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Summary

Learning control mainly aims at improving the system performance via directly

updating the control input, either repeatedly over a fixed finite time interval, or

repetitively (cyclically) over an infinite time interval. Moreover, there are two kinds

of non-repeatable problems encountered in learning control: non-repeatability of

a motion task and non-repeatability of a process. In this thesis, the attention is

concentrated on the direct learning control (DLC), iterative learning control (ILC)

and repetitive learning control (RLC) analysis and design. The main contributions

of this thesis are to develop new learning control approaches for linear and nonlinear

dynamic systems.

In the first part of the thesis, a DLC approach for a class of switched systems is

proposed. The objective of direct learning is to generate the desired control profile

for a newly switched system without any feedback, even if the system may have un-

certainties. The DLC approach is achieved by exploring the inherent relationship

between any two systems before and after a switch. The new approach is applicable

to a class of linear time varying, uncertain, and switched systems, when the trajec-

tory tracking control problem is concerned. Furthermore, singularity problem and

trajectory switch problem are also considered.

In the second part of the thesis, four different ILC approaches are proposed.

(1). Two kinds of ILC approaches are presented by adding a forgetting factor and

adopting a time varying learning gain to deal with input singularities problem. The

proposed ILC approaches ensure a convergent control input sequence approaching

to a unique fixed point based on Banach fixed point theorem. In the presence of the

first type of singularities, the fixed point guarantees that the system output enters

and remains uniformly in a designated neighborhood of the target trajectory. While

in the presence of the second type of singularities, the tracking error is bounded by
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a class K function of the designated neighborhood.

(2). To deal with the tracking problem without a priori knowledge of the control

direction, an ILC approach is constructed with both differential and difference

updating laws by incorporating a Nussbaum-type function. The new ILC approach

can warrant a L2
T convergence of the tracking error sequence along the iteration

axis, in the presence of time-varying parametric uncertainties and local Lipschitz

nonlinearities.

(3). A new ILC approach is proposed to handle finite interval tracking problems

based on constructive function approximation. Unlike the well established adaptive

neural control which uses a fixed neural network structure as a complete system,

in this approach the function approximation network consists of a set of bases

and the number of bases can be increased when learning repeats. The nature

of basis allows the continuously adaptive tuning or learning of parameters when

the network undergoes a structure change, consequently offers the flexibility in

tuning the network structure. The expansibility of the basis ensures the function

approximation accuracy, and removes the processes in pre-setting the network size.

(4). To make a process convergent in a finite time interval, the initial condition be-

comes crucial because asymptotical convergence along the time horizon is no longer

valid. Five different initial conditions associated with ILC are discussed. For each

initial condition, the boundedness along the time horizon and asymptotical conver-

gence along the iteration axis were exploited with rigorous analysis. Through both

theoretical study and numerical examples, the Lyapunov based ILC can effectively

work with sufficient robustness.

In the third part of the thesis, three different RLC approaches are proposed.

(1). For dynamic systems with unknown periodic parameters, a new RLC approach

is developed. The existence of solution and learning convergence are proved with
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mathematical rigorousness. Robustifying the RLC approach with projection and

forgetting factor has also been exploited in a systematic manner via the Lyapunov-

Krasovskii functional approach.

(2). A new RLC approach is developed to handle a class of tracking control prob-

lems by making use of the repetitive nature of the control problems. The target

trajectory can be any smooth periodic orbit of a nonlinear reference model. What

can be learnt in RLC are either the desired periodic control signals or the lumped

uncertainties which may become periodic when the system states converge to the

periodic orbit of the reference model. With mathematical rigorousness we prove

the existence of solution and learning convergence in a systematic manner via the

Lyapunov-Krasovskii functional approach. Two robustification approaches for the

nonlinear learning control with projection and forgetting factor are developed. As

an extension, the integration of RLC and robust adaptive control is also exploited

to address the cascaded systems without strict matching condition.

(3). As an application, an RLC approach is applied to the synchronization of

two uncertain chaotic systems which contain both time varying and time invari-

ant parametric uncertainties. The approach also deals with unknown time vary-

ing parameters having distinct periods in the master and slave systems. Using

the Lyapunov-Krasovskii functional and incorporating periodic parametric learn-

ing mechanism, the global stability and asymptotic synchronization between the

master and the slave systems are obtained.
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Chapter 1

Introduction

1.1 Background and Motivation

Learning control mainly aims at improving the system performance via directly

updating the control input, either repeatedly over a fixed finite time interval, or

repetitively (cyclically) over an infinite time interval. Moreover, there are two kinds

of non-repeatable problems encountered in learning control: non-repeatability of

a motion task and non-repeatability of a process. Many learning control methods

have been proposed in the past two decades, among them three predominant are di-

rection learning control (Xu, 1997b), (Xu, 1998), iterative learning control (Arimoto

et al., 1984a), (Lee and Bien, 1997), (Moore, 1998), (Chen and Wen, 1999), (Sun

and Wang, 2001), (French and Phan, 2000) and (Chien and Yao, 2004), and repet-

itive control (Hara et al., 1988), (Messner et al., 1991), (Owens et al., 1999),

(Longman, 2000).

1



CHAPTER 1. INTRODUCTION

1.1.1 Direct Learning Control (DLC)

Generally speaking, there are two kinds of non-repeatable problems encountered

in learning control: non-repeatability of a motion task and non-repeatability of a

process. The non-repeatable motion task could be shown through the following

example: an XY-table draws two circles with the same period but different radii.

The non-repeatability of a process could be due to the nature of system such as

welding different parts in a manufacturing line. Without loss of generality, we refer

to these two kinds of problems as non-repeatable control problems which result in

extra difficulty when a learning control scheme is to be applied.

From the practical point of view, non-repeatable learning control is very important

and indispensable. In order to deal with non-repeatable learning control problems,

it is needed to explore the inherent relations of different motion trajectory pat-

terns. The resulting learning control scheme might be both plant-dependent and

trajectory-dependent. On the other hand, since learning control task is essentially

to drive the system tracking the given trajectories, the inherent spatial and speed

relationships among distinct motion trajectories actually provide useful informa-

tion. Moreover, in spite of the variations in the trajectory patterns, the underlying

dynamic properties of the controlled system remain the same. Therefore, it is pos-

sible for us to deal with non-repeatable learning control problems. A control system

may have plenty of prior control knowledge obtained through all the past control

actions although they may correspond to different plants or different tasks. These

control profiles are obviously correlated and contain a lot of important information

about the system itself. In order to effectively utilize these prior control knowl-

edge and explore the possibility of solving non-repeatable learning control problem,

direction learning control schemes were proposed by (Xu, 1997b), (Xu, 1998).

Direct Learning Control is defined as the direct generation of the desired control

2



CHAPTER 1. INTRODUCTION

profile from existing control inputs without any repeated learning. The ultimate

goal of DLC is to fully utilize all the pre-stored control profiles and eliminate the

time consuming iteration process thoroughly, even though these control profiles

may correspond to different motion patterns and be obtained using different control

methods. In this way, DLC provides a new kind of feedforward compensation, which

differs from other kinds of feedforward compensation methods. A feedforward

compensator hitherto is constructed in terms of the prior knowledge with regard to

the plant structural or parametric uncertainties. Its effectiveness therefore depends

on whether a good estimation or guess is available for these system uncertainties.

In contrast with the conventional ones, DLC scheme provides an alternative way:

generating a feedforward signal by directly using the information of past control

actions instead of the plant parameter estimation. Another advantage of DLC is,

that it can be used where repetitive operation may not be permitted.

DLC problems can be classified into the following several sub-categories:

1. Direct learning of trajectories with the same time period but different magnitude

scales which can be further classified into the following two categories,

i) DLC learning of trajectories with single magnitude scale relations.

ii) DLC learning of trajectories with multiple magnitude scale relations.

2. Direct learning of trajectories with the same spatial path but different time

scales. It can also be classified into two sub-categories:

i) DLC learning of trajectories with linear time scale relation.

ii) DLC learning of trajectories with nonlinear time scale mapping relations.

3. Direct learning of trajectories with variations in both time and magnitude scales.

4. Direct learning of plants with inherent relationship of two plants before and

3



CHAPTER 1. INTRODUCTION

after the switch, though both plants may be partially unknown to us.

A typical example of non-uniform task specifications can be illustrated as follows:

a robotic manipulator draws circles in Cartesian space with the same radius but

different periods, or on the contrary, draws circles with the same period but different

radii as shown in Figure 1.1.

Figure 1.1. Classifications of DLC Schemes

The features of the direct learning methods are:

1. rather accurate and sufficient prior control information are required;

2. be able to learn from different motion trajectories;

3. be able to learn from different plants;

4. no need of repetitive learning because the desired control input can be calculated

directly.

4
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Therefore DLC can be regarded as an alternate for the existing learning control

schemes under certain condition.

1.1.2 Iterative Learning Control (ILC)

Iterative learning control was firstly proposed by Arimoto (Arimoto et al., 1984a).

After that, many research work has been carried out in this area and a lot of the-

ories and systematic approaches have been developed for a large variety of linear

or nonlinear systems to deal with repeated tracking control problems or periodic

disturbance rejection problems. Iterative learning control (ILC) has been pro-

posed and developed as a kind of contraction mapping approach to achieve perfect

tracking under the repeatable control environment which implies a repeated ex-

osystem in a finite time interval with a strict initial resetting condition, (Arimoto

et al., 1984b), (Sugie and Ono, 1991), (Moore, 1993), (Chien, 1996), (Owens and

Munde, 1996), (Xu, 1997a), (Park et al., 1998), (Chen et al., 1999), (Sun and

Wang, 2002), (Xu and Tan, 2002b), etc. Recently new ILC approaches based on

Lyapunov function technology (Qu, 2002), (Qu and Xu, 2002) and Composite En-

ergy Function (CEF) (Xu and Tan, 2000), (Xu, 2002b) have been developed to

complement the contraction mapping based ILC. For instance, by means of CEF

based ILC, we can extend the system nonlinearities from global Lipschitz continu-

ous to non-global Lipschitz continuous (Xu and Tan, 2000), extend target trajecto-

ries from uniform to non-uniform ones (Xu and Xu, 2002), remove the requirement

on the strict initial resetting condition (Xu et al., 2000), deal with time varying

and norm bounded system uncertainties (Xu, 2002b), and incorporate nonlinear

optimality (Xu and Tan, 2001), etc. ILC has been widely applied to mechanical

systems such as robotics, electrical systems such as servomotors, chemical systems

such as batch realtors, as well as aerodynamic systems, etc. ILC has been applied

to both motion control and process control areas such as wafer process, batch re-
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actor control, IC welding process, industrial robot control on assembly line, etc

(Oh et al., 1988), (Naniwa and Arimoto, 1991), (Fu and Barford, 1992), (Kuc et

al., 1991), (Zilouchian, 1994), (Zhang et al., 1994), (Lucibello, 1996), (Lee and

Lee, 1997), (Kim and Ha, 1999) and (Lee and Lee, 2000). Learning control system

can enjoy the advantage of system repetition to improve the performance over the

entire learning cycle.

The main strategy of ILC is to learn inputs that generate required outputs from a

dynamical system by repeated trials and updating of control inputs from iteration

to iteration. Though numerous methodologies of ILC have been proposed, they

could be clearly classified based on the system input updating law. The main

features of the existing iterative learning methods are:

1. little prior knowledge about the system is required;

2. only effective for single motion trajectory;

3. repeated learning process is needed.

Iterative learning control and direct learning control are actually functioning in a

somewhat complementary manner.

The block diagram of a typical iterative learning control system is shown in Figure

1.2

In Figure 1.2, yr(t) is the desired output trajectory of the plant and u0(t) is the

initial input signal for the first iteration. The target of the ILC controller is to

make the output of the plant to track the desired output trajectory perfectly. The

ILC system shown in Figure 1.2 consists of a previous cycle feedback (PCF) and

a current cycle feedback (CCF). The controller adopts certain control algorithm,

and the output of the controller is sent to the plant as input of next iteration cycle.

6
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Figure 1.2. Block diagram of Iterative learning controller

Up to now, there are many approaches which can be employed to analyze ILC con-

vergence property such as contraction mapping and energy function. Contraction

mapping method is a systematic way of analyzing learning convergence. The global

Lipschitz condition is a basic requirement which limits its extending to more gen-

eral class of nonlinear systems. Moreover, generally the contraction mapping design

only cares the tracking convergence along learning horizon, while the system sta-

bility, which is an important factor in system control, is ignored. Therefore, energy

function based ILC convergence analysis is widely applied for nonlinear systems.

The development of ILC focuses on several problems: the direct transmission term

becomes singular; the control directions are unknown; the perfect initial resetting

may not be obtainable; the dynamic system has unknown nonlinear uncertainties.

Applying the contraction mapping method, we often consider the following dynam-

ical system

ẋ(t) = f(x(t), u(t), y(t), t),

y(t) = g(x(t), u(t), t), (1.1)

where t ∈ [0, T ], f(·) and g(·) satisfy the Global Lipschitz continuity condition.

This model includes a large variety of nonlinear dynamic systems with non-affine-

in-input factors. Although many of existing problems have been widely studied by
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virtue of contraction mapping methods, it is still a challenging and open problem

in ILC when the direct feed-through term becomes singular at a number of points.

Unlike the contraction mapping method, where the output tracking is considered,

CEF method is concerned with the state tracking. By the latter method, more

general nonlinear dynamic systems can be addressed. As a relatively new topic,

CEF method brings out some open issues that need to be studied:

There are some problems in the development of CEF method.

1. A constantly challenging mission for control society is on dealing with dynamic

systems in the presence of unknown nonlinearities. Consider the following simple

affine dynamics

ẋ(t) = f(t,x(t)) + bu(t), (1.2)

where u is the system input. Over the past five decades, numerous control strate-

gies have been developed according to the scenarios associated with the structure

and prior knowledge of f(t,x). If f(t,x) can be parameterized as the product

of unknown time invariant parameters and known nonlinear functions, adaptive

control and adaptive learning are most suitable. If f(t,x) cannot be parameter-

ized but its upperbounding function f̄(t,x) is known a priori, robust control or

robust learning control (Tan and Xu, 2003) characterized by high gain feedback

is pertinent. In the past decade, intelligent control methods using function ap-

proximation, such as neural network, fuzzy network or wavelet network, have been

widely studied, which open a new avenue leading to more powerful control solu-

tions as well as better control performance. The most profound feature of those

function approximation lies in that the nonparametric function f(x) is given a

representation in a parameter space, with an artificially constructed function ap-

proximation network, e.g. RBF (radial basis function) network, MLP (multilayer

perception) network, etc. Note that the artificially constructed network consists

8
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of known nonlinear functions, hence the control problem renders into an analogy

as adaptive control or learning control: need only to cope with unknown time

invariant parameters. This accounts for the popularity of function approxima-

tion based control, in particular neural control in recent advances (Narendra and

Parthasarathy, 1990), (Hunt et al., 1992), (Levin and Narendra, 1996), (Sanner

and Slotine, 1992), (Polycarpou, 1996), (Seshagiri and Khalil, 2000), (Ge and

Wang, 2002) and (Huang et al., 2003).

2. Some works based on CEF have studied the performing tracking control with

a priori knowledge of control directions, i.e., the sign of b is known. It is an

extremely difficult and challenging control problem when the control directions are

unknown. Up to now, there are mainly two ways to address the problem. One

way is to incorporate the technique of Nussbaum-type “gains” into the control

design. The first result was proposed by Nussbaum (Nussbaum, 1983), and later

extended to adaptive control systems (Ryan, 1991), (Ye and Jiang, 1998) et al.

Another way is to directly estimate unknown parameters involved in the control

directions (Mudgett and Morse, 1985), (Brogliato and Lozano, 1992), (Brogliato

and Lozano, 1994), (Kaloust and Qu, 1995), et al.

3. To make a process convergent in a finite time interval, the initial condition

becomes crucial because asymptotical convergence along the time horizon is no

longer valid. Iterative learning control (ILC) based on contraction mapping requires

the identical initial condition (i.i.c.) in order to achieve a perfect tracking (Arimoto

et al., 1984b; Sugie and Ono, 1991; Ahn et al., 1993; Xu and Tan, 2003). The

robustness of contraction based ILC has been studied (Arimoto et al., 1991; Lee and

Bien, 1991; Porter and Mohamed, 1991b; Porter and Mohamed, 1991a; Heinzinger

et al., 1992; Saab, 1994), and several algorithms were proposed for ILC without

i.i.c. (Park and Bien, 2000; Sun and Wang, 2002; Chen et al., 1999). Recently,

new ILC approaches based on CEF method (Xu and Tan, 2003; Xu and Tan,

9



CHAPTER 1. INTRODUCTION

2002a; Qu, 2002; Jiang and Unbehauen, 2002; Tayebi, 2004) have been developed

to complement the contraction mapping based ILC in the sense that local Lipschitz

nonlinearities can be taken into consideration. Majority of those approaches also

require the identical initial condition. In practical applications, the perfect initial

resetting may not be obtainable. That motivates us to study initial conditions for

this class of ILC.

1.1.3 Repetitive Learning Control (RLC)

In practice there exists another kind of tracking control problems: the desired

output trajectory or the unknown time-varying uncertainties are periodic for t ∈

[0, ∞). Any periodic signal with period T can be generated by the time-delay

systems as shown in Figure 1.3 with an appropriate initial function.

r0(t) r(t)

0-T

r0(t)
sT

e+
+

Figure 1.3. Generator of periodic signal

In contrast to ILC which has been applied to the finite time interval, the repet-

itive control focus on the infinite time interval. The repetitive control has been

mainly applied to servo problems for LTI (linear time invariant) systems to track

periodic references and reject periodic disturbances. The concept of repetitive con-

trol was first proposed in (Hara et al., 1988) for LTI systems and the convergence

analysis was conducted in frequency domain using small gain theorem. In (Rogers

and Owens, 1992) and (Owens et al., 1999), the stability analysis was conducted
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in the form of differential-difference equations for linear repetitive processes. In

(Longman, 2000), some design issues were exploited for linear repetitive control.

In (Messner and Bodson, 1995), an adaptive feedforward control using internal

model equivalence was developed, which deals with LTI systems with an exoge-

nous disturbance consisting of a finite number of sinusoidal functions, and the

adaptation mechanism estimates the constant unknown coefficients.

The extension of repetitive control to nonlinear dynamics has also been exploited.

In (Messner et al., 1991), the learning control has been applied to identify and com-

pensate for a nonlinear disturbance function which is represented as an integral of

a predefined kernel function multiplied by an unknown influence function that is

state independent. In (Vecchio et al., 2003), a kind of adaptive learning control

scheme was proposed for a class of feedback linearizable systems to track a periodic

reference, and the problem can be converted into the learning of a finite number of

Fourier coefficients. In (Dixon et al., 2003), the repetitive learning control is applied

to a class of nonlinear systems with matched periodic disturbance. Since the peri-

odic disturbance is a time function, it can also be treated as an unknown periodic

coefficient under the framework of adaptive control (Xu, 2004). Note that, above

mentioned learning control schemes require the plant to be parameterizable and

what is aimed is asymptotic convergence along the time horizon, hence they may

also be regarded as some kinds of nonlinear adaptive control under the generalized

framework of adaptive control theory. In (Cao and Xu, 2001), a repetitive learning

control scheme was developed for nonlinear dynamics without parameterization.

Nonlinear robust control is used together with the repetitive learning mechanism,

hence it requires the upper bound knowledge of the lumped uncertaities.

Under the present theoretical framework of repetitive control, it would be difficult

to deal with plants with unknown nonlinear components that are not parameteri-

zable. It is necessary to seek a new learning control strategy, which is able to use
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the simple but effective delay-based mechanism to carry out the repetitive learning,

meanwhile is able to deal with lumped nonlinear unknowns.

It has been shown that many well-known chaotic systems, including Duffing os-

cillator, R össler system, Chua’s circuits, etc., can be transformed into the form

of nonlinear dynamical systems with either unknown constant parameters or un-

known time-varying factors. Adaptive control methods can well handle chaotic

systems with unknown constant parameters (Wang and Ge, 2001a) and (Wang and

Ge, 2001b). On the other hand, the learning control method (Song et al., 2002)

has been applied to chaotic systems in the presence of time-varying uncertainties

with a uniform periodicity. The classical adaptive updating law and the repetitive

learning law are used jointly for systems with both multi-period time-varying and

time invariant parameters. Generally speaking, the classical adaptive updating law

does not work for time varying parameters. The repetitive learning control law,

on the other hand, does not perform as well as classical adaptive updating law for

time invariant parameters due to smoothness problem.

1.2 Objectives and Contributions of the Thesis

In this thesis, the research is focused on developing new learning control approaches

for linear and nonlinear dynamic systems. The main contributions lie in the fol-

lowing aspects: A new DLC approach is proposed for a class of linear time varying,

uncertain, and switched systems; Two ILC approaches are designed by adding a

forgetting factor and incorporating a time varying learning gain for a class of linear

systems in the presence of input singularity, which is incurred by the singularities

of the system direct transmission term; A new ILC approach is constructed with

both differential and difference updating laws to deal with a class of nonlinear

systems without a priori knowledge of control directions; A constructive function
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approximation approach is proposed for adaptive learning control which handles

finite interval tracking problems; For ILC approaches, five different initial condi-

tions are studied to disclose the inherent relationship between each initial condition

and corresponding learning convergence (or boundedness) property; Two new RLC

approaches are proposed for systems with either periodic unknown parameters or

non-parametric uncertainties; A new learning control approach for synchronization

of two uncertain chaotic systems is presented. The contributions of the thesis are

summarized in Table 1.1.

Table 1.1 The contribution of the thesis

Dynamic System (Plant) Control Methods Convergence Analysis

Linear time-varying (LTV)
switch systems

DLC Perfect tracking

LTV system with input singularity
(singular direct feed-through term)

ILC based on 
Contraction mapping

Uniformly bound

Unknown
control direction

ILC based on 
Lyapunov functional T

 convergence

Five different 
initial conditions

ILC based on
Lyapunov functional

1. Point-wise convergence; 
2. Subsequence convergence;

3. 
T

 convergenceNonlinear system 
with parametric 
uncertainty

Known 
control direction 

RLC based on
Lyapunov functional T

 convergence

ILC based on
wavelet network

Subsequence convergence

Nonlinear system with 
non-parametric uncertainty RLC based on

Lapunov-Krasovskii 
functional 

T
 convergence

Chaotic systems RLC based on
Lapunov-Krasovskii 
functional 

T
 convergence

In details, the contributions of this thesis are as follows:

1. In Chapter 2, a DLC approach for a class of switched systems is proposed.

The objective of direct learning is to generate the desired control profile for
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a newly switched system without any feedback, even if the system may have

uncertainties. This is achieved by exploring the inherent relationship between

any two systems before and after a switch. The new method is applicable

to a class of linear time varying, uncertain, and switched systems, when the

trajectory tracking control problem is concerned. Singularity problem and

trajectory switch problem are also considered.

2. In Chapter 3, a challenging and open problem: how to design a suitable ILC

approach in the presence of input singularity, is addressed. Considering two

typical types of input singularities, ILC approaches are revised accordingly by

adding a forgetting factor and incorporating a time varying learning gain, in

the sequel guarantee ILC approaches to be contractible. Using Banach fixed

point theorem, the output sequence can either enter and remain ultimately

in a designated neighborhood of the target trajectory, or bounded by a class

K function.

3. In Chapter 4, by incorporating a Nussbaum-type function, a new ILC ap-

proach is constructed with both differential and difference updating laws to

explore the possibility of designing a suitable iterative learning control sys-

tem without a priori knowledge of the control directions. The new approach

can warrant a L2
T convergence of the tracking error sequence along the itera-

tion axis, in the presence of time-varying parametric uncertainties and local

Lipschitz nonlinearities.

4. In Chapter 5, a new constructive function approximation approach is pro-

posed for adaptive learning control which handles finite interval tracking

problems. Unlike the well established adaptive neural control which uses

a fixed neural network structure as a complete system, in the method the

function approximation network consists of a set of bases and the number

of bases can be increased when learning repeats. The nature of basis allows
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the continuously adaptive tuning or learning of parameters when the network

undergoes a structure change, consequently offers the flexibility in tuning the

network structure. The expansibility of the basis ensures the function ap-

proximation accuracy, and removes the processes in pre-setting the network

size. Two classes of system unknown nonlinear functions, either in L2(R) or

a known upperbound, are taken into consideration. With the help of Lya-

punov method, the existence of solution and the convergence property of the

proposed adaptive learning control system, are analyzed rigorously.

5. In Chapter 6, five different initial conditions associated with ILC are dis-

cussed. For each initial condition, the boundedness along the time horizon

and asymptotical convergence along the iteration axis were exploited with

rigorous analysis. Through both theoretical study and numerical examples,

the Lyapunov based ILC can effectively work with sufficient robustness.

6. In Chapter 7, a new RLC approach is developed for systems with unknown

periodic parameters. With mathematical rigorousness the existence of solu-

tion and learning convergence are proved. Robustifying the nonlinear learn-

ing control with projection and forgetting factor is also been exploited in a

systematic manner via the Lyapunov-Krasovskii functional approach.

7. In Chapter 8, a new RLC approach is developed to handle a class of tracking

control problems by use of the repetitive nature of the control problems. The

target trajectory can be any smooth periodic orbit of a nonlinear reference

model. What can be learnt in RLC are either the desired periodic control

signals or the lumped uncertainties which may become periodic when the

system states converge to the periodic orbit of the reference model. With

mathematical rigorousness the existence of solution and learning convergence

can be proved in a systematic manner via the Lyapunov-Krasovskii functional

approach. Two robustification schemes for the nonlinear learning control
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with projection and forgetting factor are developed. As an extension, the

integration of RLC and robust adaptive control is also exploited to address

the cascaded systems without strict matching condition.

8. In Chapter 9, a learning control approach for synchronization of two uncertain

chaotic systems is presented. Global stability and asymptotic synchronization

are achieved for chaotic systems with both time-varying and time invariant

parametric uncertainties.
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Chapter 2

Direct Learning Control Design

for a Class of Linear Time-varying

Switched Systems

2.1 Introduction

System switches may arise in many practical processes. Many hybrid systems

consist of multiple subsystems and switch according to certain switching laws. In

a complex system, many types of changes may be encountered, e.g., faults in the

system, changes in subsystem dynamics and changes in system parameters.

In general, complex systems operate in multiple environments which may change

abruptly from one context to another (Ezzine and Haddad, 1989), (Liberzon and

Morse, 1999), (Ye et al., 1998), (Ji and Chizeck, 1988), (Loparo et al., 1987).

One typical switch type engineering system is an electrical circuit with many relay

components, which has been widely applied in the field of power electronics (Sira-

Ramirez, 1991). Any on-off switch of a relay may give rise to the change in the
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system topology and parameters. Other examples of switch systems can be found

in power systems (Williams and Hoft, 1991), building air-condition, communication

network, etc.

Drawing more attentions recently, switched systems have been widely investigated,

mainly focusing on the system properties such as controllability, observability, and

stability (Sun and Zheng, 2001), (Stanford and L. T. Conner, 1980) and (Branicky,

1998). In this chapter, we concentrate on the tracking control problem for switched

systems. Traditionally control system design has been based on a single fixed model

of the system. When the system switches, there is a need to re-design the closed-

loop so as to generate the desired control input profiles. In addition, it takes time for

the system to converge, or eliminate the tracking error asymptotically. Can we find

a quick and easy way to generate the desired control signals without re-designing

the controller, and the target trajectory can be followed from the beginning?

Direct Learning Control (DLC) method was proposed by (Xu, 1997b), (Xu, 1998)

to directly generate the desired control profile from pre-stored control inputs. DLC

works for a fixed system with switched target trajectories, that is, the desired con-

trol profile can be directly generated, even if the new trajectory may be different

from any existing trajectories tracked previously. The key idea of DLC is to use

the inherent relationships between the new and existing trajectories, hence a feed-

forward control can be implemented. In this chapter, we will extend the same idea

to system switches.

When a system switches, often we know the topological variation before and after

the switch. For instance, we are able to known the change of a network when

an on-off operation of a relay occurs, though we may not know the details of the

network components. In other words, we may have some inherent relationship of

two systems before and after the switch, though both systems may be partially
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unknown to us. If we can acquire a sufficient number of such relationships asso-

ciated with switches, there is a possibility of directly generating the new control

profile with respect to the new system. It is worthwhile to point out, that a new

control system may have plenty of prior control knowledge obtained through all

the past control actions although they may correspond to the different systems. In

this chapter, we will focus on a class of time-varying switched systems, show how

we can fully utilize the pre-stored control information, and explore the conditions

assuring a direct learning of the desired control input profile.

The chapter is organized as follows. Section 2.2 states the control problem for

a class of linear time-varying switched systems. Section 2.3 provides a new di-

rect learning scheme to obtain the desired control profile. Section 2.4 presents an

illustrative example.

2.2 Problem statement

Consider the switched systems given by the following equations:

ẋi(t) = Ai(t)xi(t) +Bi(t)ui(t), (2.1)

where xi = [x1,i · · · xn,i]
T is the i−th system state vector. Ai(t), Bi(t) ∈ Rn×n,

are unknown time-varying matrices. Bi(t) is full rank for ∀t ∈ [0, T ], i ∈ N , where

[0, T ] is the tracking period.

The control objective is to find the control input for a tracking control trajectory

xd over the given time period t ∈ [0, T ], where xd(t) = [x1,d(t) · · · xn,d(t)]
T

represents the desired system state trajectory. For the switched systems, a new

control system may have plenty of prior control knowledge obtained through all

the past control actions although they may correspond to different systems. In

this chapter, in order to effectively utilize all the prior control knowledge so as to
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remove the iterative learning process, we will propose a new DLC scheme for the

class of linear time-varying switched systems.

Assumption 2.1. Any two consecutive switched systems have the following rela-

tions:

Ai(t) = Ki−1Ai−1(t), Bi(t) = Mi−1Bi−1(t), (2.2)

where Kj , Mj , j = 1, 2, · · · , are all constant matrices, and Mj is of full rank.

Assumption 2.2. There are at least N = 2n2 known tracking control input profiles

ui(t) available.

Now consider the new system

ẋN+1(t) = AN+1(t)xN+1(t) +BN+1(t)uN+1(t). (2.3)

Our control objective is also to find the control input ud(t) to track the trajectory

xd(t). When xN+1(t) = xd(t), ud(t) should be

ud(t) = B−1
N+1(t)ẋd(t) −B−1

N+1(t)AN+1(t)xd(t). (2.4)

Note that because AN+1(t) and BN+1(t) are unknown, the control input ud(t)

cannot be calculated directly from the above equation.

According to the relations (2.2), we have

Ai(t) = Ki−1Ai−1(t) = · · · =
i−1∏

j=1

Ki−jA1(t),

Bi(t) = Mi−1Bi−1(t) = · · · =
i−1∏

j=1

Mi−jB1(t). (2.5)

Let

C(t)
4
= B−1

1 (t), Di
4
=

(
i−1∏

j=1

Mi−j

)−1

,

Ei
4
=

(
i−1∏

j=1

Mi−j

)−1

·
(

i−1∏

j=1

Ki−j

)
, (2.6)
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where

C(t) =




c1(t)

...

cn(t)



,

Di = [d1,i · · ·dn,i], Ei = [e1,i · · · en,i]. (2.7)

To facilitate the derivation of DLC in subsequent section, the following lemma is

given.

Lemma 2.1. For any matrix Φ ∈ Rn×n =

[
φ1 · · · φn

]T

∈ Rn×n and Γ =

[γ1 · · ·γn] ∈ Rn×n, the following relation holds:

ΦΓ =
n∑

j=1

n∑

k=1

ΓjkΦjk (2.8)

where

Γjk =




n columns︷ ︸︸ ︷
0 · · · 0 γk︸︷︷︸

jth column

0 · · · 0




T

,

Φjk =




n ccolumns︷ ︸︸ ︷
0 · · · 0 φT

j︸︷︷︸
kth column

0 · · · 0



.

Proof. See the Appendix A.1.
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2.3 Derivation of the DLC Scheme

In this section, the DLC scheme for the switched systems will be given. For con-

venience, let

Cjk(t)
4
=




n columns︷ ︸︸ ︷
0 · · · 0 cT

j︸︷︷︸
kth column

0 · · ·0



,

Djk
i

4
=




n columns︷ ︸︸ ︷
0 · · · 0 dk,i︸︷︷︸

jth column

0 · · · 0




T

,

Ejk
i

4
=




n columns︷ ︸︸ ︷
0 · · · 0 ek,i︸︷︷︸

jth column

0 · · · 0




T

,

(2.9)

where cj, dk,i and ek,i are given by (2.7),

D̄i
4
=

[
D11

i · · · D1n
i · · · Dn1

i · · · Dnn
i

]

=




dT
1,i · · · dT

n,i · · · 0 · · · 0

0 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 · · · dT
1,i · · · dT

n,i



,

Ēi
4
=

[
E11

i · · · E1n
i · · · En1

i · · · Enn
i

]

=




eT
1,i · · · eT

n,i · · · 0 · · · 0

0 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...
. . .

...

0 · · · 0 · · · eT
1,i · · · eT

n,i



,

(2.10)
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R =




D̄1 Ē1

...
...

D̄i Ēi

...
...

D̄N ĒN




, (2.11)

and

S =

[
D̄N+1 ĒN+1

]
. (2.12)

The following assumption is necessary.

Assumption 2.3. The N learned switched systems are correlated with the new

system (2.3) in such a way that

R1 =




dT
1,1 · · · dT

n,1 eT
1,1 · · · eT

n,1

...
. . .

...
...

. . .
...

dT
1,N · · · dT

n,N eT
1,N · · · eT

n,N




(2.13)

is full rank.

Lemma 2.2. The rank of the matrix R is equivalent to the rank of the matrix R1,

where R and R1 are defined in (2.11) and (2.13) respectively.

Proof. See the Appendix A.2.

The main result is given in the following theorem.

Theorem 2.1. The desired control input ud(t) with respect to the system (2.3) can

be directly obtained using N past control inputs according to the following relation:

ud(t) = SR−1




u1(t)

...

uN (t)



, (2.14)

where ui(t), i = 1, · · · , N , is the known desired control input profile of the i−th

switched system (2.1), S and R are defined in (2.12) and (2.11) respectively.
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Proof. Because Bi(t) is of full rank, then (2.1) can be written as follows:

ui(t) = B−1
i (t)ẋd −B−1

i (t)Ai(t)xd. (2.15)

According to the Assumption 2.1, substituting the equation (2.5) and (2.6) into

(2.15), the following relation can be obtained:

ui(t) = B−1
i (t)ẋd −B−1

i (t)Ai(t)xd

= B−1
1 (t)

(
i−1∏

j=1

Mi−j

)−1

ẋd −B−1
1 (t)

(
i−1∏

j=1

Mi−j

)−1

×
(

i−1∏

j=1

Ki−j

)
A1(t)xd

= C(t)Diẋd − C(t)EiA1(t)xd, (2.16)

According to Lemma 2.1, the following relation exists:

ui(t) =

(
n∑

j=1

n∑

k=1

Djk
i C

jk(t)

)
ẋd −

(
n∑

j=1

n∑

k=1

Ejk
i C

jk(t)

)
A1(t)xd

=
n∑

j=1

n∑

k=1

Djk
i C

jk(t)ẋd −
n∑

j=1

n∑

k=1

Ejk
i C

jk(t)A1(t)xd (2.17)

where Cjk, Djk
i and Ejk

i are defined in (2.9). By rearranging the above equation,

we have

ui(t) =
n∑

j=1

n∑

k=1

(
Djk

i C
jk(t)ẋd − Ejk

i C
jk(t)A1(t)xd

)

=

[
D̄i Ēi

]
z(t) (2.18)

where D̄i and Ēi are given in (2.10) and

z(t)
4
=

[
z1(t) z2(t)

]T

zj(t)
4
=

[
z11

j (t) · · · z2n
j (t) · · · zn1

j (t) · · · znn
j (t)

]T

, j = 1, 2,

zml
1 (t)

4
= Cml(t)ẋd,

zml
2 (t)

4
= Cml(t)A1(t)xd, m, l = 1, · · · , n. (2.19)

The vector z(t), which is a set of unknown basis functions and switch-irrelevant,

can be learned directly in a point-wise manner with the known coefficient matrix

Djk
i , Ejk

i and control input ui(t).
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From Assumption 2.2, we know that there are N = 2n2 previously stored control

profiles. (2.18) can be rewritten in a form: u(t) = Rz(t), where

u(t) =

[
uT

1 (t) · · · uT
i (t) · · · uT

N (t)

]T

,

R and z(t) represent the known scaling matrix and unknown basis respectively.

From Lemma 2.2 and Assumption 2.3, R is of full rank. Therefore, z(t) can be

obtained as

z(t) = R−1u(t). (2.20)

Similar to (2.17), utilizing the denotation (2.6) and the definition of z(t) in (2.19)

, (2.4) can be rewritten as

ud(t) = B−1
1 (t)

(
N∏

j=1

MN+1−j

)−1

ẋd −B−1
1 (t)

(
N∏

j=1

MN+1−j

)−1

×
(

N∏

j=1

KN+1−j

)
A1(t)xd

= C(t)DN+1ẋd − C(t)EN+1A1(t)xd

=
n∑

j=1

n∑

j=1

Djk
N+1C

jk(t)ẋd −
n∑

j=1

n∑

j=1

Ejk
N+1C

jk(t)A1(t)xd

= Sz(t) (2.21)

where S is given in (2.12) .

Substituting (2.20), the new desired control input is directly achieved. This com-

pletes the proof.

Remark 2.1. We can extend the above result to more generic circumstances:

1. If the matrix R1 is singular, extra control input profiles should be added to

improve the rank condition of R1. The DLC scheme remains almost the same,

and the terms z(t) can be obtained in the sense of Least Squares.
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2. On the other hand, if the matrices Ki, Mi, i ∈ N , are all diagonal, it is suf-

ficient to use 2n known tracking control input profiles to generate the desired

control input profile.

3. If the target trajectories also switch at different operation cycles, the DLC

scheme is still applicable with some minor modifications.

Remark 2.2. Although we assume constant Ki , Mi, i ∈ N , the proposed DLC can

be extended straightforward to time-varying cases, as long as the ranking condition

is satisfied.

2.4 Illustrative Example

In this section, the proposed DLC scheme is applied to the linear switched sys-

tems for illustrative purpose. The switched systems are described by the following

equation:

ẋi(t) = Ai(t)xi(t) +Bi(t)ui(t) (2.22)

where

A1(t) =




−1 1

−1 2


 , B1(t) =




1 sin(t)

−1 2


 ,

and xi(t), ui(t) are the i−th system states to be controlled and control inputs

respectively.

Let the desired trajectory is xd(t) =




sin(t)

cos(t)


 , t ∈ [0, 2π], the systems switch
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eight times and Ki and Mi, i = 1, 2, · · · , 7, are given as follows:

K1 =




1 0.2

1 −1


 , K2 =




0 −1

6.67 0.33


 ,

K3 =




1.88 0.13

−1.06 0.06


 , K4 =




4.25 3.5

−2.5 −7


 ,

K5 =




0.19 −0.23

0.33 0.17


 , K6 =




4.56 −0.89

0.67 2.33


 ,

K7 =




0.41 0.08

−0.16 0.42


 , M1 =




−1 2

0.9 1


 ,

M2 =




0.29 1.43

−1.75 2.5


 , M3 =




0.78 −0.44

1.56 1.11


 ,

M4 =




−0.14 0.14

−0.86 0.36


 , M5 =




13 −4

0 1


 ,

M6 =




1 0

−0.08 0.69


 , M7 =




0.4 0.3

0.33 2.33


 .

Now consider the following new system

ẋ9(t) = A9(t)x9(t) +B9(t)u9(t), (2.23)

where K8 and M8 are

K8 =




0.43 0.12

−3 1.91


 , M8 =




1.2 0.66

−0.27 0.65


 . (2.24)

Since the control input profiles of the previous eight systems are known a priori,

that is, u1,u2,u3 ,u4, u5,u6,u7 and u8 are available, by applying the proposed

DLC scheme in Theorem 1, the control input ud(t) is obtained directly. Simulation

results are presented in Figure 2.1. From the figure it can be observed that the

directly learned control input profiles are exactly the same as the desired ones. The

DLC scheme can successfully learn and generate the desired control signals from

the switched system.
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0 1 2 3 4 5 6 7
−10

−5

0

5

Ideal input U
1

DLC generated input U
1d

Ideal input U
2

DLC generated input U
2d

Figure 2.1. DLC obtained control input

2.5 Conclusion

To solve the trajectory tracking problem for a class of switched systems, a new

direct learning control method is proposed and verified. The new DLC control

allows the full use of pre-obtained control signals, in the sequel generates the desired

control profile for a newly switched system. We have shown that the new method is

applicable to a class of linear time-varying systems with uncertainties. Simulation

results further confirm the effectiveness of the new method.

28



Chapter 3

Fixed Point Theorem based

Iterative Learning Control for

Linear Time-varying Systems

with Input Singularity

3.1 Introduction

Iterative learning control (ILC) has been intensively studies in near the past two

decades (Arimoto et al., 1984a), (Kuc et al., 1992), (Jang et al., 1995), (Moore,

1998), (Chien, 1998), (Longman, 1998), (Wang, 1998), (Chen et al., 1998), (Ghash

and Paden, 2002), (Xu and Tan, 2002c). From a rigorous mathematical viewpoint,

ILC is a kind of function approximation based on contraction mapping and fixed

point theorem. The well known ILC updating law, usually linking two consecutive

iterations, provides a specific approximation operator that ensures the convergence.

Meanwhile, under the Global Lipschitz continuity condition, the uniqueness of
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the control input, which achieves the perfect tracking, is guaranteed. However,

contraction mapping based ILC requires a nonsingular direct feed-through term

between the system input and output.

Iterative Learning Control (ILC), based on contraction mapping, is a kind of output

tracking control and the relative degree of the system needs to be zero, i.e., the

direct feedthrough term must be nonsingular in general for all ILC problems. On

the other hand, the identical initial condition plus global Lipschitz condition (GLC)

will ensure the boundedness of the state in any finite time interval. Therefore ILC

will work and achieve perfect output tracking in a finite interval, regardless of the

stability and controllability of the state dynamics. For instance, even if there exists

an unstable and uncontrollable mode, by virtue of the identical initial condition,

together with the GLC, the mode will not incur any finite escape time phenomenon.

On the other hand, owing to the algebraic relation between the input and output,

output variables can be directly manipulated by inputs, regardless of any finite

state values. This is also a major advantage of ILC.

In this chapter we consider a very challenging and open problem in ILC: the direct

feed-through term becomes singular at a number of points. Since the learnability

condition is violated at those points, we need to look for alternative contraction

mapping approaches according to various types of singularities, such that the fixed

point theorem is still applicable. Two types of singularities are considered in this

chapter. In the first situation, the direct feed-through term does not changes signs

(the control direction) on the two sides of a singular point. It is relatively easy to

address this type of singularities. We need only to do a very minor modification to

a conventional ILC operator by adding a forgetting factor close to unity. The focus

of this part of work is to exhibit two important issues: 1) the revised contraction

mapping generates a control input sequence converging to a unique fixed point

uniformly, and 2) this fixed point warrants the system output to ultimately and
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uniformly enter a designated neighborhood of the target trajectory. In this simple

ILC design, we do not need to know the locations of the singular points.

It is however much more difficult to handle the second type of singularities: on

two sides of a singular point the direct feed-through term changes the sign. Thus

it is necessary to know when a second type singularity occurs, and how does the

sign changes. In addition to the forgetting factor, which alone is insufficient in

such circumstance, we further incorporate the sign changes into the revised ILC

operator. We can demonstrate that 1) the revised ILC operator is contractible

and the control input sequence converges uniformly to a unique fixed point, 2)

the system enters a designated neighborhood of the target trajectory except for

a number of sub-intervals centered about the second type singular points, and 3)

within each sub-interval the tracking error is bounded by a class K function of a

quantity which specifies the bound of the designated neighborhood.

Due to the extreme difficulty in dealing with input singularities, in this chapter

we focus on linear time varying (LTV) systems. Nevertheless the results can be

extended straightforward to a class of nonlinear dynamic systems.

This chapter is organized as follows. Section 3.2 gives problem formulation and

some preliminaries. Sections 3.3 and 3.4 address the two types of singularities

respectively. Section 3.5 presents an illustrative example.

3.2 Problem Formulation and Preliminaries

Consider a class of LTV systems described by

ẋ(t) = A(t)x(t) + b(t)u(t) x(a) = xa

y(t) = c(t)x(t) + d(t)u(t), (3.1)
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where t ∈ [a, b]
4
= I, a and b are finite positive constants, A(t) ∈ C0(I,Rn×n),

b(t) ∈ C0(I,Rn×1), c(t) ∈ C1(I,R1×n) and d(t) ∈ C1(I,R) respectively. Here we

adopt the notations R = (−∞,∞), and Cp(I,Rn) the space of continuous functions

(p = 0) and the space of continuously differentiable functions (p = 1), which map

the interval I into Rn.

Since ILC works under a repeatable control environment, the identical initial con-

dition is assumed

Assumption 3.1.

xi(a) = xa for i = 1, 2, · · ·. (3.2)

where the subscript i denotes the ith iteration.

From the continuity of A(t), b(t), the smoothness of c(t) and d(t), and the finite

interval, there exist finite positive constants βA, βb, βc, and βd such that ‖A(t)‖s =

βA, ‖b(t)‖s = βb, ‖c(t)‖s = βc, and |d(t)|s = βd for ∀t ∈ I. Here ‖ · ‖ represents

the infinity norm for a vector, and the induced norm for a matrix. ‖ · ‖s represents

the supreme norm for a vector valued or matrix valued function defined in I, i.e.

‖ · ‖s = supt∈I ‖ · ‖. When a scalar is concerned, the infinity norm or the function

norm renders to |·| or |·|s. To facilitate the subsequent discussions, a time weighted

norm is also defined

‖ · ‖λ = sup
t∈I

e−λ(t−a)‖ · ‖

where λ must be a finite constant so that the function norm can be well defined

over the interval I.

Give a target trajectory yr(t) ∈ C1(I,R). The objective of ILC is to construct

an appropriate contraction operator, that generates a convergent input sequence

ui(t) leading to a unique fixed point ur(t) for ∀t ∈ I. In the sequel the output

sequence yi(t), driven by ui(t), converges to yr(t). Such a contraction mapping has

32



CHAPTER 3. FIXED POINT THEOREM BASED ITERATIVE LEARNING CONTROL FOR LINEAR
TIME-VARYING SYSTEMS WITH INPUT SINGULARITY

been proposed in (Arimoto et al., 1984a), and is valid when the system direct feed-

through term is nonsingular, i.e. |d(t)|s ≥ α > 0. The objective of this chapter, is

to extend the ILC to a more general case where |d(t)| = 0 for a number of points

t ∈ I.

The following properties will be used in subsequent sections.

Property 3.1. Cp(I,Rn) and Cp(I,Rn, ‖ · ‖λ), p = 0, 1, are both Banach spaces.

In fact it is well known that C(I,Rn) is a Banach space. From the norm equivalence

e−λ(b−a)‖ · ‖s ≤ ‖ · ‖λ ≤ ‖ · ‖s

it is immediately obvious that C(I,Rn, ‖ · ‖λ) is also a Banach space.

Property 3.2. Let T be a contraction operator in a Banach space X . Then ac-

cording to Banach fixed point theorem

1) T has a unique fixed point x∗ ∈ X , and

2) for any initial approximation xa ∈ X , the sequence of successive approximations

xi+1 = T (xi), k = 0, 1, 2, · · · (3.3)

converges to x∗.

Property 3.3. For any finite positive constants q and γ, there exists a finite value

of λ such that the following relationship holds for the dynamic system (3.1)

|qc(x1 − x2)|λ ≤ γ

2
|u1 − u2|λ. (3.4)

This property is derived as follows. From Assumption 3.1 the identical initial
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condition, substituting the dynamics (3.1) and applying Gronwall Lemma, we have

‖x1(t) − x2(t)‖ = ‖
∫ t

a

[A(τ )x1(τ ) +B(τ )u1(τ )−A(τ )x2(τ ) −B(τ )u2(τ )]dτ‖

≤ βA

∫ t

a

‖x1(τ ) − x2(τ )‖dτ + βb

∫ t

a

|u1(τ ) − u2(τ )|dτ

≤ βA

∫ t

a

‖x1(τ ) − x2(τ )‖dτ + βb

∫ t

a

eλ(τ−a)|u1 − u2|λdτ

≤ eλt − 1

λ
βbe

βAt|u1 − u2|λ

⇒ ‖x1 − x2‖λ ≤ 1 − e−λ(b−a)

λ
βbe

βA(b−a)|u1 − u2|λ (3.5)

Therefore

|qc(x1 − x2)|λ ≤ 1 − e−λ(b−a)

λ
qβcβbe

βA(b−a)|u1 − u2|λ.

Let

1 − e−λ(b−a)

λ
qβcβbe

βA(b−a) ≤ γ

2
,

by ignoring e−λ(b−a) we have

λ ≥ 2qβcβbe
βA(b−a)

γ
.

This property has been widely used for ILC convergence analysis in the presence

of the system dynamics. Generally speaking, the impact from the system state

dynamics to the system output, i.e. the c(t)x(t) term in the output equation, can

be handled in two ways. If the tracking interval is sufficiently short such that the

direct feed-through term is dominant in terms of the supreme norm, we can derive

the contraction property directly using the supreme norm (Lee and Bien, 1997).

However, when the tracking interval is larger, the dynamic impact may grow expo-

nentially to reach the scale of eβA(b−a), and become dominant in the output equation

if the supreme norm is still applied. In such case, the time weighted norm will have

to be used to suppress the exponential growth. Since a monotonically convergent

sequence in ‖ · ‖λ may actually grow up for a finite number of iterations in terms

of the supreme norm, a frequently raised question is whether ‖ · ‖s can be applied
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even if the tracking interval is large. Unfortunately this is an extremely difficult

problem as it requires the capability of controlling the transient behavior in itera-

tion domain. As we know, in much of control literature the transient behavior of

a control system is still open in general. Transient improvement can be expected

only when more of the system knowledge is available, such as the use of Markov

parameters to describe the system dynamics (French and Phan, 2000), or learning

in state space (Xu, 2002a). While in the presence of input singularities, conver-

gence analysis becomes extremely difficult, let alone the transient behavior. Thus

throughout this chapter, the convergence analysis is made in the sense of the time

weighted norm.

3.3 ILC for the First Type of Singularities

The existence of the input singularity prevents an ILC operator from generating

an ultimately uniformly convergent sequence. The system learnability condition is

violated at any t where d(t) = 0. The best we can expect is for the tracking error

to uniformly enter a prespecified neighborhood below

|yr(t) − yi(t)|s ≤ ε (3.6)

as i→ ∞. ε specifies the error metric bound.

Surprisingly, as we will show in this section, the following simple ILC operator can

do the job well

ui+1(t) = (1 − γ)ui(t) + q[yr(t)− yi(t)] (3.7)

where γ is a constant satisfying 0 < γ � 1, and q is a learning gain. γ plays the

role of a forgetting factor. Note that this learning law is equivalent to the following

operator

T [u(t)] = (1 − γ)u(t) + q[yr(t) − y(t)]. (3.8)
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In fact this ILC operator frequently appears in the ILC literature, and the sole

purpose of the forgetting factor is to robustify learning in the presence of exoge-

nous perturbations. Our main contribution in this section is to demonstrate that

the same ILC operator is also valid for input singularities. Namely, (3.7) remains

a contraction operator in the presence of singularities, and achieves the desired

tracking bound (3.6) by deliberately choosing the parameters γ and q. For simplic-

ity we will omit the argument t in subsequent derivations wherever no confusion

arises.

Theorem 3.1. The operator (3.8) warrants a convergent sequence ui to a unique

fixed point u∗ ∈ C1(I,R, ‖ · ‖λ), and achieves the desired performance (3.6) for

any ε > 0, when the control parameters are chosen to be 0 < q ≤ 2βu∗

2ε+ βdβu∗
and

0 < γ ≤ εq

βu∗
≤ 2ε

2ε+ βdβu∗
. Here βu∗ ≥ |u∗|s is a constant.

Proof. When u ∈ C1(I,R, ‖ · ‖λ), according to the system dynamics (3.1), x ∈

C1(I,Rn×1, ‖ · ‖λ). In the sequel y ∈ C1(I,R, ‖ · ‖λ). From (3.8), we can conclude

that T is an operator which maps the elements of the Banach space C1(I,R, ‖ · ‖λ)

into itself.

Now we prove that T given in (3.8) is a contraction operator in the space C1(I,R, ‖·

‖λ). ∀ u1, u2 ∈ C1(I,R, ‖ · ‖λ), we have

|T (u1) − T (u2)|λ = |(1 − γ − qd)(u1 − u2) − qc(x1 − x2)|λ

≤ |1 − γ − qd|s|u1 − u2|λ + |qc(x1 − x2)|λ. (3.9)

From Property 3.3 there exists a finite λ such that (3.4) holds. On the other hand,

we can derive, with the selected control parameters,

|1 − γ − qd|s ≤ 1 − γ. (3.10)

In fact, it is obvious that 1 − γ − qd ≤ 1 − γ because of q > 0 and d(t) ≥ 0. On
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the other hand,

1 − γ − qd ≥ 1 − 2ε

2ε+ βu∗βd
− 2βu∗βd

2ε+ βu∗βd

= − βu∗βd

2ε+ βu∗βd

= −(1 − 2ε

2ε+ βu∗βd

)

≥ −1 + γ.

Therefore, we have

|T (u1) − T (u2)|λ ≤ |1 − γ − qd|s|u1 − u2|λ + |qc(x1 − x2)|λ

≤ (1 − γ

2
)|u1 − u2|λ,

that is, T is indeed a contraction operator in the Banach space C1(I,R, ‖ · ‖λ).

According to Banach fixed point theorem, we can immediately conclude that T

has a unique fixed point u∗(t) ∈ C1(I,R, ‖ · ‖λ), and for any initial approximation

u0(t) ∈ C1(I,R, ‖ · ‖λ), the sequence of successive approximations ui+1 = T (ui)

converges to u∗.

The remaining question is, will u∗ enable the corresponding system output y to

enter the neighborhood (3.6)? Since u∗ = T (u∗), substituting u = u∗ into (3.8),

taking the supreme norm on both sides, further substituting q and the upperbound

of γ, we finally have

|yr(t) − y(t)|s =
γ|u∗(t)|s

q
≤ ε. (3.11)

This completes the proof.

Remark 3.1. The smaller the parameter ε, the closer is y(t) to the objective tra-

jectory yr(t). This means that we can specify the tracking accuracy by choosing an

appropriate value for the design parameter ε.

Remark 3.2. In determining the control parameters γ and q, we need the bound-

ing knowledge of u∗ which may not be known to us. In practice we can partially

address this problem in two ways, either using a sufficiently large estimate of u∗,
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or updating the bound βu∗ = max{|ui|s, |ui−1|s}. If u∗ is over-estimated, the pre-

specified tracking accuracy will certainly be achieved. If u∗ is under-estimated, the

tracking error will still be uniformly bounded, but may not be in the prespecified

neighborhood (6).

3.4 ILC for the Second Type of Singularities

When the direct feed-through term d(t) changes signs across the singular points,

more knowledge is needed about d(t). In the first place it is necessary to know the

sign changes of d(t), so that the control direction determined by q(t)d(t) can remain

the same. One way is to let q(t) = sign[d(t)]. However a discontinuous learning

control will give rise to tremendous problems in both theoretical analysis and real

time implementation. Thus we consider a smooth control gain q(t) ∈ C1(I,R),

which ensures q(t)d(t) ≥ 0. Here the control parameter q is no longer a constant,

but a time varying gain. The ILC law is

ui+1(t) = (1 − γ)ui(t) + q(t)[yr(t)− yi(t)] (3.12)

or expressed equivalently by an ILC operator

T [u(t)] = (1 − γ)u(t) + q(t)[yr(t)− y(t)]. (3.13)

In the following theorem, we prove that (3.13) defines a contractible operator.

Theorem 3.2. The operator (3.13) warrants a convergent sequence ui to a unique

fixed point u∗ ∈ C(I,R, ‖ · ‖λ), when the control parameters are chosen as 0 ≤

|q(t)| ≤ qm ≤ 2βu∗

2ε+ βdβu∗
and 0 < γ ≤ qmε

βu∗
≤ 2ε

2ε+ βdβu∗
.

Proof. Comparing (3.13) with (3.8), or comparing (3.12) with (3.7), the only differ-

ence is the replacement of a constant q by a time varying q(t). Therefore analogous
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to the proof of Theorem 3.1, ∀ u1, u2 ∈ C1(I,R, ‖ · ‖λ), we have

|T (u1) − T (u2)|λ ≤ |1 − γ − qd|s|u1 − u2|λ + |qc(x1 − x2)|λ. (3.14)

If |1 − γ − qd|s ≤ 1 − γ, the ILC operator (3.13) is a contractible operator and u∗

is unique.

It is obvious that 1 − γ − q(t)d(t) ≤ 1 − γ because q(t)d(t) ≥ 0. Moreover,

1 − γ − qd ≥ 1 − 2ε

2ε+ βu∗βd
− 2βu∗βd

2ε+ βu∗βd

= − βu∗βd

2ε+ βu∗βd

= −(1 − 2ε

2ε+ βu∗βd

)

≥ −1 + γ.

Following the discussion in Theorem 3.1, it concludes

|T (u1) − T (u2)|λ ≤ (1 − γ

2
)|u1 − u2|λ.

Now let us discuss the tracking performance. Since u∗ = T (u∗), from (3.13) we

can derive

|q(t)||yr(t) − y(t)| = γ|u∗(t)|. (3.15)

It is not possible to derive the uniform boundedness property as in Theorem 3.1,

because q(t) goes to zero at singular points. In order to exploit the boundedness

property, divide the interval I into two sets Ω1 = {t ∈ I : |q(t)| ≥ qm} and

Ω2 = I − Ω1. For all t ∈ Ω1, (3.15) can be rewritten as

|yr(t)− y(t)| ≤ γ|u∗(t)|
qm

. (3.16)

Thus analogous to Theorem 3.1, |yr(t)− y(t)| ≤ ε for ∀t ∈ Ω1.

What kind of bounding property can we draw in a small interval nearby a second

type singular point where |q(t)| < qm? Since q(t) is a design parameter, we can
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judiciously choose it such that Ω2 consists of a number of open sets (neighborhoods),

each covers a second type singular point with the interval length δ(ε) , where

δ(ε) is a class K function of ε, i.e. continuous, strictly increasing and δ(0) = 0.

For instance, we can choose q(t) = qm sin
π

ε
(t − ts) nearby a singular point ts

which produces sign changes at two sides: d(t+s ) > 0 and d(t−s ) < 0. Then the

corresponding neighborhood is an open interval (ts −
ε

2
, ts +

ε

2
) with the interval

length δ(ε) = ε. In the following we prove the boundedness property for any interval

in Ω2.

Corollary 3.1. The output tracking error metric in the neighborhood of a second

type singular point is a class K function of ε.

Proof. Denote y∗ and x∗ respectively the system output and states corresponding

to u∗. Define an interval Is = (ts − δ(ε)
2
, ts + δ(ε)

2
). Our objective is to show ∀t ∈ Is,

the quantity |yr(t)−y∗(t)| is a class K function of ε. First consider an upper bound

of the tracking error metric

|yr(t)− y∗(t)| ≤ |yr(t)− yr(t1)| + |yr(t1) − y∗(t1)|+ |y∗(t1) − y∗(t)| (3.17)

where t1 = ts −
δ(ε)

2
. Note that (t1, t] ⊂ Is, therefore |t − t1| ≤ δ(ε). Since

yr(t) ∈ C1(I,R), its derivative is finite in Is. Applying the mean value theorem

|yr(t)− yr(t1)| ≤ |ẏr(ξ)||t− t1| ≤ δ1(ε) ξ ∈ (ts, t) ⊂ Is

where δ1(ε) is class K function of ε. We also have |yr(t1) − y∗(t1)| ≤ ε because

t1 ∈ Ω1.

Now let us evaluate |y∗(t1) − y∗(t)| or |y∗(t) − y∗(t1)|. Again applying the mean

value theorem

|y∗(t) − y∗(t1)| ≤ |ẏ∗(ξ)||t− t1| ≤ |ẏ∗(ξ)|δ(ε) ξ ∈ (t1, t) ⊂ Is.

Let us verify that |ẏ∗(t)| is finite for any t ∈ Is. In fact from u∗ ∈ C1(I,R, ‖·‖λ) and

the LTV dynamics (3.1), we can conclude x∗ ∈ C1(I,Rn×n) and u̇∗ ∈ C1(I,R, ‖·‖λ),
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hence both are bounded in the interval Is. In addition, from c ∈ C1(I,R1×n)

and d ∈ C1(I,R), we can conclude that ċ and ḋ are bounded in the interval Is.

Consequently

ẏ∗ = ċx∗ + cẋ∗ + ḋu∗ + du̇∗

is bounded for ∀t ∈ Is, and there exists a class K function δ2(ε) such that |y∗(t)−

y∗(ts)| ≤ δ2(ε).

Finally we reach the conclusion that |yr(t)− y∗(t)| ≤ δ1(ε) + ε+ δ2(ε).

Remark 3.3. The significance of the corollary is, we can indirectly control the

tracking error nearby the singular points, by means of choosing a sufficiently small

ε, although we do not know the exact bound on Ω2.

Remark 3.4. Note that in deriving the conclusion of Theorem 3.1, we do not use

any information of the derivatives of c(t) and d(t). Thus we only need c(t) and

d(t) in C0, instead of C1. As far as the second type singularity is concerned, we

only need c(t) and d(t) belonging to C1 in the neighborhoods of Ω2. It is adequate

for c(t) and d(t) to be C0 in Ω1.

Remark 3.5. Though only a LTV system is considered, the results can be extended

straightforward to a class of nonlinear systems

ẋ = f(x, u, t) x(a) = xa

y = g(x, t) + d(t)u,

with f and g global Lipschitz continuous.

Remark 3.6. The above results can also be applied to D-type ILC where d(t) ≡ 0

and c(t)b(t) has singularities.
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3.5 Illustrative Example

Consider the following system

ẋ(t) = sin(t)x(t) + u(t) x(0) = 0.5

y(t) = x(t) + (1 − t)u(t) (3.18)

where βd = 1. The target trajectory is

yr(t) = (t− 1)2, t ∈ [0, 1.5]. (3.19)

There exists a singular point of the second type at t = 1. Choose ε = 0.01

and a sufficiently large βu∗ = 10, then qm ≤ 2 × 10

2 × 0.01 + 1 × 10
≈ 2, and 0 <

γ ≤ 2 × 0.01

1
= 0.02. In this example we choose γ = 0.0001, qm = 1.5, and

Is = (0.995, 1.005), then a simple form of the time varying gain is

q(t) =





1.5 if t ∈ [0, 0.995]

1.5 sin
π

2

1 − t

0.005
if t ∈ Is

−1.5 if t ∈ [1.005, 1.5].

(3.20)
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Figure 3.1. Output tracking (i = 20)

Figure 3.1 shows that the output y20(t) almost overlaps the target trajectory yr(t).

Figure 3.2 show shows the difference clearly nearby the singular time point t = 1
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Figure 3.2. Output tracking nearby the singularity (i = 20)
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Figure 3.3. Control input (i = 20)

second. The tracking error is actually well below the specified bound ε. The control

input profile is shown in Figure 3.3. The validity of the proposed ILC is confirmed.

3.6 Conclusion

In order to deal with input singularities, we present two kinds of ILC operators by

adding a forgetting factor and adopting a time varying learning gain. Using Banach
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fixed point theorem, the proposed ILC operators ensure a convergent control input

sequence approaching to a unique fixed point. In the presence of the first type of

singularities, the fixed point guarantees that the system output enters and remains

uniformly in a designated neighborhood of the target trajectory. While in the

presence of the second type of singularities, the tracking error is bounded by a

class K function of the designated neighborhood. The effectiveness of the ILC

operators is demonstrated through an numerical example.
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Chapter 4

Iterative Learning Control Design

Without a Priori Knowledge of

the Control Direction

4.1 Introduction

Iterative learning control (ILC) has been proposed and developed as a kind of

contraction mapping approach to achieve perfect tracking under the repeatable

control environment which implies a repeated trajectory over a finite time interval

with the identical initialization condition (i.i.c.) (Arimoto et al., 1984b; Sugie and

Ono, 1991; Moore, 1993; Chien, 1996; Owens and Munde, 1996; Park et al., 1998;

Chen et al., 1999; Sun and Wang, 2002), etc. Recently new ILC approaches based

on Lyapunov function technology (Qu, 2002; Qu and Xu, 2002) and Composite

Energy Function (CEF) (Xu and Tan, 2002a; Xu, 2002b) have been developed to

complement the contraction mapping based ILC.

In this chapter we will show one new feature of ILC, designed based on CEF,
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that it can perform tracking control without a priori knowledge of the control

direction. It is a difficult and challenging control problem when the control direction

is unknown. Up to now, there are mainly two ways to address the problem. One way

is to incorporate the technique of Nussbaum-type “gains” into the control design.

The first result was proposed by Nussbaum (Nussbaum, 1983), and later extended

to adaptive control systems (Ryan, 1991; Ye and Jiang, 1998), learning control

system (Chen and Jiang, 2002). Another way is to directly estimate unknown

parameters involved in the control direction (Mudgett and Morse, 1985; Brogliato

and Lozano, 1992; Brogliato and Lozano, 1994; Kaloust and Qu, 1995), et al.

In this chapter we will adopt the first approach to deal with the unknown control

direction which is determined by an unknown constant. Based on CEF, we consider

the typical ILC problem: perfect tracking in finite interval. By introducing both

differential and difference updating laws in the ILC mechanism, we are able to

deal with systems without knowing the control direction, and in the presence of

time varying parametric uncertainties associated with local Lipschitz nonlinearities.

Comparing with (Chen and Jiang, 2002), the learning control scheme proposed in

this chapter can be applied to more general dynamical processes with local Lipschitz

nonlinearities, and system nonlinear and uncertain factors need not be uniformly

bounded in the large.

The chapter is organized as follows. Section 4.2 presents the new learning control

scheme. Section 4.3 exhibits the rigorous analysis of learning convergence in L2

using CEF. Section 4.4 presents an illustrative example.
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4.2 Learning Controller Design

In this section, we will consider the learning control in the repeated control envi-

ronment, where the tracking task ends in a finite interval and repeats.

Consider the following uncertain nonlinear system

ẋ = θ(t)ξ(x) + bu(t) x(0) = x0, (4.1)

where ξ(x) is a known nonlinear function which can be local Lipschitzian, θ(t) is

an unknown continuous time-varying function and b 6= 0 is an unknown constant

parameter. The sign of b, which determines the control direction, is assumed

unknown.

Consider the target trajectory generated by a reference model

ẋr = f(xr, r, t), (4.2)

where f(xr, r, t) is a known smooth function, r is a reference input which yields

a bounded state xr(t) over the interval [0, T ]. Define the tracking error e(t) =

xr(t) − x(t), the ultimate control objective is to find a sequence of appropriate

control input ui(t) t ∈ [0, T ] such that the system state xi tracks the target

trajectory xr, i.e., as the learning repeats, the control system converges in L2
T , as

follows

lim
i→∞

‖ei‖T
4
= lim

i→∞

∫ T

0

e2
i (t)dt = 0.

When the parameter b is known, this tracking problem has been solved in (Xu and

Tan, 2002a). When b is unknown, we need to look for a new ILC approach. For

this purpose the Nussbaum-type function will be used in the control law design.

Definition 4.1. v(·) is an even smooth Nussbaum-type function, if the function
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has the following properties

lim
s→∞

sup
1

s

∫ s

0

v(k)dk = ∞,

lim
s→∞

inf
1

s

∫ s

0

v(k)dk = −∞. (4.3)

An example of such a continuous function is v(k) = k2 cos(k). It is clear that v(k)

is positive on intervals (2nπ, 2nπ+ π
2
) and negative on intervals (2nπ+ π

2
, 2nπ+ 3π

2
),

n is an integer. It is sufficient to prove that

lim
n→∞

1

2nπ + π
2

∫ 2nπ+π
2

0

v(k)dk = ∞,

lim
n→∞

1

2nπ + 3π
2

∫ 2nπ+ 3π
2

0

v(k)dk = −∞. (4.4)

To prove the former, we have

lim
n→∞

1

2nπ + π
2

∫ 2nπ+π
2

0

v(k)dk

= lim
n→∞

1

2nπ + π
2

∫ 2nπ+π
2

0

k2d sin k

= lim
n→∞

1

2nπ + π
2

(k2 sin k|2nπ+π
2

0 − 2

∫ 2nπ+π
2

0

k sin kdk)

= lim
n→∞

(2nπ +
π

2
) − lim

n→∞

1

nπ + π
4

= +∞. (4.5)

The proof of lim
n→∞

1

2nπ + 3π
2

∫ 2nπ+ 3π
2

0

v(k)dk = −∞ is similar.

Associated with the Nussbaum-type function, the following property holds (Ye and

Jiang, 1998).

Property 4.1. Let V (·) and k(·) be smooth functions defined on [t0, tf) with

V (t) ≥ 0, ∀t ∈ [t0, tf), v(·) an even smooth Nussbaum-type function, and b a

nonzero constant. If the following inequality holds:

V (t) ≤
∫ t

t0

[bv(k(τ )) + 1]k̇(τ )dτ + c, ∀t ∈ [t0, tf) (4.6)
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where c is an arbitrary constant, then V (t), k(t) and

∫ t

t0

[bv(k(τ ))+ 1]k̇(τ )dτ must

be bounded on [t0, tf).

To achieve the perfect tracking result, a practical initial condition is given for each

iteration as below.

Assumption 4.1. θ(0) = θ(T ), xi(0) = xi−1(T ). In addition, the target trajectory

xr(t) satisfies xr(0) = xr(T ).

In most engineering systems the physical state will not jump because of the finite

driving power. Hence the end of the preceding operation cycle naturally becomes

the initial state of the subsequent operation cycle.

Define the learning error at the i−th iteration ei(t) = xr(t)−xi(t). Under Assump-

tion 4.1, the error dynamics at the i-th iteration can be expressed as

ėi(t) = f(xr, r, t)− θ(t)ξ(xi) − bui(t), ∀t ∈ [0, T ] (4.7)

e0(0) = xr(0) − x0(0),

ei(0) = ei−1(T ), i ≥ 1.

The learning control mechanism is given as below:

ui(t) = v(ki(t))zi(t), (4.8)

k̇i(t) = zi(t)ei(t), ki(0) = ki−1(T ), k0(0) = 0,

zi(t) = ei(t) + f(xr, r, t)− θ̂i(t)ξ(xi),

and the parametric updating law is ∀t ∈ [0, T ]

θ̂i(t) =





0, i = −1,

−γ0(t)ξ(xi)ei(t), i = 0,

θ̂i−1(t) − ξ(xi)ei(t), i ≥ 1,

(4.9)
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where γ0(t) is a continuous and strictly increasing function satisfied γ0(0) = 0,

and γ0(T ) = 1. v(·) is an even smooth Nussbaum-type function. For notational

convenience, in subsequent context we will omit the argument t for all variables

where no confusion arises, and denote ξ(xi) by ξi.

Now we show an alignment property associated with the quantities θ̂i(t) and k̇i(t).

Property 4.2. The learning scheme (4.8) and (4.9) ensures θ̂i(0) = θ̂i−1(T ) and

k̇i(0) = k̇i−1(T ).

Proof. Let us prove the first relationship by induction. For i = 0, from (4.9) we

have θ̂0(0) = θ̂−1(T ) = 0. Now assume that

θ̂j(0) = θ̂j−1(T ), for j = 1, · · · , i− 1. (4.10)

From (4.8), Assumption 4.1 and (4.10), we have

θ̂i(0) = θ̂i−1(0) − ξ(xi(0))ei(0), (4.11)

and

θ̂i−1(T ) = θ̂i−2(T ) − ξ(xi−1(T ))ei−1(T )

= θ̂i−1(0) − ξ(xi(0))ei(0)

= θ̂i(0), (4.12)

that is, θ̂i(0) = θ̂i−1(T ). From (4.8), it is easy to see that k̇i(0) = k̇i−1(T ) because

of ei(0) = ei−1(T ), xi(0) = xi−1(T ) and θ̂i(0) = θ̂i−1(T ).

Substituting the learning control law into the error dynamics (4.7) yields

ėi = ẋr − θξi − bui

= ẋr − θξi − zi + zi − bui

= −ei − (θ − θ̂i)ξi + (−bv(ki) + 1)zi. (4.13)
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When the control direction is known a priori, for instance b > 0, the corresponding

learning control law is (Xu and Tan, 2002a)

ui = zi,

θ̂i = θ̂i−1 − ξiei. (4.14)

Without a prioir knowledge in the control direction, the learning control mecha-

nism is now a mixture of differential and difference updating laws.

4.3 Learning Convergence Analysis

Now we exhibit the learning convergence property, which is summarized in the

following theorem.

Theorem 4.1. For system (4.1) under the learning control scheme (4.8) and (4.9),

the learning error sequence ei converges to zero in L2
T .

Proof. Define the following Lyapunov functional

Ei(t) =
1

2
e2

i (t) +
1

2

∫ t

0

φ2
i (τ )dτ +

1

2

∫ T

t

φ2
i−1(τ )dτ, (4.15)

where φi(t) = θ(t)− θ̂i(t).

The proof consists of three parts which address respectively the difference of the

CEF, and the L2
T convergence, and the boundedness of the first iteration.

Part I: Difference of Ei(t)

The difference of Ei(t) is

∆Ei = Ei −Ei−1

=
1

2
e2

i −
1

2
e2

i−1 +
1

2

∫ t

0

(φ2
i − φ2

i−1)dτ +
1

2

∫ T

t

(φ2
i−1 − φ2

i−2)dτ. (4.16)
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Substituting the control law (4.8) and the error dynamics (4.13), the first term on

the right hand side is

1

2
e2

i =

∫ t

0

eiėidτ +
1

2
e2

i (0)

=

∫ t

0

ei[−ei − (θ − θ̂i)ξi + (−bv(ki) + 1)zi]dτ +
1

2
e2

i (0)

=

∫ t

0

[−e2
i − (θ − θ̂i)ξiei + (−bv(ki) + 1)ziei]dτ ) +

1

2
e2

i (0)

=

∫ t

0

[−e2
i − (θ − θ̂i)ξiei + (−bv(ki) + 1)k̇i]dτ +

1

2
e2

i (0)

= −
∫ t

0

e2
idτ −

∫ t

0

(θ − θ̂i)ξieidτ +

∫ t

0

(−bv(ki) + 1)k̇idτ +
1

2
e2

i (0).

Substituting the parameter updating law (4.9), and using the algebraic relationship

(a− b)2 − (a− c)2 = −2(a− b)(b− c)− (b− c)2, the second term on the right hand

side of (4.16) can be expressed as

1

2

∫ t

0

(φ2
i − φ2

i−1)dτ =
1

2

∫ t

0

[(θ − θ̂i)
2 − (θ − θ̂i−1)

2]dτ

= −
∫ t

0

(θ − θ̂i)(θ̂i − θ̂i−1)dτ −
1

2

∫ t

0

(θ̂i − θ̂i−1)
2dτ

=

∫ t

0

(θ − θ̂i)ξieidτ −
1

2

∫ t

0

ξ2
i e

2
idτ. (4.17)

Therefore, the difference of the composite energy function is

∆Ei(t) = −
∫ t

0

e2
idτ −

1

2

∫ t

0

ξ2
i e

2
idτ +

∫ t

0

(−bv(ki) + 1)k̇idτ

+
1

2
e2

i (0) −
1

2
e2

i−1(t) +
1

2

∫ T

t

(φ2
i−1 − φ2

i−2)dτ. (4.18)

Let t = T , according to Assumption 4.1 we have 1
2
e2

i (0) = 1
2
eT

i−1(T ). In the sequel

∆Ei(T ) = −
∫ T

0

e2
idτ −

1

2

∫ T

0

ξ2
i e

2
idτ +

∫ T

0

(−bv(ki) + 1)k̇idτ

≤ −
∫ T

0

e2
idτ +

∫ T

0

(−bv(ki) + 1)k̇idτ. (4.19)

Part II: Learning Convergence Property
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Applying (4.19) repeatedly, we have

Ei(T ) = E0(T ) +
i∑

j=1

∆Ej(T )

≤ E0(T )−
i∑

j=1

∫ T

0

e2
jdτ +

i∑

j=1

∫ T

0

(−bv(kj) + 1)k̇jdτ. (4.20)

Define a new function k̇(t + (i − 1)T )
4
= k̇i(t), and k(t + (i − 1)T ) = ki(t) for

t ∈ [0, T ]. By virtue of Property 4.2 and the learning control law (4.8), k̇(t) is a

continuous function and k(t) is a C1 function for ∀t ∈ [0, iT ]. Thus

i∑

j=1

∫ T

0

(−bv(kj) + 1)k̇jdτ

=

∫ T

0

(−bv(k1) + 1)k̇1dτ +

∫ T

0

(−bv(k2) + 1)k̇2dτ + · · · +
∫ T

0

(−bv(ki) + 1)k̇idτ

=

∫ T

0

(−bv(k) + 1)k̇dτ +

∫ 2T

T

(−bv(k) + 1)k̇dτ + · · · +
∫ iT

(i−1)T

(−bv(k) + 1)k̇dτ

=

∫ iT

0

(−bv(k) + 1)k̇dτ. (4.21)

Denote V (τ + (i− 1)T ) = Ei(τ ), from (4.20) we have

V (iT ) +
i∑

j=1

∫ T

0

e2
jdτ ≤ E0(T ) +

i∑

j=1

∫ T

0

(−bv(kj) + 1)k̇jdτ.

Then

V (iT ) ≤ E0(T ) +

i∑

j=1

∫ T

0

(−bv(kj) + 1)k̇jdτ −
i∑

j=1

∫ T

0

e2
jdτ

= E0(T ) +

∫ iT

0

(−bv(k) + 1)k̇dτ −
i∑

j=1

∫ T

0

e2
jdτ. (4.22)

Furthermore, the upper right hand derivative of Ei(t) should be

Ėi(t) = eiėi +
1

2
(φ2

i (t) − φ2
i−1(t))

Substituting the error dynamics in (4.13), the first term on the right hand side is

eiėi = ei(−ei − (θ − θ̂i)ξi + (−bv(ki) + 1)zi)

= −e2
i − (θ − θ̂i)ξiei + (−bv(ki) + 1)ziei. (4.23)
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Similarly as (4.17), we obtain

1

2
(φ2

i (t)− φ2
i−1(t)) = (θ − θ̂i)ξiei −

1

2
ξ2
i e

2
i . (4.24)

Therefore the upper right hand derivation of Ei is

Ėi(t) = −e2
i + (−bv(ki) + 1)ziei −

1

2
ξ2
i e

2
i

≤ (−bv(ki) + 1)k̇i. (4.25)

Thus based on (4.22), for ∀t ∈ [0, T ] we have

V (iT + t) = V (iT ) +

∫ t

0

Ėi+1(τ )dτ

≤ E0(T )−
i∑

j=1

∫ T

0

e2
jdτ +

∫ iT

0

(−bv(k) + 1)k̇dτ

+

∫ t

0

(−bv(ki+1) + 1)k̇i+1dτ

≤ E0(T )−
i∑

j=1

∫ T

0

e2
jdτ +

∫ iT

0

(−bv(k) + 1)k̇dτ

+

∫ (iT+t)

iT

(−bv(k) + 1)k̇dτ

= E0(T )−
i∑

j=1

∫ T

0

e2
jdτ +

∫ (iT+t)

0

(−bv(k) + 1)k̇dτ,

i.e.,

lim
i→∞

V (iT + t) ≤ E0(T )− lim
i→∞

i∑

j=1

∫ T

0

e2
jdτ + lim

i→∞

∫ (iT+t)

0

(−bv(k) + 1)k̇dτ.

According Property 4.1,

lim
i→∞

∫ (iT+t)

0

(−bv(k) + 1)k̇dτ ≤ B, (4.26)

where B is a finite positive constant. In the sequel we can derive

lim
i→∞

V (iT + t) ≤ E0(T ) +B − lim
i→∞

i∑

j=1

∫ T

0

e2
jdτ. (4.27)

If E0(T ) is a finite number, considering the positiveness of V (iT + t), and bound-

edness of B, (4.27) implies ei(t) → 0 in L2
T as i→ ∞.
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Part III: the Finiteness of E0(T )

Now we prove the finiteness of E0(t) ∀t ∈ [0, T ]. The finiteness property is nec-

essary, as ξ(x, t) may be a local Lipschitz continuous function and finite escape

time phenomenon may occur. From the system dynamics (4.1) and the proposed

control laws (4.8) and (4.9), it can be derived that the right hand side of (4.1) is

continuous with respect to all the arguments. According to the existence theorem

of differential equation (Yoshizawa, 1966), there exists a solution in an interval

[0, T1) ⊂ [0, T ], where T1 > 0. Therefore, the boundedness of E0(t) over [0, T1]

can be guaranteed and we need only focus on the interval (T1, T ].

For any t ∈ (T1, T ], the derivative of E0(t) is

Ė0 = e0ė0 +
1

2
φ2

0. (4.28)

At the first iteration i = 0, θ̂−1(t) = 0, thus

θ̂0 = −γ0(t)ξ0e0.

Since γ0(t) is strictly increasing in [0, T ], 1
γ0(t)

≥ 1 is ensured in the time interval

(T1, T ]. Substituting (4.13) and the parameter updating law (4.9) into Ė0 yields

Ė0 = e0ė0 +
1

2
(θ̂0 − θ)2

≤ e0ė0 +
1

2γ0(t)
(θ̂0 − θ)2

= e0[−e0 − (θ − θ̂0)ξ0 + (−bv(k0) + 1)z0] + (θ − θ̂0)ξ0e0

− 1

2γ0(t)
θ̂2
0 +

1

2γ0(t)
θ2

= −e2
0 + (−bv(k0) + 1)z0e0 −

1

2γ0(t)
θ̂2
0 +

1

2γ0(t)
θ2

= −e2
0 + (−bv(k0) + 1)k̇0 −

1

2γ0(t)
θ̂2
0 +

1

2γ0(t)
θ2. (4.29)
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Integrating both sides of the above inequality from T1 to t we have

E0(t) = E0(T1) −
∫ t

T1

e2
0dτ +

∫ t

T1

(−bv(k0) + 1)k̇0dτ

−
∫ t

T1

θ̂2
0

2γ0(τ )
dτ +

∫ t

T1

θ2

2γ0(τ )
dτ

≤ E0(T1) +

∫ t

T1

(−bv(k0) + 1)k̇0dτ +

∫ t

T1

θ2

2γ0(τ )
dτ. (4.30)

Since θ(t) ∈ C[0, T ],

∫ t

T1

θ2

2γ0(τ )
dτ is bounded. Finally applying Property 4.1 to

(4.30), we can conclude both

∫ t

T1

(−bv(k0)+1)k̇0dτ and E0(t) are finite over (T1, T ].

Thus E0(t) is bounded on [0, T ].

Remark 4.1. The above results can be extended straightforward to the system

ẋ = θ(t)ξ(x, t) + bu, x(0) = x0, (4.31)

where θ(t) = [θ1(t), θ2(t), · · · , θn(t)] and ξ(x) = [ξ1(x), ξ2(x), · · · , ξn(x)]T .

Accordingly we should replaced θ̂i by θ̂i and ξi by ξi in the learning mechanism,

and replace φ2
i in CEF by φT

i φi with φi = θ − θ̂i.

Remark 4.2. To improve the learning control performance, we can add a positive

gain γ to both differential and difference updating laws, such that k̇i = γziei and

θ̂i(t) =





0, i = −1,

−γ0(t)ξ(xi)ei(t), i = 0,

θ̂i−1(t) − γξ(xi)ei(t), i ≥ 1,

(4.32)

where γ0(t) is defined analogously as before except that γ0(T ) = γ. The convergence

analysis remains the same except for the CEF which should be changed to

Ei(t) =
1

2γ
ei(t)

2 +
1

2γ

∫ t

0

φ2
i (τ )dτ +

1

2γ

∫ T

t

φ2
i−1(τ )dτ.
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4.4 An Illustrative Example

Consider the system (4.1), where ξ(x) = x2, θ(t) = 1 + sinπt, and b = 1 which is

assumed unknown. The reference model is

ẋr = −cosπt xr − 2cosπt.

Let t ∈ [0, 2], x0(0) = 1 and xr(0) = 0. Applying the learning control (4.8), the

simulation result is shown in Figure 4.1. The horizontal axis denotes the number

of iterations, and the vertical axis denotes the sup-norm |ei|sup, i.e., the maximum

tracking error of |ei(t)| over [0, 2]. The learning convergence can be clearly seen.

Figure 4.2 shows the evolution of the Nussbaum-type function v(ki(t)) over the

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

Iteration Number

|e
i| su

p

Figure 4.1. Learning convergence of ILC based on CEF, t ∈ [0, 2].

iterations, where the dashed line and solid line denote respectively the lower and

upper bounds of v(ki(t)) at each iteration. It finally converges to a positive value,

hence is consistent with the actual sign of the system parameter b = 1. On the

other hand, we can also observe the swing phenomenon between “+” and “-”,

which reflects the transient behavior of the adaptation process. Nevertheless, the

iterative learning retains a fast convergence.
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Figure 4.2. Evolution of the Nussbaum gain v(·).

4.5 Conclusion

To deal with the tracking problem without a priori knowledge of the control direc-

tion, we incorporate the Nussbaum-type function into the learning control design.

Based on the idea of composite energy function, the proposed learning control

mechanism achieves the L2
T convergence of the tracking error sequence in the it-

eration domain. The effectiveness of the ILC design is demonstrated through a

numerical example.
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Chapter 5

Adaptive Learning Control for

Finite Interval Tracking Based on

Constructive Function

Approximation and Wavelet

5.1 Introduction

Learning control (Arimoto et al., 1984a), (Lee and Bien, 1997), (Moore, 1998), (Sun

and Wang, 2001) or adaptive learning control (ALC) (Xu and Badrinath, 2000)

and (French and Rogers, 2000a), developed as the complementary to adaptive

control, can cope with any tracking control tasks repeated over a finite time interval.

Unlike adaptive control that targets at asymptotic convergence along the time

axis, learning control targets at perfect tracking over a finite interval by means of

asymptotic convergence along the learning axis (iteration axis). In this chapter,

we focus on adaptive learning control with the ultimate objective of addressing the
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finite interval tracking problems.

A constantly challenging mission for control society is to deal with dynamic systems

in the presence of unknown nonlinearities. Consider the following simple affine

dynamics

ẋ = f(x) + u

where u is the system input. Over the past five decades, numerous control strategies

have been developed according to the characteristic and prior knowledge of f(x).

If f(x) can be parameterized as the product of unknown time invariant parameters

and known nonlinear functions, adaptive control and adaptive learning are most

suitable. If f(x) cannot be parameterized but its upperbounding function f̄(x) is

known a priori, robust control or robust learning control (Tan and Xu, 2003) is

pertinent. In the past decade, intelligent control methods using function approx-

imation, such as neural network, fuzzy network, and wavelet network, have been

proposed, which open a new avenue leading to more generic solutions and better

control performance. The most profound feature of those function approximation

methods lies in that the non-parametric function f(x) is given a representation in a

parameter space. Hence the control problem renders into an analogy as the adap-

tive control or adaptive learning control: only dealing with unknown time invariant

parameters.

Neural network based control is most widely studied (Narendra and Parthasarathy,

1990), (Hunt et al., 1992), (Levin and Narendra, 1996), (Sanner and Slotine, 1992),

(Polycarpou, 1996), (Seshagiri and Khalil, 2000), (Ge and Wang, 2002) and (Huang

et al., 2003). The success of neural control is subject to the validity of a prerequi-

site: the structure of the network, such as the number of layers and nodes, must

be adequate to meet the desired approximation precision. Hence, it is commonly

assumed in adaptive neural control, that for a continuous function f(x) on a com-
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pact set, a finite and sufficiently large neural network is chosen and there exists a

set of ideal weights θ such that the function can be approximated to a specified

precision (Poggio and Girosi, 1990). It was indicated in (Gupta and Rao, 1994),

(Funahashi, 1989) and (Hornik et al., 1989) that if the node number of a three

layer neural network is adequate, the approximation error can be arbitrarily small

on a compact set.

Due to the lack of prior information on f(x), often a designer is unable to know how

large a neural network would be adequate. If the network structure is inadequate,

the control mission is impossible. Intuitively, a solution to this problem is to let the

neural network evolves continuously from a small initial configuration and ceases

only when the desired precision is satisfied. However we encounter a difficulty when

implementing this idea with adaptive neural control, because a neural network is

constructed as a complete system instead of a basis. The fundamental difference

between a complete system and a basis can be clearly seen from the changes of

weights when the system structure evolves (Lebedev et al., 1994). The new weights

of a complete system, θA, may be totally different from the original weights, θ. On

the other hand, the new weights of a basis, θA, will include the original weights,

θ, as an invariant subset. Hence, after adding new nodes to a neural network,

parametric adaptation may have to restart from scratch for the new weights θA.

Using a basis in approximation, on the other hand, the adaptively learned results for

weights θ will remain valid and thus adaptive learning can be carried on. Adaptive

learning will start from beginning only for newly added weights in θA.

In this chapter, we consider two scenarios. In the first scenario, f(x) is assumed

global L2, i.e. L2(R), which is the only prior knowledge. ALC can generate a

convergent sequence and enter the pre-specified bound in a finite number of learning

iterations. In the second scenario, f(x) is assumed local L2, and the prior knowledge

is the upperbound f̄ (x). A robust control mechanism is applied first to confine the
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state x to a compact set. By augmenting f(x) to a new function defined on R,

we show that the second scenario renders to the first one, consequently achieves

the same convergence property with ALC. With the help of Lyapunov method, a

rigorous analysis is conducted in order to disclose the inherent properties of the

proposed adaptive learning control system, including the existence of the solution,

the asymptotic convergence along the learning axis, and the tracking performance

with the designated error bound. Extension to more general plants, either with a

partially unknown input coefficient, or in cascade form, will also be exploited.

Wavelet network, consisting of bases, has been developed as a universal function

approximator in L2, thus its structure can easily evolve in conjunction with para-

metric adaptation or adaptive learning. In this chapter, three different wavelets

are presented and their suitability are exploited. Through illustrative examples,

we also demonstrate the relationship between the complexity of wavelet network

and the number of learning iterations.

The chapter is organized as follows. In Section 5.2, the problem formulation and

preliminaries are briefed. In Section 5.3, the adaptive learning control with univer-

sal function approximation is proposed. In Section 5.4, a robust adaptive learning

control is proposed for local L2 nonlinear plants. In Section 5.5, ALC is applied to

more generic nonlinear plants. In Section 5.6, the properties of wavelet approxima-

tion is presented. In Section 5.7, illustrative examples and design considerations

are provided. In Section 5.8 the conclusion is given.
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In the chapter we define

‖ · ‖ a vector norm

‖ · ‖2 L2 − norm

| · |s uniform norm

‖ · ‖T extended L2 − norm,

defined as ‖ · ‖T
4
= 1

T

∫ T

0
‖ · ‖2dτ

‖zi‖m max{|zj,i|s : j = 1, ..., n+ i}

for zi = (z1,i, ..., zn+i,i)
T

In subsequent context, we omit the argument t for all variables where no confusion

arises.

5.2 Problem Formulation and Preliminaries

First define a basis.

Definition 5.1. Let Y be a normed linear space over real number field R. A system

of elements g1, g2, · · · ⊂ Y is said to be a basis for Y if any element y ∈ Y has a

unique representation

y =
∞∑

k=1

θkgk, (5.1)

with scalars θk ∈ R.

Note that the meaning of (5.1) is: if yi =
i∑

k=1

θkgk, then lim
i→∞

‖y − yi‖ = 0, where

‖ · ‖ is the norm in the space Y . For arbitrary ε > 0, to make ‖y − yi‖ ≤ ε we

simply take i large enough. Further, coefficients θ1, θ2, · · · are unique.

The existence and construction of a basis for a particular normed linear space could

be very difficult in general. However it is well known that there exist orthonormal
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bases in Hilbert space. In particular there exist orthonormal wavelet bases in

L2(R).

To facilitate the subsequent discussions on the existence of solution, the following

Lemma is introduced.

Lemma 5.1. ((Zheng et al., 1991)) Consider the following Cauchy problem

ẋ = f(t,x), x(t0) = x0. (5.2)

If D is an open set in Rn+1, f : D → Rn is continuous in D and satisfies locally

Lipschitzian condition for x, then the solution of Cauchy problem (7.7) can be

extended to the boundary of D – ∂D (∂D can be ∞).

To focus on the essential idea and properties of the proposed adaptive learning

control, the following simple dynamic plant is considered first

SI :





ẋj = xj+1, j = 1, 2, · · · , n− 1,

ẋn = f(x) + u x(0) = x0,
(5.3)

where x = [x1, x2, · · · , xn]
T ∈ Rn is the state vector, and u ∈ R is the plant

input. The mapping f(x) is an unknown nonlinear function which is continuous

and locally Lipschitzian for x ∈ Rn. We consider two types of prior knowledge of

f that lead to two distinct ALC designs.

Assumption 5.1. f(x) ∈ L2(Rn).

A ALC method is developed for SI satisfying assumption 5.1.

Assumption 5.2. f(x) ∈ L2(D) where D ∈ Rn is a compact set. There exists a

known continuous function f̄(x) ≥ 0 such that |f(x)| ≤ f̄ (x),∀x ∈ D.

For SI satisfying assumption 5.2, a robust ALC is proposed in this chapter.
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ALC is further extended to two classes of more general plants. One class is de-

scribed by

SII :





ẋj = xj+1, j = 1, 2, · · · , n− 1,

ẋn = f(x) + b(t,x)u x(0) = x0,
(5.4)

where f has a bounding function f̄ , and b(t,x) is a partially unknown function

satisfying the following condition.

Assumption 5.3. b(x) ≥ b0 > 0, ∀ x ∈ Rn.

The other class is the n-th order cascade dynamics

SIII :





ẋj = fj(xj) + xj+1,

ẋn = fn(x) + u,
(5.5)

where xj = [x1, · · · , xj]
T , and fj(xj) ∈ L2(Rj) are nonlinear unknown functions.

It is known that fj (j = 1, · · · , n− 1) are unmatched uncertainties.

Now give the control objective. Let xr(t) ∈ Cn[0, T
′
) be a n-th order continu-

ously differentiable trajectory, then xr, x
(1)
r , · · · , x(n)

r are bounded on a finite inter-

val [0, T ], where T ′ > T . Define xr
4
= [xr, x

(1)
r , · · · , x(n−1)

r ]T and ∆xi = xi − xr =

[∆x1,i,∆x2,i, · · · ,∆xn,i]
T , where xi = [x1,i, x2,i, · · · , xn,i] is the state vector at the

i−th learning iteration. An augmented tracking error σi at the i-th learning itera-

tion is defined as

σi = (
d

dt
+ λ)n−1∆x1,i = [λT 1]∆xi, (5.6)

where λ = [λn−1, (n− 1)λn−2, · · · , (n− 1)λ]T with λ > 0.

The ultimate control objective is to find a sequence of appropriate control input,

ui(t), t ∈ [0, T ], such that the tracking error sequence will enter a pre-specified

bound in L2
T , after a finite number of learning iterations. Here the tracking error

sequence is the augmented one, σi, for plants SI and SII , and x1,i−xr for the plant

SIII.
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5.3 Adaptive Learning Control

In this section, a new adaptive learning control approach based on function ap-

proximation is presented for the plant SI in (5.3), whereby f(x) meets Assumption

5.1.

Suppose that g1(x), g2(x), · · · form a continuous and locally Lipschitzian basis in

the space L2(Rn), then

f(x) =
∞∑

k=1

θkgk(x), (5.7)

with θk being unknown weights. Denote the approximation error

ei(x) = f(x) −
i∑

k=1

θkgk(x). (5.8)

It is obvious that

lim
i→∞

‖ei‖T = lim
i→∞

∫

Rn

‖ei‖2dx = 0. (5.9)

If the basis is sufficiently smooth and well localized, then the series expansion

of continuous square integrable functions in fact also converges pointwisely. For

example, if we choose wavelet as a basis, then the convergence of the resulting series

in an L2 sense should also be in pointwise sense under appropriate constraints on

the wavelet (Kelly et al., 1994) and (Walter, 1995). These additional smoothness

and decay conditions on the basis are assumed throughout the analysis in this

chapter. Note that the pointwise convergence of ei(x) holds ∀x ∈ Rn. Suppose

x is a vector valued function of the time t, and let t ∈ [0, T ], then x(t) is a

map x : [0, T ] → D ⊂ Rn. Obviously ei(x(t)) is pointwise over D, thus ei(x(t))

is a compound function pointwise convergent in [0, T ], in the sequel ‖ei‖T is a

convergent sequence, namely

lim
i→∞

‖ei‖T = lim
i→∞

∫ T

0

|ei(t)|2dt = 0. (5.10)
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From the above convergence property, there exists a constant M such that ‖ei‖T ≤

M for any i.

Since the learning control objective is to track a given trajectory in a finite interval,

it is well know that the initial state values will directly affect the learning results

(Xu and Yan, 2005). In this chapter, we consider 5 types of initial conditions from

the practical point of view

Assumption 5.4.

a) σi(0) = 0;

b)
∑∞

i=1 σ
2
i (0) = σ0, where σ0 is a constant;

c) |σi(0)| = σ0 6= 0, where σ0 is a constant;

d) σi(0) is random and bounded by a constant σ0;

e) σi(0) = σi−1(T ), and |σ1(0)| ≤ σ0.

Condition a) is the typical identical initialization condition; condition b) implies

that σi(0) belongs to l2; condition c) is the fixed initial shift; condition d) includes

first three conditions as the special cases; and condition e) is the alignment condi-

tion often seen in processes without a resetting mechanism (Xu and Yan, 2005).

Consider system SI in (5.3), the tracking error dynamics at the i-th learning iter-

ation can be expressed as

σ̇i = f(xi) + ui(t) + v(t,xi), ∀t ∈ [0, T ] (5.11)

where v(t,xi)
4
= −x(n)

r (t) + [0 λ]∆xi.

For notational convenience, in the following f(xi), gk(xi) and vi(t,xi) are denoted

by fi, gi and vi respectively.

The adaptive learning control mechanism is given as

ui = −βσi − θ̂
T

i gi − vi, (5.12)
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where θ̂i = [θ̂1, · · · , θ̂k(i)]
T and gi = [g1, · · · , gk(i)]

T with k = k(i). k(i) is a function

of the number of iterations i, reflecting how frequently a new base is added to the

existing basis set. For instance, one can add a new base gk to the existing set

g1, · · · , gk−1 after every 10 learning iterations. A possible relationship between k

and i is given in the Figure 5.1. For simplicity, let k(i) = i in the theory proof.

This implies that the function approximation network is updated at every learning

iteration. The parametric adaptive learning law is

˙̂
θi = σigi, (5.13)

θ̂1(0) = 0, θ̂i(0) = θ̂i−1(T ).

Figure 5.1. Update the structure for every 3 iterations

Substituting the adaptive learning control law (5.12) into the tracking error dy-

namics (5.11) yields

σ̇i = fi + ui + vi

= −βσi + (θi − θ̂i)
Tgi + ei. (5.14)

Define the augmented state vector zi
4
= (xi, θ̂i). From the plant (5.3), adaptive

68



CHAPTER 5. ADAPTIVE LEARNING CONTROL FOR FINITE INTERVAL TRACKING BASED ON
CONSTRUCTIVE FUNCTION APPROXIMATION AND WAVELET

learning mechanism (5.13), and ALC sequence (5.12), we have

żi = h(t, zi), (5.15)

where

h(t, zi) = [x2,i, · · · , xn,i, hx(t, zi),h
T
θ̂
(t, zi)]

T ,

hx(t, zi) = fi + ui

= −β[λ 1]xi − vi + θT
i gi − θ̂

T

i gi + ei + β[λ 1]xr,

hθ̂(t, zi) = [λT 1]∆xigi. (5.16)

The first main result, which is concerned with the existence of solution of the above

augmented dynamics (5.15) under the initial conditions described in Assumption

5.4, is summarized in the following theorem.

Theorem 5.1. The solution zi exists in [0, T ] by choosing the feedback gain β > 1.

Proof. Since the control task ends in the finite interval [0, T ], all we need to prove

is no finite escape time for zi in [0, T ]. We shall prove that the solution zi(t) of

the dynamic system (5.15) exists in [0, T ′), which therefore implies the existence

in [0, T ]. Define Ω
4
= Rn+i × [0, T ′)

Clearly, h(t, zi) : Ωi → Rn+i is continuous. By Peano’s Existence Theorem (Zheng

et al., 1991), associated with the initial values zi(0) = (x0, θ̂i(0)) ∈ Ωi, equation

(5.15) has a continuous solution in a neighborhood of t = 0. Furthermore it is easy

to check that h(t, zi) is locally Lipschitz continuous in zi. We only need to consider

the solution for t > 0. Let [0, ti) be the maximal interval to which the solution

zi(t) can be continued up. Lemma 5.1 implies that zi(t) tends to the boundary

∂Ωi as t → ti. It further implies that limt→ti ‖zi(t)‖m = ∞ if ti < T ′, i.e., for any

C > 0 and for each i, there exists δi > 0 such that ‖zi(t)‖m ≥ C for all t ≥ ti − δi.

Since zi(t) exists for all t ∈ [0, ti − δi

2
], define a Lyapunov function

V (σi, θ̃i) =
1

2
σ2

i +
1

2
θ̃

T

i θ̃i, (5.17)
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where θ̃i = θi − θ̂i. Differentiating V (σi, θ̃i) with respect to time t yields

V̇ (σi, θ̃i) = σiσ̇i − θ̃
T

i
˙̂
θi. (5.18)

Substituting the augmented error dynamics (5.14) and the parametric adaptive

learning law (5.13) yields

V̇ (σi, θ̃i) = −βσ2
i + σiei. (5.19)

Using Young’s inequality, there exists c ∈ (0, 1) such that

σiei ≤ cσ2
i +

1

4c
e2

i . (5.20)

It follows from (5.19) that

V̇ (σi, θ̃i) ≤ (c− β)σ2
i +

1

4c
e2

i (5.21)

where c− β < 0.

Next we will complete the proof by the mathematical induction. For i = 1, from

Assumption 5.4, |σ1(0)| ≤ σ0 for all initial conditions, and θ̂1(0) = 0. It follows

from (5.21) and ‖ei‖T ≤M that

0 ≤ V (σ1, θ̃1) =

∫ t

0

V̇ (σ1, θ̃1)dτ + V (0, 0)

≤ M

4c
+

1

2
σ2

0 +
1

2
θ2

1

4
=
M2

1

4

for all t ∈ [0, t1− δ1

2
], i.e, V (σ1, θ̂1) is bounded on [0, t1− δ1

2
] by a constant which does

not depend on δ1. By the definition of Lyapunov function V , it can be derived from

the above relationship that |σ1|s ≤ M1 and |θ̂1| ≤ M1. Therefore, ‖z1(t)‖m ≤ M1

for all t ∈ [0, t1 − δ1

2
]. Note M1 > 0 is a constant independent of δ1. Taking

C = 2M1 in advance, for the corresponding δ1 > 0 we have

C ≤ ‖z1(t1 −
δ1
2

)‖m ≤M1 =
C

2
, (5.22)

a contradiction which implies t1 ≥ T ′.
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Assume that tj ≥ T ′ for j = 2, · · · , i− 1. Then the solution zj(t) exists in [0, T ′)

and therefore σj and θ̂j are both bounded for all t ∈ [0, T ]. If ti < T ′, we have

‖zi(t)‖m ≥ C for all t ≥ ti − δi, as shown above. Note that |σi(0)| ≤ σ0 for initial

conditions a-d), σi(0) = σi−1(T ) for the initial condition e), and θ̂i(0) = θ̂i−1(T ).

Hence quantities σi(0) and θ̂i(0) are bounded by a constant independent of δi.

From (5.21) and L2
T convergence property of ei, we have

0 ≤ V (σi, θ̃i) =

∫ t

0

V̇ (σi, θ̃i) dτ + V (σi(0), θ̃i(0))

≤ M

4c
+

1

2
σi(0)

2 +
1

2
(θi − θ̂i(0))

T (θi − θ̂i(0))
4
=
M2

i

4
(5.23)

for all t ∈ [0, ti − δi

2
], i.e, V (σi, θ̃i) is bounded on [0, ti − δi

2
] by a constant which

does not depend on δi. The definition of Lyapunov function V also implies that

‖zi(t)‖m ≤Mi for all t ∈ [0, ti− δi

2
]. By taking C = 2Mi, it leads to a contradiction

analogous to (5.22). As a result, ti ≥ T ′.

For the closed-loop dynamic system (5.14) with the parametric updating law (5.13),

the convergence property associated with initial conditions in Assumption 5.4 is

displayed in the following theorem.

Theorem 5.2.

Part 1) Under the initial conditions a), b) and e), the exists a subsequence, {σij}

of {σi}, which enters any pre-specified bound ε after a finite number of learning

iterations.

Part 2) Under the initial condition c) and d), for any arbitrary δ > 0 and a bound

given by ε =
σ2
0+δ

(β−c)T
, there exists a subsequence, {σij} of {σi}, which enters the

given bound ε after a finite number of learning iterations.

Proof. Integrating both sides of (5.21) from 0 to T , and use the fact θ̃i(0) =

71



CHAPTER 5. ADAPTIVE LEARNING CONTROL FOR FINITE INTERVAL TRACKING BASED ON
CONSTRUCTIVE FUNCTION APPROXIMATION AND WAVELET

θ̃i−1(T ),

V (σi(T ), θ̃i(T )) = V (σi(0), θ̃i(0)) +

∫ T

0

V̇ dt

≤ V (σi−1(T ), θ̃i−1(T )) + V (σi(0), θ̃i−1(T ))− V (σi−1(T ), θ̃i−1(T ))

−(β − c)

∫ T

0

σ2
i dt+

1

4c

∫ T

0

e2
idt

= V (σi−1(T ), θ̃i−1(T )) +
1

2
σ2

i (0) −
1

2
σ2

i−1(T )

−(β − c)

∫ T

0

σ2
i dt+

1

4c

∫ T

0

e2
idt.

Repeating the operation i− 1 times leads to the following

V (σi(T ), θ̃i(T )) ≤ V (σ1(T ), θ̃1(T )) +
1

2

i∑

j=2

σ2
j (0) −

1

2

i∑

j=2

σ2
j−1(T )

−(β − c)
i∑

j=2

∫ T

0

σ2
jdt+

1

4c

i∑

j=2

∫ T

0

e2
jdt

(5.24)

Part 1) From the initial conditions a), b) and e), we have

1

2

i∑

j=2

σ2
j (0) −

1

2

i∑

j=2

σ2
j−1(T ) ≤ 1

2
σ0

and (5.24) becomes

V (σi(T ), θ̃i(T )) ≤ V (σ1(T ), θ̃1(T )) +
1

2
σ0 − (β − c)

i∑

j=2

∫ T

0

σ2
jdt

+
1

4c

i∑

j=2

∫ T

0

e2
jdt (5.25)

To derive the convergence, the reduction to absurdity will be used. Suppose, on

the contrary, there exists a positive integer N1 such that ‖σj‖T ≥ ε for all iteration

number j ≥ N1. Since ej(xj) is a convergent sequence in L2
T , for arbitrary given ε,

there exists a positive integer N2 such that
∫ T

0
e2

jdt ≤ 2c(β − c)Tε for all j ≥ N2.

Let N = max{N1, N2}, and notice the existence of solution shown in Theorem 5.1,

the following quantity is finite

B
4
= V (σ1(T ), θ̃1(T )) +

1

2
σ0 − (β − c)

N∑

j=2

∫ T

0

σ2
j dt+

1

4c

N∑

j=2

∫ T

0

e2
jdt.
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Then it follows from (5.25) that

V (σi(T ), θ̃i(T )) ≤ B − (β − c)
i∑

j=N+1

∫ T

0

σ2
jdt+

1

4c

i∑

j=N+1

∫ T

0

e2
jdt

≤ B − (β − c)T (i−N)(ε− ε

2
)

= B − 1

2
(β − c)T (i−N)ε. (5.26)

When i→ ∞, the right hand side of (5.26) approaches −∞ since B is finite, which

contradict the fact that V (σi(T ), θ̃i(T )) is positive definite. Therefore, there must

exist a subsequence of σi which enters the given bound ε after a finite number of

learning iterations.

Part 2) The relation (5.24) with the initial conditions c) and d), |σi(0)| ≤ σ0, is

V (σi(T ), θ̃i(T )) ≤ V (σ1(T ), θ̃1(T )) +
1

2

i∑

j=2

σ2
0

−(β − c)

i∑

j=2

∫ T

0

σ2
jdt+

1

4c

i∑

j=2

∫ T

0

e2
jdt (5.27)

Analogous to Part 1) proof, assume that there exists a positive integer N1 such

that ‖σj‖T ≥ ε for all iteration number j ≥ N1. Since the approximation error

ei is a convergent sequence in L2
T , there exists an integer N2 such that

∫ T

0
e2

jdt ≤

2c(β − c)Tε for all j ≥ N2. From the existence of solution and the finiteness of

N = max{N1, N2},

B
4
= V (σ1(T ), θ̃1(T )) +

1

2
Nσ2

0 − (β − c)
N∑

j=2

∫ T

0

σ2
jdt+

1

4c

N∑

j=2

∫ T

0

e2
jdt

is a finite. For arbitrary δ > 0 and ε =
σ2
0+δ

(β−c)T
, substitution into (5.27) yields

V (σi(T ), θ̃i(T )) ≤ B +
1

2

i∑

j=N+1

σ2
0 − (β − c)

i∑

j=N+1

∫ T

0

σ2
j dt+

1

4c

i∑

j=N+1

∫ T

0

e2
jdt

≤ B +
1

2

i∑

j=N+1

[σ2
0 − (β − c)Tε]

= B − 1

2
(i−N)δ. (5.28)
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The right hand side of (5.28) approaches −∞ because B is finite, which leads to a

contradiction to the fact V (σi(T ), θ̃i(T )) is positive definite. Therefore, there must

exist a subsequence of σi which enters the given bound ε after a finite number of

learning iterations.

Remark 5.1. From Part 2 of Theorem 5.2, a large gain β can reduce the tracking

error bound ε under the initial conditions c) and d).

Remark 5.2. It should be noted that in deriving the above convergence properties,

we consider only sufficient conditions or the worst case performance. In practice,

we may achieve better learning performance such as pointwise or uniform conver-

gence, although in theory only L2
T convergence is guaranteed.

5.4 Robust Adaptive Learning Control

In Section 5.3, we studied the adaptive learning control problem with the unknown

function f(x) ∈ L2(Rn). However, functions in the space L2(Rn) are rarely met

in practice. For instance, a simple linear function f(x) = x does not belong to

the space. In this section, our objective is to study functions more general than

L2(Rn). As such we consider functions in L2(D) where D ⊂ Rn is a compact

set. Most functions we handle in control practice belong to L2(D). Comparing

with L2(Rn), the difficulty of function approximation for L2(D) is that the basis

defined on D will not be valid outside the compact set D. In particular the weights

θ will change when the states x move out the compact set D. Most of function

approximation based control methods developed hitherto require the system states

to strictly stay in D, or no expansion from D. Such a non-expansion condition in

fact is concerned with the transient behavior of control systems and is in general

far more difficult than the original control task of asymptotic convergence. On the

other hand, robust control methods can easily constrain the system states in D all
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the time, provided the unknown functions satisfy Assumption 5.2. Most studies

on robust control are based on this assumption. In this section, we study the

possibility of combining robust control with the function approximation to achieve

better control performance for the plant SI .

It is well known that in robust control, to achieve a small tracking error bound in

the presence of non-vanishing perturbations a high feedback gain is required. The

smaller the error bound, the higher the gain. Using an over large control gain will

however incur excessive control actions, not only wasting energy but also degrading

responses, shortening the life cycle of control mechanisms, or even destabilizing the

control system. An appropriate control approach is to incorporate function approx-

imation into robust control. The robust control with a lower gain will guarantee

a bounded tracking performance, say D, although the error bound may not meet

the performance specification. Then the function approximation with adaptive

learning will gradually take over the tracking task by generating necessary control

signals to compensate any non-vanishing perturbations or produce the “internal

model”.

Consider a compact set

D0 = {σi ∈ R : |σi|s ≤ ε0}, (5.29)

where ε0 > 0 is a sufficiently large constant so that the initial conditions |σ(0)| ≤ σ0

is within the compact set. From the definition of the augmented tracking error σi(t)

in (5.6), corresponding to D0 there exists a compact set D so that xi ∈ D. As far

as we can prove the non-expansion property of the compact set D0 for any i and

t ∈ [0, T ], then the non-expansion property of D is guaranteed. The non-expansion

of D warrants a valid function approximation sequence because the weights θ will

not change. To fulfill this control task, we need to show two properties in the

robust adaptive learning control (RALC): the first to show the non-expansion of
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D0, namely the boundeness of σi by ε0; and the second to show the convergence of

the tracking error sequence ‖σi‖T to the pre-specified bound ε.

In the preceding section we have shown the learning convergence analysis for f ∈

L2(Rn). In order to make use of the analysis results in Theorems 5.1 and 5.2, we

can modify the functions f ∈ L2(D) into functions of fa ∈ L2(Rn) defined below

fa(x) =





f(x), |x|s ≤ D,

0, |x|s ≥ 2D,

and further let fa(x) be smooth and monotone between the boundaries ∂D and

∂2D. The following figure shows the idea. It is obvious that fa(x) ∈ L2(Rn) and

Figure 5.2. The relationship between f(x) and fa(x)

f(x) = fa(x) for x ∈ D.

Remark 5.3. Note that such a modification is fictitious, because the states x will

not leave D by the robust control part, as we will show later. Hence the construction

of such a fictitious fa is only for the convenience of analysis. Likewise, the bounding

function f̄ of f , defined on D, can also be modified into a fictitious f̄a defined on

Rn, with f̄a = f̄ where x ∈ D.
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Now we are ready to construct an augmented plant

Sa :





ẋj = xj+1, j = 1, 2, · · · , n− 1,

ẋn = fa(x) + u x(0) = x0

(5.30)

which has the same form as SI . The ALC law (5.12) will be revised with an

additional robust control, βi, as follows

ui = −(β + βi)σi − θ̂
T

i gi − vi,

βi =
|θ̂

T

i gi| + f̄a
i

ε0
, (5.31)

where β > 1, and θ̂
T

i gi is the function approximation series of fa on Rn.

Substituting the RALC law (5.31), the dynamics of the tracking error σi is

σ̇i = −(β + βi)σi − θ̂
T

i gi + fa
i (5.32)

where fa
i = fa(xi). In the following we derive the non-expansion property of the

robust adaptive learning control system.

Theorem 5.3. For the plant Sa shown in (5.30) satisfying Assumption 5.4, the

controller (5.31) together with the parametric adaptive learning law (5.13) guaran-

tees σi ∈ D0 for any i and t ∈ [0, T ].

Proof. Differentiating the following Lyapunov function

V (σi) =
1

2
σ2

i (5.33)

with respect to time t, substituting the tracking error dynamics (5.32) and the

control law (5.31), we have

V̇ (σi) = σi[−(β + βi)σi − θ̂
T

i gi + fa
i ]

≤ −βσ2
i − βi|σi|(|σi| −

|θ̂T

i gi| + |f̄a
i |

βi
)

= −βσ2
i − βi|σi|(|σi| − ε0). (5.34)

Clearly V̇ is negative definite if |σi| ≥ ε0, thus |σi(t)| ≤ ε0 is strictly guaranteed for

any i and t ∈ [0, T ]. This implies σi ∈ Dσ and xi ∈ D.
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Now we are in a position to derive the convergence property of the robust adaptive

learning control for the plant Sa.

Theorem 5.4. For the plant Sa in (5.30), the controller (5.31) together with para-

metric adaptive learning law (5.13) guarantee the existence of a subsequence, ‖σij‖T

of ‖σi‖T , which enters the bound ε after a finite number of learning iterations.

Proof. The idea of the proof is similar to Theorems 5.1 and 5.2. Define the same

Lyapunov function

V (σi, θ̃i) =
1

2
σ2

i +
1

2
θ̃

T

i θ̃i. (5.35)

Differentiating V (σi, θ̃i) with respect to time t, substituting the tracking error

dynamics (5.32) and adaptive learning law (5.13) yield

V̇ (σi, θ̃i) = σiσ̇i − θ̃
T

i
˙̂
θi

= σi[−(β + βi)σi − θ̂
T

i gi + θT
i gi + ei] − θ̃

T

i giσi

≤ −βσ2
i + σiei. (5.36)

Note that the above relation is the same as (5.19). Thus all subsequent derivations

in Theorems 5.1 and 5.2 are valid, hence the convergence property concluded in

Theorem 5.2 also holds.

Remark 5.4. Any smooth functions can be chosen in the region between D and

2D, and the function approximation result is independent of such a choice.

Remark 5.5. By choosing a sufficiently large ε0 that is reciprocal to the robust

control gain, the robust control efforts can be greatly reduced. At the same time,

the control objective can still be achieved after adaptive learning.
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5.5 Two Extensions

Two extensions will be considered: the first is an extension to the plant SII in

(5.3) with partially unknown input coefficient, and the second is an extension to

the plant SIII in (5.5) which is a cascade dynamics with unmatched components.

5.5.1 Plant with Unknown Input Coefficient

Consider the plant SII . The presence of the partially unknown input coefficient

b(x) makes the control task much more difficult to address. Note that if b(x) is a

known nonsingular function, the control problem is trivial because we can simply

multiply the preceding adaptive learning control law by a factor b−1(x).

Let σi be defined the same as (5.6). The tracking error dynamics at the i-th

iteration can be expressed as

σ̇i = fi + biui + vi, ∀t ∈ [0, T ]. (5.37)

To facilitate later derivations, we introduce two new quantities. Denote bi = b(xi) =

b(x0
i , σi + v0

i ), where x0
i = [x1,i, · · · , xn−1,i]

T , xn,i = σi + v0
i , and v0

i = x
(n−1)
r (t) −

[λ 0]∆xi. Then a new quantity is defined below

w(χi) =
1

σi

∫ σi

0

[s
n−1∑

j=1

∂b−1(x0
i , s+ v0

i )

∂xj,i
xj+1,i + b−1(x0

i , s+ v0
i )vi]ds, (5.38)

where χi = [xT
i , σi, vi, v

0
i ]

T ∈ Rn+3. Another new quantity is

ηi =
fi

bi

which is nonsingular because bi ≥ b0 > 0 according to Assumption 5.2.

Analogous to Section 5.5, choose a compact set D0 ⊂ R defined by (5.29), assume

that a robust controller can make σi ∈ D0 strictly for any i and t ∈ [0, T ].

Then corresponding to D0 there exist a compact set D ⊂ Rn so that xi ∈ D,
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and a compact set D1 ⊂ Rn+3 so that χi ∈ D1. The properties ηi ∈ L2(D) and

wi ∈ L2(D1) are straightforward. Further, following the same idea shown in Figure

5.2, functions ηi and wi can be modified to be L2(Rn) and L2(Rn+3) respectively.

Being in L2 space, there exist bases g1(x), g2(x), · · · and w1(χ), w2(χ), · · · , all

continuous and locally Lipschitz continuous, such that the following functions ap-

proximation hold

ηa(x) =
∞∑

k=1

θkgk(x),

wa(χ) =
∞∑

k=1

φkwk(χ),

with unique weights θk and φk. Denote the approximation errors eη
i = η(xi) −

i∑

k=1

θkgk(xi) and ew
i = w(χi) −

i∑

k=1

φkwk(χi). By choosing bases to be sufficiently

smooth and well localized as discussed in Section 5.3, the approximation error

sequences, eη
i and ew

i , will also be convergent in L2
T norm as i→ ∞.

The robust adaptive learning control mechanism is given below

ui = −(β + βi)σi − θ̂
T

i gi − φ̂
T

i wi, (5.39)

where θ̂i = [θ̂1, · · · , θ̂i]
T , φ̂i = [φ̂1, · · · , φ̂i]

T , gi = [g1, · · · , gi]
T , wi = [w1, · · · , wi]

T ,

β > 1, and the robust control part is

βi =
|θ̂T

i gi| + |φ̂T

i wi| + f̄i/b0 + |vi|/b0
ε0

.

The parametric adaptive learning law is

˙̂
θi = σigi, θ̂1(0) = 0, θ̂i(0) = θ̂i−1(T ),

˙̂
φi = σiwi, φ̂1(0) = 0, φ̂i(0) = φ̂i−1(T ). (5.40)

The non-expansion property of D0 by the RALC law (5.39) is summarized in the

following theorem.

Theorem 5.5. For the dynamic system SII in (5.4) satisfying Assumptions 5.2

and 5.4, the controller (5.39) guarantees σi ∈ D0 for any i and t ∈ [0, T ].
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Proof. Substituting the control law (5.39) into the tracking error dynamics (5.37)

yields

σ̇i = fi − bi(β + βi)σi − biθ̂
T

i gi − biφ̂
T

i wi + vi. (5.41)

Differentiating the following Lyapunov function

V (σi) =
1

2
σ2

i (5.42)

with respect to time t, substituting the dynamics (5.41), and using the fact bi ≥

b0 > 0, we obtain

V̇ (σi) = σi[fi − bi(β + βi)σi − biθ̂
T

i gi − biφ̂
T

i wi + vi]

≤ −b0βσ2
i − biβiσ

2
i + bi|θ̂

T

i giσi| + bi|φ̂
T

i wiσi| + |f̄iσi| + |viσi|

≤ −b0βσ2
i − biβi|σi|(|σi| −

|θ̂
T

i gi|σi| + |φ̂
T

i wiσi| + |f̄iσi|/bi + |viσi|/bi
βi

)

≤ −b0βσ2
i − biβi|σi|[|σi| − ε0]. (5.43)

Clearly V̇ is negative definiteness for |σi| > ε0, hence σi ∈ D0 for any i and

t ∈ [0, T ].

The convergence property is summarized below.

Theorem 5.6. For the plant SII in (5.4), the controller (5.39) together with adap-

tive learning law (5.40) guarantee that the existence of a subsequence, ‖σij‖T of

‖σi‖T , which enters the bound ε after a finite number of learning iterations.

Proof. First, define a smooth scalar function (Zhang et al., 2000)

F (σi) =

∫ σi

0

sb−1(x0
i , s+ v0

i )ds (5.44)

which is a function of σi, x0
i and v0

i . Based on the mean value theory (Apostol,

1957), F (σi) can be rewritten as F (σi) = cσ2
i b

−1(x0
i , cσi +v0

i ) with c ∈ (0, 1). Since

b−1(xi) > 0,∀ xi ∈ D, it is shown that F (σi) is positive definitive with respect to

σi.
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Furthermore,

Ḟ =
∂F

∂σi

σ̇i +
∂F

∂x0
i

ẋ0
i +

∂F

∂v0
i

v̇0
i

= b−1(xi)σiσ̇i +

∫ σi

0

s[
∂b−1(x0

i , s+ v0
i )

∂x0
i

ẋ0
i ]ds+ v̇0

i

∫ σi

0

s[
∂b−1(x0

i , s+ v0
i )

∂vi
]ds.

(5.45)

From the definition of x0
i , we have

∫ σi

0

s[
∂b−1(x0

i , s+ v0
i )

∂x0
i

ẋ0
i ]ds =

∫ σi

0

s
n−1∑

j=1

∂b−1(x0
i , s+ v0

i )

∂xj,i
xj+1,ids. (5.46)

Since
∂b−1(x0

i ,s+v0
i )

∂v0
i

=
∂b−1(x0

i ,s+v0
i )

∂s
, vi = −v̇0

i , it follows that

v̇0
i

∫ σi

0

s[
∂b−1(x0

i , s+ v0
i )

∂v0
i

]ds = −vi

∫ σi

0

s[
∂b−1(x0

i , s+ v0
i )

∂s
]ds

= −vi[sb
−1(x0

i , s+ v0
i )|σi

0 −
∫ σi

0

b−1(x0
i , s+ v0

i )ds]

= −b−1(xi)viσi +

∫ σi

0

b−1(x0
i , s+ v0

i )vids. (5.47)

Substituting (5.41), (5.46) and (5.47) into (5.45), we obtain

Ḟ = −βσ2
i + σi(ηi − θ̂

T

i gi)

+σi

(
1

σi

∫ σi

0

[s
n−1∑

j=1

∂b−1(x0
i , s+ v0

i )

∂xj,i

xj+1,i + b−1(x0
i , s+ v0

i )vi]ds− σiφ̂
T

i wi

)

= −βσ2
i + σiθ̃

T

i gi + σie
η
i + σiφ̃

T

i wi + σie
w
i , (5.48)

where θ̃ = θ − θ̂ and φ̃ = φ − φ̂.

Now choose a Lyapunov function

V (σi, θ̃i, φ̃i) = F +
1

2
θ̃

T

i θ̃i +
1

2
φ̃

T

i φ̃i. (5.49)

The time derivative of V (σi, θ̃, φ̃) is

V̇ = Ḟ − θ̃T

i
˙̂
θi − φ̃

T

i
˙̂
φi

= Ḟ − σiθ̃
T

i gi − σiφ̃
T

i wi. (5.50)
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Substituting (5.48) into (5.50), it follows that

V̇ = −βσ2
i + σi(e

η
i + ew

i )

which is almost the same as (5.19) except that approximation term ei is replaced

by an augmented approximation term eη
i + ew

i that is L2
T convergent. Thus all

subsequent derivations in Theorems 5.1 and 5.2 are valid, and the convergence

property concluded in Theorem 5.2 also holds.

5.5.2 Plant in Cascade Form

Consider the n-th order cascade dynamic system SIII in (5.5). The backstepping

design has been developed as a systematic approach to handle cascade dynamics or

any systems in triangular form. The principal idea of backstepping design is for the

j-th subsystem to construct a fictitious control input, which will enter the (j + 1)-

th subsystem as the objective trajectory. In what follows we will demonstrate

the adaptive learning control based on the backstepping design. As a systematic

method, the backstepping design can be easily extended from second order to n-th

order, hence for simplicity and concentration on the most fundamental steps in the

problem solving, we consider a second order dynamics, i.e. n = 2 in (5.5) as below

ẋ1,i = f1(x1,i) + x2,i

ẋ2,i = f2(xi) + ui (5.51)

where xi = [x1,i, x2,i]
T . Denote f1,i = f1(x1,i) and f2,i = f1(xi). The control

objective is to design an appropriate control input ui(t) such that x1,i can track

xr,1 in L2
T as i→ ∞.

Since fj,i ∈ L2(Rj) for j = 1, 2, there exist continuous and locally Lipschitzian
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bases gi = g(x1,i) and hi = h(xi) such that

f1,i =

∞∑

k=1

θkgk =

i∑

k=1

θkgk + e1,i = θT
i gi + e1,i,

f2,i =
∞∑

k=1

φkhk =
i∑

k=1

φkhk + e2,i = φT
i hi + e2,i

where e1,i and e2,i are approximation errors. Define new coordinates z1,i = x1,i−xr,1

and z2,i = x2,i − α1,i, the fictitious control is

α1,i = −β1z1,i + ẋr,1 − θ̂
T

i gi (5.52)

where β1 > 1, and the parametric adaptive learning law is

˙̂
θi = giz1,i + ρ1,igiz2,i, (5.53)

θ̂1(0) = 0, θ̂i(0) = θ̂i−1(T ),

where

ρ1,i =
∂α1,i

∂x1,i
+

(
∂α1,i

∂gi

)T
∂gi

∂x1,i
.

Design the actual controller at i−th iteration

ui = ρ2,i − z1,i − β2z2,i + ρ1,iθ̂
T

i gi − φ̂
T

i hi (5.54)

where β2 > ρ2
1,i + 1 and

ρ2,i =
∂α1,i

∂t
+
∂α1,i

∂x1,i
x2,i +

∂α1,i

∂xr,1
ẋr,1 +

∂α1,i

∂ẋr,1
x

(2)
r,1

+

(
∂α1,i

∂θ̂i

)T
˙̂
θi +

(
∂α1,i

∂gi

)T
∂gi

∂x1,i
x2,i.

The second parametric adaptive learning law is

˙̂
φi = hiz2,i, (5.55)

φ̂1(0) = 0, φ̂i(0) = φ̂i−1(T ).

The convergence property of the above adaptive learning control scheme is derived

by the following theorem.
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Theorem 5.7. For the plant (5.51), the control laws (5.52), (5.54) and the adap-

tive learning laws (5.53) and (5.55) guarantee the existence of a subsequence {z1,ij}

of {z1,i} such that for arbitrary ε > 0, ‖z1,ij‖T enters the bound ε after a finite num-

ber of learning iterations.

Proof. The proof consists of two steps.

Step 1.

From (5.51), we have

ż1,i = ẋ1,i − ẋr,1

= x2,i + f1,i − ẋr,1

= z2,i + α1,i + f1,i − ẋr,1. (5.56)

Substituting the fictitious control α1,i in (5.52) into (5.56) yields

ż1,i = z2,i − β1z1,i + f1,i − θ̂
T

i gi

= z2,i − β1z1,i + θ̃
T

i gi + e1,i. (5.57)

Define a Lyapunov function below

V1,i =
1

2
z2
1,i +

1

2
θ̃

T

i θ̃i. (5.58)

Using (5.57), the derivative of V1,i is

V̇1,i = z1,iż1,i − θ̃
T

i
˙̂
θi

= z1,i(z2,i − β1z1,i + θ̃
T

i gi + e1,i) − θ̃
T

i
˙̂
θi

= z1,iz2,i − β1z
2
1,i + θ̃

T

i giz1,i + e1,iz1,i − θ̃
T

i
˙̂
θi

= z1,iz2,i − β1z
2
1,i + e1,iz1,i − θ̃

T

i (
˙̂
θi − giz1,i). (5.59)

Step 2.
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From (5.51) and (5.52), we have

ż2,i = ẋ2,i − α̇1,i

= ui + f2,i − {∂α1,i

∂t
+
∂α1,i

∂x1,i
ẋ1,i +

∂α1,i

∂xr,1
ẋr,1 +

∂α1,i

∂ẋr,1
x

(2)
r,1

+(
∂α1,i

∂θ̂i

)T ˙̂
θi + (

∂α1,i

∂gi
)T ∂gi

∂x1,i
ẋ1,i}

= ui + f2,i − {∂α1,i

∂t
+
∂α1,i

∂xr,1
ẋr,1 +

∂α1,i

∂ẋr,1
x

(2)
r,1

+(
∂α1,i

∂θ̂i

)T ˙̂
θi + (

∂α1,i

∂gi
)T ∂gi

∂x1,i
(x2,i + f1,i)} −

∂α1,i

∂x1,i
(x2,i + f1,i)

= ui + f2,i − [
∂α1,i

∂x1,i

+ (
∂α1,i

∂gi

)T ∂gi

∂x1,i

]f1,i

−{∂α1,i

∂t
+
∂α1,i

∂x1,i

x2,i +
∂α1,i

∂xr,1

ẋr,1 +
∂α1,i

∂ẋr,1

x
(2)
r,1

+(
∂α1,i

∂θ̂i

)T ˙̂
θi + (

∂α1,i

∂gi

)T ∂gi

∂x1,i

x2,i}

= ui + f2,i − ρ1,if1,i − ρ2,i (5.60)

where

ρ2,i =
∂α1,i

∂t
+
∂α1,i

∂x1,i

x2,i +
∂α1,i

∂xr,1

ẋr,1 +
∂α1,i

∂ẋr,1

x
(2)
r,1 +

(
∂α1,i

∂θ̂i

)T
˙̂
θi +

(
∂α1,i

∂gi

)T
∂gi

∂x1,i

x2,i

is known.

Substituting the control law (5.54) into (5.60) yields

ż2,i = −z1,i − β2z2,i − ρ1,i(f1,i − θ̂
T

i gi) + (f2,i − φ̂
T

i hi)

= −z1,i − β2z2,i − ρ1,iθ̃
T

i gi − ρ1,ie1,i + φ̃
T

i hi + e2,i. (5.61)

Define the Lyapunov function below

V2,i = V1,i +
1

2
z2
2,i +

1

2
φ̃

T

i φ̃i. (5.62)

The derivative of V2,i is

V̇2,i = V̇1,i + z2,iż2,i − φ̃
T

i
˙̂
φi. (5.63)
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Using (5.61), we have

z2,iż2,i = z2,i

(
−z1,i − β2z2,i − ρ1,iθ̃

T

i gi − ρ1,ie1,i + φ̃
T

i hi + e2,i

)

= −z1,iz2,i − β2z
2
2,i − ρ1,iθ̃

T

i giz2,i − ρ1,ie1,iz2,i + φ̃
T

i hiz2,i + e2,iz2,i

(5.64)

Substituting (5.59) and (5.64) into (5.63) yields

V̇2,i = [z1,iz2,i − β1z
2
1,i + e1,iz1,i − θ̃

T

i (
˙̂
θi − giz1,i)]

+[−z1,iz2,i − β2z
2
2,i + ρ1,iθ̃

T

i giz2,i + ρ1,ie1,iz2,i + φ̃
T

i hiz2,i + e2,iz2,i] − φ̃
T

i
˙̂
φi

= −β1z
2
1,i − β2z

2
2,i − θ̃

T

i (
˙̂
θi − giz1,i − ρ1,igiz2,i) − φ̃

T

i (
˙̂
φi − hiz2,i)

+e1,iz1,i + ρ1,ie1,iz2,i + e2,iz2,i. (5.65)

Substitution of the adaptive learning laws (5.53) and (5.55) results in

V̇2,i ≤ −β1z
2
1,i − β2z

2
2,i + e1,iz1,i + ρ1,ie1,iz2,i + e2,iz2,i. (5.66)

Using Young’s inequality, there exists c ∈ (0, 1) such that

e1,iz1,i ≤ cz2
1,i +

1

4c
e2
1,i,

ρ1,ie1,iz2,i ≤ cρ2
1,iz

2
2,i +

1

4c
e2
1,i

e2,iz2,i ≤ cz2
2,i +

1

4c
e2
2,i.

Choosing (β1 − c) ≥ β and (β2 − cρ2
1,i − c) ≥ β with β > 0, we obtain

V̇2,i ≤ −(β1 − c)z2
1,i − (β2 − cρ2

1,i − c)z2
2,i +

1

2c
e2
1,i +

1

4c
e2
2,i

≤ −β(
√
z2
1,i + z2

2,i)
2 + (

√
(e2

1,i + e2
2,i)/2c)

2

By viewing
√
z2
1,i + z2

2,i and
√

(e2
1,i + e2

2,i)/2c as lumped quantities, the above rela-

tion is analogous to the relation (5.21) in Theorem 5.1. Further
√

(e2
1,i + e2

2,i)/2c

is convergent in L2
T when i → ∞. Therefore by following derivation procedures

in Theorems 5.1 and 5.2, we can reach the conclusion that ‖z1,ij‖T ≤ ε can be

achieved after a finite number of learning iterations.
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5.6 Wavelet Bases

From previous discussions, finding an appropriate basis is indispensable in order to

achieve the desirable function approximation property in ALC or RALC. In this

section, we will illustrate how an orthonormal basis of wavelets for L2(R) can be

constructed from the multiresolution approximation.

5.6.1 Multiresolution Approximations by Wavelet

Multi-resolution analysis was proposed in (Mallat, 1989). Multi-resolution analy-

sis provides a mathematical tool to describe the increment in information from a

coarse resolution approximation to a finer resolution approximation. Let us give

the definition of this concept. Denote Z the set of integer numbers.

Definition 5.2. A multiresolution analysis of L2(R) is an increasing sequence

Vj ∈ L2(R), j ∈ Z, of closed subspaces of L2(R), with the following properties

1. · · · V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · ·

2.
⋂∞

−∞ Vj = {0},
⋃∞

−∞ Vj = L2(R) is dense in L2(R)

3. ∀f ∈ L2(R), ∀j ∈ Z, f(x) ∈ Vj ⇔ f(2x) ∈ Vj+1

4. f(x) ∈ Vj ⇒ f(x− 2−jk) ∈ Vj j, k ∈ Z

5. For all j, there exists a φ(x), called scaling function, such that {φj,k(x) =

2j/2φ(2jx−k)| k ∈ Z} is an orthonormal basis of Vj and Vj = span {φj,k| k ∈ Z}.

The orthogonal projection of a function f ∈ L2(R) into Vj is given by

fj(x) =
∑

k∈Z

< φj,k(x), f(x) > φj,k(x) (5.67)
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and can be interpreted as an approximation to f at resolution 2−j . Therefore, the

function f(x) can be uniquely approximated in the space Vj

f(x) = fj(x) + ej

=

Nj∑

k=1

< φj,k(x), f(x) > φj,k(x) + ej

where ej is the approximation error at j-th resolution including the truncation error,

Nj is the number of bases used at the j-th resolution, and < · > is the inner product.

Note that a larger j means a higher resolution, therefore ‖e(j + 1)‖ ≤ ‖e(j)‖ and

lim
j→∞

‖e(j)‖ = 0.

By defining Wj as the orthogonal complement of Vj in Vj+1, i.e.,

Vj+1 = Vj

⊕
Wj, (5.68)

the space L2(R) is represented as a direct sum

|L2(R) =
⊕

j∈Z

Wj. (5.69)

Moreover, from the previous assumption on Vj it follows that there exists a function

ψ(x), called mother wavelet, such that

{ψj,k(x) = 2j/2ψ(2jx− k)| k ∈ Z} (5.70)

is an orthonormal basis of Wj. From (5.69), {ψj,k| j, k ∈ Z} constitutes an or-

thonormal basis for L2(R). The spaces Wj are called wavelet subspaces of L2(R)

relative to the scaling function φ(x) and the orthogonal projection of a function

f ∈ L2(R) into Wj, given by

gj(x) =
∑

k∈Z

< ψj,k(x), f(x) > ψj,k(x) (5.71)

can be interpreted as an approximation to f at resolution 2−j . Therefore, the

function f(x) in the space L2(R) can be uniquely approximated

f(x) =
∑

k∈Z

< φJ,k(x), f(x) > φJ,k(x) +
∑

j≥J

∑

k∈Z

< ψj,k(x), f(x) > ψj,k(x)

=
∑

k∈Z

vJ,kφJ,k(x) +
∑

j≥J

∑

k∈Z

wj,kψj,k(x)
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where vJ,k and wj,k denote the coefficients or weights of the wavelet network. For

notational convenience, we will drop the subscripts J from the lowest resolution,

i.e., vJ,k → vk, and φJ,k → φk.

5.6.2 Three Wavelet Bases

Let us introduce three different kinds of wavelet bases.

Case 1. Orthonormal Wavelet db3

In Daubechies (Daubechies, 1988) a number of orthonormal bases of wavelets were

constructed with compact support. Among them the orthonormal wavelet base,

db3, is popular because of its balance between the simplicity of algorithm and

smoothness of function approximation. db3 has been widely used in the field signal

processing. The scaling function of db3 wavelet is shown below with 6 coefficients

φ(x) =
√

2[h0φ(2x) + h1φ(2x− 1) + h2φ(2x− 2) + h3φ(2x− 3)

+h4φ(2x− 4) + h5φ(2x− 5)],

and the coefficients h0, · · · , h5 can be solved via the following set of equations

h2
0 + h2

1 + h2
2 + h2

3 + h2
4 + h2

5 = 1,

h0h2 + h1h3 + h2h4 + h3h5 = 0,

h0h4 + h1h5 = 0,

h0 − h1 + h2 − h3 + h4 − h5 = 0,

−h1 + 2h2 − 3h3 + 4h4 − 5h5 = 0,

−h1 + 4h2 − 9h3 + 16h4 − 25h5 = 0. (5.72)

The corresponding wavelet function ψ(x) is defined as

ψ(x) =
√

2[−h0φ(2x− 1) + h1φ(2x) − h2φ(2x+ 1) + h3φ(2x+ 2)

−h4φ(2x+ 3) + h5φ(2x+ 4)].
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db3 scaling function φ and wavelet function ψ are shown in Figure 5.3 and Figure

5.4 respectively. Clearly db3 is not smooth, hence might not be an ideal choice
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Figure 5.3. Scaling function φ of db3
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Figure 5.4. Wavelet function ψ of db3

for control problems.

Case 2. Sinc-wavelet

Sinc-wavelet is also widely used to solve signal processing problems. The scaling

function of the sinc-wavelet is φ(x) = sinc(πx). The corresponding wavelet function

is ψ(x) = cosπx−sin2πx
π( 1

2
−x)

. The scaling function φ and the wavelet function ψ are shown

in Figure 5.5 and Figure 5.6 respectively. Sinc-wavelet is smooth, hence can be
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Figure 5.5. Scaling function φ of Sinc
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Figure 5.6. Wavelet function ψ of Sinc

considered for control problems that need function approximation.

Case 3. Mexican Wavelet

Mexican wavelet, described by g(x) = (1 − x2)e−
x2

2 and illustrated in Figure 5.7,

is in fact a continuous wavelet. However we can see the desirable properties from

the figure: very smooth and well localized. In practice we could use it as wavelet

bases with appropriate discretization.
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Figure 5.7. Mexican wavelet function g(x)

5.7 Illustrative Example

In order to provide useful information and guideline for practical applications of

wavelets in ALC or RALC, we focus on a few important factors: the suitability

of a wavelet basis, the complexity of the function approximation network, and the

length of adaptive learning period. Let Ni and Nb denote the total number of

iterations and the number of bases in the learning process respectively. Let N be

the number of the iterations between the two structured updating, here N is the

“dwell iterations”, namely k(i) increases by one when i increases by 10. Due to

space limit, we will only demonstrate ALC and RALC for plants SI and SII under

the initial condition a).

5.7.1 Adaptive Learning Control

Consider the following dynamic system

ẋ1 = x2

ẋ2 = 8e−x1 sin x1 + u. (5.73)
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The desired trajectory is xr(t) = t3, the augmented tracking error is σ = ∆x1+∆x2.

The dynamic system is repeatable over [0, 1].

Case 1. Orthonormal Wavelet db3

The orthonormal wavelets db3 is employed. The wavelet network structure is fixed

at the resolution j = 5, a relatively finer resolution. The tracking error is shown in

Figure 5.8. From the figure, we can see that the speed of convergence is rather slow

although the structure is complex. Due to the lack of smoothness, db3 wavelet is

not suitable for ALC.

0 5 10 15 20 25 30 35 40 45 50
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Iteration Number

T
ra

ck
in

g 
E

rr
or

Figure 5.8. Tracking error with coarse structure j = 5.

Case 2. Sinc-wavelet

The error bound is set to be ε = 0.035. First, the wavelet network structure is fixed

at a coarse resolution j = 0. The tracking error is shown in Figure 5.9. From the

figure, the tracking error is kept at a rather large level despite adaptive learning.

This is due to the inadequate function approximation precision with the coarse

resolution j = 0. Next we adjust the wavelet network structure by increasing one

resolution when the iteration number i increase by one, that is, the dwell time

iteration N = 1. The tracking error is shown in Figure 5.10. From the figure,

the tracking error enters the pre-specified error bound after 7 iterations, indicating
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Figure 5.9. Tracking error at the resolution j = 0.
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Figure 5.10. Tracking error when the resolution increases from 0 to 6 (Case 2)

a very fast convergence speed. This clearly shows the necessity to increase the

number of bases.

On the other hand, resolution j = 6 corresponds to a relatively complex structure.

A question arises: whether resolution j = 6 is really imperative? Note that up-

dating the structure at every iteration, that is, k(i) = i or N = 1, is the fastest

updating speed. Since adaptive learning control needs time to reach steady state,

we can update the network structure in a lower speed, for instance updating once

after a few learning iterations. Choose different dwell iterations N = 5, N = 10

and N = 15, the comparison results are summarized in Table 5.1. From Table 5.1,
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Table 5.1. Comparison for different dwell iterations

Dwell iterations j Ni

1 6 7

5 4 21

10 2 30

15 2 45

we can conclude that the resolution j = 2 is necessary and adequate. The tracking

error for dwell iteration N = 10 is given in Figure 5.11. Table 5.1 indicates the cor-
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Figure 5.11. Tracking error with dwell iteration N = 10 (Case 2)

relation, or the trade-off between the learning speed and controller complexity. In

practical control applications, the dwell iteration N can be determined according

to other control requirements. For instance, if the priority is given to the learning

speed, a small N would be proper. On the contrary, if the controller complexity is

the main concern, a large N shall be chosen.

Case 3. Mexican Wavelet

Let the error bound be ε = 0.035. Choose the dwell iteration N = 1, the tracking

error is shown in Figure 5.12. It gives a better performance than Case 2 with

sinc-wavelet. Next choose different dwell iterations N = 5 and N = 10, the
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Figure 5.12. Tracking error by increasing j from 0 to 4 (Case 3)

comparison results are summarized in Table 5.2. From Table 5.2, it is obvious

Table 5.2. Comparison for different dwell iterations

Dwell iterations j Ni

1 4 5

5 2 11

10 1 14

that Mexican wavelet achieves a faster convergence speed and meanwhile uses a

simpler structure. The tracking error with dwell iteration N = 10 is shown in

Figure 5.13. The comparison studies show that Mexican wavelet is most suitable

for control purpose.

5.7.2 Robust Adaptive Learning Control

Same as the preceding subsection, let the desired trajectory be xr(t) = t3, the

augmented tracking error be σ = ∆x1+∆x2, and the dynamic system is repeatable

over [0, 1]. The pre-specified tracking error bound is 0.01.

Case 1. RALC for Plant SI
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Figure 5.13. Tracking error with dwell iteration N = 10 (Case 3)

Consider the dynamic system

ẋ1 = x2

ẋ2 = 5x2 sin(x1 + x2) + u.

The unknown nonlinear uncertainty 5 sin(x1+x2)x2 has an upper bounding function

5|x2|.

First choose different dwell iterations N = 5, N = 10 and N = 15, the comparison

results are summarized in the Table 5.3. Here sinc-wavelet is used. From Table

Table 5.3. Comparison for different dwell iterations

Dwell iterations j Ni

5 2 14

10 1 20

15 1 24

5.3, satisfactory responses were achieved by RALC.

Next we investigate the effect of different initial resolutions. One of the practical

control requirements is, whenever possible, to obtain the pre-specified tracking

error using the minimum number of bases. Assume the scaling function is chosen
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at resolution j = j1, which is the initial resolution. If the number of bases at

j1 layer is n1, the total number of bases in the wavelet network at the resolution

j = jn is

jn∑

j=j1

[1 + I(2j+1 n1 − 1

2(−j1+1)
)], (5.74)

where the function I(a) is equal to a when a is an integer number, or equal to an

integer number nearest to a from above when a is not an integer number. The

equation (5.74) shows that the number of bases is determined by three factors:

the initial resolution j1, the number of initial bases n1, and the number of layers

jn − j1. The number of bases increases rapidly if the initial resolution is chosen at

a finer level, that is, with larger j1. Therefore, in order to fully make use of the

flexibility achieved by the network structural evolution, it is preferred to let the

wavelet network start from a lower resolution j1.

Choosing different initial resolutions j1 = −3, j1 = −2 and j1 = 0, the comparison

results are displayed in Table 5.4. Here Mexican-wavelet is used and the dwell

iteration is N = 10. The minimum number of bases is Nb = 92, which is the case

Table 5.4. Comparisons for different initial resolutions

Initial resolution j1 Final resolution jn Nb Ni

-3 −1 92 25

-2 0 148 25

0 2 516 26

with the scaling function at resolution j1 = −3. Note that the number of learning

iterations are almost the same for three cases, hence there is no sacrifice of learning

speed when the lowest resolution is used. In other words, j1 = −3 achieves the

best performance.

So far we only discussed the increment of a network, which may contain significant
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redundancies. Many network pruning algorithms have been proposed to reduce the

neural network size. The simplest algorithm is to remove a node which is always

with a very low weighting. By incorporating this simple algorithm, the wavelet

network size can be further reduced to about one third. It was found that most

wavelets nearby the boundary of D are not activated, implying that the actual

state trajectory concentrates on only a portion of the compact set D. The reduced

number of bases is given in the following Table. Table 5.5 shows that the number

Table 5.5. Comparisons for different initial resolution

Initial resolution j1 Final resolution jn Nb Ni

-3 −1 28 29

-2 0 36 30

0 2 96 27

of bases is the minimum for the scaling function at the resolution j1 = −3 and the

number of iterations is again almost the same at different resolutions. Therefore,

scaling function at resolution j1 = −3 is optimal for this example.

Case 2. RALC for Plant SII

Consider the following plant

ẋ1 = x2

ẋ2 = f(x) + b(x)u, (5.75)

where f(x) = 5 sin(x1 + x2)x2 with the bounding function 5|x2| and b(x) = (1 +

| sin(x1)|) with the lower bound b0 = 1. In this case, sinc-wavelet is chosen as the

base wavelet. Choosing the dwell iteration N = 15, the tracking error is shown in

Figure 5.14. This confirms the validity of the proposed robust adaptive learning

control method for the dynamical system SII with unknown input coefficient.
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Figure 5.14. Tracking error with dwell iteration N = 15

5.8 Conclusion

In this chapter we developed an adaptive learning control approach which can fully

make use of the powerful function approximation in a more flexible and construc-

tive manner. The wavelet network provides an orthonormal basis for L2(R) and

can be constructed from the multiresolution approximation, thus can fulfill all re-

quirements of the adaptive learning control approach. To concentrate on the idea,

concepts and the basic methods, we only consider three classes of nonlinear uncer-

tain dynamics: the simplest higher order plants with a lumped uncertain nonlinear

function, plants with partially unknown input coefficient, and plants in cascade

form. With rigorous analysis, we prove the existence of solution and learning con-

vergence properties. A number of case studies are presented to demonstrate the

effectiveness of wavelet based adaptive learning control, as well as the choice and

design issues of wavelet network.
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Chapter 6

On Initial Conditions in Iterative

Learning Control

6.1 Introduction

Learning control enhances the system performance through repeated or cyclic op-

erations. Iterative learning control deals with finite time interval tracking tasks

that repeat, whereas repetitive learning control copes with periodic tracking tasks

over infinite time interval.

To make a process convergent in a finite time interval, the initial condition becomes

crucial because asymptotical convergence along the time horizon is no longer valid.

Iterative learning control (ILC) based on contraction mapping requires the identical

initial condition (i.i.c.) in order to achieve a perfect tracking (Arimoto et al., 1984b;

Sugie and Ono, 1991; Ahn et al., 1993; Xu and Tan, 2003). The robustness of

contraction based ILC has been studied (Arimoto et al., 1991; Lee and Bien, 1991;

Porter and Mohamed, 1991b; Porter and Mohamed, 1991a; Heinzinger et al., 1992;

Saab, 1994), and several algorithms were proposed for ILC without i.i.c. (Park and
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Bien, 2000; Sun and Wang, 2002; Chen et al., 1999).

Recently, new ILC approaches based on Lyapunov theory (Xu and Tan, 2003; Xu

and Tan, 2002a; Qu, 2002; Jiang and Unbehauen, 2002; Tayebi, 2004) have been

developed to complement the contraction mapping based ILC in the sense that

local Lipschitz nonlinearities can be taken into consideration. Majority of those

approaches also require the identical initial condition. In practical applications,

the perfect initial resetting may not be obtainable. That motivates us to study

initial conditions for this class of ILC.

In the chapter, five different initial conditions to be investigated are: a) identical

initial condition (i.i.c.); b) progressive i.i.c., i.e. the sequence of initial errors belong

to l2; c) fixed initial shift; d) random initial condition within a bound; e) alignment

condition, i.e., the end state of the preceding iteration becomes the initial state of

the current iteration.

Condition b) has not been exploited in contraction mapping based ILC. In the

Lyapunov based ILC, this condition has been briefly mentioned in (French and

Rogers, 2000b) wherein the unknowns are constant parameters. Hence, analogous

to adaptive control, differential type adaptation law can be derived by the use of

a quadratic Lyapunov function. In this chapter, we consider more general time-

varying parametric uncertainties, wherein a difference type learning law is derived

from a Lyapunov functional. A contribution of this chapter is to show the pointwise

learning convergence under Condition b).

Condition c) has been studied in contraction mapping based ILC. In (Park and

Bien, 2000), it shows that the tracking error can converge exponentially along the

time axis from the fixed initial shift which cannot be eliminated. In (Sun and

Wang, 2002), by rectifying the reference trajectory nearby the initial stage into

a new one aligned with the actual initial value, the uniform convergence of the
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tracking error can be achieved. Condition c) has not been studied in Lyapunov

based ILC. A contribution of this chapter is to demonstrate the similar learning

performance: the tracking error will enter a designated bound with the fixed initial

shift, and pointwisely converges when the reference trajectory can be rectified.

The effect of Condition d), which reflects the ILC robustness property, has been

investigated in contraction mapping based ILC, e.g. (Heinzinger et al., 1992) and

(Park and Bien, 2000). The results show that the tracking error is confined to a

bound which depends continuously on the bound of the initial state error. In a

special case of Condition d), an initial state learning algorithm (Chen et al., 1999)

has been proposed to make the initial state a convergent sequence, subject to

the maneuverability of the system initial states. By a rectifying action (Sun and

Wang, 2002), the tracking error can also be confined to a finite bound which is

proportional to the bound of the initial state error. As for the Lyapunov based

ILC, the only report on Condition d) was given by (Jiang and Unbehauen, 2002), in

which a switching control together with a reducing deadzone is used. In comparison,

the contribution in this chapter is to show that the proposed ILC, which is a

continuous control law, can converge to a designated bound under Condition d),

or converge pointwisely when an appropriate rectifying action is taken.

Condition e) is not applicable in contraction mapping based ILC. In Lyapunov

based ILC, our previous work (Xu, 2002b) has shown the learning convergence

under Condition e). In this chapter, we first show that the learning convergence

or boundedness with respect to conditions a-d) and e), though very different, can

be easily discussed and determined under a unified framework using a Lyapunov

functional. Next, under the same framework, the learning convergence speed can

be evaluated for the conditions c), d) and e).

The objective of ILC is to achieve a convergent sequence in a function space. As
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such, the sequence approaches the desired one either in a pointwise manner, in

Lp norm or in uniform norm. In the analysis of contraction based ILC, often

the uniform norm is used. However, the uniform convergence is rather difficult

to achieve in many control problems, especially for tracking tasks in a function

space. In this chapter, we demonstrate that, a learning sequence can converge

either pointwisely or in L2 norm. L2 norm is defined as ‖ei‖T
4
= (
∫ T

0
e2

idt)
1
2 .

The chapter is organized as follows. Section 6.2 states the problem and ILC al-

gorithm. In Section 6.3, the learning convergence properties are analyzed under

different initial conditions. Section 6.4 presents an illustrative example.

6.2 Problem Statement

Considering a tracking task that ends in a finite interval and repeats, ILC applies

from iteration to iteration. To focus on the main theme with initial conditions,

consider simple first order nonlinear dynamic system in the i−th iteration

ẋi = θ(t)ξ(xi, t) + ui x(0) = x0, (6.1)

where ξ(xi, t) is a known nonlinear function which can be local Lipschitzian and

the unknown time-varying parameter θ(t) ∈ C[0, T ]. For notational convenience,

in subsequent context we will omit the argument t for all variables and denote a

function ξ(xi, t) as ξi where no confusion arises.

The reference trajectory is generated by a dynamics

ẋr = f(xr, r, t), (6.2)

where fr = f(xr, r, t) is a known smooth function, r is a reference input which

yields a bounded state xr(t) over the interval [0, T ]. The tracking error is defined

as ei(t) = xr(t) − xi(t).
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The objective of ILC is to find a sequence of appropriate control input ui(t) for

t ∈ [0, T ] such that the system state xi tracks the reference trajectory xr as i→ ∞.

From the theory of differential equation, the orbit of the nonlinear dynamics (6.1)

is jointly determined by the initial value x0 and the exogenous input ui. A tiny dis-

crepancy in initial conditions may lead to completely different orbits. However, a

perfect initial resetting requires that the control system be equipped with a precise

homing mechanism, which may not be possible for many practical engineering sys-

tems. Henceforth, the ultimate objective of this chapter is to relax this requirement

with several less strict initial conditions, and investigate how does the learning per-

formance alter accordingly. Consider the following five initial conditions:

a) ei(0) = 0;

b)
∑∞

i=1 e
2
i (0) = C, where C is a constant;

c) |ei(0)| = C 6= 0, where C is a constant;

d) ei(0) is random and bounded by a constant C;

e) ei(0) = ei−1(T ).

Condition a) is the identical initial condition (i.i.c.) that is widely assumed for most

ILC algorithms. Condition b) is the progressive i.i.c., it shows that the sequence

of {ei(0)} belongs to l2, or ei(0) → 0 as i → ∞. Condition c) is the fixed initial

shift. Obviously, Condition a) is a special case of Condition b), and Conditions a-c)

are special cases of Condition d). Generally speaking, it is adequate to consider

Condition d) the worst case, if our concern is regarding the ILC robustness on ini-

tial shifts. Nonetheless, we can derive better and quantitative results on learning

convergence with Conditions a-d), as we will show in this chapter.

Condition e) is the alignment condition, which is different from other initial condi-

tions. The initial resetting condition in ILC usually implies both spatial resetting

and temporal resetting. While time resetting is natural for a task to be finished

and repeated over a finite period, the spatial resetting is however not an easy job

106



CHAPTER 6. ON INITIAL CONDITIONS IN ITERATIVE LEARNING CONTROL

and not so imperative. Note that it is the spatial resetting which gives rise to

extra implementation difficulty. In quite a number of practical applications, the

process will restart from where it stopped in previous trial. Therefore the end

state of the preceding iteration becomes the initial state of the new iteration, i.e.

xi−1(T ) = xi(0). As far as the reference trajectory is spatially closed, namely

xr(0) = xr(T ), Condition e) holds for all iterations. The alignment condition

removes the spatial resetting requirement.

The error dynamics at the i-th iteration can be expressed as

ėi = fr − θ(t)ξi − ui. (6.3)

The learning control mechanism consists of the control law

ui = kei + fr − θ̂i(t)ξi, (6.4)

and the parametric learning law

θ̂i(t) = proj(θ̂i−1(t)) − ξiei(t) θ̂−1(t) = 0, (6.5)

where

proj(·) 4
=





· | · | ≤ θ∗

sign(·)θ∗ | · | > θ∗

and θ∗ is the projection bound which is sufficiently large such that θ∗ ≥ supt∈[0, T ] |θ(t)|.

In practice, θ∗ can be arbitrarily large but finite.

Substituting the learning control law (6.4) into the error dynamics (6.3) yields the

closed-loop error dynamics

ėi = −kei − φi(t)ξi, (6.6)

where φi(t)
4
= θ(t)− θ̂i(t).
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6.3 Learning Convergence Under Initial Condi-

tions

First derive the boundedness of tracking error ei and parameter estimate θ̂i under

learning control law (6.4) and (6.5). Note that at the initial iteration i = 0, there is

no parametric learning as θ̂−1(t) = 0, and θ̂0 = −ξ0e0(t). Hence we have to derive

the boundedness of (e0, θ̂0) in a way different from that for (ei, θ̂i) with i ≥ 1.

Proposition 6.1. (e0, θ̂0) is bounded for t ∈ [0, T ].

Proof is given in Appendix A.3.

Now we can prove the boundedness of (ei, θ̂i), which is summarized in the following

theorem.

Theorem 6.1. Under the initial conditions a)-d), the learning control law (6.4)

and (6.5) ensures bounded (ei, θ̂i) for any i ≥ 1.

Proof is given in Appendix A.4.

Since any two iterations are correlated via the learning law, the impact from an

initial condition to the system performance could be in an accumulative fashion.

The following proposition describes such an accumulative impact and facilitate

subsequent analysis on the relationship between initial conditions and learning

convergence.

Proposition 6.2. The inequality

lim
i→∞

Vi(t) ≤ V0(t) + lim
i→∞

1

2

i∑

j=1

e2
j(0) − lim

i→∞

i∑

j=1

∫ t

0

ke2
jdτ − lim

i→∞

1

2

i−1∑

j=1

e2
j(t) (6.7)

holds for ∀ i, where Vi is a Lyapunov functional defined as

Vi(t) =
1

2
e2

i (t) +
1

2

∫ t

0

φ2
i (τ )dτ. (6.8)
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Proof is given in Appendix A.5.

Now we are in a position to demonstrate the main results summarized in Theo-

rem 6.2. First, in addition to the boundedness of (ei, θ̂i), we can achieve better

learning performance under initial conditions a-d). Second, we are able to achieve

L2 learning convergence under the alignment condition e). Third, under the same

framework with the Lyapunov functional, it is possible to further evaluate the

learning convergence speed.

Theorem 6.2. Part 1. Under the initial conditions a) and b), the tracking error

ei converges to zero pointwisely as i→ ∞;

Part 2. Under the initial conditions c) and d), there exists a subsequence {eij} of

{ei} such that for any arbitrary δ > 0, ‖eij‖T ≤ ε as ij → ∞ , where ε =
√

C2+δ
2k

.

Part 3. Under the alignment condition e), the tracking error ‖ei‖T converges to

zero as i→ ∞.

Part 4. Under the conditions c) and d), for any given ε0 > 0 and k > C2

2ε20
, the track-

ing error ‖ei‖T will enter the ε0−bound after at most 2V0(T )

2kε20−C2 iterations. Further-

more, under the condition e), the tracking error ‖ei‖T ≤ ε0 after at most
2V0(T )+e2

1(0)

2kε20

iterations.

Proof: Part 1

First consider the initial condition a). With the condition, (6.7) is

lim
i→∞

Vi(t) ≤ V0(t) − lim
i→∞

1

2

i−1∑

j=1

e2
j(t).

Consider the positiveness of Vi and boundedness of V0, the sequence ei(t) converges

to zero pointwisely as i→ ∞.

Next consider the initial condition b),
∑∞

i=1 e
2
i (0) = C. The relation (6.7) becomes

lim
i→∞

Vi(t) ≤ V0(t) +
1

2
C − lim

i→∞

1

2

i−1∑

j=1

e2
j(t).
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The convergence property is analogous to a) because C is finite.

Part 2

The reduction to absurdity is applied. Suppose, on the contrary, there exists a

positive integer N such that ‖ei‖T ≥ ε for all i ≥ N .

Let t = T . The relation (6.7) with the initial conditions c) and d), |ei(0)| ≤ C, is

lim
i→∞

Vi(T ) ≤ V0(T ) + lim
i→∞

1

2
iC2 − lim

i→∞

i∑

j=1

∫ T

0

ke2
jdτ − lim

i→∞

1

2

i−1∑

j=1

e2
j(T )

≤ V0(T ) +
1

2
NC2 −

N∑

j=1

∫ T

0

ke2
jdτ

+ lim
i→∞

1

2
(i−N)C2 − lim

i→∞

i∑

j=N

∫ T

0

ke2
jdτ

≤ B + lim
i→∞

1

2
(i−N)C2 − lim

i→∞
(i−N)kε2

= B + lim
i→∞

(i−N)(
1

2
C2 − kε2) (6.9)

where

B = V0(T ) +
1

2
NC2 −

N∑

j=1

∫ T

0

ke2
jdτ

is a finite constant. For arbitrary δ > 0 and ε =
√

C2+δ
2k

, substitution into (6.9) we

can obtain

lim
i→∞

Vi(T ) ≤ B + lim
i→∞

(i−N)(
1

2
C2 − kε2)

≤ B − lim
i→∞

1

2
(i−N)δ (6.10)

The right hand side approaches −∞ since B is finite, which leads to a contradiction

with the fact that Vi(T ) ≥ 0.

Part 3

Let t = T in (6.7). With the alignment condition e), ei(0) = ei−1(T ), we obtain

the following relationship

1

2

i∑

j=1

e2
j(0) −

1

2

i−1∑

j=1

e2
j(T ) =

1

2
e2
1(0),
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and

lim
i→∞

Vi(T ) ≤ V0(T ) +
1

2
e2
1(0) − lim

i→∞

i∑

j=1

∫ T

0

ke2
jdτ.

Therefore

lim
i→∞

∫ T

0

e2
idt

4
= lim

i→∞
‖ei‖2

T = 0

because of the positiveness of Vi and the boundedness of V0.

Part 4

Under the initial conditions c) and d), from (6.9) we have

Vi(T ) ≤ V0(T ) +
1

2
iC2 −

i∑

j=1

∫ T

0

ke2
jdτ −

1

2

i−1∑

j=1

e2
j(T )

≤ V0(T ) +
1

2
iC2 −

i∑

j=1

∫ T

0

ke2
jdτ

= V0(T ) +
1

2
iC2 − k

i∑

j=1

‖ej‖2
T . (6.11)

From (6.11), the larger the ‖ej‖T , the faster the decease of Vi(T ). Let us assume a

slowest decrease in Vi(T ), which corresponds to ‖ej‖T = ε0 for all j = 1, 2, · · · , i.

Since

0 ≤ V0(T ) +
1

2
iC2 − k

i∑

j=1

‖ej‖2
T ,

substituting ‖ej‖T = ε0, we can derive i ≤ 2V0(T )

2kε20−C2 and k > C2

2ε20
.

Under the initial condition e), by observing the inequality

Vi(T ) ≤ V0(T ) +
1

2
e2
1(0) −

i∑

j=1

∫ T

0

ke2
jdτ

= V0(T ) +
1

2
e2
1(0) − k

i∑

j=1

‖ej‖2
T ,

the larger the ‖ej‖T , the faster the decrease of Vi(T ). Similarly, substituting

‖ej‖T = ε0 into the inequality

0 ≤ V0(T ) +
1

2
e2
1(0) − k

i∑

j=1

‖ej‖2
T ,
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we can obtain i ≤ 2V0(T )+e2
1(0)

2kε20
. 2

Note that, in the Lyapunov based ILC, the state variables are accessible. A rectify-

ing action can be taken to revise the reference trajectory such that its initial values

are aligned with the actual ones. This leads to an improved learning performance

for the initial conditions c) and d), as stated by the following corollary.

Corollary 6.1. Let revised reference trajectory x∗r be

x∗r =





xr if t ∈ [h, T ],

x̃r if t ∈ [0, h),
(6.12)

where h ∈ [0, T ] can be chosen arbitrary and x̃r is a smooth function to link the ini-

tial position xi(0) and the reference trajectory xr(h) at the moment t = h. The less

the h, the closer the revised reference trajectory to the original reference trajectory.

Obviously, ei(0) = 0, i.e., initial condition a) is satisfied for the new reference

trajectory. An interesting observation is, the tracking error dynamics (6.6) remains

the same with respect to the new reference trajectory, even though the reference

trajectory may vary at every iteration. Therefore, the pointwise convergence can be

directly achieved in analogy to the result of initial condition a) in Theorem 6.2.

Remark 6.1. From Part 3 of Theorem 6.2, a large gain k can reduce the tracking

error bound ε under the initial condition c) and d). From Part 4 of Theorem 6.2, it

can be seen that a large feedback gain k can also expedite the learning convergence

speed.

Remark 6.2. The above results can be extended MIMO systems with multiple

unknown parameters.

Remark 6.3. To speed up the parametric learning, a learning gain γ > 0 can be

introduced in the parametric learning law

θ̂i = θ̂i−1 − γξiei.
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Accordingly a factor γ−1 shall be multiplied to integral terms on the right hand side

of Lyapunov functional, and the convergence analysis remains the same.

Remark 6.4. It should be noted that in deriving the above convergence properties,

we consider only sufficient conditions or the worst case performance. In practice,

we may achieve better learning performance such as uniform convergence, although

in theory only pointwise or L2 convergence is guaranteed.

6.4 Illustrative Example

Consider the system

ẋ = (1 + sinπt)x2 + u x(0) = x0.

The reference model is ẋr = −xr+sin2 πt+2 with xr(0) = 1. The tracking interval is

[0, 2]. Throughout the simulation, choose the feedback gain k = 1 and parametric

learning gain γ = 1. To measure the performance, we either calculate the sup-norm

|ei|sup, i.e., the maximum tracking error of |ei(t)| over [0, 2], or calculate L2 norm

‖ · ‖T=2.

Initial Condition a)

Let ei(0) = 0, i.e., xi(0) = xr(0) = 1. The simulation result is shown in Figure 6.1.

The learning convergence can be clearly seen.

Initial Condition b)

Let ei(0) = 1
i+1

, then C =
∑∞

i=1 e
2
i (0) = (π2

8
+ π2

6
) − 2 is finite. The sup-norm of

tracking error is displayed in Figure 6.2. It can be seen that the tracking error does

converge, but not as fast as Condition a) due to the initial perturbations.

Initial Condition c)
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Figure 6.1. Learning convergence under initial condition a)
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Figure 6.2. Learning convergence under initial condition b).

Consider a fixed initial shift ei(0) = −0.3, namelyC = 0.3. The theoretical tracking

error bound is ε =
√
C2/2k = 0.2121. The tracking error profile is given in Figure

6.3. The tracking error can enter and stay well below the specified bound. In

order to observe the effect of fixed initial shift, the tracking error profile at 100−th

iterations is shown in Figure 6.4. The control signal is given in Figure 6.5. In the

time domain, it can be seen that the learning controller can quickly overcome the

initial impact and converge to the reference trajectory. In the iteration domain, it
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Figure 6.3. Learning convergence under initial condition c)
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Figure 6.4. Tracking error at 100−th iterations under initial condition c)

can be seen that learning enters steady state after 10 iterations. Hence a simple

stopping mechanism can be introduced in real applications: stop when the tracking

error profile does not show significant reduction.

Initial Condition d)

Let ei(0) take values randomly in [−0.3, 0]. The bounded tracking performance

is shown in Figure 6.6. The maximum error in each iteration is dominated by the
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Figure 6.5. Control signal under initial condition c)
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Figure 6.6. Bounded tracking performance under initial condition d)

initial error. The tracking error convergence is given in Figure 6.7. It can be seen

that, despite the large initial error, the tracking error is kept at a much lower level

for most time.

According to Corollary 6.1, the pointwise convergence of tracking error can be

achieved if taking a rectifying action. In this example, for each iteration i, the
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Figure 6.7. Learning convergence under initial condition d)

reference trajectory is revised as the following

x∗r,i =





xr, if t ∈ [h, T ]

Ait
2 +Bit+ Ci, if t ∈ [0, h)

where

Ai =
ẋr(h)h+ xi(0) − xr(h)

h
, Bi = − ẋr(h)h+ 2xi(0) − 2xr(h)

h
, Ci = xi(0).

Clearly, the revised reference trajectory remains the same in the time interval [h, T ].

The coefficients of the quadratic function are chosen such that the revised portion

x∗r,i(t) and its derivative are aligned with the original reference trajectory at t = h,

meanwhile the revised reference trajectory is aligned with the initial state value at

t = 0. Choose h = 0.3, the pointwise convergence of the tracking error is shown in

Figure 6.8.

Initial Condition e)

Finally consider a spatially closed reference xr(t) = 1− cos(πt), i.e. xr(0) = xr(2).

Theoretically, in this case the tracking error only converges according to ‖ · ‖T . Let

k = 3 and γ = 5. The tracking error according to ‖ · ‖T norm is displayed in Figure

6.9. It validates the learning effect.
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Figure 6.8. Pointwise convergence under initial condition d) by rectifying the ref-

erence trajectory
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Figure 6.9. Learning convergence under initial condition e)

6.5 Conclusion

We discussed five different initial conditions associated with ILC. For each initial

condition, the boundedness along the time horizon and asymptotical convergence

along the iteration axis were exploited with rigorous analysis. Through both theo-

retical study and numerical examples, we can conclude that, the Lyapunov based
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ILC can effectively work with sufficient robustness.
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Chapter 7

Repetitive Learning Control for

Nonlinear Systems with

Parametric Uncertainties

7.1 Introduction

Learning control aims at improving the system performance via directly updating

the control input, either repeatedly over a fixed finite time interval, or repetitively

(cyclically) over an infinite time interval. Many learning control methods have

been proposed in the past two decades, among them two predominant are iter-

ative learning control (Arimoto et al., 1984a), (Lee and Bien, 1997), (Moore et

al., 1992), (Chen and Wen, 1999), (Sun and Wang, 2001), (Chien and Yao, 2004)

and (French and Phan, 2000) and repetitive control (Hara et al., 1988), (Messner

et al., 1991) and (Longman, 2000), which can work effectively under repeatable

control environment.

The repetitive control strategy has been widely applied in servo problems for LTI
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systems to track periodic references and reject periodic disturbances. The principal

idea of the repetitive control, shown in Figure 7.1, is to embed a simple delay-based

mechanism that updates the current cycle control input, f(t), pointwisely by using

the control input profile of the previous cycle, f(t − T ), and the output tracking

error of the current cycle, σ(t). It has been shown that (Nakano et al., 1989), this

simple delay-based mechanism plays the role as a universal internal model for all

kinds of periodic references and/or periodic disturbances which are generated by

LTI systems. It should be noted that the existing repetitive control is an input-

output approach based on transfer functions. It requires the plant and all signal

sources to be LTI, and the stability analysis is carried out in frequency domain using

the small gain theorem. It achieves a geometric convergence speed over repetitions.

Figure 7.1. Repetitive learning mechanism

Under the present theoretical framework of repetitive control, however, it would be

difficult to address the following two main issues.

A. Solving nonlinear servo problems which consist of two key-issues: A1) tracking

a nonlinear reference model, either periodic or even non-periodic, and A2) dealing

with plants with highly nonlinear components, such as local Lipschitz continuous

functions.

B. Seeking a general control design in state space which also consists of two key-
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issues: B1) making full use of the system information regarding uncertainties and

nonlinearities, and B2) using the well established Lyapunov theories to accomplish

design with guaranteed asymptotic stability.

All four key issues above are inherently related. By making full use of the system

information regarding uncertainties and nonlinearities (B1) in state space, the ap-

plication of Lyapunov theories (B2) become possible. By using the well established

Lyapunov theories (B2), it is possible to deal with nonlinear servo problems (A1)

with highly nonlinear plants (A2). It will be shown in this chapter that, classi-

fying the system uncertaities into parametric types (B1) will facilitate nonlinear

servo design (A1). In particular it will be possible to track a non-periodic reference

asymptotically.

In this chapter, our first objective is to establish a new control strategy – repetitive

learning control (RLC) which, while retains the learning ability of the traditional

repetitive control, directly addresses the above issues A and B. The new strategy

is a direct extension of the recent advances in nonlinear learning control methods,

including finite interval learning (Ham et al., 2001) and (Xu and Tan, 2002a) which

can be regarded as the generalization of the iterative learning control, and infinite

interval learning (Dixon et al., 2003) and (Cao and Xu, 2001) which can be regarded

as the generalization of the repetitive control. Inheriting from repetitive control, the

new control strategy will incorporate the simple delay-based loop into a nonlinear

learning mechanism, hence be able to learn any periodic factors resulting from

unknown but periodic parameters.

Note that the delay-based learning mechanism of RLC actually forms a continuous-

time difference equation, and is of infinite dimensions. Considering the nonlineari-

ties in the plant and control law, the repetitive learning control system is described

by a set of mixed nonlinear differential and continuous-time difference equations.
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Very few results were reported for this class of systems when the closed-loop sta-

bility, convergence and boudnedness are concerned, except for some local analysis

result (Pepe and Verriest, 2003). When the existence of solution is concerned, the

well established results hitherto were given by (Cruz and Hale, 1970) and (Hale

and Pedro, 1977), which however focus on nonlinear dynamic systems satisfying a

contractive mapping. Furthermore, the classical Lyapunov function based methods

cannot be applied to obtain the convergence property.

Our second objective of this chapter, then, is to provide a rigorous and global

analysis with regards to the existence of solution and learning convergence for the

RLC system described by mixed differential and continuous-time difference equa-

tions. Such a rigorous analysis is indispensable when targeting at developing the

learning control theories into a new control paradigm, analogous to what has been

accomplished for adaptive control theories in the past four decades. To achieve

this objective, the Lyapunov-Krasovskii functional is first employed to show the

boundedness of states for any finite learning cycles. Then by means of the mathe-

matical induction method the result is extended to the entire time horizon. Next,

using the system smoothness property to convert the problem into a set of neutral

functional differential equations (EL’SGOL’TS, 1964) we are able to conclude the

existence of solution in the large. As a consequence of the above analysis we can

further derive the learning convergence property.

Robustness or the insensitivity to small perturbations is a highly desired property

when a control scheme is to be implemented. It is safe to say, the robustness is a

landmark of the maturity or accomplishment for any control methodologies. In this

chapter our third objective is to develop two robustifying modifications: the pro-

jection and damping for the learning mechanism. The projection scheme, similar

to the one used in adaptive control, is applicable when the boundary information of

unknown components are available. It guarantees the uniform convergence. On the
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other hand, the damping, in a sense analogous to the well known σ-modification

in adaptive control, does not require the boundary information of unknown pe-

riodic components but what it can warrant is a bounded tracking performance.

Different from the adaptive control which concerns only constant unknowns, here

the unknown periodic components in the RLC system can be either time-varying

parameters. Hence the problem solving will be more challenging.

This chapter is organized as follows. In Section 7.2, the repetitive learning control

problem with parametric uncertainties is formulated first. Then the existence of

solution and learning convergence properties are analyzed in Section 7.3. In Section

7.4, the robustification and extension to more general cases are discussed. Two

illustrative examples are given in Section 7.5, and the conclusion is given in Section

7.6.

7.2 Problem Formulation

Consider the following uncertain nonlinear system

ẋj = xj+1, j = 1, 2, · · · , n− 1,

ẋn = θT (t)ξ(t,x) + u(t), x(0) = x0, (7.1)

where x = [x1, x2, · · · , xn]
T is a state vector, θ(t) = [θ1(t), θ2(t), · · · , θm(t)]T is

an unknown parameter vector with rapidly time-varying coefficients and ξ(t,x) =

[ξ1(t,x), ξ2(t,x), · · · , ξm(t,x)]T is a regressor vector. ξ(t, x) consists of known non-

linear functions which can be local Lipschitzian and continuously differentiable

with respect to (w.r.t.) the arguments x and t. In this chapter, we will consider

repetitive learning control in the infinite time horizon under a repeatable control

environment. Here the repeatable control environment is defined as below.

Assumption 7.1. The unknown parameters θ(t) ∈ C1
PT ([0,∞);Rm).
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The target trajectory is generated by a reference model

ẋr,j = xr,j+1, j = 1, 2, · · · , n− 1,

ẋr,n = s(t,xr, r), xr(0) (7.2)

where xr = [xr,1, xr,2, · · · , xr,n]
T , s(xr, r, t) is a known smooth function w.r.t. all

arguments, r is a constant reference input, and xr(0) is a vector of the initial states.

Denote ∆x = x − xr = [∆x1,∆x2, · · · ,∆xn]
T , the dynamics of the tracking error

∆x(t) is

∆ẋ = A∆x + b[c∆x + θT (t)ξ(t,x) + u(t) − s(xr, r, t)] (7.3)

where b = [0 0 · · · 0 1]T , and c = [c1, c2, · · · , cn−1, 1] is chosen such that

A
4
=




0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
. . .

...

0 0 0 · · · 0 1

−c1 −c2 −c3 · · · −cn−1 −1




is an asymptotically stable matrix. Based on Lyapunov stability theory for LTI

systems, for a given positive definite matrixQ ∈ Rn×n, there exits a unique positive

definite matrix P ∈ Rn×n satisfying the following Lyapunov equation

ATP + PA = −Q.

Let λQ be the minimum eigenvalue of the matrix Q, −wTQw ≤ −λQ‖w‖2 holds

for any w ∈ Rn.

The ultimate control objective is to find an appropriate control input u(t) such

that the tracking error ‖∆x(t)‖ converges to zero as t→ ∞.

Consider the error dynamics (7.3), the learning control mechanism is constructed

as follows.

u(t) = −θ̂(t)Tξ(t,x) + s(xr, r, t)− c∆x, (7.4)
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and the parametric updating law is

θ̂(t) = θ̂(t− T ) + k(t)σ(t)ξ(t,x), (7.5)

θ̂(t) = 0, ∀t ∈ [−T, 0],

where σ(t) = bTP∆x,

k(t) =





0, −T ≤ t < 0,

k1(t), 0 ≤ t < T,

q, t ≥ T,

(7.6)

where q > 0 is a constant, k1(t) is chosen to be monotone and smooth such that

k(t) is a smooth function on [−T,∞).

Proposition 7.1. (Zheng et al., 1991) Consider the following Cauchy problem

ẋ = f(t,x), x(t0) = x0. (7.7)

Suppose that f(t,x) is continuous for (t,x) in a region Ω, and satisfies the local

Lipschitz condition with respect to x. Then the solution of Cauchy problem (7.7)

can be continued to the boundary, ∂Ω, of Ω (possible ∞).

According to (Driver, 1965) and (EL’SGOL’TS, 1964) (Chapter 5, §12), we have

the following proposition:

Proposition 7.2. Consider the following differential difference equation of neutral

type

ẋ(t) = f(t,x(t),x(t− τ ), ẋ(t− τ )), t ≥ t0,

where the retardation τ is assumed constant. If the function f is continuous for the

arguments, and the initial function x0 has a continuous derivation for t0− τ ≤ t ≤

t0, then the solution x exists in the neighborhood of the point t = t0.
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7.3 Existence of Solution and Convergence

Substituting the learning control law into the dynamics (7.3) yields the closed-loop

error dynamics

∆ẋ = A∆x + b[c∆x + θT (t)ξ(t,x) + u(t) − s(xr, r, t)]

= A∆x + bφT (t)ξ(t,∆x) (7.8)

where φ(t) = θ(t) − θ̂(t). In above equation, x in ξ is replaced by ∆x + xr(t)

where xr(t) as a function of t is not an independent argument. For notational

convenience, ξ(t,∆x + xr(t)) is denoted by ξ(t,∆x). In subsequent context we

further omit the argument t for all variables where no confusion arises, and denote

ξ(t,∆x) by ξ.

From the error dynamics (7.8) and the repetitive learning control law (7.4) and

(7.5), we have

∆ẋ = f(t,∆x, θ̂)

θ̂(t) = θ̂(t− T ) + k(t)bTP∆xξ, (7.9)

where

f(t,∆x, θ̂) = A∆x + b(θ(t)− θ̂(t))Tξ

Clearly, (7.9) consists of differential and continuous-time difference equations of

neutral type.

Theorem 7.1. For system (7.9) under Assumption 7.1, the learning control mech-

anism (7.4)-(7.6) ensures the existence of solution (∆x, θ̂) in [0,∞) and the asymp-

totical convergence

lim
t→∞

∫ t

t−T

∆x2(τ )dτ = 0.
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Proof. Define the regions Ωi
4
= [(i − 1)T, iT ) × Rn, i = 1, 2, · · · , for (t,∆x). The

theorem proof consists of three parts. Part 1 and Part 2 prove the existence of so-

lution in the intervals [0, T ) and [T,∞) respectively. Part 3 derives the convergence

of the tracking error ∆x.

Part 1. Existence of the solution (x, θ̂) in [0, T )

Firstly, we claim that the solution (∆x, θ̂) of the differential difference equation

(7.9) exists in [0, T ). For i = 1, we have θ̂(t) = 0 for t ∈ [−T, 0]. Therefore,

by substituting θ(t) into f the dynamics (7.9) renders to a set of ODE (Ordinary

Differential Equation ), and f(t,∆x, θ̂) : Ω1 → Rn is continuous in ∆x by virtue of

the smoothness of ξ. By Peano’s Existence Theorem (Zheng et al., 1991), associated

with the initial condition ∆x(0), the equation (7.9) has a continuous solution in a

neighborhood of t = 0. Furthermore it is easy to check that f(t,∆x, θ̂) is locally

Lipschitzian in ∆x. We need only to consider the solution for t > 0. Assume [0, t1)

be the maximal interval to which the solution ∆x can be continued up. Proposition

7.1 implies that ∆x tends to the boundary ∂Ω1 of Ω1 as t→ t1. It further implies

that limt→t1 ‖∆x‖ = ∞ if t1 ≤ T , i.e., for any C > 0, there exists δ1 > 0 such that

‖∆x‖ ≥ C for all t ≥ t1 − δ1. Since ∆x exists for all t ∈ [0, t1 − δ1

2
], define the

following Lyapunov-Krasovskii functional:

V (t,∆x,φ) =
1

2
∆xTP∆x +

1

2q

∫ t

t−T

φT (τ )φ(τ )dτ.

Now we prove the finiteness of V (t,∆x,φ) for all t ∈ [0, t1 − δ1

2
]. From the exis-

tence theorem of differential equation (Yoshizawa, 1975) there exists a T1 > 0 and

[0, T1) ⊂ [0, t1 − δ1

2
], the boundedness of V (t,∆x,φ) over [0, T1) can be guaranteed

and we need only focus on the interval [T1, t1 − δ1

2
]. For any t ∈ [T1, t1 − δ1

2
], the
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upper right hand derivative of V is

V̇ =
1

2
(∆ẋTP∆x + ∆xTP∆ẋ)

+
1

2q
[(θ − θ̂)T (θ − θ̂) − (θ	 − θ̂	)T (θ	 − θ̂	)],

where θ	 = θ(t− T ) and θ̂	 = θ̂(t− T ).

Substituting the dynamics (7.8), then

1

2
(∆ẋTP∆x + ∆xTP∆ẋ)

=
1

2
[∆xTAT + (bφTξ)T ]P∆x +

1

2
∆xTP (A∆x + bφTξ)

=
1

2
∆xT (ATP + PA)∆x + bTP∆xφTξ

≤ −λQ

2
‖∆x‖2 + σφTξ. (7.10)

From the updating law (7.5), we have θ̂(t − T ) = 0 for all t ∈ [0, T ] and θ̂(t) =

k1(t)σ(t)ξ. Since k1(t) is strictly increasing in [0, T ], 1
k1(t)

≥ 1
q

is ensured in the time

interval [T1, t1 − δ1

2
]. We can derive

1

2q
(θ̂ − θ)T (θ̂ − θ) − 1

2q
θT
	θ	

≤ 1

2k1(t)
(θ̂ − θ)T (θ̂ − θ) − 1

2q
θT
	θ	

=
θTθ

2k1(t)
− 1

k1(t)
θ̂

T
(θ − θ̂) − θ̂

T
θ̂

2k1(t)
− 1

2q
θT
	θ	

=
θTθ

2k1(t)
− σφTξ − θ̂

T
θ̂

2k1(t)
− 1

2q
θT
	θ	,

and V̇ becomes

V̇ = −λQ

2
‖∆x‖2 + σφTξ +

θTθ

2k1(t)
− σφTξ − θ̂

T
θ̂

2k1(t)
− 1

2q
θT
	θ	

≤ θTθ

2k1(t)
(7.11)

Integrating (7.11) from T1 to t, we obtain

V (t,∆x,φ) ≤ V (T1,∆x(T1),φ(T1)) +
1

2q

∫ t

T1

φT (τ )θ(τ )

k1(τ )
dτ.
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Since θ(t) ∈ C1
PT ([0,∞);Rm),

∫ t

T1

θT
(τ)θ(τ)
k1(τ)

dτ is bounded. Thus V is bounded

for all t ∈ [0, t1 − δ1

2
]. Let N2λP > 0 be the bound of V on [0, t1 − δ1

2
], where

λP is the minimum eigenvalue of the positive definite matrix P . Then N does

not depend on δ1. By the definition of Lyapunov functional V , we can see that

‖∆x‖ ≤
√
V/λP = N for all t ∈ [0, t1 − δ1

2
]. Taking C = 2N in advance, for the

corresponding δ1 > 0 we have

C ≤ ‖∆x(t1 −
δ1
2

)‖ ≤ N =
C

2
,

a contradiction which implies t1 ≥ T . This assures the solution ∆x of the dynamic

system (7.9) exists in [0, T ]. Further, considering the smoothness of the right hand

side of equation (7.9), ∆x(t) and θ̂(t) are both continuously differentiable for any

t ∈ [0, T ).

Part 2. Existence of the solution (∆x, θ̂) in [T,∞)

Assume that the solution (∆x, θ̂) of the differential difference equation (7.9) exists

in [(j−1)T, jT ) for j = 2, · · · , i−1. This implies ∆x and θ̂(t) are both continuously

differentiable for t ∈ [0, (i−1)T ). Assume that the solution of (7.9) can be continued

up to a time t ∈ [(i− 1)T, iT ), by differentiating θ̂(t) we obtain

∆ẋ = f(t,∆x, θ̂)

˙̂
θ(t) = g(t,x, θ̂(t),

˙̂
θ(t− T )), t ∈ [(i− 1)T, iT ), (7.12)

where

g(t,x, θ̂(t),
˙̂
θ(t− T )) =

˙̂
θ(t− T ) + qbTP f(t,∆x, θ̂)ξ

+qbTP∆xξt + qbTP∆xΞxf(t,∆x, θ̂),

with ξt =
∂ξ
∂t

, and Ξx =
∂ξ
∂x

. Since the function f(t,∆x, θ̂) and g(t,∆x, θ̂(t),
˙̂
θ(t−

T )) are continuous with respect to the arguments, and functions ∆x and θ̂(t) have

continuous derivatives on [(i − 2)T, (i − 1)T ). According to Proposition 7.2, the
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solution (∆x, θ̂) of the equation (7.12) exists at the neighborhood of the point

(i−1)T . Furthermore, f(t,∆x, θ̂) : Ωi → Rn is continuous and locally Lipschitzian

in ∆x and θ̂. Thus the solution ∆x can be continued up to the boundary ∂Ωi

of Ωi. Let [(i− 1)T, ti) be the maximal interval to which the solution ∆x can be

continued up. If ti ≤ iT , there exists a δi > 0 such that ‖∆x‖ ≥ C for all t ≥ ti−δi.

For t ∈ [(i− 1)T, ti − δi

2
), define the Lyapunov-Krasovskii functional

V (t,∆x,φ) =
1

2
∆xTP∆x +

1

2q

∫ t

t−T

φT (τ )φ(τ )dτ. (7.13)

Then the upper right hand derivative of V is

V̇ =
1

2
(∆ẋTP∆x + ∆xTP∆ẋ) +

1

2q
(φTφ− φT

	φ	). (7.14)

Substituting the error dynamics (7.8) into the above equation, analogous to the

relation (7.10) the first term on the right hand side is

1

2
(∆ẋTP∆x + ∆xTP∆ẋ) ≤ −λQ

2
‖∆x‖2 + σφTξ. (7.15)

Now let us derive the second term on the right hand side of (7.14). Using the

parametric learning law (7.5), the periodic property θ = θ	, and the algebraic

relationship

(a − b)T (a − b) − (a − c)T (a − c) = −2(a − b)T (b − c) − (b − c)T (b − c)(7.16)

where a, b, c are vectors with the same dimensions, we have

1

2q
(φTφ − φT

	φ	) =
1

2q
[(θ − θ̂)T (θ − θ̂) − (θ − θ̂	)T (θ − θ̂	)]

=
1

2q
[−2(θ − θ̂)T (θ̂ − θ̂	) − (θ̂ − θ̂	)T (θ̂ − θ̂	)]

= −σφTξ − q

2
σ2ξTξ. (7.17)

Substituting (7.15) and (7.17) into (7.14), the upper right hand derivative of V is

V̇ = −λQ

2
‖∆x‖2 − q

2
σ2ξTξ ≤ −λQ

2
‖∆x‖2. (7.18)
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Clearly V (t,∆x,φ) will be bounded for t ∈ [(i−1)T, ti−1
2
δi) as far as V (τ,∆x(τ ),φ(τ ))

is bounded for τ ∈ [0, (i−1)T ). Let N2λP be the bound of V on [(i−1)T, ti− δi

2
),

then N does not depend on δi. By the definition of Lyapunov-Krasovskii func-

tional, we have ‖∆x(t)‖ ≤
√
V/λP = N for all t ∈ [(i− 1)T, ti). Taking C = 2N

in advance, if the solution can only be continued up to ti < iT , then we again has

the contradiction

C ≤ ‖∆x(ti −
δi

2
)‖ ≤ N =

C

2
.

According to the theory of mathematical induction, the solution ∆x exists in t ∈

[(i − 1)T, iT ) for any finite i. Furthermore, since the solution θ̂(t) exists for

t ∈ [0, (i− 1)T ), then from

θ̂(t) = θ̂(t− T ) + qσ(t)ξ

and the existence of ∆x for t ∈ [(i − 1)T, iT ), the solution θ̂(t) exists for t ∈

[(i−1)T, iT ). Thus the solution ∆x and θ̂(t) exists in [0, iT ) for any finite i. This

implies that the solution (∆x, θ̂) either is uniformly bounded or tends to infinity

as t→ ∞. Thus ∆x and θ̂(t) exist for t ∈ [0,∞).

Part 3. Asymptotical Convergence

Now derive the integral convergence

lim
t→∞

∫ t

t−T

‖∆x(τ )‖2dτ = 0

using the relation (7.18), that is, V̇ is negative semi-definite for t ∈ [T,∞). Suppose

that

lim
t→∞

∫ t

t−T

‖∆x(τ )‖2dτ 6= 0.

Then there exist an ε > 0, tm ≥ T and a sequence ti → ∞ with i = 1, 2, · · · and

ti+1 ≥ ti + T such that
∫ ti

ti−T
‖∆x(τ )‖2dτ > ε when ti > tm. Hence from (7.18), we

obtain

lim
t→∞

V (t,∆x,φ) ≤ V (T,∆x(T ),φ(T )) − lim
i→∞

i∑

j=1

∫ tj

tj−T

‖∆x(τ )‖2dτ.
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Since V (T,∆x(T ),φ(T )) is finite, the above relation implies lim
t→∞

V (t,∆x,φ) =

−∞, a contradiction to the non-negativeness property of Lyapunov-Krasovskii

functional V (t,∆x,φ) ≥ 0.

7.4 Robustification and Extension

7.4.1 Learning With Projection

In many control applications, the upper and lower bounds of unknown system

parameters are known a priori. In such circumstances, the parametric learning law

(7.5) can be modified as

θ̂(t) = P(θ̂(t− T )) + k(t)σ(t)ξ(t,∆x),

θ̂(t) = 0,∀t ∈ [−T, 0], (7.19)

where P(θ̂) = [P(θ̂1), · · · ,P(θ̂i),P(θ̂m)]T and the projection operator P(θ̂i) is de-

fined as

P(θ̂i) =





θ̂i, |θ̂i| ≤ θ∗i

p(θ̂i), |θ̂i| > θ∗i

(7.20)

with θ∗i the known upper bound for the parameter θi(t). p(θ̂i) ∈ C1(R;R1) is a

polynomial and satisfying p(θ∗i ) = θ∗i , p(−θ̂i) = −p(θ̂i), 0 ≤ ∂p

∂θ̂i
≤ 1, ∂p

∂θ̂i
|θ∗i = 1

and the limit lim
θ̂i→∞

p(θ̂i) is a constant. Figure 7.2 shows the shape of the projection

operator.

By incorporating the additional system bounding information in the repetitive

learning controller, our concern is whether the control performance could be im-

proved. In the following we show that the control law (7.4) and the parametric

learning law (7.19) with projection lead to the uniform convergence of the tracking

error, instead of the integral convergence shown in Theorem 7.1.
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Figure 7.2. The definition of P(θ̂).

Theorem 7.2. For system (7.1) under Assumption 7.1, the control law (7.4) with

the parametric learning law (7.19) guarantees the existence of solution and the

uniformly asymptotical convergence of the tracking error ∆x.

Proof. The solution (∆x, θ̂) of the dynamic system (7.9) for t ∈ [0, T ) is the same

as the previous case in Theorem 7.1 without projection, because θ̂(t − T ) = 0.

To prove the existence of solution in [T,∞), define the same Lyapunov-Krasovskii

functional in (7.13). The relations (7.14) and (7.15) still hold as the projection

operation is not directly involved. Next look at the relation (7.17), which might be

affected by the introduction of the projection operator. We can easily verify the

property

(θ − θ̂	)T (θ − θ̂	) ≥ (θ −P(θ̂	))T (θ −P(θ̂	)),

for any quantities θ̂. Using the parametric learning law (7.19), the periodic property
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θ = θ	, the algebraic relation (7.16), and the above inequality, we have

1

2q
(φTφ− φT

	φ	) ≤ 1

2q
[(θ − θ̂)T (θ − θ̂) − (θ −P(θ̂	)T (θ −P(θ̂	)]

=
1

2q
[−2(θ − θ̂)T (θ̂ −P(θ̂	)) − (θ̂ −P(θ̂	))T (θ̂ −P(θ̂	))]

= −σφTξ − 1

2q
σ2ξTξ.

which turns out to be the same as (7.17). In the sequel, the existence of solution

and the integral convergence of ∆x can be obtained according to Theorem 7.1.

According to the dynamic system (7.1), the control law (7.4), the parametric learn-

ing law (7.19) and in particular the projection, the boundedness of ∆x ensures the

finiteness of θ̂, u and ∆ẋ. The boundedness of ∆ẋ implies the uniform continuity

of ∆x, thereafter the uniform continuity of the tracking error ∆x. As a result,

lim
t→∞

‖∆x‖ = 0 uniformly.

7.4.2 Learning With Damping

When the parameter bounds are not available, an alternative approach is the intro-

duction of a damping (forgetting) factor. Note that the original parametric learning

law (7.5) is a pointwise integrator, that is, for any t ∈ [(i− 1)T, iT ), it performs

discrete-time integration over the time sequence t− iT for i = 1, 2, · · · , i− 1. Such

an integral mechanism might be sensitive to many non-ideal factors, such as biased

measurement noise, the unmodeled higher order dynamics, etc. A popular modifi-

cation is to add a “damping” term such that the parametric updating mechanism

becomes a low pass filter instead of an integrator. The parametric learning law

(7.5) is modified as

θ̂(t) = γθ̂(t− T ) + k(t)σ(t)ξ(t,∆x),

θ̂(t) = 0,∀t ∈ [−T, 0], (7.21)
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where 0 < γ < 1 is the damping coefficient or the forgetting factor. In the following

we derive the property of the closed-loop system under the new learning control

law.

Theorem 7.3. For system (7.1), under Assumption 7.1, the control law (7.4)

with the parametric learning law (7.21) guarantees the finiteness of the solution

trajectory (∆x, θ̂) in the large.

Proof. The solution ∆x for t ∈ [0, T ) is the same as the previous case in Theorem

7.1 without damping, because θ̂(t− T ) = 0. Thus in the following we discuss the

solution in the interval [T,∞). Analogous to Theorem 7.1, assume the solution

exists in [T, (i−1)T ) and can be continued up to ti ∈ [(i−1)T, iT ). We need only

to show the finiteness of the solution for any ti ∈ [(i− 1)T, iT ). Define the same

Lyapunov-Krasovskii functional as (7.13) in Theorem 7.1. The relations (7.14)

and (7.15) still hold as only the closed-loop dynamics is directly involved in the

derivation. Next look at the relation (7.17), which is affected by the introduction of

the damping factor. Using the parametric learning law (7.21), the periodic property

θ = θ	 and the algebraic relation (7.16), we have

1

2q
(φTφ − φT

	φ	)

=
1

2q
[−2(θ − θ̂)T (θ̂ − θ̂	) − (θ̂ − θ̂	)T (θ̂ − θ̂	)]

= −1

q
(θ − θ̂)T (θ̂ − γθ̂	) +

1

q
(1 − γ)(θ − θ̂)T θ̂	 − 1

2q
(θ̂ − θ̂	)T (θ̂ − θ̂	)(7.22)

The first term on the right hand side of (7.22), by substituting the parametric

learning law (7.21), is −σφTξ which will cancel out the same term but with opposite

sign in (7.15). In order to evaluate last two terms on the right hand side of (7.22),

let us derive the following inequality. Define vectors a, b and c with the same
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dimensions, then

(a − b)Tc ≤ ‖a‖ · ‖c‖ − bTc

≤ 1

2
(aTa + cTc) − bTc

=
1

2
aTa +

1

2
cTc − bTc +

1

2
bTb − 1

2
bTb

=
1

2
aTa +

1

2
(b − c)T (b − c) − 1

2
bTb. (7.23)

Using the above relationship, the last two terms on the right-side hand of (7.22) is

1

q
(1 − γ)(θ − θ̂)T θ̂	 − 1

2q
(θ̂ − θ̂	)T (θ̂ − θ̂	)

≤ 1 − γ

2q
θTθ +

1 − γ

2q
(θ̂ − θ̂	)T (θ̂ − θ̂	) − 1 − γ

2q
θ̂

T
θ̂ − 1

2q
(θ̂ − θ̂	)T (θ̂ − θ̂	)

≤ 1 − γ

2q
(θTθ − θ̂

T
θ̂)

Therefore, the upper right hand derivative of V is

V̇ ≤ −λQ

2
‖∆x‖2 +

1 − γ

2q
(θTθ − θ̂T

θ̂)

≤ −λQ

2
‖∆x‖2 − 1 − γ

2q
‖θ̂‖2 +

1 − γ

2q
‖θ‖2

s. (7.24)

Now we can show the finiteness of V in the interval [(i− 1)T, ti). If V is finite at

(i− 1)T , then it remains finite at ti because the maximum increasing rate of V is

uniformly bounded by 1−γ
2q

‖θ‖2
s. Consequently ∆x remains finite. The finiteness of

θ̂ in the interval [(i− 1)T, ti) can be derived from the finiteness of σ(t)ξ(t,∆x) in

(7.21). This implies the solution (∆x, θ̂) either remains bounded or tend to infinity

as t→ ∞. Thus the solution (∆x, θ̂) exists for t ∈ [0, ∞).

We further show that the solution (∆x, θ̂) cannot diverge to infinity as t → ∞.

From (7.24), V̇ ≤ 0 as long as the solution (∆x, θ̂) is outside a compact set M

defined below

M =

{
(∆x, θ̂) :

λQ

2
‖∆x‖2 +

1 − γ

2q
‖θ̂‖2 ≥ 1 − γ

2q
‖θ‖2

s

}
.

Define an ε-neighbourhood of M with ε > 0

Mε =

{
(∆x, θ̂) :

λQ

2
‖∆x‖2 +

1 − γ

2q
‖θ̂‖2 ≥ 1 − γ

2q
‖θ‖2

s + ε

}
,
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then V̇ ≤ −ε for any (∆x, θ̂) ∈ Mc
ε where Mc

ε is the complementary set of Mε.

Since the solution exists in [0, ∞), there is no finite escape time for (∆x, θ̂).

First assume that ∆x, thereby V , diverges asymptotically. Consider the fact that

V̇ ≤ 1−γ
2q

‖θ‖2
s, there must exist an infinite time interval [ts, ∞), such that

λQ

2
‖∆x‖2 +

1 − γ

2q
‖θ̂‖2 ∈ Mc

ε ∀t ∈ [ts, ∞).

Since the solution exists in [0, ∞), V (ts,∆x(ts),φ(ts)) is finite. Integrating V̇ in

(7.24) from t ≥ ts we have

lim
t→∞

V (t) ≤ V (ts,∆x(ts),φ(ts)) − lim
t→∞

∫ t

ts

εdτ → −∞,

that is however impossible because V ≥ 0. We can conclude that ∆x cannot stay

infinitely long in Mc
ε, and will always re-enter Mε after a finite interval. Hence

∆x remains finite when t → ∞. Note that the finiteness of ∆x warrants the

finiteness of σ(t)ξ(t,∆x) over the entire horizon [0, ∞). On the other hand, the

parametric learning law (7.21) with the damping γ is an asymptotically stable first

order difference equation subject to the input σ(t)ξ(t,∆x). Therefore θ̂ remains

finite when t→ ∞.

Remark 7.1. Using an appropriate Lyapunov function, the adaptive control with

the robust adaption law enhanced by a damping term achieves the asymptotical

convergence to a compact set specified by the damping coefficient (Ioannou and

Sun, 1996). Here in the repetitive learning control, we are dealing with rapidly time-

varying parameters and a Lyapunov-Krasovskii functional is used. It would be diffi-

cult to derive such compact set with the functional as it does not warrant a uniform

bound for the solution even if the functional itself is bounded. Nevertheless, if γ

is chosen sufficiently close to 1, the integral convergence limt→∞
∫ t

t−T
‖∆x‖2dτ = 0

can be achieved as we have shown in Theorem 7.1. Thus learning with damping

provides more options, and one may decide the damping coefficient γ according to

the control requirements.
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7.4.3 Extension to More General Cases

In this subsection, we extend the dynamic system (7.1) to a more general class

described below

ẋj = xj+1, j = 1, 2, · · · , n− 1,

ẋn = θT (t)ξ(t,x) + b(t,x)u(t), x(0) = x0. (7.25)

The presence of the input coefficient b(t,x) makes the control task much more

difficult to address. Note that if b(t,x) is a known nonsingular function, the control

problem is trivial because we can simply multiply the preceding repetitive learning

control law by a factor b−1(t,x). In the following we focus on two cases with an

unknown input coefficient.

Case 1. b(t,x) = b is an unknown constant but the sign is known a priori.

Without loss of generality, assume that b > 0. The error dynamics is

∆ẋ = A∆x + b[c∆x + θTξ + bu(t)− s(xr, r, t)]

= A∆x + bb[b−1θTξ + b−1c∆x − b−1s(xr, r, t) + u(t)]. (7.26)

Now define the extended parameter vector θ̄(t) = [b−1θ(t)T , b−1]T ∈ Rm+1, the

extended regressor ξ̄(t,∆x) = [ξ(t,∆x), c∆x− s(xr, r, t)]
T ∈ Rm+1, and the new

control law

u(t) = −ˆ̄θ(t)T ξ̄(t,∆x)

ˆ̄θ(t) = ˆ̄θ(t− T ) + k(t)σ(t)ξ̄(t,∆x),

ˆ̄θ(t) = 0,∀t ∈ [−T, 0],

From (7.26), substituting the new control law and using the extended θ̄ and ξ̄, the

closed-loop error dynamics is

∆ẋ = A∆x + bb[θ̄
T
ξ̄ − ˆ̄θT ξ̄]

= A∆x + bbφ̄ξ̄ (7.27)

139



CHAPTER 7. REPETITIVE LEARNING CONTROL FOR NONLINEAR SYSTEMS WITH PARAMETRIC
UNCERTAINTIES

where φ̄(t) = θ̄(t)− ˆ̄θ(t).

Define a new Lyapunov-Krasovskii functional

V (t,∆x, φ̄) =
1

2b
∆xTP∆x +

1

2q

∫ t

t−T

φ̄
T
(τ )φ̄(τ )dτ.

The upper right hand derivative of V is

V̇ =
1

2b
(∆ẋTP∆x + ∆xTP∆ẋ) +

1

2q
(φ̄

T
φ̄ − φ̄T

	φ̄	), (7.28)

The first term on the right side of (7.28), in terms of (7.27), is

1

2b
(∆ẋTP∆x + ∆xTP∆ẋ) ≤ −λQ

2b
‖∆x(t)‖2 + σφ̄

T
ξ̄. (7.29)

Clearly, (7.29) has the similar form as (7.15). Analogously, following the procedure

in Theorem 7.1 we can further derive

1

2q
(φ̄

T
φ̄ − φ̄T

	φ̄	) = −σφ̄T
ξ̄ − q

2
σ2ξ̄

T
ξ̄. (7.30)

Substituting (7.29) and (7.30) into (7.28) yields

V̇ ≤ −λQ

2b
‖∆x‖2,

which is the same as (7.18) except for a constant b > 0. Therefore, the existence

of solution and the convergence property can be derived exactly the same as in

Theorem 7.1.

Case 2. b(t,x) = b(t) ∈ C1
PT ([0,∞);R1) is nonsingular with its sign known a priori.

Without loss of generality, assume b(t) > 0. Define a new quantity σ = c∆x, and

vector c1 = [0, c1, · · · , cn−1]. We can deal with the case by revising the control law

(7.4) into

u(t) = −βσ− ˆ̄θ(t)T ξ̄(t,∆x),

where β > 0 is a feedback gain, ˆ̄θ(t) is the estimate of the extended parametric

vector θ̄(t) = [b−1(t)θ(t), b−1(t), b−2(t)ḃ(t)]T ∈ C1
PT ([0,∞);Rm+2), and the ex-

tended regressor is ξ̄(t,∆x) = [ξ(t,∆x), c1∆x − s(xr, r, t), −1
2
σ]T ∈ Rm+2. The

140



CHAPTER 7. REPETITIVE LEARNING CONTROL FOR NONLINEAR SYSTEMS WITH PARAMETRIC
UNCERTAINTIES

corresponding parametric learning law is

ˆ̄θ(t) = ˆ̄θ(t− T ) + k(t)σξ̄(t,∆x),

ˆ̄θ(t) = 0,∀t ∈ [−T, 0].

The Lyapunov-Krasovskii functional in this case is

V (t, σ, φ̄) =
1

2
b−1(t)σ2 +

1

2q

∫ t

t−T

φ̄
T
(τ )φ̄(τ )dτ

where φ̄(τ ) = θ̄(τ )− ˆ̄θ(τ ). The upper right hand derivative of the functional V is

V̇ = b−1(t)σσ̇− 1

2
b−2(t)ḃ(t)σ2 +

1

2q
(φ̄

T
φ̄ − φ̄T

	φ̄	) (7.31)

The first two terms on the right side of (7.31) can be rewritten as

b−1(t)σσ̇ − 1

2
b−2(t)ḃ(t)σ2

= b−1(t)σ[c1∆x + θTξ + b(t)u(t)− s(xr, r, t)]−
1

2
b−2(t)ḃ(t)σ2

= −βσ2 + σ[b−1(t)θTξ + b−1(t)(c1∆x− s(xr, r, t)) + b−2(t)ḃ(t)(−1

2
σ) − ˆ̄θT ξ̄]

= −βσ2 + σ(θ̄ − ˆ̄θ)T ξ̄ = −σ2 + σψ̄
T
ξ̄

where ξ̄ = ξ̄(t,∆x). Analogously, following the procedure in Theorem 7.1 we can

further derive

1

2q
(φ̄

T
φ̄ − φ̄T

	φ̄	) = −σφ̄T
ξ̄ − q

2
σ2ξ̄

T
ξ̄.

Therefore

V̇ ≤ −βσ2,

from which we can derive the boundedness of σ and the integral convergence prop-

erty

lim
t→∞

∫ t

t−T

σ2(τ )dτ = 0.

Notice that σ = c∆x can be expressed as σ = (Dn−1+cn−1D
n−2+· · ·+c2D+c1)∆x1,

where (Dn−1 + cn−1D
n−2 + · · ·+C2D+ c1) is a stable polynomial of the differential
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operator D
4
= d

dt
. Therefore the boundedness of σ implies the boundedness of ∆x,

therein the existence of solution (∆x, ˆ̄θ) in the large.

Note that the result of Case 2 can be extended to the input coefficient b(t)b1(t,x)

with b(t) defined same as Case 2 and b1(t,x) a known nonsingular function.

7.5 Illustrative Examples

Choose c = [1, 1], then A =




0 1

−1 −1


 . Choosing Q = I2×2 to be an identity

matrix, the solution of the Lyapunov equation is P =




1.5 0.5

0.5 1


 . Choose k1(t) =

q(− 2
T 3 t

3 + 3
T 2 t

2), which is smooth and monotone between 0 and q = 4.

Case 1: Consider the system (7.1) where ξ(t,x) = x2
1x2 and parameter θ(t) =

1 + sinπt which has a periodicity T = 2. The given reference model is

ẋr,1 = xr,2,

ẋr,2 = −1.1xr,1 − 0.4xr,2 − x3
r,1 + 1.8 cos(1.8t).

which is in fact a Duffing system producing a chaotic trajectory (non-periodic).

The initial values are x(0) = [1, 0]T and xr(0) = [0, 1]T .

Applying the learning control (7.4) and the parametric learning law (7.5), the

simulation results are shown in Figure 7.3 and Figure 7.4 respectively. In Figure

7.3, the horizontal axis denotes the number of periods and the vertical axis denotes

|∆xi|s over one period. The learning convergence can be clearly seen.

Case 2: In this case, there exists an unknown input coefficient b(t) = 1 + cos2(πt)

which has the same periodicity T = 2. Applying the corresponding repetitive

learning control law presented in Case 2, Part C of Section 7.3, simulation results
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Figure 7.3. Learning convergence of the tracking errors (Case 1)
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Figure 7.4. True and learnt parameters at 10−th period (Case 1)

are shown in Figure 7.5 and Figure 7.6 respectively. Note that the unknown

parameters are θ̄(t) = [b−1(t)θ(t), b−1(t), b−2(t)ḃ(t)]. Figure 7.6 only displays the

parameter learning for the parameter b−1(t)θ(t). From the figures, the tracking

error convergence can be clearly seen. On the other hand, parameter learning

convergence cannot be guaranteed in general.
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Figure 7.5. Learning convergence of the tracking errors (Case 2)
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Figure 7.6. True and learnt parameters at 10th period (Case 2)

7.6 conclusion

In this chapter, new nonlinear learning control methods are developed for systems

with unknown periodic parameters. With mathematical rigorousness the existence

of solution and learning convergence are proved. Robustifying the nonlinear learn-

ing control with projection and forgetting factor has also been exploited in a sys-

tematic manner via the Lyapunov-Krasovskii functional approach.
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Chapter 8

Repetitive Learning Control for

Nonlinear Systems with

Non-parametric Uncertainties

8.1 Introduction

Learning control aims at achieving the desired system performance via directly

updating the control input, either repeatedly over a fixed finite time interval, or

repetitively (cyclically) over an infinite time interval.

The concept of repetitive control was first proposed in (Hara et al., 1988) for LTI

systems and the convergence analysis was conducted in frequency domain using

small gain theorem. In (Rogers and Owens, 1992) and (Owens et al., 1999), the

stability analysis was conducted in the form of differential-difference equations for

linear repetitive processes. In (Longman, 2000), some design issues were exploited

for linear repetitive control. In (Messner and Bodson, 1995), an adaptive feed-

forward control using internal model equivalence was developed, which deals with
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LTI systems with an exogenous disturbance consisting of a finite number of sinu-

soidal functions, and the adaptation mechanism estimates the constant unknown

coefficients.

The extension of repetitive control to nonlinear dynamics has also been exploited.

In (Messner et al., 1991), the learning control has been applied to identify and com-

pensate for a nonlinear disturbance function which is represented as an integral of

a predefined kernel function multiplied by an unknown influence function that is

state independent. In (Vecchio et al., 2003), a kind of adaptive learning control

scheme was proposed for a class of feedback linearizable systems to track a periodic

reference, and the problem can be converted into the learning of a finite number of

Fourier coefficients. In (Dixon et al., 2003), the repetitive learning control is applied

to a class of nonlinear systems with matched periodic disturbance. Since the peri-

odic disturbance is a time function, it can also be treated as an unknown periodic

coefficient under the framework of adaptive control (Xu, 2004). Note that, above

mentioned learning control schemes require the plant to be parameterizable and

what is aimed is asymptotic convergence along the time horizon, hence they may

also be regarded as some kinds of nonlinear adaptive control under the generalized

framework of adaptive control theory. In (Cao and Xu, 2001), a repetitive learning

control scheme was developed for nonlinear dynamics without parameterization.

Nonlinear robust control is used together with the repetitive learning mechanism,

hence it requires the upper bound knowledge of the lumped uncertaities.

Under the present theoretical framework of repetitive control, it would be difficult

to deal with plants with unknown nonlinear components that are not parameteri-

zable. It is necessary to seek a new learning control strategy, which is able to use

the simple but effective delay-based mechanism to carry out the repetitive learn-

ing, meanwhile is able to deal with lumped nonlinear unknowns. Henceforth, our

first objective in this chapter is to establish a new control strategy – repetitive
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learning control (RLC) for nonlinear systems with non-parametric uncertainties.

The learnability of the traditional repetitive control, acquired via the delay-loop,

can be retained by incorporating such a delay-loop into a nonlinear learning mech-

anism. Meanwhile, a nonlinear feedback law will have to be developed to stabilize

the nonlinear dynamics.

The delay-based learning mechanism of RLC actually forms a continuous-time dif-

ference equation, and is of infinite dimensions. Considering the plant described by

nonlinear differential equations, the repetitive learning control system is described

by a set of mixed nonlinear differential and continuous-time difference equations.

The Lyapunov function based methods, which are proven to be powerful for nonlin-

ear ordinary differential equations and difference equations, cannot be applied. In

fact, very few results were reported for this class of systems when the closed-loop

stability, convergence and boudnedness are concerned, except for some local anal-

ysis result (Pepe and Verriest, 2003). When the existence of solution is concerned,

the well established results hitherto were given by (Cruz and Hale, 1970) and (Hale

and Pedro, 1977), which however focus on the continuous-time difference equations

satisfying a contractive mapping.

Our second objective of this chapter, then, is to provide a rigorous and global

analysis with regards to the existence of solution and learning convergence for

the RLC system. The Lyapunov-Krasovskii functional is employed to show the

boundedness of states for any finite learning cycles. By means of the mathematical

induction method the result for finite cycles can be extended to the entire time

horizon. Next, using the system smoothness property the problem is converted

into a set of neutral functional differential equations and the existence of solution

can be concluded. As a consequence of the above analysis we can further derive

the learning convergence property.
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When extending the RLC to more general systems in the triangular form without

strict matching condition, we encounter specific difficulty: backstepping design is

not applicable. The problem arises due to the continuous-time difference learning

law which cannot be replaced by a differential equation. An obvious contrast is

the adaptive control, in which both the plant and adaptation law are described by

differential equations. In backstepping design, the differentiability of the control

law is indispensable for continuous-time systems. To overcome this problem, the

repetitive learning is integrated with robust adaptive control. Repetitive learning

will be used in the final step when all subsystems are aggregated, and robust

adaptive control will be used for first n − 1 subsystems.

This chapter is organized as follows. In Section 8.2, the repetitive learning control

problem is formulated first. In Section 8.3 the existence of solution and learning

convergence properties are analyzed. In Section 8.4, two robustification schemes

are discussed. In Section 8.5, RLC is extended to more general classes of plants

including the unmatched. Two illustrative examples are given in Section 8.6, and

the conclusion is given in Section 8.7.

8.2 Problem Formulation

Consider the following system

ẋj = xj+1, j = 1, 2, · · · , n− 1,

ẋn = η(t,x) + u(t), x(0) = x0, (8.1)

where x = [x1, x2, · · · , xn]
T , and η(t,x) is a continuously differentiable function

w.r.t. the arguments x and t. In particular η(t,x) is a lumped, non-parameterizable,

and Local Lipschitzian nonlinear function, for example, η(t,x) = x2 cos x or η(t,x) =

x2

2+sin t+x2
1
.
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The control objective is to track the target trajectory xr(t) generated by

ẋr,j = xr,j+1, j = 1, 2, · · · , n− 1,

ẋr,n = s(t,xr, r), xr(0) (8.2)

where xr = [xr,1, xr,2, · · · , xr,n]
T , s(xr, r, t) is a known smooth function w.r.t. all

arguments, r is a constant reference input, and xr(0) is a vector of the initial states.

The ideal control input, ur(t), can be computed directly from the relation

ẋr,n(t) = η(t,xr) + ur(t) (8.3)

with the initial values xr(0). From (8.2), ẋr,n = s(t,xr(t), r). Therefore the ideal

control is ur(t) = s(xr(t), t, r) − η(t,xr), which is however not available because

of the presence of the unknown η(t,xr). The central task now is to learn the

ideal control ur(t). As such, the learning objective shall be the quantity ur(t),

that is, to learn the ideal control profile directly. As being known, the repetitive

learning control is especially effective in dealing with periodic quantities. Thus if

ur(t) is periodic, we may apply the repetitive learning control approach to solve

the tracking problem.

Assumption 8.1. The desired trajectory xr(t), and the quantity η(t,xr), are

periodic with a periodicity T , namely, xr(t) ∈ C2
PT ([0,∞);Rn) and η(t,xr) =

η(t− T,xr).

Remark 8.1. Any homogeneous function η(x) satisfies Assumption 8.1.

From the periodicity of xr(t), we can derive that ẋr ∈ C1
PT ([0,∞);Rn) and s(t,xr(t), r) ∈

C1
PT ([0,∞);R1). From the periodicity of xr(t) and Assumption 8.1, η(t,xr) ∈

C1
PT ([0,∞);R1). In the sequel, the ideal control ur(t) = s(t,xr(t), r) − η(t,xr), is

a function in the space C1
PT ([0,∞);R1). The principal idea of repetitive learning

control method, therefore, shall be applicable for this class of periodic learning

tasks.
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However, a learning mechanism alone, characterized by the continuous-time dif-

ference equation, is difficult to solve the problem. We may note the discrepancy

in initial conditions x(0) 6= xr(0). Even if ur(t) is directly achievable such that

u(t) = ur(t) for t ≥ 0, the nonlinear system (8.1) may not produce the desired

response xr, what is more, it may even go divergence in a finite time. From the

theory of differential equation, a nonlinear ODE may produce totally different so-

lution trajectories under different initial conditions. We need a robust control

mechanism working concurrently with the learning mechanism to guarantee the

asymptotic stability of the closed-loop system.

In designing a robust feedback controller for the nonlinear system (8.1), the most

popular approach is first to assume a upper bounding function α(t,x) for η(t,x),

e.g. α(t,x) ≥ |η(t,x)|, then construct a feedback control law using the bounding

function α(t,x). The min-max control (Corless and Leitmann, 1981) and sliding

mode control (Yu and Xu, 2000) are representative approaches of robust feedback

control. The bounding function α(t,x) shall be known a priori and can be highly

nonlinear such as local Lipschitzian. Repetitive learning can be incorporated into

the robust control loop (Cao and Xu, 2001). However, it should be noted that the

robust control alone can work well in this circumstance, and the learning mecha-

nism is an add-on to the existing robust control aiming at further improving the

performance. In this chapter, we explore a new scenario in which the robust control

alone is unable to ensure a stable closed-loop, thus the repetitive learning mecha-

nism and the robust control mechanism have to be integrated, working jointly to

warrant a stable control loop and meanwhile achieve learning convergence repeti-

tively.

The new scenario is characterized by the following bounding condition.
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Assumption 8.2.

|η(t,x)− η(t,y)| ≤ α(t,x,y)‖x− y‖,

where α(t,x,y) is a known bounding function.

Assumption 8.2 implies that the “variation” of the local Lipschitzian function η

with respect to x should be limited from above by a known bound which can also

be any nonlinear function, e.g. local Lipschitzian function, of x. Hence it is not

a very strict constraint. Clearly, most existing robust control methods may not

be suitable in this circumstance because a bound for the variation of η does not

warrant a finite bound for η itself.

Let us construct the integrated controller. First formulate the error dynamics of

∆x = x−xr. Define b = [0 0 · · · 0 1]T , and c = [c1, c2, · · · , cn−1, 1] is chosen such

that

A
4
=




0 1 0 · · · 0 0

0 0 1 · · · 0 0

...
...

...
. . .

...

0 0 0 · · · 0 1

−c1 −c2 −c3 · · · −cn−1 −1




(8.4)

is an asymptotically stable matrix. Based on Lyapunov stability theory for LTI

systems, for a given positive definite matrixQ ∈ Rn×n, there exits a unique positive

definite matrix P ∈ Rn×n satisfying the following Lyapunov equation

ATP + PA = −Q.

Let λQ be the minimum eigenvalue of the matrix Q, −wTQw ≤ −λQ‖w‖2 holds

for any w ∈ Rn.

From (8.1) and (8.3), the dynamics of ∆x can be expressed as

∆ẋ = A∆x + b(c∆x + η − ηr + u− ur), (8.5)

151



CHAPTER 8. REPETITIVE LEARNING CONTROL FOR NONLINEAR SYSTEMS WITH
NON-PARAMETRIC UNCERTAINTIES

where ηr = η(t,xr). The integrated repetitive learning control law is

u(t) = û(t)− c∆x− 1

λQ
α2(t,x,xr)σ(t), (8.6)

û(t) = û(t− T ) − k(t)σ(t), (8.7)

û(t) = 0,∀t ∈ [−T, 0],

where σ(t) = bTP∆x. k(t) is the learning gain defined as

k(t) =





0, −T ≤ t < 0,

k1(t), 0 ≤ t < T,

k0, t ≥ T,

(8.8)

where k0 > 0 is a constant, k1(t) is chosen to be monotone and smooth such that

k(t) is a smooth function on [−T,∞).

Note that now the objective of repetitive learning is to directly learn the ideal

control, that is, tune û(t) in (8.7) to approach ur(t). − 1
λQ
α2(t,x,xr)σ(t) in (8.6)

constitutes the robust feedback.

8.3 Existence of Solution and Convergence

Denote α
4
= α(t,x,xr) and ν

4
= ur − û. Substituting the learning control law (8.6)

into the dynamics (8.5), the closed-loop error dynamics is

∆ẋ = A∆x + b(η − ηr − ν − 1

λQ
α2σ). (8.9)

In the closed-loop dynamics, there are two unknown terms ur and η− ηr. The first

term will be compensated by û through repetitive learning. The second term η−ηr

will be compensated jointly by A∆x and the robust control − 1
λQ
α2σ.

From the error dynamics (8.9) and the updating law (8.6), we have




∆ẋ = f(t,∆x, û)

û(t) = û(t− T ) − k(t)bTP∆x,
(8.10)
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where

f(t,∆x, û) = A∆x + b(η − ηr + û− ur −
1

λQ

α2σ).

The learning control system consists of neutral differential and continuous-time

difference equations.

Theorem 8.1. For the system (8.10) under Assumption 8.1 and Assumption 8.2,

the learning control law (8.6) and (8.7) guarantees the existence of solution (∆x, û)

in [0,∞) and asymptotical convergence

lim
t→∞

∫ t

t−T

‖∆x‖2dτ = 0.

Proof. Define the regions Ωi
4
= [(i−1)T, iT )×Rn for (t,x). The proof is composed

of three parts. Part 1 and Part 2 prove the existence of solution (∆x, û) in the

domain [0, T ) and [T, ∞) respectively. Part 3 derives the convergence property

of the tracking error ∆x.

Part 1. Existence of the solution (∆x, û) in [0, T )

For i = 1, we have û(t) = 0 for t ∈ [−T, 0]. Therefore, by substituting û(t) into

f the dynamics (8.10) renders to a set of ODE (Ordinary Differential Equation

), and f(t,∆x, û) : Ω1 → Rn is continuous in ∆x by virtue of the smoothness of

η. By Peano’s Existence Theorem (Zheng et al., 1991), associated with the initial

condition ∆x(0), the equation (8.10) has a continuous solution in a neighborhood

of t = 0. Furthermore it is easy to check that f(t,∆x, û) is locally Lipschitzian

in ∆x. We need only to consider the solution for t > 0. Assume [0, t1) be the

maximal interval to which the solution ∆x can be continued up. Proposition 7.1

implies that ∆x tends to the boundary ∂Ω1 of Ω1 as t → t1. It further implies

that limt→t1 ‖∆x‖ = ∞ if t1 ≤ T , i.e., for any C > 0, there exists δ1 > 0 such that

‖∆x‖ ≥ C for all t ≥ t1 − δ1. Since ∆x exists for all t ∈ [0, t1 − δ1

2
], define the
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following Lyapunov-Krasovskii functional:

V (t,∆x, ν) =
1

2
∆xTP∆x +

1

2q

∫ t

t−T

ν2(τ )dτ. (8.11)

Now we prove the finiteness of V (t,∆x, ν) for all t ∈ [0, t1 − δ1

2
]. From the exis-

tence theorem of differential equation (Yoshizawa, 1975) there exists a T1 > 0 and

[0, T1) ⊂ [0, t1 − δ1

2
], the boundedness of V (t,∆x, ν) over [0, T1) can be guaranteed

and we need only focus on the interval [T1, t1 − δ1

2
]. For any t ∈ [T1, t1 − δ1

2
], the

upper right hand derivative of V is

V̇ =
1

2
(∆ẋTP∆x + ∆xTP∆ẋ) +

1

2q
(ν2 − ν2

	),

where ν	 = ur,	 − û	, ur,	 = ur(t − T ) and û	 = û(t − T ). Substitution of the

tracking error dynamics (8.9) yields

1

2
(∆ẋTP∆x + ∆xTP∆ẋ)

= −1

2
∆xTQ∆x + σ(η − ηr − ν − 1

λQ
α2σ)

≤ −λQ

2
‖∆x‖2 + |σ| · α‖∆x‖ − 1

λQ
α2σ2 − σν

= −λQ

4
‖∆x‖2 − σν − (

√
λQ

2
‖∆x‖ − 1√

λQ

α|σ|)2. (8.12)

Since û	 = û(t− T ) = 0 for all t ∈ [0, T ), û(t) = −k1(t)σ(t). From the definition

of k(t), k1(t) is strictly increasing in [0, T ), thus 1
k1(t)

≥ 1
k0

is ensured in the time

interval [T1, T ). We have

1

2k0
(ν2 − ν2

	) =
1

2k0
(ur − û)2 − 1

2k0
(ur,	 − û	)2

≤ 1

2k1(t)
(ur − û)2 − 1

2k0
u2

r,	

≤ u2
r

2k1(t)
− 1

k1(t)
û(ur − û) − û2

2k1(t)

≤ u2
r

2k1(t)
+ σν.
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Therefore from (8.12) and above we obtain

V̇ ≤ −λQ

4
‖∆x‖2 − σν − (

√
λQ

2
‖∆x‖ − 1√

λQ

α|σ|)2

+
u2

r

2k1(t)
+ σν

≤ u2
r

2k1(t)
, (8.13)

i.e.,

V (t,∆x, ν) ≤ V (T1,∆x(T1), ν(T1)) +
1

2

∫ t

T1

u2
r(τ )

k1(τ )
dτ.

Since ur(t) ∈ C1
PT ([0,∞);R1),

∫ t

T1

u2
r(τ)

k1(τ)
dτ is bounded for t ∈ [T1, T ). Thus V is

bounded for all t ∈ [0, t1 − δ1

2
]. Let N2λP > 0 be the bound of V on [0, t1 − δ1

2
],

where λP is the minimum eigenvalue of the positive definite matrix P . Then N

does not depend on δ1. By the definition of Lyapunov functional V , we can see

that ‖∆x‖ ≤
√
V/λP = N for all t ∈ [0, t1 − δ1

2
]. Taking C = 2N in advance, for

the corresponding δ1 > 0 we have

C ≤ ‖∆x(t1 −
δ1
2

)‖ ≤ N =
C

2
,

a contradiction which implies t1 ≥ T . This assures the solution ∆x of the dynamic

system (8.10) exists in [0, T ]. Further, considering the smoothness of the right hand

side of equation (8.10), ∆x(t) and û(t) are both continuously differentiable for any

t ∈ [0, T ).

Part 2. Existence of the solution (∆x, û) in [T,∞)

Assume that the solution ∆x and û of the differential difference equation (8.10)

exists in [(j − 1)T, jT ) for j = 2, · · · , i− 1. This implies both x and û are contin-

uously differentiable for all t ∈ [0, (i − 1)T ). Assume that the solution of (8.10)

can be continued up to a time t ∈ [(i− 1)T, iT ), by differentiating û we obtain

∆ẋ = f(t,∆x, û), t ∈ [(i− 1)T, iT ),

˙̂u(t) = g(t,∆x, û(t), ˙̂u(t− T )), (8.14)
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where

g(t,∆x, û(t), ˙̂u(t− T )) = ˙̂u(t− T )− k0b
TP f(t,∆x, û).

Note that the function f(t,∆x, û) and g(t,∆x, û(t), ˙̂u(t− T )) are continuous with

respect to the arguments, and the solution (∆x, û) are continuously differentiable

on [(i − 2)T, (i − 1)T ). For t > T , û	 cannot be ignored in the updating law,

and (8.14) is now truly a mixture of differential and continuous-time difference

equations of neural type. According to Proposition 7.2, the solution (∆x, û) of

the equation (8.14) exists at the neighborhood of the point (i− 1)T . Furthermore,

f(t,∆x, û) : Ωi → Rn is continuous and locally Lipschitzian in ∆x and û. Thus

the solution ∆x can be continued up to the boundary ∂Ωi of Ωi. Let [(i− 1)T, ti)

be the maximal interval to which the solution ∆x can be continued up. If ti ≤ iT ,

there exists a δi > 0 such that ‖∆x‖ ≥ C for all t ≥ ti−δi. For t ∈ [(i−1)T, ti− δi

2
),

define the Lyapunov-Krasovskii functional

V (t,∆x, ν) =
1

2
∆xTP∆x +

1

2k0

∫ t

t−T

ν2dτ. (8.15)

Then the upper right hand derivative of V is

V̇ =
1

2
(∆ẋTP∆x + ∆xTP∆ẋ) +

1

2k0
(ν2 − ν2

	) (8.16)

For the first term on the right side of (8.16), the result of (8.12) still holds. Let

us compute the second term on the right hand side of (8.16). Using the learning

updating law (8.7), the periodic property ur = ur,	, and the algebraic relationship

(a− b)2 − (a− c)2 = −2(a− b)(b− c) − (b− c)2, (8.17)

we have

1

2k0
[(ur − û)2 − (ur,	 − û	)2]

=
1

2k0
[−2(ur − û)(û− û	) − (û− û	)2]

= σν − k0

2
σ2. (8.18)
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Substituting (8.12) and (8.18) into (8.16), the upper right hand derivative of V is

V̇ ≤ −λQ

4
‖∆x‖2 − k0

2
σ2

−(

√
λQ

2
‖∆x‖ − 1√

λQ

α|σ|)2 (8.19)

Clearly V (t,∆x, ν) will be bounded for t ∈ [(i−1)T, ti−1
2
δi) as far as V (τ,∆x(τ ), ν(τ ))

is bounded for τ ∈ [0, (i−1)T ). Let N2λP be the bound of V on [(i−1)T, ti− δi

2
),

then N does not depend on δi. By the definition of Lyapunov-Krasovskii func-

tional, we have ‖∆x(t)‖ ≤
√
V/λP = N for all t ∈ [(i− 1)T, ti). Taking C = 2N

in advance, if the solution can only be continued up to ti < iT , then we again has

the contradiction

C ≤ ‖∆x(ti −
δi

2
)‖ ≤ N =

C

2
.

According to the theory of mathematical induction, the solution ∆x exists in t ∈

[(i − 1)T, iT ) for any finite i. Furthermore, since the solution û(t) exists for

t ∈ [0, (i− 1)T ), then from

û(t) = û(t− T ) + k(t)bTP∆x

and the existence of ∆x for t ∈ [(i − 1)T, iT ), the solution û exists for t ∈ [(i −

1)T, iT ). Thus the solution ∆x and û exists in [0, iT ) for any finite i. This

implies that the solution (∆x, û) either is uniformly bounded or tends to infinity

as t→ ∞. Thus ∆x and û exist for t ∈ [0,∞).

Part 3. Asymptotical convergence

Now derive the integral convergence

lim
t→∞

∫ t

t−T

‖∆x‖2dτ = 0

using the relation (8.19), that is, V̇ is negative semi-definite for t ∈ [T,∞). Suppose

that

lim
t→∞

∫ t

t−T

‖∆x‖2dτ 6= 0.
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Then there exist an ε > 0, tm ≥ T and a sequence ti → ∞ with i = 1, 2, · · · and

ti+1 ≥ ti + T such that
∫ ti

ti−T
‖∆x‖2dτ > ε when ti > tm. Hence from (8.19), we

obtain

lim
t→∞

V (t,∆x, ν) ≤ V (T,∆x(T ), ν(T ))

− lim
i→∞

i∑

j=1

∫ tj

tj−T

‖∆x(τ )‖2dτ

Since V (T,∆x(T ), ν(T )) is finite, the above relation implies lim
t→∞

V (t,∆x, ν) =

−∞, a contradiction to the non-negativeness property of Lyapunov-Krasovskii

functional V (t,∆x, ν) ≥ 0.

8.4 Robustification

8.4.1 Learning Control With Projection

From the point of view of practical implementation, ur(t) must be finite. If there

exists a known constant u∗ such that for the given xr(t), max
t

|ur(t)| ≤ u∗, the

updating law (8.7) can be modified as

û(t) = P(û(t− T ))− k(t)σ(t),

û(t) = 0, ∀t ∈ [−T, 0], (8.20)

where the projection operator P(û) is defined as

P(û) =





û, |û| ≤ u∗

p(û), |û| > u∗,

where p(û) ∈ C1(R;R1) is a polynomial and satisfying p(û) = û, p(−û) = −p(û),

0 ≤ ∂p
∂û

≤ 1, ∂p
∂û
|u∗ = 1 and the limit lim

û
→ ∞, p(û) is a constant. The definition of

projection operator is the same as that in Chapter 7.
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With the additional system bounding information, the repetitive learning control

achieves improved convergence property, as summarized in the following theorem.

Theorem 8.2. For the system (8.1), under Assumption 8.1 and Assumption 8.2,

the learning control law (8.6) and (8.20) guarantees the uniformly asymptotical

convergence of ∆x.

Proof. The solution (∆x, û) of the dynamic system (8.10) for t ∈ [0, T ) is the same

as Theorem 8.1 Part 1 without projection, because û(t − T ) = 0. To prove the

existence of solution in [T,∞), define the same Lyapunov-Krasovskii functional in

(8.15). The relations (8.16) and (8.12) still hold as the projection operation is not

directly involved. Next look at the relation (8.18), which might be affected by the

introduction of the projection operator.

We can easily verify the property (u − û)2 ≥ [u − P(û)]2, for any quantities û.

Using this property, the updating law (8.20), the periodic property ur = ur,	, and

the algebraic relation (8.17), we have

1

2k0
[(ur − û)2 − (ur,	 − û	)2] ≤ 1

2k0
[(ur − û)2 − (ur −P(û	))2]

=
1

2k0
[−2(ur − û)(û−P(û	)) − (û−P(û	))2]

= σν − k0

2
σ2

which turns out to be the same as (8.18). In the sequel, the conclusion of Part 2

in Theorem 8.1, namely the existence of solution (∆x, û) over the interval [T, ∞),

still holds. According to Part 3 of Theorem 8.1, the integral convergence of ∆x,

i.e.,

lim
t→∞

∫ t

t−T

‖∆x(τ )‖2dτ = 0

is obtained.

By virtue of the projection, the boundedness of ∆x ensures the finiteness of û,

thereafter u and ∆ẋ. The boundedness of ∆ẋ implies the uniform continuity of ∆x,
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therein the uniform continuity of the tracking error ∆x. As a result, lim
t→∞

‖∆x(t)‖ =

0.

Remark 8.2. In practice we may not know the exact value of the bound u∗. Instead

we can choose u∗ to be a sufficiently large constant. Note that u∗ is used only as a

saturator to limit the learning control effort, hence the controller gain will not be

affected in the unsaturated region.

8.4.2 Learning With Damping

When the bound u∗ is not available, an alternative approach is the introduction of a

damping (forgetting) factor. Note that the original updating law (8.7) is a pointwise

integrator, that is, for any t ∈ [(i− 1)T, iT ), it performs discrete-time integration

over the time sequence t − iT for i = 1, 2, · · · , i − 1. Such an integral mechanism

might be sensitive to many non-ideal factors, such as biased measurement noise,

the unmodeled higher order dynamics, etc. An effective modification is to add a

“damping” term such that the parametric updating mechanism becomes a low pass

filter instead of an integrator. As such, the updating law (8.7) can be modified as

û(t) = γû(t− T ) − k(t)σ(t), (8.21)

û(t) = 0, ∀t ∈ [−T, 0],

where 0 < γ ≤ 1 is the damping coefficient.

Different from projection, damping is introduced without using any extra system

information. Hence it is a trade-off made between the robustness and the tracking

convergence.

Theorem 8.3. For system (8.1), under Assumption 8.1 and Assumption 8.2, the

learning control law (8.6) and (8.21) guarantees the finiteness of the solution tra-

jectory (∆x, û) in the large.
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Proof. The solution (∆x, û) for t ∈ [0, T ) is the same as Theorem 8.1 Part 1

without damping, because û(t − T ) = 0. Thus in the following we discuss the

solution in the interval [T,∞). Analogous to Theorem 8.1, assume the solution

exists in [T, (i−1)T ) and can be continued up to ti ∈ [(i−1)T, iT ). We need only

to show the finiteness of the solution for any ti ∈ [(i− 1)T, iT ). Define the same

Lyapunov-Krasovskii functional as (8.15) in Theorem 8.1. The relations (8.16)

and (8.12) still hold as only the closed-loop dynamics is directly involved in the

derivation. Next look at the relation (8.18), which is affected by the introduction

of damping. Using the updating law (8.21), the periodic property ur = ur,	 and

the algebraic relation (8.17), we have

1

2k0
(ν2 − ν2

	) =
1

2k0
[(ur − û)2 − (ur,	 − û	)2]

=
1

2k0
[(ur − û)2 − (ur − û	)2]

=
1

2k0
[−2(ur − û)(û− û	) − (û− û	)2]

= − 1

k0
(ur − û)(û− γû	) +

1

k0
(1 − γ)(ur − û)û	 − 1

2k0
(û− û	)2.

(8.22)

The first term on the right hand side of (8.22), by substituting the updating law

(8.21), is σν which will cancel out the same term but with opposite sign in (8.12).

In order to evaluate last two terms on the right hand side of (8.22), using the

relationship a2 + b2 ≥ 2ab, yields

1

k0
(1 − γ)(ur − û)û	 − 1

2k0
(û− û	)2

=
1

k0
(1 − γ)(urû	 − ûû	) − 1

2k0
(û− û	)2

≤ 1

2k0
(1 − γ)(u2

r + û2
	 − 2ûû	) − 1

2k0
(û− û	)2

≤ 1

2k0
(1 − γ)[u2

r − û2 + (û2 + û2
	 − 2ûû	)] − 1

2k0
(û− û	)2

≤ 1 − γ

2k0
(u2

r − û2) +
1

2k0
(1 − γ)(û− û	)2 − 1

2k0
(û− û	)2

=
1 − γ

2k0

(u2
r − û2) − k0γ

2
σ2.
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Therefore, the upper right hand derivative of V is

V̇ ≤ −λQ

4
‖∆x‖2 − (

√
λQ

2
‖∆x‖ − 1√

λQ

α|σ|)2

−k0γ

2
σ2 +

1 − γ

2k0

(u2
r − û2)

≤ −λQ

4
‖∆x‖2 − 1 − γ

2k0
û2 +

1 − γ

2k0
u2

r (8.23)

Now we can show the finiteness of V in the interval [(i− 1)T, ti). If V is finite at

(i− 1)T , then it remains finite at ti because V̇ is uniformly bounded by 1−γ
2k0

‖ur‖2
s.

Consequently ∆x and σ remain finite. The finiteness of û in the interval [(i−1)T, ti)

can be derived from the finiteness of σ(t) in (8.21). This implies the solution (∆x, û)

either remains uniformly bounded or tend to infinity as t→ ∞. Thus the solution

(∆x, û) exists for any t ∈ [0, ∞).

We further show that the solution (∆x, û) remains finite when t → ∞. From

(8.23), V̇ ≤ 0 as long as the solution (∆x, û) is outside a compact set M defined

below

M =

{
(∆x, û) :

λQ

4
‖∆x‖2 +

1 − γ

2k0

|û|2 ≤ 1 − γ

2k0

‖ur‖2
s

}
.

where M(∆x, û)
4
=

λQ

4
‖∆x‖2 + 1−γ

2k0
|û|2. Define an ε-neighborhood of M with ε > 0

Mε =

{
(∆x, û) :

λQ

4
‖∆x‖2 +

1 − γ

2k0
|û|2 ≤ 1 − γ

2k0
‖ur‖2

s + ε

}
,

then V̇ ≤ −ε for any (∆x, û) ∈ Mc
ε where Mc

ε is the complementary set of Mε.

Since the solution exists in [0, ∞), there is no finite escape time for (∆x, û).

First assume that ∆x, thereby V , diverges asymptotically. Consider the fact that

V̇ ≤ 1−γ
2k0

‖ur‖2
s, there must exist an infinite time interval [ts, ∞), such that

λQ

4
‖∆x‖2 +

1 − γ

2k0
|û|2 ∈ Mc

ε ∀t ∈ [ts, ∞).

Since the solution exists in [0, ∞), V (ts,∆x(ts), ν(ts)) is finite. Integrating V̇ in

(8.23) from t ≥ ts we have

lim
t→∞

V (t) ≤ V (ts,∆x(ts), ν(ts)) − lim
t→∞

∫ t

ts

εdτ → −∞,
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that is however impossible because V ≥ 0. We can conclude that ∆x cannot stay

infinitely long in Mc
ε, and will always re-enter Mε after a finite interval. Hence ∆x

remains finite when t→ ∞. Note that the finiteness of ∆x warrants the finiteness of

σ(t) over the entire horizon [0, ∞). On the other hand, the learning law (8.21) with

the damping γ is an asymptotically stable first order difference equation subject to

the input k(t)σ(t). Therefore û remains finite when t→ ∞.

8.5 RLC Extensions

We consider two extensions: the first is an extension to the system (8.1) with

unknown input coefficient, and the second is an extension to a cascaded dynamics

with unmatched components.

8.5.1 Plant with Unknown Input Coefficient

Consider a specific case below

ẋj = xj+1, j = 1, 2, · · · , n− 1,

ẋn = η(t,x) + b(t,x)u(t), x(0) = x0. (8.24)

If b(t,x) is known and nonsingular, the RLC can be constructed directly by multi-

plying the robust control part with the factor b−1(t,x). In the following we focus

on the case that b(t,x) = b is a constant with a known lower bound bmin. Without

loss of generality, assume b ≥ bmin > 0. Note that the presence of the constant

input coefficient b does not change the periodicity of the ideal control obtainable

from the following dynamic relationship

ẋr,n(t) = η(t,xr) + bur(t).

Hence the proposed repetitive learning control approach is still applicable.
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However, the robust control part will have to be revised. It is worth to point out

that the lower bound bmin is required by most existing robust control methods

which however may not be able to cope with the system (8.24) due to the lumped

uncertain component η(t,x) under Assumption 8.2. Let us derive the robust control

part. From (8.24), the tracking error dynamics is

∆ẋ = A∆x + b(c∆x + η − ηr + bu− bur)

= A∆x + bb[b−1c∆x + b−1(η − ηr) + u− ur].

Because of the unknown input coefficient b, c∆x cannot be compensated directly

by the control input u. Instead, we can treat b−1c∆x + b−1(η − ηr) as a lumped

uncertainty with an upper bound on the variation which, referring to Assumption

8.2, is

ᾱ =
1

bmin
(‖c‖+ α).

Accordingly the revised learning control law is

u(t) = û(t) − 1

λQdmin
ᾱ2σ(t) (8.25)

û(t) = û(t− T )− k(t)σ(t).

The Lyapunov-Krasovskii functional is chosen to be

V (t,∆x, ν) =
1

2b
∆xTP∆x +

1

2k0

∫ t

t−T

ν2dτ. (8.26)

The upper right hand derivative is

V̇ =
1

2b
(∆ẋTP∆x + ∆xTP∆ẋ) +

1

2k0

(ν2 − ν2
	). (8.27)

It can be seen from the new learning control law (8.25), the Lyapunov-Krasovskii

functional V in (8.26), and its derivative V̇ in (8.27) that all terms related to û

and û − ur remain the same as the preceding case in Theorem 8.1. Thus we need

only to evaluate the first term, 1
2b

(∆ẋTP∆x + ∆xTP∆ẋ), on the right hand side
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of (8.27) as it is affected directly by the unknown input coefficient. Notice the fact

1/bmin ≥ 1/b, we have

1

2b
(∆ẋTP∆x + ∆xTP∆ẋ)

≤ −λQ

2b
‖∆x(t)‖2 + σ[b−1c∆x + b−1(η − ηr) −

1

λQbmin
ᾱ2σ]− σν

≤ −λQ

2b
‖∆x(t)‖2 + b−1ᾱ|σ| · ‖∆x‖ − 1

λQb
ᾱ2σ2 − σν

≤ −λQ

4b
‖∆x(t)‖2 − σν − 1

b
(

√
λQ

2
‖∆x‖ − 1√

λQ

ᾱ|σ|)2 (8.28)

Clearly, (8.28) has the similar form as (8.12) except for the extra coefficient b which

however does not change the negativeness property of the first two terms on the

right hand side of (8.28). As a result, all the derivations and the convergence

property in the proof of Theorem 8.1 still hold.

8.5.2 Plant in Cascaded Form

Consider the following n-th order cascaded dynamic system

ẋj = xj+1 + η1(t,xj),

ẋn = u+ ηn(t,x), (8.29)

where xj = [x1, · · · , xj]
T , x = xn, and ηj(t,xj) are nonlinear unknown functions

continuously differentiable w.r.t the arguments t and xj. Here ηj (j = 1, · · · , n−1)

are unmatched uncertainties. The backstepping design has been developed as a sys-

tematic approach to handle cascaded dynamics or any systems in triangular form.

The principal idea of backstepping design is for the i-th subsystem to construct a

fictitious control input, which will enter the (i+ 1)-th subsystem as the objective

trajectory and will be differentiated. In RLC, however, the learning updating law

(8.7) is a continuous-time difference equation, differentiating it leads to

˙̂u(t) = ˙̂u(t− T ) − k̇(t)σ(t)− k(t)σ̇(t).
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It requires the derivative signals of û, which are obviously unavailable in practice.

In what follows we will demonstrate how is the repetitive learning integrated with

robust adaptation to facilitate the backstepping design. As a systematic method,

the backstepping design can be easily extended from second order to n-th order,

hence for simplicity we consider a second order dynamics, i.e. n = 2 in (8.29), so

as to concentrate on the most fundamental steps in the problem solving.

The control objective is to design an appropriate control input u(t) such that x1 can

track xr,1 that is generated by the reference model (8.2). The reference trajectory

xr(t), and the quantity η1(t, xr,1) and η2(t, xr,1, xr,2) satisfy Assumption 1, i.e.,

xr(t) ∈ C2
PT ([0,∞);R2), η1(t, xr,1) = η1(t − T, xr,1) and η2(t,xr) = η2(t − T,xr).

Furthermore, η1(t, x1) and η2(t,x) satisfy Assumption 2, i.e.,

|η1(t, x)− η1(t, y)| ≤ α1(t, x, y)‖x− y‖,

and

|η2(t,x)− η2(t,y)| ≤ α2(t,x,y)‖x− y‖,

where α1(t, x, y) and α2(t,x,y) are known bounding functions.

For notational convenience, in subsequent context, we denote η1
4
= η1(t, x1), η2

4
=

η2(t,x), ηr,1
4
= η1(t, xr,1), ηr,2

4
= η2(t,xr), and α1

4
= α1(t, x1, xr,1). Specifically,

denote α2
4
= α2(t,x,y) when x = [x1, x2]

T and y = [xr,1, x2]
T , and denote α

′
2

4
=

α2(t,x,y) when x = [xr,1, x2]
T and y = [xr,1, xr,2]

T .

It is obvious that ηr,j ∈ C1
PT ([0,∞);R1), j = 1, 2, thus will be learned. On the

other hand, ηr,1 is finite, though the upper bound is unknown to us. Let β denote

the upper bound of ηr,1.

Denote

S(x) = k1arctan(k2x), (8.30)
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for any variable x, where k1 > 0 and k2 > 0 are design parameters. Note that if

choosing gains k1 and k2 such that

1

k2
tan

1

k1
≤ δ,

then

xS(x) = xk1arctan(k2x) ≥





|x| |x| ≥ δ

x2/δ |x| < δ,
(8.31)

It is easy to verify that S(x) is continuously differentiable and possessing the fol-

lowing property.

Property 8.1.

|x| − S(x)x ≤ δ.

Proof. From the definition of S(x), it is easy to have |x| − S(x)x ≤ 0 < δ for

|x| ≥ δ. For |x| < δ, we have

|x| − S(x)x ≤ |x| − x2/δ ≤ |x| ≤ δ.

Thus the result holds.

Define new coordinates z1 = x1−xr,1 and z2 = x2−u1, where the fictitious control

is

u1 = −(α1 + q1)z1 + xr,2 − S(β̂z1)β̂ (8.32)

with q1 > 0. β̂ is the estimation of β

˙̂
β = |z1| − γβ̂, (8.33)

where γ > 0 is a damping coefficient.

Design the actual controller

u = f2 − z1 − q2z2 − S(ᾱ2z2)ᾱ2 − θ̂
T
ξ (8.34)
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with q2 > 0, ξ = [−∂u1

∂x1
1]T ,

f2 =
∂u1

∂t
+

∂u1

∂xr,1
xr,2 +

∂u1

∂xr,2
s(t,xr, r) +

∂u1

∂β̂

˙̂
β +

∂u1

∂x1
x2,

and

ᾱ2 =

(
α2 + α1

∣∣∣∣
∂u1

∂x1

∣∣∣∣
)
|∆x1| + α

′

2|∆x2|.

θ̂ is to learn θ = [ηr,1 ηr,2]
T which are periodic. The learning law is

θ̂ = θ̂	 + ξz2, (8.35)

where θ̂	 = θ̂(t− T ).

Theorem 8.4. For system (8.29), the control law (8.34), the adaptation law (8.33)

and learning law (8.35) guarantee the finiteness of z1 and z2 in the large, and the

tracking error bound of z1 is

|z1| ≤

√
4δ + γβ2

2q1
. (8.36)

Proof. The proof consists of two steps.

Step 1.

From (8.29) and (8.2), we have

ż1 = ẋ1 − ẋr,1

= x2 + η1 − xr,2

= z2 + u1 + η1 − xr,2. (8.37)

Substituting the fictitious control u1 (8.32) into (8.37) yields

ż1 = z2 − (α1 + q1)z1 + η1 −S(β̂z1)β̂

= z2 − (α1 + q1)z1 − S(β̂z1)β̂ + (η1 − ηr,1) + ηr,1. (8.38)

Define a Lyapunov function candidate below

V1 =
1

2
z2
1 +

1

2
(β − β̂)2. (8.39)
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Using (8.38), adaptation law (8.33) and Property 8.1, the derivative of V1 is

V̇1 = z1ż1 − (β − β̂)
˙̂
β

= z1[z2 − (α1 + q1)z1 −S(β̂z1)β̂ + (η1 − ηr,1) + ηr,1] − (β − β̂)
˙̂
β

= z1z2 − (α1 + q1)z
2
1 + (η1 − ηr,1)z1 − S(β̂z1)β̂z1 + ηr,1z1 − (β − β̂)

˙̂
β

≤ z1z2 − q1z
2
1 −S(β̂z1)β̂z1 + β|z1| − (β − β̂)

˙̂
β

= z1z2 − q1z
2
1 −S(β̂z1)β̂z1 + β̂|z1| − β̂|z1| + β|z1| − (β − β̂)

˙̂
β

≤ z1z2 − q1z
2
1 + |β̂z1|[1 − |S(β̂z1)|] − (β − β̂)(

˙̂
β − |z1|)

≤ z1z2 − q1z
2
1 + δ − (β − β̂)(

˙̂
β − |z1|). (8.40)

Step 2.

From (8.29) and (8.32), we have

ż2 = ẋ2 − u̇1

= u+ η2 −
(
∂u1

∂t
+
∂u1

∂x1
ẋ1 +

∂u1

∂xr,1
xr,2 +

∂u1

∂xr,2
s(t,xr, r) +

∂u1

∂β̂

˙̂
β

)

= u−
(
∂u1

∂t
+

∂u1

∂xr,1
xr,2 +

∂u1

∂xr,2
s(t,xr, r) +

∂u1

∂β̂

˙̂
β

)
+ η2 −

∂u1

∂x1
(x2 + η1)

= u− f2 −
∂u1

∂x1
ηr,1 + ηr,2

−∂u1

∂x1
(η1 − ηr,1) + [η2 − η2(t, xr,1, x2)] + [η2(t, xr,1, x2) − ηr,2]

= u− f2 + θTξ − ∂u1

∂x1
(η1 − ηr,1) + [η2 − η2(t, xr,1, x2)] + [η2(t, xr,1, x2) − ηr,2],

(8.41)

where

f2 =
∂u1

∂t
+

∂u1

∂xr,1
xr,2 +

∂u1

∂xr,2
s(t,xr, r) +

∂u1

∂β̂

˙̂
β +

∂u1

∂x1
x2,

ξ = [−∂u1

∂x1

1]T ,

are known and

θ = [ηr,1 ηr,2]
T
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is to be learned.

Substituting (8.34) into (8.41) yields

ż2 = −z1 − q2z2 + (θ − θ̂)Tξ − S(ᾱ2z2)ᾱ2

−∂u1

∂x1
(η1 − ηr,1) + [η2 − η2(t, xr,1, x2)] + [η2(t, xr,1, x2) − ηr,2] (8.42)

Define the Lyapunov functional below

V2 = V1 +
1

2
z2
2 +

1

2

∫ t

t−T

(θ − θ̂)T (θ − θ̂)dτ. (8.43)

The upper right hand derivative of V2 is

V̇2 = V̇1 + z2ż2 +
1

2
(θ − θ̂)T (θ̂ − θ̂) − 1

2
(θ̂ − θ̂	)T (θ̂ − θ̂	)

≤ V̇1 + z2ż2 − (θ − θ̂)T (θ̂ − θ̂	) (8.44)

where the last term on the right hand side is derived by using the algebraic relation

(8.17) in vector form (a−b)T (a−b)−(a−c)T (a−c) = −2(a−b)T (b−c)−‖b−c‖2.

Using (8.42) and Property 8.1, we have

z2ż2 = −z1z2 − q2z
2
2 + (θ − θ̂)Tξz2 − S(ᾱ2z2)ᾱ2z2

−∂u1

∂x1
(η1 − ηr,1)z2 + [η2 − η2(t, xr,1, x2)]z2 + [η2(t, xr,1, x2) − ηr,2]z2

≤ −z1z2 − q2z
2
2 + (θ − θ̂)Tξz2 + ᾱ2|z2| − S(ᾱ2z2)ᾱ2z2

≤ −z1z2 − q2z
2
2 + ξT (θ − θ̂)z2 + δ (8.45)

Substituting (8.40) and (8.45) into (8.44) yields

V̇2 ≤ −q1z2
1 − q2z

2
2 + 2δ − (β − β̂)(

˙̂
β − |z1|)

−(θ − θ̂)T (θ̂ − θ̂	 − ξz2) (8.46)

Note the adaptation law (8.33) and learning law (8.35), we have

V̇2 ≤ −q1z2
1 − q2z

2
2 + 2δ + γβ̂(β − β̂)

≤ −q1z2
1 − q2z

2
2 + 2δ − γ(

1

2
β̂2 − β̂β)

= −q1z2
1 − q2z

2
2 −

γ

2
(β̂ − β)2 + 2δ +

γ

2
β2 (8.47)
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V̇2 is negative definite outside the compact set

M = {(z1, z2) : q1z
2
1 + q2z

2
2 +

γ

2
(β̂ − β)2 ≤ 2δ +

γ1

2
β2}.

Further define ε−neighborhood of M with ε > 0

Mε = {(z1, z2) : q1z
2
1 + q2z

2
2 +

γ

2
(β̂ − β)2 ≤ 2δ +

γ1

2
β2 + ε}, (8.48)

then V̇2 ≤ −ε. The state z1 will enter the ε−neighborhood, Mε, in finite time,

which implies the asymptotic convergence to the region (8.36).

Remark 8.3. From (8.48), it is clear that the size of Mε is decided by the design

parameters q1, q2, δ and γ. Therefore the tracking error can be made sufficiently

small by choosing appropriate values for the design parameters.

Remark 8.4. Adaptive robust control method can also be applied to dealing with the

terms ∂u1

∂x1
ηr1 and ηr2 in the second step. Differing from repetitive learning control

used in the above, it will bring a high gain in the control law. Adaptive robust

control design is given in Appendix A.6.

Remark 8.5. Though only second order cascaded system is considered, the results

can be extended straightforward to n-th order cascaded systems.

Remark 8.6. The preceding robusitification schemes can also be applied to the

repetitive learning law (8.35).

8.6 Illustrative Examples

In this section, two illustrative examples are given for nonlinear systems with

matched and unmatched uncertainties respectively. For simplicity the control per-

formance is evaluated using the maximum absolute tracking error over one period

T , denoted by MAET .
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8.6.1 Nonlinear system with matched uncertainties

Consider a second order system described by (8.1) with matched uncertainties.

Following the design procedure (8.4), choose c = [1, 1], then A =




0 1

−1 −1


 .

Choosing Q = I2×2 to be an identity matrix, the solution of the Lyapunov equation

is P =




1.5 0.5

0.5 1


 . Choose k1(t) = k0(− 2

T 3 t
3 + 3

T 2 t
2), which is smooth and

monotone between 0 and k0 = 4.

Case 1:

In the system (8.1), assume the lumped unknown is η(t,x) = (1 + sin x2)x
2
1. The

reference model (8.2) is

ẋr,1 = xr,2,

ẋr,2 = sinπt

with the initial values xr(0) = [0, − 1
π
]. The learning period thus is T = 2.

The known bounding function is chosen to be α(t,x,xr) =
√
α2

1(x, t) + α2
2(xr, t),

where α1(t,x) =
√

4x2
1 + x4

1 cos2 x2 and α2(t,xr) =
√

4x2
r,1 + x4

r,1 cos2 xr,2. Initial

values are x(0) = [1, 0]. Applying the repetitive learning control law (8.6) and

(8.7), the learning convergence results of the tracking error and control profile are

shown in Figure 8.1 and Figure 8.2 respectively. It is worthwhile highlighting that

the learnt control û approaches the ideal one, in the sequel the robust control part

will die out accordingly.

Case 2:

Assume that there exists an unmodeled dynamics – a second order resonance mode,
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Figure 8.1. Learning convergence of the tracking errors (Case 1)
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Figure 8.2. Ideal and learned control profiles at 10th period (Case 1)

and the actual plant is

ẋ1 = x2,

ẋ2 = −30x2 − 229x1 + 229x3,

ẋ3 = x4,

ẋ4 = (1 + sinx4)x
2
3 + u.

The unmodeled dynamics is seen to have the transfer function relation 229/(s2 +
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30s + 229). This is analogous to the well known example (Rohrs et al., 1985)

in adaptive control that is used to demonstrate the parameter drifting problem,

thereby the necessary of robust modification.

Since the unmodeled dynamics is unknown to us, advanced control design methods

such as backstepping method cannot be applied. Although x3 and x4 should be used

in the control implementation, the actual control implementation is accomplished

with only x1 and x2 which are the actual system output and its variation.

The result of RLC without any robustification is shown in Figure 8.3. It can be
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0

2

4

6

8

10

12

14

16
x 10

6

Number of Periods

M
AE

T

∆x
1

∆x
2

Figure 8.3. Tracking errors with unmodeled dynamics (Case 2)

seen that the tracking error ∆x2 diverges at the 27-th period.

Now RLC with projection is applied. The bound of ur(t) is assumed to be 3.

The simulation result is shown in Figure 8.4. It can be observed that RLC with

projection improves the performance greatly.
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Figure 8.4. Tracking errors with unmodeled dynamics and learning projection

(Case 2)

8.6.2 Nonlinear system with unmatched uncertainties

Now consider the following cascade dynamic system

ẋ1 = x2 + log(2 + x2
1),

ẋ2 = u−
√

6400 + x2
1 − 10 sin 5πt. (8.49)

with the initial values x(0) = [0.5 1]T . The desired target is xr,1 = 1
25

cos 5πt+ 3,

and the learning period is T = 0.4.

The known variation bounding functions are α1 =
√
x2

1 + 16, and α2 = α
′
2 = 1,

respectively. Let q1 = q2 = 2, γ = 0.001 and δ = 0.01. Choose k1 = 1 and k2 = 156

such that 1
k2
tan 1

k1
≤ δ. Applying the integrated control law (8.34), (8.33) and

(8.35), the tracking error and control profiles are give in Figure 8.5 and Figure 8.6

respectively. The control profiles of the learning part are given in Figure 8.7.
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Figure 8.5. Tracking error z1 with unmatched uncertainties
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Figure 8.6. Ideal and actual control profiles at 40th period

According to Theorem 8.4, the upper bound of the tracking error z1 is

|z1| ≤

√
4δ + γβ2

2q1

≤

√
4 × 0.01 + 0.001 log2(2 + 16)

4

= 0.1099.

Clearly, the simulation result is consistent with the conclusion in Theorem 8.4. We

can also observe the convergence of the real control input to the ideal one with the
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Figure 8.7. Ideal and actual learning control components at 40th period

learning and adaptation.

For comparison purpose the adaptive robust control method is also applied. The

upper bound of tracking error z1 is

|z1| ≤

√
6δ + γ1β

2
1 + γ2β

2
2

2q1

≤

√
6 × 0.01 + 0.001 log2(2 + 16) + 0.001 × 91

4

≤ 0.1867. (8.50)

Case 1 Choosing the same design parameters as the repetitive learning control

method. The actual tracking error is 0.0082 at the second period. Clearly the

adaptive robust control method is a conservative design. Figure 8.8 and Figure 8.9

display the actual control profile and the adaptive robust part of control profile at

2th period respectively. Due to the conservative nature, high feedback gains are

used, leading to extremely large control profiles. From Figure 8.9, the divergent

trend of the adaptive robust control signals can be observed. In fact, all simulations

in this chapter were conducted using the Runge Kutta 4-5th order with variable

step size, and the controllers are simulated as continuous ones This implies that

the preceding adaptive robust control design is not suitable for any digital imple-
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Figure 8.8. Actual control profile at 2th period
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Figure 8.9. Adaptive robust part of the control profile at 2th period

Case 2 To mitigate the conservativeness of the adaptive robust controller, choose

k1 = 1 and k2 = 10 such that δ ≈ 1.56 and the theoretically guaranteed error bound

is 1.5378. Let other parameters be the same as the preceding case. The tracking

error is given in Figure 8.10. The control signals is shown in Figure 8.11. From

Figure 8.11, we can see that the actual control signal converges to the ideal control

signal after 2th period using low gain feedback. Clearly, ARC is a conservative
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Figure 8.10. Tracking error z1 with ARC

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
50

60

70

80

90

100

110

Time

C
on

tro
l P

ro
fil

e

Ideal Control
Actual Control

Figure 8.11. Ideal and actual control profiles at 2th period

design for the worst case. It is not needed to use high gain feedback in some

particle problems.

The results show that repetitive learning control offers a low feedback gain control,

meanwhile achieves the excellent tracking performance. This is owing to its learning

functionality as shown in Figure 8.2 and Figure 8.7.
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8.7 Conclusion

In this chapter, a new repetitive learning control approach is developed to handle

a class of tracking control problems by making use of the repetitive nature of the

control problems. The target trajectory can be any smooth periodic orbit of a

nonlinear reference model. What can be learned in RLC are either the desired

periodic control signals or the lumped uncertainties which may become periodic

when the system states converge to the periodic orbit of the reference model.

The repetitive learning control methodology is established with mathematical rig-

orousness: we first prove the existence of solution by applying the existence theo-

rem of neutral differential difference equation, and using the Lyapunov-Krasovskii

functional. Robustifying the repetitive learning control methods with projection

and damping has also been exploited in a systematic manner via the Lyapunov-

Krasovskii functional approach. As an extension, the integration of RLC and robust

adaptive control has also been exploited to address systems with unknown input co-

efficients and the cascaded systems without strict matching condition. Simulation

results exhibited the effectiveness of the new learning control approach.

To recap, the following scenarios were addressed.

1) Nonlinear systems in companion form with unknown but matched nonlinear-

ity which is local Lipschitz continuous, and yielding asymptotic convergence

in square integration over one period.

2) Similar scenario like 1) but assuming a known bound on the ideal control

profile, yielding uniform asymptotic convergence.

3) Similar scenario like 1) but using a damped learning mechanism, and yielding

finite solution trajectory.
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4) Similar scenario like 1) but having an unknown input coefficient, leading to

a revised learning control law and yielding asymptotic convergence in square

integration over one period.

5) Cascaded nonlinear systems with unknown nonlinearities that are local Lips-

chitz continuous, leading to the integration of robust adaptive and repetitive

learning control, and yielding a finite solution trajectory which can be made

arbitrarily close to the reference trajectory.
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Chapter 9

Multi-Period Repetitive Learning

Control with Application to

Chaotic Synchronization

9.1 Introduction

Since the chaos synchronization problem was discussed by Pecora and Carroll in

1990 (Pecora and Carroll, 1990), it has received increasing attention. Chaos syn-

chronization has been widely studied in secure communication, chemical reactor

and biomedical science. Since chaotic signals could be adopted to transmit infor-

mation from a master system to a slave system in a secure and robust manner,

chaos synchronization has been well studied in communications research (Cuomo

et al., 1993), (Chua et al., 1996) and (Dedieu and Ogorzalek, 1997). In (Wu et

al., 1996), (Wang and Wang, 1998) and (Zhang et al., 1998), an adaptive method

for synchronization of chaotic systems was presented. In (Suykens et al., 1997),

a robust nonlinear H∞ synchronization method was proposed for chaotic Lur’e
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systems with applications to secure communications. In (Pogromsky, 1998), the

problem of controlled synchronization of nonlinear systems was addressed using

a passivity-based design method. In (Yu and Song, 2001), an invariant manifold

based chaos synchronization approach was proposed. To use only partial states of

a chaotic system to synchronize the coupled chaotic systems. In (Song et al., 2002),

synchronization to a specific periodic orbit was considered.

It has been shown that many well-known chaotic systems, including Duffing os-

cillator, R össler system, Chua’s circuits, etc., can be transformed into the form

of nonlinear dynamical systems with either unknown constant parameters or un-

known time-varying factors. Adaptive control methods can well handle chaotic

systems with unknown constant parameters (Wang and Ge, 2001a) and (Wang and

Ge, 2001b). On the other hand, the learning control method (Song et al., 2002) has

been applied to chaotic systems in the presence of time-varying uncertainties with a

uniform periodicity. This chapter considers two new problems in comparison with

the previous works (Wang and Ge, 2001a), (Wang and Ge, 2001b) and (Song et

al., 2002). First, the classical adaptive updating law and the periodic learning law

are used jointly for systems with both time-varying and time invariant parameters.

Generally speaking, the classical adaptive updating law does not work for time

varying parameters. The periodic learning control law, on the other hand, does

not perform as well as classical adaptive updating law for time invariant param-

eters due to smoothness problem. Second, the periodic learning law in (Song et

al., 2002) only works for a single periodicity, that is, all time varying factors must

have the uniform period. In synchronization of two chaotic processes, the master

and slave systems may not share a minimum common period, hence we need to

address the pseudo-periodicity problem.

To solve the above two problems, it is imperative to develop a new theoretic frame-

work such that the new learning control mechanism can be derived to achieve
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the global stability and asymptotical synchronization property. We propose a

Lyapunov-Krasovskii functional to unify the classical adaptive updating mecha-

nism and the periodic learning mechanism of multiple periods. The asymptotical

synchronization is obtained by tuning a chaotic system to follow up a chaotic orbit

generated by another chaotic system. It shall be noted that, from point of view

of trajectory tracking, the target trajectory now is chaotic, i.e. non-periodic in

nature. Hence this chapter extends the previous work (Song et al., 2002) in that a

chaotic orbit, instead of a periodic orbit, is considered.

This chapter is organized as follows. Section 9.2 gives the problem formulation.

The learning control scheme is presented in Section 9.3. Section 9.4 illustrates a

simulation example. The conclusion is given in Section 9.5.

9.2 Problem Formulation

The chaos synchronization problem can often be formulated as for the slave system

to follow up the master system. Here the control task is to force the response of

the slave system to be synchronized to the chaotic orbit of the master system.

For simplicity, consider the master system Σm and slave system Σs each with only

two unknown parameters, one time varying and one time invariant, as the following

Σm ẋr,i = xr,i+1, i = 1, · · · n− 1,

ẋr,n = θr1ξr1(xr, t) + θr2(t)ξr2(xr, t), (9.1)

Σs ẋi = xi+1, i = 1, · · · n− 1,

ẋn = −θ1ξ1(x, t)− θ2(t)ξ2(x, t) + u(t), (9.2)

where xr = [xr,1, · · · , xr,n]
T ∈ Rn and x = [x1, · · · , xn]

T ∈ Rn are the state vec-

tors of the master and slave systems respectively. ξr1(xr, t), ξr2(xr, t), ξ1(x, t) and
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ξ2(x, t) are known nonlinear functions which can be locally Lipschitz. θr1 and θ1 are

unknown constants and θr2(t), θ2(t) ∈ C[0, ∞) are unknown continuous periodic

function with known periods T1 and T2 respectively. The unknown parameters

θ1, θ2, θr1(t) and θr2(t) should be learned. Note that the negative sign “−” in

ẋn can be removed easily by redefining the known functions ξ1 and ξ2 with extra

negative signs. Adding the negative signs in the slave system is to unify the later

derivations. The nonlinear systems (9.1) and (9.2) can be either single-input single-

output, or multi-input multi-output, with matched uncertainties of time-invariant

or time-varying types.

Note that if there exists a minimum common period T such that for T1 and T2,

there exist integer numbers m1 and m2 satisfying T = m1T1 = m2T2, then we can

treat the problem with a single-period T . In this chapter, we consider the pseudo-

periodic problem in which such a minimum common period T does not exists, for

instance T1 =
√

2 and T2 = 2.

Define the tracking error ei(t) = xr,i(t) − xi(t), i = 1, 2, · · · , n and

σ(t) = en(t) + cn−1en−1(t) + · · · + c1e1(t),

where ci > 0, i = 1, 2, · · · , n − 1 are coefficients of a Hurwitz polynomial. The

synchronization task is to force the slave system Σs to track the orbit of the master

system by designing an appropriate control input u(t), i.e. let the states of the

slave system (9.2) to be asymptotically synchronized with the states of the master

system (9.1) as follows

lim
t→∞

∫ t

t−T

σ2(τ )dτ = 0. (9.3)

In the following we summarize two important properties associated with function-

als, which will be used in subsequent derivations with the Lyapunov-Krasovskii

functional.
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Property 9.1. Let θ(t) ∈ R and T > 0 be a finite constant. The upper right-hand

derivative of

∫ t

t−T

θ2(τ )dτ

is

θ2(t) − θ2(t− T ).

Proof. See Appendix A.7.

Property 9.2. Let θ(t), θ̂(t), θ̃(t), f(t) ∈ R, and assume that the following rela-

tions hold

θ(t) = θ(t− T )

θ̃(t) = θ(t) − θ̂(t)

θ̂(t) = θ̂(t− T ) + f(t). (9.4)

Then the upper right-hand derivative of

∫ t

t−T

θ̃2(τ )dτ

is

−2θ̃(t)f(t) − f2(t).

Proof. See Appendix A.8.

9.3 Learning Controller Design

The learning control law is

u(t) = βσ(t) + η(t) + θ̂r1(t)ξr1(xr, t) + θ̂1(t)ξ1(x, t)

+θ̂r2(t)ξr2(xr, t) + θ̂2(t)ξ2(x, t) (9.5)
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and the parametric updating law is given as below




˙̂
θr1(t) = σξr1(xr, t),

˙̂
θ1(t) = σξ1(x, t),

θ̂r2(t) = θ̂r2(t− T1) + σξr2(xr),

θ̂2(t) = θ̂2(t− T2) + σξ2(x),

(9.6)

where η(t) = cn−1en(t)+· · ·+c1e2(t). The parametric updating law (9.6) is a part of

the control law, in the sequel the controller is dynamic in nature. Without the loss

of generality, assume T2 ≥ T1. At the initial period t ∈ [0, T1], θ̂r2(t) = σξr2(xr).

Similarly at the initial period t ∈ [0, T2], θ̂2(t) = σξ2(x), For notational convenience,

we will omit the argument t for all variables where no confusion arises, and denote

ξri(xr, t) and ξi(x, t) by ξri and ξi, respectively for i = 1, 2. It should be noted that

the parametric updating law is actually a mixture with the classical parametric

adaptation and periodic learning mechanisms.

Substituting the control law (9.5) with the mixed parametric learning law (9.6)

into the dynamics (9.2) yields the error dynamics

ėi = ẋr,i − ẋi = ei+1, i = 1, 2, · · · , n− 1.

ėn = ẋr,n − ẋn

= θr1ξr1 + θr2(t)ξr2 + θ1ξ1 + θ2(t)ξ2

−[βσ+ η + θ̂r1(t)ξr1 + θ̂r2(t)ξr2 + θ̂1(t)ξ1 + θ̂2(t)ξ2]

= −βσ + φr1ξr1 + φr2ξr2 + φ1ξ1 + φ2ξ2 − η (9.7)

where

φi = θi − θ̂i,

φri = θri − θ̂ri.

for i = 1, 2. Accordingly we can derive

σ̇ = ėn(t) + cn−1en(t) + · · · + c1e2(t)

= −βσ + φr1ξr1 + φ1ξ1 + φr2ξr2 + φ2ξ2. (9.8)
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To facilitate the convergence analysis, define the following Lyapunov-Krasovskii

functional

V (t, σ, φ1, φ2, φr1, φr2) =



1

2
σ2(t) +

1

2
φ2

r1
(t) +

1

2
φ2

1(t) +
1

2

∫ t

t−T1

φ2
r2

(τ )dτ +
1

2

∫ t

t−T2

φ2
2(τ )dτ t ∈ [T2,∞)

1

2
σ2(t) +

1

2
φ2

r1
(t) +

1

2
φ2

1(t) +
1

2

∫ t

t−T1

φ2
r2

(τ )dτ +
1

2

∫ t

0

φ2
2(τ )dτ t ∈ [T1, T2)

1

2
σ2(t) +

1

2
φ2

r1
(t) +

1

2
φ2

1(t) +
1

2

∫ t

0

φ2
r2

(τ )dτ +
1

2

∫ t

0

φ2
2(τ )dτ t ∈ [0, T1)

The convergence property of the proposed adaptive control method is summarized

in the following theorem.

Theorem 9.1. The control law (9.5) with the parametric updating law parameter

law (9.6) warrants the asymptotical convergence

lim
t→∞

∫ t

t−T2

σ2(τ )dτ = 0.

Proof. The proof consists three parts. Part I proves the finiteness of V in [0, T2).

Part II proves the negativeness of V in [T2, ∞). Part III derives the asymptotical

convergence of the tracking error σ(t).

Part I: Finiteness of V in [0, T2)

Let us first derive the upper right hand derivative of V for t ∈ [0, T1), which is

V̇ = σσ̇ + φr1φ̇r1 + φ1φ̇1 +
1

2
φ2

r2
(t) +

1

2
φ2

2(t) (9.9)

Look into the first term on the right hand side of V̇ . From (9.8), we obtain

σσ̇ = −βσ2 + φr1(t)ξr1σ + φ1(t)ξ1σ + φr2(t)ξr2σ + φ2(t)ξ2σ. (9.10)

Using the parametric updating law (9.6), we have

φr1 φ̇r1 = −φr1ξr1σ, (9.11)

and

φ1φ̇1 = −φ1ξ1σ. (9.12)
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For t ∈ [0, T1), θ̂r2 = σξr2 and θ̂2 = σξ2, therefore

φ2
r2

(t) = (θr2(t) − θ̂r2(t))
2

= θ2
r2

(t) − 2θ̂r2(t)φr2(t)− θ̂2
r2

(t)

≤ θ2
r2

(t) − 2φr2(t)ξr2σ,

and similarly

φ2
2(t) ≤ θ2

2(t) − 2φ2(t)ξ2σ.

In the sequel, the upper right hand derivation of V for t ∈ [0, T1) is

V̇ ≤ −βσ2 +
1

2
θ2

r2
(t) +

1

2
θ2
2(t).

Note that θr2(t) and θ2(t) are periodic, thus are bounded. The finiteness of V̇

warrants the finiteness of V in a finite time interval [0, T1).

For t ∈ [T1, T2), the upper right hand derivative of V according to Property 9.1 is

V̇ = σσ̇ + φr1φ̇r1 + φ1φ̇1 +
1

2
(φ2

r2
(t)− φ2

r2
(t− T1)) +

1

2
φ2

2(t), (9.13)

where σσ̇, φr1φ̇r1 and φ1φ̇1 can be achieved from (9.10), (9.11) and (9.12). Accord-

ing to Property 9.2 and the parameter updating law (9.6), we have

φ2
r2

(t) − φ2
r2

(t− T1) = −2φr2(t)ξr2σ − ξ2
r2
σ2.

For t ∈ [T1, T2), we still have θ̂2 = σξ2, thus

φ2
2(t) ≤ θ2

2(t) − 2φ2(t)ξ2σ.

Therefore, the upper right hand derivation of V for t ∈ [T1, T2) is

V̇ ≤ −βσ2 − 1

2
ξ2
r2
σ2 +

1

2
θ2
2(t)

Obviously V̇ is finite for t ∈ [T1, T2) because of the finiteness of the periodic

function θ2(t). This implies that V is bounded for t in a finite time interval [T1, T2).
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Part II: Negativeness of V in [T2, ∞)

The upper right hand derivative of V , according to Property 9.1 for t ∈ [T2,∞),

should be

V̇ = σσ̇ + φr1φ̇r1 + φ1φ̇1

+
1

2
(φ2

r2
(t) − φ2

r2
(t− T1)) +

1

2
(φ2

2(t)− φ2
2(t− T2)). (9.14)

Considering the terms on the right hand side of V̇ in (9.14), σσ̇, φr1φ̇r1 and φ1φ̇1 are

the same as (9.10), (9.11) and (9.12). According to Property 9.2 and the parameter

updating law (9.6), we can further derive the following relationship

φ2
r2

(t) − φ2
r2

(t− T1) = −2φr2(t)ξr2σ − ξ2
r2
σ2,

and

φ2
2(t) − φ2

2(t− T2) = −2φ2(t)ξ2σ − ξ2
2σ

2.

Therefore, the upper right hand derivation of V is

V̇ = −βσ2 − 1

2
ξ2
r2
σ2 − 1

2
ξ2
2σ

2

≤ −βσ2. (9.15)

Part III: Asymptotical Convergence

Now let us derive the convergence property

lim
t→∞

∫ t

t−T2

σ2(τ )dτ = 0

using the fact (9.15) that V̇ for t ∈ [T2,∞) is negative semi-definiteness. Suppose

that

lim
t→∞

∫ t

t−T2

σ2(τ )dτ 6= 0.

Then there exist an ε > 0, a t0 ≥ T2 and a sequence ti → ∞ with i = 1, 2, · · · and

ti+1 ≥ ti + T2 such that
∫ ti

ti−T2
σ2(τ )dτ > ε when ti > t0. Hence from (9.15), we

190



CHAPTER 9. MULTI-PERIOD REPETITIVE LEARNING CONTROL WITH APPLICATION TO
CHAOTIC SYNCHRONIZATION

obtain for t > T2

lim
i→∞

V (t, σ, φr1, φ1, φr2, φ2) ≤ V (T2, σ(T2), φr1(T2), φ1(T2), φr2(T2), φ2(T2))

− lim
i→∞

i∑

j=1

∫ tj

tj−T2

βσ2(τ )dτ.

Since V (T2, σ(T2), φr1(T2), φ1(T2), φr2(T2), φ2(T2)) is finite, the above relation im-

plies

lim
t→∞

V (t, σ, φr1, φr2, φ1, φ2) → −∞,

a contradiction to the positiveness property of limt→∞ V (t, σ, φr1, φ1, φr2, φ2).

This completes the proof.

Remark 9.1. The above result can be extended straightforward to the master sys-

tem

ẋr,i = xr,i+1, i = 1, · · ·n − 1,

ẋr,n = θr1ξr2
(xr, t) + θr2(t)ξr2

(xr, t), (9.16)

and the slave system

ẋi = xi+1, i = 1, · · · n− 1,

ẋn = θ1(t)ξ1(x, t) + θ2(t)ξ2(x, t) + u(t), (9.17)

where θr1, θ1 ∈ Rm, θr2, θ2 ∈ Cm[0,∞) are vector valued functions, and

ξri
(xr, t) = [ξri,1(xr, t), ξri,2(xr, t), · · · , ξri,m(xr, t)]

T

ξi(x, t) = [ξi,1(x, t), ξi,2(x, t), · · · , ξi,m(x, t)]T ,

for i = 1, 2. Accordingly we can replace θ̂ri(t), θ̂i(t) by θ̂ri(t), θ̂i(t) and ξri(xr, t),

ξi(x, t) by ξri
(xr, t), ξi(x, t) in the learning mechanism, and replace φ2

i and φ2
ri

in

Lyapunov function by φT
i φi and φT

ri
φri

, for i = 1, 2.
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9.4 Illustrative Example

Consider the master system to be the Duffing system

ẋr,1 = xr,2,

ẋr,2 = θr1xr,1 + θr2xr,1 − x3
r,1 + θr3(t). (9.18)

With θr1 = 1.1, θr2 = −0.4 and θr3(t) = 1.8cos(1.8t), the system generates a chaotic

orbit seen in Figure 9.1.

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0
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2

3

x
r,1

x r,2

Figure 9.1. Chaotic Orbit of the Duffing System (xr,1 = 0, xr,2 = 0.)

The slave system is

ẋ1 = x2,

ẋ2 = θ1x1 + θ2x2 − x3
1 + θ3(t) + u(t), (9.19)

where θ1 = 1, θ2 = −0.25 and θ3(t) = 0.3 cos t. In the example, T1 = 2π/1.8 and

T2 = 2π. We treat the problem as with different periods, though a unified period

T = 3.6π exists. The learning process will be delayed by using a larger period.

Without any control, i.e., u = 0, the slave system also generates a chaotic orbit

shown in Figure 9.2.
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Figure 9.2. Chaotic Orbit of the slave System without controller (x1 = 0, x2 = 0.)

Figure 9.1 and Figure 9.2 show that the two systems have the different chaotic

orbit. Our objective is to design a controller u(t) such that the chaotic orbit of

the slave system will be synchronized to the master system. Based on the learning

control design given in Section 3, the simulation results are given in the following.

Figure 9.3 and Figure 9.4 show the states of slave system after 10−th periods and

50−th periods respectively.
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Figure 9.3. Chaotic Orbit of the slave System after 10−th period.

It can be seen that the orbit of Figure 9.4 is almost the same as Figure 9.1. Figure

193



CHAPTER 9. MULTI-PERIOD REPETITIVE LEARNING CONTROL WITH APPLICATION TO
CHAOTIC SYNCHRONIZATION

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

x
1
(t)

x 2(t)

Figure 9.4. Chaotic Orbit of the slave System after 50−th period.

9.5 displays the tracking error σ. In the figure, |σi|sup is used to record the maximum

absolute tracking error during the i−th period.
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Figure 9.5. Tracking Error σ(t) Convergence

Finally, to show the advantage of the mixed parameter updating law, the periodic

updating law is applied to the time invariant parameters θr1 and θ1. The tracking

error is shown in the Figure 9.6. Comparing with the preceding results, the effec-

tiveness of the new learning control method in the synchronization is immediately

obvious.
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Figure 9.6. Tracking Error σ(t) for the periodic updating law applied to the time

invariant parameters θr1 and θ1

9.5 Conclusion

A learning control approach for synchronization of two uncertain chaotic systems

was presented. Global stability and asymptotic synchronization have been achieved

for chaotic systems with both time-varying and time invariant parametric uncer-

tainties. The validity of the new approach is confirmed through theoretical analysis

and numerical simulations.
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Chapter 10

Conclusions and Future Research

10.1 Conclusions

In this thesis, several learning control approaches are presented for linear and non-

linear dynamic systems. The contribution of this research work is to investigate

and analyze learning control, disclose the inherent nature of learning control, and

therefore facilitate the design of learning control.

The objective of direct learning is to generate the desired control profile for a newly

switched system without any feedback, even if the system may have uncertainties.

A DLC scheme is achieved by exploring the inherent relationship between any two

systems before and after a switch. In Chapter 2, a DLC approach for a class of

switched systems has been proposed. The approach is applicable to a class of

linear time varying, uncertain, and switched systems, when the trajectory tracking

control problem is concerned. Furthermore, singularity problem and trajectory

switch problem are also considered.

After the formalization by Arimoto, iterative learning control has attracted in-

creased interesting for systems with repetitive operation. However, the early re-
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searches have designed a iterative learning control system in the presence of input

nonsingularity. In Chapter 3, two kinds of ILC approaches have been presented by

adding a forgetting factor and adopting a time varying learning gain to deal with

input singularities problem. The proposed ILC approaches ensure a convergent

control input sequence approaching to a unique fixed point based on Banach fixed

point theorem. In the presence of the first type of singularities, the fixed point

guarantees that the system output enters and remains uniformly in a designated

neighborhood of the target trajectory. While in the presence of the second type of

singularities, the tracking error is bounded by a class K function of the designated

neighborhood.

In Chapter 4, the attention has been concentrated on exploring the possibility of

designing an ILC scheme for systems without a priori knowledge of the control

direction. By incorporating a Nussbaum-type function, a new learning control

mechanism has been constructed with both differential and difference updating

laws. The new learning control mechanism can warrant a L2
T convergence of the

tracking error sequence along the iteration axis, in the presence of time-varying

parametric uncertainties and local Lipschitz nonlinearities.

A constructive function approximation approach has been proposed for adaptive

learning control which handles finite interval tracking problems in Chapter 5. Un-

like the well established adaptive neural control which uses a fixed neural network

structure as a complete system, in the method the function approximation network

consists of a set of bases and the number of bases can be increased when learning

repeats. The nature of basis allows the continuously adaptive tuning or learning of

parameters when the network undergoes a structure change, consequently offers the

flexibility in tuning the network structure. The expansibility of the basis ensures

the function approximation accuracy, and removes the processes in pre-setting the

network size. Two classes of system unknown nonlinear functions, either in L2(R)
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or a known upperbound, are taken into consideration. With the help of Lyapunov

method, the existence of solution and the convergence property of the proposed

adaptive learning control system, are analyzed rigorously.

Initial conditions, or initial resetting conditions, play a fundamental role in all

kinds of iterative learning control methods. In Chapter 6, five different initial con-

ditions have been studied to disclose the inherent relationship between each initial

condition and corresponding learning convergence (or boundedness) property. The

ILC approach under consideration is based on Lyapunov theory, which is suitable

for plants with time varying parametric uncertainties and local Lipschitz nonlin-

earities.

A new RLC approach has been developed for systems with unknown periodic pa-

rameters in Chapter 7. With mathematical rigorousness the existence of solution

and learning convergence are proved. Robustifying the nonlinear learning con-

trol with projection and forgetting factor has also been exploited in a systematic

manner via the Lyapunov-Krasovskii functional approach.

In Chapter 8, an RLC approach has been proposed to deal with periodic tracking

tasks for nonlinear dynamical systems with non-parametric uncertainties. Three

fundamental issues are addressed associated with the new learning control method-

ology: the existence of the solution, learning convergence property and robustifi-

cation, which are indispensable for the new learning control framework. Applying

the existence theorem of the differential difference equation of neutral type, and

using Lyapunov-Krasovskii functional, the existence of solution and the learning

convergence can be proven rigorously. To enhance the robustness of the repetitive

learning control, two kinds of robustification methods are developed with projec-

tion and damping respectively to ensure the boundedness of the learning signals.

A further extension of RLC to more general nonlinear systems with unmatched
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uncertainties has been also exploited.

As an application, a learning control approach for synchronization of two uncertain

chaotic systems has been presented in Chapter 9. Global stability and asymptotic

synchronization have been achieved for chaotic systems with both time-varying and

time invariant parametric uncertainties.

10.2 Suggestions for the Future Research

Past research activities have laid a foundation for the future work. Based on the

prior research, the following problems deserve further consideration and investiga-

tion.

1. From Chapter 3 and Chapter 4, it is known that contraction mapping method

is a systematic way of analyzing learning convergence based on the global

Lipschitz condition and composite energy function based ILC convergence

analysis is widely applied to nonlinear systems. It is worth to note that the

contraction mapping based learning enjoys a geometric convergence speed,

which is far better than the asymptotic convergence of energy function based

learning. Can the two methods be combined together to improve the conver-

gence effect? For instance, the simplest idea is to adopt energy method for a

nonlinear system first, then switch to contraction mapping method when the

tracking error enters or lies in a neighborhood. However it is not clear how to

describe and estimate the range of the neighborhood, and how to deal with

the relative degree problem.

2. In Chapter 5, Chapter 7 and Chapter 8, the tracking problem for a class

of nonlinear dynamic systems with either parametric uncertainty or non-

parametric uncertainty have been studied based on Lyapunov-Krasovskii
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functional method and constructive function approximation. Are there any

other analytic approaches better solve the problem?

3. In contraction mapping method, can the transient response of the system in

time domain be discussed?

4. Can CEF method be extended to deal with non-affine dynamic systems?

5. The convergence speed of contraction mapping method based learning has

been calculated in the previous works, then can the convergence speed of

Lyapunov-Krasovskii functional method based learning be estimated?

6. For discrete-time systems, there is a lot of work done in the field of contraction

mapping based learning. What is the discrete-time version of Lyapunov-

Krasovskii functional method based learning?

7. In the previous Chapters, Lyapunov-Krasovskii functional method based learn-

ing requires the states be physically measurable. To solve the output tracking

without using the system state information, learning control needs to combine

with state estimation. In such case, non-minimum phase will be an obstacle.

8. In fact, learning control that study at present is based on the numerical

approximation, and are not able to give an analytic expression, even if the

learning converges. Whether an analytic function can be found iteratively to

yield an appropriate control is a highly challenging problem.

9. Can the learning control be merged with other types of learning methods,

such as neural learning, statistical learning, machine learning, etc, to come

up with a new paradigm of intelligent control system theory?

There are still many open problems in the area of learning control, waiting for us

to explore and solve.
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Appendix A

A.1 Proof of Lemma 2.1

Note that

ΦΓ =




φ1

...

φn




[
γ1 · · · γn

]

=




φ1γ1 · · · φ1γn

...
. . .

...

φnγ1 · · · φnγn




=




γT
1φ

T
1 · · · γT

nφ
T
1

...
. . .

...

γT
1φ

T
n · · · γT

nφ
T
n




=




γT
1

0

...

0




[
φT

1 0 · · · 0

]
+ · · · +




γT
n

0

...

0




[
0 0 · · · φT

1

]

...

+




0

0

...

γT
1




[
φT

n 0 · · · 0

]
+ · · · +




0

0

...

γT
n




[
0 0 · · · φT

n

]
.

According to the definition of Γjk and Φjk in Lemma 3.1, the proof is completed.
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A.2 Proof of Lemma 2.2

Using the elementary transformation of exchanging rows, we can transform the

matrix R into the following form:

R̃ =




R11 R12

...
...

Rj1 Rj2

...
...

Rn1 Rn2




, (A.1)

where

R11 =




dT
1,1 · · · dT

n,1 · · · 0 · · · 0

...
. . .

...
...

...
. . .

...

dT
1,N · · · dT

n,N · · · 0 · · · 0



,

R12 =




eT
1,1 · · · eT

n,1 · · · 0 · · · 0

...
. . .

...
...

...
. . .

...

eT
1,N · · · eT

n,N · · · 0 · · · 0



,

...

Rn1 =




0 · · · 0 · · · dT
1,1 · · · dT

n,1

...
. . .

...
...

...
. . .

...

0 · · · 0 · · · dT
1,N · · · dT

n,N



,

Rn2 =




0 · · · 0 · · · eT
1,1 · · · eT

n,1

...
. . .

...
...

...
. . .

...

0 · · · 0 · · · eT
1,N · · · eT

n,N



.

It is clear that the singularity of the matrix R̃ ∈ Nn×Nn is equivalent to the

singularity of the matrix R1 ∈ N ×N . Since the elementary transformation of

matrix does not change the rank for the matrix, the rank of the matrix R is

equivalent to the rank of the matrix R1.
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A.3 Proof of Proposition 6.1

Choose Lyapunov functional

V0(t) =
1

2
e2
0(t) +

1

2

∫ t

0

φ2
0(τ )dτ. (A.2)

The upper right hand derivative of V0 is

V̇0 = e0ė0 +
1

2
φ2

0

= −ke2
0 − φ0ξ0e0 +

1

2
φ2

0.

Noticing that θ̂0 = −ξ0e0, V̇0 becomes

V̇0 = −ke2
0 + φ0θ̂0 +

1

2
φ2

0

= −ke2
0 −

1

2
φ2

0 + φ0θ.

Using Young’s inequality, for any c > 0 we have φ0θ ≤ cφ2
0 + 1

4c
θ2. Let 0 < c < 1

2
,

V̇0 ≤ −ke2
0 − (

1

2
− c)φ2

0 +
1

4c
θ2.

Since θ(t) ∈ C[0, T ], there exists a finite bound θm ≥ θ(t) for any t ∈ [0, T ]. Thus

V̇0 is negative definite outside the region

{(e0, φ0) ∈ D | ke2
0 + (

1

2
− c)φ2

0 ≤
1

4c
θ2

m}

which specifies the bound of V0(t) in the finite interval [0, T ]. The boundedness of

V0(t) implies the boundedness of e0, in the sequel the boundedness of x0, ξ0, and

θ̂0 = −ξ0e0. 2

A.4 Proof of Theorem 6.1

Note that conditions a)-c) are special cases of the condition d), thus we need only

to consider the condition d). We will prove this property by the Mathematical

Induction method.
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Define the following Lyapunov functional

V (ei, φi, φi−1, t) =
1

2
e2

i (t) +
1

2

∫ t

0

φ2
i (τ )dτ +

1

2

∫ T

t

φ2
i−1(τ )dτ. (A.3)

The upper right hand derivative of V (ei, φi, φi−1, t) is

V̇ (ei, φi, φi−1, t) = eiėi +
1

2
(φ2

i − φ2
i−1). (A.4)

Substituting the closed-loop error dynamics (6.6), the first term on the right hand

side of (A.4) is

eiėi = −φiξiei − ke2
i . (A.5)

Next substituting the parametric learning law (6.5) into the second term on the

right hand side of (A.4), using the relations (a− b)2− (a− c)2 = −2(a− b)(b− c)−

(b− c)2 and the property (θ − θ̂)2 ≥ (θ − proj(θ̂))2 for any θ̂, we have

1

2
(φ2

i − φ2
i−1) =

1

2
[(θ− θ̂i)

2 − (θ − θ̂i−1)
2]

≤ 1

2
[(θ− θ̂i)

2 − (θ − proj(θ̂i−1))
2]

= −(θ − θ̂i)(θ̂i − proj(θ̂i−1)) −
1

2
(θ̂i − proj(θ̂i−1))

2

= φiξiei −
1

2
ξ2
i e

2
i . (A.6)

Clearly φiξei appears in (A.5) and (A.6) with opposite signs. Therefore, the upper

right hand derivative of V (ei, φi, φi−1, t) is

V̇ (ei, φi, φi−1, t) = −ke2
i −

1

2
ξ2
i e

2
i < 0. (A.7)

Integrating the derivative of V , using the negativeness of V̇ , the boundedness of ei

and θ̂i can be derived if V (ei(0), φi(0), φi−1(0)) is bounded, i.e.

V (ei(t), φi(t), φi−1(t), t) = V (ei(0), φi(0), φi−1(0), 0) +

∫ t

0

V̇ dt

≤ V (ei(0), φi(0), φi−1(0), 0). (A.8)

Note that

V (ei(0), φi(0), φi−1(0), 0) =
1

2
e2

i (0) +
1

2

∫ T

0

φ2
i−1(τ )dτ
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and ei(0) is always bounded by the initial condition d).

Let us look at the first iteration i = 1,

V (e1(0), φ1(0), φ0(0), 0) =
1

2
e2
1(0) +

1

2

∫ T

0

φ2
0(τ )dτ

is bounded because φ0(t) is bounded according to Proposition 1. In the sequel

V (e1(t), φ1(t), φ0(t), t) ≤ V (e1(0), φ1(0), φ0(0), 0) is bounded. From the parametric

learning law (6.5), the boundedness of e1 warrants the boundedness of θ̂1.

Now assume that (ei−1, θ̂i−1) are bounded for all t ∈ [0, T ], so is V (ei(0), φi(0), φi−1(0), 0).

From (A.8), V (ei(t), φi(t), φi−1(t), t) is bounded. Similarly, from the boundedness

of ei and the parametric learning law (6.5) we can derive the boundedness of θ̂i.

By the Mathematical Induction, the quantities (ei, θ̂i) are bounded for any i ≥ 0.

2

A.5 Proof of Proposition 6.2

The difference between Vi and Vi−1 is

∆Vi = Vi − Vi−1

=
1

2
e2

i +

∫ t

0

(φ2
i − φ2

i−1)dτ −
1

2
e2

i−1. (A.9)

Substituting the control law (6.4) and the error dynamics (6.6), the first term on

the right hand side of (A.9) is

1

2
e2

i =

∫ t

0

eiėidτ +
1

2
e2

i (0)

=

∫ t

0

(−φiξiei − ke2
i )dτ +

1

2
e2

i (0).

Similarly as (A.6), the second term on the right hand side of (A.9) can be expressed

as

1

2

∫ t

0

(φ2
i − φ2

i−1)dτ ≤
∫ t

0

(φiξiei −
1

2
ξ2
i e

2
i )dτ.
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Therefore, the difference becomes

∆Vi ≤ −
∫ t

0

ke2
idτ −

1

2

∫ t

0

ξ2
i e

2
idτ −

1

2
e2

i−1(t) +
1

2
e2

i (0). (A.10)

Applying (A.10) repeatedly we have

Vi(t) = V0(t) +

i∑

j=1

∆Vj

≤ V0(t) +
1

2

i∑

j=1

e2
j (0) −

i∑

j=1

∫ t

0

ke2
jdτ −

1

2

i−1∑

j=1

e2
j (t),

consequently

lim
i→∞

Vi(t) ≤ V0(t) + lim
i→∞

1

2

i∑

j=1

e2
j (0) − lim

i→∞

i∑

j=1

∫ t

0

ke2
jdτ − lim

i→∞

1

2

i−1∑

j=1

e2
j(t).

2

A.6 Adaptive Robust Control Design

Consider the following 2nd order cascaded dynamic system

ẋ1 = x2 + η1(t,x1),

ẋ2 = u+ η2(t,x), (A.11)

Define new coordinates z1 = x1−xr,1 and z2 = x2−u1, where the fictitious control

is

u1 = −(α1 + q1)z1 + xr,2 − S(β̂1z1)β̂1 (A.12)

with q1 > 0. β̂1 is the estimation of β1 and β1 is the upper bound of ηr1.

Design

˙̂
β1 = |z1| +

∣∣∣∣
∂u1

∂x1
z2

∣∣∣∣− γ1β̂1, (A.13)

221



APPENDIX A.

where γ1 > 0 is a damping coefficient.

Design the actual controller

u = f2 − z1 − q2z2 − S(ᾱ2z2)ᾱ2 − S
(
∂u1

∂x1
β̂1z2

)
∂u1

∂x1
β̂1 − S(β̂2z2)β̂2

(A.14)

with q2 > 0,

f2 =
∂u1

∂t
+

∂u1

∂xr,1
xr,2 +

∂u1

∂xr,2
s(t,xr, r) +

∂u1

∂β̂1

˙̂
β1 +

∂u1

∂x1
x2,

and

ᾱ2 =

(
α2 + α1

∣∣∣∣
∂u1

∂x1

∣∣∣∣
)
|∆x1| + α

′

2|∆x2|.

The updating law is

˙̂
β2 = |z2| − γ2β̂2, (A.15)

with γ2 > 0.

Theorem A.1. For system (A.11), the control law (A.14), the adaptation law

(A.13) and (A.15) guarantee the finiteness of z1 and z2 in the large, and the tracking

error bound of z1 is

|z1| ≤

√
6δ + γ1β

2
1 + γ2β

2
2

2q1
. (A.16)

Proof. The proof consists of two steps.

Step 1.

From (A.11), we have

ż1 = ẋ1 − ẋr,1

= x2 + η1 − xr,2

= z2 + u1 + η1 − xr,2. (A.17)
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Substituting the fictitious control u1 (A.12) into (A.17) yields

ż1 = z2 − (α1 + q1)z1 + η1 − S(β̂1z1)β̂1

= z2 − (α1 + q1)z1 − S(β̂1z1)β̂1 + (η1 − ηr,1) + ηr,1. (A.18)

Define a Lyapunov function candidate below

V1 =
1

2
z2
1 +

1

2
(β1 − β̂1)

2. (A.19)

Using (A.18), adaptation law (A.13) and Property 8.1, the derivative of V1 is

V̇1 = z1ż1 − (β1 − β̂1)
˙̂
β1

= z1[z2 − (α1 + q1)z1 − S(β̂1z1)β̂1 + (η1 − ηr,1) + ηr,1]− (β1 − β̂1)
˙̂
β1

= z1z2 − (α1 + q1)z
2
1 + (η1 − ηr,1)z1 −S(β̂1z1)β̂1z1 + ηr,1z1 − (β1 − β̂1)

˙̂
β1

≤ z1z2 − q1z
2
1 − S(β̂1z1)β̂1z1 + β1|z1| − (β1 − β̂1)

˙̂
β1

= z1z2 − q1z
2
1 − S(β̂1z1)β̂1z1 + β̂1|z1| − β̂1|z1| + β1|z1| − (β1 − β̂1)

˙̂
β1

≤ z1z2 − q1z
2
1 + |β̂1z1|[1 − |S(β̂1z1)|]− (β − β̂1)(

˙̂
β1 − |z1|)

≤ z1z2 − q1z
2
1 + δ − (β1 − β̂1)(

˙̂
β1 − |z1|). (A.20)

Step 2.

From (A.11) and (A.12), we have

ż2 = ẋ2 − u̇1

= u+ η2 −
(
∂u1

∂t
+
∂u1

∂x1
ẋ1 +

∂u1

∂xr,1
xr,2 +

∂u1

∂xr,2
s(t,xr, r) +

∂u1

∂β̂1

˙̂
β1

)

= u−
(
∂u1

∂t
+

∂u1

∂xr,1

xr,2 +
∂u1

∂xr,2

s(t,xr, r) +
∂u1

∂β̂1

˙̂
β1

)
+ η2 −

∂u1

∂x1

(x2 + η1)

= u− f2 − g1ηr,1 + ηr,2

−∂u1

∂x1
(η1 − ηr,1) + [η2 − η2(t, xr,1, x2)] + [η2(t, xr,1, x2) − ηr,2]

= u− f2 − g1ηr1 + ηr2 −
∂u1

∂x1
(η1 − ηr,1)

+[η2 − η2(t, xr,1, x2)] + [η2(t, xr,1, x2) − ηr,2],

(A.21)
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where g1 = ∂u1

∂x1
and

f2 =
∂u1

∂t
+

∂u1

∂xr,1

xr,2 +
∂u1

∂xr,2

s(t,xr, r) +
∂u1

∂β̂1

˙̂
β1 +

∂u1

∂x1

x2

are known.

Substituting (A.14) into (A.21) yields

ż2 = −z1 − q2z2 − S
(
β̂1g1z2

)
β̂1g1 − g1ηr1 − S(β̂2z2)β̂2 + ηr2 − S(ᾱ2z2)ᾱ2

−∂u1

∂x1
(η1 − ηr,1) + [η2 − η2(t, xr,1, x2)] + [η2(t, xr,1, x2) − ηr,2] (A.22)

Define the Lyapunov functional below

V2 = V1 +
1

2
z2
2 +

1

2
(β2 − β̂2)

2. (A.23)

The upper right hand derivative of V2 is

V̇2 = V̇1 + z2ż2 − (β2 − β̂2)
˙̂
β2. (A.24)

Using (A.22) and Property 8.1, we have

z2ż2 = −z1z2 − q2z
2
2 − S(β̂1g1z2)β̂1g1z2 − g1ηr1z2 − S(β̂2z2)β̂2z2

+ηr2z2 −S(ᾱ2z2)ᾱ2z2 −
∂u1

∂x1

(η1 − ηr,1)z2

+[η2 − η2(t, xr,1, x2)]z2 + [η2(t, xr,1, x2) − ηr,2]z2

≤ −z1z2 − q2z
2
2 − S(β̂1g1z2)β̂1g1z2 + β1|g1z2| − S(β̂2z2)β̂2z2 + β2|z2|

+ᾱ2|z2| − S(ᾱ2z2)ᾱ2z2

≤ −z1z2 − q2z
2
2 − S(β̂1g1z2)β̂1g1z2 + β̂1|g1z2| − β̂1|g1z2| + β1|g1z2|

−S(β̂2z2)β̂2z2 + β̂2|z2| − β̂2|z2| + β2|z2| + δ

≤ −z1z2 − q2z
2
2 + (β1 − β̂1)|g1z2| + (β2 − β̂2)|z2| + 3δ (A.25)

Substituting (A.20) and (A.25) into (A.24) yields

V̇2 ≤ −q1z2
1 − q2z

2
2 + 3δ − (β1 − β̂1)(

˙̂
β1 − |z1| − |g1z2|)

−(β2 − β̂2)(
˙̂
β2 − |z2|) (A.26)
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Note the adaptation law (A.13) and learning law (A.15), we have

V̇2 ≤ −q1z2
1 − q2z

2
2 + 3δ + γ1β̂1(β1 − β̂1) + γ2β̂2(β2 − β̂2)

≤ −q1z2
1 − q2z

2
2 + 3δ − γ1(

1

2
β̂2

1 − β̂1β1) − γ2(
1

2
β̂2

2 − β̂2β2)

= −q1z2
1 − q2z

2
2 −

γ1

2
(β̂1 − β1)

2 − γ2

2
(β̂2 − β2)

2

+3δ +
γ1

2
β2

1 +
γ2

2
β2

2 (A.27)

The following proof is the same as that of Theorem 8.4.

A.7 Proof of Property 9.1

The upper right-hand derivative of the integral is

lim
∆t→0+

sup

∫ t+∆t

t+∆t−T

θ2(τ )dτ −
∫ t

t−T

θ2(τ )dτ

∆t
. (A.28)

Note the fact

∫ t+∆t

t+∆t−T

θ2(τ )dτ =

∫ t−T

t−T+∆t

θ2(τ )dτ +

∫ t

t−T

θ2(τ )dτ +

∫ t+∆t

t

θ2(τ )dτ

and substitute into (A.28), we have

lim
∆t→0+

sup

∫ t+∆t

t+∆t−T

θ2(τ )dτ −
∫ t

t−T

θ2(τ )dτ

∆t

= lim
∆t→0+

sup

∫ t+∆t

t

θ2(τ )dτ −
∫ t−T+∆t

t−T

θ2(τ )dτ

∆t

= θ2(t)− θ2(t− T ). (A.29)

A.8 Proof of Property 9.2

From Property 9.1, the upper right-hand derivative of

∫ t

t−T

θ̃2(τ )dτ
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is

θ̃2(t) − θ̃2(t− T ).

Using the relation (9.4),

θ̃2(t− T ) = [θ(t− T ) − θ̂(t− T )][θ(t− T ) − θ̂(t− T )]

= [θ(t) − θ̂(t) + f(t)][θ(t)− θ̂(t) + f(t)]

= θ̃2(t) + 2f(t)θ̃(t) + f2(t). (A.30)

Substituting the above relation into (A.30) yields

−2θ̃(t)f(t) − f2(t).
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