

PARALLEL I/O SYSTEM FOR A CLUSTERED
COMPUTING ENVIRONMENT

LIU MING
(B.Eng, Harbin Institute of Technology)

A Thesis Submitted

For the Degree of Master of Science

School of Computing

National University of Singapore

Jan 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628851?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ACKNOLEDAGEMENTS

 First, I’d like to thank A/P Wong Weng Fai, my supervisor for all his

guidance, support and direction.

 Thank my thesis examiners, A/P Teo Yong Meng and A/P Yap Hock Chuan

Roland

 Thank the PVFS staff for the assistance.

 Thank the Myrinet team for the help.

 Thanks all my friends for helps and cares.

 i

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION... 1

1.1 Contributions... 3
1.2 Outline.. 4

CHAPTER 2. BACKGROUND AND RELATED WORKS............................... 5

2.1 File System ... 5
2.1.1 Hierarchical Name Space .. 6
2.1.2 Access Model .. 6

2.2 RAID .. 7
2.2.1 RAID-0 .. 8
2.2.2 RAID-1 .. 8
2.2.3 RAID-2 .. 9
2.2.4 RAID-3 .. 9
2.4.5 RAID-4 .. 10
2.4.6 RAID-5 .. 11

2.3 Distributed File Systems... 12
2.4 Parallel File System... 13

2.4.1 Striping.. 13
2.4.2 Structure ... 15
2.4.3 File access.. 15
2.4.4 Buffer .. 16
2.4.5 System Reliability... 17
2.4.6 Some File Systems .. 18

CHAPTER 3. SYSTEM DESIGN AND IMPLEMENTATION....................... 23

3.1 PVFS... 23
3.1.1 System Structure .. 23
3.1.2 Advantages and Vulnerabilities.. 27

3.2 System design and implementation ... 28

CHAPTER 4. RESULTS .. 34

4.1 Test Environment.. 34
4.2 Test Components... 35

4.2.1 PVFS.. 36
4.2.2 Twin-PVFS ... 41
4.2.3 Serial Access ... 45
4.2.4 Parallel Access .. 46
4.2.5 Journaling ... 50
4.2.6 Network overhead .. 53

 ii

4.2.7 iozone... 54
4.3 Results summary ... 55

CHAPTER 5. CONCLUSIONS ... 57

5.1 Conclusions .. 57
5.2 Future works ... 58

BIBLIOGRAPHY... 60

APPENDICES... 66

I. TOP 10 SUPERCOMPUTERS, RELEASED IN SC2005. 66

 iii

Summary

Clustered computer systems become most vigorous star in this high level

computing game due to its high performance and low cost. In this environment, a

parallel file system is well adopted to obtain higher performance. Most parallel file

systems are trying to pursue the speed, the performance. For high-level computing,

system availability is also a big issue that should be considered.

To evaluate the influence coming with the system availability, we should

experiment a parallel file system and a revised system with the availability based on

the former then compare performance differences. Journaling and redundancy are two

main techniques in this domain. In this thesis, we choose a popular parallel file

system, the Parallel Virtual File System, as the prototype to primarily evaluate the

effects on systems after bringing in the availability. We mount 2 PVFS systems on a

client to build up a Twin-PVFS and use our own API functions to implement the

RAID-1 Level redundancy evaluate its influences. First, a series of tests in different

situations, such as the data file size, network and the number of I/O node, is designed

to totally measure the performance of PVFS. Then we choose some data that are

proper to be compared and test our Twin-PVFS and the original PVFS on the same

circumstances and parameters. For the comparability, a parallel access mode with

PVFS API also has been tested. The journaling mode was presented also. The test

result shows that this availability reduces the system performance a lot but this

influence differs in the specific situations, i.e. the network bandwidth and the file data

size.

 iv

LIST OF FIGURES

Figure 2-1 RAID-0.. 8
Figure 2-2 RAID-1.. 9
Figure 2-3 RAID-2.. 9
Figure 2-4 RAID-3.. 10
Figure 2-5 RAID-4.. 11
Figure 2-6 RAID-5 Left-Symmetric Parity... 12
Figure 2-7 Disk striping .. 14
Figure 3-1 PVFS Overview .. 24
Figure 3-2 Data flow on PVFS ... 26
Figure 3-3 Data Flow Through Kernel ... 26
Figure 3-4 Partitioning parameters ... 27
Figure 3-5 Twin PVFS.. 29
Figure 4-1 PVFS Small File Performance with Ethernet.. 37
Figure 4-2 PVFS middle File Performance with Ethernet.. 38
Figure 4-3 PVFS Large File Performance with Ethernet.. 38
Figure 4-4 PVFS Small File Performance with Myrinet .. 39
Figure 4-5 PVFS Middle File Performance with Myrinet .. 40
Figure 4-6 PVFS Large File Performance with Myrinet .. 40
Figure 4-7 Small File Performance... 42
Figure 4-8 Middle File Read Performance ... 42
Figure 4-9 Large File Read Performance.. 43
Figure 4-10 Small File Write Performance... 43
Figure 4-11 Middle File Write Performance .. 44
Figure 4-12 Large File Write Performance... 44
Figure 4-13 Middle file serial access performance on Ethernet 45
Figure 4-14 Large file serial access performance on Ethernet 45
Figure 4-15 Middle file serial access performance on Myrinet.................................. 46
Figure 4-16 Large file serial access performance on Myrinet 46
Figure 4-17 Small file performance in parallel mode on Ethernet 47
Figure 4-18 Middle file performance in parallel mode on Ethernet 47
Figure 4-19 Large file performance in parallel mode on Ethernet 48
Figure 4-20 Small file performance in parallel mode on Myrinet 48
Figure 4-21 Middle file performance in parallel mode on Myrinet............................ 49
Figure 4-22 Large file performance in parallel mode on Myrinet 49
Figure 4-23 Middle file write performance on PVFS with 4 nodes 50
Figure 4-24 Large file write on PVFS with 4 nodes... 51
Figure 4-25 Serial middle file write.. 51
Figure 4-26 Serial large file write... 52

 v

Figure 4-27 Middle file network overhead ... 53
Figure 4-28 Large file network overhead ... 53
Figure 4-29 IOZONE Test on Myrinet ... 54
Figure 4-30 IOZONE Test on Ethernet .. 54

 vi

Chapter 1. Introduction

Modern science and commerce require high computation capability and large

storage capacity more and more. Therefore, they are always one of the driving forces

to accelerate the computer development. Fortunately developing processing

techniques make them possible. The computation speed of order of magnitude of

GFlops and the storage devices of order of magnitude of TBytes introduce the

computers into some extreme complicated computation, such as the Earth simulation

[1], weather forecasting [2], and the nuclear weapon simulation [3].

Nowadays, a personal computer (PC) with a powerful single chip containing

about 1 hundred million transistors (or more) can exceed several time-shared

behemoths of dozens years ago. To achieve the increasing needs for high

performance, clustered PCs become a cheap and proper solution.

The first PC-based cluster was born in the Earth and Space Sciences project at

NASA, 1994[4]. A parallelized computer system, especially a cluster in this thesis,

means that this super power computer locally consists of many parallelized

workstations, even PC’s connected by a local high-speed network switch. These

computers have their own independent CPU’s, memories, I/O systems. Each CPU

also does only a part of job parallel, exchanges the data with their own memory and

saves the results in their own disks or later moves them to other devices. The fastest

Linux cluster in the world is Thunderbird in Sandia National Laboratory of U.S.A.

with Dell PowerEdge Cluster. The list of cluster systems in the TOP10 of 2005 Nov,

 1

see the Appendices, shows that IBM eServer has succeeded in the highest computing.

But the number of clusters in the full TOP500 grew also again strongly, 360 of 500

use cluster architecture. These systems are built with workstations or PCs as building

blocks and often connected by special high-speed internal networks. This makes

clustered systems the most common computer architecture seen in the TOP500. The

importance of this market can also be seen by the fact that most manufacturers are

now active in this market segment [6]. This trend is more apparent because building a

super cluster will extremely reduces the cost and time on the design of supercomputer

hardware architecture and dedicated software. Thus a cluster can be a poor men’s

supercomputer. Hence the total amount of its disks capacities can reach the order of

magnitude of Tbytes. It may be enough to store the necessary data by a parallel file

system. In this paper the term, “the Parallel file system” refers in particular to “the

Cluster file system”.

High performance computing ordinarily processes a large amount of data.

New modern multimedia applications also require I/O devices with high bandwidth.

Unfortunately after improvements of decades, the data transfer rate of a single hard

disk is still lower than we expect. A single local file server can not satisfy large

numbers of high bandwidth applications, such as Video-on-demand (VoD) with

MPEG-1/2/4 quality, the earth geography science. The disk speed becomes the

bottleneck after solving the low network bandwidth. Borrowed the concept from

RAID, a cluster can use stripe technique to obtain higher data throughput.

This clustered file systems obtain great bandwidth, balance those computers’

load, but it also brings us a big problem, the reliability. Unlike distributed file system

 2

[5], fault tolerance is not the first aim of parallel file systems. If one of those nodes

breaks down the files on this cluster will be fragmentary. If the data can’t be

recovered, it’ll be an unacceptable disaster.

1.1 Contributions

The Parallel Virtual File System (PVFS) [28] is a popular file system for

clusters. It has some common features of a typical parallel file system, i.e. high

bandwidth, segmented files, balanced loading and faster access speed. But it also has

some disadvantages we will recount later.

Perhaps one of the most insufferable weaknesses is none-redundancy. In high

performance computing, data processing costs a lot of time. Any data loss in

processing, such as processes hang up, operating system breaks down, bad sectors on

disks, other hardware fail, might ruin the whole work. In a single computer, it might

happen rarely; in a huge cluster with many relatively independent computers, the risk

of data loss will be consumedly increased.

A failure of an I/O node will cause the failure of the whole cluster because the

data is distributed over the cluster. The objective of this dissertation is to evaluate the

performance effects after adding RAID-1 mode to PVFS to obtain higher availability,

reliability and redundancy. At the beginning we build up a cluster and install PVFS

on it with different nodes respectively and do a series of tests. We simply mount 2

PVFS on a client machine and use our own API to access PVFS in parallel to

simulate RAID-1 mode, called Twin-PVFS, with the same environments above and

do the same tests. It’s assumed that the newcome availability will take more I/O

 3

operations on the system and the system might be slowed down but it is not clear in

our mind how the influence will be in detail. We will not wonder if its performance is

not better than the prototype. After analyze the results of tests, we can evaluate the

effects on PVFS this new feature takes. Because the PVFS stripes file data across

multiple servers like RAID-0, after introducing this additional RAID-1 mode, this

Twin-PVFS becomes RAID-01 mode. That means one of I/O node is down, its twin

can still work. This ensures that the whole file system is still working. To simplify

this project, the main structure of the PVFS is still adopted in this revision.

The main difference with CEFT-PVFS [36][37] briefed in the next chapter, is

that our system is based on the mount function of PVFS which the latter two systems

have thrown away. This approach migh be slow, a parallel access mode with PVFS

API is used to contrast.

1.2 Outline

The rest of this thesis is organized in the following way. In Chapter 2 we

explore the background, the history and the current state of arts of file system. Topics

include file system, disk storage system, distributed file system and parallel file

system. Chapter 3 focuses on the presentation of the prototype of our system, i.e.

PVFS and our revision. The system performance and comparison with the PVFS are

measured and analyzed in Chapter 4. The concluding chapter summarizes our results

and forecast the future works of PVFS.

 4

Chapter 2. Background and Related works

In this Chapter we provide background, basic concepts and some related

works about the file systems, especially the Parallel File System.

2.1 File System

Usually a file is used to store data on the storage devices by application

programs. A file system is the software that creates some abstractions including not

only files and directories but also access permissions, file pointers, file descriptors,

and so on. File systems have other duties as well [7]:

 Moving data efficiently between memory and storage devices

 Coordinating concurrent access by multiple processes to the same file

 Allocating data blocks on storage devices to specific files and reclaiming

those block s when files are deleted

 Recovering as much data as possible if the file system becomes corrupted

The file system isolates the applications from the low-level management of

the storage medium and ensures that concurrent applications do not interfere with

another. Applications refer to the files by their names which are textual strings.

 5

2.1.1 Hierarchical Name Space

A file system is built as a tree with a single root node, the root / ; each node in

this tree is either a file or a directory, every non-leaf node is a directory and every leaf

node can be one of directories, regular files or special device files. A file name is

given by a path name that describes how to locate this file in the file system hierarchy.

Thus, a full path name includes a path name and a file name.

The file system treats file data as an unformatted stream of bytes; directories

are also considered as regular files in the low-level respect, the system treats a

directory as a byte stream, but these directory data contain the file names in the

directory in a special format so that the programs can find the files in a directory.

2.1.2 Access Model

Which file can be accessed is controlled by Access Permissions mechanism.

There are three classes of users to implement read, write and execute permissions: the

file owner, a file group and the others.

When a program opens a file, the file system assigns a unique pointer and a

unique file descriptor to it [8]. This pointer is an integer that points a position at

which the next byte will be read or written. A file descriptor is an integer which the

program uses for subsequent references to the files. In Unix-like file system, each

inode (the index node) contains the information of the file data layout on the disk and

other information about the file owner, access permissions, access time and so on.

 6

When a program accesses a file by its file name, the file system parses the file

name and checks the permission to access the file and retrieve the file data. After an

application creates a new file, the kernel assigns it an unused inode. Inodes are stored

in the file system but the kernel reads them into an inode table when it manages files.

There are two other tables that are maintained by the kernel also, the file table

and the user file descriptor table [8]. These 3 tables control the file state and access

permission.

2.2 RAID

RAID, short for Redundant Arrays of Inexpensive Disks or Redundant Arrays

of Independent Disks, was proposed at the University of California, Berkeley in

1988[9]. This invention was to address the disk system performance and reliability

since the data transfer rate of a single disk can not suit the necessity of modern

computing. In the original paper, there are five RAID levels differing on the

performance characteristics and the ways to replicate data, RAID-0, RAID-1, RAID-2,

RAID-3, RAID-4 and RAID-5. For some special applications, the combination of

some of those existing levels is introduced, such as RAID-10, RAID-53. In recent

years, RAID-6 with 2 parity disks and RAID-7 with the combination of hardware and

build-in software appear.

 7

2.2.1 RAID-0

In RAID-0 mode, the data is striped across the disk array without any

redundant information. The loss of a single disk will corrupt the whole data. This

simple design doesn’t supply a good availability but it supplies the good performance

because it doesn’t need to do some extra disk read or write to implement more

availability and compute some extra information. Recently benefiting from the

hardware price’s fall, even some PCs are equipped with these once-expensive devices.

Figure 2-1 RAID-0

2.2.2 RAID-1

RAID-1 uses a simple manner, disk mirroring, to implement the redundancy.

When data is written to a disk, the same info is written to its twin disk. Usually the

writing operation can be operated in parallel; the writing time for this RAID node is

just a little longer than one for a single disk. When data is read, it can be retrieved

from the disk with shorter queue, seek and rotational delays [10], because the read

transfer rate by retrieving alternate blocks from both disks in parallel. If a disk fails,

the another copy will take over the responsibility to finish the job. But this

improvement on the availability wastes too much because the whole disk array has

two identical parts. Mirroring is frequently used in database applications where

availability and transaction rate are more important than storage efficiency [11].

 8

Figure 2-2 RAID-1

2.2.3 RAID-2

RAID-2 uses Hamming codes containing parity information to provide higher

availability. Once a disk fails, the rest disks will find out which disk fails and give the

correct answer because Hamming codes can find the errors that happened to the file

data and correct it. This approach requires some additional disks to implement the

parity calculation and this calculation costs some system computing capacity.

Figure 2-3 RAID-2

2.2.4 RAID-3

RAID-3 is a simplified version of RAID-2. Instead of multiple ECC bits

applied in RAID-2, bit parity is used in RAID-3. This scheme consists of an array of

 9

disks for data and one unit for parity exclusively. The system XOR data bit by bit in

these sub-stripes to write an additional parity sub-stripe to the parity disk.

When each write request is operated, the whole stripe with parity is written to

the disk array in parallel. For read operation, only the data disks involve in it. If any

of disks fails, it restores the original data by an XOR between the redundant bits on

other disks and the parity disk. With RAID 3, all disks operate exactly simultaneously.

It requires that all of disks must have identical specifications to maximum the

performance. This is not a very effective method for accessing small amount of data,

but RAID 3 is rather suitable for specialized use where large block of data need to be

processed at high speed, as in supercomputers, multimedia warehouse.

Figure 2-4 RAID-3

2.4.5 RAID-4

RAID-4 adopts the block-interleaved parity disk array in which the data is

interleaved across disks in blocks of arbitrary size. Like RAID-3, it has a disk array to

store the file data and puts the parity data on a separate parity disk. Unlike RAID-3

with parallel read/write per operation, RAID-4 accesses some of disks individually.

 10

For read operations, firstly it determines which disk the requested block

resides on and then accesses them only, even only one disk is accessed for small files.

Write operations cause some overheads because of its individual access mode. To

write data to the disks, RAID-4 only updates those related disks and the parity disk. It

requires a series of operations:

1. read the old data from the sector being overwritten and the old parity from

the parity disk;

2. extract the old parity data using the XOR operation;

3. XOR the new file data and obtain the new parity data;

4. write the new data and the new parity data to the respective disks.

The main drawback of RAID-4 is that it stores all parity data on a single disk.

Write operations must read and then write the parity disk every time. Obviously, the

parity disk might be the bottleneck of the system easily. Thus, RAID-4 is not well

accepted in real systems.

Figure 2-5 RAID-4

2.4.6 RAID-5

RAID-5 appears as an improved RAID-4 with fully striped disk array. The

parity data is not stored on a single disk; it is distributed over the entire disk array.

This means each disk has the parity data of file data on other disks in interlace.

 11

Read operations only access those disks that have the required data. Write

operations have the same drawbacks with RAID-4; the process of read-modify-write

still affects the system performance for those applications that require high transfer

rates for write operations.

A good method, called left-symmetric parity distribution, was invented in [13],

has the best performance. The advantage of this method is that whenever we traverse

the striping units sequentially, we will access each disk once before accessing any

disk twice. This property reduces disk conflicts when servicing large requests [14].

Figure 2-6 RAID-5 Left-Symmetric Parity

2.3 Distributed File Systems

The file system we discussed above runs on a single machine. The concurrent

accesses to the same file are allowed after ensuring the sequential consistency.

A distributed file system makes it possible that many computers have a common

view on a file set or a file system. The first famous distributed file system should be

Network File System (NFS) developed by Sun Microsystems in 1985 [15]. NFS

allows computers connected each other by the network to share files. In NFS, the

computer sharing its files is a server, and a computer that accesses these files

remotely is a client. In other words, a computer can synchronously be a server for

 12

some files on its own machine and a client for some files that reside on other

machines. After mounting a directory and its subdirectories on the server in their own

directory hierarchy, the client accepts these remote files as a part of its directory

hierarchy and the programs on the client can access them as local data. When a client

is going to access the remote files, the file system on this client sends a request to the

server and gets the return. How these remote directories are located is transparent for

the user level.

2.4 Parallel File System

A parallel file system is a tightly coupled networked file system. It stripes file

data across many computers by a local network. After the stripe technique brings

higher data transfer rate, the disk transfer rate is no longer the system bottleneck if the

network is fast enough. However it also makes the file system more complex.

2.4.1 Striping

The fastest SCSI 320 can provide the maximum data transfer rate at over

100MB/s per disk [35] but a modern switch can provide the high bandwidth with

order of magnitude of Gbps or even Tbps. To achieve the supercomputer capacity, the

data transfer rate must be much faster.

The striping technology is the key to achieve high performance for a parallel

file system. The term striping is from the RAID prototype. It means that a collection

of data is allocated on several computers and each computer only stores a portion of

 13

file data. This striped data usually is split into a string of fixed size blocks that are

assigned cyclically to the nodes.

Figure 2-7 Disk striping

Two main parameters decide how this data will be distributed in the striping

scheme [7]:

 Stripe factor. This term means the number of disks in striping. It determines

the striping degree and further determines the parallelism degree, the data

transfer date.

 Stripe size. It is used to define those striped blocks size. For different tasks,

the requests may differ, some needed data are many small records and some

data are huge files. For the former, a small striping size will get a better

performance; for the latter, a big striping size will reduce the frequency of

sending read/write request. Therefore, some parallel file systems set striping

size as a variable to match different requirements.

 14

2.4.2 Structure

Unlike the server-less structure in some distributed file systems, most parallel

file systems use the client-server model. Compared with the Network File System,

this model can save network communications, reduce the system complexity but also

reduce the reliability because the server may crash down.

A server has the responsibility to manage the striped data info, i.e. the

metadata. Metadata, in a file system, refers to information describing the

characteristics of a file, such as permissions, the owner and group, and the physical

distribution of the file data [16]. In the case of a parallel file system, the file

distribution has more info, i.e. the file locations and the disk/node locations. Some of

nodes in the system are called I/O nodes or I/O processors. They are the warehouse to

store those file data. The rest of nodes, we call them the compute nodes/processors,

are designated to run the users’ applications.

2.4.3 File access

In a parallel file system, each I/O node only maintains a subset of a file [7].

Accordingly every file has an inode on every I/O node. To access a file in a parallel

file system, a process will get every inode of this file. There are two ways to achieve

this: the first one is to duplicate all of the directory information on each I/O node; the

second one is to set an across-nodes name server to solve the naming space. In the

former solution the data change in any I/O node is also done on other I/O nodes. It

causes frequent internal communications between I/O nodes. In the latter solution the

 15

name server takes the obligation to direct the processes. The processes only contact

the server to locate the required data and the changes of striped data on those I/O

nodes are recorded on this server. However, the whole file system relies on server

states. The reliability of this server is depressed.

Parallelized access has more complicated issues than the local access on the

sequential consistency. But basically it also uses the similar techniques in the local

file systems, such as lock, token ring. Since the file data is striped, the consistency

will cover two layers: the file layer and the striped file data. In Client/Server node, the

consistency on the file layer can be handled by the server and the consistency on the

striped data can be handles by the local file system. In Peer-Peer mode, the

consistency of these two layers is the responsibility of the manager daemon in the file

system.

2.4.4 Buffer

To improve the efficiency and accelerate the system, the buffer technique is

well adopted: firstly the data will be put into the buffer, a space in main memory,

when trying to read from or write to the disk. How to keep the consistency of the data

in the buffer and on the disk is a big issue in a local file system. We can imagine how

to keep the consistency between those nodes is a bigger problem. The striped and

shared data requires more complicated approach to solve this two levels puzzle. For

the well-used Client/Server mode, there are two types of buffer: the buffer on the

compute nodes and the buffer on the I/O nodes [12].

 16

2.4.5 System Reliability

In a local system, if a disk fails or the system crashes or the power supply is

lost while an application is in progress of writing, the file data and the inode info may

be in an inconsistent state, and when the system is rebooted the data in the memory

will be lost.

A parallel file system is a complicated and cooperated system with many

components. To finish huge amounts of works, usually it runs day to day. During its

running, any fault, from message timeout to broke-down I/O nodes or server, may

cause a string of troubles. Those striped data more complicate this problem, i.e. the

crash of one or more I/O nodes may cause the data incoherence and further the entire

file system may hang up.

To address this tragedy, each parallel file system chooses its own strategies to

maintain the data files and inodes in a coherent state since the avoidance/recovery

approaches are related to another issues of the file system.

 Redundancy

One machine may die sometimes; the probability of two machines crash

simultaneously must be much less. The main idea of this manner is to replicate

each I/O node so that every I/O node has at least a node to be the backup in this

system. Each replica of a file is stored on a different node. When a node fails, the

replicated copies of its files can be used to provide uninterrupted service to its

clients. This is a highly available and reliable solution, but also an expensive

solution because duplication slows down the system speed and wastes the storage

 17

space. A great revision of the duplication is the similar method like RAID. In

RAID-3, 4, 5, only one extra node with the parity is added so that the cost of

duplication on the performance and the I/O nodes are less.

 Logging/Journaling

We try to keep the consistency because we don’t know what will happen if a

system crashes, how many data has been saved. The approach to record this is

called logging or journaling. Any modification to the file data or inode info on the

disk would only take effect when the record that logs those actions is done. Those

logs are stored on an area of disk that contains the records that describe what is

changed in the file system and they are kept separate from the file structure they

describe to avoid losing the file data and its log together.

2.4.6 Some File Systems

High performance, scalability, high throughput and high availability are four

basic features of clusters [12]. But there is no perfect parallel file system in this world

that has all of these features concurrently. The usage of a cluster determines which of

them is requisite and which is dispensable. Science computing keeps driving high

performance; Business requires high availability; Web service needs high throughput.

A variety of requirements cause mixed products.

Intel’s Concurrent File System (CFS) [17], frequently cited as the canonical

first generation parallel file system, and its successor, PFS [18], are examples of file

systems that provide a linear file model to the applications, and offer a Unix-like

 18

mount interface to the data. There are four IO modes in CFS, 0, 1, 2, 3. By using

different IO modes, it is very easy to decompose the data across the disks.

Zebra [19] combines LFS (Log-structured File System) and RAID so that both

work well in a distributed environment. Zebra uses a software RAID on commodity

hardware (workstation, disks, and networks) to address RAID cost disadvantage, and

LFS batched writes provide efficient access to a network RAID. Furthermore, the

reliability of both LFS and RAID makes it feasible to distribute data storage across a

network. Several striping file systems, such as Bridge [20], strip data within

individual files, so only large files benefit from the striping. Each Zebra client

coalesces its writes into a private per client log. It commits the log to the disks using

fixed-sized log segments, each made up of several log fragments that it sends to

different storage server disks over the LAN. Log-based striping allows clients to

efficiently calculate parity fragments entirely as a local operation and then store them

on an additional storage server to provide high data availability. Zebra’s log-

structured architecture significantly simplifies its failure recovery. Like LFS, Zebra

uses checkpoint and roll forward to implement efficient recovery. Although Zebra

points the way toward serverlessness, several factors limit Zebra’s scalability. First, a

single file manager tracks where clients store data blocks in the log; the manager also

handles cache consistency operations. Second, Zebra relies on a single cleaner to

create empty segments. Finally, Zebra stripes each segment to all of the system’s

storage servers, limiting the maximum number of storage servers that Zebra can use

efficiently.

 19

Log-structured File System (LFS) [21] was developed at Berkeley. xFS is also

implements based on the LFS [22]. It provides high performance write, simple system

recovery and a flexible method to locate the file data. LFS treats the disk like an

appending log. This approach solves a big problem for the file system on small files

writes. It is feasible to implement soft RAID on this file system. LFS uses a data

structure, called imap to locate the inode. The imap which contains the current log

pointers to inodes is stored in memory and periodically saves the checkpoints to disks.

These checkpoints are the key to the system recovery. After a crash, only the

consistency of the log tail needs to be checked. LFS runs from the checkpoint and

update the metadata. Only the part of the log that last checkpoint creates since the

crash happened is used to recover. The main drawback of LFS is the log cleaning.

Sometimes it is the bottle in a system [23][24] .

The General Parallel File System [25][26] developed by IBM was designed to

achieve high bandwidth for concurrent access to a single file, especially for sequential

access patterns. GPFS is implemented as a lot of separate software subsystems or

services. Each service may be distributed across multiple nodes within an SP system.

GPFS is also a client-server cache design and consistency is maintained by the token

manager server. This is employed for scalability reasons: distributing the task to the

mmfsd reduces serialization at the token manager server. GPFS 1.2 has some

functionality limitations: it doesn’t support memory mapped files; when clients send

data to the servers faster than it can be moved to disk, GPFS have a performance

limitation; the data path also describes the potential bottlenecks; data are copied twice

 20

with the client; when the applications access the file in small pieces, sequential access

patterns can be a disadvantage [27].

The Parallel Virtual File System (PVFS) [28] project is an effort to provide a

parallel file system for PC clusters on Linux. It provides a high-performance and

scalable parallel file system. There we give a brief description of it. We will discuss it

in details in next chapter as the prototype. PVFS spreads data out across multiple

local disks in cluster nodes. Thus, applications have multiple paths to data through the

multiple disks on which data is stored by providing cluster-wide consistent name

space. The architecture of PVFS is composed of one IO library and two kinds of

daemon: The manager daemon manages metadata associated with PVFS files (e.g.

file attributes, stripe unit size, and list of IO nodes) and runs on one node of the

cluster. The IO daemons run on several node and store and retrieve data of PVFS file

in parallel. The IO library provides parallel IO functions and interacts directly, such

as MPI-IO with the daemons. The main advantage of such architecture is that there is

no need to modify the underlying operating system. PVFS’ constraints are these two

points: no file locks implemented; no fault tolerance. Its successor PVFS2 Error!

Reference source not found. has implemented some redundancy.

A cost-effective, fault-tolerant parallel virtual file system (CEFS-PVFS)

[36][37] is a revised PVFS. It implemented RAID-1 mode on PVFS to incorporate

fault-tolerant into parallel file system by mirroring. In CEFT-PVFS, the system has

been separated into two independent groups. Each group has its own mgr node and

I/O nodes. Four mirroring protocols have been designed in this system to evaluate its

performance. Client nodes connect these two groups in different ways in these four

 21

protocols. Like our system, this RAID-1 mode wastes 50% of disk space for

mirroring.

Modularized redundant parallel virtual file system (MRPVFS) [38] is another

extension module to PVFS. RAID-4 mode redundancy has been introduced in this

system. The functions include parity striping, fault detection and on-line recovery.

MRPVFS has a parity cache table to solve the concurrent write problem. An extra

SIOD is used to store the parity information of other IOD, on the mgr node. Therefore

this mgr server becomes the weakest part of MRPVFS. Parity calculation and

metadata storing require a powerful and stable hardware.

 22

Chapter 3. System design and implementation

In this chapter, we will illuminate the system design and implementation in

detail. This design is build on a popular parallel file system, the Parallel Virtual File

System (PVFS). Hence, firstly we will describe this file system.

3.1 PVFS

Like many parallel file system, the primary goal of PVFS is to provide high

speed access for applications. Other important features of PVFS are a consistent file

name space across a cluster, transparent access for clients and user-controlled striping

of data across some or all of I/O nodes.

3.1.1 System Structure

The client/server mode is adopted in PVFS. There are 3 elements in an entire

system: clients, a manager server and I/O nodes. They all run on user level. PVFS

relies on the local native file system at each computer.

The following figure shows the system overview [29].

 23

Figure 3-1 PVFS Overview

Clients are computers where user daemon runs and from there the requests are

sent to the PVFS. PVFS supplies two approaches to access its file system: PVFS

library and kernel module. PVFS library has dozens of native function, like pvfs_open,

pvfs_read, pvfs_write, pvfs_close, pvfs_lseek, pvfs_access, pvfs_ftruncate. This API

gives us a powerful and flexible manner to develop our applications. The kernel

module is not compulsive but it makes those simple file manipulations more

convenient. The commands from PVFS, like pvfs-ls, pvfs-mkdir, pvfs-ping, pvfs-

truncate etc, are similar with those Unix/Linux systems although only some basic

commands are supported.

A manager daemon runs on the manager server that manages those file

metadata, such as file name, its place in the directory hierarchy, its owner and

distribution info across nodes in the cluster. It doesn’t store any real file data on itself.

Its duty is to receive the requests from the clients, check the requests with the

metadata, determine the requested file distribution and transfer the order to the

 24

relative I/O nodes. In this progress the manager does not participate in read/write

operations; the client library and the I/O daemons handle all file I/P without the

intervention of the manager [16]. Of course the manager will record the changes on

these file data. This edge reduces the data transfer over the network, liberates the

manager servers from those heavy I/O operations and drives this file system to speed

up.

I/O nodes where I/O daemon runs on store the file data under that manager

server. Those file data are split up into some pieces by Round-Robin algorithm and

stored on the disks of these I/O nodes. PVFS gives the users the chance to determine

how to distribute these files, i.e. where the file will be stored from, how many I/O

nodes will be used and how big the stripe size is. In details, those parameters are

defined in a data structure pvfs_filestat .

Struct pvfs_filestat

{ int base; /*The first I/O node to be used */

 int pcount; /* The number of I/O nodes being used */

 int ssize; /*stripe size */}

In the function pvfs_open (…, struct pvfs_filestat *dist), we can stripe the file

data in the way we like.

The picture below shows the data flow of the access to PVFS [30][31].

 25

Figure 3-2 Data flow on PVFS

This picture indicates the data flow through the kernel [32]. In this mode,

those existing programs can simply access PVFS without any modification. For this,

it is transparent for users. The PVFS is mounted just like a device. The VFS receives

the access requests from applications and transfer it to the kernel. /dev/pvfsd is the

bridge between that loadable kernel module and the pvfsd daemon. The daemon

pvfsd is the signalman whose duty is to send/receive the network transfer from/to

clients/manager server of PVFS.

Figure 3-3 Data Flow Through Kernel

 26

These three components are running on the user level being daemons. It is

doable to run some of them on a machine without interference. We even can run all

on a computer to do a test.

PVFS even supports the logical partition that allows an application access

only a part of a file by describing the related regions. The offset, group size and stride

are parameters to implement this feature in the structure fpart of function

pvfs_ioctl(…&fpart). The offset is the distance in bytes from the beginning of the file

to the first byte in the requested partition. Group size is the number of continuous

bytes included in the partition. Stride is the distance from the beginning of one group

of bytes to the next.

Offset gsize stride

Partition data

Figure 3-4 Partitioning parameters

3.1.2 Advantages and Vulnerabilities

After booming in 90’s, PVFS still survive and be popular, the following

reasons make it possible:

 High performance.

 Easy to install, configure.

 27

 Flexible access methods.

 Support team and developer team.

Of course, we must put its vulnerabilities on another scale of our balance.

• No redundancy and recovery.

• Potential bottleneck on manager server.

• TCP/IP network.

• Single thread.

There is not a perfect file system that can do everything very well, performs

any kind of task wonderfully. In fact only those applications that apply for large data

queries can benefit a lot from PVFS, like datamining. For those small files queries,

we can imagine that these small files are segmented to smaller files on I/O nodes; the

disk head will move very frequently; it will create many fragments and waste disk

space.

3.2 System design and implementation

Our goal in this thesis is to dig out a way to introduce the redundancy into

PVFS and evaluate the effects coming along with this new character.

3.2.1 Twin-PVFS Architecture

The daemons of PVFS are running on user level. It is allowed to run some

same or different kind of daemons on a single machine to play respective roles. For

 28

example, we can load the client daemon, manager daemon and I/O daemon on a

single computer; or, we can run the same kind of daemon belonging to different

PVFS on the same node.

To implement concurrent access mode, here we mount two PVFS daemons,

pvfsd, on a single client node. Obviously these two daemons on the same computer

must have different ports to respectively contact their PVFS manager daemons, mgr.

There is a cryptic option –o port=xxxx that does not appear in PVFS official

documents. The default port of PVFS manager daemon mgr is 3000 that is defined in

its source code and can not be changed after the installation. Here we set the default

port to one PVFS and a different port to another PVFS. Therefore these two PVFS

mounted on the same client computer will not interfere with each other. We send and

receive the same file data storing on these two PVFS from and to the client node. This

mode looks like RAID-1 for these two PVFS overall and RAID-01 for each node

partially.

Figure 3-5 Twin PVFS

Client

NETWORK

mgr mgriodiod iod iod… …

Client … Client

 29

3.2.2 Access

As a mounted Linux VFS, PVFS can be accessed directly by using BSD like

command. System commands, such as cp, rm, ls, mv… and system calls, such as open,

read, write, close, lseek … can directly manipulate the files in the mount point folder.

In our Twin-PVFS, the POSIX standard API (known as pthreads) is used to compile

our own API to implement RAID-1 parallel access combined with system calls. All

operations will be directed to two sub PVFS by its kernel module.

 Read

In RAID-1, the required data are not read the whole amount from both sources.

Sub-read access is separated into two parts and each part retrieves the data

alternately from both nodes in parallel. When sub-read is done on both nodes, the

read operation returns the data to the buffer. If one of read operations fails, that

part of system will read that data again. If the return is still wrong, it will stop and

report.

 Write

Similarly, write operation will duplicate data to both nodes. Write operation will

be done when both sub-write finish writing to the files. If an error occurs during

writing file to two subsystems, it will be reported to user and the sub-write will be

done again. If the wrong return value is still there, it will report again and stop,

wait for solving the problem.

Other functions have the same mechanism.

 30

3.2.3 Fault-tolerance and Recovery

The client mounts these two PVFS on two different mount points. We divide

all I/O nodes into 2 groups belonging to 2 manager servers. Each PVFS is

independent of another one. Since we write data to them respectively, if some nodes

fail during the write operation, another PVFS should still work very well and the

return value of that bad node will not match the requested data amount or if it doesn’t

return after a waiting time. After that, an error message will be showed on the client

node. It is the same for read operation. In RAID-1 mode, read can be run in parallel

by retrieving alternate blocks from both disks. If a sub-PVFS crashes during twin-

read, the return result will not match the data amount we have requested or if it

doesn’t return and then it will report read error and a single read from a healthy node

will do again.

 By reason of that users manipulate the client nodes, system error on them will

be sensed lightly. Hence the focus has been put on the mgr and I/O nodes.

Since access files request from client nodeson PVFS will be started from

opening this file by contact mgr node, then mgr node will contact I/O nodes. If some

bad things happen here, it will return an error. For closing files, the procedure is the

same, mgr will ask I/O nodes to close the files and return to the client node. Between

these two steps, client nodes and I/O nodes will communicate directly. For users,

faults on I/O nodes will be easily detected on the client nodes. A simple ping-like

monitor is set on client nodes. It sends the network requests to both the mgr nodes

and I/O nodes periodically. Here we set the time slot to 30 seconds to see if any of

 31

them fails. This watchdog will guard the Twin-PVFS when no above activities on the

system.

 So far there is no automatic recovery in Twin-PVFS. After receiving an error

report, it’s the user’s responsibility to find the type of trouble and repair or replace the

fault node. We assume there is at least one good copy of data because the possibility

of that two systems crash simultaneously will be rare. What we should do is just copy

or update good data to the repaired or replaced node.

3.2.4 File lock and consistency

PVFS is on the top of Linux VFS. In our system, we didn’t design a local file

lock protocol, just use the lock provided by VFS. Since client nodes must access data

file through the mgr node, mgr will protect global locking on the same file in the

same system.

This parallel access mode assures the data consistency. For read, the result is

combined from two subsystem if read is done successfully. If it’s not, we can find out

the problem and fix it because read will not change the data file. For write, if a

subsystem is down, we still have a good subsystem with right data file. Duplication of

this good subsystem to a fixed system will rebuild a health Twin-PVFS.

3.2.5 Parallel Access Mode

With fork() function in Linux, PVFS API can be used to implement multi-process

access. Since API is the most efficient method to access PVFS, a small revised

 32

program combined fork and PVFS API is presented to do RAID-1 write and read

operations.

3.2.6 Journaling

The redundancy can keeps the system’s running without a total crash.

However, after the redundancy part breaks down, the left part should run with less

insurance. We do not exactly know when and where the accident happens so that we

can not recover the previous works. The PVFS does not supply the journaling

function. Even in Twin-PVFS model, if one portion of it fails, the whole system is

still running, but it becomes a normal PVFS and the failed part can not play its role

until the trouble is resolved, the last job is done and Twin-PVFS is ready to do new

jobs. The PVFS runs on user space above the VFS. It might not perform better than

those parallel file systems running on lower level. But it provides us an advantage

also -- it can use the journaling technique supplied by EXT3. Here we change the data

journaling from the default setting “data=ordered” to the fully logged mode

“data=journal”. The mode data=journal provides full data and metadata journaling.

It ensures the consistency of data and its metadata.

To evaluate what kind of benefits or costs the parallel access brings to us, we

also try to use the serial access mode to compare with the parallel mode. We modify

the test program. That is we serially read/write the same amount of file data from/to

two PVFS mounted on the same client machine.

Of course here we assume the probability that two or more nodes in these two

PVFS fail coincidently should be very rare.

 33

Chapter 4. Results

It can be forecasted that the performance of PVFS should be affected owing to

we append some new members to an original PVFS. Redundancy means that the

same file data will be operated more at the same moment. Apparently it will not speed

up the system. For a file system, the best way to evaluate its performance is to do

some experiences and analyze the results.

In this chapter, we will describe the test environment, execute the system test

to appraise our revision, compare the results of the original PVFS and our revised

system and analyze the data to find the influence of our revision on PVFS.

4.1 Test Environment

We create a small cluster with 7 nodes as our test bench. All of them have two

Intel PIII 500MHz CPU’s. One node has an IBM DDRS-39130D Ultra2-LVD SCSI

disk and 512MB memory, we choose it as the client machine; two nodes have an IBM

DDRS-39130D Ultra2-LVD SCSI disk and 256MB memory, we choose them as the

metadata Servers; and four nodes have an IBM-DJNA-371350 IDE disk and 256MB

memory, they are our I/O nodes. The operating system running on these nodes is Red

Hat 9 Standard Edition with kernel 2.4.20-8smp. Those nodes are connected by

100Mbps Ethernet with a small SU-EP-808X \3B 8-port switch and 1.28Gbps

Myrinet with M2M-DUAL-SW8 Dual 8-port Myrinet-SAN Switch and Myrinet

M2M-PCI32C Cards. The ttcp benchmark reports a bandwidth of TCP/IP at

 34

11MBytes/s for Ethernet and 60Mbytes/s for Myrinet. Bonnie[43] shows the hard

disk bandwidth of write and read is, both 4MB/s per char, 52MB/s and 219MB/s for

block, rewrite and seeks is 80MB/s and 19MB/s.

4.2 Test Components

To highlight the difference the redundancy brings in, we measure the PVFS

and our revision on different conditions, from data size to network bandwidth.

We should clear it before analyzing the results that our client machine only

has 512MB memory, it means, in those read tests, the data will be saved in some

virtual memory on the disk when the file is too big. Of course this memory switch

between the main memory and the virtual memory will cost a lot of time. Therefore

we can not judge which one is better at that file size. The maximum size in our tests is

200 MB.

Since many parallel file systems use their own API to access the file data, a

simple benchmark, similar with Ref.[16][36][37][39][40][41], was adopted to test the

system performance. In this benchmark, each client node concurrently opens a data

file, write new data on it and finally closed it; similarly, each client node open a file,

alternatively read data from two subsystem and combine it in a buffer and finally

close it. To test Twin-PVFS in a more complicated environment, the benchmark

iozone[42] also was run on our system because its throughput mode supports POSIX

pthreads access, similar with our system. Since its full and automatic test mode will

not allow pthreads, here only write/rewrite and read/re-read modes have been tested.

 35

4.2.1 PVFS

First, we test the original PVFS to build up our benchmark for the following

comparison. It will take many experiments to fully examine a parallel file system

because the basic operations, read and write, usually have different performance on

different situations, such as the required data size, numbers of client nodes and I/O

nodes, bandwidth. A chain of files with different sizes have been chose to operate

basic read/write functions. In this step, we choose 1KB, 2KB, 5KB, 10 KB, 20KB,

50KB, 100KB 200KB 500KB, 1MB, 2MB, 5MB, 10MB, 20MB, 50 MB, 100MB,

200MB as the file sizes. To compare PVFS performance on different parallel scales,

we build up several PVFS respectively with 4 I/O nodes, 2 I/O nodes and 1 I/O node.

The local file system test is also put into our results to measure the PVFS

performance. To avoid some random system delays, each test has been done 50 times

and the result is the average of these 50 tests.

The data range we select is very wild, from 1KB to 200 MB; the cost time

also differs from milliseconds to some dozens of seconds. Therefore it is impossible

to show all data clearly in one chart. We divide those data into 3 groups, 1KB-50KB,

100KB-5MB, 5MB-200MB by the results trend.

First, we test those data respectively on 4 I/O nodes, 2 I/O nodes, 1 I/O nodes,

with 100Mbps Ethernet. Then we do the same tests with Myrinet and compare the

results. The test on all-in-one local node will just do one time.

 36

 Ethernet

PVFS small file performance on Ethernet

0

0.005

0.01

0.015

0.02

0.025

1KB 2KB 5KB 10KB 20KB 50KB

Data file size

Ti
m

e(
s)

4 Nodes Write

4 Nodes Read

2 Nodes Write

2 Nodes Read

1 Node Write

1 Node Read

Local Write

Local Read

Figure 4-1 PVFS Small File Performance with Ethernet

In this small file test, we can find out that, of course, the local operations cost

less time; PVFS on 1 node costs more; PVFS on 2 nodes is the third and PVFS on 4

nodes is the slowest. It illuminates that PVFS does not work well when transfer files

are small. These results are obvious. When the files are small they will be transferred

quickly through the network and they will be operated, read or wrote, quickly from or

to the disk. Here, the bottleneck is the network transfer system. A modern hard disk

can read or write these small files in a few milliseconds. Theoretically the Ethernet

bandwidth is 100MB/s. It means in the real world it can transfer several dozens KB of

data in a millisecond. But after counting in the system response time, message

packing/unpacking and sending/receiving, it will be slower than the hard disk. Also,

we can imagine if those small files are partitioned to smaller pieces, these tiny data

may cost less time to be operated but they might still cost at least the same time to

transfer. It is wasting the cluster resources.

 37

PVFS middle file performance on Ethernet

0

0.1

0.2

0.3

0.4

0.5

0.6

100KB 200KB 500KB 1MB 2MB 5MB

Data file size

Ti
m

e(
s)

4 Nodes Write
4 Nodes Read
2 Nodes Write
2 Nodes Read
1 Node Write
1 Node Read
Local Write
Local Read

Figure 4-2 PVFS middle File Performance with Ethernet

 For those middle size files, the local operations are still fastest. The operations

on 4 nodes have the same results with those on 2 nodes. But they all a little exceed

the PVFS on 1 node, especially the write operation. The data transfer speed of our I/O

node disk is about 10MB/s. We can see the data approach the peak. Hard disk

progressively becomes the bottleneck of these systems.

PVFS large file performance on Ethernet

0

5

10

15

20

25

30

10MB 20MB 50MB 100MB 200MB

Data file size

Ti
m

e(
s)

4 Nodes Write
4 Nodes Read
2 Nodes Write
2 Nodes Read
1 Node Write
1 Node Read
Local Write
Local Read

Figure 4-3 PVFS Large File Performance with Ethernet

 38

Distinctly, the results are a little complicated. Local read is the fastest but

local write is not. It is worse than the PVFS on 4 nodes and the PVFS on 2 nodes

even the PVFS on 1 node. It might be caused by that the write operation needs more

time and the write jobs are jammed in the queue. Parallelism shows its advantage here.

The write speed is going a bit faster when the node number increases but all the read

results are similar. PVFS on 4 nodes and PVFS on 2 nodes have the same data. The

reason might be that the network bandwidth limits their ability.

 Myrinet

PVFS small file performance on Myrinet

0

0.005

0.01

0.015

0.02

1KB 2KB 5KB 10KB 20KB 50KB

Data file size

Ti
m

e(
s)

4 Nodes Write
4 Nodes Read
2 Nodes Write
2 Nodes Read
1 Node Write
1 Node Read
Local Write
Local Read

Figure 4-4 PVFS Small File Performance with Myrinet

 For these small files, local operations cost the least time. PVFS on 1 node

costs more and PVFS on 2 nodes is the third but they are very close. PVFS on 4

nodes, as we suppose, is the slowest. Even though the bandwidth increases, these

small files still don’t benefits from PVFS.

 39

PVFS middle file performance on Myrinet

0

0.05

0.1

0.15

0.2

0.25

100KB 200KB 500KB 1MB 2MB 5MB

Data file size

Ti
m

e(
s)

4 Nodes Write
4 Nodes Read
2 Nodes Write
2 Nodes Read
1 Node Write
1 Node Read
Local Write
Local Read

Figure 4-5 PVFS Middle File Performance with Myrinet

 From this figure we can see how close the results are. Totally, the first one is

not too fast and the last one is not too slow. Hence local write and write on 1 node

highlight themselves coordinately as doubtless laggards. As we ratiocinate above, in

this part, the disk approaches its maximum speed. Myrinet supplies enough

bandwidth so that the local operation and PVFS on 1 node have very close marks. But

PVFS does not show its advantage very clearly because the PVFS with 4 nodes and

PVFS with 2 nodes have a similar performance.

PVFS large file performance on Myrinet

0

5

10

15

20

25

30

10MB 20MB 50MB 100MB 200MB

Data file size

Ti
m

e(
s)

4 Nodes Write
4 Nodes Read
2 Nodes Write
2 Nodes Read
1 Node Write
1 Node Read
Local Write
Local Read

Figure 4-6 PVFS Large File Performance with Myrinet

 40

 PVFS with 4 nodes is the fastest one by its absolute preponderancy. All its

read speed and write speed are fastest. PVFS on 2 nodes also has a good speed. Those

2 PVFS’s get a better write performance than the local system. There is no doubt that

PVFS suits the large file operations and the parallel scale helps the performance,

especially for the write. For read, the speed of these PVFS in the same file size

doesn’t change much. Read on 4 nodes and on 1 node has a similar result. It seems

the PVFS does not optimize the read operation very well.

4.2.2 Twin-PVFS

To compare with the original PVFS, we test our Twin-PVFS apart over

Ethernet and Myrinet. As we observed above, PVFS is not good at small file

operations. We assume that Twin-PVFS will do more disk operations to implement

the availability. Therefore the test results might not exceed those original PVFS. Here

we just test those larger files from 10KB to 200MB and drop out those files less than

10KB. Also, those data will be put into three groups, 10KB-500KB, 1MB-10MB and

20MB-200MB. Our Twin-PVFS has 4 I/O nodes and each PVFS has 2 I/O nodes.

The client machine has 512MB memory, it mounts 2 PVFS metadata servers on itself,

and each metadata server manages 2 I/O nodes. The instructions from the client will

be sent to these two metadata servers simultaneously. There is no comparability

between Twin-PVFS and the PVFS with 1 node or local file system. Certainly we just

compare it with the PVFS on 2 I/O nodes.

 41

 Read

Small file read performance

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10KB 20KB 50KB 100KB 200KB 500KB

Data file size

Ti
m

e(
s)

Etwinread

PVFS Mread

SeqReadM

PVFS Eread

Eread

Mread

Mtwinread

Figure 4-7 Small File Performance

 Just like we assume, Twin-PVFS does not gain a good performance. It is

worse than the original PVFS much, less than double time of them. Its read and write

operations have similar results. When the file size increase, the network has showed

its performance.

Middle file read performance

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1MB 2MB 5MB 10MB
Data file size

Ti
m

e(
s)

Etwinread

PVFS Mread

SeqReadM

PVFS Eread

Eread

Mread

Mtwinread

Figure 4-8 Middle File Read Performance

 42

 For these middle file operations, Twin-PVFS also does not perform well.

PVFS API access is still the best. Twin-PVFS read scores are very close to the local

PVFS kernel read.

Large file read performance

0

5

10

15

20

25

30

20MB 50MB 100MB 200MB
Data file size

Ti
m

e(
s)

Etwinread

PVFS Mread

SeqReadM

PVFS Eread

Eread

Mread

Mtwinread

Figure 4-9 Large File Read Performance

 The disparity between Twin-PVFS and PVFS becomes less in this part. The

performance has been clearly divided.

Small file write performance

0

0.02
0.04

0.06

0.08

0.1
0.12

0.14

0.16

10KB 20KB 50KB 100KB 200KB 500KB
Data file size

Ti
m

e(
s)

Etwinwrite

PVFS Mwrite

SeqWriteM

PVFS Ewrite

Ewrite

Mwrite

Mtwinwrite

Figure 4-10 Small File Write Performance

 43

 Write performance has been separated earlier, even the file size is not big,

Twin-PVFS is the lowest. And the network affects the result much.

Middle file write performance

0

0.5

1

1.5

2

2.5

3

1MB 2MB 5MB 10MB
Data file size

Ti
m

e(
s)

Etwinwrite

PVFS Mwrite

SeqWriteM

PVFS Ewrite

Ewrite

Mwrite

Mtwinwrite

Figure 4-11 Middle File Write Performance

The results are becoming clearer. With the increase of file size, the gap

between Twin-PVFS and others is enlarged.

Large file write performance

0
5

10
15
20
25
30
35
40
45

20MB 50MB 100MB
Data file size

Ti
m

e(
s)

Etwinwrite

PVFS Mwrite

SeqWriteM

PVFS Ewrite

Ewrite

Mwrite

Mtwinwrite

Figure 4-12 Large File Write Performance

 44

When the file size is 200MB file, Twin-PVFS even can not finish the test, an

error on SCSI disk has been showed. PVFS API still keeps the best.

4.2.3 Serial Access

Middle file performance on Ethernet

0

0.2

0.4

0.6

0.8

1

100KB 200KB 500KB 1MB 2MB 5MB

Data file size

Ti
m

e(
s)

Write on PVFS
with 4 Nodes

Read on PVFS
with 4 Nodes
Write on PVFS
with 2 Nodes

Read on PVFS
with 2 Nodes
Serial Write on 2
PVFS

Serial Read on 2
PVFS

Figure 4-13 Middle file serial access performance on Ethernet

 This figure shows serial access has similar performance with parallel mode.

The taken time is almost twice as much time on original PVFS mode. The data

amount is also twice as many. That means their performances are very close.

Large file performance on Ethernet

0
5

10
15
20
25
30
35
40

10MB 20MB 50MB 100MB 200MB

Data file size

Ti
m

e(
s)

Write on PVFS
with 4 Nodes

Read on PVFS
with 4 Nodes
Write on PVFS
with 2 Nodes

Read on PVFS
with 2 Nodes
Serial Write on 2
PVFS

Serial Read on 2
PVFS

Figure 4-14 Large file serial access performance on Ethernet

 45

 The results are the same as the middle file. Parallel mode doesn’t show its

advantage.

Middle file performance on Myrinet

0

0.05

0.1

0.15

0.2

0.25

0.3

100KB 200KB 500KB 1MB 2MB 5MB

Data file size

Ti
m

e(
s)

Write on PVFS
with 4 Nodes

Read on PVFS
with4 Nodes
Write on PVFS
with 2 Nodes

Read on PVFS
with 2 Nodes

Serial Write on 2
PVFS
Serial Read on 2
PVFS

Figure 4-15 Middle file serial access performance on Myrinet

Large file performance on Myrinet

0

5

10

15

20

10MB 20MB 50MB 100MB 200MB

Data file size

Ti
m

e(
s)

Write on PVFS
with 4 Nodes
Read on PVFS
with 4 Nodes
Write on PVFS
with 2 Nodes
Read on PVFS
with 2 Nodes

Serial Write on 2
PVFS
Serial Read on 2
PVFS

Figure 4-16 Large file serial access performance on Myrinet

On Myrinet, the results are little different. It validates again that parallel access

benefits a lot from a higher bandwidth, especially the transferring data is huge.

4.2.4 Parallel Access

We also tested the PVFS API in parallel access mode with different file size.

 46

Small file performance

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

50kb 100kb 200kb 500kb
Data file size

Ti
m

e(
s)

PVFSReadE

ForkWriteE

ForkReadE

PVFSWriteE

Figure 4-17 Small file performance in parallel mode on Ethernet

Middle file performance

0

0.5

1

1.5

2

2.5

1mb 2mb 5mb 10mb

Data file size

Ti
m

e(
s)

PVFSReadE

ForkWriteE

ForkReadE

PVFSWriteE

Figure 4-18 Middle file performance in parallel mode on Ethernet

In these three groups of file size, write in parallel mode performs like two write

operations but parallel read is similar with the original PVFS read.

 47

Large file performance

0

10

20

30

40

50

60

20mb 50mb 100mb 200mb

Data file size

Ti
m

e(
s)

PVFSReadE

ForkWriteE

ForkReadE

PVFSWriteE

Figure 4-19 Large file performance in parallel mode on Ethernet

On Myrinet, the situation is different. This parallel access mode performs better, the

gap between these two become smaller.

Small file performance

0

0.01

0.02

0.03

0.04

0.05

0.06

50kb 100kb 200kb 500kb
Data file size

Ti
m

e(
s)

PVFSWriteM

PVFSReadM

ForkWriteM

ForkReadM

Figure 4-20 Small file performance in parallel mode on Myrinet

 48

Middle file performance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1mb 2mb 5mb 10mb
Data file size

Ti
m

e(
s)

PVFSWriteM

PVFSReadM

ForkWriteM

ForkReadM

Figure 4-21 Middle file performance in parallel mode on Myrinet

Large file performance

0

10

20

30

40

50

60

20mb 50mb 100mb 200mb
Data file size

Ti
m

e(
s)

PVFSWriteM

PVFSReadM

ForkWriteM

ForkReadM

Figure 4-22 Large file performance in parallel mode on Myrinet

Even parallel write operation result is very close to the original write. But when the

file size is 200MB, parallel read is busy with transferring data between memory and

hard disk, a larger memory should be helpful to finish a further test.

 49

4.2.5 Journaling

The journal only records the data and metadata. If they are changed, the

journal will be updated. Distinctly, only write operation changes both data and

metadata. Read only does not changes the data and metadata. Hence the journal will

not be changed. Our preliminary tests also show journaling doesn’t affect the read

operation. In this test we only do the write operation. We test different cases, PVFS,

serial access and Twin-PVFS, middle size files and large size files, Ethernet and

Myrinet. The combinations of these individual elements present interesting results.

Middle file write on PVFS with 4 nodes

0
0.1
0.2
0.3

0.4
0.5
0.6
0.7

100KB 200KB 500KB 1MB 2MB 5MB

Data file size

Ti
m

e(
s)

Write on PVFS with 4
nodes with Ethernet

Write on PVFS with 4
nodes with Myrinet

Journaling Write on
PVFS with 4 nodes
with Ethernet

Journaling Write on
PVFS with 4 nodes
with Myrinet

Figure 4-23 Middle file write performance on PVFS with 4 nodes

For middle files, journaling has different results. It looks like journal will slow

down the system when the PVFS scale increases. A faster network can help enhance

the performance.

 50

Large file write on PVFS with 4 nodes

0
5

10
15

20
25
30
35

10MB 20MB 50MB 100MB 200MB

Data file size

Ti
m

e(
s)

Write on PVFS
with 4 nodes on
Ethernet
Write on PVFS
with 4 nodes on
Myrinet
Journaling Write on
PVFS with 4 nodes
on Ethernet
Journaling Write on
PVFS with 4 nodes
on Myrinet

Figure 4-24 Large file write on PVFS with 4 nodes

 Large file accesses causes the network jam on Ethernet, thus journaling

doesn’t make the performance much worse. But Myrinet separates them. On PVFS

with 4 nodes, the trend keeps going.

Serial middle file write on Ethernet & Myrinet

0

0.2

0.4

0.6

0.8

1

1.2

100KB 200KB 500KB 1MB 2MB 5MB

Date file size

Ti
m

e(
s)

Serial Write on
Ethernet

Serial Write on
Myrinet

Serial Journaling
Write on Ethernet

Serial Journaling
Write on Myrinet

Figure 4-25 Serial middle file write

 From this figure, we can see that journaling does not affect the serial

performance of middle size files much. The results are very close. It looks like the

 51

local file system can handle this kind of journaling without affecting the system

performance.

Serial large file write on Ethernet & Myrinet

0

10

20

30

40

50

60

10MB 20MB 50MB 100MB 200MB

Data file size

Ti
m

e(
s)

Serial Write on
Ethernet

Serial Write on
Myrinet

Serial Journaling
Write on Ethernet

Serial Journaling
Write on Myrinet

Figure 4-26 Serial large file write

 For large files, it’s different. Journaling slows down the system very much.

Recording that size of journaling does cost much time. The influence of network

bandwidth also can be found from those figures.

Journaling also can improve the system availability and also slows down the

system. It’s not obvious if the transferring data is small. But if the file size is

calculated by dozens of MB, the system performance will drop much. An interesting

result is that if we use more I/O nodes with journaling, PVFS does not perform well

because its own parallel mode is serial for a single client. A file is divided into several

fragments and each part will be journaled sequentially. That is a longer process.

 52

4.2.6 Network overhead

Middle file network overhead

0

0.01

0.02

0.03

0.04

0.05

0.06

50kb 100kb 200kb 500kb 1mb 2mb

Data file size

Ti
m

e(
s)

ForkWriteM

ForkReadM

ForkWriteE

ForkReadE

Figure 4-27 Middle file network overhead

Large file network overhead

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

5mb 10mb 20mb 50mb 100mb

Data file size

Ti
m

e(
s)

ForkWriteM

ForkReadM

ForkWriteE

ForkReadE

Figure 4-28 Large file network overhead

From these two figures, we can find Myrinet has less overhead, especially the file size

is bigger. Since we use sync mode to write file data, it will increase the operation time

to wait for the return. For the lack of memory, we didn’t test big files with above

200MB size.

 53

4.2.7 iozone

IOZONE on Myrinet

0
1000
2000
3000
4000
5000
6000
7000
8000

10
KB

50
KB

20
0K

B
1M

B
5M

B
20

MB

10
0M

B

Data file size

Th
ro

ug
hp

ut
(K

B
/s

)
Twin Re-read

Twin Read

Twin Rewrite

Twin Initial write

Initial write

Rewrite

Read

Re-read

Figure 4-29 IOZONE Test on Myrinet

IOZONE on Ethernet

0

1000

2000

3000

4000

5000

6000

7000

10
KB

50
KB

20
0K

B
1M

B
5M

B
20

MB

10
0M

B

Data file size

Th
ro

ug
hp

ut
(K

B
/s

)

Twin Read

Twin Re-read

Twin Initial write

Twin Rewrite

Initial write

Rewrite

Read

Re-read

Figure 4-30 IOZONE Test on Ethernet

From this result we also can find a faster network will help improve the performance.

Write performance of “Twin system” is not very good, but acceptable; its throughput

is higher although part of it is not useful until the system is down. When the file is

 54

larger, write operations on both Ethernet and Myrinet dive much. During that time,

hard disk becomes the bottleneck.

4.3 Results summary

From the data set above we can find that PVFS is not a good choice for such

small files, less than 50KB, not only over Ethernet but also over Myrinet. That is also

said in PVFS manual [33]. It relates to the stripe size of parallel file system. If the file

size is bigger than 100KB, PVFS can have a good performance. Ethernet is not a

good company for PVFS because its bandwidth is only 100Mb/s. Myrinet we have in

this test can supply us 1Gb/s bandwidth. It is really helpful to obtain a better

performance. We guess that the large files write will work well with the parallel

scale’s growth. There is no winner in read operations but all scores seem good.

As we forecast, our revision, i.e. the Twin-PVFS, does not win the original

PVFS in all tests. We believe that it is caused by the redundancy. For a computer, if

its hardware doesn’t change, the maximum of computer capacity is constant, the

redundancy occupies more running time and storage space, finally depress the

performance. When the workload is above its maximum capacity this computer will

be jammed. The PVFS kernel module is not designed to obtain a high performance

because it relies on the kernel processing cost, daemon cost. Multi-thread also run on

the top of kernel and can’t rescue our Twin-PVFS. In a better network, read operation

doesn’t perform very badly, but write performance is almost unacceptable although it

has redundancy. API is still the best way to achieve high performance in the system

 55

like PVFS. It’s worth doing further study in this way. The mount mode also can be

kept for the convenience.

The full journaling as expected, does also slow down the system, especially

the file size is big. It’s easy to understand that the local file system needs time to

record a big size of journal with the full journaling mode.

In our tests, when the file size grows, the hard disk and the network become

the system bottleneck. A faster network can help reduce the queue time but the

system speed is controlled by the bottleneck.

 56

Chapter 5. Conclusions

5.1 Conclusions

In this thesis, we introduce the RAID-1 Level redundancy to the PVFS and

measure the effects on system preliminarily. We call this PVFS with this new

function as Twin-PVFS.

Firstly we build up a cluster and connect the nodes by Ethernet and Myrinet.

To evaluate the system performance, we design a series of tests. The variables include

the parallel scale and the data file size required by the client. The data size varies

from 1KB to 200 MB and the parallel scale is from 1 I/O node to 4 I/O nodes. We use

the results of the original PVFS as the benchmark to compare our Twin-PVFS. Our

Twin-PVFS has also been tested with some file data.

The results show that PVFS has a good performance on large file operations,

especially when the system has high bandwidth. It even exceeds the local file write.

This is the fascination of parallel file systems. Furthermore, the system performance

increases someway with the parallel scale’s growth. But PVFS does not accelerate the

small file operations, less than 50KB, in our test environments; they even slow the

system down more with the parallel scale’s growth. We observe surprisingly that

PVFS has similar read speed no matter what the file size is or what the parallel scale

is.

 57

As we surmise, our Twin-PVFS does not improve the system speed. On the

contrary it keeps the slowest in the tests. This RAID-1 mode has good redundancy but

of course it can not have a good hardware level performance. The mount-based access

is not a good choice for high performance field, but it’s still a convenient approach

for general usage. Our results also show the network bandwidth will help the system

enhance the performance.

Journaling also can improve the system availability and slows down the

system. It’s not obvious if the transferring data is small. But if the file size is

calculated by dozens of MB, the system performance will drop much. An interesting

result is that if we use more I/O nodes with journaling, PVFS does not perform well

because of its parallel mode.

5.2 Future works

Limited by the experiment equipments, we only test a PVFS with 4 I/O nodes

and Twin-PVFS with 4 I/O nodes. We believe that a PVFS with more I/O nodes can

have a better performance. Our Twin-PVFS might still be the last one but the

performance might be better because the I/O nodes finish the work faster. This

assumption needs more tests to prove it. The network we adopt in this experiment is

100Mbps Ethernet and 1Gbps Myrinet. This device M2M-DUAL-SW8 is fast but it

might be out of date. A new modern faster switch can help us evaluate the bandwidth

factor ulteriorly.

Here is no doubt that a good way to implement the data redundancy is to add

this function in this file system. But it will change the PVFS whole structure, data

 58

structure, message passing parameters and so on. Furthermore we can not evaluate the

comparison between systems with and without redundancy. This work can not be

done in a short time. Fortunately, the PVFS staff is developing its second edition,

PVFS2 with the redundancy. But it is still the beta version [34].

 59

Bibliography

[1] http://www.es.jamstec.go.jp/esc/eng/ES/hardware.html

[2] http://www.publicaffairs.noaa.gov/releases99/sep99/noaa99061.html

[3] http://www.quadrics.com/Quadrics/QuadricsHome.nsf/NewsByDate/106FA

D951034B31680256E6600638C9B

[4] Donald J. Becher, Thomas Sterling, John E. Dorband Daniel Savarese,

Udaya A. Ranawak, and Charles V. Packer. Beowulf: A parallel workstation

for scientific computation. In Proceedings of International Conference on

Parallel Processing, 1995.

[5] D. Johansen and R. van Renesse. Distributed Systems in Perspective,

Distributed Open Systems, pp. 175-179 , ISBN 0-8186-4292-0, IEEE, 1994

[6] http://www.top500.org/lists/2003/11/press-release.php

[7] John M. May. Parallel I/O for High Performance Computing, Morgan

Kaufmann Publishers, 2001.

[8] Maurice J.Bach. The Design of The Unix Operating System, Prentice-Hall

Inc., 1986.

[9] Patterson, David A., Garth A. Gibson, and Randy H. Katz. A Case for

Redundant Arrays of Inexpensive Disks (RAID). In proceedings of the 1988

ACM SIGMOD Conference on Management of Data, pp. 109-116, June 1988.

 60

[10] Peter M. Chen, Garth Gibson, Randy H. Katz, and David A. Patterson.

An Evaluation of Redundant Arrays of Disks Using an Amdahl 5890. In

Proceedings of the 1990 ACM SIGMETRICS Conference on Measurement

and Modeling of Computer Systems, May 1990.

[11] Jim Gray, Bob Horst, and Mark Walker. Parity Striping of Disc Arrays:

Low-cost Reliable Storage with Acceptable Throughput. In Proceedings of

the 16th Very Large Database Conference, pp. 148-160, 1990. VLDB SVI.

[12] Rajkumar Buyya. High Performance Cluster Computing, Prentice Hall

PTR, 1999.

[13] Edward K.Lee and Randy H.Katz. Performance Consequences of

Parity Placement in Disk Arrays. In Proceedings of the 4th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS-IV), pp. 190-199, April 1991.

[14] P.M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.

RAID: High-Performance, Reliable Secondary Storage. ACM Computing

Surveys, vol. 26, no. 2, pp. 145-185, June 1994.

[15] Gould, E., and M. Xinu. The network file system implemented on 4.3

BSD, USENIX Association Summer Conference Proceedings, pp. 294-298,

June 1986.

[16] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. PVFS: A

Parallel File System For Linux Clusters. In Proceedings of the 4th Annual

Linux Showcase and Conference, Atlanta, GA, pp. 317-327, October 2000.

 61

[17] P. Pierce. A concurrent file system for a highly parallel mass storage

system. In Fourth Conference on Hypercube Concurrent Computers and

Applications, 1989, pp. 155-160.

[18] Intel Corporation. Paragon System User’s Guide, April 1996. Includes

a chapter on using PFS but has little information on its underlying design.

[19] John H. Hartman and John K. Ousterhout. The Zebra Striped Network

File System. In ACM Transactions on Computer Systems 13, pp. 279-310, 3,

August 1995.

[20] Peter C. Dibble, Michael L. Scott, and Carla Schlatter Ellis. Bridge: A

High-Performance File System for Parallel Processors. In Proceedings of the

8th International Conference on Distributed Computing Systems (ICDCS),

pp.154-161, 1988.

[21] M. Rosenblum and J. Ousterhout. The Design and Implementation of a

Log-Structured File System. ACM Trans. on Computer Systems, 10(1): pp.

26–52, February 1992.

[22] M. Holton and R. Das. XFS:A next generation journalled 64-bit

filesystem with guaranteed rate I/O. SGICorp.

http://www.sgi.com/Technology/xfs-whitepaper.html.

[23] M. Seltzer, K. Bostic, M. McKusick, and C. Staelin. An

Implementation of a Log-Structured File System for UNIX. In Proc. of the

1993 Winter USENIX, pp. 307–326, January 1993.

 62

[24] M. Seltzer, K. Smith, H. Balakrishnan, J. Chang, S. McMains, and V.

Padmanabhan. File System Logging Versus Clustering: A Performance

Comparison. In Proc. Of the 1995 Winter USENIX, January 1995.

[25] M. Barrios et al. GPFS: A Parallel File System. IBM Cor.,SG24-5165-

00, 1998, http://www.redbooks.ibm.com/.

[26] Peter F. Corbett, Dror G. Feitelson, Jean-Pierre Prost, George S.

Almasi, Sandra Johnson Baylor, Anthony S. Bolmarcich, Yarsun Hsu, Julian

Satran, Marc Snir, Robert Colao, Brian Herr, Joseph Kavaky, Thomas R.

Morgan, and Anthony Zlotek. Parallel file systems for the IBM SP

computers. IBM Systems Journal, 34(2): pp. 222–248, January 1995.

[27] Terry Jones, Alice Koniges, R. Kim Yates. Performance of the IBM

General Parallel File System. In 14th International Parallel and Distributed

Processing Symposium (IPDPS'00), May 2000.

[28] W. B. Ligon and R. B. Ross. An Overview of the Parallel Virtual File

System. In Proceedings of the 1999 Extreme Linux Workshop, June 1999.

[29] http://www.parl.clemson.edu/pvfs/desc/desc-system-1.png

[30] http://www.parl.clemson.edu/pvfs/desc/desc-flow-meta-1.png

[31] http://www.parl.clemson.edu/pvfs/desc/desc-flow-io-1.png

[32] http://www.parl.clemson.edu/pvfs/desc/desc-kernel-path-1.png

[33] http://www.parl.clemson.edu/pvfs/user-guide.html

[34] http://www.pvfs.org/pvfs2/

[35] http://www.seagate.com/docs/pdf/marketing/Seagate_Cheetah_15K-

4.pdf

 63

[36] Y. Zhu, H. Jiang, X. Qin, D. Feng and D. Swanson. Design,

Implementation, and Performance Evaluation of a Cost-Effective Fault-

Tolerant Parallel Virtual File System. In Proceedings of International

Workshop on Storage Network Architecture and Parallel I/Os. In

conjunctions with 12th International Conference on Parallel Architectures

and Compilation Techniques (PACT), New Orleans, LA, Sept. 27 - Oct. 1,

2003.

[37] Y. Zhu, H. Jiang, X. Qin, D. Feng, and D. Swanson. Improved Read

Performance in a Cost-Effective, Fault-Tolerant Parallel Virtual File System

(CEFT-PVFS). In Proceedings of IEEE/ACM Cluster Computing and

Computational Grids (CCGRID), pp. 730-735, May 2003, Japan.

[38] Sheng-Kai Hung, Yarsun Hsu. Modularized Redundant Parallel

Virtual File System. In Asia-Pacific Computer Systems Architecture

Conference, pp. 186-199, 2005.

[39] Steven A. Moyer and V. S. Sunderam. PIOUS: A scalable parallel I/O

system for distributed computing environments. In Proceedings of the

Scalable High-Performance Computing Conference, pp. 71–78, 1994.

[40] Hakan Taki and Gil Utard. MPI-IO on a parallel file system for cluster

of workstations. In Proceedings of the IEEE Computer Society International

Workshopon Cluster Computing, pp. 150–157, Melbourne, Australia, 1999.

[41] Rosario Cristaldi, Giulio Iannello, and Francesco Delfino. The cluster

file system:Integration of high performance communication and I/O in

 64

clusters. In Proceed of the 2nd IEEE/ACM international symposium on

Cluster computing and the grid, Berlin, Germany, may 2002.

[42] http://www.iozone.org

[43] Tim Bray.Bonnie.http://www.textuality.com/bonnie

 65

Appendices

I. Top 10 Supercomputers, released in SC2005.

http://www.top500.org/list/2005/11/

Rank Site Computer Processors Year Rmax Rpeak

1 DOE/NNSA/LLNL
United States

BlueGene/L - eServer Blue
Gene Solution
IBM

131072 2005 280600 367000

2
IBM Thomas J. Watson
Research Center
United States

BGW - eServer Blue Gene
Solution
IBM

40960 2005 91290 114688

3 DOE/NNSA/LLNL
United States

ASC Purple - eServer pSeries
p5 575 1.9 GHz
IBM

10240 2005 63390 77824

4
NASA/Ames Research
Center/NAS
United States

Columbia - SGI Altix 1.5
GHz, Voltaire Infiniband
SGI

10160 2004 51870 60960

5
Sandia National
Laboratories
United States

Thunderbird - PowerEdge
1850, 3.6 GHz, Infiniband
Dell

8000 2005 38270 64512

6
Sandia National
Laboratories
United States

Red Storm Cray XT3, 2.0
GHz
Cray Inc.

10880 2005 36190 43520

7 The Earth Simulator Center
Japan

Earth-Simulator
NEC 5120 2002 35860 40960

8
Barcelona Supercomputer
Center
Spain

MareNostrum - JS20 Cluster,
PPC 970, 2.2 GHz, Myrinet
IBM

4800 2005 27910 42144

9
ASTRON/University
Groningen
Netherlands

Stella - eServer Blue Gene
Solution
IBM

12288 2005 27450 34406.4

10
Oak Ridge National
Laboratory
United States

Jaguar - Cray XT3, 2.4 GHz
Cray Inc. 5200 2005 20527 24960

 66

