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SUMMARY 

This study looked into means of improving prediction accuracy and facilitating 

efficient analysis of chaotic hydrological time series. The objectives were: (1) to 

investigate in detail the prediction performances of global prediction models (Artificial 

Neural Network (ANN) and Support Vector Machine (SVM)) compared to some widely 

used local prediction models (local averaging and local polynomial), and (2) to find 

means of incorporating noise reduction techniques in prediction improvement schemes, 

and (3) to investigate means of extracting system representative smaller sets of data from 

long data records.  

(1) Global models in chaotic time series prediction 

A chaotic noise-free Lorenz time series, a Lorenz series contaminated with some 

known noise levels, and two river flow time series were analyzed for 3 different 

prediction horizons. ANN outperformed local prediction models practically in all the 

cases. SVM, implemented with a decomposition technique to facilitate handling large 

data records, also performed better than local models with the exception of noise-free 

Lorenz series. On the average both global prediction techniques outperformed the local 

prediction models considered; however, at the expense of longer computational time. 

Comparison between performances obtained from ANN and from the relatively new 

SVM showed that both are equally good. For real time series, the prediction 

performance difference between them is insignificant.  

(2) Noise reduction to improve predictions 

Performance of both local and global models is unsatisfactory when data is noisy. 

This study identified some means to improve the predictions of noisy chaotic time series. 

It was shown that noise reduced inputs to a model can improve its prediction accuracy. 

A general perception that the models trained with noise reduced data may help in 

 xi



improving prediction is found not necessarily true. The findings of this study show that 

the prediction performance is not necessarily improved by such models if they are not 

supported with inputs of equal or lesser noise levels. Hence, the study showed the 

necessity of real-time application of noise reduction to improve prediction. Nonlinear 

chaotic dynamics literature lacks established techniques capable of real-time noise 

reduction. It was shown that the Extended Kaman filter, originated from Controls 

literature, can be used as a reliable and robust technique for real-time noise reduction in 

chaotic time series. The study proposed a better approach, which eliminated the short-

comings of the earlier approaches, to incorporate noise reduction to improve prediction 

accuracy. The effectiveness of the proposed scheme was demonstrated with EKF. 

(3) Data extraction  

Large data record demands significant computational resources in chaos analysis. 

This study proposed a procedure that couples a clustering method, a prediction method, 

and an optimization method (mGA) to extract a smaller set of system representative data 

from long data records. Demonstration with Subtractive Clustering Method, SCM (Chiu, 

1994), on both synthetic and real time series, showed a considerable reduced data set 

(approximately 30% - 60% of the total data set) can still achieve the same prediction 

accuracy as that of the entire record. However, SCM, with four parameters to be 

optimized, required significant computational effort. 

New simple clustering technique 

A new clustering method is developed in this study that has only one single parameter. 

Method is shown to be as equally effective as SCM while it requires much less effort 

than SCM. The new method, though developed for data extraction in chaotic time series, 

was shown to be effective on some other multivariate data sets as well. Application of it, 

on proposed noise reduction scheme with EKF, showed the potential in data extraction 

procedure to yield efficient analysis of the normally time-consuming applications. 
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CHAPTER 1 

INTRODUCTION 

 
Prediction of hydrological and meteorological time series is an important task in 

understanding the hydrological and meteorological systems. In the past, linear 

stochastic approaches such as ARMA were widely used in the prediction of 

hydrological time series. However, the inherent assumptions underlying such 

approaches such as linearity may not be applicable to complex and nonlinear 

hydrological systems (Jayawardena and Gurung, 2000). With the recent developments 

in chaos theory, it was revealed that most real world systems may be better understood 

using chaotic dynamical systems theory (e.g. Lorenz, 1963; Jayawardena and Lai, 

1994; Rodriguez-Iturbe et al, 1989). This is a relatively new and developing field and 

yet it has shown promise in identification and prediction of nonlinear real world 

systems. Particularly due to its potential shown in short term prediction the approach is 

now gaining popularity in many diverse fields (e.g. physics, chemistry, biology, 

meteorology, etc) including the prediction of nonlinear hydrological time series.  

Prediction of time series with this chaotic dynamical systems approach is 

generally referred to as phase space prediction. The development of phase space 

prediction models requires a large number of past records. Most of the current research 

focuses on methods to further improve the performance of phase space prediction. 

However, only the traditional local phase space prediction models, which have limited 

capacity, are widely used owing to their simplicity and ease in implementation with 

large number of data records. The presence of noise in data also considerably 

deteriorates the performance of phase space prediction (Kantz and Schreiber, 2004). 

Searching for and investigating more sophisticated prediction models and noise 
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reduction methods are thus essential. Also attempts towards extracting a small set of 

data from larger set of records is very important. This is particularly crucial when large 

data record poses problems computationally, e.g. memory size and long computational 

time. 

The next section first briefly reviews the chaotic time series analysis: it provides 

basic understanding of dynamic systems approach and its applications. Thereafter the 

need for the present study becomes clearer and formulated. 

 
1.1 CHAOTIC TIME SERIES ANALYSIS 

1.1.1 Basics of chaos 

A breakthrough finding by Takens (1981) served as the stepping-stone for the 

dynamical systems approach for analysis of chaotic systems. Takens showed that it is 

possible to reconstruct the dynamics of a chaotic system using only a single variable of 

the system. In dynamical systems approach, the dynamics of a real world system is 

modelled using a single observed variable of the system concerned (Takens, 1981). 

This approach is very useful in understanding dynamical systems where explicit 

governing equations are not available but one or few variable can be observed. There 

are two main stages in dynamical systems approach for chaotic time series analysis: (1) 

chaos identification and (2) prediction. 

Identification of chaos in real world data is a difficult task given that the theory 

of chaos is still at developing stage. There are a few widely used chaos identification 

methods in the literature. Some of them are: (1) correlation dimension method (e.g. 

Grassberger and Proccacia, 1983a, b), (2) the Lyapunov exponent method (e.g. Wolf et 

al., 1985), and (3) Kolmogorov entropy method (e.g. Grassberger Proccacia, 1983c). 

None of the above methods are, however, without pitfalls.  Nevertheless they are 

incorporated to verify chaos in real world data. Applications of these methods in real 
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world data have indicated the possibility of chaotic dynamics in various natural and 

physical systems including hydrological systems. Early studies put more emphasis in 

identifying chaos in real world data. However, some of these studies have been 

subjected to debate (e.g. Grassberger, 1986; Theiler, 1986, 1988) owing to the practical 

limitations in applying these identification methods. Many researchers are now more 

concerned with which approach is most ‘useful’ for a given experiment than resolving 

the question “is it chaos or is it noise?” (Kantz and Schreiber, 2004). Thus, the recent 

studies put more emphasis on applications of chaos-based techniques for prediction 

purposes, and the chaotic dynamical systems approach is gaining wide popularity due 

to the promise it has shown in phase space prediction.  

Once a time series is identified as chaotic or can be better modelled by chaotic 

analysis, one may exploit the short-term predictability. Two types of prediction 

models: (1) local models which describe the dynamics in local neighbourhoods, and 

(2) global models which explain the dynamics globally (e.g. Artificial Neural 

Networks (ANN), Support Vector Machines (SVM)), are used in phase space 

prediction. Local models have been widely used due to their simplicity in calculation. 

However, with the advancement of computing resources, global models are now 

emerging as an alternative. These chaos identification and prediction methods have 

been increasingly popular in the analysis of hydrological systems as well. The next 

section discusses some such applications. 

1.1.2 Chaos applications 

 A wide spectrum of chaos based applications has appeared in the past two 

decades. The major applications in hydrology have been reported in river flow analysis 

(e.g. Jayawardena and Lai, 1994; Porporato and Ridolphi, 1996, 1997) and in rainfall 

analysis (e.g. Rodriguez-Iturbe et al, 1989; Sharifi et al, 1990; Sivakumar et al., 1998; 
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1999). River flow time series analysis with chaotic dynamical systems approach has 

shown a lot of advancement than in rainfall analysis; the chaos-based techniques have 

shown good potential in short-term prediction (e.g. Jayawardena and Lai, 1994; 

Porporato and Ridolfi, 1996, 1997; Jayawardena and Gurung, 2000). This has triggered 

researchers to experiment more on chaos applications. As a result, current research 

shows lots of enthusiasm in finding the ways to improve the accuracy of phase space 

prediction. For example, several methods have been proposed from different data pre-

processing methods (e.g. Porporato and Ridolfi, 1997; Jayawardena and Gurung, 2000; 

Yu et al., 2004) to radical approaches such as inverse approaches (e.g. Babovic et al., 

2000; Phoon et al., 2002) to get better prediction performances from phase space 

prediction. However, all these improvements have been attempted with local 

prediction models only. 

 
1.2 PRESSING ISSUES 

1.2.1 Local or global models? 

There is a general understanding that local approximation can give better 

predictions than global approximation in phase space prediction of chaotic time series. 

However, it is interesting to conduct a performance comparison between the widely 

used global models, such as Artificial Neural Network (ANN) and the widely used 

local models. The superiority of ANN to model the nonlinear dynamics in hydrological 

time series has been demonstrated in a number of studies (e.g. Karunanithi et al., 1994; 

Hsu et al., 1995; Elshorbagy et al., 2000; ASCE, 2000). However,  only a very few 

studies (e.g. Elshorbagy et al., 2002a; Sivakumar et al., 2002) have used ANN as a 

global phase space prediction model in chaotic river flow time series prediction. 

Elshorbagy et al. (2002a) utilized an ANN model and the popularly used local model 

(averaging technique) while Sivakumar et al. (2002) used ANN and local polynomial 
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models. Both studies, however, did not give a conclusive performance comparison of 

the local and global models and, furthermore, they provided contradictory results. 

Therefore, further studies on the performance of global ANN models compared to 

local models in chaotic time series prediction are called for.  

Also, very recently the Support Vector Machines (SVM), another machine 

learning technique, is gaining popularity. Applications have appeared in water 

resources related fields (e.g. Sivapragasam, 2003). Very recently an application of 

SVM was demonstrated on chaotic hydrological time series analysis as well (Yu et al, 

2004). Yu et al. (2004) showed that SVM was superior to traditional local prediction 

models and the ARIMA models. However, no comparison between the two techniques, 

SVM and ANN, has been presented so far. It is thus timely to investigate the 

performance of the more novel technique compared to the more established competitor 

ANN. 

1.2.2 Prediction with noisy data 

 Noise can considerably deteriorate the performance of even an impeccable 

prediction model. The chaotic systems, especially, are very sensitive to initial 

conditions, thus, the presence of even a small amount of noise can considerably 

hamper the prediction accuracy. Therefore, it is beneficial to reduce noise in real world 

data before chaos based techniques are attempted. However, when the true signals are 

unknown, any noise reduction attempt always leads to the same question “is the 

removed part indeed noise?”. Some established noise reduction methods have been 

shown to actually reduce noise and there are criteria used for partial verifications of 

noise removal. Hence, noise reduction is a very useful tool in noisy time series 

analysis, since, among other things, it is expected to improve the prediction 

performance. 
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 Several noise reduction attempts have been made on chaotic hydrological time 

series analysis (e.g. Porporato and Ridolfi, 1997; Kawamura et al., 1998; Sivakumar et 

al., 1999b, c; Jawardena and Gurung, 2000). The popular simple nonlinear noise 

reduction techniques have been used in those studies. However, Elshorbagy et al. 

(2002b) raised serious doubts on the appropriateness of their noise reduction processes. 

In addition, the present study notices that the approaches followed by the above studies 

are not appropriate for real-time processing of noisy data. Most widely used nonlinear 

noise reduction techniques (together with those used in the above chaotic hydrological 

applications) in the literature are more appropriate for offline applications than for on-

line processing. Kalman filtering and its variants have been successfully used in real-

time applications mainly in Controls field where system states have to be estimated 

from noisy observations. Exploring the applicability of Kalman filtering and 

investigating the methodologies to further improve, by incorporating noise reduction, 

the real-time prediction performance is one of the main objectives of the present study. 

 A major difficulty in using such complex but promising techniques, including 

artificial intelligence (AI) based prediction techniques such as ANN and SVM, is the 

increased requirement of computational resources (e.g. memory and time). This is 

particularly critical in chaos based applications where large number of data records is 

considered necessary.  

1.2.3 Handling of large data sets 

Most of the chaos analysis methods are developed with the assumption that the 

time series are of infinite length. Several guidelines for calculating the minimum 

number of data record size necessary for estimating some of the system parameters 

have been formulated (Smith, 1988; Nerenberg and Essex, 1990; Sivakumar et al., 

1998); but they are of limited practical applicability. No such guidelines are available 
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to determine the sufficient amount of data for prediction purpose. However, in chaotic 

dynamical systems approach, since future is predicted from past experience, it seems 

that a large data size is a necessity. Therefore, it is generally believed that the larger 

the data size considered the better is the prediction. Whether all these data contribute 

valuable information for prediction is an unanswered question. One of the major 

difficulties in using a large number of past records is the increased computational time 

and resources. This is emblematic of sophisticated tools such as Neural Networks, 

Support Vector Machines etc. The computational time and effort needed to train such 

models increase at least quadratically (Collobert et al., 2002) with the number of past 

records. Therefore, a method that can extract only a small set of representative data 

from raw data is desired. 

Recently Liong and Doan (2002) applied a clustering technique, Subtractive 

Clustering Method (Chiu, 1994), with General Regression Neural Network to extract 

an effective and efficient data set from multivariate data. They were able to extract as 

small as 47 patterns, out of a total of 467 patterns of multivariate Bangladesh water 

level data, which yield similar performance as that when the entire set of patterns is 

considered. Their results indicate that the hydrological data may contain large amount 

of less informative data; thus, it may be possible to derive smaller and yet 

representative data sets from a very large data record. The applicability of such 

methods in extracting representative data sets from chaotic time series is a part of the 

present study. 

 
1.3 OBJECTIVES OF THE STUDY 

The chaotic dynamical systems approach has been gaining increased popularity 

in the analysis and prediction of chaotic hydrological and meteorological time series. 
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Many time series come with a very large past record which can impede, or even 

prohibit, the computational process. Therefore, the prediction applications have thus 

far been limited mainly to local models due to their simplicity in implementation. 

Developing methodologies for prediction improvement has been very much in the 

recent research interest. Thus, the present study focuses on the followings: (1) detailed 

performance comparison between the global prediction models and local prediction 

models, (2) to find means of incorporating noise reduction techniques in prediction 

improvement schemes, and (3) to investigate means of extracting system representative 

smaller sets of data from long data records. 

The objectives of the study are as follows: 

(1) To assess the performance of ANN over the widely used local prediction 

techniques. 

(2) To compare the performance of SVM and that of ANN 

(3) To investigate the appropriateness of Kalman filtering techniques in 

improving the prediction performance of noisy chaotic time series. 

(4) To propose a noise reduction methodology for real-time predictions of 

chaotic time series. 

(5) To investigate the possibilities of data extraction and develop methodologies 

to derive system representative data from long chaotic time series data. 

This study considers two river flow time series in the analysis. However, all the 

techniques and the methodologies are first tested and applied to a known noise-free 

chaotic Lorenz series and then to the same series contaminated artificially with some 

known noise levels. 
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1.4 ORGANIZATION OF THE THESIS 

Chapter 2 discusses basics of chaos and the chaotic time series analysis. It also 

reviews the chaos based applications in hydrology with respect to prediction, noise 

reduction and problems with large data records. 

Chapter 3 first introduces the data considered in the study. It then presents a 

detailed comparison between ANN and local prediction models. A performance 

comparison between SVM and ANN is also included. 

Chapter 4 first investigates some means of improving prediction accuracy of 

noisy chaotic time series. It then introduces the Extended Kalman filter for chaotic 

time series analysis. A noise reduction scheme for real-time prediction applications is 

then proposed and demonstrated. 

Chapter 5 demonstrates the possibility of extracting smaller sets of system 

representative data from chaotic time series using Subtractive Clustering Method 

(Chiu, 1994). A new, much simpler clustering technique is then developed for the data 

extraction purpose. Application of the technique on the proposed noise reduction 

scheme is then presented. 

Chapter 6 draws the conclusions resulting from the current study and gives a 

number of recommendations for further research. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 INTRODUCTION 

The revelation that disorganized and complex-looking behaviour can result 

from an elementary equation or a simple underlying cause was a real surprise to many 

scientists. With the recent developments in chaos theory, researchers have looked for 

the determinism in various random-looking fluctuations from different disciplines such 

as mathematics, physics, chemistry, biology, physiology, medicine, geology, 

economics, hydraulics, atmospheric sciences, meteorology etc. Most of such studies 

provided evidence regarding the existence of chaotic behaviour and the possibility of 

short term predictions. In hydrology too the processes (e.g. rainfall, runoff etc.), which 

were once analyzed using linear stochastic approaches, are now analyzed using 

deterministic chaotic approach. The chaotic dynamical systems approach is gaining 

popularity in many different fields due to the promise it has shown in short term 

prediction. 

 The first few sections of this chapter discuss basics of chaos and the chaotic 

time series analysis. More emphasis is, however, placed on prediction and related 

issues. The techniques used in this study such as Artificial Neural Networks, Support 

Vector Machines and Kalman Filtering are also introduced. Then it reviews the chaos 

based applications in hydrology with respect to prediction, noise reduction, and the 

problems related to large data record size and its remedy.  

2.2 BASICS OF CHAOS 

According to Williams (1997), chaos is sustained and disorderly-looking 

evolution that satisfies certain special mathematical criteria and that occurs in a 
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deterministic non-linear system. Chaos theory is the principles and mathematical 

operations underlying chaos. Real world systems that are deterministic, nonlinear and 

dynamic are susceptible to chaos. The main characteristic of chaos is its extreme 

sensitivity to even the slightest variations in initial conditions. This is also known as 

the “Butterfly effect”. Edward Lorenz’s famous quote ‘the flap of a butterfly’s wings 

in Brazil may set off a tornado in Texas’ shows the extent of the sensitivity of the 

chaotic systems to its initial conditions. Chaos is a relatively young and rapidly 

developing field, and, at present, chaos is very difficult to identify in real-world data. 

However, due to the capacity of short-term prediction in chaotic systems, chaotic time 

series analysis is now becoming popular in various fields.  

A breakthrough finding by Takens (1981) paved the way for the chaotic 

dynamical systems approach for analysis of chaotic time series. Takens (1981) showed 

that it is possible to reconstruct the dynamics of a chaotic system using only a single 

variable of the system. This approach has been shown to be very useful in 

understanding dynamical systems where explicit governing equations are not available 

but one or few variables can be observed. Before starting the discussion on chaotic 

dynamical systems approach for time series analysis some key terminologies related to 

chaos theory are first introduced. 

Attractor. An attractor is a dynamical system’s set of stable conditions (Williams, 

1997). When reconstructed on a phase space, an attractor shows a system’s long-term 

behaviour.  

State Space Reconstruction. A state space is defined as the multi-dimensional space 

whose axes consist of variables of a dynamical system. When the state space is 

reconstructed from an observed time series data, it is called a phase space. There are 

many methods to reconstruct the state space; the time delay coordinate method is 
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currently the most popular choice. Packard et al. (1980) and Takens (1981) described 

the time delay coordinate method to approximate the state space from a scalar time 

series. According to the method, the phase space vector Xi can be expressed as 

( )ττ )1(,....,, −−−= miiii xxxX        (2.1) 

where xi is the observed value at time ti=iΔt, Δt is the sampling interval, m is the 

embedding dimension and τ is the time delay. Note that the actual time delay in 

physical units is τ(Δt). 

Embedding Dimension (m). The lowest dimension, which unfolds the attractor so that 

none of the self overlaps of the orbit remains, is called the embedding dimension.  

Time Delay (τ). Time delay is a suitable multiple of the sampling time Δt. 

  

2.3 ANALYSIS OF CHAOTIC TIME SERIES 

Analysis of chaotic time series may be divided into three main phases: (1) 

System characterization; (2) Determining phase space parameters for prediction; and 

(3) Predicting the time series. Basically, system characterization investigates whether a 

time series is chaotic. System characterization may also include the determination of 

the number of degrees of freedom of the system and the extent of predictability of the 

system etc. In prediction, the future is predicted with the assistance of observed past 

patterns of the system. Both system characterization and prediction require the 

reconstruction of the phase space. This requires the phase space parameters, 

embedding dimension and the time delay. There are two main approaches to determine 

these parameters: (1) the standard approach and (2) the inverse approach. The 

identification, phase space parameter determination and prediction of chaotic time 

series are discussed in the following sections. 
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2.3.1 System characterization 

If the mathematical formulation of a system is available, recognizing chaotic 

behaviour is relatively easy. Since the evolution is deterministic, broadband power 

spectra would be sufficient to identify chaos. However, for real world systems (e.g. 

runoff, rainfall etc.), whose governing equations and the total number of variables are 

not known exactly, Fourier analysis alone is not sufficient to indicate chaos since 

random series also have broadband power spectra. This has resulted in the emergence 

of wide variety of methods. Among these methods, the most popular ones are: (1) the 

correlation dimension method (e.g., Grassberger and Procaccia, 1983a, b; Termonia 

and Alexandrowicz, 1983; Theiler, 1987); (2) the Lyapunov exponent method (e.g., 

Wolf et al., 1985; Eckmann et al., 1986); (3) the Kolmogorov entropy method (e.g., 

Grassberger and Procaccia, 1983c); (4) the nonlinear prediction method (e.g., Farmer 

and Sidorowich, 1987; Casdagli, 1989; Sugihara and May, 1990; Tsonis and Elsner, 

1992), including deterministic versus stochastic (DVS) diagram (e.g., Casdagli, 1991); 

(5) the surrogate data method (e.g., Theiler et al., 1992; Schreiber and Schmitz, 1996); 

and (6) the method of redundancy (e.g., Palus, 1995; Prichard and Theiler, 1995).  

Out of the methods listed the correlation dimension method, also called the 

correlation integral analysis (CIA), is the prime and most widely used chaos 

identification method. Almost all the studies on investigating chaos in meteorological 

and hydrological time series have used the correlation dimension method. Dimension 

of an attractor is a measure of complexity of the system. Correlation dimension is an 

estimate to the dimension of an attractor. A finite value in correlation dimension is 

considered as an indication of the system being deterministic. If the value is low and 

non-integer it is taken as an indication of chaos. There is more than one algorithm for 

the computation of the correlation dimension of a time series (e.g. Grassberger and 
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Procaccia, 1983 a, b; Termonia and Alexandrowicz, 1983; Thieler, 1987). However, 

Grassberger-Procaccia algorithm (Grassberger and Procaccia, 1983 a, b) is the widely 

used algorithm. The Grassberger-Procaccia algorithm for correlation dimension 

calculation and for chaos identification is given in Appendix A. 

There are, however, limitations and concerns about the application of 

correlation integral analysis for chaos identification (e.g. Grassberger et al., 1991). 

Such problems, however, are not limited only to the correlation dimension method. 

Such difficulties are reported in various studies in chaos identification. (e.g. 

Jayawardena and Lai, 1994). Due to these limitations in chaos identification methods, 

a series of debates were observed in 1980’s and 1990’s over the claims that certain 

phenomena were chaotic (e.g., Nicolis and Nicolis, 1984; Grassberger, 1986; Nicolis 

and Nicolis, 1987; Theiler, 1986; 1990; Osborn and Provenzale, 1989; Lorenz, 1991; 

Jayawardena and Lai, 1994; Pasternack, 1999; Liaw et al., 2001). More recent 

understanding is that it is more fruitful to identify the most suitable method for the 

analysis of a certain phenomena rather than establishing whether a system is chaotic or 

not. According to Kantz and Schreiber (2004) “ … we think that nonlinear techniques 

(chaos based) can be very useful in situations where determinism could not be 

established. We feel that people have already spent too much of their time trying to 

find an answer to the question ‘is it chaos or is it noise?’ Often it is much more fruitful 

to ask which is the most useful approach for a given experiment. That a data set is 

stochastic to some degree does not mean that we have to use stochastic methods 

exclusively. In particular, we are not obliged to give up when no 100% appropriate 

method is available …”. With this understanding, once a time series is identified as 

may be better modelled with nonlinear chaotic dynamics techniques the next step is to 
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determine the phase space parameters, embedding dimension and time delay, to 

reconstruct the time series in phase space. 

2.3.2 Determination of phase space parameters 

Reconstructing the phase space using the time delay coordinate method needs 

the estimation of the phase space parameters: embedding dimension (m) and time 

delay (τ). The two approaches for chaotic time series analysis, the standard approach 

and the inverse approach, differ in the way they determine these phase space 

parameters needed for prediction. The standard approach determines phase space 

parameters using the criteria with theoretical insight while the inverse approach finds 

the optimal phase space parameters with minimum prediction error as the target. The 

two approaches are described below. 

2.3.2.1 Standard approach 

In the standard approach, the phase space parameters are determined by 

incorporating the knowledge gained in the system characterization stage. In system 

characterization one determines the dimension of the attractor, which gives the degrees 

of freedom of the system. Once the dimension of the system is known several 

guidelines are available to determine an embedding dimension (m). According to the 

embedding theorem of Takens (1981), for a dynamic system with dimension d, an 

embedding dimension, m (m>2d+1) is adequate for phase space reconstruction. 

However, Farmer and Sidorowich (1987) and Abarbanel et al. (1990) suggested that an 

embedding dimension just greater than the attractor dimension (m>d) is sufficient.  

From a mathematical point of view, time delay (τ) is arbitrary. Therefore, there 

exists no rigorous way of determining its optimal value, and it is even unclear what 

properties the optimal value should have (Kantz and Schreiber, 2004, p.148). 

However, for limited and noisy real data, an arbitrary selection of time delay may not 
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produce good phase space reconstruction. There is little information if time delay is 

too small; on the other hand, if it is too large all relevant information is lost since the 

neighboring trajectories will diverge. Therefore, selection of an optimum time delay is 

important. In the literature, at least a dozen different methods have been suggested as 

to how to estimate τ. All these methods yield optimal results for selected systems only, 

and perform just as average for others. Out of these methods the two widely used 

methods are: (1) Autocorrelation function method; (2) Average mutual information 

method. According to Holzfuss and Mayer-Kress (1986), time delay can be chosen as 

the value where the autocorrelation function first crosses the zero line. Other 

approaches consider the delay time at which the autocorrelation function attains a 

certain value; say 0.1 (Tsonis and Elsner, 1988), 0.5, or 1/e (Schuster, 1988). Since 

autocorrelation function measures the linear dependence, Frazer and Swinney (1986) 

suggested the use of the first local minimum of the mutual information for the choice 

of time delay.  

 As seen above, there is no single accepted criterion to select phase space 

parameters in standard approach. Also, the methods do not work well with all the time 

series. Therefore, inverse approaches have been proposed to determine these 

parameters. 

2.3.2.2 Inverse approach 

Since there is no single accepted criterion for determining phase space 

parameters in standard approach, various researchers have suggested the use of inverse 

approaches to determine phase space parameters. Casdagli (1989) was the first to 

propose an inverse approach to construct a robust predictive model directly from time 

series data. In his words, “The standard problem in dynamical systems is, given a 

nonlinear map, describe the asymptotic behaviour of iterates. The inverse problem is, 
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given a sequence of iterates, construct a nonlinear map that gives rise to them”. 

Casdagli et al. (1991) and Gibson et al. (1992) have highlighted the advantage of using 

prediction accuracy as a useful criterion in practical state space reconstruction.  The 

authors suggested that state space parameters are not constant and the embedded 

window width ((m-1)τ) should be adjusted to achieve an optimum balance between 

noise amplification and estimation error.   

Babovic and Keijzer (1999) used an inverse approach to obtain phase space 

parameters, which produced the best predictions of discharge from river Luznice 

(Czech Republic), from a wide range of values of the embedding dimension, delay 

time and the number of nearest neighbors. In a more recent paper, Babovic et al., 

(2000) employed a genetic algorithm to evolve an embedding that would produce the 

most accurate forecast of water level at Punta Della Salute (Venice, Italy). Recently, a 

practical inverse approach was proposed by Phoon et al. (2002) to determine optimal 

phase space parameters. In this approach the phase space parameter determination and 

the prediction was achieved in a combined step.  Phoon et al. (2002) determined the 

optimal values of the parameters embedding dimension (m), time delay (τ), and 

number of nearest neighbours (k) simultaneously which: (1) yields the lowest 

prediction error; and (2) hopefully carries the signature of chaos in the time series. 

They argued that since high prediction accuracy is, in general, the primary motivation 

for developing engineering models, the proposed approach was logical and they 

demonstrated that the proposed inverse approach yields a set of (m, τ, k) with higher 

prediction accuracy, as expected, than that resulting from its counterpart, the standard 

approach.  Phoon et al. (2002) used an exhaustive (brute force) approach to select the 

optimal parameter set out of a range of possible combinations. In a more recent study 

Liong et al. (2005) showed that a micro-genetic algorithm search engine was more 
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robust and achieved global optimum with much less evaluations compared to that of 

the brute force search.    

2.3.3 Prediction 

Chaotic time series have a short-term predictability. Therefore, once a time 

series is identified as chaotic or a nonlinear chaotic approach is considered more 

appropriate for the analysis of the time series, one can make an attempt to forecast the 

time series (Casdagli, 1989; Sugihara and May, 1990; Tsonis and Elsner, 1992). In 

phase space prediction, the basic idea is to set a functional relationship between the 

current state Xt  and future state Xt+T  in the form 

)( tTTt XfX =+         (2.2) 

where T is referred to as lead time. At time t, Xt and Xt+T are the current and the future 

phase space vectors as defined in Eq. 2.1. For a chaotic system, the predictor  which 

approximates f

Tf̂

T is necessarily nonlinear. There are two strategies to obtain : (1) local 

approximation, and (2) global approximation. In global approximation a function F

Tf̂

T, 

which is valid over the entire state space is approximated. Neural networks, 

polynomial and rational function etc. can be used as global approximators. On the 

other hand, the local approximation subdivides the domain of the attractor into many 

subsets each of which identifies some approximation  valid only in that subset. The 

set of all  functions constitute the F

i
TF

i
TF T for the case of local approximation. Local 

averaging technique and local polynomial technique are the widely used local 

approximators.  The local models (Farmer and Sidorowich, 1987; Casdagli, 1989; 

Sugihara and May, 1990) have been widely used due to their simplicity. With recent 

developments in computer field, global models such as Artificial Neural networks 
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(ANN) are also emerging as alternative techniques. These prediction techniques are 

discussed in the following sections. 

2.3.3.1 Local Approximation: Averaging and polynomial models 

In local approximation, only the states near the current state are used to make 

prediction. To predict a future state Xi+T, an Euclidean metric is imposed on the phase 

space to find the k nearest neighbours of the current state Xi. Once the nearest 

neighbours are found, one can project each of these states Xn to their respective future 

states Xn+T, and construct a local predictor using this group of future states. A local 

predictor can be constructed in several ways. Among them, the averaging technique 

(Farmer and Sidorowich, 1987; Casdagli, 1989; Sugihara and May, 1990) is the most 

popular way. Here, the estimate to future state  is calculated as  TiX +
ˆ

kXX
k

n
TnTi /ˆ

1
⎟
⎠
⎞⎜

⎝
⎛= ∑

=
++         (2.3) 

 Another way of constructing a local predictor is to use local polynomials 

(Abarbanel, 1996). Here, local maps are formed for each state vector in the training set 

as 

)(1 kkk XFX =+          (2.4) 

where  

)(),()(
1
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M

m
kk XkmXF φ∑

=
= c         (2.5) 

and  MmXm ,...,2,1),( =φ are polynomial basis functions. The coefficients of the 

model  can be determined by a least squares fit by minimizing k)(m,c

∑
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1 )(  where NBrX r
k ,...,2,1, =  are the nearest neighbours of  and 

 are their corresponding one-step ahead states. When a new point is given, its 

kX

r
kX 1+ 0Z
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nearest neighbour in training set  is found. Then the one-step evolution of is 

found as  

jX 0Z

)( 01 ZFZ j=          (2.6) 

then the nearest neighbour to  in the training set is found and the procedure is 

repeated until the desired prediction horizon is reached. 

1Z

2.3.3.2 Global Approximation: Artificial Neural Network (ANN) 

Artificial Neural Network (ANN) is one of the major tools that form the core 

for developing intelligent systems. It is motivated by the recognition that the human 

brain computes in an entirely different way from the conventional digital computer. 

Artificial Neural Networks are now very popular in many different fields and are 

primarily used to solve two kinds of problems: (1) pattern recognition or classification 

problems and (2) regression or function approximation problems. The present study 

focuses on the use of ANN for function approximation (regression) purpose. 

By definition, an artificial neural network is a massively parallel distributed 

processor made up of simple processing units, which has a natural propensity for 

storing experimental knowledge and making it available for use (Haykin, 1999). 

Artificial neural network does not need any priori knowledge of the actual physical 

processes and given that there is an exact relationship between input and output data, 

the ANN can be ‘trained’ to ‘learn’ that relationship. A neural network is characterized 

by its architecture. A typical ANN consists of a number of nodes that are organized 

according to a particular arrangement. Any non-cyclic arrangement of neurons (the 

basic building blocks of neural network), where the information flow begins with the 

inputs of the problem and ends at the outputs of the problem, is referred to as a Multi 

Layer Perceptron (MLP). However, for the ease in programming, a particular 
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arrangement where neurons are arranged in layers without any crisscross connection 

between non-successive layers is very popular and most widely used. These Multi 

Layer Perceptrons, also called as Sigmoidal Networks, Feed forward Neural Networks 

and Back-propagation Networks, have been found to provide excellent performance 

with regard to input-output function approximation and pattern recognition. Hence, 

more than 90% of the applications that use neural networks are based on MLPs. 

Although an MLP may have many layers, it has been proved that even MLPs with a 

single hidden layer have universal approximation capability (Haykin, 1999).  

2.3.3.3 Global Approximation: Support Vector Machine (SVM) 

Support vector machine and its related theory have been developed over the 

last 30 years. The algorithms in its present form, however, have been developed by V. 

Vapnik and his co-workers firstly for pattern recognition problem in 1992 and then for 

regression problem in 1997. Currently, the Support Vector Machines is the main 

competitor to Artificial Neural Networks in both pattern recognition and regression 

applications. Support Vector Machine algorithm is developed based on statistical 

learning theory. One of the main insights in statistical learning theory is that in order to 

obtain a small risk (error on unseen data) one needs to control both training error and 

model complexity by explaining the data with a simple model. This is achieved in 

SVM through the structural risk minimization inductive principle (Vapnik, 1999). 

In Support vector machine, the analysis is performed in a high dimensional 

space called feature space rather than in the data space. The crucial ingredient 

facilitating this is the so-called Kernel-trick, which permits the computation of dot 

products in high dimensional feature spaces using simple functions defined on pairs of 

input patterns. Kernels that satisfy the conditions given by Mercer’s theorem may be 

used in the Kernel-trick. Mercer’s theorem lists the conditions required for a 
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symmetric continuous function K(x, x’) defined in a closed interval  and 

 to have an expansion, 

bxa ≤≤

bxa ≤′≤

∑
=

′=′
FN

k
kkk xxxx

1
)()(),( φφλK        (2.8) 

where ∞≤≥ Fk Nand0λ  

Let us consider a training data set ( ) Niyii ...,2,1,, =x  where  is the input 

vector with dimension n, and y is the corresponding output vector with dimension 1. In 

regression, one tries to estimate : 

x

)(xf

υ+= )(xfy          (2.9) 

where is the conditional expectation )(xf [ ]xyE  and υ  is a random expectation error 

that represents the ‘ignorance’ about the dependence of y and . In SVM, the input 

space is transformed to a higher dimensional space through 

x

x )(xϕ . { })(xjφ  is called 

the feature space. The nonlinear basis functions { })(xjφ  convert the original function 

 into linear functions in the feature space: )(xf

( ) ( ) bwy
m

i
ii +=== ∑

=
xWxWx TT

0 ϕϕφ ..)(
0

0          (2.10) 

where m is the number of basis functions where b is a scalar constant. The beauty of 

SVM formulation is that one can determine ( )xW T ϕ.  in Eq. 2.10 without using the 

functions ( )xiφ explicitly. These calculations in feature space are dealt with kernel 

trick using only the input patterns. The SVM regression formulation given in Eq. 2.10 

that uses a single expression to describe the total data space is a global approximation 

method. However, some local nature can also be introduced into this global 

approximation method through the use of kernels. Derivation of SVM using kernel 

functions will be explained in detail in Chapter 3. 
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The goal of the learning machine is to find a function with a small risk (or 

test error). With the insight of statistical learning theory, SVM minimizes the 

regularized risk functional, 

f

][.
2
1 2 fRC emp+W         (2.11) 

in order to obtain a simple model with low training error.  represents the 

training error and C is a constant determining the trade off with the complexity 

penalizer 

][ fRemp

2W . Different loss functions may be used to denote , e.g. Hubbers 

loss function, Laplacian loss function etc. The 

][ fRemp

ε -insensitive loss function devised by 

Vapnik (1999) is the most popularly used. It has a possibility to produce a sparse 

representation of data. Once the  is determined with a suitable loss function the 

unknowns of Eq. 2.10 can be determined by minimizing Eq. 2.11 and the expression 

can be used to make future predictions. 

][ fRemp

 Noise deteriorates the performance of any kind of prediction model regardless 

of whether local approximation or global approximation. Therefore, noise reduction is 

a very important aspect in any kind of analysis of data contaminated with noise. The 

next section discusses some noise reduction techniques used in time series analysis. 

 
2.3.4 Noise Reduction 

2.3.4.1 Introduction 

Noise hampers identification of chaos. Also, noise is the most prominent 

limiting factors for the predictability of deterministic systems (Kantz and Schreiber, 

2004). Therefore, noise removal is a subject of utmost importance. 

By definition, noise is the unwanted part of the data (Kantz and Schreiber, 

2004). All experimental data are contaminated by noise to certain extent. There are two 
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types of noise: (1) measurement noise, and (2) dynamical noise. Measurement noise 

refers to the corruption of observations by errors which are independent of the 

dynamics. Real errors of measurement (can be accidental or systematic) and other 

dynamics simultaneously present which superimpose themselves on the one under 

investigation are included in measurement error (Porporato and Ridolphi, 1997). When 

dynamics are given by 

( nxx Fn =+1 )         (2.12) 

and the scalar measurements are  

( ) nnn vsy += x         (2.13) 

where are random numbers and nv ( )xs  is a smooth function that maps points on the 

attractor to real numbers, the series { }nv is referred to as the measurement noise. The 

aim of the noise reduction techniques is to reduce measurement noise. Dynamical 

noise is a feedback process where the system is perturbed by small random fluctuations 

at each time step: 

( nnn F wxx +=+1 )        (2.14) 

Noise reduction is about decomposition of every single time series value into 

two components, one of which supposedly contains the signal and the other one 

contains random fluctuations. Thus, it is assumed that the data can be thought of as an 

additive superposition of two different components which have to be distinguishable 

by some objective criterion. The basic problem with any noise reduction scheme is that 

we have to assume that a superposition into noise plus signal is meaningful. This is 

specially the case with real-world applications where true signal is unknown. Also, no 

clear-cut criterion for the amount of noise to be subtracted can be given in such cases 

and no performance measure is available. Therefore, the robustness of the method is 

considered as of utmost importance (Grassberger et al. 1993). A number of nonlinear 
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noise reduction techniques have been proposed in Chaos literature. Although not much 

experimented in chaos literature, the Kalman filtering and its variants are very 

successful in dealing with noisy data, in Controls theory. A discussion on the nonlinear 

noise reduction techniques and the Kalman Filtering techniques is given in the 

following sections. 

2.3.4.2 Nonlinear Noise Reduction 

Nonlinear noise reduction is closely related to forecasting. It is assumed that 

the data follows a deterministic evolution rule  

( nmnn xxFx ,...,11 +−+ = )       (2.15) 

but is measured with some uncertainty ν   

nnn xy ν+= .         (2.16) 

For convenience, delay is assumed to be unity here. The dynamical equations F have 

to be estimated. A forecast of a future value can be made using estimated map . 

The aim of the noise reduction is to construct a cleaned data sequence  

which is close to what we have measured but more consistent with the estimated 

dynamics, i.e., 

1ˆ +ny F̂

Nnxn ,...,1,ˆ =

( nnmnn xxFx ) ν ′+= +−+ ˆ,...,ˆˆ 11        (2.17) 

where 2ν ′ is the remaining discrepancy from the dynamical equations which should 

be smaller than the noise ν  in Eq. 2.16. At a first glance, it may appear that all one 

needs it a good estimate  to use in Eq. 2.17 to obtain noise reduced data. However, it 

is not feasible due to two reasons: (1) Good estimates of  are not always available 

and virtually impossible for real data; (2) even if one has a good estimate , due to 

noise in the data, the estimate 

F̂

F̂

F̂

( )nmnn yyFx ,...,ˆ 11 +−+ =  can be even noisier than before. 
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This “noise amplification” is due to the sensitivity of chaotic dynamics to variations in 

initial conditions.  

  A number of different nonlinear noise reduction techniques have been proposed 

in chaos literature (e.g. Hammel, 1990; Kostelich and Yorke, 1990; Schreiber and 

Grassberger, 1991; Cawly and Hsu, 1992; Sauer, 1992; Schreiber, 1993 etc.). The 

different noise reduction methods differ in the way the dynamics are approximated, 

how the trajectory is adjusted and how the approximation and the adjustment steps are 

linked to each other. Some dangers in these nonlinear filtering methods (if carelessly 

applied) and the precautions to be taken to avoid such dangers are given in Mees and 

Judd (1993). Some nonlinear noise reduction algorithms cater for the uncommon case 

where the dynamical equations are known. Apart from these, most other methods 

reduce noise by a similar amount and their performance do not differ dramatically 

(Kantz and Schreiber, 2004). Therefore, the major criteria for the preferred algorithm 

is robustness, ease of implementation as well as the resources needed (time and 

memory). Kantz and Schreiber (2004) have found that the widely used algorithm, 

simple nonlinear noise reduction method, and an algorithm called locally projective 

scheme to be reliable and effective on a broad variety of data sets including artificial 

and real data. The simple nonlinear noise reduction method is used in this study. 

2.3.4.3 Kalman Filtering 

The Kalman filter (Kalman, R.E., 1960) is the most well-known and often used 

tool to estimate the system states from noisy measurements. It is the optimal linear 

filter in the sense of minimizing the variance of the estimation error. It uses observed 

measurements from a dynamical system to make more accurate estimates of the 

system’s states (Figure 2.1). Kalman filter is comprised of a set of equations that 
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describe the system and how the observations can be optimally blended to make better 

system estimates. 

Since the time of its introduction in 1960 by Rudolf Kalman, the Kalman filter 

has been the subject of extensive research and applications especially in the area of 

autonomous or assisted navigation. Originally, the Kalman filter was proposed for 

linear processes. Most of the real world processes are, however, nonlinear. Therefore, a 

number of suboptimal nonlinear variations have appeared. The extended Kalman filter 

(EKF) (e.g. Maybeck, P. S., 1979) is the direct extension of linear Kalman filter for 

nonlinear systems through local linearization of system and observation models. For 

highly nonlinear systems EKF may be ineffective. Second order extended Kalman 

filters have also been proposed in the literature. Recently, a new variation called 

Unscented Kalman Filter (UKF) has been proposed to deal with nonlinear systems 

(e.g. Julier and Uhlmann, 1996; 1997). This method has been shown to perform better 

than EKF (Wan and van der Merwe, 2000). The more recent square root unscented 

Kalman filter is an improvement of UKF (van der Merwe and Wan 2001). Thus, the 

Kalman filter literature is rich with techniques to deal with nonlinear systems. 

 
2.4 PREDICTION OF CHAOTIC HYDROLOGICAL TIME SERIES 

 
Investigations on the presence of chaotic dynamics in hydrological time series 

and their prediction have covered a wide variety of systems and applications. In 

addition to the major applications: (1) river flow analysis (e.g. Jayawardena and Lai, 

1994; Porporato and Ridolfi 1996; 1997; Babovic and Keijzer 1999; Liu et al., 1998; 

Jayawardena and Gurung 2000; Lisi and Villi, 2001; Islam and Sivakumar, 2002); and 

(2) rainfall analysis (e.g. Rodriguez-Iturbe et al., 1989; Sharifi et al., 1990; Tsonis et 

al., 1993; Islam et al., 1993; Sivakumar et al., 1998). Examples from other applications 
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are: biweekly volume time series of the Great Salt Lake (Sangoyomi et al. 1996 and 

Abarbanel et al. 1996); hourly water level data from Venice lagoon (Zaldivar et al. 

2000); flood series in the Huaihe river basin in China  (Zhou et al. 2002); and 

suspended sediment concentration in the Mississippi river (Sivakumar, 2002). Out of 

all such applications, chaotic analysis of river flow is the most popular since it has 

shown lots of potential in short term prediction.   

Jayawardena and Lai, (1994) were the first to investigate the existence of chaos 

in river flow time series. Comparing the prediction accuracies of two daily stream flow 

time series in Hong Kong, they reported that there is convincing statistical evidence to 

believe that the stream flow data series could be better modelled by the chaotic 

dynamical systems approach than by the traditional linear ARMA (Auto Regressive 

Moving Average) approach. In a much more rigorous recent study, Jayawardena and 

Gurung (2000) also reported superior prediction performance with dynamical systems 

approach compared to linear stochastic approaches in several hydrological time series. 

Lisi and Villi, (2001) analysed daily discharge records of Adige river in Italy. By 

comparing prediction accuracy of a nonlinear model with a classical linear model they 

reported that chaotic modelling can be an effective method to improve prediction. 

Apart from these Porporato and Ridolfi (1996, 1997) and Islam and Sivakumar, (2002) 

among others have applied chaos in river flow time series and observed good quality 

predictions. 

The earlier investigations of chaos placed greater emphasis on identification of 

chaotic dynamics in the underlying systems; the more recent studies, on the other 

hand, place more emphasis on applications of chaos based knowledge to yield high 

prediction accuracy (Porporato and Ridolfi, 1997; Sivakumar et al., 1999a; Phoon et 
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al., 2002), noise reduction (Schreiber and Grassberger, 1991; Sivakumar et al., 1999b), 

estimation of missing data (Elshorbagy et al., 2002a) etc. Almost all the chaos 

applications in hydrology have appreciated the potential of phase space based methods 

in short-term prediction (e.g. Porporato and Ridolfi, 1997; Sivakumar et al., 1999a; 

Phoon et al., 2002). Improving prediction accuracy of phase space models by various 

techniques (e.g. by pre-processing raw data, using inverse approaches for finding 

optimal embeddings for prediction) is the most recent trend in chaos applications. 

Several recent studies have used pre-processed data to enhance system identification 

and, more importantly the prediction accuracy. Some of the pre-processing techniques 

that have commonly been used are: (1) noise removal (e.g. Porporato and Ridolfi, 

1997; Kawamura et al. 1998; Sivakumar et al. 1999b; Jayawrdena and Gurung, 2000); 

(2) filtering low/high frequency components (e.g., Porporato and Ridolfi, 1996); (3) 

differencing: First differencing and Seasonal differencing (e.g. Sugihara and May, 

1990; Provenzale et al. 1992; Jayawardena and Lai, 1994; Porporato and Ridolfi, 1996, 

1997; Yu et al., 2004); and (4) interpolation (e.g. Porporato and Ridolfi, 1997). Phoon 

et al (2002), Babovic et al (2000), among others, have used inverse approaches to 

determine optimal embeddings for phase space reconstructions so that the prediction 

accuracy is maximized. 

However, most of the above refinements are applied mainly on the simple local 

phase space models due to its simplicity in implementations although it is not known 

whether these local models give best predictions. Use of local prediction models 

inevitably results in improvements which are biased by the number of nearest 

neighbours, a parameter, which is independent of the dynamics of the system. This 

constraint could be circumvented by global phase space models such as artificial 

neural network, which approximate dynamics over the entire attractor. There is a 
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general understanding, that local approximation can give better predictions than global 

approximation in phase space prediction of chaotic time series (e.g. Porporato and 

Ridolfi, 1996; 1997; Islam and Sivakumar, 2002). However, it is interesting to 

investigate how the widely used global models perform compared to the widely used 

local models. In hydrology, the number of studies that has made comparisons between 

local and global phase space prediction models for their prediction performance is very 

limited. Outside chaos applications, the superiority of the global model, artificial 

neural network (ANN), to model nonlinear dynamics in hydrological time series has 

been observed by a number of studies (e.g., Karunanithi et al., 1994; Hsu et al., 1995; 

Zealand et al., 1999; Elshorbagy et al., 2000; ASCE, 2000). However, only very few 

studies (e.g. Elshorbagy et al., 2002a) have used ANN as a global phase space 

prediction model in chaotic river flow time series prediction.  

Elshorbagy et al. (2002a) utilized both ANN (multilayer perceptrons) and 

popularly used local model (averaging technique) for estimating missing stream flow 

data in English river, Canada. They reported superior performance of ANN over the 

local (averaging) nearest neighbour models. However, comparison between local and 

global models was not the main focus of their study. They considered a single set of 

phase space parameter values (embedding dimension and time delay), which suited 

their problem of estimating missing data, in both prediction models. These particular 

parameters may, however, not be optimal with respect to both prediction models. The 

authors also acknowledged that the superiority of ANN may be problem dependent. 

Therefore, a conclusive statement of local models and global ANN models in chaotic 

time series prediction could not be made by this study.  

Sivakumar et al. (2002) made a comparative study on phase space 

reconstruction approach (with local polynomial models) and ANN (multilayer 
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perceptrons) considering them as two different black-box models. Their results on 

Chao Phraya river flow (known to exhibit chaotic dynamical behaviour) prediction (1 

day and 7 days ahead predictions) showed much worse predictions with ANN. Their 

prediction errors of ANN models were more than 4-8 times the error of local models in 

terms of mean absolute error measures. They believed that the superiority of local 

phase space prediction approach was due to the capability of local approximation 

methods to better capture the chaotic dynamics of a system as opposed to the global 

approximation method. However, they acknowledged that one has to be careful in 

interpreting their results due to some concerns they had, among others, selection of 

data for training and test sets. Thus, the above studies are not conclusive and, 

furthermore, they showed contradictory results. It should be noted, however, that the 

local models used by the two studies were not exactly the same; Elshorbagy et al. 

(2002a) used local averaging of nearest neighbours while Sivakumar et al. (2002) used 

local polynomial models. Due to these reasons further studies on performance of 

global ANN models compared to local models in chaotic time series prediction is 

necessary and timely. 

 

 With any kind of prediction model, the noise in data deteriorates the prediction 

performance of any deterministic systems. In phase space prediction, where prediction 

models themselves are data-driven models, the noise in data can cause a considerable 

negative impact. Chaotic dynamics makes the effect of noise even worse due to its 

sensitive dependence on the initial conditions.  Therefore, noise reduction is of utmost 

importance. The next section reviews the studies on noise reductions in chaotic 

hydrological time series. 
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2.5 NOISE REDUCTION IN CHAOTIC HYDROLOGICAL TIME SERIES 

 
A few attempts have been made on noise reduction in chaotic hydrological time 

series (e.g. Porporato and Ridolfi, 1997; Kawamura et al., 1998; Sivakumar et. al. 

1999b, c; Jayawardena and Gurung, 2000). However, all these applications have been 

severely criticized later by Elshorbagy et al. (2002b) due to certain shortcomings in the 

approaches.  

 Porporato and Ridolfi, (1997) used nonlinear noise reduction techniques to 

analyse mean daily discharges of Dora Baltea, left tributary of river Po in Italy. They 

used the algorithm proposed by Schreiber and Grassberger (1991) for noise reduction. 

They reported better forecasting performance with the noise-reduced series than 

analysing the original series. They have measured the prediction accuracy of noise-

reduced case by comparing predictions against noise-reduced validation data. This is a 

questionable approach, as will be discussed in detail later, and thus their results are not 

reliable. 

 Sivakumar et al. (1999c) commented on the work of Porporato and Ridolfi, 

(1997). They suspected that over-correction might have occurred in Porporato and 

Ridolfi’s analysis. To avoid the problem of over-correction, Sivakumar et al. (1999b, 

c) proposed an approach for systematic noise reduction. The approach included 

additional steps for determination of noise reduction parameters such as the 

neighbourhood size and the number of iterations. They suggested the use of an initial 

estimate of level of noise using some noise level estimation method. They used the 

method of Schouten et al. (1994) for noise level estimation. Method of Schreiber 

(1993) was used as the noise reduction method. Sivakumar et al. (1999b, c) used 

prediction accuracy as the diagnostic tool to identify noise reduction and thus, 
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determining when to stop the noise reduction. When prediction accuracy starts 

deteriorating noise removal is stopped and the last estimated noise level is taken as the 

noise level of the data. Like Porporato and Ridolfi (1997), Sivakumar et al. (1999b) 

also compared their predictions with noise reduced data, which is an inappropriate way 

of verifying performance of noise reduction as argued by Elshorbagy et al. (2002b). 

 Elshorbagy et al. (2002b) raised serious concerns about noise reduction 

applications in hydrology, especially the ones shown by Sivakumar et al. (1999b, c) 

and Porporato and Ridolfi (1997). Their doubts of general interest are summarized as 

follows: 

(1) They repeatedly commented that the above studies have measured the prediction 

performance (in verification) by comparing the predicted values against ‘noise-

reduced’ data rather than original data; 

(2) They questioned the way the prediction accuracy had been used by the above 

studies for verifying the noise removal. Elshorbagy et al. (2002b) showed that such a 

diagnostic step implies that the prediction model perfectly models the underlying 

dynamics. However, the prediction model used by Sivakumar et al. (1999b) is merely 

the simple averaging technique suggested by Farmer and Sidorowich (1987). 

Elshorbagy et al. (2002b) suggested that in order to use prediction accuracy for 

verifying the noise reduction, either a variety of nonlinear models should be used or a 

single model that is known to perfectly model the whole phenomenon should be used. 

They concluded that what is removed by Sivakumar et al. (1999b) approach is the 

component, which is not modelled by the specific model employed. In other words, the 

removed part is considered noise to a single model, not the absolute noise. 

The doubts raised by Elshorbagy et al. (2002b) above are justified concerns. 

They applied the approach proposed by Sivakumar et al. (1999b) on English River, 
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Ontario, Canada with the simple noise reduction proposed by Schreiber (1993). Using 

two prediction models, local linear model (LLM) and a global artificial neural network 

(ANN), they verified the doubts they raised. The investigations showed: 

(1) The improvement in prediction performance with noise reduced data for the two 

models, LLM and ANN, were significantly different supporting the claim made that 

the perception of noise by different models.  

(2) When prediction accuracy is measured by comparing the predicted values with 

noise reduced verification data, unrealistically high prediction accuracy was observed. 

This showed that comparing predictions with ‘noise-reduced’ data is improper. 

 They also made comments on using visual inspection of graphical 

representations to make implications of noise reduction (of Kawamura et al., 1998 and 

Jayawardena and Gurung, 2000); however, they were not of interest to prediction 

applications and are thus not discussed here. 

 
 The above investigations show that comparing the predicted values (using a 

prediction model that does not perfectly model the system) with ‘noise-reduced’ values 

to arrive at the prediction accuracy, and thus the effectiveness of noise reduction, is not 

a correct attempt. A fatal flaw in using ‘noise-reduced’ validation data, in making 

future prediction, is that such noise-reduced values are derived with the use of future 

data as well, which are not available for prediction application usage. Therefore, the 

approaches used in the above studies, which have used the off-line application of noise 

reduction (i.e. using both past and future records for noise reduction) in place of where 

real-time noise reduction (i.e. using only the past records up to the record of interest 

for noise reduction), are not appropriate for real-time prediction (or future forecasting). 

Comparing predictions with original data would have kept the noise reduction on a 

safe track provided again that the input validation data are not noise-reduced with the 
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use of future data. Also, use of more than one model, as later suggested by Elshorbagy 

et al. (2002b), could have helped detecting any flaws. 

Lack of clear-cut ways to verify noise reduction is an inherent problem with 

noise reduction applications where the true signal is unknown. Thus, identifying better 

criteria for such applications is essential. With real world data, such as rainfall and 

runoff, using prediction accuracy as a criterion seems to be the most reasonable 

alternative. Prediction accuracy is employed as a criterion not only in noise reduction 

applications but also in model selection and determination of optimal parameters (e.g. 

Phoon et al., 2002). However, in real world noise reduction applications where true 

signal/ dynamics are unknown, prediction accuracy should be used so long as predicted 

values are compared against original values as noted by Elshorbagy et al. (2002b). 

The procedures followed in the applications discussed above can only deal with 

off-line noise reduction. That is to reduce noise in recorded data. The noise reduction 

methods used in the discussed studies are meant for off-line applications and are not 

directly applicable in the real-time prediction.  Although prediction is attempted for 

diagnostic purposes etc, due to the flaws that discussed earlier, the results from the 

above studies do not represent real-time forecasting. Therefore, proper investigations 

are necessary. 

A practical approach for incorporating noise reduction for real-time forecasting 

is called for. There is a notion that using noise-reduced data for better configuration of 

prediction models is an obvious benefit of noise reduction. This may be true, but it is 

worthwhile investigating whether such better models would actually produce better 

predictions with noisy inputs. In chaotic systems the predictions could be bad even 

with a perfect model when the input data is noisy (Kantz and Schreiber, 2004). Thus, a 

better model may have to be supported with equally good input data for optimal 
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performance. To clean the input data, noise reduction should be considered on real-

time basis. 

 Kalman Filtering is a promising state estimation technique that is widely 

popular in Control Theory for real-time state estimation and prediction applications 

where noisy observations of a system are available. Its nonlinear variants are very 

popular in both within and outside Controls literature. It is therefore of interest to 

explore such techniques in chaos analysis as well. Investigating such methods for noise 

reduction applications have been recommended by researchers such as Walker and 

Mees 1997 as well.  

 Walker and Mees (1997) investigated two techniques: (1) Kalman filtering 

(extended Kalman filter, EKF, with both forward and backward filtering and a 

variation of Kalman smoothing called non-causal filter); and (2) nonlinear noise 

reduction algorithm of Hammel (1990) based on the concept of shadowing, for noise 

reduction in chaotic time series. Like others, their application was also concerned with 

off-line noise reduction. They used perfect state space models either in the form of: (1) 

exact governing equations of Henon map and Ikeda map, or (2) a data driven model 

built from noise-free data. The so-called non-causal Kalman filtering performed best in 

their applications on chaotic Henon and Ikeda maps; they suggested considering the 

noise reduction methods favoured by control theorists by the dynamical systems 

community.  

 Judd (2003) compared the performance of what they called a gradient descent 

filter, a method close to nonlinear noise reduction techniques, with EKF for nonlinear 

state estimation of a chaotic Ikeda map. They reported superior performance of EKF at 

low levels of observation noise and poor performance at high noise levels compared to 
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the gradient descent filter. They too used exact governing equations as state space 

models in EKF.  

 The above studies show the potential of Kalman filtering techniques in chaos 

applications. However, none of those studies considered the case with real world data 

where perfect models are not available. Also no applications are reported in chaos 

literature incorporating Kalman filtering for real-time applications such as prediction.  

Some applications of Kalman filtering have appeared in water resources 

literature using physically based models. Drecourt (2003) provides an overview of the 

uses of Kalman filter in hydrological modelling. Lee and Singh (1999) have 

successfully applied the Kalman filter for parameter estimation in a tank model. 

Bierkens et al (2001) used the Kalman filter for space –time modelling of water table 

depth. They concluded that Kalman filtering can be used for on-line forecasting, for 

instance, weather forecasts. Most recently, Doan and Liong (2004) applied a nonlinear 

variation called Unscented Kalman filter for river flow forecasting with a data driven 

ANN model as a state space model. The studies show the applicability of Kalman filter 

techniques in noise reduction applications of hydrological data. This study hopes to 

investigate the applicability of Kalman filtering techniques in real-time prediction of 

chaotic time series. 

One of the major problems faced in chaos analysis, be it prediction, noise 

reduction or other applications, is the large data record size required in its analysis. In 

the next section, the problem of large data record size in chaos applications with 

respect to hydrological time series is reviewed, with the hope of investigating a 

possible scheme to circumvent the problem. 
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2.6 LARGE DATA RECORD SIZE IN CHAOS APPLICATIONS 

With rapid developments in data measuring/recording/storing systems (e.g. 

remote sensing, GIS, improved measuring devices, automation etc.), data and 

information are becoming abundant in many fields. In hydrology too, the details and 

measurements frequency are increasing in the recent years. However, incorporating 

such resources in analysis such as better model development, forecasting etc. is not 

easy mainly due to the following reasons: (1) extracting relevant data from vast 

information is not quite straightforward, and (2) the computational resources 

requirement to analyse such large record size are very high. Although computer 

technology has significantly progressed, the actual complexity of the problem being 

addressed, with more and more data collected and made available, has also gone up. 

Therefore, devising a scheme to extract the best out of a bulk of information/data is an 

important task. 

Chaos analysis is one of the fields where the use of large past data records is 

essential. Most of the chaos identification and prediction methods are developed with 

the assumption that the time series are noise-free and are of infinite length. Several 

guidelines for calculating the minimum size of data record necessary for estimating 

some system parameters such as correlation dimension were formulated (Smith, 1988; 

Nerenberg and Essex, 1990; Sivakumar et al., 1998), but they are of limited practical 

applicability. No such guidelines are available to determine the sufficient amount of 

data for prediction purpose. Since the future is predicted from the past experience, it 

appears that a large data set is a necessity and the norm is to use as much data as 

possible with the hope of improved performance. Also, in chaos hydrological 

literature, there is evidence to believe that more frequent data and thus more data 

records can improve the prediction performance (e.g. Porporato and Ridolfi). 
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However, the issue, whether each additional data record contributes distinct 

information has not been addressed in any study. 

 In chaos applications in river flow, researchers have used data of different 

record lengths varying from about 1800 records to 15000 records. Most of the studies 

have used maximum data available for both system characterization and prediction 

(Babovic and Keijzer, 1999; Liu et al., 1998; Jayawardena and Gurung, 2000; Lisi and 

Villi, 2001; Sivakumar, 2002). For most of the rivers, flow data is available for about 

20-30 years or even longer periods. 

One of the major difficulties in using a large data record size in chaos analysis is 

the heavy burden on the computational time and resources. In prediction case, the 

problem is particularly so when global models such as ANN and SVM are used, where 

the time and the computational effort needed to train the model increases more than 

linearly (at least quadratically in most cases) with the increasing number of past 

records (Collobert et al., 2002). This inevitably forces researchers, whenever possible, 

to use smaller data record size. For example, for Tryggevaelde catchment runoff, 

Phoon et al. (2002) used approximately 6900 data points in their local prediction 

model while Sivapragasam et al. (2001) used only 3000 data points in Support Vector 

Machines. Similarly, Sivakumar et al (2002) used less number of data for Chao Phraya 

river flow with Artificial Neural Network prediction than the number of data used in 

local prediction model by Jayawardena and Gurung (2002). Therefore, a method that 

can extract only a small set of representative data, from along data record, is highly 

desirable. 

 Clustering is a widely used technique in applications such as classification 

problems to group data with similar attributes together. When there is a group of data 

with similar attributes one point is selected to represent the whole group. This point is 
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called a cluster centre (Figure 2.2). Most clustering techniques are devised to group 

categorical data. Grouping numerical data for function approximation purposes is not 

very common. Recently this idea of clustering in function approximation problem is 

given a theoretical explanation (Kreinovich and Yam, 2000). A few fuzzy clustering 

methods (e.g. Filev and Yager, 1994; Chiu, 1994) are capable of extracting centres 

from high dimensional numerical data. They have been applied in function 

approximation problems in the form of fuzzy model identification. 

Chiu (1994) introduced a clustering technique for fuzzy applications, and 

demonstrated it on: (1) a nonlinear function approximation problem, (2) prediction of 

chaotic Mackey-Glass time series, and (3) trip (automobile) generation modeling. 

Rantala and Koivisto (2002), in a study of Neuro-Fuzzy model identification, applied 

the same clustering technique on chaotic Mackey-Glass time series. On these 

applications both studies derived small number of fuzzy rules, with the cluster centers 

derived by the method, which yield comparable results with other methods. However, 

in those studies, the concern was mainly on fuzzy model identification; little concern 

was paid to aspects such as: representativeness of the selected data of the whole 

system; and the applicability of clustered data with other different models. 

Liong and Doan (2002) applied the above mentioned subtractive clustering 

technique (Chiu, 1994) with General Regression Neural Network to extract an 

effective and efficient data set from multivariate data. There, they were able to extract 

as small as 47 patterns out of 467 total patterns of multivariate Bangladesh water level 

data which had similar prediction performance as that of the entire set of patterns. 

Their results indicate that the hydrological data may contain large amount of less 
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informative data and, hence, it may be possible to derive a data set of smaller record 

size with sufficient representativeness of the total. 

 
2.7 SUMMARY 

The potential of chaos based methods for short term prediction has received 

wide appreciation. Improving the accuracy of prediction, of such approaches, is one of 

the current interests. However, thus far the prediction applications have been mostly 

limited to local prediction tools mainly due to their simplicity in implementations. 

Also there is an understanding that local approximation is better than global 

approximation. However, a much more reliable comparison of widely used local 

prediction models and global prediction models must be conducted.  

In improving the prediction accuracy, in addition to the prediction tool, noise is 

also one of the most important limiting factors. Several applications of noise reduction 

have appeared in chaos hydrological literature. However, all of them have been 

criticised for their inappropriate use of techniques. Incorporating noise reduction for 

real-time chaos based prediction applications is an area for further exploration. The 

Kalman filtering techniques from controls literature have been very successful in 

dealing with noisy data for real-time state estimation applications; and adopting such 

techniques in the chaos analysis can be an interesting study.  

One of the major difficulties in incorporating novel sophisticated techniques in 

chaos applications is the large amount of data records required in computations. In 

chaos based predictions it is believed that the more the data used the better the 

predictions are. However, in general, the computational time and storage capacity of 

most prediction tools also increases drastically with the number of data patterns. 

Therefore, investigating methods to extract a small, representative set of data from 

large data records to circumvent the aforementioned problems is called for. 
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CHAPTER 3 

CHAOTIC TIME SERIES PREDICTION WITH GLOBAL 
MODELS: ARTIFICIAL NEURAL NETWORK AND SUPPORT 

VECTOR MACHINES 

 
3.1 INTRODUCTION 

The potential of short-term prediction in chaos based models has been widely 

appreciated. However, most of the applications have been confined to simple local 

phase space prediction models. There is a general understanding (e.g. Porporato and 

Ridolfi, 1996; 1997; Islam and Sivakumar, 2002), that local approximation can give 

better predictions than global approximation in phase space prediction of chaotic time 

series. However, it is of interest to thoroughly investigate how the widely used global 

models such as ANN perform compared to the widely used local models. This chapter 

assesses the performance of global models (ANN -multilayer perceptrons and SVM) as 

opposed to the widely used local models (both the averaging technique and the local 

polynomials) in phase space prediction. A performance comparison between ANN and 

SVM is also made. The analysis is first performed with ANN and the local models on 

a noise-free chaotic Lorenz series; this helps to reveal a more general and conclusive 

performance comparisons between methods considered. The analysis is then 

performed on the same Lorenz series now contaminated with some known noise 

levels; and then two river flow time series are analyzed. Finally, another global model, 

Support Vector Machines (SVM), is considered and its prediction performance is 

compared to ANN. 

  This chapter is organized as follows. The first section introduces the data used 

in the study. The second section presents a detailed performance comparison between 

ANN and the local prediction models. SVM as a global model is then introduced; this 
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is followed by a comparison of the prediction performance, on some time series, 

resulting from SVM and ANN.  Finally, the computational times taken by different 

prediction models are presented. 

 
3.2 DATA USED 

A chaotic Lorenz time series and two mean daily river flow time series with 

very different flow characteristics are considered in this study. The two river flows are: 

(1) Mississippi River at Vicksburg, and (2) Wabash River at Mt. Carmel. The 

Mississippi river is characterized by large flow rates (mean flow of about 18,500 m3/s) 

while the Wabash river is of moderate flow rates (mean flow of about 750 m3/s). The 

data are downloaded from the US Geological Survey website.  

3.2.1 Lorenz time series 

Lorenz abstracted three ordinary differential equations from Galerkin 

approximation to the partial differential equations of thermal convection in the lower 

atmosphere derived by Salzman (Abarbanel, 1996). These have served as a set of 

benchmark equations for testing ideas in nonlinear dynamics.  Lorenz model is given 

by the following three ordinary differential equations: 
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When standard parameter values σ = 16, b = 4 and γ = 45.92 are used, the orbits of the 

Lorenz system reside on a geometric object of dimension 2.06 (approximately) and 

exhibit non-periodic, chaotic motion (Abarbanel, 1996).  The x(t) component is solved 

from the above equations by fourth order Runge-Kutta method with a time step of Δt = 

0.01. Six thousand values of this x(t) time series is used in this study. It should be 

noted, however, that Lorenz series is fundamentally different from that of hydrological 

 44



time series in river flow. In the absence of any better model, Lorenz series is used in 

this study to test the techniques applied to river flow time series. Figure 3.1 shows the 

Lorenz time series used in this study. The figure shows that the series has a smooth 

variation. The statistics of the Lorenz series are; (1) mean = 0.84, (2) standard 

deviation = 12.68, (3) minimum = -30.52, and (4) maximum = 29.38. 

3.2.2 Mississippi river flow time series 

Mississippi river is one of the world's largest river systems (Figure 3.2). It is 

about 3,705 kilometers in length. The area of the Mississippi river basin is around 3.2 

million square kilometers. The average amount of water discharged to the Gulf of 

Mexico is about 18,500 m
3
/s. The spring floodwaters cause very costly flooding. 

Although billions have been spent to reduce flood damages, recent floods have cost 

billions of dollars and significant loss of life. Further understanding of the river flow 

behaviours and patterns is vital to the understanding of the complex ecosystem and 

development of protection strategy.  

The daily river flow time series used in the analysis of this study is the 

Mississippi river flow measured at Vicksburg, Station No. 07289000 (Hydrologic 

Region 08 of USGS) for the period from January 01, 1975 to December 31, 1993. The 

time series data is downloaded from the USGS. The station is located close to the 

entrance to the sea. The time series used is shown in Figure 3.3.  It shows that the 

Mississippi river flow has a somewhat smooth variation. The basic statistics of 

Mississippi river daily flow time series are: (1) mean flow = 18,458 m
3
/s; (2) standard 

deviation = 9,728m
3
/s; (3) minimum flow = 3,908 m

3
/s; and (4) maximum flow = 

52,108 m
3
/s. This river flow time series has been shown to demonstrate chaotic 

behaviour by several studies (e.g. Liong et al., 2005; Yu et al., 2004). Also it has been 

 45



shown to produce better prediction performance with chaos approach than with 

conventional ARIMA models. 

 

3.2.3 Wabash river flow time series 

The Wabash River is a 475 miles (765 km) long river in the eastern United States 

that flows southwest from northwest Ohio. The basin area is approximately 33,100 

square miles. The Wabash River has moderate flow rates, with the mean flow rate 

being about 750 m3/s. The mean daily river flow measured at Mt. Carmel Station, 

station number 03377500 (hydrologic region 5 of USGS), are downloaded from USGS 

for this study. The basin is shown in Figure 3.4. The records used in the study covers 

daily data from January 01, 1960 to December 31, 1978. The time series is shown in 

Figure 3.5. Wabash river flow variation is not as smooth as in Mississippi flow. The 

basic statistics of Wabash river daily flow time series are: (1) mean flow = 756 m
3
/s; 

(2) standard deviation = 792 m
3
/s; (3) minimum flow = 48 m

3
/s; and (4) maximum 

flow = 7023 m
3
/s.  

 
3.3 ANALYSIS: ARTIFICIAL NEURAL NETWORK AND LOCAL MODELS 

3.3.1 Methodology 
 

In this section, ANN prediction performance is compared with the two widely 

used local phase space prediction models: (1) the local averaging model and (2) the 

local polynomial model. In local polynomial models, the first and the second order 

polynomials are considered; the model which yields better prediction performance is 

then used for forecast of verification data. Predictions are performed for three different 

lead times: 1, 3 and 5. First, the investigation is performed on noise-free chaotic 

Lorenz time series to reveal a more general and conclusive comparison. Since real 
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world time series data are inevitably contaminated with different levels of noise, the 

same Lorenz series is then contaminated, with two different noise levels (5% and 

30%), and analyzed. A Gaussian white random noise is used. The noise level is 

defined as the ratio of the standard deviation of the noise to the standard deviation of 

the noise-free signal as given in Eq. 3.2. Noisy data point  is obtained by adding 

noise 

iy

iυ  to the noise-free value,  as in Eq. 3.3. Finally the results are demonstrated 

on the two river flow time series. 
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In the analysis, identifying chaotic signatures in the time series is essential.  To 

do so Fourier analysis and the correlation integral analysis are used. For the phase 

space parameter determination and prediction purposes all the data sets are divided 

into 3 separate parts: training set, test set and validation set. Prediction performance on 

test set is used for the purposes of model selection and calibration of phase space 

parameters, wherever applicable. Validation set serves the purpose of verification of 

selected models/parameters on unseen data. For the Lorenz time series, the first 4800 

points are used for training set, the next 600 for test set, and the last 600 for validation 

set. For the daily river flow time series, the first 15 years (approximately 5480 records) 

are used for training, the next 2 years (approximately 730 records) for test set, and the 

last two years (approx. 730 records) for validation. This prediction scheme is 

summarized in Appendix B. 

 Legates and McCabe (1999) recommend the use of at least one absolute error 

measure and one relative error measure to test the model performance in hydrologic 

 47



and hydro-climatic model validation. The relative error measure used in this study is 

the Normalized Root Mean Square Error (NRMSE) as given below: 
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where  is the predicted value of xix̂   and xi  is average value of the time series. A zero 

value in NRMSE indicates a perfect prediction while a value larger than 1 indicates 

that the predictions are no better than using the average value of the time series ( x ). 

The absolute error measure, mean absolute error (MAE), is given as: 
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where is the desired value and  is the predicted value. For the case of perfect 

prediction, the value of MAE is zero. 

ix̂ix

3.3.2 Analysis on Noise-free chaotic Lorenz time series 

Application of Fourier analysis and the calculation of correlation integral 

analysis showed, as expected, the chaotic signatures in the noise-free Lorenz time 

series. Similar to the inverse approach (Phoon et al., 2002), in this study the parameter 

set (m, τ, (k)) is optimized simultaneously with the least prediction error as the 

objective function. For a certain combination of embedding dimension (m), time delay 

(τ) and nearest neighbours (k – only for local models), the phase space is reconstructed 

and the test set is used to check the performance of the trained model. For a certain 

prediction method, the combination of m, τ and k (k is needed only in local models), 

which gives the least prediction error (NRMSE) on the test set is selected as the 

optimal parameter set for prediction on the validation set. All possible combinations of 

the following ranges of parameters are considered. Following earlier studies (Phoon et 
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al., 2002; Yu et al., 2004; Liong et al. 2005), the considered range for the embedding 

dimension is 1 – 10.  For the local models the number of nearest neighbours (k) is 

varied from 2 to 100 with an increasing step of 2. Due to the long computational time 

required, only four time delay values are considered based on earlier studies. Earlier 

studies (see Appendix C for details) have shown that very low time delays give best 

predictions for the noise-free Lorenz series. Hence, time delays of 1, 3, 6 and 9 are 

considered.  

The optimal phase space parameter sets of the time series with different 

prediction techniques are shown in Table 3.1. It shows that the second order 

polynomial models perform better than the first order polynomial models.  Therefore, 

tests are repeated with a third order polynomial model. Results, however, show that the 

second order performance is the best. The next section describes how ANN models 

have been trained. 

3.3.2.1 Prediction with global Artificial Neural Network models 

In the functional relationship for phase space prediction, 

)( iTTi XfX =+         (3.6) 

where  and  are m dimensional vectors describing the state of the systems at 

times i and (i+T); the problem is to find a good approximation  to . However, as 

it often happens, we are only interested in forecasting the last component  of ; 

the search is limited to a map , which interpolates the pairs ( , ) 

instead of a function  (Porporato and Ridolfi, 1996). A Multi Layer 

Perceptron can be used with m dimensional phase space vectors, , as the inputs and 

the scalar  as the outputs to approximate a map , valid over the entire 

phase space, i.e. a global fit in phase space prediction. 
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The MATLAB Neural Network Toolbox is used in this study. The study uses 

MLP with a single hidden layer since they are capable of universal approximation. The 

inputs are the elements of phase space vectors, ; hence, the number of input nodes 

are equal to the dimension of . The output is the scalar  where T is the lead-

time. 

iX

iX Tix +

Figure 3.6 shows the ANN architecture used in the study. Both input and output 

data are normalized into the range between 0 and 1. Logistic Sigmoid transfer function 

is used for all hidden neurons. Linear transfer function is used in the output neuron to 

allow for the unknown output range of the time series (Haykin, S. 1999). Nguyen-

Widrow initialization algorithm is used for initialization of weights and biases. A 

training algorithm that uses Levenberg-Marquardt optimization method, known to give 

faster training for a smaller number of weights, is used for updating weights and 

biases.  Training is continued until one of the following criteria is met: (1) a maximum 

number of epochs is reached; (2) the change of performance (error minimization in 

ANN) falls below a pre-specified value; or (3) the learning rate exceeds a maximum 

value specified (the study uses an adaptive learning rate). ANN has a series of 

parameters to be fine-tuned and appropriate methods to be selected before model 

training. This study fine-tuned the two critical parameters, the number of hidden 

neurons and the number of epochs, by trial and error.  

To fine-tune the number of hidden neurons a lead-time 3 prediction horizon 

with m = 5 and τ = 1 is considered. The number of hidden neurons considered is varied 

from 10 – 300 (10-25 in steps of 5 and, 25-200 in steps of 25, 220-300 in steps of 40). 

The performance on the test set (Figure 3.7 (a)) shows that the prediction accuracy 

improves with the number of hidden neurons and levels off after the number of hidden 

neurons reaches 175.  Since the computational time significantly increases with high 

number of neurons, the study uses only 100 hidden neurons (175 neurons (84 minutes) 
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requires more than twice the computational time of 100 neurons (31 minutes)); thus, 

less than the optimal size. After the number of neurons is fixed at 100, the most 

appropriate number of epochs (considered are 25, 50, 100 only) is searched.  Results 

show 50 epochs are acceptable with regards to the computational time and 

performance accuracy (Figure 3.7 (b)).  

The MLP converges to a solution depending on the initial weights. If a proper 

set of initial weights is not used, it is possible for the MLP to converge to an 

unsatisfactory local optimum.  Therefore, for a certain combination of (m, τ), this 

study trains 5 MLPs (with 100 hidden neurons and 50 epochs) with 5 different sets of 

initial weights. The trained MLP with the lowest prediction error on the test set is 

selected as the optimally trained MLP for the (m, τ) combination considered. For a 

given lead time, from all possible (m, τ) combinations, the MLP that gives smallest 

error on test set is selected as the optimum network and the (m, τ) combination is taken 

as the optimal phase space parameters set. This network is then used to predict the 

validation set. The procedure is schematically shown in Figure 3.8 using the lead-time 

1 as an example.  

3.3.2.2 Results 

Table 3.2 shows the prediction errors resulting from the applications of the 

local averaging, local polynomials and global artificial neural network on the 

validation set of the noise-free Lorenz time series at different lead-times. (The 

prediction performances of various models on test sets are given in Appendix D). The 

percentage improvement in prediction accuracy (or percentage reduction in error) of 

ANN models over the local averaging and local polynomial models indicated in the 

tables is calculated as ( ) 100×
−
a

ba where a is the error on local model and b is the error 

on ANN model. Positive percentage values indicate better prediction performance of 
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ANN models and negative values indicate better performance of local models. 

Percentage improvement is given for the linear error measure: MAE. 

Table 3.2 shows that the prediction accuracy of ANN models is significantly 

higher than that of both local averaging and local polynomial models for all 1, 3 and 5 

lead time predictions. The results are consistent in both error indicators, NRMSE and 

MAE. The ANN models yield remarkable improvement, about 98% over the local 

averaging models. The percentage improvement over local polynomial models is 

although not that impressive, over 9% for all lead-times. The prediction accuracies 

obtained by both ANN models and local polynomial models are remarkable. The 

performance of local averaging technique, however, is very poor compared to local 

polynomial and ANN models. With all prediction models, the prediction performance, 

as expected, has deteriorated with the increase of prediction horizon. 

Figure 3.9 demonstrates the series of the validation data and corresponding 

prediction errors (error = (actual value – predicted value)) with local averaging model, 

local polynomial model and ANN model for lead–time 5. The prediction with local 

averaging technique (Figure 3.9 (b)) is extremely poor (note the difference in scale) 

compared to the other two models. The polynomial model and ANN model have errors 

of comparable magnitudes; however, the ANN prediction errors are smaller than those 

of local polynomial model. The particularly high prediction errors (between 200 – 300 

time units) are seen to be corresponding to some phase space vectors in an unpopulated 

area in the attractor, and the reason for low accuracy may be that the models do not 

have sufficient past experience to model that region.  

3.3.3 Analysis on Noise added Lorenz time series 

All real data generally contain noise whose precise nature (e.g. white/ coloured; 

distribution; level of noise etc) is unknown. To gain an understanding of the 
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performance of the local models and global ANN models on noisy series, the analysis 

is first conducted on the Lorenz series added with a known noise level and then 

conducted on the real flow time series, as shown in a later section.  Zero mean 

Gaussian noises with noise levels  5% and 30% (as defined in Eq. 3.2) are added to the 

clean signal (the noise-free series used above), as shown in Eq. 3.3, to obtain noisy 

Lorenz series. In the analysis, the procedures and the parameters for the prediction 

tools are exactly the same as those in noise-free Lorenz series. For ANN models, 25 

hidden neurons and 50 epochs are chosen from a trial-and-error procedure on 5% noisy 

series similar to that of the noise-free Lorenz series. The same values are used with 

30% noisy series as well. 

The optimal parameter sets obtained, using the ranges in noise-free series, 

contained sets with m values equal to 10 (the upper bound). Therefore, only for local 

models, the tests are repeated with m expanded to 16. The final optimal parameter sets 

with each prediction method are shown in Tables 3.3 and 3.4 for 5% and 30% noisy 

series respectively. Unlike in noise-free time series, in noise added Lorenz series the 

first order polynomial models perform better than the second order polynomial models. 

This shows that for the noisy time series, increasing the order of polynomials does not 

necessarily yield a significant prediction improvement. In fact, the higher order 

polynomials are more likely to yield worse predictions. The reason is perhaps that in 

noisy time series the coefficients of the polynomial models, c(m,k) (Eq. 2.5), cannot be 

determined accurately by matrix inversion procedure. These errors may propagate 

large prediction errors when iterated with higher order polynomial models. 

  The prediction results obtained are shown in Table 3.5 and 3.6 for 5% and 

30% noisy series respectively. (The prediction performances of various models on test 

sets are given in Appendix D). It shows that the prediction performance of both the 
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polynomial models and ANN models drastically reduces with the introduction of 

noise. The performance of the local averaging models is also considerably reduced.  

The ANN models, however, still outperform, the local models in prediction accuracy at 

5% noise level although the improvement is not as pronounced as in the noise-free 

Lorenz series. At a very high noise level of 30%, however, performance of all the 

methods are of the same level. It can be noted in both 5% and 30% noisy series, the 

polynomial models’ relative performance deteriorates with the increase in lead-time. 

The reason is perhaps, as noted earlier, the inaccurately determined coefficients, c(m,k) 

(E.q. 2.5), may propagate large prediction errors when iterated over longer lead-times. 

Figures 3.10 and 3.11 show the validation data and the prediction errors (error = (noisy 

series value – predicted value)) with various models on validation set for a lead time 5 

on 5% and 30% noisy series respectively. They show that the errors are relatively very 

large compared to those in the noise-free Lorenz series (note the differences in scales 

of figures in the two cases, noise-free and noisy). The errors resulted from the three 

different models are of same order of magnitudes for the noisy series; and the 

differences in prediction performance are not reflected in the figures. 

3.3.4 Analysis on river flow time series 

The performances of the local and the global models are then verified on two 

daily river flow time series. Mississippi river flow has been reported to show chaotic 

behaviour (e.g. Liong et al, 2005; Yu et al., 2004). Fourier analysis on Wabash river 

flow shows a broad band power spectrum (Figure 3.12 (a)); and the correlation integral 

analysis (Figure 3.12 (b)) shows low, non-integer correlation dimension. These 

indicate low dimensional chaotic behavior in the Wabash river flow.  

Analysis is performed similarly as the case for noise-free and noisy Lorenz 

series. Earlier studies (e.g. Liong et al., 2005; Yu et al., 2004; Appendix C) on the flow 

 54



time series have shown that a delay time of one day gives best predictions. Therefore, a 

time delay of 1 day is considered in this study. For predictions with ANN, 25 hidden 

neurons and 50 epochs are selected from a limited number of trial-and-error runs on 

Mississippi river flow time series.  The same values are used for Wabash River flow as 

well. The other parameters and methods follow those used in Lorenz series analysis.  

The optimal parameter sets for each prediction method for Mississippi flow 

time series and for Wabash flow time series are shown in Table 3.7 and Table 3.8 

respectively. In this study, for Mississippi river the second order polynomial models 

give better predictions, although not markedly better, than the first order polynomial 

models (see Appendix E). For the Wabash series, however, the first order polynomial 

models give better prediction accuracy over its second order polynomial counterpart. A 

performance comparison between ANN, the local averaging technique, and the local 

polynomial model resulting from the Mississippi river flow data and Wabash river 

flow data are given in Table 3.9 and Table 3.10 respectively. (The prediction 

performances of various models on test sets are given in Appendix D). Table 3.9 

shows that for Mississippi the prediction accuracy of ANN models is higher than that 

of the local averaging technique.  However, the performance of ANN is only slightly 

higher than that of local polynomial models. In Wabash river flow time series (Table 

3.10) too, the ANN performs better than the local models. Figures 3.13 and 3.14 give a 

graphical performance of the trained models on the validation data and corresponding 

prediction errors (error = (observed value – predicted value)) for lead-time 5 for 

Mississippi and Wabash river flow time series. Similar to noise added Lorenz series, 

errors resulting from river flow analysis with all three models are of the same order of 

magnitude and the differences in performance are not visible in graphical 

representations. 
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3.3.5. Discussion  

In all time series considered, ANN models show better prediction performance 

than the local prediction models; this is with the exception of Lorenz time series with 

30% noise level where the performance of the ANN and the local averaging models 

are almost the same. The prediction accuracy of ANN on the noise-free chaotic Lorenz 

series is clearly significantly better than those of the local averaging and the local 

polynomial models.  Although the performance of polynomial models is not as good as 

ANN models, its prediction accuracies on noise-free Lorenz series are nevertheless 

commendable. In Lorenz series with known noise levels (except at 30% noise level) 

and in two real river flow time series, ANN still outperforms the other methods 

although the improvement is not as pronounced as that in the noise-free Lorenz series. 

It appears, however, that in time series of very high noise levels the performance of 

ANN is no better than local averaging techniques.  

It should be noted that in this study the parameters of ANN (e.g. the number of 

hidden neurons, epochs, etc) are selected only after a few trial-and-error tests on a 

limited number of parameter values. The fact that the performance of the model with 

non-optimal parameter values is better than its counterparts (the local averaging and 

the local polynomials) implies that an ANN with optimal parameters will surely lend 

the trained models as equally good as or even better performance than those of 

limitedly trained ANN models conducted in this study.   

In relation to the performance of the local averaging models, the results 

obtained in this study agree with those of Elshorbagy et al. (2002) where it is reported 

that ANN models outperformed the local averaging models. However, it is interesting 

to note that Sivakumar et al. (2002) observed that ANN (with MLP) performed much 

worse than the local phase space prediction (polynomial models). The reported 
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absolute errors of ANN models were 4-8 times larger than those of the local 

polynomial models. They believed that better performance of local approximation 

method was due to the representation of dynamics in the phase space step by step in 

local neighbourhoods, and such local approximation was capable of better capturing 

the dynamics than a global method when the system under investigation exhibits low 

dimensional chaotic dynamical behaviour. Furthermore, they believed that MLPs 

might not be the best type of ANN for longer prediction horizons and suggested to opt 

for ANN of other types.   

 Like any model with calibration parameters, ANN has a series of parameters to 

be calibrated before it can be used to its optimum. As noted earlier, in this study the 

values used for parameters of ANN (the MLP models) are derived through only a 

limited number of combinations. However, unlike in other studies, the parameters for 

local prediction models are chosen from a wide range of values to yield the most 

optimal parameter sets. In addition, it is worth to note that the analysis is first 

performed on a noise-free synthetic chaotic time series and then on a noise added 

synthetic series to gain a more decisive performance comparison among models tested. 

It can be safely extrapolated that should the parameters under consideration were 

rigorously optimized, the results would show that ANN would yield better 

performance than, if not equal to, those shown here. 

   
3.3.6. Conclusion 

 
This study investigated the performance of ANN as a global model in chaotic 

time series predictions compared to the widely used local prediction models (the local 

averaging models and the local polynomial models).  To gain more general and robust 

conclusions, the analysis was first conducted on a noise-free chaotic Lorenz series.  
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The analyses were then continued and performed on Lorenz series contaminated with 

some known noise levels and two daily river flow time series (for 3 different 

prediction horizons, 1, 3 and 5). A limited number of trial-and-errors lead to the ANN 

(MLP) parameter choice. In all time series (with the exception of 30% noise level), 

ANN models showed better prediction performance than local prediction models. At a 

very high noise of 30%, however, the performance of ANN was similar to that of local 

averaging models. For the noise-free Lorenz series, the improvement of ANN models 

over local averaging models was highly significant. Both ANN models and local 

polynomial models gave remarkably high prediction accuracy in noise-free Lorenz 

series. However, the performance of ANN models was still better than that of the 

polynomial models. The prediction accuracies of all the models dropped considerably 

when noise was added to Lorenz series. The ANN models, however, still outperformed 

the local models. For the river flow time series too the performance of ANN was better 

than that of local prediction methods.  It can be safely concluded that global ANN 

models can yield equally good prediction as, if not better than, the widely used local 

models in phase space prediction of chaotic time series.  

 

3.4 SUPPORT VECTOR MACHINES AS A GLOBAL MODEL 

3.4.1 Introduction 

SVM with ε -insensitive loss function (to be explained in the next section) is 

used in this study. As it will be shown later a Kernel function is employed to facilitate 

computations in higher dimensional feature space. Many kernels are used in SVM. Of 

those, the Gaussian kernel (Eq. 3.7) is capable of mapping data into infinite 

dimensional feature spaces.  
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The width parameter σ is used to control the power of the feature space. Small values 

of σ  lead to very powerful feature spaces. Several studies (e.g. Babovic et al., 2000; 

Dibike et al., 2001; Liong and Sivapragasam, 2002) have shown that Gaussian kernel 

produces good performance in hydrology. Hence, the Gaussian Kernel is the choice in 

this study.  

σ εThe SVM used in this study therefore, has 3 parameters (C, , ) whose 

optimal values have to be determined for optimal prediction performance. With the 

two parameters (m, τ) for reconstruction of phase space, there are hence altogether 5 

parameters to be determined. In this study all the 5 parameters (m, τ, C, σ ε, ) are 

optimized simultaneously with the least prediction error as the objective function. The 

approach used is schematically shown in Figure 3.15.  

Optimizing five parameters using exhaustive search approaches will be quite a 

time consuming task. Instead, Genetic Algorithm (GA), inspired by the process of 

natural selection in nature (Holland and Nafpliotis, 1975) is used. GAs are much more 

efficient in optimal search problems where large number of parameters and wide 

parameter search ranges are involved. GA differs from other classical search and 

optimization methods in a number of ways. The desirable features of GA over other 

optimization methods are: (1) it does not need an explicit objective function in terms of 

the free parameters, (2) it does not use the gradient information in search space, and (3) 

it works with a set of solutions instead of one solution in each iteration and thus 

chances of being trapped in a local optima are less. These features ideally fit the 

present problem of searching optimal parameters (m, τ, C, σ ε, ) where an explicit 

objective function in terms of parameters is not available and the search space is 
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possibly crowded with local optima. Therefore, an evolutionary search technique, 

micro Genetic Algorithm, is employed to determine the optimal parameters (m, τ, C, 

σ ε, ) simultaneously.  

This section is organized as follows. First, the SVM formulation with ε -

insensitive loss function is presented. This original formulation has been found to be 

inefficient for problems with large numbers of data records. Therefore, a 

decomposition technique is employed to make the computations efficient (e.g. 

Joachims, 1999; Collobert and Bengio, 2001; Yu et al, 2004). This decomposition 

method for large scale SVM regression is then explained. This is followed by a 

description of the micro genetic algorithm, mGA. The implementation of the SVM –

mGA coupled procedure is then explained. Finally the application results are 

presented. 

3.4.2 Support Vector Machine formulation with -insensitive loss function ε

The SVM formulation with ε -insensitive loss function (Scholkopf and Smola, 

2002) is presented in this section. A training data set (x yi, i), i = 1, 2, … , N where x is 

m dimensional input vector and the y is one dimensional output is considered.  ε -

insensitive loss function can be expressed as, 

{ ε
ε

−−=− )(,0max)( xx fyfy }      (3.8) 

This is illustrated in Figure 3.16. Using the above loss function the empirical risk 

function  of (Eq. 2.15) can be expressed as, ][ fRemp

∑
=

−=
N

i
iiemp fy

N
fR

1
)(1:][
ε

x        (3.9)  

][.
2
1 2 fRC emp+WNow minimizing the regularized risk functional  is equivalent to 

the following constrained optimization problem, 
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In the above equation, (*) is shorthand implying both the variables with and without 

asterisks. To solve Eq. 3.10, a Lagrangian is formed by introducing a dual set of 

variables. The Lagrangian formulation is, 
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The dual variables (or Lagrange multipliers) in Eq. 3.11 have to satisfy possitivity 

constraints, 
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At the optimal solution all partial derivatives vanish. 
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These yield, 
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Substituting Eq. 3.13 into Eq. 3.14 and Eq. 3.11, the optimization problem now reads, 
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( )ji xxK ,where = )(.)( j
T

i xx ϕϕ  is the inner product kernel. The dual problem of 

maximizing ( )*,ααE2  is a quadratic function subjected to a linear constraint. Solving 

this quadratic programming problem, the weights can be determined through Eq. 3.14. 

Practically, it is not needed to solve W  explicitly. With Eq. 3.14 in regression 

function bxf += )(x.W T ϕ)( , it now reads, 
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Here, the kernel trick has eliminated the need to determine W explicitly. The KKT 

(Karush - Khun – Tucker) conditions can be used to compute . These state that at the 

point of solution, the product between dual variables and constraints have to vanish. 
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The above equations allow one to draw several conclusions (Scholkopf and Smola, 

2002): 

(1) Only examples with corresponding ( iy ,xi ) εCi =(*)α can lie outside the - 

insensitive tube (i.e., 0(*) >iζ ) around . f

(2) We have 0* =iiαα . In other words, there can never be a set of dual variables 

*, ii αα , which are both simultaneously nonzero. 

( Ci ,0(*) ∈ )α(3) For , we have 0(*) =iζ and furthermore the second factor in Eq. 

3.17 must vanish. Hence b can be computed as follows. 
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Theoretically it is sufficient to use any Lagrange multiplier in ( . Given the 

choice between several such multipliers it is safe to use one that is not too close 

to 0 or C. 

)C,0

(4) Sparcity of support vector expansion: from Eq 3.17 it follows that the 

Lagrange multipliers may be nonzero only for ε≥− iyf )( ix ; in other words 

for all points inside the −ε tube, their *, ii αα  vanish. This is because when 

ε<− iyf )( ix the second factor in Eq. 3.17 is nonzero, hence *, ii αα  must be 

zero for the KKT conditions to be satisfied. Therefore, one does not need all 

 to describe W. The examples that come with nonvanishing coefficients are 

called Support Vectors. It is geometrically plausible that the points inside the 

tube do not contribute to the solution: one could remove any of them, and still 

obtain the same solution. Therefore, they do not carry any relevant 

information. 

ix

Once b is found, the regression function (Eq. 3.16) can be used to provide future 

predictions (Figure 3.17).  

 
3.4.3 Decomposition algorithm for large scale SVM regression 

εThe original formulation of SVM (Eq. 3.15) with -insensitive loss function 

deals with a standard quadratic programming problem of the form: xcHxxxf ′+′=)(  

where H is the Hessian Matrix. Denoting, 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

N

2

1

NNN

222

111

y
...
y
y

kkk

kkk
kkk

y

xxxxyx

xxxxxx
xxxxxx

Kαα

N

N

N

N

*

N ,...,,
............
,...,,
,...,,

......

21

21

21

*

*
2

*
1

2

1

α

α
α

α

α
α

 

(3.20) 

 63



and     (3.21) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−
−−

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

ε
ε

y
y

b
KK
KK

K
α
α

β *

~

now the Eq. 3.15 is equivalent to 

( ) βb-βKββE ~
2
1~ =       Minimize: 

subject to :          (3.22)  0=1βT

2N 2... 1,  i C, =≤≤ iiβδ0             

where 1=iδ for  and Ni ≤≤1 NiN 21 ≤≤+1−=iδ for .  

This formulation becomes intractable in terms of computer memory and time when a 

large number of training patterns has to be used. This is because the Hessian matrix in 

Eq. 3.22 has the size of the square of twice the sample size. For example, as shown by 

Yu et al. (2004), for a 20 year daily flow time series where the total number of records 

is about 7300, the size of the Hessian matrix is 213.16 million. If one stores this matrix 

in double precision (64 bit), it will take 1705 MB of computer memory. Common PCs 

have RAM sizes of 256/ 512 MB only. Therefore, to solve problems of large data sizes 

such as chaotic time series the commonly used SVM formulation is not feasible. 

Recently, two techniques have been developed to overcome the above problem: 

(1) decomposition methods and (2) the Least Squares Support Vector Machines, LS-

SVM (Suykens et al., 2002). The decomposition technique is used in this study. Here, 

the idea is to decompose the large quadratic program into manageable sub-problems. 

Platt (1999) developed sequential minimal optimization (SMO) algorithm for 

classification problems. Joachims (1999) developed SVMlight for classification. More 

recently, Collobet and Bengio (2001) successfully implemented a decomposition 

method similar to Joachims (1999) for regression problems. They showed that there is 

a convergence proof for their algorithm. The decomposition algorithm for SVM is 

summarized as follows. 
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(1) Set an initial value  to  0β β

(2) Select 2 working variables (selecting q variables 2 < q < 2 N is the most 

general case, but 2 variables has shown to be the most efficient) i.e. 

21 ,ββ among 2N variables . β

(3) Solve the quadratic program having 2 variables analytically. 

(4) Check whether the optimal conditions are met. If KKT conditions are 

satisfied then the optimum is reached. Otherwise go to step 2 and repeat the 

steps. 

To make the above algorithm more efficient, Collobet and Bengio (2001) use 

an additional step after step 3 called shrinking. In shrinking a search is made for 

variables whose values have been at 0 or C for long time and will probably not change 

anymore. These variables are removed from the problem. 

NC 2
22

1Selection of two working variables. There are ways of selecting 2 variables 

from 2N number of variables. Selection of a good working set is crucial for faster 

convergence. This selection is made based on Zoutendijk’s feasible direction method 

(1970).  

Solving the quadratic program with 2 variables. Let the set of working variables be 

denoted by S and the fixed set be F. Denoting, 
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Sβ  contains the working variables. The objective function (Eq. 3.22) now becomes  
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( )FSFS βKb ~−=hDenoting , it is now equivalent to the standard quadratic program, 
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SSK~ SFK~ With this quadratic program only the  and the  have to be stored in the 

memory. Those are the 2 rows of the Hessian matrix corresponding to 2 working 

variables. Now the memory requirement has decreased from size 4N2 to 4N. Another 

advantage of having only two variables is that the above optimization problem can be 

solved analytically (Collobet and Bengio 2001). 

Checking the KKT conditions.  SVM solves a quadratic programming problem 

which has a unique optimal. Karush-Khun-Tucker (KKT) conditions are necessary and 

sufficient conditions for an optimal solution. Checking the KKT conditions for the 

problem stated in Eq. 3.15 it can be determined whether the optimal solution has been 

reached. 

This study uses the software SVMTorch II (Collobet and Bengio 2001) written 

in C language and running in Unix/Linux platforms. The SVM explained here has 3 

parameters of which the optimal values are to be determined. To optimize these 

parameters together with the phase space parameters, (m, τ), a Micro Genetic 

Algorithm (mGA) is used. The mGA search technique is explained in the next section. 

 

3.4.4 Micro Genetic Algorithm for SVM parameter optimization 

Genetic algorithm (GA) is inspired by the process of natural selection in nature 

(Holland and Nafpliotis, 1975). In GA the solutions to the problem are evolved rather 

than the problem being solved directly. In GA, each parameter set, generally coded in 
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binary, is called a chromosome. A fitness value is assigned to each chromosome 

depending on its performance on the objective function. The total number of 

chromosomes in each iteration is known as the population size and each iteration is 

known as a generation. The chromosomes in the first generation are generally 

generated randomly and the chromosomes of the subsequent generations are generated 

through the basic mechanisms, selection, crossover and mutation. The chromosomes 

associated with higher fitness values are selected more often than the less fit 

chromosomes, following the Darwinian principle of ‘survival of the fittest’. In 

crossover an offspring is generated from last generation through transfer of genes 

between chromosomes. In mutation, one or more individuals of the population is 

mutated to yield new individual(s). This maintains the diversity within the population 

and inhibits premature convergence. As the population evolves, the overall 

performance of the population is expected to improve. This process is repeated until a 

predetermined stopping criterion is met. Good introductions and explanations of GA 

techniques can be found in, among others, Goldberg (1989a) and Michalewics (1996).  

The commonly used GAs, which typically use population size ranging from 30 

to 200, have been proven to be useful tools for many optimization problems. However, 

they have several limitations. A serious limitation of these GAs is the time penalty 

involved in evaluating the fitness function for large populations particularly in 

complex problems (Abu-Lebdeh and Benekohal, 1999). Goldberg (1989b) suggested 

that small populations could be successfully used with GAs if the population is 

restarted sufficient number of times. This is possible since smaller populations 

converge in fewer generations than do large populations. These small-population GAs 

are called micro-GAs. Faster convergence provides the opportunity to restart the 
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micro-GA more often than the regular GA. For problems where function evaluations 

are expensive, many researchers have resorted to micro-GAs (Deb, 2001). 

Micro-GA (mGA) uses almost the same basic operations as regular GAs. 

However, it differs from regular GAs in two important aspects: (1) small population 

size, and (2) no implementation of conventional mutation. Also the mGA uses the 

elitism strategy where the best individual in current population is transferred to the 

next generation. Krishnakumar (1989) was the first to report the implementation of 

micro-GA. The flow chart of mGA algorithm used in this study is shown in Figure 

3.18. A fixed number of generations (100 generations) is used as the stopping criteria. 

The population size is 10. Two convergence criteria used are: (1) when more than 7 

individuals are not significantly different from the performance of the best individual 

the population is considered converged, or (2) when the percentage of bits different 

from the best individual is less than 10%, the population is converged. The prediction 

accuracy on test set is taken as the fitness function. 

3.4.5 Implementation and Results 

The mGA is implemented using the Genetic and Evolutionary Algorithm 

Toolbox (GEATbx) of Pohlheim (2000) in Matlab. The SVM with decomposition 

algorithm is coupled with mGA to determine both optimal phase space parameters (m, 

τ) and SVM parameters (C, εσ , ) simultaneously. The module shown in Figure 3.15 is 

now an evaluation of a single chromosome (or individual in the population) in mGA 

(Figure 3.18). The prediction performance on test set is taken as the fitness value of 

that individual. This procedure is repeated until the stopping criteria are met. The range 

of values chosen for phase space parameters are the same as in the analysis of ANN 

discussed before. The SVM literature provides some guidelines for the selection of 
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( ε,C ). According to Matterra and Haykin (1999), C can be taken as the range of 

output values (i.e. ). Cherkasky and Ma (2004) recommend ( minmax yy − )

( )σσ ′−′+= 3,3max yyC  where y is the average of the time series and σ ′  is the 

standard deviation of the series. They propose the 
n
nln3 0σε =ε  value to be set at  

where 0σ is the standard deviation of the noise present in the series and n is the number 

of training samples. However, these recommendations do not necessarily provide the 

optimal prediction performance. Therefore, with mGA, this study considers a range of 

values for (C, εσ , ) in the vicinity of the recommended values. However, a slightly 

larger range is considered for C since high C values have shown good predictions on 

hydrological time series (Yu, 2004). The range considered for C is (0 to 

2.5)* . The one-step prediction error is taken as an approximation for the ( minmax yy − )

ε (Cherkasky and Ma, 2004) value and the  was varied from 0 – 20σ 0σ  so that the 

recommended value is well within the considered range. For the special case of noise-

free data, -4ε  is varied from 0 – 10  to minimize the algorithm being trapped in 

numerical problems. There is no definite criterion for the range of σ  (kernel width) 

value. Following an application by (Cherkasky and Ma, 2004) where they used (0.1 to 

0.5)* , this study used (0.0 to 1.25)*( minmax yy − ) ( )minmax yy − . The performance of SVM 

is directly compared with that of ANN, which was shown to be superior to local 

models in the earlier section. 

The optimal parameter sets with SVM predictions are shown in Table 3.11. The 

prediction performance of SVM is compared with that of ANN in Tables 3.12, 3.13, 

3.14, 3.15 and 3.16 for noise-free Lorenz, 5% noisy Lorenz, 30% noisy Lorenz, 

Mississippi River flow and Wabash River flow respectively. The percentage 
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improvement of SVM prediction performance, compared to ANN, is also presented. 

The positive percentage values represent better prediction performance of SVM 

compared to ANN and vice versa. 

The prediction performance of SVM on noise free Lorenz series (Tables 3.12) 

is very poor compared to ANN. This could be due to two reasons: (1) the SVM 

decomposition algorithm with shrinking technique is an approximate method and it 

may not be able to deal with delicate noise-free data which can model up to very high 

accuracies, (2) the SVM selects points lying outside the ε   tube as its support vectors. 

For noise-free time series, however, ideally all points should fall on the regression 

function and all of them should be considered as support vectors. This is possible only 

when ε  = 0 and the Hessian is well conditioned. This, however, cannot be expected in 

numerical solution of Quadratic Programming problem. Similar to the behaviour of 

other prediction models, the introduction of noise has caused a considerable drop in 

SVM prediction accuracy too. The differences in prediction errors between ANN and 

SVM, applied on Lorenz series with 5% and 30% noise levels, and on Mississippi and 

Wabash flow time series (Tables 3.13, 3.14, 3.15 and 3.16),  is insignificant.  

 
3.5 COMPUTATIONAL TIME IN LOCAL/ GLOBAL PREDICTION 

TECHNIQUES 

This section presents the computational time required by different prediction 

methods: (1) local averaging model; (2) local polynomial model; (3) ANN; and (4) 

SVM. The different methods are implemented in different computer languages and run 

on different platforms. 

The local averaging technique is coded in FORTRAN language and was run in 

Pentium IV, 2.4 GHz, 512 MB RAM machine running Windows XP. 
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The local polynomial technique is coded in MATLAB and was run in Pentium 

IV, 2.4 GHz, 512 MB RAM machine running Windows XP. 

The ANN is implemented using MATLAB Neural Networks toolbox and was 

run in Pentium IV, 2.4 GHz, 512 MB RAM machine running Windows XP. 

The SVM used in the study has a combination of codes. The mGA is coded in 

MATLAB (using the Genetic and Evolutionary Algorithm Toolbox (GEATbx) of 

Pohlheim, 2000) and the SVM decomposition algorithm is coded in C++ language. 

The C++ module is called within MATLAB (in mGA) in evaluations of SVM (Figure 

3.19). The SVM with mGA is run in HP workstation, 3.06GHz, 2GB Memory running 

on LINUX platform. 

The programs coded in FORTRAN and C++ languages are generally faster 

than when they are coded in MATLAB. However, MATLAB is user-friendly and 

many detailed toolboxes are available facilitating easy coding. The novel techniques 

are easily adopted and made available in MATLAB toolboxes. Therefore, MATLAB is 

preferred to toolboxes of low level languages, which are not common and also not 

updated as frequently as MATLAB, in applications that demand lot of computational 

details.  

The comparison that will be given in this section is made disregarding the 

differences in languages used. However, the differences in computer resources used 

have to be considered. A rough estimate is made between the performance of Pentium 

IV, 2.4 GHz, 512 MB RAM machine running Windows XP and the HP workstation, 

3.06GHz, 2GB Memory running on LINUX platform by running a few programs 

which are compatible with both Windows XP and LINUX. It shows that the HP 

machine is approximately two times faster than Pentium IV.  
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The approximate time taken with different prediction methods for different 

time series is given in Table 3.17. It should be noted that the times reported are the 

total times taken to arrive at a certain optimal solution, i.e. considering the time taken 

to evaluate all possible parameter combinations. Table 3.17 shows that the local 

averaging technique is clearly the most efficient. Both global models, ANN and SVM, 

and the local polynomial model are computationally more time consuming. The time 

required for local polynomial models increases with the higher order due to the 

increased number of coefficients to be determined. The increased time taken in SVM 

with noise-free time series is notable. This is because the Quadratic Programming 

problem does not converge easily with noise-free data since it can go to higher 

accuracies by minimizing the error. When the data are noise free, they should ideally 

fit into the model and the (*)ξ  in Eq. 3.10 should ideally be zero. Therefore, the 

iterations taken to minimize the objective function in Eq. 3.10 can be higher and hence 

cause longer computational time. ANN is comparatively more efficient than SVM in 

noise-free time series analysis. The increased time taken by ANN for noise-free Lorenz 

series, compared to other time series, is due to the large number hidden neurons used. 

  
3.6 CONCLUSION 

 ANN models are shown to be robust in chaotic time series prediction, i.e., that 

a set of parameters chosen from a trial-and-error approach can yield good predictions 

on a wide variety of time series. The global prediction tools, ANN and SVM, showed 

superior performance over that of the local prediction tools in the Lorenz series and 

river flow time series. The ANN yielded more accurate predictions and was more 

efficient in noise-free series than SVM. Otherwise, ANN and SVM have similar 

prediction capabilities. The prediction performance of the global models as well as the 

local models deteriorated considerably when noise is present. Therefore, it is 
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interesting to explore the possibilities of improving their predictions on noisy data. The 

better predictions of global models (ANN and SVM) were achieved at a cost of 

increased computational time. The next chapter deals with how to improve prediction 

when noise is present. A subsequent chapter will look into the possibility of extracting 

a smaller data set in order to make the computations more efficient. 
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Table 3.1 Optimal phase space parameter sets with 
                 various models: Noise-free Lorenz series 

 
Lead time  

1 3 5 Method 

Optimal 
(m, τ, k) 

Local averaging (2,6,6) (4,3,6) (6,3,4) 

Local polynomial (9,3,64) [2] (9,3,56) [2] (9,3,40) [2] 

ANN (7, 6, -) (7, 6, -) (7, 6, -) 

 
Note: Values in brackets [ ] indicate the order of polynomials  

 
 
 
 

Table 3.2 Prediction errors with various models on validation set: 
                Noise-free Lorenz series 

 
Local model  Local model  ANN 
(Averaging) (Polynomial)  

 
Lead 
time NRMSE MAE NRMSE MAE NRMSE MAE 

      
      0.0032 

1 0.01827 0.1448 0.00034 0.0035 0.00031 (98%)* 
    (9%)** 

      0.0036 
3 0.02506 0.2136 0.00055 0.0049 0.00037 (98%)* 

    (27%)** 
   

      0.0042 
5 0.02755 0.2469 0.00095 0.0065 0.00047 (98%)* 

    (35%)** 
  

 
* The percentage prediction improvement over local averaging model 
** The percentage prediction improvement over local polynomial model 
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Table 3.3 Optimal phase space parameter sets with 
                 various models: 5% Noisy Lorenz time series  

Lead time  

1 3 5  
Method 

Optimal 
(m, τ, k) 

Local averaging (10,3,8) (12,3,10) (12,3,8) 

Local polynomial (10,3,96) [1] (11,3,60) [1] (10,3,68) [1] 

ANN (10, 3,-) (10, 3,-) (10, 3,-) 

 
Note: Values in brackets [ ] indicate the order of polynomials  

 
 
 
 
 
 

Table 3.4 Optimal phase space parameter sets with  
                 various models: 30% Noisy Lorenz time series  

Lead time  

1 3 5  
Method 

Optimal 
(m, τ, k) 

Local averaging (10,3,22) (9,3,34) (10,9,18) 

Local polynomial (8,3,96) [1] (9,9,76) [1] (9,9,92) [1] 

ANN (10, 3,-) (9, 3,-) (10, 3,-) 

 
Note: Values in brackets [ ] indicate the order of polynomials  
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Table 3.5 Prediction errors with various models on validation set: 5% 
                Noisy Lorenz series 
 

Local model 
(Averaging) 

Local model 
(Polynomial) 

ANN 
 

 
Lead 
time NRMSE MAE Polynomial 

Order 
NRMSE MAE NRMSE MAE 

      
       0.6395 

1 0.0710 0.7264 1 0.0658 0.6723 0.0634 (12%)* 
    (5%)** 

       0.6761 
3 0.0743 0.7516 1 0.0719 0.7163 0.0667 (10%)* 

    (6%)** 
       0.7167 

5 0.0797 0.7909 1 0.0811 0. 8041 0.0719 (9%)* 
    (11%)** 

 
 
* The percentage prediction improvement over local averaging models 
** The percentage prediction improvement over local polynomial model 

 
 
 
 
 

Table 3.6 Prediction errors with various models on validation set: 30% 
                Noisy Lorenz series 
 

Local averaging Local Polynomial ANN 
 

 
Lead 
time NRMSE MAE Polynomial 

Order 
NRMSE MAE NRMSE MAE 

      
      

1 0.3792 
 

4.0991 
 

1 0.3888 4.1527 0.3793 
4.0604 
(1%)* 

(2%)**  
      

3 0.3883 
 

4.0600 
 

1 0.4463 4.5391 0.3999 
4.2094 
(-4%)* 

 (7%)** 
      4.4450 

5 0.4404 4.5283 1 0.4943 5.0603 (2%)* 0.4268 
   (12%)** 

 
* The percentage prediction improvement over local averaging models 
** The percentage prediction improvement over local polynomial model 
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Table 3.7 Optimal phase space parameter sets with 
                 various models: Mississippi river flow 
  

Lead time  

1 3 5 Method 

Optimal 
(m, τ, k) 

Local averaging (2,1,6) (2,1,8) (2,1,8) 

Local polynomial (2,1,48) [2] (2,1,36) [2] (2,1,48) [2] 

ANN (3, 1, -) (3, 1, -) (3, 1, -) 

 
Note: Values in brackets [ ] indicate the order of polynomials 

 
 
 
 
 
 
 

Table 3.8 The optimal phase space parameter sets 
                 with various models: Wabash river flow 
  

Lead time  

1 3 5 Method 

Optimal 
(m, τ, k) 

Local averaging (2,1,10) (2,1,14) (2,1,20) 

Local polynomial (3,1,50) [1] (4,1,50) [1] (4,1,44) [1] 

ANN (5, 1, -) (5, 1, -) (7, 1, -) 

 
Note: Values in brackets [ ] indicate the order of polynomials 
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Table 3.9 Prediction errors with various models on validation 
                set: Mississippi river flow 
 

Local model 
(Averaging) 

Local model  
(Polynomial) 

ANN 
 

Lead 
time 

NRMSE MAE NRMSE MAE NRMSE MAE 
(/) (m3/s) (/) (m3/s) (/) (m3/s) 

      207.31 
1 0.0437 251.66 0.0412 225.13 0.0388 (18%)* 

    (8%)** 
 

      767.93 
3 0.1453 845.07 0.1371 810.59 0.1330 (9%)* 

   (5%)** 
 

      1465.24 
5 0.2644 1586.18 0.2476 1512.50 0.2435 (8%)* 

    (3%)** 
 

 
* The percentage prediction improvement over local averaging model 
** The percentage prediction improvement over local polynomial model 

 
 
 
 
 
 

Table 3.10 Prediction errors with various models on validation  
                  set: Wabash river flow 
 

Local model 
(Averaging) 

Local model  
(Polynomial) 

ANN 
 

Lead 
time 

NRMSE MAE NRMSE MAE NRMSE MAE 
(/) (m3/s) (/) (m3/s) (/) (m3/s) 

      25.66 
(25%)* 1 0.0849 34.04 0.0641 27.24 0.0606 

  (6%)** 
 

      105.96 
3 0.2671 120.59 0.2522 118.91 0.2312 (12%)* 

   (11%)** 
      189.32 

5 0.4331 199.17 0.4317 206.63 0.4084 (5%)* 
   (8%)** 

 
* The percentage prediction improvement over local averaging model 
** The percentage prediction improvement over local polynomial model 
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Table 3.11 Optimal phase space parameter sets with 
                  SVM for different time series 
 

Lead time  

1 3 5 Time series 

Optimal 
(m, τ) 

Noise-free Loenz (9, 3) (5, 6) (6, 6) 

5% noisy Lorenz (10, 3) (9, 3) (10, 3) 

30% noisy Lorenz (10, 3) (9, 3) (10, 3) 

Mississippi River (5, 1) (3, 1) (4, 1) 

Wabash River (4, 1) (5, 1) (6, 1) 

 

 
 
 
 
 
 
 
 

Table 3.12 Prediction errors with ANN and SVM on 
                  validation set: Noise-free Lorenz series 

ANN SVM Lead time 

NRMSE MAE NRMSE MAE 
  

    0.0044 
1 0.00031 0.0032 0.00053 (-38%) 

  
    0.0064 

3 0.00037 0.0036 0.00100 (-78%) 
  

    0.0088 
5 0.00047 0.0042 0.00158 (-110%) 

  
 
  Values in parenthesis ( ) are the percentage prediction improvement of  

SVM over ANN model
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Table 3.13 Prediction errors with ANN and SVM 
                  on validation set: 5% Noisy Lorenz series 

ANN SVM Lead time 

NRMSE MAE NRMSE MAE 
    

   
1 0.0634 0.6395 0.0630 0.6392 

   (0%) 
   

3 0.0667 0.6761 0.0675 0.6847 
   (-1%) 

   
5 0.0719 0.7167 0.0732 0.7231 

   (-1%) 
 
  Values in parenthesis ( ) are the percentage prediction improvement of  

SVM over ANN model 
 
 
 
 
 
 
 

Table 3.14 Prediction errors with ANN and SVM on 
                  validation set: 30% Noisy Lorenz series 

ANN SVM Lead time 

NRMSE MAE NRMSE MAE 
    

   
1 0.3793 4.0604 0.3707 3.9613 
  (2%)   
 

0.3999 4.2094 0.3813 4.0228 3 
   (4%) 

 
0.4268 4.4450 0.4167 4.3339 5 

   (2%) 
 
  Values in parenthesis ( ) are the percentage prediction improvement of  

SVM over ANN model 
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Table 3.15 Prediction errors with ANN and SVM 
                  on validation set: Mississippi time series 

ANN SVM Lead time 

NRMSE MAE NRMSE MAE 
 (m3/s)  (m3/s) 

   206.99 
1 0.0388 207.31 0.0395 (0%) 
     
   792.65 

3 0.1330 767.93 0.1373 (-3%) 
    

   1483.97 
5 0.2435 1465.24 (-1%) 0.2511 

    
 
  Values in parenthesis ( ) are the percentage prediction improvement of  

SVM over ANN model 
 
 
 
 
 
 
 

Table 3.16 Prediction errors with ANN and SVM  

 

                  on validation set: Wabash time series 
 

  Values in parenthesis ( ) are the percentage prediction improvement of  
SVM over ANN model 

 
 

ANN SVM Lead time 

NRMSE MAE NRMSE MAE 
 (m3/s)  (m3/s) 

    25.17 
1 0.0606 25.66 0.0638 (2%) 
  
   105.24 

3 0.2312 105.96 0.2364 (1%) 
    

   173.46 
5 0.4084 189.32 0.3982 (8%) 

    

 81



 
 
 
 

Table 3.17 Approximate computational time for different prediction methods 
  with different time series 

 
Local Polynomial Time series Local 

Averaging 

ANN SVM 

Order 1 Order 2 

Noise-free Lorenz 1 hr 97 hrs 267 hrs 26 hrs* 213 hrs 

Noisy Lorenz 1 hr 97 hrs 267 hrs 4.3 hrs* 5 hrs 

River flow 0.4 hrs 32 hrs 80 hrs 0.8 hrs* 10 hrs 

 
* Times taken to derive the optimal parameters (the number of neurons and epochs etc) are not included
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Figure 3.1 x(t) component of Lorenz time series  
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Figure 3.2 Mississippi river catchment 
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Figure 3.3  Mississippi river daily flow time series 
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Figure 3.4  Wabash river catchment 
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(b) First 1,000 Points: close-up 

 
 
 

Figure 3.5 Wabash river daily flow time series 
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Figure 3.6 Architecture of Multi Layer Perceptron used in the study 
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(b) 

Figure 3.7 Variation of prediction errors and computational times with (a) number of 
hidden neurons and (b) number of epochs: Lorenz series (m = 5, τ =1, T=3  prediction) 
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 (e) Scatter plot: Local averaging  (f) Scatter plot: Local polynomial 
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Figure 3.9 Validation data and prediction errors in lead-time 5 predictions of 

  various models: noise-free Lorenz series 
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(e) Scatter plot: Local averaging  (f) Scatter plot: Local polynomial 
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(f) Scatter plot: ANN 

 
Figure 3.10 Validation data and prediction errors in lead-time 5 predictions of 

   various models: 5% Noisy Lorenz series 
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 (c) Error on local polynomial model  (d) Error on ANN model 
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(e) Scatter plot: Local averaging  (f) Scatter plot: Local polynomial 
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(f) Scatter plot: ANN 

 
Figure 3.11 Validation data and prediction errors in lead-time 5 predictions of 

   various models: 30% noisy Lorenz series 
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(a) Fourier power spectrum 
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(b) Correlation integral analysis 
 
 

 
Figure 3.12 Correlation integral analysis and Fourier power spectrum on Wabash 

river flow time series 
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 (a) Validation data    (b) Error on local averaging model 
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(c) Error on local polynomial model  (d) Error on ANN model 
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(e) Scatter plot: Local averaging  (f) Scatter plot: Local polynomial 
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(f) Scatter plot: ANN 

 
 

Figure 3.13 Validation data and prediction errors in lead-time 5 predictions of 
   various models: Mississippi river flow time series 
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(e) Scatter plot: Local averaging  (f) Scatter plot: Local polynomial 
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Figure 3.14 Validation data and prediction errors in lead-time 5 predictions of 

   various models: Wabash river flow time series 
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Figure 3.15 Schematic diagram of (m, t, c, std, eps) selection with SVM 
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Figure 3.16 - insensitive loss function ε
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Figure 3.17 Prediction with support vector machine 
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Figure 3.19  Implementation of SVM/ Matlab 
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CHAPTER 4 

REAL-TIME NOISE REDUCTION AND PREDICTION OF 
CHAOTIC TIME SERIES WITH EXTENDED KALMAN 

FILTERING 

 

4.1 INTRODUCTION 

 The need for investigating methods to improve predictions of noisy chaotic 

time series was highlighted in chapter 3. Investigating the use of noise reduction 

techniques to improve the quality of data and the prediction accuracy in real-time 

prediction applications is the main aim of this chapter. In addition, investigating the 

applicability of the popular state estimation technique in controls theory, the Kalman 

Filtering (nonlinear version – Extended Kalman filter (EKF)), in chaotic time series 

analysis is also conducted in this chapter. 

As discussed in chapter 2, the procedures followed in the studies of noise 

reduction in chaotic hydrological time series (e.g. Porporato and Ridolfi, 1997; 

Kawamura et al., 1998; Sivakumar et. al. 1999b; c; Jayawardena and Gurung, 2000) 

are not suitable for real-time prediction applications. This study identifies the possible 

ways to improve real-time predictions of noisy chaotic time series, identifies 

appropriate techniques, and proposes a robust scheme. The Extended Kalman Filter 

(EKF) and simple nonlinear noise reduction is demonstrated on the proposed 

procedure. The validity of the scheme is assessed using two different prediction 

models: ANN and SVM.  

In noise reduction of real data, totally reliable ways of verifying the noise removal 

are not available (Grassberger et al., 1993). It is, therefore, very important to test any 

noise reduction procedure on a data set where the true signal is known (Kantz and 
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Schreiber, 2004). In this study, all the methods and procedures are first tested on a 

chaotic Lorenz series contaminated with known noise levels. Gaussian random noise is 

added to noise-free chaotic time series (as described in Section 3.3.1) to obtain noisy 

series. Four different noise levels (noise levels are defined as in Section 3.3.1), from 

very mild noise to very high noise, 1%, 10%, 20%, 30%, are considered. Noises are 

generated with different seed numbers. Four sets of noisy series are generated for each 

noise level to allow a more thorough investigation. Analysis is first performed on 

known noisy Lorenz time series where comparison against noise-free series is 

possible; it is only then applied on real flow time series. The next section investigates 

some possible ways to improve prediction accuracy of noisy chaotic time series. 

 
4.2 IMPROVING PREDICTION PERFORMANCE OF NOISY TIME SERIES 

4.2.1 Introduction 

 Let us consider the evolution of a dynamical system that relates the current 

state to a future state, 

( nn xx f=+1 )          (4.1) 

There are two main ingredients: (1) the function f, and (2) the current input . In the 

case of chaotic time series analysis, an approximation to the function f, , is derived 

out of past records. Real world data contains noise and the recorded data are not 

exactly the series {  but some measured series 

nx

f̂

}ix { }iy  expressed as 

iii xy υ+=          (4.2) 

where iυ  is measurement noise. If the data contains noise, the function f cannot be 

accurately approximated and that inevitably affects the prediction accuracy. When the 
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input data ( ) contains noise (i.e. ), again, the prediction performance is going to 

suffer. Therefore, the possible ways of improving prediction performance are, 

nx ny

(1) configuring better prediction models fb using noise reduced data. 

(2) Using noise reduced inputs, , instead of . nredx ny

(3) Using a combination of (1) and (2). 

To configure a better prediction model, a noise reduced data set can be used. For this 

purpose, noise reduction techniques can be applied off-line. In off-line applications, to 

reduce noise in a particular record, both past and future data records of that data record 

can be used (Figure 4.1(a)). To reduce noise in input data (i.e. the current record) noise 

reduction has to be incorporated in real-time (or on-line). In this case, only the past 

records of the current record can be used to yield a noise reduced estimate of the 

current record (Figure 4.1(b)). Earlier studies on noise reduction, criticized by 

Elshorbagy et al (2002b), have used off-line noise reduction to reduce noise in 

validation data as well. However, as noted earlier, such offline noise reduction 

techniques can not reduce noise in validation inputs in real-time prediction.  

A review on popular nonlinear noise reduction techniques (Schreiber and 

Grassberger, 1991; Schreiber, 1993) shows that they cater off-line applications. Out of 

the possibilities listed above, the only way to improve predictions of data driven 

models by incorporating off-line noise reduction is to configure models using noise 

reduced data. The earlier noise reduction attempts also implicitly assumed that models 

configured with noise reduced data can improve predictions (e.g. Porporato and 

Ridolfi, 1997; Sivakumar et al., 1999b). Whether such a model derived from noise-

reduced data will be more effective on chaotic time series prediction applications than 

a model derived of noisy data is, however, uncertain. It is possible that even a perfect 

model might not produce better prediction with noisy inputs due to its high sensitivity 
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to initial conditions. Therefore, the following section verifies, through simulations, 

whether such models derived with noise-reduced data would yield better predictions. A 

later section will verify whether noise-reduced inputs for models would improve the 

prediction accuracy. 

4.2.2 Do models trained with less noisy data produce better predictions? 

As noted earlier, it seems natural to expect that prediction models derived with 

noise-reduced data will perform better. This section explores whether such models 

indeed give better prediction performance with chaotic time series when noisy inputs 

(data whose quality is less than that of the data used to derive prediction model) are 

used in validation. Noise induced chaotic Lorenz time series are used in the 

simulations. The prediction performance of models derived out of noise free data 

compared with that of performance of models derived from noisy data, when noisy 

validation data is given as inputs, is used to evaluate the models’ performance. ANN is 

used as the prediction model. In this chapter, ANN models are trained in the same way 

as in the last chapter except that hyperbolic tangent transfer function is used for the 

neurons. The Chapter 3 showed that the ANN models trained with noise-free data 

produces almost perfect predictions. Therefore, in this chapter, these nearly perfect 

models will be used to denote the case of perfect models. 

A prediction performance comparison is made between ANN trained with 

noise free data (the best possible model) and ANN trained with noisy data, using noisy 

validation data as inputs. Two different noise levels are used: 1% and 30%. Prediction 

errors are measured against both noise-free and noisy data. The procedure is shown in 

Figure 4.2 (a) and (b) respectively for the models trained with noisy data and the 

model trained with noise-free data. In the goodness-of-fit measure expressions, Eq. 3.4 

and Eq. 3.5 where  is the predicted value,  is the noisy series value when ix̂ ix

 103



comparing against noisy validation data and  is the noise-free series value when 

comparing against noise-free validation data. 

ix

Table 4.1 shows the results for 1% noisy data and 30% noisy data as inputs to 

model trained with noise free data and the models trained with noisy data of levels 1% 

and 30% respectively. Since the prediction performances are consistent with both error 

measures, NRMSE and MAE (as noted in Chapter 3 as well), only the MAE values are 

shown from here onwards. The prediction performances on validation set measured 

against both noisy data and noise-free data, marked as A, B, C and D on Table 4.1, 

correspond to the A, B, C and D shown on the Figure 4.2. The results show that the 

model trained with noisy data (e.g. model trained with 1% noisy data) performs even 

slightly better than the model trained with noise-free data when the models are 

subjected to data inputs of similar noise level (e.g. 1% noisy validation inputs). The 

reason why the ANN model trained with noisy data performs better may be because it 

is more robust and consistent on the noisy data of similar amount of noise. The 

sophisticated model trained with noise-free data on the other hand, may produce worse 

predictions with noisy inputs due to divergence of trajectories due to sensitivity to 

initial conditions. 

In addition to the above nearly ideal case of model trained with noise-free data, 

several other models are also trained with data of 1%, 10% and 20% noise levels. 

These models can be regarded as models trained with less noisy data to input data of 

noise levels higher than, 1%, 10%, and 20% respectively. In the simulations performed 

using the above models too, the prediction accuracy of the model trained with the data, 

which have the same level of noise as the input data, yields better or equally good 

prediction accuracy as that of the models trained with less noisy data (See Appendix 

F).  
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The above results show important implications: (1) a model trained with data of 

same level of noise as its inputs is more robust than a model trained with less noisy 

data, and (2) training models with noise-reduced data may not necessarily yield better 

prediction accuracy when the input data is not noise-reduced. It is, therefore, 

interesting to verify whether noise-reduced data inputs may improve the prediction 

performance of the models.  

4.2.3 Do noise-reduced data inputs cause models to predict better? 

This section assesses how ANN models trained with noisy data perform with 

noisy input data whose level of noise is less than those data used to train the ANN 

model. Simulations are performed using an ANN model trained with 30% noisy 

Lorenz series, with noise-free, 1%, 10%, 20% and 30% noisy Lorenz data as inputs. 

As before, the prediction performance is measured against both noisy and noise-free 

data as shown in Figure 4.3. The results are shown in Table 4.2. The results show that 

the ANN model trained with 30% noise provides better prediction performance when 

the input data are less noisy (compare columns 1 – 4 with column 5). It is interesting to 

note that the prediction improvement is reflected in prediction error against noisy data 

too. This is advantageous since there is hope in using prediction error measured against 

noisy data as a criterion for identifying noise reduction in real world data where the 

noise free signal is unknown. As before, simulations are performed with models 

trained with other noise levels, 1%, 10% and 20%, where input data of noise levels less 

than 1%, 10% and 20% respectively are used as inputs. The results confirm the above 

observation; a model trained with noisy data performs better (as expected) with less 

noisy validation inputs (See Appendix F). 

Findings from Sections 4.2.2 and 4.2.3 can be summarized as in Table 4.3. Let 

the noise level of a series be x %, and let it be y % (y < x) after noise reduction. The 
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possible ways of model training, validation and their outcomes are shown in Table 4.3. 

Row (1) of Table 4.3 shows the general case where no noise reduction is involved. 

Row (2) shows that a model trained with noisy data can provide better predictions 

when the noise level of input data is reduced. However, a model trained with noise-

reduced data may not necessarily yield better predictions than a model trained with 

noisy data when noisy input data are used (Row (3)). Section 4.2.2 noticed that a 

model trained with data of same level of noise as its inputs is more robust. Therefore, it 

can be deduced that a model trained with low noise level should improve the 

prediction accuracy if it is supported with input data of equally low noise or even 

lower (Row (4)). Therefore, the key factor in improving the prediction accuracy is the 

noise-reduced input data.  

The above results indicate the necessity of adopting noise reduction in real-

time, i.e. noise reduction of the current input (current record), to yield a better 

prediction to the future. For this, one has to look for noise reduction techniques 

capable of real-time applications. In controls literature, the Kalman filter and its 

variants are very popular in real-time state estimation of dynamical systems. The 

possibility of using this technique for noise reduction in chaotic time series is 

investigated in the next section. 

 
4.3 EXTENDED KALMAN FILTER IN PREDICTION OF NOISY CHAOTIC 

TIME SERIES  

In this section, the Extended Kalman filter is first introduced. This is followed 

by an investigation on the appropriateness of EKF for real-time noise reduction. A 

noisy data-driven state-space model of EKF for chaotic phase space predictions is then 

derived. Finally, the application of the EKF with ANN trained with noisy data is 

demonstrated on noise-induced Lorenz time series.  
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4.3.1 Extended Kalman Filter 

 Kalman filter is originally derived for linear systems. But most of the real 

world systems are nonlinear and variations of KF have been proposed for nonlinear 

systems. A direct extension of linear KF for nonlinear systems is the Extended Kalman 

filter (EKF), which is used in this study. Improved variations and other forms of KF, 

which are claimed to be better than EKF, are also available in the literature to deal with 

nonlinearities. To understand the Kalman filter technique and the EKF formulation, it 

is essential to understand the linear Kalman filter. Linear Kalman filter is first 

explained in this section and then the EKF in its most basic form is presented. Out of 

the many references the derivation of these filters has been documented, this chapter 

follows Welch and Bishop (2004). 

 The Kalman filter addresses the problem of trying to estimate the state nR∈x  

of a discrete-time controlled process governed by the linear stochastic difference 

equation 

11 −− ++= kkkkkk wuBxAx        (4.3) 

with a measurement  that is mR∈z

kkkk xHz υ+=         (4.4) 

The random variables and kw kυ represent the process and measurement noise 

respectively. They are assumed to be independent (of each other), white, and of normal 

probability distributions, 

( ) ( )
( ) ( )R

Qw
,0~
,0~

Np
Np

υ
        (4.5) 

In practice, the process noise covariance  and measurement noise covariance Q R  

matrices might change with each time step or measurement; however, here it is 
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assumed that they are constant. The set of relations given in Eq. 4.3 and Eq. 4.4 is 

called the state-space model. 

 The nn  matrix A× k in Eq. 4.3 relates the state at the previous time step 1−k  

to the state at the current step k in the absence of either a driving function or process 

noise. The  matrix Bln× Bk relates the optional control input lR∈u  to the state . The 

 matrix H

x

nm× k in the measurement equation relates the state to the measurement . kz

 Define  to be a priori state estimate at step k given the knowledge of 

the process prior to step k, and to be our a posteriori state estimate at step k 

given measurement . Then the a priori and a posteriori estimate errors are, 

n-
k Rx ∈ˆ

n
kx ℜ∈ˆ

kz

kkk

kkk

xxe
xxe
ˆ
ˆ

−=
−= −−

         (4.6) 

The a priori estimate error covariance is then  

[ ]T
kkk eeEP −−− = .         (4.7) 

and the a posteriori estimate error covariance is 

 [ ]T
kkk eeEP .=         (4.8) 

The main goal is to find a posteriori state estimate as a linear combination of an a 

priori estimate  and the new measurement . This is equivalent to finding a linear 

combination of an a priori estimate  and a weighted difference between an actual 

measurement and a measurement prediction  as shown below (see Appendix G 

for details), 

kx̂

−
kx̂ kz

−
kx̂

kz −
kxH ˆ

( )−− −+= kkkkk xHzKxx ˆˆˆ        (4.9) 
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the difference ( )−− kk xHz ˆ  in Eq. 4.9 is called the measurement innovation. The mn×  

matrix Kk (gain or blending factor) is chosen so that the a posteriori error covariance 

(Eq. 4.8) is minimized.  

Substituting Eq. 4.9 and Eq. 4.4 in Eq. 4.6  

( ) kkkkkk KeHKIe υ+−= −        (4.10) 

substitute Eq. 4.10 in Eq. 4.8 

( ) ( )[ ] ( )[ ]{ }T
k

T
k

T
kk

T
kkk

T
k

T
k

T
kk

T
kkkkk KHKIeKKHKIeeHKIEP υυυ +−++−−= −−−

By definition 

[ ] k
T

kk RE =υυ         (4.11) 

and as a result of measurement errors being uncorrelated, 

[ ] [ ] 0.. == −− T
kk

T
kk eEeE υυ        (4.12) 

thus, 

( ) ( ) T
kkk

T
kkkkkk KRKHKIPHKIP +−−= −     (4.13) 

Optimum choice of . The criterion for choosing the optimal  is to minimize a 

weighted scalar sum of the diagonal elements of the error covariance matrix . Thus 

a cost function can be chosen as 

kK kK

kP

[ ]eSeEJ T
k ..=         (4.14) 

where S is any positive semidefinite matrix. It can be shown that the optimal estimate 

is independent of S. Choosing S = I yields, 

[ kk PtraceJ = ]         (4.15) 

To find the  which provides a minimum, the partial derivative of with respect to 

 is equated to zero. The following relation for partial derivative of the trace of the 

product of two matrices A

kK kJ

kK

o and BBo (with BoB  symmetric) is used: 
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( )[ ] oo
T

ooo BAABAtrace
A

2=
∂
∂       (4.16) 

From Eqs. 4.13 and 4.15 the following equation can be formed 

( ) 022 =+−− −
kk

T
kkkk RKHPHKI       (4.17) 

Solving for Eq. 4.17 for  yields kK

[ 1−−− += k
T

kkk
T

kkk RHPHHPK ]

)

]

      (4.18) 

which is referred to as the Kalman gain matrix. Substituting Eq. 4.18 into Eq. 4.13 and 

after some manipulations, 

( −−= kkkk PHKIP         (4.19) 

which is the optimized value of the updated estimation error covariance matrix. 

 The a priori estimates are obtained in the “prediction step” or the Time Update 

step. The projection of the quantities through time is called the Time Update step or 

“prediction step”. The a priori estimates are obtained as, 

kkk BuxAx += −
−

1ˆˆ         (4.20) 

QAAPP T
kk += −

−
1         (4.21) 

 Once Kk and  Pk is found the a posteriori estimates can be obtained in the 

“correction step” or the Measurement Update step as follows, 

[ 1−−− += k
T

kkk
T

kkk RHPHHPK       (4.22) 

( )−− −+= kkkkk xHzKxx ˆˆˆ        (4.23) 

( −−= kkkk PHKIP )         (4.24) 

 The initial conditions for the filter can be given as 

[ ] 00 x̂xE =          (4.25) 

( )( )[ ] o
T PxxxxE =−− 0000 ˆˆ  
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When no other information is available, an arbitrary value may be chosen as the initial 

state estimate. 

 
Extended Kalman Filter 

 The above formulations are valid for linear systems. For nonlinear systems the 

Extended Kalman filter can be derived as follows Welch and Bishop (2004). 

Assuming the system has a state vector nRx∈  and is governed by the 

nonlinear stochastic difference equation 

),,( 111 −−−= kkkk wuxfx         (4.26) 

with a measurement  where mRz∈

),( kkk xhz υ=         (4.27) 

In Eqs. 4.26 and 4.27, and kw kυ represent, as earlier, process and measurement 

noises. In practice, the individual values of the noise and kw kυ are unknown and one 

may approximate the state and measurement vector without them as  

)0,,ˆ(~
11 −−= kkk uxfx         (4.28) 

)0,~(~
kk xhz =          (4.29) 

where  is some a posteriori estimate of the state. It should be noted that a 

fundamental flaw of the EKF is that the distributions of the various random variables 

are no longer normal after undergoing their respective nonlinear transformations. The 

EKF is simply an ad hoc state estimator that only approximates the optimality of 

Bayes’ rule by linearization. 

kx̂

Taylor approximation to linearize the estimates around Eq. 4.28 and Eq. 4.29 yields 

( ) 111 ˆ~
−−− +−+≈ kkkkk WwxxAxx       (4.30) 

( ) kkkkk VxxHzz υ+−+≈ ~~        (4.31) 
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where 

• and are the actual state and measurement vectors,  kx kz

• kx~ and kz~ are the approximate state and measurement vectors from Eqs. 4.28 

and 4.29, 

•  is an a posteriori estimate of the state at step k, kx̂

• the random variables and kw kυ represent the process and measurement noise 

as in Eqs. 4.3 and 4.4, 

• A is the Jacobian matrix of partial derivatives of with respect to , f x

[ ] ( 0,,ˆ 1
][

][
, kk

j

i
ji ux

x
f

A −∂

∂
= )       (4.32) 

 

• W is the Jacobian matrix of partial derivatives of with respect to , f w

[ ] ( 0,,ˆ 1
][

][
, kk

j

i
ji ux

w
f

W −∂

∂
= )        (4.33) 

• H is the Jacobian matrix of partial derivatives of with respect to , h x

[ ] ( 0,~
][

][
, k

j

i
ji x

x
h

H
∂

∂
= )       (4.34) 

• H is the Jacobian matrix of partial derivatives of with respect to h υ , 

[ ] ( 0,~
][

][
, k

j

i
ji x

h
V

υ∂
∂

= )        (4.35) 

Note that for simplicity of notation the subscript k of Jacobians A, W, H, and V are not 

used although they are different at each time step. 

 
The prediction error can now be defined as 

kkx xxe
k

~~ −=          (4.36) 

while the measurement residual is defined as 
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kkz zze
k

~~ −=          (4.37) 

From Eqs. 4.30 , 4.31, 4.36 and 4.37, the following expressions can be obtained 

( ) kkkx xxAe
k

ε+−= −− 11 ˆ~        (4.38) 

kxz kk
eHe η+= ~~         (4.39) 

where kε and kη are independent random variables having zero mean and covariance 

matrices and with Q and R as defines in Eq. 4.5. TWQW TVRV

It should be noted that Eqs. 4.38 and 4.39 are linear and closely resemble Eqs. 4.3 and 

4.4 of the linear Kalman filter. This motivates the use of a second (hypothetical) 

Kalman filter to estimate the prediction error 
kxe~ . This estimate, , could then be 

used together with Eq. 4.36 to obtain the a posteriori state estimates for the original 

nonlinear process as 

kê

kkk exx ˆ~ˆ +=          (4.40) 

The random variables in Eqs. 4.38 and 4.39 have approximately the following 

probability distributions: 

( ) [ ]( )
( ) (
( ) ( )T

kk

T
kk

T
xxx

VVRN

WWQN

eeENe
kkk

,0~

,0~ )
~.~,0~~

η

ε

p
p

p

       (4.41) 

With those approximations and letting the predicted value of  be zero, the Kalman 

filter equation used to estimate  is 

kê

kê

kzkk eKe ~ˆ =          (4.42) 

Substituting Eq. 4.42 into Eq. 4.40 and using Eq. 4.37 lead to 

( kkkk

zkkk

zzKx

eKxx
k

~~ )

~~ˆ

−+=

+=
       (4.43) 
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Eq. 4.43 can be used for the measurement update in the Extended Kalman filter with  

kx~  and kz~ obtained from Eqs. 4.28, 4.29 and the Kalman gain obtained from Eq. 4.20 

with appropriate substitution for the measurement error covariance. 

 The final EKF Time Update and Measurement Update equations can be given 

as follows. 

 
Time Update: 

)0,,ˆ(ˆ 11 −−
− = kkk uxfx         (4.44) 

T
kkk

T
kkkk WQWAPAP 11 −−

− +=       (4.45) 

 
Measurement Update: 

1)( −−− += T
kkk

T
kkk

T
kkk VRVHPHHPK      (4.46) 

))0,ˆ((ˆˆ −− −+= kkkkk xhzKxx        (4.47) 

−−= kkkk PHKIP )(         (4.48) 

The discrete Kalman filter cycle is illustrated in Figure 4.4 

 
4.3.2 Appropriateness of EKF in real-time noise reduction of chaotic time series 

Ideally EKF assumes a perfect state-space model. As shown in Chapter 2, the 

few studies that have applied EKF in chaotic time series prediction have used the exact 

governing equations or a nearly ‘perfect’ model derived from noise-free data.  

However, this kind of ‘perfect’ models are not in existence for real world systems such 

as chaotic systems where explicit governing equations are not known. In chaotic time 

series analysis all one can obtain is a data-driven model trained from, most probably, 

noisy data. Justification of the use of less than perfect model in EKF can be given as 

follows. 
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In order for EKF to make an improved ‘prediction’ with the more ‘correct’ 

estimate of the state (see Figure 4.4), the prediction model should be able to produce 

better predictions with less noisy inputs. This is because the EKF uses measurement 

update value (which is supposed to be less noisy than the measurement) to predict in 

time update step. If the prediction model is able to give a better ‘prediction’ with the 

less noisy measurement update (‘correction’), the next measurement update step 

(‘correction’), which uses the predicted value will, in turn, yield a better estimate 

(‘correction’); thus the whole algorithm will lead to improved estimates and 

predictions. Section 4.2.3 showed that for chaotic time series, input data with lower 

noise level leads models trained with noisy data to better predictions. This shows the 

use of models trained with noisy data in EKF, for chaotic time series prediction, to 

yield better prediction, is feasible. 

EKF uses only the past records of a certain point to come up with a better 

estimate for that point. Therefore, it has the potential to be used as a real-time noise 

reduction technique. It can be noticed that Kalman filter estimates can be considered as 

noise reduced data for systems where the system state is directly observed, i.e. in 

systems where H = I (where I is the identity matrix) in the measurement model (Eq. 

4.4). The chaos application is a special case where the observations are directly used to 

determine the states and, therefore, the KF estimates can be considered as noise 

reduced data without any conversion errors due to transformations through H.  

The above discussion shows that it is possible to use a model trained with noisy 

data in EKF and it is also possible to use EKF as a real-time noise reduction technique 

in chaotic time series analysis. However, it should also be noted that there is a limit in 

the quality of predictions that can be achieved by these noisy data trained models in 

EKF. For example, with the model trained with 30% noisy data (Table 4.2) even if the 
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EKF were able to yield perfect estimates (i.e. noise-free data), the prediction error 

measure, MAE, will never be less than 0.7356 (column 1 of Table 4.2) due to the 

imperfectness of the model. These results indicate that an iterative approach (i.e. 

training a model with noise-reduced data and using it then in EKF to make better 

estimations; and continuously repeating the procedure) may provide better predictions. 

However, this is beyond the scope of the current study. 

The next section explains how the noisy data trained ANN model is 

incorporated in the state-space model of the Extended Kalman filter. 

4.3.3 Noisy data trained ANN model in EKF 

In chaotic time series prediction, one is interested in deriving an approximation 

for the dynamical rule, 

)...,,( )1( ττ −−−+ = mtttTTt xxxfx      (4.49) 

relating a future coordinate to past coordinates. The approximation can be expressed as 

tmtttTTt wxxxFx += −−−+ )...,,( )1( ττ      (4.50) 

where FT is the approximate model and wt is the residual error. Assuming both the time 

delay (τ ) and the prediction horizon (T) to be unity, the relation can be expressed as 

kmkkkk wxxxfx += −−− )...,,( 21      (4.51) 

Since the observations inevitably contain noise, the observations can be related to 

actual signal as, 

ttt xy υ+=          (4.52) 

Eqs. 4.51 and 4.52 closely resemble the state-space model of Extended Kalman filter 

given in Eqs. 4.26 and 4.27 with the exception of scalars at the places of vectors in 
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EKF state-space model. Following Haykin (2001) the state-space representation can be 

formulated as 
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where the state is chosen to be the phase space vector and the state transition 

function has its first element given by  with the remaining values 

corresponding to the shifted values of the previous state. Here, the residual error is 

considered as process noise (Haykin, 2001).  

kx

(.)F (.)f

If the time delay for phase space reconstruction is equal to unity, adopting the 

data driven model (Eq. 4.53) for EKF state-space formulation is straight-forward as 

shown above. However, in chaotic time series prediction, the optimal time delay may 

not necessarily be unity. The following procedure is followed in this study. For delay 

times different from unity the state space model is taken as 
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As before, the first element of the state vector is given by  with the remaining 

values now given by the corresponding lag elements not necessarily from previous 

state. It should be noted that although the updated previous state is readily 

available for use in , the updated values of other lag elements are not. Therefore, a 

pool of states is maintained in a temporary file where their elements are updated once a 

state estimate is made. The idea is, when a “corrected estimate” is obtained in the 

Measurement Update step, the corresponding elements in the pool are updated with the 

elements of state . The corresponding lag elements for the use in Eq. 4.55 are 

chosen from this updated file.  

(.)f

1−kx

(.)f

kx

The temporary states file looks like Eq. 4.56. When the state estimate of is 

made, the elements of the future states, which have similar elements are replaced by 

those updated elements of . For example, in Eq. 4.56, when updated is available, 

the last element of state can be replaced by the first element of . It should 

also be noted that some of the values of this pool of states are empty. For example, the 

elements starting from  upwards are unknown. This updating process continues 

when estimates are made and the earlier estimate is removed from the temporary file 

and a new column is added. In this process an element is generally replaced m times by 

better estimates. 
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The next section explores the possibility of Extended Kalman Filtering 

predictor to improve prediction accuracy of noisy chaotic data with the ANN state-

space model trained with noisy data. 

 
4.3.4 Application of EKF with noisy data trained ANN: Lorenz time series 
 
 This section tests the EKF on noisy chaotic Lorenz time series prediction with 

noisy data trained ANN model used in EKF state space model. The Kalman filtering 

toolbox ReBEL-0.2.6 (the code, in MATLAB, is developed by Rudolph van der 

Merwe - http://choosh.ece.ogi.edu/rebel/) is used in this study. EKF is tested on four 

noisy chaotic Lorenz time series of different observation noise levels: 1%, 10%, 20%, 

and 30%. For the EKF, the model error or residual error (Eq. 4.50) is considered as 

process noise (Haykin, 2001). EKF has two parameters, the observation noise 

covariance and the process noise covariance, of which the optimal values have to be 

determined. An exhaustive search is conducted on a predetermined range of 

observation noise covariance and process noise covariance to find the optimal values. 

The time series data are normalized between 0 – 1; and the values considered for 

observation noise covariance and process noise covariance are 0.1 – 1 in steps of 0.1. 

For each set of observation noise covariance and process noise covariance, the EKF is 

run and the prediction is conducted on the test set (Figure 4.5) and the prediction 

performance on the test set is evaluated. This study uses the prediction error, evaluated 

comparing the predicted values against the noisy test data, as the criterion for selection 

of optimal observation noise covariance and process noise covariance. The EKF (e.g. 

Pk, Kk) tuned using the optimal parameters is then applied to estimate and predict 

validation data in real-time (Figure 4.6). It should be noted that EKF is continuously 

updated in this validation stage too.  
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 Justification for the use of prediction error with respect to noisy data as the 

selection criteria may be offered as follows. Since noise-free signal is not available in 

real world systems, verifying the performance of noise removal attempts can only be 

done against noisy data. Even when choosing an optimally trained data driven model, 

what one tries is to obtain a model that gives lowest prediction error compared against 

noisy data. Therefore, using prediction error with respect to noisy data to assess noise 

removal does not do any harm than when using it for model selection. On the other 

hand, earlier results, discussed in Section 4.2.3, indicated that better prediction 

performance is reflected in both the error measured with respect to noise free data as 

well as the error measured against noisy data. This yields feasibility to use prediction 

error against noisy data as a criterion to identify noise reduction endeavors. 

For comparison purposes, the performance ANN models, trained with Lorenz 

series data of noise levels: 1%, 10%, 20% and 30%, on validation data of noise levels 

as same as those used to train the models, are given in Table 4.4 (a). The optimal phase 

space parameters (m, τ) used to train those ANN models are shown in column (1). The 

prediction error with respect to noisy validation data is given in column (2) while that 

with respect to noise-free validation data is given in column (3).  Results obtained 

from EKF application are shown in Table 4.4 (b). The percentage prediction 

improvement over ANN models (measured in MAE) is shown in the last columns for 

prediction errors measured against both noisy and noise-free data. The percentage 

improvement is calculated as 

100% ×
−

=
ANNwitherrorprediction

EKFwitherrorpredictionANNwitherrorprediction
timprovemen  (4.57) 

The results show that EKF yields significantly higher prediction performance at all 

noise levels. Equally good performance on all different noise levels from 1% to 30% 

shows the robustness of EKF. The predicted values are approximately 20% more 
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accurate than those predicted with ANN only. The prediction performance measured 

against noisy data also shows, although not very significant, a considerable 

improvement. Similar performance is observed in the other three sets of simulations 

with noises generated from different seed numbers (Appendix H).  

 The results also show that the use of prediction error with respect to noisy data 

as the criterion for identifying noise removal has been successful since the solutions, 

which have shown prediction improvements with respect to noisy data, at the same 

time, have shown improvement with respect to noise-free data as well. This complies 

with what was expected from observations in Section 4.2.3.  

This section explored the feasibility of using EKF predictor, with data driven 

ANN model trained with noisy data, in real-time prediction applications of chaotic 

time series. In conclusion, the EKF has been very successful in improving the 

prediction performance of chaotic time series with various noise levels. Use of 

prediction error with respect to noisy data to identify the optimal noise removal has 

also shown to be a reliable criterion.  

EKF is a borrowed technique and it may have its own limitations on chaotic 

time series. The next section proposes a scheme for real-time noise reduction and 

prediction that can be applied with any noise reduction method capable of real-time 

application. The scheme incorporates two pronged approaches: (1) train model with 

noise reduced data; and (2) provide noise reduced input data to the model trained with 

noise reduced data.  

 
4.4 SCHEME FOR REAL-TIME NOISE REDUCTION AND PREDICTION 

As discussed in Chapter 2 and Section 4.2.1, the procedures proposed for noise 

reduction in chaotic hydrological time series literature are not applicable in real-time 

applications. Prediction is essentially a real-time application and should noise 
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reduction be applied to improve prediction, it should be incorporated in real-time. 

Following the deduction, made in section 4.2.3, that a model trained with low noise 

level should improve the prediction accuracy if it is supported with input data of 

equally low noise or even lower, this section investigates the possibility of using noise 

reduced inputs and less-noisy-data trained models to further improve the prediction 

accuracy. This study proposes a procedure coupling noise reduction and prediction to 

address real-time applications.  

The procedure couples a noise reduction method with a prediction model as 

shown in Figure 4.7. First, some historical data (training and test data sets) are fed into 

a noise reduction method to yield the noise reduced data sets. The noise-reduced 

training data set is then used to train a prediction model. An optimal model is chosen 

depending on the performance on the test set. The procedure thus far is an off-line 

process where available historical data is applied. The next step, the validation, is 

operated in real-time. Whenever a new data point comes in, the noise-reduced value 

of it is obtained with the noise reduction method and the corresponding input vector is 

then prepared. Inserting this input vector in the optimal prediction model previously 

obtained, the prediction  for the future value  is obtained. It should be noted 

that unlike in EKF where prediction is inevitably confined to 1-step predictions, in the 

proposed procedure any prediction horizon (T) may be employed by training the 

prediction model to the desired prediction step.  

ky

-x Tk+ˆ Tk+x

 Often it is required to tune parameters in noise reduction schemes as well. In 

EKF, for example, to be determined are the process noise covariance and the 

observation noise covariance. The off-line process of deriving a prediction model with 

less-noisy data set may also include tuning the filter/ noise reduction parameters as 

well. This study uses an exhaustive search approach to select the optimal parameters 
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from a pre-determined set of feasible filter parameters. The prediction performance 

resulting from the test set is used as the criteria for selection of both the optimal 

prediction model and the optimal parameters. These parameters, prediction model and 

the tuned noise reduction method (e.g. EKF), where applicable, is transferred to the 

real-time step of the procedure. The tuned noise reduction method is then used to 

reduce noise in input data (validation data) and the prediction model is used to predict 

future values with those noise-reduced inputs. The detailed procedure is illustrated in 

Figure 4.8. The next section demonstrates the EKF on the proposed procedure. 

 
4.5 THE PROPOSED SCHEME WITH EKF NOISE-REDUCED DATA: 

LORENZ SERIES 

This section demonstrates the effectiveness of the proposed scheme for real-

time noise reduction and prediction using EKF as a noise reduction method. Another 

objective is to verify if this procedure can yield higher prediction accuracy over the 

EKF predictor. 

It was shown (section 4.3.2) that the KF estimates can be treated as noise 

reduced data in chaotic time series analysis. Kalman Filter Smoothing, which includes 

both forward and backward filtering, is the generally used approach for noise reduction 

as it can provide better estimates than forward / backward filtering alone. In KF 

smoothing the smoothed estimate is controlled from both past and future records. The 

two end data points, i.e. the first and the last records are determined only by backward 

filtering and forward filtering respectively. The variation of mean square estimation 

error of forward filtering, backward filtering and smoothing are shown in Figure 4.9 

(Gelb, 1974). This shows that the estimates are more accurate in the middle part and 

not that accurate at both ends. However, the last estimate is important as it is used as 

the input to make the future prediction. Section 4.2.3 showed that models trained with 
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less-noisy data may not necessarily produce good predictions if the input data are 

noisy. Therefore, this study chose to use forward filtering for noise reduction since its 

last estimate is also of the same level of noise of the rest, which is used to train data 

driven model. 

An exhaustive search is conducted over the observation noise covariance and 

process noise covariance values (considered values are same as those for EKF 

predictor in section 4.3.4) to choose the optimal filter and the optimal trained ANN 

model (see the off-line part of Figure 4.8). Prediction error, with respect to noisy data, 

on the test set is taken as the calibration criterion in the selection of optimal model. 

The optimal filter and the optimal model are then used to predict the validation data. It 

should be noted, however, that the state-space model of EKF is not replaced by the 

optimal prediction model. This phase is similar to that of EKF predictor except the 

model trained with noise-reduced data is now used for prediction. The prediction 

performance for the data sets of 1%, 10%, 20% and 30% noise levels is shown in 

Table 4.5. (The statistics of noise reduced data; and the plots of noise-free data, noisy 

data and noise reduced data; the attractor in these cases; and the plots of actual and 

predicted values are shown in Appendix I). Columns 3 and 4 of Table 4.5 show that 

EKF with the proposed procedure gives significant prediction improvement (as high as 

25% – 30% in prediction error measured against noise-free data) over ANN models. 

Similar to the EKF predictor, prediction error with respect to noisy data also shows 

some improvement although not as remarkable as prediction error improvement with 

respect to noise-free data. Comparison of these prediction performances with columns 

3 and 4 of Table 4.4 (b) (where the prediction performance of EKF predictor is given) 

shows that the proposed procedure yields higher prediction accuracy than the EKF 

predictor. To ensure that the results are not biased by the prediction tool, the ANN 
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models used within EKF and in the test and validation processes, the experiments were 

repeated with Support Vector Machines (SVM) as the prediction tool in the test and 

the validation processes. The results showed similar trends as obtained from ANN 

(Appendix J). 

Results show that the use of EKF estimates as noise reduced data on the 

proposed noise reduction scheme significantly improves the prediction accuracy. The 

robustness of EKF on the various noise levels is also noteworthy. 

 The applicability of simple nonlinear noise reduction method on the proposed 

procedure will be explored in the following section. 

 
 
4.6 THE PROPOSED SCHEME WITH SIMPLE NONLINEAR NOISE 

REDUCTION: LORENZ SERIES 
This section investigates the possibility of adopting a popular noise reduction 

technique in nonlinear chaotic dynamic literature for real-time noise reduction. Kantz 

and Schreiber (2004) found that the simple nonlinear noise reduction algorithm to be 

reliable and effective on a broad variety of data sets including artificial and real data. 

However, as other nonlinear noise reduction methods, it is basically meant for off-line 

noise reduction applications. This section explores the possibility of incorporating it 

for real-time application and it is tested on the proposed scheme. Its prediction 

performance is then compared to that of Extended Kalman filter introduced in the last 

section.   

In this section simple nonlinear noise reduction method will first be explained. 

This is followed by its application on real-time noise reduction, together with the 

proposed scheme, on Lorenz time series. Finally, the performance is compared with 

that of EKF.  
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4.6.1 Simple nonlinear noise reduction method  
 

For an observed time series, Nnyn ...,1, = , where the dynamical rule and the 

measurements are expressed as Eq. 2.15 and Eq. 2.16, simple nonlinear noise reduction 

solves the following implicit equation 

( 0,..., 1 =− −− nmnn xxfx )

)

        (4.58) 

for one of the coordinates. The function is unknown; even if it is known it is 

generally impossible to solve it for one of its arguments. Therefore, a locally constant 

function is used to approximate . This is the basic principle of the method proposed 

by Schreiber (1993), which is the simplest and most widely used nonlinear noise 

reduction method. The main idea of the method is to replace each measurement by 

the average value of this coordinate in a suitably chosen neighborhood. The 

neighborhoods are defined in a phase space reconstructed by k past coordinates and l 

future coordinates given by 

f

f

iy

( liki yy +−= ,...,iy        (4.59) 

In a neighborhood of ε  if the set of all neighbors  satisfying jy ε<− ji yy  is , the 

‘present’ coordinate  is replaced by  given by 

ε
iℑ

iy clean
iy

∑
ℑℑ

=
εε
i

j
i

clean
i yy 1         (4.60) 

Only the central coordinate in the delay window is corrected since only this coordinate 

is optimally controlled by the past and future. In the applications k is generally taken to 

be equal to l or else when the total number of delay elements, m (Eq. 2.1) is even, the 

correction is made to . In practice, these corrections are performed for several 

iterations. That is, once a cleaned series is obtained, the replacement in Eq. 4.59 is 

performed on the cleaned series and the procedure is repeated. The errors induced by 

2/mny −
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these replacements are of both statistical and geometrical in nature. If the points in  ε
iℑ  

are regarded as a random sample distributed according to the natural measure, the 

statistical uncertainty of the center of mass is damped out like 2
1

−
ℑε

i  whereas the error 

introduced by replacing the geometrical center of the neighbourhood by the center of 

mass depends on the non-uniformity of the distribution within ε
iℑ  and will generally 

grow with the size of the neighborhood. The method is expected to work when these 

errors are smaller than the individual errors of the coordinates.  

4.6.2 Application of simple nonlinear noise reduction on proposed scheme 

 The simple nonlinear noise reduction method uses both past and future 

coordinates to estimate the noise-reduced value of a certain point, this is the optimal 

approach for off-line noise reduction applications. Since no correction is made to the 

end values, a better estimate of the current observation is not possible, i.e. it is 

impossible to provide noise reduced inputs to the prediction model. The earlier 

investigations of this study showed that it is not only the model but also the input 

values should be of lower noise levels in order to produce better predictions. It is, 

therefore, important to seek an implementation, which corrects the end values as well. 

  Hegger et al. (1999) implemented the simple nonlinear noise reduction method 

in TISEAN software package under program named lazy. They also implemented the 

same nonlinear noise reduction algorithm but with correction made to all the 

coordinates in a program called nrlazy, where the end values also get an opportunity to 

be noise-reduced. Since every single time series element is an element of m different 

phase space vectors, this gives m typically conflicting corrections. nrlazy takes the 

arithmetic mean of all these; the set of corrected phase space vectors is converted back 

into a corrected time series. It should be noted, however, the end values are corrected 

only once since they appear only in one phase space vector.  nrlazy is found to be 
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superior to lazy for flow like data (see http://www.mpipks-

dresden.mpg.de/~tisean/TISEAN_2.1/docs/docs_c/nrlazy.html). Since this algorithm 

performs a correction to end values as well, this algorithm is incorporated in this study. 

 Being a smoothing technique, nrlazy reduces more noise in the central points of 

a time series than it does on the end values (similar to EKF smoothing explained in 

section 4.5), which are used as validation inputs.  Using such smoothed data in the 

training and test sets in calibration of the noise reduction parameters and a prediction 

model (see off-line part of Figure 4.8) may lead to ‘too good’ models that do not 

necessarily perform well with more noisier validation input data. Therefore, in this 

study the nonlinear noise reduction is performed as follows. To reduce noise of a 

certain point , only the points up to time i (i. e. from 1, 2, …, i) are used. This means 

that no future coordinates are used. A correction is thus made to any observation only 

once instead of m times as explained above. In this way, the amount of noise reduction 

in validation inputs is approximately same as the rest, which are used to train a 

prediction model. This is a non-optimal noise reduction approach in the case of 

nonlinear noise reduction techniques. However, for real-time applications this is 

inevitable. 

iy

The simple nonlinear noise reduction requires two parameters to be specified: 

(1) the neighbourhood size ε , and (2) the number of iterations. Kantz and Schreiber 

(2004) found that a good choice for the size of neighbourhoods is about 2 – 3 times the 

noise standard deviation (σ ). Only a few numbers of iterations are recommended 

since the signal may be distorted otherwise (e.g. Schreiber, 1993; Mees and Judd, 

1993). Similar to the EKF application, this study conducts an exhaustive search to 

determine the optimal values for ε  and the number of iterations. The ranges 
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considered are 0.1*σ  to 4*σ  in steps of 0.1*σ  for neighborhood size ε : the number 

of iterations is 1 – 3. 

 The results are shown in Table 4.6. The nonlinear noise reduction does not 

yield any prediction improvement at very low noise levels (e.g. 1% noisy data). 

However, at high noise levels, some prediction improvement is observed. The 

nonlinear noise reduction technique is known to be more effective on high noise levels. 

This explains the poorer performance on low noise levels. Although no improvement 

is evident in the 20% noisy data set, in which the results are shown in Table 4.6, the 

noisy data sets generated with different seeds (Appendix H) shows that some 

prediction improvement is observable at high noise levels. Comparison with the 

columns 3 and 4 of Tables 4.4 (b) and 4.5 shows, however, that the prediction 

improvement with nonlinear noise reduction technique is very much poorer than that 

with EKF predictor and EKF estimates as noise reduced data in the proposed scheme. 

The nonlinear noise reduction, primarily meant for off-line noise reduction 

applications, has not been much successful in the real-time applications. Therefore, it 

is beneficial to look for techniques designed for real-time noise reduction/filtering 

applications. 

  
4.7 APPLICATION OF EKF AND THE NOISE-REDUCTION SCHEME ON 

RIVER FLOW TIME SERIES 

 All the techniques discussed above: (1) EKF, (2) EKF together with the 

proposed scheme and (3) nonlinear noise reduction together with the proposed scheme 

are now applied on river flow time series. For the EKF, the same ranges of observation 

noise covariance and process covariance values considered earlier in the Lorenz series 

are considered initially with time series values normalized into an interval between 0 – 

1. The results indicated that the optimal observation noise covariances are very low. 
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Therefore, the tests were repeated with observation covariance varying from 0.001 to 

0.1 in steps of 0.005: this is in addition to the initial range. For the nonlinear noise 

reduction, the same ranges used in Lorenz series are considered with the one-step 

prediction error of ANN on test set (in terms on MAE) used to approximate σ  for ε -

range.  

Results are shown in Table 4.7. Since the true signal is unknown, only 

prediction errors with respect to noisy data can be computed. Results show that no 

method has given any significant prediction improvement on river flow time series. 

This can be due to the followings reasons. First, the EKF assumed the noise to be 

white and Gaussian distributed. This may not be true in the real river flow time series 

and it is also possible that the noise is correlated. These may lead to unsatisfactory 

performance. It was noted that, in the case of EKF, the optimal observation noise 

covariance is much smaller than the process noise covariance. This is perhaps due to 

the dynamical noise being more prominent than the observation noise. If that is the 

case, the dynamic noise can largely contribute to the prediction error and the removal 

of less prominent observation noise may not be reflected in the error measures. 

 
4.8 SUMMARY AND DISCUSSION OF RESULTS 
  

The models trained with less noisy data did not provide higher prediction 

accuracy than models trained with more noisy data when the input data were also 

equally noisy. Noise-reduced data inputs, however, help the noisy data trained model 

to yield higher prediction accuracy.  

The EKF from controls literature was adopted for prediction and noise 

reduction of noisy chaotic time series. A data driven model (ANN) trained with noisy 

data is incorporated in EKF. Results showed the effectiveness of EKF to improve 

prediction accuracy in noisy chaotic time series. The EKF resulted in significant 
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prediction improvement (as high as 15% – 25%) over ANN models in Lorenz time 

series prediction. The robustness of EKF, on series with noise levels ranging from mild 

to very high, is also commendable. It should be noted that the robustness of the 

algorithm is the most important factor for noise reduction applications where true 

signal is unknown (Grassberger et al., 1993).  

A noise reduction procedure for real-time prediction applications was proposed 

and it was shown to be effective. The EKF state estimates were incorporated as noise 

reduced data and was applied on the proposed procedure. This gave even better 

prediction improvement (as high as 25% – 35% over ANN alone with noisy Lorenz 

series) compared to EKF predictor. Results imply that in the Kalman Filtering 

applications, which use data driven models, higher prediction accuracy can be obtained 

by modifying the model with noise-reduced estimates rather than applying the KF 

alone. This implies that dual KF approach may also improve the prediction 

performance over EKF in chaotic time series prediction. An advantage of the proposed 

scheme over dual KF approach is that the proposed procedure can be readily used for 

lead times different from 1 by simply training prediction model of the desired lead-

time. This is in contrast to both Kalman Filtering and dual Kalman filtering approaches 

which are limited to 1-step prediction. However, since various prediction horizons are 

desirable in practical applications, the proposed scheme is more advantageous over KF 

and dual KF approaches. The scheme is expected to perform well with any noise 

reduction technique capable of real-time application. 

The Kalman filtering is shown to be much more superior to simple nonlinear 

noise reduction when it is incorporated with real-time prediction applications. The 

poor performance of nonlinear noise reduction is due to the fact that the nonlinear 

noise reduction techniques are designed primarily for off-line noise reduction 
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applications. This implies that it is more advantageous for the dynamical systems 

community to consider methods developed in controls literature when dealing with 

real-time applications, such as prediction, of noisy data. Similar recommendations 

were made for noise reduction by Walker and Mees (1997). 

 The applications of any noise reduction technique on river flow time series, 

however, did not show any prediction improvement. This could be due to at least two 

reasons:  

(1) the precise nature of the noise present (e.g. white/ coloured; distribution; level of 

noise) in the real time series are unknown. The EKF assumed the noise to be white and 

Gaussian distributed. However, the noise in real world data may not be so;  

(2) the observation noise levels in both Mississippi and Wabash river flow time series 

may be very low compared to dynamical noise; when the dynamical noise is the 

prominent contributing factor in the prediction error, the removal of part of 

measurement noise may not be reflected in error measures. 

 
4.9 CONCLUSION 

This study identified several means to improve the prediction accuracy of noisy 

chaotic time series. It was shown that noise reduced inputs can enhance prediction 

accuracy. To the contrary of the general anticipation that the use of noise reduced data 

to train prediction model may help in improving prediction, the findings of this study 

show that the prediction accuracy may not necessarily be enhanced with noise-reduced 

data trained models if it is not supported with noise-reduced input data as well. Due to 

the above reasons, the study identified the necessity for real-time application of noise 

reduction. 

It was shown that the Kalman filtering technique, specifically the Extended 

Kaman filter, together with a data driven model trained with noisy data as a state-space 
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model, can be used as a reliable and robust technique for real-time noise reduction in 

chaotic time series. It improved the prediction performance of chaotic time series over 

the ANN model alone. It was also shown that incorporating the popular nonlinear 

noise reduction techniques for real-time applications is very unsatisfactory and there is 

a need to identify better techniques capable of real-time application.  

The study proposed a scheme, which incorporates noise reduction to improve 

prediction of chaotic time series. This scheme has circumvented the short-comings of 

the earlier approaches. The scheme couples the use of noise-reduced data inputs and 

noise-reduced data trained models to arrive at higher prediction accuracy. The 

effectiveness of the proposed scheme was demonstrated with EKF. The proposed 

scheme produced predictions considerably better than when EKF was applied alone. 

More studies should be conducted to identify the levels and the effects of 

measurement and dynamic noises in real world data on prediction. Identifying the 

characteristics of measurement noise in real world data and then applying the 

appropriate noise reduction methods accordingly can, hopefully, improve the 

prediction performance.  

Although the prediction performance is significantly improved with the 

proposed approach, the required computational time is also very high. This is due to 

the use of time consuming ANN prediction model in the calibration of parameters. The 

next chapter investigates the possibility of extracting a smaller set of system 

representative data from a large data record to make the analysis efficient in time 

consuming applications. 
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Table 4.1 Prediction performances of ANN models, trained with noise-free and 
           noisy data sets, with noisy validation input data sets 

 
validation input data set: 1% noise level 

 

 

validation input data set: 30% noise 

level 

Prediction error 

(MAE) 

 

ANN trained with 

data of 1% noise 

level 

ANN trained with 

noise-free data 

ANN trained with 

data of 30% noise 

level 

ANN trained with 

noise-free data 

Against noisy data  

0.1279  (A) 

 

0.1328  (C) 

 

4.0831 

 

4.4598 

Against noise-free 

data 

 

0.0725  (B) 

 

0.0834  (D) 

 

2.2602 

 

2.9709 

 
 
 
 
 
 
 
 
 
 

Table 4.2 Prediction performance of ANN model trained with 30% noisy data when 
       noise-free, 1%, 10%, 20% and 30% noisy validation data are used as inputs 

 
 

Validation data of different noise levels 

 

Prediction error 

(MAE) 

 

Noise-free  

(1) 

1% noise  

(2) 

10% noise  

(3) 

20% noise  

(4) 

30% noise  

(5) 

Against 30%  

noisy data 

 

3.4794 

 

3.4791 

 

3.5223 

 

3.7759 

 

4.0831 

Against noise-

free data 

 

0.7356 

 

0.7390 

 

0.9732 

 

1.6495 

 

2.2602 
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Table 4.3 Summary of findings on means of improving prediction performance 
 

Level of noise of the data used  

Row 
For model 

training 

As validation 

inputs 

 

Prediction error 

 

(1) 

 

x*

 

x 

 

E 

 

(2) 

 

x 

 

y**

 

< E 

 

(3) 

 

y 

 

x 

 

Not necessarily less than E 

 

(4) 

 

y 

 

y 

 

< E 
 

*   x is the noise level of a time series before noise reduction 
               **  y is the noise level of a time series after noise reduction 
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Table 4.4 (a) Prediction performance of ANN models trained with noisy data 
      with equally noisy validation inputs: Lorenz time series 

 
prediction error 

(MAE)  

Noise 

Level 

 

(%) 

Optimal Phase space 

parameters 

(m, τ) 

(1) 
Against noisy data 

(2) 

Against noise-free data 

(3) 

1 (10, 3) 0.1279 0.0725 

10 (10, 3) 1.2015 0.6906 

20 (9, 1) 2.7378 1.5433 

30 (9, 3) 4.0831 2.2602 

 
 
 
 
 
 

Table 4.4 (b) Prediction performance of EKF predictor on Noise-induced 
         chaotic Lorenz time series 

 
prediction error 

(MAE)  

Prediction improvement over ANN alone 

(%) 

Noise 

Level 

 

(%) 
Against noisy 

data 

(1) 

Against noise-

free data 

(2) 

Against noisy data 

 

(3) 

Against noise-free 

data 

(4) 

1 0.1196 0.0525 7 28 

10 1.1544 0.5421 4 22 

20 2.6475 1.3077 3 15 

30 3.9173 1.8527 4 18 
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Table 4.5 Prediction performance of EKF estimates on the proposed scheme: 
noise-induced chaotic Lorenz time series with ANN 

 
prediction error 

(MAE) 

Prediction improvement over ANN alone 

(%) 

Noise 

Level 

 

(%) 

Against noisy 

data 

(1) 

Against noise-

free data 

(2) 

Against noisy data 

 

(3) 

Against noise-free 

data 

(4) 

1 0.1177 0.0475 8 35 

10 1.1105 0.4672 8 32 

20 2.5901 1.2464 5 19 

30 3.7888 1.6005 7 29 

 
 
 
 
 
 
 

Table 4.6 Prediction performance of nonlinear noise reduction on the proposed 
           scheme: noise-induced chaotic Lorenz time series with ANN 

 
prediction error 

(MAE)  

Prediction improvement over ANN alone 

(%) 

Noise 

Level 

 

(%) 

Against noisy 

data 

(1) 

Against noise-

free data 

(2) 

Against noisy data 

 

(3) 

Against noise-free 

data 

(4) 

1 0.1279 0.0725 0 0 

10 1.1768 0.6585 2 5 

20 2.7893 1.5408 -2 0 

30 4.0313 2.0430 1 10 
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Table 4.7 Prediction performance of ANN/ EKF predictor/ EKF estimates and 
    Nonlinear noise reduction on the proposed scheme: River flow time series 

 
Proposed Scheme Time series Parameter 

ANN 

 

EKF 

 

EKF 

Estimates 

Nonlinear 

Noise Red 

Prediction error against 

noisy data (MAE) 

(m3/s) 

 

205.15 

 

205.55 

 

204.11 

 

 

205.01 

 

 

Mississippi 

River flow 

Prediction improvement 

over ANN alone 

 

N/A 

 

-0.2 % 

 

0.5 % 

 

0% 
 
 

Prediction error against 

noisy data (MAE) 

(m3/s) 

 
25.76 

 
 

25.98 

 

25.75 

 

25.77 

 

 

 

Wabash River 

flow Prediction improvement 

over ANN alone 

 

N/A 

 

-0.8 % 

 

0.1 % 

 

0% 
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Past Future 

   Record 

Off-line application 

 
 

(a) Off-line 
 
 

 
 
 
 
 

Past 

Present record 

Real-time application 

 
 
 

(b) Real-time 
 
 
 

Figure 4.1 Off-line and Real-time application of noise reduction 
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Noisy (e.g. 1%)

Validation inputs

ANN model
derived of

Noisy data (e.g. 1%)
Predictions

Compared against
Noisy validation
outputs (e.g. 1%)

(A)

Compared against
Noise-free

validation outputs
(B)

 
(a) Model trained with noisy data 

 
 
 
 
 
 
 

Noisy (e.g. 1%)

Validation inputs
Predictions

Compared against
Noisy validation
outputs (e.g. 1%)

(C)

Compared against
Noise-free

validation outputs
(D)

ANN model
derived of

Noise-free data

 
 

(b) Model trained with noise-free data 
 
 

Figure 4.2 Performance evaluation of models derived of noisy and noise-free data 
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Validation inputs
(e.g. noise-free,
1%,  30%, etc)

Predictions

Compared against
30% Noisy

validation outputs

Compared against
Noise-free

validation outputs

ANN model
derived of

30% noisy data

 
 

Figure 4.3 Performance evaluation of model derived of 30% noisy data with 
   inputs of different quality 
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Time Update 
(“predict”) 

Measurement Update 
(“correct”) 

 
 

Figure 4.4 Discrete Kalman filter cycle 
 
 
 
 
 
 
 
 
 
 
 
 
 

EKF

Obs. Noise cov,
Proc. Noise cov

Data
Train: yi, i=1, 2, … , N
Test: yi, i=N+1, … , N+tr Predictions

yhi, i=N+2, … , N+tr+1

Calculate
prediction error on

test set

NRMSEtest,
MAEtest

 
Figure 4.5 Tuning observation and process noise covariance in EKF 
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Figure 4.6 Prediction of validation data with EKF 
 
 
 
 
 
 
 
 
 

Noise
reducti
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on
dNoise reduction

parameters

Data
Train: yi, i=1, 2, … , N
Test: yi, i=N+1, … , N+tr

Train the
prediction

model

Noise reduced data
     k = 1, 2 … , N+trkx̂

Off-line process

Noise
reduction
method

Noise reduced
value

Validation data
yk

Trained
prediction

model

Prediction
xk+T

Noise reduced input
vector kx̂kx̂

Real-time process

Figure 4.7 Proposed scheme for real-time noise reduction and prediction 
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Train: yi, i=1, 2, … , N
Test: yi, i=N+1, … , N+tr

Train the
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all desired parameter sets
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tuned noise reduction method

and the optimal prediction
model over all considered
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Off-line process

 

Figure 4.8 Proposed scheme for real-time noise reduction and prediction (in detail) 

 

 



 
 
 
 
 
 
 
 
 

Smoothing Pk(s)

Backward Filtering
Pk(b)

Forward Filtering
Pk(f)

Time

M
ea

n 
sq

ua
re

 e
st

im
at

io
n 

er
ro

r

 
 
 

Figure 4.9 Mean square estimation errors of Forward filtering/ Backward filtering 
           and Smoothing 
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CHAPTER 5 

DERIVING AN EFFECTIVE AND EFFICIENT DATA SET FOR 
PHASE SPACE PREDICTION 

 

5.1 INTRODUCTION 

The last two chapters explored how the prediction accuracy of chaotic time 

series can be improved. It was noticed that the computational burden (time and storage 

capacity) can be overwhelming with chaos analysis due to the large data record size 

required especially in prediction applications. The large data sets require lots of 

computational resources such as memory and time. For example, the time complexity 

of ANN and SVM are of the order of N2 where N is the number of training patterns. 

With new records continuously coming, the data sets get increasing larger. Therefore, a 

methodology to extract most representative data from large data records is highly 

desirable. 

In chaotic time series analysis, a long past data record is used in both system 

characterization and prediction. The phase space prediction models generally assume 

that the larger the number of past records the better the predictions would yield. It is, 

however, questionable as to whether all such data contribute valuable information for 

phase space prediction. Redundancy of data can occur due to two reasons: (1) it is 

possible that not all the points are necessary to represent a certain relationship (e.g. two 

points suffice to represent a linear relationship of a single input/ single output system), 

(2) also, there can be points that are repeated and/ or that are closer than noise level, 

which do not contain any distinct information. This chapter explores the possibility of 

extracting a system representative data set from a large raw data set for phase space 

prediction by hopefully filtering out the redundant data. Clustering, a process of 
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grouping the data into classes or clusters (Figure 2.2), widely used in data mining, 

statistics, biology, machine learning etc., is applied in this study to derive a compact 

effective data set from a long original data set.  

Since the objective is to extract a compact set of data representative of a 

system, it is better achieved when performed on the data reconstructed in the organized 

space, the phase space. This study applies clustering on the reconstructed phase space. 

Thus, the aim is to select a system representative set of phase space vectors out of all 

phase space vectors. Most clustering techniques produce artificial points as cluster 

centers. For example, the K-means clustering selects centroids of sets of data points as 

cluster centers. For chaotic data, introducing such artificial points is not recommended 

since they can alter the true dynamics. Subtractive clustering method (SCM - Chiu, 

1994) is one technique that selects a subset of original data as cluster centers. 

Therefore, this method is employed in this study.  

In this chapter, the possibility of extracting a compact set of data is first 

investigated with SCM. Then a new simple clustering technique is proposed to 

overcome some of the difficulties faced with SCM. All the techniques will be 

demonstrated on noise-free and noisy (5% and 30% noise levels) Lorenz time series 

and river flow time series. Finally, the application of clustering to improve the time 

taken in Extended Kalman Filtering noise reduction application is demonstrated. 

 

5.2 DATA EXTRACTION WITH SUBTRACTIVE CLUSTERING 
METHOD 

5.2.1 Subtractive clustering method 

The Subtractive clustering method (Chiu, 1994) works as follows. Let 

be n data points from m dimensional space. Then these data points are nxxx ,...., 21
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normalized in each dimension so that they are bounded by a unit hypercube. If the 

normalized points are , the potential, , of a data point yi is defined as,  nyyy ,..., 21 iP

  
1

2

∑
=

−−=
n

j
i

jeP yyiα         (5.1) 

where 2

4 
ar

=α  

and ra, called influence range, is a positive constant defining a neighbourhood. The 

data points outside this radius have little influence on the potential of the point. 

Once the potential of each data point is computed, determine the point y1 with 

the highest potential . Select this point as a cluster center and then set its potential 

to zero. Then the following procedure is followed for selecting the other cluster centers 

using subtractive clustering method. 

*
1P

1. Select the data point ( ) with the highest potential ( ) as a candidate for 

a cluster center. 

ky *
kP

2. Accept or reject the data point as a cluster center depending on the selection 

criteria listed in Table 5.1. 

3. If the data point is accepted as a cluster center, revise the potential of each 

data point using the formula, 

2* ki yy −−−= βePPP kii       (5.2) 

where 2

4

br
=β         

rb  is a positive constant defining the neighbourhood that will have 

measurable reductions in potential. (from here onwards the ratio rb/ra is 

called as Squash Factor (SF)) 
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4. Repeat steps 1 to 3 until RR
P
Pk <*

1

*

 where RR is called the reject ratio. 

AR is the accept ratio, a parameter which determines whether a data point should be 

accepted as a cluster center and RR is the reject ratio, a parameter which determines 

whether a point should be rejected as a cluster center. The values of AR and RR may 

vary between zero and one. Altogether, SCM has four parameters (influence range (ra), 

squash factor (SF= ra/rb), accept ratio (AR) and reject ratio (RR)) governing the 

determination of cluster centers. 

5.2.2 Procedure for data extraction 

The first step in the procedure is to reconstruct the phase space with appropriate 

phase space parameters. Then SCM is applied on the reconstructed phase space 

assuming the normalized phase space vectors as patterns of SCM. Once a set of 

cluster centers corresponding to a set of SCM parameters is derived, the corresponding 

output values are also selected (see Figure 5.1). These cluster centers and outputs can 

serve as a smaller set of input/output patterns to train a prediction model. Then the 

prediction model can be trained with the smaller data set instead of the entire training 

data set. The model can then be used for prediction. The problem lies in the selection 

of SCM parameters which give smaller number of patterns and yet sufficient to 

represent the entire training data set. Subtractive clustering method (SCM) has four 

parameters to be optimized. Therefore, the selection of optimal values for the 

parameters needs a cost effective optimization technique. Micro Genetic Algorithm 

(that was used in finding optimal parameters in SVM in section 3.4.4) is chosen to 

optimize the SCM parameters. Thus, the procedure couples a clustering method and a 

prediction tool with mGA to extract system representative data from long data records. 

iy
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The data extraction procedure has two phases: (1) calibration of SCM 

parameters; and (2) validation of the optimal solutions. In the calibration stage mGA is 

coupled with a local prediction technique and SCM to determine the optimal SCM 

parameters. This study uses the prediction error on test set as the criterion to determine 

the effectiveness of the selected data sets and hence the optimal parameters. In the 

validation stage, the optimal SCM parameters are used to derive representative data 

sets and their prediction performance on unseen data sets is measured with local 

averaging and global ANN prediction models.  

Calibration: First, the phase space is reconstructed with the optimal phase space 

parameters (m, τ) of ANN models obtained using the exhaustive search in Chapter 3. 

Then SCM parameters generated with Micro-Genetic algorithm (mGA) are used with 

SCM to extract a reduced set of phase space vectors from the phase space 

reconstructed from the training set. The reduced phase space vectors are then used for 

prediction of the test set using the local averaging prediction method. Local averaging 

technique is employed in this application to facilitate the evaluation of data extraction 

procedure with respect to both local and global prediction techniques. For the local 

model, the optimum number of nearest neighbors ( k ), corresponding to the optimal 

(m, τ) of ANN, is chosen from the exhaustive search (Chapter 3). It should be noted 

that in prediction with the reduced number of patterns, it is necessary that a modified 

value of nearest neighbors, k , is chosen.  ′ k ′  is defined as  

patternsofnumberducedRe
kdeterminetousedpatternsofnumberTotal

k
k ×=′  (5.3) 

The procedure is repeated until a predetermined stopping criterion is reached. The 

optimal SCM parameters are selected considering the prediction error on the test set. 

The calibration procedure is illustrated in the schematic diagram given in Figure. 5.2.  
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Validation: Once the optimal SCM parameters are found, the reduced number of 

phase space vectors obtained from those parameters is used to train an ANN prediction 

model and to predict the validation data. The validation procedure is shown in Figure 

5.3. 

The ranges of SCM parameters used are: (1) 0.001 < ra < 0.5; (2) 1.0 < SF < 

2.0; (3) 0 < AR < 1.0; and (4) 0 < RR < 0.5. The mGA parameters and algorithm is the 

same as the one used in Chapter 3 with SVM. Prediction error on test set is used as the 

fitness criteria. 

5.2.3 Results 

The data extraction procedure is applied to the noise-free Lorenz series, two 

Lorenz series one contaminated with a moderate noise level of 5% while the other with 

a very high noise level of 30%, Mississippi river flow time series and Wabash river 

flow time series. Analysis is performed for lead-time 1. The training, test and 

validation sets are same as defined in Chapter 3. The mGA solutions, which give 

prediction errors on the test set less than 120% of the prediction error resulting from 

the use of the entire training data sets, are selected as optimal solutions. The selection 

of solutions with errors up to 120% is for the purpose of examining the reduction of 

prediction accuracy with the reduction of data set. The ANN models trained with 

extracted training data sets corresponding to the optimal solutions are used to predict 

the validation sets. The reason for selecting a set of solutions instead of one optimal 

solution is to examine the deterioration of prediction error with the reduction of 

patterns. The prediction errors resulting from the entire training data set are shown in 

Tables 5.2 and 5.3 for Lorenz series and river flow time series respectively. Results of 

data extraction are shown in Figures 5.4, 5.5, 5.6, 5.7 and 5.8 respectively for the 
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noise-free Lorenz series, 5% and 30% noisy Lorenz series, and Mississippi and 

Wabash river flow time series respectively. 

In the Figures, the prediction error (in MAE) is expressed as a percentage of the 

prediction error resulting from the entire training data patterns (Eqs. 5.4). Similarly, 

the reduced number of patterns is expressed as a percentage of the total number of 

patterns used (Eq. 5.5). 

( )
( ) 100(%) ×=

patternsofnumberTotal

patternsofnumberreduced

MAE
MAE

MAE      (5.4) 

100(%) ×=
patternsofnumberTotal

patternsofnumberducedRepatternsofNumber    (5.5) 

In the noise free time series (Figures 5.4), models trained with smaller data sets 

of about 60% of the entire training data set have provided the same prediction 

performance as the model trained with the entire training data set. In this noise free 

case, the possibility of reduction of the data may be due to the fact that not all the data 

are necessary to represent a certain relationship.  

In Lorenz series with 5% and 30% noise levels (Figures 5.5, 5.6), reduced data 

sets of about 30% - 40% of the entire training data set produce equally good 

predictions as that using the entire training data sets. Results are consistent with both 

prediction models, local averaging model and ANN. In the Mississippi river flow time 

series (Figure 5.7), reduction of data up to about 40% of the entire training set does not 

seem to affect the prediction error considerably. Similarly, in Wabash flow series 

(Figure 5.8), the data sets of about 30%-40% of the entire training data set produce 

equally good predictions as that using the entire training data set, with ANN. However, 
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the performance with local averaging model is very poor. In Lorenz series 

contaminated with some noise levels and in real flow time series the possible amount 

of data reduction is higher than that of noise-free time series. This could be due to 

effects of noise; when points are closer than the effective noise level, they may not 

contain distinct information. 

On the average, the data sets that produce good predictions on local averaging 

produce good predictions on ANN too. This may be an indication that the reduced data 

sets are truly representative of the entire training data set. The somewhat inferior 

performance of the reduced data sets on local averaging models compared to ANN 

models, especially on Lorenz series with 5% noise level, Mississippi and Wabash river 

flow time series, could be due to the nearest neighbours (k) being not optimally chosen 

for each individual case (note that these series have very low k values; for example, 

optimal k in Wabash series is only 3).  

Results show that there are considerable amount of redundant data (for 

prediction purposes) in real as well as in synthetic time series when reconstructed in a 

phase space. It is possible to extract only a smaller set of representative data from a 

long data set by filtering out these redundant data. The proposed procedure with SCM 

is shown to be effective in extracting representative data sets from long data records. 

However, since SCM has 4 parameters to be fine-tuned, use of SCM is very costly in 

terms of computational time. The next section proposes a new, simple method that has 

only one single parameter and yet has the same effectiveness as SCM for data 

extraction in chaotic time series. 

 

5.2 SIMPLE CLUSTERING METHOD 

This section proposes a new clustering algorithm similar to SCM but has only a 

single parameter. The algorithm of the present clustering method is based on the 
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following observation. Consider a few trajectories of an attractor lying close to each 

other (Figure 5.9(a)). If the time series is noisy, the points may take positions deviated 

from their true states as shown in Figure 5.9(b). What this means is that for a noisy 

time series one cannot distinguish the trajectories closer than an effective noise level 

separately. One may only get a rough indication of the regions the phase space 

trajectories evolve. Not all the points are essential for this purpose. A few 

representative points can indicate the directions and the locations of the evolving 

trajectories. Since points closer than an effective noise level do not provide any distinct 

information, one may choose one point to represent a neighbourhood roughly of the 

order of the noise level. This is the basic idea underlying the present clustering 

algorithm. As noted earlier, two possible ways of data being redundant are: (1) not all 

points are necessary to represent a certain relationship, and (2) when points are closer 

than the effective noise level, each of them may not contain distinct information. The 

algorithm that is proposed is based on the second reason. An overview of the method is 

given below. 

The algorithm uses both a density measure and a distance measure to select the 

cluster centers. The density measure similar to SCM is such that the points that are 

closely surrounded by other points have a higher density and are more likely to be 

chosen as cluster centers. The distance measure defines the neighborhood size or the 

minimum distance between two cluster centers. Overlapping neighborhoods are 

allowed. The present algorithm ensures that every point in the original data set is either 

a cluster center or close to a center by a distance smaller or equal to d after clustering; 

where d is the distance measure of the method. 

Practically all clustering techniques, based on classification point of view, treat 

isolated points (points that are far from other points) as outliers. However, in analysis 
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of time series such as river flow time series, such points often represent extreme events 

(e.g. very high flows), which are important. The points lying in the less dense areas of 

data space are not considered as outliers in the proposed clustering method. This is 

how the present method is radically different from other clustering methods. The 

selection of points lying far from other points is achieved in the algorithm in a way that 

an additional parameter determining stopping criteria is eliminated. 

5.2.1 Simple clustering algorithm 

The present clustering algorithm can be given as follows. Consider N points, 

Xi, , of dimension m. Assume that these points have been normalized so 

that they lie in a unit hypercube. This makes it possible for the only parameter of this 

method, d, which defines the neighbourhood, to be specified without using the domain 

specific knowledge. 

Ni ...,2,1=

Step 1: Calculate a density measure for each point Xi. Similar to SCM, a Gaussian 

‘influence function’, which indicates the influence of each data point on a 

certain data point, is used as the density measure. 

∑
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
−

=
N

j

d
jXiX

i eP
1

2

2

        (5.6) 

where Pi = density measure of point i, and d = radius of neighbourhood. The 

density P is higher for closely surrounded points and lower for less surrounded 

points. d may take small positive values less than 1 (a guide to tune d is given 

later). 

Step 2: Select the point with the highest density as the first cluster center. 

Step 3: Set the density measure of the selected cluster center and the density of points 

closer than d from the selected cluster center to zero. 
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Step 4: Select the point with the next highest density measure. If its density measure is 

greater than 0 select the point as a cluster center and go to step 3. Else stop.  

Note that no additional parameter is required as stopping criteria.  

The effective radius for calculation of Pi (Eq. 5.6) is approximately 2d while the 

neighbourhood size (or the minimum distance between two cluster centers) is d. The 

selection of this ratio is arbitrary; however, our experience shows that this combination 

provides sufficiently good performance. Changing this ratio may not improve the 

clustering performance significantly. 

5.2.2 Application and results 

The data extraction procedure discussed in the section 5.2.2 and illustrated in 

Figure 5.1 is now applied with the proposed clustering method. Instead of mGA, an 

exhaustive search on the single parameter is performed (Figure 5.10). Higher values of 

d give smaller number of cluster centers and vise- versa. When the number of centers 

is too small the resulting prediction performance is anticipated to be poor. An optimal 

d value which gives a balance between the number of cluster centers and prediction 

performance is preferred. Noting that d may be related to the noise level, and for 

moderate noise levels the effective values of d may take values close to zero, this study 

started off with 3 trial values for d, 0.001, 0.1 and 0.5, and used interval bisection 

strategy to identify a suitable range for d (values which give low numbers of patterns 

and satisfactory predictions) to be explored. Practically, it may suffice to identify a 

single solution with satisfactory low number of patterns and prediction performance. 

However, for exploratory and illustration purposes, the study considered a range of d 

values. Once the suitable range for d is determined, the range is evenly subdivided into 

approximately 50 points. The reduced data sets obtained resulting from these d values 

are used for validation. The d values and the corresponding extracted number of 
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patterns and the prediction errors resulting from the reduced data sets for the time 

series analyzed are given in Appendix K. 

Similar to the case of SCM, results from noise-free Lorenz series, and Lorenz 

series with 5% and 30% noise levels, and the two river flow time series (Mississippi 

and Wabash) are shown in Figures 5.11, 5.12, 5.13, 5.14 and 5.15 respectively. The 

results show that the performance of simple clustering method is very similar to that of 

SCM. On all the time series considered, both the methods have produced similar 

amounts of percentage reductions of data (without considerably affecting the 

prediction accuracy). For example, on noise-free time series, 60% of the total data 

have been derived, by both methods, as representative data, which have produced 

equally good predictions as that when the entire training data set is used. 

 On Mississippi river flow time series, only a few solutions with good 

predictions on local model appear (Figure 5.14) because solutions with smaller number 

of patterns provided lower prediction accuracy (prediction errors of worse than 140% 

that of the entire training data set, which are not shown in the figure). The inferior 

performance of reduced data sets on local models compared to ANN, as noted before, 

could possibly be due to the k values used being not optimal. 

5.2.3 Similarities/differences and advantages/disadvantages of the simple 

clustering method over SCM 

The SCM and the new simple clustering method share several similarities. Both 

methods select a subset of original data as cluster centers. They use a similar density 

measure to evaluate the potential of a data point as a cluster center. Thus, both methods 

give priority to points closely surrounded by other points as cluster centers. The SCM 

discourages closely spaced cluster centers whereas the new clustering method 
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eliminates the selection of cluster centers which are closer than a certain distance. The 

SCM discourages points, lying far away from other points, being selected as cluster 

centers, whereas the new clustering method ensures the selection of such points. This 

is how the new clustering method is completely different from practically all other 

clustering techniques. The advantages and disadvantages of the new clustering method 

over SCM, with data extraction application in mind, are explained below. 

The proposed simple clustering technique achieves the same performance as 

that from SCM, with much less effort. In this study, the SCM solutions are derived 

from about 1000 evaluations in each time series whereas the new method uses only 40-

50 evaluations on each time series. It should also be noted that since there is only a 

single parameter, it is possible to reach an optimal solution with the new method using 

the interval bisection strategy with much less effort than 50 evaluations.  

With the new method, there is a gradual variation between the parameter d and 

the number of patterns selected (Figure 5.16). This is beneficial since one may adopt a 

trial and error approach to arrive at data sets of desired sizes. This is not the case with 

SCM; since the number of patterns selected depends on more than one parameter, it 

makes the manipulation of the parameters by trial and error difficult. Furthermore, it is 

noticed that even with large number of evaluations with micro-genetic algorithms, 

SCM does not produce solutions that cover the whole range of number of patterns (e.g. 

see Figures 5.6 and 5.8: no solutions representing more than 80% of the total data and 

between 25% – 35%) if special care is not taken to ensure the diversity of the 

solutions. 
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The selection of points lying far away from other points may be 

disadvantageous when data sets with outliers (points that do not represent system 

dynamics)  are analyzed.  

5.2.4 Simple clustering method applied on a multivariate data set: Bangladesh 

data water level data 

Although the proposed clustering method is developed with noisy chaotic time 

series in mind, the method is shown to be effective on other multivariate data as well. 

This section shows the performance of the method on a multivariate data set, 

Bangladesh water level data. 

 Bangladesh, a land area of approximately 145,000 km2 is located on the 

world’s largest delta comprising three large rivers, the Ganges, the Brahmaputra and 

the Meghna.  All the rivers carry heavy runoff during the monsoon period (May to 

September) when their catchment receive intense rainfalls as high as 11,000 mm. The 

major rivers have their origins outside Bangladesh, and only 7.5% of the total 

catchment area of 1,500,000 km2 lies within Bangladesh. Liong et al. (1999) suggested 

a data driven approach for predicting water level in Dhaka using minimum 

information, the historical water level data available within the country. Liong et al. 

(1999) identified, based on a sensitivity analysis, 5 out of 8 stations as significant 

contributors to the flood stage at Dhaka.  

This study uses the water level data from those 5 most significant stations. A 

schematic diagram showing the stations is given in Figure 5.17. The daily data from 

the 5 stations during monsoon seasons from 1991 – 1996 (841 records) are used in this 

study. Similar to the study by Liong et al. (1999), the data set is divided into two sets: 

a training set and a validation set; and 467 patterns recorded in 1992, 1993, and 1995 

are used for training and 374 patterns recorded in 1991, 1994, and 1996 are used for 
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validation. One day ahead prediction of water level at Dhaka is considered. The input/ 

output relation desired is expressed as follows, 

ST12i+1 = F (ST33i, ST11i, ST14i, ST18i, ST12i)    (5.7) 

where, ST33i, ST11i, ST14i, ST18i, ST12i are inputs and ST12i+1 is the output. 

The prediction performance on training and validation sets using the ANN model 

trained with all training patterns is shown in Table 5.4. The new clustering technique is 

applied on the data as before except now only ANN models are used and no calibration 

is performed. The prediction performance of the reduced data sets on validation set is 

shown in Figure 5.18. The results show that it is possible to derive a small set of data 

of about 20% of the entire training data set and yet still maintain the same prediction 

accuracy as that of the entire training data set. The results show that the technique is as 

equally effective on multivariate Bangladesh water level data as on chaotic time series. 

5.2.5 Tuning the parameter d 

Higher values of d give smaller number of cluster centers and vise – versa. In 

the extreme cases, very high values will result in only one cluster center selected while 

very low values will result in all the points selected as centers. Identifying the 

‘effective range’ of d, the range between the two extremes (see Figure 5.19) may allow 

the tuning of the parameter even easier. The lower bound (d1 in Figure 5.19) 

corresponds to the shortest distance between two points in the data set (with the 

exception of zero) and the upper bound (d2 in Figure 5.19) corresponds to the largest 

distance between two points in the data set. It is noticed, generally, that the effective 

range of d values is concentrated close to zero. The range of d is data dependent. Our 

experience shows that the starting values of a lower bound and an upper bound:δ  and 

0.5 (where δ  is a very small value, e.g. 0.001) are sufficient to indicate a suitable 
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range for d for most of the data sets. Once a range is chosen, one may use interval 

bisection to arrive at an optimal d value for the data extraction. 

  
5.3 DATA EXTRACTION WITH SIMPLE CLUSTERING METHOD 

DEMONSTRATED ON EKF NOISE REDUCTION APPLICATION 

This section, as an example, demonstrates the advantage of using data 

extraction technique to circumvent the time consuming applications. A practical 

problem, the time consuming application of EKF estimates as noise-reduced data with 

the proposed noise reduction scheme, discussed in Chapter 4 is used. A Lorenz series 

with 10 % noise level is chosen for the demonstration. This series took approximately 

13 hours (on Pentium IV, 2.4 GHz, 512 MB RAM machine running Windows XP) to 

derive the optimal parameters through the proposed procedure discussed in Section 

4.5. The reason for the long time required is because of the need to train ANNs for 

each evaluation. This section investigates the application of the data extraction with the 

new clustering technique to overcome the aforementioned problem. The experiment is 

designed as follows. 

Earlier results of this Chapter showed that up to about 30% - 40% reduction of 

data is possible on noisy chaotic time series. This experiment selected a representative 

data set of approximately 50% of the training data of 10% noisy Lorenz series by 

applying the proposed new clustering technique. Instead of using the entire training 

data, the noise-reduced values of these extracted data are then used to train the ANN 

prediction model in the procedure shown in Chapter 4 (see Figure 4.8). Results 

obtained are illustrated in Table 5.5. Figure 5.20 shows the prediction errors 

corresponding to certain parameter sets (observation noise covariance and process 

noise covariance) when total noise-reduced data is used in model training compared to 

when smaller set of data (50% of the total) is used for model training. Figure 5.20 
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shows that although there is a slight deterioration of accuracy with the derived data set, 

the variation is linear, i.e. the optimal parameters identified using the entire training 

data set are identified as optimal with smaller set of data as well.  Table 5.5 shows that 

by using the derived data set, a considerable reduction in computational time (less than 

half the time taken with the total data set) is achieved at the expense of a negligible 

reduction in prediction accuracy. This example application shows that application of 

data extraction technique can be useful in many such time consuming applications. 

5.4 CONCLUSION 

A method coupling SCM (Chiu, 1994), a prediction model, and an optimization 

method (mGA) is proposed for extracting representative data sets from long data 

records reconstructed on phase space. It was demonstrated on noise-free chaotic 

Lorenz series, Lorenz series contaminated with some known noise levels, and 

Mississippi and Wabash river flow time series. Considerable reduction in data sets was 

observed on all time series without affecting the prediction accuracy. Results showed 

that river flow time series contain considerable amounts of redundant data when 

reconstructed on phase space. Some advantages of having a small set of data are 

namely the reduction of required storage capacity for training data and the reduction in 

computational time taken for training forecasting models. The success of the proposed 

method shows the ability of the clustering techniques to extract representative data sets 

from long numerical data patterns. SCM clustering technique has, however, 4 

parameters to be fine-tuned and, therefore, requires considerable computational effort. 

A new, simple and yet effective clustering method, which has only one single 

parameter to be fine-tuned, is developed in this study to extract representative data sets 

from chaotic time series. Application of the method on Bangladesh data showed that 

the proposed clustering method is effective on other multivariate data sets as well. The 
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new method is shown to be equally effective as SCM in deriving representative data 

sets. The method has several advantages over SCM. Having only a single parameter, it 

requires much less effort to find the optimal values of the parameter compared to 

SCM. In the new method, the number of extracted patterns has a gradual variation with 

the parameter; it can therefore be easily manipulated to obtain solutions of desired 

number of patterns. Guidelines to tune the parameter are also proposed and the tuning 

can be easily achieved through interval bisection strategy. 

The uniqueness of the proposed new clustering method over practically all 

other clustering techniques is that the method does not treat data points lying away 

from the main bulk as outliers. Therefore, it is hoped to capture the information should 

such points correspond to infrequent events of systems (e.g. flood flows in river flow 

systems). However, the selection of data lying away from the other points can be 

detrimental when such points are actually outliers, i.e. points that do not represent 

system events.  

The data extraction is demonstrated on a practical problem, the EKF applied on 

the proposed noise reduction scheme (in Chapter 4). Lorenz series with 10% noise 

level was considered in the analysis and it was shown that the time taken for the 

computations was reduced by more than half with only a negligible reduction in the 

prediction accuracy as a result. This indicates the potential of using data extraction 

proposed in this study in the practical applications for efficient analysis. 
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Table 5.1 Criteria for selection of cluster centers 

Criterion Detail Note 

1st 
AR

P
Pk >*

1

*

 

2nd 
RR

P
P

AR k ≥≥
*

1

*

  and   1*
1

*
min ≥+

P
P

r
d k

a

 

 

Accept  as a 

cluster center 

ky

3rd 
RR

P
P

AR k ≥≥
*

1

*

  and   1*
1

*
min <+

P
P

r
d k

a

 

4th  
RR

P
Pk <*

1

*

 

Reject   as a 

cluster center 

ky

dmin is the shortest of the distance between yk
* and all previously found cluster 

centers 
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Table 5.2 Prediction errors of ANN and local averaging models trained with the 
          entire training data set: Lorenz time series 

 
ANN Local Averaging method  

Noise 

level 

 
 

(m, τ) 

Prediction error on  

Validation set 

MAE  

 

(m, τ, k) 

Prediction error on  

Validation set 

MAE 

Noise-free  
(7, 6) 

 
0.0032 

 
(7, 6, 8) 

 
0.3115 

 
5% 

 
(10, 3) 

 
0.6395 

 
(10, 3, 8) 

 
0.7418 

 
30% 

 
(10, 3) 

 
4.0604 

 
(10, 3, 22) 

 
4.0991 

 
 
 
 
 
 
 
 

Table 5.3 Prediction errors of ANN and local averaging models trained with the 
          entire training data set: River flow time series 
 

ANN Local Averaging method  

Noise level  
 

(m, τ) 

Prediction error on  

Validation set 

MAE (m3/s) 

 

(m, τ, k) 

Prediction error on  

Validation set 

MAE (m3/s) 

Mississippi 
river 

 
(3, 1) 

 
207.31 

 

 
(3, 1, 5) 290.76 

 
Wabash 

 river 
 

(5, 1) 
 

25.66 
 

 
(5, 1, 3) 47.56 
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Table 5.4 Prediction errors of ANN trained using total training data  
    applied on validation set: Bangladesh water levels 

 
Prediction error (MAE)   

(meters) 

 Test set Validation set 

0.0451 
 

0.0525 
 

 
 
 
 
 
 
 

Table 5.5 Prediction errors of EKF noise reduction application on 10% noisy 
Lorenz series with total data in model training and reduced data  
(with new clustering method) in model training 

  
Prediction errors  

(MAE) 

 

Amount of 

data set 

used 

Against noisy 
data 

Against noise-
free data 

Computational 

time 

(hrs) 

100% of training data set 
 

1.1105 
 

0.4672 
 

13 
 

50% of training data  
1.1061 

 
0.4776 

 
5.5 
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Figure 5.1 Overview of the data extraction procedure 
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Figure 5.2 Schematic diagram of calibration process of SCM parameters 
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Figure 5.3 Schematic diagram of validation process of optimal solutions 

 
 
 
 

 
 

 
 



90

100

110

120

130

140

0 20 40 60 80 10

Number of patterns (%)

M
A

E 
(%

)

0

 

90

100

110

120

130

140

0 20 40 60 80 10

Number of patterns (%)

M
A

E 
(%

)

0

 
(a) local averaging model      (b) ANN 

 
Figure 5.4 Performance of SCM on validation set: Noise-free Lorenz series 
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(a) local averaging model      (b) ANN 

 
Figure 5.5 Performance of SCM on validation set: 5% noisy Lorenz series 
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(a) local averaging model      (b) ANN 

 
Figure 5.6 Performance of SCM on validation set: 30% noisy Lorenz series 
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(a) local averaging model      (b) ANN 

 
 

Figure 5.7 Performance of SCM on validation set: Mississippi flow time series 
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(a) local averaging model      (b) ANN 

 
 

Figure 5.8 Performance of SCM on validation set: Wabash flow time series 
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Figure 5.9 Trajectories of an attractor 
 
 
 
 
 
 
 
 
 

 
Figure 5.10 Schematic diagram of the procedure followed with new clustering 

   method 
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(a) local averaging model      (b) ANN 

 
Figure 5.11 Performance of Simple clustering method on validation set: Noise-free 

Lorenz series 
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(a) local averaging model      (b) ANN 

 
Figure 5.12 Performance of Simple clustering method on validation set: 5% noisy 

Lorenz series 
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(a) local averaging model      (b) ANN 

 
Figure 5.13 Performance of Simple clustering method on validation set: 30% noisy 

Lorenz series 
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(a) local averaging model      (b) ANN 

 
Figure 5.14 Performance of Simple clustering method on validation set: Mississippi 

           flow time series 
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(a) local averaging model      (b) ANN 

 
Figure 5.15 Performance of Simple clustering method on validation set: Wabash flow 
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(a) Lorenz series with 5% noise level   (b) Mississippi flow time series 
 

Figure 5.16 Variation of number of patterns with neighborhood size (d) 
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Figure 5.17 Schematic diagram of river system showing the stations (ST) 
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Figure 5.18 Performance of Simple clustering method on validation set: Bangladesh 
           water levels with ANN model* 

 
 
 
 
Note: * Because ANN models converge to different solutions with different sets of initial weights 
the MAE is different from 100% in this case
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Figure 5.19 The effective range for d : from d1 – d2 
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Figure 5.20 Comparison between prediction performances of smaller data sets (50% 

      of the total) and total data set used to train model: EKF noise reduction 
          application 
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CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

6.1 SUMMARY 

The potential in short term prediction, of chaotic dynamical systems approach for 

time series prediction, is widely recognized. The approach is finding its applications 

more and more in hydrological time series too, especially in the analysis of river flow 

data. The prediction accuracies are, however, still not at a very satisfactory level with 

the conventional chaos prediction techniques. One difficulty with the chaotic approach 

for time series analysis is the large number of past data records required to yield 

satisfactory prediction. The problem is compounded with the new data records 

streaming in daily. This demands lots of computational resources. This study looked 

into means of improving prediction accuracy and facilitating efficient analysis. The 

primary objectives of this study were thus (1) to investigate in detail the prediction 

performance of global prediction models (Artificial Neural Network and Support 

Vector Machine) compared to some widely used local prediction models, and (2) to 

investigate means of incorporating noise reduction techniques to improve prediction, 

and (3) to investigate means of extracting system representative smaller sets of data 

from long data records. 

The study showed the superiority of the global prediction models over the widely 

used local prediction models. Comparison between the two competitive machine 

learning techniques, ANN and SVM, showed that they are equally good predictors. 

Kalman filtering technique was introduced to further improve the prediction accuracy 

of noisy chaotic time series. A methodology incorporating noise reduction for real-

time prediction was proposed. To facilitate an efficient analysis, a methodology to 
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extract system representative smaller data sets from long chaotic data records was 

proposed. To the best of the author’s knowledge, this study is the first to propose such 

a data extraction technique for chaotic time series analysis. A simple and much more 

efficient clustering technique was also developed for data extraction purposes. All the 

above techniques/ methodologies were demonstrated on a benchmark chaotic Lorenz 

series and two river flow time series. Applications showed how the proposed data 

extraction scheme can make time-consuming chaos analysis of long data records more 

efficient.  

6.2 GLOBAL MODELS IN CHAOTIC TIME SERIES PREDICTION 

The chaotic time series prediction has been thus so far very much confined to local 

phase space prediction models due to their simplicity. Also there is a general 

understanding, that local approximation can give better predictions than global 

approximation. This study assessed the performance, in detail, of the two promising 

machine learning techniques, ANN and SVM, compared to the two widely used local 

models, local averaging technique and local polynomial models. The investigations 

were first performed on a synthetic noise-free chaotic Lorenz series. Since the real 

world data contain noise, the analysis was then performed on the same Lorenz series, 

however, contaminated with some known noise levels (5% and 30%).  Finally the 

results were demonstrated on two river flow time series, Mississippi and Wabash 

Rivers. Three prediction horizons, 1, 3 and 5, were considered. ANN outperformed 

local prediction models in practically all the cases. SVM, implemented with a 

decomposition technique to facilitate handling large data records, also performed better 

than local models with the exceptions of noise-free Lorenz series where its 

performance was poor compared to local polynomial models.  On the average both the 

global prediction techniques (ANN and SVM) outperformed the local prediction 
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models considered. It can be concluded that global models (ANN, SVM) can yield 

better prediction performance than, if not equal to, that of the widely used local 

models. 

Comparison of ANN with the relatively new SVM prediction tool showed that both 

techniques are equally good. However, on noise-free Lorenz time series, SVM 

required much longer computational times and produced very poor prediction 

performance compared to that of ANN. For real world chaotic time series, the 

difference between prediction accuracies of ANN and SVM is insignificant. SVM is 

mathematically well founded compared to ANN, which is founded more on heuristics. 

The perception is, therefore, that SVM may outperform ANN, although no direct 

comparisons have been conducted (e.g. Sivapragasam, 2002; Yu, 2004). However, as 

shown in this study, SVM in its present form does not outperform, in terms of 

prediction accuracy and computational effort, the ANN at least in chaotic time series 

prediction.  

6.3 NOISE REDUCTION 

Although global models produce better predictions than local prediction models, 

their performance is still unsatisfactory when data is noisy. This study identified some 

means, with the use of data driven prediction models, to improve the predictions of 

noisy chaotic time series. It was shown that the key factor to improve prediction 

accuracy is noise reduced input data. Contrary to the general anticipation that the use 

of noise reduced data to train models may help in improving prediction, the findings of 

this study shows that the prediction performance is not necessarily improved if those 

trained models are not supported with input data of equal or lower noise levels. Due to 

the above reasons, the study showed the necessity of real-time application of noise 

reduction. 
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It was noticed that there is a need to identify nonlinear noise reduction techniques 

capable of real-time application. It was shown that the Extended Kalman filter, from 

Controls literature, can be used as a reliable and robust technique for real-time noise 

reduction in chaotic time series. Use of less than perfect models, i.e. models trained 

with noisy data, as the state space model in EKF was shown to be feasible. Application 

of the EKF predictor, with the models trained with noisy data, improved the prediction 

performance of chaotic time series over the ANN model.  

The study proposed a better scheme incorporating noise reduction to improve 

prediction of chaotic time series. The scheme couples the use of model trained with 

noise reduced data and the use of noise reduced input data. The scheme consists of two 

phases: an off-line phase where a model is trained with noise reduced data and a real-

time phase where the inputs are noise reduced and the predictions are made with the 

model. This scheme has eliminated the short-comings of the earlier approaches. The 

effectiveness of the proposed scheme was demonstrated with EKF incorporated as a 

noise reduction method. The proposed scheme was shown to be more effective than 

the EKF alone. 

Identifying the characteristics of measurement noise and then applying the 

appropriate noise reduction methods accordingly are hoped to improve the prediction 

performance in real world data. 

6.4 DATA EXTRACTION 

A major difficulty in chaotic time series analysis is the large number of data 

records required to yield satisfactory predictions. This demands significant 

computational resources (memory space and computational time). This study proposed 

a data extraction procedure that couples a clustering method, a phase space prediction 

method, and a parameter optimization method (mGA). Demonstration of the procedure 
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is made with Subtractive Clustering Method, SCM (Chiu, 1994), local averaging 

prediction model, and ANN on noise-free chaotic Lorenz series, Lorenz series 

contaminated with 5% and 30% noise level, and Mississippi and Wabash River flow 

time series. Considerable reductions (approximately 30% - 60%) of the total data sets 

were obtained on the time series considered. In river flow time series, reductions were 

possible up to about 30% - 40% of the total data sets. The results indicate that not all 

the points of long data record contribute distinct information for phase space 

prediction; this observation is irrespective of whether the series is synthetic or real. 

Although the SCM with the proposed procedure was successful in extracting 

representative smaller data sets it still required significant computational effort. 

6.5 NEW SIMPLE CLUSTERING TECHNIQUE 

The SCM has 4 parameters to be optimized and it requires lots of computational 

effort. A new clustering method is developed in this study. The new clustering method 

has only one single parameter. This method is shown to be as equally effective as SCM 

while it requires much less effort than SCM to tune its only parameter. Guidelines to 

tune the parameter are also proposed. Another advantage of the new method is that its 

parameter can be easily manipulated to derive data sets of desired sizes. These tuning 

operations can easily be achieved through interval bisection technique. The new 

method, though developed for data extraction in chaotic time series, was shown to be 

effective on other multivariate time series as well.   

The specialty of the proposed clustering technique over practically all the other 

clustering techniques is that the new method does not treat data points lying away from 

the main bulk as outliers. Thus, it incorporates two aspects: (1) selecting the most 

crowded points from their respective crowded neighbourhoods, and (2) accepting most 

unpopulated points. Selection of unpopulated points is hoped to preserve the 
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information of systems, which may be of rare events and yet critical (e.g. flood flows 

in river flow systems). 

Application of the new clustering technique on a practical problem (EKF on noise 

reduction scheme) showed the promising approach in extracting representative data 

from large data record to yield efficient analysis of the normally time-consuming 

applications.   

6.6 RECOMMENDATIONS FOR FUTURE STUDY  

The following are recommended for future research and practical applications: 

(1) Global prediction tools (ANN and SVM) are recommended for chaos 

prediction applications in place of the widely used local prediction tools to yield high 

prediction accuracies. For real world chaotic time series data, similar prediction 

performance can be expected from both ANN and SVM; 

(2) Nonlinear chaotic dynamics literature lacks established noise reduction 

techniques for real-time noise reduction applications. Therefore, developing noise 

reduction techniques and investigating the means to incorporate the existing techniques 

for real-time noise reduction applications are important. Nonlinear dynamical system 

community is suggested to consider Kalman filtering techniques developed in the 

Controls literature for real-time prediction and noise reduction applications. Also better 

filtering techniques (e.g. UKF), claimed to be better than the EKF used in this study, 

are recommended for further investigation; 

(3) It is important to identify the nature of noise present (e.g. white/ coloured; 

distribution; level of noise) in the real time series and to incorporate the appropriate 

noise reduction methods. It is also possible that the levels of noise in real world data 

can change over the time. Therefore, ways to calibrate/ adapt the models should also 

be considered. Testing the proposed scheme for noise reduction and prediction on real 
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time series with considerable measurement noise levels whose nature is identified will 

render the generality of the proposed scheme for real data; 

(4) In the proposed noise-reduction scheme, the noise reduction, model training, 

and noise reduction in validation input data, are performed one full cycle only. 

Iterative approach (noise reduction – model training – noise reduction of validation 

input data) may further improve the prediction performance. An investigation is 

suggested; 

(5) This study tested noise reductions on time series contaminated only with the 

observation noise. Effect of dynamical noise on phase space prediction in general and 

on noise reduction procedures in particular should be investigated as well; 

(6) The proposed new clustering method is recommended for extracting most 

representative data from long multivariate time series over the Subtractive Clustering 

Method, SCM (Chiu, 1994). The method is expected to preserve information on less 

frequently occurred events, with selection of these points, which are distant away from 

the main bulk, as cluster centers. This, however, may cause selections of undesirable 

outliers. Removal of outliers before application of the clustering method is 

recommended. The performance of the method in the presence of outliers has to be 

tested. 
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APPENDIX A 

GRASSBERGER-PROCACCIA ALGORITHM FOR 
CORRELATION DIMENSION CALCULATION 

   

This algorithm requires phase space reconstruction of a time series. As mentioned 

earlier, the method of delays (e.g. Takens, 1981) can be used to reconstruct the phase 

space. When the phase space vector is given, as shown in equation 2.1, the correlation 

integral C(r) for an m-dimensional state space is expressed by 

(∑ ⏐−−⏐
−

=
ji

jir XXrH
NN

C
,)1(

2 )   Nji ≤<≤1   (A.1) 

where H is the Heaviside step function with H(u)=1 for u>0 and H(u)=0 for 0≤u  

and r is the radius of a sphere centered on Xi or Xj; |Xi-Xj| is the distance between the m 

dimensional delay vectors; and N is the number of data points. For a time series which 

is characterized by an attractor, for positive values of r 

ναrCr ≅   when  0→r ∞→N       (A.2) 

where α is a constant and ν is the correlation exponent or the slope of the Log Cr 

versus Log r  plot given by 

r
C(r)ν

N
0r Log

Loglim
∞→

→
=         (A.3) 

The correlation exponent values are plotted against the corresponding embedding 

dimensions. In the scaling region, the saturated correlation exponent ν is considered as 

the correlation dimension d of the attractor represented by the time series. A procedure 

to identify the scaling region is given by (Caputo et al., 1986). If the correlation 
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exponent leads to a finite value, then the system is thought to be governed by 

deterministic dynamics. In addition, if the value is small and non-integer, the system is 

considered to be governed by low dimensional chaos. If the correlation exponent 

increases, without bound, with the increase of embedding dimension, then the system 

is considered to be stochastic (e.g. Osborne and Provenzale, 1989).  
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APPENDIX B 

 
SUMMARY OF CHAOS ANALYSIS PREDICTION SCHEME 

USED IN THE STUDY 
 

 

 As explained in chapters 2 and 3, the major steps in chaos analysis are as 

follows. 

1. Identification 

2. Phase space parameter (m, τ) determination 

3. Prediction 

 

(1) Identification 

Fourier analysis and correlation dimension method are used for the 

identification of chaos in the time series data. 

 

(2) Phase space parameter (m, τ) determination 

 Determination of appropriate (m, τ) values is important to obtain good 

prediction accuracy. The steps are; 

1. Divide data in to 3 separate sets: training, test and validation sets (see 

Figure B.1) 

2. For a certain set of parameter values, and a set of prediction parameters, 

train a prediction model using the training set and use that model to predict 

the test set and note the prediction accuracy. 

3. Select the trained model and the corresponding parameters that give the 

best prediction accuracy on test set as the optimal parameters and the 

model. 
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(3) Use the optimal model and the parameters determined in the previous step to 

predict the unseen data, the validation set. 

N

N

N

r

r

r

x
x
x

x
x
x

x
x
x

1

2

1

1

3

2

1

−

−

+

+

−
−
−

−
−
−
−
−
−

Test set

Validation

Training
set

Test setTest set

ValidationValidation

Training
set

Training
set

 
 

Figure B.1 Division of data sets into training, test and validation sets 
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APPENDIX C 

OPTIMAL PHASE SPACE PARAMETERS FOR NOISE-FREE 
CHAOTIC LORENZ SERIES, MISSISSIPPI RIVER AND 

WABASH RIVER FLOW TIME SERIES 
 

The following optimal parameters have been observed in a study 

(Karunasinghe, 2003) that used an inverse approach similar to the one used in Liong et 

al. (2005) where micro Genetic Algorithm was used to find the optimal phase space 

parameters. The range for m values was from 1 – 10 while the ranges for both τ and k 

were 1 – 100. A local averaging technique was used as the prediction tool. 

 
 

Table C.1 Optimal phase space parameter sets for Lorenz series, Mississippi 
        river and Wabash river flow time series 

 
Parameter set 

(m, τ, k) 
 

Series 
Lead Time 1 Lead Time 3 Lead Time 5 

 
Lorenz 

 
(2, 4, 9) 

 
(3, 6, 9) 

 
(6, 3, 6) 

 
Mississippi River 

 
(2, 1, 5) 

 
(2, 1, 9) 

 
(2, 1, 8) 

 
Wabash River 

 
(2, 6, 16)*

 
(3, 1, 21) 

 
(2, 1, 25) 

 

* It was noticed in this particular case the search has failed to reach a satisfactory solution. Investigations 
with different seeds revealed optimal parameters 2, 1 (for m, τ) with much better prediction accuracies. 
An example prediction performance on a validation set with the two sets of parameters are given in 
Table C.2 

 
 

Table C.2 Prediction errors on validation set for different (m, τ): Wabash  
                 River flow  with lead time 1 prediction 

 
Parameter set 

(m, τ, k) 

 
(2, 6, 16) 

 
(2, 1, 10) 

 
Normalized root mean square error 

 
  0.1163 

 
0.0850 

 
Mean absolute error (m3/s) 

 
51.11 

 
34.08 
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Conclusion: Low values of τ (<10) produced best prediction accuracies for Lorenz 

series and a time delay of 1 day yielded best predictions on the two river flow time 

series (Mississippi and Wabash Rivers). 
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APPENDIX D 

PREDICTION PERFORMANCE OF VARIOUS PREDICTION 
MODELS ON TEST SETS  

 
 
 
 

Table D.1 Prediction errors with various models on test set:  
                Noise-free Lorenz series  

 
Local model  
(Averaging) 

Local model  
 
 (Polynomial) 

ANN 
 

 
Lead 
time NRMSE 

 
MAE 

 
NRMSE 

 
MAE 

 

 NRMSE 
  

MAE 
 

 
1 0.01576 0.1295 

 
 0.00032 0.0033 0.00030 0.0031 

 
3 0.02017 0.1790 

 
 

0.00041 0.004 0.00035 0.0035 

 
5 0.02449 0.2306 

 
 
 0.00053 0.0051 0.00041 0.0039 
 
 
 
 
 
 
 
 
 

Table D.2 Prediction errors with various models on test set: 5% 
                Noisy Lorenz series 
 

Local model 
(Averaging) 

Local model 
(Polynomial) 

ANN 
 

 
Lead 
time NRMSE 

 
MAE 

 
Polynomial 

Order 
NRMSE 

 
MAE 

 
NRMSE 

 
MAE 

 
 

1 0.0632 0.6273 1 0.0605 0.5956 0.0581 0.5841 

 
3 0.0653 0.6500 1 0.0623 0.6237 0.0606 0.6022 

 
5 0.0701 0.6881 1 0.0676 0.6506 0.0636 0.6235 
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Table D.3 Prediction errors with various models on test set: 30% 
                Noisy Lorenz series 
 

Local averaging Local Polynomial ANN 
 

 
Lead 
time NRMSE 

 
MAE 

 
Polynomial 

Order 
NRMSE 

 
MAE 

 
NRMSE 

 
MAE 

 
 

1 0.3447 3.5834 1 0.3524 3.5760 0.3452 3.5358 

 
3 0.3664 3.8657 1 0.3726 3.8754 0.3663 3.8675 

 
5 0.3880 4.0279 1 0.4210 4.3013 0.3822 3.9992 

 
 
 

Table D.4 Prediction errors with various models on test set: 
                Mississippi river flow 
 

Local model 
(Averaging) 

Local model  
(Polynomial) 

ANN 
 

Lead 
time 

NRMSE 
(/) 

MAE 
(m3/s) 

NRMSE 
(/) 

MAE 
(m3/s) 

NRMSE 
(/) 

MAE 
(m3/s) 

 
1 0.0357 246.46 0.0324 209.73 0.0298 202.97 

 
3 0.1099 835.24 0.1042 795.51 0.1003 758.32 

 
5 0.1947 1515.58 0.1901 1477.52 0.1801 1408.77 

 
 
 

Table D.5 Prediction errors with various models on test set:  
                  Wabash river flow 
 

Local model 
(Averaging) 

Local model  
(Polynomial) 

ANN 
 

Lead 
time 

NRMSE 
(/) 

MAE 
(m3/s) 

NRMSE 
(/) 

MAE 
(m3/s) 

NRMSE 
(/) 

MAE 
(m3/s) 

 
1 0.0842 35.72 0.0686 28.86 0.0649 26.66 

 
3 0.2835 129.08 0.2724 126.32 0.2508 112.97 

 
5 0.4485 212.79 0.4493 213.19 0.4153 197.66 
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Table D.6 Prediction errors of SVM on test sets: Noise-free, 5% noisy, and 
30% noisy Lorenz series 

Noise-free 5% noisy 30% noisy 

Lead time NRMSE 
 

MAE 
 

NRMSE 
 

MAE 
 

NRMSE 
 

MAE 
 

 
1 0.00042 0.0038 0.0580 0.5835 0.3385 3.4678 

 
3 0.00065 0.0049 0.0631 0.6278 0.3637 3.8324 

 
5 0.00093 0.0070 0.0648 0.6328 0.3774 3.9141 

 
 
 
 
 
 
 
 

Table D.7 Prediction errors of SVM on test sets: 
Mississippi and Wabash flow time series 

Mississippi Wabash Lead time 

NRMSE 
 

MAE 
(m3/s) 

NRMSE 
 

MAE 
(m3/s) 

 
1 
 

0.0305 195.42 0.0653 25.78 

 
3 0.0995 743.90 0.2552 110.62 

 
5 0.1841 1388.84 0.4267 187.15 
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APPENDIX E 

 
PREDICTION PERFORMANCE OF FIRST AND THIRD ORDER 

POLYNOMIAL MODELS 
 

 

 The Table E.1 shows the prediction performance of first, second and third order 

polynomial models for the Mississippi river flow series. 

 

 

Table E.1 Prediction errors with first, second and third order 
polynomial models on validation set: Mississippi river flow 
 

1st order polynomial 2nd order polynomial 3rd order polynomial  Lead 
time 

NRMSE 
(/) 

MAE 
(m3/s) 

NRMSE 
(/) 

MAE 
(m3/s) 

NRMSE 
(/) 

MAE 
(m3/s) 

 
1 0.0422 224.25 

 
0.0412 

 

 
225.13 

 
0.0411 224.64 

 
3 0.1373 812.82 

 
0.1371 

 

 
810.59 

 
0.1360 807.51 

 
5 0.2513 1532.18 

 
0.2476 

 

 
1512.50 

 
0.2473 1511.08 
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APPENDIX F  

 
 

PERFORMANCE OF PREDICTION MODELS TRAINED WITH 
DATA OF NOISE LEVELS DIFFERENT FROM THAT OF 

VALIDATION INPUT DATA 
 
 
 
 

F.1 PERFORMANCE OF MODELS TRAINED WITH LESS-NOISY DATA 
   WITH NOISY VALIDATION INPUTS 

 
  

Table F.1 shows the prediction performance of models, trained with Lorenz series 

data of 1%, 10%, 20% and 30% noise levels, validated on input data of equal noise 

levels. Tables F.2, F.3, and F.4 show the prediction performance of models, trained 

respectively with data of 1%, 10% and 20% noise levels, validated however on input data 

of higher noise levels. Comparisons of prediction accuracies listed in Tables F.2, F.3, and 

F.4 with corresponding entries in Table F.1 show that models trained with lower noise 

level (e.g. 1%, Table F.2) do not necessarily yield higher prediction accuracies (e.g. 

MAE= 4.2926, Column D, Table F.2), when validated on input data of higher noise level 

(e.g. 30%, Column D, Table F.2), than models trained with higher noise levels (e.g. 30%, 

Table F.1) and, at the same time, validated on input data of the same noise level 

(MAE=4.0831, 30% noise level, Column D, Table F.1). 
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Table F.1 Prediction performance of ANN models trained with data of known noise 
               levels and validated on input data of the same noise levels: Lorenz series 

 
Noise level for model’s training data and validation input data  Prediction error 

(MAE) 

 

1%  

(A) 

10% 

(B) 

20%  

(C) 

30%  

(D) 

 

Against noisy data 

 

0.1279 

 

1.2015 

 

2.7378 

 

4.0831 

 

Against noise-free 

data 

 

0.0725 

 

0.6906 

 

1.5433 

 

2.2602 

 
 
 
 

Table F.2 Prediction performance of ANN model trained with 1% noise level 
   data and validated with input data of other noise levels 

 
Noise level of validation input data  Prediction error 

(MAE) 

 

10%  

(B) 

20% 

(C) 

30%  

(D) 

 

Against noisy data 

 

1.2348 

 

2.7223 

 

4.2926 

 

Against noise-free data 

 

0.7484 

 

1.5888 

 

2.5826 

 
 
 
 

Table F.3 Prediction performance of ANN model trained with 10% noise level 
  data and validated with input data of other noise levels 

 
Noise level of Validation data  Prediction error 

(MAE) 

 

20% 

(C) 

30%  

(D) 

 

Against noisy data 

 

2.7183 

 

4.0035 

 

Against noise-free data 

 

1.4860 

 

2.2679 
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Table F.4 Prediction performance of ANN model trained with 20% noisy 
      data when 30% noisy validation data are used as inputs 

 
Noise level of validation input data  Prediction error 

(MAE) 

 

30%  

(D) 

 

Against noisy data 

 

4.0915 

 

Against noise-free data 

 

2.3044 

 
 
 
F.2 PERFORMANCE OF MODELS TRAINED WITH NOISY DATA 

WITH LESS-NOISY VALIDATION INPUTS 
 

Tables F.5, F.6, and F.7 show the prediction performance of models, trained 

respectively with data of 20%, 10% and 1% noise levels, validated however on input data 

of lower noise levels. In Tables F.5, F.6, and F.7, the last column (e.g. column (4) of 

Table F.5) gives the prediction performance of model trained with data of same noise 

level as that of input data (e.g. 20%). Comparing this prediction performance with those 

of earlier columns (e.g. columns (1), (2) and (3) of Table F.5), i.e. the performance of the 

model with less noisy validation inputs, show that the smaller the level of noise in 

validation inputs the better are the predictions. In other words, the less noisy input data 

improves the prediction performance of the models trained with more noisy data. It 

should be noted that prediction errors are determined by comparing the predictions 

against noisy validation outputs whose level of noise is same as that of the data used to 

train the model. This is because, in real applications, one has to use the original data to 

compare the predictions instead of noise-reduced data as explained in Chapter 2. 
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Table F.5 Prediction performance of ANN model trained with 20% noise level 

 data and validated with input data of less noise levels 
 

Noise level of validation input data  Prediction error 

(MAE) 

 

Noise-free  

(1) 

1% 

(2) 

10%  

(3) 

20% 

(4) 

Against 20% noisy 

data 

 

2.2915 

 

2.2950 

 

2.3684 

 

2.7378 

Against noise-free 

data 

 

0.5173 

 

0.5313 

 

0.8866 

 

1.5433 

 
 
 
 

Table F.6 Prediction performance of ANN model trained with 10% noise level 
  data and validated with input data of less noise levels 

 
Noise level of validation input data  Prediction error 

(MAE) 

 

Noise-free  

(1) 

1% 

(2) 

10%  

(3) 

Against 10% noisy 

data 

 

1.0364 

 

1.0350 

 

1.2015 

Against noise-free 

data 

 

0.2182 

 

0.2273 

 

0.6906 

 
 
 
 

Table F.7 Prediction performance of ANN model trained with 1% noise level 
   data and validated with input data of less noise levels 

 
Noise level of validation input data  Prediction error 

(MAE) 

 

Noise-free  

(1) 

1% 

(2) 

Against 1% noisy data  

0.1082 

 

0.1279 

Against noise-free data  

0.0233 

 

0.0725 

 

 207



APPENDIX G 

FINDING A POSTERIORI STATE ESTIMATE AS A LINEAR 
COMBINATION OF AN A PRIORI ESTIMATE  AND NEW 

MEASUREMENT  

kx̂
−
kx̂

kz
  

Following Haykin (2001), the derivation of a posteriori estimate as a linear 

combination of an a priori estimate  and new measurement  may be given as 

follows. The following theorem will be used in the derivation. 

kx̂

−
kx̂ kz

 

Theorem G.1: Principle of orthogonality 

Let the stochastic processes {xk} and {yk} be of zero means, that is 

[ ] [ ] 0yExE kk ==   for all k. 

Then: 

(i) the stochastic process {xk} and {yk} are jointly Gaussian; or 

(ii) if the optimal estimate  is restricted to be a linear function of the 

observables and the cost function is the mean square error; 

kx̂

(iii) then the optimum estimate , given the observables  is the 

orthogonal projection of x

kx̂ k21 y...,y,y

k on the space spanned by these observables. 

 

When a measurement on a linear dynamical system, described by Eqs. G.1 and G.2, 

has been made at time k, the requirement is to use the information contained in the new 

measurement  to update the estimate of the unknown state . kz kx

11 −− ++= kkkkkk wuBxAx        (G.1) 

kkkk xHz υ+=         (G.2) 
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Let  denote a priori estimate of the state, which is already available at time k. With 

a linear estimator as the objective, one may express the a posteriori estimate as a 

linear combination of the a priori estimate and the new measurement, as shown by, 

−
kx̂

kx̂

kkkkk zGxGx += 1ˆ         (G.3) 

where factors  and  are to be determined. Let the state-error vector be, 1
kG kG

kkk xxx ˆ~ −= .          (G.4) 

Applying the principle of orthogonality (Theorem G.1), 

[ ] 0zx T
ik =~E  for 1k,...2,1,i −= .      (G.5) 

using Eqs. G.2, G.3, and G.4 in G.5, we get 

[ ] 0zwGxHGxGx T
ikkkkkkkk =−−− − )ˆ( 1E  for 1k,...2,1,i −= .  (G.6) 

 

Since the process noise and the measurement noise kw kυ  are uncorrelated, it follows 

that 

[ ] 0zw T
ik =E .         (G.7) 

Using Eq. G.7 in Eq. G.6 and rearranging the terms give 

[ ] 0zxxGzxGHGI T
ikkk

T
ikkkk =−+−− − )ˆ()( 11E     (G.8) 

where  is the identity matrix. From the principle of orthogonality, we now note that I

[ ] 0zxx T
ikk =− − )ˆ(E .        (G.9) 

With Eq. G.9 in Eq. G.8 it yields 

[ ] 0zxGHGI T
ikkkk =−− E)( 1   for 1k,...2,1,i −= .   (G.10) 

For arbitrary values of the state  and the observable , Eq. G.10 can only be 

satisfied if the scaling factors  and  are related as follows: 

kx iz

1
kG kG

0GHGI kkk =−− )( 1  or,  is defined in terms of  as 1
kG kG
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kkk HGIG −=1         (G.11) 

Substituting Eq. G.11 in Eq. G.3, we may express the a posteriori estimate of the state 

at time k as 

( )−− −+= kkkkkk xHzGxx ˆˆˆ         (G.12) 

where the matrix  is called the Kalman gain.  kG
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APPENDIX H 

PREDICTION PERFORMANCE OF NOISE REDUCTION 
APPLICATIONS ON NOISES GENERATED FROM DIFFERENT 

SEEDS 
 

Table H.1 Prediction performance of ANN on noisy chaotic Lorenz time series: 
           with noises generated from different seeds 

 
 

Prediction error  

  (MAE) 

 

Data set 

generated  

from different 

seeds 

 

Noise Level 

(%) 

 

Optimal Phase 

space parameters 

(m, τ) 

 

(1) 

Against noisy data 

 

(2) 

Against noise-free 

data 

 

(3) 

1 (10, 6) 0.1364 0.0845 
10 (10, 1) 1.2156 0.7012 
20 (10, 3) 2.4805 1.3787 

 

Seed No.1 

30 (10, 1) 3.6261 1.8633 
 

1 (10, 3) 0.1197 0.0727 
10 (10, 3) 1.2127 0.7008 
20 (10, 1) 2.3473 1.2222 

 

Seed No.2 

30 (10, 3) 3.6854 2.0093 
 

1 (10, 3) 0.1203 0.0729 
10 (10, 3) 1.1592 0.6856 
20 (10, 6) 2.7757 1.6174 

 

Seed No.3 

30 (9, 1) 3.6462 2.0382 
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Table H.2 Prediction performance of EKF predictor on noisy chaotic Lorenz time 
         series: with noises generated from different seeds 

 
Percentage improvement in prediction 

accuracy compared to ANN alone 

Data set 

generated  

from 

different 

seeds 

Noise 

Level 

 

(%) 

prediction 

error against 

noisy data  

(MAE) 

 

(1) 

prediction 

error against 

noise-free data  

(MAE) 

 

(2) 

With respect to 

noisy data 

 

(3) 

With respect to 

noise-free data 

 

(4) 

1 0.1226 0.0648 10.1 23.3 
10 1.1648 0.6602 4.2 5.8 
20 2.3451 1.1789 5.5 14.5 

 

Seed 

No.1 

30 3.4700 1.5707 4.3 15.7 
 

1 0.1121 0.0579 6.4 20.4 
10 1.1456 0.5600 5.5 20.1 
20 2.2506 1.0314 4.1 15.6 

 

Seed 

No.2 

30 3.4174 1.6583 7.3 17.5 
 

1 0.1121 0.0568 6.9 22.1 
10 1.1279 0.6123 2.7 10.7 
20 2.5130 1.1649 9.5 28.0 

 

Seed 

No.3 

30 3.4531 1.6970 5.3 16.7 
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Table H.3 Prediction performance of EKF estimates on proposed procedure: 
     noisy chaotic Lorenz time series with ANN: with noises generated 

 from different seeds 
 

Percentage improvement in prediction 

accuracy compared to ANN alone 

Data set 

generated  

from 

different 

seeds 

Noise 

Level 

 

(%) 

prediction 

error against 

noisy data  

(MAE) 

 

(1) 

prediction 

error against 

noise-free data  

(MAE) 

 

(2) 

With respect to 

noisy data 

 

(3) 

With respect to 

noise-free data 

 

(4) 

1 0.1202 0.0596 11.9 29.5 
10 1.1472 0.6411 5.6 8.6 
20 2.2201 0.9580 10.5 30.5 

 

Seed 

No.1 

30 3.4207 1.5181 5.7 18.5 
 

1 0.1103 0.0501 7.9 31.1 
10 1.1225 0.4978 7.4 29.0 
20 2.2416 0.9875 4.5 19.2 

 

Seed 

No.2 

30 3.3148 1.4086 10.1 29.9 
 

1 0.1095 0.0515 9.0 29.4 
10 1.1008 0.5405 5.0 21.2 
20 2.4267 1.0340 12.6 36.1 

 

Seed 

No.3 

30 3.4362 1.6615 5.8 18.5 
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Table H.4 Prediction performance of nonlinear noise reduction on the proposed 
           procedure: noisy chaotic Lorenz time series with ANN: with noises 
           generated from different seeds 

 
Percentage improvement in prediction 

accuracy compared to ANN alone 

Data set 

generated  

from 

different 

seeds 

Noise 

Level 

 

(%) 

prediction 

error against 

noisy data  

(MAE) 

 

(1) 

prediction 

error against 

noise-free data  

(MAE) 

 

(2) 

With respect to 

noisy data 

 

(3) 

With respect to 

noise-free data 

 

(4) 

1 0.1364 0.0845 0 0 
10 1.1751 0.6842 3 2 
20 2.3628 1.2981 5 6 

 

Seed 

No.1 

30 3.5534 1.8414 2 1 
 

1 0.1208 0.0738 -1 -2 
10 1.2073 0.6954 0 1 
20 2.3178 1.1698 1 4 

 

Seed 

No.2 

30 3.6630 1.9655 1 2 
 

1 0.1203 0.0729 0 0 
10 1.2085 0.6985 -4 -2 
20 2.7461 1.6026 1 1 

 

Seed 

No.3 

30 0.1899 1.9105 2 6 
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APPENDIX I 

LORENZ SERIES IN THE APLICATION OF NOISE REDUCTION 
 

 It is interesting to notice how the data changes and the attractor change in the 

process of noise removal. In this Appendix, the statistics of noise reduction and some 

graphical representations showing (1) the plots of noise-free, noisy and EKF noise 

reduced data (section 4.5); (2) the attractor in noise reduction; and (3) the plots of 

actual and predicted data with and without noise reduction, are given. The illustrations 

are provided for the case of 10% noisy data used in Chapter 4. 

 
 I.1  Statistics and plots showing noise reduction 

Table I.1 shows the standard deviations of noisy series and the EKF noise 

reduced series and the corresponding prediction improvement gained using the 

proposed noise reduction scheme. Figure I.1 shows the plots of Lorenz validation data 

for the noise-free, 10% noisy data used in the study and the EKF noise reduced data 

using the procedure proposed in the study (Section 4.5). The effectiveness in noise 

reduction is evident from Table I.1 as well as Figure I.1. 

 
Table I.1 Noise reduction – statistics  

Standard deviation % Performance 
 

 
 
Noisy Series  

Noise added 
Remaining 
noise after 
EKF noise 
reduction 

 
% noise 
 reduction 

 
% prediction 
improvement  

1 % 0.1268 0.0601 53 28 

10 % 1.2684 0.6424 49 22 

20 % 2.5368 1.5491 39 15 

30 % 3.8052 2.3863 37 18 
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(c) 

Figure I.1 10% noisy Lorenz series validation data (a) Noise free data (b) noisy data 
     and (c) EKF noise reduced data 
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I.2  Lorenz attractor in noise reduction 

The Lorenz attractor is shown here using noise-free, 10% noisy and EKF noise 

reduced data. The validation data is used. The attractor is first shown with time delay 1 

(Figure I.2) and then for better clarity is shown with a delay time of 6 (Figure I.3). 

Figures show that the attractor gets closer to the actual one when noise is reduced.  
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Figure I.2 The Lorenz attractor for (a) noise-free, (b) 10% noisy data and (c) EKF 
        noise-reduced data with delay time of 1 
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Figure I.3 The Lorenz attractor for (a) noise-free, (b) 10% noisy data and (c) EKF 

        noise-reduced data with delay time of 6 
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I.2  Plots of actual and predicted data with and without noise reduction 

 Figure I.4 shows the scatter plots of actual data and the predicted data for the 

cases of using noisy data for prediction and prediction using noise reduction scheme 

proposed in Section 4.5. The more closer fit in the case of noise reduction clearly 

shows the proposed noise reduction procedure has improved the prediction 

performance. 
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(a) Prediction without noise reduction (b) With proposed noise reduction 

 

Figure I.4 Prediction performance with and without noise reduction 
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APPENDIX J 

PERFORMANCE OF PROPOSED NOISE REDUCTION SCHEME 
WITH SVM AS THE PREDICTION TOOL 

 

A risk in using the prediction accuracy of a certain model as a criterion to 

determine noise reduction is that the removed noise may be biased by the prediction 

model. In other words, what has been identified as noise by that particular model may 

not be noise to other models. Such doubts were raised by Elshorbagy et al (2002). In 

the present study, the optimal noise reduction is identified by the prediction error of 

ANN prediction models on the test set. In addition, the state space model in EKF also 

consists of an ANN model. To verify the performance of these optimally noise reduced 

data on a different model, the prediction models (Fig. 4.8) were trained with SVM 

using those noise reduced data. 

Table J.1 shows the prediction performance when SVM prediction models are 

trained with a noise reduced data that have been identified as optimal solutions with 

ANN prediction model (in Figure 4.8). Comparison of columns 3 and 4 of Tables 4.4 

and Table J.1 shows that the amounts of percentage improvements are approximately 

of the same order of magnitude. Similar results are observed on river flow time series 

(Table J.2) as well. This implies that two different prediction models (ANN and SVM) 

have recognized the amount of noise reduction with equal effectiveness. Therefore, the 

noise reduced using ANN in the EKF state space model can be considered not biased 

by the ANN model. 
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Table J.1 Prediction performance of EKF estimates on the proposed procedure: 
           noisy chaotic Lorenz series with SVM 

 
Percentage improvement in prediction 

accuracy compared to ANN alone 

 

Noise 

Level 

(%) 

 

prediction error 

against noisy data  

(MAE) 

 

(1) 

 

prediction error 

against noise-free 

data  (MAE) 

 

(2) 

With respect to noisy 

data 

 

(3) 

With respect to noise-

free data 

 

(4) 

1 0.1168 0.0470 9 35 

10 1.1264 0.5095 6 26 

20 2.5143 1.0517 8 32 

30 3.7587 1.6745 8 26 

  
 
 
 
 
 
 
 
 

Table J.2 Prediction performance of EKF estimates on proposed procedure: 
  river flow time series with SVM 

 
 

Time series 

 

prediction error with respect to 

noisy data  

(MAE) 

(m3/s) 

 

Percentage improvement in prediction 

accuracy compared to SVM alone 

(With respect noisy data) 

Mississippi River 204.88 
 

1.0 
 

Wabash River 24.95 
 

0.9 
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APPENDIX K 

NUMBER OF PATTERNS EXTRACTED AND THE 
CORRESPONDING PREDICTION ERRORS WITH DIFFERENT d 

VALUES 
 

 

Table K.1 The  values and the corresponding number of patterns selected and the  d
     prediction errors on validation set using for local model and ANN:  
    Noise free Lorenz series  
 

d number of  Local averaging  ANN  
  patterns NRMSE MAE NRMSE MAE 

0.001 4666 0.03973 0.3096 0.0003 0.0032 
0.002 4604 0.03968 0.3067 0.0003 0.0032 
0.003 4561 0.03950 0.3032 0.0003 0.0033 
0.004 4530 0.03949 0.3035 0.0003 0.0033 
0.005 4517 0.03911 0.3005 0.0003 0.0033 
0.006 4497 0.03909 0.3000 0.0003 0.0032 
0.007 4412 0.03856 0.2956 0.0003 0.0032 
0.008 4211 0.03871 0.3002 0.0003 0.0032 
0.009 3985 0.03938 0.3064 0.0003 0.0034 
0.01 3763 0.04202 0.3053 0.0003 0.0033 

0.011 3586 0.04246 0.3116 0.0003 0.0034 
0.012 3454 0.04205 0.3127 0.0003 0.0032 
0.013 3317 0.04071 0.3105 0.0003 0.0032 
0.014 3144 0.04390 0.3225 0.0003 0.0033 
0.015 3027 0.04372 0.3179 0.0003 0.0033 
0.016 2895 0.04436 0.3269 0.0003 0.0033 
0.017 2761 0.04418 0.3276 0.0003 0.0036 
0.018 2616 0.04495 0.3251 0.0003 0.0033 
0.019 2460 0.04515 0.3300 0.0003 0.0035 
0.02 2342 0.04474 0.3264 0.0003 0.0033 

0.021 2228 0.04339 0.3290 0.0003 0.0034 
0.022 2112 0.04373 0.3414 0.0003 0.0035 
0.023 2009 0.04457 0.3493 0.0003 0.0035 
0.024 1917 0.04272 0.3471 0.0003 0.0035 
0.025 1855 0.04314 0.3509 0.0003 0.0036 
0.026 1794 0.04291 0.3512 0.0003 0.0034 
0.027 1747 0.04375 0.3575 0.0003 0.0034 
0.028 1688 0.04746 0.3778 0.0004 0.0037 
0.029 1625 0.04832 0.3853 0.0004 0.0036 
0.03 1581 0.04735 0.3966 0.0003 0.0035 

0.031 1528 0.04944 0.4101 0.0004 0.0036 
0.032 1485 0.04930 0.4053 0.0004 0.0036 
0.033 1434 0.05076 0.4209 0.0004 0.0037 
0.034 1383 0.05177 0.4414 0.0004 0.0036 
0.035 1347 0.05236 0.4433 0.0004 0.0036 
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Table K.1 (Continued) 
 

0.036 1308 0.05364 0.4615 0.0004 0.0038 
0.037 1277 0.05279 0.4487 0.0004 0.0036 
0.038 1237 0.05296 0.4599 0.0004 0.0038 
0.039 1176 0.05283 0.4610 0.0004 0.0038 
0.04 1139 0.05156 0.4541 0.0004 0.0039 

0.041 1104 0.05262 0.4648 0.0004 0.0038 
0.042 1074 0.05426 0.4763 0.0004 0.0036 
0.043 1050 0.05467 0.4760 0.0004 0.0036 
0.044 1015 0.05495 0.4844 0.0004 0.0039 
0.045 987 0.05572 0.4853 0.0004 0.0037 
0.046 948 0.05590 0.4895 0.0004 0.0039 
0.047 918 0.05558 0.4990 0.0004 0.0036 
0.048 890 0.06910 0.6482 0.0004 0.0039 
0.049 869 0.07136 0.6713 0.0004 0.0037 
0.05 839 0.06970 0.6492 0.0004 0.0038 

 

 
 
 
Table K.2 The  values and the corresponding number of patterns selected and the  d

     prediction errors on validation set using for local model and ANN:  
    5% noisy Lorenz series  

 

d number of  Local averaging  ANN  
  patterns NRMSE MAE NRMSE MAE 
0.001 4772 0.0728 0.7418 0.0634 0.6395 
0.002 4772 0.0728 0.7418 0.0634 0.6395 
0.003 4772 0.0728 0.7418 0.0634 0.6395 
0.004 4772 0.0728 0.7418 0.0634 0.6395 
0.005 4772 0.0728 0.7418 0.0634 0.6395 
0.006 4772 0.0728 0.7418 0.0634 0.6395 
0.007 4772 0.0728 0.7418 0.0634 0.6395 
0.008 4772 0.0728 0.7418 0.0634 0.6395 
0.009 4772 0.0728 0.7418 0.0634 0.6395 
0.01 4772 0.0728 0.7418 0.0634 0.6395 

0.011 4772 0.0728 0.7418 0.0634 0.6395 
0.012 4772 0.0728 0.7418 0.0634 0.6395 
0.013 4772 0.0728 0.7418 0.0634 0.6395 
0.014 4772 0.0728 0.7418 0.0634 0.6395 
0.015 4772 0.0728 0.7418 0.0634 0.6395 
0.016 4772 0.0728 0.7418 0.0634 0.6395 
0.017 4770 0.0728 0.7418 0.0620 0.6258 
0.018 4768 0.0728 0.7418 0.0632 0.6400 
0.019 4766 0.0728 0.7418 0.0632 0.6399 
0.02 4760 0.0728 0.7420 0.0633 0.6404 
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Table K.2 (Continued) 
 

0.021 4746 0.0729 0.7431 0.0624 0.6289 
0.022 4725 0.0729 0.7432 0.0626 0.6334 
0.023 4711 0.0728 0.7421 0.0624 0.6291 
0.024 4679 0.0728 0.7446 0.0624 0.6289 
0.025 4641 0.0729 0.7452 0.0624 0.6291 
0.026 4602 0.0730 0.7471 0.0621 0.6243 
0.027 4560 0.0728 0.7449 0.0621 0.6265 
0.028 4481 0.0731 0.7476 0.0625 0.6308 
0.029 4395 0.0736 0.7482 0.0619 0.6226 
0.03 4308 0.0737 0.7476 0.0631 0.6335 

0.031 4233 0.0737 0.7478 0.0629 0.6337 
0.032 4128 0.0736 0.7471 0.0644 0.6483 
0.033 4012 0.0735 0.7480 0.0637 0.6445 
0.034 3882 0.0738 0.7518 0.0629 0.6347 
0.035 3737 0.0733 0.7499 0.0625 0.6326 
0.036 3605 0.0728 0.7442 0.0625 0.6288 
0.037 3463 0.0723 0.7351 0.0633 0.6371 
0.038 3294 0.0724 0.7352 0.0628 0.6305 
0.039 3145 0.0732 0.7500 0.0638 0.6389 
0.04 2997 0.0728 0.7428 0.0631 0.6372 

0.041 2840 0.0728 0.7458 0.0631 0.6348 
0.042 2691 0.0721 0.7289 0.0637 0.6402 
0.043 2542 0.0729 0.7331 0.0631 0.6347 
0.044 2384 0.0720 0.7196 0.0632 0.6415 
0.045 2269 0.0729 0.7325 0.0631 0.6407 
0.046 2122 0.0732 0.7343 0.0636 0.6427 
0.047 1990 0.0756 0.7601 0.0627 0.633 
0.048 1864 0.0759 0.7679 0.0645 0.6515 
0.049 1773 0.0744 0.7468 0.0645 0.6525 
0.05 1668 0.0781 0.7801 0.0648 0.6553 
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Table K.3 The  values and the corresponding number of patterns selected and the  d
     prediction errors on validation set using for local model and ANN:  
    30% noisy Lorenz series 
  

d number of  Local averaging  ANN  
  patterns NRMSE MAE NRMSE MAE 

0.1 3901 0.3893 4.1873 0.3917 4.2137 
0.105 3693 0.3877 4.1745 0.3796 4.0845 
0.11 3435 0.3889 4.1856 0.3903 4.2024 

0.115 3176 0.3874 4.1539 0.3813 4.0969 
0.12 2912 0.3892 4.1821 0.3889 4.2285 

0.125 2626 0.3921 4.2227 0.4024 4.3361 
0.13 2375 0.3950 4.2352 0.3932 4.2655 

0.135 2152 0.3955 4.2454 0.3972 4.2195 
0.14 1901 0.3948 4.2029 0.4048 4.3364 

0.145 1730 0.4013 4.285 0.4047 4.3545 
0.15 1531 0.4008 4.2458 0.4056 4.3228 

0.155 1368 0.4061 4.262 0.4195 4.4964 
0.16 1222 0.3939 4.1772 0.4050 4.3281 

0.165 1128 0.4049 4.3085 0.4237 4.4793 
0.17 1000 0.4112 4.3657 0.4239 4.5620 

0.175 892 0.4141 4.3832 0.4549 4.7859 
0.18 806 0.4186 4.4374 0.4662 4.8889 

0.185 739 0.4159 4.4226 0.4623 4.9317 
0.19 632 0.4375 4.6860 0.4947 5.1245 

0.195 569 0.4390 4.7181 0.4746 4.9304 
0.2 521 0.4532 4.8985 0.5187 5.4150 

0.205 480 0.4345 4.6806 0.4770 4.9968 
0.21 412 0.4527 4.7791 0.5222 5.3569 

0.215 390 0.4493 4.7176 0.5709 5.8467 
0.22 329 0.4596 4.8248 0.6079 6.2022 

0.225 292 0.4490 4.7564 0.7012 6.8881 
0.23 272 0.5580 5.7964 0.6446 6.5516 

0.235 231 0.5469 5.6923 0.7460 7.4022 
0.24 210 0.5075 5.4052 0.7163 7.2265 

0.245 200 0.5343 5.6399 0.6630 6.8653 
0.25 182 0.5321 5.6567 0.7021 7.0353 

0.255 157 0.5696 5.8836 0.7021 7.3372 
0.26 146 0.5513 5.6169 0.6097 6.0901 

0.265 128 0.5642 6.0273 0.6739 7.1183 
0.27 125 0.5072 5.2646 0.5343 5.6188 

0.275 105 0.5563 5.8843 0.6741 7.1467 
0.28 102 0.5365 5.6609 0.5564 5.8154 

0.285 89 0.5257 5.5704 0.5860 6.1477 
0.29 85 0.5216 5.5387 0.5514 5.6884 

0.295 74 0.5351 5.7071 0.5819 5.9236 
0.3 69 0.5626 5.7714 0.6571 6.8498 
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Table K.4 The values and the corresponding number of patterns selected and the  d
     prediction errors on validation set using for local model and ANN:  
    Mississippi river flow time series 
 

d number of  Local averaging  ANN  
  patterns NRMSE MAE (m3/s) NRMSE MAE (m3/s) 
0.001 5011 0.0517 297.81 0.0385 206.29 
0.002 4040 0.0527 303.97 0.0388 207.48 
0.003 3225 0.0541 312.11 0.0389 209.33 
0.004 2659 0.0583 332.89 0.0391 213.54 
0.005 2224 0.0590 341.08 0.0397 214.92 
0.006 1679 0.0594 350.42 0.0395 213.38 
0.007 1449 0.0725 418.76 0.0405 219.91 
0.008 1277 0.0758 437.82 0.0407 220.82 
0.009 1023 0.0757 454.67 0.0403 220.19 
0.01 923 0.0724 437.66 0.0418 227.62 

0.011 788 0.0683 413.57 0.0410 223.21 
0.012 718 0.0736 436.27 0.0423 230.94 
0.013 658 0.0738 436.31 0.0428 236.56 
0.014 588 0.0825 491.63 0.0423 230.09 
0.015 511 0.0886 524.99 0.0432 235.99 
0.016 480 0.0850 522.54 0.0430 235.64 
0.017 438 0.0857 512.20 0.0463 255.16 
0.018 394 0.0924 549.82 0.0465 260.02 
0.019 372 0.0846 516.19 0.0449 244.79 
0.02 342 0.0866 529.91 0.0461 256.91 

0.021 323 0.0917 555.05 0.0467 263.04 
0.022 285 0.0962 591.16 0.0464 262.12 
0.023 266 0.0956 592.09 0.0453 252.21 
0.024 256 0.0943 598.32 0.0457 262.80 
0.025 241 0.0927 580.77 0.0471 264.51 
0.026 225 0.0953 603.44 0.0441 249.67 
0.027 211 0.1057 649.04 0.0467 262.99 
0.028 195 0.1037 649.04 0.0503 273.86 
0.029 185 0.1031 642.99 0.0479 281.13 
0.03 176 0.1117 700.48 0.0483 267.77 

0.031 170 0.1084 664.14 0.0463 267.78 
0.032 162 0.1028 651.44 0.0453 266.53 
0.033 153 0.1079 682.78 0.0470 280.24 
0.034 149 0.1181 738.49 0.0497 304.14 
0.035 133 0.1156 735.62 0.0455 262.25 
0.036 128 0.1177 748.64 0.0465 254.63 
0.037 125 0.1186 745.42 0.0502 301.91 
0.038 120 0.1188 740.78 0.0481 298.65 
0.039 110 0.1241 790.64 0.0651 386.57 
0.04 106 0.1206 760.18 0.0504 303.26 
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Table K.5 The  values and the corresponding number of patterns selected and the  d
     prediction errors on validation set using for local model and ANN:  
    Wabash river flow time series 
 

d number of  Local averaging  ANN  
  patterns NRMSE MAE (m3/s) NRMSE MAE (m3/s) 
0.001 4581 0.1195 48.23 0.0605 25.74
0.002 3767 0.1285 52.66 0.0606 26.00
0.003 3294 0.1287 52.92 0.0617 26.25
0.004 2928 0.1305 55.77 0.0615 26.27
0.005 2642 0.1490 58.93 0.0603 26.16
0.006 2385 0.1482 60.10 0.0674 28.62
0.007 2163 0.1521 63.49 0.0694 28.83
0.008 1944 0.1536 63.71 0.0599 26.51
0.009 1761 0.1545 64.44 0.0639 26.79
0.01 1586 0.1516 63.78 0.0733 28.83

0.011 1466 0.1530 63.71 0.0729 27.80
0.012 1325 0.1525 63.50 0.0732 27.59
0.013 1225 0.1526 63.73 0.0676 32.87
0.014 1120 0.1533 64.78 0.0717 32.22
0.015 1033 0.1543 65.88 0.0820 28.50
0.016 968 0.1563 67.04 0.0652 27.45
0.017 892 0.1549 66.91 0.0750 28.53
0.018 817 0.1626 73.74 0.0656 30.58
0.019 769 0.1764 75.83 0.0797 41.14
0.02 713 0.1623 72.46 0.0729 28.46

0.021 673 0.1634 73.08 0.0664 31.78
0.022 627 0.1623 72.57 0.0903 30.88
0.023 585 0.1679 74.76 0.0944 30.57
0.024 559 0.1669 74.39 0.0766 29.87
0.025 520 0.1689 76.66 0.0698 30.14
0.026 490 0.1700 76.71 0.0726 32.78
0.027 459 0.1741 77.21 0.0657 29.82
0.028 444 0.1718 80.50 0.0670 28.08
0.029 418 0.1744 84.98 0.0678 32.33
0.03 399 0.1716 80.76 0.0656 29.39

0.031 380 0.1809 85.18 0.0716 37.78
0.032 358 0.1740 84.82 0.0655 28.14
0.033 345 0.1774 90.02 0.0662 34.60
0.034 324 0.1823 92.32 0.1050 40.59
0.035 317 0.1837 88.47 0.1122 33.81
0.036 300 0.1816 86.53 0.0971 33.04
0.037 296 0.1781 87.44 0.0800 35.07
0.038 280 0.1812 91.80 0.0709 31.91
0.039 269 0.1803 91.33 0.0862 30.64
0.04 255 0.1784 89.07 0.0666 30.98

0.041 242 0.1738 88.90 0.0715 30.63
0.042 231 0.2284 123.23 0.0769 46.57
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Table K.5 (Continued) 
 

0.043 234 0.1846 97.15 0.0767 40.03
0.044 222 0.1911 100.53 0.0685 31.23
0.045 210 0.1994 106.59 0.0746 35.25
0.046 206 0.1834 94.76 0.0752 34.87
0.047 201 0.1846 101.20 0.0775 36.53
0.048 193 0.1940 104.06 0.0698 35.62
0.049 177 0.2118 123.61 0.0748 39.44
0.05 178 0.2113 112.29 0.0730 38.19
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