedup results of DLLO-based
rendering using 2D texture-mapping based on HAND dataset 81

ix

LIST OF TABLES

Table 3.15 Cycle timing (in seconds) and speedup results of DLLO-based
rendering using 2D texture-mapping based on BREAST dataset 81

Table 3.16 Cycle timing (in seconds) and speedup results of DLLO-based
rendering using 2D texture-mapping based on HEART I dataset 81

Table 3.17 Cycle timing (in seconds) and speedup results of DLLO-based
rendering using 2D texture-mapping based on HEART II dataset 82

Table 3.18 Cycle timing (in seconds) and speedup results of DLLO-based
rendering using 2D texture-mapping based on ABDOMEN dataset 82

Table 3.19 Error analysis of DLLO-based rendering of HAND dataset 85

Table 3.20 Error analysis of DLLO-based rendering of BREAST dataset 85

Table 3.21 Error analysis of DLLO-based rendering of HEART I dataset 85

Table 3.22 Error analysis of DLLO-based rendering of HEART II dataset 86

Table 3.23 Error analysis of DLLO-based rendering of ABDOMEN dataset 86

Table 4.1 A Volume-KeyBlock table 109

Table 4.2 Experimental time-varying volume datasets 119

Table 4.3 MVD encoding of the HAND dataset under three different cluster
NED thresholds 120

Table 4.4 MVD encoding of the BREAST dataset under three different cluster
NED thresholds 121

Table 4.5 MVD encoding of the HEART I dataset under three different
cluster NED thresholds 121

Table 4.6 MVD encoding of the HEART II dataset under three different
cluster NED thresholds 121

Table 4.7 MVD encoding of the ABDOMEN dataset under three different
cluster NED thresholds 122

Table 4.8 Time cost of MVD encoding of the HAND dataset with three
different block sizes 122

Table 4.9 Saving due to global coherence as compared with temporal
coherence in the number of blocks needed to be processed 124

x

LIST OF TABLES

Table 4.10 Cycle rendering time (in seconds) and speedup of cluster-based
rendering over regular texture-mapped rendering of the HAND
dataset 136

Table 4.11 Cycle rendering time (in seconds) and speedup of cluster-based
rendering over regular texture-mapped rendering of the BREAST
dataset 137

Table 4.12 Cycle rendering time (in seconds) and speedup of cluster-based
rendering over regular texture-mapped rendering of the HEART I
dataset 138

Table 4.13 Cycle rendering time (in seconds) and speedup of cluster-based
rendering over regular texture-mapped rendering of the HEART II
dataset 139

Table 4.14 Cycle rendering time (in seconds) and speedup of cluster-based
rendering over regular texture-mapped rendering of the
ABDOMEN dataset 140

Table 4.15 Error analysis of cluster-based rendering of HAND dataset 142

Table 4.16 Error analysis of cluster-based rendering of BREAST dataset 143

Table 4.17 Error analysis of cluster-based rendering of HEART I dataset 143

Table 4.18 Error analysis of cluster-based rendering of HEART II dataset 143

Table 4.19 Error analysis of cluster-based rendering of ABDOMEN dataset 144

Table 6.1 Comparison of the speedup performance of different time-varying
volume rendering algorithms 168

Table 6.2 Cycle timing (in seconds) of DLLO-based rendering and cluster-
based rendering of five dynamic MRI datasets and speedup results
of cluster-based rendering over DLLO-based rendering 173

Table A.1 Comparison of space usage of LLO and LO (n = 10) A-2

Table B.1 Integration factor lookup table B-3

xi

List of Figures

S/N Description Page

Figure 1.1 CT scan images of VHD head 3

Figure 1.2 Organization of images as a volume dataset (CT scan of VHD head) 6

Figure 1.3 Volume rendering images produced from a CT scan of a VHD
head 7

Figure 1.4 Surface rendering images produced from a CT scan of a VHD head 8

Figure 2.1 Schematic diagram of ray-casting model 20

Figure 2.2 Flow chart of sample processing in the ray-casting algorithm 21

Figure 3.1 Linear level octree labeling scheme 40

Figure 3.2 Algorithm of LLO generation 47

Figure 3.3 Flowchart of the LLO-based 3D volume rendering 48

Figure 3.4 Numbering of child nodes 49

Figure 3.5 FOV Regions for Perspective Projection 51

Figure 3.6 Octant traversal order in perspective projection 53

Figure 3.7 Flowchart of DLLO-based 4D volume rendering 56

Figure 3.8 Differencing algorithm 58

Figure 3.9 Comparison of the time-varying volume rendering speed between
regular ray-casting rendering and DLLO-based rendering under
three different temporal error tolerances of the HAND dataset 70

Figure 3.10 Comparison of the time-varying volume rendering speed between
regular ray-casting rendering and DLLO-based rendering under
three different temporal error tolerances of the BREAST dataset 71

xii

LIST OF FIGURES

Figure 3.11 Comparison of the time-varying volume rendering speed between
regular ray-casting rendering and DLLO-based rendering under
three different temporal error tolerances of the HEART I dataset 71

Figure 3.12 Comparison of the time-varying volume rendering speed between
regular ray-casting rendering and DLLO-based rendering under
three different temporal error tolerances of the HEART II dataset 72

Figure 3.13 Comparison of the time-varying volume rendering speed between
regular ray-casting rendering and DLLO-based rendering under
three different temporal error tolerances of the ABDOMEN dataset 72

Figure 3.14 Comparison of the cycle rendering time between the DLLO-based
method and the regular ray-casting method (HAND dataset) 75

Figure 3.15 Comparison of the cycle rendering time between the DLLO-based
method and the regular ray-casting method (BREAST dataset) 76

Figure 3.16 Comparison of the cycle rendering time between the DLLO-based
method and the regular ray-casting method (HEART I dataset) 77

Figure 3.17 Comparison of the cycle rendering time between the DLLO-based
method and the regular ray-casting method (HEART II dataset) 78

Figure 3.18 Comparison of the cycle rendering time between the DLLO-based
method and the regular ray-casting method (ABDOMEN dataset) 79

Figure 3.19 Comparison of the image quality between regular ray-casting and
DLLO-based rendering of the HAND dataset (NED Threshold =
0.1) 88

Figure 3.20 Comparison of the image quality between regular ray-casting and
DLLO-based rendering of the BREAST dataset (NED Threshold =
0.2) 89

Figure 3.21 Comparison of the image quality between regular ray-casting and
DLLO-based rendering of the HEART I dataset (NED Threshold =
0.12) 90

Figure 3.22 Comparison of the image quality between regular ray-casting and
DLLO-based rendering of the HEART II dataset (NED Threshold =
0.08) 91

Figure 3.23 Comparison of the image quality between regular ray-casting and
DLLO-based rendering of the ABDOMEN dataset (NED Threshold
= 0.2) 92

xiii

LIST OF FIGURES

Figure 4.1 The Framework of time-varying volume rendering 96

Figure 4.2 Flowchart of the encoding process 98

Figure 4.3 Division of time-vary volume data 98

Figure 4.4 Clusters of blocks in M-dimensional space 99

Figure 4.5 Estimation of the center and radius of a cluster for a trial insertion
of a block 103

Figure 4.6 Clustering algorithm 106

Figure 4.7 Structure of an MVD file 108

Figure 4.8 Graphical representation of a Volume-KeyBlock table 108

Figure 4.9 The scheme of encoding time-varying volume dataset with many
time steps 111

Figure 4.10 Comparison of temporal coherence and global coherence 118

Figure 4.11 Comparison of the I/O throughput between MVD and raw data
(HAND dataset) 125

Figure 4.12 Comparison of the I/O throughput between MVD and raw data
(BREAST dataset) 125

Figure 4.13 Comparison of the I/O throughput between MVD and raw data
(HEART I dataset) 126

Figure 4.14 Comparison of the I/O throughput between MVD and raw data
(HEART II dataset) 126

Figure 4.15 Comparison of the I/O throughput between MVD and raw data
(ABDOMEN dataset) 127

Figure 4.16 Speed comparison between regular texture-mapped rendering and
cluster-based rendering of the HAND dataset using 2D texture-
mapping 129

Figure 4.17 Speed comparison between regular texture-mapped rendering and
cluster-based rendering of the HAND dataset using 3D texture-
mapping 129

Figure 4.18 Speed comparison between regular texture-mapped rendering and
cluster-based rendering of the BREAST dataset using 2D texture-
mapping 130

xiv

LIST OF FIGURES

Figure 4.19 Speed comparison between regular texture-mapped rendering and
cluster-based rendering of the BREAST dataset using 3D texture-
mapping 130

Figure 4.20 Speed comparison between regular texture-mapped rendering and
cluster-based rendering of the HEART I dataset using 2D texture-
mapping 131

Figure 4.21 Speed comparison between regular texture-mapped rendering and
cluster-based rendering of the HEART I dataset using 3D texture-
mapping 131

Figure 4.22 Speed comparison between regular texture-mapped rendering and
cluster-based rendering of the HEART II dataset using 2D texture-
mapping 132

Figure 4.23 Speed comparison between regular texture-mapped rendering and
cluster-based rendering of the HEART II dataset using 3D texture-
mapping 132

Figure 4.24 Speed comparison between regular texture-mapped rendering and
cluster-based rendering of the ABDOMEN dataset using 2D
texture-mapping 133

Figure 4.25 Speed comparison between regular texture-mapped rendering and
cluster-based rendering of the ABDOMEN dataset using 3D
texture-mapping 133

Figure 4.26 Comparison of the cycle rendering time between cluster-based
rendering and regular texture-mapped rendering of the HAND
dataset 136

Figure 4.27 Comparison of the cycle rendering time between cluster-based
rendering and regular texture-mapped rendering of the BREAST
dataset 137

Figure 4.28 Comparison of the cycle rendering time between cluster-based
rendering and regular texture-mapped rendering of the HEART I
dataset 138

Figure 4.29 Comparison of the cycle rendering time between cluster-based
rendering and regular texture-mapped rendering of the HEART II
dataset 139

Figure 4.30 Comparison of the cycle rendering time between cluster-based
rendering and regular texture-mapped rendering of the ABDOMEN
dataset 140

xv

LIST OF FIGURES

Figure 4.31 Comparison of the image quality between regular texture-mapped
rendering and cluster-based rendering of the HAND dataset (cluster
NED Threshold = 0.15) 145

Figure 4.32 Comparison of the image quality between regular texture-mapped
rendering and cluster-based rendering of the BREAST dataset
(cluster NED Threshold = 0.15) 146

Figure 4.33 Comparison of the image quality between regular texture-mapped
rendering and cluster-based rendering of the HEART I dataset
(cluster NED Threshold = 0.15) 147

Figure 4.34 Comparison of the image quality between regular texture-mapped
rendering and cluster-based rendering of the HEART II dataset
(cluster NED Threshold = 0.15) 148

Figure 4.35 Comparison of the image quality between regular texture-mapped
rendering and cluster-based rendering of the ABDOMEN dataset
(cluster NED Threshold = 0.20) 149

Figure 5.1 Overview of computer-aided image-guided surgery 152

Figure 5.2 Physical setup of the simulation system 154

Figure 5.3 Multimodality rendering 155

Figure 5.4 Overview of the microsurgical simulation system 156

Figure 5.5 Perspective rendering of phantom head interacted with a virtual
surgical needle 159

Figure 5.6 Time-varying volume rendering of a hand dataset in MIP 160

Figure 5.7 Overview of human-computer interaction in Virtual Spine
Workstation 161

Figure 5.8 Fluoroscopic images 163

Figure 5.9 Time-varying volume rendering of the simulated procedure of the
bone cement injection 164

Figure 6.1 Comparison of the I/O throughput of the HAND dataset encoded
by the DLLO-based method and the cluster-based method where
the temporal error tolerance and global error tolerance of 0.10 is
used, respectively 171

xvi

LIST OF FIGURES

Figure 6.2 Comparison of the I/O throughput of the ABDOMEN dataset
encoded by the DLLO-based method and the cluster-based method
where the temporal error tolerance and global error tolerance of
0.10 is used, respectively 171

Figure 6.3 Illustration of multi-threading personal computer system
architecture 176

Figure 6.4 Algorithm of DLLO construction for parallel rendering 178

Figure 6.5 Algorithm of parallel octant rendering 180

Figure 6.6 Management of the KeyBlock pool 183

xvii

Publication

• Journal Articles

WANG, Z.L., CHUI, C.K., CAI, Y.Y., ANG, C.H. AND TEOH, S.H. 2005, Dynamic Linear Level

Octree-Based Volume Rendering Methods for Interactive Microsurgical Simulation, to

appear International Journal of Image and Graphics.

WANG, Z.L., TEO, J.C.M., CHUI, C.K., ONG, S.H., YAN, C.H., WANG, S.C., WONG, H.K. AND

TEOH, S.H. 2005, Computational Biomechanical Modeling of the Lumbar Spine Using

Marching-Cubes Surface Smoothened Finite Element Voxel Meshing, Computer

Methods and Programs in Biomedicine, 80, 1, 25 – 35.

WANG, Z.L., ANG, C.H., CHUI, C.K. AND TEOH, S.H. 2005, A Clustering-Based Algorithm

for Fast Time-Varying Volume Rendering, Submitting for publication.

MA, X., WANG, Z.L., CHUI, C.K., ANG, JR. M.H., ANG, C.H. AND NOWINSKI, W.L. 2002, A

Computer Aided Surgical System, Computer Aided Surgery (CAS), 7, 2, 119.

CHUI, C.K., LI, Z., ANDERSON, J.H., MURRPHY, K., VENBRUX, A., MA, X., WANG, Z.L.,

GAILLOUD, P., CAI, Y., WANG, Y. AND NOWINSKI, W.L. 2002, Training and Planning of

Interventional Neuroradiology Procedures - Initial Clinical Validation, Studies in Health

Technology and Informatics, 85, 96 – 102.

xviii

PUBLICATION

• Conference Articles

WANG, Z.L., CHUI, C.K., CAI, Y.Y. AND ANG, C.H. 2004, Multidimensional Volume

Visualization for PC-Based Microsurgical Simulation System, Proceedings of ACM

SIGGRAPH International Conference on Virtual Reality Continuum and its Applications

in Industry (VRCAI), 309 – 316.

YANG, Y., WANG, Z.L., BAO, F. AND DENG, R.H. 2003, Secure the Image-based Simulated

Telesurgery System, Proceedings of IEEE International Symposium on Circuits and

Systems (ISCAS), 596 – 599.

WANG, Z.L., CHUI, C.K., ANG, C.H., LI, Z. AND NOWINSKI, W.L. 2002, Shear-Warp Volume

Rendering Algorithm using Linear Level Octree for PC-based Medical Simulation,

Proceedings of International Conference on Medical Imaging Computing and Computer

Assisted Intervention (MICCAI), LNCS, 2489, 2, 606 – 614.

WANG, Z.L., CHUI, C.K., CAI, Y., ANG, C.H. AND NOWINSKI, W.L. 2002, Fast PC-based

Visualization Algorithms for Virtual Reality Simulation of Microsurgical Procedures,

Proceedings of International Conference on Biomedical Engineering (ICBME).

CHUI, C.K., TEO, J., TEOH, S.H., ONG, S.H., WANG, Y., LI, J., WANG, Z.L., ANDERSON, J.H.

AND NOWINSKI, W.L. 2002, A Finite Element Spine Model from VHD Male Data,

Proceedings of VHD Conference.

xix

PUBLICATION

CAI, Y., CHUI, C.K., WANG, Y., WANG, Z.L. AND ANDERSON, J.H. 2001, Parametric Eyeball

Model for Interactive Simulation of Ophthalmologic Surgery, Proceedings of Medical

Image Computing and Computer-Assisted Intervention (MICCAI), LNCS, 465 – 472.

WANG, Z.L., MA, X., ANG, M.H. JR., CHUI, C.K., ANG, C.H. AND NOWINSKI, W.L. 2001, A

Virtual Environment-Based Practical Surgery System, Proceedings of Asian Conference

on Robotics and its Applications, 69 – 73.

HUA, W., CHUI, C.K., WANG, Y., WANG, Z.L., CHEN, X., PENG, Q. AND NOWINSKI, W.L.

2000, A Semiautomatic Framework for Vasculature Extraction from Volume Image,

Proceedings of International Conference on Biomedical Engineering, 515 – 516.

xx

Chapter 1

Introduction

Visualization is the use of computer-generated media based on data in the service of human

insight/learning.

⎯ Carol Hunter

1.1 Background

Medical training is a lengthy and sophisticated process. For example, a clinical fellow will

need at least seven years of practical training in a reputable hospital to become an

interventional radiologist [Anderson et al. 2002]. The long duration may be attributed to the

limited opportunities there must be available for trainees to learn and exercise their skills

before practice in clinical routines. The risk of failed operations on living patients exists.

With rapid advancement of virtual reality technology, a simulation system for the purpose of

1

CHAPTER 1. INTRODUCTION

training and pre-treatment planning based on patient-specific medical images is becoming

possible by using state-of-the-art computing technologies. In medicine, visual information

plays an essential role for accurate diagnosis and effective therapy planning. Approximately

80% of all information perceived by human is through the eyes, while the visual system of

humans is the most complex of all sensory modalities [Demiris et al. 1997]. Visualization

thereof is critical in the medical simulation systems as surgeons perform operations and make

decisions mostly based on visual cues.

We want to design a low cost medical simulator for image-guided procedures that can be

comfortably placed on the desktop of medical personnel. Therefore, it is expected that the

visualization solution can work effectively and efficiently on standard personal computers. It

should be based on medical images of a patient, and a visual environment that resembles

patient-specific surgical scenario provides realistically.

In this thesis, I propose multi-dimensional visualization solutions, including three-

dimensional (3D) and four-dimensional (4D) rendering, for the PC-based medical simulation

systems. Parallel processing and hardware-accelerated methods of visualization for full view

rendering are also discussed.

1.2 Medical Image Modalities

Medical images are the source for medical visualization. Medical imaging makes it possible

for us to investigate an area of patient body that is usually not visible. There have been many

attempts to visualize the interior of the human body [Lichtenbelt et al. 1998]. Advancement

in medical imaging creates various medical modalities such as computed tomography,

2

CHAPTER 1. INTRODUCTION

magnetic resonance imaging and ultrasonography that are widely used for different

diagnostic and therapeutic purposes.

Computed Tomography (CT) is used to obtain a series of 2D grayscale images depicting a

cross section of the body parts under examination. Figure 1.1, as an example, shows a set of

2D CT scan images of VHD1 head dataset. As the CT tube revolves around the patient,

multiple X-ray images are taken. The system calculates the amount of X-ray penetration

through the specific plane of the body parts examined, and gives each a numeric value. This

information is then used in the reconstruction of images. Therefore, CT images have

advantages over conventional X-ray images in that they contain information from individual

plane. A conventional X-ray image, on the other hand, contains aggregated information from

all the planes, and the result is the accumulation of shadows that is a function of the density

of the tissues, bones, organs and anything that absorbs the X-rays [Pawasauskas 1997]. CT

scanning has been commonly used to obtain a detailed view of internal organs.

Figure 1.1 CT scan images of VHD head

1 The Visible Human Dataset (VHD) provides complete visual insight of the entire human body. The Visible

Human Project, http://www.nlm.nih.gov/research/visible/visible_human.html, National Library of Medicine.

3

CHAPTER 1. INTRODUCTION

Magnetic Resonance Imaging (MRI) is another common modality for non-invasive imaging

of the body, particularly the soft tissues. It uses strong magnetic field and radio waves to

alter the natural alignment of hydrogen atoms within the body. Computers monitor and

record the summation of the spinning energies of the hydrogen atoms within living cells and

translate that into images. MRI offers increased-contrast resolution, enabling better

visualization of soft tissues, brain, spinal cord, joints and abdomen. It can selectively image

different tissue characteristics [Riederer 2000]. MRI also allows for multi-planar imaging, as

opposed to conventional CT, which is usually only axial. MRI provides highly detailed

information without exposing the body to radiation.

The other common modalities are ultrasound and nuclear imaging. Ultrasound imaging uses

high frequency sound waves that are reflected by tissue at varying rates to produce images.

It images muscle and soft tissue very well and is particularly useful for delineating the

interfaces between solid and fluid-filled spaces. An example application of this imaging is

the examination of pregnancy. Nuclear medicine imaging systems, such as Single Photon

Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET),

image the distribution of radioisotopes and provide a direct representation of metabolism,

function in the organ or structure in the body [Robb 1995; Dev 1999].

In recent years, a wide scope of advanced medical imaging techniques such as dynamic

magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI) and

dynamic computer tomography (dCT) has been introduced into the biomedical practice.

They are characterized to capture motions or changes of investigated organs or structures

over a period of time. dMRI and dCT allow the radiologist to acquire sequential image scan

4

CHAPTER 1. INTRODUCTION

data with a contrast agent in short intervals repeatedly. fMRI is used to register the blood

flow to functioning areas of the brain so that functions of the brain such as speech or

recognition can be monitored as they occur. These dynamic modalities are important

resources for multi-dimensional imaging research.

Other medical imaging modalities include Diffuse Optical Tomography (DOT), elastography,

Electrical Impedance Tomography (EIT) and so on. These techniques are mainly in research

and yet to be deployed in clinical practice.

1.3 Visualization of Medical Images

The medical imaging techniques are characterized to produce static two-dimensional (2D)

slice images of body parts (with the support of image reconstruction technique). Experienced

medical personnel normally are required to interpret these slices. However, it is very

difficult for people to reconstruct the highly complicated 3D anatomical structures mentally

based on the 2D slices. Mental reconstruction is difficult and highly subjective as different

people mentally reconstruct different shapes. The visual interpretation of dynamic/time-

series datasets is an even harder process. Therefore, visualization of those medical

modalities in 3D or higher to reveal the real appearance of the anatomical objects is

necessary. With the ability to visualize important structures in great detail, visualization

methods are valuable resources for the basic biomedical research, the diagnosis and surgical

treatment of many pathologies.

Since visualization of medical images in higher dimensions is important, many methods and

approaches have been attempted by researchers and scientists over the last two decades. The

5

CHAPTER 1. INTRODUCTION

2D medical images (e.g., Figure 1.1), organized as a stack of slices in a regular pattern (e.g.,

one slice every millimeter) that occupies a 3D region of space, is referred to as volume

images/dataset (e.g., Figure 1.2). A collection of volume images scanned at a sequence of

time steps builds up a 4D volume dataset. The additional dimension referred in multi-

dimensional volume datasets is typically associated with the time, and the 4D dataset is

called a time-varying volume dataset as well. The visualization of volume dataset is then

termed volume visualization.

y

x

z

Figure 1.2 Organization of images as a volume dataset (CT scan of VHD head)

One of the most attractive and fast-growing areas in volume visualization is volume

rendering. Volume rendering is often called direct volume rendering as well. It is the

process to create high-quality images by directly projecting data elements (called voxels)

defined on multi-dimensional grids onto the 2D image plane for the purpose of gaining an

understanding of the structure contained within the volumetric data [Elvins 1992]. The

above VHD head dataset is visualized by a volume renderer in two different effects (Figure

6

CHAPTER 1. INTRODUCTION

1.3). Although 2D CT images are useful in diagnosis, the volume rendered images appear to

be more natural and easier to comprehend the whole anatomy by human being.

Figure 1.3 Volume rendering images produced from a CT scan of a VHD head

To reveal or hide different structures in a volume, we can assign different transparencies to

voxels during volume rendering (called classification). This assignment is a function of the

properties of a voxel such as its intensity or gradient magnitude. The function is called

opacity transfer function, which can have any number of parameters as its input. As we

know, the gradient magnitude tends to be high at object boundaries. By using this character,

for example, the right image in Figure 1.3 demonstrates the result of an opacity transfer

function with the involvement of gradient magnitude while the left image is produced by the

opacity transfer function considering only voxel intensities. To enhance visual understanding

of volume data, we can also map voxel intensities to colors (called coloring). Normally,

three color transfer functions are used, one transfer function each for red, green and blue. If

they were the same, a gray scale image would be produced. We can assign different colors to

different features for meaningful interpretation of volume data. Similar to the opacity

transfer function, color transfer functions can also be a function of any voxel properties and

7

CHAPTER 1. INTRODUCTION

not restricted to voxel intensities. With these four transfer functions and together with other

functionalities, volume rendering appears to be powerful in visualization of volumetric data.

Besides volume rendering, extracting and generating geometric models from the volume

images is another technique, named surface rendering, which is frequently used for volume

visualization. Geometric primitives are generated at object boundaries in the volume dataset

and they are stitched together to obtain a surface representation. The volume dataset is then

indirectly visualized as polygonal meshes with traditional polygon rendering techniques. The

marching-cubes algorithm [Lorensen and Cline 1987] is a common technique for extracting a

surface, typically called iso-surface, from volume data. Figure 1.4(a) shows such an iso-

surface extracted from the VHD head dataset by the marching-cubes algorithm. A magnified

view of the surface mesh in the region of the nose is shown in Figure 1.4(b) that the

triangular meshes can be clearly identified.

(a) Marching-cubes iso-surface

(b) Polygonal mesh

Figure 1.4 Surface rendering images produced from a CT scan of a VHD head

Multimodality visualization is an important branch of volume visualization providing

additional valuable insights of medical images. With the development of medical image

8

CHAPTER 1. INTRODUCTION

acquisition techniques, rich modalities of medical imaging data are available, and they are

adept at presenting different tissues or structures in human body. It is desirable to visualize

multiple volume images with different modalities of the same object into a single image to

get more comprehensive information about desired structures. For instance, because bone is

best captured in CT, while MRI is adept in soft tissue structures, CT and MRI are often used

in conjunction with one another to produce images with more complete information of

examining structures. This technique is called multimodality rendering. Both volume

rendering and surface rendering techniques can be used for multimodality rendering.

1.4 Volume Rendering versus Surface Rendering

The volume-based visualization approach has many advantages over the surface-based

method in several aspects, especially in the area of medical applications.

Volume rendering algorithms are characterized by mapping elements of volumetric data

directly into image space without using geometric primitives as an intermediate

representation [Elvins 1992]. Since the whole volume of data is represented, the methods

potentially provide visual access down to the smallest detail of the internal composition, not

just the outer shell of the object being investigated. In medical applications, volume-based

models have advantages over surface-based models, in that many important features of the

data are lost during surface modeling. In addition, as compared to surface rendering, volume

rendering algorithms never need to explicitly determine the surfaces of fuzzy objects

contained in the volume, which, however, occurs frequently in medical imaging. On the

other hand, since possibly all data in the volume can contribute to the final representation, the

9

CHAPTER 1. INTRODUCTION

immense size of data increase the computation time significantly [Kaufman et al. 1993]. The

input data for volume rendered images in Figure 1.3, as an example, contains 5.5 million

samples, and fast rendering such quantity of data makes a high demand of computation

power and memory bandwidth.

A surface rendering algorithm typically fits surface primitives such as polygons or patches to

constant-value contour surfaces found in volumetric datasets [Elvins 1992]. Therefore,

before visualization, it is required to extract constant-value surfaces from the volume data.

These surfaces can be rendered using traditional geometric rendering techniques. Because

the surface extraction procedure is performed only once in data preprocessing stage and

subsequently the surface primitives can be used repeatedly for rendering, surface rendering

algorithm is typically much faster than volume rendering. However, if there are any changes

to the surface criteria, then all the volume data have to be re-traversed and a set of new

surface primitives has to be extracted. Such extraction procedure is time consuming. For

example, the surface model in Figure 1.4 contains more than 150 thousand triangular patches

in total.

In addition to all the advantages of volume rendering, its capability to produce high-quality

and detailed images attracts us to use it as the fundamental visualization solution in our

medical simulation systems. To implement multi-dimensional volume rendering on a

standard personal computer, I improved the approaches to make the computation in volume

rendering less intensive. I also explored its potential benefits in medical field to provide a

real-time, interactive, flexible, and fully controlled volume rendering for medical simulation.

10

CHAPTER 1. INTRODUCTION

1.5 Organization

Chapter 2 begins a literature review of existing diversity of volume rendering algorithms and

their improved techniques in both 3D and 4D. The survey is presented by highlighting the

advantages and disadvantages of each class of the methods.

In Chapter 3, I first describe the spatial data structure used for accelerated 3D volume

rendering. Based on it, a new data structure, dynamic linear level octree, and its

corresponding algorithms are presented, which forms the basis of one of my solutions for 4D

volume rendering [Wang et al. 2005a].

Chapter 4 presents the other solution of mine for 4D volume rendering. I describe a

clustering technique to explore the 4D volume data. A new encoded dataset is produced for

fast 4D rendering. This method exhibits some advantages over other methods proposed

previously.

Chapter 5 discusses the parallelization problems of the two proposed 4D volume rendering

methods. Although these methods are initially designed to be implemented on normal

personal computers, the parallelization can further improve their performance and are

possible to be used for rendering of even larger datasets.

Chapter 6 reviews the use of volume rendering in medicine and demonstrates the application

of the proposed algorithms in several medical simulation systems to provide interactive and

real-time 4D volume rendering on personal computers. The medical simulation systems are

meant for image-guided surgeries.

11

CHAPTER 1. INTRODUCTION

Chapter 7 discusses the contributions of the proposed methods and compares them with other

existing techniques.

Finally, Chapter 8 concludes this work and discusses the research work that can be done in

future.

12

Chapter 2

Volume Rendering - Literature Review

2.1 Introduction

Researchers in volume rendering have made significant progress during the last two decades.

About ten years ago, it would take couples of minutes to render a medium size volume into

an image on a Silicon Graphics (SGI) workstation. However, at present, a high quality

volume rendered image can be produced in just a few tens of milliseconds on a personal

computer. Besides the contribution of the rapid development of computing hardware, many

successful researches in volume rendering algorithms have been proposed to improve both

the quality and the speed of rendering. Some of them are even commercialized and

implemented into the specialized hardware, and some become hot research topics and are

propelling a revolution in the design of graphics processing unit (GPU).

With the rapid development of modern medical and scientific imaging technology,

conventional 3D volume rendering techniques can not satisfy the demands of visualization of

13

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

large-scale and time-sequence volume datasets newly come forth. Volume rendering of 4D

or time-varying volume datasets attracts many researchers from steady-state volume

rendering and becomes one of the popular research fields.

It will be too lengthy to summarize all the volume rendering works here, so we will only

focus on the most representative 3D volume rendering methods and improved techniques. In

addition, 4D volume rendering is still in its infancy and state-of-the-art research attempts will

also be reviewed.

2.2 Mathematical Models for Volume Rendering

Volume rendering is based on the physics of light propagation through particles in a volume.

Blinn [1982] and Kajiya & Herzen [1984] did the early research work in this field. Since the

aim of volume rendering is to visualize the volume data, not to mimic the exact physics, the

mathematical models are simplified with assumptions of voxel behavior in interaction with

lights. The mathematical models of volume rendering introduced in this section are mostly

the basis of the ray-casting algorithm. However, the methods or concepts such as front-to-

back/back-to-front composition, over operator, illuminations etc. are also the fundamentals of

other volume rendering algorithms. They also play an important role in my proposed 4D

volume rendering algorithms. The ray-casting algorithm will be introduced in more detail in

a later section.

The mathematical model of volume rendering simulates the procedure that, with the

interaction of light, samples in the volume along one viewing ray are taken and integrated to

form the color of a pixel. Following is the most popular volume rendering equation (also

14

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

called volume rendering integral) used in the ray-casting algorithm today [Lichtenbelt et al.

1998].

 (2.1) ∫ ⋅=
a

dsesgbaI a)(),(
∫−b dxx
s

)(τ

−1in

I(a,b) is the integrated intensity of one pixel. g(s) describes the illumination model used in

ray-casting. τ(x) defines the rate that light is occluded per unit length due to scattering or

extinction of light. g(x) and τ(x) are used to map a voxel x’s value into its intensity and

opacity. s is the segment of the ray that intersects with the volume.

To compute I(a,b), the integral in Equation 2.1 is discretized (with approximation) into two

equivalent formats, which lead to two famous compositing methods, namely front-to-back

(FTB) compositing and back-to-front (BTF) compositing.

In front-to-back compositing, the volume rendering equation can be written as:

 (2.2) ∏∑
==

−=
00

)1(),(
j

j
i

iIbaI α

or recursively:

()
)

iininout III
(iniinout αααα
α
−+=

−+=
1

1
 (2.3)

15

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

where I is the intensity, α is the opacity, in is the composited value up to current sample point

i, and out is the result after the composition of current sample. The intensity I of a sample

point is different from its color. In this thesis, we adopt the following relationship between

the intensity and color, i.e., the intensity of a sample point is the product of the color and

opacity of that sample point:

 (2.4) iii CI α⋅=

where Ci could be red, green or blue color component of the sample point. Thus, we can

rewrite the FTB compositing formula (Equation 2.3) into the color representation by

replacing the intensity of sample points with color:

() iiininout CCC αα−+= 1

in −1

 (2.5)

Samples are accumulated along the viewing ray from the entering point to the exiting point in

the volume, or from front to back. The opacity increases while samples are composited.

When the opacity stored in the pixel approaches unity, the remaining samples will contribute

very little to the pixel, and therefore do not need to be processed. This technique is called

early ray termination.

Equation 2.2 can be rewritten as follows:

 (2.6)

n

nn

j
j

i
i

overIoveroverIoverII
IIII

IbaI

⋅⋅⋅=
−⋅⋅⋅−++−−+−+=

−=

−

==
∏∑

210

10102010

00

)1()1(...)1)(1()1(

)1(),(

ααααα

α

16

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

The over operator was first introduced in [Porter and Duff 1984]. With the over operator, it

is possible that we divide the volume into two or more parts along the ray, visualize each part

individually, and finally compose all the intermediate images together with the over operator.

The result is the same as that achieved in rendering the whole volume. Thus intensive

computation of volume rendering can be distributed to multiple computational resources and

work in parallel for better performance.

Equation 2.5 is computationally efficient in that it avoids multiplications between the

opacities and the colors of the input and output pixels repeatedly. However, it is not

compatible with the over operator. Pixels from different intermediate images cannot be

composited correctly with Equation 2.5. Instead, the following equation is used when we

composite multiple intermediate images.

() iininout CCC α−+= 1

nn

 (2.7)

where Cin is the composited pixel color up to current intermediate image, Ci is the pixel color

of the current intermediate image and the Cout is the result color of the composited pixel.

In the back-to-front composition, the volume rendering equation is written as:

 (2.8) ∏∑
+==

−=
ij

j
i

iIbaI
10

)1(),(α

or a recursive representation:

17

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

()iiniout III α−+= 1 (2.9)

In this method, samples are accumulated from back to front. Note that in Equation 2.9, we

do not need to keep track of the accumulated opacities any more, and hence it reduces the

computational task. However, early ray termination is no longer possible either. The color

representation of the recursive BTF compositing formula is:

() iniiiout CCC αα −+= 1

m
n

rrrr

 (2.10)

Unlike the FTB compositing formula, Equation 2.10 can be used for the composition of both

sample points and pixels from intermediate images.

Since volume rendering simulates the physics of the interaction of lights and volume

elements, it is necessary to include the illumination models. The Phong model [Phong 1975]

is one of the often used illumination models for volume rendering. The Phong illumination

model counts the contribution of ambient, diffuse and specular reflection, and

mathematically it is written as:

 (2.11) ∑
=

⋅+⋅+=
i

ssddpiaaa NHCKNLCKIdfICKI
i

1
])()([)(λλλλλλ

Iλ is the result intensity of the investigated point after the illumination of m point-lights with

wavelength of λ (for red, green and blue color components). α, d and s represent for ambient,

diffuse and specular reflection respectively. K is a material-property-based reflection

coefficient, C is the light color and I is the light intensity.

18

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

2.3 Three-Dimensional Volume Rendering

According to the means of mapping volume data from the object space to the image space,

3D volume rendering techniques can be divided into two groups. The first group consists of

object-space methods or forward rendering methods. The methods intuitively transform each

volume element (voxel) separately from the object space to the image space and then project

it onto the image plane/screen. In contrast to an object-space method, an image-space

method or backward rendering method is characterized in transforming the entire volume

data to image space, and performing volume sampling for each image element (pixel).

Image-space methods are regarded superior over object-space methods since they can be

extended to support global illumination and volume deformation [Yagel 1999].

2.3.1 Fundamental 3D Volume Rendering Algorithms and Optimizations

Ray-casting algorithm, splatting algorithm and shear-warp algorithm are the milestones in the

history of volume rendering development. They are distinguished either in performance or in

image quality characterized as the category of algorithms with no assistance of parallel

computing or hardware acceleration. In the following, I will outline these algorithms and

their related optimizations.

• Ray-casting algorithm

Ray-casting is the most often used volume visualization algorithm for the generation of high-

quality images, and has been seen the largest body of publications over the years [Tuy 1984;

Upson and Keeler 1990; Levoy 1988; Levoy 1990a; Levoy 1990b].

19

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

Image

Viewing
Ray

Pixel

Volume

Samples

Figure 2.1 Schematic diagram of ray-casting model

Figure 2.1 illustrates a simplified model of ray-casting algorithm. Ray-casting algorithm

conducts an image-space rendering. An image is produced by casting rays through each

pixel of the image plane into the volume data and accumulating the color and opacity along

the ray. In order to be evaluated by the computer, the continuous contribution of the ray is

discretized, and samples are taken along each ray within the portion where it intersects with

the volume. Each of the samples will gather the contributions of its surrounding voxels.

Finally, the sample values are accumulated to the pixel that the ray was fired through.

Figure 2.2 gives a flow chart, which shows the operations applied to each sample. In this

figure, the left column gives the process applied to each sample, and the right column

indicates actions performed by users in a typical ray-casting session. Firstly, in re-sampling

and gradient estimation stages, the intensity and gradient of a sample are interpolated among

its neighboring voxels. A user can choose interpolation methods varying from zero order

(nearest neighbor) to higher order. Tri-linear interpolation (first order) is generally selected

20

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

for its small computation but satisfactory results produced in most cases. The gradient can

also be calculated based on different estimators ranging from intermediate difference

operator, central difference operator to Sobel 3D operator. With the interpolated intensity, in

the classification stage, the sample is separated into different feature classes, typically done

by assigning different colors and opacities to the sample based on transfer functions.

Normally, a predefined color lookup table and an opacity lookup table are employed as the

transfer functions for efficient classification. Subsequently in the shading stage, the sample

is shaded according to its color and gradient by using an illumination model, typically a

Phong illumination model. The Phong model is a local illumination model and is largely an

empirical model. However, it is fast to compute and gives reasonably realistic results.

Finally, in the composition stage, the sample value, including color and opacity, is

accumulated to the pixel that the ray was fired through. The process for this sample is

completed.

Re-sampling

Gradient
Estimation

Choose an
Interpolation Method

Choose a Gradient
Estimator

Classification Choose Transfer
Functions

Shading Choose an
Illumination Model

Composition

Figure 2.2 Flow chart of sample processing in the ray-casting algorithm

21

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

This process will be applied iteratively to the next sample point, which is taken at a step

further along the ray. The sample points contributing earlier are weighted heavier than later

sample points. The pixel summing continues until the stored opacity value is close to unity

for early ray termination, or the ray exits the volume. The idea behind early ray termination

is that if a ray passes through a dense object, the scene behind that point will contribute little

to the final image and thus a ray can be terminated as soon as it has accumulated to be

opaque enough for a user defined opacity threshold.

Ray-casting can produce high-quality, colored, and shaded images. However, because of the

immense size of volume data, the ray-casting algorithm is very time consuming. It is

traditionally only for image generation as it is not suitable for interactive applications. Many

approaches have been proposed to speed up the process of ray-casting algorithm.

We note that, in the ray-casting algorithm, even when rays enter into empty space, samples

still must be taken and composited, which, however, do not contribute to the final image.

Therefore, skipping the empty space, termed space-leaping, is the major approach to

accelerate the ray-casting algorithm without sacrificing the image quality.

In the Bounding-box algorithm [Avila et al. 1992], one of space-leaping approaches, the

objects in the volume are tightly surrounded with boxes or spheres. Only rays intersecting

with the bounding objects will be considered during rendering. In proximity cloud algorithm

[Cohen and Shefer 1993; Freund and Sloan 1997], all the voxels occupied by objects are

surrounded with a layer of one-voxel-deep cloud voxels. So the rays can rapidly skip the

empty space until they come into the cloud layer. Based on this idea, distance-coding

22

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

algorithm [Sramek 1994] skips empty space by assigning each voxel a number that identifies

the distance to the nearest opaque voxel. Octree, a hierarchical data structure, is an efficient

representation of homogeneous space by decomposing the 3D space recursively into uniform

regions. Levoy [1990] proposed to accelerate the ray-casting algorithm through the traversal

of a pre-built octree to avoid sampling in empty regions.

• Splatting algorithms

Westover first proposed the Splatting algorithm [1989; 1990], a typical object-space method.

Its core idea draws from the phenomenon of a drop of water falling into a plate and

splashing/splatting its energy around the center. In the splatting algorithm, voxels

correspond to the drops of water and image plane to the plate, so voxel intensities are

projected and spread cross multiple pixels, which are then composited into the image plane.

Since the volume data points themselves are the input samples of objects there is no need to

generate interpolated values for volume re-sampling. The contribution of a volume sample at

(i, j, k) to a point (x, y, z) can be evaluated as:

 (2.12)),,(),,(),,(kjivkzjyixhzyxonContributi −−−=

where v is the data value of the sample and h is the weighting function, or reconstruction

kernel.

 (2.13))/)(exp(),,(2222 σtsrtsrh ++−=

23

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

Normally, a circular Gaussian kernel (Equation 2.13) is employed for isotropic influence

(rotationally invariant weighting). Therefore, each volume sample can be treated

individually and spread its contributions in space. The final image is produced by summing

the contributions of all the samples at each pixel.

The splatting algorithm includes three steps. Firstly, the projection order of the voxels is

determined according to the view-direction. Voxels that are closest to the image plane will

be splatted first. Each voxel will be colored with user-predefined color and opacity transfer

functions based on its intensity, and shaded according to its gradient. Next, the splatting

algorithm projects the transferred voxels into image space. A blurring filter (reconstruction

kernel) is used to compute the contribution of the voxel to an image buffer. For orthogonal

viewing, the kernel can be calculated once and used for all the voxels with only an image

plane offset. But for perspective viewing, a new oblique kernel has to be calculated for every

voxel. This procedure can be sped up by maintaining a pre-computed footprint lookup table

[Westover 1991]. The footprint is the projection of the kernel into the image buffer. At last,

footprints are composited. The larger the footprint, the better is the suppression of the re-

sampling artifacts. Larger footprints, however, are more costly to realize. After all the

voxels have been processed, rendering is completed.

Early splatting elimination can be performed by dynamically maintaining an image occlusion

map, which conservatively culls invisible splats early from the rendering pipeline [Mueller et

al. 1999]. Although early splat elimination saves the cost of footprint rasterization for

invisible voxels, their transformation still must be performed to determine their occlusion.

Sobierajski et al. [1993] proposed a simplified approximation to the splatting method for

24

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

interactive volume viewing in which only voxels comprising the object’s surface are

maintained. Laur and Hanrahan [1991] also proposed a method for efficient implementation

of the splatting algorithm called hierarchical splatting, which uses a pyramid data structure to

hold a multi-resolution representation of the volume.

The splatting algorithm is able to produce high-quality images similar to other algorithms.

As the volume is processed slice-by-slice in the algorithm, it can provide users an

incremental refined image. The major advantage of the splatting algorithm is that each voxel

is considered only once and only the relevant voxels are considered every time, so this

technique improved the speed of the ray-casting algorithm. On the other hand, because the

projection of voxels is approximated by the kernel splat, rendering has a lower accuracy in

comparison to ray-casting.

• Shear-warp algorithm

Lacroute and Levoy [1994] proposed the shear-warp algorithm, which is recognized as the

fastest algorithm for software volume rendering to date [Meissner et al. 2000]. The

algorithm is improved based on ray-casting scheme. It also takes advantage of object-space

method, so shear-warp algorithm is often regarded as a hybrid method.

Two significant improvements are employed in shear-warp algorithm over ray-casting

algorithm.

First, in shear-warp algorithm, the traditional model-view transformation in ray-casting is

factorized to permutation-shear-warp transformation. It decomposes the 3D affine

25

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

transformation into five 1D transformations, which significantly reduces the computational

demand to only one floating point addition each [Hanrahan 1990]. An image plane called

intermediate image or base plane is introduced. The base plane is chosen as overlapping with

one of the six faces of the volume cube, and is the one onto which the image is projected to

the largest area. Thus after transformed into shear space, the rays that cross the volume are

perpendicular to the base plane. The step distance between two adjacent samples on a ray is

defined as the slice distance so that samples fall exactly onto the slices and can be computed

by bilinear interpolation instead of trilinear interpolation. After the intermediate image is

produced, it is warped to the image plane, which is just a 2D transformation.

Second, run-length-encoding (RLE) is employed in shear-warp algorithm. During ray-

casting in this algorithm, voxels are processed scanline by scanline, then slice by slice.

Therefore, volume is encoded into RLE for skipping transparent voxels (space-leaping), and

the image is also encoded into RLE for skipping opaque pixels (early ray-termination).

In shear-warp algorithm, the voxels can be accessed in object-order, or storage order.

Consequently, the ray-casting process is accelerated remarkably by taking advantage of the

continuous memory accessing. However, the system has to maintain three duplicated RLE-

encoded volumes for each of the three principal viewing directions (x, y, and z). Two

potential errors are introduced with the algorithm. First, it does not allow super-sampling

along the ray, so Nyquist frequency is potentially violated for all but the axis-aligned views.

Second, the 2D instead of 3D re-sampling may also result in artifacts.

26

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

2.3.2 Parallel Volume Rendering

Volume rendering acceleration can be done through algorithmic improvements. It can also

be achieved by multiprocessor systems with parallel computing. The parallel approaches of

volume rendering are mainly classified into image space parallelism and object space

parallelism.

In image space parallel rendering methods, the screen is divided into several regions, and

each processor is assigned a portion of the screen. If a processor finishes ray-casting and

finds another region undone, it keeps on with that region. Nieh and Levoy proposed an

efficient parallel ray-casting method that achieved good performance on a shared memory

DASH machine in Stanford [Nieh and Levoy 1992]. Lacroute also parallelized the share-

warp algorithm for shared memory architecture on a 16 processor Silicon Graphics Challenge

[Lacroute 1995, 1996]. It gains a speed of 12 frames per second for a 2563 dataset. Many

other image space methods were reported over the years [Palmer et al. 1997]. They are

carried out with a goal of partitioning image plane to achieve maximizing load balance and

minimizing communication between multiple processors.

In object space parallel rendering methods, the volume data is divided into sub-cubes, and

each processor renders a sub-cube of the volume data. The final image is obtained by

compositing these sub-images of the sub-cubes in the right order. In this sort of methods,

sub-image composition often consumes much time [Goldwasser et al. 1989]. Many

approaches were proposed to solve such problem [Ma et al. 1994; Neumann 1994]. Splatting

technique is also widely used in parallel volume rendering. Westover proposed and

implemented the earliest parallel splatting renderer on a SUN network [1990]. Later, many

27

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

other splatting-based parallel approaches were reported [Yagel and Machiraju 1995]. Beeson

et al. [2003] also reported their parallel volume rendering solution using the perspective

shear-warp volume rendering algorithm on a cluster network.

2.3.3 Hardware-Assisted Volume Rendering

To further enhance the performance of volume rendering, the use of specific hardware

besides CPU has been investigated. In one approach, the traditional well developed volume

rendering algorithms are specialized and implemented on the hardware adapter, called

customized volume rendering hardware, which is able to render the volume on-the-fly. In the

other approach, the capability of existing graphics card or graphics processing unit (GPU) is

further exploited. The graphics card is able to compute volume rendering. Thereof, the

texture-mapping is often used for volume rendering, where the graphics card implements the

process similar to the ray-casting algorithm.

• Customized Volume Rendering Hardware

Special designed volume rendering customized hardware is distinguished in performance

improvements. Notable examples include VolumePro series volume rendering acceleration

board [Pfister et al. 1999] and VIZARD II, a reconfigurable interactive volume rendering

system [Meissner et al. 2002]. In 1999, the publication of VolumePro graphics board by

Mitsubishi has gained much attention in the volume rendering community. The VolumePro

board implemented on the basis of Shear-warp algorithm provides high quality, real-time

volume rendering on PCI-bus systems. Because of insufficient flexibility in rendering

control, many customized applications such as integrated volume-polygon rendering cannot

28

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

be easily implemented. As it supports only 3D volume rendering, higher dimensional and

multimodality volume rendering cannot be accomplished either. Recently, the VolumePro

graphics board has been upgraded by the employment of a shear-image order ray-casting

algorithm [Wu et al. 2003], which achieves the image quality equivalent to the full image

order volume rendering but with enhanced rendering performance. Graphics polygon

embedded volume rendering is also supported.

• Texture-Based Volume Rendering

With the development of graphics hardware, texture-mapping technique comes mature and is

widely used in hardware-assisted volume rendering (also referred to as GPU-based volume

rendering). According to the types of the texture hardware, there are two texture-based

volume rendering methods available, namely 2D and 3D texture-mapped volume rendering.

With the texture-mapping supported graphics hardware, volume rendering can achieve

remarkable speedup. In the texture-based method, the 3D rasters (called texture maps) are

mapped onto polygons in 3D with hardware interpolation. The series of polygons are

rendered perpendicular to the viewing direction in front-to-back order, and blended into the

frame buffer to produce the final image. The first non-shaded texture-based volume

rendering method is proposed by Cabral et al. [1994], and later Gelder & Kim added in

shading capabilities [1996]. Other researchers also proposed approaches to add more effects

such as shadows [Behrens and Ratering 1998] or to improve the classification and shading

methods [Meissner et al. 1999]. In [Boada et al. 2003], 3D texture-mapping is used for the

visualization of the volume data integrated with the surface polygons based on a hybrid

29

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

octree. Wilson et al. also reported a hybrid point-based volume rendering technique by using

texture-mapping [Wilson et al. 2002]. Kruger and Westermann [2003] realized the early-ray

termination and empty-space skipping techniques in 3D texture-based volume rendering so

that the performance is further improved.

The texture-based volume rendering method theoretically produces images with qualities

matching that produced by ray-casting algorithm. In comparison to ray-casting, texture-

mapping method is much faster due to hardware acceleration. However, this method is

normally OpenGL2 dependent and its capabilities are limited by graphics hardware, for

example, the supported volume data is often restricted by the texture memory on-board.

Although there are many proposals, the extensive and efficient shading is still a sophisticated

task in texture-mapped volume rendering.

Interested reader can refer to [Ma et al. 2003], in which authors reviewed more hardware-

accelerated algorithms that have been introduced recently. There are several

implementations of conventional ray-casting methods in the community. VTK is a popular

software library for visualization in general [Schroeder et al. 1998].

2.4 Four-Dimensional Volume Rendering

Most research on visualization of 4D/time-varying volume data focuses on rendering

acceleration and storage space reduction. Spatial coherence and temporal coherence are the

2 OpenGL is the industry's foundation for high performance graphics and widely adopted graphics standard,

http://www.opengl.org, SGI.

30

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

most important two characteristics of the time-varying volume data usually exploited for this

purpose.

Shen et al. [1999] proposed the time-space partitioning (TSP) tree to capture both spatial and

temporal coherence. The skeleton of a TSP tree is a complete octree that recursively

subdivides the 3D space, while each octant contains a binary tree that bisects the time span.

The coefficients of variation in space and time domains are used as the error metrics to

evaluate the spatial and temporal coherence of a 4D volume dataset. Regions identified with

little temporal variance are skipped from repeatedly rendering and their partial rendering

results are reused to speedup overall rendering. The algorithm provides error control for

users so that the image quality is possible to be traded off for rendering speed. The TSP tree

is built as a supplementary data structure to the 4D volume. Therefore, it results in extra

memory overhead. This method also cannot effectively reduce the space or I/O requirement

as the original 4D volume data are kept and used simultaneously during rendering. Ellsworth

et al. [2000] improved the TSP tree by using new color-based error metrics to enhance the

capability of identifying coherent regions. The TSP tree can capture both the spatial and

temporal coherence from a time-varying field of the whole sequence of volumes more

effectively and the rendering performance is thus improved. However, the error metrics have

to be recomputed once the transfer function is changed.

Since there is coherence between the time-varying volume data, the volume rendered images

may not change significantly from one time step to another. Shen and Johnson [1994]

proposed the differential volume rendering method, in which only the changed pixels are re-

rendered in each time step. However, the process of determining the changed pixels may

31

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

take long time especially when the amount of changed pixels is large. Liao et al. [2003]

improved this process by using a two-level differential volume rendering method. The

authors noted that some of the changed voxel positions could appear repeatedly between time

steps. Therefore, the determination of the projected positions of these voxels can be omitted

in rendering of successive time steps. They filter out the overlapped changes voxels and

extract the difference of the changed voxels referred to as the second-order difference (SOD).

Based on the SOD, their method saves the time to determine the positions of changed pixels

and improves the rendering performance. However, this method cannot completely take

advantage of the data coherence to further accelerate rendering. All the changed pixels have

to be re-rendered from scratch in every time step no matter in the original or the improved

algorithm. The information of differential voxels and the second-order differential voxels

demand redundant memory and storage space, and when the amount of changed voxels is

large, this redundancy can be significant. This method is designed for ray-casting renderer

only and is hard to be extended to support other rendering algorithms such as texture-based

volume rendering. Liao et al. [2004] further extended this method to support time-critical

time-varying volume rendering. The volume rendered images can be produced within a time

constraint at the reasonable price of image quality. It will be useful for some applications.

Some popular 3D volume rendering algorithms are further investigated to be suitable for 4D

rendering. Anagnostou et al. [2000] proposed a time-varying volume rendering method

based on shear-warp factorization algorithm. In this method, the RLE-encoded volumes are

divided into slabs, and slabs are further subdivided into run blocks in the sheared object

space. Temporal coherence is exploited and only run blocks changed over time are rendered.

32

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

Blending of the partial images of all the slabs produces the final image of each time step. In

[Anagnostou et al. 2001], the authors reported their extended researches on shear-warp-based

time-varying volume rendering algorithm. A change detection technique is adapted to

process Poisson noise distributed datasets besides Gaussian noise. Neophytou and Mueller

[2002] proposed a 4D splatting method based on 4D body-centered cubic (BCC) grids, which

is able to provide more efficient sampling lattice than the usual Cartesian cubic (CC) grids.

A hyper-slice approach is used to extract 3D volumes from the 4D lattice, and a splatting

renderer is used for visualization.

Texture-based hardware-assisted volume rendering is an active research area recently in both

3D and 4D [Boada and Navazo 2003; Wilson et al. 2002]. Lum et al. [2001] reported a 2D

texture-based solution for interactive time-varying volume data rendering. They use discrete

cosine transform (DCT) and vector quantization techniques to compress time-runs of voxels

into single byte indices that are then loaded into the texture memory. The compressed data

result in reduced I/O cost between hard disk, system memory and texture memory. During

rendering, a dynamic time-varying color palette is employed so that the indexed volumetric

data are quickly decoded in hardware. Although artifacts may be introduced, this method

provides users interactive 4D data exploration by fully utilizing the texture capability of a

commodity graphics card. However, the spatial coherence of data is not exploited in this

method for further performance improvement. The customized hardware-accelerated time-

varying volume rendering methods are also investigated. For example, the VolumePro [Wu

et al. 2003] graphics card is being extended to support 4D volume animation.

33

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

While some methods concentrate on rendering acceleration, other efforts emphasizing more

on data compression are also reported. Ma et al. [1998] proposed an algorithm for encoding

and rendering of time-varying volume data. They use quantization for voxel-level

compression and octree encoding for spatial domain compression. The temporal domain

compression is achieved by difference encoding. Wavelets transform [Dobashi et al. 1998;

Guthe and Straßer 2001] is one of the most popular compression schemes used in time-

varying or large-scale volume visualization. Sohn et al. [2002; 2004] proposed a combined

compression scheme from wavelet transform and MPEG architecture. The spatial and

temporal coherence of time-varying data are exploited by encoding only blocks containing

significant features. The seed cells are inserted into the encoded data so that an online iso-

surface extraction can be performed quickly. Finally, a combined rendering of iso-surface

and volume is presented with geometric primitives and textures, where the iso-surface is used

to represent the principal objects in details and volume rendering builds the surrounding

effects. In all these algorithms, a lossy compression scheme is employed.

Besides trying to comprehend time-varying volume data through playback or animation,

researchers also attempt to reveal the inherent information of time-varying data by other

means. Tory et al. [2001] studied this problem in medical field. To discover abnormalities

in a time-varying medical dataset with a more informative representation, they studied to

visualize four different quantities of the dataset in 3D, i.e., intensity, temporal gradient,

spatial gradient and changes of spatial gradient over time. This research provides a new

insight to the time-varying datasets. Woodring and Shen [2003] proposed an alternative

method for viewing time-varying volume data. A sequence of time-varying volumes is first

34

CHAPTER 2. VOLUME RENDERING – LITERATURE REVIEW

integrated into a single volume, named chronovolume, which captures the essence of

multiple time steps and is then visualized by a regular 3D renderer. To reveal different

interests of time-varying data, several time integration functions are proposed. As noted by

the authors, since many time steps contribute to one volume, the final image tends to clutter

if users are not careful in manipulating the transfer functions.

35

Chapter 3

Dynamic Linear Level Octree for Time-
Varying Volume Rendering

3.1 Introduction

The spatial data structures are used traditionally in the acceleration of 3D volume rendering

to exploit the coherent property of volume images. When information of the volume is well

organized in a spatial data structure, it is possible to perform volume rendering faster. For

example, when a sub-volume is labeled as empty in a spatial data structure such as octree, the

renderer can safely skip that region (space leaping) in the rendering process.

To accelerate 4D or time-varying volume rendering, many research attempts are made [Shen

et al. 1999; Ellsworth et al. 2000; Anagnostou et al. 2001; Liao et al. 2003]. However,

researchers found that it might not be a good idea to simply extend an octree to a hex-tree

with the introduction of an additional temporal dimension. The granularity in the temporal

dimension is totally different from that in spatial dimensions. The hex-tree, if it is used, will

36

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

be very biased in certain dimension and it is hard to benefit rendering. Therefore, special

attention is given to the temporal dimension. The improved data structure I proposed is able

to represent the 4D volume data more naturally and effectively. It can be used efficiently to

accelerate rendering.

As an introduction of the proposed time-varying volume rendering algorithm, we begin with

the 3D algorithms and data structures as follows.

3.2 Linear Level Octree

3.2.1 Review of Octree in Volume Rendering

Octree is a hierarchical data structure. We start with a volume and determine if its

description is sufficiently complex, in which case the volume is subdivided uniformly into

eight congruent disjoint cubical regions (called octants), and then each octant is recursively

checked and subdivided, until the complexity is sufficiently reduced and meets our

predefined leaf criteria [Samet and Webber 1988]. Each leaf octant represents a

homogeneous region. The homogeousness of regions suggests the spatial coherence, which

is the characteristic frequently used for rendering acceleration.

The octree data structure is traditionally used to assist the intersection tests in the ray tracing

algorithm [Kaplan 1985; Goldsmith and Salmon 1987; Whang et al. 1995] (Note: not ray-

casting). A naïve ray-tracing algorithm would have to recursively test the rays of light

emitted from the viewpoint against each of the surfaces of the objects, sort the resulting

intersections, calculate and test the reflected rays to check if they intersect any other portions

of the objects. The octree partitions the space recursively and forms non-overlapped

37

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

minimum bounding boxes for every object. As a result, the ray-object intersection test can

be performed more efficiently because the object is examined against the ray only when the

bounding octant is found to intersect the ray.

Meagher [1982] is the first to propose a method that exploits the coherency in volume data

by representing the 3D volume with an octree for geometric modeling. Years later, Levoy

[1990b] extended the idea and employed the octree in ray-casting algorithm for volume

rendering acceleration. In Levoy’s method, each octant contains a flag with value zero or

one to indicate whether the region occupied by the octant is empty or not respectively.

During the ray casting, the flags of the octree are concurrently checked, and if a region is

inside an octant with flag zero, the ray can advance quickly across the empty space;

otherwise, samples will be drawn along the ray. In this method, the space leaping of ray-

casting is well realized. However, the ability of octree to represent nonempty homogeneous

regions is not yet explored to further speed up rendering.

In the shear-warp rendering algorithm, a pre-computed min-max octree, is employed for the

interactive classification [Lacroute and Levoy 1994]. Each octant contains the extrema of the

parameter values of the opacity transfer function. The opacity is then evaluated for all

parameter points in the octant region and integrated with a supplementary multi-dimensional

summed-area lookup table. The scan-line is thus recursively checked and transparent

portions are determined. By this means, authors resolve the low-speed problem in

unclassified-volume rendering and provide rendering with an interactive performance.

38

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Researchers [Whang et al. 1995; Lee and Park 1997] also proposed the methods of building

the octree by adaptively subdividing the volume space into non-uniform regions depending

on the degree of spatial coherence of the volume data. In this way, a greater number of

empty octants are generated and more time is saved while rays pass through these empty

octants. However, the calculation complexity to identify the volume-ray intersection is

inevitably increased, because such process cannot be done efficiently as before by using the

regularity of the uniform structure.

As mentioned in Chapter 2, time-space partitioning tree, an octree-variant, is proposed for the

4D volume rendering [Shen et al. 1999]. A comparison between this method and my method

will be given Chapter 7.

So far octree is mostly used for surface rendering (as in ray-tracing algorithm) or as an

auxiliary data structure used to describe the properties of regions in the volume, but not to

rebuild the volume and make rendering directly based on it. When we represent volume data

with an octree, the octree-based rendering is benefited by saving the cost of operations

involving the octree and the volume.

3.2.2 LLO Labeling Scheme

Octree can be labeled with different schemes. Linear Level Octree (LLO) [Chui et al. 1991],

extended from the linear-octree scheme, is one of the labeling schemes. Chui et al. did a

good early work to visualize the volume data in geometry by using the LLO. However, they

did not propose a solution for LLO-based volume rendering.

39

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

A volume with size in a coordinate system is shown in Figure 3.1(a), where n is

the resolution of the raster. The left-bottom-back corner/voxel of the volume is located at the

origin, and its three edges are aligned with the X, Y and Z coordinate axes respectively. In

the following description, we do not differentiate the octants and nodes of LLO.

nnn 222 ××

(a) Decomposition of a volume

(1,0,0,0)
(1,1,0,0)

(1,0,1,0)
(1,1,1,0)

(1,0,0,1) (1,1,0,1)

(1,1,1,1)
(1,0,1,1)

(0,0,0,0)

(2,2,2,2)
(2,3,2,2)

(2,2,3,2)

(2,3,3,2)

(2,2,2,3)
(2,3,2,3)

(2,2,3,3)
(2,3,3,3)

… …

Level 0

Level 1

Level 2

Level 3

(b) Structure of the LLO corresponding to the volume

Figure 3.1 Linear level octree labeling scheme

In LLO, each octant/node is labeled with a unique code key: (Li, xi, yi, zi), where Li is the

level of the node, and xi, yi and zi are the X, Y and Z level-coordinates of the node respectively.

40

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Let the code key of the root node be (0, 0, 0, 0) and assume that an arbitrary node A at level

Li has a code key (Li, xi, yi, zi). Then the left-bottom-back sub-node of A at level Li + ∆L (∆L

= 1, 2, …) will have a code key (Li0, xi0, yi0, zi0), where

Li0 = Li + ∆L

xi0 = xi • 2∆L

yi0 = yi • 2∆L

zi0 = zi • 2∆L

(3.1)

The code keys of other sub-nodes of A at level Li + ∆L are given as follows:

Li0, xi0, yi0, zi0

Li1, xi1, yi1, zi1

Li2, xi2, yi2, zi2

Li3, xi3, yi3, zi3

Li4, xi4, yi4, zi4

Li5, xi5, yi5, zi5

Li6, xi6, yi6, zi6

Li7, xi7, yi7, zi7

= (Li0, xi0, yi0, zi0) +

0, 0, 0, 0

0, 1, 0, 0

0, 0, 1, 0

0, 1, 1, 0

0, 0, 0, 1

0, 1, 0, 1

0, 0, 1, 1

0, 1, 1, 1

(3.2)

Figure 3.1 demonstrates this LLO labeling scheme. The relationship between LLO nodes

(Figure 3.1a) and their corresponding sub-volumes (Figure 3.1b) can be identified through

their code keys.

41

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

We define the distance between two adjacent voxels in three axis directions as one unit.

Based on the basic labeling scheme of LLO, we derive the following properties of an

arbitrary node A with code key (L, x, y, z):

• Size = 2∆L, where ∆L = n – L.

This is the side length of node A, or in other words, it is the number of voxels contained in A

along any one of the axis directions.

• Location = (x • 2∆L, y • 2∆L, z • 2∆L), where ∆L = n – L.

This is the absolute location coordinate (not the level coordinate) of the left-bottom-back

corner voxel of A in the object’s (volume) coordinate system. It is also regarded as the

location of node A.

The code key of upper level (ancestor level) node of A, say level Lw (Lw < L), is:

• (Lw, ⎣x/2∆L⎦, ⎣y/2∆L⎦, ⎣z/2∆L⎦), where ∆L = L – Lw and ⎣⎦ is an integer division

With these properties, we can identify the location, the size and the code key of either a

parent node or a child node of an arbitrary octant easily with only a few simple arithmetic

operations. Advantages of LLO include reduction of memory consumption, simple

representation of octants, fast tree traversal and so on. LLO has all the advantages of linear-

octree. For instance, only leaf nodes are stored, which greatly reduces both memory

consumption and the number of nodes processed. The memory space required using LLO is

42

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

less than that of linear-octree for the same object. It implicitly encodes the locations, the

sizes of the nodes and the path from the root to the nodes. Therefore, it is more computation

efficient to evaluate the relations between arbitrary spatial points and LLO nodes.

3.2.3 LLO Generation

To take advantage of the spatial coherence, volume datasets are converted into LLO

representation. Without loss of generality, a volume dataset is assumed to have 2n voxels in

each dimension. Two leaf node criteria are adopted for the LLO generation:

• The minimum size (edge length) of an octant is 2l, i.e., each dimension of the

octant contains 2l voxels at least, where l is an integer between 1 and n.

• The variance of voxel intensities contained in an octant is no more than ν, a user

predefined threshold.

The variance of an octant A at level L can be computed based on Equation 3.3 below:

)(3

2

)(3

2
)(

2

Ln
i Ai

A

Ln
i

A

mv
v

m

−

−

∑

iv∑

−
=

=
 (3.3)

where vi is the intensity value of the ith voxel of octant A, mA is the mean and vA is the

variance.

43

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

However, Equation 3.3 could be computationally expensive when we compute the mean and

variance of an octant at a high level (small L) of an octree. Voxels have to be accessed

repeatedly for octants at each level. In fact, the mean and variance of a parent octant can be

computed based on those of its child octants. Equation 3.4 gives the formulas without proof3.

()[]∑

∑

=

=

−+=

=

8

1

2

1

8
1
8

i
AiiA

i
iA

mmvv

mm
81

 (3.4)

where mi and vi are the mean and variance of the ith child of their parent octant A

respectively. The mean and variance of a parent octant thus can be computed efficiently

without accessing each voxel. In practice, we compute the mean and variance of the octants

at level (n – l) based on Equation 3.3 and those of their parent octants based on Equation 3.4.

Each voxel is only accessed once in the whole process.

The first of the leaf node criteria is a necessary condition. Octants of size larger than the

minimum size can be a leaf node only if it satisfies the criterion two. If all the voxels

contained in a leaf octant are transparent, the octant is a white node and it is discarded.

Otherwise, it is a black node, and saved. When the inequality vA ≤ν is satisfied, the sub-

volume data in octant A are regarded as homogeneous and is possible to be used for

rendering acceleration.

3 Interested readers can refer to Appendix C for more details.

44

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

To produce an LLO, all leaf octants are output together with their code keys, mean and

variance. If an octant has variance no more than ν, the sub-volume data contained in the

octant will not be saved, otherwise, all the voxels are saved. After being converted into an

LLO, the original volume dataset is not needed for rendering any longer.

Figure 3.2 gives the pseudo-code of the algorithm converting a volume to an LLO. The

algorithm merges every eight adjacent octants into a bigger octant if they are all leaf nodes

and the combined octant still satisfies the leaf node criteria. A supplementary data structure

(OctantArray) is used to track the maximum level that the octants can be merged.

According to the leaf node criteria, the smallest octant is of size 2l. Therefore, the levels in

OctantArray are initialized as (n – l) that every octant in this level is potentially a leaf node.

45

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Void CreateLLO()
{
 // The 3D array used to represent the properties of octants
 struct {
 int level;
 float variance, mean;

 } OctantArray[2n-l][2n-l][2n-l];
 Initialize(OctantArray);

 // The distance of adjacent octants
 int D[8][3]={{0,0,0}, {1,0,0}, {0,1,0}, {1,1,0},
 {0,0,1}, {1,0,1}, {0,1,1}, {1,1,1}};
 int Step = 2;

 // Start the conversion from the lowest level

 L = n - l;
 while (L > 0) // Until root level
 {
 // Check all the octants in current level

 for (int k=0; k<2n-l; k+=Step) {

 for (int j=0; j<2n-l; j+=Step) {

 for (int i=0; i<2n-l; i+=Step)
 {
 // Check if all the eight brother octants are leaf nodes
 // with low variance
 for (int r=0; r<8; r++)
 {
 Brother =
 OctantArray[k+D[r][2]][j+D[r][1]][i+D[r][0]];

 if ((Brother.level > L) || (Brother.variance > ν))
 break;
 }

 V = variance of the eight octants;
 M = mean of the eight octants;

 // Check if the eight octants can be merged into a bigger
 // leaf octant at a upper level

 if (r == 8 && V <= ν)
 { // Yes
 OctantArray[k][j][i].level--; // New octant level
 OctantArray[k][j][i].variance=V;// Update the variance
 OctantArray[k][j][i].mean = M; // Update the mean

46

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

 }
 else
 { // No, the eight octants cannot be merged.
 Output the leaf octants whose level equals to L.
 }
 }
 }
 }
 // Update the distance between adjacent octants
 Update the elements in array D by multiplying 2;
 Step *= 2;

 // Repeat the process in an upper level
 L--;
 }
}

Figure 3.2 Algorithm of LLO generation

Smaller size of leaf node allows smaller regions of data coherence to be exploited without

sacrificing image quality. However, along with the benefit, the number of nodes increases

significantly, which tends to incur substantial memory overhead. Furthermore, the increased

number of rendering elements will also lead to extra graphics overhead during rendering.

Therefore, l is selected to ensure that there will not be too many black leaf nodes generated in

an LLO. The number of levels in an LLO will not exceed (n – l + 1).

In the above description, we assume a volume dataset with 2n voxels in each dimension. In

practice, we will force the size of the volume to be the smallest power of 2 larger than the

actual size and fill the extended portion with the background color. Because the extended

portion of the volume is regarded as empty/transparent space, it will be processed as a few

big white nodes that will not be stored or affect the algorithm performance at all.

47

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

3.3 LLO-Based 3D Volume Rendering

3.3.1 Overview

The flowchart of the LLO-based 3D rendering algorithm is given in Figure 3.3. An LLO is

either encoded from a volume dataset for the first time or reloaded from storage media.

During rendering, the LLO is traversed and octants are output one by one according to the

current viewing direction. Since the LLO encodes only the non-transparent sub-volumes,

every octant potentially contributes to the final image. A conventional 3D volume renderer,

either a software-based such as a ray-caster or a hardware-accelerated such as a texture-

mapped renderer, is employed for octant rendering. Finally, the partial images of octants are

composited to produce the final image.

LLO

LLO Traversal

Renderer

Octant

Volume rendering output

Volume dataset

Traversal
Arrays

Figure 3.3 Flowchart of the LLO-based 3D volume rendering

Depending on the renderer selected, the LLO traversal order varies. For example, to utilize

the texture-mapping technique for hardware-accelerated volume rendering, octants must be

traversed in back to front order for proper texture blending, but if a ray-casting renderer is

48

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

used, it is more efficient to traverse the LLO and composite partial images in front to back

order.

In the following sub-sections, I will discuss this process in more detail.

3.3.2 LLO Traversal

An efficient traversal algorithm is critical for the LLO-based rendering algorithm. The LLO

is traversed during rendering. Different tree traversal algorithms are used according to

different projection methods, parallel or perspective projection. In parallel projection, the

proposed algorithm can even avoid the cost of tree-traversal using a supplementary data

structure. This algorithm is modified for the perspective projection with small traversal cost.

In parallel projection4, LLO can be processed in a specific order without affecting the result

image based on the viewing directions. There are eight distinct sets of such viewing

directions. The child nodes of an octant are numbered as shown in Figure 3.4.

 0 1

 2 3

 4

 6

 5

 7

X
Z

Y

Figure 3.4 Numbering of child nodes

4 The parallel projection is also called orthographical projection in some literature.

49

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

A vector (Vx, Vy, Vz) in object/model coordinate system is used to represent different viewing

directions. The traversal sequence of nodes from different viewing directions is given in

Table 3.1. The underlined nodes have the same traversal priority so that they can be

processed in different order without affecting the result.

Table 3.1 Linear level octree traversal sequence

(Vx, Vy, Vz,) Traversal Sequence

(<0, <0, <0) 7, 3, 5, 6, 1, 2, 4, 0

(>0, <0, <0) 6, 2, 4, 7, 0, 3, 5, 1

(<0, >0, <0) 5, 1, 4, 7, 0, 3, 6, 2

(>0, >0, <0) 4, 0, 5, 6, 1, 2, 7, 3

(<0, <0, >0) 3, 1, 2, 7, 0, 5, 6, 4

(>0, <0, >0) 2, 0, 3, 6, 1, 4, 7, 5

(<0, >0, >0) 1, 0, 3, 5, 2, 4, 7, 6

(>0, >0, >0) 0, 1, 2, 4, 3, 5, 6, 7

Further examination of Table 3.1 shows that there are only four distinct traversal sequences,

while others are just in inverse order of one another. Therefore, before rendering, the LLO

can be traversed once for each of the four viewing directions, and the pointers of the leaf

nodes are stored in four different traversal arrays (Figure 3.3). Traversal of the LLO during

rendering is thus avoided.

50

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

During rendering, one of the four traversal arrays is selected according to the current viewing

direction, and octants are processed from the beginning to the end or in inverse order of the

arrays. Since the traversal of the hierarchical data structure is one of the most time

consuming operations and it is also regarded as the major disadvantage of the hierarchical

data structure [Yagel 1999], a substantial performance gain is achieved by this method.

In perspective projection, the LLO traversal order is not only dependent on the viewing

direction but also the viewing point and the field of view (FOV). Therefore, the traversal

sequence varies for different portions of a volume and need to be carefully considered.

Region I

Image Plane

Volume
Principle
Viewing
Direction

Region III

Region II
Region IV

Viewing Point

Figure 3.5 FOV Regions for Perspective Projection

To identify the traversal order in different sub-volumes, the volume space is divided into

regions in the object coordinate system. Three planes parallel to the three sides of the

volume and passing through the viewing point are generated. We consider only the case that

the viewing point is outside of the volume. There are at most two planes that can intersect

51

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

with the volume. No matter what is the viewing direction, the field of view is divided into

four regions as shown in Figure 3.5.

We noticed that, in the same FOV region, all the viewing directions are conformable and

belong to the same input entry of the Table 3.1 as suggested in the parallel projection.

Therefore, the traversal order in the same FOV region will be consistent as well. The

following rules are derived to identify the LLO traversal order for perspective projection.

• If an octant fully resides in a FOV region, the traversal sequence is looked up

based on the viewing direction of the region and Table 3.1.

• If an octant straddles multiple FOV regions, the traversal sequence is determined

by vpc PPV
rrr

−= and looked up in Table 3.1, where cP
r

 is the center-point of the

octant and is the viewing point. vpP
r

Figure 3.6 gives a 2D example of the LLO traversal in the perspective projection. The field

of view is divided into two regions, where all the viewing direction vectors (vx, vy) in Region

I conform to vx < 0 and vy > 0 and viewing vectors in the region II conform to vx > 0 and vy >

0. Therefore, octants in the different regions are traversed in different orders, and the octants

in the same region are traversed in the same order. The numbers on sub-volumes indicate the

sequence that octants are accessed and processed in front-to-back order.

52

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Region I

Region II

Image Plane

Volume

x

y

1

9 8

7 6

14 15

12 13

2 3

4 5

10 16 17

19 18 11

Viewing Point

Principal Viewing
Direction

Figure 3.6 Octant traversal order in perspective projection

LLO-based perspective rendering is thus achieved within the same framework as parallel

rendering. However, it is no longer possible to avoid the traversal process.

3.3.3 Adaptive Rendering

Since the mean and variance are encoded together with each octant in generation of an LLO,

adaptive volume rendering can be realized through user-specified error tolerances τ during

rendering. While rendering each of the octants, variance is compared with the error tolerance

and if it is smaller, the mean value is used instead of the octant voxels for either octant

reconstruction or interpolation. A low error tolerance is chosen when image quality is

required to be high (e.g., medical examination), and a high error tolerance is chosen for fast

rendering for the price of image quality. Users thus are able to control the rendering quality

for different applications.

53

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

This LLO-based volume rendering algorithm is independent of any specific volume renderer.

Volume rendering algorithms such as ray-casting, splatting, shear-warp and texture-mapping

can be employed. Here, I briefly introduce how the two typical renders, ray-caster and

texture-mapped renderer, are used in LLO-based volume rendering.

• Ray-casting Renderer

When we use the ray-casting algorithm, LLO is traversed and octants are accessed in front to

back order according to the viewing direction. Given the transformation of the parent octant,

the transformation of its sub-octants can be efficiently computed and the corresponding

projection area in the image plane can be identified efficiently. Rays are cast through non-

opaque pixels in the image plane. Samples are taken and shaded in the octant and

accumulated to the pixel until it is opaque enough. Normally, it is necessary to have one

layer of voxel overlap at the boundary of octants for proper tri-linear interpolation and two

layers of voxel overlap for gradients computation. When a leaf node with low variance is

encountered, sampling in the octant can be avoided and the mean is used instead. Since all

sample points in this octant have identical intensity (I0) and opacity (α0) values, the

integration of sample points can be optimized and the volume rendering equation is

simplified to:

 (3.5)
i

n

i

j
j

i
i

I

II

)1(

)1(

0

1

0
0

00

α

α

−=

−=

∑

∏∑
−

=

==

in 11 −−

54

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

and the integrated opacity is computed as:

 (3.6) ∑
=

−=
0

00)1(
i

ααα
−1n

i

where n is the number of samples along a ray within this octant.

In the LLO-based ray-casting algorithm, it is no longer needed to consider the space-leaping

either, as only non-transparent octants are passed to the renderer. Rendering is completed

when all the octants are processed.

• Texture-mapped Renderer

When texture-mapping is employed for octant rendering, the algorithm is able to benefit from

the hardware acceleration. Depending on the type of graphics hardware available, leaf

octants are rendered through 2D or 3D texture-mapping techniques. In the case of 2D

texture-mapped octant rendering, software sampling is required to create the texture images

for the three major orientations. To minimize the cost, textures can be pre-computed and

saved at the expense of system memory. 3D texture-mapping is superior to the 2D technique

in its capability to perform fast 3D interpolation. Therefore, software sampling is avoided.

For leaf octants with low variance, textures are reconstructed from their mean values in 2D or

3D accordingly. The low variance octants can also be rendered using flat-shaded polygons

instead, as most graphics systems render flat-shaded polygons faster than texture polygons

[Ellsworth et al. 2000]. This approach also saves the texture memory and texture

downloading time. After octant images are downloaded to the 2D/3D hardware texture

55

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

memory, texture polygons are transferred to the correct locations based on their code keys.

No matter which texture hardware is used, textures must be mapped in back to front order.

To ensure that boundaries between octants do not result in image artifacts, it is necessary to

have one layer of voxels overlap between neighboring octants.

3.4 Dynamic Linear Level Octree

3.4.1 Overview

D
ata Processing stage

R
endering
stage

LLO Conversion

Time-varying LLO datasets
LLO1, LLO2, …, LLON

LLO Differencing

DLLO Renderer

Differencing LLO datasets
LLO1, dLLO2, …, dLLON

4D volume rendering output

Time-varying volume datasets
 VD1, VD2, …, VDN

Figure 3.7 Flowchart of DLLO-based 4D volume rendering

Extended from the 3D LLO-based volume rendering algorithm, 4D volume rendering is

performed with a dynamic LLO. During rendering, a working LLO is updated by new

datasets. A change detection algorithm is employed to exploit the temporal coherence

56

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

between datasets, and 3D volume rendering is applied only to the octants changing over time.

This is the essential idea on the dynamic linear level octree (DLLO).

4D volume rendering is divided into two steps, data-processing stage and rendering stage as

shown in Figure 3.7. In the first stage, a time sequence of volume datasets is converted into a

dynamic LLO. In the next stage, 4D volume rendering is performed. These two stages are

introduced in the following sub-sections.

3.4.2 DLLO Generation

A 4D medical volume dataset is normally composed of sets of 3D volume datasets, which are

acquired at a sequence of time steps, so the 4D volume is often referred to as time-varying

volume data as well. We denote the N sets of time-varying volume data as (VD1, VD2, …,

VDN), which are inputs to our 4D volume rendering system. In the data processing stage, the

input is converted into LLO representations so that the spatial coherence is exploited inside

each of the volumes. We denote them as (LLO1, LLO2, …, LLON). Second, an LLO

differencing algorithm is employed to exploit the temporal coherence between datasets.

After this process, these time-varying LLO datasets are converted into the representations,

named differencing LLO datasets (LLO1, dLLO2, …, dLLON). Finally, they are passed to the

rendering stage.

The LLO differencing algorithm is designed to detect the difference between two consecutive

datasets. In the algorithm, two LLOs are traversed and compared simultaneously. The

second LLO is clipped into a differencing LLO (dLLO), while the first one remains intact.

57

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Only changed nodes are retained in the dLLO while the homogeneous leaf nodes between

two datasets are cropped. The details of LLO differencing algorithm is given in Figure 3.8.

int Differencing(Octant_A, Octant_B)
{
 Check the termination conditions in Table 3.2. If octants A
 and B satisfy an entry, the value is returned and additional actions
 are applied as suggested by the table. Then this function is
 terminated; otherwise, go ahead.

 // Both Octant A and B are intermediate nodes.
 int EmptyChildNodeCount = 0;
 for (int i=0; i<8; i++)
 {
 // Traverse each child of octant A and B simultaneously.
 EmptyChildNodeCount +=
 Differencing(Octant_A.Child[i], Octant_B.Child[i]);
 }

 // Check whether all eight child nodes of octant B are empty.
 if (EmptyChildNodeCount == 8)
 { // Yes
 remove Octant_B;
 return 1;
 }
 else
 { // No
 return 0;
 }
}

Figure 3.8 Differencing algorithm

The two parameters of the differencing algorithm are octants from the same location of two

LLOs, LLO A and LLO B. Initially, the algorithm will be invoked with their roots as

parameters:

58

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Differencing(LLO_A_root, LLO_B_root);

The algorithm clips LLO B into dLLO B without changing LLO A. If octant B is an empty

node or has been removed from LLO B, the algorithm will return 1, otherwise, return 0. This

value returned is used to remove intermediate nodes that have no descendants.

Table 3.2 Termination conditions of the differencing algorithm

Octant A Octant B Value
Returned Additional Actions

E E 1 NIL

E L 0 NIL

E I 0 NIL

L E 0 Replace Octant B with a pseudo empty node

1 Remove Octant B (Octants A and B are similar)
L L

0 NIL (Octants A and B are dissimilar)

L I 0 NIL

I E 0 Replace Octant B with a pseudo empty node

I L 0 NIL

The algorithm is recursive, and the termination conditions are given in Table 3.2, where E, L

and I stand for empty, leaf and intermediate nodes respectively. The first two columns are

59

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

possible states of octants A and B, and the third and fourth columns suggest the return value

and additional actions needed

As suggested in Table 3.2, when Octant B is an empty node but Octant A is a non-empty

node, a special pseudo empty node is generated to replace Octant B. It is used to remove the

descendants of the working DLLO from this point while rendering. In addition, when both

octants are leaf nodes, a change detection algorithm is employed to determine whether the

two octants are similar. We utilize the normalized Euclidean distance between two octants

for this purpose.

()
3)2(r

i
ii

AB

aa
NED

∑
=

2BA −

A
ia B

ia

 (3.7)

where and are the ith voxel intensities of octants A and B respectively, and 2r is the

edge size of the octant, where r is an integer between l and n. In practice, we use the

normalized square Euclidean distance instead for less computation. The computation cost of

this method can also be relieved by down-sampling both octants.

As discussed in section 3.2.3 on LLO Generation, when the variance of either Octant A or

Octant B is no more than ν, the sub-volume data contained in the octant(s) are not saved.

Then it will not be possible to calculate the NED of them based on Equation 3.7, since the

60

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

voxel values of at least one octant are unavailable. However, we can estimate their NED

using Equation 3.85.

()32r

BABA
ABNED =

2)(mmvv −++

 (3.8)

where vA, mA, vB and mB are the variances and means of octants A and B respectively. In this

way, we avoid accessing voxels contained in both octants. Since the variance and mean

values of each octant have been computed during LLO generation, the NED between two

octants can be evaluated very fast.

If the NED between two octants is less than an error tolerance ε, they are regarded as similar,

otherwise, dissimilar. More complicated change detection algorithm could detect sudden

changes caused by noise which should be ignored.

To convert a sequence of LLOs into dLLOs correctly, the differencing algorithm is applied to

the datasets from the last to the first. The algorithm will first be applied between LLON-1 and

LLON, and finally between LLO1 and LLO2. Eventually, except the first dataset that is still in

the original LLO format, others are converted to dLLOs. The output differencing datasets

can be organized and saved into a file for distribution or reuse.

If there is a high degree of data coherence between successive volumes, considerable storage

space savings can be achieved by representing the 4D volume datasets with dLLOs.

5 Interested readers can refer to Appendix C for more details.

61

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

3.4.3 DLLO-Based 4D Volume Rendering

With dLLO data, a dynamic linear level octree (DLLO) can be maintained during rendering.

Initially the DLLO is the same as the first LLO dataset. The DLLO at new time steps is

constructed from the current DLLO and subsequent dLLOs by traversing from the roots of

DLLO and dLLO simultaneously. Suppose that an octant A from DLLO and an octant B

from dLLO are examined currently.

• If octants A and B are both intermediate nodes, examine each of the child octants.

• If octant B is a pseudo empty node, octant A is removed.

• If octant B is an empty node, octant A is left intact, and the algorithm stops

traversal of this branch.

• Otherwise, we replace octant A with octant B.

The DLLO at any specific time step is essentially an LLO. Therefore, it is possible to use the

LLO-based volume rendering algorithm introduced in previous sections to visualize the

DLLO and produce animated images over the time. Note that octant rendering and DLLO

construction can be performed in the same traversal. The overhead of the octree traversal is

thus not high.

The performance of the DLLO-based 4D volume rendering algorithm can be significantly

further improved by taking advantage of the temporal coherence of the time-varying volume

62

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

data in the case that the model-view transformation and transfer functions are not changed

between time steps.

Rendering is accelerated by reusing intermediate volume rendered results of sub-DLLO at

previous time steps. Instead of rendering and compositing all the leaf nodes into the image

plane directly, partial images are saved in image buffers associated with each leaf node,

where the partial images are the volume rendered images of the leaf node. If the current

model-view transformation and transfer functions have not been changed since last time step,

only leaf nodes from dLLO (except pseudo empty nodes) are re-rendered during the update

of DLLO and over the change of time steps. Compositing all the partial images based on

current projection, which may be a bi-linear interpolation process with little computation cost,

produces the final image. Such process is repeated to update the final image output to users.

Similar to the 3D rendering algorithm, the DLLO-based 4D volume rendering algorithm is

not restricted to a certain volume renderer. Most conventional volume rendering algorithms

ranging from the classical CPU-based ray-casting method to the GPU-based texture-mapped

method can be employed. I do not repeat the detailed discussion of them here.

This 4D volume rendering algorithm is mostly based on the assumption that not much change

takes place between successive volumes and this assumption is true especially in medical

imaging. For instance, a series of time-varying volume datasets which records the contrast

injection procedure of brain vasculature has very little change between successive volumes.

Based on this algorithm, the results obtained also supports the assumption.

63

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

3.5 Results and Discussion

A time-varying volume rendering algorithm using DLLO data structure is implemented with

ray-casting and texture-mapping as the underlying renderer. All the tests were conducted

using a desktop PC with an Intel Pentium IV 2.52GHz processor and 1 gigabyte system

memory equipped with NVIDIA Quadro®4 700 XGL graphics card with 64 megabyte

onboard memory. The experiments are to study the performance gains that can be achieved

using the DLLO in terms of space reduction and speed acceleration. The experiments also

studied the trade-off relations between the error tolerance and the image quality.

Five time-varying volume datasets were used for testing of the proposed algorithm (Table

3.3). All of them are medical data from the radiology department of a local hospital using a

SIEMENS dynamic MRI system. In the first dataset, contrast dyes were used on patient's

hands. It was a representative study for vascular flow malfunction. The pre and post contrast

procedure include 5 time steps each of which comprises 136 4.0mm slices with an imaging

matrix of 512 × 512 pixels and an in-plane resolution of 0.39 × 0.39 mm2. The breast dataset

was a representative one for investigation on breathing sequence. This MRI dataset includes

5 steps each of which comprises 26 4.2mm slices with an imaging matrix of 256 × 256 pixels

and an in-plane resolution of 1.25 × 1.25 mm2. Two heart MRI datasets were used in this

testing. Both of them include 20 steps. The first one was scanned along axis each of which

comprises 27 8.0mm slices with an imaging matrix of 192 × 156 pixels and an in-plane

resolution of 1.67 × 1.67 mm2. The other cardiac dataset was scanned along the short axis.

Each volume comprises 16 8.0mm slices with an imaging matrix of 156 × 192 pixels and an

in-plane resolution of 1.77 × 1.77 mm2. The last dataset was a study of the urinary system of

64

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

a female patient. This abdomen MRU 6 dataset includes 39 time steps each of which

comprises 12 5.0mm slices with an imaging matrix of 256 × 256 pixels and an in-plane

resolution of 1.02 × 1.02 mm2. All five datasets are thus essentially anisotropic. The color

plate shows the selected volume rendered images for each of the datasets using the DLLO-

based ray-casting renderer.

Table 3.3 Experimental time-varying volume datasets

Dataset Dimensions Time Steps Size (MB) Modality

HAND 512 × 512 × 136 5 171.25 MRA

BREAST 256 × 256 × 26 5 8.13 MRI

HEART I 192 × 156 × 27 20 15.42 MRI

HEART II 156 × 192 × 16 20 9.14 MRI

ABDOMEN 256 × 256 × 12 39 29.25 MRU

All five experimental time-varying volume datasets were converted into DLLO

representations. The minimum octant size of the leaf node criteria was chosen to be 16 × 16

× 16 to detect data coherence in small regions. The octant variance threshold of the leaf node

criteria, or spatial error tolerance, was set as zero in DLLO conversion. Since the spatial

error tolerance can also be set dynamically during rendering, this conversion parameter will

help us concentrate on analyzing the effectiveness of the proposed algorithm for 4D

6 Magnetic Resonance Urinography

65

Step 3 of BREAST

Step 4 of HAND Step 12 of HEART I

Step 20 of ABDOMEN

Step 12 of HEART II

Color Plate: Selected volume rendered images using the DLLO-based renderer

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

rendering. We are interested to test the performance of the algorithm under different

temporal error tolerances (i.e., NED thresholds).

The compression ratio (R) of a DLLO file is defined as

 %100)
SizeDataRaw

1(×−=R Size DLLO (3.9)

which gives 100% compression if nothing remains after compression and 0% if the size

remains unchanged. Note that the DLLO-based method is not meant for data compression.

The compression ratio is just employed to measure the performance of the proposed method

in space reduction. There are not any compression-specialized algorithms employed in the

proposed method either.

Parameters used for DLLO conversion of the HAND, BREAST, HEART I, HEART II and

ABDOMEN datasets and compression ratios achieved are shown in Table 3.4 to Table 3.8

respectively. Higher error tolerances were employed for the conversion of the datasets that

are less coherent. I have attempted three different types of conversions. The conversion

scheme is as labeled by A, B and C, and the letter is appended to the name of the dataset. For

example, Hand A, Hand B and Hand C refer to HAND dataset that has undergone conversion

schemes A, B and C respectively.

66

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.4 DLLO conversion of the HAND dataset under three different temporal
error tolerances (spatial error tolerance was 0.0)

Dataset Name NED Threshold Time Cost
(Seconds) Size (MB) Compression Ratio

Hand A 0.05 23 66.29 61.0%

Hand B 0.10 22 52.79 68.9%

Hand C 0.15 21 24.63 85.5%

Table 3.5 DLLO conversion of the BREAST dataset under three different
temporal error tolerances (spatial error tolerance was 0.0)

Dataset Name NED Threshold Time Cost
(Seconds) Size (MB) Compression Ratio

Breast A 0.05 1 5.83 28.2%

Breast B 0.10 1 4.75 41.5%

Breast C 0.20 1 3.13 61.5%

Table 3.6 DLLO conversion of the HEART I dataset under three different
temporal error tolerances (spatial error tolerance was 0.0)

Dataset Name NED Threshold Time Cost
(Seconds) Size (MB) Compression Ratio

Heart I A 0.05 2 7.71 50.0%

Heart I B 0.10 2 3.72 75.9%

Heart I C 0.12 2 3.12 79.8%

67

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.7 DLLO conversion of the HEART II dataset under three different
temporal error tolerances (spatial error tolerance was 0.0)

Dataset Name NED Threshold Time Cost
(Seconds) Size (MB) Compression Ratio

Heart II A 0.05 1 3.83 58.1%

Heart II B 0.08 1 2.47 72.9%

Heart II C 0.10 2 2.10 77.0%

Table 3.8 DLLO conversion of the ABDOMEN dataset under three different
temporal error tolerances (spatial error tolerance was 0.0)

Dataset Name NED Threshold Time Cost
(Seconds) Size (MB) Compression Ratio

Abdomen A 0.10 4 32.81 -12.2%

Abdomen B 0.15 4 22.91 21.7%

Abdomen C 0.20 4 15.84 45.8%

We observed from the tables above that the compression ratio is directly proportional to the

NED threshold. A high compression ratio is achieved when more temporal errors can be

tolerated during the conversion. The compression performance is also dependent on the

temporal coherence of the dataset. It can be seen from the tables that we achieved higher

overall compression ratio (up to 85%) for the HAND dataset due to its higher degree of

temporal coherence, while the overall compression ratio is lower for the ABDOMEN dataset

due to its lower temporal coherence. Because the size of an octant must be the same in all

68

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

three dimensions7, there may be space overhead in extending the original volume. When the

space reduction gained by exploiting the data coherence is less than the space overhead, the

DLLO produced could be larger than the raw data (e.g., Abdomen A). However, based on the

testing results, we achieved satisfactory compression performance through DLLO on most

medical datasets under reasonable error tolerance.

The temporal error tolerance showed little influence on DLLO construction time. The time

cost of DLLO conversion is dominated by the size of the time-varying volume data. In this

experiment, most DLLO conversions can be done in a few seconds. Therefore, an online

interactive DLLO conversion is possible for small or medium size 4D volume datasets. A

user can first select a high error tolerance in DLLO conversion for fast browsing the 4D data,

and then re-convert the dataset with small error tolerance for further investigation.

The reduced size of the DLLO data will in turn benefit the rendering speed for the reduced

I/O throughput and the reduced number of rendering elements. The ray-casting algorithm is

implemented as the underlying renderer of the proposed DLLO-based time-varying volume

rendering method. In the following, I analyze speedups of the proposed algorithm by

comparing its performance with conventional ray-casting algorithm termed regular ray-

casting algorithm. This implementation of the conventional ray-casting algorithm can be

substituted with that of VTK8 software library or other software tools. In the regular ray-

casting renderer, early-ray-termination technique is employed for speed acceleration. The

7 In Chapter 4, another time-varying volume rendering method will be introduced. It adopts a more flexible

volume decomposition scheme. The space overhead is thus possibly avoided.
8 The Visualization ToolKit (VTK) is an open source, freely available software system for 3D computer

graphics, image processing, and visualization. http://public.kitware.com/VTK

69

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

following experiments are to analyze their relative performance. The DLLO-based renderer

and the regular ray-casting renderer are implemented based on the same piece of fundamental

codes. Any optimization of the implementation will improve the performance of both

renderers.

The experiments are conducted based on the following procedures. After a dataset is loaded

into the system, it is rendered repeatedly for 20 cycles while rendering timing of each time

step is recorded. The timing results of the last 10 cycles are then averaged and reported.

This design of the experiment ensures the timing results are stable and renderers can benefit

from the I/O cache if possible. The performance results are illustrated in Figure 3.9 to Figure

3.13, where regular ray-casting rendering of the raw data is denoted as Regular RC and

rendering of different DLLO datasets is denoted with the dataset name directly.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular RC

Hand A

Hand B

Hand C

Figure 3.9 Comparison of the time-varying volume rendering speed between regular
ray-casting rendering and DLLO-based rendering under three different temporal error

tolerances of the HAND dataset

70

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular RC

Breast A

Breast B

Breast C

Figure 3.10 Comparison of the time-varying volume rendering speed between regular
ray-casting rendering and DLLO-based rendering under three different temporal error

tolerances of the BREAST dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 3 5 7 9 11 13 15 17 19

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular RC

Heart I A

Heart I B

Heart I C

Figure 3.11 Comparison of the time-varying volume rendering speed between regular
ray-casting rendering and DLLO-based rendering under three different temporal error

tolerances of the HEART I dataset

71

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular RC

Heart II A

Heart II B

Heart II C

Figure 3.12 Comparison of the time-varying volume rendering speed between regular
ray-casting rendering and DLLO-based rendering under three different temporal error

tolerances of the HEART II dataset

0.0

0.1

0.2

0.3

0.4

0.5

0.6

1 4 7 10 13 16 19 22 25 28 31 34 37

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular RC

Abdomen A

Abdomen B

Abdomen C

Figure 3.13 Comparison of the time-varying volume rendering speed between regular
ray-casting rendering and DLLO-based rendering under three different temporal error

tolerances of the ABDOMEN dataset

72

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

From the figures above, we can observe that, for the first time step of each time-varying

dataset, a complete LLO-based rendering was performed, which cannot benefit from the

temporal coherence, so it took similar time to render this step no matter what the values of

the temporal error tolerance are used in the DLLO conversion. However, for the subsequent

time steps, DLLO datasets with higher temporal error tolerance result in faster rendering.

The rendering time of subsequent time steps is significantly shorter as compared to the first

time step for datasets with high data coherence (e.g., HAND, HEART I and HEART II

datasets). Although rendering of the first step cannot be accelerated by using temporal

coherence, we still observed significant speedup for DLLO-based rendering compared with

regular ray-casting rendering. The DLLO-based renderer demonstrated its remarkable speed

at all time steps for all the testing datasets.

Next, I will quantitatively compare the speedup of the DLLO-based rendering method over

the regular ray-casting method in terms of cycle timing which is the average of 10 rendering

cycles of each dataset. As it usually takes longer time for the DLLO-based method to render

the first volume step than the subsequent steps, for the 4D datasets with only a few time steps,

the speed of the first time step will have much more influence on the calculation of the

speedup factors than that of the 4D datasets with many time steps. Therefore, in this

experiment, two types of the speedup factors are used. The first one is calculated by dividing

the cycle timing of the regular ray-casting method by the cycle timing of the DLLO-based

method. It shows how many times the DLLO-based method is faster than the traditional

method in rendering a full cycle. The second speedup factor, denoted as Speedup*, is also

calculated based on the cycle timing but excluding the first time step. This factor serves as a

73

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

more effective means to measure the performance gains through exploiting the temporal

coherence and is more meaningful when comparing different datasets.

The speedup results of each dataset are shown in Table 3.9 to Table 3.13 and the

comparisons of cycle timing are illustrated in Figure 3.14 to Figure 3.18, where regular ray-

casting rendering is denoted as Regular RC and the DLLO dataset names are used to

represent corresponding DLLO-based rendering of each dataset. The proposed algorithm is

able to provide adaptive volume rendering based on user-specified error tolerances during

rendering. To evaluate how much the error tolerance (τ) of the octant variance, or spatial

error tolerance, can improve the performance of DLLO-based rendering, the testing results

are reported under different error tolerances (τ =0 and τ =10) in this experiment.

74

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.9 Cycle timing (in seconds) and speedup of DLLO-based rendering
under different error tolerances (HAND dataset)

 Regular RC Hand A Hand B Hand C

Total Time 19.330 2.710 2.026 1.089

Speedup – 7.13 9.54 17.75 τ = 0

Speedup* – 7.63 11.85 42.73

Total Time 19.330 2.575 1.931 0.990

τ = 10 Speedup – 7.51 10.01 19.53

 Speedup* – 7.95 12.34 50.86

0.0

5.0

10.0

15.0

20.0

25.0

Regular RC Hand A Hand B Hand C

C
yc

le
 T

im
in

g
(S

ec
on

d)

Variance = 0

Variance = 10

Figure 3.14 Comparison of the cycle rendering time between the DLLO-based method
and the regular ray-casting method (HAND dataset)

75

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.10 Cycle timing (in seconds) and speedup of DLLO-based rendering
under different error tolerances (BREAST dataset)

 Regular RC Breast A Breast B Breast C

Total Time 4.433 1.464 1.212 0.831

Speedup – 3.03 3.66 5.34 τ = 0

Speedup* – 3.12 4.02 7.10

Total Time 4.433 1.401 1.161 0.777

τ = 10 Speedup – 3.17 3.82 5.71

 Speedup* – 3.18 4.07 7.31

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Regular RC Breast A Breast B Breast C

C
yc

le
 T

im
in

g
(S

ec
on

d)

Variance = 0

Variance = 10

Figure 3.15 Comparison of the cycle rendering time between the DLLO-based method
and the regular ray-casting method (BREAST dataset)

76

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.11 Cycle timing (in seconds) and speedup of DLLO-based rendering
under different error tolerances (HEART I dataset)

 Regular RC Heart I A Heart I B Heart I C

Total Time 12.600 4.107 1.916 1.628

Speedup – 3.07 6.58 7.74 τ = 0

Speedup* – 3.33 8.53 10.71

Total Time 12.600 3.811 1.625 1.359

τ = 10 Speedup – 3.31 7.75 9.27

 Speedup* – 3.54 10.00 12.92

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

Regular RC Heart I A Heart I B Heart I C

C
yc

le
 T

im
in

g
(S

ec
on

d)

Variance = 0

Variance = 10

Figure 3.16 Comparison of the cycle rendering time between the DLLO-based method
and the regular ray-casting method (HEART I dataset)

77

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.12 Cycle timing (in seconds) and speedup of DLLO-based rendering
under different error tolerances (HEART II dataset)

 Regular RC Heart II A Heart II B Heart II C

Total Time 10.092 2.707 1.724 1.458

Speedup – 3.73 5.85 6.92 τ = 0

Speedup* – 4.13 7.17 8.95

Total Time 10.092 2.670 1.705 1.428

τ = 10 Speedup – 3.78 5.92 7.07

 Speedup* – 4.17 7.21 9.08

0.0

2.0

4.0

6.0

8.0

10.0

12.0

Regular RC Heart II A Heart II B Heart II C

C
yc

le
 T

im
in

g
(S

ec
on

d)

Variance = 0

Variance = 10

Figure 3.17 Comparison of the cycle rendering time between the DLLO-based method
and the regular ray-casting method (HEART II dataset)

78

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.13 Cycle timing (in seconds) and speedup of DLLO-based rendering
under different error tolerances (ABDOMEN dataset)

 Regular RC Abdomen A Abdomen B Abdomen C

Total Time 18.827 8.018 5.289 3.589

Speedup – 2.35 3.56 5.25 τ = 0

Speedup* – 2.35 3.62 5.44

Total Time 18.827 7.900 5.228 3.553

τ = 10 Speedup – 2.38 3.60 5.30

 Speedup* – 2.39 3.66 5.49

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

Regular RC Abdomen A Abdomen B Abdomen C

C
yc

le
 T

im
in

g
(S

ec
on

d)

Variance = 0

Variance = 10

Figure 3.18 Comparison of the cycle rendering time between the DLLO-based method
and the regular ray-casting method (ABDOMEN dataset)

79

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

The introduction of the proposed DLLO-based rendering method can speed up rendering by

more than 19 times. If we consider this performance improvement by excluding the first

time step, the speedup could be over 50 times. For different datasets, the speedup achieved

varies for their different data coherence. But even for the testing datasets with least data

coherence (e.g., ABDOMEN dataset), the speedup is between 2 and 5 times. The influence of

the spatial error tolerance to the rendering performance is insignificant. Based on the

statistics (not included), the spatial error tolerance of 10 accelerated rendering by 2% to 20%

for different test datasets. This performance improvement is also dependent on the

characteristics of the spatial coherence of the dataset. Overall, the DLLO-based method

successfully achieves interactive rendering even with a ray-casting implementation.

To explore the possibility of embedding DLLO with the current GPU, the DLLO-based

method is also implemented by using 2D texture-mapping techniques. The performance of

DLLO-based rendering (τ =0) is compared with regular texture-mapped rendering. Similar

to the previous experiment, the speedup results are calculated based on the averaged cycle

timings and are given in Table 3.14 to Table 3.18, where regular texture-mapped rendering is

denoted as Regular TM and the DLLO dataset names are used to represent corresponding

DLLO-based rendering of each dataset.

We can observe that the rendering speed is significantly enhanced by taking advantage of

GPU techniques. Compared to regular texture-mapped rendering, the DLLO-based method

achieves high speedup and real-time rendering is successfully fulfilled for most of the

datasets.

80

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.14 Cycle timing (in seconds) and speedup results of DLLO-based
rendering using 2D texture-mapping based on HAND dataset

 Regular TM Hand A Hand B Hand C

Total Time 30.339 3.744 3.062 1.619

Speedup – 8.103 9.907 18.743

Speedup* – 8.302 10.838 30.712

Table 3.15 Cycle timing (in seconds) and speedup results of DLLO-based
rendering using 2D texture-mapping based on BREAST dataset

 Regular TM Breast A Breast B Breast C

Total Time 1.614 0.307 0.263 0.196

Speedup – 5.264 6.144 8.232

Speedup* – 5.408 6.627 10.055

Table 3.16 Cycle timing (in seconds) and speedup results of DLLO-based
rendering using 2D texture-mapping based on HEART I dataset

 Regular RC Heart I A Heart I B Heart I C

Total Time 1.165 0.455 0.268 0.241

Speedup – 2.561 4.340 4.824

Speedup* – 2.726 5.025 5.724

81

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.17 Cycle timing (in seconds) and speedup results of DLLO-based
rendering using 2D texture-mapping based on HEART II dataset

 Regular RC Heart II A Heart II B Heart II C

Total Time 0.670 0.217 0.150 0.132

Speedup – 3.088 4.466 5.083

Speedup* – 3.386 5.264 6.226

Table 3.18 Cycle timing (in seconds) and speedup results of DLLO-based
rendering using 2D texture-mapping based on ABDOMEN dataset

 Regular RC Abdomen A Abdomen B Abdomen C

Total Time 6.044 1.369 0.966 0.694

Speedup – 4.417 6.258 8.713

Speedup* – 4.426 6.348 8.984

Since error tolerance was used in the DLLO conversion of the time-varying volume data, it is

necessary to analyze the resultant visual quality. The regression testing method from VTK is

employed for this purpose. The regression testing compares a test image that is produced

with an algorithm being evaluated with a “valid” image that is assumed to be correct. The

comparison takes into account dithering and anti-aliasing effects, and creates an output image

representing the difference between the test image and valid image [Schroeder et al. 1998].

The difference of the two images is quantified in terms of the absolute error (EA) and

thresholded error (ET), which are calculated based on the equations below:

82

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

1

3

−
=

=

∑
c

i
i

A

iiiiii
i

L

D
E

D
−+−+− tvtvtv bbggrr

 (3.10)

1

0

−
=

⎩
⎨=

∑
c

i
i

T

i

L

A
E

Otherwise
A

0⎧ >−− ii TDTD

 (3.11)

where (ri
v, gi

v, bi
v) and (ri

t, gi
t, bi

t) are the ith color pixel value (red, green and blue) of the

valid image and test image respectively; Di is the difference of the ith pixel between the two

images; Lc is the number of color levels of a channel; T is a threshold tolerance for pixel

differences. Thus, the absolute error is actually the total error in comparing the two images,

and the thresholded error is the error for a given pixel minus the threshold and clamped at a

minimum of zero. The latter will be more effective in representing the noticeable differences

between two images.

In this implementation, all the images are generated in color with red, green and blue

channels, and each channel has 8 bits, i.e., 28 = 256 levels (Lc = 256). To avoid

misunderstanding of images with the introduction of pseudo-colors9, pixels are assigned with

the same value for all three channels and the images thus appear in gray. A threshold

9 The radiology images used in this thesis all do not have intrinsic color values assigned to the voxels, only

intensities. Therefore, an image rendered in color can only be achieved through mapping of pseudo-colors.

83

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

tolerance of 5 is used in the analysis of the image quality. It is less than 2% of the maximum

pixel difference and normally is not noticeable by human eyes.

The images generated by the regular ray-casting method are employed as the valid images,

and the quality of DLLO-based rendering is evaluated based on the following procedures.

For each dataset, the regression testing is applied to a pair of corresponding images of each

time step and the EA and ET of this time step are calculated. After the regression testing is

finished for all time steps, results are averaged. The averaged EA and ET are then used to

represent the error of DLLO-based rendering for this dataset. Based on the images generated

by the regular ray-casting method, the regression testing is also applied between the images

at successive time steps. The testing results are averaged and used to indicate the inter-step

differences. This value provides us an effective reference to evaluate the rendering quality

we have achieved. The inter-step error also serves as a good index of the data coherence of

the dataset.

The error analysis of DLLO-based rendering was performed to all the testing datasets and the

results are shown in Table 3.19 to Table 3.23. It should be noted that all the images must be

generated in the same size so that the regression errors are comparable with each other. In

this experiment, all the images have size of 500 × 500 pixels.

84

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.19 Error analysis of DLLO-based rendering of HAND dataset

Name Absolute Error (EA) Thresholded Error (ET)

Inter-Step 444.723 63.057

Hand A 0.634 0.001

Hand B 13.089 0.976

Hand C 86.131 16.345

Table 3.20 Error analysis of DLLO-based rendering of BREAST dataset

Name Absolute Error (EA) Thresholded Error (ET)

Inter-Step 1370.249 683.178

Breast A 3.664 0.227

Breast B 40.862 3.823

Breast C 168.292 27.682

Table 3.21 Error analysis of DLLO-based rendering of HEART I dataset

Name Absolute Error (EA) Thresholded Error (ET)

Inter-Step 302.296 42.240

Heart I A 18.232 0.811

Heart I B 66.057 18.032

Heart I C 90.236 29.351

85

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

Table 3.22 Error analysis of DLLO-based rendering of HEART II dataset

Name Absolute Error (EA) Thresholded Error (ET)

Inter-Step 661.847 119.967

Heart II A 84.436 12.684

Heart II B 168.240 54.908

Heart II C 193.506 70.650

Table 3.23 Error analysis of DLLO-based rendering of ABDOMEN dataset

Name Absolute Error (EA) Thresholded Error (ET)

Inter-Step 2616.277 1526.589

Abdomen A 3.697 0.125

Abdomen B 209.025 51.155

Abdomen C 549.032 200.331

It is clear that the DLLO-based algorithm achieves very good rendering quality as all the

results of error analysis are small compared to inter-step difference. The rendering quality

does not degrade much when the error tolerances for DLLO conversion increase. The inter-

step errors also provide us a good way to evaluate the degree of data coherence. The HAND

dataset has the highest degree of data coherence for the smallest inter-step error while the

ABDOMEN dataset has the lowest degree of data coherence for the largest inter-step error.

This coincides with the performance difference in speed acceleration and space reduction for

86

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

different datasets in that the DLLO-based rendering algorithm is data coherence dependent.

Selected images are shown in Figure 3.19 to Figure 3.23. The loss of the image quality is

visually tolerable for all the test datasets. The quantified errors of each pair of images are

given in the figures as well.

87

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

(a) Valid image (b) DLLO rendered image (c) Regression Error

EA = 0.00
ET = 0.00
(Step 1)

EA = 7.25
ET = 0.06
(Step 3)

EA = 35.1
ET = 3.80
(Step 5)

Figure 3.19 Comparison of the image quality between regular ray-casting and DLLO-
based rendering of the HAND dataset (NED Threshold = 0.1)

88

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

(a) Valid image (b) DLLO rendered image (c) Regression Error

EA = 0.00
ET = 0.00
(Step 1)

EA = 195
ET = 32.2
(Step 3)

EA = 308
ET = 54.7
(Step 5)

Figure 3.20 Comparison of the image quality between regular ray-casting and DLLO-
based rendering of the BREAST dataset (NED Threshold = 0.2)

89

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

(a) Valid image (b) DLLO rendered image (c) Regression Error

EA = 0.00
ET = 0.00
(Step 1)

EA = 124
ET = 41.2
(Step 7)

EA = 90.5
ET = 33.2
(Step 13)

EA = 92.9
ET = 33.2
(Step 20)

Figure 3.21 Comparison of the image quality between regular ray-casting and DLLO-
based rendering of the HEART I dataset (NED Threshold = 0.12)

90

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

(a) Valid image (b) DLLO rendered image (c) Regression Error

EA = 0.00
ET = 0.00
(Step 1)

EA = 203
ET = 62.9
(Step 11)

EA = 168
ET = 58.8
(Step 20)

Figure 3.22 Comparison of the image quality between regular ray-casting and DLLO-
based rendering of the HEART II dataset (NED Threshold = 0.08)

91

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

(a) Valid image (b) DLLO rendered image (c) Regression Error

EA = 0.00
ET = 0.00
(Step 1)

EA = 681
ET = 190
(Step 19)

EA = 420
ET = 135
(Step 39)

Figure 3.23 Comparison of the image quality between regular ray-casting and DLLO-
based rendering of the ABDOMEN dataset (NED Threshold = 0.2)

92

CHAPTER 3. DLLO FOR TIME-VARYING VOLUME RENDERING

3.6 Summary

In this chapter, I first introduced a spatial data structure, namely linear level octree, which is

more computationally efficient than conventional octree. It is employed for the acceleration

of steady-state volume rendering, and adaptive rendering can be provided with user-specified

error tolerances. Based on LLO, a new data structure called dynamic linear level octree was

proposed to represent the time-varying volume data and accelerate 4D rendering. The DLLO

takes advantage of the spatial and temporal coherence of the time-varying volume data to

provide interactive or real-time 4D volume rendering for PC-based medical simulations.

Since it has no restriction on the underlying renderers, most conventional 3D volume

rendering methods can be mended for 4D rendering with enhanced performance through the

use of DLLO.

In comparison with the regular ray-casting algorithm and the regular texture-mapped

rendering algorithm, the proposed DLLO-based rendering method presented fast rendering

speed and reduced space requirement. The compression ratio obtained could be up to 85%

and more than 19 times speedup can be achieved. The DLLO-based algorithm also achieves

a good rendering quality according to the regression testing results as well as through the

visual inspection.

In addition, the proposed LLO-based volume rendering algorithm is also capable of

supporting multimodality rendering. Interested reader can refer to Appendix B for more

details.

93

Chapter 4

Cluster-Based Time-Varying Volume
Rendering

4.1 Introduction

The problem of rendering time-varying volume data is challenging. Traditionally, algorithms

of 3D volume rendering are to process and encode the volume data into other representations

or use auxiliary data structures before every rendering. The overall performance has been

improved even though the online data preprocessing takes time. As compared with the

steady-state 3D volumes, the size of time-varying volume data increases dramatically. The

expense of preprocessing online ten or even hundred times of data is no longer affordable in

4D rendering. Moreover, the preprocessing is over-sophisticated and tedious for common

users such as clinicians, geologists or artists. The users are mainly concerned with the

rendering results.

94

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

An offline data preprocessing, therefore, will be more suitable for time-varying volume

rendering. An appropriate framework for time-varying volume rendering could be based on

the raw volume data at all times that have been encoded once in a preprocessing stage, and

subsequent rendering could be viewed as decoding the data. This mechanism is indeed very

similar to that of video compression and playing. For example, the unprocessed data in video

and time-varying volume are both very large so that compression is normally expected.

Scenes between successive frames or volumes usually have similar contents. Fast playing or

rendering is commonly required. Therefore, the techniques in video processing could be

useful in time-varying volume rendering.

In the basic scheme of the MPEG10 standard, motion is predicted from frame to frame in the

temporal direction, and DCTs (discrete cosine transforms) are used to organize the

redundancy in the spatial directions. The similar scheme can also be introduced in 4D

volume rendering to resolve the data redundancy problem by exploiting the coherence of data

in both spatial and temporal dimensions.

This chapter describes a new 4D volume rendering algorithm to exploit redundant regions of

time-varying data via cluster analysis of the spatial block decomposition of a multi-

dimensional dataset. Besides the exploitation of the spatial coherence and temporal

coherence, this algorithm takes advantage of the global coherence of the time-varying data,

10 MPEG is the Moving Picture Experts Group, working under the joint direction of the International Standards

Organization (ISO) and the International Electro-Technical Commission (IEC). This group works on
standards for the coding of moving pictures and associated audio. http://www.mpeg.org

95

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

which is a new concept introduced. Experiments and results in the last section demonstrate

its superiority over other algorithms for time-varying volume rendering.

4.2 Overview of the Algorithm

Figure 4.1 shows the framework of the proposed time-varying volume rendering algorithm

where the data preprocessing procedure named encoding stage is separated from the

rendering stage. The encoding of the 4D volume data thus can be performed offline. It may

take a long time with a sophisticated encoder, but the output can provide a satisfactory

rendering.

Encoding
Stage

Rendering
Stage

Ex
pe

rt

Unprocessed Time-Varying
Volume Data

Encoder
Engine

…

Moving Volume Data
(MVD)

User

Renderer
Engine

User

Renderer
Engine

Figure 4.1 The Framework of time-varying volume rendering

In the encoding stage, a time-varying volume dataset is passed to an encoder engine and

converted into an encoded volume, named Moving Volume Data (MVD), under the

96

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

supervision of a 4D volume-processing specialist. The expert decides on the encoder and its

corresponding parameters such as error tolerance based on the application need. In the

encoder engine, a cluster analysis is applied to exploit natural coherence in the time-varying

dataset and an MVD file is produced and passed to the next stage.

Since an MVD is produced as a file, it is reusable and distributable to users. In the rendering

stage, an MVD is rendered as a decoding process with an MVD-based renderer engine.

Users are then free to use their client renderers to view and manipulate the time-varying

volume data at any time.

This framework is actually independent on the specific encoder and renderer (decoder). It is

generally suitable for time-varying volume rendering with offline data processing. Various

pairs of 4D volume coding/decoding (codec) algorithms can be developed and employed.

For an encoded 4D volume, the corresponding decoder is automatically selected and serves

as a plug-in of the user’s renderer. Similar to the scheme used in video codec, this process

could be transparent to users viewing 4D rendering.

In the following sections, I will describe the algorithms used in the encoder and its

corresponding renderer as part of my solution for fast time-varying volume rendering.

4.3 Encoding

To convert a time-varying volume dataset into an MVD, the volumes are processed in three

steps, namely division, clustering and data output as shown in Figure 4.2. They will be

introduced in the following sub-sections.

97

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

4D Volume Data

Division

Clustering

Data Output

Moving Volume
Data (MVD)

Figure 4.2 Flowchart of the encoding process

4.3.1 Division

Volumes are collections of points with intensity values, i.e., voxels, arranged on a rectangular

lattice. The rows, columns and planes of the lattice are parallel to the global x-y-z coordinate

system [Schroeder et al. 1998]. For a 3D volume dataset, the number of voxels in each

dimension is assumed to be the same for simplicity in the following description, although

they are variable in most datasets.

n voxels
m

voxels

……
r

blocks

s sets

Figure 4.3 Division of time-vary volume data

98

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

A time-varying volume dataset usually contains a sequence of 3D volumes numbered from 1

to s with n voxels in each dimension as illustrated in Figure 4.3. Each 3D volume is

uniformly divided into r3 blocks, while each block contains M = m3 voxels, i.e., mrn ×= .

Then the time-varying volume dataset is divided into blocks. To keep the

memory requirement low, the size (m) of the blocks should be carefully selected based on the

size (n) of the volume.

srS ×= 3

4.3.2 Clustering

Clustering technique is widely used in data mining to group items. The goal is to partition a

set of entities into groups such that entities within a group are similar to each other and

entities that belong to two different groups are dissimilar [Ramakrishnan and Gehrke 2000].

Each of the groups is called a cluster. The similarity between two entities is measured by a

distance function which takes two input entities and returns a value that is a measure of their

similarity. Usually, the output of a clustering algorithm consists of a summarized

representation of each cluster and its size.

M-Dimensional Space

Cluster

KeyBlock

Figure 4.4 Clusters of blocks in M-dimensional space

99

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

The clustering technique is employed to exploit the homogeneousness of the 4D volume data.

The blocks from all time steps are divided and grouped into different clusters, and each

cluster is summarized by its center (also called mean) and radius. In each cluster of blocks, a

KeyBlock is generated to represent the cluster. An example of clusters is shown in Figure 4.4.

Note that a KeyBlock is generated by considering all the contributions of the blocks in a

cluster. It is not necessary to be any one of the existing blocks.

Let us denote block i as an M-dimensional vector:

[]
)]12 ,0[], ,1[], ,1[,(3 −∈∈∈= bk

iaMkSimM

21= M
i

k
iiii aaaaBlock LL

k
ia

 (4.1)

where is the intensity value of the kth voxel in block i, and b is the number of bits used to

store a voxel intensity.

The distance function between two blocks Blocki and Blockj is defined as the following:

M

aaaaaa
M

DD

M
j

M
ijiji

ji
jiij

2222211)()()(−++−+−
=

==

L

BlockBlock −

 (4.2)

which is actually the normalized Euclidean distance (NED) of the two blocks. In practice,

we use the normalized square of the Euclidean distance instead because it involves less

computation.

100

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

The distance can be estimated more efficiently with smaller number of dimensions for the

price of accuracy. A common dimension-selection scheme can be employed for dimension

reduction. For instance, we access voxel values at only even-number dimensions of each

block for faster distance estimation. A random dimension-selection scheme is also effective.

The dimensions can also be reasonably reduced by applying the principal component analysis

(PCA) on all the blocks. Only the voxels at the first x most principal dimensions are

accessed and evaluated.

The distance functions can also be defined in some other ways such as the one given in

Equation 4.3. However, in this chapter, we are constrained to use the NED for the

similarities measurement.

]}),1[,||({ MkaaksizeDD k
j

k
ijiij ∈>−== ε (4.3)

With the distance function, blocks can be organized in clusters. We name the set of all

blocks as RSet and use BIRCH (Balanced Iterative Reducing and Clustering using

Hierarchies) algorithm [Zhang et al. 1996] to cluster blocks. The I/O cost of BIRCH

algorithm is linear in the size of the dataset, and a single scan of the dataset is able to yield a

good clustering.

In BIRCH algorithm, a cluster is denoted as (Ci, Ri), where Ci is the center and Ri is the

radius of cluster i. An entity belongs to a cluster when the distance between the entity and

the center of the cluster is less than the radius of the cluster. In our algorithm, a distance

101

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

threshold Dthd is selected for all the clusters. Therefore, we represent the clusters in our

algorithm as (KeyBlocki, Dthd).

The BIRCH algorithm reads the blocks from the RSet sequentially, puts the first block as the

first cluster and processes the following block, namely B, based on the rules:

• Compute the distance between block B and each of the existing clusters. Let i be the

cluster index such that the distance between B and KeyBlocki is the smallest.

• Compute the value of the new radius ' of the ith cluster under the assumption that B

is inserted into it. If ' ≤ D

iR

iR thd, we assign B to the ith cluster by updating its center

and setting its radius to . If > D'
iR '

iR thd, we create a new cluster containing only the

Block B.

The height-balanced tree used in BIRCH algorithm is similar to an R-tree and hence the

closest cluster of a given block can be quickly identified.

When a new block is inserted into a cluster, the center and radius of the cluster must be

updated. A naïve method for the computation of the new KeyBlock and the radius of cluster i

could be:

i

jjj

i

j
i TT

KeyBlock '

M
jjjj aaaBlock),...,,(21 ∑∑∑∑

== (4.4)

102

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

 ⎟
⎟
⎠

⎜
⎜
⎝

= MR ij

ji
' max

⎞⎛ − KeyBlockBlock '

 (4.5)

where Blockj is the jth block in cluster i and Ti is the total number of blocks included in

cluster i.

Obviously, this method is very computationally expensive. All the existing blocks of a

cluster have to be accessed repeatedly during block insertion. To reduce the cost of

computation, an approximate method is developed for the radius estimation.

 r2r1

d Ri

Cluster i

iKeyBlock '
iKeyBlock jBlock

Figure 4.5 Estimation of the center and radius of a cluster for
a trial insertion of a block

As illustrated in Figure 4.5, an existing cluster i has (Ti – 1) blocks and is centered at

KeyBlocki with radius Ri. To include a new block Blockj, the new center of the

cluster is computed as:

'
iKeyBlock

i

i T
KeyBlock jii BlockKeyBlockT +−

=
)1(' (4.6)

103

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

and the new radius is estimated based on the following formulae: '
iR

),max(

)1(

21
'

2

1

rrR

T
Td

r

T
Rr

i

i

i

i
i

=

−⋅
=

+=
d

 (4.7)

where d is the distance between the trial block and the center of the cluster. r1 and r2 are the

two candidate radii, and the greater one will be chosen as the radius of the updated cluster.

The mathematical model of it mimics the linear interpolation between two weighted points in

the M-dimensional space. If a block is inserted into a cluster, the new center of the cluster

will be pulled towards the inserted block, and the displacement is inversely proportional to

the weights of the two M-dimensional points, which are the number of blocks represented

respectively.

It is easy to prove that Equations 4.4 and 4.6 produce the same results, so there is no error

introduced in the computation of the KeyBlock. However, Equation 4.7 tends to produce a

value greater than that of Equation 4.5, i.e., the radius could be over estimated. The cluster is

actually denser than that implied by the estimated radius. Therefore, this method is effective

in producing clusters strictly under the pre-defined error-tolerance. It is also computation

efficient as it avoids accessing blocks that are already in the cluster. Furthermore, in contrast

to Equation 4.5, the computation of the radius in Equation 4.7 is independent of the KeyBlock.

Thus, only the radius is evaluated in trying to insert a block into a cluster, and the KeyBlock

104

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

is updated only when the radius satisfies the cluster criterion. This implementation

significantly improves the performance of the clustering process.

To exploit the spatial coherence of a time-varying volume dataset, the variance is used to

identify those homogeneous KeyBlocks that have very small changes in intensity. The mean

and the variance of a KeyBlock are computed as:

M

mean i
ai∑= (4.8)

()
M

var i i meana∑ − 2

ia

 = (4.9)

where is the intensity of the voxel i and M is the number of voxels contained in the

KeyBlock.

If the variance of a KeyBlock is less than a predefined tolerance τ, then it is regarded as a

block with homogeneous contents. This KeyBlock will be represented only by the mean of

all the voxels, and it in turn will benefit the performance of the algorithm by reducing the I/O

requirement.

105

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

RSet: the set of blocks. It initially includes all the blocks.
CSet: the set of clusters. It is initially empty.

void Clustering()
{
 While (RSet != Empty)
 {

 select Block∈Rset;

 if (CSet != Empty)
 {
 // Find the cluster with minimum distance to Block

 Cluster∈CSet, min(distance(Block, Cluster));

 // Try to insert the block into the cluster
 Compute radius Ri’ based on Equation 4.7;

 // Judge if the insertion is appropriate
 if (Ri’ <= Dthd)
 {
 // Yes, update this cluster
 Cluster.radius = Ri’;
 Compute Cluster.KeyBlock based on Equation 4.6;
 Cluster.size++;
 continue;
 }
 }

 // Create a new cluster and add to cluster set
 create Cluster = {Block};
 CSet = CSet + Cluster;
 RSet = RSet - Block;
 }

 // Identify the property of spatial coherence
 for (every Cluster in CSet)
 {
 Compute Cluster.KeyBlock.mean;
 Compute Cluster.KeyBlock.variance;
 }
}

Figure 4.6 Clustering algorithm

106

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

In the above description, for simplicity, we assume each volume has n voxels identically in

each dimension, and each block divided from volumes has m voxels identically in each

dimension as well. In practice, the number of voxels contained in each dimension of a

volume is usually different. To better fit the size of a volume, a block can also be divided to

contain the different number of voxels in each dimension accordingly. Such division will not

affect the algorithm.

Figure 4.6 gives the pseudo-code of the clustering algorithm.

4.3.3 Data Output

At the last step of the encoding procedure, a moving volume data file is generated and

distributed to users. The file will be directly fed into MVD-based time-varying volume

renderers. The file structure/format used to save the moving volume data is, therefore,

critical for efficient 4D volume rendering. First, in an MVD file, it is crucial that volume

data can be read sequentially over the change of time so as to avoid loading the data of all

times, and the expired data can be duly released to avoid memory overhead. Second, to

reduce the I/O bandwidth, only the sub-volumes with significant contributions (KeyBlocks)

are saved in the file. An effective data structure registering the relationship of sub-volumes

is then important for fast reconstruction of volumes at each time step. Finally, it is also

necessary to include other related information of the time-varying volume dataset in an MVD

file.

107

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

H
ea

de
r

In
fo

rm
at

io
n

1 2 3 4

………….……...

… … … N

KeyBlock Section

 KeyBlock of
the cluster 3

1 2

………….……...

Volume-KeyBlock
 Table Section

3 4

…… … s

Volume-KeyBlock table
of the volume set 2

Figure 4.7 Structure of an MVD file

With these requirements in mind, an MVD file structure is proposed as illustrated in Figure

4.7. There are three logical sections in an MVD file, namely the header information section,

the Volume-KeyBlock table section and the KeyBlock section.

 17
6

56

X

Y

Z

r = 4

r = 4

 r = 4

Figure 4.8 Graphical representation of a Volume-KeyBlock table

An MVD file begins with a header information section that identifies the file with a signature

followed by the information such as the resolution of the individual volume, the number of

108

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

volumes, voxel format, data descriptions and pointers to the other two sections in the file etc.

of the time-varying volume.

The Volume-KeyBlock table section consists of Volume-KeyBlock tables, a collection of

lookup tables corresponding to the 3D volumes, one table for each time step. As each

volume is decomposed into blocks and each block is organized in one cluster represented by

a KeyBlock, the lookup table is thus used to reconstruct the volume of each time step from

the KeyBlocks. It can be treated as a 3D array with size 3r . The corresponding graphical

representation of the table below is shown in Figure 4.8.

Table 4.1 A Volume-KeyBlock table

Block Location (x, y, z) KeyBlock Index

(0, 0, 0) …

(1, 0, 0) …

… …

(3, 2, 0) 6

… …

(1, 3, 1) 56

… …

(3, 3, 3) 17

109

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

An entry of a block in the lookup table indicates the index number of the cluster, which the

block belongs to. This number is also the index of the corresponding KeyBlock in the

KeyBlock section. During rendering, the block of a volume could be reconstructed by using

this KeyBlock. Table 4.1 demonstrates the structure of a Volume-KeyBlock table with a few

example entries.

In the KeyBlock section, all the KeyBlocks generated from the clustering step are labeled with

index numbers and saved in the MVD file based on the following rules:

• The KeyBlocks generated from the blocks of earlier volumes are given smaller index

numbers.

• The KeyBlocks are stored lexicographically according to the x, y and z dimensions.

• The KeyBlocks and the clusters they represented adopt the same indices.

For efficient memory management, each KeyBlock is associated with a Last Volume Number

(LVN), which is the number of the last volume that contains blocks belonging to the cluster

represented by the KeyBlock. The LVN indicates the life period during which a KeyBlock

will be used to reconstruct volume(s) from time to time and should reside in the memory, and

it is also the expiring time after which a KeyBlock should be released. The KeyBlocks,

therefore, are not released one by one as the order they are loaded in. A dynamic memory

management scheme should be employed during the implementation.

110

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

In this way, KeyBlocks are stored so that they can be properly loaded and released as the

sequence of volume being processed.

4.3.4 Additional Processing

Encoding of an MVD could be varied to cater for different renderers. For example, if a

shear-warp algorithm is used as the renderer engine, then KeyBlocks need to be RLE-encoded.

For a linear-level-octree (LLO) renderer [Wang et al. 2002b], KeyBlocks are encoded in

LLOs.

Just as traditional 3D volume rendering, operations of image-processing such as noise

filtering and segmentation [Hua et al. 2000] normally can improve the performance of

rendering. They can be applied before the encoding without affecting the structure of the

algorithm.

Classification can be applied at either encoding stage (if the transfer function is already

available) or rendering stage at run-time. If a tri-linear interpolation scheme (e.g., ray-

casting) is used, the adjacent blocks need to have overlapping boundaries at the time of

encoding.

……

MVD1

……

MVD2

…… ……

MVDn

MVD (combined)

Figure 4.9 The scheme of encoding time-varying volume dataset with
many time steps

111

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

For time-varying dataset with many time steps, it is better to divide them into multiple groups

in time order, apply the encoding algorithm to each group and combine the results into a

single MVD file (Figure 4.9). This will ease the search of a certain time step in the whole

MVD file or the reconstruction of an intermediate time step from the beginning and it also

avoids the superimposition of too many artifacts.

4.4 Rendering – the Decoding Process

In the rendering stage, an MVD is rendered in a decoding process. In this section, I will

focus on the rendering algorithm designed to work on an MVD file, and will not go into

details of the underlying volume rendering algorithms. Various existing volume rendering

techniques could be used in this algorithm directly or after an optimization. Interested reader

can refer to [Elvins 1992] and [Meissner et al. 2000], which give detailed introduction and

evaluation of a variety of popular volume rendering algorithms.

4.4.1 MVD Rendering Algorithm

As illustrated in the 4D volume rendering framework (Figure 4.1), under the supervision of a

specialist, a time-varying volume dataset is converted into an MVD file. It is then distributed

to users through various storage media or networks and viewed through client renderers. The

renderer decodes the MVD, reconstructs the volume at every time step and updates the

output images to users over the change of time steps. An iterative algorithm is thus

employed in the renderer engine as below.

Let us denote the working volume as q. Initially, the volume of the first time step is used as

the working volume (q = 1) and the following steps are executed:

112

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

1. KeyBlocks whose LVNs are less than q are released together with their associated

partial-image buffers. The final image of the current time step is initialized.

2. KeyBlocks are read from the MVD file in turn. Each KeyBlock is associated with

a partial-image buffer, and KeyImage, the rendering result of each KeyBlock, is

saved into the partial-image buffer. After all the KeyBlocks contained in volume

q are loaded, they are rendered according to the three rules:

• If it is the first volume, all the KeyBlocks are rendered.

• If the current model-view transformation or transfer functions are changed

as compared to that in the previous time step, then all KeyBlocks are re-

rendered.

• If the current model-view transformation and transfer functions have not

been changed, only KeyBlocks that are newly loaded are rendered.

3. The KeyImages of the KeyBlocks are composited in 2D space according to the

Volume-KeyBlock table of volume q and the final image is constructed as follows:

• According to the current viewing direction, blocks in volume q are accessed

in front-to-back order. With the Volume-KeyBlock table, KeyBlocks can be

easily located.

113

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

• The KeyImage of the KeyBlock is composited into the final image at the

corresponding projection area.

After all blocks of volume q are processed, the final image is produced and

displayed to users.

4. To proceed to the volume of the next time step, q is increased by one (q = q + 1).

The above steps are repeated until the whole sequence is processed.

In the above algorithm, once the KeyImages are produced, the final image is generated by

compositing their colors and opacities in front-to-back order based on the theory of partial

ray compositing. The final image can be composed from the KeyImages by using the over

operator as in the following equation:

 Iq = KeyImage1 over KeyImage2 over … (4.10)

where Iq is the final image of volume q.

2D re-sampling of the KeyImages may be required if the sampling rate of the KeyImage is

different from that of the final image or when they are not sampled along the same set of rays.

In any case, the early-ray-termination is still possible for both KeyBlock rendering and

KeyImage composition, where samples in KeyImages can be safely skipped when pixels of

the final image are already opaque enough.

114

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

4.4.2 Underlying Volume Renderers

In the cluster-based time-varying volume rendering algorithm proposed in this chapter, users

are allowed to select the underlying 3D renderers for KeyBlock rendering. Employment of

different 3D volume rendering algorithms as the kernel of the renderer engine does not affect

the essence of the algorithm. Most 3D rendering algorithms such as ray-casting, shear-warp,

splatting and texture-mapping algorithms can be used. In the following, I summarize the

advantages and disadvantages of the different renderers if they are used in the algorithm.

A ray-casting renderer can fit well in this algorithm. It is hardware independent. Extensive

shading is supported. However, such a renderer could slow down the overall performance of

rendering. The shear-warp algorithm is relatively complicated as compared with the ray-

casting algorithm. It is fast and independent of the hardware. Extensive shading is also

supported.

Splatting is another good choice. It is hardware-independent and extensive shading is

supported. Its rendering speed is slower than the shear-warp method. However, this method

will potentially reduce the rendering artifacts resulted by KeyBlock boundaries. The inherent

characteristic of splatting algorithm makes the boundary of the objects (KeyBlocks) blurred in

the rendered image (although this can be regarded as another kind of artifacts.).

Since the GPU-based computer graphics methods are becoming popular these years, it is

necessary for us to discuss about texture-based volume rendering. A texture-mapping

algorithm is dependent on the graphics hardware. Nowadays, 2D texture-mapping is

supported by most graphics cards. But software sampling may be required to create the

115

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

texture images for the three major orientations. 3D texture-mapping is capable of performing

the fast 3D interpolation through hardware so that software sampling can be avoided. If 3D

texture-mapping is supported by the graphics card, it can be employed by using the OpenGL

and its extensions11. When texture-mapping method is used in this 4D rendering algorithm,

partial-image rendering is no longer necessary and the algorithm is slightly varied.

Texture-based rendering can be achieved at two levels, namely block level and volume level.

At the block level, each of the blocks is texture-mapped and transferred to a proper location.

The volume rendering of a time step is completed after all the blocks of the volume are

processed. Since the blocks are represented by the KeyBlocks, the texture memory can be

reused for homogeneous blocks and the requirement of texture memory is reduced. However,

if the size of blocks is too small, there will be too many agent polygons used for texture-

mapping, and it will affect the rendering performance. At the volume level, the volume of

each time step is first reconstructed from the KeyBlocks and entirely downloaded to the

texture memory in the graphics hardware. The volume is then texture-mapped and rendered

on the screen. The implementation of this method is normally simpler than that of the block

level method. For this cluster-based algorithm, the data throughput between time steps is low

and hence textures can be updated very quickly. However, the texture memory must be large

enough to, at least, fit an entire set of a 3D volume.

11 On Windows® platform, the OpenGL only supports to version 1.1, in which the 3D texture-mapping is not yet

included until version 1.2. Therefore, the 3D texture-mapping can only be accessed through the OpenGL
extension, if the graphics card supports it. http://www.opengl.org/resources/features/OGLextensions/

116

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

4.5 Global Coherence

The rendering algorithm in this chapter identified and exploited a new kind of coherence,

global coherence, of the time-varying volume data, which is not reported or utilized by

previous 4D volume rendering methods. We observed that 3D volume datasets may have

similar regions at different locations (e.g., blood vessels) and that sub-volumes may change

repeatedly from one time step to another (e.g., heart beating and contrast injection). The

global coherence of time-varying volume data refers to the fact that sub-volumes from

arbitrary locations in space or time may contain similar voxels. The similar regions can be

grouped together and represented once only, resulting in savings in both space and rendering

time.

The spatial coherence of 3D volume data, which refers to the fact that voxels in adjacent

regions tend to have similar values, can be effectively identified while exploiting the 4D

volume global coherence. In particular, the empty regions can be grouped into one cluster

and represented by a blank KeyBlock. Thus, volume blocks represented by the blank

KeyBlock will be simply skipped during rendering.

The temporal coherence is exploited based on the observation that voxels will not change

drastically from one time step to the next. Therefore, regions from the same 3D location but

different time steps may be regarded similar. Apparently, the temporal coherence is

subsumed by the global coherence. With the employment of clustering technique, volume

regions that are grouped into a cluster may come from any portions of a time-varying volume

dataset in both space and time directions. Similar regions can be represented by the same

117

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

KeyBlock and rendered only once if rendering conditions are unaltered. The savings in the

rendering time, therefore, could be significant as compared to the 4D volume rendering

algorithms exploiting only temporal coherence. In Figure 4.10, a group of similar blocks is

identified by exploiting two types of data coherence and labeled in dark grey. Obviously,

more savings are possible if global coherence is exploited in rendering.

(a) Temporal coherence used

(b) Global coherence used

Figure 4.10 Comparison of temporal coherence and global coherence

In the proposed algorithm, each cluster is represented as a single block (KeyBlock). When

global coherence is used, the total number of different blocks used to represent the entire

time-varying volume is significantly smaller than the original number of blocks, which

results in remarkable savings in space requirement. The savings are meaningful especially

for online data distribution and when the I/O bandwidth is critical.

118

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

4.6 Results and Discussion

The experiments were done on a desktop PC with an Intel Pentium IV 2.52GHz processor

and 1 gigabyte system memory equipped with NVIDIA Quadro®4 700 XGL graphics card

with 64 megabyte onboard memory. The experiments are designed to study the performance

gains of the proposed algorithm in terms of space reduction and speed acceleration. The

degradation of the image quality due to the error introduced during the MVD encoding is

also quantitatively measured and analyzed. The same set of medical time-varying volume

datasets as used in Chapter 3 are employed for testing of the newly proposed algorithm in

this chapter. Table 4.2 re-lists the details of these datasets.

Table 4.2 Experimental time-varying volume datasets

Dataset Dimensions Resolution (mm3) Time Steps Size (MB) Modality

HAND 512×512×136 0.39×0.39×4.0 5 171.25 MRA

BREAST 256×256×26 1.25×1.25×4.2 5 8.13 MRI

HEART I 192×156×27 1.67×1.67×8.0 20 15.42 MRI

HEART II 156×192×16 1.77×1.77×8.0 20 9.14 MRI

ABDOMEN 256×256×12 1.02×1.02×5.0 39 29.25 MRU

These time-varying volume datasets were encoded into MVD presentations. It is interesting

to study the performance of the proposed algorithm under different encoding error tolerances.

The compression ratio is thus employed to measure its performance in space reduction. The

compression ratio (R) of an MVD file is defined as

119

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

 %100)
SizeDataRaw

1(×−=R Size MVD (4.11)

which gives 100% compression if nothing remains after compression and 0% if the size

remains unchanged. Note that the cluster-based method is not meant for data compression.

We did not employ any compression-specialized algorithms in the proposed method as well.

Parameters used for MVD encoding of the HAND, BREAST, HEART I, HEART II and

ABDOMEN datasets and their compression ratios achieved are shown in Table 4.3 to Table

4.7 respectively.

Table 4.3 MVD encoding of the HAND dataset under three different cluster
NED thresholds

Dataset Name Block Size Cluster NED
Threshold

Time Cost
(Seconds) Size (MB) Compression

Ratio

Hand A 16×16×17 0.10 3953 36.27 78.7%

Hand B 16×16×17 0.15 3044 26.29 84.5%

Hand C 16×16×17 0.20 2525 20.94 87.7%

120

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

Table 4.4 MVD encoding of the BREAST dataset under three different cluster
NED thresholds

Dataset Name Block Size Cluster NED
Threshold

Time Cost
(Seconds) Size (MB) Compression

Ratio

Breast A 16×16×13 0.10 13 3.40 58.2%

Breast B 16×16×13 0.15 12 2.96 63.5%

Breast C 16×16×13 0.20 10 2.34 71.2%

 Table 4.5 MVD encoding of the HEART I dataset under three different cluster
NED thresholds

Dataset Name Block Size Cluster NED
Threshold

Time Cost
(Seconds) Size (MB) Compression

Ratio

Heart I A 12×13×27 0.10 22 3.53 77.1%

Heart I B 12×13×27 0.15 16 2.27 85.3%

Heart I C 12×13×27 0.20 13 1.61 89.6%

Table 4.6 MVD encoding of the HEART II dataset under three different cluster
NED thresholds

Dataset Name Block Size Cluster NED
Threshold

Time Cost
(Seconds) Size (MB) Compression

Ratio

Heart II A 13×13×16 0.05 21 4.58 49.9%

Heart II B 13×13×16 0.10 13 2.79 69.5%

Heart II C 13×13×16 0.15 10 1.90 79.3%

121

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

Table 4.7 MVD encoding of the ABDOMEN dataset under three different cluster
NED thresholds

Dataset Name Block Size Cluster NED
Threshold

Time Cost
(Seconds) Size (MB) Compression

Ratio

Abdomen A 16×16×12 0.10 305 20.76 29.0%

Abdomen B 16×16×12 0.15 264 17.46 40.3%

Abdomen C 16×16×12 0.20 236 14.93 49.0%

With the increase of cluster NED threshold, higher compression ratio could be achieved. The

maximum compression ratio achievable under a certain error tolerance is mainly dependent

on the nature of global coherence in each dataset. We achieved up to 90% compression ratio

for the datasets with high global data coherence (e.g., HAND and HEART I). The

compression ratio of the ABDOMEN dataset is relative low due to its low data coherence.

Table 4.8 Time cost of MVD encoding of the HAND dataset with three different
block sizes

Block Size Cluster NED
Threshold

Time Cost
(Seconds)

Compression
Ratio

Absolute
Error (EA)

Cycle Rendering
Time (s)

16×16×17 0.15 3381 84.5% 17.938 3.479

32×32×34 0.04 295 79.5% 18.102 4.747

64×64×68 0.01 102 69.4% 15.278 4.582

The time cost of MVD encoding decreases with the increase of cluster NED threshold. Since

the cluster-based 4D rendering method is designed for offline encoding, it is normally

122

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

acceptable with relative long conversion time. However, the conversion time is also

dependent on the block size. The time can be significantly reduced when large blocks are

used. Table 4.8 gives three examples of the MVD encoding of the HAND dataset with

different block sizes. It shows that the MVD encoding of the HAND can also be done within

two minutes with the similar rendering quality (EA).

Therefore, appropriate block size should be used according to the time or space available in

practice. When there is an urgent need to view a 4D dataset, larger block size should be used

for an instant encoding and rendering, whereas smaller block size should be used to produce

an MVD file with smaller file size for further distribution. A relative small cluster NED

threshold should be used when the block size is large, because the significant differences

between voxels could be averaged out when many voxels are involved in the computation of

the NED.

To show advantages of global coherence over temporal coherence, I investigated rendering

workload, which can be quantified by the number of blocks needed to be processed, with and

without exploiting two types of data coherence. The respective number of blocks for each

dataset is shown in Table 4.9. The same error tolerance of 0.2 is used in exploring both

temporal coherence and global coherence. It is clear that the saving achieved with global-

coherence is significantly higher than what can be achieved by exploiting the temporal

coherence alone for most test datasets.

123

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

Table 4.9 Saving due to global coherence as compared with temporal coherence
in the number of blocks needed to be processed

 HAND BREAST HEART I HEART II ABDOMEN

G 5023 736 398 433 5086

T 10443 1220 453 442 6896

S 5420 484 55 9 1810

R 52% 40% 12% 2% 26%

G: The number of blocks that must be processed by exploiting global coherence
T: The number of blocks that must be processed by exploiting temporal coherence
S: The number of blocks saved due to global coherence (S = T – G)
R: Ratio of saving due to global coherence as compared with temporal coherence (R = S / T)

The compressed MVD files result in the reduced I/O throughput during rendering. For a

cluster-based renderer, the I/O throughput varies for different time steps. In contrast, for a

traditional volume renderer used for 4D rendering, the I/O throughput will be constant for all

time steps. In the following, I compared the I/O throughput between MVD files and raw data.

The comparison results of the HAND, BREAST, HEART I, HEART II and ABDOMEN

datasets are illustrated in Figure 4.11 to Figure 4.15, respectively.

124

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

0

5

10

15

20

25

30

35

40

1 2 3 4 5

Time Step

I/O
 T

hr
ou

gh
pu

t (
M

B
)

Raw Data

Hand A

Hand B

Hand C

Figure 4.11 Comparison of the I/O throughput between MVD and raw data (HAND
dataset)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5

Time Step

I/O
 T

hr
ou

gh
pu

t (
M

B
)

Raw Data

Breast A

Breast B

Breast C

Figure 4.12 Comparison of the I/O throughput between MVD and raw data (BREAST
dataset)

125

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

0

100

200

300

400

500

600

700

800

900

1 3 5 7 9 11 13 15 17 19

Time Step

I/O
 T

hr
ou

gh
pu

t (
K

B)
Raw Data

Heart I A

Heart I B

Heart I C

Figure 4.13 Comparison of the I/O throughput between MVD and raw data (HEART I
dataset)

0

50

100

150

200

250

300

350

400

450

500

1 3 5 7 9 11 13 15 17 19

Time Step

I/O
 T

hr
ou

gh
pu

t (
K

B)

Raw Data

Heart II A

Heart II B

Heart II C

Figure 4.14 Comparison of the I/O throughput between MVD and raw data (HEART II
dataset)

126

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

0

100

200

300

400

500

600

700

800

900

1 4 7 10 13 16 19 22 25 28 31 34 37

Time Step

I/O
 T

hr
ou

gh
pu

t (
K

B)
Raw Data

Abdomen A

Abdomen B

Abdomen C

Figure 4.15 Comparison of the I/O throughput between MVD and raw data
(ABDOMEN dataset)

It is clear that the MVD files have much smaller I/O throughput than the raw data. An MVD

normally has larger I/O throughput at the first time step than the subsequent steps as the

volume is reconstructed from scratch initially. The volumes of the subsequent time steps are

updated by reusing the KeyBlocks of the previous steps. When there is high data coherence

between steps, the I/O throughput is low. Next, we will investigate how the reduced I/O

throughput affects the rendering performance.

The proposed cluster-based time-varying volume rendering algorithm is implemented with

three underlying renderers, namely ray-caster, 2D texture-mapper and 3D texture-mapper.

Due to the inherent characteristics of the ray-casting algorithm, it could be slow for us to

discern the performance gains of the proposed method, although this implementation also

achieves satisfactory results as compared with the regular ray-casting algorithm. The

127

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

capability of supporting texture-based rendering is an important feature of current volume

rendering algorithms. The texture-based implementation of this algorithm enables us to

compare its performance with hardware accelerated rendering that is regarded as the fastest

method commonly achievable on personal computers. Therefore, in the following, I am

constrained to compare the rendering performance of the 2D/3D texture-based

implementation of the cluster-based rendering method with the regular 2D/3D texture-

mapped rendering method. We are interested to analyze their relative performance. The

cluster-based renderer and the regular texture-mapping renderer are implemented based on

the same piece of codes. Any optimization of the implementation will improve the

performance of both renderers.

The experiment is conducted based on the following procedures. After a dataset is loaded

into the system, it is rendered repeatedly for 20 cycles while rendering timing of each time

step is recorded. The timing results of the last 10 cycles are then averaged and reported as

the performance results of this dataset. The design of the experiment ensures the timing

results obtained have become stable and renderers can benefit from the I/O cache if possible.

The rendering speeds are measured for 2D and 3D texture-based implementation separately.

In the following, performance results are illustrated in Figure 4.16 to Figure 4.21, where the

regular texture-mapped rendering of the raw data is denoted as Regular TM and cluster-based

rendering of MVD datasets is denoted with the dataset names instead.

128

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

1 2 3 4 5

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular TM

Hand A

Hand B

Hand C

Figure 4.16 Speed comparison between regular texture-mapped rendering and cluster-
based rendering of the HAND dataset using 2D texture-mapping

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 2 3 4 5

Time step

Ti
m

in
g

(S
ec

on
d)

Regular TM

Hand A

Hand B

Hand C

Figure 4.17 Speed comparison between regular texture-mapped rendering and cluster-
based rendering of the HAND dataset using 3D texture-mapping

129

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

0.000

0.050

0.100

0.150

0.200

0.250

0.300

0.350

1 2 3 4 5

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular TM

Breast A

Breast B

Breast C

Figure 4.18 Speed comparison between regular texture-mapped rendering and cluster-
based rendering of the BREAST dataset using 2D texture-mapping

0.000

0.005

0.010

0.015

0.020

0.025

1 2 3 4 5

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular TM

Breast A

Breast B

Breast C

Figure 4.19 Speed comparison between regular texture-mapped rendering and cluster-
based rendering of the BREAST dataset using 3D texture-mapping

130

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

1 3 5 7 9 11 13 15 17 19

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular TM

Heart I A

Heart I B

Heart I C

Figure 4.20 Speed comparison between regular texture-mapped rendering and cluster-
based rendering of the HEART I dataset using 2D texture-mapping

0.000

0.005

0.010

0.015

0.020

0.025

1 3 5 7 9 11 13 15 17 19

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular TM

Heart I A

Heart I B

Heart I C

Figure 4.21 Speed comparison between regular texture-mapped rendering and cluster-
based rendering of the HEART I dataset using 3D texture-mapping

131

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

1 3 5 7 9 11 13 15 17 19

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular TM

Heart II A

Heart II B

Heart II C

Figure 4.22 Speed comparison between regular texture-mapped rendering and cluster-
based rendering of the HEART II dataset using 2D texture-mapping

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

1 3 5 7 9 11 13 15 17 19

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular TM

Heart II A

Heart II B

Heart II C

Figure 4.23 Speed comparison between regular texture-mapped rendering and cluster-
based rendering of the HEART II dataset using 3D texture-mapping

132

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

1 4 7 10 13 16 19 22 25 28 31 34 37

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular TM

Abdomen A

Abdomen B

Abdomen C

Figure 4.24 Speed comparison between regular texture-mapped rendering and cluster-
based rendering of the ABDOMEN dataset using 2D texture-mapping

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

1 4 7 10 13 16 19 22 25 28 31 34 37

Time Step

Ti
m

in
g

(S
ec

on
d)

Regular TM

Abdomen A

Abdomen B

Abdomen C

Figure 4.25 Speed comparison between regular texture-mapped rendering and cluster-
based rendering of the ABDOMEN dataset using 3D texture-mapping

133

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

We observed that the rendering time was directly proportional to the I/O throughput of each

dataset. This is based on the fact that it takes most of the time for a cluster-based renderer to

process new I/O inputs (KeyBlocks) in every time step. For the texture-based implementation

of the renderers, the reduced I/O throughput improves the rendering performance mainly in

three aspects. First, it reduces the file loading time from a hard disk to the system memory.

Second, it reduces the texture downloading time from the system memory to the texture

memory in the graphics card. The speed of these two processes is hardware dependent. The

reduced I/O throughput however, will improve the relative performance anyway. Last, for

2D texture-based rendering, the volume has to be reconstructed for the projection other than

the axial direction, so the reduced I/O throughput reduces the volume data that need to be

rebuilt so as to accelerate the overall rendering speed.

It is observed that the regular texture-mapping renderer is heavily dependent on the capacity

of system memory and cache. In the initial cycle of rendering, the entire set of raw volume

data is loaded into the system for the first time. This process could take long time at every

time step. Thereafter, raw data are cached and the rendering speed increases. In contrast, the

rendering speed of cluster-based rendering is more consistent and there is little difference in

the initial and the following rendering cycles. Cluster-based rendering therefore is superior

over the traditional methods when there is no demand for repeated rendering at a viewing

session.

It is interested to quantitatively study the speedup of the cluster-based renderer over the

regular renderer under different encoding error tolerances. The speedup was calculated

based on the cycle rendering time of two renderers. Similar to the step timing acquired

134

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

previously, the cycle timing was based on an average of 10 cycles of rendering time of each

dataset. As defined in Chapter 3, two types of factors, i.e., normal speedup factor and

Speedup*, are employed in this chapter. The latter is calculated by excluding the timing of

the first time step. It is therefore, more representative to be compared between different

datasets since different datasets usually have different number of time steps and rendering of

the first volume steps normally takes longer time than that of the subsequent steps.

The speedup results tested based on each dataset are given in Table 4.10 to Table 4.14 and

the cycle rendering timings are compared and illustrated in Figure 4.26 to Figure 4.30, where

Tex2D/3D stands for 2D/3D texture-based rendering, Regular TM is regular texture-mapped

rendering and the MVD dataset names represents the corresponding cluster-based rendering

of each dataset.

135

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

Table 4.10 Cycle rendering time (in seconds) and speedup of cluster-based
rendering over regular texture-mapped rendering of the HAND dataset

 Regular TM Hands A Hands B Hands C

Total Time 30.339 4.252 3.479 3.214

Speedup – 7.14 8.72 9.44 Tex2D

Speedup* – 11.45 18.02 22.34

Total Time 1.801 1.156 1.095 1.064

Tex3D Speedup – 1.56 1.64 1.69

 Speedup* – 1.71 1.86 1.93

2D Texture-Based Rendering

0

5

10

15

20

25

30

35

Regular
TM

Hand A Hand B Hand C

C
yc

le
 T

im
in

g
(S

ec
on

d)

3D Texture-Based Rendering

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Regular
TM

Hand A Hand B Hand C

Figure 4.26 Comparison of the cycle rendering time between cluster-based rendering
and regular texture-mapped rendering of the HAND dataset

136

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

Table 4.11 Cycle rendering time (in seconds) and speedup of cluster-based
rendering over regular texture-mapped rendering of the BREAST dataset

 Regular TM Breast A Breast B Breast C

Total Time 1.614 0.301 0.300 0.249

Speedup – 5.35 5.38 6.49 Tex2D

Speedup* – 6.56 6.60 8.93

Total Time 0.111 0.090 0.088 0.084

Tex3D Speedup – 1.22 1.27 1.31

 Speedup* – 1.28 1.34 1.40

2D Texture-Based Rendering

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Regular
TM

Breast A Breast B Breast C

C
yc

le
 T

im
in

g
(S

ec
on

d)

3D Texture-Based Rendering

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Regular
TM

Breast A Breast B Breast C

Figure 4.27 Comparison of the cycle rendering time between cluster-based rendering
and regular texture-mapped rendering of the BREAST dataset

137

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

Table 4.12 Cycle rendering time (in seconds) and speedup of cluster-based
rendering over regular texture-mapped rendering of the HEART I dataset

 Regular TM Heart I A Heart I B Heart I C

Total Time 1.165 0.322 0.247 0.209

Speedup – 3.62 4.71 5.56 Tex2D

Speedup* – 4.08 5.63 6.95

Total Time 0.408 0.183 0.170 0.165

Tex3D Speedup – 2.23 2.39 2.47

 Speedup* – 2.27 2.45 2.53

2D Texture-Based Rendering

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Regular
TM

Heart I A Heart I B Heart I C

C
yc

le
 T

im
in

g
(S

ec
on

d)

3D Texture-Based Rendering

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Regular
TM

Heart I A Heart I B Heart I
C

Figure 4.28 Comparison of the cycle rendering time between cluster-based rendering
and regular texture-mapped rendering of the HEART I dataset

138

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

Table 4.13 Cycle rendering time (in seconds) and speedup of cluster-based
rendering over regular texture-mapped rendering of the HEART II dataset

 Regular TM Heart II A Heart II B Heart II C

Total Time 0.670 0.298 0.193 0.141

Speedup – 2.25 3.48 4.76 Tex2D

Speedup* – 2.36 3.87 5.65

Total Time 0.237 0.110 0.099 0.087

Tex3D Speedup – 2.15 2.40 2.73

 Speedup* – 2.19 2.46 2.83

2D Texture-Based Rendering

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Regular
TM

Heart II
A

Heart II
B

Heart II
C

C
yc

le
 T

im
in

g
(S

ec
on

d)

3D Texture-Based Rendering

0.00

0.05

0.10

0.15

0.20

0.25

Regular
TM

Heart II
A

Heart II
B

Heart II
C

Figure 4.29 Comparison of the cycle rendering time between cluster-based rendering
and regular texture-mapped rendering of the HEART II dataset

139

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

Table 4.14 Cycle rendering time (in seconds) and speedup of cluster-based
rendering over regular texture-mapped rendering of the ABDOMEN dataset

 Regular TM Abdomen A Abdomen B Abdomen C

Total Time 6.044 1.517 1.318 1.177

Speedup – 3.98 4.59 5.14 Tex2D

Speedup* – 4.02 4.65 5.23

Total Time 0.588 0.369 0.362 0.338

Tex3D Speedup – 1.59 1.63 1.74

 Speedup* – 1.60 1.63 1.75

2D Texture-Based Rendering

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Regular
TM

Abdomen
A

Abdomen
B

Abdomen
C

C
yc

le
 T

im
in

g
(S

ec
on

d)

3D Texture-Based Rendering

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Regular
TM

Abdomen
A

Abdomen
B

Abdomen
C

Figure 4.30 Comparison of the cycle rendering time between cluster-based rendering
and regular texture-mapped rendering of the ABDOMEN dataset

140

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

In 2D texture-based rendering, up to 9.4 times of speedup was achieved through the

introduction of the proposed cluster-based rendering algorithm, and the speedup could be

more than 22 times in terms of Speedup*. For the datasets HAND and BREAST, the regular

texture-mapping renderer is too slow to provide interactive rendering (above 5 frames per

second), which is however, successfully achieved through the cluster-based renderer. For

other datasets, the cluster-based renderer realizes real-time rendering (above 25 frames per

second) with even higher frame rates. In 3D texture-based rendering, we also achieved up to

2.7 times speedup for the cluster-based renderer. 3D texture-based rendering performs about

10 times faster than 2D texture-based rendering according to the experimental results. It

avoids the operations of volume rebuilding as required in 2D texture-based rendering. The

speed acceleration therefore, appears less significant. But the speedup is meaningful for

high-quality rendering (above 60 frames per second) and large-scale 4D volume rendering.

The proposed algorithm essentially performs a lossy compression of the time-varying volume

data. It is necessary to analyze the impact of the compression scheme on the visual quality of

rendering. Similar to Chapter 3, the regression testing method from VTK is employed for

this purpose. In this experiment, all the images are generated in the size of 500 × 500 24-bit

color pixels with red, green and blue channels, while each pixel is assigned with the same

value in all three channels and the images thus appear in gray. A threshold tolerance of 5 is

used in the calculation of thresholded errors. It is less than 2% of the maximum pixel

difference and normally is hard to be noticed by human eyes.

The images generated by the regular texture-mapping method are employed as the valid

images, and the image quality of cluster-based rendering is evaluated based on the following

141

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

procedures. For each dataset, the regression testing is applied to each pair of corresponding

images at each time step. The absolute error (EA) and thresholded error (ET) of this time step

are calculated accordingly. After the regression testing is finished for all time steps, the

results are averaged and used to represent the error of cluster-based rendering of this dataset.

Based on the images generated by the regular texture-mapping method, the regression testing

is also applied between the images at successive time steps. The results are averaged and

used to indicate the inter-step differences. It provides us an effective reference to evaluate

the rendering quality we have achieved. The inter-step errors also serve as a good

measurement of the coherence of the dataset.

The error analysis of cluster-based rendering was performed to all the datasets and the results

are shown in Table 4.15 to Table 4.19. It should be noted that all the images must be of the

same size so that the regression errors can be compared with each other.

Table 4.15 Error analysis of cluster-based rendering of HAND dataset

Name Absolute Error (EA) Thresholded Error (ET)

Inter-Step 547.113 104.500

Hands A 15.796 0.009

Hands B 17.938 0.059

Hands C 30.066 0.541

142

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

Table 4.16 Error analysis of cluster-based rendering of BREAST dataset

Name Absolute Error (EA) Thresholded Error (ET)

Inter-Step 1409.644 699.788

Breast A 7.088 0.207

Breast B 15.587 0.182

Breast C 36.298 1.405

Table 4.17 Error analysis of cluster-based rendering of HEART I dataset

Name Absolute Error (EA) Thresholded Error (ET)

Inter-Step 360.980 52.322

Heart I A 39.980 0.321

Heart I B 54.321 1.182

Heart I C 73.284 7.749

Table 4.18 Error analysis of cluster-based rendering of HEART II dataset

Name Absolute Error (EA) Thresholded Error (ET)

Inter-Step 650.801 105.331

Heart II A 122.655 11.593

Heart II B 141.360 17.224

Heart II C 151.624 17.859

143

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

Table 4.19 Error analysis of cluster-based rendering of ABDOMEN dataset

Name Absolute Error (EA) Thresholded Error (ET)

Inter-Step 2761.917 1658.556

Abdomen A 206.086 17.966

Abdomen B 254.729 36.396

Abdomen C 343.661 70.943

Compared to inter-step difference, all the results of error analysis appear small. It shows that

the cluster-based algorithm achieves good rendering quality. The cluster NED threshold

serves as the global error tolerance to effectively control the rendering quality. The

regression testing errors and cluster NED threshold presented the same trend in rendering

quality. For visual inspection, selected images are shown in Figure 4.31 to Figure 4.35 while

the regression errors of each pair of images are also given. It shows that the loss of the image

quality is visually tolerable for all the testing datasets.

144

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

 (a) Valid image (b) DLLO rendered image (c) Regression Error

EA = 21.0
ET = 0.07
(Step 1)

EA = 20.8
ET = 0.05
(Step 3)

EA = 12.6
ET = 0.02
(Step 5)

Figure 4.31 Comparison of the image quality between regular texture-mapped
rendering and cluster-based rendering of the HAND dataset (cluster NED Threshold =

0.15)

145

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

(a) Valid image (b) DLLO rendered image (c) Regression Error

EA = 50.2
ET = 1.24
(Step 1)

EA = 33.9
ET = 0.59
(Step 3)

EA = 27.4
ET = 2.37
(Step 5)

Figure 4.32 Comparison of the image quality between regular texture-mapped
rendering and cluster-based rendering of the BREAST dataset (cluster NED Threshold

= 0.15)

146

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

(a) Valid image (b) DLLO rendered image (c) Regression Error

EA = 118
ET = 11.5
(Step 1)

EA = 46.2
ET = 0.30
(Step 7)

EA = 48.5
ET = 0.18
(Step 13)

EA = 41.0
ET = 0.04
(Step 20)

Figure 4.33 Comparison of the image quality between regular texture-mapped
rendering and cluster-based rendering of the HEART I dataset (cluster NED Threshold

= 0.15)

147

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

(a) Valid image (b) DLLO rendered image (c) Regression Error

EA = 206
ET = 36.5
(Step 1)

EA = 175
ET = 22.3
(Step 11)

EA = 120
ET = 15.0
(Step 20)

Figure 4.34 Comparison of the image quality between regular texture-mapped
rendering and cluster-based rendering of the HEART II dataset (cluster NED

Threshold = 0.15)

148

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

(a) Valid image (b) DLLO rendered image (c) Regression Error

EA = 309
ET = 60.8
(Step 1)

EA = 368
ET = 91.3
(Step 19)

EA = 399
ET = 119
(Step 39)

Figure 4.35 Comparison of the image quality between regular texture-mapped
rendering and cluster-based rendering of the ABDOMEN dataset (cluster NED

Threshold = 0.20)

149

CHAPTER 4. CLUSTER-BASED TIME-VARYING VOLUME RENDERING

4.7 Summary

In this chapter, the cluster-based time-varying volume rendering algorithm is described. It

provides a new means for efficient visualization of time-varying volume data. The algorithm

takes advantage of the inherent characteristics of time-varying volume data more extensively.

A new type of data coherence, namely global coherence, is exploited through the

employment of the clustering technique so that rendering is benefited with enhanced

performance. Because there is no restriction on the underlying type of renderers, the

algorithm also provides sufficient space for further extensions.

Extensive experiments are performed based on the texture-based implementations of this

algorithm. It achieves good performance in terms of both speed acceleration and space

reduction. Results reported demonstrate its superiority over the regular texture-based

algorithms for time-varying volume rendering. The compression ratio obtained could be

over 89% and up to 10 times acceleration has been achieved when it is compared to the

regular texture-mapped rendering. Based on the analytical results of regression testing,

errors introduced due to clustering tolerance are visually small and high rendering fidelity

can be achieved.

150

Chapter 5

Medical Simulation Application in Image-
Guided Surgeries

5.1 Introduction

Medical images usually comprise of volumetric data with equal or variable spacing along

each axis. The data models are inherently fuzzy and boundaries are transitional zones.

Direct volume rendering creates an image from the volume without generating an

intermediate geometrical representation. Therefore, it can effectively visualize the fuzzy

quality of semi-transparent images. In comparison with surface rendering, there is no

explicit need for binary classification about what is and isn’t part of a feature. Segmentation

which is a key research problem in medical engineering may be avoided. Recently, Hata et

al. [2003] used 3D volume rendering to help differentiate congenital cystic adenomatoid

malformation from congenital diaphragmatic hernia in preparation for fetus surgery. The

differentiation will be very difficult if the clinician relied only on 2D MR slides. Animated

visualization of time-series volumetric medical data was used in a study of brain lesions due

151

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

to the progression of multiple sclerosis [Plesniak et al. 2003]. The animated electro-

holographic display provided clinicians an adequate assessment of the spatial-temporal

distribution of brain lesions to anatomical structures of the brain. Ra et al. [2002] presented a

simulator for spine needle biopsy, in which volume rendering is adopted for effective

examination of relative locations of spine and organs and tracking the needle path in terms of

both accuracy and reality.

Image

Acquisition
Planning and
Simulation

Intervention

Figure 5.1 Overview of computer-aided image-guided surgery

Spine needle biopsy, as well as interventional radiology, microscopic microsurgery and

vertebroplasty are examples of image-guided surgery. An objective of image-guided surgery

is to use pre- and intra-operative medical images to help reduce invasiveness of surgery.

They are part of the increasing popular minimally invasive surgery. An overview of the

processes in the image-guided surgery considered in this thesis is shown in Figure 5.1. As

reasoned above, volume rendering is our preferred visualization technique for planning and

simulation. Medical images of patients are first acquired using common diagnostic imaging

modalities such as CT and MRI. Based on the volumetric images, patient specific anatomical

models are reconstructed along with volume rendering of the medical imaging data for

planning and simulation. Consequently, the formulated surgical plan is then applied to help

guide the procedure during intervention.

152

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

In the following sections, I will describe the application of my proposed 4D volume

rendering algorithms in simulating interventional radiology, microsurgery and the

development of a virtual spine workstation.

5.2 Interventional Radiology Procedures

5.2.1 Background

Interventional Radiology (IR) is a subspecialty of medical imaging, in which minimally

invasive procedures are performed using image guidance, usually X-ray fluoroscopy or CT.

Some of these procedures are done for purely diagnostic purposes (e.g., angiograms), while

others are done for treatment purposes (e.g., angioplasties). Images are used to direct these

procedures, which are usually done with needles or other tiny instruments like small tubes

(called catheters). The images provide road maps that allow the interventional radiologist to

guide these instruments through the body to the areas of interest.

5.2.2 Catheterization Simulator

Catheterization is one of the main applications for interventional radiology. Such procedure

usually involves manipulating plastic catheters and guide-wires through blood vessels to the

site of the lesion and then treating the lesions by means of devices or drugs delivered through

the catheters. An effective simulation system should provide interventional neuroradiologists

with tools to examine patient-specific anatomy through 3D visualization and to interact with

the vascular images in real time. We have developed an interventional neuroradiology

pretreatment planning system to provide the above capabilities and the setup of the system is

shown in Figure 5.2 [Chui et al. 2002a].

153

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

The system allows physicians to manipulate and interface interventional devices such as

catheters, guidewires, stents and coils within 2D and hybrid surface and volume rendered 3D

patient vascular images in real time. It provides a pretreatment planning environment closely

resembling the angiography suite and allows clinicians to interact with patient specific

vasculature in virtual space using actual interventional devices.

Figure 5.2 Physical setup of the simulation system

Volume rendering as a key component of the simulation system is to produce angiography12

and 3D/4D views of human brain and its vasculature system. The LLO-based volume

renderer is part of our effort in developing PC-based interactive medical simulator [Wang et

al. 2002b].

12 Examination of the blood vessels using X-rays following the injection of a radiopaque substance to look for

abnormalities

154

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

Figure 5.3 Multimodality rendering

Figure 5.3 demonstrates the LLO-based ray-caster used for multimodality rendering. The

two datasets used are VHD male and a patient’s cerebral angiography. The former has

resolution of 256×256 and involves a total of 85 slices with 5 mm inter-slice gap, and is

acquired by multi-slice CT scanner. The latter is a reconstructed rotational X-ray

angiography (XRA) data. The CT images and reconstructed XRA are registered and

visualized on a PC.

5.3 Microsurgical Simulation System

5.3.1 Background

Microsurgical techniques are being increasingly applied in many surgical disciplines because

of its superiorities over conventional surgeries in terms of small incision, fast recovery and

special capabilities in complex and delicate surgeries such as cataract removal. However,

rare opportunities are available for trainees to learn and exercise these skills before practice

in clinical situations. With the rapid advancement of virtual reality technology, a

155

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

microsurgical simulation system is becoming possible by using the state-of-the-art

virtual/augmented reality techniques for the purpose of training and even pretreatment

planning based on patient-specific medical images.

Superior visualization, sufficient force feedback and interactive manipulation of surgical

tools are regarded as main elements of creating a realistic virtual microsurgical environment.

Visualization is critical as surgeons perform operations and make decisions mostly based on

visual cues and the magnified view of operating area is inevitable in most microsurgeries as

well [Salisbury and Kenneth 1998].

5.3.2 Craniotomy Simulator

Figure 5.4 Overview of the microsurgical simulation system

An initial prototype of our microsurgical simulator for craniotomy is shown in Figure 5.4

[Wang et al. 2002a]. Craniotomy is a typical example of a microsurgical procedure. It

involves a surgical removal of a portion of the skull to operate on a targeted region in the

156

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

brain. The simulator is designed as a low cost system that can be comfortably placed on the

desktop of a neurosurgeon. We aim to design and develop the software executed on a normal

notebook computer with dual displays. The user will see the microscopic views with the

stereoscope hanging in front of a computer monitor connected to a graphics port of the

notebook computer. In the current set-up, we used a mid-range graphic acceleration board

(32M RAM GeForce II). Microsurgical operations, such as tissue-cutting with micro-

scissors, will be simulated using a force feedback probe. This set-up and the stereoscope

resemble the type of microsurgical environment with high-resolution microscope typical in

craniotomy. My proposed volume rendering technique is the primary method of computer

graphics rendering in this simulation [Wang et al. 2004].

For surgical training, the trainee will first load a set of volume images comprising a clinical

scan of a human head. In the planning mode, he/she can selectively render and inspect the

various structures within the skull. Both perspective and parallel renderings are available for

him/her during the study. The main purpose of this study was to allow the trainee to identify

the target area and plan his/her approach. For pre-surgical planning, over 80% of the plan

can be achieved with realistic 3D graphics. Only perspective rendering is available to the

trainee when he/she is performing the "surgery" using a combination of virtual tools. These

tools are modeled as simple geometrical objects.

Instructor, in our plan, could monitor progress of the training via display on the notebook

computer - supervisor console. The supervisor console does not have to mirror the display

on the stereoscope. The instructor may view a wider version of the rendered image the

trainee is using during virtual surgery. The capability of the trainee neurosurgeons to reach

157

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

the target region and removed the tumor tissue without hurting the surrounding healthy tissue

is a good quantitative performance indication. However, we have yet to implement a scoring

module to help track the trainee's performance.

Our priority of the simulation system was to duplicate the high power microscopic views

during microsurgery. Proficiency of a neurosurgeon depends on how well a user can relay

the stereoscopic view with his/her hands. It is unclear to us on the effectiveness of force

feedback for this simulation. Hence, our emphasis in microsurgery simulation and

particularly, training of microsurgery procedure is on realistic visual effects. In addition to

the provision of accurate and high-speed perspective rendering, our rendering engine is

capable of handling the emerging 4D medical imaging data.

In the simulation of interactive microsurgical procedures, integrated rendering of virtual

surgical instruments with the volume data is necessary for users to provide a realistic scene

of virtual surgical environment. For simplicity, surgical instruments such as scalpels, forceps

and needles are normally rendered with opaque geometric polygon primitives. I have

achieved the embedded volume-geometric rendering by using the cutting-plane technique

based on hardware-assisted volume rendering [Wang et al. 2001]. Incorporated with texture-

based 3D/4D volume rendering, integrated rendering can be achieved more easily. Opaque

geometric surgical instruments must be rendered before texture-mapped volume rendering so

that depth buffer test is enabled. Afterwards, the graphics hardware is able to blend the

geometric polygons with the texture images correctly and efficiently.

158

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

Results obtained here were produced based on an implementation of the microsurgical

simulator on a laptop computer with a Pentium III 900MHz processor, 384MB system

memory and GeForce II graphics hardware. The LLO/DLLO-based volume renderer is used

as the visualization component of the system.

Figure 5.5 Perspective rendering of phantom head interacted with a virtual
surgical needle

A CT scan of a phantom head dataset was used in our microsurgical simulator. The dataset

comprises 229 slices with an imaging matrix of 512×512 pixels. In Figure 5.5, the phantom

head was rendered in perspective projection. A virtual surgical needle was rendered with

geometric polygons and embedded in the volume rendered scene, and its interaction with

brain vasculature is clearly displayed in the virtual surgery mode. Note that the white matters

were hidden for the user to focus on the vessels. Interactive visualization of the integrated

surface-volume is achieved during simulation.

159

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

There are requirements on visualization that are unique in simulation of microsurgery

procedure. For example, rendering has to be fast to respond to the change in viewing angle

and movement of surgical devices. The rendering process is also made complex with the

inclusion of 4D medical data. From the results of our implementation, the proposed method

was clearly a possible solution for this complex visualization process.

One of the significant usages of microsurgery is to connect/repair vessels, termed

microvascular anastomoses. For example, when vessels of a hand are involved, the surgeon

needs to align the vessels from a cut finger with that of the main hand. A smooth blood flow

implies that the vessel has connected well. Multiple scans of the hand while contrast

injection is used to capture the blood flow. 4D or time-varying visualization is meaningful

for surgeons to observe such procedure. Figure 5.6 shows the maximum intensity projection

(MIP) of such a time-varying hand dataset.

Figure 5.6 Time-varying volume rendering of a hand dataset in MIP

160

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

5.4 Virtual Spine Workstation

5.4.1 Background

The objective of Virtual Spine Workstation (VSW) is to develop a surgical workstation to

provide realistic and patient-specific simulation of image-guided spine surgical procedures.

The workstation aims at medical education and training, information-enhanced pre-operative

planning for image-guided spine procedures and scientific analyses. The workstation focuses

on the integration of different medical imaging technologies with computational technology

and spine biomechanics to create a complete suite for assisting spine surgery [Teoh 2005;

Wang et al. 2005b; Chui et al. 2002b].

Figure 5.7 Overview of human-computer interaction in Virtual Spine Workstation

As illustrated in Figure 5.7, a user wearing a force feedback glove (CyberGrasp, Immersion,

USA) with a real surgical needle probably provides the interaction closest to the actual

procedure. With patient-specific volume visualization, users are able to manipulate and view

161

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

the spine models at their desired view points as well as interactively subject the models to

surgical instrumentation commonly used in the operating theatre.

3D/4D volume rendering of the VSW will help in medical courses on the spine, offering a

new way of clear anatomical observation without the need for the present intrusive method.

It provides realistic anatomical visualization for the spine which will help in better

understanding of the spinal structure and help as an efficient training tool. Thus, the

surgeons can plan treatment or surgery through good visualization by getting a feel of the

actual procedure involved. The VSW, therefore, aids in treatment selection and optimization

for surgical planning by interacting imaging and therapy.

The vertebroplasty, an image-guided minimally invasive therapeutic procedure, is identified

as the first surgical application with VSW. The technology based and component approaches

taken in the solution also enable other spine surgical applications to be adopted with ease.

5.4.2 Vertebroplasty Simulator

Osteoporosis is a major health problem throughout the United States and the developed

world. In the United States alone, more than 700,000 vertebral body fractures are diagnosed

each year, resulting in more than 100,000 hospital admissions 13 . Vertebroplasty is a

relatively new procedure designed to help patients with osteoporosis or other fractures of the

spine. Patients lose mineralization of the bones making them prone to compression fractures

that can be very painful. It has been found that injecting the affected vertebral bodies with a

13 Common lower back painful conditions, http://www.painsolvers.com/CP_back.html

162

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

special preparation of orthopedic cement can greatly relieve this pain. The cement can

harden the vertebral body structure and helps to stabilize the bone and prevent further

collapse and pain. About 90% of patients experience rapid relief of pain within 24 hours

after the procedure [Wilfred et al. 2002]. Under our simulation system, with the guidance of

seeable internal vertebrae 3D/4D representations of the patient-specific images (X-rays, CT

scan or MRI scan), the surgeon will work on the virtual vertebrae with a virtual needle that

can be easily placed through the skin of the patient in the back into the vertebra in the spine.

Once the needle is properly positioned, bone cement is slowly injected into the spine.

Figure 5.8 Fluoroscopic images

Fluoroscopic14 guidance is used to pass a needle, by hand, into the affected vertebral body in

order to inject bone cement. In the simulation system, there will be no patient available for

the real-time fluoroscopy and the images have to be produced based on the patient-specific

radiological scans. Figure 5.8 shows the fluoroscopic images generated by using the volume

rendering technique.

14 Fluoroscopy is a variation of X-ray technology in which a continuous X-ray beam is used to assess internal

organs or objects in motion. Although the beam is on continuously, the dose is low compared with the
amount of radiation from a traditional X-ray.

163

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

When a needle is inserted to the fractured vertebrae, a bone cement solution is injected at the

site of the fracture. A potential-field-based approach was developed to simulate the

variations in the vertebrae during such procedure. This process can be very sophisticated in

that, based on it, surgeons are able to evaluate whether a vertebroplasty plan is feasible and

discover its defects such as the leakage or insufficient injection. As a result, a time-varying

volume dataset is produced and the simulated procedure of the cement injection is visualized

with a cluster-based 4D volume renderer.

(a) Initial placement of needle into the

vertebrae

(b) Bone cement is injecting

(c) Magnified view of the vertebrae with

cement injection

(d) The vertebrae after the bone cement

injection

Figure 5.9 Time-varying volume rendering of the simulated procedure of the bone
cement injection

164

CHAPTER 5. MEDICAL SIMULATION APPLICATION IN IMAGE-GUIDED SURGERIES

The simulation is run on a desktop PC with an Intel 2.40GHz Pentium 4 processor and

512MB system memory. The simulation involves 12 sets of 3D volume and each volume has

219 slices with an imaging matrix of 256×256 pixels. The initial data is from the VHD Male

Project and the spine in the dataset is normal and with no obvious pathology. It is used here

for system validation only. Figure 5.9 illustrates the initial placement of the needle at the L2

vertebrae and the subsequence injection of the bone cement under the CT guidance (in

contrast to the fluoroscopy guidance).

5.5 Summary

In this chapter, I reviewed the use of volume rendering in medical diagnosis/examination and

simulations. My proposed volume rendering methods have been used in three different PC-

based medical simulation systems. My solutions for the multi-dimensional volume rendering

played an important role as the visualization component in them. In addition to time-varying

volume rendering, results presented also include my work on angiography rendering,

fluoroscopic rendering and multimodality rendering. The detailed implementations are not in

the scope of this thesis. Interested reader can refer to Appendix B for more details on

multimodality volume rendering.

165

Chapter 6

Discussion

6.1 Introduction

In this thesis, two new time-varying volume rendering algorithms, namely the DLLO-based

and the cluster-based algorithms, have been presented. Both of them exhibit outstanding

performance in 4D volume rendering as compared to conventional methods. I have

compared the new algorithms with other time-varying volume rendering methods found in

literatures.

In the following, I will first compare the performance of the new algorithms with several

notable time-varying volume rendering algorithms. Then, the two new rendering methods

will be further discussed by highlighting their advantages and disadvantages. Although the

two algorithms proposed are meant for personal computers with a single processor, the

performance of them can be further improved by using parallel computing. The

parallelization of the two new algorithms is also discussed in this chapter.

166

CHAPTER 6. DISCUSSION

6.2 Comparison of Time-Varying Volume Rendering Algorithms

Research in time-varying volume rendering has multiple objectives. Some are aimed at fast

rendering while others are intended for high data compression. The two objectives are not

always achievable simultaneously. For example, a compression-targeted method normally

employs specialized compression schemes, however, this likely slow down rendering due to

the decompression process. The goal of the two new algorithms proposed in this thesis is

meant to provide time-varying volume rendering as fast as possible. Therefore, in the

following, we are constrained to compare the rendering speed between the new algorithms

and others. Although the new algorithms also achieved good results in data compression, it

will be only treated as an additional gain in the comparison. In addition, unlike 3D volume

rendering, researches in 4D volume rendering are still under way. There is not yet a single

approach that is recognized as the one with the best performance. Since it is beyond our

means to implement all the algorithms and compare them on the same platform, the

comparison will mostly rely on the performance results reported in literatures. As the results

are obtained under different conditions, it is not appropriate to compare them directly.

Instead, their relative performance gains, e.g., speedup over the conventional methods, will

be compared.

Table 6.1 compares the speedup performance of the TSP tree-based volume rendering

method [Shen et al. 1999], two-level differential volume rendering method (TLDVRM) [Liao

et al. 2003; 2004], texture-assisted rendering method using palette and discrete cosine

transform (DCT) techniques [Lum et al. 2001], 4D volume rendering with shear-warp

factorization method [Anagnostou et al. 2001] and my two new methods. In all these

167

CHAPTER 6. DISCUSSION

methods, speedup is calculated in comparison with the corresponding conventional/lossless

methods based on the cycle timing of all time steps. Methods without explicit speedup

information will have their results estimated based on the performance plots in the respective

literatures. Except the TLDVRM, all the methods essentially perform lossy rendering with

the degradation of rendering quality being visually tolerable according to the authors. All

these methods have been reviewed in Chapter 2, so in the following discussion, their

introduction will be omitted.

Table 6.1 Comparison of the speedup performance of different time-varying
volume rendering algorithms

4D Rendering
Method

Underlying
Algorithm

Number of
Test Datasets Speedup Data

Compression

TSP tree Ray-casting 3 3.4 ∼ 5.2 Space overhead

TLDVRM Ray-casting 3 1.6 ∼ 1.8 Space overhead

Texture-assisted 2D texture 3 2.7 ∼ 6.7 Yes

4D Shear-warp Shear-warp 1 2.5 ∼ 3.3 Yes

DLLO-based Ray-casting 5 2.4 ∼ 19.5 Yes

Cluster-based 2D/3D Texture 5 2.2 ∼ 9.4 Yes

Although the speedup for each method has been implemented independently and on different

datasets, the outcome of this comparison does infer that our new methods are at least on par

with the existing methods if not better. Nevertheless, it is clear that we repeated the highest

instantial speedup.

168

CHAPTER 6. DISCUSSION

In the comparison of the TSP tree-based method and the DLLO-based method, although they

both use octree, the DLLO-based method achieves higher speedup because the compressed

data leads to reduced I/O cost. The DLLO-based method is not a compression-specialized

algorithm. The volumes are compressed by discarding the redundant or less important raw

data, so there is no extra cost for the decompression process during rendering. On the

contrary, the TSP tree-based method uses the original 4D data and an auxiliary TSP tree,

which not only consumes more memory but results in more I/O cost and poor cache hit rate.

In the TLDVRM, data coherence is only exploited in the image space. This is inadequate for

the performance improvement. However, it is possible to employ the differential volume

rendering scheme in the DLLO-based and the cluster-based algorithms so as to avoid

updating unchanged pixels over time. The 4D Shear-warp rendering method also exploits the

temporal coherence by the decomposition of the 4D data. However, the scheme employed is

too straightforward to take advantage of the extensive data coherence as compared to the

cluster-based method.

Lum et al.’s texture-assisted rendering method employs a compression-specialized algorithm,

discrete cosine transform, for data encoding. The decompression is skillfully realized by

using the color palette in graphics hardware. It therefore, achieves good speedup results.

However, this method is too much restricted by the texture memory available. The

performance decreases significantly when rendering is done out-of-core.

169

CHAPTER 6. DISCUSSION

6.3 DLLO-Based and Cluster-Based Time-Varying Volume Rendering
Algorithms

Both the DLLO-based and the cluster-based time-varying volume rendering algorithms

employ a volume decomposition scheme to take advantage of the 4D data coherence. The

former utilizes data coherence between time steps, while the later utilizes data coherence of

the whole time sequence using a clustering technique. During rendering, both algorithms are

characterized by reusing partial images for speed acceleration. Therefore, the performance of

rendering is mostly determined by how efficient the DLLO or MVD data are encoded. The

more extensive data coherence is identified and exploited during the encoding, the less I/O

cost occurs between the hard disk, system memory and texture memory (if used) and this will

also reduce the data elements that need to be rendered. For example, Figure 6.1 and Figure

6.2 compare the I/O throughput of the encoded HAND and ABDOMEN datasets by the two

algorithms where the same NED threshold of 0.10 is employed as the temporal error

tolerance and the global error tolerance respectively.

170

CHAPTER 6. DISCUSSION

0

2

4

6

8

10

12

14

1 2 3 4 5

Time Step

I/O
 T

hr
ou

gh
pu

t (
M

B)
DLLO-based
Method

Cluster-based
Method

Figure 6.1 Comparison of the I/O throughput of the HAND dataset encoded by the
DLLO-based method and the cluster-based method where the temporal error tolerance

and global error tolerance of 0.10 is used, respectively

0

100

200

300

400

500

600

700

800

900

1 4 7 10 13 16 19 22 25 28 31 34 37

Time Step

I/O
 T

hr
ou

gh
pu

t (
KB

)

DLLO-based
Method

Cluster-based
Method

Figure 6.2 Comparison of the I/O throughput of the ABDOMEN dataset encoded by the
DLLO-based method and the cluster-based method where the temporal error tolerance

and global error tolerance of 0.10 is used, respectively

171

CHAPTER 6. DISCUSSION

We observed the similar pattern based on all other 4D datasets that the resultant I/O

throughput is lower in the cluster-based algorithm than in the DLLO-based algorithm under

the same error tolerance. In the DLLO-based algorithm, homogeneous data are only

exploited along the temporal direction and this homogeneousness must be continued so as to

benefit the encoding process. When rendering the first time step of a 4D dataset using the

DLLO-based algorithm, because there is no temporal coherence that can be utilized, the

rendering time is almost the same no matter what temporal error tolerance is used. However,

in the cluster-based algorithm, the homogeneous data are exploited along not only temporal

direction but also spatial direction (i.e., truly in 4D). All the homogeneous data can be

organized together to benefit the rendering performance with no requirement of the continued

homogeneousness. When higher global error tolerance is employed, the rendering speed of

both the first and the subsequent time steps increases as well. Due to the inherent

characteristics of the DLLO, volumes can only be decomposed into cubes with the size of

power of two, and the space reduction achieved may be compromised for the dataset with

skewed sizes in spatial dimensions. On the contrary, the cluster-based algorithm adopts

flexible decomposition scheme. Blocks can be divided with arbitrary size in three spatial

directions, and it leads to better results in space reduction.

The cluster-based algorithm results in less I/O throughput than the DLLO-based algorithm,

and thus performs faster 4D volume rendering when the same underlying renderer is

employed. In Table 6.2, I compared the speed of two algorithms. Both are implemented

based on 2D texture-mapping. For fair comparison, the minimum octant/block size is set as

16×16×16 and the same error tolerance (NED) of 0.10 is used for data coherence exploitation

172

CHAPTER 6. DISCUSSION

in both algorithms. The cycle rendering timings of two algorithms based on five dynamic

MRI datasets are reported. The speedup of the cluster-based algorithm over the DLLO-based

algorithm is calculated by the division of their cycle rendering timings. We can observe that

the cluster-based algorithm performs faster rendering for all five test datasets and significant

speedup can be achieved while rendering most of them. This performance gains are

proportional to the savings due to global coherence in comparison with temporal coherence

as reported in Chapter 4 (Table 4.9). Global coherence thus exhibits its superiority over

other features of 4D data in 4D volume rendering acceleration.

Table 6.2 Cycle timing (in seconds) of DLLO-based rendering and cluster-based
rendering of five dynamic MRI datasets and speedup results of cluster-based
rendering over DLLO-based rendering

Dataset HAND BREAST HEART I HEART II ABDOMEN

DLLO-Based
Rendering 3.062 0.263 0.268 0.132 1.369

Cluster-Based
Rendering 2.243 0.214 0.237 0.130 1.010

Speedup 1.37 1.23 1.13 1.01 1.36

However, in the current implementation of the cluster-based algorithm, MVD encoding takes

more time than DLLO conversion. Therefore, the use of two algorithms should be

determined according to the needs of applications. The DLLO-based method will perform

well when there is a demand of instant visualization of a 4D dataset, whereas the cluster-

based method should be used when there is adequate time for the construction of an MVD

173

CHAPTER 6. DISCUSSION

file or the resultant MVD file is for distribution so that users can enjoy faster rendering and

smaller file size.

Although these two new algorithms are targeted at medical applications, they are also

applicable to other applications. In computational simulations, geographical or

oceanographic studies and biological studies, they also produce the time-varying volume data.

These data have the similar characteristics of the 4D medical data. It is believed that the two

new algorithms can also perform well in these applications.

6.4 Time-Varying Volume Rendering Parallelization

In parallel computing, a task can be split up and executed simultaneously on multiple

processors to obtain faster results. When a 4D volume is large, parallel computing may

enhance the capability of the rendering algorithms to provide interactive graphical display.

Furthermore, recent advancement in computer graphics increases the demand for high quality

rendering. With parallelism, it is possible that the proposed algorithms are capable to

provide real-time rendering of medium size dataset in an even higher frame rate.

Parallel computing can be achieved through either multiple computers or a computer made

up of multiple processors. Approaches to parallel computers include distributed computing,

multiprocessor computing, cluster computing, grid computing, massively parallel computing

etc. In distributed computing, multiple computers are organized to collaboratively run a

single computational task. They communicate via some form of telecommunication

networks and the cost of such communication is high compared to that between processors in

the same computer. Cluster computing and grid computing are also characterized by using

174

CHAPTER 6. DISCUSSION

many computers in a network. The computers involved may be tightly coupled or loosely

coupled. Multiprocessor computing is traditionally known as the use of multiple concurrent

processes in one computer. It allows the computer to complete operations more quickly and

to handle larger and more complex procedures through better utilization of resources.

The 4D volume rendering algorithms described in this thesis is intended for a personal

computer or a microcomputer so as to keep the cost of resultant medical simulation systems

low. With the advancement in hardware design, a personal computer system with two or

more Central Processing Units (CPUs) becomes common and its price is no longer as high as

before. Nowadays, multiprocessor systems are available commercially for end users and

mainstream operating systems like Windows® and Linux already have built-in support for

multiprocessing. Therefore, the proposed parallel 4D volume rendering algorithms are

designed for execution on a personal computer system with multiple processors.

A multiprocessor computer can be classified as an MIMD15 system. When the parallelization

of the 4D rendering algorithms is implemented on a shared memory 16 multiprocessor

computer, rendering tasks are distributed to processes working cooperatively. Processes are

typically independent, carry considerable state information, have separate address spaces,

and interact through system-provided inter-process communication (IPC) mechanisms.

However, the context switching between processes is typically much more expensive than

that of threads. Multiple threads, on the other hand, typically share the state information of a

15 MIMD (multiple instruction stream multiple data stream) is a type of parallel computing architecture.

Contrast with SIMD (single instruction stream multiple data stream), MISD and SISD.
16 Shared memory refers to a block of Parallel Random Access (PRA) memory that can be accessed by several

different CPUs in a multiprocessor computer system.

175

CHAPTER 6. DISCUSSION

single process, share memory and other resources directly. A multi-threaded program can

operate faster on computer systems that have multiple CPUs. Additionally, the recent Hyper

Threading Technology17 (HTT) makes a single physical processor appear as two logical

processors and allows multiple threads to run simultaneously on the same CPU. Thus, even

on a single processor system, the parallelized algorithms of time-varying volume rendering

could achieve enhanced performance from a multi-threaded implementation.

Logical
Processors

System Memory

Processor
1

Processor
n

Cache Cache

Secondary Memory

I/O

… …

 BUS

Processor
2

Cache

Figure 6.3 Illustration of multi-threading personal computer system architecture

The system architecture of the parallel 4D volume rendering algorithms is illustrated in

Figure 6.3. Since parallel rendering is realized based on the multi-threaded programming,

threads on different logical processors are able to communicate and interact with one another

through the system memory and access the same file resource in the secondary memory

17 HTT is a technology from Intel® for their implementation of the simultaneous multithreading technology on

the Xeon™ and Pentium™ 4 processors. The technology improves processor performance under certain
workloads by providing useful work for execution units that would otherwise be idle. An approximate 15-
30% performance gain can be expected to be achieved.
http://www.intel.com/technology/itj/2002/volume06issue01/art01_hyper/p01_abstract.htm

176

CHAPTER 6. DISCUSSION

(normally a hard disk) directly. The cache attached on each processor is possible to improve

the efficiency of data accessing. The problems rising from memory/file accessing (reading

and writing) are managed by the algorithm with the intervention of operating system to avoid

deadlocks and race conditions.

The two 4D volume rendering algorithms proposed previously are redesigned to make

effective use of the parallel hardware, and are described in the following two sub-sections

respectively.

6.4.1 Parallelization of DLLO-Based 4D Volume Rendering

The parallelization of DLLO-based time-varying volume rendering consists of partitioning

the computation into tasks for different threads/processors and choosing some appropriate

synchronization mechanisms. The serial algorithm has three phases: DLLO construction,

leaf octant rendering and partial-image composition. We parallelize this algorithm by

considering the parallelization of each phase separately.

The DLLO construction is done with a concurrent traversal of the previous DLLO and the

current dLLO. DLLO is designed to avoid loading the volume data of all time steps. Only

octants of the current dLLO are read sequentially from the file at current time step and used

to update the DLLO. Parallel reading of the same file will cause accessing conflicts and

affect the overall performance. Since LLO allows the tree traversal to be fulfilled easily, the

task of the DLLO construction is only allocated to one single thread. It plays mostly the

same as that of the serial algorithm.

177

CHAPTER 6. DISCUSSION

ConstructDLLO
{
 while (true)
 {
 // Read a leaf octant of current dLLO from the file
 octant = ReaddLLO();

 // Update the DLLO with octant
 UpdateDLLO(octant);

 // Update the octant-queue
 UpdateOctantQueue(octant);

 // Check whether there is no more octants in the dLLO
 if (octant == NULL)
 {
 // A pseudo-end-octant is added to the queue
 AddOctantQueue(PseudoEndOctant);
 break;
 }
 }
}

Figure 6.4 Algorithm of DLLO construction for parallel rendering

However, leaf octant rendering is not required to start until the full DLLO construction is

completed. The DLLO construction is not required to start until all the octants of the dLLO

are loaded into memory either. On the contrary, the DLLO is updated while the reading of

every octant of current dLLO from the file and at the same time the leaf nodes in updated

sub-DLLO can be passed for rendering. Therefore, it is possible that the thread of DLLO

construction runs with the threads of leaf octant rendering in parallel. The pseudo-code in

Figure 6.4 shows the algorithm used by the thread for DLLO construction.

The parallelization is realized by the employment of a supplementary data structure: octant-

queue, where the thread of DLLO construction places the octants needed for (re-)rendering.

178

CHAPTER 6. DISCUSSION

The octant-queue is ended with a pseudo-end-octant (PseudoEndOctant), which is used to

signify that all the leaf octants needed for rendering have already been added to the queue.

When an octant rendering thread encounters this octant, it will be refrained from looking for

new octants. An empty octant-queue cannot be used for this purpose because the queue

could be empty from time to time when all the existing octants are rendered but new octants

have not been read from the file yet. In the above algorithm, the behavior of the function

UpdateOctantQueue() varies with the status of the model-view transformation and the

transfer functions. If both of them have not been changed since the last time step, this

function will only add the latest read octant (if it is not a pseudo-empty-node) to the queue;

otherwise, all the leaf octants in the updated sub-DLLO are added to the octant-queue.

Octant rendering is the most computationally expensive phase of the three. It dominates the

cost of the serial algorithm. Multiple threads, therefore, are employed for parallel octant

rendering and the pseudo-code of the algorithm is given in Figure 6.5. A lock is used in the

function ReadFromOctantQueue() to ensure that only one thread is accessing the octant-

queue every time. Each thread will check the octant-queue repeatedly to obtain a new octant

once current rendering is finished. Multiple threads will render octants in a preemptive and

independent manner. A thread is terminated when the pseudo-end-octant is reached. The

parallel rendering algorithm is then synchronized before the start of the next phase.

179

CHAPTER 6. DISCUSSION

RenderOctant
{
 while (true)
 {
 // Read an octant from the octant-queue
 octant = ReadFromOctantQueue();

 // Check whether this is a valid octant
 if (octant == NULL)
 {
 // Wait for new octants added into the queue
 continue:
 }
 // Check whether all the octants have been rendered
 else if (octant == PseudoEndOctant)
 {
 // Stop rendering
 break;
 }
 else
 {
 // Preventing other thread from rendering
 // the same octant by removing it from the queue
 RemoveOctantQueue(octant);

 // Render the octant into a partial image
 Render(octant);
 }
 }
}

Figure 6.5 Algorithm of parallel octant rendering

Parallelizing the computation of partial image composition can be achieved in two levels,

namely full image level and partial image level. In the former level, the final image is

divided into multiple uniform regions and each is distributed to one of the threads. Each

thread composites only the partial images that contribute to the image area allocated. One

disadvantage of this method is that load balancing is likely to be poor. Since projection of

180

CHAPTER 6. DISCUSSION

the volume does not cover the entire image, some thread may finish early and be in idle while

others are busy with some hot-spots. A second disadvantage is that the DLLO has to be

traversed multiple times for every thread, which increases the overall computational cost.

Therefore, we adopt the method of parallel composition in partial image level. The DLLO is

traversed and partial images are accessed according to the current viewing direction. Each

partial image is then divided into uniform regions and each region is composited into the

final image with a thread. Early ray termination is considered during such process. Threads

are synchronized every time before the start of next partial image composition. This method

guarantees balanced load of computation tasks in each thread. Moreover, multiple threads

working on the same partial image can benefit from the cache coherence. The DLLO is also

traversed only once during the whole composition phase.

Suppose that the total execution time of the serial algorithm is Ts and the time of DLLO

construction, octant rendering and partial image composition is T1, T2 and T3 respectively.

Then we have Ts = T1 + T2 + T3. In the parallel algorithm, since the very first octant is

updated to the DLLO (takes time Tε), octant rendering and DLLO construction are running in

parallel. Suppose there are p (p > 1) physical processors available, the phase of octant

rendering can be completed in T2/(p - 1) time. After that, all the processors can be used for

partial image composition, so this phase costs time T3/p. Obviously, the total time cost in the

parallel algorithm, Tp = Tε + T2/(p - 1) + T3/p, could be far less than the time used by the

serial algorithm (Tp < Ts) when p is large. Furthermore, when the benefit of the hyper

threading technology is considered, there are 2p logical processors. In practice, the parallel

181

CHAPTER 6. DISCUSSION

algorithm can achieve even better performance since the total running time Tp
’ will be Tp ≥

Tp
’ > Tε + T2/(2p - 1) + T3/2p.

6.4.2 Parallelization of Cluster-Based 4D Volume Rendering

The cluster-based time-varying volume rendering algorithm is designed to encode the 4D

data with a relatively complicated method, and to decode the processed data with a simple

method so as to ensure that it is computationally efficient. We divide the procedure of MVD

rendering into three phases, namely KeyBlock reading, KeyBlock rendering and KeyImage

composition. Compared to the DLLO-based algorithm, the decoding processes involved in

the cluster-based algorithm are not as complicated. It avoids operations such as DLLO

construction and tree traversal; on the contrary, it is capable to efficiently reconstruct the

volume of each time step through a lookup table (Volume-KeyBlock table) that is just a 3D

array. In the following, we analyze the parallelism of this algorithm by considering each

individual phase.

Due to the nature of the hard disk, parallel reading of an MVD file will compromise the

performance of the algorithm with the introduction of extra seek time, rotational latency and

risk of conflicts. Hence, the task of KeyBlock reading is assigned to a single thread.

A KeyBlock pool is employed in the parallel algorithm to maintain the KeyBlocks used in

rendering of either current or future volumes. During the initialization of each time step, the

“expired” KeyBlocks are released and the KeyBlock reading thread is triggered. It

sequentially loads the new KeyBlocks referred by the current volume into the KeyBlock pool

182

CHAPTER 6. DISCUSSION

(Figure 6.6). Although the operations involved in this phase are running in serial, the thread

is possible to be executed in parallel with the KeyBlock rendering phase.

 KeyBlock

KeyBlock released

KeyBlock newly loaded

Stepi Stepi+1

KeyBlock pool

Figure 6.6 Management of the KeyBlock pool

Multiple threads are created for KeyBlock rendering. Each thread repeatedly requests from

the KeyBlock pool and renders the allocated KeyBlock into the associated partial image buffer.

Depending on whether the model-view transformation and transfer functions have been

changed since the last time step, the set of returned KeyBlock varies. If the above conditions

are changed, both existing and newly loaded KeyBlocks are returned to the thread; otherwise,

only the newly loaded KeyBlocks are returned. The KeyBlocks passed to a thread will be

marked and will not be rendered by another thread. The mechanism guarantees that parallel

threads are running independent of one another without the risk of conflicts. All threads are

only synchronized when all the KeyBlocks have been rendered.

There are two options for the parallel image composition. First, the final image is divided

into uniform regions and each thread is responsible for one. Alternatively, we divide a

KeyImage into uniform regions and each region is composited into the final image with a

thread. Similar to the previous parallel DLLO-based rendering algorithm, the latter has

183

CHAPTER 6. DISCUSSION

advantages over the former for load balancing and cache coherence. This discussion is

therefore not repeated here.

Threads of KeyImage composition are synchronized every time when all have finished

execution. The cost of synchronization is low as the loads of threads are balanced. After the

KeyImages of all blocks in the current volume are processed, the final image is displayed to

users.

When texture-mapping is employed as the underlying renderer, the parallel rendering

algorithm will not include the phase of composition. The main tasks in the phase of

KeyBlock rendering will also be changed. Threads of this phase are responsible for

downloading KeyBlocks to the texture memory of the graphics hardware based on the

Volume-KeyBlock table. The cluster-based 4D volume rendering algorithm is designed to

have small data throughput by exploiting the global coherence of data. However, in the

parallel algorithm, it is still possible to reach the texture download limit of the graphics

hardware. The bottleneck of the parallel texture-mapped algorithm, therefore, could be the

download bandwidth of the texture memory, although it increases quickly with the

advancement of graphics processing unit (GPU) techniques. Anyway, the proposed parallel

algorithm maximizes its performance by utilizing fully the capability of the graphics

hardware.

Suppose that, in the serial algorithm, the time taken by KeyBlock reading, rendering and

composition phases is T1, T2 and T3 respectively. For the parallel algorithm that runs on a

computer with p (p > 1) physical processors, the time taken by phase two can be reduced to

184

CHAPTER 6. DISCUSSION

T2/(p – 1). The simultaneous execution of phases one and two will require a time of max(T1,

T2/(p – 1) + Tε), where Tε is the time for loading one KeyBlock. In the best case, the time

taken by phase three can also be reduced to T3/p with the parallel algorithm. The parallel

algorithm is thus more efficient than the serial algorithm on a multiprocessor computer.

185

Chapter 7

Conclusion

7.1 Summary

With the development of medical radiology technology, the contemporary medical scanners

not only can image the internal organs or structures of a human body in more and more

details, but are also able to capture the dynamic activity of a human body during a period.

Visualization of the new time-varying volume data is meaningful for radiologists and doctors

for better diagnosis and treatment but it also poses a new challenge to the computer graphics

technology. Compared to the steady state data, the size of the 4D data increases remarkably

due to the introduction of time domain and it makes the traditional 3D renderers cannot

perform well any more. New rendering methods specialized in 4D therefore, are demanded

to be able to visualize the time-varying volume data more efficiently but not dependent of

high cost hardware.

186

CHAPTER 7. CONCLUSION

This thesis describes two new time-varying volume rendering algorithms. Both of them are

characterized by decomposing the 4D volume data to take advantage of the data coherence.

They are well designed to exploit the 4D features of the time-varying data while placing little

restriction on the underlying 3D renderers. Thus, either of them has good extensibility and

can be easily varied to fit for different applications. The two algorithms have been

successfully used in our medical simulation systems to provide interactive and real-time 4D

volume rendering on personal computers.

The first method achieves time-varying volume rendering through extending a spatial data

structure with the consideration of time domain. The new data structure called dynamic

linear level octree takes advantage of both spatial and temporal coherence of the time-

varying data. An efficient algorithm was developed to dynamically keep the octree updated

over the change of time steps. Representation of the 4D data in DLLO leads to the reduced

space requirement and fast rendering. Because the DLLO conversion time is fairly short, this

method is suitable to provide online preprocessing and instant rendering.

Since a time-varying volume dataset contains much more information than a static one, it

will usually be viewed repeatedly and probably from multiple directions for enhanced

comprehension. Therefore, it is worth taking more time in data preprocessing for better

rendering performance. The second method is thus proposed based on this idea. The

clustering technique is employed to investigate the 4D data more extensively where the

global coherence is identified as a better characteristic of the 4D data that is exploited for

performance improvement. The employment of a flexible volume decomposition scheme

also results in further reduced space requirement. A sophisticated encoding algorithm leads

187

CHAPTER 7. CONCLUSION

to a task-relieved renderer as well as distinguished performance. Compared with the DLLO-

based method, the rendering component of this method uses lookup tables instead of

complicated data structures and their related operations such as tree traversal. This simplifies

the rendering process and benefits the overall performance.

Performance tests show that both proposed methods are capable of providing interactive and

real-time 4D volume rendering. The experiments studied the performance gains of the

proposed algorithms in terms of space reduction and rendering acceleration. Although the

two methods are not meant for data compression, they achieved very good compression

ratios (up to 80%), and this in turn benefits their performance in rendering speed. Both of

them could achieve significant acceleration as compared to conventional algorithms with

reasonable error tolerance. The degradation of rendering quality is quantitatively and

visually tolerable.

The possibility of parallelization of the two time-varying volume rendering algorithms is also

discussed based on a multiprocessor personal computer by the employment of multi-threaded

programming techniques towards delivering low cost simulation systems. Although parallel

rendering is not the focus of the proposed algorithms, their capability in parallelism further

extends their potential in performance improvement and the scope of applications.

Finally, I demonstrated the application of the proposed algorithms in simulating

interventional radiology, microsurgery and the development of a virtual spine workstation.

The time-varying volume rendering methods played an important role as the visualization

component in these simulation systems.

188

CHAPTER 7. CONCLUSION

The performance of the proposed time-varying volume rendering algorithms is dependent on

the data coherence. 4D volume datasets containing large transparent regions or large

homogeneous regions at successive time steps result in fast rendering speed. Both the DLLO

and cluster based algorithms exhibit slower rendering if a 4D dataset is less coherent.

However, the medical datasets tend to have high data coherence. According to the

experimental results, even for the dataset with lowest data coherence, both algorithms

achieved 2 to 5 times speedup which is quite substantial. Another limitation of the proposed

algorithms is that their renderings are not lossless. However, the error tolerances employed

in the algorithms effectively control the rendering quality according to the applications’ need.

Error analysis also shows that the degradation of the rendering quality is essentially small.

7.2 Future Work

There are several aspects of the proposed algorithms worth further investigation. It is

interesting to investigate an automatic method for the selection of the optimal parameters and

error tolerances in data conversion for the best rendering performance while the degradation

of the rendering quality is within a user-specified tolerance. For the DLLO-based method,

the error metrics can be improved by considering the classification information and transfer

functions so that coherent regions can be identified more accurately. For the cluster-based

method, through a more extensive performance comparison of different clustering algorithms,

the best one can be employed to improve performance of the MVD encoding process in

terms of both efficiency and accuracy. The implementation of the proposed parallelized

algorithms in medical simulators on multiprocessor systems can further enhance the

performance gains and their potential application scope.

189

References

ANAGNOSTOU, K., ATHERTON, T.J. AND WATERFALL, A.E. 2000, 4D Volume Rendering with

the Shear Warp Factorisation, Proceedings of the IEEE Symposium on Volume

Visualization, 129 – 137.

ANAGNOSTOU, K., ATHERTON, T.J. AND WATERFALL, A.E. 2001, 4D Volume Rendering with

the Shear Warp Factorisation: Extensions and Quantitative Results, Proceedings of Fifth

International Conference on Information Visualisation, 435 – 443.

ANDERSON, J., CHUI, C.K., CAI, Y.Y., WANG, Y.P., LI, Z.R., ENG, M., MA, X., NOWINSKI,

W.L., SOLAIYAPPAN, M., MURPHY, K., GAILLOUD, P. AND VENBRUX, A. 2002, Virtual

Reality Training in Interventional Radiology: the Johns Hopkins and Kent Ridge Digital

Laboratory Experience, Seminars in Interventional Radiology, 19, 2, 179 – 185.

AVILA, R., SOBIERAJSKI, L.M. AND KAUFMAN, A.E. 1992, Towards a Comprehensive Volume

Visualization System, Proceedings of the Conference on Visualization, 13 – 20.

BEESON, B., BARNES, D.G. AND BOURKE, P.D. 2003, A Distributed Data Implementation of

the Perspective Shear-Warp Volume Rendering Algorithm for Visualisation of Large

Astronomical Cubes, Publications of the Astronomical Society of Australia, 20, 3, 300 –

313.

BEHRENS, U. AND RATERING, R. 1998, Adding Shadows to a Texture-Based Volume

Renderer, Proceedings of Symposium on Volume Visualization, 39 – 46.

190

REFERENCES

BLINN, J.F. 1982, Light Reflection Functions for Simulation of Clouds and Dusty Surfaces,

Computer Graphics, 16, 3, 21 – 29.

BOADA, I. AND NAVAZO, I. 2003, 3D Texture-Based Hybrid Visualizations, Computers &

Graphics, 27, 1, 41 – 49.

CABRAL, B., CAM, N. AND FORAN, J. 1994, Accelerated Volume Rendering and Tomographic

Reconstruction Using Texture Mapping Hardware, ACM Symposium on Volume

Visualization, 91 – 98.

CHUI, C.K., YIN, Z.M., SHU, R.B. AND LOE, K.F. 1991, An Efficient Algorithm for Volume

Display by Linear Level Octree, Proceedings of Seminar on Computer Graphics

DISCS/NUS, 46 – 62.

CHUI, C.K., LI, Z., ANDERSON, J.H., MURRPHY, K., VENBRUX, A., MA, X., WANG, Z.L.,

GAILLOUD, P., CAI, Y., WANG, Y. AND NOWINSKI, W.L. 2002, Training and Planning of

Interventional Neuroradiology Procedures - Initial Clinical Validation, Studies in Health

Technology and Informatics, 85, 96 – 102.

CHUI, C.K., TEO, J., TEOH, S.H., ONG, S.H., WANG, Y., LI, J., WANG, Z.L., ANDERSON, J.H.

AND NOWINSKI, W.L. 2002, A Finite Element Spine Model from VHD Male Data,

Proceedings of VHD Conference.

COHEN, D. AND SHEFER, Z. 1993, Proximity Clouds – an Acceleration Technique for 3D Grid

Traversal, Technical report FC 93-01, Ben Gurion University of the Negev.

191

REFERENCES

DEMIRIS, A., MAYER, A. AND MEINZER, H.P. 1997, 3-D Visualization in Medicine: An

Overview, Contemporary Perspectives in Three-Dimensional Biomedical Imaging,

C.Roux and J.-L. Coatrieux (Eds.) IOS Press, 79 – 105.

DEV, P. 1999, Imaging and Visualization in Medical Education, IEEE Computer Graphics

and Applications, 19, 3, 21 – 31.

DOBASHI, Y., VLATKO, C., KANEDA, K., YAMASHITA, H. AND NISHITA, T. 1998, A Fast

Volume Rendering Method for Time-Varying 3-D Scalar Field Visualization Using

Orthonormal Wavelets, IEEE Transaction on Magnetics, 3431 – 3434.

ELVINS, T.T. 1992, a Survey of Algorithms for Volume Visualization, Computer Graphics,

26, 3, 194 – 201.

ELLSWORTH, D., CHIANG, L.J. AND SHEN, H.W. 2000, Accelerating Time-Varying Hardware

Volume Rendering Using TSP Trees and Color-Based Error Metrics, Proceedings of the

IEEE Symposium on Volume Visualization, 119 – 128.

FREUND, J. AND SLOAN, K. 1997, Accelerated Volume Rendering Using Homogeneous

Region Encoding, Proceedings of the Conference on Visualization, 191 – 196.

GELDER, A.V. AND KIM, K. 1996, Direct Volume Rendering With Shading via Three-

Dimensional Textures, Proceedings of Symposium on Volume Visualization, 23 – 30.

GOLDSMITH, J. AND SALMON, J. 1987, Automatic Creation of Object Hierarchies for Ray

Tracing, IEEE Computer Graphics and Applications, 7, 5, 14 – 20.

192

REFERENCES

GOLDWASSER, S.M., REYNOLDS, R.A., TALTON, D.A. AND WALSH, E.S. 1989, High

Performance Graphics Processors for Medical Imaging Applications, Parallel Processing

for Computer Vision and Display, P.M. Dew, R.A. Earnshaw, and T.R. Heywood, Ed.,

Addison-Wesley, 461 – 470.

GUTHE, S. AND STRAßER, W. 2001, Real-Time Decompression and Visualization of Animated

Volume Data, Proceedings of the Conference on Visualization, 349 – 356.

HANRAHAN, P. 1990, Three-Pass Affine Transforms for Volume Rendering, Proceedings of

SIGGRAPH’90, 24, 71 – 78.

HATA, N., WADA, T., CHIBA, T., TSUTSUMI, Y., OKADA, Y. AND DOHI, T. 2003, 3D Volume

Rendering of Fetal MR Images for the Diagnosis of Congenital Cystic Adenomatoid

Malformation, Academic Radiology, 10, 3, 309 – 312.

HUA, W., CHUI, C.K., WANG, Y., WANG, Z.L., CHEN, X., PENG, Q. AND NOWINSKI, W.L. 2000,

A Semiautomatic Framework for Vasculature Extraction from Volume Image,

Proceedings of International Conference on Biomedical Engineering, 515 – 516.

KAJIYA, J.T. AND HERZEN, B.V. 1984, Ray Tracing Volume Densities, Computer Graphics,

18, 3, 165 – 174.

KAPLAN, M.R. 1985, Space-Tracing: A Constant Time Ray-Tracer, Uses of Spatial

Coherence in Ray-Tracer, SIGGRAPH.

KAUFMAN, A.E., COHEN, D. AND YAGEL, R. 1993, Volumetric Graphics, IEEE Computer

Graphics, 26, 7, 51 – 64.

193

REFERENCES

KRUGER, J. AND WESTERMANN, R. 2003, Acceleration Techniques for GPU-Based Volume

Rendering, IEEE Visualization, 287 – 292.

LACROUTE, P. AND LEVOY, M. 1994, Fast Volume Rendering Using a Shear-Warp

Factorization of the Viewing Transformation, Proceedings of SINGGRAPH’94, 451 –

458.

LACROUTE, P. 1995, Real-Time Volume Rendering on Shared Memory Multiprocessors

Using the Shear-Warp Factorization, Proceedings Parallel Rendering Symposium, 15 –

22.

LACROUTE, P. 1996, Analysis of a Parallel Volume Rendering System Based on the Shear-

Warp Factorization, IEEE Transaction and Computer Graphics, 2, 3, 218 – 231.

LAUR, D. AND HANRAHAN, P. 1991, Hierarchical Splatting: A Progressive Refinement

Algorithm for Volume Rendering, Computer Graphics, 285 – 288.

LEE, C.H. AND PARK, K.H. 1997, Fast Volume Rendering Using Adaptive Block Subdivision,

Proceedings of Computer Graphics and Applications, 221, 148 – 157.

LEVOY, M. 1988, Display of Surfaces from Volume Data, IEEE Computer Graphics and

Applications, 8, 3, 29 – 37.

LEVOY, M. 1990, Volume Rendering, A Hybrid Ray Tracer for Rendering Polygon and

Volume Data, IEEE Computer graphics and Applications, 10, 2, 33 – 40.

194

REFERENCES

LEVOY, M. 1990, Efficient Ray Tracing of Volume Data, ACM Transactions on Graphics, 9,

3, 245 – 261.

LIAO, S.K., LIN, C.F., CHUNG, Y.C. AND LAI, J.Z.C. 2003, A Differential Volume Rendering

Method with Second-Order-Difference for Time-Varying Volume Data, International

Journal of Visual Languages and Computing, 14, 3, 233 – 254.

LIAO, S.K., LA, J.Z.C. AND CHUNG, Y.C. 2004, Time-Critical Rendering for Time-Varying

Volume Data, Computers & Graphics, 28, 2, 279 – 288.

LICHTENBELT, B., CRANE, R. AND NAQVI, S. 1998, Introduction to Volume Rendering,

Hewlett-Packard Company, Prentice Hall PTR.

LORENSEN, W.E. AND CLINE, H.E. 1987, Marching Cubes: A High Resolution 3D Surface

Construction Algorithm, Computer Graphics, 21, 4, 163 – 169.

LUM, E.B., MA, K.L. AND CLYNE, J. 2001, Texture Hardware Assisted Rendering of Time-

Varying Volume Data, Proceedings of the Conference on Visualization, 263 – 270.

MA, K.L., PAINTER, J.S., HANSEN, C.D. AND KROGH, M.F. 1994, Parallel Volume Rendering

Using Binary Swap Image Composition, IEEE Computer Graphics and Applications, 14,

4, 59-68.

MA, K.L., SMITH, D., SHIH, M.Y. AND SHEN, H.W. 1998, Efficient Encoding and Rendering

of Time-Varying Volume Data, Technical report, TR-98-22, ICASE, NASA Langsley

Research Center.

195

REFERENCES

MA, K.L., LUM, E.B. AND MURAKI, S. 2003, Recent Advances in Hardware-Accelerated

Volume Rendering, Computers & Graphics, 27, 5, 725 – 734.

MEAGHER, D. 1982, Geometric Modeling Using Octree Encoding, Computer Graphics Image

Processing, 19, 129 – 147.

MEISSNER, M., HOFFMANN, U. AND STRASSER, W. 1999, Enabling Classification and Shading

for 3D Texture Mapping based Volume Rendering using OpenGL and Extensions,

Proceedings of IEEE Visualization, 207 – 214.

MEISSNER, M., HUANG, J., BARTZ, D., MUELLER, K. AND CRAWFIS, R. 2000, A Practical

Evaluation of Popular Volume Rendering Algorithms, Proceeding Volume Visualization

and Graphics Symposium, 81 – 90.

MEISSNER, M., KANUS, U., WETEKAM, G., HIRCHE, J., EHLERT, A., STRASSER, W., DOGGETT,

M., FORTHMANN, P. AND PROKSA, R. 2002, VIZARD II, a Reconfigurable Interactive

Volume Rendering System, Proceedings of the Eurographics Workshop on Graphics

Hardware, 137–146.

MUELLER, K., SHAREEF, N., HUANG, J. AND CRAWFIS, R. 1999, High-quality Splatting on

Rectilinear Grids with Efficient Culling of Occluded Voxels, IEEE Transaction on

Visualization and Computer Graphics, 116 – 134.

NEOPHYTOU, N. AND MUELLER, K. 2002, Space-Time Points: 4D Splatting on Efficient Grids,

Proceedings of the IEEE Symposium on Volume Visualization and Graphics, 97 – 106.

196

REFERENCES

NEUMANN, U. 1994, Communication Costs for Parallel Volume Rendering Algorithms, IEEE

Computer Graphics and Applications, 14, 4, 49 – 58.

NIEH, J. AND LEVOY, M. 1992, Volume Rendering on Scalable Shared-Memory MIMD

Architecture, Proceedings of Workshop on Volume Visualization, 17 – 24.

PALMER, M.E., TAYLOR, S. AND TOTTY, B. 1997, Exploiting Deep Parallel Memory

Hierarchies for Ray Casting Volume Rendering, Proceedings of the Parallel Rendering

Symposium, 15 – 22.

PAWASAUSKAS, J. 1997, Volume Visualization with Ray Casting,

http://www.cs.wpi.edu/~matt/courses/cs563/talks/powwie/p1/ray-cast.htm, WPI, SC.

PFISTER, H., HARDENBERGH, J., KNITTEL, J., LAUER, H. AND SEILER, L. 1999, The VolumePro

Real-time Ray-casting System, Proceedings of SIGGRAPH’99, 251 – 260.

PHONG, B.T. 1975, Illumination for Computer Generated Pictures, Communications of the

ACM, 18, 6, 311 – 317.

PLESNIAK, W., HALLE, M., PIEPER, S.D., WELLS, W., JAKAB, M., MEIER, D.S., BENTON, S.A.,

GUTTMANN, R.G. AND KIKINIS, R. 2003, Holographic Video Display of Time-Series

Volumetric Medical Data, IEEE Visualization, 589 – 596.

PORTER, T. AND DUFF, T. 1984, Compositing Digital Images, Computer Graphics, 18, 3, 253

– 259.

197

REFERENCES

RA, J.B., KWON, S.M., KIM, J.K., YI, J., KIM, K.H., H. PARK, W., KYUNG, K.U., KWON, D.S.

et al. 2002, Spine Needle Biopsy Simulator Using Visual and Force Feedback, Computer

Aided Surgery, 7, 6, 353 – 363.

RAMAKRISHNAN, R. AND GEHRKE, J. 2000, Database Management Systems, 2nd edition,

McGraw Hill.

RIEDERER, S.J. 2000, Current Technical Development of Magnetic Resonance Imaging,

IEEE Engineering in Medicine and Biology Magazine, 19, 5, 34 – 41.

ROBB, R.A. 1995, Three-Dimensional Biomedical Imaging: Principles and Practice, VCH

Publishers, Inc.

SALISBURY, J. AND KENNETH, JR. 1998, The Heart of Microsurgery, Mechanical Engineering,

46 – 51.

SAMET, H. AND WEBBER, R.E. 1988, Hierarchical Data Structures and Algorithms for

Computer Graphics I Fundamentals, IEEE Computer Graphics and Applications, 8, 3, 48

–68.

SCHROEDER, W., MARTIN, K. AND LORENSEN, B. 1998, The Visualization Toolkit, 2nd edition,

Prentice Hall PTR.

SHEN, H.W. AND JOHNSON, C.R. 1994, Differential Volume Rendering: a Fast Volume

Visualization Technique for Flow Animation, Proceedings of the Visualization

Conference, 180–187.

198

REFERENCES

SHEN, H.W., CHIANG, L.J. AND MA, K.L. 1999, A Fast Volume Rendering Algorithm for

Time-Varying Fields Using a Time-Space Partitioning (TSP) Tree, Proceedings of the

Conference on Visualization, 371–377.

SOBIERAJSKI, L., COHEN, D., KAUFMAN, A.E., YAGEL, R. AND ACKER, D. 1993, A Fast

Display Method for Volumetric Data, The Visual Computer, 116 – 124.

SOHN, B.S., BAJAJ, C. AND SIDDAVANAHALLI, V. 2002, Feature Based Volumetric Video

Compression for Interactive Playback, Proceedings of the IEEE Symposium on Volume

Visualization and Graphics, 89 – 96.

SOHN, B.S., BAJAJ, C. AND SIDDAVANAHALLI, V. 2004, Volumetric Video Compression and

Interactive Playback, Computer Vision and Image Understanding, 96, 3, 435 – 452.

SRAMEK, M. 1994, Fast Surface Rendering from Raster Data by Voxel Traversal Using

Chessboard Distance, Proceedings of the Conference on Visualization, 188 – 195.

TEOH, S.H. 2005, Virtual Spine Workstation, Technical Report, R-265-000-184-305,

National University of Singapore.

TORY, M., RÖBER, N., MÖLLER, T., CELLER, A. AND ATKINS, M.S. 2001, 4D Space-Time

Techniques: A Medical Imaging Case Study, Proceedings of IEEE Visualization, 473 –

476.

TUY, H.K. AND TUY, L.T. 1984, Direct 2-D Display of 3-D Objects, IEEE computer Graphics

and Applications, 4, 29 – 33.

199

REFERENCES

UPSON, C. AND KEELER, M. 1990, The V-Buffer: Visible Volume Rendering, Computer

Graphics, 22, 4, 59 – 64.

WANG, Z.L., MA, X., ANG, M.H. JR., CHUI, C.K., ANG, C.H. AND NOWINSKI, W.L. 2001, A

Virtual Environment-Based Practical Surgery System, Asian Conference on Robotics and

its Applications, 69 – 73.

WANG, Z.L., CHUI, C.K., CAI, Y., ANG, C.H. AND NOWINSKI, W.L. 2002, Fast PC-based

Visualization Algorithms for Virtual Reality Simulation of Microsurgical Procedures,

Proceedings of International Conference on Biomedical Engineering (ICBME).

WANG, Z.L., CHUI, C.K., ANG, C.H., LI, Z. AND NOWINSKI, W.L. 2002, Shear-Warp Volume

Rendering Algorithm using Linear Level Octree for PC-based Medical Simulation,

Proceedings of International Conference on Medical Imaging Computing and Computer

Assisted Intervention (MICCAI), LNCS, 2489, 2, 606 – 614.

WANG, Z.L., CHUI, C.K., CAI, Y.Y. AND ANG, C.H. 2004, Multidimensional Volume

Visualization for PC-Based Microsurgical Simulation System, Proceedings of ACM

SIGGRAPH International Conference on Virtual Reality Continuum and its Applications

in Industry (VRCAI), 309 – 316.

WANG, Z.L., CHUI, C.K., CAI, Y.Y., ANG, C.H. AND TEOH, S.H. 2005, Dynamic Linear Level

Octree-Based Volume Rendering Methods for Interactive Microsurgical Simulation, to

appear International Journal of Image and Graphics.

200

REFERENCES

WANG, Z.L., TEO, J.C.M., CHUI, C.K., ONG, S.H., YAN, C.H., WANG, S.C., WONG, H.K. AND

TEOH, S.H. 2005, Computational Biomechanical Modeling of the Lumbar Spine Using

Marching-Cubes Surface Smoothened Finite Element Voxel Meshing, Computer

Methods and Programs in Biomedicine, 80, 1, 25 – 35.

WESTOVER, L. 1989, Interactive Volume Rendering, Proceedings of the Chapel Hill

Workshop on Volume Visualization, 9 – 16.

WESTOVER, L. 1990, Footprint Evaluation for Volume Rendering, ACM SIGGRAPH

Computer Graphics, 24, 4, 367 – 376.

WESTOVER, L. 1991, Splatting - A Parallel, Feed-Forward Volume Rendering Algorithm,

PhD thesis, University of North Carolina.

WHANG, K.Y., SONG, J.W., CHANG, J.W., KIM, J.Y., CHO, W.S., PARK, C.M. AND SONG, I.Y.

1995, Octree-R: An Adaptive Octree for Efficient Ray Tracing, IEEE Transactions on

Visualization and Computer Graphics, 1, 4, 343 –349.

WILFRED, C.G.P., LOUIS, A.G. AND DALLAS D.P. 2002, Percutaneous Vertebroplasty for

Severe Osteoporotic Vertebral Body Compression Fractures, Radiology, 223, 121 – 126.

WILSON, B., MA, K.L. AND MCCORMICK, P.S. 2002, A Hardware-Assisted Hybrid Rendering

Technique for Interactive Volume Visualization, Proceedings of the IEEE Symposium on

Volume Visualization and Graphics, 123 – 130.

201

REFERENCES

WOODRING, J. AND SHEN, H.W. 2003, Chronovolumes: A Direct Rendering Technique for

Visualizing Time-Varying Data, Proceedings of the Eurographics/IEEE TVCG

Workshop on Volume Graphics, 27 – 34.

WU, Y., BHATIA, V., LAUER, H. AND SEILER, L. 2003, Shear-Image Order Ray Casting

Volume Rendering, Proceedings of the symposium on Interactive 3D graphics, 152 – 162.

YAGEL, R. 1999, Efficient Techniques for Volume Rendering of Scalar Fields, Data

Visualization Techniques, Edited by C. Bajaj, Chichester: Wiley.

YAGEL, R. AND MACHIRAJU, R. 1995, Data Parallel Volume Rendering Algorithms, The

Visual Computer, 11, 6, 319 – 338.

ZHANG, T., RAMAKRISHNAN, R. AND LIVNY, M. 1996, BIRCH: An Efficient Data Clustering

Method for Very Large Databases. Proceedings of ACM International Conference on

Management of Data, 103 – 114.

202

Appendix A

Space and Time Complexity of Linear
Level Octree

A.1 Space Savings of Linear Level Octree

The results shown in Chapter 3 demonstrate the superiority of linear level octree (LLO) in

space savings as compared to the raw volume data. In this section, we analyze the space

efficiency of LLO over linear octree (LO).

Let mLO be the number of bits required by a black node in LO, then

 (A.1)])[log1(3 2 nnmLO ++=

where n is the resolution.

The location code of LLO can be implemented using a variable number of bits. Let mLLO be

the number of bits required by a L-th level node in LLO, then

A-1

APPENDIX A. SPACE AND TIME COMPLEXITY OF LLO

 (A.2)])[log1(3 2)(LLm LLLO ++=

The table below compares the space requirement of the LLO nodes and LO nodes.

Table A.1 Comparison of space usage of LLO and LO (n = 10)

Level of node (L) 1 2 3 4 5 6 7 8 9 10

No. of Bits 4 8 11 15 18 21 24 28 31 34
LLO

No. of Bytes 1 1 2 2 3 3 3 4 4 5

No. of Bits 34 34 34 34 34 34 34 34 34 34
LO

No. of Bytes 5 5 5 5 5 5 5 5 5 5

Let R(LLO/LO) be the reduction ratio in space required by LLO versus LO, MLLO and MLO be the

number of bits required by all nodes in LLO and LO respectively, then

 (A.3) ∑ ∑
= =

++⋅=⋅=
L L

LLLLOLLLO LLKmKM
1 1

2)(])))[log1(3(()(
n n

NnnNmM LOLO (A.4) ⋅++=⋅=]))[log1(3(2

where KL is the number of nodes in L-th level, N is the number of nodes in LO. The space

reduction ratio is:

A-2

APPENDIX A. SPACE AND TIME COMPLEXITY OF LLO

Nnn

LLKNnn

MMM
n

L
L

LOLLOLO

⋅++

++⋅−⋅++
=

−=

∑
=

]))[log1(3(

])))[log1(3(()]))[log1(3((

/)(

2

1
22

R LOLLO)/(

 (A.5)

Based on the experimental results reported in [Chui et al. 1991], a reduction in space

requirement ranging from 22 – 42% can be achieved. The memory space required using

LLO is much less than that of LO for the same object.

A.2 Complexity Analysis of the LLO Generation Algorithm

The time complexity of the algorithm of LLO generation is dependent on the number of

nodes. According to the leaf node criteria given in Chapter 3, the size of the smallest octant

is 2l and the number of levels will not exceed (n – l + 1). Therefore, there are

leaf octants initially for a volume with size 2

lnln −− = 8)2(3

n. The basic operation of the algorithm is to

merge eight adjacent smaller octants into a bigger octant. Suppose the processing time of

each operation is identical, say T0. Then the time taken for merging eight adjacent octants at

level (n – l) to one node at (n – l – 1) is:

 18 −−
−

ln
ln

00 8
8

⋅=⋅=l TTT (A.6)

As the merge operation propagates up level by level, the time is reduced by a factor of 8 in

each level. Hence the total time of LLO generation can be expressed as follows:

A-3

APPENDIX A. SPACE AND TIME COMPLEXITY OF LLO

ln

ln

ln

ln
li

i

T

T

TTT

−

−

−

−−
=

⋅<

−⋅⋅=

++++⋅⋅== ∑

8
7

)
8

11(
7

8

)
888

1(8

0

0

120 Lln
n

−−
− 1111
1

 (A.7)

Therefore, the time complexity of the LLO generation algorithm is O(8n-l).

A-4

Appendix B

LLO-based Multimodality Volume
Rendering

B.1 Introduction

Multimodality volume rendering is an important branch of volume visualization providing

additional valuable insights of medical images. With the development of medical image

acquisition techniques, many modalities of medical imaging are available and they are good

at presenting different tissues or structures of human body. It is desirable to integrate

important characteristics of multiple volume datasets acquired from the same anatomy into a

single visual representation to get more comprehensive information about the interested

structures.

Octrees are efficient in set-theoretic operations. If multiple datasets have been encoded in

linear level octree (LLO) representations, they can be easily fused by simple octree “OR”

operations. In particular, since the empty regions are already excluded from the encoding of

B-1

APPENDIX B. LLO-BASED MULTIMODALITY VOLUME RENDERING

LLO, many redundant operations required in traditional volume integration such as to merge

a sub-volume with an empty space can be effectively avoided. The integration of multiple

LLOs, therefore, can be very fast. Additionally, due to the small size of LLOs as compared

to the volume data, the employment of LLO in rendering also reduces the memory

requirement.

The LLO-based volume rendering algorithm is, therefore, extended to support rendering

multimodality volume images. An interactive visualization of multiple modalities can be

achieved through fast online LLO integration.

B.2 Method

Before rendering, it is necessary for multiple datasets to go through registration18 and re-

sampling to ensure that the datasets are aligned properly as well as having the same

dimensions. Then, they are converted to LLOs.

Multiple modalities could be integrated at the data pre-processing stage, the rendering stage

or the composition stage. An integration criterion, referred to as integration function, need to

be defined. Since the online integration is used in our solution, an integration function at the

rendering stage can be defined as:

 (B.1) BBBAAAI SSTSSTS ⋅⋅+⋅⋅=)()(βα

where:

18 Registration is the process of transforming the different sets of data into one coordinate system.

B-2

APPENDIX B. LLO-BASED MULTIMODALITY VOLUME RENDERING

SA and SB are samples from volume datasets A and B respectively at the same location;

SI is the integrated sample value;

TA and TB are the opacity transfer functions of volumes A and B respectively. Their

values are dependent on the sample values;

α and β are the integration factors.

A lookup table of the integration factors as shown in Table B.1 is employed for efficient

multimodality integration.

Table B.1 Integration factor lookup table

Intensity value α β

1 0.6 0.4

2 0.2 0.8

… … …

The boundary condition, α + β ≤ 1, is applied. It guarantees the value of the integrated

sample will not be overflowed. Similar to the opacity transfer functions, the integration

factors are also dependent on the sample values. Samples of different intensities are

weighted differently so as to provide flexible multimodality rendering.

B-3

APPENDIX B. LLO-BASED MULTIMODALITY VOLUME RENDERING

As shown in Equation B.1, the integration factors are working together with the opacity

transfer functions. Firstly, an opacity transfer function of each volume dataset determines the

intensity ranges of samples that are to be seen and how transparent they appear. The

integration factors then determines how samples from the each volume can contribute to the

final image. This mechanism makes it possible that structures from different modalities can

be interactively and selectively visualized together without confusion.

B-4

Appendix C

Error Metrics Computation in DLLO

C.1 Introduction

We take advantage of the spatial and temporal coherence of the time-varying volume data

through dynamic linear level octree to accelerate the rendering speed and reduce the space

and I/O requirement, where octant variance is used to measure the spatial coherence and the

normalized Euclidean distance (NED) is used to measure the temporal coherence. The

computation of octant variance and NED could be expensive. However, in some cases, it is

not necessary to calculate these two error metrics from scratch by accessing all of the voxel

values repeatedly. In this appendix, we will derive the formulas for efficient evaluation of

the error metrics. These formulas have been given in the text without derivation.

C.2 General Variance Computation

Assume D1 and D2 are two sets of points, where D1 includes n1 points with mean of µ1 and

variance of σ 2
1 and D2 includes n2 points with mean of µ2 and variance of σ 2

2. We deduce

C-1

APPENDIX C. ERROR METRICS COMPUTATION IN DLLO

the equations for the computation of the mean µ and variance σ 2 of set D = D1 ∪ D2 as

follows.

Obviously, the mean of set D can be easily computed as Equation C.1.

21 nn +

=µ 2211 nn + µµ (C.1)

Based on the definition of variance, the variance of set D can be computed as Equation 3.3.

 ∑∑
= ∈

−
+

=
121

)(
i Dx i

x
nn

µσ
2

22 1

2
2

 (C.2)

where

 (C.3)

∑∑ ∑ ∑∑∑

∑∑

∑∑

= ∈ = = ∈∈

= ∈

= ∈

−−+−+−=

−+−=

−

2

1

2

1

2

1

22

2

1

2

1

))((2)()(

)(

)(

i Dx i i Dx
ii

Dx
ii

i Dx
ii

i Dx

i ii

i

i

xx

x

x

µµµµµµ

µµµ

µ

and

C-2

APPENDIX C. ERROR METRICS COMPUTATION IN DLLO

()

0

)(

)(

)()())((

2

1

2

1

11

22

=

−−=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

−−=−−

∑

∑ ∑ ∑

∑ ∑∑∑

=

= ∈ ∈

= ∈= ∈

i
iiiii

i Dx Dx
ii

i Dx
ii

i Dx
ii

nn

x

xx

i i

ii

µµµµ

µµµ

µµµµµµ

 (C.4)

Together with Equations 3.3, C.3 and C.4, we get the equation for the computation of the

variance of set D:

() ([]2

22
2

112
2

21
2

1
21

1 1

22

21

2

1

)()(

µµµµσσ

µµµσ

−+−++
+

=

⎥
⎦

⎢
⎣

−+−
+

= ∑∑ ∑∑
= ∈ = ∈

nnnn
nn

x
nn i Dx i Dx

ii
i i

)

2 21 ⎤⎡

U
N

iD
1=

=

()

 (C.5)

This method can be extended for the computation of mean and variance of a set united from

more than two sets. Assume Di is one of N ≥ 2 sets of points, where Di includes ni points

with mean of µi and variance of σ 2
i. The mean and variance of set D can be

computed based on Equations C.6 and C.7 below, respectively.

i

∑

∑

=

== N

i
i

i
ii

n

n

1

1
µ

µ

N

()

 (C.6)

[]

∑

∑

=

=

−+
= N

i
i

i
iiii

n

nn

1

12
µµσ

σ

N
22

 (C.7)

C-3

APPENDIX C. ERROR METRICS COMPUTATION IN DLLO

C.3 Octant Variance Computation

In the algorithm of LLO/DLLO generation, when we try to merge eight octants into a bigger

octant at a higher level, the variance of the parent octant needs to be computed and compared

with a variance threshold (spatial error tolerance) to determine if the merged octant satisfies

the leaf node criterion. Let us assume the mean and variance of the eight child octants as µi

and σ 2
i, where i is an integer from 1 to 8 for each octant. Since the eight child octants are at

the same octree level, they contain the same number of voxels, say n0. According to

Equations C.6 and C.7, we can compute the mean and variance of their parent octant as

follows:

 ∑
∑

=

= ==
8

10

1
0

8
1

8 i
i

i
i

n

n
µ

µ
µ

8

()[]

 (C.8)

 ([∑
∑

=

= −+=
−+

=
8

1

22

0

1
00

2

8
1

8 i
ii

i
ii

n

nn
µµσ

µµσ
σ)]

8
22

 (C.9)

In Equation C.9, we avoid the access of voxel values, and the variance of a parent octant can

be computed efficiently based on the mean and variance values of its eight child octants.

These two equations are essentially the formulas we used in Chapter 3.

C.4 Computation of the Normalized Euclidean Distance between Octants

In the generation of a DLLO, the normalized Euclidean distance is used to evaluate the

similarity between the corresponding leaf octants from two time successive LLOs. Let us

assume there are two such leaf octants A and B. The means and variances of the two octants

C-4

APPENDIX C. ERROR METRICS COMPUTATION IN DLLO

are represented by µA and σ 2
A and µB and σ 2

B respectively, and the two octants contain n

voxels each. Based on the definition, the square of the Euclidean distance between them

should be computed as:

∑∑∑

∑
−+=

i
ii

i
i

i
i

i
ii

baba 222

−= baD)(22

 (C.10)

where, ai and bi are the ith voxel values of octants A and B respectively.

We know that the variance of octant A is defined as:

n

na
n

nna
n

aa
n

A
i

i

AA
i

i

i
Ai

i
A

i
i

i
A

22

222

22

2

2

2

µ

µµ

µµ

σ

−
=

−+
=

−+
=

=

∑

∑

∑∑∑

a Ai
2)(µ−∑

 (C.11)

Thus, we get

 222
AAi nna µσ +=

i
∑ (C.12)

Similarly, we can also derive Equation C.13 from the definition of the variance computation

of octant B.

C-5

APPENDIX C. ERROR METRICS COMPUTATION IN DLLO

 222
BBi nnb µσ +=

i
∑ (C.13)

Together with Equations C.12 and C.13, Equation C.10 can be rewritten as:

∑−+++= iiBBAA bannnnD 222222 µσµσ

νσ ≤2
A

22222 2 iABBAA bnnnnD µµσµσ −+++=

i

 (C.14)

If the variance of octant A is small (), we approximate the computation of the square

Euclidean distance between octants A and B by substituting ai with µA in Equation C.14.

Thus we get Equation C.15.

[]222

2222

)(

2

BABA

BABBAA

i

n

nnnnn

µµσσ

µµµσµσ

−++=

−+++=

∑
 (C.15)

If the variance of octant B is small (), we approximate the computation of the square

Euclidean distance between octants A and B by substituting b

νσ ≤2
B

i with µB in Equation C.14. We

also obtain the same Equation C.15.

Thus the normalized Euclidean distance between octant A and B, where either octant A or

octant B has homogeneous voxel values, can be estimated efficiently with Equation 3.7.

nn

NED BABA==
D 2222)(µµσσ −++ (C.16)

This is essentially the same formula we used in Chapter 3.

C-6

	Background
	Medical Image Modalities
	Visualization of Medical Images
	Volume Rendering versus Surface Rendering
	Organization
	Introduction
	Mathematical Models for Volume Rendering
	Three-Dimensional Volume Rendering
	Fundamental 3D Volume Rendering Algorithms and Optimizations
	Parallel Volume Rendering
	Hardware-Assisted Volume Rendering

	Four-Dimensional Volume Rendering
	Introduction
	Linear Level Octree
	Review of Octree in Volume Rendering
	LLO Labeling Scheme
	LLO Generation

	LLO-Based 3D Volume Rendering
	Overview
	LLO Traversal
	Adaptive Rendering

	Dynamic Linear Level Octree
	Overview
	DLLO Generation
	DLLO-Based 4D Volume Rendering

	Results and Discussion
	Summary
	Introduction
	Overview of the Algorithm
	Encoding
	Division
	Clustering
	Data Output
	Additional Processing

	Rendering – the Decoding Process
	MVD Rendering Algorithm
	Underlying Volume Renderers

	Global Coherence
	Results and Discussion
	Summary
	Introduction
	Interventional Radiology Procedures
	Background
	Catheterization Simulator

	Microsurgical Simulation System
	Background
	Craniotomy Simulator

	Virtual Spine Workstation
	Background
	Vertebroplasty Simulator

	Summary
	Introduction
	Comparison of Time-Varying Volume Rendering Algorithms
	DLLO-Based and Cluster-Based Time-Varying Volume Rendering A
	Time-Varying Volume Rendering Parallelization
	Parallelization of DLLO-Based 4D Volume Rendering
	Parallelization of Cluster-Based 4D Volume Rendering

	Summary
	Future Work
	Space Savings of Linear Level Octree
	Complexity Analysis of the LLO Generation Algorithm
	Introduction
	Method
	Introduction
	General Variance Computation
	Octant Variance Computation
	Computation of the Normalized Euclidean Distance between Oct

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

