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Abstract  

Large complex embedded applications require high performance embedded 

processors to complete the tasks. While traditional DSP processors are difficult to 

meet these stringent demands, extensible instruction-set processors are shown to 

be effective. However, the performance of such reconfigurable processors relies 

on successfully finding the critical custom instruction set. To reduce this intensive 

task which is traditionally performed by experts, an automated custom instruction 

generation system is developed in this research.  

 

The proposed system first explores the application’s data flow graph and generates 

all valid custom instruction candidates, subjected to pre-configured resource 

constraints. Next a custom instruction set is selected using a greedy algorithm, 

guided by intelligent speedup estimation of each candidate. Finally, the system 

optimally maps any given application onto the newly generated custom instruction 

set.  

 

The MiBench benchmark is used to study the effects on speedup ratios by varying 

input-output constraints, custom instruction set size and cross-application 

compilation. A case study on H.264/AVC is performed and results are presented. 

Experiments show the proposed system is able to identify the critical patterns and 

almost all applications can benefit from custom instructions, achieving 15%-70% 

speedup.  
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Chapter 1: Introduction 

In the last three decades, the performance of traditional general purpose 

microprocessors has been improving by taking advantage of advanced silicon 

technology and architectural improvements such as pipelining and media 

instruction extension (e.g. MMX, SSI), etc. However, fast growth in consumer 

electronics market demands stringent properties including low power consumption 

and high performance, which conventional general purpose microprocessors are 

difficult to meet. Digital Signal Processor (DSP), driven by the market force, 

appeared in the early 80’s and has become popular since ever.  DSPs achieve 

high performance in certain niche application areas by introducing additional 

function units such as adder, multiply-accumulator (MAC), etc, as a new 

architectural choice. DSPs have been successfully applied to numerous application 

domains, including mobile phones, routers, voice-band modems, etc. However, 

there are many new emerging areas such as portable multimedia communication 

device, personal digital assistants (PDAs), which are difficult to apply standard 

DSP architectures. In the last decade, System-on-Chip (SOC) processors gain full 

attention as these processors are specifically designed for target applications, 

hence achieving better performance-cost ratio. At the early stage of this 

application-specific instruction set processors (ASIPs) approach, the practice is to 

re-design the complete processor structure. The major drawback of this approach 

is the complexity of redesigning the entire instruction set and its associated 

development toolset. As the market is changing rapidly, fast re-design turnaround 
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time is desired, thus limiting the use of ASIPs in SOCs. Recently, the focus has 

been shifted to configurable or extensible instruction set microprocessors, which 

offer a tradeoff between efficiency and design flexibility. These processors 

typically contain one standard core processor with tightly coupled hardware 

resources that can be customized. The goal is to configure the custom data-path to 

optimize towards specific applications, subjected to the area and latency 

constrains.   

 

Sophisticated extensible processors such as Xtensa [11] from Tensilica release the 

designer’s burden by providing a set of development tools. However, it has been a 

common practice that an expert is needed to find out the custom data-path. The 

expert must fully understand the application and the available resources provided 

by the extensible processor. The task becomes complicated when the application 

software is large. Moreover, design constrains such as die area, clock frequency 

limit, number of available read-write ports, etc, further complicate the problem. 

 

In this research work, we propose a methodology that automatically detects and 

selects custom instruction candidates to achieve optimal or sub-optimal speed up 

for a given application. After the library patterns are generated, the automation 

algorithm takes another instance of the application software (may or may not be 

the same software model as the one used for library generation) and detect all 

possible instruction clusters that match a custom library pattern. Finally the 
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automation algorithm generates the optimal code that makes the best use of library 

patterns. The complete program flow is shown in Figure 1 below. In Figure 1, if 

application program 1 is the same as application program 2, it is called native 

compilation; otherwise it is called cross-compilation. 

 

 
Figure 1: The structure of the automated hardware compiler system 

 

1.1 Related Work 

We provide an overview of the related work done in this field. Application 

specific custom instructions have been extensively studied before. The complete 
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system in general can be partitioned into three stages: identification, selection and 

mapping.  

 

1.1.1 Identification 

In the first step, the target application’s data-flow graph (DFG), usually on a basic 

block basis, is generated and pattern candidates are picked up by looking at the 

sub-graphs of the DFG. Complete sub-graph enumeration, however, is exponential 

to the total number of nodes in the DFG. Many works try to by-pass this problem 

by heuristically explore a subset of the design space. In works of Sun et. al[4] and 

Nathan et. al[26], patterns grow from selected seeds and a heuristic guide function 

is used to limit the growth. In Cong’s work [5], only cone-type or 

multiple-input-single-output (MISO) type patterns are considered. Atasu, et. al [1], 

on the other hand, exhaustively generate all possible patterns including disjoint 

patterns. They applied simple pruning strategies to limit the search space 

exploration. Pan et. al [29] proposed an improved algorithm to generate all 

feasible connected patterns by extending cone-type patterns into 

multiple-input-multiple-output (MIMO) type patterns.  

 

Typically the custom instructions can be classified according to execution cycles, 

input-output constrains, connectivity and whether overlapped patterns are allowed.  

 

Execution Cycles: In early works such as Huang et. al [14], only single cycle 
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complex instructions are generated. Choi et. al [3] extended to multi-cycle 

complex instructions but they put an artificial limit on critical path length. Recent 

works almost all focus on multi-cycle instructions as these instructions in general 

offer more potential for speedups.  

 

Input-Output constraints: The core processor register file has limited read and 

write ports, hence it is apparent to apply input output constraints during custom 

instruction generation. Moreover, these constraints can be effectively used to 

prune the search tree.  

 

Connectivity: In most works [4], [5], [29], only connected patterns are generated. 

However, in [3], instructions are first packed in parallel and then grow in depth. 

They applied subset-sum solver to generate custom instructions. The problem is 

that the effectiveness of parallel and depth combination is not well known. The 

exhaustive enumeration in [1] also combines disjoint patterns together to form 

large patterns.  

 

Overlap: Although patterns in general do not overlap in the final code, it is 

important to generate all overlapped patterns so as no to artificially constrain the 

pattern selection stage.    

 

1.1.2 Selection 
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In the pattern selection stage, the goal is to choose an optimal set of custom 

instructions out of a large pool of generated patterns, subjected to system 

constraints such as die area or number of custom instructions. If overlapping 

patterns are allowed, as what is in [4], pattern selection can be formulated as 0/1 

knapsack problem. However, if overlapping patterns are not allowed, then the 0/1 

knapsack formulation would contain dynamic values, since selecting one pattern 

causes the values of overlapping patterns to change. An ILP formulation can be set 

up to find the optimal custom instruction set [26]. However, in many cases 

heuristic-based method is preferred as the search space is often unacceptably large 

for ILP-based approach, especially for large programs. In [4] a simple greedy 

algorithm is used to select the patterns, taking the overlapping into consideration.  

 

1.1.3 Mapping 

Most previous work, however, did not consider application mapping, but simply 

placed the selected custom instructions in the code immediately after instruction 

generation and selection, to calculate performance gain [26], [30]. Similarly, Cong 

et. al [4] did not consider custom instruction matching, but they used binate 

covering method to address optimal code generation. In the software-hardware 

co-design context, the application to be run on the custom processor may be 

frequently modified and updated, and it can even be different applications in the 

same domain. It is necessary to derive a methodology that properly map any given 

application onto the custom instruction set.  
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1.2 Thesis Contribution 

This work presents a complete framework to address customer instruction set 

design and application mapping. 

 

In Chapter 4, we proposed an innovative algorithm to calculate the maximally 

achievable speedup of each pattern candidate. Given the speedup and total 

frequency of a pattern candidate, the maximally achievable speedup of this 

candidate is not simply the product of those two numbers. In practice, not all 

instances of a candidate can be realized simultaneously because instances can be 

overlapping. Due to the large number of instances, standard binary search 

algorithm is not practical. We formulate the problem of finding the maximally 

achievable speedup of each candidate as a parallel branch-and-bound algorithm. 

The entire instance list of the candidate is partitioned into disjoint groups such that 

instances from different groups never overlap. Branch-and-bound algorithm is 

applied to each individual group and the results are summed to get the actual 

potential speedup. This strategy effectively transforms the initial problem into sub 

problems that can be easily tackled.  

 

In Chapter 5, we presented our 2-pass solution to application mapping and code 

generation problem, which was rarely addressed before due to its complications. 

After the custom instruction set is selected, the last step of our system is to map 

the application onto the union of the core processor’s basic instruction set and the 
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newly selected custom instruction set. This is done in a two-pass process. The first 

pass is library matching: the DFG is constructed for each basic block and it is 

checked against the custom instruction library to find any possible utilization of 

those custom instructions. The second pass is optimal code generation: the optimal 

DFG cover using both custom instructions and core processor instructions is 

selected.   

 

Code generation against custom instruction set in general is a non-trivial problem, 

and traditional approaches are to break the DFG into forest (disjoint trees) and 

perform tree pattern matching against the instruction set. Although in this method 

the optimality of the generated code is heavily dependent on the partitioning 

method, in practice it is widely adopted in compiler design due to its attractive 

complexity. The incentive behind is that tree matching can be easily converted to 

string matching and linear time string matching automaton is readily available. 

Unfortunately, this method cannot be applied to a custom instruction set which 

contains arbitrary complex instruction patterns. In our system, the custom 

instructions are not limited to tree patterns; in fact, they are directed acyclic 

graphs (DAG). The matching problem is essentially a sub-graph isomorphism 

problem from each custom instruction to the subject DFG. It is known that 

sub-graph isomorphism of digraphs is as difficult as that of regular graphs and the 

latter is NP-Hard [10]. Nevertheless, in the case of instruction matching there are 

two constraints that greatly reduce the theoretical exponential search space. The 
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first constraint is that both DFG and custom instructions are acyclic graphs. The 

second constraint is that for a match to be valid, each matched node pairs in the 

subject graph and the library graph must be the same operation type. Ullmann [27] 

proposed a general graph matching algorithm which travels in a depth first manner 

in the search space. The algorithm achieves attractive runtime by applying a 

refinement procedure at each search node, despite that the worst case is still 

exponential to the number of nodes in the subject graph. We use Ullmann’s 

algorithm as a basis and added additional refinement steps to further reduce the 

run-time complexity.  

 

After the matches are detected, it still remains a problem to optimally select a 

subset from all the matches such that every instruction in the subject graph is 

covered and the total execution latency is minimized. It is well known that such 

optimal DAG covering is a NP-hard problem. However, in practice, the custom 

instruction set size is limited due to resource constrains, unless for huge basic 

blocks (over a few hundred instructions), there are hopes for efficient algorithms 

that find the optimal covering. In our systems, we implemented a 

branch-and-bound (bnb) algorithm to perform instruction covering. To reduce the 

runtime complexity, the pruning techniques proposed by Coudert and Madre [8] 

are applied. In addition, the custom instructions do not overlap, and can be used as 

another pruning constraint to greatly reduce the search space. 
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1.3 Thesis Organization 

The thesis is organized as follows. Chapter 2 discusses application trace 

generation and DFG construction. Chapter 3 describes the pattern enumeration 

algorithm. Chapter 4 provides a detailed description on pattern selection, 

including the data structure for pattern representation, the speedup estimation and 

the custom instruction selection algorithm. Chapter 5 introduces Ullmann’s graph 

isomorphism algorithm and how it is incorporated into our branch-and-bound 

algorithm to solve the code generation problem. Chapter 6 presents the experiment 

results. Chapter 7 gives the conclusion and the direction for future work. 
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Chapter 2: Trace generation and DFG 
construction 

2.1 Introduction 

In this work, the core processor is assumed to be RISC-like and the ISA is similar 

to the MIPS [23] instruction set. In the MIPS ISA, instructions are classified into 

the following major categories: memory, integer computation, floating point 

computation, and control instructions. In this context, integer computation 

instructions are of particular interests to be implemented in custom hardware 

logics. Floating point instructions, on the other hand, are not very popular due to 

the fact that in most applications they take a small fraction only. Another reason is 

float-point instructions usually span multiple clock cycles, which makes it 

difficult to be put in custom hardware.      

 

Integer instructions are further classified into operation types: addition, 

subtraction, multiplication, division, shift, logic, etc. The latencies for those 

instructions are assumed to be 1 except for division, which is assumed to be 10.  

 

We use the SimpleScalar [2] PISA toolset as the framework. SimpleScalar is a 

popular simulation package which comes with compiler, assembler, debugger and 

simulator. Moreover, new simulators can be crafted without much difficulty. The 

SimpleScalar PISA ISA is compatible with the MIPS IV ISA; hence it provides a 



 19

good working environment for our system. 

 

The target application is assumed to come with a standard reference software 

model; examples are Momusys for MPEG-4 and JM for H.264/AVC, etc. The 

software model is compiled to the SimpleScalar architecture and it is simulated 

using a modified fast simulator with standard input dataset. The simulator is 

crafted to record both static and dynamic information of the software model. 

Static information includes program text symbols and their associated address 

range; each basic block’s starting address, instructions, and size. Dynamic 

information mainly contains the run-time accessing count of each basic block.  

 

2.2 Data Flow Graph generation  

Definition 1: source, sink, forward-dependency 

If instruction i updates register $r and instruction j uses $r as one of its inputs 

later, we say instruction i is the source of instruction j , and instruction j is the 

sink of instruction i . There is a forward dependency from instruction i to j .  

 

The selected basic blocks are represented in Data Flow Graphs. The DFG 

( , )G V E represents the relationship, more specifically the inter-dependency, 

among the instructions in a basic block. Each instruction is represented as a node 

v V∈ in the DFG and the edge :e u v→ represents that there is a forward 

dependency from node u to node v . In other words, the output of the instruction 
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represented by node u is one of the inputs of the instruction represented by node 

v . A DFG is necessarily a directed acyclic graph (DAG). A DFG is a 

parameterized graph: it stores the instruction type at each node, but there is no 

parameter associated with the edges. In this work, we use a node array L of 

size| |G  to represent the node parameter, for instance [ ]L v  is the instruction 

type associated with node v . As mentioned before, there are constraints on 

instruction types for custom hardware. Those that can be included into the custom 

hardware are called valid operations and all others are called invalid operations.  

Valid operations: { , , , , , , , }add sub mul div shift logic lui slt  

Invalid operations: { , , , , ...}load store branch float etc  

Since invalid operations are not taken into consideration for custom instructions, 

we label them as belong to one class “invalid”. To conclude, the operation type 

associated with each node is one of the following: 

{ , , , , , , , , }add sub mul div shift logic lui slt invalid . 

 

To create the DFG, we maintain a register value creator table to record which 

instruction is the last modifier of each register. In the MIPS compatible 

architectures, there are 32 general registers and 32 floating point registers. The 

floating point registers are ignored in this case. Each MIPS instruction at most 

takes 3 registers as inputs and updates up to 2 registers as outputs.  

 

We scan through the basic block and add one node to the DFG for each instruction. 
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We check the input registers, if the corresponding creation table for that register is 

not empty, there is a dependency from the creator to the current instruction and we 

add one new edge in the DFG accordingly. The outputs of current instruction are 

used to update the creation table. The algorithm that builds the complete DFG is 

shown in Figure 2 below: 

 
Figure 2: Pseudo code for DFG construction 

 

Table 1 shows a disassembled basic block from MiBench’s [13] “sha” benchmark. 

Table 2 shows the content of the register value creator table and how it changes as 

instructions are processed. Finally, Figure 3 shows the initially constructed DFG. 

The label beside each node is the instruction number same as that of table 1 and 

the label inside the node is the instruction type. The inputs with “$” prefix are 

registers and the inputs with “#” prefix are immediate values. It is worth noting 

that the DFG is not necessarily connected, as a matter of fact, it often consists of a 

few connected components and singular nodes. In this example, there are three 

_
01 ;
02 1,2,...
03 . _ ( _ ( ));
04 . 1,2,3
05 ( ) 0
06 . _ ( ( ), );
07
08
09 . 1,2
10

DFG construction
Graph G empty Graph
for instruction i n

node v G add node op type i
for input reg j

if creater j then
G add edge creater j v

end
end
for output reg j

creat

< >
=

=
=

=
≠

=
( ) ;

11
12

er j v
end

end

=
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connected components and four singular nodes: 

 { } { } { } { } { } { } { }{ }1, 2,3, 4,5,6,7,13,16,17 , 10,11,12 , 15,19, 20 , 8 , 9 , 14 , 18 .  

 

Table 1: disassembled basic block from “sha” benchmark 
Basic Block 280 
1 sll r3,r10,5 
2 srl r2,r10,27 
3 or r3,r3,r2 
4 xor r2,r8,r7 
5 xor r2,r2,r11 
6 addu r3,r3,r2 
7 addu r3,r3,r12 
8 addu r12,r0,r11 
9 addu r11,r0,r7 
10 sll r7,r8,30 
11 srl r2,r8,2 
12 or r7,r7,r2 
13 lw r2,0(r4) 
14 addu r8,r0,r10 
15 addiu r9,r9,1 
16 addu r3,r3,r2 
17 addu r10,r3,r5 
18 addiu r4,r4,4 
19 slti r2,r9,40 
20 bne r2,r0,0xffffff68 

 

Table 2: content of the creator table 
Registers Creator Instructions 
r0  
r2 2→4→5→11→13→19 
r3 1→3→6→7→16 
r4 18 
r5  
r7 10→12 
r8 14 
r9 15 
r10 17 
r11 9 
r12 8 
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Figure 3: The constructed DFG 

 

2.3 MISO & MIMO patterns 

Definition 2: pattern 

A pattern ( ', ')P V E  is a sub-graph of the DFG, such that 

'
' ( ' ')
( ) ( ) '

V V
E V V E
L v L v if v V

⊆
= × ∩
= ∈

. 

In this work, only connected patterns are considered. Each instruction itself is a 

special type pattern called “trivial pattern”. Each pattern has incoming edges and 
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outgoing edges. The set of nodes in P  that are connected to incoming edges are 

called input nodes. Similarly, the set of nodes in P that are connected to outgoing 

edges are called output nodes.  

 

For pattern generation, the exact register and immediate inputs to each node can 

be omitted in the DFG representation. The rationale behind is that register and 

immediate inputs are dynamically allocated by the compiler and these information 

are not needed for custom instruction generation.  

 

In addition, in this work, we assume similar instructions can be executed in one 

piece of custom hardware. For example, all logic operations, including and, or, 

nor, and xor, can be implemented on a logic hardware unit. We assume the 

specific operation is encoded as signature bits in the custom instruction format and 

it can be recognized by the custom hardware automatically. Similarly, a shift unit 

is able to perform left shift, right shift, left shift arithmetic and right shift 

arithmetic. However, add and sub are treated differently, although in some 

practical systems it might be desirable to group them onto a single custom 

hardware. Figure 4 shows a simplified DFG derived from the one in Figure 3.   

 

Definition 3: MISO and MIMO pattern 

MISO patterns are patterns that contain exactly one output node. Conversely, 

MIMO patterns contain at least two output nodes.  
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Examples of MISO and MIMO patterns are shown in figure 5. Figure 5(a) shows 

a MISO pattern with 4 inputs and 1 output node; Figure 5(b) shows a MIMO 

pattern with 4 inputs and 2 output nodes.  

 

 
Figure 4: Simplified DFG by omitting inputs and grouping similar instructions 
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Figure 5: MISO and MIMO patterns 

 

In this work, the number of inputs (not input nodes) and the number of output 

nodes are used for hardware constraint checking.  
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Chapter 3: Pattern Enumeration 
 

3.1 Introduction 

To provide sufficient information for later stages, all possible patterns in a DFG 

should be enumerated. However, theoretically the complexity of enumerating all 

patterns is proportional to 2N , where N  is the total number of nodes in the DFG. 

To bypass this difficulty, works such as [4], [26] generate a subset of all possible 

patterns. Although these approaches are attractive in practical implementations 

when efficiency is an important concern, the optimality is not guaranteed. 

Moreover, it is apparent to have a system that generates all patterns so that the 

performance of those heuristic methods can be evaluated. In Atasu’s work, all 

possible patterns that satisfy convexity constrain are generated. However, as no 

other constrains are imposed, this method is not efficient enough to be applied to 

large basic blocks. Pan [29] proposed an improved method that generates MIMO 

patterns by extending cone-type patterns. Their method is attractive because the 

complexity is proportional to 2K , where K  is the number of extension ports. In 

practice, the limit of K is closely related to the fan-in/fan-out at each node. As the 

fan-in at each node is limited to 3 due to the nature of DFGs, usually there is only 

one case that prevents the use of this complete enumeration method.  That is, 

when there is at least one node have a large number of fan-outs (typically > 20). In 

other cases, the runtime of the full enumeration method is very much acceptable. 
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Cong et. al [5] also applied full enumeration method except that in their 

framework, the custom instructions to be considered are MISO patterns. 

 

3.2 Region and Pattern 

In our work, we adopted Pan’s algorithm to perform pattern enumeration. The 

pattern enumeration, however, is not directly performed on the entire DFG. Since 

invalid nodes are not included into custom instructions, it is very likely that the 

entire DFG can be partitioned into multiple regions, separated by invalid nodes. It 

is only necessary to perform pattern enumeration in each region. Region 

partitioning is a simple yet efficient strategy that helps to reduce the graph size to 

work on. Here the same definition of region as in [29] is used: 

 

Definition 4: Region 

Given a DFG ( , )G V E , a region ( ', ')R V E  is defined as a maximum sub-graph of 

G such that: 

(1) 'v V∀ ∈ , v  is valid node. 

(2) There exists an undirected path between any two nodes in R.   

(3) There does not exist any edge between a node 'v V∈ and another node 

'u V V∈ − .  

 

The definition of pattern in previous chapter can be refined to:  

A pattern ( ', ')P V E  is a sub-graph of a region in a DFG. It is important to note 
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that not all sub-graphs are valid patterns. A pattern is convex if there exists no path 

between any two nodes ,u v P∈  such that the path contains a node w P∉ . 

Patterns that do not satisfy convexity are invalid as there is a circular dependency 

between the pattern P  and the node w . This can be easily understood: on one 

hand, there is an edge from a node in P  to w , thus there is a forward dependency 

from P  to w ; on the other hand, there is an edge from w  to a node in P , thus 

there is a forward dependency from w  to P . 

 

 
Figure 6: Basic blocks can be separated into disjoint regions 

 

Figure 6 gives an example where a connected DFG is separated into two regions 

by node 7 and 9. Examples of non-convex patterns are {8,12}  
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and{8,10,11,12,14} . In pattern{8,12} , there is a path from node 8 to node 12 

through node 10, which is a valid node but it is not in the pattern. In 

pattern{8,10,11,12,14} , the node that causes violation is node 9. It is worth noting 

that node 9 is an invalid node and it does not belong to any regions. 

 

3.3 Upward cone and downward cone patterns 

Two special pattern types are defined: 

 

Definition 5: Upward Cone, Downward Cone 

Upward cone: The upward cone of node v , denoted as ( )UC v , is a convex 

pattern that contains node v , and for all other nodes ( )u UC v∈ , there is a path 

from u  to v . In other words, v is the only sink node in ( )UC v . Let the set of 

all upward cones of node v be denoted as _ ( )UC Set v  

 

Downward cone: The downward cone of node v , denoted as ( )DC v , is a convex 

pattern that contains node v , and for all other nodes ( )u UC v∈ , there is a path 

from v  to u . In other words, v is the only source node in ( )DC v . Let the set of 

all downward cones of node v be denoted as _ ( )DC Set v  

 

Take node 14 in Figure 6 as an example, the set of its upward cones are {14}, 

{11,14},{12,14},{11,12,14},{10,11,12,14}, etc. Similarly, the set of its downward 

cones are {14}, {14,15} ,{14,16},and{14,15,16} . 
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The enumeration algorithm requires the DAG being topologically sorted.  

 

Definition 6: Topological Sort 

A topological sort of the vertices of G is a linear ordering of the vertices such that 

for every pair of distinct vertices iv and jv , if i jv v→ is an edge in G, 

i.e., ( , )i jv v E∈ , then iv appears before jv in the ordering.  

 

It is easy to prove if the order of each node in the DFG is assigned using the 

corresponding instruction sequence number in the basic block, then this ordering 

is readily a topological ordering. The same holds even after the DFG is partitioned 

into regions: the nodes in each region are still topologically ordered except the 

orders are not continuous.  

 

The enumeration algorithm contains two phases. In the first phase the set of 

upward and downward cones at each node is identified. To identify the upward 

cones, the DAG is traversed in topologic order. The set of upward cones at node 

v  can be obtained by selectively union the upward cones of its predecessors and 

node v  itself.  Let 1 2, ,..., kv v v  be the predecessors of node v , as the DAG is 

traversed in topologic order, by the time node v is reached, the set of upward cones 

of 1 2, ,..., kv v v are all known. If we pick (0 )i i k≤ ≤ predecessors out of k , say 

1 2 1 3 2, ,..., , ,...,i ku u u v v u −= , and pick one upward cone from each 
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of 1 2_ ( ), _ ( ),..., _ ( )iUC Set u UC Set u UC Set u and union these upward cones 

together with node v , the resultant pattern is an upward cone of node v . This 

can be easily proven: since 1 2, ,..., iu u u are predecessors of node v , for any node 

1 2_ ( ) _ ( ) ... _ ( )iu UC Set u UC Set u UC Set u∈ U U U , there is a path from u  to v  

through one of 1 2, ,..., iu u u .   

 

For example, in Figure 7, the set of upward cones for node 3 and node 5 are 

{ } { } { }{ }3 , 1,3 , 2,3 ,{1,2,3} ,  { } { }{ }5 , 4,5 respectively. Therefore the set of upward 

cones for node 6 is the union of the following: 

(a) Itself: { }{ }6  

(b) Select predecessor node 3 only: { } { } { } { }{ }3,6 , 1,3,6 , 2,3,6 , 1,2,3,6  

(c) Select predecessor node 5 only: { } { }{ }5,6 , 4,5,6  

(d) Select both predecessors:  

{ } { } { } { }{ { } { } { }3,5,6 , 1,3,5,6 , 2,3,5,6 , 1,2,3,5,6 , 3,4,5,6 , 1,3,4,5,6 , 2,3,4,5,6 ,  

{ }}1,2,3,4,5,6  

 

 
Figure 7: Upward cone generation 
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However, the above procedure may generate invalid patterns and repeated patterns. 

For upward cone generation, invalid patterns are those do not satisfy convexity or 

input constrains. These patterns can not be used for pattern extension and can be 

eliminated. It is shown in [29] the elimination is safe and it does not prevent any 

valid patterns to be generated. It is worth noting patterns that do not satisfy output 

constrains are not eliminated, since those patterns have potential to be extended to 

valid patterns.  

 

Repeated patterns can be generated if the upward cones of the predecessors 

overlap. Consider the DAG in Figure 8, the set of upward cones for node 3 and 

node 4 are { } { } { } { }{ }3 , 1,3 , 2,3 , 1,2,3 ,  { } { } { } { }{ }4 , 1,4 , 2,4 , 1,2,4 respectively. It 

is easy to observe union { } { } { }1,3 , 4 , 5  or { } { } { }3 , 1, 4 , 5 results in the same 

upward cone { }1,3,4,5 of node 5. Therefore before a generated pattern is added to 

the upward cone set, it is checked to ensure the upward cone set does not contain 

duplicates.  

 
Figure 8: Overlapped upward cones results in repeated patterns 
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The generation of downward cones is similar to that of upward cones, except that 

the region DAG is traversed in the reverse topologic order. Moreover, the 

definition of invalid downward cones is not satisfying convexity constrain or 

output constrain. 

 

3.4 Pattern enumeration by cone extension 

The second phase of pattern enumeration is to extend the cone type patterns to 

form general shaped patterns. If we choose upward cones as initial pattern, the 

region DAG is traversed in the reverse topologic order. On the other hand, if we 

choose downward cones as initial pattern, the DAG should be traversed in 

topologic order. These two approaches are equivalent and in this work we use the 

former method. As the DAG is traversed, all the patterns that contain a particular 

node are generated after that node is visited. 

 

A maximum upward cone (MAX_UC) of node v is defined as the union of all its 

upward cones. An important property that is associated with the MAX_UC is any 

upward cones of node v can only be extended along the output nodes of 

MAX_UC. Those nodes along witch patterns are extended are called extension 

points.  

 

The pseudo code of pattern enumeration is shown below: 

1. For each node v  in reverse topological order, its _UC Set  is added to the 
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pattern pool: ( ) _ ( );Pattern v UC Set v+ =  

2. Find the set of extension points ext  by checking _ ( )MAX UC v . 

3. If ext  is not empty, perform pattern extension: 

   ( ) ( ( ), , );Pattern v UNION Pattern v ext down+ =   

 

The ( , , )UNION core ext direction  procedure is a recursive routine that extends the 

set of core patterns through the extension point along the direction specified. If 

direction=1, the core will be extended downwards and otherwise upwards. 

 

In the UNION procedure, new patterns are generated in a manner similar to that of 

UC_Set and DC_Set generation. We briefly describe the process below: 

 

1. Find all possible i combinations (0 )i ext≤ ≤  of extension points, 

say { }1 2, ,..., i extα α αΑ = ⊆ .  

2. Selected a subset P core⊆ , such that A P⊆ and ( )ext A P− =∅I ; 

3. Form a temporary set by cross-product the upward cones or downward cones 

of the selected extension points:  

a) if direction is downwards, 1: _ ( ) ... _ ( )itmp DC Set DC Setα α= × × ; 

b) if direction is upwards, 1: _ ( ) ... _ ( )itmp UC Set UC Setα α= × × ; 

4. Select one pattern each from P  and tmp , generate the new pattern 

_pat tmp using union operator. If direction is downwards, check convexity 

and output constrains of _pat tmp . If direction is upwards, check convexity 
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and input constrains of _pat tmp . Let the set of newly generated patterns 

being _new core , add the _pat tmp  to _new core  if it is valid. 

5. After all new patterns for current set of extension points are generated, find the 

extension points _new ext  for _new core  and recursively call 

   ( _ , _ , )UNION new core new ext direction¬  

 

3.5 On the complexity of the enumeration algorithm  

Although the pattern enumeration algorithm is still exponential to the number of 

nodes in the DAG, its average runtime is a few magnitudes lower than exhaustive 

enumeration. In practice, we found the runtime is heavily dependent on the DAG 

structure. More specifically, if the DAG contains some nodes which has a large 

number of fan-outs, the algorithm would stuck as early as in the downward cone 

generation phase. Take a simple example, suppose a node generates 20 forward 

dependencies, which may happen in very large basic blocks (e.g. rijndael from 

MiBench), the algorithm needs to union all possible combinations of 1, 2, up to 20 

successors’ DC_Sets. Note even if under the extreme conservative assumption that 

each DC_Set contains only one pattern, the number of possible combinations 

is
20 20 20

... 100
0 1 20

M
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ + ≈⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

. The same problem may cause trouble for pattern 

extension phase as well. 

 

The generation of UC_Set, however, does not have this problem. This is due to the 

DFG property that each node has maximally 3 inputs. In fact, for all those 
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instructions that are valid to be included into custom instructions, i.e. add, sub, 

mul, div, shift, logic, lui, and slt, each has a fixed number of inputs equal to 2.  

 

Fortunately the exponential enumeration problem for DC_Set and pattern 

extension may be tackled in most practical applications. Observations from 

experiments show that a DFG containing nodes with such large number of 

forward dependencies normally possesses high degree of regularity in its DAG 

structure. An example in Figure 9 shows a partial DFG from the rijndael 

benchmark.  Here all nodes are “addition” instructions hence the labels are 

omitted. The algorithm fails to generate all possible DC_Sets in acceptable time if 

no special care is taken, since there are more than 30 fan-outs at node 370, 372, 

and 374. However, if we take a close look at the DAG structure, we notice node 

380, 388, 400…1136 are equivalent, similarly the sub-graphs rooted at node 372 

and 374 are equivalent. In other words, this DAG is highly symmetric and most of 

its sub-graphs are identical under isomorphism. Since our task is to generate all 

possible patterns for custom instructions, isomorphic patterns need only be 

generated once. Using this strategy, the number of patterns to be checked can be 

greatly reduced. However, in order to identify the nodes that are images of each 

other under isomorphism, efficient algorithms are required. As this topic is not 

addressed in this work, we just bring up this point and briefly discuss its 

usefulness in generating patterns for difficult DAGs. Interested reader may refer to 

[20] for a comprehensive discussion on graph isomorphism. 
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Figure 9: Part of a DFG from rijndael benchmark. All nodes are “+” instructions. 
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Chapter 4: Pattern Selection 

4.1 Introduction 

After pattern candidates from each basic block are generated, we need a proper 

representation so that equivalent patterns can be recognized. The nauty package 

[31] on graph isomorphism is employed to compute the canonical label of each 

pattern graph. We combine the canonical label, the operation types and the output 

ports together to uniquely represent each pattern. A hash function is applied to this 

pattern representation and a 32-bit hash code is generated. The hash code is 

indexed into a hash table which keeps a count and a list of its instances in the 

basic blocks for individual patterns. The hash table is dumped for pattern selection 

after all basic blocks are processed. We apply a greedy algorithm to select the 

optimal set of custom instructions, subjected to resource constrains.    

 

4.2 Adjacency matrix representation of graphs 

A graph ( , )G V E can be represented by adjacency lists or adjacency matrix. 

Although the adjacency lists representation is more economic in terms of memory 

usage, adjacency matrix is often preferred as edges between any two nodes can be 

checked in (1)O time. In this work, the adjacency matrix representation is used. 

The adjacency matrix M for a graph with n nodes is a nxn binary matrix. M(i,j)=1 

if there is an edge from node i to node j, otherwise M(i,j)=0.  
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However, structurally equivalent graphs may not have the same adjacency 

matrices. This is illustrated in Figure 10. Figure 10(a) and Figure 10(b) show two 

graphs that are equivalent, but their adjacency matrices are different. The 

difference comes from the non-uniqueness of topological ordering: both orderings 

in Figure 10(a) and Figure 10(b) satisfy topologic conditions. In fact our ordering 

is directly obtained from instruction sequence, and instruction 1 may appear 

before instruction 2 or after instruction 2, thus this ambiguity cannot be resolved 

easily.  

 

 
Figure 10: Equivalent graphs have different adjacency matrix representations 

 

The differences in adjacency matrices, despite the fact that the graphs are 

equivalent, would generate different hash code and recognized as different 
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patterns if not handled. Those patterns are isomorphic with each other and an 

algorithm that re-labels isomorphic graphs to obtain a common adjacency-matrix 

representation is needed. 

 

4.3 Canonical Label and the nauty package 

Let ( , )G V E be a graph, γ be a permutation ofV , v V∈ .Then vγ  is the image of 

v under γ , Gγ is the graph in which vertices xγ  and yγ  are adjacent if and 

only if x and y are adjacent in G. 

 

Definition 7: Automorphism Group 

The automorphism group of a graph G  is the set of all permutations γ  such 

thatG Gγ = .  

 

Definition 8: Canonical Labelling  

A canonical labelling map is a function C  such that, for any graph G, and 

permutation γ  of V , we have: 

(a) ( )C G Gδ= for some permutation δ  

(b) ( ) ( )C G C Gγ =  

 

Informally, graphs generated by permutations from the same automorphism group 

are structurally identical and their canonical labels are identical. By computing the 

canonical labels of all the generated pattern graphs, we are able to group 



 42

structurally identical patterns together. 

 

The nauty package [31] developed by professor B. D. McKay is one of the fastest 

algorithm that perform graph isomorphism detection and canonical label 

generation. We applied this package to our system.  

 

4.4 Complete pattern representation 

The adjacency matrix only encodes the pattern graph’s structure, which is not 

sufficient to uniquely represent a pattern graph. For instance, two pattern graphs 

may have the same structure but different instruction type at each node. Even if 

both structures and instruction types are the same, we need to check the output 

nodes before we conclude those two patterns are equivalent.  

 

The complete pattern representation thus contains three parts: the adjacency 

matrix, the operation type array and the output port array. To reduce storage and 

hash code computation, instead of using integer arrays, we pack the adjacency 

matrix into a much more compact form called setword.  

 

A setword essentially is a 16-bit short integer. A set with size n can be represented 

by m=n/16+1 setwords. Each bit in the m setwords corresponds to one element of 

the set and it can be set to 0 or 1 to indicate the absence/presence of the element. 

The adjacency matrix of a graph with n nodes can be represented by nxm setwords. 
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The i-th set gives the adjacencies from node iv  to all other nodes, for1 i n≤ ≤ . 

When graph size is not multiple of 16, there would be unused bits in each set, they 

are set to 0s. 

 

Figure 11 shows an example of adjacency matrix represented using setwords. The 

graph has 18 nodes, hence each node needs 18/16+1=2 setwords. The total 

memory storage used is 18x2=36 short integers. On the other hand, if short integer 

array is used, the storage required is 18x18=324 short integers. This shows a great 

storage saving can be achieved by using setwords. In Figure 11, the shaded bits 

represent the adjacency matrix and bits that are not shaded are set to 0s.  

 

 
Figure 11: The setword representation of adjacency matrix 
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We use short integers {1, 2, 3, …, 8, 9} to represent the instruction type {add, sub, 

mul, div, shift, logic, lui, slt, invalid}. For a graph of size n, n short integers are 

required to encode the instruction types. 

 

Finally, we use an array of size MAX_OUT to store the output nodes. If a pattern 

has less than MAX_OUT output nodes, the unfilled slots in the array are set to -1.  

 

The above three arrays are stacked together to form a larger short-integer array. 

This is illustrated in Figure 12 and the labels below the bar diagram indicates the 

size of each part in terms of short integers. 

 

 
Figure 12: The complete representation of a pattern graph 

 

4.5 Hash key generation 

The complete representation discussed in the previous section is generated for 

each pattern instances iC  in each basic block. A simple hashing function is 

defined to take the complete pattern representation as input and generates a 32-bit 
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hash key. Ideally identical patterns generate the same hash key and different 

patterns generate different hash key. However, there are chances that different 

patterns generate the same hash key and this problem is resolved by chaining 

mechanism.  

 

For each pattern instance, after the hash key is generated, the content of the hash 

table indexed by that key is updated. In this work, we defined a C++ class called 

“Candidate” and the hash table is an array of the “Candidate” class. The 

“Candidate” class keeps a complete list of pattern instances that are hashed into 

the current location. In addition, it records the total frequency of the pattern.   

 

4.6 Instance list 

It is important to note that simply record the total frequency of each pattern is not 

sufficient for pattern selection.  The reason is instances of different patterns may 

overlap and including one pattern into custom instruction set would change the 

frequency of other patterns whose instances are overlapping with the selected one. 

If we simply record the total frequency and use it as the selection metric, the 

generated custom instruction set would be biased as this policy favors overlapped 

patterns from high frequency basic blocks. 

 

To solve this problem, an instance list or instance table is defined in the 

“Candidate” class. Each element in the list contains three fields: the original basic 
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block id “BB_ID”, the array of node numbers in the original basic block 

“images[]”, and the execution count of the basic block “frequency”. Figure 13 

shows an example where two patterns P1 and P2 (other patterns are ignored) are 

generated from two basic blocks BB1 and BB2. There are two instances for P1, 

denoted as P1:C1, P1:C2 and three instances for P2, denoted as P2:C1, P2:C2, 

P2:C3. The instance lists in Candidate (P1) and Candidate (P2) are shown in Table 

3. 

 

 
Figure 13: Pattern instances that are overlapping. 
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Table 3: Instance lists examples 

 BB ID Images[] Frequency Total Frequency 

1 2, 3, 4 100 Candidate 

P1 2 1, 2, 3 150 
250 

1 4, 5 100 

1 4, 6 100 

Candidate 

P2 

2 4, 5 150 

350 

 

4.7 Software latency, hardware latency and speedup 

The software latency of a custom instruction is the overall execution time of its 

primitive instructions, assuming single-issue pipelined microprocessor 

architecture. The execution time of trivial patterns is given in Table 4. We assume 

all primitive instructions that can be included into custom instructions, except 

division, require 1 machine cycle to execute. Division requires 10 machine cycles 

to finish. The software latency of non-trivial patterns is the summation of 

individual instructions, as we assume all the instructions in a pattern need to be 

executed sequentially in a single-issue pipelined processor. Thus, for a pattern P, 

we have: 

( ) ( )sw sw
v P

T P T v
∈

=∑  

The hardware latency of a custom instruction is the required cycle number of 

execution on customized hardware logic. Accurate estimation of hardware latency 

of each pattern requires logic synthesis and post-synthesis technology mapping. In 

our system, since all candidate patterns that satisfy constrains are enumerated, it 

would be inefficient to perform cycle-accurate logic synthesis for each individual 
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patterns. Instead, we estimate the hardware latency from the pattern’s critical path 

and hardware latencies of individual operations. The hardware latency model is 

synthesized using standard cells from a popular library and is mapped to 

0.18 mμ CMOS technology [Ataas]. This is also shown in Table 4.  

 

In some studies, the hardware latency is calculated in an additive manner: the 

summation of hardware latencies of individual nodes along the pattern graph’s 

critical path and then rounded up to the nearest integer. We believe the more 

precise definition should be the maximal latency along all possible critical paths.  

( ) ( )
( ) max ( )hw hwcp P v cp P

T P T v
∀ ∈

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎢ ⎥

= ∑  

The reason is that a given pattern graph may contain more than one critical paths. 

A simple example is the pattern P1 in figure 14. Both + →×  and + → +  are 

critical paths of length 2, the latency of the entire pattern graph should be 

calculated as max(0.25 1,0.25 0.25) 2+ + =⎡ ⎤⎢ ⎥ .  

 

Table 4: Software and hardware latency models of common operations 

 ADD MUL DIV SHIFT LOGIC 

Software Latency 1 1 10 1 1 

Hardware Latency 0.25 1 9.61 0.16 0.02 

 

The potential speedup of a custom instruction is the difference between its 

software latency and hardware latency, i.e.  
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( ) ( ) ( )sw hwspeedup P T P T P= −  

Using this formula, the speedups for P1 and P2 in Figure 14 are both 1.  

 

A side note is that shift and logic operations can be easily optimized in current 

FPGA/ASIC technologies and can be executed in almost zero time. Thus it would 

be advantageous to implement custom instructions in hardware if the application 

contains a large percentage of shift/logic operations (As can be seen later, 

applications in security domain are able to achieve high degree of speed up).  

 

4.8 Optimal custom instruction selection: ILP formulation  

Suppose there are N unique patterns over all the basic blocks and they are denoted 

as 1 2, ,..., NP P P . For each pattern, there are in  instances 1 2, ,...,
i

i i i
nC C C and each 

instance has an associated execution frequency 1 2, ,...,
i

i i i
nf f f . For each pattern iP , 

we use iR  to denote the resource requirement and iS  to denote the speedup. 

The resource requirement of a pattern can be calculated in an additive manner: the 

summation of all its instructions’ resource requirements. For some extensible 

processor, the number of custom instructions is the only restriction and in that 

case 1iR = . We further define two set of binary variables 1 2, ,..., nB B B and 

1 2, ,...,
i

i i i
nb b b . iB  is associated with pattern iP : if 1iB = , iP  is included in the 

final selection otherwise excluded. Similarly, i
jb  is associated with instance i

jC : if 

1i
jb = , i

jC  is selected to cover the instructions. It is important to note that if 

1 (1 )i
j iC j n= ≤ ≤ , then the pattern iP  is automatically included into the final 
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selection, i.e. , . . 1, 1i
j iif j s t b then B∃ = = .  

 

The objective function to be maximized is the overall speedup, i.e.  

1 1

( )
inN

j j
i i i

i j

F b S f
= =

= × ×∑∑  

However, the optimization must be done under the constrain each instruction is 

covered by at most one instance (it may not be covered by pattern instances at all, 

i.e. it is covered by trivial patterns instead). This constrain is expressed as follows: 

if an instruction can be covered by pattern instances 1 2
1 2, ,...,j j jk

i i ikC C C , then  

1 1 1
1 1 1... 1j j j

i i ib b b+ + + ≤  (1) 

Note for all instructions that can be covered by pattern instances, there is an 

equation in the form of (1) associated with it. Thus the number of constrain 

equations is huge. 

Besides the (1) constrain equation, there is another constrains equation on the 

hardware resource. The following equation simply ensures the resources used for 

custom instructions are with the limit:  

1

N

i i total
i

B R R
=

× ≤∑  

Although the optimal custom instruction set selection problem can be formulated 

as ILP problem perfectly, it is often of little interests. The reason is even for 

applications with small basic blocks, the number of pattern instances can easily be 

very large. Moreover, the number of constrain equations is almost proportional to 

the number of valid nodes in the application. In practice, pattern selection is done 
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using heuristic algorithms that try to achieve sub-optimal solutions. The remaining 

sections of this chapter are devoted to our heuristic algorithm on pattern selection. 

 

4.9 Custom instruction selection: greedy algorithm 

The objective of pattern selection is to choose an optimal set of patterns 

1 2{ , ,... }MT T T T=  out of a huge number of valid pattern candidates 

1 2{ , ,..., }NP P P P= , subjected to area or quantity constrains. 

 

The core of the greedy algorithm is to design a priority function that estimates the 

maximally achievable speedup for each pattern. The greedy algorithm then sort 

the patterns according to their priorities and select *P , the one with highest 

priority. The selection of *P in general necessarily affects the achievable speedup 

of the remaining pattern candidates if they are overlapping with *P . As a 

consequence, the priority of those remaining patterns must be recalculated. The 

greedy algorithm continues the above procedure until resource constrains are 

reached or no more candidates is available. 

 

In this section, we discuss the overall structure of the greedy algorithm, as shown 

in Figure 14. The priority calculation, which is non-trivial, will be discussed in the 

following sections. In Figure 14, Line 3-8 calculates the priority of each pattern 

and adds the one with highest priority to the finalist. Line 9-14 checks all the 

remaining pattern’s instances, any instance that is overlapping with the selected 
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one will be removed from the instance list. 

 

* *

*

:
:

01. ;
02.
03. , ( );

04. . . ( ) max{ ( )};

05. ( )

06.

i

i i

iP P

total

input set of unique patterns P
output set of patterns T to be implemented in hardware

T
while P do

for each P P calculate priority P

select P s t prio P prio P

if R R P R then

P

∀ ∈

←∅
≠∅

∈

=

+ <

← *

*

*

;
07. { };
08.
09.

10.

11.
12.
13.
14.
15.
16. ;

i
j

i i
j j

i i i i

P P
T T P

end
for all P P

for all instances C of P

if P C then C C C
end

end
end

end
return T

−

← ∪

∈

≠ ∅ ← −I

 

Figure 14: The greedy algorithm on pattern selection 

 

4.10 Maximally achievable speedup as the priority function 

In the pattern selection phase, we need a priority function for each pattern so that 

the one with the highest priority is selected first. Naturally, the maximally 

achievable speedup is used as the priority function. However, given the pattern 

speedup and total frequency, the maximally achievable speedup is not simply the 

product of those two. The reason is not all instances of the pattern can be mapped 

to the custom instruction simultaneously.  
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Let’s again look at the example in Figure 13. For P1, its instances C1 and C2 are 

from different basic blocks and thus they are independent. If we implement P1 in 

custom hardware, both C1 and C2 can be mapped to the hardware logic and the 

maximally speed up for P1 is indeed 1 (100 150) 250× + = . On the other hand, 

although P2 has a total frequency of 350, not all instances are realizable 

concurrently. For example, P2:C1 and P2:C2 have node 4 as the overlapped node. 

Thus if P2:C1 is mapped to the custom hardware, P2:C2 can no longer be mapped. 

P2:C3 on the other hand, is not affected since it is from another basic block. The 

maximally achievable speedup for P2 is achieved by either mapping P2:C1 and 

P2:C3 or P2:C2 and P2:C3 to the custom hardware, which is 1 (100 150) 250× + = . 

Note however, in some systems, such as [Cong], overlapped instances are 

allowed.  

 

The instance list in each pattern is used to calculate the maximally achievable 

speedup. It is quite frequent that an instance list is of quite large size, say, 

containing more than 50 elements. It would be very inefficient if exhaustively 

enumeration is used. The entire instance list is first partitioned into disjoint groups 

so that instances from different groups never overlap. A simple Branch-and-Bound 

algorithm is then applied to each group to obtain the maximally achievable 

frequency of that group. The overall maximum frequency is calculated by 

summing up the frequencies of each group and the priority is simply the 

maximum frequency times the single pattern speedup.  
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4.11 Branch-and-Bound algorithm 

We briefly give a description on branch-and-bound algorithms because it will be 

applied to not only this section, but also optimal code generation. 

Branch-and-bound is an approach developed for solving discrete and 

combinatorial optimization problems. The discrete optimization problems are 

problems in which the decision variables are discrete values; when this set is set of 

integers, we have an integer programming problem. The combinatorial 

optimization problems, on the other hand, are problems of choosing the best 

combination out of all possible combinations. Most combinatorial problems can 

be formulated as integer programs. Our problem of selecting a subset from the 

pattern instances to achieve a maximum total frequency is exactly an example of 

both discrete optimization problems and combinatorial optimization problems. 

 

As stated by Murty [24], the major difficult of solving these problems is we don’t 

have any optimality conditions to directly check whether a given solution is 

optimal or not. In other words, unlike other linear or non-linear optimality 

problems where the target to be optimized can be expressed as a function of the 

decision variables, there is no way of applying traditional analytic methods to 

discrete and combinatorial optimization problems. In general, optimality for such 

problems can be assured only if all feasible solutions are enumerated and 

compared against each other. However, in practice, it is often possible to avoid 
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enumerating some feasible solutions if there is sufficient reason to believe it is 

safe to do so. The brand-and-bound algorithm is such an approach that generates 

partial enumeration of all possible alternatives without losing optimality. 

 

The essence of the branch-and-bound approach is the following observation: in 

the total enumeration tree, at any node, if it can be proved that optimal solution 

cannot occur in any of its descendents, then there is no need to consider any of 

those descendent nodes. This is known as search tree pruning. It is important to 

note the optimality is never compromised as those solutions in the leaves of the 

pruned branches can not be the optimal solution, according to the definition of 

pruning. Thus, the branch-and-bound approach is not a heuristic procedure, but an 

exact optimizing procedure.  

 

Let’s assume a feasible solution has been found, either by heuristic methods or by 

a depth-first search to reach the first leaf in the search space. Since this solution is 

so far the best solution available, we assign it to the global threshold. Then at any 

node of the search tree, if we can compute a bound on the best possible solution 

that can expected from the descendents of that node, we can compare the bound 

with the global threshold. If what we have on hand, the global threshold, is better 

than what we can expect from any of the descendents, then it is safe to stop 

branching from that node. In other words, all the descendents can be pruned. 
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It is trivial that the performance of the branch-and-bound algorithm or the actual 

runtime complexity depends on the prune techniques. In general, the quality of the 

prune techniques often boils down to how well the lower/upper bound (depends 

on whether minimum cost or maximum value is to be found) of the decedent trees 

is estimated, given the current position in the search tree. The tighter the 

lower/upper bound, the more the search tree can be pruned. As will be mentioned 

soon, we calculate the upper bound by summing up the frequencies of un-chosen 

pattern instances. The method is attractive for its simplicity and experiments show 

it works fine for all benchmarks and applications tested. It is worth noting the 

method proposed in [8] cannot be applied to this problem as it is applicable to 

lower bounds only. Moreover, the method in [8] is trying to heuristically find an 

independent subset of un-chosen candidates, whereas in our problem, all patterns 

in each disjoint group are from a dependent set.  

 

The Branch-and-Bound algorithm recursively splits the original problem into two 

sub-problems and finds the maximally achievable frequency over a group of 

instances. The algorithm is as follows:  

(Denote the list of instances as L, the chosen list as L_chosen, the current global 

maximum frequency as GMF, and the sum of frequencies along the binary search 

three to the current node as CPF. Denote the branch-and-bound procedure 

as , _ , ,L L chosen CPF GMF< > ) 
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Step 1: Initialize variables to  

_ : ;
0

0;
, _ , ,

L chosen empty
GMF
CPF
call L L chosen CPF GMF

=
=
=
< >

 

Step 2: In , _ , ,L L chosen CPF GMF< > procedure: 

Case 1: L is empty. This indicates we are at the leaf node of the search tree.  

If CPF>GMF, update GMF=CPF.  

If CPF<GMF, the current search path is worse the GMF obtained earlier, 

take no action. 

Case 2: L is not empty. We check the up-bound of the additional achievable 

frequency (UAF) from the remaining instances in L: ( )
i L

UAF frequency i
∈

=∑ . 

Note the calculation of UAF ensures that the remaining achievable frequency 

is no more than that. Hence if CPF plus UAF is smaller than GMF, there is no 

reason to continue search along the current direction. Thus we bound.   

If CPF+UAF > GMF, there is potential to obtain better total frequency by 

continuing the branching. We pick one pattern instance iC  from L and form 

two sub-problems that recursively called: 

 

Sub-Problem 1: considering including iC into the chosen list, update CPF 

by adding the frequency of iC  to it. Next we scan through all the 

remaining instances in L: if they are overlapping with iC , remove them 

from the L.  
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{ } _ ( );
_ _ { };

( );
, _ , ,

i i

i

i

L L C overlap group C
L chosen L chosen C
CPF CPF frequency C
call L L chosen CPF GMF

= − −

= +
= +
< >

 

 

Sub-Problem 2: considering not including iC into the chosen list, thus we 

simply remove iC from L, and call the BnB algorithm with the same CPF 

and chosen list, i.e. 

{ };
, _ , ,

iL L C
call L L chosen CPF GMF
= −
< >

 

After the BnB algorithm terminates, the maximally achievable frequency of that 

group is returned in GMF and the corresponding instances are given in L_chosen.  

 

To illustrate this algorithm, an example is shown in Figure 15. On the right of 

Figure 15 is the pattern structure and we assume all its instances are from one 

single basic block, whose DFG is shown on the left. There are seven instances 

labeled as C1-C7. In this example, all the patterns are from the same disjoint 

group. Since only one basic block presents, we can simply look at the size of each 

feasible solution and ignore the basic block frequency.  
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Figure 15: Maximum achievable frequency: the pattern T and instances C1-C7. 

 

The corresponding binary search tree is shown in Figure 16. It is clear that this 

tree is not a full binary search tree since when we formulate sub-problem 1, all 

instances that are overlapping with current selected instance are removed. At each 

node of the search tree, the left branch corresponds to sub-problem 1, i.e. 

including this instance into finalist; whereas the right branch corresponds to 

sub-problem 2. In Figure 16, instance C1 is considered first. If C1 is selected, C2 

and C3 will be removed and the next pattern to be considered is one of C4, C5, C6, 

and C7. At level 2, assume C4 is considered. The left branch corresponds to 

selecting C4 and no instances are removed. Now we are at level 3 and have C5, 

C6 and C7 left. Assume C5 is considered at level 3. The left branch corresponds to 

selecting C5, and C7 will be removed. Finally the algorithm reaches level 4 where 

the only one to consider is C6. The left branch corresponds to selecting C6 and we 



 60

reach the first leaf node, hence a feasible solution {C1, C4, C5, C6} is obtained. 

The size of this solution is 4 and the global maximum frequency GMF is updated. 

The right branch at level 4 corresponds to not selecting C6 and a feasible solution 

{C1, C4, C5} is obtained as well. However, this solution is discarded as the size is 

only 3. 

 

Now consider the right branch (not selecting C5) at level 3, due to the natural of 

recursive call (depth-first like), when it is processed, the solution {C1, C4, C5, C6} 

is already obtained. The path frequency associated with this node is 2 ({C1, C4}), 

and the remaining instances to choose are {C6, C7}, thus the additional 

achievable frequency is 2. By now it is safe to say the best solution can be 

obtained by exploring the descendants is 2+2=4. Since the current solution in hand 

already has a frequency of 4, it is not necessary to continue traversing the 

descendants. 
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Figure 16: The binary search tree associated with the example in figure 15. 

 

The shaded nodes in Figure 16 correspond to visited nodes whereas the blank 

nodes are pruned. It is worth noting only 2 out of 29 leaves are visited, indicating 

the efficiency of this simple pruning technique. It is interesting to note in this 

example, the first feasible solution is the final optimal solution as well. Although 

this is a coincident, the order of sub-problem 1 and sub-problem 2 does affect how 

fast the best solution can be obtained. For instance, consider at each level we 

branch to the right sub-tree first, the first feasible solution is simply {C7}. 

Although not always true, for this problem, it is almost always better to branch to 
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sub-problem 1 first.   

 

The overall algorithm that finds the maximally achievable frequency for each 

pattern is summarized in Figure 17. (L denotes the entire instance list, L_group 

denotes each disjoint group, total_freq denotes the total achievable frequency of 

the pattern). Line 3-13 identifies one disjoint group and line 14-15 calls the BnB 

algorithm to find the maximum achievable frequency over this group.  

 

Priority( )
01. _ 0;
02. {
03. _ ;
04. . ();
05. _ _ { };
06. new instances added to ( _ ) & &
07. '
08. ( ', _ )
09. { '};
10. _

L
total freq
while L do

L group
C L pop
L group L group C
while are L group L

for all C L
if isOverlap C L group then

L L C
L grou

< >
=

≠ ∅
←∅

←
← ∪

≠ ∅
∈

← −
_ { '};

11.
12.
13.
14. _ ; 0;
15. _ , _ ,& ;
16. _ _ ;
17.
18. _ ;

p L group C
end

end
end
L chosen GMF
call L group L chosen GMF
total freq total freq GMF

end
return priority total freq speedup

← ∪

←∅ =
< >

← +

= ×

 

Figure 17: Algorithm that calculates the priority of each pattern. 

 

4.12 Conclusion 

In this section, we first introduced the adjacency matrix representation of graph 



 63

structure followed by the generation of canonical labels of isomorphic graphs. A 

unique representation combing graph adjacency matrix, instruction type and 

output ports is designed. We define a hash function that converts the pattern 

representation into a 32-bit hash key and instances of the same pattern produce 

identical hash keys. The instance list of each pattern is updated as instances are 

indexed into the hash table. When all the basic blocks are processed, the software 

latency, hardware latency and hence speed up of each pattern are calculated. A 

priority function that estimates the maximally achievable speedup is defined and a 

branch-and-bound algorithm is designed to calculate the priority. Finally, we use a 

greedy algorithm to iteratively select a custom instruction set under the resource 

constrains.  
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Chapter 5: Application Mapping 

5.1 Introduction 

Many previous works stop right after pattern selection. We believe application 

mapping is an essential part of a practical extensible ISA system. Given a set of 

custom instructions, or the library instructions, we detect all possible matches 

from the application’s DFGs to the library instructions. The algorithm we use is a 

modified version of Ullman’s subgraph isomorphism algorithm. Properties of 

digraphs are incorporated into the refinement procedures to prune the search space. 

After all matches are generated, we cast the optimal mapping problem into a 

special version of set covering problem and developed a branch-and-bound 

algorithm to find the best solution. 

 

5.2 Sub-graph isomorphism 

For each basic block’s data flow graph G, we want to match it against the custom 

instructions {T1, T2 …TM}. This is decomposed into finding the matches from G 

to each Ti. Let T being the DAG representation of any custom instruction Ti, the 

matching problem is the same as detecting subgraph isomorphism from T to the 

subject graph G. 

 

It is well known subgraph isomorphism is NP-Complete [10]. Till today, it still 

remains an open question whether polynomial time algorithms can be found for 
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graph and sub-graph isomorphism. As for digraphs, the problem is as difficult as 

regular graphs. Although the problem can be solved using exhaustive enumeration, 

the complexity is exponential: | |TG . We summarize the efforts on DAG 

isomorphism and subgraph isomorphism as follows:  

 

Many works [9][12][16][18][19][28] focused on special type DAGs. For some 

restricted DAG types, polynomial or linear time algorithms exist. Rooted DAG is 

discussed in [16] and the time complexity is further reduced to 

( ( ) ( ) ( ))O E P V T E T× + in [9]. Series Parallel (SP) digraphs are discussed in [19 

28] and biconnected outerplanar graphs are discussed in [18]. However, as DFGs 

in general are not special digraphs, the above approaches are not applicable.  

 

For normal graphs, most algorithms developed are based on state-space search and 

backtracking. The earliest work is dated to Corneil and Gotlieb’s algorithm [7]. 

The major improvement was introduced by Ullmann[27]. In Ullmann’s work, a 

backtracking algorithm with a refinement procedure was proposed. The 

refinement procedure effectively reduces the search space need explored. The 

above algorithms are developed for one-to-one subgraph isomorphism detection. 

Recently, Messmer and Bunke [22] proposed an algorithm for library based 

matching. Their method computes all possible isomorphic graphs of model graphs 

in the preprocessing step and representing the computed results in a decision tree. 

The decision tree is then directly used to detect graph or subgraph isomorphisms 
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from the input graph to the model graphs in time that is only quadratic in the size 

of the input graph. However, the attractive run-time complexity comes from 

exponential time complexity during preprocessing stage and the exponential size 

of the decision tree. Unfortunately this algorithm is only applicable for subgraph 

isomorphism from subject graph to library graphs whereas in our system, the 

reverse has to be done.   

 

As mentioned, most works on instruction set extensible processors did not address 

application to custom instruction set mapping. To our knowledge, the only work 

that applied such mapping is done by Clark et. al [4]. Other works directly used 

the pattern instances information from pattern generation stage to perform optimal 

instruction covering. In practical systems, after the custom instruction set is fixed, 

it is likely new applications are required to port to the new ISA. In that situation 

the possible mapping from the new application to the ISA is completely 

unavailable and algorithms for optimal code generation can not be performed. To 

concluded, the matching procedure is an essential part for a complete system. In 

Clark’s work, the vflib [6] graph matching library (also exponential in worst case) 

is directly applied, thus the matching procedure was not discussed in details. 

 

5.2.1 Ullmann’s graph isomorphism algorithm 

The core of our approach to tackle custom instruction matching is similar to 

Ullmann’s algorithm as it is fast yet easy to implement. However the refinement 
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procedure in our work is improved as it utilizes the properties associated with 

DFG matching to efficiently prune the search space. We will introduce Ullmann’s 

algorithm and followed by our refinement procedure in the following. 

 

Let’s denote the library graph as ,T TT V E< > , where ,T TV E denote the node set, 

edge set respectively. Let TM denotes the m m× adjacency matrix of T , where 

m is the number of nodes. Let TL  denotes the node array that stores the 

instruction types. We further define two node arrays ,T TinDeg outDeg . As their 

names indicate, [ ]TinDeg v is the number of input edges of node v and 

[ ]ToutDeg v is the number of output edges of node v. 

 

Similarly suppose the subject graph ,G V E< > is of size , ( )n n m≥ , we use 

matrix M and node array , ,L inDeg outDeg  to denote its adjacency matrix, 

instruction types, input degree and output degree.  

 

We define a permutation matrix Φ  to be a m n× binary matrix whose elements 

are either 0 or 1. In addition, each row of Φ contains exactly one 1 and no column 

contains more than one 1, i.e. 

1

1

, (1 ), ( , ) 1

, (1 ), ( , ) 1

n

j

m

i

i i m i j

j j n i j

=

=

∀ ≤ ≤ Φ =

∀ ≤ ≤ Φ ≤

∑

∑
 (2) 

Actually, the permutation matrix specifies a node-to-node mapping from T to G: if 

( , ) 1i jΦ = , node i in T is mapped to node j in G. In a valid sub-graph 
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isomorphism, each node in T is mapped to exactly one node in G and since n m≥ , 

there might be nodes in G that have no image nodes in T, these are actually 

formulated as constraint (2) of permutation matrix. A valid sub-graph 

isomorphism from the library graph to the subject graph can be specified by a 

permutation matrix Φ  that satisfies 

'
TM M= Φ Φ  (3) 

Thus, the problem of finding all isomorphic sub-graphs in G that are isomorphic 

with T is equivalent to finding the set of permutation matrices { }1 2, ,..., kΦ Φ Φ for 

which (3) is true.  

 

Step 1: Construct the initial matrix 0Φ , which encodes all possible node-to-node 

mappings from T to G. A possible node-to-node mapping must satisfy three 

conditions:  

(1) The instruction types must be the same.  

(2) The input degree of the node in the library graph must be smaller than or 

equal to that of the node in the subject graph. Here the input degree 

means the number of predecessor nodes, not the number of input edges. 

For example, in Figure 18, the input degree of node 1 is zero, although it 

has two input edges. 

(3) If a node is not an output node in the library graph, it can only be mapped 

to a node in the subject graph with the same output degree. If a node is an 

output node in the library graph, it can be mapped to a node in the subject 
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graph whose output degree is equal to or greater than it. 

 

To illustrate constraint 3, an example is shown in figure 18. T1, T2 and T3 are 

the library graphs and G is the subject graph to be mapped. Here we manually 

identify three sub-graphs m1, m2 and m3 of G. Sub-graph m1 is an isolated 

pattern and it is covered by the original shift instruction whereas sub-graph 

m3 can be covered by T2. It is interesting to note m2 cannot be mapped to T1 

using {2 1,3 2}→ → . The reason is node 2 in G has a fan-out towards node 4 

where as for the library pattern T1, there is no fan-out at node 1 towards 

outside of the pattern. On the other hand, m2 can be mapped to T3 perfectly 

as there is a fan-out towards outside of the pattern at node 1 of T3. 

 

If node i in T and node j in G satisfy the above three conditions, the 

corresponding entry in the initial permutation matrix is set to 1, i.e.  

 

{
0

1 ( ) ( ) ^ ( ) ( ) ^
( ( ) ^ ( ) ( ))

( , )
( ( ) ^ ( ) ( )}

0

T T

T

T

if L i L j inDeg i inDeg j
isOutNode i outDeg i outDeg j

i j
isOutNode i outDeg i outDeg j

otherwise

= ≤⎧
⎪ ≤⎪Φ = ⎨

∨ ¬ =⎪
⎪⎩

 

 

Note 0Φ is not a proper permutation matrix as it in general does not satisfy 

constraint (2). However, it will be eventually set to valid permutation matrices, if 

they exist, in the following steps.   
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Figure 18: The output constraints that must be satisfied for custom instruction 

matching 

 

Step 2: If there is at least one node in T that cannot be mapped to any nodes in G, 

i.e.  0
1

, (1 ), ( , ) 0
n

j
i i m i j

=

∃ ≤ ≤ Φ =∑ , there is no valid sub-graph isomorphism exist. 

The program is terminated early. Otherwise, we systematically change all but one 

of the 1’s in each row of 0Φ to 0, subject to the constraint no column may contain 

more than one 1. After each row is changed, a refinement procedure is applied to 

prune the search space. 

 

Step 3: For each resulting matrix from step 2, condition (3) is tested to examine 

whether it is a valid permutation matrix. 

 

Next we discuss step 2 in detail. Without the refinement procedure, the algorithm 
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is a full enumeration algorithm that traverses the entire search tree in a depth-first 

manner, as Figure 19 shows. 

 

We use a length-n binary vector b  to record whether a column is occupied 

( [ ] 0b j = ) or not ( [ ] 1b j = ). We use a length-m vector K to record for each row, 

what is the last column that has processed.  

 

 
Figure 19: Sub-graph isomorphism without pruning 

 

5.2.2 Pruning strategies 

To reduce the possible search space, we apply a few pruning strategies. Definition: 

the matrix-truncation operation , ( )Si j M on a m n×  matrix M  is to delete 

rows 1, 2,...,i i m+ +  and columns 1, 2,...,j j n+ +  and form a new i j×  

matrix. 

0

'

1. 1, , {0};
2. ;
3. [ ];

. . ( , ) 1^ [ ] 1, 5.
. . ( , ) 1^ [ ] 1;

, ( , ) 0
4. [ ] ;

, [ ] 0; 1; 2;
, ;

,

d

T

d

d K
store
k K d

if there is no j k s t d j b j goto
pick first k s t d k b k
for all j k set d j
K d k

if d m b k d d goto
else if M M report valid
else g

= Φ = Φ =

Φ = Φ

=
> Φ = =
Φ = =

≠ Φ =
=
< = = +

= Φ Φ Φ
Φ = Φ 3;

5. 1 terminate;
1, [ ], [ ] 1, , 3;d

oto
if d
else d d k K d b k goto

=
= − = = Φ = Φ
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1. After a new k is picked, and for all other columns j k≠ , ( , )d jΦ  is set to zero, 

we check whether the partial permutation matrix is valid up to depth-d using the 

matrix truncation operation:  

'
, ,( ) ( )d d T d dS M S M= Φ Φ  (4) 

If the above condition is not satisfied, there is no need to check rows d+1, d+2, etc. 

Thus we backtrack: if there is another j>k, such that ( , ) 1d jΦ =  and [ ] 1b j = , 

we continue in the same depth. Otherwise we back to the previous depth d-1, and 

start from the latest column we have explored in depth d-1. 

 

2. The adjacency constraint.  

Suppose we are at any non-terminal node of the entire search tree, i.e. 1<d<m, 

then all rows of Φ  less than d are said to be fixed by the search path and Φ  is 

called a partial permutation matrix. For a partial permutation matrix, we have the 

follow equation: 

1
,1 , ( , ) 1

n

j
i i d i j

=

∀ ≤ ≤ Φ =∑ . 

It is important to note the fixed rows 1-d can provide additional constraints to the 

non-fixed rows d-m.  For example, suppose we have ( , ) 1,1a b a dΦ = ≤ ≤ being 

fixed, which means av  the a-th node in T and bv  the b-th node in G are matched. 

Let { }1 2, ,...a a av v v α be the set of nodes that are adjacent to av  and { }1 2, ,...b b bv v v β  

be the set of nodes adjacent to bv . From the definition of sub-graph isomorphism, 

it is clear that for each 1,2,...,x α= , the node axv  has to be mapped to a node byv , 

where 1,2,...,y β= . Thus this refinement simply set all those entries ( , )ax jΦ to 0 
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if node jv  is not in the adjacency set of bv . The pseudo code is simply expressed 

as follows: 

 

 
Figure 20: The refinement procedure 

 

To illustrate the usefulness of our refinement procedure, we show an example in 

Figure 21. Figure 21(a) shows the library graph T and subject graph G. Figure 

21(b) shows the adjacency matrix for both graphs and the initial mapping 

matrix 0Φ . 

 

(a) 

refinment_procedure
0

( , ) 1
0

( ( , ) 1^ ( , ) 0) ( , ) 0;

T

for i to m
if M d i

for j to n
if M i j B k j M i j

end
end

end

< >
=

=
=

= = =
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(b) 

Figure 21: The library graph and subject graph and the initial permutation matrix. 

 

Next we illustrate how the search space is being explored and pruned at each 

depth. The complete search tree is given in Figure 22 and the exploration path and 

pruning at each depth is clearly labeled. Given the initial permutation matrix as 

shown in Figure 21(b), the algorithm first enter depth=1 and pick up the first 

unoccupied column that is one, in this case k=1. All remaining columns that are 

one in the same row are set to 0. The new permutation matrix after step 1 is 

obtained as follows: 
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Now the refinement procedure is applied to node 1 in T and node 1 in G. The 

adjacency list of node 1 of T is {2, 3} and that of node 1 of G is {2, 3}. There are 

only four possible mappings: 2 2;2 3;3 2;3 3→ → → → , hence we can safely 

eliminate (2,4), (3,4), (3,5)Φ Φ Φ . The permutation matrix after the refinement 

procedure is shown below: 

 

 

 

Now the algorithm advance to the second row (d=2), where there is only one 

candidate k=2 left to choose. Again we apply refinement procedure to node 2 in T 

and node 2 in G. and (4,2), (4,3)Φ Φ  are set to 0.  

 

 

 

Next the algorithm advance to third row d=3. In this case, although there are two 

candidates k=2 and k=3, the only valid one to choose is k=3, as the second 

column is already occupied at d=2. Note since node 3 in T has no successors, no 

refinement is needed.  



 76

 

 

 

Finally the algorithm reach the leaf node of the search tree (d=4) and it picks k=4. 

A candidate permutation matrix is formed as follows: 

 

 

 

Now the algorithm is at a leaf node of the search tree and the candidate 

permutation matrix is checked against condition (3). The above permutation 

matrix is valid and corresponds to the matching {(1,1), (2,2), (3,3), (4,4)}. The 

match is recorded and the algorithm starts to backtrack to check other candidate 

permutation matrices. 
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The original full enumeration algorithm generates 2 2 4 4 64× × × =  different 

candidate permutation matrices and tests each for validity. On the other hand, if 

the refinement procedure is applied, the search algorithm would reach the leaf of 

the search tree twice only. Thus the total number of candidate permutation 

matrices to be test for validity is also reduced to 2. This simple example illustrates 

the effectiveness of the refinement procedure in pruning the search tree.   

 

In Ullmann’s original algorithm, a refinement procedure that does a simple check 

on adjacencies was presented. The refinement procedure is effective in eliminating 

invalid node-to-node mappings before any k at each depth is picked. We call 

Ullmann’s refinement procedure “prior-refinement”. Interested readers may refer 

to [Ullmann] for details. On the other hand, our refinement procedure works in a 

different way: it eliminates invalid node-to-node mappings after a valid k has been 

picked. We call our refinement procedure “post-refinement”. We apply both 

prior-refinement and post-refinement to prune the search space to the best extend. 

As both refinement procedures eliminate invalid 1s inΦ , it is possible that after 

such elimination, some row may not contain any 1 at all, i.e. condition (2) is 

violated. If such a violation occurs before any search starts, it is sufficiently safe 

to conclude no valid sub-graph isomorphism exists. On the other hand, if such a 

violation occurs in the middle of a search path, it indicates there is no necessity to 

continue searching along this search path and the algorithm backtracks. To 

facilitate such operations, both refinement procedures return a FAIL status flag if 



 79

condition (&) is violated as a consequence of refinement.  

 

5.2.3 Convexity checking 

Although a permutation matrix Φ  that satisfies conditions (2) and (3) represents 

a correct sub-graph isomorphism, there is no guarantee on the obtained sub-graph 

to be logically correct, i.e. the convexity condition may not be satisfied. If care is 

not taken this may result in generating invalid program code. To illustrate this, an 

example is presented in Figure 23.  

 

 
Figure 23: Sub-graph isomorphism that violates the convexity constrain 

 

It is easy to verify the permutation matrix Φ  given in Figure 23 

satisfies 'TM M= Φ Φ . This permutation matrix specifies a mapping from the 
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nodes {1, 2, 3} in T to the nodes {1, 2, 4} in G.. However, the subject graph G has 

an “O” type structure such that the induced sub-graph 'G  by the nodes {1, 2, 4} 

is not a convex pattern. It is obvious that there is a forward dependency from 'G  

to node 3 and vise versa.  

 

To ensure only logically valid matches are generated, a convexity checking is 

applied after each permutation matrix is found. This convexity checking 

procedure is similar to the one applied during pattern generation stage. 

 

Finally, the complete sub-graph isomorphism algorithm is presented in Figure 24. 

 

 
Figure 24: The complete sub-graph isomorphism algorithm 
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5.3 Optimal instruction cover 

Given the set of discovered custom instruction matches in the application program, 

the task of finding the optimal cover for code generation is non-trivial. Since 

custom instruction matches do not cross basic blocks, the first complexity 

reduction method is to perform the cover on a per basic block basis.  

 

5.3.1 Problem formation 

A subject DAG ( , )G V E corresponds to the DFG of a basic block. A pattern that 

contains only one node is called a trivial pattern. Each node ,1iv i n≤ ≤  of G 

represents a basic instruction and can be covered by either a trivial pattern or a set 

of custom instruction matches. The complete set of matches that covers any node 

v V∈  is denoted as 1 2, ,..., qm m m . Each match jm  has an associated cost ( )jc m  

and speedup saving ( )js m . The cost is simply the hardware latency and the 

saving is the difference between hardware latency and software latency, as 

discussed in section 3.7. The optimal code generation problem or the optimal DFG 

covering problem is to select a set of matches { } { }1 2 1 2, ,..., , ,...,k qy y y m m m⊆  

such that the follow conditions are satisfied: 

 (1) All the nodes in G are covered: 1 2 ... ky y y V=U U U ; 

 (2) Any node is covered by exactly one match; 

 (3) The total cost 
1

( )
k

i
i

c y
=
∑  is minimized  
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Clark et. al. use an heuristic approach by assigning an desirability ordering to each 

custom instructions. If an elementary instruction can be covered by multiple 

custom instructions, the one with highest order is chosen. Cong et. al recasts the 

optimal code generation problem to Binate Covering, which was first applied to 

the DAG covering problem by Rudell [25] and Liao [17], etc. Binate covering is a 

NP-hard problem; nevertheless, much effort has been spent on finding the exact 

solution because of its wide applications. However, in our system, binate covering 

cannot be directly applied as it allows overlapped instructions.  

 

In our work, we define a n q× cover matrix M whose elements are either 0 or 1. 

Each row of M represents a node in G and each column of M represents a 

successful match instance. If match jm covers node iv , the corresponding entry is 

set to 1, i.e.: 

1
( , )

0
i jif v m

M i j
otherwise

∈⎧
= ⎨
⎩

 

Figure 21 gives an example on cover matrix. On the left side of Figure 21 is the 

DAG and all possible matches. Note 1 2 3, ,m m m  are custom patterns where as 

4 9m m−  are trivial patterns. The corresponding cover matrix is on the right upper 

corner of Figure 25.  

 

A valid cover scheme is represented by selecting columns such that for each row, 

there is exactly one 1 selected. The cost associated with this cover scheme is 

hence the sum of individual costs of the selected columns. An optimal cover 
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scheme is thus the one yields the lowest cost. 

 

We construct a branch-and-bound algorithm to find an exact optimal solution. 

Note there might be more than one optimal solutions and our algorithm would 

simply find one of them. 

 

 
Figure 25: Cover matrix and pre-processing 

 

5.3.2 Pre-processing 

Before the optimal covering algorithm is applied, it is often possible to perform 

cover matrix reduction. The idea is simple, if a node v is not covered by any of the 

custom instructions, we have no choice but cover it use trivial patterns. The trivial 

pattern that covers this node corresponds to an essential column. The essential 

columns and the rows they cover can be removed directly. The optimal covering 
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algorithm will be performed on the reduced cover matrix. Finally, the cost of the 

essential columns will be directly added to the cost of the reduced matrix to obtain 

the actual cost associated with the original cover matrix. This reduction is called 

pre-processing.  

 

In figure 25, there is no custom pattern covers node 4, hence 7m is an essential 

column. After pre-processing, the reduced matrix is shown on the right-bottom of 

figure 25. The effectiveness of this processing procedure is not very obvious in 

this example, however, in practice, it is a simple yet useful technique, considering 

the complexity of the branch-and-bound algorithm is exponential to the number of 

columns in the worst case. 

 

5.3.3 Heuristically search for an initial solution. 

The performance of the branch-and-bound algorithm in general depends on the 

quality of bound estimation and how fast a relatively good solution can be 

obtained. It would not be wise to start with zero solutions, instead a good guess as 

the starting point helps reduce subsequent searching efforts. In order to find a high 

quality initial cover, we apply a greedy selection procedure. The matches are 

sorted according to saving/cost ratio and the greedy selection procedure chooses 

from the highest priority to the lowest sequentially. Whenever y m∈  is selected, 

for each node iv  it covers, we remove the corresponding row from the covering 

matrix. The column corresponds to y is also removed. This step corresponds to 
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line 4-5 in figure 26 where we use cov{ }y to denote the set of rows that are 

covered by y. 

 

To ensure each node is covered by exactly one match, for each node i jv m∈ , all 

other columns km are checked. If iv  can be covered by km  as well, the column 

corresponds to km is also removed. This corresponds to line 7-11 in figure 26. 

 
Figure 26: The algorithm to find the initial cover. 

 

5.3.4 Lower bound calculation 

We use the variable X to denote the set of rows in the cover matrix, and Y, the set 

of matches to choose from. As the branch-and-bound algorithm traverse the 

search space, we use CPC to denote the total cost associated with the current path. 

We further maintain a global minimum cost GMC, which is at first initialized to 

1 2
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m m y
Y Y y
forall v y
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end

∀ ∈
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←∅
≠∅

=

← −
← −
← ∪

∈
∈

∈ ← −

11. ;
12. ;
13. ;

end
end
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the cost of the initial cover in step 1. As the branch-and-bound algorithm traverses 

the search space, if a better solution is found then GMC is updated accordingly. 

The lower bound of the remaining uncovered nodes is denoted as LBC. The cover 

problem at any intermediate nodes of the search tree is denoted as: 

, , , ,C X Y CPC LBC GMC=< > . 

 

IfCPC LBC GMC+ > , it indicates continuing searching any descendants cannot 

yield better solutions than the current best solution in hand, thus we bound at the 

current location. Otherwise we branch. It is straight forward to calculate the cost 

along the search path; however, it remains a challenging issue to calculate the 

lower bound. The lower bound should be as tight as possible so as to prune the 

search tree as early as possible.  

 

Definition 1:  

The weight of a row is the minimum cost among all the matches that covers that 

row. 

, ( , ) 1
( ) min ( )i jj M i j

Weight v Cost m
∀ =

=  

 

Definition 2: 

yXx xy∋∩= U)(τ , which is the union of the nodes of each y  that covers x . In 

other words, )(xτ  is the set of nodes that potentially can be covered if we branch 

to some y  that covers x .  
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Definition 3: 

An independent set 'X  of X w.r.t to τ  is a subset of X such that any two 

different rows '
1x and '

2x satisfies )(),( '
1

'
2

'
2

'
1 xxxx ττ ∉∉ .  

 

From the definition of )(xτ , it is clear that no single column y can cover both '
1x  

and '
2x . Moreover, from the definition of weight, it covers any two rows from the 

independent set, and the cost is greater than the sum of their weights, i.e. 

1 2 1 2({ ', '}) ( ') ( ')Cost x x Weight x Weight x≥ + . The following lemma can be proved: 

 

Lemma: 
' '

( ) min{ ( ')} ( ')
x X

Cost X Cost X Weight x
∈

≥ = ∑  

 

Therefore, the lower bound is set to the cost of covering 'X . However, the 

problem of finding an independent subset that maximizes this bound is NP-hard. 

In order to obtain a reasonably good lower bound in the shortest time, the 

optimality of finding maximum independent subset is compromised and a greedy 

algorithm is applied. It is worth noting that this tradeoff only affects how the 

search tree is pruned but not the optimality of the DAG covering problem itself. 
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Figure 27: The greedy algorithm that finds an independent subset of the rows X 

 

The algorithm presented above guarantees the selected rows in X’ are independent. 

Suppose there exists two elements ' ' ' '
1 2 1 2, ', . . ( )x x X s t x xτ∈ ∈ , from the definition 

of ( )xτ there exists an column ' '
1 2, . . ,y s t x y x y∈ ∈ , we have )( '

1
'
2 xx τ∈ . Line 4 

in the above algorithm removes '
1( )xτ if '

1x is selected first, or '
2( )xτ if '

2x  is 

selected first, hence it is impossible for ' '
1 2,x x  to be both selected. It follows that 

all the elements in 'X are independent.  

 

Finally, the lower bound cost LBC is simply the sum of the weights of all the rows 

in X’:  

'
( )

x X
LBC Weight x

∈

= ∑  

 

5.3.5 Sub-problem formation 

Similar to what is presented in chapter 3, if there is potential to continue 

branching at any intermediate node of the search tree, the cover problem at that 

node is divided into two sub-problems. First, the algorithm arbitrarily selects a 

independent_subset( )
1. ' ;
2. {
3. ' ;
4. ( ');
5. ' ' { '};
6. }
7. ';

X
X
while X do

x an element of X
X X x
X X x

return X

τ

< >
←∅

≠ ∅
←
← −
← ∪
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column y from the remaining columns, and then the two sub-problems are:  

Sub-problem 1:  

Consider y being included in the final solution, we shall remove column y 

from Y and remove all rows that are covered by y from X. In addition, if there 

is any unselected column 'y Y∈  that is overlapping with y, it is removed 

immediately. Thus the sub-problem is represented as: 

1 cov( ), { } ( ), cos ( ),C X y Y y overlap y CPC t y GMC=< − − − + >  

  

Sub-problem 2:  

Consider y being excluded from the final solution, i.e. y is simply discarded. 

We shall remove column y from Y, and the sub-problem is: 

1 , { }, ,C X Y y CPC GMC=< − >  

 

5.3.6 The branch-and-bound algorithm for optimal cover 

Figure 23 shows the overall pseudo code of the branch-and-bound algorithm that 

finds an optimal cover, given an initial cover. Line 2 corresponds to that a better 

solution is found and the global minimum cost is updated. Line 4-8 corresponds to 

finding the lower bound. It is worth noting the weight of each row has to be 

calculated in each recursive call, since the columns are changing. Line 9-21 

corresponds to continue branching at the current node.  
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Figure 28: The branch-and-bound algorithm that finds the optimal cover 

 

5.4 Code emission 

After the optimal DAG cover is obtained, the follow up and also the final step is 

actual code emission. However, since there is no restriction on custom instruction 

structures, provided the convexity and input-output constrains are satisfied, 

reordering of instructions may be necessary. This issue is addressed in [26] and 

interested readers may refer to it. 
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5.5 Conclusion 

In this chapter, the application mapping problem is discussed. The importance of 

application mapping is due to the fact the software rarely runs on the custom 

processor once and away. Thus the approach that combines pattern generation, 

selection and binary code modification into one shot, as in some pervious works, 

is of little practical usage. In this work, the application mapping problem is 

decomposed into two sub-problems: custom instruction matching and optimal 

code generation. For the former, Ullmann’s general graph matching algorithm is 

employed as the basis and new refinement procedures are added to effectively 

prune the search space. For the latter, a branch-and-bound algorithm is formulated 

to find the optimal DAG cover from the pool of custom instruction matches and 

trivial patterns. Effective pre-processing procedures and lower bound calculation 

for the branch-and-bound algorithm are presented. 
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Chapter 6: Experimental Results 

6.1 Environment, libraries and third-party packages 

The automation system presented in the previous chapters is implemented in a 

standard Linux/C++ environment. In addition, to facilitate efficient 

implementation, we used three third-party software packages. Besides the 

SimpleScalar simulation framework and the Nauty graph isomorphism library, the 

LEDA graph library is used.  As the core of the algorithm is combinatory 

programming, efficient and easy-to-use data structures for graphs and 

parameterized graphs are of primary concern. The LEDA library [21] is specially 

designed for applications in graphs, geometric computations, combinatorial 

optimization and other. It offers a variety of relevant building blocks that are 

needed in our system. More specifically, it provides object based data structures 

including not only graphs, but also queues, linear lists, and hash tables etc.  

 

As a side note, at the time this thesis is written, the newer versions of the LEDA 

library are commercialized. In our work, we used version 4.2 which is free for 

academic researchers.  

 

6.2 Benchmark programs 

The benchmark programs used in this work comes from two sources: MiBecnh 

and the H.264/AVC [15] reference software JM8.6. The details of the benchmarks 
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used in this work are listed in table 5.  

 

Table 5: List of benchmark programs 

 Benchmark Domain Maximum basic 

block size 

dijistra Network 24 

patricia Network 46 

sha Security 31 

crc32 Telecom 14 

FFT Telecom 57 

IFFT Telecom 57 

rawcaudio Telecom 12 

rawdaudio Telecom 11 

bitcnts Automotive 46 

MiBench 

basicmath Automotive 52 

H.264/AVC Encoder Multimedia 256 

 

Instead of performing the algorithm on each individual basic blocks, we purposely 

masked out some basic blocks belong to system libraries such as I/O processing 

(e.g. file processing), memory management (e.g. malloc, memcpy, etc), etc. 

However, basic blocks belong to arithmetic related libraries, such as the math 

library, or the low level multiple-precision arithmetic library, are not filtered.  

This filtering process helps to avoid spending time in non-profiting basic blocks. 

For example, for benchmark “sha”, the number of remaining basic blocks after 

filtering is only 59 whereas the original total number is 471. In additional, we 

want to see the true speed up from the application’s native code. Hence, the 
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filtering process also helps to remove system libraries’ interferences.  

 

All benchmarks are compiled using the SimpleScalar ported gcc (gcc-2.7.2.3) 

with their standard compiling options, e.g. –O3 for MiBench.  

 

6.3 Speedup ratio calculation 

The speedup ratio is calculated over all valid basic blocks. Using swT  and hwT to 

represent a basic block’s old execution cycles and new execution cycles after 

custom instruction mapping, we have the following formula: 

 

1 100%

( ) ( )
1 100%

( ) ( )

sw i i
i

hw i i
i

old execution cyclesSpeedup ratio
new execution cycles

T BB freq BB

T BB freq BB

⎛ ⎞
= − ×⎜ ⎟
⎝ ⎠

⎛ ⎞⋅
⎜ ⎟= − ×⎜ ⎟⋅⎜ ⎟
⎝ ⎠

∑
∑

 

 

6.4 The effects of input output constraints 

To evaluate the effects of input-output constraints, experiments are performed on 

the seven benchmark programs from MiBench. The input constraint varies from 3 

to 8 and the output constraint varies from 1 to 3. When the output constraint is set 

to 1, the generated custom instructions are MISO patterns. Figures 29-37 show the 

speedup against all input-output constraint configurations for each benchmark  
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Figure 29 : Dijistra: speed up vs. different input-output constrains. 
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Figure 30: Patricia: speed up vs. different input-output constrains. 
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Figure 31: FFT: speed up vs. different input-output constrains. 
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crc
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Figure 32: Crc: speed up vs. different input-output constrains. 
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Figure 33 : Sha: speed up vs. different input-output constrains. 
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Figure 34 : Rawcaudio: speed up vs. different input-output constrains. 
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Figure 35: Rawdaudio: speed up vs. different input-output constrains. 
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Figure 36: Bitcnts: speed up vs. different input-output constrains. 
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Figure 37: Basicmath: speed up vs. different input-output constrains. 
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6.4.1 Input constraint 

For most benchmark programs, the speedup increases as the input constraint is 

relaxed, e.g. “patricia”, “FFT”, “sha”, and “basicmath”. Input constraint is closely 

related to custom instruction size. By relaxing the input constraint, larger patterns 

can be discovered. In general, large patterns are more “economic” as they pack a 

large number of instructions in only a few processor cycles. However, speedup 

becomes saturated as more inputs are allowed. The reason is as pattern becomes 

larger, it is more difficult to find instructions that can be executed on the custom 

hardware.  

 

Some benchmarks, such as “crc”, “rawcaudio”, “rawdaudio” and “bitcnts”, the 

speedup saturates very early. An extreme example is “rawcaudio”, where all 

custom instructions are found when the input constraint is set to 3. There is no 

additional speedup obtained as input constraint increases from 3 to 8.  

 

6.4.2 Output constraint 

In almost all cases, there are no noticeable speedup differences between 2-output 

and 3-output custom instructions. This observation suggests for real applications, 

the output constraint can be set to 2 as an optimal balance between efficiency and 

accuracy. On the other hand, MISO custom instructions (1-output) may result in 

inferior performance. For instance, in “patricia”, the speedup of 1-output 

configuration underperforms 2-output configuration by 10%-15%. In “FFT” and 

“basicmath”, the measured difference is about 5% for all input configurations. 
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Although in other benchmarks 1-output configurations performs as well as other 

configurations, we believe, MIMO patterns should always be used to ensure 

guaranteed performance. 

 

6.5 Effects of number of custom instructions 

In some extensible instruction set processors, there is a limit on the total number 

of custom instructions. In this simulation, we vary the library size from 1 to 25 

and observe the corresponding speedup ratios. To prevent any performance 

limitation due to input-output constraints, we set it to the maximum case, 

8-input-3-output. The results are shown in Figure 38 below. It is clear for all 

benchmarks, at least 90% of the maximum speedup can be achieved with library 

size limit set to 25. In general, all the curves rise rather fast for the first few 

custom instructions (<8), and the rising speed decreases as additional custom 

instructions are added. This phenomenon matches the nature of our greedy pattern 

selection algorithm: patterns that have greater speedup potential are selected first. 

For some benchmarks (crc, rawcaudio, rawdaudio, sha, dijistra, and bitcnts), the 

speedup ratio saturates in about 10 custom instructions, hence, resulting in very 

steep curves. On the other hand, the speedup ratio of other benchmarks (FFT, 

IFFT, patricia, and basicmath) keeps increasing until the maximal library size, but 

at a much slower increasing rate.  
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Figure 38: Effects of custom instruction set size 

 

6.6 Cross-application mapping 

First addressed in [4], cross-application mapping or cross-compilation can be used 

to examine the generalizability of custom instructions among applications in the 

same domain.  The domains of the benchmarks are shown in Table 5 and we 
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perform cross-compilation within each domain accordingly. In addition, a few 

simulations are performed on selected cross-domain benchmarks. For all 

simulations in this section, other constraints are relaxed, i.e. maximum 

input-output constraint is used and there is no limitation on library size. Table 6 

bellow gives the complete simulation list. For each source-target 

cross-compilation pair, the source benchmarks are used to generate the custom 

instructions and the target benchmark is then mapped to the generated instruction 

set.  The Abbrev column gives the corresponding abbreviation that will be used 

in the figures later. 

 

Table 6: The list of cross-compilations 
Domain Source  Target  Abbrev. 

patricia dijistra pat2dij Network 
dijistra patricia dij2pat 
bitcnts basicmath bit2math Automotive 
basicmath bitcnts math2bit 
FFT IFFT FFT2IFFT 
IFFT FFT IFFT2FFT 
rawcaudio rawdaudio rawc2rawd 
rawdaudio rawcaudio rawd2rawc 
FFT crc FFT2crc 
crc FFT crc2FFT 
FFT rawcaudio FFT2rawc 
rawcaudio FFT rawc2FFT 
crc rawcaudio crc2rawc 

Telecom 

rawcaudio crc rawc2crc 
sha crc sha2crc 
crc sha crc2sha 
basicmath FFT math2FFT 

Cross-domain 

FFT basicmath FFT2math 
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Figure 39: Speedup ratios of selected cross-compilation 1 
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Figure 40: Speedup ratios of selected cross-compilation 2 

 

Figures 39 and 40 show the speedup ratio of each cross-compilation benchmark 

pairs. Figure 39 covers “Network”, “Automotive”, and “Cross-domain” whereas 

figure 40 covers “Telecom”. In most cases the speedup-ratio for cross-compilation 



 103

is lower than that of native compilation. For instance, a maximum speedup of 

55.9% is achieved for “dijistra-dijistra” native compilation whereas only 24% is 

achieved for “patricia-dijistra” cross compilation. Similarly, the “dijistra-patricia” 

cross compilation only achieves 3.9% whereas the native compilation achieves 

33.5%.  

 

However, there are a few cross-compilation pairs for which, the speedup-ratio is 

as good as their native compilation. For instance, the native compilation of 

“basicmath” has a record of 26.7%, whereas the “FFT-basicmath” 

cross-compilation achieves 29.8%. Considering the maximum library size for 

native compilation is set to 25 whereas there is no limit for cross compilation, the 

speedup ratios can be considered close. In additional, similar results are obtained 

for “FFT-IFFT”, “IFFT-FFT”, “basicmath-FFT”, and “FFT-rawcaudio”. In 

previous section it is observed the speedup ratio for “FFT” and “basicmath” 

increases gradually as number of patterns added. In deed, after a close look at the 

extracted custom instructions, it is observed that “FFT” and “basicmath” each 

generates a large number of small patterns. Hence, if these two are used for 

custom instruction generation, there is a higher chance that other applications can 

benefit from it. On the other hand, other applications, such as “sha” only generates 

8 custom instructions and some are of larger size (largest one contains 7 

instructions), it is hence much more difficult for other applications to benefit from 

these custom instructions.  
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6.7 Case study: H.264/AVC encoder 

In this section, a case study on a practical application H.264/AVC is performed. 

H.264/AVC is an important video coding standard and it covers various 

application domains ranging from low bit-rate video-conferencing to high-quality 

multimedia entertainment.  

 

 
Figure 41: Basic coding structure for H.264/AVC for a macroblock. 

 

Figure 41 shows the basic coding structure of a macroblock. The shaded blocks 

will be studied for custom instruction. In our experiments, the H.264/AVC 

standard reference software JM8.6 is complied using SimpleScalar ported 

gcc-2.7.2.3, with –O2 option. We simulated the encoder using the following 

configurations: Hadamard transform on, three reference frames for motion 

estimation, P-frames on, B-frames off, context adaptive binary arithmetic coding 
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(cabac) on, rate-distortion optimization on. We use the “forman” sequence in 

QCIF size as input. The “forman” QCIF sequence is a representative testing 

sequence for low bit-rate applications. There are 50 frames in total encoded. 

 

To study a specific block in the application, we first analyze the source and find 

out the corresponding C/C++ functions. Since the text symbols are dumped into a 

file during program trace generation, we are able to identify the starting and 

ending addresses of each user functions. We manually find the address range of 

the target functions and use it as an argument of the custom instruction generation 

engine. The custom instruction generation engine would filter out basic blocks 

that are not in the address range; effectively it means only the target regions are 

explored. Similar filtering is performed in the application mapping stage. 

 

We identified five interesting aspects of the H.264/AVC system as targets. The 

corresponding function names and address are given in Table 7 below. For a 

complete list of text symbols, their associated address, and size, etc, please refer to 

appendix A. 
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Table 7: H.264 building blocks, function names and address range 

H.264 Building block Function names Address range 

DCT, Quantization 
dct_luma, dct_luma_sp, dct_chroma, 

dct_chroma_sp 
00404630-0040D808 

Full-pel FullPelBlockMotionSearch 00467230-00467FD8 

Sub-pel SubPelBlockMotionSearch 004688C0-0046A3B0 

Motion 

Vector 

Estimation SAD SATD 00467FD8-004688C0 

Motion Compensation 

LumaPrediction4x4, 

ChromaPrediction4x4, 

OneComponentLumaPrediction4x4, 

OneComponentChromaPrediction4x4, 

intrapred_luma, intrapred_luma_16x16, 

IntraChromaPrediction8x8, 

IntraChromaPrediction4x4 

00401F90-00404630 

004441C8-00445420 

00445BA8-004470F8 

00442750-00443328 

00441FE8-004425D8 

Debloking Filter 
DeblockFrame, DeblockMb, 

GetStrength, EdgeLoop 
0043D4A0-0043FAA0 

Arithmetic coding 

(cabac) 

biari_encode_symbol, 

biari_encode_symbol_eq_prob 
00400F10-004019C0 

 

The details of the simulation results are given in Table 8. For each simulation, we 

list out the total number of basic blocks fall in that address range, the maximum 

basic block size, the old execution cycles and the new execution cycles after 

custom instruction mapping, and finally the speedup ratio. The one that achieves 

highest speedup ratio is integer transform (DCT, quantization). The speedup ratio 

is 32.1% and it is similar to that of FFT in MiBench, as these two are similar in 

nature.  
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Table 8: the simulation results for H.264/AVC 

H.264 Building 

block 
Number 
of BBs 

Max 
BB 
size 

Old exec. 
cycles 

New exec. 
cycles 

Speed-
up 
ratio 

DCT, 
Quantization 231 83 12125777395 9177001147 32.1 
Motion 
Estimation 109 256 17886087760 15723919802 13.8 

ME Full-pel 10 57 6999213134 5953800228 17.6 

ME Sub-pel 91 40 6124885118 5476646006 11.8 

SATD 8 256 4761989508 4290551088 11.0 

Motion 
Compensation 352 62 1313550736 1070812678 22.7 

Deblock Filter 176 42 160275540 130182453 23.1 

cabac 60 15 4122943229 3446346518 19.6 

 

In the following part, we give the first four popular patterns for each building 

block. The patterns are arranged in decreasing popularity order from left to right. 

 

 
Figure 42: Four most popular patterns for DCT and Quantization 
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Figure 43: Four most popular patterns for Motion Estimation 

 

 
Figure 44: Four most popular patterns for Motion Compensation 

 

 
Figure 45: Four most popular patterns for Debloking Filter 
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Figure46: Four most popular patterns for Arithmetic Coding (cabac) 

 

Finally, we applied our system on the entire H.264/AVC software (i.e. including 

miscellaneous functions such as initializing coding parameters, writing bit streams, 

etc, and the overall speedup is measured to be 16.6%.  

 

6.8 Conclusion 

In this chapter, experiments are setup to show our system’s ability in identifying 

efficient custom instructions. We first performed a series of experiments on 

selected benchmarks from MiBench. We analyzed the effects of input-output 

constraint, custom instruction set size, and cross-application mapping. Interested 

users may refer to [4] and [30] for further verification. Finally, we performed an 

case study on H.264/AVC reference software and showed the identified custom 

patterns. However, it should be noted that the H.264/AVC reference software is 
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none-optimized; hence the identified patterns given here may not be practically 

the best solution. Due to the time limits and the unavailability of highly optimized 

video codec, we have not applied our system to a more practical H.264/AVC 

implementation. It is suggested that it should be done in the future work. 
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Chapter 7: Conclusion 

More and more embedded applications have stringent requirements in terms of 

high-performance and low-power. Examples are handheld devices and 3G 

hand-phones for which integrated camera and video coding now become basic 

requirements. While traditional DSP processors are difficult to meet these 

stringent demands, application specific instruction set processors are shown to be 

effective in meeting the performance and power demands. However, designing 

these custom instructions is traditionally done by experts and intensive manual 

work is necessary. Recently, researchers have been interested in designing 

automated methods that free people from such workloads. Standard approach is to 

explore the application’s data flow graph and discover pattern candidates that can 

potentially improve performance if implemented in hardware. However, due to the 

NP-hardness of pattern enumeration problem, most proposed systems use heuristic 

methods to grow patterns from random seed nodes in the DFG. Moreover, the 

problem of application to custom instruction set mapping is avoided in most 

previous works. In this work, we propose an automated system that generates all 

valid patterns and performs the optimal application mapping.  

 

In chapter 2 we introduced the trace collection and DFG construction methods. In 

chapter 3, Pan’s improved full pattern enumeration method and its limitations are 

discussed. In chapter 4, we presented the pattern representation format and 
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canonical labeling using the Nauty graph library. A greedy algorithm is proposed 

to select the final set of custom instructions from a large candidate pool. The core 

of the greedy algorithm is the maximal speedup potential calculation of each 

pattern. We use the maximal speedup potential as a priority function that guides 

the greedy algorithm. In chapter 5, application mapping is discussed. We proposed 

a modified version of Ullmann’s graph isomorphism algorithm to perform 

application matching. Finally, optimal code generation is achieved using a 

branch-and-bound algorithm that minimizes the total execution cycles. In chapter 

6, experiment results are presented. We use MiBench to study the effects of 

input-output constraints, custom instruction set size and cross-application 

compilation. In addition, a case study on real applications, i.e. H.264/AVC is 

performed and results are presented. Experiments show that our system is able to 

identify the critical patterns and almost all applications can benefit from custom 

instruction and the speedup ratios are in the range 15%-70%.  

 

We note the limitations of the current systems as follows: 

 The pattern selection phase is sub-optimal. However, we believe no practical 

solution exists for exact optimal pattern selection. 

 For difficult DFGs (please refer to chapter 2), the runtime of pattern 

enumeration phase may be impractical. We propose two possible 

improvements to get around this problem in future works:  

 Implement an efficient but not necessarily optimal method that identifies 
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isomorphic nodes in a pattern. As mentioned before, difficult DFGs 

usually posses high degree of regularity. If we can partition the nodes into 

equivalent groups, the complexity of enumeration can be greatly reduced.  

 A heuristic pattern generation algorithm, similar to those in 

[Nathan][Sun], should be built into the system, in parallel with the 

current full enumeration method. The system should be intelligent 

enough to switch between these two modes depending on the difficulty of 

the DFGs.  

 Due to the time constraint, the application mapping algorithm has not been 

ported to real compilers. Instead we performed all simulation within the 

SimpleScalar framework. Nevertheless, the validity of the experiment results 

presented in chapter 6 is not affected. 
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Appendix 

Appendix A 

** Text symbols sorted by address: 
sym `WriteAnnexbNALU': text seg, init-y, pub-y, local-n, addr=0x004001f0, size=1024 
sym `OpenAnnexbFile': text seg, init-y, pub-y, local-n, addr=0x004005f0, size=144 
sym `CloseAnnexbFile': text seg, init-y, pub-y, local-n, addr=0x00400680, size=112 
sym `arienco_create_encoding_environment': text seg, init-y, pub-y, local-n, addr=0x004006f0, 
size=128 
sym `arienco_delete_encoding_environment': text seg, init-y, pub-y, local-n, addr=0x00400770, 
size=160 
sym `arienco_start_encoding': text seg, init-y, pub-y, local-n, addr=0x00400810, size=112 
sym `arienco_bits_written': text seg, init-y, pub-y, local-n, addr=0x00400880, size=72 
sym `arienco_done_encoding': text seg, init-y, pub-y, local-n, addr=0x004008c8, size=1608 
sym `biari_encode_symbol': text seg, init-y, pub-y, local-n, addr=0x00400f10, size=1528 
sym `biari_encode_symbol_eq_prob': text seg, init-y, pub-y, local-n, addr=0x00401508, size=1208 
sym `biari_encode_symbol_final': text seg, init-y, pub-y, local-n, addr=0x004019c0, size=1240 
sym `biari_init_context': text seg, init-y, pub-y, local-n, addr=0x00401e98, size=248 
sym `intrapred_luma': text seg, init-y, pub-y, local-n, addr=0x00401f90, size=7224 
sym `intrapred_luma_16x16': text seg, init-y, pub-y, local-n, addr=0x00403bc8, size=2664 
sym `dct_luma_16x16': text seg, init-y, pub-y, local-n, addr=0x00404630, size=7696 
sym `dct_luma': text seg, init-y, pub-y, local-n, addr=0x00406440, size=4248 
sym `dct_chroma': text seg, init-y, pub-y, local-n, addr=0x004074d8, size=6648 
sym `dct_luma_sp': text seg, init-y, pub-y, local-n, addr=0x00408ed0, size=6984 
sym `dct_chroma_sp': text seg, init-y, pub-y, local-n, addr=0x0040aa18, size=11760 
sym `copyblock_sp': text seg, init-y, pub-y, local-n, addr=0x0040d808, size=3176 
sym `cabac_new_slice': text seg, init-y, pub-y, local-n, addr=0x0040e470, size=16 
sym `CheckAvailabilityOfNeighborsCABAC': text seg, init-y, pub-y, local-n, addr=0x0040e480, 
size=472 
sym `create_contexts_MotionInfo': text seg, init-y, pub-y, local-n, addr=0x0040e658, size=128 
sym `create_contexts_TextureInfo': text seg, init-y, pub-y, local-n, addr=0x0040e6d8, size=128 
sym `delete_contexts_MotionInfo': text seg, init-y, pub-y, local-n, addr=0x0040e758, size=56 
sym `delete_contexts_TextureInfo': text seg, init-y, pub-y, local-n, addr=0x0040e790, size=56 
sym `writeSyntaxElement_CABAC': text seg, init-y, pub-y, local-n, addr=0x0040e7c8, size=256 
sym `writeFieldModeInfo_CABAC': text seg, init-y, pub-y, local-n, addr=0x0040e8c8, size=488 
sym `writeMB_skip_flagInfo_CABAC': text seg, init-y, pub-y, local-n, addr=0x0040eab0, 
size=728 
sym `writeMB_typeInfo_CABAC': text seg, init-y, pub-y, local-n, addr=0x0040ed88, size=3816 
sym `writeB8_typeInfo_CABAC': text seg, init-y, pub-y, local-n, addr=0x0040fc70, size=1352 
sym `writeIntraPredMode_CABAC': text seg, init-y, pub-y, local-n, addr=0x004101b8, size=360 
sym `writeRefFrame_CABAC': text seg, init-y, pub-y, local-n, addr=0x00410320, size=1960 
sym `writeDquant_CABAC': text seg, init-y, pub-y, local-n, addr=0x00410ac8, size=440 
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sym `writeMVD_CABAC': text seg, init-y, pub-y, local-n, addr=0x00410c80, size=1720 
sym `writeCIPredMode_CABAC': text seg, init-y, pub-y, local-n, addr=0x00411338, size=464 
sym `writeCBP_BIT_CABAC': text seg, init-y, pub-y, local-n, addr=0x00411508, size=648 
sym `writeCBP_CABAC': text seg, init-y, pub-y, local-n, addr=0x00411790, size=984 
sym `write_and_store_CBP_block_bit': text seg, init-y, pub-y, local-n, addr=0x00411b68, 
size=2504 
sym `write_significance_map': text seg, init-y, pub-y, local-n, addr=0x00412530, size=1224 
sym `write_significant_coefficients': text seg, init-y, pub-y, local-n, addr=0x004129f8, size=800 
sym `writeRunLevel_CABAC': text seg, init-y, pub-y, local-n, addr=0x00412d18, size=704 
sym `unary_bin_encode': text seg, init-y, pub-y, local-n, addr=0x00412fd8, size=304 
sym `unary_bin_max_encode': text seg, init-y, pub-y, local-n, addr=0x00413108, size=360 
sym `exp_golomb_encode_eq_prob': text seg, init-y, pub-y, local-n, addr=0x00413270, size=328 
sym `unary_exp_golomb_level_encode': text seg, init-y, pub-y, local-n, addr=0x004133b8, 
size=416 
sym `unary_exp_golomb_mv_encode': text seg, init-y, pub-y, local-n, addr=0x00413558, size=536 
sym `JMHelpExit': text seg, init-y, pub-y, local-n, addr=0x00413770, size=88 
sym `Configure': text seg, init-y, pub-y, local-n, addr=0x004137c8, size=4376 
sym `CeilLog2': text seg, init-y, pub-y, local-n, addr=0x004148e0, size=7576 
sym `PatchInputNoFrames': text seg, init-y, pub-y, local-n, addr=0x00416678, size=1720 
sym `create_context_memory': text seg, init-y, pub-y, local-n, addr=0x00416d30, size=1424 
sym `free_context_memory': text seg, init-y, pub-y, local-n, addr=0x004172c0, size=384 
sym `SetCtxModelNumber': text seg, init-y, pub-y, local-n, addr=0x00417440, size=512 
sym `init_contexts': text seg, init-y, pub-y, local-n, addr=0x00417640, size=5560 
sym `XRate': text seg, init-y, pub-y, local-n, addr=0x00418bf8, size=640 
sym `GetCtxModelNumber': text seg, init-y, pub-y, local-n, addr=0x00418e78, size=5288 
sym `store_contexts': text seg, init-y, pub-y, local-n, addr=0x0041a320, size=368 
sym `update_field_frame_contexts': text seg, init-y, pub-y, local-n, addr=0x0041a490, size=640 
sym `decode_one_b8block': text seg, init-y, pub-y, local-n, addr=0x0041a710, size=3312 
sym `decode_one_mb': text seg, init-y, pub-y, local-n, addr=0x0041b400, size=8 
sym `Get_Reference_Block': text seg, init-y, pub-y, local-n, addr=0x0041b408, size=376 
sym `Get_Reference_Pixel': text seg, init-y, pub-y, local-n, addr=0x0041b580, size=5008 
sym `UpdateDecoders': text seg, init-y, pub-y, local-n, addr=0x0041c910, size=312 
sym `DecOneForthPix': text seg, init-y, pub-y, local-n, addr=0x0041ca48, size=376 
sym `compute_residue_b8block': text seg, init-y, pub-y, local-n, addr=0x0041cbc0, size=752 
sym `compute_residue_mb': text seg, init-y, pub-y, local-n, addr=0x0041ceb0, size=160 
sym `Build_Status_Map': text seg, init-y, pub-y, local-n, addr=0x0041cf50, size=976 
sym `Error_Concealment': text seg, init-y, pub-y, local-n, addr=0x0041d320, size=464 
sym `Conceal_Error': text seg, init-y, pub-y, local-n, addr=0x0041d4f0, size=4160 
sym `DefineThreshold': text seg, init-y, pub-y, local-n, addr=0x0041e530, size=352 
sym `DefineThresholdMB': text seg, init-y, pub-y, local-n, addr=0x0041e690, size=752 
sym `get_mem_mincost': text seg, init-y, pub-y, local-n, addr=0x0041e980, size=1288 
sym `get_mem_bwmincost': text seg, init-y, pub-y, local-n, addr=0x0041ee88, size=1288 
sym `get_mem_FME': text seg, init-y, pub-y, local-n, addr=0x0041f390, size=208 
sym `free_mem_mincost': text seg, init-y, pub-y, local-n, addr=0x0041f460, size=736 
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sym `free_mem_bwmincost': text seg, init-y, pub-y, local-n, addr=0x0041f740, size=736 
sym `free_mem_FME': text seg, init-y, pub-y, local-n, addr=0x0041fa20, size=104 
sym `PartCalMad': text seg, init-y, pub-y, local-n, addr=0x0041fa88, size=896 
sym `FastIntegerPelBlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x0041fe08, 
size=14056 
sym `AddUpSADQuarter': text seg, init-y, pub-y, local-n, addr=0x004234f0, size=2576 
sym `FastSubPelBlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x00423f00, size=3104 
sym `decide_intrabk_SAD': text seg, init-y, pub-y, local-n, addr=0x00424b20, size=336 
sym `skip_intrabk_SAD': text seg, init-y, pub-y, local-n, addr=0x00424c70, size=464 
sym `error': text seg, init-y, pub-y, local-n, addr=0x00424e40, size=120 
sym `start_sequence': text seg, init-y, pub-y, local-n, addr=0x00424eb8, size=488 
sym `terminate_sequence': text seg, init-y, pub-y, local-n, addr=0x004250a0, size=1760 
sym `FmoInit': text seg, init-y, pub-y, local-n, addr=0x00425780, size=200 
sym `FmoUninit': text seg, init-y, pub-y, local-n, addr=0x00425848, size=2840 
sym `FmoStartPicture': text seg, init-y, pub-y, local-n, addr=0x00426360, size=240 
sym `FmoEndPicture': text seg, init-y, pub-y, local-n, addr=0x00426450, size=16 
sym `FmoMB2SliceGroup': text seg, init-y, pub-y, local-n, addr=0x00426460, size=288 
sym `FmoGetNextMBNr': text seg, init-y, pub-y, local-n, addr=0x00426580, size=272 
sym `FmoGetPreviousMBNr': text seg, init-y, pub-y, local-n, addr=0x00426690, size=184 
sym `FmoGetFirstMBOfSliceGroup': text seg, init-y, pub-y, local-n, addr=0x00426748, size=288 
sym `FmoGetLastCodedMBOfSliceGroup': text seg, init-y, pub-y, local-n, addr=0x00426868, 
size=264 
sym `FmoSetLastMacroblockInSlice': text seg, init-y, pub-y, local-n, addr=0x00426970, size=208 
sym `FmoGetFirstMacroblockInSlice': text seg, init-y, pub-y, local-n, addr=0x00426a40, size=40 
sym `FmoSliceGroupCompletelyCoded': text seg, init-y, pub-y, local-n, addr=0x00426a68, 
size=88 
sym `SliceHeader': text seg, init-y, pub-y, local-n, addr=0x00426ac0, size=7952 
sym `get_picture_type': text seg, init-y, pub-y, local-n, addr=0x004289d0, size=248 
sym `Partition_BC_Header': text seg, init-y, pub-y, local-n, addr=0x00428ac8, size=600 
sym `MbAffPostProc': text seg, init-y, pub-y, local-n, addr=0x00428d20, size=1320 
sym `code_a_picture': text seg, init-y, pub-y, local-n, addr=0x00429248, size=1808 
sym `encode_one_frame': text seg, init-y, pub-y, local-n, addr=0x00429958, size=4160 
sym `frame_picture': text seg, init-y, pub-y, local-n, addr=0x0042a998, size=624 
sym `field_picture': text seg, init-y, pub-y, local-n, addr=0x0042ac08, size=8344 
sym `UnifiedOneForthPix': text seg, init-y, pub-y, local-n, addr=0x0042cca0, size=11816 
sym `dummy_slice_too_big': text seg, init-y, pub-y, local-n, addr=0x0042fac8, size=16 
sym `copy_rdopt_data': text seg, init-y, pub-y, local-n, addr=0x0042fad8, size=16968 
sym `RandomIntraInit': text seg, init-y, pub-y, local-n, addr=0x00433d20, size=624 
sym `RandomIntra': text seg, init-y, pub-y, local-n, addr=0x00433f90, size=136 
sym `RandomIntraNewPicture': text seg, init-y, pub-y, local-n, addr=0x00434018, size=256 
sym `RandomIntraUninit': text seg, init-y, pub-y, local-n, addr=0x00434118, size=72 
sym `get_LeakyBucketRate': text seg, init-y, pub-y, local-n, addr=0x00434160, size=416 
sym `PutBigDoubleWord': text seg, init-y, pub-y, local-n, addr=0x00434300, size=192 
sym `write_buffer': text seg, init-y, pub-y, local-n, addr=0x004343c0, size=624 
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sym `Sort': text seg, init-y, pub-y, local-n, addr=0x00434630, size=224 
sym `calc_buffer': text seg, init-y, pub-y, local-n, addr=0x00434710, size=1968 
sym `main': text seg, init-y, pub-y, local-n, addr=0x00434ec0, size=4792 
sym `report_stats_on_error': text seg, init-y, pub-y, local-n, addr=0x00436178, size=344 
sym `init_poc': text seg, init-y, pub-y, local-n, addr=0x004362d0, size=440 
sym `CAVLC_init': text seg, init-y, pub-y, local-n, addr=0x00436488, size=272 
sym `init_img': text seg, init-y, pub-y, local-n, addr=0x00436598, size=2512 
sym `free_img': text seg, init-y, pub-y, local-n, addr=0x00436f68, size=224 
sym `malloc_picture': text seg, init-y, pub-y, local-n, addr=0x00437048, size=128 
sym `free_picture': text seg, init-y, pub-y, local-n, addr=0x004370c8, size=96 
sym `report': text seg, init-y, pub-y, local-n, addr=0x00437128, size=15640 
sym `information_init': text seg, init-y, pub-y, local-n, addr=0x0043ae40, size=328 
sym `init_global_buffers': text seg, init-y, pub-y, local-n, addr=0x0043af88, size=2224 
sym `free_global_buffers': text seg, init-y, pub-y, local-n, addr=0x0043b838, size=1704 
sym `get_mem_mv': text seg, init-y, pub-y, local-n, addr=0x0043bee0, size=1264 
sym `free_mem_mv': text seg, init-y, pub-y, local-n, addr=0x0043c3d0, size=792 
sym `get_mem_ACcoeff': text seg, init-y, pub-y, local-n, addr=0x0043c6e8, size=688 
sym `get_mem_DCcoeff': text seg, init-y, pub-y, local-n, addr=0x0043c998, size=472 
sym `free_mem_ACcoeff': text seg, init-y, pub-y, local-n, addr=0x0043cb70, size=408 
sym `free_mem_DCcoeff': text seg, init-y, pub-y, local-n, addr=0x0043cd08, size=256 
sym `combine_field': text seg, init-y, pub-y, local-n, addr=0x0043ce08, size=888 
sym `decide_fld_frame': text seg, init-y, pub-y, local-n, addr=0x0043d180, size=208 
sym `process_2nd_IGOP': text seg, init-y, pub-y, local-n, addr=0x0043d250, size=248 
sym `SetImgType': text seg, init-y, pub-y, local-n, addr=0x0043d348, size=344 
sym `DeblockFrame': text seg, init-y, pub-y, local-n, addr=0x0043d4a0, size=264 
sym `DeblockMb': text seg, init-y, pub-y, local-n, addr=0x0043d5a8, size=1968 
sym `GetStrength': text seg, init-y, pub-y, local-n, addr=0x0043dd58, size=3896 
sym `EdgeLoop': text seg, init-y, pub-y, local-n, addr=0x0043ec90, size=3600 
sym `set_MB_parameters': text seg, init-y, pub-y, local-n, addr=0x0043faa0, size=664 
sym `clip1a': text seg, init-y, pub-y, local-n, addr=0x0043fd38, size=64 
sym `proceed2nextMacroblock': text seg, init-y, pub-y, local-n, addr=0x0043fd78, size=656 
sym `start_macroblock': text seg, init-y, pub-y, local-n, addr=0x00440008, size=4600 
sym `terminate_macroblock': text seg, init-y, pub-y, local-n, addr=0x00441200, size=3048 
sym `slice_too_big': text seg, init-y, pub-y, local-n, addr=0x00441de8, size=512 
sym `OneComponentLumaPrediction4x4': text seg, init-y, pub-y, local-n, addr=0x00441fe8, 
size=1520 
sym `copyblock4x4': text seg, init-y, pub-y, local-n, addr=0x004425d8, size=376 
sym `LumaPrediction4x4': text seg, init-y, pub-y, local-n, addr=0x00442750, size=3032 
sym `LumaResidualCoding8x8': text seg, init-y, pub-y, local-n, addr=0x00443328, size=1944 
sym `SetModesAndRefframe': text seg, init-y, pub-y, local-n, addr=0x00443ac0, size=896 
sym `LumaResidualCoding': text seg, init-y, pub-y, local-n, addr=0x00443e40, size=904 
sym `OneComponentChromaPrediction4x4': text seg, init-y, pub-y, local-n, addr=0x004441c8, 
size=1648 
sym `IntraChromaPrediction4x4': text seg, init-y, pub-y, local-n, addr=0x00444838, size=360 
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sym `ChromaPrediction4x4': text seg, init-y, pub-y, local-n, addr=0x004449a0, size=2688 
sym `ChromaResidualCoding': text seg, init-y, pub-y, local-n, addr=0x00445420, size=1928 
sym `IntraChromaPrediction8x8': text seg, init-y, pub-y, local-n, addr=0x00445ba8, size=5456 
sym `ZeroRef': text seg, init-y, pub-y, local-n, addr=0x004470f8, size=216 
sym `MBType2Value': text seg, init-y, pub-y, local-n, addr=0x004471d0, size=720 
sym `writeIntra4x4Modes': text seg, init-y, pub-y, local-n, addr=0x004474a0, size=1168 
sym `B8Mode2Value': text seg, init-y, pub-y, local-n, addr=0x00447930, size=136 
sym `writeMBHeader': text seg, init-y, pub-y, local-n, addr=0x004479b8, size=3984 
sym `write_terminating_bit': text seg, init-y, pub-y, local-n, addr=0x00448948, size=216 
sym `writeChromaIntraPredMode': text seg, init-y, pub-y, local-n, addr=0x00448a20, size=560 
sym `set_last_dquant': text seg, init-y, pub-y, local-n, addr=0x00448c50, size=192 
sym `write_one_macroblock': text seg, init-y, pub-y, local-n, addr=0x00448d10, size=1272 
sym `BType2CtxRef': text seg, init-y, pub-y, local-n, addr=0x00449208, size=40 
sym `writeReferenceFrame': text seg, init-y, pub-y, local-n, addr=0x00449230, size=1048 
sym `writeMotionVector8x8': text seg, init-y, pub-y, local-n, addr=0x00449648, size=1720 
sym `writeMotionInfo2NAL': text seg, init-y, pub-y, local-n, addr=0x00449d00, size=1960 
sym `writeChromaCoeff': text seg, init-y, pub-y, local-n, addr=0x0044a4a8, size=2608 
sym `writeLumaCoeff4x4_CABAC': text seg, init-y, pub-y, local-n, addr=0x0044aed8, size=1168 
sym `writeLumaCoeff8x8': text seg, init-y, pub-y, local-n, addr=0x0044b368, size=280 
sym `writeCBPandLumaCoeff': text seg, init-y, pub-y, local-n, addr=0x0044b480, size=3544 
sym `predict_nnz': text seg, init-y, pub-y, local-n, addr=0x0044c258, size=696 
sym `predict_nnz_chroma': text seg, init-y, pub-y, local-n, addr=0x0044c510, size=760 
sym `writeCoeff4x4_CAVLC': text seg, init-y, pub-y, local-n, addr=0x0044c808, size=4544 
sym `find_sad_16x16': text seg, init-y, pub-y, local-n, addr=0x0044d9c8, size=3208 
sym `mb_is_available': text seg, init-y, pub-y, local-n, addr=0x0044e650, size=272 
sym `CheckAvailabilityOfNeighbors': text seg, init-y, pub-y, local-n, addr=0x0044e760, 
size=1560 
sym `get_mb_block_pos': text seg, init-y, pub-y, local-n, addr=0x0044ed78, size=336 
sym `get_mb_pos': text seg, init-y, pub-y, local-n, addr=0x0044eec8, size=144 
sym `getNonAffNeighbour': text seg, init-y, pub-y, local-n, addr=0x0044ef58, size=960 
sym `getAffNeighbour': text seg, init-y, pub-y, local-n, addr=0x0044f318, size=3016 
sym `getNeighbour': text seg, init-y, pub-y, local-n, addr=0x0044fee0, size=344 
sym `getLuma4x4Neighbour': text seg, init-y, pub-y, local-n, addr=0x00450038, size=304 
sym `getChroma4x4Neighbour': text seg, init-y, pub-y, local-n, addr=0x00450168, size=312 
sym `dump_dpb': text seg, init-y, pub-y, local-n, addr=0x004502a0, size=24 
sym `getDpbSize': text seg, init-y, pub-y, local-n, addr=0x004502b8, size=640 
sym `init_dpb': text seg, init-y, pub-y, local-n, addr=0x00450538, size=1056 
sym `free_dpb': text seg, init-y, pub-y, local-n, addr=0x00450958, size=448 
sym `alloc_frame_store': text seg, init-y, pub-y, local-n, addr=0x00450b18, size=192 
sym `alloc_storable_picture': text seg, init-y, pub-y, local-n, addr=0x00450bd8, size=920 
sym `free_frame_store': text seg, init-y, pub-y, local-n, addr=0x00450f70, size=184 
sym `free_storable_picture': text seg, init-y, pub-y, local-n, addr=0x00451028, size=1888 
sym `is_short_ref': text seg, init-y, pub-y, local-n, addr=0x00451788, size=64 
sym `is_long_ref': text seg, init-y, pub-y, local-n, addr=0x004517c8, size=1312 
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sym `init_lists': text seg, init-y, pub-y, local-n, addr=0x00451ce8, size=7136 
sym `init_mbaff_lists': text seg, init-y, pub-y, local-n, addr=0x004538c8, size=2680 
sym `reorder_ref_pic_list': text seg, init-y, pub-y, local-n, addr=0x00454340, size=792 
sym `update_ref_list': text seg, init-y, pub-y, local-n, addr=0x00454658, size=440 
sym `update_ltref_list': text seg, init-y, pub-y, local-n, addr=0x00454810, size=6504 
sym `mm_update_max_long_term_frame_idx': text seg, init-y, pub-y, local-n, addr=0x00456178, 
size=1776 
sym `store_picture_in_dpb': text seg, init-y, pub-y, local-n, addr=0x00456868, size=1528 
sym `replace_top_pic_with_frame': text seg, init-y, pub-y, local-n, addr=0x00456e60, size=3992 
sym `flush_dpb': text seg, init-y, pub-y, local-n, addr=0x00457df8, size=272 
sym `gen_field_ref_ids': text seg, init-y, pub-y, local-n, addr=0x00457f08, size=552 
sym `dpb_split_field': text seg, init-y, pub-y, local-n, addr=0x00458130, size=10608 
sym `dpb_combine_field': text seg, init-y, pub-y, local-n, addr=0x0045aaa0, size=5712 
sym `alloc_ref_pic_list_reordering_buffer': text seg, init-y, pub-y, local-n, addr=0x0045c0f0, 
size=672 
sym `free_ref_pic_list_reordering_buffer': text seg, init-y, pub-y, local-n, addr=0x0045c390, 
size=256 
sym `fill_frame_num_gap': text seg, init-y, pub-y, local-n, addr=0x0045c490, size=592 
sym `alloc_colocated': text seg, init-y, pub-y, local-n, addr=0x0045c6e0, size=864 
sym `free_collocated': text seg, init-y, pub-y, local-n, addr=0x0045ca40, size=544 
sym `compute_collocated': text seg, init-y, pub-y, local-n, addr=0x0045cc60, size=17456 
sym `get_mem2D': text seg, init-y, pub-y, local-n, addr=0x00461090, size=368 
sym `get_mem2Dint': text seg, init-y, pub-y, local-n, addr=0x00461200, size=384 
sym `get_mem2Dint64': text seg, init-y, pub-y, local-n, addr=0x00461380, size=384 
sym `get_mem3D': text seg, init-y, pub-y, local-n, addr=0x00461500, size=336 
sym `get_mem3Dint': text seg, init-y, pub-y, local-n, addr=0x00461650, size=344 
sym `get_mem3Dint64': text seg, init-y, pub-y, local-n, addr=0x004617a8, size=344 
sym `get_mem4Dint': text seg, init-y, pub-y, local-n, addr=0x00461900, size=392 
sym `free_mem2D': text seg, init-y, pub-y, local-n, addr=0x00461a88, size=192 
sym `free_mem2Dint': text seg, init-y, pub-y, local-n, addr=0x00461b48, size=192 
sym `free_mem2Dint64': text seg, init-y, pub-y, local-n, addr=0x00461c08, size=192 
sym `free_mem3D': text seg, init-y, pub-y, local-n, addr=0x00461cc8, size=256 
sym `free_mem3Dint': text seg, init-y, pub-y, local-n, addr=0x00461dc8, size=256 
sym `free_mem3Dint64': text seg, init-y, pub-y, local-n, addr=0x00461ec8, size=256 
sym `free_mem4Dint': text seg, init-y, pub-y, local-n, addr=0x00461fc8, size=288 
sym `no_mem_exit': text seg, init-y, pub-y, local-n, addr=0x004620e8, size=152 
sym `InitializeFastFullIntegerSearch': text seg, init-y, pub-y, local-n, addr=0x00462180, size=2272 
sym `ClearFastFullIntegerSearch': text seg, init-y, pub-y, local-n, addr=0x00462a60, size=968 
sym `ResetFastFullIntegerSearch': text seg, init-y, pub-y, local-n, addr=0x00462e28, size=160 
sym `SetupLargerBlocks': text seg, init-y, pub-y, local-n, addr=0x00462ec8, size=4424 
sym `SetupFastFullPelSearch': text seg, init-y, pub-y, local-n, addr=0x00464010, size=4128 
sym `SetMotionVectorPredictor': text seg, init-y, pub-y, local-n, addr=0x00465030, size=6392 
sym `Init_Motion_Search_Module': text seg, init-y, pub-y, local-n, addr=0x00466928, size=2064 
sym `Clear_Motion_Search_Module': text seg, init-y, pub-y, local-n, addr=0x00467138, size=248 
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sym `FullPelBlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x00467230, size=2176 
sym `FastFullPelBlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x00467ab0, 
size=1320 
sym `SATD': text seg, init-y, pub-y, local-n, addr=0x00467fd8, size=2280 
sym `SubPelBlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x004688c0, size=6896 
sym `BlockMotionSearch': text seg, init-y, pub-y, local-n, addr=0x0046a3b0, size=13056 
sym `BIDPartitionCost': text seg, init-y, pub-y, local-n, addr=0x0046d6b0, size=2136 
sym `GetSkipCostMB': text seg, init-y, pub-y, local-n, addr=0x0046df08, size=632 
sym `FindSkipModeMotionVector': text seg, init-y, pub-y, local-n, addr=0x0046e180, size=2064 
sym `Get_Direct_Cost8x8': text seg, init-y, pub-y, local-n, addr=0x0046e990, size=968 
sym `Get_Direct_CostMB': text seg, init-y, pub-y, local-n, addr=0x0046ed58, size=208 
sym `PartitionMotionSearch': text seg, init-y, pub-y, local-n, addr=0x0046ee28, size=2672 
sym `Get_Direct_Motion_Vectors': text seg, init-y, pub-y, local-n, addr=0x0046f898, size=10240 
sym `sign': text seg, init-y, pub-y, local-n, addr=0x00472098, size=56 
sym `SODBtoRBSP': text seg, init-y, pub-y, local-n, addr=0x004720d0, size=168 
sym `RBSPtoEBSP': text seg, init-y, pub-y, local-n, addr=0x00472178, size=544 
sym `AllocNalPayloadBuffer': text seg, init-y, pub-y, local-n, addr=0x00472398, size=216 
sym `FreeNalPayloadBuffer': text seg, init-y, pub-y, local-n, addr=0x00472470, size=80 
sym `RBSPtoNALU': text seg, init-y, pub-y, local-n, addr=0x004724c0, size=752 
sym `AllocNALU': text seg, init-y, pub-y, local-n, addr=0x004727b0, size=224 
sym `FreeNALU': text seg, init-y, pub-y, local-n, addr=0x00472890, size=128 
sym `write_picture': text seg, init-y, pub-y, local-n, addr=0x00472910, size=704 
sym `init_out_buffer': text seg, init-y, pub-y, local-n, addr=0x00472bd0, size=56 
sym `uninit_out_buffer': text seg, init-y, pub-y, local-n, addr=0x00472c08, size=64 
sym `clear_picture': text seg, init-y, pub-y, local-n, addr=0x00472c48, size=432 
sym `write_unpaired_field': text seg, init-y, pub-y, local-n, addr=0x00472df8, size=496 
sym `flush_direct_output': text seg, init-y, pub-y, local-n, addr=0x00472fe8, size=176 
sym `write_stored_frame': text seg, init-y, pub-y, local-n, addr=0x00473098, size=200 
sym `direct_output': text seg, init-y, pub-y, local-n, addr=0x00473160, size=576 
sym `GenerateParameterSets': text seg, init-y, pub-y, local-n, addr=0x004733a0, size=144 
sym `FreeParameterSets': text seg, init-y, pub-y, local-n, addr=0x00473430, size=72 
sym `GenerateSeq_parameter_set_NALU': text seg, init-y, pub-y, local-n, addr=0x00473478, 
size=240 
sym `GeneratePic_parameter_set_NALU': text seg, init-y, pub-y, local-n, addr=0x00473568, 
size=240 
sym `FillParameterSetStructures': text seg, init-y, pub-y, local-n, addr=0x00473658, size=2136 
sym `GenerateSeq_parameter_set_rbsp': text seg, init-y, pub-y, local-n, addr=0x00473eb0, 
size=1736 
sym `GeneratePic_parameter_set_rbsp': text seg, init-y, pub-y, local-n, addr=0x00474578, 
size=2072 
sym `AllocPPS': text seg, init-y, pub-y, local-n, addr=0x00474d90, size=200 
sym `AllocSPS': text seg, init-y, pub-y, local-n, addr=0x00474e58, size=128 
sym `FreePPS': text seg, init-y, pub-y, local-n, addr=0x00474ed8, size=168 
sym `FreeSPS': text seg, init-y, pub-y, local-n, addr=0x00474f80, size=144 
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sym `rc_init_seq': text seg, init-y, pub-y, local-n, addr=0x00475010, size=1512 
sym `rc_init_GOP': text seg, init-y, pub-y, local-n, addr=0x004755f8, size=1176 
sym `rc_init_pict': text seg, init-y, pub-y, local-n, addr=0x00475a90, size=3952 
sym `calc_MAD': text seg, init-y, pub-y, local-n, addr=0x00476a00, size=216 
sym `rc_update_pict': text seg, init-y, pub-y, local-n, addr=0x00476ad8, size=224 
sym `rc_update_pict_frame': text seg, init-y, pub-y, local-n, addr=0x00476bb8, size=816 
sym `setbitscount': text seg, init-y, pub-y, local-n, addr=0x00476ee8, size=16 
sym `updateQuantizationParameter': text seg, init-y, pub-y, local-n, addr=0x00476ef8, size=9352 
sym `updateRCModel': text seg, init-y, pub-y, local-n, addr=0x00479380, size=2616 
sym `RCModelEstimator': text seg, init-y, pub-y, local-n, addr=0x00479db8, size=1232 
sym `ComputeFrameMAD': text seg, init-y, pub-y, local-n, addr=0x0047a288, size=296 
sym `updateMADModel': text seg, init-y, pub-y, local-n, addr=0x0047a3b0, size=1640 
sym `MADModelEstimator': text seg, init-y, pub-y, local-n, addr=0x0047aa18, size=1208 
sym `QP2Qstep': text seg, init-y, pub-y, local-n, addr=0x0047aed0, size=248 
sym `Qstep2QP': text seg, init-y, pub-y, local-n, addr=0x0047afc8, size=584 
sym `clear_rdopt': text seg, init-y, pub-y, local-n, addr=0x0047b210, size=216 
sym `init_rdopt': text seg, init-y, pub-y, local-n, addr=0x0047b2e8, size=248 
sym `UpdatePixelMap': text seg, init-y, pub-y, local-n, addr=0x0047b3e0, size=864 
sym `CheckReliabilityOfRef': text seg, init-y, pub-y, local-n, addr=0x0047b740, size=3520 
sym `RDCost_for_4x4IntraBlocks': text seg, init-y, pub-y, local-n, addr=0x0047c500, size=1472 
sym `Mode_Decision_for_4x4IntraBlocks': text seg, init-y, pub-y, local-n, addr=0x0047cac0, 
size=4224 
sym `Mode_Decision_for_8x8IntraBlocks': text seg, init-y, pub-y, local-n, addr=0x0047db40, 
size=360 
sym `Mode_Decision_for_Intra4x4Macroblock': text seg, init-y, pub-y, local-n, addr=0x0047dca8, 
size=304 
sym `RDCost_for_8x8blocks': text seg, init-y, pub-y, local-n, addr=0x0047ddd8, size=3728 
sym `I16Offset': text seg, init-y, pub-y, local-n, addr=0x0047ec68, size=72 
sym `SetModesAndRefframeForBlocks': text seg, init-y, pub-y, local-n, addr=0x0047ecb0, 
size=4072 
sym `Intra16x16_Mode_Decision': text seg, init-y, pub-y, local-n, addr=0x0047fc98, size=136 
sym `SetCoeffAndReconstruction8x8': text seg, init-y, pub-y, local-n, addr=0x0047fd20, 
size=1200 
sym `SetMotionVectorsMB': text seg, init-y, pub-y, local-n, addr=0x004801d0, size=3288 
sym `RDCost_for_macroblocks': text seg, init-y, pub-y, local-n, addr=0x00480ea8, size=3600 
sym `store_macroblock_parameters': text seg, init-y, pub-y, local-n, addr=0x00481cb8, size=1808 
sym `set_stored_macroblock_parameters': text seg, init-y, pub-y, local-n, addr=0x004823c8, 
size=7392 
sym `SetRefAndMotionVectors': text seg, init-y, pub-y, local-n, addr=0x004840a8, size=5160 
sym `field_flag_inference': text seg, init-y, pub-y, local-n, addr=0x004854d0, size=208 
sym `encode_one_macroblock': text seg, init-y, pub-y, local-n, addr=0x004855a0, size=29712 
sym `set_mbaff_parameters': text seg, init-y, pub-y, local-n, addr=0x0048c9b0, size=2240 
sym `delete_coding_state': text seg, init-y, pub-y, local-n, addr=0x0048d270, size=168 
sym `create_coding_state': text seg, init-y, pub-y, local-n, addr=0x0048d318, size=432 
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sym `store_coding_state': text seg, init-y, pub-y, local-n, addr=0x0048d4c8, size=1560 
sym `reset_coding_state': text seg, init-y, pub-y, local-n, addr=0x0048dae0, size=1552 
sym `PutPel_14': text seg, init-y, pub-y, local-n, addr=0x0048e0f0, size=48 
sym `PutPel_11': text seg, init-y, pub-y, local-n, addr=0x0048e120, size=56 
sym `FastLine16Y_11': text seg, init-y, pub-y, local-n, addr=0x0048e158, size=48 
sym `UMVLine16Y_11': text seg, init-y, pub-y, local-n, addr=0x0048e188, size=656 
sym `FastLineX': text seg, init-y, pub-y, local-n, addr=0x0048e418, size=48 
sym `UMVLineX': text seg, init-y, pub-y, local-n, addr=0x0048e448, size=664 
sym `UMVPelY_14': text seg, init-y, pub-y, local-n, addr=0x0048e6e0, size=536 
sym `FastPelY_14': text seg, init-y, pub-y, local-n, addr=0x0048e8f8, size=56 
sym `ComposeRTPPacket': text seg, init-y, pub-y, local-n, addr=0x0048e930, size=1272 
sym `WriteRTPPacket': text seg, init-y, pub-y, local-n, addr=0x0048ee28, size=488 
sym `WriteRTPNALU': text seg, init-y, pub-y, local-n, addr=0x0048f010, size=984 
sym `RTPUpdateTimestamp': text seg, init-y, pub-y, local-n, addr=0x0048f3e8, size=160 
sym `OpenRTPFile': text seg, init-y, pub-y, local-n, addr=0x0048f488, size=144 
sym `CloseRTPFile': text seg, init-y, pub-y, local-n, addr=0x0048f518, size=56 
sym `InitSEIMessages': text seg, init-y, pub-y, local-n, addr=0x0048f550, size=400 
sym `CloseSEIMessages': text seg, init-y, pub-y, local-n, addr=0x0048f6e0, size=248 
sym `HaveAggregationSEI': text seg, init-y, pub-y, local-n, addr=0x0048f7d8, size=248 
sym `write_sei_message': text seg, init-y, pub-y, local-n, addr=0x0048f8d0, size=664 
sym `finalize_sei_message': text seg, init-y, pub-y, local-n, addr=0x0048fb68, size=176 
sym `clear_sei_message': text seg, init-y, pub-y, local-n, addr=0x0048fc18, size=160 
sym `AppendTmpbits2Buf': text seg, init-y, pub-y, local-n, addr=0x0048fcb8, size=632 
sym `InitSparePicture': text seg, init-y, pub-y, local-n, addr=0x0048ff30, size=488 
sym `CloseSparePicture': text seg, init-y, pub-y, local-n, addr=0x00490118, size=200 
sym `CalculateSparePicture': text seg, init-y, pub-y, local-n, addr=0x004901e0, size=8 
sym `ComposeSparePictureMessage': text seg, init-y, pub-y, local-n, addr=0x004901e8, size=240 
sym `CompressSpareMBMap': text seg, init-y, pub-y, local-n, addr=0x004902d8, size=1976 
sym `FinalizeSpareMBMap': text seg, init-y, pub-y, local-n, addr=0x00490a90, size=872 
sym `InitSubseqInfo': text seg, init-y, pub-y, local-n, addr=0x00490df8, size=504 
sym `UpdateSubseqInfo': text seg, init-y, pub-y, local-n, addr=0x00490ff0, size=712 
sym `FinalizeSubseqInfo': text seg, init-y, pub-y, local-n, addr=0x004912b8, size=656 
sym `ClearSubseqInfoPayload': text seg, init-y, pub-y, local-n, addr=0x00491548, size=264 
sym `CloseSubseqInfo': text seg, init-y, pub-y, local-n, addr=0x00491650, size=208 
sym `InitSubseqLayerInfo': text seg, init-y, pub-y, local-n, addr=0x00491720, size=160 
sym `CloseSubseqLayerInfo': text seg, init-y, pub-y, local-n, addr=0x004917c0, size=8 
sym `FinalizeSubseqLayerInfo': text seg, init-y, pub-y, local-n, addr=0x004917c8, size=264 
sym `InitSubseqChar': text seg, init-y, pub-y, local-n, addr=0x004918d0, size=456 
sym `ClearSubseqCharPayload': text seg, init-y, pub-y, local-n, addr=0x00491a98, size=192 
sym `UpdateSubseqChar': text seg, init-y, pub-y, local-n, addr=0x00491b58, size=328 
sym `FinalizeSubseqChar': text seg, init-y, pub-y, local-n, addr=0x00491ca0, size=1040 
sym `CloseSubseqChar': text seg, init-y, pub-y, local-n, addr=0x004920b0, size=144 
sym `InitSceneInformation': text seg, init-y, pub-y, local-n, addr=0x00492140, size=312 
sym `CloseSceneInformation': text seg, init-y, pub-y, local-n, addr=0x00492278, size=144 
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sym `FinalizeSceneInformation': text seg, init-y, pub-y, local-n, addr=0x00492308, size=528 
sym `UpdateSceneInformation': text seg, init-y, pub-y, local-n, addr=0x00492518, size=424 
sym `InitPanScanRectInfo': text seg, init-y, pub-y, local-n, addr=0x004926c0, size=352 
sym `ClearPanScanRectInfoPayload': text seg, init-y, pub-y, local-n, addr=0x00492820, size=200 
sym `UpdatePanScanRectInfo': text seg, init-y, pub-y, local-n, addr=0x004928e8, size=144 
sym `FinalizePanScanRectInfo': text seg, init-y, pub-y, local-n, addr=0x00492978, size=552 
sym `ClosePanScanRectInfo': text seg, init-y, pub-y, local-n, addr=0x00492ba0, size=144 
sym `InitUser_data_unregistered': text seg, init-y, pub-y, local-n, addr=0x00492c30, size=392 
sym `ClearUser_data_unregistered': text seg, init-y, pub-y, local-n, addr=0x00492db8, size=256 
sym `UpdateUser_data_unregistered': text seg, init-y, pub-y, local-n, addr=0x00492eb8, size=192 
sym `FinalizeUser_data_unregistered': text seg, init-y, pub-y, local-n, addr=0x00492f78, size=496 
sym `CloseUser_data_unregistered': text seg, init-y, pub-y, local-n, addr=0x00493168, size=176 
sym `InitUser_data_registered_itu_t_t35': text seg, init-y, pub-y, local-n, addr=0x00493218, 
size=392 
sym `ClearUser_data_registered_itu_t_t35': text seg, init-y, pub-y, local-n, addr=0x004933a0, 
size=288 
sym `UpdateUser_data_registered_itu_t_t35': text seg, init-y, pub-y, local-n, addr=0x004934c0, 
size=216 
sym `FinalizeUser_data_registered_itu_t_t35': text seg, init-y, pub-y, local-n, addr=0x00493598, 
size=648 
sym `CloseUser_data_registered_itu_t_t35': text seg, init-y, pub-y, local-n, addr=0x00493820, 
size=176 
sym `InitRandomAccess': text seg, init-y, pub-y, local-n, addr=0x004938d0, size=288 
sym `ClearRandomAccess': text seg, init-y, pub-y, local-n, addr=0x004939f0, size=240 
sym `UpdateRandomAccess': text seg, init-y, pub-y, local-n, addr=0x00493ae0, size=128 
sym `FinalizeRandomAccess': text seg, init-y, pub-y, local-n, addr=0x00493b60, size=496 
sym `CloseRandomAccess': text seg, init-y, pub-y, local-n, addr=0x00493d50, size=144 
sym `init_ref_pic_list_reordering': text seg, init-y, pub-y, local-n, addr=0x00493de0, size=40 
sym `start_slice': text seg, init-y, pub-y, local-n, addr=0x00493e08, size=704 
sym `terminate_slice': text seg, init-y, pub-y, local-n, addr=0x004940c8, size=576 
sym `encode_one_slice': text seg, init-y, pub-y, local-n, addr=0x00494308, size=4264 
sym `free_slice_list': text seg, init-y, pub-y, local-n, addr=0x004953b0, size=568 
sym `modify_redundant_pic_cnt': text seg, init-y, pub-y, local-n, addr=0x004955e8, size=1512 
sym `ue_v': text seg, init-y, pub-y, local-n, addr=0x00495bd0, size=240 
sym `se_v': text seg, init-y, pub-y, local-n, addr=0x00495cc0, size=240 
sym `u_1': text seg, init-y, pub-y, local-n, addr=0x00495db0, size=240 
sym `u_v': text seg, init-y, pub-y, local-n, addr=0x00495ea0, size=232 
sym `ue_linfo': text seg, init-y, pub-y, local-n, addr=0x00495f88, size=280 
sym `se_linfo': text seg, init-y, pub-y, local-n, addr=0x004960a0, size=320 
sym `cbp_linfo_intra': text seg, init-y, pub-y, local-n, addr=0x004961e0, size=80 
sym `cbp_linfo_inter': text seg, init-y, pub-y, local-n, addr=0x00496230, size=80 
sym `levrun_linfo_c2x2': text seg, init-y, pub-y, local-n, addr=0x00496280, size=664 
sym `levrun_linfo_inter': text seg, init-y, pub-y, local-n, addr=0x00496518, size=1032 
sym `levrun_linfo_intra': text seg, init-y, pub-y, local-n, addr=0x00496920, size=1008 
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sym `symbol2uvlc': text seg, init-y, pub-y, local-n, addr=0x00496d10, size=104 
sym `writeSyntaxElement_UVLC': text seg, init-y, pub-y, local-n, addr=0x00496d78, size=224 
sym `writeSyntaxElement_fixed': text seg, init-y, pub-y, local-n, addr=0x00496e58, size=152 
sym `writeSyntaxElement_Intra4x4PredictionMode': text seg, init-y, pub-y, local-n, 
addr=0x00496ef0, size=264 
sym `writeSyntaxElement2Buf_UVLC': text seg, init-y, pub-y, local-n, addr=0x00496ff8, 
size=184 
sym `writeUVLC2buffer': text seg, init-y, pub-y, local-n, addr=0x004970b0, size=304 
sym `writeSyntaxElement2Buf_Fixed': text seg, init-y, pub-y, local-n, addr=0x004971e0, size=80 
sym `symbol2vlc': text seg, init-y, pub-y, local-n, addr=0x00497230, size=120 
sym `writeSyntaxElement_VLC': text seg, init-y, pub-y, local-n, addr=0x004972a8, size=160 
sym `writeSyntaxElement_NumCoeffTrailingOnes': text seg, init-y, pub-y, local-n, 
addr=0x00497348, size=768 
sym `writeSyntaxElement_NumCoeffTrailingOnesChromaDC': text seg, init-y, pub-y, local-n, 
addr=0x00497648, size=616 
sym `writeSyntaxElement_TotalZeros': text seg, init-y, pub-y, local-n, addr=0x004978b0, 
size=552 
sym `writeSyntaxElement_TotalZerosChromaDC': text seg, init-y, pub-y, local-n, 
addr=0x00497ad8, size=552 
sym `writeSyntaxElement_Run': text seg, init-y, pub-y, local-n, addr=0x00497d00, size=552 
sym `writeSyntaxElement_Level_VLC1': text seg, init-y, pub-y, local-n, addr=0x00497f28, 
size=360 
sym `writeSyntaxElement_Level_VLCN': text seg, init-y, pub-y, local-n, addr=0x00498090, 
size=392 
sym `writeVlcByteAlign': text seg, init-y, pub-y, local-n, addr=0x00498218, size=248 
sym `estimate_weighting_factor_P_slice': text seg, init-y, pub-y, local-n, addr=0x00498310, 
size=2872 
sym `estimate_weighting_factor_B_slice': text seg, init-y, pub-y, local-n, addr=0x00498e48, 
size=6712 
sym `__do_global_dtors': text seg, init-y, pub-y, local-n, addr=0x0049a880, size=128 
sym `__do_global_ctors': text seg, init-y, pub-y, local-n, addr=0x0049a900, size=296 
sym `__main': text seg, init-y, pub-y, local-n, addr=0x0049aa28, size=88 
sym `__divdi3': text seg, init-y, pub-y, local-n, addr=0x0049aa80, size=2720 
sym `__libc_init': text seg, init-y, pub-y, local-n, addr=0x0049b520, size=48 
sym `exit': text seg, init-y, pub-y, local-n, addr=0x0049b550, size=416 
sym `_cleanup': text seg, init-y, pub-y, local-n, addr=0x0049b6f0, size=64 
sym `__assert_fail': text seg, init-y, pub-y, local-n, addr=0x0049b730, size=256 
sym `__stdio_check_funcs': text seg, init-y, pub-y, local-n, addr=0x0049b830, size=264 
sym `__stdio_check_offset': text seg, init-y, pub-y, local-n, addr=0x0049b938, size=3896 
sym `__flshfp': text seg, init-y, pub-y, local-n, addr=0x0049c870, size=1336 
sym `__fillbf': text seg, init-y, pub-y, local-n, addr=0x0049cda8, size=1424 
sym `__invalidate': text seg, init-y, pub-y, local-n, addr=0x0049d338, size=120 
sym `fwrite': text seg, init-y, pub-y, local-n, addr=0x0049d3b0, size=1760 
sym `printf': text seg, init-y, pub-y, local-n, addr=0x0049da90, size=112 
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sym `fflush': text seg, init-y, pub-y, local-n, addr=0x0049db00, size=512 
sym `__getmode': text seg, init-y, pub-y, local-n, addr=0x0049dd00, size=568 
sym `fopen': text seg, init-y, pub-y, local-n, addr=0x0049df38, size=296 
sym `fclose': text seg, init-y, pub-y, local-n, addr=0x0049e060, size=640 
sym `calloc': text seg, init-y, pub-y, local-n, addr=0x0049e2e0, size=160 
sym `snprintf': text seg, init-y, pub-y, local-n, addr=0x0049e380, size=80 
sym `_free_internal': text seg, init-y, pub-y, local-n, addr=0x0049e3d0, size=2224 
sym `free': text seg, init-y, pub-y, local-n, addr=0x0049ec80, size=160 
sym `pow': text seg, init-y, pub-y, local-n, addr=0x0049ed20, size=1680 
sym `fprintf': text seg, init-y, pub-y, local-n, addr=0x0049f3b0, size=80 
sym `memset': text seg, init-y, pub-y, local-n, addr=0x0049f400, size=368 
sym `strncmp': text seg, init-y, pub-y, local-n, addr=0x0049f570, size=416 
sym `strlen': text seg, init-y, pub-y, local-n, addr=0x0049f710, size=1784 
sym `malloc': text seg, init-y, pub-y, local-n, addr=0x0049fe08, size=2440 
sym `fseek': text seg, init-y, pub-y, local-n, addr=0x004a0790, size=1024 
sym `ftell': text seg, init-y, pub-y, local-n, addr=0x004a0b90, size=336 
sym `fread': text seg, init-y, pub-y, local-n, addr=0x004a0ce0, size=1216 
sym `strcmp': text seg, init-y, pub-y, local-n, addr=0x004a11a0, size=96 
sym `sscanf': text seg, init-y, pub-y, local-n, addr=0x004a1200, size=80 
sym `strcpy': text seg, init-y, pub-y, local-n, addr=0x004a1250, size=80 
sym `fscanf': text seg, init-y, pub-y, local-n, addr=0x004a12a0, size=80 
sym `log10': text seg, init-y, pub-y, local-n, addr=0x004a12f0, size=80 
sym `memcpy': text seg, init-y, pub-y, local-n, addr=0x004a1340, size=448 
sym `rand': text seg, init-y, pub-y, local-n, addr=0x004a1500, size=48 
sym `log': text seg, init-y, pub-y, local-n, addr=0x004a1530, size=1264 
sym `__log__D': text seg, init-y, pub-y, local-n, addr=0x004a1a20, size=1376 
sym `ceil': text seg, init-y, pub-y, local-n, addr=0x004a1f80, size=240 
sym `ftime': text seg, init-y, pub-y, local-n, addr=0x004a2070, size=272 
sym `time': text seg, init-y, pub-y, local-n, addr=0x004a2180, size=144 
sym `srand': text seg, init-y, pub-y, local-n, addr=0x004a2210, size=48 
sym `fputc': text seg, init-y, pub-y, local-n, addr=0x004a2240, size=304 
sym `localtime': text seg, init-y, pub-y, local-n, addr=0x004a2370, size=432 
sym `strftime': text seg, init-y, pub-y, local-n, addr=0x004a2520, size=3632 
sym `sprintf': text seg, init-y, pub-y, local-n, addr=0x004a3350, size=800 
sym `qsort': text seg, init-y, pub-y, local-n, addr=0x004a3670, size=1456 
sym `floor': text seg, init-y, pub-y, local-n, addr=0x004a3c20, size=240 
sym `sqrt': text seg, init-y, pub-y, local-n, addr=0x004a3d10, size=1088 
sym `atexit': text seg, init-y, pub-y, local-n, addr=0x004a4150, size=136 
sym `__new_exitfn': text seg, init-y, pub-y, local-n, addr=0x004a41d8, size=392 
sym `__init_misc': text seg, init-y, pub-y, local-n, addr=0x004a4360, size=192 
sym `abort': text seg, init-y, pub-y, local-n, addr=0x004a4420, size=16 
sym `__stdio_read': text seg, init-y, pub-y, local-n, addr=0x004a4430, size=48 
sym `__stdio_write': text seg, init-y, pub-y, local-n, addr=0x004a4460, size=248 
sym `__stdio_seek': text seg, init-y, pub-y, local-n, addr=0x004a4558, size=120 
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sym `__stdio_close': text seg, init-y, pub-y, local-n, addr=0x004a45d0, size=48 
sym `__stdio_fileno': text seg, init-y, pub-y, local-n, addr=0x004a4600, size=16 
sym `__stdio_open': text seg, init-y, pub-y, local-n, addr=0x004a4610, size=296 
sym `__stdio_reopen': text seg, init-y, pub-y, local-n, addr=0x004a4738, size=824 
sym `__stdio_init_stream': text seg, init-y, pub-y, local-n, addr=0x004a4a70, size=320 
sym `memchr': text seg, init-y, pub-y, local-n, addr=0x004a4bb0, size=496 
sym `vfprintf': text seg, init-y, pub-y, local-n, addr=0x004a4da0, size=11632 
sym `__newstream': text seg, init-y, pub-y, local-n, addr=0x004a7b10, size=320 
sym `vsnprintf': text seg, init-y, pub-y, local-n, addr=0x004a7c50, size=400 
sym `__finite': text seg, init-y, pub-y, local-n, addr=0x004a7de0, size=160 
sym `__copysign': text seg, init-y, pub-y, local-n, addr=0x004a7e80, size=112 
sym `__drem': text seg, init-y, pub-y, local-n, addr=0x004a7ef0, size=1408 
sym `exp': text seg, init-y, pub-y, local-n, addr=0x004a8470, size=728 
sym `__exp__D': text seg, init-y, pub-y, local-n, addr=0x004a8748, size=808 
sym `__default_morecore': text seg, init-y, pub-y, local-n, addr=0x004a8a70, size=80 
sym `__vsscanf': text seg, init-y, pub-y, local-n, addr=0x004a8ac0, size=368 
sym `__vfscanf': text seg, init-y, pub-y, local-n, addr=0x004a8c30, size=8560 
sym `_wordcopy_fwd_aligned': text seg, init-y, pub-y, local-n, addr=0x004aada0, size=528 
sym `_wordcopy_fwd_dest_aligned': text seg, init-y, pub-y, local-n, addr=0x004aafb0, size=512 
sym `_wordcopy_bwd_aligned': text seg, init-y, pub-y, local-n, addr=0x004ab1b0, size=544 
sym `_wordcopy_bwd_dest_aligned': text seg, init-y, pub-y, local-n, addr=0x004ab3d0, size=544 
sym `__srandom': text seg, init-y, pub-y, local-n, addr=0x004ab5f0, size=384 
sym `__initstate': text seg, init-y, pub-y, local-n, addr=0x004ab770, size=976 
sym `__setstate': text seg, init-y, pub-y, local-n, addr=0x004abb40, size=608 
sym `__random': text seg, init-y, pub-y, local-n, addr=0x004abda0, size=352 
sym `__logb': text seg, init-y, pub-y, local-n, addr=0x004abf00, size=384 
sym `ldexp': text seg, init-y, pub-y, local-n, addr=0x004ac080, size=1024 
sym `__tzset': text seg, init-y, pub-y, local-n, addr=0x004ac480, size=4552 
sym `__tzname_max': text seg, init-y, pub-y, local-n, addr=0x004ad648, size=2512 
sym `__tz_compute': text seg, init-y, pub-y, local-n, addr=0x004ae018, size=520 
sym `__tzfile_read': text seg, init-y, pub-y, local-n, addr=0x004ae220, size=3064 
sym `__tzfile_default': text seg, init-y, pub-y, local-n, addr=0x004aee18, size=632 
sym `__tzfile_compute': text seg, init-y, pub-y, local-n, addr=0x004af090, size=1136 
sym `gmtime': text seg, init-y, pub-y, local-n, addr=0x004af500, size=80 
sym `__offtime': text seg, init-y, pub-y, local-n, addr=0x004af550, size=1856 
sym `mbtowc': text seg, init-y, pub-y, local-n, addr=0x004afc90, size=560 
sym `vsprintf': text seg, init-y, pub-y, local-n, addr=0x004afec0, size=336 
sym `_quicksort': text seg, init-y, pub-y, local-n, addr=0x004b0010, size=1936 
sym `__isnan': text seg, init-y, pub-y, local-n, addr=0x004b07a0, size=128 
sym `__isinf': text seg, init-y, pub-y, local-n, addr=0x004b0820, size=112 
sym `strrchr': text seg, init-y, pub-y, local-n, addr=0x004b0890, size=656 
sym `__isatty': text seg, init-y, pub-y, local-n, addr=0x004b0b20, size=112 
sym `register_printf_function': text seg, init-y, pub-y, local-n, addr=0x004b0b90, size=144 
sym `strchr': text seg, init-y, pub-y, local-n, addr=0x004b0c20, size=416 
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sym `_itoa': text seg, init-y, pub-y, local-n, addr=0x004b0dc0, size=416 
sym `__printf_fp': text seg, init-y, pub-y, local-n, addr=0x004b0f60, size=19056 
sym `__sbrk': text seg, init-y, pub-y, local-n, addr=0x004b59d0, size=144 
sym `realloc': text seg, init-y, pub-y, local-n, addr=0x004b5a60, size=1184 
sym `strtol': text seg, init-y, pub-y, local-n, addr=0x004b5f00, size=1072 
sym `strtoul': text seg, init-y, pub-y, local-n, addr=0x004b6330, size=992 
sym `strtod': text seg, init-y, pub-y, local-n, addr=0x004b6710, size=1520 
sym `ungetc': text seg, init-y, pub-y, local-n, addr=0x004b6d00, size=1752 
sym `do_normalization': text seg, init-y, pub-y, local-n, addr=0x004b73d8, size=4568 
sym `_mktime_internal': text seg, init-y, pub-y, local-n, addr=0x004b85b0, size=1096 
sym `mktime': text seg, init-y, pub-y, local-n, addr=0x004b89f8, size=72 
sym `getenv': text seg, init-y, pub-y, local-n, addr=0x004b8a40, size=384 
sym `__mpn_extract_double': text seg, init-y, pub-y, local-n, addr=0x004b8bc0, size=256 
sym `__mpn_lshift': text seg, init-y, pub-y, local-n, addr=0x004b8cc0, size=240 
sym `__mpn_cmp': text seg, init-y, pub-y, local-n, addr=0x004b8db0, size=160 
sym `__mpn_divmod_1': text seg, init-y, pub-y, local-n, addr=0x004b8e50, size=3712 
sym `__mpn_mul_1': text seg, init-y, pub-y, local-n, addr=0x004b9cd0, size=144 
sym `__mpn_add_n': text seg, init-y, pub-y, local-n, addr=0x004b9d60, size=160 
sym `__mpn_divmod': text seg, init-y, pub-y, local-n, addr=0x004b9e00, size=2880 
sym `__mpn_rshift': text seg, init-y, pub-y, local-n, addr=0x004ba940, size=224 
sym `__mpn_sub_n': text seg, init-y, pub-y, local-n, addr=0x004baa20, size=256 
sym `memmove': text seg, init-y, pub-y, local-n, addr=0x004bab20, size=784 
sym `__mpn_submul_1': text seg, init-y, pub-y, local-n, addr=0x004bae30, size=192 
sym `__umoddi3': text seg, init-y, pub-y, local-n, addr=0x004baef0, size=2272 
sym `__udivdi3': text seg, init-y, pub-y, local-n, addr=0x004bb7d0, size=2656 
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