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Summary

In the 1980’s, significant and remarkable breakthroughs were achieved in the areas of

error-correcting codes and Cryptography with the introduction of Goppa codes and El-

liptic Curve Cryptosystems respectively [19, 20, 21, 5]. These two constructions, though

specific to two distinct applications of Mathematics, employ a similar Mathematical ob-

ject, namely algebraic curves over finite fields with sufficient number of rational points, or

equivalently in the language of algebraic function fields, global function fields with a large

number of rational places relative to their genera. Indeed, the theory of algebraic curves

over finite fields and their associated function fields has attracted much devoted research

by renown geometers and number theorists alike since the middle of the 20th century.

Their research concentrated primarily on abstract and theoretical results, thereby giving

rise to numerous advanced ideas in Mathematics. For instance, in 1948, Weil proved the

analogue of the famous Riemann hypothesis for function fields and consequently showed

that for a given prime power q and positive integer g > 0, the number of rational points

on an algebraic curve over the field Fq of genus g cannot exceed q + 1 + 2gq1/2. However,

proofs of this bound, more commonly known as the Hasse-Weil bound, and other results

on algebraic function fields tend to be non-constructive, and it remains to be proven if

algebraic curves with large numbers of rational points do exist.

With an increasing number of direct applications for algebraic curves with many ratio-

nal points as compared to their genera, the search for such curves becomes an important

and worthwhile challenge for researchers. The celebrated number theorist, J. P. Serre

initiated the work in the 1980’s [66, 67], and thereafter, many other mathematicians took

up the challenge as well. In particular, using machinery from diverse areas including

Kummer and Artin-Schreier theory, elliptic modular curve theory, class field theory and
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Drinfeld modules of rank 1, various mathematicians seek to construct algebraic curves

containing as many rational points as close to the Hasse-Weil bound as possible, and in

a few cases, to give explicit equations of such curves. A comprehensive account of these

approaches and research results in these aspects which include applications of algebraic

curves with many rational points is well covered by the book of Niederreiter and Xing

[55].

This thesis essentially extends the work by Niederreiter and Xing in a series of papers

in the late 1990’s [41, 42, 43, 44, 46, 48], to continue the search for such curves. More

specifically, we will employ results from class field theory together with the theory of

Drinfeld modules of rank 1 to construct global function fields with many rational places.

In fact, by introducing a new construction of linear codes over finite fields based on global

function fields, the genera and splitting behaviour of rational places in subfields of certain

classes of cyclotomic function fields can be explicitly expressed. With the aid of some

mathematical software packages, these results will help us construct numerous curves

having more rational points than the currently-known curves for certain values of q and

g.

Further, this thesis delves into a slightly different but related topic, namely, we will

explore the lower bounds of A(q) which is the asymptotic bound of the ratio Nq(g)/g as

g tends to infinity. Here, Nq(g) denotes the maximum number of rational points that an

algebraic curve over Fq of genus g can have. Some improvements of A(q) for prime values

of q including q = 2, 5, 7, 11 are established. Such asymptotic bounds are significant since

they have a direct impact on coding theory, leading to sequences of codes with increasing

lengths exceeding the asymptotic Gilbert-Varshamov bound, the classical benchmark for

good families of linear codes. The result of A(2) ≥ 0.257979 which improves the previously
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established bound of A(2) ≥ 0.2555... is of particular interest as codes over the binary

alphabet have the most practical use.

The first three chapters of this thesis aim to provide an overview of the background

materials that are crucial to introduce the main results. More precisely, we will begin

with a survey of the theory of algebraic function fields which serve as a starting point

of our research. In Chapter 2, we will discuss some well-known examples of algebraic

function fields. Using results from general class field theory, we will classify the finite

abelian extensions of algebraic function fields in Chapter 3 and describe some of their

fundamental properties. In Section 3.5, the general construction of global function fields

as subfields of narrow ray class fields that possibly contain many rational points will be

presented.

Next, we establish a connection between error-correcting codes and global function

fields with many rational places in Chapter 4, which in turn leads to some new function

fields. Equipped with all these results, we will then examine the genera and splitting

behaviour of places in subfields of cyclotomic function fields, thereby obtaining several

more function fields with many rational places. Finally, Chapter 6 will be devoted to the

investigation of the asymptotic bounds of A(q) and a couple of new bounds will be given.

Many of the notations used throughout this thesis resemble closely those introduced

in [55].
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Chapter 1

Algebraic Function Fields

Following the approach pursued in most of the existing literature on algebraic curves and

their corresponding number of rational points, this current research will treat this subject

via the equivalent language of function field theory. This is possible due to inherent

1-1 correspondence between algebraic function fields and smooth, absolutely irreducible

projective curves over finite fields. As such, this first chapter attempts to present a concise

summary of the theory of algebraic function fields, the primary Mathematical objects of

this thesis.

As the theory of algebraic function fields is rich in its own right, we shall concentrate

on results that are applicable to this thesis. Most assertions will be merely stated without

proofs. A detailed analysis of the theory of algebraic function fields is covered by books

such as those of Stichtenoth [72], and Michael Rosen [61]. Many of the developments

in algebraic function fields have their analogs in algebraic number fields. Readers may

therefore refer to books on algebraic number theory including Cassels and Fröhlich [8],

Koch [31], Neukirch [40] and Weiss [87] for useful background as well.
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Chapter 1: Algebraic Function Fields 2

Throughout this thesis, p will always denote a prime number while q = pr will refer

to an integral power of p.

1.1 Basic definitions

Let K be an arbitrary field. An algebraic function field of one variable over K is

a finitely generated field extension of K of transcendence degree 1, i.e. there exists an

element x ∈ F such that the degree [F : K(x)] is finite but F is transcendental over K.

K is often called the field of constants of the function field and the function field will

be simply denoted by F/K. If the algebraic closure of K in F is K itself, we call K

the full constant field of F/K. Further, if K is the finite field Fq, which will be the

case henceforth, F/K is known as a global function field. In other words, we will always

assume that K is finite and is the full constant field of the function field F/K. 1

For a global function field F/Fq, a valuation ring O is a proper subring of F con-

taining Fq with field of fractions F. It is a principal ideal domain with a unique maximal

ideal. This unique maximal ideal P = O −O∗ is known as a place of F, where O∗ is the

group of units of O.

A normalized discrete valuation of an algebraic function field F over Fq is a

surjective map ν : F −→ Z ∪ {∞} which satisfies:

(i) ν(x) = ∞ if and only if x = 0;

(ii) ν(xy) = ν(x) + ν(y) for all x, y ∈ F ;

(iii) [Triangle inequality] ν(x+ y) ≥ min(ν(x), ν(y)) for all x, y ∈ F . Equality holds if

1Most of the results in this chapter apply to any arbitrary field K but for practical purposes, concen-

trating on a finite full field of constants suffices.
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ν(x) 6= ν(y).

(iv) ν(a) = 0 for any a ∈ F∗
q.

For a normalized discrete valuation ν of F/Fq, it can be directly checked that O =

{x ∈ F : ν(x) ≥ 0} is a discrete valuation ring with the place P = {x ∈ F : ν(x) > 0}. In

fact, there is a bijective correspondence between all the places and the normalized discrete

valuations of F/Fq.We will denote by νP and OP the normalized discrete valuation and

discrete valuation ring, respectively that correspond to a place P . Further, the element

π ∈ P for which νP (π) = 1 is called the local parameter or the uniformizer at P.

Hence, P = Oπ.

Given any place P of F, the field F̃p = OP/P is called a residue class field of F at

P and it can be identified with a finite extension of Fq. The degree of the field extension

[F̃P : Fq] is known as the degree of P and is denoted by degP. If degP = 1, i.e. F̃P = Fq,

P is said to be Fq-rational or simply rational.

Similarly, given any place P of a global function field F/Fq, the completion of F at

P, commonly known as the P -adic completion of F, will be denoted by FP . We will again

denote the unique extension of νP to FP by νP with corresponding discrete valuation ring

OP and place P. It can be verified that the residue class field of FP at P is isomorphic to

F̃P .

The set of all places of F is denoted by PF . Given any positive integer d > 0, we will

use the notation Pd
F for the set of all places in PF of degree d. We have the following

lemma.

Lemma 1.1.1 For a global function field F/Fq,PF is an infinite set but Pd
F is finite for
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any d > 0.

For a place P ∈ PF , let π be a local parameter at P . Then, for any nonzero f ∈ FP

with νP (f) = v, there is an infinite sequence {ar}∞r=v of elements of F̃P with av 6= 0 and

f =
∞∑
r=v

arπ
r.

Such an expansion is called the local expansion of f at P . Conversely, every such series

converges to an element of FP . Consequently, FP = F̃P [[π]]. In particular, the elements of

the valuation ring in FP can be represented as

OP = {a0 + a1π + a2π
2 + · · · : ai ∈ F̃P for all i ≥ 0}.

More generally, for any positive integer n ≥ 1, the ring

OP/P
n = {a0 + a1π + · · ·+ an−1π

n−1 modP n : a0, a1, . . . , an−1 ∈ F̃P}. (1.1)

The next theorem, the proof of which is contained in [72], shows that we may approx-

imate an element at several places of F.

Theorem 1.1.2 (i) [Weak Approximation Theorem: ] Let S ⊆ PF be finite. For each

P ∈ S, let xP ∈ F and nP ∈ Z be given. Then there exists an element x ∈ F such

that

νP (x− xP ) = nP

for every P ∈ S. In particular, there exists x ∈ F with νP (x) ≥ 0 for all P ∈ S.

(ii) [Strong Approximation Theorem:] Let S be a proper nonempty subset of PF and

P1, . . . , Ps be s distinct places in S. Then for any x1, . . . , xs ∈ F and integers

n1, . . . , ns, there exists an element x ∈ F such that νPi
(x−xi) = ni for all i = 1, . . . , s

and νP (x) ≥ 0 for all P ∈ S − {P1, . . . , Ps}.
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Let S be a finite subset of PF . Then, the formal sum

D =
∑
P∈S

νP (D)P,

where νP (D)’s are nonzero integers, is called a divisor of F. S is known as the support

of D, usually written as supp(D). If S = ∅, then D = 0 is the zero divisor of F. We will

occasionally write D in the form

D =
∑
P∈PF

mPP,

where mP ’s are integers and mP 6= 0 for finitely many places P. In this case, S =

supp(D) = {P ∈ PF : mP 6= 0}. The set of all divisors of F will be denoted by DF .

The degree map on PF is extended by linearity to DF , namely, we have

deg(
∑

P∈supp(D)

νP (D)P ) =
∑

P∈supp(D)

νP (D) degP.

Clearly, deg : DF → Z is a surjective homomorphism. We define a partial ordering on

DF as follows: For two divisors D1 and D2 ∈ DF , D1 ≤ (respectively ≥) D2 if νP (D1) ≤

(respectively ≥) νP (D2) for all P ∈ supp(D1)∪ supp(D2). A divisor is called positive or

effective if D ≥ 0.

Given a place P of F and a nonzero element x of F , the place P is called a zero

(respectively pole) of x if νP (x) > 0 (respectively < 0). It is clear that a constant

element in Fq has neither poles nor zeros. However, for x ∈ F −Fq, x has at least one but

finitely many zero places. Since a zero place of x is a pole place of x−1, every x ∈ F −Fq

has at least one but finitely many pole places as well. Thus, the following is well-defined.

Let x ∈ F ∗. The principal divisor of x is given by

div(x) =
∑
P∈PF

νP (x)P.



Chapter 1: Algebraic Function Fields 6

For x ∈ F − Fq, div(x) can be written as the difference of two positive divisors, i.e.

div(x) = (x)0 − (x)∞,

where supp((x)0) (respectively supp((x)∞)) is the set of all zero (respectively pole) places

of x. We have the following proposition.

Proposition 1.1.3 For any x ∈ F − Fq,

deg(x)0 = deg(x)∞ = [F : Fq(x)].

In particular, deg div(x) = 0.

For a divisor D of F, we form the Riemann-Roch space to be the vector space

L(D) = {x ∈ F ∗ : div(x) +D ≥ 0} ∪ {0}.

Then L(D) can be shown to be finite-dimensional over Fq, and we denote its dimension

by l(D). The next result presents the relationship between degD and l(D).

Lemma 1.1.4 For a global function field F/Fq, there exists a constant integer c such that

for all divisors D ∈ DF ,

degD − l(D) ≤ c.

Lemma 1.1.4 allows us to define the genus of F which can be considered as the most

important invariant of a function field. More specifically,

Definition 1.1.5 The genus of a function field F/Fq is the integer

g = g(F ) = max
D

(degD − l(D) + 1),

where the maximum is extended over all divisors D of F . By putting D = 0 in this

definition, we see that the genus of F is nonnegative.
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As such, for any divisor D of F,

l(D) ≥ degD + 1− g.

In fact, the well-known Riemann-Roch theorem states that equality holds when degD ≥

2g − 1.

Next, let K ′ ⊇ K = Fq and let F ′/K ′ and F/Fq be two global function fields with F ′

being an algebraic field extension of F. We say that F ′/K ′ is an algebraic extension of

F/Fq and simply write it as F ′/F. For a place P ′ ∈ PF ′ , the restriction P = P ′ ∩F ⊆ P ′

is a place of F. We describe this instance by saying that P ′ lies over P or P lies under

P ′ and we will denote it by P ′|P. Furthermore, the restriction of νP ′ to F produces a

positive integer e(P ′|P ) such that

νP ′(x) = e(P ′|P )νP (x)

for every x ∈ F. In particular, e(P ′|P ) = νP ′(π), where π is the local parameter of F at

P. e(P ′|P ) is called the ramification index of P ′ over P. Further, the residue class field

F̃P ′ of P ′ is a finite field extension of F̃P and the degree of this extension f(P ′|P ) is called

the relative degree of P ′ over P. From the definition of the degree of places, we obtain

degP ′[K ′ : Fq] = degPf(P ′|P ). (1.2)

The following proposition is an important equation involving the ramification index

and the relative degree of places.

Proposition 1.1.6 Let F ′/K ′ and F/Fq be as above and let P ∈ F. Then,

∑
P ′|P

e(P ′|P )f(P ′|P ) = [F ′ : F ].
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Proposition 1.1.6 shows, in particular, that for every place P of F, there is at least

one but at most [F ′ : F ] (and hence finitely many) places of F ′ lying over it.

Let S be a nonempty proper subset of PF and T the subset of PF ′ that consists of all

places of F ′ lying over places in S. Then T is called the over-set of S with respect to

the extension F ′/F . Refer to Section 1.4 for the definition of OS . The integral closure of

OS in F ′ is given by

OT = {z ∈ F ′ : νP ′(z) ≥ 0 for all P ′ ∈ T }.

We now introduce the complementary set of OT and its properties. We refer the reader

to [55, 72] for details and the definition of a T -ideal.

Lemma 1.1.7 Suppose that S is a nonempty proper subset of PF and T the over-set of

S with respect to F ′/F . Define the complementary set of OT by

co(OT ) = {z ∈ F ′ : TrF ′/F (zOT ) ⊆ OS},

where TrF ′/F is the trace function from F ′ to F. Then:

(i) co(OT ) is a T -ideal of F ′ containing OT ;

(ii) (co(OT ))−1 is an integral ideal of OT .

(iii) If S consists of a single place P ∈ PF , then co(OT ) = tOT for some t ∈ F ′ with

νP ′(t) ≤ 0 for every P ′ ∈ T .

Definition 1.1.8 The different of OT with respect to OS is defined by

DS(F ′/F ) = (co(OT ))−1.

If S is a set consisting of one place P of F , we denote DS(F ′/F ) simply by DP (F ′/F ).
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We can now define the different exponent of a place P ′ lying over P.

Definition 1.1.9 Let the place P ′ of F ′ lie over the place P of F . Then the different

exponent of P ′ over P is defined by

d(P ′|P ) = νP ′(DP (F ′/F )),

where νP ′(DP (F ′/F )) = min{νP ′(x) : x ∈ DP (F ′/F )}. In particular, if co(OT ) = tOT as

in Lemma 1.1.7 (iii), then d(P ′|P ) = −νP ′(t).

The next proposition gives some properties of different exponents.

Proposition 1.1.10 For places P ′|P just as before, we have:

(i) d(P ′|P ) is a non-negative integer;

(ii) d(P ′|P ) ≥ e(P ′|P ) − 1. Further, d(P ′|P ) = e(P ′|P ) − 1 if and only if e(P ′|P ) is

relatively prime to p.

Propositions 1.1.6 and 1.1.10 motivate the following definitions describing the behav-

iour of the places P ′|P in the field extension F ′/F . We summarize the definitions in the

table below.
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Behaviour of Behaviour Characteristics

P ′ unramified e(P ′|P ) = 1

P ′ ramified e(P ′|P ) > 1

P ′ tamely ramified e(P ′|P ) > 1, gcd(e(P ′|P ), p) = 1

P ′ wildly ramified e(P ′|P ) > 1, gcd(e(P ′|P ), p) = p

P ′ totally ramified e(P ′|P ) = [F ′ : F ]

P unramified e(P ′|P ) = 1 for all P ′|P

P ramified e(P ′|P ) > 1 for some P ′|P

P totally ramified exactly 1 P ′|P ; e(P ′|P ) = [F ′ : F ]

P splits completely e(P ′|P ) = f(P ′|P ) = 1 for all P ′|P

or exactly [F ′ : F ] places P ′|P

It follows from Proposition 1.1.6 that for a place P ∈ PF , only a finite number of

places P ′ ∈ PF ′ can be ramified in F ′/F. Moreover, by Proposition 1.1.10, if e(P ′|P ) = 1

for some P ′|P, d(P ′|P ) = 1−1 = 0. We can therefore define the global different divisor

of F ′/F as the positive divisor

Diff(F ′/F ) =
∑
P∈PF

∑
P ′|P

d(P ′|P )P ′ ∈ DF ′ .

We can now state the Hurwitz Genus Formula that relates the genera of two

function fields.

Theorem 1.1.11 (Hurwitz Genus Formula) Suppose that F ′/K ′ is a finite separable

extension of F/Fq. Then

2g(F ′)− 2 =
[F ′ : F ]

[K ′ : Fq]
(2g(F )− 2) + deg(Diff(F ′/F )),

where g(F ′) and g(F ) are the genera of F ′ and F , respectively.
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For a separable field extension F ′/F, we can define a norm map from DF ′ to DF by

N(F ′/F ) :
∑

P ′∈PF ′

mP ′P
′ =

∑
P∈PF

∑
P ′|P

f(P ′|P )mP ′P.

Lemma 1.1.12 (i) For an element z ∈ F ′,

N(F ′/F )(div(z)) = div(NF ′/F (z)),

where NF ′/F on the right hand side denotes the usual norm of elements for field extensions.

(ii) For a divisor D ∈ DF ′ ,

[K ′ : Fq] degD = degN(F ′/F )(D).

Corollary 1.1.13 Let F ′/F be a separable extension of global function fields with full

field of constants Fq. Define the discriminant of F ′/F by

D(F ′/F ) = N(F ′/F )(Diff(F ′/F )).

Then

2g(F ′)− 2 = [F ′ : F ](2g(F )− 2) + degD(F ′/F ),

where g(F ′) and g(F ) are the genera of F ′ and F, respectively.

Theorem 1.1.11 readily shows that if F ′ and F have the same full constant field Fq,

then the genus of F cannot exceed that of F ′. This follows from the fact that Diff(F ′/F )

is a positive divisor.

Before we conclude this section, we present a few results that will aid the calculation of

the ramification index and different exponent in certain situations. The first proposition

is concerned with a tower of function fields.
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Proposition 1.1.14 For a field tower F ⊆ F ′ ⊆ F ′′ and a corresponding place tower

P ′′|P ′|P, we have

(i) e(P ′′|P ) = e(P ′′|P ′)e(P ′|P ).

(ii) f(P ′′|P ) = f(P ′′|P ′)f(P ′|P ).

(iii) d(P ′′|P ) = e(P ′′|P ′)d(P ′|P ) + d(P ′′|P ′).

Corollary 1.1.15 Let F1/F and F2/F be finite separable extensions and let F ′ = F1F2,

the compositum of F1 and F2. For i = 1, 2, let Si = {P ∈ PF : P is ramified in Fi/F}.

Given any P ∈ PF , let P ′ be a place of F ′ lying over P and define Pi = P ′ ∩ Fi, where

i = 1, 2. Suppose that S1 ∩ S2 = ∅. Then, the following hold:

(i) [F ′ : F ] = [F1 : F ][F2 : F ];

(ii) e(P ′|P ) = e(Pi|P ) for any P ∈ Si, i = 1, 2;

(iii) d(P ′|P ) = d(Pi|P ) for any P ∈ Si, i = 1, 2.

Proof: All the assertions follow from Proposition 1.1.14 and the fact that F1 and F2

are linearly disjoint. �

We have a generalization of this corollary as stated below.

Lemma 1.1.16 (Abhyankar’s Lemma) Let F1/F and F2/F be finite separable exten-

sions of function fields and let F ′ = F1F2. Let P ′ be a place of F ′ and P a place of F

lying under P ′. For i = 1, 2, define Pi = P ′ ∩ Fi. Then, Pi ∈ PFi
and Pi|P for i = 1, 2.

Suppose that at least one of Pi is tamely ramified in Fi/F. Then,

e(P ′|P ) = lcm(e(P1|P ), e(P2|P )).

The following theorem gives an example of totally ramified extensions. First of all,
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we recall the definition of an Eisenstein polynomial. More specifically, a polynomial

f(t) = akt
k+ak−1t

k−1 + · · ·+a1t+a0 ∈ F [t] is called an Eisenstein polynomial if there

exists a place P such that one of the following conditions is satisfied:

1. νP (ak) = 0, νP (ai) ≥ νP (a0) > 0 for 1 ≤ i ≤ k − 1 and gcd(k, νP (a0)) = 1;

2. νP (ak) = 0, νP (ai) ≥ 0 for 1 ≤ i ≤ k − 1, νP (a0) < 0 and gcd(k, νP (a0)) = 1.

In either case, we also say that f(t) is Eisenstein at P.

Lemma 1.1.17 Let f(t) be an Eisenstein polynomial at a place P as defined above and

let y be a root of f(t). Consider the field extension F ′ = F (y). Then, f(t) is irreducible

in F [t] and [F ′ : F ] = k. Further, P is totally ramified in F ′/F.

Notice from Proposition 1.1.10 (iii) that the different exponent is easily obtained when

a place is tamely ramified. We now provide a method of calculating the different exponent

in the case of total ramification.

Proposition 1.1.18 Let F ′/F be a finite separable extension of function fields with cor-

responding places P ′|P as usual. Suppose that P ′ is totally ramified in F ′/F. Let π be a

local parameter at P ′ and let f(t) be the minimal polynomial of π over F. Then,

d(P ′|P ) = νP ′(f
′(π)),

where f ′(t) denotes the derivative of f(t). Moreover, for any other place Q of F, the

different exponent of a place Q′ of F ′ lying over it satisfies d(Q′|Q) ≤ νQ′(f
′(π)).



Chapter 1: Algebraic Function Fields 14

1.2 Some Algebraic Extensions

In this section, we explore some general algebraic extensions of global function fields. As

before, F/Fq is a global function field and K ′ ⊇ Fq.

Let F ′ = FK ′. Then, it can be checked that F ′ is an algebraic extension of F and

F ′/K ′ is a function field with full constant field K ′. F ′/F is called a constant field

extension of F . It is an unramified extension, that is, all places of F are unramified

in F ′/F. Suppose further that K ′ = Fqn is finite. Then, [F ′ : F ] = [K ′ : K] = n and

Gal(F ′/F ) ∼= Gal(Fqn/Fq) ∼= Z/nZ. Consequently, the Hurwitz genus formula yields

g(F ′) = g(F ).

Lemma 1.2.1 Let F ′/F be a constant field extension such that F ′ = FFqn . Let P be a

place of F with degree degP = d. Then,

(i) There are exactly gcd(d, n) places of F ′ lying over P .

(ii) Each place P ′ of F ′ lying over P has degree degP ′ = d/ gcd(d, n) and relative

degree f(P ′|P ) = n/ gcd(d, n).

Proof: The proof follows from the fact that F̃P ′ = F̃P ·Fqn for any place P ′|P . Since

F̃P = Fq, F̃P ′ = Fql , where l = nd/ gcd(d, n). �

Corollary 1.2.2 Let F ′/F be a constant field extension such that F ′ = FFqn . Then,

every rational place of F remains rational in F ′ and a place of degree n splits into n

rational places in F ′.

For the remaining of this section, we assume that F ′ is a normal and separable exten-

sion over F . We further assume that [K ′ : K] is finite which in turn implies that [F ′ : F ]
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is finite. In this case, the extension F ′/F is called a Galois extension.

Once again, let P be a place of F and P ′ be a place of F ′ with P ′|P. Let G be the

Galois group Gal(F ′/F ). For every σ ∈ G, it can be directly verified that

σ(OP ′) = Oσ(P ′) = {σ(x) : x ∈ OP ′}

is a discrete valuation ring of F ′ containing OP with place σ(P ′). Hence, σ(P ′) is a place

of F ′ lying over P and we have

νσ(P ′)(σ(x)) = νP ′(x)

for every x ∈ F ′. In this way, G acts on the set of places lying over P. In fact, this action

is transitive, i.e. for any two places P1 and P2 of F ′ with P1|P and P2|P, there is a σ ∈ G

such that P2 = σ(P1). The next lemma is a direct consequence of this transitive action.

Lemma 1.2.3 Let F ′/F be a Galois extension and let P1 and P2 be any two places of F ′

lying over P. Then,

(i)

e(P1|P ) = e(P2|P );

(ii)

f(P1|P ) = f(P2|P );

(iii)

d(P1|P ) = d(P2|P ).

Proposition 1.1.6 can now be simplified to:
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Corollary 1.2.4 Let F ′/F be a Galois extension and let P be a place of F. Suppose that

P1, P2, . . . , Pk are distinct places of F ′ lying over P. Then,

k∑
i=1

e(Pi|P )f(Pi|P ) = ke(P ′|P )f(P ′|P ) = [F ′ : F ],

where P ′ is any of the Pi’s.

Next, we explore some subgroups of G = Gal(F ′/F ). Let P be a place of F and P ′

a place of F ′ lying over P. For any integer i ≥ −1, define the i th-lower ramification

group of P ′ over P by

Gi(P
′|P ) = {σ ∈ G : νP ′(σ(x)− x) ≥ i+ 1 for all x ∈ OP ′}.

If π is a local parameter at P ′, then we may also define Gi(P
′|P ) as

Gi(P
′|P ) = {σ ∈ G : νP ′(σ(π)− π) ≥ i+ 1}.

Obviously,

G ⊇ G−1(P
′|P ) ⊇ G0(P

′|P ) ⊇ G1(P
′|P ) ⊇ · · · ⊇ {1}.

By Galois theory, we have corresponding i th-lower ramification fields

F ⊆ F−1(P
′|P ) ⊆ F0(P

′|P ) ⊆ · · · ⊆ F ′,

where Fi(P
′|P ) is the fixed field of Gi(P

′|P ).

We summarize the main properties of the i th-lower ramification groups in the theorem

below.

Theorem 1.2.5 For any integer i ≥ −1, let Gi(P
′|P ) be the i th-lower ramification

groups defined above.
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(i) For any σ ∈ G,Gi(σ(P ′)|P ) and Gi(P
′|P ) are conjugate groups, i.e. Gi(σ(P ′)|P ) =

σGi(P
′|P )σ−1.

(ii) Gi(P
′|P ) = {1} for sufficiently large i.

(iii) G−1(P
′|P ) has cardinality e(P ′|P )f(P ′|P ) and G0(P

′|P ) is a normal subgroup of

G−1(P
′|P ) with cardinality |G0(P

′|P )| = e(P ′|P ).

(iv) G1(P
′|P ) is a normal subgroup of G0(P

′|P ) and the factor group G0(P
′|P )/G1(P

′|P )

is cyclic with order relatively prime to p.

(v) Gi(P
′|P ) are p-elementary abelian groups for i ≥ 1.

Let us take a closer look at the first two ramification groups, namely, G−1(P
′|P ) and

G0(P
′|P ) known respectively as the decomposition group and the inertia group of

P ′|P. The corresponding ramification fields are then called decomposition field and

inertia field. Note that G0(P
′|P ) = {σ ∈ G : σ(P ′) = P ′}.

Proposition 1.2.6 With the notations above, we have

(i) For each σ ∈ G−1(P
′|P ), let σ ∈ Gal(F̃P ′/F̃P ) be defined by

σ(z) = σ(z) + P ′

for all z ∈ OP ′ . Then the map that sends σ 7→ σ is a surjective homomorphism from

G−1(P
′|P ) to Gal(F̃P ′/F̃P ) with kernel G0(P

′|P ). Consequently, G−1(P
′|P )/G0(P

′|P )

∼= Gal(F̃P ′/F̃P ).

(ii) P splits completely in F−1(P ′|P )/F, i.e. if P−1 is a place of F−1(P
′|P ) lying over P,

then

e(P−1|P ) = f(P−1|P ) = 1.
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(iii) Let P−1 be any place of F−1(P
′|P ) lying over P. Then, P ′ is the only place of F ′

lying over P−1. Moreover, if P0 = P ′∩F0(P
′|P ), then e(P0|P−1) = 1 and e(P ′|P0) =

e(P ′|P ) = [F ′ : F0(P
′|P )].

Corollary 1.2.7 Let L be an intermediate field of F ′/F . Let P ′ be a place of F ′ lying

over P ∈ PF and let Q ∈ PL be the place lying under P ′. Then we have:

(i) P is unramified in L/F if and only if L ⊆ F0(P
′|P );

(ii) Q is totally ramified in F ′/L if and only if L ⊇ F0(P
′|P );

(iii) P splits completely in L/F if and only if L ⊆ F−1(P
′|P );

(iv) P ′ is the only place of F ′ lying over Q if and only if L ⊇ F−1(P
′|P ).

Corollary 1.2.8 Suppose that L1/F and L2/F are two finite separable extensions and L

is the compositum of L1 and L2. Then for a place P ∈ PF , we have:

(i) P splits completely in L/F if and only if P splits completely in both L1/F and

L2/F ;

(ii) P is unramified in L/F if and only if P is unramified in both L1/F and L2/F .

Now, suppose that P is unramified in F ′/F, i.e. the inertia field F0(P
′|P ) = F ′. By

Proposition 1.2.6 (i), the decomposition group G−1(P
′|P ) is isomorphic to the cyclic group

Gal(F̃P ′/F̃P ) which is in turn isomorphic to Z/fZ, where f = f(P ′|P ). Consequently,

there is a unique σ ∈ G−1(P
′|P ) such that

σ(z) ≡ zq
deg P

modP ′

for all z ∈ OP ′ . Observe that σ depends only on P ′|P and it is called the Frobenius

symbol of P ′ over P. We denote it by
[
F ′/F
P ′

]
and it has the following properties:
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Theorem 1.2.9 Suppose that the finite Galois extension F ′/F is unramified at P ∈ PF

and let P ′ be a place of F ′ lying over P . Assume that L is an intermediate field of F ′/F

and R ∈ PL is the place lying under P ′. Then we have:

(i) For any τ ∈ Gal(F ′/F ), [
F ′/F

τ(P ′)

]
= τ

[
F ′/F

P ′

]
τ−1.

(ii) [
F ′/L

P

′]
=

[
F ′/F

P ′

]f(R|P )

.

(iii) If L/F is a Galois extension, then the restriction of
[
F ′/F
P ′

]
to L is equal to

[
L/F
R

]
.

Proof: (i) This follows from Theorem 1.2.5 and the uniqueness of the Frobenius

symbol.

(ii) This can be easily seen from the definitions of the respective Frobenius symbols

and that the residue class field F̃R = Fqdf , where f = f(R|P ).

(iii) Let σ =
[
F ′/F
P ′

]
. By the definition of the Frobenius symbol, we have

σ(z) ≡ zq
d

modP ′

for all z ∈ OP , where d = degP. Clearly OR ⊆ OP ′ . Thus, the above equation charac-

terizing the Frobenius symbol is again satisfied for all z ∈ OR. The uniqueness of the

Frobenius symbol yields our desired result. �

If in addition, F ′/F is an abelian extension, then it follows from Theorem 1.2.9 (i)

that the Frobenius symbol
[
F ′/F
P ′

]
does not depend on P ′, but rather, it depends only on

the place P of F lying under P ′. It is thus unambiguous to write the Frobenius symbol

as
[
F ′/F
P

]
, which is called the Artin symbol of P in F ′/F .
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Proposition 1.2.10 Let F ′/F be a Galois abelian extension and let L be a subfield of

F ′/F . Suppose that F ′/F is unramified at P ∈ PF . Then P splits completely in L/F if

and only if the Artin symbol
[
F ′/F
P

]
belongs to Gal(F ′/L).

Proof: Now, P splits completely in L/F if and only if the decomposition group of

P is trivial if and only if the Artin symbol
[
L/F
P

]
is trivial and by (ii) of the preceding

theorem, this holds if and only if the restriction of
[
F ′/F
P

]
to L is trivial if and only if[

F ′/F
P

]
lies in Gal(F ′/L). �

1.3 Upper Ramification Groups and the Hilbert’s Dif-

ferent Formula

We continue to let F ′/F be a Galois extension of function fields with G = Gal(F ′/F ).

Further, suppose throughout this section that F ′/F is an abelian extension. Fix a place

P of F and a place P ′ ∈ PF ′ lying over P .

Consider the P -adic completion FP and the P ′-adic completion F ′
P ′ of F and F ′

respectively. Given any σ ∈ G, σ induces an isomorphism σ′ between F ′
P ′ and F ′

σ(P ′)

keeping FP fixed. Thus, if σ ∈ G−1(P
′|P ), σ′ becomes an automorphism of F ′

P ′ . In

fact, the map θ sending σ ∈ G−1(P
′|P ) to σ′ ∈ Gal(F ′

P ′/FP ) is an isomorphism. As a

consequence, F ′
P ′/FP is Galois and

[F ′
P ′ : FP ] = |G−1(P

′|P )| = e(P ′|P )f(P ′|P ).
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For all integers i ≥ −1, we define the i th-lower ramification groups of F ′
P ′/FP by

Gi(F
′
P ′/FP ) = {τ ∈ Gal(F ′

P ′/FP ) : νP ′(τ(a)− a) ≥ i+ 1 for all a ∈ OP ′},

where νP ′ and OP ′ refer to the normalized discrete valuation and the valuation ring of

F ′
P ′ , respectively.

One sees easily that the map θ induces an isomorphism betweenGi(P
′|P ) andGi(F

′
P ′/FP )

for all i ≥ −1. In view of this, we simply write Gi = Gi(P
′|P ) for Gi(F

′
P ′/FP ) and let

gi = |Gi|.

Define the map η : [−1,∞) → [−1,∞) by

η(u) =

 u if − 1 ≤ u ≤ 0,

g1+g2+···+gbuc+(u−buc)gbuc+1

g0
otherwise

(Here, bxc refers to the greatest integer <= x.)

We summarize some facts on the function η in the next lemma. The reader may refer

to [65] for their proofs.

Lemma 1.3.1 Let η : [−1,∞] → [−1,∞] be the map defined above. Then,

(i) η is piecewise linear, continuous, strictly increasing and concave on the interval

[−1,∞]. Hence, the inverse map ψ = η−1 is well-defined on [−1,∞].

(ii) ψ is piecewise linear, continuous, strictly increasing and convex on [−1,∞].

(iii) If u is an integer, then ψ(u) is an integer too.

(iv) [Hasse-Arf Theorem] If u is an integer such that Gu 6= Gu+1, then η(u) is an

integer.

For any integer i ≥ −1, we define the i th-upper ramification groups by

Gi = Gi(P ′|P ) = Gψ(i)
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and the i th-upper ramification fields F i = F i(P ′|P ) as the corresponding fixed

fields of Gi. This definition makes sense according to Lemma 1.3.1 (iii). Again, we have

G−1 ⊇ G0 ⊇ G1 ⊇ . . .

and Gu = {1} for sufficiently large u. Moreover, we see directly from the definition that

if L is an intermediate field with F ⊆ L ⊆ F ′ and PL is a place of L lying under P ′, the

restriction map that sends Gal(F ′/F ) to Gal(L′/F ) sends Gi(P ′|P ) onto Gi(PL|P ).

By letting l0 = 0, let the numbers 1 ≤ l1 < l2 < · · · < ls be such that Gli+1 = Gli+2 =

· · · = GLi+1
, Gli 6= Gli+1

, i = 0, 1, . . . , s− 1 and Gls+1 = {1}. Likewise, define the numbers

u0 = 0, u1, u2, . . . , ut for the upper ramification groups.

Observe that by combining Lemma 1.3.1 (iii) and (iv), we must have η(lj) = uj for all

j which further implies that s = t.

Lemma 1.3.2 For j = 0, . . . , s− 1,

[G0 : Guj+1 ] =
lj+1 − lj
uj+1 − uj

.

Proof: From the definition of η and the preceding remark, it follows by induction

that for j = 0, 1, . . . , s− 1,

(lj+1 − lj)
glj+1

g0

= uj+1 − uj.

Hence,

[G0 : Guj+1 ] = [G0 : Glj+1
]

=
g0

glj+1

=
lj+1 − lj
uj+1 − uj

.
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�

We can now present the Hilbert’s different formula that calculates the different expo-

nent of P ′ over P.

Theorem 1.3.3 (Hilbert’s Different Formula) Let F ′/F be a finite Galois extension

and let P ′ be a place of F ′ lying over P ∈ PF . Then, the different exponent d(P ′|P ) is

given by:

(i) [Lower index]

d(P ′|P ) =
∞∑
i=0

(|Gi| − 1).

(ii) [Upper index]

d(P ′|P ) =
∞∑
i=0

(|G0| − [G0 : Gi]).

Proof: (i) This is derived from Proposition 1.1.18. Refer to [72, Chapter III] for

details.

(ii) From (i),
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d(P ′|P ) =
∞∑
i=0

(gi − 1)

= g0 − 1 +
s−1∑
j=0

(lj+1 − lj)(glj+1
− 1)

= |G0| − 1 +
s−1∑
j=0

(lj+1 − lj)(|Guj+1| − 1)

= |G0| − 1 +
s−1∑
j=0

(lj+1 − lj)(|G0| − [G0 : Guj+1 ])/[G0 : Guj+1 ]

= |G0| − 1 +
s−1∑
j=0

(uj+1 − uj)(|G0| − [G0 : Guj+1 ])

=
∞∑
i=0

(|G0| − [G0 : Gi]).

�

The integer us + 1 defined above is usually denoted by c(P ′|P ) and is called the

conductor exponent of P ′|P. In other words, c(P ′|P ) is the smallest integer j for which

Gj = {1}. Notice that as F ′/F is an abelian extension, the i th-upper ramification groups

are independent of the choice of P ′ lying over P. Thus, the conductor exponent is the

same for all P ′|P and we will simply write cP for the conductor exponent c(P ′|P ). Since

G0 is the inertia group, it follows immediately that c(P ′|P ) = 0 if and only if P ′|P is

unramified. This makes it meaningful to define the conductor of F ′/F as the positive

divisor

Con(F ′/F ) =
∑
P∈PF

cPP.
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Corollary 1.3.4 Let F ′/F be an abelian Galois extension with the same constant field

Fq. Then, the genus of F ′ is given by

2g(F ′)−2 = [F ′ : F ](2g(F )−2)+ |G| deg Con(F ′/F )−
∑

P∈supp(Con(F ′/F ))

cP−1∑
j=0

[G : Gj] degP.

Equivalently,

2g(F ′)−2 = [F ′ : F ](2g(F )−2)+[F ′ : F ] deg Con(F ′/F )−
∑

P∈supp(Con(F ′/F ))

cP−1∑
j=0

[F j : F ] degP.

Proof: For each P ∈ PF , we have∑
P ′|P

f(P ′|P )P = [G : G0]P

since G0 is the inertia group of P ′|P. The result now follows from Corollary 1.1.13. �

Corollary 1.3.5 Let F ′/F be an abelian Galois extension of global function fields with

full constant field Fq. Let P be a place of F with conductor exponent cP = n. Suppose that

Gn−1 = G. Then the genus of F ′ is given by

2g(F ′)− 2 = [F ′ : F ](2g(F )− 2 + n degP )− n degP.

In particular, if P is totally ramified in F ′/F and cP ≤ 2, then

g(F ′) = 1− degP + [F ′ : F ](g(f) + degP − 1).

Proof: Since G0 = G1 = · · · = Gn−1 = G, the first result is a direct consequence of

Corollary 1.3.4. The second assertion is trivial for cP < 2. So suppose cP = 2. Since P is to-

tally ramified, we conclude from the properties of ramification groups that G0 = G1 = G.

Clearly, G1 = G1 = G. Hence the assumptions for the first assertion hold and the genus

formula follows. �
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1.4 Divisor Classes and Divisor Class Groups

Recall that for a global function field F/Fq, we have defined DF to be the set of all

divisors of F . In fact, DF is a free abelian group on the set of places PF under the

following operation: ∑
P∈PF

mPP +
∑
P∈PF

nPP =
∑
P∈PF

(mP + nP )P.

Hence, the degree map deg : DF → Z is a group homomorphism and its kernel is denoted

by D0
F .

According to Proposition 1.1.3, for every z ∈ F ∗, the principal divisor div(z) has

degree 0. Let Princ(F ) be the subgroup of Div0(F ) consisting of all principal divisors

div(z). Then, the factor group Cl(F ) = Div0(F )/Princ(F ) is finite and its cardinality is

commonly known as the divisor class number of F , denoted by h(F ).

More generally, for a subset T of PF , let DivT (F ) be the group of divisors of F with

support away from T . Since Z is a principal ideal domain, there exists a positive integer

d = deg T such that the degree map restricted to DivT (F ) has image dZ. In particular, if

T ′ = PF −T is finite, then d is the gcd of the degrees of all the places in T ′. Div0
T (F ) will

again refer to the group of divisors of DivT (F ) of degree 0. For a positive divisor D of F,

we will write DivD(F ) and Div0
D(F ) for Divsupp(D)(F ) and Div0

supp(D)(F ), respectively.

Let S be a subset of PF such that S ′ = PF − S is nonempty and finite. Define the

integral ring OS to be the intersection

OS =
⋂
P∈S

OP ,

i.e. OS consists of all the elements of F with poles only in S ′. The unit group O∗
S is called

the group of S-units of F.
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Theorem 1.4.1 (Dirichlet Unit Theorem) Let S be a subset of PF such that S ′ =

PF − S is nonempty and finite. Then, O∗
S/F

∗
q is a free abelian group of rank |S ′| − 1.

OS is in fact a Dedekind domain with prime ideals P ∩OS , P ∈ S and field of fractions

F.

Lemma 1.4.2 Let n be a positive integer and let P ∈ S. The map µ : OS → OP/P
n

defined by

x 7→ x+ P n

is surjective with kernel P n ∩OS.

Proof: Clearly, µ is a well-defined map with kernel OS ∩P n. It remains to show that

µ is onto. Let x + P n ∈ OP/P
n. Since S is a proper subset of PF , we may apply the

strong theorem to obtain an x′ ∈ F such that

(i) νP (x′ − x) > max(n, νP (x));

(ii) νQ(x′) ≥ 0 for all Q ∈ S − {P}. Then, x′ ∈ OS and x′ − x ∈ P n. Hence,

µ(x′) = x′ + P n = x+ P n. �

We define the S-ideal class group Cl(OS) to be the quotient of the group of S-fractional

ideals of OS by the group of principal ideals of the form zOS , z ∈ F ∗. One can show that

the S-ideal class group has finite order h(S).

Next, let D =
∑

P∈PF
mPP be an effective divisor of F with supp(D) ⊆ S. Observe

that D can be identified with the ideal
∏

P∈supp(D)(P ∩OS)mP , and thus, D will represent

the corresponding ideal under this identification too. We say that an element z ∈ F ∗ is

equivalent to 1 modD, written as z ≡ 1 modD if for all P ∈ supp(D), νP (z − 1) ≥ mP .
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An ideal J of OS is prime to D if all prime ideals Q of OS that divide J (or equivalently,

the places in the support of J as a divisor) are not in supp(D). Clearly, the principal ideal

zOS is prime to D for z ≡ 1 modD. Let ID(OS) be the group of all fractional ideals of

OS that are prime to D and PrincD(S) be the group of principal ideals of the form zOS

such that z ≡ 1 modD. The quotient group ID(OS)/PrincD(S) is denoted by ClD(OS).

This group is called the S-ray class group mod D. Notice that when D = 0, we obtain

the S-ideal class group defined above.

In addition, let PrincD(F ) be the group of principal divisors div(z), where z ≡

1 modD. With all these notations, we have the following proposition.

Proposition 1.4.3 (i) ClD(OS) is isomorphic to Div0
D(F )/(Div0

S(F ) + PrincD(F )).

(ii) We have the following exact sequence:

0 → Div0
S(F )/(Div0

S(F ) ∩ PrincD(F )) → Div0
D(F )/PrincD(F ) → Div0

D(F )/(Div0
S(F ) +

PrincD(F ))
deg→ Z/ degSZ.

Proof: (i) Define a map θ that sends the divisor
∑

P∈PF−supp(D)mPP ∈ Div0
D(F ) to∏

P 6∈S(P ∩OS)mP PrincD(S). It is clear that θ is onto and has kernel Div0
S(F )+PrincD(F ).

Thus, θ induces the isomorphism as required.

(ii) All the maps are canonical. �

Corollary 1.4.4 If S consists of a single rational place, then Cl(F ) ' Cl(OS). In par-

ticular, h(F ) = h(OS).

Proof: Put D = 0 in the above proposition. Then Div0
S(F ) = F∗

q and degS = 1.

The desired isomorphism follows. �
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Let D be as above. Suppose that ∞ is a fixed rational place of F with ∞ 6∈ supp(D).

Define ClD(F ) to be the factor group

ClD(F ) = Div0
D(F )/PrincD(F ).

We represent the elements of ClD(F ) by the equivalence classes [C], where C ∈ Div0
D(F ).

Lemma 1.4.5 Every element of ClD(F ) can be written in the form [H − (degH)∞] for

some positive divisor H of Div0
D(F ). Moreover, for a finite subset T of PF such that

T ∩ supp(D) = ∅, H can be chosen such that supp(H) ∩ T = ∅.

Proof: Let [C] be an arbitrary element of ClD(F ). Write C =
∑

P∈PF
cPP. Let

S = PF − {∞}. By the strong approximation theorem (Theorem 1.1.2 (ii)), there exists

an element z ∈ F ∗ such that

(i)

νP (z) = −cP

for all P ∈ supp(C);

(ii)

νP (z − 1) ≥ mP

for all P ∈ supp(D);

(iii)

νP (z) = 0

for all P ∈ T , P 6∈ supp(C); and

(iv)

νP (z) ≥ 0
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for all P ∈ S − supp(C) − supp(D) − T . Let H = C + div(z). Then, [C] = [H] with H

having the desired form. �

As a consequence of Lemma 1.4.5, we can identify an element
∏

P 6=∞,P 6∈supp(D)(P ∩

OS)mP PrincD(S) ∈ ClD(OS) when S ′ = {∞} with the divisor
∑

P 6=∞,P 6∈supp(D)mPP −∑
P 6=∞,P 6∈supp(D)mP degP∞+PrincD(F ) ∈ ClD(F ). This identification will be made often

throughout the thesis, depending on the more convenient form for the particular context.

1.5 Upper Bounds for Number of Rational Places

This thesis is primarily concerned with the search of global function fields with large

number of rational places relative to their genera. How large can this number be? In this

section, we will present some well-known upper bounds for the number of rational places

that a global function field of fixed genus can have. First, we need to introduce the zeta

functions and the L-polynomials of F.

Recall from Lemma 1.1.1 that for any integer d, the set Pd
F of all places of F of degree

d is finite. It is therefore obvious that given any integer k, the number of positive divisors

of F of degree k is finite. The following definition is now meaningful.

Definition 1.5.1 For a global function field F/Fq, we define the zeta function of F by

ZF (t) = Z(t) =
∞∑
k=0

Akt
k ∈ C[t],

where Ak is the number of positive divisors of F of degree k.

In fact, ZF (t) is a rational function according to the following theorem.
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Theorem 1.5.2 For a global function field F/Fq, the zeta function ZF (t) can be written

as

ZF (t) = LF (t)/(1− t)(1− qt),

where LF (t) is a polynomial over Z of degree 2g, g being the genus of F.

The polynomial LF (t) in the above theorem is called the L-polynomial of F and it

satisfies the following properties.

Lemma 1.5.3 Let F/Fq be a global function field of genus g with LF (t) as its L-polynomial.

Write LF (t) as

LF (t) =

2g∑
i=0

ait
i ∈ Z[t].

Then,

(i) LF (t) = qgt2gLF ( 1
qt

).

(ii) a0 = 1 and a2g−i = qg−iai for all 0 ≤ i ≤ g. Thus, a2g = qg.

(iii)
∑2g

i=0 ai = h(F ), where h(F ) denotes the divisor class number of F.

For a positive integer n, let Fn be the constant field extension Fn = FFqn . We can

similarly define the zeta function and L-polynomial over Fn, denoted by ZFn(t) and LFn(t),

respectively.

Lemma 1.5.4 With notations as above,

(i)

ZFn(tn) =
∏
ζn=1

ZF (ζt),

where the product is taken over all nth roots of unity.

(ii) ω is a root of LF (t) if and only if ωn is a root of LFn(t).
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In 1948, Weil proved the analog of the famous Riemann hypothesis for algebraic func-

tion fields, namely,

Theorem 1.5.5 Let LF (t) be the L-polynomial of a global function field F/Fq of genus

g. Suppose that the complex numbers 1/ω1, 1/ω2, . . . , 1/ω2g are the roots of LF (t). Then,

|ωi| =
√
q for 1 ≤ i ≤ 2g.

Remark 1.5.6 We can prove the preceding theorem in several ways. For instance, Bombieri’s

elementary proof is discussed in [72, Chapter V] while the l-adic cohomology approach is

presented in [23, Appendix C].

An immediate consequence of Theorem 1.5.5 yields an upper bound for the number

of rational places of F, denoted by N(F ).

Theorem 1.5.7 (Hasse-Weil Bound) Let F/Fq be a global function field of genus g.

Then the number N(F ) of rational places of F/Fq satisfies

|N(F )− (q + 1)| ≤ 2gq1/2.

If N(F ) attains the Hasse-Weil bound, F is called a maximal function field. Obvi-

ously, F can only be maximal when g = 0 or q is a square. Moreover, the proposition

below holds (refer to [13], [96] and [12] for more details).

Proposition 1.5.8 Let F/Fq be a maximal function field. Then the genus g of F satisfies

one of the following:

(i)

g = (q −√
q)/2,
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or (ii)

g ≤ (
√
q − 1)2/4.

Proposition 1.5.8 shows, in particular, that the Hasse-Weil bound is not sharp for large

genus relative to q. Serre improved the bound for nonsquares q as follows.

Theorem 1.5.9 (Serre bound) Let F/Fq be a global function field with genus g. Denote

by N(F ) the number of rational places of F. We have

|N(F )− (q + 1)| ≤ gb2q1/2c.

Next we fix q and an integer g ≥ 0. Consider all global function fields F/Fq of genus

g. Let Nq(g) be the maximum number of rational places contained in all such fields, i.e.

Nq(g) = max{N(F )}, where the maximum is extended over all global function fields

of genus g. A function field F/Fq of genus g is said to be optimal if N(F ) = Nq(g).

According to the Serre bound,

Nq(g) ≤ q + 1 + gb2q1/2c.

This bound can be improved by the so-called “explicit Weil formulas’ introduced by Serre

[66] which will now be presented.

Theorem 1.5.10 For k ≥ 1, suppose that c1, . . . , ck are k nonnegative real numbers such

that at least one of them is not equal to zero and the inequality

1 + λk(t) + λk(t
−1) ≥ 0

holds for all t ∈ C with |t| = 1, where λk(t) =
∑k

n=1 cnt
n. Then we have

Nq(g) ≤
g

λk(q−1/2)
+

λk(q
1/2)

λk(q−1/2)
+ 1
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for any q and g.

Remark 1.5.11 The optimization of the explicit Weil formulas can be carried out via

linear programming as suggested by Oesterlé in an unpublished manuscript to Serre (see

[69]). Hence, the upper bound of Nq(g) obtained by this method will be called the Oesterlé

bound.

In fact, the exact values of Nq(1) and Nq(2) are known for all prime powers q (refer

to [66]). However, for larger values of g, there have yet been explicit formulas to describe

Nq(g). Instead, tables containing upper and lower bounds on Nq(g) obtained through

various means have been tabulated by several mathematicians. A comprehensive and

updated survey of bounds on Nq(g), where q is a small power of 2 and 3, and g ≤ 50 is

maintained by Van Der Geer and Van Der Vlugt [82]. For bounds on N5(g), we may refer

to [55].
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Examples of Function Fields

After developing some general concepts of global function fields, we are now ready to

explore explicit examples of these function fields. As such, this chapter introduces four

of the most common global function fields, namely, rational function fields, cyclotomic

function fields, as well as Kummer extensions and Artin-Schreier extensions of global

function fields. These function fields are of particular interest as their genera, and in

some cases, their defining equations can be explicitly obtained. Many of the results in

the first three sections will be quoted without proofs, and readers may refer to [72] for

further details. As cyclotomic function fields play a critical role in subsequent chapters,

we will present its theory with greater depth.

2.1 Rational Function Fields

By merely looking at its definition, an obvious example of a global function field is the

rational function field F = Fq(x), where x is an indeterminate. Indeed, it is one of the

35
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most fundamental global function fields since it has genus g(F ) = 0. Moreover, one can

show that any global function field with genus 0 is a rational function field.

Let us examine the places of F. For a monic irreducible polynomial p(x) of Fq[x], we

may define a surjective function νp(x) : F → Z ∪ {∞} by setting νp(x)(f(x)) to be the

power of p(x) occuring in f(x) for every f(x) ∈ F. It can be directly verified that νp(x) is

a normalized discrete valuation with corresponding valuation ring

Op(x) = {f(x)/g(x) ∈ F : g(x) 6= 0, gcd(p(x), g(x)) = 1}

with place

Pp(x) = p(x)Op(x) = {f(x)/g(x) ∈ F : g(x) 6= 0, p(x)|f(x) and gcd(p(x), g(x)) = 1}.

The residue class field is isomorphic to the finite field Fq[x]/(p(x)) which implies that

degP = deg p(x).1

Next, by extending the degree function − deg on Fq[x] to the whole of Fq(x), we

obtain another normalized discrete valuation ν∞. More specifically, for all f(x)/g(x) ∈

Fq(x), g(x) 6= 0,

ν∞(f(x)/g(x)) = deg g(x)− deg f(x).

Since its valuation ring

O∞ = {f(x)/g(x) ∈ F : g(x) 6= 0, deg f(x) ≤ deg g(x)}

has place

P∞ = {f(x)/g(x) ∈ F : g(x) 6= 0, deg f(x) < deg g(x)},
1In this thesis, we often let p(x) denote the place Pp(x) corresponding to a monic irreducible polynomial

p(x) ∈ Fq[x].
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it follows that its residue class field is isomorphic to Fq. Consequently, P∞ is a rational

place of F.

Theorem 2.1.1 The places corresponding to p(x), where p(x) is a monic irreducible poly-

nomial of Fq[x] together with P∞ described above constitute all the places of F.

Proof: Refer to [72, Chapter I]. �

Remark 2.1.2 The places p(x) are often referred to as the finite places of F while P∞,

which is in fact a pole of x, is called the infinite place of F.

Corollary 2.1.3 The rational function field F = Fq(x) is maximal.

Proof: By Theorem 2.1.1, all the finite rational places of F correspond to monic

linear polynomials of F, that is, they are of the form x− a, a ∈ Fq. Therefore, there are q

finite rational places of F. Together with the infinite place P∞, F has q+1 rational places

in all, which is precisely the Hasse-Weil bound for g = 0. �

Let f(x) be a nonconstant element in F. Write f(x) = α
∏t

i=0 pi(x)
ei ∈ F where pi(x)’s

are monic irreducible polynomials over Fq, α ∈ Fq and ei are integers. It is clear that the

principal divisor of f(x) is given by

div(f(x)) =
t∑
i=1

eipi(x)− deg f(x)P∞

which verifies Proposition 1.1.3 stating that deg div(f(x)) = 0.

Since the genus of F is 0, the L-polynomial of F is LF (t) = 1 according to Lemma

1.5.3. Consequently, F has class number 1, i.e. every divisor of F of degree 0 is principal.
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Finally, we prove that every extension of the rational function field with genus > 0

must be ramified, namely,

Lemma 2.1.4 Let F ′/F be an algebraic separable extension of global function fields with

F being the rational function field Fq(x). Suppose that the genus of F ′ is positive. Then

there must exist a place P ∈ PF such that P is ramified in F ′/F.

Proof: Suppose to the contrary that all places of F are unramified in F ′/F. This

implies that the different Diff(F ′/F ) is 0. By the Hurwitz genus formula, the genus of F ′

is given by

2g(F ′)− 2 = [F ′ : F ](2g(F )− 2) = −2[F ′ : F ] ≤ −2.

This clearly gives g(F ′) ≤ 0 which contradicts our assumption. �

In the next two sections, we will discuss the properties of two of the most well-known

Galois extensions of a global function field, one of which has degree relatively prime to

p while the other has degree a power of p. For both of these extensions, F will denote a

global function field of genus g(F ).

2.2 Kummer Extensions

Throughout this section, let n be a positive integer that divides q− 1, in which case there

exists an element ζ ∈ Fq such that ζn = 1. Since F∗
q is a cyclic group, we may assume

that ζ is a primitive n-th root of unity, that is, ζn = 1 and ζ i 6= 1 for 1 < i < n.

For an element f ∈ F, f is said to be nth Kummer non-degenerate if f cannot

be written in the form f = gm for some g ∈ F and m|n,m > 1. The next lemma gives a
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sufficient condition for f to be n-th Kummer non-degenerate.

Lemma 2.2.1 Suppose that there is a place P ∈ PF such that gcd(νP (f), n) = 1. Then,

f is nth Kummer nondegenerate.

Proof: Suppose not. Write f = gm, where g ∈ F and m|n,m > 1. Then,

νP (f) = νP (gm) = mνP (g)

which implies that gcd(νP (f), n) = m, a contradiction. �

Theorem 2.2.2 Let f be an nth Kummer nondegenerate element of F . Suppose that y is

a root of the polynomial h(t) = tn− f. Then the extension F ′ = F (y) is called a Kummer

extension and the following hold:

(i) h(t) is the minimal polynomial of y over F . Thus, [F ′ : F ] = n.

(ii) The extension F ′/F is Galois and cyclic. Furthermore, Gal(F ′/F ) = {σ : σ(y) =

ζ iy, i = 1, 2, . . . , n}.

(iii) Let P be a place of F and P ′ a place of F ′ lying over it. Then e(P ′|P ) =

n/ gcd(νP (f), n).

(iv) Suppose that there exists a place Q of F such that gcd(νQ(f), n) = 1, i.e. Q is

totally ramified in F ′/F. Then Fq is the full constant field of F ′.

Corollary 2.2.3 Let F ′/F be a Kummer extension as in Theorem 2.2.2. Assume further

that there exists a place Q of F that is totally ramified in F ′/F. Then the genus of F ′ is

given by

g(F ′) = 1 + n(g(F )− 1) +
1

2

∑
P∈PF

(n− gcd(νP (f), n)) degP.
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Proof: Let P be a place of F and P ′ a place of F ′ lying over it. Since gcd(n, p) = 1,

it follows from Theorem 2.2.2 and Proposition 1.1.10 that d(P ′|P ) = n/ gcd(νP (f), n)−1.

Further, ∑
P ′|P

f(P ′|P ) = n/e(P ′|P ) = gcd(νP (f), n).

Thus, the discriminant of F ′/F is

D(F ′/F ) =
∑
P∈PF

gcd(νP (f), n)(n/ gcd(νP (f), n)− 1)P =
∑
P∈PF

(n− gcd(νP (f), n))P

and the genus is obtained from Corollary 1.1.13. �

Corollary 2.2.4 Let q be odd. Let F be the rational function field Fq(x) and let f ∈ Fq[x]

be a product of distinct monic irreducible polynomials. Suppose that F ′ = F (y) = Fq(x, y)

with y2 = f(x). Then all conditions in Theorem 2.2.2 are satisfied and the genus of F ′ is

given by

g(F ′) =

 (deg f − 1)/2 if deg f is odd,

(deg f − 2)/2 if deg f is even

Proof: Write f = αp1(x)p2(x) . . . pt(x) as a product of monic irreducible polyno-

mials p1(x), . . . , pt(x) and α ∈ F∗
q. Since νpi(x)(f) = 1 for all i = 1, . . . , t, f is Kummer

nondegenerate. Let P∞ denote the infinite place of F. Then νP∞(f) = − deg f. Hence,

Corollary 2.2.3 yields

g(F ′) = 1 + 2(0− 1) +
1

2
(

t∑
i=1

deg pi(x) + (2− gcd(2, deg f))

which gives the result. �
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Remark 2.2.5 Suppose that deg f = 3 in Corollary 2.2.4. It follows that the genus of F ′

is 1. Such fields are known as elliptic function fields.

In order to investigate the splitting behaviour of unramified places in such extensions,

the following theorem may be helpful.

Theorem 2.2.6 Let F be a global function field and F ′ = F (y), with h(t) being the

minimal polynomial of y over F. Let P be a place of F that is unramified in F ′/F. Suppose

that h(t) ∈ OP [t], where OP is the valuation ring of P in F. Factor h(t) into a product of

irreducible factors over F̃P , namely,

h(t) =
s∏
i=1

γi(t)
εi modP.

Let Γi(t) ∈ F [t] be such that Γi(t) = γi(t) modP for i = 1, . . . , s. Then εi = 1 for all

i = 1, . . . , s and there are exactly s places P1, . . . , Ps lying over P, where Pi is uniquely

defined by the condition Γi(y) ∈ Pi. Further, f(Pi|P ) = deg γi(t) for each i.

Proof: This is in fact a special case of the Kummer’s theorem (refer to [72, Chapter

III]). �

Example 2.2.7 Let F be the rational function field F7(x). Consider the field F ′ = F (y),

where

y2 = f(x) = x3 + 4x2 + 3x+ 2.

According to Theorem 2.2.2, F ′/F is a Kummer extension with [F ′ : F ] = 2. Applying

Corollary 2.2.3, it is easy to see that g(F ′) = 1, i.e. F ′ is an elliptic function field. Next,

we explore the splitting behaviour of the places of F in the extension. Since f has odd
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degree, ∞ is ramified in F ′/F. Clearly, we have the following congruences:

f(1) ≡ 3 mod 7,

f(2) ≡ f(3) ≡ f(5) ≡ 22 mod 7,

f(4) ≡ f(6) ≡ 12 mod 7.

By Theorem 2.2.6, x+6 is unramified and has a unique place Q lying over it with f(Q|(x+

6)) = 2. All other finite rational places split completely in the extension. Consequently,

F ′ has 13 rational places. F ′ is optimal since according to the Serre bound,

N7(1) ≤ 8 + b2
√

(7)c = 13.

Similarly, we can check that the following places of degree 2 split completely in F ′/F :

P1 = x2+1, P2 = x2+4, P3 = x2+2x+3, P4 = x2+2x+5, P5 = x2+6x+3, P6 = x2+6x+4.

Together with the place lying over x+ 6, F ′ has 13 places of degree 2.

Kummer extensions over different base fields have been used to construct global func-

tion fields with many rational places. See [55], [81] and [14] for some of these constructions.

2.3 Artin-Schreier Extensions

Apart from the Kummer extension, another field extension widely used in the construction

of global function fields with many rational places is the Artin-Schreier extension ([77],

[80] and [55]). We will now proceed to introduce this extension.

Define the Artin-Schreier operator on F by

℘(z) = z − zp, z ∈ F.
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An element f ∈ F is called Artin-schreier non-degenerate if f is not in the image of

℘.

For a place P of F, we define the Artin-Schreier reduced valuation of an element f ∈ F

by

ν∗P (f) = max{νP (f − ℘(z)) : z ∈ F}.

Lemma 2.3.1 Let f ∈ F and let P be a place of F. Then either ν∗P (f) ≥ 0 or gcd(ν∗P (f), p) =

1. Hence, we may define the integers mP associated to P by

mP =

 −1 if ν∗P (f) ≥ 0,

−ν∗P (f) otherwise

As in Lemma 2.2.1, one checks easily that a sufficient condition for f ∈ F to be

Artin-Schreier nondegenerate is that there exists a place P of F such that mP > 0.

Theorem 2.3.2 Let f be an Artin-Schreier nondegenerate element of F. Consider the

polynomial h(t) = tp− t− f ∈ F [t]. Let y be a root of h(t). Then the extension F ′ = F (y)

is called an Artin-Schreier extension and the following properties hold:

(i) h(t) is the minimal polynomial of y and [F ′ : F ] = p.

(ii) The extension F ′/F is Galois and cyclic. Further,

Gal(F ′/F ) = {σ : σ(y) = y + i, i = 0, 1, . . . , p− 1}.

(iii) For a place P of F, P is unramified in F ′/F if and only if mP < 0.

(iv) For a place P of F, P is totally ramified in F ′/F if and only if mP > 0. Let P ′ be

a place of F ′ lying over P. Then, for 0 ≤ j ≤ mP , the ramification groups Gj(P
′|P ) and

Gj(P ′|P ) are all equal to G. In particular, the conductor exponent cP = mP + 1 and the
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different exponent

d(P ′|P ) = (p− 1)(mP + 1).

(v) Suppose that there is a place P of F that is totally ramified in F ′/F. Then Fq is

the full constant field of F ′ and the genus of F ′ is given by

g(F ′) = pg(F ) +
p− 1

2

(
−2 +

∑
P∈PF

(mP + 1) degP

)
.

According to Theorem 2.3.2, a place P is unramified in the Artin-Schreier extension

exactly when ν∗P (f) ≥ 0. The next proposition gives the condition for P to split completely

in F ′/F.

Proposition 2.3.3 Let F ′/F be the Artin-Schreier extension with F ′ = F (y) described

in Theorem 2.3.2. Then a place P splits completely in F ′/F if and only if ν∗P (f) > 0.

Proof: First, suppose that ν∗P (f) > 0. By definition, there is an element z ∈ F with

νP (f − ℘(z)) > 0. Let f ′ = ℘(y − z). We have

νP (f ′) = νP ((y − z)p − (y − z)) = νP (f − ℘(z)) > 0,

i.e. f ′ ≡ 0 modP. Since z ∈ F, F ′ = F (y) = F (y − z) and the minimal polynomial of

y − z over F is

h(t) = tp − t− f ′.

We can now apply Theorem 2.2.6 to conclude that P splits completely in F ′/F. Conversely,

assume that P splits completely in F ′/F. Then ν∗P (f) ≥ 0 since P is unramified in F ′/F.

Therefore, there exists z ∈ F with F ′ = F (y−z) and νP (f−℘(z)) ≥ 0. Let f ′ = f−℘(z).

Clearly, ν∗P (f) = ν∗P (f ′) and the minimal polynomial of y−z over F is h′(t), where h′(t) is
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defined as before. Since νP (f ′) ≥ 0, using Theorem 2.2.6, h′(t) modP has a root z′ ∈ F̃P .

Thus,

ν∗P (f ′) ≥ νP (f ′ − ℘(z′)) > 0

and the proof is complete. �

Remark 2.3.4 Similarly, we can define Artin-Schreier extensions of order pk for some

integer k. In this case, we define the Artin-Schreier operator by letting ℘(z) = A(z), where

A(z) is a linearized polynomial in z. (See [72] for details.)

2.4 Cyclotomic Function Fields

We pointed out in the introduction that algebraic function fields are analogs of algebraic

number fields. In this section, we discuss the cyclotomic function fields which, in many

aspects, have properties that mirror those of cyclotomic number fields. In fact, the theory

of cyclotomic function fields owes its origin to a paper by Carlitz in 1938 that introduced

the Carlitz module [6]. Motivated by this idea, Hayes constructed the cyclotomic function

fields and showed that these fields describe all the maximal abelian extensions of rational

function fields [24].

In what follows, let F be the rational function field F = Fq(x) and R the ring of

polynomials Fq[x]. Let F̄ denote a fixed algebraic closure of F.

Our first aim is to endow the additive group of F̄ with an R-module structure. To do

this, let ρ be an endomorphism on F̄ defined by

ρ(z) = zq + xz = ρ1(z) + ρ2(z)
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for all z ∈ F̄ . Observe that ρ1 and ρ2 are themselves endomorphisms on F̄ which satisfy

the relationship

ρ1 ◦ ρ2 = ρq2 ◦ ρ1.

Now define a map R→ End(F̄ ) by setting x 7→ ρ, and then extending it to the whole

of R, namely,

f 7→ ρ(f)

for all f ∈ R. Further, we define the following R-action: Given any z ∈ F̄ , f ∈ R, let

zf = f(ρ(z)) and for any α ∈ Fq, let zα = αz.

Lemma 2.4.1 The R-action defined above turns the additive group of F̄ into an R-

module.

Next, we wish to express zf as a polynomial in z explicitly. In the remainder of

this section, M will always denote a monic polynomial in R. Moreover, let M have the

factorization

M =
t∏
i=1

P ei
i ,

where the Pi’s are distinct monic irreducible polynomials in R.

Lemma 2.4.2 zM can be expressed in the form

zM =
d∑
i=0

[M, i]zq
i

,

where d = degM and each [M, i] is a polynomial in x satisfying the following properties:

(i) [M, i] = 0 if i < 0 or i > d;

(ii) [M, 0] = M and [M,d] = 1;

(iii) [M, i] has degree qi(d− i) for 1 ≤ i ≤ d− 1.
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Proof: In view of Lemma 2.4.1, we will only show this lemma for the case M = xl

for some integer l. We prove it by induction on l. The cases l = 0 and l = 1 are trivial.

Assume that the result holds for l − 1. Write

zx
l−1

=
l−1∑
i=0

[xl−1, i]zq
i

.

Then,

zx
l

= (zx
l−1

)x

=
l−1∑
i=0

([xl−1, i]zq
i

)x

= (
l−1∑
i=0

([xl−1, i]zq
i

)q + x
l−1∑
i=0

([xl−1, i]zq
i

)

=
l∑

i=0

([xl−1, i− 1]q + x[xl−1, i])zq
i

.

Thus, [xl, i] = 0 for i < 0 and i > l. For 0 ≤ i ≤ l,

[xl, i] = [xl−1, i− 1]q + x[xl−1, i].

Using our induction hypothesis, it is straightforward to check that (ii) and (iii) hold for l.�

Consider the set ΛM to be the subset of F̄ consisting of all the M -torsion points, i.e.

ΛM = {z ∈ F̄ : zM = 0}.

As R is commutative, ΛM is an R-module as well. Our task in the next proposition is

to give a more precise structure of ΛM .

Proposition 2.4.3 (i) ΛM is finite and is a vector space over Fq of dimension degM.
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(ii) ΛM
∼=
⊕t

i=1 ΛP
ei
i
.

(iii) ΛM is a cyclic R-module isomorphic to R/(M).

Proof:

(i) Writing zM as a polynomial in z as in Lemma 2.4.2, we see that its derivative is

M which is nonzero. Hence, zM is separable and has exactly qdegM roots in F̄ . Since ΛM

is a module over Fq, it is a vector space over Fq of dimension degM.

(ii) Since each ΛP
ei
i

is a Pi-primary component of ΛM , the result follows directly from

the general theory of modules over principal ideal domains.

(iii) We will show that each ΛP
ei
i

is cyclic and is isomorphic to R/(P ei
i ) as an R-

module. The general result can be deduced from (ii) above. For simplicity, we show that

ΛP e is cyclic and isomorphic to R/(P e), where P is a monic irreducible polynomial in R of

degree d. We prove by induction on e. From (i), ΛP is the finite field Fqd which is certainly

cyclic and isomorphic to R/(P ). So we assume that the result is true for e − 1. Define

a map ψ : ΛP e → ΛP e−1 such that α 7→ αP . ψ is clearly surjective with kernel ΛP . By

our induction hypothesis, ΛP e−1 is cyclic. Let λ ∈ ΛP e be such that ψ(λ) is the generator

of ΛP e−1 . Now, pick any α ∈ ΛP e . Then there exists f ∈ R with αP = (λP )f = λPf .

Thus, (α − λf )p = 0 which implies that α − λf lies in the kernel of ψ. We have already

shown that ΛP is cyclic and it is easy to see that λP
e−1

generates ΛP . Consequently,

α− λf = λP
e−1g = λf+P e−1g for some g ∈ R.

This shows that ΛP e is cyclic and we are done. Finally, the map that takes f modP e

in R/(P e) to λf ∈ ΛP e is an isomorphism between the R-modules. �

Lemma 2.4.4 (i) The set of generators of ΛM is in 1 to 1 correspondence with (R/(M))∗.
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More specifically, Suppose that λ is any generator of ΛM . f ∈ (R/(M))∗ if and only if λf

is also a generator of ΛM .

(ii)

Φ(M) = |(R/(M))∗| =
t∏
i=1

(qdegPi − 1)qdegPi(ei−1).

Proof: (i) Let f ∈ (R/(M))∗. Since gcd(f,M) = 1, there exist polynomials u and v

such that fu+ vM = 1. Hence,

λ = λuf+vM = λuf + λvM = λuf .

Therefore, λf is a generator of (R/(M))∗. Conversely, suppose that λf is a generator of ΛM

for some f ∈ R. We need to show that gcd(f,M) = 1. Suppose not. Let gcd(f,M) = u.

We then have

λfM/u = (λf )M/u = (λM)f/u = 0,

contrary to our assumption that λf is a generator of λM . Consequently, f ∈ (R/(M))∗

and the bijection is established.

(ii) This is trivial. �

Let F ′ = F (ΛM) be the splitting field of zM over F. Then, F ′/F is an abelian, finite

and separable extension by Proposition 2.4.3. In fact, F ′/F is a simple extension, namely,

we can write F ′ = F (λ) for some generator λ ∈ ΛM .

Definition 2.4.5 The splitting field of zM over F is called the cyclotomic function

field with modulus M .

Lemma 2.4.6 F (ΛM) is a compositum of the fields F (ΛP
e1
1

), . . . , F (ΛP
et
t

).
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Proof: Since for each i, 1 ≤ i ≤ t,ΛP
ei
i
⊆ ΛM , the field F (ΛP

ei
i

) is a subfield of

F (ΛM). This implies that F (ΛP
e1
1

)F (ΛP
e2
2

) . . . F (ΛP
et
t

) is a subfield of F (ΛM). Conversely,

by Proposition 2.4.3 (ii), if λ is a generator of ΛM , we can find λ1, . . . , λt, λi ∈ ΛP
ei
i

such

that λ = λ1 + · · ·+ λt. Thus, F (ΛM) is a subfield of the compositum of the fields and the

lemma is proved. �

In view of Lemma 2.4.6, we will next investigate F (ΛPn) for a monic irreducible poly-

nomial P of degree d and positive integer n. Note that for a monic irreducible polynomial

Q of R, we will also denote by Q its zero place.

Lemma 2.4.7 Let F ′ = F (ΛPn). Let λ be any generator of ΛPn . Then νP ′(λ) ≥ 0 for

any place P ′ of F ′ lying over P and νP ′(λ) is identical for any λ. Further, if Q is a place

of F different from P, then, νQ′(λ) = 0 for any place Q′ of F ′ lying over Q.

Proof: According to Lemma 2.4.2, we can express λP
n

as

λP
n

= P nλ+ [P n, 1]λq + · · ·+ λq
dn

= 0.

Since each [P n, i] is a polynomial in x, νP ′([P
n, i]) ≥ 0. Suppose that νP ′(λ) < 0. Then

it is clear that νP ′(λ
qdn

) < νP ′([P
n, i]λq

i
) for all 0 ≤ i ≤ dn − 1. By the strict triangle

inequality, this yields νP ′(λ
Pn

) < 0 6= ∞. Thus, νP ′(λ) ≥ 0. Now, let λf be another

generator of ΛM . By Lemma 2.4.4, gcd(f, P ) = 1. As before, we write

λf = fλ+ · · ·+ λq
deg f

.

Assume first that νP ′(λ) > 0. Since νP ′(f) = 0, νP ′(fλ) < νP ′([f, i]λ
qi
) for all 0 < i ≤

deg f and so νP ′(λ
f ) = νP ′(λ) by the strict triangle inequality. On the other hand, if
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νP ′(λ) = 0, νP ′(λ
f ) must be 0 for otherwise, replacing λ by λf and from what we have

just established, νP ′(λ) > 0.

Similarly, we can show that for a place Q of F different from P, νQ′(λ) ≥ 0. Suppose

that νQ′(λ) > 0. Since νQ′(P
n) = 0, νQ′(P

nλ) < νQ′([P
n, i]λq

i
) for 1 ≤ i ≤ dn. Once

again by the strict triangle inequality, we have νQ′(λ
Pn

) = νQ′(λ) < ∞. Consequently,

νQ′(λ) = 0. �

The above lemma helps us to study the ramification behaviour of places in the exten-

sion F ′/F.

Theorem 2.4.8 Let λ be a fixed generator of ΛPn .

(i) γ(z) = zPn

zPn−1 is Eisenstein at P. In particular, P is totally ramified in F (ΛPn)/F

and [F (ΛPn) : F ] = (qd− 1)qd(n−1). λ is a local parameter at P ′ for the unique place P ′|P

with γ(z) as its minimal polynomial.

(ii) Gal(F (ΛPn)/F ) is isomorphic to (R/(M))∗.

(iii) Any other place Q of F different from P is unramified in F (ΛPn)/F.

(iv) Let Q be any place of F different from P. Then the Artin symbol (c.f. page 19)

of Q sends λ to λQ.

Proof: (i) For any f ∈ (R/(P n))∗, since λf is a generator of ΛPn by Lemma 2.4.4,

γ(λf ) = 0. As |(R/(P n))∗| = Φ(P n) = (qd − 1)qd(n−1), after a comparison of degrees, we

deduce that γ(z) can be expressed as

γ(z) =
∏

f∈(R/(Pn))∗

(z − λf ).

Note that λP
n

= (λP
n−1

)P = PλP
nn−1

+ . . . , and it is therefore easy to see that the



Chapter 2: Examples of Function Fields 52

constant term in γ(z) is P. By comparing the constant terms of the expressions of γ(z)

yields

P = ±
∏

f∈(R/(Pn))∗

λf . (2.1)

Since νP ′(P ) > 0, it follows that at least one, and hence all of the λf ∈ P ′. Consequently,

all the coefficients in γ(z), except for the leading coefficient, lie in P ′. But γ(z) ∈ R[z]

which implies that these coefficients actually lie in P. As a consequence, γ(z) is Eisenstein

at P. From equation (2.1), we obtain νP ′(P ) = Φ(P n) = Φ(P n)νP ′(λ). Thus, νP ′(λ) = 1,

i.e. λ is a local parameter at P. The remaining assertions follow from

Lemma 1.1.17.

(ii) Let σ ∈ Gal(F (ΛPn)/F ). Then σ(λ) is a root of γ(z) and so σ(λ) = λf for some

f ∈ (R/(P n))∗. It can then be directly verified that the map sending σ to f provides an

isomorphism between Gal(F (ΛPn)/F ) and (R/(P n))∗.

(iii) Replacing λ by α for any α ∈ ΛPn in the proof of Lemma 2.4.7, we can likewise

show that νQ′(α) = 0. Since γ′(λ) =
∏

f∈(R/(Pn))∗,f 6=1(λ − λf ), νQ′(γ
′(λ)) = 0. Applying

Proposition 1.1.18 gives us our result.

(iv) Let σ denote the Artin symbol of Q. Suppose that σ(λ) = λf for some f ∈ R.

By the definition of Artin symbols, λf ≡ λq
d′

modQ′, where Q′ is a place of F ′ lying

over Q and d′ = degQ. From the proof of (i), we can conclude that for any monic ir-

reducible polynomial P0 ∈ R, P0|[P l
0, i] for all 0 ≤ i < l degP0 − 1 and any positive

integer l. Hence, λQ ≡ λq
d′

modQ′. Since νQ′(λ
Q − λf ) = νQ′(λ

Q−f ) = 0 for Q 6= f, i.e.

λf modQ 6= λQ modQ, we conclude that Q = f. �

Remark 2.4.9 As in the cyclotomic number field case, we can show that the integral
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closure of OP in F′ is OP ′ = OP [λ] for any generator λ of ΛPn .

By employing the technique of Newton polygons, we can determine the ramification

behaviour of the infinite place ∞ of F. For a proof of the next theorem, we refer the reader

to [24] or [55].

Theorem 2.4.10 The decomposition group and inertia group of ∞ are both isomorphic

to F∗
q. More precisely, there are exactly Φ(Pn)

q−1
places of F (ΛPn) lying over ∞, each of

which has ramification index q − 1.

We have developed the necessary results to calculate the genus of F (ΛPn) which we

shall proceed to do.

Theorem 2.4.11 (i) Let P ′ be the unique place of F (ΛPn) lying over P. Then,

d(P ′|P ) = qd(n−1)(nqd − n− 1).

(ii) The genus of F (ΛPn) is given by

2g(F (ΛPn))− 2 = qd(n−1)

(
(qdn− dn− q)

qd − 1

q − 1
− d

)
.

Proof: (i) From Proposition 1.1.18 and Theorem 2.4.8, d(P ′|P ) = νP ′(γ
′(λ)). Now,

differentiating the equation

zP
n

= ZPn−1

γ(z)

yields

γ′(λ) = P n − λP
n−1

.

Therefore,

νP ′(γ
′(λ)) = nΦ(P n)− qd(n−1) = qd(n−1)(nqd − n− 1).
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(ii) The only other ramified place in the extension is ∞, which by Theorem 2.4.10 has

ramification index e(P∞|∞) = q−1 for any place P∞ lying over ∞. Since q−1 is coprime

to p, d(P∞|∞) = q − 2 and the genus of F ′ can now be obtained via the Hurwitz genus

formula. �

Finally, we return to the general case where M is any arbitrary monic polynomial.

Lemma 2.4.6 tells us that F (ΛM) is the compositum of the subfields F (ΛP
ei
i

), i = 1, . . . , t.

Since Pi is ramified only in the component F (ΛP
ei
i

), each F (ΛP
ei
i

) is disjoint from the

compositum of the remaining fields. Armed with this fact and the results we have attained

so far, the following assertions can be directly established.

Theorem 2.4.12 Consider the cyclotomic function field F ′ = F (ΛM).

(i) [F ′ : F ] = Φ(M) and Gal(F ′/F ) ∼= (R/(M))∗.

(ii) Only the places P1, . . . , Pt are ramified in F ′/F. If P ′
i is a place of F ′ lying over

Pi, i = 1, . . . , t, e(P ′
i |Pi) = Φ(P ei

i ).

(iii) The decomposition group and the inertia group of ∞ are both isomorphic to F∗
q.

(iv) The genus of F ′ is given by

2g(F ′)− 2 = Φ(M)[−2 +
q − 2

q − 1
+

t∑
i=1

(degPi)q
degPi(ei−1)(eiq

degPi − ei − 1)/Φ(P ei
i )].

We will conclude this section by providing an example of a cyclotomic function field

in which the number of rational places it contains is relatively large.

Example 2.4.13 g(F ′/F2) = 78, N(F ′/F2) = 49. Let F be the rational function field

F = F2(x). Let M = (x3 + x+ 1)(x3 + x2 + 1) ∈ F2[x]. Then, Φ(M) = 49. Let F ′ be the
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cyclotomic function field with modulus M, i.e. F ′ = F (ΛM). By Theorem2.4.12 (iv),

g(F ′) = 49(−2 + 3(6)/7 + 3(6)/7) = 78.

Since q − 1 = 1,∞ splits completely in F ′/F. Consequently, N(F ′) ≥ [F ′ : F ] = 49. The

Osterl‘e bound for N2(78) is 57. Therefore, x and x + 1 cannot split in F ′ and we have

N(F ′) = 49. This example improves the lower bound of 48 given in [55, Table 4.5.2].



Chapter 3

Examples of Explicit Class Fields

The task of finding global function fields with many rational places was initiated by

Serre who used methods from general class field theory to exhibit such fields [66], [67].

Later, several researchers including Schoof [63], Auer [2], [3], [4], Lauter [32, 33, 34, 35],

Niederreiter and Xing [41, 42, 43, 44, 46, 48, 55], as well as many others employ some class

fields, namely ray class fields and narrow ray class fields to seek for more constructions.

The aim of this present chapter is to summarize some of the main properties of ray

class fields and narrow ray class fields. Most of the details have been left out since they

can be readily found in the literature. As in the preceding chapters, we follow many of

the notations used in [55].

3.1 General results of Class Field Theory

Before we can delve into the various class fields, we need some general results from class

field theory. For background and further results on class field theory, we refer to the books

56
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of Cassels and Fröhlich [8], Neukirch [40], Serre [65], and Weil [86].

We will continue to work with a global function field F/Fq. For any place P of F,

recall that FP is the P -adic completion of F at P. For the valuation ring OP of FP , let

UP = O∗
P be the unit group of FP . Then for any positive integer n, we define the nth unit

group of P to be the subgroup of UP such that

U
(n)
P = {x ∈ OP : νP (x− 1) ≥ n}.

We also write U
(0)
P for UP . Clearly, UP = F∗

q × U
(1)
P .

Definition 3.1.1 An idèle α of F is an element of
∏

P∈PF
F ∗
P such that if α = (αP )P∈PF

,

then αP ∈ UP for all but finitely many P ∈ PF . The group of all idèles of F is known as

the idèle group of F and is denoted by JF .

Since each element f ∈ F ∗ has finitely many zero and pole places, we can embed F ∗

into JF diagonally and identify F ∗ with the image of this embedding. The factor group

JF/F
∗ is called the idèle class group of F and will be denoted by CF .

For a finite abelian extension F ′ of F, the idèle group JF can be considered as a

subgroup of JF ′ by identifying each element α = (αP ) ∈ JF with β = (βQ) ∈ JF ′ , where

βQ = αP for all Q|P. Since JF ∩F ′∗ = F ∗, CF can be viewed as a subgroup of CF ′ as well.

The norm map NF ′/F from F ′ to F can be extended to JF ′ to JF , (also denoted by

NF ′/F ) by defining

NF ′/F ((βQ)) = (
∏
Q|P

NF ′/F (βQ)) ∈ JF

for all (βQ) ∈ JF ′ . Clearly, NF ′/F induces a norm map NF ′/F : CF ′ → CF .

Theorem 3.1.2 Let F ′/F be a finite abelian extension with P ′|P as before. There exists

a local Artin reciprocity map θF ′
P ′/FP

: F ∗
P −→ Gal(F ′

P ′/FP ) = G−1(P
′|P ) such that:
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(i) Ker(θF ′
P ′/FP

) = NF ′/F ((F ′
P ′)

∗), im(θF ′
P ′/FP

) = Gal(F ′
P ′/FP ).

(ii) If F ′
P ′/FP is unramified, i.e. G0(F

′
P ′/FP ) = {1}, then θF ′

P ′/FP
(x) = πνP (x) for all

x ∈ FP , where π is the Frobenius automorphism.

(iii) θF ′
P ′/FP

maps the i th unit group U
(i)
P of FP onto the i th upper ramification group

Gi(F ′
P ′/FP ) = Gi(P ′|P ) for all integers i ≥ 0.

Notice that since F ′/F is abelian, the choice of P ′ is immaterial and we can write θP

to mean θF ′
P ′/FP

. From (iii) of the above theorem, we see immediately that a place P of F

is unramified in F ′/F if the local Artin reciprocity map sends the unit group UP to {1}.

Next we define the global Artin reciprocity map to be the product of the local

Artin reciprocity maps, namely θF ′/F : JF → Gal(F ′/F ) such that

θF ′/F =
∏
P∈PF

θP .

With this definition, for α = (αP ) ∈ JF ,

θF ′/F (α) =
∏
P∈PF

θP (αP ).

This definition is well-defined since θP (αP ) = π
νP (αP )
P when P is unramified, and νP (αP ) =

0 if αP ∈ UP . So θP (αP ) = 1 for all but finitely many P ∈ PF .

Theorem 3.1.3 The global Artin reciprocity map θF ′/F is a surjective homomorphism

from JF to Gal(F ′/F ). It has kernel F ∗NF ′/F (JF ′). Hence, it induces a surjective map

(·, F ′/F ) : CF → Gal(F ′/F )

with kernel NF ′/F = F ∗NF ′/F (JF ′)/F
∗ = F ∗NF ′/F (CF ′).
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Definition 3.1.4 (·, F ′/F ) defined in Theorem 3.1.3 is known as the norm residue

symbol of F ′/F.

The following is an important theorem relating finite abelian extensions of F and

subgroups of CF .

Theorem 3.1.5 (i) (Artin Reciprocity) For any finite abelian extension F ′/F of global

function fields, there is a canonical isomorphism

CF/NF ′/F ' Gal(F ′/F )

induced by the norm residue symbol (·, F ′/F ).

(ii) (Existence Theorem) For every (open) subgroup X of CF of finite index, there

exists a unique finite abelian extension F ′ of F such that F ′ is contained in the abelian

closure F ab of F and NF ′/F = X.

(iii) Given two finite abelian extensions E1/F and E2/F in F ab, we have E1 ⊆ E2 if

and only if NE1/F ⊇ NE2/F , i.e. if and only if F ∗ · NE1/F (JE1) ⊇ F ∗ · NE2/F (JE2).

Proposition 3.1.6 Let X be an open subgroup of CF of finite index and let F ′ be the

finite abelian extension of F so that NF ′/F = X. Suppose that H is a subgroup of JF such

that X = H/F ∗. For a place P ∈ PF , the following hold:

(i) P is unramified in F ′/F if and only if UP ⊆ H;

(ii) P splits completely in F ′/F if and only if F ∗
P ⊆ H.
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3.2 Ray Class Fields

We have seen in Section 3.1 that open subgroups of the idèle class group give rise to finite

abelian extensions of F. Our goal in this section, as well as the next, will be to define

suitable subgroups of CF and study the properties of the corresponding class fields. Note

that all subgroups of CF considered here will be open.

Let S be a subset of PF so that S ′ = PF −S is nonempty and finite. For an effective

divisor D of F with supp(D) ∩ S ′ = ∅, we define JDS to be the group

JDS =
∏
P∈S′

F ∗
P ×

∏
P∈S

U
(νP (D))
P

and

CD
S = F ∗JDS /F

∗.

Clearly, CD
S is a subgroup of CF and we call it the idèle S-ray class group with modulus

D.

From these definitions of JDS and CD
S , we easily obtain the following lemma.

Lemma 3.2.1 Let T ⊆ PF with T ′ = PF − T nonempty and finite. Suppose that D′ is

another positive divisor of F such that supp(D′) ⊆ T .

(i) If S ⊆ T and D ≤ D′, then CD′
T ⊆ CD

S .

(ii) CD
S C

D′
T = C

min(D,D′)
S∩T , where the minimum is taken coefficientwise.

(iii) J0
S/J

D
S
∼=
∏

P∈supp(D) UP/U
(νP (D))
P and has order Φ(D), where Φ(D) is as defined

in Lemma 2.4.4.

Recall that O∗
S is the group of S-units of F.
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Proposition 3.2.2 (i) The sequence

O∗
S → JS/J

D
S → CF/C

D
S
∼= JF/

(
F ∗ · JDS

)
→ CF/C

0
S
∼= JF/(F

∗ · JS0) → 1

is exact.

(ii) CF/C
D
S is isomorphic to ClD(OS).

This proposition immediately implies that the group CD
S is of finite index in CF . Thus,

by Theorem 3.1.5, there exists a field FD
S of F with Galois group

Gal(FD
S /F ) ∼= CF/C

D
S
∼= ClD(OS).

We call such a field the ray class field with modulus D. By Proposition 3.1.6 and the

definition of CD
S , every place in S ′ splits completely in FD

S /F and all places outside the

support of D are unramified in this extension. In fact, we can determine the conductor

of the extension too.

Lemma 3.2.3 Let F ′/F be a finite abelian extension of global function fields. Suppose

that S ⊆ PF is such that S ′ = PF − S is nonempty and finite and that all places in S ′

split completely in F ′/F. Then the conductor of F ′/F is the smallest positive divisor D

with support in S such that F ′ ⊆ FD
S . In particular, the conductor of FD

S is D.

We record all the main properties of FD
S in the next theorem.

Theorem 3.2.4 [Properties of ray class fields]

(i) FD
S is the largest finite abelian extension F ′ of F in which all places in S ′ split

completely in F ′/F and the conductor of F ′/F ≤ D.

(ii) The Galois group Gal(FD
S /F ) ∼= ClD(OS).
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(iii) All places of F outside the support of D are unramified in FD
S /F and for each

such place P, its Artin symbol corresponds to the residue class of P in ClD(OS) under the

correspondence in (ii).

(iv) The full constant field of FD
S is Fqd , where d = degS.

(v) Let T and D′ be as in Lemma 3.2.1. If S ⊂ T and D ≤ D′, then FD
S ⊆ FD′

T .

Moreover, FD
S ∩ FD′

T = F
min(D,D′)
S∩T .

In the case whenD = 0, F 0
S is, by the preceding theorem, characterized by the property

that it is the largest finite abelian unramified extension of F in which all places in S ′ split

completely. This is the S-Hilbert class field discussed in [60]. The S-Hilbert class field

will usually be denoted by HOS . Suppose that S ′ consists of a single rational place ∞.

From Theorem 3.2.4 (ii) and Corollary 1.4.4, the Galois group of HOS/F is

Gal(HOS/F ) ∼= Cl(OS) ∼= Cl(F )

and consequently, [HOS : F ] = h(F ), the class number of F.

Example 3.2.5 We have seen from Lemma 2.1.4 that all extensions of the rational func-

tion fields are ramified. Consequently, the S-Hilbert class field of Fq(x) is Fqd(x), where

d = degS.

Next, we wish to provide a formula to help us calculate the genus of the S-ray class

field FD
S . Looking at Corollary 1.3.4 suggests that it suffices to know the degrees [F n : F ],

where F n is the nth upper ramification field of P with respect to the extension FD
S /F

and P is a place in the support of D.

Write D as D =
∑

P∈PF
mPP. We use the notation D\P to refer to the positive divisor

D −mPP.
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Lemma 3.2.6 For a place P in the support of D and a positive integer n ≥ 0, the nth

upper ramification field F n is given by

F n = F
D\P+nP
S .

Proof: Let P ∈ supp(D) be any place. Observe that a field F ′ is a subfield of

F n if and only if its Galois group Gal(F ′/F ) ⊇ Gn, the nth upper ramification group

of P with respect to the field FD
S /F, which is in turn true if and only if the nth upper

ramification group of P with respect to the field F ′/F is trivial. Equivalently, it follows

that the conductor exponent of P in F ′/F is at most n and by Theorem 3.2.4 (i), this is

precisely the case when F ′ ⊆ F
D\P+nP
S . The desired claim then follows. �

With this lemma and the aid of Corollary 1.3.4, we can easily write down the genus

formula for FD
S in terms of the genus of F.

Theorem 3.2.7 The genus of FD
S satisfies:

2g(FD
S )− 2 = [FD

S : F ](2g(F )− 2 + degD)−
∑

P∈supp(D)

mP−1∑
i=0

[F
D\P+iP
S : F ] degP.

3.3 Narrow Ray Class Fields

We will assume in the remainder of this chapter that F has more than one rational place

and we distinguish a rational place ∞. Since ∞ has degree 1, the residue class field of ∞

in the ∞-adic completion F∞ is the field Fq.

We define a sign function sgn: F ∗
∞ −→ F∗

q as a multiplicative group homomorphism

on F ∗
∞ such that:
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(i) sgn(α) = α for any α ∈ F∗
q;

(ii) sgn(U
(1)
∞ ) = {1}.

Indeed, we can show that there are exactly q− 1 distinct sign functions on F ∗
∞. From

now on, we will fix one such sign function and denote it by sgn.

Define a subgroup of F ∗
∞ by

F sgn
∞ = {x ∈ F ∗

∞ : sgn(x) = 1}

which is the kernel of the sign function. Since the sign function is onto, [F ∗
∞ : F sgn

∞ ] = q−1.

Let D be an effective divisor of F with support being a subset of S, where S =

PF − {∞}. We define a subgroup of JF by

JD(∞) = F sgn
∞ ×

∏
P∈S

U
(νP (D))
P

and a subgroup of CF by

CD(∞) = F ∗JD(∞)/F ∗.

As in the study of ray class groups, we wish to give CF/C
D(∞) a group interpretation.

Refer to the definitions of ID(OS) and PrincD(S) in Section 1.4. Here, we further define

Princ+
D(S) to be the group of principal ideals zOS , where z ≡ 1 modD and sgn(z) = 1.

The factor group ID(OS)/Princ+
D(S) which we denote by C`+D(OS) is called the narrow

ray class group with modulus D with respect to the sign function sgn.

Proposition 3.3.1 With the notations above,

(i) Princ+
D(OS) is a subgroup of PrincD(OS) and PrincD(OS)/Princ+

D(OS) ' F∗
q.

(ii) We have the isomorphisms

C`+D(OS)/F∗
q ' C`+D(OS)/(PrincD(OS)/Princ+

D(OS)) ' ClD(OS).
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By verifying the isomorphism

CF/C
D(∞) ∼= C`+D(OS),

we can once again identify the factor group CF/C
D(∞) with the ideal group C`+D(OS).

From (ii) above, we conclude that CF/C
D(∞) is finite. Invoking the existence theorem

from global class field theory tells us that there exists a finite abelian extension FD(∞)

of F such that the induced norm residue symbol has kernel CF/C
D(∞).

FD(∞) is called the narrow ray class field with modulus D. It is easy to verify that

FD
S is a subfield of FD(∞) and [FD(∞) : FD

S ] = q−1. We summarize the main properties

of the extension FD(∞)/F in the theorem below.

Theorem 3.3.2 [Main properties of narrow ray class fields]

(i)

Gal(FD(∞)/F ) ∼= C`+D(OS).

(ii) FD
S is both the decomposition field and the fixed field of ∞ in FD(∞). In particular,

Gal(FD(∞)/FD
S ) ∼= F∗

q.

(iii) All places not in supp(D) and different from ∞ are unramified in FD(∞)/F. For

such a place P, its Artin symbol is given by the residue class in C`+D(OS) under the

correspondence in (i).

(iv) The conductor of FD(∞)/F is D + min(q − 2, 1)∞.

(v) Fq is the full constant field of FD(∞)/F.

From property (ii), we conclude that there are exactly [FD
S : F ] places lying over ∞,

each with ramification index q − 1. Indeed, FD(∞) is completely characterized by the
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property that it is the largest finite abelian extension of F containing FD
S as a subfield

and with the ramification index e(P∞|∞) = q − 1 for any place P∞ of FD(∞) lying over

∞. Mimicking the proof of Lemma 3.2.6, the nth upper ramification field of any place

P in the support of D with respect to the extension FD(∞)/F can be shown to be the

narrow ray class field FD\P+nP (∞). As such, we obtain the genus of FD(∞) as follows.

Lemma 3.3.3 The genus of FD(∞) satisfies:

2g(FD(∞))− 2 = [FD(∞) : F ](2g(F )− 2 + degD +
q − 2

q − 1
)

+
∑

P∈supp(D)

mP−1∑
i=0

[FD\P+iP (∞) : F ] degP,

where D =
∑

P∈PF
mPP.

3.4 Drinfeld Modules of rank 1

The narrow ray class field with modulus D just described can be constructed in a different

way, namely, by the so-called Drinfeld module of rank 1. This construction was introduced

by Hayes (see [25, 26]) as a generalization of the cyclotomic function fields (Section 2.4)

with the base field F being any arbitrary global function field having more than one

rational place.

Let ∞ be a fixed rational place of F and sgn a fixed normalized sign function of F.

With S as the set of places of F other than ∞, let A denote the integral ring OS and let

HA be the S-Hilbert class field of F . Denote by π : c 7→ cp the Frobenius endomorphism

of HA. Consider the left twisted polynomial ring HA[π] whose elements are polynomials

in π with coefficients from HA written on the left; but multiplication in HA[π] is twisted
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by the rule

πz = zpπ for all z ∈ HA.

Let Drin : HA[π] −→ HA be the map which assigns to each polynomial in HA[π] its

constant term.

A Drinfeld A-module of rank 1 over HA is a ring homomorphism φ : A −→ HA[π],

a 7→ φa, such that:

(i) The image of φ contains some nonconstant polynomials in HA[π];

(ii) Drin ◦ φ is the identity on A;

(iii) deg(φa) = −mν∞(a) for all nonzero a ∈ A, where φa denotes the twisted polyno-

mial associated with a by φ. deg(φa) is the degree of φa as a polynomial in π. Further, φ

is sgn-normalized if sgn(a) is equal to the leading coefficient of φa for all a ∈ A.

Let M =
∏

P 6=∞(P ∩ A)mP be an ideal of A, or equivalently, a positive divisor D =∑
P 6=∞mPP−(

∑
P 6=∞mP degP )∞ of F under our usual identification. Roughly speaking,

the field extension FM = HA(Λφ(M)) (or equivalently, HA(Λφ(D))), determined by a sgn-

normalized Drinfeld A module φ of rank 1 over HA is constructed by adjoining the M -

torsion points of φ to HA in a fixed algebraic closure of HA. For the detailed construction

and the definition of the M -torsion points, we refer the reader to [27]. Indeed, to avoid

introducing more concepts and definitions, we will not delve further into the theory of

Drinfeld modules. A comprehensive treatment of this subject is contained in [27] and [22].

Instead, we will quote, in the following theorem, some of the main properties that will be

useful in the subsequent chapters.

Theorem 3.4.1 Let FM = HA(Λφ(M)) = HA(Λφ(D)) be as defined previously. Then:

(i) FM is F -isomorphic to the narrow ray class field FD(∞).
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(ii) FM is independent of the specific choice of the sgn-normalized Drinfeld A-module

φ of rank 1 over HA.

(iii) FM/F is unramified away from ∞ and the places P ∈ supp(D).

(iv) The extension FM/F is abelian and there is an isomorphism

σ : Cl+D(A) −→ Gal(FM/F ),

determined by σJφ = J ∗ φ (see [27, Section 4] for the notation) for any nonzero ideal J

of A coprime to M , and λσJ = φJ(λ) for any generator λ of the cyclic A-module Λφ(M).

Moreover, for any prime ideal P of A that is coprime to M , the corresponding Artin

symbol in FM/F is exactly σP. Furthermore, if M = P n for some prime ideal P of A

and n ≥ 1, then both the decomposition group and the inertia group of ∞ in FM/F are

isomorphic to F∗
q.

(v) The multiplicative group (A/M)∗ is isomorphic to Gal(FM/HA) by means of

b 7→ σbA,

where b ∈ A satisfies sgn(b) = 1 and is coprime to M .

(vi) Suppose that M = P n for some prime ideal P of A and n ≥ 1. Let λ be a

generator of the cyclic A-module Λφ(M). Then FM = HA(λ) and the minimal polynomial

of λ over HA is

γ(z) =
φPn(z)

φPn−1(z)
.

Moreover, γ(z) is an Eisenstein polynomial at any place Q of HA lying over P . Thus, Q

is totally ramified in FM/HA and νR(λ) = 1 for the place R of FM lying over Q.

(vii) Let M = M1M2 be a product of two coprime ideals. Then, FM is the compositum

of FM1 and FM2 and FM1 ∩ FM2 = HA.
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Remark 3.4.2 In view of (ii) of Theorem 3.4.1, we can omit the symbol φ in the notation

HA(Λφ(M)) and simply write FM = HA(Λ(M)).

Since [HA : F ] = h(F ), it follows from (v) of Theorem 3.4.1 that

[FM : F ] = h(F )|(A/(M))∗| = h(F )Φ(M).

This, together with Lemma 3.3.3 allows us to write down explicitly the genus of the

narrow ray class field FM = FD(∞), which we will now proceed to do. We will give the

formula only for D = nP, where P is a place of F of degree d. The general formula can

be established likewise.

Theorem 3.4.3 With D = nP, the genus of FD(∞) is

2g(FD(∞))− 2 = h(F )qd(n−1)

[
(qd − 1)(2g(F )− 2 +

q − 2

q − 1
+ nd)− d

]
.

Proof:

2g(FD(∞))− 2

= h(F )Φ(P n)(2g(F )− 2 +
q − 2

q − 1
+ nd)−

n−1∑
i=0

h(F )Φ(P i)

= h(F )(qd − 1)qd(n−1)(2g(F )− 2 +
q − 2

q − 1
+ nd)− h(F )d− dh(F )

n−1∑
i=1

(qd − 1)qd(i−1)

= h(F )(qd − 1)qd(n−1)(2g(F )− 2 +
q − 2

q − 1
+ nd)− d− d(qd(n−1) − 1)

= h(F )qd(n−1)

[
(qd − 1)(2g(F )− 2 +

q − 2

q − 1
+ nd)− d

]
.

�
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Example 3.4.4 Consider the rational function field F = Fq(x) with ∞ being the infinite

place of F . Then we have seen in Example 3.2.5 that A = Fq[x] and HA = F = Fq(x). A

Drinfeld A-module φ of rank 1 over F is uniquely determined by the image φx of x. By

the definition we must have

Drin(φx) = (Drin ◦ φ)(x) = x.

Hence, φx is a nonconstant polynomial in π with the constant term x. Since deg(φx) =

−rν∞(x) = r, it follows that φx is of the form x+ f(π)π+ zπr for an element z ∈ F ∗ and

f(π) ∈ F [π] with deg(f(π)) ≤ r − 2. By letting z = 1 and f(π) = 0 produces the Carlitz

module that we have discussed in Section 2.4. As such, the cyclotomic function fields are

in fact narrow ray class fields over the rational function fields.

3.5 Subfields of Narrow Ray Class Fields

The primary goal of this thesis is to search for function fields having as many rational

places as close to the best known upper bounds as possible. From 1.2, it is obvious that for

an extension F ′/F, a rational place of F remains rational in F ′ if it splits completely in the

extension. Moreover, a review of Proposition 1.2.10 suggests that a possible approach to

find fields with many rational places is to construct subfields L of suitable field extensions

F ′/F in which the Artin symbols of sufficient rational places of F are contained in the

Galois group Gal(F ′/L).

As such, ray class fields and narrow ray class fields provide good candidates to carry

out our search since their Galois groups and Artin symbols of places are explicitly known

(Theorems 3.2.4 and 3.3.2).
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Let S ′ be the set {∞, P1, . . . , Pk} for distinct places P1, . . . , Pk and S∗ = S ′ − {∞}.

According to Theorem 3.2.4 (v), FD
S ⊆ FD

PF−{∞}, where S = PF − S ′ and D, is as usual,

a positive divisor of F. By Proposition 1.4.3, since degS = 1,

Gal(FD
S /F ) ∼= ClD(OS) ∼= ClD(F )/(Div0

S(F )/(Div0
S(F ) ∩ PrincD(F ))).

Let A = OPF−{∞}. Denoting 〈S∗〉D as the subgroup of ClD(A) generated by the places

in S∗, and since ∞ has degree 1, this can be written as Gal(FD
S /F ) ∼= ClD(A)/〈S∗〉D.

Further, by Proposition 3.3.1, C`+D(A)/F∗
q
∼= ClD(A). Putting all these together, we can

establish the following construction.

Theorem 3.5.1 Let D =
∑

P∈PF
mPP be a positive divisor of F . Let F ′ = FD(∞) =

HA(Λ(D)) be the narrow ray class field determined by a sgn-normalized Drinfeld A-module

of rank 1 over the Hilbert class field HA. Suppose that S∗ = {P1, P2, . . . , Pk} is a set of

k distinct rational places of F different from ∞ and let GD be the subgroup of C`+D(A)

generated by F∗
q and the places in S∗. Let L be the subfield of F ′ fixed by GD. Then, L

has at least h(F )Φ(D)(k+1)
|GD| rational places. The genus of L is given by

2g(L)− 2 = h(F )

Φ(D)

|GD|
(2g(F )− 2 + degD)−

∑
P∈supp(D)

mP−1∑
i=0

Φ(D\P + iP )

|GD\P+iP |

 .
Proof: By the fact that F∗

q is the decomposition group of ∞ in F ′ and by consider-

ation of the Artin symbols of P1, . . . , Pk, it is clear that ∞, P1, . . . , Pk split completely in

L/F. Hence, we conclude from the characterization of FD
S that L is a subfield of the ray

class field FD
S , where S = PF − {∞} − S∗. Further since C`+D(A)/GD

∼= ClD(A)/〈S∗〉D,

it follows from our earlier discussion that L is indeed the ray class field FD
S . The genus is

now obtained via Theorem 3.2.7. �
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We observe from this theorem that it is crucial to determine the orders of the subgroups

of C`+D(A) generated by a set of rational places of F. Our next result shows that this

problem is connected to having knowledge of the relationship between the places. Here,

we will only consider the case when D = nP.

For any positive integer n, denote by n∗p the smallest integer l such that n ≤ pl and

np = pn
∗
p . Let S∗ = {P1, P2, . . . , Pk} be a set of any k places of F as before. We write

〈S∗〉n = 〈P1, . . . , Pk〉n to be the subgroup of (A/P n)∗ generated by F∗
q and the places

P1, P2, . . . , Pk.

Proposition 3.5.2 Suppose that there is an integer i such that Pk ∈ 〈P1, . . . , Pk−1〉i but

Pk 6∈ 〈P1, . . . , Pk−1〉i+1. Then

|〈P1, . . . , Pk〉n| = |〈P1, . . . , Pk−1〉n|(n/i)p.

Proof: If n ≤ i, then the result is obvious. So we will assume that n > i. For an

integer j, let Gj = 〈P1, P2, . . . , Pk−1〉j. It is clear that |〈Pk〉n| = anp, where a = |〈Pk〉1|.

Since Pk ∈ G1, it follows that |Gn ∩ 〈Pk〉n| = apl for some integer l. We claim that

l = n∗p − (n/i)∗p. Indeed, by our assumption, Pk ∈ Gi and thus, P
np

k ∈ Gn as inp > n.

So l ≥ n∗p − (n/i)∗p. If P pj

k ∈ Gn for j < (n/i)∗p, we will have Pk ∈ Gbn/pjc > i. Thus,

l ≤ n∗p − (n/i)∗p and equality holds. Consequently,

|〈P1, P2, . . . , Pk〉n| = |Hn||〈Pk〉n|/pl = |Hn|(n/i)p.

�



Chapter 4

Error-correcting Codes and

Algebraic Function Fields

One of the most important applications of global function fields is in the construction of

Goppa codes [19, 20, 21]. Shortly after, algebraic curves with many rational points are

used to construct algebraic-geometric codes and their generalizations [9, 10, 57, 75, 90,

94, 95]. In this chapter, we introduce a different construction of error-correcting codes

via global function fields, which will in turn assist us in finding function fields with many

rational places.

4.1 A brief Introduction to Error-Correcting Codes

We will first briefly recall some of the fundamental notions in the theory of error-correcting

codes. [39, 83, 91] are excellent references for materials in this section.

Let A be a finite set with q symbols. A block code C of lengthN over A is a nonempty

73
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set of N tuples with coordinates in A. Any element of C is known as a codeword of C.

The number of codewords in C is the size of the code and is denoted by |C|.

Definition 4.1.1 Let c and d be any two codewords of a code C. The Hamming dis-

tance of C, denoted by d(c,d), is defined as the number of positions in which c and d

differ. Then the minimum distance of C is d(C) = min{d(c,d) : c,d ∈ C, c 6= d}.

As in all practical applications, A will be the finite field Fq in this thesis, that is, C

will be a subset of FN
q . If C is a subspace of FN

q , we call C a linear code. In this case,

the dimension κ of C is the dimension of C over Fq as a vector space. We usually say

that a code C is a [N, κ, δ]-code over Fq to mean that C is a linear code of length N,

dimension κ and minimum distance δ.

Definition 4.1.2 Let c be a codeword of a code C. The support of c, denoted by supp(c)

is the set of coordinates in which c is nonzero. |supp(c)| is called the Hamming weight

of c and is denoted by w(c).

Lemma 4.1.3 For a linear code C, the following are true.

(i) For any two codewords c and d in C, d(c,d) = w(c− d).

(ii) The minimum distance of C is given by

d(C) = min{w(c) : c ∈ C, c 6= 0}.

For an [N, κ, δ]-code C, we define the dual code C⊥ to be the dual space of C in FqN ,

i.e.

C⊥ = {c ∈ FN
q : c · d = 0 for all d ∈ C},

where the dot represents the usual inner product.
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Thus, C⊥ is an [N,N − κ]-linear code over Fq.

Definition 4.1.4 For an [N, κ, δ]-code C, any N × κ matrix over Fq whose rows form

a basis of C is called a generator matrix of C. A generator matrix of C⊥ is called a

parity-check matrix of C.

Let G and H be the generator matrix and the parity-check matrix of C, respectively.

Then, the codewords of C can be represented in one of the following ways:

1.

C = {c · G : c ∈ Fκ
q};

2.

C = {c ∈ FN
q : c · HT = 0},

where HT is the transpose of H.

Our next result shows how we can determine the minimum distance of C from its

parity-check matrix.

Theorem 4.1.5 Let H be the parity-check matrix of a linear code C of length N. Then C

has minimum distance δ if and only if every δ− 1 columns of H are linearly independent

and there exist δ columns of H that are linearly dependent.

Proof: Let c be a codeword of C with w(c) = w. Without loss of generality, we may

assume that the first w coordinates of c are nonzero. Write c = (c1, c2, . . . , cw,0, . . . ,0).

Let the columns of H be u1,u2, . . . ,uN. Since c ∈ C, by (ii) above, c · HT = 0, i.e.

w∑
i=1

ciui = 0.
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Consequently, the w columns are linearly dependent. On the other hand, if there exist

w columns of H that are linearly dependent, there must exist w columns of H and w

nonzero constants in Fq such that

w∑
j=1

cijuij = 0.

Thus the vector c with cij in its ijth position and 0 everywhere else is a codeword of C

with weight w. Our desired result follows. �

Similarly, we may determine the minimum distance of C from its generator matrix as

we show below.

Definition 4.1.6 Two codes C and C ′ are said to be equivalent if there exist nonzero

constants a1, a2, . . . , aN ∈ F∗
q such that C ′ = {(a1c1 , a2c2 , . . . , aN cN ) : (c1 , . . . , cN ) ∈ C}.

Clearly, equivalent codes have the same parameters.

Definition 4.1.7 Let c be a nonzero codeword of a linear code C. The residual code

with respect to c, denoted by Cc is the code obtained from C by deleting the coordinates

in supp(c) from all the codewords of C.

Lemma 4.1.8 If C is an [N, κ, δ]-code over Fq and c ∈ C is a codeword of weight δ, then

Cc is an [N − δ, κ− 1, δ′]-code, where δ′ ≥ dδ/qe. (Here, dxe refers to the smallest integer

≥ x.)

Proof: By replacing C with an equivalent code if necessary, assume that the first

δ coordinates of c are all equal to 1. The length of Cc is trivially N − δ. Let τ be the

map that deletes the first δ coordinates from each codeword in C. Clearly, τ is a linear
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transformation from C onto Cc. Since the kernel of τ contains the nonzero codeword c,

the rank of τ must be at most κ − 1. If the rank is strictly less than κ − 1, then there

exists a nonzero codeword c′ ∈ C such that c′ is not a multiple of c and τ(c′) = 0. Let

c′ = (c1 , c2 , . . . , cδ, 0 , . . . , 0 ). Then the codeword c′− c1c ∈ C and has weight less than

δ, contradicting to δ being the minimum distance of C. Hence, Cc has dimension κ − 1.

Next, we wish to show that δ′ ≥ dδ/qe. Let c′ ∈ C such that c′ is not in the kernel of τ.

Observe that by the pigeonhole principle, there must be an α ∈ Fq such that at least δ/q

coordinates of c′ are equal to α. Let u = c′ − αc ∈ C. Then we have

d ≤ w(u) ≤ w(τ(u)) + d− d/q

which yields

δ′ ≥ w(τ(u)) ≥ dd/qe.

�

Corollary 4.1.9 Let G be the generator matrix of an [N, κ]-linear code C. If C has mini-

mum distance δ, there must exist N−δ columns of G with rank κ−1. Conversely, suppose

that there are N − δ columns of G with rank κ− 1. Then, C must have minimum distance

at most δ. In particular, C has minimum distance δ if and only if every N−δ+1 columns

of G have rank κ and there exists N − δ columns of G of rank κ− 1.

Proof: First, suppose that d(C) = δ. Let c be a codeword of C of weight δ. By

Lemma 4.1.8, the residual code Cc has dimension κ − 1. Since the submatrix obtained

from G by deleting the columns of G corresponding to the coordinates in supp(c) is a

generator matrix of Cc, the N − δ columns in this submatrix must have rank κ − 1.
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Conversely, suppose that there exist N − δ columns of G of rank κ − 1. Without loss of

generality, we assume that these columns are from the first N − δ columns of G. Write

G = [G ′uN−δ+1 . . .uN], where G ′ consists of the first N − δ columns of G. Since G ′ has

rank κ− 1 and G ′ has κ rows, there exists a nonzero v = (v1, . . . , vκ) such that

vG ′ = 0.

It follows that νG is a codeword of C of weight at most δ. Hence, d(C) ≤ δ as required.

The last assertion is an immediate consequence. �

One of the primary goals of coding theory is to construct codes with large minimum

distances relative to their lengths and sizes. This is essentially because large minimum

distances positively influence the error-correction and error-detection capabilities of the

codes. Unfortunately, for a fixed N and κ, the minimum distance δ cannot grow too large

according to several well-known bounds that relate these parameters. We will present one

such bound in this thesis.

Theorem 4.1.10 (Griesmer bound) For an [N, κ, δ]-code over Fq,

N ≥
κ−1∑
i=0

dδ/qie.

Proof: The proof follows by induction on κ. The claim is trivial for κ = 1. So suppose

that it is true for κ − 1, where κ > 1. Let c be a codeword of C such that w(c) = δ. By

Lemma 4.1.8, Cc is an [N−δ, κ−1, δ′]-code with δ′ ≥ dδ/qe. By our induction hypothesis,

this implies that

N − δ ≥
κ−2∑
i=0

dδ′/qie ≥
κ−1∑
i=1

dδ/qie.
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Hence, N ≥
∑κ−1

i=0 dδ/qie and the induction is complete. �

Next, we turn our attention to some important families of linear codes.

Definition 4.1.11 A code C is called a cyclic code if a cyclic shift of every code-

word lies in C as well. More specifically, (cN−1, c0, c1, . . . , cN−2) ∈ C if and only if

(c0, c1, . . . , cN−2, cN−1) ∈ C.

It is easy to verify that the dual code of a cyclic code is itself a cyclic code. For the

remaining of this section, we will concentrate on cyclic codes that are linear codes.

For an integer N, consider the ring RN = Fq[x]/(x
N − 1). Define a map Γ : FN

q → RN

by

(c0, c1, . . . , cN−1) 7→
N−1∑
i=0

cix
i.

Clearly, Γ is a bijection satisfying Γ(c + c′)= Γ(c)+ Γ(c′) for all c, c′ ∈ C and Γ(αc)

= αΓ(c) for α ∈ Fq and c ∈ C.

Moreover, by observing that a cyclic shift of c corresponds to multiplication by x to

Γ(c), we can show that a cyclic code C corresponds to an ideal Γ(C) of RN and vice

versa. Since RN is a principal ideal domain, there exists a unique monic polynomial

g(x) ∈ Fq[x] of smallest degree such that Γ(C) = RNg(x). This polynomial g(x) is called

the generator polynomial of C. We state the following results on cyclic codes and their

generator polynomials without proof.

Proposition 4.1.12 With the notations above, we have

(i) C has dimension κ if and only if g(x) has degree N − κ.

(ii) c ∈ C if and only if c(x) = Γ(c) is a multiple of g(x).
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(iii) The generator polynomial of C⊥ is given by

h(x) = xNg(1/x).

h(x) is also known as the parity-check polynomial of C.

(iv) A generator matrix of C is given by

G =



g(x)

xg(x)

...

xκ−1g(x)


.

In particular, let N = qm − 1 for some positive integer m. Recall that a monic irre-

ducible polynomial m(x) divides xq
m−1 − 1 if m(x) is the minimal polynomial of some

β ∈ F∗
qm . Since Fq(β) is a subfield of Fqm , m(x) has degree v where v|m. If we write

m(x) =
∑v−1

i=0 aix
i, ai ∈ Fq, it is easy to see that m(βq

j
) = 0 for all j = 1, . . . , v. In

otherwords, βq
j
, 1 ≤ j ≤ v are all the roots of m(x).

Now, let α be a primitive element of F∗
qm , i.e. αq

m−1 = 1 but αj 6= 1 for 1 ≤ i ≤ qm−2.

For 1 ≤ i ≤ qm − 2, let mi(x) denote the minimal polynomial of αi. From what we have

just said, mi(x) is also the minimal polynomial of αiq
j

for any integer j.

Definition 4.1.13 A narrow-sense BCH code over Fq of designed distance δ0 is a

cyclic code of length qm − 1 with generator polynomial

g(x) = lcm(m1(x),m2(x), . . . ,mδ0−1(x)).

Theorem 4.1.14 A narrow-sense BCH code of designed distance δ0 has minimum dis-

tance at least δ0.
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Proof: Refer to [39]. �

Remark 4.1.15 (a) The letters B, C and H refer to the names of the founders of the

BCH code, namely, Bose, Chaudhuri, and Hocquenghem respectively.

(b) Narrow-sense BCH codes are a special case of primitive BCH codes in which the

generator polynomial is

g(x) = lcm(ma(x), . . . ,ma+δ0−1(x))

for some integer a, where δ0 is the designed distance of the code.

In order to determine the dimension of a BCH code, we need to know the degree of

the generator polynomial according to Proposition 4.1.12. To simplify our discussion, we

will let q = p in the following.

Given any integer i, we define the cyclotomic set of p modulo pm − 1 containing i

as the set

Ci = {ipj mod pm − 1 : j ∈ Z}.

Lemma 4.1.16 For any integer i, let Ci be the cyclotomic set of p modulo pm − 1 con-

taining i.

(i) Ci is finite and |Ci| divides m.

(ii) Let γ = pm − pm−1. Then,

γ⋃
i=1

Ci = {1, 2, . . . , pm − 2}.
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(iii) Suppose that m is even, say m = 2m0. Then, all the Ci’s are distinct for 1 ≤ i ≤

2pm0 , gcd(i, p) = 1, i 6= pm0 +1 and |Ci| = m for each such i. Furthermore, |Cpm0+1| = m0

and 2pm0 + 1 ∈ Ci for some 1 ≤ i ≤ 2pm0 .

(iv) Suppose that m is odd, say m = 2m0 + 1. Then, all the Ci’s are distinct for

1 ≤ i ≤ pm0+1, gcd(i, p) = 1 and |Ci| = m for each such i. Furthermore, for pm0+1 ≤ j ≤

pm0+1 + p, j ∈ Ci for some 1 ≤ i < pm0+1.

Proof: (i) Let mi(x) be the minimal polynomial of αi. Since for each j ∈ Ci, αj is a

root of mi(x) and all roots of mi(x) are obtained this way, we have

|Ci| = degmi(x) which divides m.

(ii), (iii) and (iv) are easily deduced by representing an integer j as an m-digit number in

the p-adic completion of Z and observing the fact that multiplying j by p modulo pm− 1

is a cyclic shift of this representation. For example, we show (ii). Here, it suffices to

show that for any integer j with pm − pm−1 ≤ j < pm − 1, there exists an i < pm − pm−1

with j ∈ Ci. Write j =
∑m−1

l=0 alp
l = (a0, a1, . . . , am−1), where 0 ≤ al ≤ p − 1 and

am−1 = p − 1. Since j 6= pm − 1, there exists an index k for which ak < p − 1. Then,

i = jpm−1−k mod pm − 1 = (ak+1, . . . , am−1, a0, . . . , ak) < j and j ∈ Ci. �

Example 4.1.17 1. Let p = 2 and m = 5. Then, the cyclotomic cosets of 2 modulo
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31 are:

C0 = {0},

C1 = {1, 2, 4, 8, 16},

C3 = {3, 6, 12, 17, 24},

C5 = {5, 9, 10, 18, 20},

C7 = {7, 14, 19, 25, 28},

C11 = {11, 13, 21, 22, 26}.

2. Let p = 3 and m = 2. Then the cyclotomic cosets of 3 modulo 8 are:

C0 = {0},

C1 = {1, 3},

C2 = {2, 6},

C4 = {4},

C5 = {5, 7}.

Corollary 4.1.18 Let C be a [pm − 1, κ]-BCH code over Fp with designed distance δ0.

(i) Suppose that m = 2m0 is even. Then, κ = pm − 1− κ′, where κ′ satisfies

κ′ =


m(δ0 − 1− b(δ0 − 1)/pc) if δ0 ≤ pm0 ,

m(δ0 − 2− b(δ0 − 1)/pc) +m0 if pm0 < δ0 ≤ 2pm0 ,

m(δ0 − 3− b(δ0 − 1)/pc) +m0 if δ0 = 2pm0 + 1

(ii) Suppose that m = 2m0 + 1 is odd. Then κ = pm − 1− κ′, where κ′ satisfies

κ′ =

 m(δ0 − 1− b(δ0 − 1)/pc if δ0 ≤ pm0+1,

m(δ0 − 1− i− b(δ0 − 1)/pc) if δ0 = pm0+1 + i, 1 ≤ i ≤ p
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�

4.2 Linear Codes Constructed from Function Fields

In this section, we describe the construction of linear codes using places of global function

fields to form the columns of the generator matrix of the code.

As in Chapter 3, let ∞ be a fixed rational place of a global function field F/Fq. Let

A = OS , where S = PF − {∞} be the integral ring consisting of all elements of F with

poles only at ∞. For every place P 6= ∞, we will, for simplicity, also denote by P the

prime ideal P ∩ A of A. In this way, a divisor of F with support not containing ∞ may

be identified with a fractional ideal of A as explained at the end of Section 1.4.

We first establish a useful result pertaining to the p-rank of an abelian group.

Definition 4.2.1 Let l be a prime number. For an abelian group G, the l-rank of G is

defined as the dimension of the Fl-vector space G/Gl and is denoted by dl(G).

Lemma 4.2.2 Let Q 6= ∞ be a place of F with degQ = d. Then for any positive integer

n, the p-rank of the abelian group (A/Qn)∗ is rd(n− 1− b(n− 1)/pc), where q = pr.

Proof: By Lemma 1.4.2, A/Qn ∼= OQ/Q
n = {

∑n−1
i=0 aiπ

i modQn : ai ∈ F̃Q, 0 ≤ i ≤

n− 1}, where π is a local parameter at Q. Hence,

(A/Qn)∗ = {
n−1∑
i=0

aiπ
i modQn : ai ∈ F̃Q, 0 ≤ i ≤ n− 1, a0 6= 0}
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and has cardinality (qd − 1)qd(n−1). Further,

((A/Qn)∗)p = {
n−1∑
i=0

aiπ
ip modQn : ai ∈ F̃Q, 0 ≤ i ≤ n− 1, a0 6= 0}

= {
n′∑
i=0

aiπ
ip modQn : ai ∈ F̃Q, 0 ≤ i ≤ n′ − 1, a0 6= 0},

where n′ = b(n− 1)/pc. This gives |((A/Qn)∗)p| = (qd − 1)qdn
′
which implies that

|(A/Qn)∗/((A/Qn)∗)p| = qd(n−1−n′).

Consequently, the dimension of the vector space (A/Qn)∗/((A/Qn)∗)p) is rd(n − 1 − n′)

as desired. �

Corollary 4.2.3 Let D =
∏t

i=1 P
ei
i be a fractional ideal of A, where Pi’s are distinct

places of F with degree degPi = di and ei’s are positive integers. Then, the p-rank of

(A/D)∗ is given by

dp((A/D)∗) = r
t∑
i=1

di(ei − 1− b(ei − 1)/pc).

Proof: By the Chinese Remainder Theorem of rings, we have the isomorphism

(A/D)∗ ∼=
t∏
i=1

(A/P ei
i )∗.

Our result follows from Lemma 4.2.2. �

Now, consider a fixed positive divisor D of F with support not containing ∞ as in

the preceding corollary. Let F ′ be the narrow ray class field HA(Λ(D)) determined by a

sgn-normalized Drinfeld module of rank 1 with modulus D defined over the Hilbert class
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field HA. Recall that Gal(F ′/F ) ∼= C`+D(A) and Gal(F ′/HA) ∼= (A/D)∗. Hence, (A/D)∗

can be identified with a subgroup of C`+D(A). Let VD be the Fp-vector space obtained by

taking the quotient of C`+D(A) by its maximal abelian subgroup, i.e.

VD = C`+D(A)/C`+D(A)p.

Since the p-rank of an abelian group is also equal to the number of summands in the

direct product of its p-Sylow subgroup into cyclic components, the dimension κ of VD is

at least as large as that of (A/D)∗/((A/D)∗)p which, by Corollary 4.2.3 is r
∑t

i=1 di(ei −

1− b(ei − 1)/pc).

Let S be a finite subset of PF −{∞}, say S = {P1, P2, . . . , PN}. Clearly, each element

of S can be viewed as a κ-vector in VD. Write each element of S as a κ-tuple over Fp.

We again denote the vectors by P1, . . . , PN . Let G(S,D) be the matrix whose columns

are the vectors P1, P2, . . . , PN . Then, G(S,D) is a κ×N matrix over Fp of rank at most

κ. Define C(S,D) to be the linear code generated by the rows of G(S,D). Further, let

C(S,D)⊥ be the dual code of C(S,D). Then, C(S,D)⊥ is an [N, κ∗]-linear code over Fp

with κ∗ ≥ N − κ and

C(S,D)⊥ = {(c1, c2, . . . , cN) ∈ FN
p :

N∑
i=1

ciPi = 0}.

Lemma 4.2.4 Suppose that there are l columns of G(S,D), say Pi1 , . . . , Pil of rank κ′ <

κ. Then there is a subfield L of F ′ such that [L : F ] = pκ−κ
′

and ∞, Pi1 , . . . , Pil split

completely in L/F.

Proof: By assumption, there is a subgroup G of C`+D(A) containing Pi1 , . . . , Pil and

C`+D(A)p such that [C`+D(A) : G] = pκ−κ
′
. Let L be the fixed field of G in F ′/F. Then,

[L : F ] = pκ−κ
′
and by a consideration of the Artin symbols, it follows that Pi1 , . . . , Pil
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split completely in L/F. Moreover, since the ramification index of ∞ in F ′/F is q − 1

which is coprime to p, ∞ splits completely in L/F. �

With this lemma, we can estimate the minimum distance of C(S,D) as the following

theorems and examples show. For the moment, D will be the divisor 2P (or equivalently,

the prime ideal P 2 of A), where P is a place of F different from ∞ and degP = d.

Theorem 4.2.5 Let F be a global function field with genus g and N(F ) rational places.

Let

ε =

 1 if d = 1,

0 if d > 1

For N ≤ N(F )−1−ε, let S ⊆ PF −{P,∞} consist of N distinct rational places. Assume

that S generates C`+D(A) and that Nq(pg − p + 1) ≤ Nq(pg + (d − 1)(p − 1)). Then, the

code C(S, P 2) constructed as described above is an [N, κ, δ]-code over Fp, where κ ≥ rd

and δ satisfies

δ ≥ N + 1− bNq(pg + (d− 1)(p− 1))− ε

p
c.

Proof: The length N is trivial. So let δ be the minimum distance of C(S, P 2). By

Corollary 4.1.9, there must exist N − δ columns of G(S, P n) of rank κ− 1. Let S ′ be the

set of places represented by these N − δ columns. By Lemma 4.2.4, we can construct a

subfield L of F ′ such that [L : F ] = p and all the places in S ′ as well as ∞ split completely

in L/F. As such, L has at least p(N − δ + 1) rational places. It remains to calculate the

genus of L. Observe that P can be either unramified or totally ramified in L/F. In the

former case, the Hurwitz genus formula gives

g(L) = 1 + p(g − 1) = pg − p+ 1.
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In case P is totally ramified in L/F, since the conductor of P in L/F ≤ 2, the genus of

L is, according to Corollary 1.3.5, given by

g(L) = 1− d+ p(g − 1 + d) = pg + (d− 1)(p− 1).

Since

Nq(pg − p+ 1) ≤ Nq(pg + (d− 1)(p− 1))

by our assumption, the maximum number of rational places in L/F is Nq(pg+(d−1)(p−

1)). Consequently,

p(N − δ + 1) ≤ Nq(pg + (d− 1)(p− 1))− ε

and our desired bound on δ follows. Finally as S generates C`+D(A), κ ≥ rd. �

The next corollary looks at a special case of Theorem 4.2.5.

Corollary 4.2.6 Let F be the rational function field F = Fq(x). Suppose that all other

notations are as in Theorem 4.2.5. Then, the code C(S, P 2) is an [N, κ, δ]-linear code

over Fp, where

N ≤ q − ε,

κ = rd,

δ ≥ N + 1− bNq((p− 1)(d− 1))− ε

p
c.

In particular, for d = 1 and N = q − i, 1 ≤ i ≤ p, the code C(S, P 2) is optimal.

Proof: Since F is the rational function field, g = 0 and N(F ) = q + 1. Further,

C`+P 2(A) = (A/P 2)∗ which gives κ = rd. Since any intermediate field of F ′/F must
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be ramified, the first assertion follows from Theorem 4.2.5. Now, let d = 1 and N =

q − i, 1 ≤ i ≤ p. Since g(L) = 0, L is also a rational function field. Therefore, C(S, P 2) is

a [q − i, r, q − i+ 1− q/p] = [pr − i, r, pr−1(p− 1)− i+ 1]-linear code over Fp. Since

r−1∑
j=0

dp
r−1(p− 1)− i+ 1

pj
e =

r−1∑
j=0

pj(p− 1)− i+ 1

= pr − i

= N,

the Griesmer bound implies that C(S, P 2) is optimal. �

Example 4.2.7 1. Let d = 2 and q = 64 in Corollary 4.2.6. Since N64(1) = 81, we

obtain binary [64, 12, 25] and [63, 12, 24] linear codes which are best known.

2. Let d = 2 and q = 256 in Corollary 4.2.6. Since N256(1) = 289, we obtain binary

[256, 16, 113] and [255, 16, 112] linear codes which are best known.

Theorem 4.2.8 Let F = Fq(x) be the rational function field. Suppose that N = qp−q
p
.

Let S ⊆ PF consist of N distinct places of F of degree p and let P be a place of S with

degree degP = d 6= p. Then, the code C(S, P 2) is a [N, rd, δ]-linear code over Fp, where

δ ≥

 N + dpq+p−Nqp ((d−1)(p−1))

p2
e if d > 1,

(p−1)qp

p2
if d = 1

Proof: Let δ be the minimum distance of C(S, P 2). Then, Corollary 4.1.9 implies

that there are N − δ columns of the generator matrix G(S, P 2) of rank κ− 1, κ being the

dimension of C(S, P 2). Denote by S ′ the set of all places represented by these columns.

By Lemma 4.2.4, there exists a subfield L of F ′/F such that [L : F ] = p and all places in
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S ′ as well as ∞ split completely in L/F. Further, assume that δ′ rational places split in

L/F. Then L has p(N − δ) + q + 1− δ′ + ε places of degree p and pδ′ + ε rational places,

where

ε =

 1 if d = 1,

0 if d > 1

Let L′ be the constant field extension L′ = LFqp . Since every place of L of degree p splits

into p rational places in L′ and every rational place of L remains rational in L′, L′ has at

least

N(L′) = p2(N − δ) + p(q + 1− δ′ − ε) + pδ′ + ε = p2(N − δ) + p(q + 1) + ε(p− 1)

rational places. Since P is the only ramified place in L with conductor ≤ 2, the Hurwitz

genus formula yields

g(L′) = g(L) = (d− 1)(p− 1).

Thus we have N(L′) ≤ Nqp((d− 1)(p− 1)) which yields our desired assersions. �

Example 4.2.9 Let p = 2 and d = 1 in the preceding theorem. We obtain binary linear

codes with parameters [2r−1(2r − 1), r, 22r−2]. By the Griesmer bound, these codes are

optimal.

Remark 4.2.10 The above constructions can be similarly generalized to any positive di-

visor D in which ∞ is not in the support of D. Notice further that if D = e1P1 + e2P2 +

· · ·+etPt, where P1, . . . , Pt are distinct places of F different from ∞, then the code C(S,D)

can be viewed as a direct sum of the codes C(S, P e1
1 ), . . . , C(S, P et

t ).
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The next theorem examines the minimum distance of the dual code C(S, P n)⊥ for any

integer n.

Theorem 4.2.11 Let S ⊆ PF − {P,∞} consist of all the rational places of F different

from ∞ and possibly P when degP = 1. Then, the code C(S, P n)⊥ has minimum distance

δ′, where

δ′ ≥

 nd+ 1− 2g(F ) if p|n,

(n− 1)d+ 1− 2g(F ) otherwise

Proof: Let c be a codeword of C(S, P n)⊥ with w(c) = w. Without loss of generality,

we may assume that the first w coordinates of c are nonzero. Write c = (c1 , . . . , cw , 0 , . . . , 0 ).

Since G(S, P n) is a parity-check matrix of C(S, P n)⊥,

cG(S, P n)T = (c1, . . . , cw, 0, . . . , 0)[P1P2 . . . PN ] = 0,

i.e.
w∑
i=1

ciPi = 0.

This implies that there is a divisor D′ of F such that the divisor X =
w∑
i=1

ci(Pi − ∞)

and X ′ = pD′−p degD′∞ are equivalent in the group C`+nP (F ). Furthermore, by Lemma

1.4.5, we may assume that D′ is effective and Supp(D′)∩{∞, P, P1, . . . , PN} = ∅. We can

therefore find an element z ∈ F with

X −X ′ = div(z)

and z ≡ 1 modnP. Consider the subfield F0 = Fq(z). We claim that the extension F/F0

is separable. Suppose not. Then, z ∈ F p, i.e. there is a u ∈ F with z = up. This means

that

div(z) = div(up) = pdiv(u) ≡ 0 mod p.
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Thus X −X ′ ≡ 0 mod p which shows that p|ci for all 1 ≤ i ≤ w. This clearly contradicts

our assumption that c is nonzero. Consequently, F/F0 is separable. Since div(z) =∑
Q∈PF ′

νQ(z)Q, the ramification index of any place Q in Supp(div(z)) lying over the

zero place of z is just |νQ(z)|. Hence, Proposition 1.1.10 yields the corresponding different

exponents dQ for Q lying over z as follows:

dPi
≥ ci − 1, i = 1, . . . , w,

dQ ≥ p degQ for Q ∈ Supp(D′),

d∞ ≥ |p degD′ −
w∑
i=1

ci| − 1.

Similarly, the ramification index of P lying over the place z− 1 is at least n which makes

the different exponent dP to be dP ≥ n′, where

n′ =

 n if p|n,

n− 1 otherwise

Applying the Hurwitz genus formula, we obtain

2g(F )− 2 = [F : F0](−2) +
∑
Q∈PF

dQ degQ

≥ −2|p degD′ −
w∑
i=1

ci|+
w∑
i=1

(ci − 1) + p degD′ + |p degD′ −
w∑
i=1

ci| − 1 + n′d

≥ −w + n′d+ 1.

As a result, w ≥ n′d + 1− 2g which in turn implies that the minimum distance of C

must satisfy

δ ≥ n′d+ 1− 2g.
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Remark 4.2.12 The dual codes C(S, P n)⊥ are introduced by Xing in [88] for n = p.

4.3 Function Fields Constructed from Linear Codes

We have seen how the minimum distance of the codes C(S,D) can be estimated from

bounds on the number of rational places of suitable global function fields. Conversely, by

using the same construction discussed in the previous section, we can use known bounds

on the minimum distance of codes to estimate the number of rational places that the

associated global function fields contain. In some cases, these global function fields have

sufficiently many rational places as compared to their genera.

In this section, we will use two examples to illustrate how this can be achieved. In

both of our examples, the global function fields constructed have more rational places

than currently known ones with the same genera.

We first quote, without proof, a lemma from [55, Chapter 1].

Lemma 4.3.1 Let F/Fq be a global function field of genus g. Suppose that for some

integer d ≥ 2 we have

qd − 2gqd/2 >
∑
r|d,r<d

(qr + 2gqr/2).

Then there exists at least one place of F of degree d.

Example 4.3.2 g(L/F2) = 52, N(L/F2) ≥ 36. Consider the function field F/F2 in which

g(F ) = 19 and N(F ) = 20. Such an F exists by [82]. Fix a rational place ∞ ∈ P1
F and
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let S = P1
F −{∞}. By Lemma 4.3.1, we can find a place P of F with degree 15. Then the

code C(S, P 2) is a binary code with length 19 and dimension at least 15. Consider the

parity-check matrix H(S, P 2) of C(S, P 2). Clearly, H(S, P 2) is a t × 19 matrix over F2

with t ≤ 4. As there are at most 15 distinct nonzero t-tuples, we conclude from Theorem

4.1.5 that C(S, P 2) has minimum distance at most 2. Consequently, by Corollary 4.1.9,

there are 17 columns of G(S, P 2) of rank at most 14. With d = 2 and using these 17

columns, construct the field L as in Lemma 4.2.4. Then, all the 17 places represented by

these columns as well as ∞ split completely in L/F. Thus, L has at least 2(17 + 1) = 36

rational places. By the proof of Theorem 4.2.5, the genus of L is

g(L) = 2(19− 1) = 36

or

g(L) = 2(19) + 14 = 52.

Since N2(36) = 31 < 36 according to the table in [82], we conclude that g(L) = 52.

The Oesterlé bound for N2(52) is 42. Note that this example improves the bound of

N2(52) ≥ 34 given in [55, Table 4.5.2].

Example 4.3.3 g(L/F128) = 13, N(L/F128) ≥ 308. Consider the function field F/F128 in

which g(F ) = 4 and N(F ) = 215. Such an F exists by [82]. Fix a rational place ∞ ∈ P1
F

and let S = P1
F −{∞}. By Lemma 4.3.1, we can find a place P of F with degree 6. Then

the code C(S, P 2) is a binary code with length 214 and dimension at least 42. Now, by

Brouwer’s table [7], the lower bound on the minimum distance of a [214, 42]-code is 61

while the upper bound is 82. Let δ be the minimum distance of C(S, P 2). Thus, δ ≤ 82.

By Corollary 4.1.9, there are 214 − δ columns in the matrix G(S, P 2) with rank at most
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41. With these 214 − δ columns, construct the field L as in Lemma 4.2.4. Then all the

214 − δ places represented by these columns as well as ∞ split completely in L/F. It

follows that

N(L) ≥ 2(215− δ) = 430− 2δ ≥ 266.

From the proof of Theorem 4.2.5, the genus of L is given by

g(L) = 2(4− 1) = 6

or

g(L) = 2(4) + 5 = 13.

Since N128(6) ≤ 258 according to the table [82], we conclude that g(L) = 13. Now, since

the best known code of length 214 and dimension 42 has minimum distance 61, we may

assume that δ ≤ 61. In this case, N(L) ≥ 308. By the Oesterlé bound, N128(13) = 428.

Since d428/
√

2e = 299, the field L constructed here has more rational places than the

criteria for the lower entry of N128(13) in [82].

Remark 4.3.4 In Example 4.3.3, notice that for 61 ≤ δ ≤ 65, L has sufficient rational

places that meet the criteria for the lower entry of N128(13) in [82]. In this case, both

the code C(S, P 2) and the field L are better than the existing code and field with the same

parameters. For 66 ≤ δ ≤ 82, the code C(S, P 2) has minimum distance that improves the

current lower bound.



Chapter 5

More on Cyclotomic Function Fields

Thus far, we have developed numerous results on cyclotomic function fields, particularly

in Chapters 2 and 3. We recall that cyclotomic function fields are special examples

of narrow ray class fields with the base field being the rational function field. In this

present chapter, we will make use of these results, as well as the interplay between error-

correcting codes and function fields established in the preceding chapter, to construct

subfields of cyclotomic function fields, thereby obtaining several new global function fields

with improved lower bounds on the number of rational places for various genera.

The idea of using cyclotomic function fields to construct global function fields with

many rational places was first suggested by Quebbemann [59]. Subsequently, extensive

search among this family of class fields was conducted by a number of other researchers,

including Niederreiter and Xing [41, 42, 46], Keller [30], Lauter [34] and Gebhardt [38].

In particular, Keller carried out an exhaustive search for cyclotomic function fields over

F2 while Gebhardt extended the search to fields over Fq for small powers of 2, 3 and 5.

An advantage of using cyclotomic function fields is that its Galois group can be explic-

96
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itly expressed, namely, it is the unit group of the ring of polynomials factored by its mod-

ulus. More specifically, using all the notations introduced in Section 2.4, the cyclotomic

function field F ′ = F (ΛM) with modulus M has Galois group Gal(F ′/F ) = (R/(M))∗.

Thus, all rational places can be identified with linear polynomials and our problem is now

reduced to finding the orders of subgroups generated by a set of linear polynomials S∗ in

this group.

Besides those notations of Section 2.4, we fix a few more notations to be used through-

out this chapter. S∗ will always denote the set of rational places (excluding ∞) that will

generate the subgroup GM of (R/(M))∗. For any factor M ′ of M, Ω(M ′) will denote the

ratio Φ(M ′)/|GM ′|, where GM ′ is the subgroup of (R/(M ′))∗ generated by the places in

S∗ and F∗
q. Finally, L will be the fixed field of FM generated by the group GM .

5.1 Cyclotomic Function Fields over Fp

First of all, we let q = p and concentrate on cyclotomic function fields over the prime field

Fp. In this case, F has p rational places apart from ∞.

The three examples below illustrate the construction in Theorem 3.5.1.

Example 5.1.1 g(L/F3) = 44, N(L/F3) = 48. Let F = F3(x) be the rational function

field. Let

M = (x2 + 1)2(x2 + x+ 2)2(x4 + x3 + 2x+ 1) = P 2
1P

2
2P3 ∈ F3[x].

Consider the set S∗ = {x, x + 1, x + 2}. Then, the following give the relevant values of
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Ω(M ′):

Ω(M) = 12, Ω(P 2
1P

2
2 ) = 3, Ω(P1P

2
2P3) = 4,

Ω(P 2
2P3) = 2, Ω(P 2

1P2P3) = 4,Ω(P 2
1P3) = 1.

By Theorem 3.5.1, we have

2g(L)− 2 = 12(−2 + 12)− 4 · 3− 2 · 4− 2 · 1− 2 · 4− 2 · 2 = 86,

thereby giving g(L) = 44. Moreover, N(L) ≥ 4[L : F ] = 4 · 12 = 48. The Oesterlé bound

gives N3(44) = 61. Since d61/
√

(2)e = 44, the field just constructed meets the criteria for

the lower entry of the table in [82].

Example 5.1.2 g(L/F7) = 4, N(L/F7) = 24. Let F = F7(x) be the rational function

field. Consider

M = x3 − 1 = (x+ 3)(x+ 5)(x+ 6) ∈ F7[x].

Then, Φ(M) = 63 = 216. Since x3 ≡ 1 modM, |GM | = 18 and so [L : F ] = Ω(M) = 12.

Direct computations show that

Ω((x+ 3)(x+ 5)) = Ω((x+ 3)(x+ 6)) = Ω((x+ 5)(x+ 6)) = 2.

Therefore, Theorem 3.5.1 gives

g(L) = 1 +
1

2
(12(−2) + 3(12)− 2− 2− 2) = 4

and N(L) = 24. The Oesterlé bound for N7(4) is 25.

Example 5.1.3 g(L/F7) = 7, N(L/F7) = 32. Let F = F7(x) be the rational function

field. Let M = (x2 + 2)(x2 + 4) ∈ F7[x]. Consider S∗ = {x, x+ 1}. Clearly, Φ(M) = 482.
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Since |GM | = 288, we have [L : F ] = Ω(M) = 8. Further, direct computations show

that Ω(x2 + 2) = Ω(x2 + 4) = 1 and GM contains the rational places x, x + 1 and x + 5.

Consequently, by Theorem 3.5.1,we have

g(L) = 1 +
1

2
(8(−2) + 4(8)− 2(1)− 2(1)) = 7

and N(L) = 32. The Oesterlé bound for N7(7) is 36.

Using a similar approach as the above examples, we record, in Table 5.1.1 below, some

cyclotomic function fields over F7 for several other genera. Note that the fields listed have

more number of rational places than those constructed from subfields of Hilbert class fields

and having the same genera (see [74]). In the table, S∗ always denotes the minimum set of

linear polynomials that generate the group GM for a modulus M. The number l(S∗) refers

to the number of linear polynomials in the group GM . Hence, N(L) = (l(S∗) + 1)[L : F ].

To allow for comparison, we provide the Oesterlé bound N7(g) for the genus g in the last

column.

Table 5.1.1. Bounds for N7(g)
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M S∗ l(S∗) [L : F ] g N(L) N7(g)

6 + x3 {x} 1 12 4 24 25

1 + 2x2 + x4 + x6 {x, x+ 1, x+ 2} 5 4 5 24 29

1 + 3x+ 2x2 + 3x3 + x4 {x} 2 8 6 24 32

1 + 6x2 + x4 {x, x+ 1} 3 8 7 32 36

2 + x3 {x} 1 19 9 38 42

1 + 3x2 + x3 + 3x5 + x6 {x, x+ 1} 5 12 10 36 45

3 + 6x+ 6x2 + 4x3 + x4 + x5 {x, x+ 1} 2 12 11 36 49

x6 {x+ 1, x+ 2, x+ 3, x+ 4} 4 7 12 36 52

1 + x+ 5x2 + 6x3 + 6x4 + 2x5 + x6 {x} 4 8 14 40 57

4 + 2x+ 3x2 + 2x3 + x4 {x} 2 16 15 48 60

6 + 6x+ 5x2 + 3x3 + x4 {x} 1 16 16 48 63

5 + 5x+ 3x3 + x4 {x} 1 16 20 48 74

6 + 2x+ 3x4 + 6x5 + x6 {x, x+ 1, x+ 2} 3 16 21 64 77

1 + 4x+ 2x2 + 4x3 + x4 {x, x+ 1} 2 24 22 72 79

3 + x+ 5x2 + 6x3 + 2x4 + x5 + x6 {x} 3 16 23 64 82

2 + 3x+ x2 + 6x4 + x5 {x, x+ 1} 2 24 25 72 87

3 + 3x+ 2x3 + x4 {x} 1 36 28 72 95

3 + 4x2 + 5x4 + 2x5 {x, x+ 1} 2 24 29 72 98

2 + 2x+ 3x3 + x4 + x6 {x, x+ 1} 4 19 36 95 117

Next, let us consider the case when M = P n for a certain place P of F of degree d.

Definition 5.1.4 A finite set S∗ ⊆ PF−{P,∞} is said to be independent mod P n if it

is Fp/-linearly independent in the vector space VPn (refer to Section 4.2 for the definition

of VPn .)

Let S consist of all the rational places of F other than ∞ and possibly P, when

degP = 1. As such, |S| = p− ε, where

ε =

 1 if d = 1,

0 otherwise.
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Consider the code C(S, P n). Then, C(S, P n) is a [p−ε, κ ≤ d(n−1−b(n−1)/pc]-code

over Fp. First, consider n < b(p− ε)/dc+ 1 < p. Now by Theorem 4.2.11, C(S, P n)⊥ has

minimum distance at least (n−1)d+1. Applying Theorem 4.1.5, and since the number of

linearly independent vectors cannot exceed the dimension κ ≤ d(n− 1), we can conclude

that C(S, P n)⊥ has minimum distance exactly (n− 1)d+ 1. Consequently, any subset of

≤ d(n− 1) rational places of F must be independent mod P n and κ = d(n− 1). On the

other hand, for n ≥ b(p − ε)/dc + 1, it is clear that the generator matrix G(S, P n) is a

(p− ε)× (p− ε) invertible matrix, i.e. all p− ε rational places are independent mod P n.

Together with Proposition 3.5.2, we can easily prove the following lemma.

Lemma 5.1.5 Let S∗ ⊂ PF −{∞, P} consist of k rational places of F, where k ≤ p− ε.

Write k = ad+ b, where 0 ≤ b < d. Then for any positive integer n > 1, we have

Ω(P n) = ω
pn−1

(n/(a+ 1))bp
∏a

i=1(n/i)
d
p

,

where ω = Ω(P ).

Proof: Let S∗ = {P1, P2, . . . , Pk}. For i = 1, . . . , d, it is clear from Proposition 3.5.2

that |〈Pi〉n| = ωinp, where ωi = |〈Pi〉1|. Thus,

|〈P1, . . . , Pd〉n| = ω′ndp,

where ω′ = |〈P1, . . . , Pd〉1|. From our above discussion, Pd+1 ∈ 〈P1, . . . , Pd〉2 but Pd+1 6∈

〈P1, . . . , Pd〉3.Applying Proposition 3.5.2 yields |〈P1, . . . , Pd+1〉n| = ω′|〈P1, . . . , Pd〉n|(n/2)p =

ω′ndp(n/2)p. Continuing in this way for i = d + 2, . . . , k and recalling that Φ(P n) =

(pd − 1)pd(n−1), we obtain

|〈P1, . . . , Pk〉n| = ω′(n/(a+ 1)p

b∏
i=1

(n/i)dp.
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Consequently,

Ω(P n) = ω
pn−1

(n/(a+ 1))bp
∏a

i=1(n/i)
d
p

,

where ω = (pd − 1)/ω′ = Ω(P ). �

With these computations, the genus and number of rational places of the field L

constructed in Theorem 3.5.1 can be written down explicitly.

Corollary 5.1.6 Let S∗ ⊂ PF−{∞, P} consist of k rational places of F, where k ≤ p−ε.

Write k = ad + b, where 0 ≤ b < d. Then the subfield L of the cyclotomic function field

F (ΛPn)/F constructed as the fixed field of GPn has genus

2g(L)− 2 = Ω(P n)(dn− 2)− d(1 +
n−1∑
i=1

Ω(P i)),

where Ω(P j) = Ω(P ) pd(j−1)

(j/(a+1))b
p

Qa
i=1(j/i)d

p
for n ≥ 2. Further, L has exactly

N(L) = (k + 1)Ω(P n) + ε

rational places.

Example 5.1.7 Put d = 1 in the above corollary. Then

g(L) =
pn−1

2
∏k

i=1(n/i)p
(n− 2)−

n−1∑
j=2

pj−1

2
∏k

i=1(j/i)p

and

N(L) =
pn−1∏k

i=1(n/i)p
(k + 1) + 1.



Chapter 5: More on Cyclotomic Function Fields 103

5.2 Cyclotomic Function Fields over Fpr

In this section, we return to the situation of q = pr. We will construct several subfields

of cyclotomic function fields in which the number of rational places improves the lower

bounds given in [82].

We begin with an example.

Example 5.2.1 g(L/F16) = 29, N(L/F16) = 162. Let F be the rational function field

F = F16(x) and let α be a primitive element of F∗
16 with α4 + α + 1 = 0. Put M =

(x + α7)2(x + α8)2(x + α14)2 = (x2 + α)(x2 + α13)(x2 + α14). Consider the cyclotomic

function field FM = F (ΛM). With S∗ = {x+ αi : 0 ≤ i ≤ 6} ∪ {x}, construct the field L

as in Theorem 3.5.1. We compute the relevant values of Ω(M ′) below.

Ω(M) = [L : F ] = 16,

Ω((x+ α7)(x+ α8)2(x+ α14)2) = Ω((x+ α8)2(x+ α14)2) = 2,

Ω((x+ α7)2(x+ α8)(x+ α14)2) = Ω((x+ α7)2(x+ α14)2) = 1,

Ω((x+ α7)2(x+ α8)2(x+ α14)) = Ω((x+ α7)2(x+ α8)2) = 1.

Thus, the genus of L is given by

g(L) = 1 +
1

2
(16(−2 + 6)− 2− 2− 1− 1− 1− 1) = 29.

Further, it can be checked that apart from the places in S∗, GM contains x+α10 as well.

Since both x+ α8 and x+ α14 are totally ramified in L/F,

N(L) = 10(16) + 2 = 162.

This example improves the lower bound of N16(29) ≥ 161 given in [82].
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Next for a positive integer n ≥ 2, consider M = xn. Let α be a fixed primitive element

of F∗
q. We denote by Pi the zero of x − αi, i = 0, . . . , q − 2. Let S = {P0, P1, . . . , PN−1},

where N = q−1 and construct the code C(S, xn). Write the generator matrix of C(S, xn)

as

G(S, xn) = [P0P1 . . . PN−1].

We will prove in Proposition 5.2.3 that C(S, xn) is the dual of a narrow-sense BCH

code. To do this, let us first recall the Newton’s formulas involving the sums of powers of

roots of a polynomial.

Lemma 5.2.2 (Newton’s formula) Let f(x) =
∑l

i=0 βix
i be a polynomial over Fp with

reciprocal roots α1, α2, . . . , αl, i.e.

f(x) =
l∏

i=1

(1− αix).

For any integer u, let yu =
∑l

i=1 α
u
i . Then

sβs +
s∑
i=1

βiys−i = 0

for any positive integer s.

Proposition 5.2.3 The code C(S, xn)⊥ is a narrow-sense BCH code with designed dis-

tance δ0 = n.

Proof: Let c = (c0 , c1 , . . . , cN−1 ) ∈ C(S,xn)⊥. We need to show that αs is a root

of c(x) =
∑N−1

i=0 cix
i for all s = 1, 2, . . . , n− 1. Since G(S, xn) is a parity-check matrix of

C(S, xn)⊥, we have
N−1∑
i=0

ciPi = 0.
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By identifying ci ∈ Fp with the corresponding integer ci ∈ Z, it follows that there exists

a polynomial f(x) ∈ (Fq[x]/(x
n))∗ such that

N−1∏
i=0

(x− αi)ci ≡ f(x)p ≡ f(xp) mod (p, xn).

Factoring out the constants, the above is equivalent to

N−1∏
i=0

(1− αix)ci ≡ f ′(xp) mod (p, xn)

for some f ′(x). Now write
∏N−1

i=0 (1−αix)ci =
∑∞

j=0 βjx
j. Clearly, β0 = 1 and βj ≡ 0 mod p

for all j = 1, . . . , n− 1 and gcd(j, p) = 1. We claim that for integers s = 1, . . . , n− 1,

c(αs) =
N−1∑
i=0

ciα
is = 0.

We prove this by induction on s < n. By the Newton’s formulas,

β1 ≡ −β0c(α) ≡ −c(α) ≡ 0 mod p.

The result is thus true for s = 1. So assume that the result holds for all positive integers

≤ s− 1 < n. By the Newton’s formulas again,

sβs = −
s∑
j=1

βjc(α
s−j) mod p.

By our induction hypothesis, this becomes c(αs) ≡ −sβs mod p. But sβs ≡ 0 mod p for

all s < n. Hence our claim is shown. Consequently, C(S, xn)⊥ is a narrow-sense BCH

code with designed distance at least n. By the arguments just discussed, it is clear that

if c(x) is the lcm of all the minimal polynomials of αj for j = 1, . . . , n − 1, then the

codeword c corresponding to c(x) is a codeword in C(S, xn)⊥. From the definition of a

narrow-sense BCH code, this shows that the designed distance of C(S, xn)⊥ is exactly n. �
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Corollary 5.2.4 C(S, xn) is a cyclic code with generator polynomial g(x) = xNh(1/x),

where

h(x) = lcm(m1(x), . . . ,mn−1(x)).

Proof: This is an immediate consequence of Propositions 5.2.3 and 4.1.12. �

Corollary 5.2.5 The code C(S, xn) has dimension κ = r(n−1−b(n−1)/pc) if n ≤ pdr/2e.

Proof: By Corollary 4.1.18 and our assumption on n,, C(S, xn)⊥ has dimension

q− 1− r(n− 1−b(n− 1)/pc). Hence, the dimension of C(S, xn) is r(n− 1−b(n− 1)/pc).

�

Remark 5.2.6 The rank of C(S, xn) was first shown by Lauter in [34] using generalized

Witt vectors. However, our proof follows that given in [2].

In Section 4.3, we have seen that upper bounds on the minimum distances of the codes

C(S,D) can be used to estimate the number of rational places of the fields constructed by

means of Lemma 4.2.4. Unfortunately, this method does not often lead to “good’ global

function fields as large minimum distances necessarily result in fewer rational places (see

for example Theorems 4.2.5 and 4.2.8).

For the codes discussed in this section, we have shown that their structures are explic-

itly known. As such, we can exploit Mathematical software packages such as Mathematica

or magma to look for subsets of S of different ranks, and then construct fields based on

Lemma 4.2.4. Lemma 4.1.8 suggests how we can search for good subsets.
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More specifically, we define recursively the codes C0, C1, . . . and their respective fields

L0, L1, . . . as follows. Let C0 = C(S, xn), S0 = S, δ0 = d(C0), and c0 ∈ C0 with weight

w(c0) = δ0. Construct L0 by the method in Lemma 4.2.4 with S∗ = S − supp(c0) as

the generating set. Now, assume that Ci, Si, δi, ci and Li have been constructed. Let

Si+1 = Si − supp(ci), Ci+1 be the residual code of Ci at ci, δi+1 = d(Ci+1), ci+1 ∈ Ci+1

with w(ci+1) = δi+1 and Li+1 as the field constructed with S∗ = Si+1 − supp(ci+1) as the

generating set.

Proposition 5.2.7 Suppose that C(S, xn) has dimension n − 1 − b(n − 1)/pc. With

Ci, Si, δi, ci and Li as above, the following are true.

(i) For i = 0, . . . , r − 1, [Li : F ] = pi+1.

(ii) All places in Si+1 split completely in Li/F. In particular, Li has (|Si+1|+ 1)pi + 1 =

(q −
∑i

i=0 δi)p
i+1 + 1 rational places

(iii) The genus of Li is given by

g(Li) ≤ (pi − 1)(n− 2)/2

and equality holds if the places in Si+1 generate C(S, xn−1).

Proof: All the assertions can be proven by induction on i by using Lemma 4.2.4 and

Lemma 4.1.8. For the genus, we apply the genus formula given in Theorem 3.5.1. �

With this procedure, we use the Mathematica to determine the sequences (δ0, δ1, . . . )

and their respective sets (S0, S1, . . . ) for q = 27, 32, 64, 81 and 128. The following new

function fields are obtained. As in [82], we restrict our search for fields with genus at
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most 50. In addition, we give values for N27(51), N27(52), N81(51) and N81(52). Note that

to compute the genus of Li, we need to know the rank of the places in Si+1 with respect

to the codes C(S, xj), j < n. Clearly, if the places in Si+1 generate C(S, xj), they generate

C(S, xj
′
) for all j′ < j. In Table 5.2.1, κj refers to the rank Si+1 with respect to the code

C(S, xj). In the last column, we give the range of Nq(g) taken from [82]. In the case where

no entry is entered in that table, we provide the Oesterlé bound for comparison.
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Table5.2.1. Improved lower bounds on Nq(g)

q n i (δ0, . . . , δi) (κn−1, κn−2, . . . ) g N(L) Nq(g)

64 6 2 (16, 8, 8) (12, . . . ) 14 257 241−−284

64 8 2 (14, 7, 6) (18, . . . ) 21 297 281−−396

64 8 3 (14, 7, 6, 5) (17, 17, 12, . . . ) 44 513 695

128 6 3 (48, 24, 14, 7) (13, 13, 7, . . . ) 29 561 785

27 6 2 (9, 3, 3) (8, 6, . . . ) 51 361 423

27 6 2 (9, 3, 1) (9, . . . ) 52 379 430

81 3 2 (48, 16, 6) (4) 13 298 256− 312

81 8 1 (30, 10) (15, 15, 12, . . . ) 22 370 478

81 8 1 (30, 10) (16, . . . ) 24 370 514

81 3 3 (48, 16, 6, 2) (3) 39 730 769

81 6 2 (30, 15, 8) (11, 8, . . . ) 51 757 923

81 6 2 (30, 10, 13) (12, . . . ) 52 757 936



Chapter 6

Bounds on A(q)

In this final chapter, we turn to a somewhat different topic, namely, we will investigate

the behaviour of the ratio Nq(g)/g as g tends to infinity.

6.1 Some general results on A(q)

In [28], Ihara introduced the following quantity

A(q) = lim sup
g→∞

Nq(g)

g
.

This asymptotic quantity, which we simply refer to as A(q) is of interest as it has significant

and direct applications to the construction of good algebraic-geometric codes.

As a consequence of the Serre bound on Nq(g)(1.5.9), we immediately obtain an upper

bound on A(q), namely,

A(q) ≤ b2q1/2c

for all prime powers q. Vladut and Drinfeld established an improved upper bound on

110
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A(q) in [84]. They showed that for all q,

A(q) ≤ q1/2 − 1.

By constructing an explicit tower of class fields, Garcia and Stichtenoth proved that this

bound is in fact sharp when q is a square [13], [15].

However for nonsquares q, the exact value of A(q) remains a challenge. As such,

Mathematicians have concentrated on providing general results on the lower bounds on

A(q). For instance, by employing class field towers, Serre [66, 69] showed that there is a

constant c > 0 such that A(q) ≥ c log q. This was later improved by Li and Maharaj [37]

and Temkine [73] who proved that there exists an effective absolute constant c > 0 such

that for any prime power q and any integer m ≥ 1, we have

A(qm) ≥ cm2(log q)2

logm+ log q
.

Moreover, Zink [97] gave a lower bound on A(p3) for any prime p, which states that

A(p3) ≥ 2(p2 − 1)

p+ 2
.

For more classes of composite q, Perret [58] proved that if m is a prime and q = pr is a

prime power with q > 4m+ 1 and q ≡ 1 ( mod m), then

A(qm) ≥ m1/2(q − 1)1/2 − 2m

m− 1
.

Subsequently, Niederreiter and Xing generalized and improved this bound to the following

(refer to [50, 55]) :

Theorem 6.1.1 (i) If q = pr with an odd prime p and an odd integer r ≥ 3, then

A(q) ≥ 2q1/m + 2

d2(2q1/m + 3)1/2e+ 1
,

where m is the least prime dividing r.
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(ii) If q = 2r with an odd composite integer r ≥ 3, then

A(q) ≥ q1/m + 1

d2(2q1/m + 2)1/2e+ 2
,

where m is the least prime dividing r.

Further refinements of the above theorem are given in Li and Maharaj [37] and in

Niederreiter and Xing [50].

So far, no general results on lower bounds on A(p) for primes p have been established.

Instead, attempts have been made to provide explicit lower bounds on A(p) for small

primes p. In the next section, we will present improved lower bounds on A(p) for p = 2, 5, 7

and 11.We summarize the results in the table below.

Table 6.1.1. Lower bounds on A(p)

p Existing bound Source Improved bound

2 0.2555... [48] 0.257979...

3 0.4705 . . . [1], [73] —

5 0.7272 . . . [1], [73] 0.7333 . . .

7 0.9 [37] 0.9375

11 1.0909 . . . [37] 1.1666 . . .

13 1.333 . . . [37] —

17 1.6 [37] —

Finally, we will discuss, in the next section, an improvement to Theorem 6.1.1 (i), i.e. the

lower bound on A(q) for odd, composite and nonsquares q.
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6.2 Improved lower bounds on A(q)

The proofs on the lower bounds of A(q) that follow will essentially depend on the lower

bounds for the l-rank of fractional ideal class groups as the next theorem shows.

Theorem 6.2.1 Let F/Fq be a global function field of genus g(F ) > 1 and let S be a

subset of PF such that S ′ := PF − S is a nonempty set of rational places of F . Suppose

that there exists a prime number l such that

dl(Cl(OS)) ≥ 2 + 2(|S ′|+ εl(q))
1/2,

where εl(q) = 1 if l|(q − 1) and εl(q) = 0 otherwise. Then we have

A(q) ≥ |S ′|
g(F )− 1

.

In view of this theorem, it is obvious that a good lower bound on the l-rank of the

S-ideal class group will inevitably lead to better lower bounds of A(q). As such, the next

result, proven by Niederreiter and Xing using cohomology in [48], or alternatively proven

by Li and Maharaj via the properties of narrow ray class fields [37], will be useful.

Proposition 6.2.2 Let F/Fq be a global function field and F ′/F a finite abelian exten-

sion. Let T be a proper subset of PF such that T ′ := PF − T is finite and let S be the

over-set of T with respect to F ′/F . Then for any prime number l we have

dl(Cl(OS)) ≥
∑
P

dl(GP )− (|T ′| − 1 + εl(q))− dl(G),

where εl(q) is defined as in Theorem 6.2.1, G = Gal(F ′/F ), and GP is the inertia group

of the place P in F’/F. The sum is extended over all places P of F.
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A close examination of Proposition 6.2.2 reveals that a larger l-rank of the S-ideal

class group requires a sufficient number of ramified places, but this will in turn increase

the genus of the field. Since the lower bound of A(q) given in Theorem 6.2.1 depends on

both the l-rank and the genus, we need to construct the fields carefully to achieve better

bounds. In fact, all the improved bounds have been achieved by looking for function fields

with a bigger ratio of |S ′| to the genus g(L).

In the ensuing examples, cyclotomic function fields will be employed to construct our

field when p = 2 while all other fields will be constructed from Kummer extensions.

Proposition 6.2.3

A(2) ≥ 97/376 = 0.257979 . . . .

Proof: As in [48], our field is constructed as the compositum of the subfields of

cyclotomic function fields. Let F = F2(x) be the rational function field.

(i) Let F1 = F (ΛM), with the modulus M = (x4 + x3 + x2 + x + 1)2 and let L1 be

the subfield of F1/F fixed by the subgroup of (F2[x]/(M))∗ generated by x. Since

Φ(M) = 240 and x10 ≡ 1 modM, it follows that Ω(M) = [L1 : F ] = 24. Since

Ω(x4 + x3 + x2 + x+ 1) = 3, the genus formula in Theorem 3.5.1 gives

g(L1) = 1 +
1

2
(24(−2 + 8)− 4 · 3− 4) = 65.

Notice that since x and ∞ split completely in L1/F, L1 has 48 rational places, with

24 places lying over each of x and ∞.

(ii) Next consider the cyclotomic function field F2 = F (ΛN), where N = x4. Let L2 be

the subfield of F2 fixed by the subgroup of (F2[x]/(N))∗ generated by x2 + 1. Since
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(x2 + 1)2 ≡ 1 modx4, it follows that Ω(N) = [L2 : F ] = 4. In addition, we have

Ω(x3) = Ω(x2) = 2 and Ω(x) = 1. So if P denotes a place of L2 lying over x, we see

from Theorem 1.3.3 and the fact that x is totally ramified in L2/F that

d(P |x) = 4 · 4− 2− 2− 1− 1 = 10.

Observe that Gal(L2/F ) is isomorphic to (Z/2Z)2.

Now, let L be the compositum of L1 and L2. By considering the ramification behaviour

of x, it is clear that both L1 and L2 are linearly disjoint. Further, only the places of L1

lying over x can ramify in L/L1. If Q1 is a place of L1 lying over x, and Q is a place of

L lying over Q1, it follows from (ii) and the tower formula for different exponents that

d(Q|Q1) = 10. Hence, the genus of L can now be calculated as

g(L) = 1 +
1

2
(4(2 · 65− 2) + 24 · 10) = 377.

Let T ′ ⊆ PL1 consist of all the 24 places lying over ∞ as well as 1 place lying over x

and let S ′ be the overset of T ′ with respect to L/L1 so that |T ′| = 25 and |S ′| = 97. By

Proposition 6.2.2,

d2(Cl(OS)) ≥ 24(2)− (25− 1)− 2 = 22 ≥ 2 + 2
√
|S ′|.

Since the condition in Theorem 6.2.1 is satisfied, we may apply its result to yield

A(2) ≥ |S ′|
g(L)− 1

=
97

376
= 0.257979 . . .

�
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Proposition 6.2.4

A(5) ≥ 11/15 = 0.7333...

Proof: Let F be the rational function field F5(x). Consider the field F ′ = F (y),

where

y2 = f(x) = x5 + 4x+ 1.

Then, F ′ is a Kummer extension of F as in Theorem 2.2.2. Since deg f is odd and

f(a) ≡ 1 mod 5 for all a ∈ F5, Corollary 2.2.3 and Theorem 2.2.6 imply that g(F ′) = 2

and all the 5 finite rational places split completely in F ′/F while ∞ is totally ramified in

F ′/F. Further, the following five places of degree 2 split completely in F ′/F as well:

P1 = x2 + 2, P2 = x2 + x+ 1, P3 = x2 + 2x+ 3,

P4 = x2 + 3x+ 3, P5 = x2 + 4x+ 1.

Let

z2 = g(x) = x(x+ 1)(x+ 3)P1P2P3P4P5

and put L = F ′(z).L/F ′ is again a Kummer extension with [L : F ′] = 2. From Theorem

2.2.2 again, we see that all the 16 places lying above x, x + 1, x + 3, Pi, 1 ≤ i ≤ 5 ramify

in L/F ′. Thus the genus of L is given by

2g(L)− 2 = 2 · 2 · (2− 1) + 2 · 3 + 2 · 10,

thereby yielding g(L) = 16. Now, let T ′ be the set consisting of the following 6 places of

F ′:

(i) The two places lying above x+ 2;

(ii) The two places lying above x+ 4;
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(iii) P∞, the unique place lying above ∞

(iv) One of the places lying above x. Since z2 ≡ 1 (mod x+2) and z2 ≡ 4 (mod x+4),

the 4 places lying over x+ 2 and x+ 4 split completely in L/F ′. Moreover, since

νP∞(g(x)) = 2ν∞(g(x)) = −26

which is even, P∞ splits completely in L/F ′ too. Hence, if S ′ is the overset of T ′ with

respect to the extension L/F ′, we apply Proposition 6.2.2 to obtain

d2(Cl(OS)) ≥ 16− 6− 1 = 9 ≥ 2 + 2
√

2 · 5 + 1 + 1 = 8.9282.

Consequently, we conclude from Theorem 6.2.1 that

A(5) ≥ |S ′|
g(L)− 1

=
11

15
= 0.7333...

�

We use a similar approach in Proposition 6.2.4 to prove the next two propositions.

Proposition 6.2.5

A(7) ≥ 15/16 = 0.9375.

Proof: Let F ′ be the elliptic function field in Example 2.2.7. Then, F has 13 rational

places and 13 places of degree 2. Let

z2 = x(x+ 1)(x+ 3)(x+ 6)P1P2P3P4P5P6,

where Pi, 1 ≤ i ≤ 6 are as in the example. Put L = F ′(z). L/F ′ is a Kummer extension

with [L : F ′] = 2. Then, we have 19 places ramifying in L/F ′. By the Hurwitz genus
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formula, the genus of L is given by

2g(L)− 2 = 2 · 2 · (1− 1) + 2 · 3 + 2 · 13,

thus yielding g(L) = 17. Let T ′ be the set consisting of 7 places of F ′ lying over x + 2,

x+4, x+5 and ∞ together with one place above x. It can be easily verified that all places

in T ′ apart from the place above x split completely in L/F ′. Hence, if S ′ is the overset of

T ′ with respect to the extension L/F ′, Proposition 6.2.2 gives

d2(Cl(OS)) ≥ 19− 8− 1 = 10 ≥ 2 + 2
√

2 · 7 + 1 + 1.

Consequently, Theorem 6.2.1 yields

A(7) ≥ |S ′|
g(L)− 1

=
15

16
= 0.9375.

�

Proposition 6.2.6

A(11) ≥ 7/6 = 1.1666...

Proof: Let F be the rational function field F11(x). Consider the field F ′ = F (y1, y2),

where

y2
1 = 2x(x2 + 7x+ 2)

and

y2
2 = 2x(x− 10)(x2 + 9x+ 5).

Then, for 1 ≤ i ≤ 8, the place x− i splits completely in F ′/F. Moreover, the place ∞ is

totally ramified in F (y1)/F and splits completely in F ′/F (y1). Thus, F ′ has genus 4 and
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34 rational places. Next, let

z2 = (x− 1)(x− 3)(x− 4)(x− 5)(x− 6)(x− 7)

and put L = F ′(z). Noting that there are 24 rational places of F ′ ramifying in L, and

using the Hurwitz genus formula, we obtain g(L) = 19. Let T ′ consist of the 8 places of

F ′ lying above x− 2 and x− 8, 2 places above ∞ together with 1 place above x− 1, i.e.

|T ′| = 11. Since all the places in T ′ except the place above x−1 split completely in L/F ′,

S ′ has 21 places, where S ′ is the overset of T ′ with respect to the extension L/F ′. Now,

from Proposition 6.2.2,

d2(Cl(OS)) ≥ 24− 11− 1 = 12 ≥ 2 + 2
√

2 · 10 + 1 + 1 = 11.381.

Consequently, Theorem 6.2.1 yields

A(11) ≥ 21/18 = 7/6 = 1.1666...

�

To conclude, we apply the method in the examples to give a general lower bound for

A(qm), where q is an odd prime power and m is a prime.

Theorem 6.2.7 Let q be an odd prime power and m an odd prime. Suppose that m′ is

the largest integer such that 1 ≤ m′ ≤ m− 1 and 2
√
d2m′q + 3e+ 3 ≤ q. We have

A(qm) ≥ 2m′q + 2

d2
√

2m′q + 3e+ 1
.

Proof: Put F = Fqm(x) and let n = d2
√

2m′q + 3e + 3 ≤ q. Let β ∈ Fqm − Fq so

that βq 6= β. For each α ∈ Fq, let fα(x) = (x+α+ β)(x+α+ βq) ∈ F [x]. Pick n distinct



Chapter 6: Bounds on A(q) 120

elements α1, α2, . . . , αn ∈ Fq and consider the fields Li = Fqm(x, yi), where

y2
i = fαi

(x),

for i = 1, 2, . . . , n. Then, [Li : F ] = 2 and Gal(Li/F ) ∼= Z/2Z for each i = 1, 2, . . . , n. Let

L be the compositum field L = L1L2 · · ·Ln. Since the Li’s are linearly disjoint,

Gal(L/F ) ∼=
n∏
i=1

Gal(Li/F ) ∼= (Z/2Z)n.

Now, consider the field F ′ = F (y), where

y2 =
n∏
i=1

fαi
(x).

Notice that by putting y = y1y2 . . . yn, F
′ can be considered as a subfield of L with

[F ′ : F ] = 2 and Gal(L/F ′) ∼= (Z/2Z)n−1. Furthermore, the genus of F ′ is

g(F ′) = n− 1 = d2
√

2m′q + 3e+ 2.

Now, for 1 ≤ k ≤ m − 1, let s be the inverse of kmodm, i.e. sk ≡ 1 modm so that

βq
sk

= βq. Let sk = βq + βq
2
+ · · ·+ βq

(s−1)k ∈ Fqm . Consider the set

T = {a+ sk : a ∈ Fq, 1 ≤ k ≤ m′}

and let T ′ = {Pγ = x − γ : γ ∈ T} ∪ {∞}, where ∞ denotes the pole of x. Hence,

|T ′| = m′q + 1. We wish to show that every place in T ′ splits completely in L/F. For

i = 1, 2, . . . , n, we have

fαi
(a+ sk) = (αi + a+ β + sk)(αi + a+ βq + sk)

= (αi + a+ β + sk)(αi + a+ sk + βq
sk

)

= (αi + a+ β + sk)(αi + a+ (β + sk)
qk

)

= (αi + a+ β + sk)
qk+1,
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which is a nonzero square in Fqm since qk + 1 is even. As ∞ splits completely in

Li/F, every place in T ′ spits completely in Li/F, and hence, in L/F. Since only the places

x−αi+β or x−αi+βq ramify in L/F with ramification index 2 and each of these places

has ramification index 2 in Li/F, it follows that L/F ′ is an unramified extension. Now,

let S ′ be the overset of T ′ with respect to the extension L/F ′. Hence, |S ′| = 2m′q+2 and

d2(Cl(OS)) ≥ d2(Gal(L/F ′)) = n− 1 = 2 + d2
√

2m′q + 3e ≥ 2 + 2(|S ′|+ 1).

Consequently, Theorem 6.2.1 yields

A(qm) ≥ |S ′|
g(F ′)− 1

=
2m′q + 2

d2
√

2m′q + 3e+ 1
.

�
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Urbanowicz, eds.), pp. 359–380, W. de Gruyter, Berlin, 1999.

[52] H. Niederreiter and C.P. Xing, Global function fields with many rational places and

their applications, Finite Fields: Theory, Applications, and Algorithms (R.C. Mullin

and G.L. Mullen, eds.), Contemporary Math., Vol. 225, pp. 87–111, American Math.

Society, Providence, RI, 1999.

[53] H. Niederreiter and C.P. Xing, A counterexample to Perret’s conjecture on infinite

class field towers for global function fields, Finite Fields Appl. 5, 240–245 (1999).



Bibliography 128

[54] H. Niederreiter and C.P. Xing, Algebraic curves over finite fields with many rational

points and their applications, Number Theory (R.P. Bambah, V.C. Dumir, and R.J.

Hans-Gill, eds.), pp. 287–300, Birkhäuser, Basel, 2000.

[55] H. Niederreiter and C.P. Xing, Rational points on curves over finite fields: Theory

and Applications, LMS 285, Cambridge, 2001.

[56] H. Niederreiter, C.P. Xing, and K.Y. Lam, A new construction of algebraic-geometry

codes, Applicable Algebra Engrg. Comm. Comput. 9, 373–381 (1999).

[57] F. Özbudak and H. Stichtenoth, Constructing codes from algebraic curves, IEEE

Trans. Inform. Theory 45, 2502–2505 (1999).

[58] M. Perret, Tours ramifiées infinies de corps de classes, J. Number Theory 38, 300–322

(1991).

[59] H.-G. Quebbemann, Cyclotomic Goppa codes, IEEE Trans. Inform.Theory 34,

1317–1320 (1988).

[60] M. Rosen, The Hilbert Class Field in Function Fields, Exposition. Math. 5, 365–378

(1987).

[61] M. Rosen, Number Theory in Function Fields, New York : Springer, 2002.

[62] H.-G. Rück and H. Stichtenoth, A characterization of Hermitian function fields over

finite fields, J. Reine Angew. Math. 457, 185–188 (1994).

[63] R. Schoof, Algebraic curves over F2 with many rational points, J. Number Theory

41, 6–14 (1992).



Bibliography 129

[64] A. Schweizer, On Drinfeld modular curves with many rational points over finite

fields, preprint, Academia Sinica, Taipei, 2000.

[65] J.-P. Serre, Local Fields, Springer, New York, 1979.

[66] J.-P. Serre, Sur le nombre des points rationnels d’une courbe algébrique sur un corps
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