
AUTOMATED APPLICATION-SPECIFIC INSTRUCTION

SET GENERATION

XU CE

(M.Eng, NUS)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

(ACCELERATED MASTER PROGRAM)

DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Acknowledgements

Pursuing a master degree by research is a difficult journey. The shortened candidature period as a

consequence of the accelerated master program (AMP) makes the journey even tougher. I would

like to express my thankfulness to all those who have assisted me along the way. Without these

help I could not have made the journey through.

I would like to dedicate this dissertation to my parents. I am so thankful to their unconditional love

and support, from the first day I left home and started my own journey.

I would like to thank my supervisor, Prof. Tay Teng Tiow, for his patience, guidance, and inspiring

advices. I am most grateful that Prof. Tay not only allowed me the complete freedom to

experience my research, but also provided constructive suggestions through weekly discussions.

I would also like to thank my colleagues, Xia Xiaoxin, Zhao Ming, Pan Yan, and many more, for

sharing their information and knowledge with me.

Last but not least, I thank my girlfriend, for her sustained understanding and support along the way.

Especially during the last few weeks before the deadline, she has been taking care of my living

with all her love.

 1

Table of Contents
Table of Contents ...1
List of Tables...3
List of Figures...4
Abstract...7
Chapter 1: Introduction ..8

1.1 Related Work..10
1.1.1 Identification ...11
1.1.2 Selection..12
1.1.3 Mapping ..13

1.2 Thesis Contribution..14
1.3 Thesis Organization ...17

Chapter 2: Trace generation and DFG construction ..18
2.1 Introduction..18
2.2 Data Flow Graph generation..19
2.3 MISO & MIMO patterns ...23

Chapter 3: Pattern Enumeration ...27
3.1 Introduction..27
3.2 Region and Pattern...28
3.3 Upward cone and downward cone patterns ...30
3.4 Pattern enumeration by cone extension ...34
3.5 On the complexity of the enumeration algorithm....................................36

Chapter 4: Pattern Selection...39
4.1 Introduction..39
4.2 Adjacency matrix representation of graphs..39
4.3 Canonical Label and the nauty package...41
4.4 Complete pattern representation ..42
4.5 Hash key generation...44
4.6 Instance list ..45
4.7 Software latency, hardware latency and speedup47
4.8 Optimal custom instruction selection: ILP formulation...........................49
4.9 Custom instruction selection: greedy algorithm51
4.10 Maximally achievable speedup as the priority function52
4.11 Branch-and-Bound algorithm ..54
4.12 Conclusion ...62

Chapter 5: Application Mapping ...64
5.1 Introduction..64
5.2 Sub-graph isomorphism...64

5.2.1 Ullmann’s graph isomorphism algorithm66
5.2.2 Pruning strategies..71
5.2.3 Convexity checking ..79

5.3 Optimal instruction cover ..81

 2

5.3.1 Problem formation ..81
5.3.2 Pre-processing...83
5.3.3 Heuristically search for an initial solution.84
5.3.4 Lower bound calculation...85
5.3.5 Sub-problem formation...88
5.3.6 The branch-and-bound algorithm for optimal cover.....................89

5.4 Code emission..90
5.5 Conclusion ...91

Chapter 6: Experimental Results ...92
6.1 Environment, libraries and third-party packages92
6.2 Benchmark programs ...92
6.3 Speedup ratio calculation...94
6.4 The effects of input output constraints...94

6.4.1 Input constraint ...98
6.4.2 Output constraint...98

6.5 Effects of number of custom instructions ..99
6.6 Cross-application mapping ..100
6.7 Case study: H.264/AVC encoder ...104
6.8 Conclusion ...109

Chapter 7: Conclusion... 111
Bibliography ... 114
Appendix...120

Appendix A..120

 3

List of Tables
Table 1: disassembled basic block from “sha” benchmakr............................22

Table 2: content of the creator table...22

Table 3: Instance lists examples...47

Table 4: Software and hardware latency models of common operations48

Table 5: List of benchmark programs ..93

Table 6: the list of cross-compilations ...101

Table 7: H.264 building blocks, function names and address range............106

Table 8: the simulation results for H.264/AVC..107

 4

List of Figures
Figure 1: The structure of the automated hardware compiler system............10

Figure 2: pseudo code for DFG construction...21

Figure 3: the constructed DFG...23

Figure 4: Simplified DFG by omitting inputs and grouping similar
instructions...25

Figure 5: MISO and MIMO patterns ...26

Figure 6: basic blocks can be separated into disjoint regions........................29

Figure 7: Upward cone generation...32

Figure 8: Overlapped upward cones results in repeated patterns33

Figure 9: Part of a DFG from rijndael benchmark. All nodes are “+”
instructions...38

Figure 10: Equivalent graphs have different adjacency matrix representations
..40

Figure 11: The setword representation of adjacency matrix..........................43

Figure 12: The complete representation of a pattern graph44

Figure 13: Pattern instances that are overlapping. ...46

Figure 14: the greedy algorithm on pattern selection52

Figure 15: Maximum achievable frequency: the pattern T and instances
C1-C7...59

Figure 16: The binary search tree associated with the example in figure 15.61

Figure 17: Algorithm that calculates the priority of each pattern.62

Figure 18: the output constraints that must be satisfied for custom instruction
matching...70

 5

Figure 19: sub-graph isomorphism without pruning71

Figure 20: the refinement procedure..73

Figure 21: the library graph and subject graph and the initial permutation
matrix. ..74

Figure 22: Pruning of binary search tree..77

Figure 23: sub-graph isomorphism that violates the convexity constrain79

Figure 24: the complete sub-graph isomorphism algorithm..........................80

Figure 25: Cover matrix and pre-processing ...83

Figure 26: The algorithm to find the initial cover..85

Figure 27: the greedy algorithm that finds an independent subset of the rows
X...88

Figure 28: the branch-and-bound algorithm that finds the optimal cover90

Figure 29 : dijistra: speed up vs. different input-output constrains.95

Figure 30: patricia: speed up vs. different input-output constrains.95

Figure 31: FFT: speed up vs. different input-output constrains.....................95

Figure 32: crc: speed up vs. different input-output constrains.......................96

Figure 33 : sha: speed up vs. different input-output constrains.96

Figure 34 : rawcaudio: speed up vs. different input-output constrains..........96

Figure 35: rawdaudio: speed up vs. different input-output constrains...........97

Figure 36: bitcnts: speed up vs. different input-output constrains.................97

Figure 37: basicmath: speed up vs. different input-output constrains.97

Figure 38: effects of custom instruction set size..100

Figure 39: Speedup ratios of selected cross-compilation 1102

 6

Figure 40: Speedup ratios of selected cross-compilation 2102

Figure 41: Basic coding structure for H.264/AVC for a macroblock..........104

Figure 42: Four most popular patterns for DCT and Quantization..............107

Figure 43: Four most popular patterns for Motion Estimation108

Figure 44: Four most popular patterns for Motion Compensation108

Figure 45: Four most popular patterns for Debloking Filter........................108

Figure46: Four most popular patterns for Arithmetic Coding (cabac)109

 7

Abstract

Large complex embedded applications require high performance embedded

processors to complete the tasks. While traditional DSP processors are difficult to

meet these stringent demands, extensible instruction-set processors are shown to

be effective. However, the performance of such reconfigurable processors relies

on successfully finding the critical custom instruction set. To reduce this intensive

task which is traditionally performed by experts, an automated custom instruction

generation system is developed in this research.

The proposed system first explores the application’s data flow graph and generates

all valid custom instruction candidates, subjected to pre-configured resource

constraints. Next a custom instruction set is selected using a greedy algorithm,

guided by intelligent speedup estimation of each candidate. Finally, the system

optimally maps any given application onto the newly generated custom instruction

set.

The MiBench benchmark is used to study the effects on speedup ratios by varying

input-output constraints, custom instruction set size and cross-application

compilation. A case study on H.264/AVC is performed and results are presented.

Experiments show the proposed system is able to identify the critical patterns and

almost all applications can benefit from custom instructions, achieving 15%-70%

speedup.

 8

Chapter 1: Introduction

In the last three decades, the performance of traditional general purpose

microprocessors has been improving by taking advantage of advanced silicon

technology and architectural improvements such as pipelining and media

instruction extension (e.g. MMX, SSI), etc. However, fast growth in consumer

electronics market demands stringent properties including low power consumption

and high performance, which conventional general purpose microprocessors are

difficult to meet. Digital Signal Processor (DSP), driven by the market force,

appeared in the early 80’s and has become popular since ever. DSPs achieve

high performance in certain niche application areas by introducing additional

function units such as adder, multiply-accumulator (MAC), etc, as a new

architectural choice. DSPs have been successfully applied to numerous application

domains, including mobile phones, routers, voice-band modems, etc. However,

there are many new emerging areas such as portable multimedia communication

device, personal digital assistants (PDAs), which are difficult to apply standard

DSP architectures. In the last decade, System-on-Chip (SOC) processors gain full

attention as these processors are specifically designed for target applications,

hence achieving better performance-cost ratio. At the early stage of this

application-specific instruction set processors (ASIPs) approach, the practice is to

re-design the complete processor structure. The major drawback of this approach

is the complexity of redesigning the entire instruction set and its associated

development toolset. As the market is changing rapidly, fast re-design turnaround

 9

time is desired, thus limiting the use of ASIPs in SOCs. Recently, the focus has

been shifted to configurable or extensible instruction set microprocessors, which

offer a tradeoff between efficiency and design flexibility. These processors

typically contain one standard core processor with tightly coupled hardware

resources that can be customized. The goal is to configure the custom data-path to

optimize towards specific applications, subjected to the area and latency

constrains.

Sophisticated extensible processors such as Xtensa [11] from Tensilica release the

designer’s burden by providing a set of development tools. However, it has been a

common practice that an expert is needed to find out the custom data-path. The

expert must fully understand the application and the available resources provided

by the extensible processor. The task becomes complicated when the application

software is large. Moreover, design constrains such as die area, clock frequency

limit, number of available read-write ports, etc, further complicate the problem.

In this research work, we propose a methodology that automatically detects and

selects custom instruction candidates to achieve optimal or sub-optimal speed up

for a given application. After the library patterns are generated, the automation

algorithm takes another instance of the application software (may or may not be

the same software model as the one used for library generation) and detect all

possible instruction clusters that match a custom library pattern. Finally the

 10

automation algorithm generates the optimal code that makes the best use of library

patterns. The complete program flow is shown in Figure 1 below. In Figure 1, if

application program 1 is the same as application program 2, it is called native

compilation; otherwise it is called cross-compilation.

Figure 1: The structure of the automated hardware compiler system

1.1 Related Work

We provide an overview of the related work done in this field. Application

specific custom instructions have been extensively studied before. The complete

 11

system in general can be partitioned into three stages: identification, selection and

mapping.

1.1.1 Identification

In the first step, the target application’s data-flow graph (DFG), usually on a basic

block basis, is generated and pattern candidates are picked up by looking at the

sub-graphs of the DFG. Complete sub-graph enumeration, however, is exponential

to the total number of nodes in the DFG. Many works try to by-pass this problem

by heuristically explore a subset of the design space. In works of Sun et. al[4] and

Nathan et. al[26], patterns grow from selected seeds and a heuristic guide function

is used to limit the growth. In Cong’s work [5], only cone-type or

multiple-input-single-output (MISO) type patterns are considered. Atasu, et. al [1],

on the other hand, exhaustively generate all possible patterns including disjoint

patterns. They applied simple pruning strategies to limit the search space

exploration. Pan et. al [29] proposed an improved algorithm to generate all

feasible connected patterns by extending cone-type patterns into

multiple-input-multiple-output (MIMO) type patterns.

Typically the custom instructions can be classified according to execution cycles,

input-output constrains, connectivity and whether overlapped patterns are allowed.

Execution Cycles: In early works such as Huang et. al [14], only single cycle

 12

complex instructions are generated. Choi et. al [3] extended to multi-cycle

complex instructions but they put an artificial limit on critical path length. Recent

works almost all focus on multi-cycle instructions as these instructions in general

offer more potential for speedups.

Input-Output constraints: The core processor register file has limited read and

write ports, hence it is apparent to apply input output constraints during custom

instruction generation. Moreover, these constraints can be effectively used to

prune the search tree.

Connectivity: In most works [4], [5], [29], only connected patterns are generated.

However, in [3], instructions are first packed in parallel and then grow in depth.

They applied subset-sum solver to generate custom instructions. The problem is

that the effectiveness of parallel and depth combination is not well known. The

exhaustive enumeration in [1] also combines disjoint patterns together to form

large patterns.

Overlap: Although patterns in general do not overlap in the final code, it is

important to generate all overlapped patterns so as no to artificially constrain the

pattern selection stage.

1.1.2 Selection

 13

In the pattern selection stage, the goal is to choose an optimal set of custom

instructions out of a large pool of generated patterns, subjected to system

constraints such as die area or number of custom instructions. If overlapping

patterns are allowed, as what is in [4], pattern selection can be formulated as 0/1

knapsack problem. However, if overlapping patterns are not allowed, then the 0/1

knapsack formulation would contain dynamic values, since selecting one pattern

causes the values of overlapping patterns to change. An ILP formulation can be set

up to find the optimal custom instruction set [26]. However, in many cases

heuristic-based method is preferred as the search space is often unacceptably large

for ILP-based approach, especially for large programs. In [4] a simple greedy

algorithm is used to select the patterns, taking the overlapping into consideration.

1.1.3 Mapping

Most previous work, however, did not consider application mapping, but simply

placed the selected custom instructions in the code immediately after instruction

generation and selection, to calculate performance gain [26], [30]. Similarly, Cong

et. al [4] did not consider custom instruction matching, but they used binate

covering method to address optimal code generation. In the software-hardware

co-design context, the application to be run on the custom processor may be

frequently modified and updated, and it can even be different applications in the

same domain. It is necessary to derive a methodology that properly map any given

application onto the custom instruction set.

 14

1.2 Thesis Contribution

This work presents a complete framework to address customer instruction set

design and application mapping.

In Chapter 4, we proposed an innovative algorithm to calculate the maximally

achievable speedup of each pattern candidate. Given the speedup and total

frequency of a pattern candidate, the maximally achievable speedup of this

candidate is not simply the product of those two numbers. In practice, not all

instances of a candidate can be realized simultaneously because instances can be

overlapping. Due to the large number of instances, standard binary search

algorithm is not practical. We formulate the problem of finding the maximally

achievable speedup of each candidate as a parallel branch-and-bound algorithm.

The entire instance list of the candidate is partitioned into disjoint groups such that

instances from different groups never overlap. Branch-and-bound algorithm is

applied to each individual group and the results are summed to get the actual

potential speedup. This strategy effectively transforms the initial problem into sub

problems that can be easily tackled.

In Chapter 5, we presented our 2-pass solution to application mapping and code

generation problem, which was rarely addressed before due to its complications.

After the custom instruction set is selected, the last step of our system is to map

the application onto the union of the core processor’s basic instruction set and the

 15

newly selected custom instruction set. This is done in a two-pass process. The first

pass is library matching: the DFG is constructed for each basic block and it is

checked against the custom instruction library to find any possible utilization of

those custom instructions. The second pass is optimal code generation: the optimal

DFG cover using both custom instructions and core processor instructions is

selected.

Code generation against custom instruction set in general is a non-trivial problem,

and traditional approaches are to break the DFG into forest (disjoint trees) and

perform tree pattern matching against the instruction set. Although in this method

the optimality of the generated code is heavily dependent on the partitioning

method, in practice it is widely adopted in compiler design due to its attractive

complexity. The incentive behind is that tree matching can be easily converted to

string matching and linear time string matching automaton is readily available.

Unfortunately, this method cannot be applied to a custom instruction set which

contains arbitrary complex instruction patterns. In our system, the custom

instructions are not limited to tree patterns; in fact, they are directed acyclic

graphs (DAG). The matching problem is essentially a sub-graph isomorphism

problem from each custom instruction to the subject DFG. It is known that

sub-graph isomorphism of digraphs is as difficult as that of regular graphs and the

latter is NP-Hard [10]. Nevertheless, in the case of instruction matching there are

two constraints that greatly reduce the theoretical exponential search space. The

 16

first constraint is that both DFG and custom instructions are acyclic graphs. The

second constraint is that for a match to be valid, each matched node pairs in the

subject graph and the library graph must be the same operation type. Ullmann [27]

proposed a general graph matching algorithm which travels in a depth first manner

in the search space. The algorithm achieves attractive runtime by applying a

refinement procedure at each search node, despite that the worst case is still

exponential to the number of nodes in the subject graph. We use Ullmann’s

algorithm as a basis and added additional refinement steps to further reduce the

run-time complexity.

After the matches are detected, it still remains a problem to optimally select a

subset from all the matches such that every instruction in the subject graph is

covered and the total execution latency is minimized. It is well known that such

optimal DAG covering is a NP-hard problem. However, in practice, the custom

instruction set size is limited due to resource constrains, unless for huge basic

blocks (over a few hundred instructions), there are hopes for efficient algorithms

that find the optimal covering. In our systems, we implemented a

branch-and-bound (bnb) algorithm to perform instruction covering. To reduce the

runtime complexity, the pruning techniques proposed by Coudert and Madre [8]

are applied. In addition, the custom instructions do not overlap, and can be used as

another pruning constraint to greatly reduce the search space.

 17

1.3 Thesis Organization

The thesis is organized as follows. Chapter 2 discusses application trace

generation and DFG construction. Chapter 3 describes the pattern enumeration

algorithm. Chapter 4 provides a detailed description on pattern selection,

including the data structure for pattern representation, the speedup estimation and

the custom instruction selection algorithm. Chapter 5 introduces Ullmann’s graph

isomorphism algorithm and how it is incorporated into our branch-and-bound

algorithm to solve the code generation problem. Chapter 6 presents the experiment

results. Chapter 7 gives the conclusion and the direction for future work.

 18

Chapter 2: Trace generation and DFG
construction

2.1 Introduction

In this work, the core processor is assumed to be RISC-like and the ISA is similar

to the MIPS [23] instruction set. In the MIPS ISA, instructions are classified into

the following major categories: memory, integer computation, floating point

computation, and control instructions. In this context, integer computation

instructions are of particular interests to be implemented in custom hardware

logics. Floating point instructions, on the other hand, are not very popular due to

the fact that in most applications they take a small fraction only. Another reason is

float-point instructions usually span multiple clock cycles, which makes it

difficult to be put in custom hardware.

Integer instructions are further classified into operation types: addition,

subtraction, multiplication, division, shift, logic, etc. The latencies for those

instructions are assumed to be 1 except for division, which is assumed to be 10.

We use the SimpleScalar [2] PISA toolset as the framework. SimpleScalar is a

popular simulation package which comes with compiler, assembler, debugger and

simulator. Moreover, new simulators can be crafted without much difficulty. The

SimpleScalar PISA ISA is compatible with the MIPS IV ISA; hence it provides a

 19

good working environment for our system.

The target application is assumed to come with a standard reference software

model; examples are Momusys for MPEG-4 and JM for H.264/AVC, etc. The

software model is compiled to the SimpleScalar architecture and it is simulated

using a modified fast simulator with standard input dataset. The simulator is

crafted to record both static and dynamic information of the software model.

Static information includes program text symbols and their associated address

range; each basic block’s starting address, instructions, and size. Dynamic

information mainly contains the run-time accessing count of each basic block.

2.2 Data Flow Graph generation

Definition 1: source, sink, forward-dependency

If instruction i updates register $r and instruction j uses $r as one of its inputs

later, we say instruction i is the source of instruction j , and instruction j is the

sink of instruction i . There is a forward dependency from instruction i to j .

The selected basic blocks are represented in Data Flow Graphs. The DFG

(,)G V E represents the relationship, more specifically the inter-dependency,

among the instructions in a basic block. Each instruction is represented as a node

v V∈ in the DFG and the edge :e u v→ represents that there is a forward

dependency from node u to node v . In other words, the output of the instruction

 20

represented by node u is one of the inputs of the instruction represented by node

v . A DFG is necessarily a directed acyclic graph (DAG). A DFG is a

parameterized graph: it stores the instruction type at each node, but there is no

parameter associated with the edges. In this work, we use a node array L of

size| |G to represent the node parameter, for instance []L v is the instruction

type associated with node v . As mentioned before, there are constraints on

instruction types for custom hardware. Those that can be included into the custom

hardware are called valid operations and all others are called invalid operations.

Valid operations: { , , , , , , , }add sub mul div shift logic lui slt

Invalid operations: { , , , , ...}load store branch float etc

Since invalid operations are not taken into consideration for custom instructions,

we label them as belong to one class “invalid”. To conclude, the operation type

associated with each node is one of the following:

{ , , , , , , , , }add sub mul div shift logic lui slt invalid .

To create the DFG, we maintain a register value creator table to record which

instruction is the last modifier of each register. In the MIPS compatible

architectures, there are 32 general registers and 32 floating point registers. The

floating point registers are ignored in this case. Each MIPS instruction at most

takes 3 registers as inputs and updates up to 2 registers as outputs.

We scan through the basic block and add one node to the DFG for each instruction.

 21

We check the input registers, if the corresponding creation table for that register is

not empty, there is a dependency from the creator to the current instruction and we

add one new edge in the DFG accordingly. The outputs of current instruction are

used to update the creation table. The algorithm that builds the complete DFG is

shown in Figure 2 below:

Figure 2: Pseudo code for DFG construction

Table 1 shows a disassembled basic block from MiBench’s [13] “sha” benchmark.

Table 2 shows the content of the register value creator table and how it changes as

instructions are processed. Finally, Figure 3 shows the initially constructed DFG.

The label beside each node is the instruction number same as that of table 1 and

the label inside the node is the instruction type. The inputs with “$” prefix are

registers and the inputs with “#” prefix are immediate values. It is worth noting

that the DFG is not necessarily connected, as a matter of fact, it often consists of a

few connected components and singular nodes. In this example, there are three

_
01 ;
02 1,2,...
03 . _ (_ ());
04 . 1,2,3
05 () 0
06 . _ ((),);
07
08
09 . 1,2
10

DFG construction
Graph G empty Graph
for instruction i n

node v G add node op type i
for input reg j

if creater j then
G add edge creater j v

end
end
for output reg j

creat

< >
=

=
=

=
≠

=
() ;

11
12

er j v
end

end

=

 22

connected components and four singular nodes:

 { } { } { } { } { } { } { }{ }1, 2,3, 4,5,6,7,13,16,17 , 10,11,12 , 15,19, 20 , 8 , 9 , 14 , 18 .

Table 1: disassembled basic block from “sha” benchmark
Basic Block 280
1 sll r3,r10,5
2 srl r2,r10,27
3 or r3,r3,r2
4 xor r2,r8,r7
5 xor r2,r2,r11
6 addu r3,r3,r2
7 addu r3,r3,r12
8 addu r12,r0,r11
9 addu r11,r0,r7
10 sll r7,r8,30
11 srl r2,r8,2
12 or r7,r7,r2
13 lw r2,0(r4)
14 addu r8,r0,r10
15 addiu r9,r9,1
16 addu r3,r3,r2
17 addu r10,r3,r5
18 addiu r4,r4,4
19 slti r2,r9,40
20 bne r2,r0,0xffffff68

Table 2: content of the creator table
Registers Creator Instructions
r0
r2 2→4→5→11→13→19
r3 1→3→6→7→16
r4 18
r5
r7 10→12
r8 14
r9 15
r10 17
r11 9
r12 8

 23

Figure 3: The constructed DFG

2.3 MISO & MIMO patterns

Definition 2: pattern

A pattern (', ')P V E is a sub-graph of the DFG, such that

'
' (' ')
() () '

V V
E V V E
L v L v if v V

⊆
= × ∩
= ∈

.

In this work, only connected patterns are considered. Each instruction itself is a

special type pattern called “trivial pattern”. Each pattern has incoming edges and

 24

outgoing edges. The set of nodes in P that are connected to incoming edges are

called input nodes. Similarly, the set of nodes in P that are connected to outgoing

edges are called output nodes.

For pattern generation, the exact register and immediate inputs to each node can

be omitted in the DFG representation. The rationale behind is that register and

immediate inputs are dynamically allocated by the compiler and these information

are not needed for custom instruction generation.

In addition, in this work, we assume similar instructions can be executed in one

piece of custom hardware. For example, all logic operations, including and, or,

nor, and xor, can be implemented on a logic hardware unit. We assume the

specific operation is encoded as signature bits in the custom instruction format and

it can be recognized by the custom hardware automatically. Similarly, a shift unit

is able to perform left shift, right shift, left shift arithmetic and right shift

arithmetic. However, add and sub are treated differently, although in some

practical systems it might be desirable to group them onto a single custom

hardware. Figure 4 shows a simplified DFG derived from the one in Figure 3.

Definition 3: MISO and MIMO pattern

MISO patterns are patterns that contain exactly one output node. Conversely,

MIMO patterns contain at least two output nodes.

 25

Examples of MISO and MIMO patterns are shown in figure 5. Figure 5(a) shows

a MISO pattern with 4 inputs and 1 output node; Figure 5(b) shows a MIMO

pattern with 4 inputs and 2 output nodes.

Figure 4: Simplified DFG by omitting inputs and grouping similar instructions

 26

Figure 5: MISO and MIMO patterns

In this work, the number of inputs (not input nodes) and the number of output

nodes are used for hardware constraint checking.

 27

Chapter 3: Pattern Enumeration

3.1 Introduction

To provide sufficient information for later stages, all possible patterns in a DFG

should be enumerated. However, theoretically the complexity of enumerating all

patterns is proportional to 2N , where N is the total number of nodes in the DFG.

To bypass this difficulty, works such as [4], [26] generate a subset of all possible

patterns. Although these approaches are attractive in practical implementations

when efficiency is an important concern, the optimality is not guaranteed.

Moreover, it is apparent to have a system that generates all patterns so that the

performance of those heuristic methods can be evaluated. In Atasu’s work, all

possible patterns that satisfy convexity constrain are generated. However, as no

other constrains are imposed, this method is not efficient enough to be applied to

large basic blocks. Pan [29] proposed an improved method that generates MIMO

patterns by extending cone-type patterns. Their method is attractive because the

complexity is proportional to 2K , where K is the number of extension ports. In

practice, the limit of K is closely related to the fan-in/fan-out at each node. As the

fan-in at each node is limited to 3 due to the nature of DFGs, usually there is only

one case that prevents the use of this complete enumeration method. That is,

when there is at least one node have a large number of fan-outs (typically > 20). In

other cases, the runtime of the full enumeration method is very much acceptable.

 28

Cong et. al [5] also applied full enumeration method except that in their

framework, the custom instructions to be considered are MISO patterns.

3.2 Region and Pattern

In our work, we adopted Pan’s algorithm to perform pattern enumeration. The

pattern enumeration, however, is not directly performed on the entire DFG. Since

invalid nodes are not included into custom instructions, it is very likely that the

entire DFG can be partitioned into multiple regions, separated by invalid nodes. It

is only necessary to perform pattern enumeration in each region. Region

partitioning is a simple yet efficient strategy that helps to reduce the graph size to

work on. Here the same definition of region as in [29] is used:

Definition 4: Region

Given a DFG (,)G V E , a region (', ')R V E is defined as a maximum sub-graph of

G such that:

(1) 'v V∀ ∈ , v is valid node.

(2) There exists an undirected path between any two nodes in R.

(3) There does not exist any edge between a node 'v V∈ and another node

'u V V∈ − .

The definition of pattern in previous chapter can be refined to:

A pattern (', ')P V E is a sub-graph of a region in a DFG. It is important to note

 29

that not all sub-graphs are valid patterns. A pattern is convex if there exists no path

between any two nodes ,u v P∈ such that the path contains a node w P∉ .

Patterns that do not satisfy convexity are invalid as there is a circular dependency

between the pattern P and the node w . This can be easily understood: on one

hand, there is an edge from a node in P to w , thus there is a forward dependency

from P to w ; on the other hand, there is an edge from w to a node in P , thus

there is a forward dependency from w to P .

Figure 6: Basic blocks can be separated into disjoint regions

Figure 6 gives an example where a connected DFG is separated into two regions

by node 7 and 9. Examples of non-convex patterns are {8,12}

 30

and{8,10,11,12,14} . In pattern{8,12} , there is a path from node 8 to node 12

through node 10, which is a valid node but it is not in the pattern. In

pattern{8,10,11,12,14} , the node that causes violation is node 9. It is worth noting

that node 9 is an invalid node and it does not belong to any regions.

3.3 Upward cone and downward cone patterns

Two special pattern types are defined:

Definition 5: Upward Cone, Downward Cone

Upward cone: The upward cone of node v , denoted as ()UC v , is a convex

pattern that contains node v , and for all other nodes ()u UC v∈ , there is a path

from u to v . In other words, v is the only sink node in ()UC v . Let the set of

all upward cones of node v be denoted as _ ()UC Set v

Downward cone: The downward cone of node v , denoted as ()DC v , is a convex

pattern that contains node v , and for all other nodes ()u UC v∈ , there is a path

from v to u . In other words, v is the only source node in ()DC v . Let the set of

all downward cones of node v be denoted as _ ()DC Set v

Take node 14 in Figure 6 as an example, the set of its upward cones are {14},

{11,14},{12,14},{11,12,14},{10,11,12,14}, etc. Similarly, the set of its downward

cones are {14}, {14,15} ,{14,16},and{14,15,16} .

 31

The enumeration algorithm requires the DAG being topologically sorted.

Definition 6: Topological Sort

A topological sort of the vertices of G is a linear ordering of the vertices such that

for every pair of distinct vertices iv and jv , if i jv v→ is an edge in G,

i.e., (,)i jv v E∈ , then iv appears before jv in the ordering.

It is easy to prove if the order of each node in the DFG is assigned using the

corresponding instruction sequence number in the basic block, then this ordering

is readily a topological ordering. The same holds even after the DFG is partitioned

into regions: the nodes in each region are still topologically ordered except the

orders are not continuous.

The enumeration algorithm contains two phases. In the first phase the set of

upward and downward cones at each node is identified. To identify the upward

cones, the DAG is traversed in topologic order. The set of upward cones at node

v can be obtained by selectively union the upward cones of its predecessors and

node v itself. Let 1 2, ,..., kv v v be the predecessors of node v , as the DAG is

traversed in topologic order, by the time node v is reached, the set of upward cones

of 1 2, ,..., kv v v are all known. If we pick (0)i i k≤ ≤ predecessors out of k , say

1 2 1 3 2, ,..., , ,...,i ku u u v v u −= , and pick one upward cone from each

 32

of 1 2_ (), _ (),..., _ ()iUC Set u UC Set u UC Set u and union these upward cones

together with node v , the resultant pattern is an upward cone of node v . This

can be easily proven: since 1 2, ,..., iu u u are predecessors of node v , for any node

1 2_ () _ () ... _ ()iu UC Set u UC Set u UC Set u∈ U U U , there is a path from u to v

through one of 1 2, ,..., iu u u .

For example, in Figure 7, the set of upward cones for node 3 and node 5 are

{ } { } { }{ }3 , 1,3 , 2,3 ,{1,2,3} , { } { }{ }5 , 4,5 respectively. Therefore the set of upward

cones for node 6 is the union of the following:

(a) Itself: { }{ }6

(b) Select predecessor node 3 only: { } { } { } { }{ }3,6 , 1,3,6 , 2,3,6 , 1,2,3,6

(c) Select predecessor node 5 only: { } { }{ }5,6 , 4,5,6

(d) Select both predecessors:

{ } { } { } { }{ { } { } { }3,5,6 , 1,3,5,6 , 2,3,5,6 , 1,2,3,5,6 , 3,4,5,6 , 1,3,4,5,6 , 2,3,4,5,6 ,

{ }}1,2,3,4,5,6

Figure 7: Upward cone generation

 33

However, the above procedure may generate invalid patterns and repeated patterns.

For upward cone generation, invalid patterns are those do not satisfy convexity or

input constrains. These patterns can not be used for pattern extension and can be

eliminated. It is shown in [29] the elimination is safe and it does not prevent any

valid patterns to be generated. It is worth noting patterns that do not satisfy output

constrains are not eliminated, since those patterns have potential to be extended to

valid patterns.

Repeated patterns can be generated if the upward cones of the predecessors

overlap. Consider the DAG in Figure 8, the set of upward cones for node 3 and

node 4 are { } { } { } { }{ }3 , 1,3 , 2,3 , 1,2,3 , { } { } { } { }{ }4 , 1,4 , 2,4 , 1,2,4 respectively. It

is easy to observe union { } { } { }1,3 , 4 , 5 or { } { } { }3 , 1, 4 , 5 results in the same

upward cone { }1,3,4,5 of node 5. Therefore before a generated pattern is added to

the upward cone set, it is checked to ensure the upward cone set does not contain

duplicates.

Figure 8: Overlapped upward cones results in repeated patterns

 34

The generation of downward cones is similar to that of upward cones, except that

the region DAG is traversed in the reverse topologic order. Moreover, the

definition of invalid downward cones is not satisfying convexity constrain or

output constrain.

3.4 Pattern enumeration by cone extension

The second phase of pattern enumeration is to extend the cone type patterns to

form general shaped patterns. If we choose upward cones as initial pattern, the

region DAG is traversed in the reverse topologic order. On the other hand, if we

choose downward cones as initial pattern, the DAG should be traversed in

topologic order. These two approaches are equivalent and in this work we use the

former method. As the DAG is traversed, all the patterns that contain a particular

node are generated after that node is visited.

A maximum upward cone (MAX_UC) of node v is defined as the union of all its

upward cones. An important property that is associated with the MAX_UC is any

upward cones of node v can only be extended along the output nodes of

MAX_UC. Those nodes along witch patterns are extended are called extension

points.

The pseudo code of pattern enumeration is shown below:

1. For each node v in reverse topological order, its _UC Set is added to the

 35

pattern pool: () _ ();Pattern v UC Set v+ =

2. Find the set of extension points ext by checking _ ()MAX UC v .

3. If ext is not empty, perform pattern extension:

 () ((), ,);Pattern v UNION Pattern v ext down+ =

The (, ,)UNION core ext direction procedure is a recursive routine that extends the

set of core patterns through the extension point along the direction specified. If

direction=1, the core will be extended downwards and otherwise upwards.

In the UNION procedure, new patterns are generated in a manner similar to that of

UC_Set and DC_Set generation. We briefly describe the process below:

1. Find all possible i combinations (0)i ext≤ ≤ of extension points,

say { }1 2, ,..., i extα α αΑ = ⊆ .

2. Selected a subset P core⊆ , such that A P⊆ and ()ext A P− =∅I ;

3. Form a temporary set by cross-product the upward cones or downward cones

of the selected extension points:

a) if direction is downwards, 1: _ () ... _ ()itmp DC Set DC Setα α= × × ;

b) if direction is upwards, 1: _ () ... _ ()itmp UC Set UC Setα α= × × ;

4. Select one pattern each from P and tmp , generate the new pattern

_pat tmp using union operator. If direction is downwards, check convexity

and output constrains of _pat tmp . If direction is upwards, check convexity

 36

and input constrains of _pat tmp . Let the set of newly generated patterns

being _new core , add the _pat tmp to _new core if it is valid.

5. After all new patterns for current set of extension points are generated, find the

extension points _new ext for _new core and recursively call

 (_ , _ ,)UNION new core new ext direction¬

3.5 On the complexity of the enumeration algorithm

Although the pattern enumeration algorithm is still exponential to the number of

nodes in the DAG, its average runtime is a few magnitudes lower than exhaustive

enumeration. In practice, we found the runtime is heavily dependent on the DAG

structure. More specifically, if the DAG contains some nodes which has a large

number of fan-outs, the algorithm would stuck as early as in the downward cone

generation phase. Take a simple example, suppose a node generates 20 forward

dependencies, which may happen in very large basic blocks (e.g. rijndael from

MiBench), the algorithm needs to union all possible combinations of 1, 2, up to 20

successors’ DC_Sets. Note even if under the extreme conservative assumption that

each DC_Set contains only one pattern, the number of possible combinations

is
20 20 20

... 100
0 1 20

M
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. The same problem may cause trouble for pattern

extension phase as well.

The generation of UC_Set, however, does not have this problem. This is due to the

DFG property that each node has maximally 3 inputs. In fact, for all those

 37

instructions that are valid to be included into custom instructions, i.e. add, sub,

mul, div, shift, logic, lui, and slt, each has a fixed number of inputs equal to 2.

Fortunately the exponential enumeration problem for DC_Set and pattern

extension may be tackled in most practical applications. Observations from

experiments show that a DFG containing nodes with such large number of

forward dependencies normally possesses high degree of regularity in its DAG

structure. An example in Figure 9 shows a partial DFG from the rijndael

benchmark. Here all nodes are “addition” instructions hence the labels are

omitted. The algorithm fails to generate all possible DC_Sets in acceptable time if

no special care is taken, since there are more than 30 fan-outs at node 370, 372,

and 374. However, if we take a close look at the DAG structure, we notice node

380, 388, 400…1136 are equivalent, similarly the sub-graphs rooted at node 372

and 374 are equivalent. In other words, this DAG is highly symmetric and most of

its sub-graphs are identical under isomorphism. Since our task is to generate all

possible patterns for custom instructions, isomorphic patterns need only be

generated once. Using this strategy, the number of patterns to be checked can be

greatly reduced. However, in order to identify the nodes that are images of each

other under isomorphism, efficient algorithms are required. As this topic is not

addressed in this work, we just bring up this point and briefly discuss its

usefulness in generating patterns for difficult DAGs. Interested reader may refer to

[20] for a comprehensive discussion on graph isomorphism.

 38

Figure 9: Part of a DFG from rijndael benchmark. All nodes are “+” instructions.

 39

Chapter 4: Pattern Selection

4.1 Introduction

After pattern candidates from each basic block are generated, we need a proper

representation so that equivalent patterns can be recognized. The nauty package

[31] on graph isomorphism is employed to compute the canonical label of each

pattern graph. We combine the canonical label, the operation types and the output

ports together to uniquely represent each pattern. A hash function is applied to this

pattern representation and a 32-bit hash code is generated. The hash code is

indexed into a hash table which keeps a count and a list of its instances in the

basic blocks for individual patterns. The hash table is dumped for pattern selection

after all basic blocks are processed. We apply a greedy algorithm to select the

optimal set of custom instructions, subjected to resource constrains.

4.2 Adjacency matrix representation of graphs

A graph (,)G V E can be represented by adjacency lists or adjacency matrix.

Although the adjacency lists representation is more economic in terms of memory

usage, adjacency matrix is often preferred as edges between any two nodes can be

checked in (1)O time. In this work, the adjacency matrix representation is used.

The adjacency matrix M for a graph with n nodes is a nxn binary matrix. M(i,j)=1

if there is an edge from node i to node j, otherwise M(i,j)=0.

 40

However, structurally equivalent graphs may not have the same adjacency

matrices. This is illustrated in Figure 10. Figure 10(a) and Figure 10(b) show two

graphs that are equivalent, but their adjacency matrices are different. The

difference comes from the non-uniqueness of topological ordering: both orderings

in Figure 10(a) and Figure 10(b) satisfy topologic conditions. In fact our ordering

is directly obtained from instruction sequence, and instruction 1 may appear

before instruction 2 or after instruction 2, thus this ambiguity cannot be resolved

easily.

Figure 10: Equivalent graphs have different adjacency matrix representations

The differences in adjacency matrices, despite the fact that the graphs are

equivalent, would generate different hash code and recognized as different

 41

patterns if not handled. Those patterns are isomorphic with each other and an

algorithm that re-labels isomorphic graphs to obtain a common adjacency-matrix

representation is needed.

4.3 Canonical Label and the nauty package

Let (,)G V E be a graph, γ be a permutation ofV , v V∈ .Then vγ is the image of

v under γ , Gγ is the graph in which vertices xγ and yγ are adjacent if and

only if x and y are adjacent in G.

Definition 7: Automorphism Group

The automorphism group of a graph G is the set of all permutations γ such

thatG Gγ = .

Definition 8: Canonical Labelling

A canonical labelling map is a function C such that, for any graph G, and

permutation γ of V , we have:

(a) ()C G Gδ= for some permutation δ

(b) () ()C G C Gγ =

Informally, graphs generated by permutations from the same automorphism group

are structurally identical and their canonical labels are identical. By computing the

canonical labels of all the generated pattern graphs, we are able to group

 42

structurally identical patterns together.

The nauty package [31] developed by professor B. D. McKay is one of the fastest

algorithm that perform graph isomorphism detection and canonical label

generation. We applied this package to our system.

4.4 Complete pattern representation

The adjacency matrix only encodes the pattern graph’s structure, which is not

sufficient to uniquely represent a pattern graph. For instance, two pattern graphs

may have the same structure but different instruction type at each node. Even if

both structures and instruction types are the same, we need to check the output

nodes before we conclude those two patterns are equivalent.

The complete pattern representation thus contains three parts: the adjacency

matrix, the operation type array and the output port array. To reduce storage and

hash code computation, instead of using integer arrays, we pack the adjacency

matrix into a much more compact form called setword.

A setword essentially is a 16-bit short integer. A set with size n can be represented

by m=n/16+1 setwords. Each bit in the m setwords corresponds to one element of

the set and it can be set to 0 or 1 to indicate the absence/presence of the element.

The adjacency matrix of a graph with n nodes can be represented by nxm setwords.

 43

The i-th set gives the adjacencies from node iv to all other nodes, for1 i n≤ ≤ .

When graph size is not multiple of 16, there would be unused bits in each set, they

are set to 0s.

Figure 11 shows an example of adjacency matrix represented using setwords. The

graph has 18 nodes, hence each node needs 18/16+1=2 setwords. The total

memory storage used is 18x2=36 short integers. On the other hand, if short integer

array is used, the storage required is 18x18=324 short integers. This shows a great

storage saving can be achieved by using setwords. In Figure 11, the shaded bits

represent the adjacency matrix and bits that are not shaded are set to 0s.

Figure 11: The setword representation of adjacency matrix

 44

We use short integers {1, 2, 3, …, 8, 9} to represent the instruction type {add, sub,

mul, div, shift, logic, lui, slt, invalid}. For a graph of size n, n short integers are

required to encode the instruction types.

Finally, we use an array of size MAX_OUT to store the output nodes. If a pattern

has less than MAX_OUT output nodes, the unfilled slots in the array are set to -1.

The above three arrays are stacked together to form a larger short-integer array.

This is illustrated in Figure 12 and the labels below the bar diagram indicates the

size of each part in terms of short integers.

Figure 12: The complete representation of a pattern graph

4.5 Hash key generation

The complete representation discussed in the previous section is generated for

each pattern instances iC in each basic block. A simple hashing function is

defined to take the complete pattern representation as input and generates a 32-bit

 45

hash key. Ideally identical patterns generate the same hash key and different

patterns generate different hash key. However, there are chances that different

patterns generate the same hash key and this problem is resolved by chaining

mechanism.

For each pattern instance, after the hash key is generated, the content of the hash

table indexed by that key is updated. In this work, we defined a C++ class called

“Candidate” and the hash table is an array of the “Candidate” class. The

“Candidate” class keeps a complete list of pattern instances that are hashed into

the current location. In addition, it records the total frequency of the pattern.

4.6 Instance list

It is important to note that simply record the total frequency of each pattern is not

sufficient for pattern selection. The reason is instances of different patterns may

overlap and including one pattern into custom instruction set would change the

frequency of other patterns whose instances are overlapping with the selected one.

If we simply record the total frequency and use it as the selection metric, the

generated custom instruction set would be biased as this policy favors overlapped

patterns from high frequency basic blocks.

To solve this problem, an instance list or instance table is defined in the

“Candidate” class. Each element in the list contains three fields: the original basic

 46

block id “BB_ID”, the array of node numbers in the original basic block

“images[]”, and the execution count of the basic block “frequency”. Figure 13

shows an example where two patterns P1 and P2 (other patterns are ignored) are

generated from two basic blocks BB1 and BB2. There are two instances for P1,

denoted as P1:C1, P1:C2 and three instances for P2, denoted as P2:C1, P2:C2,

P2:C3. The instance lists in Candidate (P1) and Candidate (P2) are shown in Table

3.

Figure 13: Pattern instances that are overlapping.

 47

Table 3: Instance lists examples

 BB ID Images[] Frequency Total Frequency

1 2, 3, 4 100 Candidate

P1 2 1, 2, 3 150
250

1 4, 5 100

1 4, 6 100

Candidate

P2

2 4, 5 150

350

4.7 Software latency, hardware latency and speedup

The software latency of a custom instruction is the overall execution time of its

primitive instructions, assuming single-issue pipelined microprocessor

architecture. The execution time of trivial patterns is given in Table 4. We assume

all primitive instructions that can be included into custom instructions, except

division, require 1 machine cycle to execute. Division requires 10 machine cycles

to finish. The software latency of non-trivial patterns is the summation of

individual instructions, as we assume all the instructions in a pattern need to be

executed sequentially in a single-issue pipelined processor. Thus, for a pattern P,

we have:

() ()sw sw
v P

T P T v
∈

=∑

The hardware latency of a custom instruction is the required cycle number of

execution on customized hardware logic. Accurate estimation of hardware latency

of each pattern requires logic synthesis and post-synthesis technology mapping. In

our system, since all candidate patterns that satisfy constrains are enumerated, it

would be inefficient to perform cycle-accurate logic synthesis for each individual

 48

patterns. Instead, we estimate the hardware latency from the pattern’s critical path

and hardware latencies of individual operations. The hardware latency model is

synthesized using standard cells from a popular library and is mapped to

0.18 mμ CMOS technology [Ataas]. This is also shown in Table 4.

In some studies, the hardware latency is calculated in an additive manner: the

summation of hardware latencies of individual nodes along the pattern graph’s

critical path and then rounded up to the nearest integer. We believe the more

precise definition should be the maximal latency along all possible critical paths.

() ()
() max ()hw hwcp P v cp P

T P T v
∀ ∈

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎢ ⎥

= ∑

The reason is that a given pattern graph may contain more than one critical paths.

A simple example is the pattern P1 in figure 14. Both + →× and + → + are

critical paths of length 2, the latency of the entire pattern graph should be

calculated as max(0.25 1,0.25 0.25) 2+ + =⎡ ⎤⎢ ⎥ .

Table 4: Software and hardware latency models of common operations

 ADD MUL DIV SHIFT LOGIC

Software Latency 1 1 10 1 1

Hardware Latency 0.25 1 9.61 0.16 0.02

The potential speedup of a custom instruction is the difference between its

software latency and hardware latency, i.e.

 49

() () ()sw hwspeedup P T P T P= −

Using this formula, the speedups for P1 and P2 in Figure 14 are both 1.

A side note is that shift and logic operations can be easily optimized in current

FPGA/ASIC technologies and can be executed in almost zero time. Thus it would

be advantageous to implement custom instructions in hardware if the application

contains a large percentage of shift/logic operations (As can be seen later,

applications in security domain are able to achieve high degree of speed up).

4.8 Optimal custom instruction selection: ILP formulation

Suppose there are N unique patterns over all the basic blocks and they are denoted

as 1 2, ,..., NP P P . For each pattern, there are in instances 1 2, ,...,
i

i i i
nC C C and each

instance has an associated execution frequency 1 2, ,...,
i

i i i
nf f f . For each pattern iP ,

we use iR to denote the resource requirement and iS to denote the speedup.

The resource requirement of a pattern can be calculated in an additive manner: the

summation of all its instructions’ resource requirements. For some extensible

processor, the number of custom instructions is the only restriction and in that

case 1iR = . We further define two set of binary variables 1 2, ,..., nB B B and

1 2, ,...,
i

i i i
nb b b . iB is associated with pattern iP : if 1iB = , iP is included in the

final selection otherwise excluded. Similarly, i
jb is associated with instance i

jC : if

1i
jb = , i

jC is selected to cover the instructions. It is important to note that if

1 (1)i
j iC j n= ≤ ≤ , then the pattern iP is automatically included into the final

 50

selection, i.e. , . . 1, 1i
j iif j s t b then B∃ = = .

The objective function to be maximized is the overall speedup, i.e.

1 1

()
inN

j j
i i i

i j

F b S f
= =

= × ×∑∑

However, the optimization must be done under the constrain each instruction is

covered by at most one instance (it may not be covered by pattern instances at all,

i.e. it is covered by trivial patterns instead). This constrain is expressed as follows:

if an instruction can be covered by pattern instances 1 2
1 2, ,...,j j jk

i i ikC C C , then

1 1 1
1 1 1... 1j j j

i i ib b b+ + + ≤ (1)

Note for all instructions that can be covered by pattern instances, there is an

equation in the form of (1) associated with it. Thus the number of constrain

equations is huge.

Besides the (1) constrain equation, there is another constrains equation on the

hardware resource. The following equation simply ensures the resources used for

custom instructions are with the limit:

1

N

i i total
i

B R R
=

× ≤∑

Although the optimal custom instruction set selection problem can be formulated

as ILP problem perfectly, it is often of little interests. The reason is even for

applications with small basic blocks, the number of pattern instances can easily be

very large. Moreover, the number of constrain equations is almost proportional to

the number of valid nodes in the application. In practice, pattern selection is done

 51

using heuristic algorithms that try to achieve sub-optimal solutions. The remaining

sections of this chapter are devoted to our heuristic algorithm on pattern selection.

4.9 Custom instruction selection: greedy algorithm

The objective of pattern selection is to choose an optimal set of patterns

1 2{ , ,... }MT T T T= out of a huge number of valid pattern candidates

1 2{ , ,..., }NP P P P= , subjected to area or quantity constrains.

The core of the greedy algorithm is to design a priority function that estimates the

maximally achievable speedup for each pattern. The greedy algorithm then sort

the patterns according to their priorities and select *P , the one with highest

priority. The selection of *P in general necessarily affects the achievable speedup

of the remaining pattern candidates if they are overlapping with *P . As a

consequence, the priority of those remaining patterns must be recalculated. The

greedy algorithm continues the above procedure until resource constrains are

reached or no more candidates is available.

In this section, we discuss the overall structure of the greedy algorithm, as shown

in Figure 14. The priority calculation, which is non-trivial, will be discussed in the

following sections. In Figure 14, Line 3-8 calculates the priority of each pattern

and adds the one with highest priority to the finalist. Line 9-14 checks all the

remaining pattern’s instances, any instance that is overlapping with the selected

 52

one will be removed from the instance list.

* *

*

:
:

01. ;
02.
03. , ();

04. . . () max{ ()};

05. ()

06.

i

i i

iP P

total

input set of unique patterns P
output set of patterns T to be implemented in hardware

T
while P do

for each P P calculate priority P

select P s t prio P prio P

if R R P R then

P

∀ ∈

←∅
≠∅

∈

=

+ <

← *

*

*

;
07. { };
08.
09.

10.

11.
12.
13.
14.
15.
16. ;

i
j

i i
j j

i i i i

P P
T T P

end
for all P P

for all instances C of P

if P C then C C C
end

end
end

end
return T

−

← ∪

∈

≠ ∅ ← −I

Figure 14: The greedy algorithm on pattern selection

4.10 Maximally achievable speedup as the priority function

In the pattern selection phase, we need a priority function for each pattern so that

the one with the highest priority is selected first. Naturally, the maximally

achievable speedup is used as the priority function. However, given the pattern

speedup and total frequency, the maximally achievable speedup is not simply the

product of those two. The reason is not all instances of the pattern can be mapped

to the custom instruction simultaneously.

 53

Let’s again look at the example in Figure 13. For P1, its instances C1 and C2 are

from different basic blocks and thus they are independent. If we implement P1 in

custom hardware, both C1 and C2 can be mapped to the hardware logic and the

maximally speed up for P1 is indeed 1 (100 150) 250× + = . On the other hand,

although P2 has a total frequency of 350, not all instances are realizable

concurrently. For example, P2:C1 and P2:C2 have node 4 as the overlapped node.

Thus if P2:C1 is mapped to the custom hardware, P2:C2 can no longer be mapped.

P2:C3 on the other hand, is not affected since it is from another basic block. The

maximally achievable speedup for P2 is achieved by either mapping P2:C1 and

P2:C3 or P2:C2 and P2:C3 to the custom hardware, which is 1 (100 150) 250× + = .

Note however, in some systems, such as [Cong], overlapped instances are

allowed.

The instance list in each pattern is used to calculate the maximally achievable

speedup. It is quite frequent that an instance list is of quite large size, say,

containing more than 50 elements. It would be very inefficient if exhaustively

enumeration is used. The entire instance list is first partitioned into disjoint groups

so that instances from different groups never overlap. A simple Branch-and-Bound

algorithm is then applied to each group to obtain the maximally achievable

frequency of that group. The overall maximum frequency is calculated by

summing up the frequencies of each group and the priority is simply the

maximum frequency times the single pattern speedup.

 54

4.11 Branch-and-Bound algorithm

We briefly give a description on branch-and-bound algorithms because it will be

applied to not only this section, but also optimal code generation.

Branch-and-bound is an approach developed for solving discrete and

combinatorial optimization problems. The discrete optimization problems are

problems in which the decision variables are discrete values; when this set is set of

integers, we have an integer programming problem. The combinatorial

optimization problems, on the other hand, are problems of choosing the best

combination out of all possible combinations. Most combinatorial problems can

be formulated as integer programs. Our problem of selecting a subset from the

pattern instances to achieve a maximum total frequency is exactly an example of

both discrete optimization problems and combinatorial optimization problems.

As stated by Murty [24], the major difficult of solving these problems is we don’t

have any optimality conditions to directly check whether a given solution is

optimal or not. In other words, unlike other linear or non-linear optimality

problems where the target to be optimized can be expressed as a function of the

decision variables, there is no way of applying traditional analytic methods to

discrete and combinatorial optimization problems. In general, optimality for such

problems can be assured only if all feasible solutions are enumerated and

compared against each other. However, in practice, it is often possible to avoid

 55

enumerating some feasible solutions if there is sufficient reason to believe it is

safe to do so. The brand-and-bound algorithm is such an approach that generates

partial enumeration of all possible alternatives without losing optimality.

The essence of the branch-and-bound approach is the following observation: in

the total enumeration tree, at any node, if it can be proved that optimal solution

cannot occur in any of its descendents, then there is no need to consider any of

those descendent nodes. This is known as search tree pruning. It is important to

note the optimality is never compromised as those solutions in the leaves of the

pruned branches can not be the optimal solution, according to the definition of

pruning. Thus, the branch-and-bound approach is not a heuristic procedure, but an

exact optimizing procedure.

Let’s assume a feasible solution has been found, either by heuristic methods or by

a depth-first search to reach the first leaf in the search space. Since this solution is

so far the best solution available, we assign it to the global threshold. Then at any

node of the search tree, if we can compute a bound on the best possible solution

that can expected from the descendents of that node, we can compare the bound

with the global threshold. If what we have on hand, the global threshold, is better

than what we can expect from any of the descendents, then it is safe to stop

branching from that node. In other words, all the descendents can be pruned.

 56

It is trivial that the performance of the branch-and-bound algorithm or the actual

runtime complexity depends on the prune techniques. In general, the quality of the

prune techniques often boils down to how well the lower/upper bound (depends

on whether minimum cost or maximum value is to be found) of the decedent trees

is estimated, given the current position in the search tree. The tighter the

lower/upper bound, the more the search tree can be pruned. As will be mentioned

soon, we calculate the upper bound by summing up the frequencies of un-chosen

pattern instances. The method is attractive for its simplicity and experiments show

it works fine for all benchmarks and applications tested. It is worth noting the

method proposed in [8] cannot be applied to this problem as it is applicable to

lower bounds only. Moreover, the method in [8] is trying to heuristically find an

independent subset of un-chosen candidates, whereas in our problem, all patterns

in each disjoint group are from a dependent set.

The Branch-and-Bound algorithm recursively splits the original problem into two

sub-problems and finds the maximally achievable frequency over a group of

instances. The algorithm is as follows:

(Denote the list of instances as L, the chosen list as L_chosen, the current global

maximum frequency as GMF, and the sum of frequencies along the binary search

three to the current node as CPF. Denote the branch-and-bound procedure

as , _ , ,L L chosen CPF GMF< >)

 57

Step 1: Initialize variables to

_ : ;
0

0;
, _ , ,

L chosen empty
GMF
CPF
call L L chosen CPF GMF

=
=
=
< >

Step 2: In , _ , ,L L chosen CPF GMF< > procedure:

Case 1: L is empty. This indicates we are at the leaf node of the search tree.

If CPF>GMF, update GMF=CPF.

If CPF<GMF, the current search path is worse the GMF obtained earlier,

take no action.

Case 2: L is not empty. We check the up-bound of the additional achievable

frequency (UAF) from the remaining instances in L: ()
i L

UAF frequency i
∈

=∑ .

Note the calculation of UAF ensures that the remaining achievable frequency

is no more than that. Hence if CPF plus UAF is smaller than GMF, there is no

reason to continue search along the current direction. Thus we bound.

If CPF+UAF > GMF, there is potential to obtain better total frequency by

continuing the branching. We pick one pattern instance iC from L and form

two sub-problems that recursively called:

Sub-Problem 1: considering including iC into the chosen list, update CPF

by adding the frequency of iC to it. Next we scan through all the

remaining instances in L: if they are overlapping with iC , remove them

from the L.

 58

{ } _ ();
_ _ { };

();
, _ , ,

i i

i

i

L L C overlap group C
L chosen L chosen C
CPF CPF frequency C
call L L chosen CPF GMF

= − −

= +
= +
< >

Sub-Problem 2: considering not including iC into the chosen list, thus we

simply remove iC from L, and call the BnB algorithm with the same CPF

and chosen list, i.e.

{ };
, _ , ,

iL L C
call L L chosen CPF GMF
= −
< >

After the BnB algorithm terminates, the maximally achievable frequency of that

group is returned in GMF and the corresponding instances are given in L_chosen.

To illustrate this algorithm, an example is shown in Figure 15. On the right of

Figure 15 is the pattern structure and we assume all its instances are from one

single basic block, whose DFG is shown on the left. There are seven instances

labeled as C1-C7. In this example, all the patterns are from the same disjoint

group. Since only one basic block presents, we can simply look at the size of each

feasible solution and ignore the basic block frequency.

 59

Figure 15: Maximum achievable frequency: the pattern T and instances C1-C7.

The corresponding binary search tree is shown in Figure 16. It is clear that this

tree is not a full binary search tree since when we formulate sub-problem 1, all

instances that are overlapping with current selected instance are removed. At each

node of the search tree, the left branch corresponds to sub-problem 1, i.e.

including this instance into finalist; whereas the right branch corresponds to

sub-problem 2. In Figure 16, instance C1 is considered first. If C1 is selected, C2

and C3 will be removed and the next pattern to be considered is one of C4, C5, C6,

and C7. At level 2, assume C4 is considered. The left branch corresponds to

selecting C4 and no instances are removed. Now we are at level 3 and have C5,

C6 and C7 left. Assume C5 is considered at level 3. The left branch corresponds to

selecting C5, and C7 will be removed. Finally the algorithm reaches level 4 where

the only one to consider is C6. The left branch corresponds to selecting C6 and we

 60

reach the first leaf node, hence a feasible solution {C1, C4, C5, C6} is obtained.

The size of this solution is 4 and the global maximum frequency GMF is updated.

The right branch at level 4 corresponds to not selecting C6 and a feasible solution

{C1, C4, C5} is obtained as well. However, this solution is discarded as the size is

only 3.

Now consider the right branch (not selecting C5) at level 3, due to the natural of

recursive call (depth-first like), when it is processed, the solution {C1, C4, C5, C6}

is already obtained. The path frequency associated with this node is 2 ({C1, C4}),

and the remaining instances to choose are {C6, C7}, thus the additional

achievable frequency is 2. By now it is safe to say the best solution can be

obtained by exploring the descendants is 2+2=4. Since the current solution in hand

already has a frequency of 4, it is not necessary to continue traversing the

descendants.

 61

Figure 16: The binary search tree associated with the example in figure 15.

The shaded nodes in Figure 16 correspond to visited nodes whereas the blank

nodes are pruned. It is worth noting only 2 out of 29 leaves are visited, indicating

the efficiency of this simple pruning technique. It is interesting to note in this

example, the first feasible solution is the final optimal solution as well. Although

this is a coincident, the order of sub-problem 1 and sub-problem 2 does affect how

fast the best solution can be obtained. For instance, consider at each level we

branch to the right sub-tree first, the first feasible solution is simply {C7}.

Although not always true, for this problem, it is almost always better to branch to

 62

sub-problem 1 first.

The overall algorithm that finds the maximally achievable frequency for each

pattern is summarized in Figure 17. (L denotes the entire instance list, L_group

denotes each disjoint group, total_freq denotes the total achievable frequency of

the pattern). Line 3-13 identifies one disjoint group and line 14-15 calls the BnB

algorithm to find the maximum achievable frequency over this group.

Priority()
01. _ 0;
02. {
03. _ ;
04. . ();
05. _ _ { };
06. new instances added to (_) & &
07. '
08. (', _)
09. { '};
10. _

L
total freq
while L do

L group
C L pop
L group L group C
while are L group L

for all C L
if isOverlap C L group then

L L C
L grou

< >
=

≠ ∅
←∅

←
← ∪

≠ ∅
∈

← −
_ { '};

11.
12.
13.
14. _ ; 0;
15. _ , _ ,& ;
16. _ _ ;
17.
18. _ ;

p L group C
end

end
end
L chosen GMF
call L group L chosen GMF
total freq total freq GMF

end
return priority total freq speedup

← ∪

←∅ =
< >

← +

= ×

Figure 17: Algorithm that calculates the priority of each pattern.

4.12 Conclusion

In this section, we first introduced the adjacency matrix representation of graph

 63

structure followed by the generation of canonical labels of isomorphic graphs. A

unique representation combing graph adjacency matrix, instruction type and

output ports is designed. We define a hash function that converts the pattern

representation into a 32-bit hash key and instances of the same pattern produce

identical hash keys. The instance list of each pattern is updated as instances are

indexed into the hash table. When all the basic blocks are processed, the software

latency, hardware latency and hence speed up of each pattern are calculated. A

priority function that estimates the maximally achievable speedup is defined and a

branch-and-bound algorithm is designed to calculate the priority. Finally, we use a

greedy algorithm to iteratively select a custom instruction set under the resource

constrains.

 64

Chapter 5: Application Mapping

5.1 Introduction

Many previous works stop right after pattern selection. We believe application

mapping is an essential part of a practical extensible ISA system. Given a set of

custom instructions, or the library instructions, we detect all possible matches

from the application’s DFGs to the library instructions. The algorithm we use is a

modified version of Ullman’s subgraph isomorphism algorithm. Properties of

digraphs are incorporated into the refinement procedures to prune the search space.

After all matches are generated, we cast the optimal mapping problem into a

special version of set covering problem and developed a branch-and-bound

algorithm to find the best solution.

5.2 Sub-graph isomorphism

For each basic block’s data flow graph G, we want to match it against the custom

instructions {T1, T2 …TM}. This is decomposed into finding the matches from G

to each Ti. Let T being the DAG representation of any custom instruction Ti, the

matching problem is the same as detecting subgraph isomorphism from T to the

subject graph G.

It is well known subgraph isomorphism is NP-Complete [10]. Till today, it still

remains an open question whether polynomial time algorithms can be found for

 65

graph and sub-graph isomorphism. As for digraphs, the problem is as difficult as

regular graphs. Although the problem can be solved using exhaustive enumeration,

the complexity is exponential: | |TG . We summarize the efforts on DAG

isomorphism and subgraph isomorphism as follows:

Many works [9][12][16][18][19][28] focused on special type DAGs. For some

restricted DAG types, polynomial or linear time algorithms exist. Rooted DAG is

discussed in [16] and the time complexity is further reduced to

(() () ())O E P V T E T× + in [9]. Series Parallel (SP) digraphs are discussed in [19

28] and biconnected outerplanar graphs are discussed in [18]. However, as DFGs

in general are not special digraphs, the above approaches are not applicable.

For normal graphs, most algorithms developed are based on state-space search and

backtracking. The earliest work is dated to Corneil and Gotlieb’s algorithm [7].

The major improvement was introduced by Ullmann[27]. In Ullmann’s work, a

backtracking algorithm with a refinement procedure was proposed. The

refinement procedure effectively reduces the search space need explored. The

above algorithms are developed for one-to-one subgraph isomorphism detection.

Recently, Messmer and Bunke [22] proposed an algorithm for library based

matching. Their method computes all possible isomorphic graphs of model graphs

in the preprocessing step and representing the computed results in a decision tree.

The decision tree is then directly used to detect graph or subgraph isomorphisms

 66

from the input graph to the model graphs in time that is only quadratic in the size

of the input graph. However, the attractive run-time complexity comes from

exponential time complexity during preprocessing stage and the exponential size

of the decision tree. Unfortunately this algorithm is only applicable for subgraph

isomorphism from subject graph to library graphs whereas in our system, the

reverse has to be done.

As mentioned, most works on instruction set extensible processors did not address

application to custom instruction set mapping. To our knowledge, the only work

that applied such mapping is done by Clark et. al [4]. Other works directly used

the pattern instances information from pattern generation stage to perform optimal

instruction covering. In practical systems, after the custom instruction set is fixed,

it is likely new applications are required to port to the new ISA. In that situation

the possible mapping from the new application to the ISA is completely

unavailable and algorithms for optimal code generation can not be performed. To

concluded, the matching procedure is an essential part for a complete system. In

Clark’s work, the vflib [6] graph matching library (also exponential in worst case)

is directly applied, thus the matching procedure was not discussed in details.

5.2.1 Ullmann’s graph isomorphism algorithm

The core of our approach to tackle custom instruction matching is similar to

Ullmann’s algorithm as it is fast yet easy to implement. However the refinement

 67

procedure in our work is improved as it utilizes the properties associated with

DFG matching to efficiently prune the search space. We will introduce Ullmann’s

algorithm and followed by our refinement procedure in the following.

Let’s denote the library graph as ,T TT V E< > , where ,T TV E denote the node set,

edge set respectively. Let TM denotes the m m× adjacency matrix of T , where

m is the number of nodes. Let TL denotes the node array that stores the

instruction types. We further define two node arrays ,T TinDeg outDeg . As their

names indicate, []TinDeg v is the number of input edges of node v and

[]ToutDeg v is the number of output edges of node v.

Similarly suppose the subject graph ,G V E< > is of size , ()n n m≥ , we use

matrix M and node array , ,L inDeg outDeg to denote its adjacency matrix,

instruction types, input degree and output degree.

We define a permutation matrix Φ to be a m n× binary matrix whose elements

are either 0 or 1. In addition, each row of Φ contains exactly one 1 and no column

contains more than one 1, i.e.

1

1

, (1), (,) 1

, (1), (,) 1

n

j

m

i

i i m i j

j j n i j

=

=

∀ ≤ ≤ Φ =

∀ ≤ ≤ Φ ≤

∑

∑
 (2)

Actually, the permutation matrix specifies a node-to-node mapping from T to G: if

(,) 1i jΦ = , node i in T is mapped to node j in G. In a valid sub-graph

 68

isomorphism, each node in T is mapped to exactly one node in G and since n m≥ ,

there might be nodes in G that have no image nodes in T, these are actually

formulated as constraint (2) of permutation matrix. A valid sub-graph

isomorphism from the library graph to the subject graph can be specified by a

permutation matrix Φ that satisfies

'
TM M= Φ Φ (3)

Thus, the problem of finding all isomorphic sub-graphs in G that are isomorphic

with T is equivalent to finding the set of permutation matrices { }1 2, ,..., kΦ Φ Φ for

which (3) is true.

Step 1: Construct the initial matrix 0Φ , which encodes all possible node-to-node

mappings from T to G. A possible node-to-node mapping must satisfy three

conditions:

(1) The instruction types must be the same.

(2) The input degree of the node in the library graph must be smaller than or

equal to that of the node in the subject graph. Here the input degree

means the number of predecessor nodes, not the number of input edges.

For example, in Figure 18, the input degree of node 1 is zero, although it

has two input edges.

(3) If a node is not an output node in the library graph, it can only be mapped

to a node in the subject graph with the same output degree. If a node is an

output node in the library graph, it can be mapped to a node in the subject

 69

graph whose output degree is equal to or greater than it.

To illustrate constraint 3, an example is shown in figure 18. T1, T2 and T3 are

the library graphs and G is the subject graph to be mapped. Here we manually

identify three sub-graphs m1, m2 and m3 of G. Sub-graph m1 is an isolated

pattern and it is covered by the original shift instruction whereas sub-graph

m3 can be covered by T2. It is interesting to note m2 cannot be mapped to T1

using {2 1,3 2}→ → . The reason is node 2 in G has a fan-out towards node 4

where as for the library pattern T1, there is no fan-out at node 1 towards

outside of the pattern. On the other hand, m2 can be mapped to T3 perfectly

as there is a fan-out towards outside of the pattern at node 1 of T3.

If node i in T and node j in G satisfy the above three conditions, the

corresponding entry in the initial permutation matrix is set to 1, i.e.

{
0

1 () () ^ () () ^
(() ^ () ())

(,)
(() ^ () ()}

0

T T

T

T

if L i L j inDeg i inDeg j
isOutNode i outDeg i outDeg j

i j
isOutNode i outDeg i outDeg j

otherwise

= ≤⎧
⎪ ≤⎪Φ = ⎨

∨ ¬ =⎪
⎪⎩

Note 0Φ is not a proper permutation matrix as it in general does not satisfy

constraint (2). However, it will be eventually set to valid permutation matrices, if

they exist, in the following steps.

 70

Figure 18: The output constraints that must be satisfied for custom instruction

matching

Step 2: If there is at least one node in T that cannot be mapped to any nodes in G,

i.e. 0
1

, (1), (,) 0
n

j
i i m i j

=

∃ ≤ ≤ Φ =∑ , there is no valid sub-graph isomorphism exist.

The program is terminated early. Otherwise, we systematically change all but one

of the 1’s in each row of 0Φ to 0, subject to the constraint no column may contain

more than one 1. After each row is changed, a refinement procedure is applied to

prune the search space.

Step 3: For each resulting matrix from step 2, condition (3) is tested to examine

whether it is a valid permutation matrix.

Next we discuss step 2 in detail. Without the refinement procedure, the algorithm

 71

is a full enumeration algorithm that traverses the entire search tree in a depth-first

manner, as Figure 19 shows.

We use a length-n binary vector b to record whether a column is occupied

([] 0b j =) or not ([] 1b j =). We use a length-m vector K to record for each row,

what is the last column that has processed.

Figure 19: Sub-graph isomorphism without pruning

5.2.2 Pruning strategies

To reduce the possible search space, we apply a few pruning strategies. Definition:

the matrix-truncation operation , ()Si j M on a m n× matrix M is to delete

rows 1, 2,...,i i m+ + and columns 1, 2,...,j j n+ + and form a new i j×

matrix.

0

'

1. 1, , {0};
2. ;
3. [];

. . (,) 1^ [] 1, 5.
. . (,) 1^ [] 1;

, (,) 0
4. [] ;

, [] 0; 1; 2;
, ;

,

d

T

d

d K
store
k K d

if there is no j k s t d j b j goto
pick first k s t d k b k
for all j k set d j
K d k

if d m b k d d goto
else if M M report valid
else g

= Φ = Φ =

Φ = Φ

=
> Φ = =
Φ = =

≠ Φ =
=
< = = +

= Φ Φ Φ
Φ = Φ 3;

5. 1 terminate;
1, [], [] 1, , 3;d

oto
if d
else d d k K d b k goto

=
= − = = Φ = Φ

 72

1. After a new k is picked, and for all other columns j k≠ , (,)d jΦ is set to zero,

we check whether the partial permutation matrix is valid up to depth-d using the

matrix truncation operation:

'
, ,() ()d d T d dS M S M= Φ Φ (4)

If the above condition is not satisfied, there is no need to check rows d+1, d+2, etc.

Thus we backtrack: if there is another j>k, such that (,) 1d jΦ = and [] 1b j = ,

we continue in the same depth. Otherwise we back to the previous depth d-1, and

start from the latest column we have explored in depth d-1.

2. The adjacency constraint.

Suppose we are at any non-terminal node of the entire search tree, i.e. 1<d<m,

then all rows of Φ less than d are said to be fixed by the search path and Φ is

called a partial permutation matrix. For a partial permutation matrix, we have the

follow equation:

1
,1 , (,) 1

n

j
i i d i j

=

∀ ≤ ≤ Φ =∑ .

It is important to note the fixed rows 1-d can provide additional constraints to the

non-fixed rows d-m. For example, suppose we have (,) 1,1a b a dΦ = ≤ ≤ being

fixed, which means av the a-th node in T and bv the b-th node in G are matched.

Let { }1 2, ,...a a av v v α be the set of nodes that are adjacent to av and { }1 2, ,...b b bv v v β

be the set of nodes adjacent to bv . From the definition of sub-graph isomorphism,

it is clear that for each 1,2,...,x α= , the node axv has to be mapped to a node byv ,

where 1,2,...,y β= . Thus this refinement simply set all those entries (,)ax jΦ to 0

 73

if node jv is not in the adjacency set of bv . The pseudo code is simply expressed

as follows:

Figure 20: The refinement procedure

To illustrate the usefulness of our refinement procedure, we show an example in

Figure 21. Figure 21(a) shows the library graph T and subject graph G. Figure

21(b) shows the adjacency matrix for both graphs and the initial mapping

matrix 0Φ .

(a)

refinment_procedure
0

(,) 1
0

((,) 1^ (,) 0) (,) 0;

T

for i to m
if M d i

for j to n
if M i j B k j M i j

end
end

end

< >
=

=
=

= = =

 74

(b)

Figure 21: The library graph and subject graph and the initial permutation matrix.

Next we illustrate how the search space is being explored and pruned at each

depth. The complete search tree is given in Figure 22 and the exploration path and

pruning at each depth is clearly labeled. Given the initial permutation matrix as

shown in Figure 21(b), the algorithm first enter depth=1 and pick up the first

unoccupied column that is one, in this case k=1. All remaining columns that are

one in the same row are set to 0. The new permutation matrix after step 1 is

obtained as follows:

 75

Now the refinement procedure is applied to node 1 in T and node 1 in G. The

adjacency list of node 1 of T is {2, 3} and that of node 1 of G is {2, 3}. There are

only four possible mappings: 2 2;2 3;3 2;3 3→ → → → , hence we can safely

eliminate (2,4), (3,4), (3,5)Φ Φ Φ . The permutation matrix after the refinement

procedure is shown below:

Now the algorithm advance to the second row (d=2), where there is only one

candidate k=2 left to choose. Again we apply refinement procedure to node 2 in T

and node 2 in G. and (4,2), (4,3)Φ Φ are set to 0.

Next the algorithm advance to third row d=3. In this case, although there are two

candidates k=2 and k=3, the only valid one to choose is k=3, as the second

column is already occupied at d=2. Note since node 3 in T has no successors, no

refinement is needed.

 76

Finally the algorithm reach the leaf node of the search tree (d=4) and it picks k=4.

A candidate permutation matrix is formed as follows:

Now the algorithm is at a leaf node of the search tree and the candidate

permutation matrix is checked against condition (3). The above permutation

matrix is valid and corresponds to the matching {(1,1), (2,2), (3,3), (4,4)}. The

match is recorded and the algorithm starts to backtrack to check other candidate

permutation matrices.

77

Fi

gu
re

 2
2:

 P
ru

ni
ng

 o
f b

in
ar

y
se

ar
ch

 tr
ee

.

 78

The original full enumeration algorithm generates 2 2 4 4 64× × × = different

candidate permutation matrices and tests each for validity. On the other hand, if

the refinement procedure is applied, the search algorithm would reach the leaf of

the search tree twice only. Thus the total number of candidate permutation

matrices to be test for validity is also reduced to 2. This simple example illustrates

the effectiveness of the refinement procedure in pruning the search tree.

In Ullmann’s original algorithm, a refinement procedure that does a simple check

on adjacencies was presented. The refinement procedure is effective in eliminating

invalid node-to-node mappings before any k at each depth is picked. We call

Ullmann’s refinement procedure “prior-refinement”. Interested readers may refer

to [Ullmann] for details. On the other hand, our refinement procedure works in a

different way: it eliminates invalid node-to-node mappings after a valid k has been

picked. We call our refinement procedure “post-refinement”. We apply both

prior-refinement and post-refinement to prune the search space to the best extend.

As both refinement procedures eliminate invalid 1s inΦ , it is possible that after

such elimination, some row may not contain any 1 at all, i.e. condition (2) is

violated. If such a violation occurs before any search starts, it is sufficiently safe

to conclude no valid sub-graph isomorphism exists. On the other hand, if such a

violation occurs in the middle of a search path, it indicates there is no necessity to

continue searching along this search path and the algorithm backtracks. To

facilitate such operations, both refinement procedures return a FAIL status flag if

 79

condition (&) is violated as a consequence of refinement.

5.2.3 Convexity checking

Although a permutation matrix Φ that satisfies conditions (2) and (3) represents

a correct sub-graph isomorphism, there is no guarantee on the obtained sub-graph

to be logically correct, i.e. the convexity condition may not be satisfied. If care is

not taken this may result in generating invalid program code. To illustrate this, an

example is presented in Figure 23.

Figure 23: Sub-graph isomorphism that violates the convexity constrain

It is easy to verify the permutation matrix Φ given in Figure 23

satisfies 'TM M= Φ Φ . This permutation matrix specifies a mapping from the

 80

nodes {1, 2, 3} in T to the nodes {1, 2, 4} in G.. However, the subject graph G has

an “O” type structure such that the induced sub-graph 'G by the nodes {1, 2, 4}

is not a convex pattern. It is obvious that there is a forward dependency from 'G

to node 3 and vise versa.

To ensure only logically valid matches are generated, a convexity checking is

applied after each permutation matrix is found. This convexity checking

procedure is similar to the one applied during pattern generation stage.

Finally, the complete sub-graph isomorphism algorithm is presented in Figure 24.

Figure 24: The complete sub-graph isomorphism algorithm

0

'
, ,

1. 1, , {0}, {1};
_ (), FAIL terminate program;

2. ;
3. [];

. . (,) 1^ [] 1, 5.
. . (,) 1^ [] 1;

, (,) 0
() (

d

d d T d d

d K b
prior refinement if
store
k K d

if there is no j k s t d j b j goto
pick first k s t d k b k
for all j k set d j
if S M S M

= Φ = Φ = =
Φ

Φ = Φ
=

> Φ = =
Φ = =

≠ Φ =

≠ Φ Φ

'

), terminate program;
_ (), if FAIL terminate program;

_ (), if FAIL terminate program;
4. [] ;

, [] 0; 1; 2;
, ;

, 3;
5. 1 termin

T

d

prior refinement
post refinement
K d k

if d m b k d d goto
else if M M report valid
else goto
if d

Φ
Φ

=
< = = +

= Φ Φ Φ
Φ = Φ

= ate;
1, [], [] 1, , 3;delse d d k K d b k goto= − = = Φ = Φ

 81

5.3 Optimal instruction cover

Given the set of discovered custom instruction matches in the application program,

the task of finding the optimal cover for code generation is non-trivial. Since

custom instruction matches do not cross basic blocks, the first complexity

reduction method is to perform the cover on a per basic block basis.

5.3.1 Problem formation

A subject DAG (,)G V E corresponds to the DFG of a basic block. A pattern that

contains only one node is called a trivial pattern. Each node ,1iv i n≤ ≤ of G

represents a basic instruction and can be covered by either a trivial pattern or a set

of custom instruction matches. The complete set of matches that covers any node

v V∈ is denoted as 1 2, ,..., qm m m . Each match jm has an associated cost ()jc m

and speedup saving ()js m . The cost is simply the hardware latency and the

saving is the difference between hardware latency and software latency, as

discussed in section 3.7. The optimal code generation problem or the optimal DFG

covering problem is to select a set of matches { } { }1 2 1 2, ,..., , ,...,k qy y y m m m⊆

such that the follow conditions are satisfied:

 (1) All the nodes in G are covered: 1 2 ... ky y y V=U U U ;

 (2) Any node is covered by exactly one match;

 (3) The total cost
1

()
k

i
i

c y
=
∑ is minimized

 82

Clark et. al. use an heuristic approach by assigning an desirability ordering to each

custom instructions. If an elementary instruction can be covered by multiple

custom instructions, the one with highest order is chosen. Cong et. al recasts the

optimal code generation problem to Binate Covering, which was first applied to

the DAG covering problem by Rudell [25] and Liao [17], etc. Binate covering is a

NP-hard problem; nevertheless, much effort has been spent on finding the exact

solution because of its wide applications. However, in our system, binate covering

cannot be directly applied as it allows overlapped instructions.

In our work, we define a n q× cover matrix M whose elements are either 0 or 1.

Each row of M represents a node in G and each column of M represents a

successful match instance. If match jm covers node iv , the corresponding entry is

set to 1, i.e.:

1
(,)

0
i jif v m

M i j
otherwise

∈⎧
= ⎨
⎩

Figure 21 gives an example on cover matrix. On the left side of Figure 21 is the

DAG and all possible matches. Note 1 2 3, ,m m m are custom patterns where as

4 9m m− are trivial patterns. The corresponding cover matrix is on the right upper

corner of Figure 25.

A valid cover scheme is represented by selecting columns such that for each row,

there is exactly one 1 selected. The cost associated with this cover scheme is

hence the sum of individual costs of the selected columns. An optimal cover

 83

scheme is thus the one yields the lowest cost.

We construct a branch-and-bound algorithm to find an exact optimal solution.

Note there might be more than one optimal solutions and our algorithm would

simply find one of them.

Figure 25: Cover matrix and pre-processing

5.3.2 Pre-processing

Before the optimal covering algorithm is applied, it is often possible to perform

cover matrix reduction. The idea is simple, if a node v is not covered by any of the

custom instructions, we have no choice but cover it use trivial patterns. The trivial

pattern that covers this node corresponds to an essential column. The essential

columns and the rows they cover can be removed directly. The optimal covering

 84

algorithm will be performed on the reduced cover matrix. Finally, the cost of the

essential columns will be directly added to the cost of the reduced matrix to obtain

the actual cost associated with the original cover matrix. This reduction is called

pre-processing.

In figure 25, there is no custom pattern covers node 4, hence 7m is an essential

column. After pre-processing, the reduced matrix is shown on the right-bottom of

figure 25. The effectiveness of this processing procedure is not very obvious in

this example, however, in practice, it is a simple yet useful technique, considering

the complexity of the branch-and-bound algorithm is exponential to the number of

columns in the worst case.

5.3.3 Heuristically search for an initial solution.

The performance of the branch-and-bound algorithm in general depends on the

quality of bound estimation and how fast a relatively good solution can be

obtained. It would not be wise to start with zero solutions, instead a good guess as

the starting point helps reduce subsequent searching efforts. In order to find a high

quality initial cover, we apply a greedy selection procedure. The matches are

sorted according to saving/cost ratio and the greedy selection procedure chooses

from the highest priority to the lowest sequentially. Whenever y m∈ is selected,

for each node iv it covers, we remove the corresponding row from the covering

matrix. The column corresponds to y is also removed. This step corresponds to

 85

line 4-5 in figure 26 where we use cov{ }y to denote the set of rows that are

covered by y.

To ensure each node is covered by exactly one match, for each node i jv m∈ , all

other columns km are checked. If iv can be covered by km as well, the column

corresponds to km is also removed. This corresponds to line 7-11 in figure 26.

Figure 26: The algorithm to find the initial cover.

5.3.4 Lower bound calculation

We use the variable X to denote the set of rows in the cover matrix, and Y, the set

of matches to choose from. As the branch-and-bound algorithm traverse the

search space, we use CPC to denote the total cost associated with the current path.

We further maintain a global minimum cost GMC, which is at first initialized to

1 2

1 2

_
:{ , ,..., };
:{ , ,..., };

01. ;
02.
03. . . () max{ ();

04. cov();
05. { };
06. { };
07.
08. '
09. (') { }; ;
10. ;

i

n

q

im m

Initial Cover
X v v v
m m m m

Y
while X do

select y s t prio y prio m

X X y
m m y
Y Y y
forall v y

forall y m
if v y m m y end

end

∀ ∈

< >

←∅
≠∅

=

← −
← −
← ∪

∈
∈

∈ ← −

11. ;
12. ;
13. ;

end
end
return Y

 86

the cost of the initial cover in step 1. As the branch-and-bound algorithm traverses

the search space, if a better solution is found then GMC is updated accordingly.

The lower bound of the remaining uncovered nodes is denoted as LBC. The cover

problem at any intermediate nodes of the search tree is denoted as:

, , , ,C X Y CPC LBC GMC=< > .

IfCPC LBC GMC+ > , it indicates continuing searching any descendants cannot

yield better solutions than the current best solution in hand, thus we bound at the

current location. Otherwise we branch. It is straight forward to calculate the cost

along the search path; however, it remains a challenging issue to calculate the

lower bound. The lower bound should be as tight as possible so as to prune the

search tree as early as possible.

Definition 1:

The weight of a row is the minimum cost among all the matches that covers that

row.

, (,) 1
() min ()i jj M i j

Weight v Cost m
∀ =

=

Definition 2:

yXx xy∋∩= U)(τ , which is the union of the nodes of each y that covers x . In

other words,)(xτ is the set of nodes that potentially can be covered if we branch

to some y that covers x .

 87

Definition 3:

An independent set 'X of X w.r.t to τ is a subset of X such that any two

different rows '
1x and '

2x satisfies)(),('
1

'
2

'
2

'
1 xxxx ττ ∉∉ .

From the definition of)(xτ , it is clear that no single column y can cover both '
1x

and '
2x . Moreover, from the definition of weight, it covers any two rows from the

independent set, and the cost is greater than the sum of their weights, i.e.

1 2 1 2({ ', '}) (') (')Cost x x Weight x Weight x≥ + . The following lemma can be proved:

Lemma:
' '

() min{ (')} (')
x X

Cost X Cost X Weight x
∈

≥ = ∑

Therefore, the lower bound is set to the cost of covering 'X . However, the

problem of finding an independent subset that maximizes this bound is NP-hard.

In order to obtain a reasonably good lower bound in the shortest time, the

optimality of finding maximum independent subset is compromised and a greedy

algorithm is applied. It is worth noting that this tradeoff only affects how the

search tree is pruned but not the optimality of the DAG covering problem itself.

 88

Figure 27: The greedy algorithm that finds an independent subset of the rows X

The algorithm presented above guarantees the selected rows in X’ are independent.

Suppose there exists two elements ' ' ' '
1 2 1 2, ', . . ()x x X s t x xτ∈ ∈ , from the definition

of ()xτ there exists an column ' '
1 2, . . ,y s t x y x y∈ ∈ , we have)('

1
'
2 xx τ∈ . Line 4

in the above algorithm removes '
1()xτ if '

1x is selected first, or '
2()xτ if '

2x is

selected first, hence it is impossible for ' '
1 2,x x to be both selected. It follows that

all the elements in 'X are independent.

Finally, the lower bound cost LBC is simply the sum of the weights of all the rows

in X’:

'
()

x X
LBC Weight x

∈

= ∑

5.3.5 Sub-problem formation

Similar to what is presented in chapter 3, if there is potential to continue

branching at any intermediate node of the search tree, the cover problem at that

node is divided into two sub-problems. First, the algorithm arbitrarily selects a

independent_subset()
1. ' ;
2. {
3. ' ;
4. (');
5. ' ' { '};
6. }
7. ';

X
X
while X do

x an element of X
X X x
X X x

return X

τ

< >
←∅

≠ ∅
←
← −
← ∪

 89

column y from the remaining columns, and then the two sub-problems are:

Sub-problem 1:

Consider y being included in the final solution, we shall remove column y

from Y and remove all rows that are covered by y from X. In addition, if there

is any unselected column 'y Y∈ that is overlapping with y, it is removed

immediately. Thus the sub-problem is represented as:

1 cov(), { } (), cos (),C X y Y y overlap y CPC t y GMC=< − − − + >

Sub-problem 2:

Consider y being excluded from the final solution, i.e. y is simply discarded.

We shall remove column y from Y, and the sub-problem is:

1 , { }, ,C X Y y CPC GMC=< − >

5.3.6 The branch-and-bound algorithm for optimal cover

Figure 23 shows the overall pseudo code of the branch-and-bound algorithm that

finds an optimal cover, given an initial cover. Line 2 corresponds to that a better

solution is found and the global minimum cost is updated. Line 4-8 corresponds to

finding the lower bound. It is worth noting the weight of each row has to be

calculated in each recursive call, since the columns are changing. Line 9-21

corresponds to continue branching at the current node.

 90

Figure 28: The branch-and-bound algorithm that finds the optimal cover

5.4 Code emission

After the optimal DAG cover is obtained, the follow up and also the final step is

actual code emission. However, since there is no restriction on custom instruction

structures, provided the convexity and input-output constrains are satisfied,

reordering of instructions may be necessary. This issue is addressed in [26] and

interested readers may refer to it.

' '

branch_and_bound : , , ,
01. () ()
02. ;
03.
04. ' independent_subset();
05. ' '
06. (') min ()

07.
08. (');

09.

y Y

x X

X Y CPC GMC
if X CPC GMC then

GMC CPC
elseif X then

X X
for each x X

Weight x Cost y

end
LBC Weight x

if CPC LBC GMC th

∀ ∈

∈

< >
= ∅ ∧ <
=
≠ ∅

=
∈
=

=

+ <

∑

10. , { };
11. ' ;
12.
13. '
14. ' { '}; ;
15.
16. { };
17. ;
18. ' ;
19. , , cost(), ;
20. ', ', , ;
21. ;
22. ;

en
select y Y Y Y y
duplicate Y Y
forall x y

forall y Y
if x y then Y Y y end

end
X X x

end
duplicate X X
call X Y CPC y GMC
call X Y CPC GMC

end
end

∈ ← −
=

∈
∈
∈ ← −

← −

=
< + >
< >

 91

5.5 Conclusion

In this chapter, the application mapping problem is discussed. The importance of

application mapping is due to the fact the software rarely runs on the custom

processor once and away. Thus the approach that combines pattern generation,

selection and binary code modification into one shot, as in some pervious works,

is of little practical usage. In this work, the application mapping problem is

decomposed into two sub-problems: custom instruction matching and optimal

code generation. For the former, Ullmann’s general graph matching algorithm is

employed as the basis and new refinement procedures are added to effectively

prune the search space. For the latter, a branch-and-bound algorithm is formulated

to find the optimal DAG cover from the pool of custom instruction matches and

trivial patterns. Effective pre-processing procedures and lower bound calculation

for the branch-and-bound algorithm are presented.

 92

Chapter 6: Experimental Results

6.1 Environment, libraries and third-party packages

The automation system presented in the previous chapters is implemented in a

standard Linux/C++ environment. In addition, to facilitate efficient

implementation, we used three third-party software packages. Besides the

SimpleScalar simulation framework and the Nauty graph isomorphism library, the

LEDA graph library is used. As the core of the algorithm is combinatory

programming, efficient and easy-to-use data structures for graphs and

parameterized graphs are of primary concern. The LEDA library [21] is specially

designed for applications in graphs, geometric computations, combinatorial

optimization and other. It offers a variety of relevant building blocks that are

needed in our system. More specifically, it provides object based data structures

including not only graphs, but also queues, linear lists, and hash tables etc.

As a side note, at the time this thesis is written, the newer versions of the LEDA

library are commercialized. In our work, we used version 4.2 which is free for

academic researchers.

6.2 Benchmark programs

The benchmark programs used in this work comes from two sources: MiBecnh

and the H.264/AVC [15] reference software JM8.6. The details of the benchmarks

 93

used in this work are listed in table 5.

Table 5: List of benchmark programs

 Benchmark Domain Maximum basic

block size

dijistra Network 24

patricia Network 46

sha Security 31

crc32 Telecom 14

FFT Telecom 57

IFFT Telecom 57

rawcaudio Telecom 12

rawdaudio Telecom 11

bitcnts Automotive 46

MiBench

basicmath Automotive 52

H.264/AVC Encoder Multimedia 256

Instead of performing the algorithm on each individual basic blocks, we purposely

masked out some basic blocks belong to system libraries such as I/O processing

(e.g. file processing), memory management (e.g. malloc, memcpy, etc), etc.

However, basic blocks belong to arithmetic related libraries, such as the math

library, or the low level multiple-precision arithmetic library, are not filtered.

This filtering process helps to avoid spending time in non-profiting basic blocks.

For example, for benchmark “sha”, the number of remaining basic blocks after

filtering is only 59 whereas the original total number is 471. In additional, we

want to see the true speed up from the application’s native code. Hence, the

 94

filtering process also helps to remove system libraries’ interferences.

All benchmarks are compiled using the SimpleScalar ported gcc (gcc-2.7.2.3)

with their standard compiling options, e.g. –O3 for MiBench.

6.3 Speedup ratio calculation

The speedup ratio is calculated over all valid basic blocks. Using swT and hwT to

represent a basic block’s old execution cycles and new execution cycles after

custom instruction mapping, we have the following formula:

1 100%

() ()
1 100%

() ()

sw i i
i

hw i i
i

old execution cyclesSpeedup ratio
new execution cycles

T BB freq BB

T BB freq BB

⎛ ⎞
= − ×⎜ ⎟
⎝ ⎠

⎛ ⎞⋅
⎜ ⎟= − ×⎜ ⎟⋅⎜ ⎟
⎝ ⎠

∑
∑

6.4 The effects of input output constraints

To evaluate the effects of input-output constraints, experiments are performed on

the seven benchmark programs from MiBench. The input constraint varies from 3

to 8 and the output constraint varies from 1 to 3. When the output constraint is set

to 1, the generated custom instructions are MISO patterns. Figures 29-37 show the

speedup against all input-output constraint configurations for each benchmark

 95

dijistra

0.0

10.0

20.0

30.0

40.0

50.0

60.0

3 4 5 6 7 8

number of inputs

s
p
e
e
d

u
p

(
%
)

1 outport

2 outports

3 outports

Figure 29 : Dijistra: speed up vs. different input-output constrains.

patricia

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

3 4 5 6 7 8

number of inputs

s
p
e
e
d

u
p

(
%
)

1 outport

2 outports

3 outports

Figure 30: Patricia: speed up vs. different input-output constrains.

fft

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

3 4 5 6 7 8

number of inputs

s
p
e
e
d

u
p

(
%
)

1 outport

2 outports

3 outports

Figure 31: FFT: speed up vs. different input-output constrains.

 96

crc

0.0

5.0

10.0

15.0

20.0

25.0

30.0

3 4 5 6 7 8

number of inputs

s
p
e
e
d

u
p

(
%
)

1 outport

2 outports

3 outports

Figure 32: Crc: speed up vs. different input-output constrains.

sha

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

3 4 5 6 7 8

number of inputs

s
p
e
e
d

u
p

(
%
)

1 outport

2 outports

3 outports

Figure 33 : Sha: speed up vs. different input-output constrains.

rawcaudio

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

3 4 5 6 7 8

number of inputs

s
p
e
e
d

u
p

(
%
)

1 outport

2 outports

3 outports

Figure 34 : Rawcaudio: speed up vs. different input-output constrains.

 97

rawdaudio

14.0

14.5

15.0

15.5

16.0

16.5

17.0

17.5

3 4 5 6 7 8

number of inputs

s
p
e
e
d

u
p

(
%
)

1 outport

2 outports

3 outports

Figure 35: Rawdaudio: speed up vs. different input-output constrains.

bitcnts

0.0

5.0

10.0

15.0

20.0

25.0

30.0

3 4 5 6 7 8

number of inputs

s
p
e
e
d

u
p

(
%
)

1 outport

2 outports

3 outports

Figure 36: Bitcnts: speed up vs. different input-output constrains.

basicmath

0.0

5.0

10.0

15.0

20.0

25.0

30.0

3 4 5 6 7 8

number of inputs

s
p
e
e
d

u
p

(
%
)

1 outport

2 outports

3 outports

Figure 37: Basicmath: speed up vs. different input-output constrains.

 98

6.4.1 Input constraint

For most benchmark programs, the speedup increases as the input constraint is

relaxed, e.g. “patricia”, “FFT”, “sha”, and “basicmath”. Input constraint is closely

related to custom instruction size. By relaxing the input constraint, larger patterns

can be discovered. In general, large patterns are more “economic” as they pack a

large number of instructions in only a few processor cycles. However, speedup

becomes saturated as more inputs are allowed. The reason is as pattern becomes

larger, it is more difficult to find instructions that can be executed on the custom

hardware.

Some benchmarks, such as “crc”, “rawcaudio”, “rawdaudio” and “bitcnts”, the

speedup saturates very early. An extreme example is “rawcaudio”, where all

custom instructions are found when the input constraint is set to 3. There is no

additional speedup obtained as input constraint increases from 3 to 8.

6.4.2 Output constraint

In almost all cases, there are no noticeable speedup differences between 2-output

and 3-output custom instructions. This observation suggests for real applications,

the output constraint can be set to 2 as an optimal balance between efficiency and

accuracy. On the other hand, MISO custom instructions (1-output) may result in

inferior performance. For instance, in “patricia”, the speedup of 1-output

configuration underperforms 2-output configuration by 10%-15%. In “FFT” and

“basicmath”, the measured difference is about 5% for all input configurations.

 99

Although in other benchmarks 1-output configurations performs as well as other

configurations, we believe, MIMO patterns should always be used to ensure

guaranteed performance.

6.5 Effects of number of custom instructions

In some extensible instruction set processors, there is a limit on the total number

of custom instructions. In this simulation, we vary the library size from 1 to 25

and observe the corresponding speedup ratios. To prevent any performance

limitation due to input-output constraints, we set it to the maximum case,

8-input-3-output. The results are shown in Figure 38 below. It is clear for all

benchmarks, at least 90% of the maximum speedup can be achieved with library

size limit set to 25. In general, all the curves rise rather fast for the first few

custom instructions (<8), and the rising speed decreases as additional custom

instructions are added. This phenomenon matches the nature of our greedy pattern

selection algorithm: patterns that have greater speedup potential are selected first.

For some benchmarks (crc, rawcaudio, rawdaudio, sha, dijistra, and bitcnts), the

speedup ratio saturates in about 10 custom instructions, hence, resulting in very

steep curves. On the other hand, the speedup ratio of other benchmarks (FFT,

IFFT, patricia, and basicmath) keeps increasing until the maximal library size, but

at a much slower increasing rate.

 100

Effects of custom instruction set size

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of custom instructions

s
p
e
e
d
u
p

r
a
t
i
o

(
%
)

crc

FFT

IFFT

rawcaudio

rawdaudio

Effects of custom instruction set size

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of custom instructions

s
p
e
e
d
u
p

r
a
t
i
o

(
%
)

dijistra

patricia

sha

bitcnts

basicmath

Figure 38: Effects of custom instruction set size

6.6 Cross-application mapping

First addressed in [4], cross-application mapping or cross-compilation can be used

to examine the generalizability of custom instructions among applications in the

same domain. The domains of the benchmarks are shown in Table 5 and we

 101

perform cross-compilation within each domain accordingly. In addition, a few

simulations are performed on selected cross-domain benchmarks. For all

simulations in this section, other constraints are relaxed, i.e. maximum

input-output constraint is used and there is no limitation on library size. Table 6

bellow gives the complete simulation list. For each source-target

cross-compilation pair, the source benchmarks are used to generate the custom

instructions and the target benchmark is then mapped to the generated instruction

set. The Abbrev column gives the corresponding abbreviation that will be used

in the figures later.

Table 6: The list of cross-compilations
Domain Source Target Abbrev.

patricia dijistra pat2dij Network
dijistra patricia dij2pat
bitcnts basicmath bit2math Automotive
basicmath bitcnts math2bit
FFT IFFT FFT2IFFT
IFFT FFT IFFT2FFT
rawcaudio rawdaudio rawc2rawd
rawdaudio rawcaudio rawd2rawc
FFT crc FFT2crc
crc FFT crc2FFT
FFT rawcaudio FFT2rawc
rawcaudio FFT rawc2FFT
crc rawcaudio crc2rawc

Telecom

rawcaudio crc rawc2crc
sha crc sha2crc
crc sha crc2sha
basicmath FFT math2FFT

Cross-domain

FFT basicmath FFT2math

 102

24

3.9

0.6

10.3

5.3
3.1

31.9
29.8

0

5

10

15

20

25

30

35

pat2dij dij2pat bit2math math2bit sha2crc crc2sha math2FFT FFT2math

s
p
e
e
d
u
p

r
a
t
i
o

(
%
)

Figure 39: Speedup ratios of selected cross-compilation 1

31
29.8

11.1

0.2

14.1

4.4

1.1

17.6

0

5

10

15

20

25

30

35

FFT2IFFT IFFT2FFT FFT2crc crc2FFT FFT2rawc rawc2FFT crc2rawc rawc2crc

s
p
e
e
d
u
p

r
a
t
i
o

(
%
)

Figure 40: Speedup ratios of selected cross-compilation 2

Figures 39 and 40 show the speedup ratio of each cross-compilation benchmark

pairs. Figure 39 covers “Network”, “Automotive”, and “Cross-domain” whereas

figure 40 covers “Telecom”. In most cases the speedup-ratio for cross-compilation

 103

is lower than that of native compilation. For instance, a maximum speedup of

55.9% is achieved for “dijistra-dijistra” native compilation whereas only 24% is

achieved for “patricia-dijistra” cross compilation. Similarly, the “dijistra-patricia”

cross compilation only achieves 3.9% whereas the native compilation achieves

33.5%.

However, there are a few cross-compilation pairs for which, the speedup-ratio is

as good as their native compilation. For instance, the native compilation of

“basicmath” has a record of 26.7%, whereas the “FFT-basicmath”

cross-compilation achieves 29.8%. Considering the maximum library size for

native compilation is set to 25 whereas there is no limit for cross compilation, the

speedup ratios can be considered close. In additional, similar results are obtained

for “FFT-IFFT”, “IFFT-FFT”, “basicmath-FFT”, and “FFT-rawcaudio”. In

previous section it is observed the speedup ratio for “FFT” and “basicmath”

increases gradually as number of patterns added. In deed, after a close look at the

extracted custom instructions, it is observed that “FFT” and “basicmath” each

generates a large number of small patterns. Hence, if these two are used for

custom instruction generation, there is a higher chance that other applications can

benefit from it. On the other hand, other applications, such as “sha” only generates

8 custom instructions and some are of larger size (largest one contains 7

instructions), it is hence much more difficult for other applications to benefit from

these custom instructions.

 104

6.7 Case study: H.264/AVC encoder

In this section, a case study on a practical application H.264/AVC is performed.

H.264/AVC is an important video coding standard and it covers various

application domains ranging from low bit-rate video-conferencing to high-quality

multimedia entertainment.

Figure 41: Basic coding structure for H.264/AVC for a macroblock.

Figure 41 shows the basic coding structure of a macroblock. The shaded blocks

will be studied for custom instruction. In our experiments, the H.264/AVC

standard reference software JM8.6 is complied using SimpleScalar ported

gcc-2.7.2.3, with –O2 option. We simulated the encoder using the following

configurations: Hadamard transform on, three reference frames for motion

estimation, P-frames on, B-frames off, context adaptive binary arithmetic coding

 105

(cabac) on, rate-distortion optimization on. We use the “forman” sequence in

QCIF size as input. The “forman” QCIF sequence is a representative testing

sequence for low bit-rate applications. There are 50 frames in total encoded.

To study a specific block in the application, we first analyze the source and find

out the corresponding C/C++ functions. Since the text symbols are dumped into a

file during program trace generation, we are able to identify the starting and

ending addresses of each user functions. We manually find the address range of

the target functions and use it as an argument of the custom instruction generation

engine. The custom instruction generation engine would filter out basic blocks

that are not in the address range; effectively it means only the target regions are

explored. Similar filtering is performed in the application mapping stage.

We identified five interesting aspects of the H.264/AVC system as targets. The

corresponding function names and address are given in Table 7 below. For a

complete list of text symbols, their associated address, and size, etc, please refer to

appendix A.

 106

Table 7: H.264 building blocks, function names and address range

H.264 Building block Function names Address range

DCT, Quantization
dct_luma, dct_luma_sp, dct_chroma,

dct_chroma_sp
00404630-0040D808

Full-pel FullPelBlockMotionSearch 00467230-00467FD8

Sub-pel SubPelBlockMotionSearch 004688C0-0046A3B0

Motion

Vector

Estimation SAD SATD 00467FD8-004688C0

Motion Compensation

LumaPrediction4x4,

ChromaPrediction4x4,

OneComponentLumaPrediction4x4,

OneComponentChromaPrediction4x4,

intrapred_luma, intrapred_luma_16x16,

IntraChromaPrediction8x8,

IntraChromaPrediction4x4

00401F90-00404630

004441C8-00445420

00445BA8-004470F8

00442750-00443328

00441FE8-004425D8

Debloking Filter
DeblockFrame, DeblockMb,

GetStrength, EdgeLoop
0043D4A0-0043FAA0

Arithmetic coding

(cabac)

biari_encode_symbol,

biari_encode_symbol_eq_prob
00400F10-004019C0

The details of the simulation results are given in Table 8. For each simulation, we

list out the total number of basic blocks fall in that address range, the maximum

basic block size, the old execution cycles and the new execution cycles after

custom instruction mapping, and finally the speedup ratio. The one that achieves

highest speedup ratio is integer transform (DCT, quantization). The speedup ratio

is 32.1% and it is similar to that of FFT in MiBench, as these two are similar in

nature.

 107

Table 8: the simulation results for H.264/AVC

H.264 Building

block
Number
of BBs

Max
BB
size

Old exec.
cycles

New exec.
cycles

Speed-
up
ratio

DCT,
Quantization 231 83 12125777395 9177001147 32.1
Motion
Estimation 109 256 17886087760 15723919802 13.8

ME Full-pel 10 57 6999213134 5953800228 17.6

ME Sub-pel 91 40 6124885118 5476646006 11.8

SATD 8 256 4761989508 4290551088 11.0

Motion
Compensation 352 62 1313550736 1070812678 22.7

Deblock Filter 176 42 160275540 130182453 23.1

cabac 60 15 4122943229 3446346518 19.6

In the following part, we give the first four popular patterns for each building

block. The patterns are arranged in decreasing popularity order from left to right.

Figure 42: Four most popular patterns for DCT and Quantization

 108

Figure 43: Four most popular patterns for Motion Estimation

Figure 44: Four most popular patterns for Motion Compensation

Figure 45: Four most popular patterns for Debloking Filter

 109

Figure46: Four most popular patterns for Arithmetic Coding (cabac)

Finally, we applied our system on the entire H.264/AVC software (i.e. including

miscellaneous functions such as initializing coding parameters, writing bit streams,

etc, and the overall speedup is measured to be 16.6%.

6.8 Conclusion

In this chapter, experiments are setup to show our system’s ability in identifying

efficient custom instructions. We first performed a series of experiments on

selected benchmarks from MiBench. We analyzed the effects of input-output

constraint, custom instruction set size, and cross-application mapping. Interested

users may refer to [4] and [30] for further verification. Finally, we performed an

case study on H.264/AVC reference software and showed the identified custom

patterns. However, it should be noted that the H.264/AVC reference software is

 110

none-optimized; hence the identified patterns given here may not be practically

the best solution. Due to the time limits and the unavailability of highly optimized

video codec, we have not applied our system to a more practical H.264/AVC

implementation. It is suggested that it should be done in the future work.

 111

Chapter 7: Conclusion

More and more embedded applications have stringent requirements in terms of

high-performance and low-power. Examples are handheld devices and 3G

hand-phones for which integrated camera and video coding now become basic

requirements. While traditional DSP processors are difficult to meet these

stringent demands, application specific instruction set processors are shown to be

effective in meeting the performance and power demands. However, designing

these custom instructions is traditionally done by experts and intensive manual

work is necessary. Recently, researchers have been interested in designing

automated methods that free people from such workloads. Standard approach is to

explore the application’s data flow graph and discover pattern candidates that can

potentially improve performance if implemented in hardware. However, due to the

NP-hardness of pattern enumeration problem, most proposed systems use heuristic

methods to grow patterns from random seed nodes in the DFG. Moreover, the

problem of application to custom instruction set mapping is avoided in most

previous works. In this work, we propose an automated system that generates all

valid patterns and performs the optimal application mapping.

In chapter 2 we introduced the trace collection and DFG construction methods. In

chapter 3, Pan’s improved full pattern enumeration method and its limitations are

discussed. In chapter 4, we presented the pattern representation format and

 112

canonical labeling using the Nauty graph library. A greedy algorithm is proposed

to select the final set of custom instructions from a large candidate pool. The core

of the greedy algorithm is the maximal speedup potential calculation of each

pattern. We use the maximal speedup potential as a priority function that guides

the greedy algorithm. In chapter 5, application mapping is discussed. We proposed

a modified version of Ullmann’s graph isomorphism algorithm to perform

application matching. Finally, optimal code generation is achieved using a

branch-and-bound algorithm that minimizes the total execution cycles. In chapter

6, experiment results are presented. We use MiBench to study the effects of

input-output constraints, custom instruction set size and cross-application

compilation. In addition, a case study on real applications, i.e. H.264/AVC is

performed and results are presented. Experiments show that our system is able to

identify the critical patterns and almost all applications can benefit from custom

instruction and the speedup ratios are in the range 15%-70%.

We note the limitations of the current systems as follows:

 The pattern selection phase is sub-optimal. However, we believe no practical

solution exists for exact optimal pattern selection.

 For difficult DFGs (please refer to chapter 2), the runtime of pattern

enumeration phase may be impractical. We propose two possible

improvements to get around this problem in future works:

 Implement an efficient but not necessarily optimal method that identifies

 113

isomorphic nodes in a pattern. As mentioned before, difficult DFGs

usually posses high degree of regularity. If we can partition the nodes into

equivalent groups, the complexity of enumeration can be greatly reduced.

 A heuristic pattern generation algorithm, similar to those in

[Nathan][Sun], should be built into the system, in parallel with the

current full enumeration method. The system should be intelligent

enough to switch between these two modes depending on the difficulty of

the DFGs.

 Due to the time constraint, the application mapping algorithm has not been

ported to real compilers. Instead we performed all simulation within the

SimpleScalar framework. Nevertheless, the validity of the experiment results

presented in chapter 6 is not affected.

 114

Bibliography

[1] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific

instruction-set extensions under microarchitectural constraints,” In DAC, 2003.

[2] D. Burger and T. M. Austin, “The SimpleScaler Tool Set”, Version 2.0.

Computer Architecture News, page 13-15, June, 1997

[3] H. Choi et al. “Synthesis of application specific instructions for embedded

DSP software,” IEEE Transactions on Computers, 48(6):603-614, June 1999.

[4] N. Clark, H. Zhong, and S. Mahlke, “Processor Acceleration Through

Automated Instruction Set Customization,” International Symposium on

Microarchitecture (MICRO-36), pp. 129-140, December 2003.

[5] J. Cong , Y. Fan , G. Han , and Z. Zhang, “Application-specific instruction

generation for configurable processor architectures,” Proceeding of the 2004

ACM/SIGDA 12th international symposium on Field programmable gate arrays,

February 22-24, 2004, Monterey, California, USA.

 115

[6] L. Cordella et al, “Performance evaluation of the VF graph matching

algorithm,” in Proceedings of the 10th ICIAP, vol. 2, pp.1038-1041, IEEE

Computer Society Press, 1999.

[7] D. G. Corneil and C. C. Gotlieb, “An efficient algorithm for graph

isomorphism,” Journal of the ACM,17:51-64, 1970.

[8] O. Coudert and J-C. Madre, “New Ideas for Solving Covering Problems,” In

Proceedings of the 32nd Design Automation Conference, pages 641-646, June

1995.

[9] J. Fu, “Pattern Matching in Directed Graphs,” In Proc. 6th Annual Symposium

on Combinatorial Pattern Matching, volume 937 of Lecture Notes in Computer

Science, pages 64–77. Springer-Verlag, 1995.

[10] M. R. Garey and D. S. Johnson, Computers and intractability: A guide to

NP-completeness, Freeman, 1979.

[11] R. E. Gonzalez, “Xtensa: A Configurable and Extensible Processor,” IEEE

Micro, vol. 20(2), pp. 60-70, Mar. 2000.

 116

[12] A. Gupta and N. Nishimura, “Characterizing the complexity of subgraph

isomorphism for graphs of bounded path-width,” In Proc. 15th Annual Symposium

on Theoretical Aspects of Computer Science, volume 1046 of Lecture Notes in

Computer Science, pages 453-464. Springer-Verlag, 1997.

[13] M. R. Guthausch et al, “Mibench: A free, commercially representative

embedded benchmark suite,” In IEEE 4th Annual Workshop on Workload

Characterization, 2001. http://www.eecs.umich.edu/mibench/.

[14] L. J. Huang, and A. M. Despain, “Synthesis of Instruction Sets for Pipelined

Microprocessors,” 31st Design Automation Conference, pp.5-11, 1994.

[15] “Information technology - Coding of audio-visual objects - Part 10:

Advanced video coding,” Final Draft International Standard, ISO/IEC FDIS

14496-10, Dec. 2003.

[16] J. Katzenelson, S. S. Pinter, and E. Schenfeld, “Type matching, type-graphs,

and the Schanuel conjecture,” ACM Transactions on Programming Languages

and Systems, 14(4):574-588, Oct. 1992.

 117

[17] S. Liao, S. Devadas, K. Keutzer, and S. Tjiang, “Instruction Selection Using

Binate Covering for Code Size Optimization,” In Proceedings of International

Conference on Computer Aided Design, pp. 393-399, Nov. 1995.

[18] A. Lingas, “Subgraph isomorphism for biconnected outerplanar graphs in

cubic time,” Theoretical Computer Science, 63:295-302, 1989.

[19] A. Lingas and M. M. Syslo, “A polynomial-time algorithm for subgraph

isomorphism of two-connected series-parallel graphs,” In Proc. 15th Int.

Colloquium on Automata, Languages, and Programming, Lecture Notes in

Computer Science, pages 394{409. Springer-Verlag, 1988.

[20] B. D. McKay, “Practical Graph Isomorphism,” Congressus Numerantium,

vol 30, pp. 45-87, 1981

[21] K. Mehlhorn, S. Näher, “LEDA: a platform for combinatorial and geometric

computing,” Communications of the ACM, v.38 n.1, p.96-102, Jan. 1995

[22] B. T. Messmer, H. Bunke, “A decision tree approach to graph and subgraph

isomorphism detection,” Pattern Recognition, vol. 32, pp. 1979-1998, 1999.

 118

[23] MIPS Technologies, “MIPS R10000 Microprocessor User’s Manual, Version

2.0,” MIPS Technologies, 1996.

[24] Katta G. Murty, Operations research: deterministic optimization models,

Prentice-Hall, Inc., Upper Saddle River, NJ, 1994

[25] R. L. Rudell, “Logic Synthesis for VLSI Design,” Ph.D. Thesis,

U.C.Berkeley , ERL Memo 89/49, 1989.

[26] F. Sun , S. Ravi , A. Raghunathan , and N. K. Jha, “Synthesis of custom

processors based on extensible platforms,” In Proceedings of the 2002 IEEE/ACM

international conference on Computer-aided design, p.641-648, November 10-14,

2002, San Jose, California.

[27] J.R. Ullmann, “An algorithm for subgraph isomorphism,” Journal of the

ACM, 23(1):31-42, 1976.

[28] J. Valdes, R. E. Tarjan, E. L. Lawler, “The Recognition of Series Parallel

Digraphs,” SIAM J. Comput. 11(2): 298-313, 1982

 119

[29] P. Yu , T. Mitra, “Scalable custom instructions identification for

instruction-set extensible processors,” Proc. of the 2004 international conference

on Compilers, architecture, and synthesis for embedded systems, September 22-25,

2004, Washington DC, USA

[30] P. Yu , T. Mitra, “Characterization of Embedded Applications for

Instruction-Set Extensible Processors,” 41st ACM/IEEE Design Automation

Conference (DAC), June 2004.

[31] Nauty Package, http://cs.anu.edu.au/people/bdm/nauty.

 120

Appendix

Appendix A

** Text symbols sorted by address:
sym `WriteAnnexbNALU': text seg, init-y, pub-y, local-n, addr=0x004001f0, size=1024
sym `OpenAnnexbFile': text seg, init-y, pub-y, local-n, addr=0x004005f0, size=144
sym `CloseAnnexbFile': text seg, init-y, pub-y, local-n, addr=0x00400680, size=112
sym `arienco_create_encoding_environment': text seg, init-y, pub-y, local-n, addr=0x004006f0,
size=128
sym `arienco_delete_encoding_environment': text seg, init-y, pub-y, local-n, addr=0x00400770,
size=160
sym `arienco_start_encoding': text seg, init-y, pub-y, local-n, addr=0x00400810, size=112
sym `arienco_bits_written': text seg, init-y, pub-y, local-n, addr=0x00400880, size=72
sym `arienco_done_encoding': text seg, init-y, pub-y, local-n, addr=0x004008c8, size=1608
sym `biari_encode_symbol': text seg, init-y, pub-y, local-n, addr=0x00400f10, size=1528
sym `biari_encode_symbol_eq_prob': text seg, init-y, pub-y, local-n, addr=0x00401508, size=1208
sym `biari_encode_symbol_final': text seg, init-y, pub-y, local-n, addr=0x004019c0, size=1240
sym `biari_init_context': text seg, init-y, pub-y, local-n, addr=0x00401e98, size=248
sym `intrapred_luma': text seg, init-y, pub-y, local-n, addr=0x00401f90, size=7224
sym `intrapred_luma_16x16': text seg, init-y, pub-y, local-n, addr=0x00403bc8, size=2664
sym `dct_luma_16x16': text seg, init-y, pub-y, local-n, addr=0x00404630, size=7696
sym `dct_luma': text seg, init-y, pub-y, local-n, addr=0x00406440, size=4248
sym `dct_chroma': text seg, init-y, pub-y, local-n, addr=0x004074d8, size=6648
sym `dct_luma_sp': text seg, init-y, pub-y, local-n, addr=0x00408ed0, size=6984
sym `dct_chroma_sp': text seg, init-y, pub-y, local-n, addr=0x0040aa18, size=11760
sym `copyblock_sp': text seg, init-y, pub-y, local-n, addr=0x0040d808, size=3176
sym `cabac_new_slice': text seg, init-y, pub-y, local-n, addr=0x0040e470, size=16
sym `CheckAvailabilityOfNeighborsCABAC': text seg, init-y, pub-y, local-n, addr=0x0040e480,
size=472
sym `create_contexts_MotionInfo': text seg, init-y, pub-y, local-n, addr=0x0040e658, size=128
sym `create_contexts_TextureInfo': text seg, init-y, pub-y, local-n, addr=0x0040e6d8, size=128
sym `delete_contexts_MotionInfo': text seg, init-y, pub-y, local-n, addr=0x0040e758, size=56
sym `delete_contexts_TextureInfo': text seg, init-y, pub-y, local-n, addr=0x0040e790, size=56
sym `writeSyntaxElement_CABAC': text seg, init-y, pub-y, local-n, addr=0x0040e7c8, size=256
sym `writeFieldModeInfo_CABAC': text seg, init-y, pub-y, local-n, addr=0x0040e8c8, size=488
sym `writeMB_skip_flagInfo_CABAC': text seg, init-y, pub-y, local-n, addr=0x0040eab0,
size=728
sym `writeMB_typeInfo_CABAC': text seg, init-y, pub-y, local-n, addr=0x0040ed88, size=3816
sym `writeB8_typeInfo_CABAC': text seg, init-y, pub-y, local-n, addr=0x0040fc70, size=1352
sym `writeIntraPredMode_CABAC': text seg, init-y, pub-y, local-n, addr=0x004101b8, size=360
sym `writeRefFrame_CABAC': text seg, init-y, pub-y, local-n, addr=0x00410320, size=1960
sym `writeDquant_CABAC': text seg, init-y, pub-y, local-n, addr=0x00410ac8, size=440

 121

sym `writeMVD_CABAC': text seg, init-y, pub-y, local-n, addr=0x00410c80, size=1720
sym `writeCIPredMode_CABAC': text seg, init-y, pub-y, local-n, addr=0x00411338, size=464
sym `writeCBP_BIT_CABAC': text seg, init-y, pub-y, local-n, addr=0x00411508, size=648
sym `writeCBP_CABAC': text seg, init-y, pub-y, local-n, addr=0x00411790, size=984
sym `write_and_store_CBP_block_bit': text seg, init-y, pub-y, local-n, addr=0x00411b68,
size=2504
sym `write_significance_map': text seg, init-y, pub-y, local-n, addr=0x00412530, size=1224
sym `write_significant_coefficients': text seg, init-y, pub-y, local-n, addr=0x004129f8, size=800
sym `writeRunLevel_CABAC': text seg, init-y, pub-y, local-n, addr=0x00412d18, size=704
sym `unary_bin_encode': text seg, init-y, pub-y, local-n, addr=0x00412fd8, size=304
sym `unary_bin_max_encode': text seg, init-y, pub-y, local-n, addr=0x00413108, size=360
sym `exp_golomb_encode_eq_prob': text seg, init-y, pub-y, local-n, addr=0x00413270, size=328
sym `unary_exp_golomb_level_encode': text seg, init-y, pub-y, local-n, addr=0x004133b8,
size=416
sym `unary_exp_golomb_mv_encode': text seg, init-y, pub-y, local-n, addr=0x00413558, size=536
sym `JMHelpExit': text seg, init-y, pub-y, local-n, addr=0x00413770, size=88
sym `Configure': text seg, init-y, pub-y, local-n, addr=0x004137c8, size=4376
sym `CeilLog2': text seg, init-y, pub-y, local-n, addr=0x004148e0, size=7576
sym `PatchInputNoFrames': text seg, init-y, pub-y, local-n, addr=0x00416678, size=1720
sym `create_context_memory': text seg, init-y, pub-y, local-n, addr=0x00416d30, size=1424
sym `free_context_memory': text seg, init-y, pub-y, local-n, addr=0x004172c0, size=384
sym `SetCtxModelNumber': text seg, init-y, pub-y, local-n, addr=0x00417440, size=512
sym `init_contexts': text seg, init-y, pub-y, local-n, addr=0x00417640, size=5560
sym `XRate': text seg, init-y, pub-y, local-n, addr=0x00418bf8, size=640
sym `GetCtxModelNumber': text seg, init-y, pub-y, local-n, addr=0x00418e78, size=5288
sym `store_contexts': text seg, init-y, pub-y, local-n, addr=0x0041a320, size=368
sym `update_field_frame_contexts': text seg, init-y, pub-y, local-n, addr=0x0041a490, size=640
sym `decode_one_b8block': text seg, init-y, pub-y, local-n, addr=0x0041a710, size=3312
sym `decode_one_mb': text seg, init-y, pub-y, local-n, addr=0x0041b400, size=8
sym `Get_Reference_Block': text seg, init-y, pub-y, local-n, addr=0x0041b408, size=376
sym `Get_Reference_Pixel': text seg, init-y, pub-y, local-n, addr=0x0041b580, size=5008
sym `UpdateDecoders': text seg, init-y, pub-y, local-n, addr=0x0041c910, size=312
sym `DecOneForthPix': text seg, init-y, pub-y, local-n, addr=0x0041ca48, size=376
sym `compute_residue_b8block': text seg, init-y, pub-y, local-n, addr=0x0041cbc0, size=752
sym `compute_residue_mb': text seg, init-y, pub-y, local-n, addr=0x0041ceb0, size=160
sym `Build_Status_Map': text seg, init-y, pub-y, local-n, addr=0x0041cf50, size=976
sym `Error_Concealment': text seg, init-y, pub-y, local-n, addr=0x0041d320, size=464
sym `Conceal_Error': text seg, init-y, pub-y, local-n, addr=0x0041d4f0, size=4160
sym `DefineThreshold': text seg, init-y, pub-y, local-n, addr=0x0041e530, size=352
sym `DefineThresholdMB': text seg, init-y, pub-y, local-n, addr=0x0041e690, size=752
sym `get_mem_mincost': text seg, init-y, pub-y, local-n, addr=0x0041e980, size=1288
sym `get_mem_bwmincost': text seg, init-y, pub-y, local-n, addr=0x0041ee88, size=1288
sym `get_mem_FME': text seg, init-y, pub-y, local-n, addr=0x0041f390, size=208
sym `free_mem_mincost': text seg, init-y, pub-y, local-n, addr=0x0041f460, size=736

 122

sym `free_mem_bwmincost': text seg, init-y, pub-y, local-n, addr=0x0041f740, size=736
sym `free_mem_FME': text seg, init-y, pub-y, local-n, addr=0x0041fa20, size=104
sym `PartCalMad': text seg, init-y, pub-y, local-n, addr=0x0041fa88, size=896
sym `FastIntegerPelBlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x0041fe08,
size=14056
sym `AddUpSADQuarter': text seg, init-y, pub-y, local-n, addr=0x004234f0, size=2576
sym `FastSubPelBlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x00423f00, size=3104
sym `decide_intrabk_SAD': text seg, init-y, pub-y, local-n, addr=0x00424b20, size=336
sym `skip_intrabk_SAD': text seg, init-y, pub-y, local-n, addr=0x00424c70, size=464
sym `error': text seg, init-y, pub-y, local-n, addr=0x00424e40, size=120
sym `start_sequence': text seg, init-y, pub-y, local-n, addr=0x00424eb8, size=488
sym `terminate_sequence': text seg, init-y, pub-y, local-n, addr=0x004250a0, size=1760
sym `FmoInit': text seg, init-y, pub-y, local-n, addr=0x00425780, size=200
sym `FmoUninit': text seg, init-y, pub-y, local-n, addr=0x00425848, size=2840
sym `FmoStartPicture': text seg, init-y, pub-y, local-n, addr=0x00426360, size=240
sym `FmoEndPicture': text seg, init-y, pub-y, local-n, addr=0x00426450, size=16
sym `FmoMB2SliceGroup': text seg, init-y, pub-y, local-n, addr=0x00426460, size=288
sym `FmoGetNextMBNr': text seg, init-y, pub-y, local-n, addr=0x00426580, size=272
sym `FmoGetPreviousMBNr': text seg, init-y, pub-y, local-n, addr=0x00426690, size=184
sym `FmoGetFirstMBOfSliceGroup': text seg, init-y, pub-y, local-n, addr=0x00426748, size=288
sym `FmoGetLastCodedMBOfSliceGroup': text seg, init-y, pub-y, local-n, addr=0x00426868,
size=264
sym `FmoSetLastMacroblockInSlice': text seg, init-y, pub-y, local-n, addr=0x00426970, size=208
sym `FmoGetFirstMacroblockInSlice': text seg, init-y, pub-y, local-n, addr=0x00426a40, size=40
sym `FmoSliceGroupCompletelyCoded': text seg, init-y, pub-y, local-n, addr=0x00426a68,
size=88
sym `SliceHeader': text seg, init-y, pub-y, local-n, addr=0x00426ac0, size=7952
sym `get_picture_type': text seg, init-y, pub-y, local-n, addr=0x004289d0, size=248
sym `Partition_BC_Header': text seg, init-y, pub-y, local-n, addr=0x00428ac8, size=600
sym `MbAffPostProc': text seg, init-y, pub-y, local-n, addr=0x00428d20, size=1320
sym `code_a_picture': text seg, init-y, pub-y, local-n, addr=0x00429248, size=1808
sym `encode_one_frame': text seg, init-y, pub-y, local-n, addr=0x00429958, size=4160
sym `frame_picture': text seg, init-y, pub-y, local-n, addr=0x0042a998, size=624
sym `field_picture': text seg, init-y, pub-y, local-n, addr=0x0042ac08, size=8344
sym `UnifiedOneForthPix': text seg, init-y, pub-y, local-n, addr=0x0042cca0, size=11816
sym `dummy_slice_too_big': text seg, init-y, pub-y, local-n, addr=0x0042fac8, size=16
sym `copy_rdopt_data': text seg, init-y, pub-y, local-n, addr=0x0042fad8, size=16968
sym `RandomIntraInit': text seg, init-y, pub-y, local-n, addr=0x00433d20, size=624
sym `RandomIntra': text seg, init-y, pub-y, local-n, addr=0x00433f90, size=136
sym `RandomIntraNewPicture': text seg, init-y, pub-y, local-n, addr=0x00434018, size=256
sym `RandomIntraUninit': text seg, init-y, pub-y, local-n, addr=0x00434118, size=72
sym `get_LeakyBucketRate': text seg, init-y, pub-y, local-n, addr=0x00434160, size=416
sym `PutBigDoubleWord': text seg, init-y, pub-y, local-n, addr=0x00434300, size=192
sym `write_buffer': text seg, init-y, pub-y, local-n, addr=0x004343c0, size=624

 123

sym `Sort': text seg, init-y, pub-y, local-n, addr=0x00434630, size=224
sym `calc_buffer': text seg, init-y, pub-y, local-n, addr=0x00434710, size=1968
sym `main': text seg, init-y, pub-y, local-n, addr=0x00434ec0, size=4792
sym `report_stats_on_error': text seg, init-y, pub-y, local-n, addr=0x00436178, size=344
sym `init_poc': text seg, init-y, pub-y, local-n, addr=0x004362d0, size=440
sym `CAVLC_init': text seg, init-y, pub-y, local-n, addr=0x00436488, size=272
sym `init_img': text seg, init-y, pub-y, local-n, addr=0x00436598, size=2512
sym `free_img': text seg, init-y, pub-y, local-n, addr=0x00436f68, size=224
sym `malloc_picture': text seg, init-y, pub-y, local-n, addr=0x00437048, size=128
sym `free_picture': text seg, init-y, pub-y, local-n, addr=0x004370c8, size=96
sym `report': text seg, init-y, pub-y, local-n, addr=0x00437128, size=15640
sym `information_init': text seg, init-y, pub-y, local-n, addr=0x0043ae40, size=328
sym `init_global_buffers': text seg, init-y, pub-y, local-n, addr=0x0043af88, size=2224
sym `free_global_buffers': text seg, init-y, pub-y, local-n, addr=0x0043b838, size=1704
sym `get_mem_mv': text seg, init-y, pub-y, local-n, addr=0x0043bee0, size=1264
sym `free_mem_mv': text seg, init-y, pub-y, local-n, addr=0x0043c3d0, size=792
sym `get_mem_ACcoeff': text seg, init-y, pub-y, local-n, addr=0x0043c6e8, size=688
sym `get_mem_DCcoeff': text seg, init-y, pub-y, local-n, addr=0x0043c998, size=472
sym `free_mem_ACcoeff': text seg, init-y, pub-y, local-n, addr=0x0043cb70, size=408
sym `free_mem_DCcoeff': text seg, init-y, pub-y, local-n, addr=0x0043cd08, size=256
sym `combine_field': text seg, init-y, pub-y, local-n, addr=0x0043ce08, size=888
sym `decide_fld_frame': text seg, init-y, pub-y, local-n, addr=0x0043d180, size=208
sym `process_2nd_IGOP': text seg, init-y, pub-y, local-n, addr=0x0043d250, size=248
sym `SetImgType': text seg, init-y, pub-y, local-n, addr=0x0043d348, size=344
sym `DeblockFrame': text seg, init-y, pub-y, local-n, addr=0x0043d4a0, size=264
sym `DeblockMb': text seg, init-y, pub-y, local-n, addr=0x0043d5a8, size=1968
sym `GetStrength': text seg, init-y, pub-y, local-n, addr=0x0043dd58, size=3896
sym `EdgeLoop': text seg, init-y, pub-y, local-n, addr=0x0043ec90, size=3600
sym `set_MB_parameters': text seg, init-y, pub-y, local-n, addr=0x0043faa0, size=664
sym `clip1a': text seg, init-y, pub-y, local-n, addr=0x0043fd38, size=64
sym `proceed2nextMacroblock': text seg, init-y, pub-y, local-n, addr=0x0043fd78, size=656
sym `start_macroblock': text seg, init-y, pub-y, local-n, addr=0x00440008, size=4600
sym `terminate_macroblock': text seg, init-y, pub-y, local-n, addr=0x00441200, size=3048
sym `slice_too_big': text seg, init-y, pub-y, local-n, addr=0x00441de8, size=512
sym `OneComponentLumaPrediction4x4': text seg, init-y, pub-y, local-n, addr=0x00441fe8,
size=1520
sym `copyblock4x4': text seg, init-y, pub-y, local-n, addr=0x004425d8, size=376
sym `LumaPrediction4x4': text seg, init-y, pub-y, local-n, addr=0x00442750, size=3032
sym `LumaResidualCoding8x8': text seg, init-y, pub-y, local-n, addr=0x00443328, size=1944
sym `SetModesAndRefframe': text seg, init-y, pub-y, local-n, addr=0x00443ac0, size=896
sym `LumaResidualCoding': text seg, init-y, pub-y, local-n, addr=0x00443e40, size=904
sym `OneComponentChromaPrediction4x4': text seg, init-y, pub-y, local-n, addr=0x004441c8,
size=1648
sym `IntraChromaPrediction4x4': text seg, init-y, pub-y, local-n, addr=0x00444838, size=360

 124

sym `ChromaPrediction4x4': text seg, init-y, pub-y, local-n, addr=0x004449a0, size=2688
sym `ChromaResidualCoding': text seg, init-y, pub-y, local-n, addr=0x00445420, size=1928
sym `IntraChromaPrediction8x8': text seg, init-y, pub-y, local-n, addr=0x00445ba8, size=5456
sym `ZeroRef': text seg, init-y, pub-y, local-n, addr=0x004470f8, size=216
sym `MBType2Value': text seg, init-y, pub-y, local-n, addr=0x004471d0, size=720
sym `writeIntra4x4Modes': text seg, init-y, pub-y, local-n, addr=0x004474a0, size=1168
sym `B8Mode2Value': text seg, init-y, pub-y, local-n, addr=0x00447930, size=136
sym `writeMBHeader': text seg, init-y, pub-y, local-n, addr=0x004479b8, size=3984
sym `write_terminating_bit': text seg, init-y, pub-y, local-n, addr=0x00448948, size=216
sym `writeChromaIntraPredMode': text seg, init-y, pub-y, local-n, addr=0x00448a20, size=560
sym `set_last_dquant': text seg, init-y, pub-y, local-n, addr=0x00448c50, size=192
sym `write_one_macroblock': text seg, init-y, pub-y, local-n, addr=0x00448d10, size=1272
sym `BType2CtxRef': text seg, init-y, pub-y, local-n, addr=0x00449208, size=40
sym `writeReferenceFrame': text seg, init-y, pub-y, local-n, addr=0x00449230, size=1048
sym `writeMotionVector8x8': text seg, init-y, pub-y, local-n, addr=0x00449648, size=1720
sym `writeMotionInfo2NAL': text seg, init-y, pub-y, local-n, addr=0x00449d00, size=1960
sym `writeChromaCoeff': text seg, init-y, pub-y, local-n, addr=0x0044a4a8, size=2608
sym `writeLumaCoeff4x4_CABAC': text seg, init-y, pub-y, local-n, addr=0x0044aed8, size=1168
sym `writeLumaCoeff8x8': text seg, init-y, pub-y, local-n, addr=0x0044b368, size=280
sym `writeCBPandLumaCoeff': text seg, init-y, pub-y, local-n, addr=0x0044b480, size=3544
sym `predict_nnz': text seg, init-y, pub-y, local-n, addr=0x0044c258, size=696
sym `predict_nnz_chroma': text seg, init-y, pub-y, local-n, addr=0x0044c510, size=760
sym `writeCoeff4x4_CAVLC': text seg, init-y, pub-y, local-n, addr=0x0044c808, size=4544
sym `find_sad_16x16': text seg, init-y, pub-y, local-n, addr=0x0044d9c8, size=3208
sym `mb_is_available': text seg, init-y, pub-y, local-n, addr=0x0044e650, size=272
sym `CheckAvailabilityOfNeighbors': text seg, init-y, pub-y, local-n, addr=0x0044e760,
size=1560
sym `get_mb_block_pos': text seg, init-y, pub-y, local-n, addr=0x0044ed78, size=336
sym `get_mb_pos': text seg, init-y, pub-y, local-n, addr=0x0044eec8, size=144
sym `getNonAffNeighbour': text seg, init-y, pub-y, local-n, addr=0x0044ef58, size=960
sym `getAffNeighbour': text seg, init-y, pub-y, local-n, addr=0x0044f318, size=3016
sym `getNeighbour': text seg, init-y, pub-y, local-n, addr=0x0044fee0, size=344
sym `getLuma4x4Neighbour': text seg, init-y, pub-y, local-n, addr=0x00450038, size=304
sym `getChroma4x4Neighbour': text seg, init-y, pub-y, local-n, addr=0x00450168, size=312
sym `dump_dpb': text seg, init-y, pub-y, local-n, addr=0x004502a0, size=24
sym `getDpbSize': text seg, init-y, pub-y, local-n, addr=0x004502b8, size=640
sym `init_dpb': text seg, init-y, pub-y, local-n, addr=0x00450538, size=1056
sym `free_dpb': text seg, init-y, pub-y, local-n, addr=0x00450958, size=448
sym `alloc_frame_store': text seg, init-y, pub-y, local-n, addr=0x00450b18, size=192
sym `alloc_storable_picture': text seg, init-y, pub-y, local-n, addr=0x00450bd8, size=920
sym `free_frame_store': text seg, init-y, pub-y, local-n, addr=0x00450f70, size=184
sym `free_storable_picture': text seg, init-y, pub-y, local-n, addr=0x00451028, size=1888
sym `is_short_ref': text seg, init-y, pub-y, local-n, addr=0x00451788, size=64
sym `is_long_ref': text seg, init-y, pub-y, local-n, addr=0x004517c8, size=1312

 125

sym `init_lists': text seg, init-y, pub-y, local-n, addr=0x00451ce8, size=7136
sym `init_mbaff_lists': text seg, init-y, pub-y, local-n, addr=0x004538c8, size=2680
sym `reorder_ref_pic_list': text seg, init-y, pub-y, local-n, addr=0x00454340, size=792
sym `update_ref_list': text seg, init-y, pub-y, local-n, addr=0x00454658, size=440
sym `update_ltref_list': text seg, init-y, pub-y, local-n, addr=0x00454810, size=6504
sym `mm_update_max_long_term_frame_idx': text seg, init-y, pub-y, local-n, addr=0x00456178,
size=1776
sym `store_picture_in_dpb': text seg, init-y, pub-y, local-n, addr=0x00456868, size=1528
sym `replace_top_pic_with_frame': text seg, init-y, pub-y, local-n, addr=0x00456e60, size=3992
sym `flush_dpb': text seg, init-y, pub-y, local-n, addr=0x00457df8, size=272
sym `gen_field_ref_ids': text seg, init-y, pub-y, local-n, addr=0x00457f08, size=552
sym `dpb_split_field': text seg, init-y, pub-y, local-n, addr=0x00458130, size=10608
sym `dpb_combine_field': text seg, init-y, pub-y, local-n, addr=0x0045aaa0, size=5712
sym `alloc_ref_pic_list_reordering_buffer': text seg, init-y, pub-y, local-n, addr=0x0045c0f0,
size=672
sym `free_ref_pic_list_reordering_buffer': text seg, init-y, pub-y, local-n, addr=0x0045c390,
size=256
sym `fill_frame_num_gap': text seg, init-y, pub-y, local-n, addr=0x0045c490, size=592
sym `alloc_colocated': text seg, init-y, pub-y, local-n, addr=0x0045c6e0, size=864
sym `free_collocated': text seg, init-y, pub-y, local-n, addr=0x0045ca40, size=544
sym `compute_collocated': text seg, init-y, pub-y, local-n, addr=0x0045cc60, size=17456
sym `get_mem2D': text seg, init-y, pub-y, local-n, addr=0x00461090, size=368
sym `get_mem2Dint': text seg, init-y, pub-y, local-n, addr=0x00461200, size=384
sym `get_mem2Dint64': text seg, init-y, pub-y, local-n, addr=0x00461380, size=384
sym `get_mem3D': text seg, init-y, pub-y, local-n, addr=0x00461500, size=336
sym `get_mem3Dint': text seg, init-y, pub-y, local-n, addr=0x00461650, size=344
sym `get_mem3Dint64': text seg, init-y, pub-y, local-n, addr=0x004617a8, size=344
sym `get_mem4Dint': text seg, init-y, pub-y, local-n, addr=0x00461900, size=392
sym `free_mem2D': text seg, init-y, pub-y, local-n, addr=0x00461a88, size=192
sym `free_mem2Dint': text seg, init-y, pub-y, local-n, addr=0x00461b48, size=192
sym `free_mem2Dint64': text seg, init-y, pub-y, local-n, addr=0x00461c08, size=192
sym `free_mem3D': text seg, init-y, pub-y, local-n, addr=0x00461cc8, size=256
sym `free_mem3Dint': text seg, init-y, pub-y, local-n, addr=0x00461dc8, size=256
sym `free_mem3Dint64': text seg, init-y, pub-y, local-n, addr=0x00461ec8, size=256
sym `free_mem4Dint': text seg, init-y, pub-y, local-n, addr=0x00461fc8, size=288
sym `no_mem_exit': text seg, init-y, pub-y, local-n, addr=0x004620e8, size=152
sym `InitializeFastFullIntegerSearch': text seg, init-y, pub-y, local-n, addr=0x00462180, size=2272
sym `ClearFastFullIntegerSearch': text seg, init-y, pub-y, local-n, addr=0x00462a60, size=968
sym `ResetFastFullIntegerSearch': text seg, init-y, pub-y, local-n, addr=0x00462e28, size=160
sym `SetupLargerBlocks': text seg, init-y, pub-y, local-n, addr=0x00462ec8, size=4424
sym `SetupFastFullPelSearch': text seg, init-y, pub-y, local-n, addr=0x00464010, size=4128
sym `SetMotionVectorPredictor': text seg, init-y, pub-y, local-n, addr=0x00465030, size=6392
sym `Init_Motion_Search_Module': text seg, init-y, pub-y, local-n, addr=0x00466928, size=2064
sym `Clear_Motion_Search_Module': text seg, init-y, pub-y, local-n, addr=0x00467138, size=248

 126

sym `FullPelBlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x00467230, size=2176
sym `FastFullPelBlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x00467ab0,
size=1320
sym `SATD': text seg, init-y, pub-y, local-n, addr=0x00467fd8, size=2280
sym `SubPelBlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x004688c0, size=6896
sym `BlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x0046a3b0, size=13056
sym `BIDPartitionCost': text seg, init-y, pub-y, local-n, addr=0x0046d6b0, size=2136
sym `GetSkipCostMB': text seg, init-y, pub-y, local-n, addr=0x0046df08, size=632
sym `FindSkipModeMotionVector': text seg, init-y, pub-y, local-n, addr=0x0046e180, size=2064
sym `Get_Direct_Cost8x8': text seg, init-y, pub-y, local-n, addr=0x0046e990, size=968
sym `Get_Direct_CostMB': text seg, init-y, pub-y, local-n, addr=0x0046ed58, size=208
sym `PartitionMotionSearch': text seg, init-y, pub-y, local-n, addr=0x0046ee28, size=2672
sym `Get_Direct_Motion_Vectors': text seg, init-y, pub-y, local-n, addr=0x0046f898, size=10240
sym `sign': text seg, init-y, pub-y, local-n, addr=0x00472098, size=56
sym `SODBtoRBSP': text seg, init-y, pub-y, local-n, addr=0x004720d0, size=168
sym `RBSPtoEBSP': text seg, init-y, pub-y, local-n, addr=0x00472178, size=544
sym `AllocNalPayloadBuffer': text seg, init-y, pub-y, local-n, addr=0x00472398, size=216
sym `FreeNalPayloadBuffer': text seg, init-y, pub-y, local-n, addr=0x00472470, size=80
sym `RBSPtoNALU': text seg, init-y, pub-y, local-n, addr=0x004724c0, size=752
sym `AllocNALU': text seg, init-y, pub-y, local-n, addr=0x004727b0, size=224
sym `FreeNALU': text seg, init-y, pub-y, local-n, addr=0x00472890, size=128
sym `write_picture': text seg, init-y, pub-y, local-n, addr=0x00472910, size=704
sym `init_out_buffer': text seg, init-y, pub-y, local-n, addr=0x00472bd0, size=56
sym `uninit_out_buffer': text seg, init-y, pub-y, local-n, addr=0x00472c08, size=64
sym `clear_picture': text seg, init-y, pub-y, local-n, addr=0x00472c48, size=432
sym `write_unpaired_field': text seg, init-y, pub-y, local-n, addr=0x00472df8, size=496
sym `flush_direct_output': text seg, init-y, pub-y, local-n, addr=0x00472fe8, size=176
sym `write_stored_frame': text seg, init-y, pub-y, local-n, addr=0x00473098, size=200
sym `direct_output': text seg, init-y, pub-y, local-n, addr=0x00473160, size=576
sym `GenerateParameterSets': text seg, init-y, pub-y, local-n, addr=0x004733a0, size=144
sym `FreeParameterSets': text seg, init-y, pub-y, local-n, addr=0x00473430, size=72
sym `GenerateSeq_parameter_set_NALU': text seg, init-y, pub-y, local-n, addr=0x00473478,
size=240
sym `GeneratePic_parameter_set_NALU': text seg, init-y, pub-y, local-n, addr=0x00473568,
size=240
sym `FillParameterSetStructures': text seg, init-y, pub-y, local-n, addr=0x00473658, size=2136
sym `GenerateSeq_parameter_set_rbsp': text seg, init-y, pub-y, local-n, addr=0x00473eb0,
size=1736
sym `GeneratePic_parameter_set_rbsp': text seg, init-y, pub-y, local-n, addr=0x00474578,
size=2072
sym `AllocPPS': text seg, init-y, pub-y, local-n, addr=0x00474d90, size=200
sym `AllocSPS': text seg, init-y, pub-y, local-n, addr=0x00474e58, size=128
sym `FreePPS': text seg, init-y, pub-y, local-n, addr=0x00474ed8, size=168
sym `FreeSPS': text seg, init-y, pub-y, local-n, addr=0x00474f80, size=144

 127

sym `rc_init_seq': text seg, init-y, pub-y, local-n, addr=0x00475010, size=1512
sym `rc_init_GOP': text seg, init-y, pub-y, local-n, addr=0x004755f8, size=1176
sym `rc_init_pict': text seg, init-y, pub-y, local-n, addr=0x00475a90, size=3952
sym `calc_MAD': text seg, init-y, pub-y, local-n, addr=0x00476a00, size=216
sym `rc_update_pict': text seg, init-y, pub-y, local-n, addr=0x00476ad8, size=224
sym `rc_update_pict_frame': text seg, init-y, pub-y, local-n, addr=0x00476bb8, size=816
sym `setbitscount': text seg, init-y, pub-y, local-n, addr=0x00476ee8, size=16
sym `updateQuantizationParameter': text seg, init-y, pub-y, local-n, addr=0x00476ef8, size=9352
sym `updateRCModel': text seg, init-y, pub-y, local-n, addr=0x00479380, size=2616
sym `RCModelEstimator': text seg, init-y, pub-y, local-n, addr=0x00479db8, size=1232
sym `ComputeFrameMAD': text seg, init-y, pub-y, local-n, addr=0x0047a288, size=296
sym `updateMADModel': text seg, init-y, pub-y, local-n, addr=0x0047a3b0, size=1640
sym `MADModelEstimator': text seg, init-y, pub-y, local-n, addr=0x0047aa18, size=1208
sym `QP2Qstep': text seg, init-y, pub-y, local-n, addr=0x0047aed0, size=248
sym `Qstep2QP': text seg, init-y, pub-y, local-n, addr=0x0047afc8, size=584
sym `clear_rdopt': text seg, init-y, pub-y, local-n, addr=0x0047b210, size=216
sym `init_rdopt': text seg, init-y, pub-y, local-n, addr=0x0047b2e8, size=248
sym `UpdatePixelMap': text seg, init-y, pub-y, local-n, addr=0x0047b3e0, size=864
sym `CheckReliabilityOfRef': text seg, init-y, pub-y, local-n, addr=0x0047b740, size=3520
sym `RDCost_for_4x4IntraBlocks': text seg, init-y, pub-y, local-n, addr=0x0047c500, size=1472
sym `Mode_Decision_for_4x4IntraBlocks': text seg, init-y, pub-y, local-n, addr=0x0047cac0,
size=4224
sym `Mode_Decision_for_8x8IntraBlocks': text seg, init-y, pub-y, local-n, addr=0x0047db40,
size=360
sym `Mode_Decision_for_Intra4x4Macroblock': text seg, init-y, pub-y, local-n, addr=0x0047dca8,
size=304
sym `RDCost_for_8x8blocks': text seg, init-y, pub-y, local-n, addr=0x0047ddd8, size=3728
sym `I16Offset': text seg, init-y, pub-y, local-n, addr=0x0047ec68, size=72
sym `SetModesAndRefframeForBlocks': text seg, init-y, pub-y, local-n, addr=0x0047ecb0,
size=4072
sym `Intra16x16_Mode_Decision': text seg, init-y, pub-y, local-n, addr=0x0047fc98, size=136
sym `SetCoeffAndReconstruction8x8': text seg, init-y, pub-y, local-n, addr=0x0047fd20,
size=1200
sym `SetMotionVectorsMB': text seg, init-y, pub-y, local-n, addr=0x004801d0, size=3288
sym `RDCost_for_macroblocks': text seg, init-y, pub-y, local-n, addr=0x00480ea8, size=3600
sym `store_macroblock_parameters': text seg, init-y, pub-y, local-n, addr=0x00481cb8, size=1808
sym `set_stored_macroblock_parameters': text seg, init-y, pub-y, local-n, addr=0x004823c8,
size=7392
sym `SetRefAndMotionVectors': text seg, init-y, pub-y, local-n, addr=0x004840a8, size=5160
sym `field_flag_inference': text seg, init-y, pub-y, local-n, addr=0x004854d0, size=208
sym `encode_one_macroblock': text seg, init-y, pub-y, local-n, addr=0x004855a0, size=29712
sym `set_mbaff_parameters': text seg, init-y, pub-y, local-n, addr=0x0048c9b0, size=2240
sym `delete_coding_state': text seg, init-y, pub-y, local-n, addr=0x0048d270, size=168
sym `create_coding_state': text seg, init-y, pub-y, local-n, addr=0x0048d318, size=432

 128

sym `store_coding_state': text seg, init-y, pub-y, local-n, addr=0x0048d4c8, size=1560
sym `reset_coding_state': text seg, init-y, pub-y, local-n, addr=0x0048dae0, size=1552
sym `PutPel_14': text seg, init-y, pub-y, local-n, addr=0x0048e0f0, size=48
sym `PutPel_11': text seg, init-y, pub-y, local-n, addr=0x0048e120, size=56
sym `FastLine16Y_11': text seg, init-y, pub-y, local-n, addr=0x0048e158, size=48
sym `UMVLine16Y_11': text seg, init-y, pub-y, local-n, addr=0x0048e188, size=656
sym `FastLineX': text seg, init-y, pub-y, local-n, addr=0x0048e418, size=48
sym `UMVLineX': text seg, init-y, pub-y, local-n, addr=0x0048e448, size=664
sym `UMVPelY_14': text seg, init-y, pub-y, local-n, addr=0x0048e6e0, size=536
sym `FastPelY_14': text seg, init-y, pub-y, local-n, addr=0x0048e8f8, size=56
sym `ComposeRTPPacket': text seg, init-y, pub-y, local-n, addr=0x0048e930, size=1272
sym `WriteRTPPacket': text seg, init-y, pub-y, local-n, addr=0x0048ee28, size=488
sym `WriteRTPNALU': text seg, init-y, pub-y, local-n, addr=0x0048f010, size=984
sym `RTPUpdateTimestamp': text seg, init-y, pub-y, local-n, addr=0x0048f3e8, size=160
sym `OpenRTPFile': text seg, init-y, pub-y, local-n, addr=0x0048f488, size=144
sym `CloseRTPFile': text seg, init-y, pub-y, local-n, addr=0x0048f518, size=56
sym `InitSEIMessages': text seg, init-y, pub-y, local-n, addr=0x0048f550, size=400
sym `CloseSEIMessages': text seg, init-y, pub-y, local-n, addr=0x0048f6e0, size=248
sym `HaveAggregationSEI': text seg, init-y, pub-y, local-n, addr=0x0048f7d8, size=248
sym `write_sei_message': text seg, init-y, pub-y, local-n, addr=0x0048f8d0, size=664
sym `finalize_sei_message': text seg, init-y, pub-y, local-n, addr=0x0048fb68, size=176
sym `clear_sei_message': text seg, init-y, pub-y, local-n, addr=0x0048fc18, size=160
sym `AppendTmpbits2Buf': text seg, init-y, pub-y, local-n, addr=0x0048fcb8, size=632
sym `InitSparePicture': text seg, init-y, pub-y, local-n, addr=0x0048ff30, size=488
sym `CloseSparePicture': text seg, init-y, pub-y, local-n, addr=0x00490118, size=200
sym `CalculateSparePicture': text seg, init-y, pub-y, local-n, addr=0x004901e0, size=8
sym `ComposeSparePictureMessage': text seg, init-y, pub-y, local-n, addr=0x004901e8, size=240
sym `CompressSpareMBMap': text seg, init-y, pub-y, local-n, addr=0x004902d8, size=1976
sym `FinalizeSpareMBMap': text seg, init-y, pub-y, local-n, addr=0x00490a90, size=872
sym `InitSubseqInfo': text seg, init-y, pub-y, local-n, addr=0x00490df8, size=504
sym `UpdateSubseqInfo': text seg, init-y, pub-y, local-n, addr=0x00490ff0, size=712
sym `FinalizeSubseqInfo': text seg, init-y, pub-y, local-n, addr=0x004912b8, size=656
sym `ClearSubseqInfoPayload': text seg, init-y, pub-y, local-n, addr=0x00491548, size=264
sym `CloseSubseqInfo': text seg, init-y, pub-y, local-n, addr=0x00491650, size=208
sym `InitSubseqLayerInfo': text seg, init-y, pub-y, local-n, addr=0x00491720, size=160
sym `CloseSubseqLayerInfo': text seg, init-y, pub-y, local-n, addr=0x004917c0, size=8
sym `FinalizeSubseqLayerInfo': text seg, init-y, pub-y, local-n, addr=0x004917c8, size=264
sym `InitSubseqChar': text seg, init-y, pub-y, local-n, addr=0x004918d0, size=456
sym `ClearSubseqCharPayload': text seg, init-y, pub-y, local-n, addr=0x00491a98, size=192
sym `UpdateSubseqChar': text seg, init-y, pub-y, local-n, addr=0x00491b58, size=328
sym `FinalizeSubseqChar': text seg, init-y, pub-y, local-n, addr=0x00491ca0, size=1040
sym `CloseSubseqChar': text seg, init-y, pub-y, local-n, addr=0x004920b0, size=144
sym `InitSceneInformation': text seg, init-y, pub-y, local-n, addr=0x00492140, size=312
sym `CloseSceneInformation': text seg, init-y, pub-y, local-n, addr=0x00492278, size=144

 129

sym `FinalizeSceneInformation': text seg, init-y, pub-y, local-n, addr=0x00492308, size=528
sym `UpdateSceneInformation': text seg, init-y, pub-y, local-n, addr=0x00492518, size=424
sym `InitPanScanRectInfo': text seg, init-y, pub-y, local-n, addr=0x004926c0, size=352
sym `ClearPanScanRectInfoPayload': text seg, init-y, pub-y, local-n, addr=0x00492820, size=200
sym `UpdatePanScanRectInfo': text seg, init-y, pub-y, local-n, addr=0x004928e8, size=144
sym `FinalizePanScanRectInfo': text seg, init-y, pub-y, local-n, addr=0x00492978, size=552
sym `ClosePanScanRectInfo': text seg, init-y, pub-y, local-n, addr=0x00492ba0, size=144
sym `InitUser_data_unregistered': text seg, init-y, pub-y, local-n, addr=0x00492c30, size=392
sym `ClearUser_data_unregistered': text seg, init-y, pub-y, local-n, addr=0x00492db8, size=256
sym `UpdateUser_data_unregistered': text seg, init-y, pub-y, local-n, addr=0x00492eb8, size=192
sym `FinalizeUser_data_unregistered': text seg, init-y, pub-y, local-n, addr=0x00492f78, size=496
sym `CloseUser_data_unregistered': text seg, init-y, pub-y, local-n, addr=0x00493168, size=176
sym `InitUser_data_registered_itu_t_t35': text seg, init-y, pub-y, local-n, addr=0x00493218,
size=392
sym `ClearUser_data_registered_itu_t_t35': text seg, init-y, pub-y, local-n, addr=0x004933a0,
size=288
sym `UpdateUser_data_registered_itu_t_t35': text seg, init-y, pub-y, local-n, addr=0x004934c0,
size=216
sym `FinalizeUser_data_registered_itu_t_t35': text seg, init-y, pub-y, local-n, addr=0x00493598,
size=648
sym `CloseUser_data_registered_itu_t_t35': text seg, init-y, pub-y, local-n, addr=0x00493820,
size=176
sym `InitRandomAccess': text seg, init-y, pub-y, local-n, addr=0x004938d0, size=288
sym `ClearRandomAccess': text seg, init-y, pub-y, local-n, addr=0x004939f0, size=240
sym `UpdateRandomAccess': text seg, init-y, pub-y, local-n, addr=0x00493ae0, size=128
sym `FinalizeRandomAccess': text seg, init-y, pub-y, local-n, addr=0x00493b60, size=496
sym `CloseRandomAccess': text seg, init-y, pub-y, local-n, addr=0x00493d50, size=144
sym `init_ref_pic_list_reordering': text seg, init-y, pub-y, local-n, addr=0x00493de0, size=40
sym `start_slice': text seg, init-y, pub-y, local-n, addr=0x00493e08, size=704
sym `terminate_slice': text seg, init-y, pub-y, local-n, addr=0x004940c8, size=576
sym `encode_one_slice': text seg, init-y, pub-y, local-n, addr=0x00494308, size=4264
sym `free_slice_list': text seg, init-y, pub-y, local-n, addr=0x004953b0, size=568
sym `modify_redundant_pic_cnt': text seg, init-y, pub-y, local-n, addr=0x004955e8, size=1512
sym `ue_v': text seg, init-y, pub-y, local-n, addr=0x00495bd0, size=240
sym `se_v': text seg, init-y, pub-y, local-n, addr=0x00495cc0, size=240
sym `u_1': text seg, init-y, pub-y, local-n, addr=0x00495db0, size=240
sym `u_v': text seg, init-y, pub-y, local-n, addr=0x00495ea0, size=232
sym `ue_linfo': text seg, init-y, pub-y, local-n, addr=0x00495f88, size=280
sym `se_linfo': text seg, init-y, pub-y, local-n, addr=0x004960a0, size=320
sym `cbp_linfo_intra': text seg, init-y, pub-y, local-n, addr=0x004961e0, size=80
sym `cbp_linfo_inter': text seg, init-y, pub-y, local-n, addr=0x00496230, size=80
sym `levrun_linfo_c2x2': text seg, init-y, pub-y, local-n, addr=0x00496280, size=664
sym `levrun_linfo_inter': text seg, init-y, pub-y, local-n, addr=0x00496518, size=1032
sym `levrun_linfo_intra': text seg, init-y, pub-y, local-n, addr=0x00496920, size=1008

 130

sym `symbol2uvlc': text seg, init-y, pub-y, local-n, addr=0x00496d10, size=104
sym `writeSyntaxElement_UVLC': text seg, init-y, pub-y, local-n, addr=0x00496d78, size=224
sym `writeSyntaxElement_fixed': text seg, init-y, pub-y, local-n, addr=0x00496e58, size=152
sym `writeSyntaxElement_Intra4x4PredictionMode': text seg, init-y, pub-y, local-n,
addr=0x00496ef0, size=264
sym `writeSyntaxElement2Buf_UVLC': text seg, init-y, pub-y, local-n, addr=0x00496ff8,
size=184
sym `writeUVLC2buffer': text seg, init-y, pub-y, local-n, addr=0x004970b0, size=304
sym `writeSyntaxElement2Buf_Fixed': text seg, init-y, pub-y, local-n, addr=0x004971e0, size=80
sym `symbol2vlc': text seg, init-y, pub-y, local-n, addr=0x00497230, size=120
sym `writeSyntaxElement_VLC': text seg, init-y, pub-y, local-n, addr=0x004972a8, size=160
sym `writeSyntaxElement_NumCoeffTrailingOnes': text seg, init-y, pub-y, local-n,
addr=0x00497348, size=768
sym `writeSyntaxElement_NumCoeffTrailingOnesChromaDC': text seg, init-y, pub-y, local-n,
addr=0x00497648, size=616
sym `writeSyntaxElement_TotalZeros': text seg, init-y, pub-y, local-n, addr=0x004978b0,
size=552
sym `writeSyntaxElement_TotalZerosChromaDC': text seg, init-y, pub-y, local-n,
addr=0x00497ad8, size=552
sym `writeSyntaxElement_Run': text seg, init-y, pub-y, local-n, addr=0x00497d00, size=552
sym `writeSyntaxElement_Level_VLC1': text seg, init-y, pub-y, local-n, addr=0x00497f28,
size=360
sym `writeSyntaxElement_Level_VLCN': text seg, init-y, pub-y, local-n, addr=0x00498090,
size=392
sym `writeVlcByteAlign': text seg, init-y, pub-y, local-n, addr=0x00498218, size=248
sym `estimate_weighting_factor_P_slice': text seg, init-y, pub-y, local-n, addr=0x00498310,
size=2872
sym `estimate_weighting_factor_B_slice': text seg, init-y, pub-y, local-n, addr=0x00498e48,
size=6712
sym `__do_global_dtors': text seg, init-y, pub-y, local-n, addr=0x0049a880, size=128
sym `__do_global_ctors': text seg, init-y, pub-y, local-n, addr=0x0049a900, size=296
sym `__main': text seg, init-y, pub-y, local-n, addr=0x0049aa28, size=88
sym `__divdi3': text seg, init-y, pub-y, local-n, addr=0x0049aa80, size=2720
sym `__libc_init': text seg, init-y, pub-y, local-n, addr=0x0049b520, size=48
sym `exit': text seg, init-y, pub-y, local-n, addr=0x0049b550, size=416
sym `_cleanup': text seg, init-y, pub-y, local-n, addr=0x0049b6f0, size=64
sym `__assert_fail': text seg, init-y, pub-y, local-n, addr=0x0049b730, size=256
sym `__stdio_check_funcs': text seg, init-y, pub-y, local-n, addr=0x0049b830, size=264
sym `__stdio_check_offset': text seg, init-y, pub-y, local-n, addr=0x0049b938, size=3896
sym `__flshfp': text seg, init-y, pub-y, local-n, addr=0x0049c870, size=1336
sym `__fillbf': text seg, init-y, pub-y, local-n, addr=0x0049cda8, size=1424
sym `__invalidate': text seg, init-y, pub-y, local-n, addr=0x0049d338, size=120
sym `fwrite': text seg, init-y, pub-y, local-n, addr=0x0049d3b0, size=1760
sym `printf': text seg, init-y, pub-y, local-n, addr=0x0049da90, size=112

 131

sym `fflush': text seg, init-y, pub-y, local-n, addr=0x0049db00, size=512
sym `__getmode': text seg, init-y, pub-y, local-n, addr=0x0049dd00, size=568
sym `fopen': text seg, init-y, pub-y, local-n, addr=0x0049df38, size=296
sym `fclose': text seg, init-y, pub-y, local-n, addr=0x0049e060, size=640
sym `calloc': text seg, init-y, pub-y, local-n, addr=0x0049e2e0, size=160
sym `snprintf': text seg, init-y, pub-y, local-n, addr=0x0049e380, size=80
sym `_free_internal': text seg, init-y, pub-y, local-n, addr=0x0049e3d0, size=2224
sym `free': text seg, init-y, pub-y, local-n, addr=0x0049ec80, size=160
sym `pow': text seg, init-y, pub-y, local-n, addr=0x0049ed20, size=1680
sym `fprintf': text seg, init-y, pub-y, local-n, addr=0x0049f3b0, size=80
sym `memset': text seg, init-y, pub-y, local-n, addr=0x0049f400, size=368
sym `strncmp': text seg, init-y, pub-y, local-n, addr=0x0049f570, size=416
sym `strlen': text seg, init-y, pub-y, local-n, addr=0x0049f710, size=1784
sym `malloc': text seg, init-y, pub-y, local-n, addr=0x0049fe08, size=2440
sym `fseek': text seg, init-y, pub-y, local-n, addr=0x004a0790, size=1024
sym `ftell': text seg, init-y, pub-y, local-n, addr=0x004a0b90, size=336
sym `fread': text seg, init-y, pub-y, local-n, addr=0x004a0ce0, size=1216
sym `strcmp': text seg, init-y, pub-y, local-n, addr=0x004a11a0, size=96
sym `sscanf': text seg, init-y, pub-y, local-n, addr=0x004a1200, size=80
sym `strcpy': text seg, init-y, pub-y, local-n, addr=0x004a1250, size=80
sym `fscanf': text seg, init-y, pub-y, local-n, addr=0x004a12a0, size=80
sym `log10': text seg, init-y, pub-y, local-n, addr=0x004a12f0, size=80
sym `memcpy': text seg, init-y, pub-y, local-n, addr=0x004a1340, size=448
sym `rand': text seg, init-y, pub-y, local-n, addr=0x004a1500, size=48
sym `log': text seg, init-y, pub-y, local-n, addr=0x004a1530, size=1264
sym `__log__D': text seg, init-y, pub-y, local-n, addr=0x004a1a20, size=1376
sym `ceil': text seg, init-y, pub-y, local-n, addr=0x004a1f80, size=240
sym `ftime': text seg, init-y, pub-y, local-n, addr=0x004a2070, size=272
sym `time': text seg, init-y, pub-y, local-n, addr=0x004a2180, size=144
sym `srand': text seg, init-y, pub-y, local-n, addr=0x004a2210, size=48
sym `fputc': text seg, init-y, pub-y, local-n, addr=0x004a2240, size=304
sym `localtime': text seg, init-y, pub-y, local-n, addr=0x004a2370, size=432
sym `strftime': text seg, init-y, pub-y, local-n, addr=0x004a2520, size=3632
sym `sprintf': text seg, init-y, pub-y, local-n, addr=0x004a3350, size=800
sym `qsort': text seg, init-y, pub-y, local-n, addr=0x004a3670, size=1456
sym `floor': text seg, init-y, pub-y, local-n, addr=0x004a3c20, size=240
sym `sqrt': text seg, init-y, pub-y, local-n, addr=0x004a3d10, size=1088
sym `atexit': text seg, init-y, pub-y, local-n, addr=0x004a4150, size=136
sym `__new_exitfn': text seg, init-y, pub-y, local-n, addr=0x004a41d8, size=392
sym `__init_misc': text seg, init-y, pub-y, local-n, addr=0x004a4360, size=192
sym `abort': text seg, init-y, pub-y, local-n, addr=0x004a4420, size=16
sym `__stdio_read': text seg, init-y, pub-y, local-n, addr=0x004a4430, size=48
sym `__stdio_write': text seg, init-y, pub-y, local-n, addr=0x004a4460, size=248
sym `__stdio_seek': text seg, init-y, pub-y, local-n, addr=0x004a4558, size=120

 132

sym `__stdio_close': text seg, init-y, pub-y, local-n, addr=0x004a45d0, size=48
sym `__stdio_fileno': text seg, init-y, pub-y, local-n, addr=0x004a4600, size=16
sym `__stdio_open': text seg, init-y, pub-y, local-n, addr=0x004a4610, size=296
sym `__stdio_reopen': text seg, init-y, pub-y, local-n, addr=0x004a4738, size=824
sym `__stdio_init_stream': text seg, init-y, pub-y, local-n, addr=0x004a4a70, size=320
sym `memchr': text seg, init-y, pub-y, local-n, addr=0x004a4bb0, size=496
sym `vfprintf': text seg, init-y, pub-y, local-n, addr=0x004a4da0, size=11632
sym `__newstream': text seg, init-y, pub-y, local-n, addr=0x004a7b10, size=320
sym `vsnprintf': text seg, init-y, pub-y, local-n, addr=0x004a7c50, size=400
sym `__finite': text seg, init-y, pub-y, local-n, addr=0x004a7de0, size=160
sym `__copysign': text seg, init-y, pub-y, local-n, addr=0x004a7e80, size=112
sym `__drem': text seg, init-y, pub-y, local-n, addr=0x004a7ef0, size=1408
sym `exp': text seg, init-y, pub-y, local-n, addr=0x004a8470, size=728
sym `__exp__D': text seg, init-y, pub-y, local-n, addr=0x004a8748, size=808
sym `__default_morecore': text seg, init-y, pub-y, local-n, addr=0x004a8a70, size=80
sym `__vsscanf': text seg, init-y, pub-y, local-n, addr=0x004a8ac0, size=368
sym `__vfscanf': text seg, init-y, pub-y, local-n, addr=0x004a8c30, size=8560
sym `_wordcopy_fwd_aligned': text seg, init-y, pub-y, local-n, addr=0x004aada0, size=528
sym `_wordcopy_fwd_dest_aligned': text seg, init-y, pub-y, local-n, addr=0x004aafb0, size=512
sym `_wordcopy_bwd_aligned': text seg, init-y, pub-y, local-n, addr=0x004ab1b0, size=544
sym `_wordcopy_bwd_dest_aligned': text seg, init-y, pub-y, local-n, addr=0x004ab3d0, size=544
sym `__srandom': text seg, init-y, pub-y, local-n, addr=0x004ab5f0, size=384
sym `__initstate': text seg, init-y, pub-y, local-n, addr=0x004ab770, size=976
sym `__setstate': text seg, init-y, pub-y, local-n, addr=0x004abb40, size=608
sym `__random': text seg, init-y, pub-y, local-n, addr=0x004abda0, size=352
sym `__logb': text seg, init-y, pub-y, local-n, addr=0x004abf00, size=384
sym `ldexp': text seg, init-y, pub-y, local-n, addr=0x004ac080, size=1024
sym `__tzset': text seg, init-y, pub-y, local-n, addr=0x004ac480, size=4552
sym `__tzname_max': text seg, init-y, pub-y, local-n, addr=0x004ad648, size=2512
sym `__tz_compute': text seg, init-y, pub-y, local-n, addr=0x004ae018, size=520
sym `__tzfile_read': text seg, init-y, pub-y, local-n, addr=0x004ae220, size=3064
sym `__tzfile_default': text seg, init-y, pub-y, local-n, addr=0x004aee18, size=632
sym `__tzfile_compute': text seg, init-y, pub-y, local-n, addr=0x004af090, size=1136
sym `gmtime': text seg, init-y, pub-y, local-n, addr=0x004af500, size=80
sym `__offtime': text seg, init-y, pub-y, local-n, addr=0x004af550, size=1856
sym `mbtowc': text seg, init-y, pub-y, local-n, addr=0x004afc90, size=560
sym `vsprintf': text seg, init-y, pub-y, local-n, addr=0x004afec0, size=336
sym `_quicksort': text seg, init-y, pub-y, local-n, addr=0x004b0010, size=1936
sym `__isnan': text seg, init-y, pub-y, local-n, addr=0x004b07a0, size=128
sym `__isinf': text seg, init-y, pub-y, local-n, addr=0x004b0820, size=112
sym `strrchr': text seg, init-y, pub-y, local-n, addr=0x004b0890, size=656
sym `__isatty': text seg, init-y, pub-y, local-n, addr=0x004b0b20, size=112
sym `register_printf_function': text seg, init-y, pub-y, local-n, addr=0x004b0b90, size=144
sym `strchr': text seg, init-y, pub-y, local-n, addr=0x004b0c20, size=416

 133

sym `_itoa': text seg, init-y, pub-y, local-n, addr=0x004b0dc0, size=416
sym `__printf_fp': text seg, init-y, pub-y, local-n, addr=0x004b0f60, size=19056
sym `__sbrk': text seg, init-y, pub-y, local-n, addr=0x004b59d0, size=144
sym `realloc': text seg, init-y, pub-y, local-n, addr=0x004b5a60, size=1184
sym `strtol': text seg, init-y, pub-y, local-n, addr=0x004b5f00, size=1072
sym `strtoul': text seg, init-y, pub-y, local-n, addr=0x004b6330, size=992
sym `strtod': text seg, init-y, pub-y, local-n, addr=0x004b6710, size=1520
sym `ungetc': text seg, init-y, pub-y, local-n, addr=0x004b6d00, size=1752
sym `do_normalization': text seg, init-y, pub-y, local-n, addr=0x004b73d8, size=4568
sym `_mktime_internal': text seg, init-y, pub-y, local-n, addr=0x004b85b0, size=1096
sym `mktime': text seg, init-y, pub-y, local-n, addr=0x004b89f8, size=72
sym `getenv': text seg, init-y, pub-y, local-n, addr=0x004b8a40, size=384
sym `__mpn_extract_double': text seg, init-y, pub-y, local-n, addr=0x004b8bc0, size=256
sym `__mpn_lshift': text seg, init-y, pub-y, local-n, addr=0x004b8cc0, size=240
sym `__mpn_cmp': text seg, init-y, pub-y, local-n, addr=0x004b8db0, size=160
sym `__mpn_divmod_1': text seg, init-y, pub-y, local-n, addr=0x004b8e50, size=3712
sym `__mpn_mul_1': text seg, init-y, pub-y, local-n, addr=0x004b9cd0, size=144
sym `__mpn_add_n': text seg, init-y, pub-y, local-n, addr=0x004b9d60, size=160
sym `__mpn_divmod': text seg, init-y, pub-y, local-n, addr=0x004b9e00, size=2880
sym `__mpn_rshift': text seg, init-y, pub-y, local-n, addr=0x004ba940, size=224
sym `__mpn_sub_n': text seg, init-y, pub-y, local-n, addr=0x004baa20, size=256
sym `memmove': text seg, init-y, pub-y, local-n, addr=0x004bab20, size=784
sym `__mpn_submul_1': text seg, init-y, pub-y, local-n, addr=0x004bae30, size=192
sym `__umoddi3': text seg, init-y, pub-y, local-n, addr=0x004baef0, size=2272
sym `__udivdi3': text seg, init-y, pub-y, local-n, addr=0x004bb7d0, size=2656

	titlepage.pdf
	Thesis main V5 _numbered_.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

