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Summary 

 

Clustered computer systems become most vigorous star in this high level 

computing game due to its high performance and low cost. In this environment, a 

parallel file system is well adopted to obtain higher performance. Most parallel file 

systems are trying to pursue the speed, the performance. For high-level computing, 

system availability is also a big issue that should be considered.  

To evaluate the influence coming with the system availability, we should 

experiment a parallel file system and a revised system with the availability based on 

the former then compare performance differences. Journaling and redundancy are two 

main techniques in this domain. In this thesis, we choose a popular parallel file 

system, the Parallel Virtual File System, as the prototype to primarily evaluate the 

effects on systems after bringing in the availability. We mount 2 PVFS systems on a 

client to build up a Twin-PVFS and use our own API functions to implement the 

RAID-1 Level redundancy evaluate its influences. First, a series of tests in different 

situations, such as the data file size, network and the number of I/O node, is designed 

to totally measure the performance of PVFS. Then we choose some data that are 

proper to be compared and test our Twin-PVFS and the original PVFS on the same 

circumstances and parameters. For the comparability, a parallel access mode with 

PVFS API also has been tested. The journaling mode was presented also. The test 

result shows that this availability reduces the system performance a lot but this 

influence differs in the specific situations, i.e. the network bandwidth and the file data 

size. 
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Chapter 1. Introduction 

Modern science and commerce require high computation capability and large 

storage capacity more and more. Therefore, they are always one of the driving forces 

to accelerate the computer development. Fortunately developing processing 

techniques make them possible. The computation speed of order of magnitude of 

GFlops and the storage devices of order of magnitude of TBytes introduce the 

computers into some extreme complicated computation, such as the Earth simulation 

[1], weather forecasting [2], and the nuclear weapon simulation [3].  

Nowadays, a personal computer (PC) with a powerful single chip containing 

about 1 hundred million transistors (or more) can exceed several time-shared 

behemoths of dozens years ago. To achieve the increasing needs for high 

performance, clustered PCs become a cheap and proper solution. 

The first PC-based cluster was born in the Earth and Space Sciences project at 

NASA, 1994[4]. A parallelized computer system, especially a cluster in this thesis, 

means that this super power computer locally consists of many parallelized 

workstations, even PC’s connected by a local high-speed network switch. These 

computers have their own independent CPU’s, memories, I/O systems. Each CPU 

also does only a part of job parallel, exchanges the data with their own memory and 

saves the results in their own disks or later moves them to other devices. The fastest 

Linux cluster in the world is Thunderbird in Sandia National Laboratory of U.S.A. 

with Dell PowerEdge Cluster. The list of cluster systems in the TOP10 of 2005 Nov, 
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see the Appendices, shows that IBM eServer has succeeded in the highest computing. 

But the number of clusters in the full TOP500 grew also again strongly, 360 of 500 

use cluster architecture. These systems are built with workstations or PCs as building 

blocks and often connected by special high-speed internal networks. This makes 

clustered systems the most common computer architecture seen in the TOP500. The 

importance of this market can also be seen by the fact that most manufacturers are 

now active in this market segment [6]. This trend is more apparent because building a 

super cluster will extremely reduces the cost and time on the design of supercomputer 

hardware architecture and dedicated software. Thus a cluster can be a poor men’s 

supercomputer. Hence the total amount of its disks capacities can reach the order of 

magnitude of Tbytes. It may be enough to store the necessary data by a parallel file 

system. In this paper the term, “the Parallel file system” refers in particular to “the 

Cluster file system”. 

High performance computing ordinarily processes a large amount of data. 

New modern multimedia applications also require I/O devices with high bandwidth. 

Unfortunately after improvements of decades, the data transfer rate of a single hard 

disk is still lower than we expect. A single local file server can not satisfy large 

numbers of high bandwidth applications, such as Video-on-demand (VoD) with 

MPEG-1/2/4 quality, the earth geography science. The disk speed becomes the 

bottleneck after solving the low network bandwidth. Borrowed the concept from 

RAID, a cluster can use stripe technique to obtain higher data throughput.  

This clustered file systems obtain great bandwidth, balance those computers’ 

load, but it also brings us a big problem, the reliability. Unlike distributed file system 
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[5], fault tolerance is not the first aim of parallel file systems. If one of those nodes 

breaks down the files on this cluster will be fragmentary. If the data can’t be 

recovered, it’ll be an unacceptable disaster.  

 

1.1 Contributions 

The Parallel Virtual File System (PVFS) [28] is a popular file system for 

clusters. It has some common features of a typical parallel file system, i.e. high 

bandwidth, segmented files, balanced loading and faster access speed. But it also has 

some disadvantages we will recount later. 

Perhaps one of the most insufferable weaknesses is none-redundancy. In high 

performance computing, data processing costs a lot of time. Any data loss in 

processing, such as processes hang up, operating system breaks down, bad sectors on 

disks, other hardware fail, might ruin the whole work. In a single computer, it might 

happen rarely; in a huge cluster with many relatively independent computers, the risk 

of data loss will be consumedly increased. 

A failure of an I/O node will cause the failure of the whole cluster because the 

data is distributed over the cluster. The objective of this dissertation is to evaluate the 

performance effects after adding RAID-1 mode to PVFS to obtain higher availability, 

reliability and redundancy. At the beginning we build up a cluster and install PVFS 

on it with different nodes respectively and do a series of tests. We simply mount 2 

PVFS on a client machine and use our own API to access PVFS in parallel to 

simulate RAID-1 mode, called Twin-PVFS, with the same environments above and 

do the same tests. It’s assumed that the newcome availability will take more I/O 
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operations on the system and the system might be slowed down but it is not clear in 

our mind how the influence will be in detail. We will not wonder if its performance is 

not better than the prototype. After analyze the results of tests, we can evaluate the 

effects on PVFS this new feature takes. Because the PVFS stripes file data across 

multiple servers like RAID-0, after introducing this additional RAID-1 mode, this 

Twin-PVFS becomes RAID-01 mode. That means one of I/O node is down, its twin 

can still work. This ensures that the whole file system is still working. To simplify 

this project, the main structure of the PVFS is still adopted in this revision.  

The main difference with CEFT-PVFS [36][37] briefed in the next chapter, is 

that our system is based on the mount function of PVFS which the latter two systems 

have thrown away. This approach migh be slow, a parallel access mode with PVFS 

API is used to contrast. 

 

1.2 Outline 

The rest of this thesis is organized in the following way. In Chapter 2 we 

explore the background, the history and the current state of arts of file system. Topics 

include file system, disk storage system, distributed file system and parallel file 

system. Chapter 3 focuses on the presentation of the prototype of our system, i.e. 

PVFS and our revision. The system performance and comparison with the PVFS are 

measured and analyzed in Chapter 4. The concluding chapter summarizes our results 

and forecast the future works of PVFS. 
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Chapter 2.  Background and Related works 

In this Chapter we provide background, basic concepts and some related 

works about the file systems, especially the Parallel File System.  

 

2.1  File System 

Usually a file is used to store data on the storage devices by application 

programs. A file system is the software that creates some abstractions including not 

only files and directories but also access permissions, file pointers, file descriptors, 

and so on. File systems have other duties as well [7]: 

 Moving data efficiently between memory and storage devices 

 Coordinating concurrent access by multiple processes to the same file 

 Allocating data blocks on storage devices to specific files and reclaiming 

those block s when files are deleted 

 Recovering as much data as possible if the file system becomes corrupted 

The file system isolates the applications from the low-level management of 

the storage medium and ensures that concurrent applications do not interfere with 

another. Applications refer to the files by their names which are textual strings.  
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2.1.1 Hierarchical Name Space 

A file system is built as a tree with a single root node, the root / ; each node in 

this tree is either a file or a directory, every non-leaf node is a directory and every leaf 

node can be one of directories, regular files or special device files. A file name is 

given by a path name that describes how to locate this file in the file system hierarchy. 

Thus, a full path name includes a path name and a file name.  

The file system treats file data as an unformatted stream of bytes; directories 

are also considered as regular files in the low-level respect, the system treats a 

directory as a byte stream, but these directory data contain the file names in the 

directory in a special format so that the programs can find the files in a directory. 

 

2.1.2 Access Model 

Which file can be accessed is controlled by Access Permissions mechanism. 

There are three classes of users to implement read, write and execute permissions: the 

file owner, a file group and the others. 

When a program opens a file, the file system assigns a unique pointer and a 

unique file descriptor to it [8]. This pointer is an integer that points a position at 

which the next byte will be read or written. A file descriptor is an integer which the 

program uses for subsequent references to the files. In Unix-like file system, each 

inode (the index node) contains the information of the file data layout on the disk and 

other information about the file owner, access permissions, access time and so on.  
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When a program accesses a file by its file name, the file system parses the file 

name and checks the permission to access the file and retrieve the file data. After an 

application creates a new file, the kernel assigns it an unused inode. Inodes are stored 

in the file system but the kernel reads them into an inode table when it manages files. 

There are two other tables that are maintained by the kernel also, the file table 

and the user file descriptor table [8]. These 3 tables control the file state and access 

permission.  

 

2.2  RAID 

RAID, short for Redundant Arrays of Inexpensive Disks or Redundant Arrays 

of Independent Disks, was proposed at the University of California, Berkeley in 

1988[9]. This invention was to address the disk system performance and reliability 

since the data transfer rate of a single disk can not suit the necessity of modern 

computing. In the original paper, there are five RAID levels differing on the 

performance characteristics and the ways to replicate data, RAID-0, RAID-1, RAID-2, 

RAID-3, RAID-4 and RAID-5. For some special applications, the combination of 

some of those existing levels is introduced, such as RAID-10, RAID-53. In recent 

years, RAID-6 with 2 parity disks and RAID-7 with the combination of hardware and 

build-in software appear. 
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2.2.1 RAID-0 

In RAID-0 mode, the data is striped across the disk array without any 

redundant information. The loss of a single disk will corrupt the whole data. This 

simple design doesn’t supply a good availability but it supplies the good performance 

because it doesn’t need to do some extra disk read or write to implement more 

availability and compute some extra information. Recently benefiting from the 

hardware price’s fall, even some PCs are equipped with these once-expensive devices. 

 

Figure 2-1 RAID-0 

 

2.2.2 RAID-1 

RAID-1 uses a simple manner, disk mirroring, to implement the redundancy. 

When data is written to a disk, the same info is written to its twin disk. Usually the 

writing operation can be operated in parallel; the writing time for this RAID node is 

just a little longer than one for a single disk. When data is read, it can be retrieved 

from the disk with shorter queue, seek and rotational delays [10], because the read 

transfer rate by retrieving alternate blocks from both disks in parallel. If a disk fails, 

the another copy will take over the responsibility to finish the job. But this 

improvement on the availability wastes too much because the whole disk array has 

two identical parts. Mirroring is frequently used in database applications where 

availability and transaction rate are more important than storage efficiency [11]. 
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Figure 2-2 RAID-1 

 
2.2.3 RAID-2 

RAID-2 uses Hamming codes containing parity information to provide higher 

availability. Once a disk fails, the rest disks will find out which disk fails and give the 

correct answer because Hamming codes can find the errors that happened to the file 

data and correct it. This approach requires some additional disks to implement the 

parity calculation and this calculation costs some system computing capacity. 

 

Figure 2-3 RAID-2 

 

2.2.4 RAID-3 

RAID-3 is a simplified version of RAID-2. Instead of multiple ECC bits 

applied in RAID-2, bit parity is used in RAID-3. This scheme consists of an array of 
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disks for data and one unit for parity exclusively. The system XOR data bit by bit in 

these sub-stripes to write an additional parity sub-stripe to the parity disk.  

When each write request is operated, the whole stripe with parity is written to 

the disk array in parallel. For read operation, only the data disks involve in it. If any 

of disks fails, it restores the original data by an XOR between the redundant bits on 

other disks and the parity disk. With RAID 3, all disks operate exactly simultaneously. 

It requires that all of disks must have identical specifications to maximum the 

performance. This is not a very effective method for accessing small amount of data, 

but RAID 3 is rather suitable for specialized use where large block of data need to be 

processed at high speed, as in supercomputers, multimedia warehouse. 

 

 

Figure 2-4 RAID-3 

 

2.4.5 RAID-4 

RAID-4 adopts the block-interleaved parity disk array in which the data is 

interleaved across disks in blocks of arbitrary size. Like RAID-3, it has a disk array to 

store the file data and puts the parity data on a separate parity disk. Unlike RAID-3 

with parallel read/write per operation, RAID-4 accesses some of disks individually.  
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For read operations, firstly it determines which disk the requested block 

resides on and then accesses them only, even only one disk is accessed for small files. 

Write operations cause some overheads because of its individual access mode. To 

write data to the disks, RAID-4 only updates those related disks and the parity disk. It 

requires a series of operations:  

1. read the old data from the sector being overwritten and the old parity from 

the parity disk; 

2. extract the old parity data using the XOR operation;  

3. XOR the new file data and obtain the new parity data;  

4. write the new data and the new parity data to the respective disks.  

The main drawback of RAID-4 is that it stores all parity data on a single disk. 

Write operations must read and then write the parity disk every time. Obviously, the 

parity disk might be the bottleneck of the system easily. Thus, RAID-4 is not well 

accepted in real systems. 

 

Figure 2-5 RAID-4 

 
2.4.6 RAID-5 

RAID-5 appears as an improved RAID-4 with fully striped disk array. The 

parity data is not stored on a single disk; it is distributed over the entire disk array. 

This means each disk has the parity data of file data on other disks in interlace.  
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Read operations only access those disks that have the required data. Write 

operations have the same drawbacks with RAID-4; the process of read-modify-write 

still affects the system performance for those applications that require high transfer 

rates for write operations. 

A good method, called left-symmetric parity distribution, was invented in [13], 

has the best performance. The advantage of this method is that whenever we traverse 

the striping units sequentially, we will access each disk once before accessing any 

disk twice. This property reduces disk conflicts when servicing large requests [14]. 

 

Figure 2-6 RAID-5 Left-Symmetric Parity 

 

2.3  Distributed File Systems 

The file system we discussed above runs on a single machine. The concurrent 

accesses to the same file are allowed after ensuring the sequential consistency.  

A distributed file system makes it possible that many computers have a common 

view on a file set or a file system. The first famous distributed file system should be 

Network File System (NFS) developed by Sun Microsystems in 1985 [15]. NFS 

allows computers connected each other by the network to share files. In NFS, the 

computer sharing its files is a server, and a computer that accesses these files 

remotely is a client. In other words, a computer can synchronously be a server for 
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some files on its own machine and a client for some files that reside on other 

machines. After mounting a directory and its subdirectories on the server in their own 

directory hierarchy, the client accepts these remote files as a part of its directory 

hierarchy and the programs on the client can access them as local data. When a client 

is going to access the remote files, the file system on this client sends a request to the 

server and gets the return. How these remote directories are located is transparent for 

the user level. 

 

2.4  Parallel File System 

A parallel file system is a tightly coupled networked file system. It stripes file 

data across many computers by a local network. After the stripe technique brings 

higher data transfer rate, the disk transfer rate is no longer the system bottleneck if the 

network is fast enough. However it also makes the file system more complex. 

 

2.4.1 Striping 

The fastest SCSI 320 can provide the maximum data transfer rate at over 

100MB/s per disk [35] but a modern switch can provide the high bandwidth with 

order of magnitude of Gbps or even Tbps. To achieve the supercomputer capacity, the 

data transfer rate must be much faster.  

The striping technology is the key to achieve high performance for a parallel 

file system. The term striping is from the RAID prototype. It means that a collection 

of data is allocated on several computers and each computer only stores a portion of 
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file data. This striped data usually is split into a string of fixed size blocks that are 

assigned cyclically to the nodes. 

 

Figure 2-7 Disk striping 

 

Two main parameters decide how this data will be distributed in the striping 

scheme [7]: 

 Stripe factor. This term means the number of disks in striping. It determines 

the striping degree and further determines the parallelism degree, the data 

transfer date. 

 Stripe size. It is used to define those striped blocks size. For different tasks, 

the requests may differ, some needed data are many small records and some 

data are huge files. For the former, a small striping size will get a better 

performance; for the latter, a big striping size will reduce the frequency of 

sending read/write request. Therefore, some parallel file systems set striping 

size as a variable to match different requirements. 
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2.4.2 Structure 

Unlike the server-less structure in some distributed file systems, most parallel 

file systems use the client-server model. Compared with the Network File System, 

this model can save network communications, reduce the system complexity but also 

reduce the reliability because the server may crash down. 

A server has the responsibility to manage the striped data info, i.e. the 

metadata. Metadata, in a file system, refers to information describing the 

characteristics of a file, such as permissions, the owner and group, and the physical 

distribution of the file data [16]. In the case of a parallel file system, the file 

distribution has more info, i.e. the file locations and the disk/node locations. Some of 

nodes in the system are called I/O nodes or I/O processors. They are the warehouse to 

store those file data. The rest of nodes, we call them the compute nodes/processors, 

are designated to run the users’ applications.  

 

2.4.3 File access 

In a parallel file system, each I/O node only maintains a subset of a file [7]. 

Accordingly every file has an inode on every I/O node. To access a file in a parallel 

file system, a process will get every inode of this file. There are two ways to achieve 

this: the first one is to duplicate all of the directory information on each I/O node; the 

second one is to set an across-nodes name server to solve the naming space. In the 

former solution the data change in any I/O node is also done on other I/O nodes. It 

causes frequent internal communications between I/O nodes. In the latter solution the 
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name server takes the obligation to direct the processes. The processes only contact 

the server to locate the required data and the changes of striped data on those I/O 

nodes are recorded on this server. However, the whole file system relies on server 

states. The reliability of this server is depressed. 

Parallelized access has more complicated issues than the local access on the 

sequential consistency. But basically it also uses the similar techniques in the local 

file systems, such as lock, token ring. Since the file data is striped, the consistency 

will cover two layers: the file layer and the striped file data. In Client/Server node, the 

consistency on the file layer can be handled by the server and the consistency on the 

striped data can be handles by the local file system. In Peer-Peer mode, the 

consistency of these two layers is the responsibility of the manager daemon in the file 

system. 

 

2.4.4 Buffer 

To improve the efficiency and accelerate the system, the buffer technique is 

well adopted: firstly the data will be put into the buffer, a space in main memory, 

when trying to read from or write to the disk. How to keep the consistency of the data 

in the buffer and on the disk is a big issue in a local file system. We can imagine how 

to keep the consistency between those nodes is a bigger problem. The striped and 

shared data requires more complicated approach to solve this two levels puzzle. For 

the well-used Client/Server mode, there are two types of buffer: the buffer on the 

compute nodes and the buffer on the I/O nodes [12].  
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2.4.5 System Reliability 

In a local system, if a disk fails or the system crashes or the power supply is 

lost while an application is in progress of writing, the file data and the inode info may 

be in an inconsistent state, and when the system is rebooted the data in the memory 

will be lost.  

A parallel file system is a complicated and cooperated system with many 

components. To finish huge amounts of works, usually it runs day to day. During its 

running, any fault, from message timeout to broke-down I/O nodes or server, may 

cause a string of troubles. Those striped data more complicate this problem, i.e. the 

crash of one or more I/O nodes may cause the data incoherence and further the entire 

file system may hang up. 

To address this tragedy, each parallel file system chooses its own strategies to 

maintain the data files and inodes in a coherent state since the avoidance/recovery 

approaches are related to another issues of the file system.  

 Redundancy 

One machine may die sometimes; the probability of two machines crash 

simultaneously must be much less. The main idea of this manner is to replicate 

each I/O node so that every I/O node has at least a node to be the backup in this 

system. Each replica of a file is stored on a different node. When a node fails, the 

replicated copies of its files can be used to provide uninterrupted service to its 

clients. This is a highly available and reliable solution, but also an expensive 

solution because duplication slows down the system speed and wastes the storage 
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space. A great revision of the duplication is the similar method like RAID. In 

RAID-3, 4, 5, only one extra node with the parity is added so that the cost of 

duplication on the performance and the I/O nodes are less.  

 Logging/Journaling 

We try to keep the consistency because we don’t know what will happen if a 

system crashes, how many data has been saved. The approach to record this is 

called logging or journaling. Any modification to the file data or inode info on the 

disk would only take effect when the record that logs those actions is done. Those 

logs are stored on an area of disk that contains the records that describe what is 

changed in the file system and they are kept separate from the file structure they 

describe to avoid losing the file data and its log together.  

 

2.4.6 Some File Systems 

High performance, scalability, high throughput and high availability are four 

basic features of clusters [12]. But there is no perfect parallel file system in this world 

that has all of these features concurrently. The usage of a cluster determines which of 

them is requisite and which is dispensable.  Science computing keeps driving high 

performance; Business requires high availability; Web service needs high throughput. 

A variety of requirements cause mixed products. 

Intel’s Concurrent File System (CFS) [17], frequently cited as the canonical 

first generation parallel file system, and its successor, PFS [18], are examples of file 

systems that provide a linear file model to the applications, and offer a Unix-like 
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mount interface to the data. There are four IO modes in CFS, 0, 1, 2, 3. By using 

different IO modes, it is very easy to decompose the data across the disks.  

Zebra [19] combines LFS (Log-structured File System) and RAID so that both 

work well in a distributed environment. Zebra uses a software RAID on commodity 

hardware (workstation, disks, and networks) to address RAID cost disadvantage, and 

LFS batched writes provide efficient access to a network RAID. Furthermore, the 

reliability of both LFS and RAID makes it feasible to distribute data storage across a 

network. Several striping file systems, such as Bridge [20], strip data within 

individual files, so only large files benefit from the striping. Each Zebra client 

coalesces its writes into a private per client log. It commits the log to the disks using 

fixed-sized log segments, each made up of several log fragments that it sends to 

different storage server disks over the LAN. Log-based striping allows clients to 

efficiently calculate parity fragments entirely as a local operation and then store them 

on an additional storage server to provide high data availability. Zebra’s log-

structured architecture significantly simplifies its failure recovery. Like LFS, Zebra 

uses checkpoint and roll forward to implement efficient recovery. Although Zebra 

points the way toward serverlessness, several factors limit Zebra’s scalability. First, a 

single file manager tracks where clients store data blocks in the log; the manager also 

handles cache consistency operations. Second, Zebra relies on a single cleaner to 

create empty segments. Finally, Zebra stripes each segment to all of the system’s 

storage servers, limiting the maximum number of storage servers that Zebra can use 

efficiently. 
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Log-structured File System (LFS) [21] was developed at Berkeley. xFS is also 

implements based on the LFS [22]. It provides high performance write, simple system 

recovery and a flexible method to locate the file data. LFS treats the disk like an 

appending log. This approach solves a big problem for the file system on small files 

writes. It is feasible to implement soft RAID on this file system. LFS uses a data 

structure, called imap to locate the inode. The imap which contains the current log 

pointers to inodes is stored in memory and periodically saves the checkpoints to disks. 

These checkpoints are the key to the system recovery. After a crash, only the 

consistency of the log tail needs to be checked. LFS runs from the checkpoint and 

update the metadata. Only the part of the log that last checkpoint creates since the 

crash happened is used to recover. The main drawback of LFS is the log cleaning. 

Sometimes it is the bottle in a system [23][24] . 

The General Parallel File System [25][26] developed by IBM was designed to 

achieve high bandwidth for concurrent access to a single file, especially for sequential 

access patterns. GPFS is implemented as a lot of separate software subsystems or 

services. Each service may be distributed across multiple nodes within an SP system. 

GPFS is also a client-server cache design and consistency is maintained by the token 

manager server. This is employed for scalability reasons: distributing the task to the 

mmfsd reduces serialization at the token manager server. GPFS 1.2 has some 

functionality limitations: it doesn’t support memory mapped files; when clients send 

data to the servers faster than it can be moved to disk, GPFS have a performance 

limitation; the data path also describes the potential bottlenecks; data are copied twice 
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with the client; when the applications access the file in small pieces, sequential access 

patterns can be a disadvantage [27]. 

The Parallel Virtual File System (PVFS) [28] project is an effort to provide a 

parallel file system for PC clusters on Linux. It provides a high-performance and 

scalable parallel file system. There we give a brief description of it. We will discuss it 

in details in next chapter as the prototype. PVFS spreads data out across multiple 

local disks in cluster nodes. Thus, applications have multiple paths to data through the 

multiple disks on which data is stored by providing cluster-wide consistent name 

space. The architecture of PVFS is composed of one IO library and two kinds of 

daemon: The manager daemon manages metadata associated with PVFS files (e.g. 

file attributes, stripe unit size, and list of IO nodes) and runs on one node of the 

cluster. The IO daemons run on several node and store and retrieve data of PVFS file 

in parallel. The IO library provides parallel IO functions and interacts directly, such 

as MPI-IO with the daemons. The main advantage of such architecture is that there is 

no need to modify the underlying operating system. PVFS’ constraints are these two 

points: no file locks implemented; no fault tolerance. Its successor PVFS2 Error! 

Reference source not found. has implemented some redundancy. 

A cost-effective, fault-tolerant parallel virtual file system (CEFS-PVFS) 

[36][37] is a revised PVFS. It implemented RAID-1 mode on PVFS to incorporate 

fault-tolerant into parallel file system by mirroring. In CEFT-PVFS, the system has 

been separated into two independent groups. Each group has its own mgr node and 

I/O nodes. Four mirroring protocols have been designed in this system to evaluate its 

performance. Client nodes connect these two groups in different ways in these four 

 21



protocols. Like our system, this RAID-1 mode wastes 50% of disk space for 

mirroring. 

Modularized redundant parallel virtual file system (MRPVFS) [38] is another 

extension module to PVFS. RAID-4 mode redundancy has been introduced in this 

system. The functions include parity striping, fault detection and on-line recovery. 

MRPVFS has a parity cache table to solve the concurrent write problem. An extra 

SIOD is used to store the parity information of other IOD, on the mgr node. Therefore 

this mgr server becomes the weakest part of MRPVFS. Parity calculation and 

metadata storing require a powerful and stable hardware. 
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Chapter 3. System design and implementation 

In this chapter, we will illuminate the system design and implementation in 

detail. This design is build on a popular parallel file system, the Parallel Virtual File 

System (PVFS). Hence, firstly we will describe this file system. 

 

3.1  PVFS 

Like many parallel file system, the primary goal of PVFS is to provide high 

speed access for applications. Other important features of PVFS are a consistent file 

name space across a cluster, transparent access for clients and user-controlled striping 

of data across some or all of I/O nodes. 

 

3.1.1 System Structure 

The client/server mode is adopted in PVFS. There are 3 elements in an entire 

system: clients, a manager server and I/O nodes. They all run on user level. PVFS 

relies on the local native file system at each computer.  

The following figure shows the system overview [29]. 
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Figure 3-1 PVFS Overview 

 

Clients are computers where user daemon runs and from there the requests are 

sent to the PVFS. PVFS supplies two approaches to access its file system: PVFS 

library and kernel module. PVFS library has dozens of native function, like pvfs_open, 

pvfs_read, pvfs_write, pvfs_close, pvfs_lseek, pvfs_access, pvfs_ftruncate. This API 

gives us a powerful and flexible manner to develop our applications. The kernel 

module is not compulsive but it makes those simple file manipulations more 

convenient. The commands from PVFS, like pvfs-ls, pvfs-mkdir, pvfs-ping, pvfs-

truncate etc, are similar with those Unix/Linux systems although only some basic 

commands are supported. 

A manager daemon runs on the manager server that manages those file 

metadata, such as file name, its place in the directory hierarchy, its owner and 

distribution info across nodes in the cluster. It doesn’t store any real file data on itself. 

Its duty is to receive the requests from the clients, check the requests with the 

metadata, determine the requested file distribution and transfer the order to the 
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relative I/O nodes. In this progress the manager does not participate in read/write 

operations; the client library and the I/O daemons handle all file I/P without the 

intervention of the manager [16]. Of course the manager will record the changes on 

these file data. This edge reduces the data transfer over the network, liberates the 

manager servers from those heavy I/O operations and drives this file system to speed 

up. 

I/O nodes where I/O daemon runs on store the file data under that manager 

server. Those file data are split up into some pieces by Round-Robin algorithm and 

stored on the disks of these I/O nodes. PVFS gives the users the chance to determine 

how to distribute these files, i.e. where the file will be stored from, how many I/O 

nodes will be used and how big the stripe size is. In details, those parameters are 

defined in a data structure pvfs_filestat . 

Struct pvfs_filestat 

{ int base;  /*The first I/O node to be used */ 

  int pcount; /* The number of I/O nodes being used */ 

  int ssize; /*stripe size */} 

In the function pvfs_open (…, struct pvfs_filestat *dist), we can stripe the file 

data in the way we like.  

The picture below shows the data flow of the access to PVFS [30][31]. 
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Figure 3-2 Data flow on PVFS 

 
This picture indicates the data flow through the kernel [32]. In this mode, 

those existing programs can simply access PVFS without any modification. For this, 

it is transparent for users. The PVFS is mounted just like a device. The VFS receives 

the access requests from applications and transfer it to the kernel. /dev/pvfsd is the 

bridge between that loadable kernel module and the pvfsd daemon. The daemon 

pvfsd is the signalman whose duty is to send/receive the network transfer from/to 

clients/manager server of PVFS. 

 

Figure 3-3 Data Flow Through Kernel 
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These three components are running on the user level being daemons. It is 

doable to run some of them on a machine without interference. We even can run all 

on a computer to do a test. 

PVFS even supports the logical partition that allows an application access 

only a part of a file by describing the related regions. The offset, group size and stride 

are parameters to implement this feature in the structure fpart of function 

pvfs_ioctl(…&fpart). The offset is the distance in bytes from the beginning of the file 

to the first byte in the requested partition. Group size is the number of continuous 

bytes included in the partition. Stride is the distance from the beginning of one group 

of bytes to the next. 

 

Offset gsize stride 

Partition data 

Figure 3-4 Partitioning parameters 

 

3.1.2 Advantages and Vulnerabilities 

After booming in 90’s, PVFS still survive and be popular, the following 

reasons make it possible: 

 High performance. 

 Easy to install, configure. 
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 Flexible access methods. 

 Support team and developer team. 

Of course, we must put its vulnerabilities on another scale of our balance. 

• No redundancy and recovery. 

• Potential bottleneck on manager server. 

• TCP/IP network. 

• Single thread. 

There is not a perfect file system that can do everything very well, performs 

any kind of task wonderfully. In fact only those applications that apply for large data 

queries can benefit a lot from PVFS, like datamining. For those small files queries, 

we can imagine that these small files are segmented to smaller files on I/O nodes; the 

disk head will move very frequently; it will create many fragments and waste disk 

space. 

 

3.2  System design and implementation 

Our goal in this thesis is to dig out a way to introduce the redundancy into 

PVFS and evaluate the effects coming along with this new character. 

 

3.2.1 Twin-PVFS Architecture 

The daemons of PVFS are running on user level. It is allowed to run some 

same or different kind of daemons on a single machine to play respective roles. For 
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example, we can load the client daemon, manager daemon and I/O daemon on a 

single computer; or, we can run the same kind of daemon belonging to different 

PVFS on the same node.  

To implement concurrent access mode, here we mount two PVFS daemons, 

pvfsd, on a single client node. Obviously these two daemons on the same computer 

must have different ports to respectively contact their PVFS manager daemons, mgr. 

There is a cryptic option –o port=xxxx that does not appear in PVFS official 

documents. The default port of PVFS manager daemon mgr is 3000 that is defined in 

its source code and can not be changed after the installation. Here we set the default 

port to one PVFS and a different port to another PVFS. Therefore these two PVFS 

mounted on the same client computer will not interfere with each other. We send and 

receive the same file data storing on these two PVFS from and to the client node. This 

mode looks like RAID-1 for these two PVFS overall and RAID-01 for each node 

partially. 

 

Figure 3-5 Twin PVFS 

 

Client

 
NETWORK 

mgr mgriodiod iod iod… … 

Client … Client
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3.2.2 Access 

As a mounted Linux VFS, PVFS can be accessed directly by using BSD like 

command. System commands, such as cp, rm, ls, mv… and system calls, such as open, 

read, write, close, lseek … can directly manipulate the files in the mount point folder. 

In our Twin-PVFS, the POSIX standard API (known as pthreads) is used to compile 

our own API to implement RAID-1 parallel access combined with system calls. All 

operations will be directed to two sub PVFS by its kernel module. 

 Read 

In RAID-1, the required data are not read the whole amount from both sources. 

Sub-read access is separated into two parts and each part retrieves the data 

alternately from both nodes in parallel. When sub-read is done on both nodes, the 

read operation returns the data to the buffer. If one of read operations fails, that 

part of system will read that data again. If the return is still wrong, it will stop and 

report. 

 Write 

Similarly, write operation will duplicate data to both nodes. Write operation will 

be done when both sub-write finish writing to the files. If an error occurs during 

writing file to two subsystems, it will be reported to user and the sub-write will be 

done again. If the wrong return value is still there, it will report again and stop, 

wait for solving the problem. 

Other functions have the same mechanism. 
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3.2.3 Fault-tolerance and Recovery 

The client mounts these two PVFS on two different mount points. We divide 

all I/O nodes into 2 groups belonging to 2 manager servers. Each PVFS is 

independent of another one. Since we write data to them respectively, if some nodes 

fail during the write operation, another PVFS should still work very well and the 

return value of that bad node will not match the requested data amount or if it doesn’t 

return after a waiting time. After that, an error message will be showed on the client 

node. It is the same for read operation. In RAID-1 mode, read can be run in parallel 

by retrieving alternate blocks from both disks. If a sub-PVFS crashes during twin-

read, the return result will not match the data amount we have requested or if it 

doesn’t return and then it will report read error and a single read from a healthy node 

will do again. 

 By reason of that users manipulate the client nodes, system error on them will 

be sensed lightly. Hence the focus has been put on the mgr and I/O nodes. 

Since access files request from client nodeson PVFS will be started from 

opening this file by contact mgr node, then mgr node will contact I/O nodes. If some 

bad things happen here, it will return an error. For closing files, the procedure is the 

same, mgr will ask I/O nodes to close the files and return to the client node. Between 

these two steps, client nodes and I/O nodes will communicate directly. For users, 

faults on I/O nodes will be easily detected on the client nodes. A simple ping-like 

monitor is set on client nodes. It sends the network requests to both the mgr nodes 

and I/O nodes periodically. Here we set the time slot to 30 seconds to see if any of 
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them fails. This watchdog will guard the Twin-PVFS when no above activities on the 

system. 

 So far there is no automatic recovery in Twin-PVFS. After receiving an error 

report, it’s the user’s responsibility to find the type of trouble and repair or replace the 

fault node. We assume there is at least one good copy of data because the possibility 

of that two systems crash simultaneously will be rare. What we should do is just copy 

or update good data to the repaired or replaced node. 

 

3.2.4 File lock and consistency 

PVFS is on the top of Linux VFS. In our system, we didn’t design a local file 

lock protocol, just use the lock provided by VFS. Since client nodes must access data 

file through the mgr node, mgr will protect global locking on the same file in the 

same system. 

This parallel access mode assures the data consistency. For read, the result is 

combined from two subsystem if read is done successfully. If it’s not, we can find out 

the problem and fix it because read will not change the data file. For write, if a 

subsystem is down, we still have a good subsystem with right data file. Duplication of 

this good subsystem to a fixed system will rebuild a health Twin-PVFS.  

 

3.2.5 Parallel Access Mode 

With fork() function in Linux, PVFS API can be used to implement multi-process 

access. Since API is the most efficient method to access PVFS, a small revised 
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program combined fork and PVFS API is presented to do RAID-1 write and read 

operations.  

 

3.2.6 Journaling 

The redundancy can keeps the system’s running without a total crash. 

However, after the redundancy part breaks down, the left part should run with less 

insurance. We do not exactly know when and where the accident happens so that we 

can not recover the previous works. The PVFS does not supply the journaling 

function. Even in Twin-PVFS model, if one portion of it fails, the whole system is 

still running, but it becomes a normal PVFS and the failed part can not play its role 

until the trouble is resolved, the last job is done and Twin-PVFS is ready to do new 

jobs. The PVFS runs on user space above the VFS. It might not perform better than 

those parallel file systems running on lower level. But it provides us an advantage 

also -- it can use the journaling technique supplied by EXT3. Here we change the data 

journaling from the default setting “data=ordered” to the fully logged mode 

“data=journal”. The mode data=journal provides full data and metadata journaling. 

It ensures the consistency of data and its metadata.  

To evaluate what kind of benefits or costs the parallel access brings to us, we 

also try to use the serial access mode to compare with the parallel mode. We modify 

the test program. That is we serially read/write the same amount of file data from/to 

two PVFS mounted on the same client machine.  

Of course here we assume the probability that two or more nodes in these two 

PVFS fail coincidently should be very rare.  
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Chapter 4.  Results 

It can be forecasted that the performance of PVFS should be affected owing to 

we append some new members to an original PVFS. Redundancy means that the 

same file data will be operated more at the same moment. Apparently it will not speed 

up the system. For a file system, the best way to evaluate its performance is to do 

some experiences and analyze the results.  

In this chapter, we will describe the test environment, execute the system test 

to appraise our revision, compare the results of the original PVFS and our revised 

system and analyze the data to find the influence of our revision on PVFS.  

 

4.1  Test Environment 

We create a small cluster with 7 nodes as our test bench. All of them have two 

Intel PIII 500MHz CPU’s. One node has an IBM DDRS-39130D Ultra2-LVD SCSI 

disk and 512MB memory, we choose it as the client machine; two nodes have an IBM 

DDRS-39130D Ultra2-LVD SCSI disk and 256MB memory, we choose them as the 

metadata Servers; and four nodes have an IBM-DJNA-371350 IDE disk and 256MB 

memory, they are our I/O nodes. The operating system running on these nodes is Red 

Hat 9 Standard Edition with kernel 2.4.20-8smp. Those nodes are connected by 

100Mbps Ethernet with a small SU-EP-808X \3B 8-port switch and 1.28Gbps 

Myrinet with M2M-DUAL-SW8 Dual 8-port Myrinet-SAN Switch and Myrinet 

M2M-PCI32C Cards. The ttcp benchmark reports a bandwidth of TCP/IP at 
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11MBytes/s for Ethernet and 60Mbytes/s for Myrinet. Bonnie[43] shows the hard 

disk bandwidth of write and read is, both 4MB/s per char, 52MB/s and 219MB/s for 

block, rewrite and seeks is 80MB/s and 19MB/s. 

 

4.2  Test Components 

To highlight the difference the redundancy brings in, we measure the PVFS 

and our revision on different conditions, from data size to network bandwidth.  

We should clear it before analyzing the results that our client machine only 

has 512MB memory, it means, in those read tests, the data will be saved in some 

virtual memory on the disk when the file is too big. Of course this memory switch 

between the main memory and the virtual memory will cost a lot of time. Therefore 

we can not judge which one is better at that file size. The maximum size in our tests is 

200 MB. 

Since many parallel file systems use their own API to access the file data, a 

simple benchmark, similar with Ref.[16][36][37][39][40][41], was adopted to test the 

system performance. In this benchmark, each client node concurrently opens a data 

file, write new data on it and finally closed it; similarly, each client node open a file, 

alternatively read data from two subsystem and combine it in a buffer and finally 

close it. To test Twin-PVFS in a more complicated environment, the benchmark 

iozone[42] also was run on our system because its throughput mode supports POSIX 

pthreads access, similar with our system. Since its full and automatic test mode will 

not allow pthreads, here only write/rewrite and read/re-read modes have been tested. 
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4.2.1 PVFS 

First, we test the original PVFS to build up our benchmark for the following 

comparison. It will take many experiments to fully examine a parallel file system 

because the basic operations, read and write, usually have different performance on 

different situations, such as the required data size, numbers of client nodes and I/O 

nodes, bandwidth. A chain of files with different sizes have been chose to operate 

basic read/write functions. In this step, we choose 1KB, 2KB, 5KB, 10 KB, 20KB, 

50KB, 100KB 200KB 500KB, 1MB, 2MB, 5MB, 10MB, 20MB, 50 MB, 100MB, 

200MB as the file sizes. To compare PVFS performance on different parallel scales, 

we build up several PVFS respectively with 4 I/O nodes, 2 I/O nodes and 1 I/O node. 

The local file system test is also put into our results to measure the PVFS 

performance. To avoid some random system delays, each test has been done 50 times 

and the result is the average of these 50 tests.  

The data range we select is very wild, from 1KB to 200 MB; the cost time 

also differs from milliseconds to some dozens of seconds. Therefore it is impossible 

to show all data clearly in one chart. We divide those data into 3 groups, 1KB-50KB, 

100KB-5MB, 5MB-200MB by the results trend.  

First, we test those data respectively on 4 I/O nodes, 2 I/O nodes, 1 I/O nodes, 

with 100Mbps Ethernet. Then we do the same tests with Myrinet and compare the 

results. The test on all-in-one local node will just do one time. 
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PVFS small file performance on Ethernet
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Figure 4-1 PVFS Small File Performance with Ethernet 

In this small file test, we can find out that, of course, the local operations cost 

less time; PVFS on 1 node costs more; PVFS on 2 nodes is the third and PVFS on 4 

nodes is the slowest. It illuminates that PVFS does not work well when transfer files 

are small. These results are obvious. When the files are small they will be transferred 

quickly through the network and they will be operated, read or wrote, quickly from or 

to the disk. Here, the bottleneck is the network transfer system. A modern hard disk 

can read or write these small files in a few milliseconds. Theoretically the Ethernet 

bandwidth is 100MB/s. It means in the real world it can transfer several dozens KB of 

data in a millisecond. But after counting in the system response time, message 

packing/unpacking and sending/receiving, it will be slower than the hard disk. Also, 

we can imagine if those small files are partitioned to smaller pieces, these tiny data 

may cost less time to be operated but they might still cost at least the same time to 

transfer. It is wasting the cluster resources. 
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PVFS middle file performance on Ethernet
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Figure 4-2 PVFS middle File Performance with Ethernet 

 For those middle size files, the local operations are still fastest. The operations 

on 4 nodes have the same results with those on 2 nodes. But they all a little exceed 

the PVFS on 1 node, especially the write operation. The data transfer speed of our I/O 

node disk is about 10MB/s. We can see the data approach the peak. Hard disk 

progressively becomes the bottleneck of these systems. 
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Figure 4-3 PVFS Large File Performance with Ethernet 

 38



 
Distinctly, the results are a little complicated. Local read is the fastest but 

local write is not. It is worse than the PVFS on 4 nodes and the PVFS on 2 nodes 

even the PVFS on 1 node. It might be caused by that the write operation needs more 

time and the write jobs are jammed in the queue. Parallelism shows its advantage here. 

The write speed is going a bit faster when the node number increases but all the read 

results are similar. PVFS on 4 nodes and PVFS on 2 nodes have the same data. The 

reason might be that the network bandwidth limits their ability. 

 Myrinet 

PVFS small file performance on Myrinet
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Figure 4-4 PVFS Small File Performance with Myrinet 

 
 For these small files, local operations cost the least time. PVFS on 1 node 

costs more and PVFS on 2 nodes is the third but they are very close. PVFS on 4 

nodes, as we suppose, is the slowest. Even though the bandwidth increases, these 

small files still don’t benefits from PVFS. 

 

 39



PVFS middle file performance on Myrinet
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Figure 4-5 PVFS Middle File Performance with Myrinet 

 From this figure we can see how close the results are. Totally, the first one is 

not too fast and the last one is not too slow. Hence local write and write on 1 node 

highlight themselves coordinately as doubtless laggards. As we ratiocinate above, in 

this part, the disk approaches its maximum speed. Myrinet supplies enough 

bandwidth so that the local operation and PVFS on 1 node have very close marks. But 

PVFS does not show its advantage very clearly because the PVFS with 4 nodes and 

PVFS with 2 nodes have a similar performance. 
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Figure 4-6 PVFS Large File Performance with Myrinet 
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 PVFS with 4 nodes is the fastest one by its absolute preponderancy. All its 

read speed and write speed are fastest. PVFS on 2 nodes also has a good speed. Those 

2 PVFS’s get a better write performance than the local system. There is no doubt that 

PVFS suits the large file operations and the parallel scale helps the performance, 

especially for the write. For read, the speed of these PVFS in the same file size 

doesn’t change much. Read on 4 nodes and on 1 node has a similar result. It seems 

the PVFS does not optimize the read operation very well. 

 

4.2.2 Twin-PVFS 

To compare with the original PVFS, we test our Twin-PVFS apart over 

Ethernet and Myrinet. As we observed above, PVFS is not good at small file 

operations. We assume that Twin-PVFS will do more disk operations to implement 

the availability. Therefore the test results might not exceed those original PVFS. Here 

we just test those larger files from 10KB to 200MB and drop out those files less than 

10KB. Also, those data will be put into three groups, 10KB-500KB, 1MB-10MB and 

20MB-200MB. Our Twin-PVFS has 4 I/O nodes and each PVFS has 2 I/O nodes. 

The client machine has 512MB memory, it mounts 2 PVFS metadata servers on itself, 

and each metadata server manages 2 I/O nodes. The instructions from the client will 

be sent to these two metadata servers simultaneously. There is no comparability 

between Twin-PVFS and the PVFS with 1 node or local file system. Certainly we just 

compare it with the PVFS on 2 I/O nodes.  
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Figure 4-7 Small File Performance  

 Just like we assume, Twin-PVFS does not gain a good performance. It is 

worse than the original PVFS much, less than double time of them. Its read and write 

operations have similar results. When the file size increase, the network has showed 

its performance.  
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Figure 4-8 Middle File Read Performance  
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 For these middle file operations, Twin-PVFS also does not perform well. 

PVFS API access is still the best. Twin-PVFS read scores are very close to the local 

PVFS kernel read. 
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Figure 4-9 Large File Read Performance  

 The disparity between Twin-PVFS and PVFS becomes less in this part. The 

performance has been clearly divided. 
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Figure 4-10 Small File Write Performance 
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 Write performance has been separated earlier, even the file size is not big, 

Twin-PVFS is the lowest. And the network affects the result much. 
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Figure 4-11 Middle File Write Performance  

 
The results are becoming clearer. With the increase of file size, the gap 

between Twin-PVFS and others is enlarged. 
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Figure 4-12 Large File Write Performance  
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When the file size is 200MB file, Twin-PVFS even can not finish the test, an 

error on SCSI disk has been showed. PVFS API still keeps the best.  

 
4.2.3 Serial Access 
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Figure 4-13 Middle file serial access performance on Ethernet 

 This figure shows serial access has similar performance with parallel mode. 

The taken time is almost twice as much time on original PVFS mode. The data 

amount is also twice as many. That means their performances are very close. 
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Figure 4-14 Large file serial access performance on Ethernet 
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 The results are the same as the middle file. Parallel mode doesn’t show its 

advantage. 
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Figure 4-15 Middle file serial access performance on Myrinet  
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Figure 4-16 Large file serial access performance on Myrinet 

On Myrinet, the results are little different. It validates again that parallel access 

benefits a lot from a higher bandwidth, especially the transferring data is huge. 

 

 

4.2.4 Parallel Access 

We also tested the PVFS API in parallel access mode with different file size. 
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Figure 4-17 Small file performance in parallel mode on Ethernet 
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Figure 4-18 Middle file performance in parallel mode on Ethernet 

In these three groups of file size, write in parallel mode performs like two write 

operations but parallel read is similar with the original PVFS read. 

 47



Large file performance
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Figure 4-19 Large file performance in parallel mode on Ethernet 

 
 
On Myrinet, the situation is different. This parallel access mode performs better, the 

gap between these two become smaller. 
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Figure 4-20 Small file performance in parallel mode on Myrinet 
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Middle file performance
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Figure 4-21 Middle file performance in parallel mode on Myrinet 
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Figure 4-22 Large file performance in parallel mode on Myrinet 

Even parallel write operation result is very close to the original write. But when the 

file size is 200MB, parallel read is busy with transferring data between memory and 

hard disk, a larger memory should be helpful to finish a further test. 
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4.2.5 Journaling 

The journal only records the data and metadata. If they are changed, the 

journal will be updated. Distinctly, only write operation changes both data and 

metadata. Read only does not changes the data and metadata. Hence the journal will 

not be changed. Our preliminary tests also show journaling doesn’t affect the read 

operation. In this test we only do the write operation. We test different cases, PVFS, 

serial access and Twin-PVFS, middle size files and large size files, Ethernet and 

Myrinet. The combinations of these individual elements present interesting results. 

 

Middle file write on PVFS with 4 nodes

0
0.1
0.2
0.3

0.4
0.5
0.6
0.7

100KB 200KB 500KB 1MB 2MB 5MB

Data file size

Ti
m

e(
s)

Write on PVFS with 4
nodes with Ethernet

Write on PVFS with 4
nodes with Myrinet

Journaling Write on
PVFS with 4 nodes
with Ethernet

Journaling Write on
PVFS with 4 nodes
with Myrinet

 
Figure 4-23 Middle file write performance on PVFS with 4 nodes 

For middle files, journaling has different results. It looks like journal will slow 

down the system when the PVFS scale increases. A faster network can help enhance 

the performance. 
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Figure 4-24 Large file write on PVFS with 4 nodes 

 Large file accesses causes the network jam on Ethernet, thus journaling 

doesn’t make the performance much worse. But Myrinet separates them. On PVFS 

with 4 nodes, the trend keeps going. 
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Figure 4-25 Serial middle file write 

 From this figure, we can see that journaling does not affect the serial 

performance of middle size files much. The results are very close. It looks like the 
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local file system can handle this kind of journaling without affecting the system 

performance. 
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Figure 4-26 Serial large file write 

 For large files, it’s different. Journaling slows down the system very much. 

Recording that size of journaling does cost much time. The influence of network 

bandwidth also can be found from those figures. 

Journaling also can improve the system availability and also slows down the 

system. It’s not obvious if the transferring data is small. But if the file size is 

calculated by dozens of MB, the system performance will drop much. An interesting 

result is that if we use more I/O nodes with journaling, PVFS does not perform well 

because its own parallel mode is serial for a single client. A file is divided into several 

fragments and each part will be journaled sequentially. That is a longer process.  
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4.2.6 Network overhead 
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Figure 4-27 Middle file network overhead 
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Figure 4-28 Large file network overhead 

From these two figures, we can find Myrinet has less overhead, especially the file size 

is bigger. Since we use sync mode to write file data, it will increase the operation time 

to wait for the return. For the lack of memory, we didn’t test big files with above 

200MB size. 
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4.2.7 iozone 
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Figure 4-29 IOZONE Test on Myrinet 
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Figure 4-30 IOZONE Test on Ethernet 

 
From this result we also can find a faster network will help improve the performance. 

Write performance of “Twin system” is not very good, but acceptable; its throughput 

is higher although part of it is not useful until the system is down. When the file is 
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larger, write operations on both Ethernet and Myrinet dive much. During that time, 

hard disk becomes the bottleneck.  

 

4.3 Results summary 

From the data set above we can find that PVFS is not a good choice for such 

small files, less than 50KB, not only over Ethernet but also over Myrinet. That is also 

said in PVFS manual [33]. It relates to the stripe size of parallel file system. If the file 

size is bigger than 100KB, PVFS can have a good performance. Ethernet is not a 

good company for PVFS because its bandwidth is only 100Mb/s. Myrinet we have in 

this test can supply us 1Gb/s bandwidth. It is really helpful to obtain a better 

performance. We guess that the large files write will work well with the parallel 

scale’s growth. There is no winner in read operations but all scores seem good. 

As we forecast, our revision, i.e. the Twin-PVFS, does not win the original 

PVFS in all tests. We believe that it is caused by the redundancy. For a computer, if 

its hardware doesn’t change, the maximum of computer capacity is constant, the 

redundancy occupies more running time and storage space, finally depress the 

performance. When the workload is above its maximum capacity this computer will 

be jammed. The PVFS kernel module is not designed to obtain a high performance 

because it relies on the kernel processing cost, daemon cost. Multi-thread also run on 

the top of kernel and can’t rescue our Twin-PVFS. In a better network, read operation 

doesn’t perform very badly, but write performance is almost unacceptable although it 

has redundancy. API is still the best way to achieve high performance in the system 
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like PVFS. It’s worth doing further study in this way. The mount mode also can be 

kept for the convenience.  

The full journaling as expected, does also slow down the system, especially 

the file size is big. It’s easy to understand that the local file system needs time to 

record a big size of journal with the full journaling mode. 

In our tests, when the file size grows, the hard disk and the network become 

the system bottleneck. A faster network can help reduce the queue time but the 

system speed is controlled by the bottleneck. 
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Chapter 5.  Conclusions 

 

5.1 Conclusions 

In this thesis, we introduce the RAID-1 Level redundancy to the PVFS and 

measure the effects on system preliminarily. We call this PVFS with this new 

function as Twin-PVFS.  

Firstly we build up a cluster and connect the nodes by Ethernet and Myrinet. 

To evaluate the system performance, we design a series of tests. The variables include 

the parallel scale and the data file size required by the client. The data size varies 

from 1KB to 200 MB and the parallel scale is from 1 I/O node to 4 I/O nodes. We use 

the results of the original PVFS as the benchmark to compare our Twin-PVFS. Our 

Twin-PVFS has also been tested with some file data. 

The results show that PVFS has a good performance on large file operations, 

especially when the system has high bandwidth. It even exceeds the local file write. 

This is the fascination of parallel file systems. Furthermore, the system performance 

increases someway with the parallel scale’s growth. But PVFS does not accelerate the 

small file operations, less than 50KB, in our test environments; they even slow the 

system down more with the parallel scale’s growth. We observe surprisingly that 

PVFS has similar read speed no matter what the file size is or what the parallel scale 

is. 
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As we surmise, our Twin-PVFS does not improve the system speed. On the 

contrary it keeps the slowest in the tests. This RAID-1 mode has good redundancy but 

of course it can not have a good hardware level performance. The mount-based access 

is not a good choice for high performance field, but it’s still a convenient approach 

for general usage. Our results also show the network bandwidth will help the system 

enhance the performance.  

Journaling also can improve the system availability and slows down the 

system. It’s not obvious if the transferring data is small. But if the file size is 

calculated by dozens of MB, the system performance will drop much. An interesting 

result is that if we use more I/O nodes with journaling, PVFS does not perform well 

because of its parallel mode.  

 

5.2 Future works 

Limited by the experiment equipments, we only test a PVFS with 4 I/O nodes 

and Twin-PVFS with 4 I/O nodes. We believe that a PVFS with more I/O nodes can 

have a better performance. Our Twin-PVFS might still be the last one but the 

performance might be better because the I/O nodes finish the work faster. This 

assumption needs more tests to prove it. The network we adopt in this experiment is 

100Mbps Ethernet and 1Gbps Myrinet. This device M2M-DUAL-SW8 is fast but it 

might be out of date. A new modern faster switch can help us evaluate the bandwidth 

factor ulteriorly. 

Here is no doubt that a good way to implement the data redundancy is to add 

this function in this file system. But it will change the PVFS whole structure, data 
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structure, message passing parameters and so on. Furthermore we can not evaluate the 

comparison between systems with and without redundancy. This work can not be 

done in a short time. Fortunately, the PVFS staff is developing its second edition, 

PVFS2 with the redundancy. But it is still the beta version [34]. 
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Appendices 

I. Top 10 Supercomputers, released in SC2005.  

http://www.top500.org/list/2005/11/ 

Rank Site Computer Processors Year Rmax Rpeak 

1 DOE/NNSA/LLNL 
United States 

BlueGene/L - eServer Blue 
Gene Solution 
IBM 

131072 2005 280600 367000

2 
IBM Thomas J. Watson 
Research Center 
United States 

BGW - eServer Blue Gene 
Solution 
IBM 

40960 2005 91290 114688

3 DOE/NNSA/LLNL 
United States 

ASC Purple - eServer pSeries 
p5 575 1.9 GHz 
IBM 

10240 2005 63390 77824 

4 
NASA/Ames Research 
Center/NAS 
United States 

Columbia - SGI Altix 1.5 
GHz, Voltaire Infiniband 
SGI 

10160 2004 51870 60960 

5 
Sandia National 
Laboratories 
United States 

Thunderbird - PowerEdge 
1850, 3.6 GHz, Infiniband 
Dell 

8000 2005 38270 64512 

6 
Sandia National 
Laboratories 
United States 

Red Storm Cray XT3, 2.0 
GHz 
Cray Inc. 

10880 2005 36190 43520 

7 The Earth Simulator Center
Japan 

Earth-Simulator 
NEC 5120 2002 35860 40960 

8 
Barcelona Supercomputer 
Center 
Spain 

MareNostrum - JS20 Cluster, 
PPC 970, 2.2 GHz, Myrinet 
IBM 

4800 2005 27910 42144 

9 
ASTRON/University 
Groningen 
Netherlands 

Stella - eServer Blue Gene 
Solution 
IBM 

12288 2005 27450 34406.4

10 
Oak Ridge National 
Laboratory 
United States 

Jaguar - Cray XT3, 2.4 GHz 
Cray Inc. 5200 2005 20527 24960 
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