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Summary 

 
In this thesis, selected topics on advanced modern electron devices have been 

studied, including both active devices and passive devices. Their applications in 

different kinds of circuit applications are also discussed. 

In part I, a systematic study of Negative Bias Temperature Instability (NBTI) in p-

MOSFETs with ultra-thin SiON gate dielectric is reported. The study shows that the 

conventional measurement methods which have been used over the past years 

seriously underestimate Nit due to passivation of Nit during measurement. By using the 

fast pulsed method, a fast Dynamic NBTI (DNBTI) component is distinguished from 

the conventional slow one for the first time. Evidence has been shown that this 

component is due to trapping and de-trapping of hole traps Not in SiON. The 

accumulative degradation increases with increasing stress frequency. A model 

describing the phenomenon has been developed and the model simulations are in 

excellent agreement with all the experiments. The impact of fast DNBTI on device 

lifetime and circuit applications has been re-evaluated in the light of this new finding. 

In part II, researches have been done on proton implanted high quality inductor as 

well as high-κ MIM capacitor, showing promising characteristics for future ULSI 

application. RF and analog circuits using advanced passive devices are also designed 

and the simulation results show improved circuit performance. 
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Chapter One  

Introduction 

 

1.1 MOSFET scaling and issues with gate dielectric scaling down 

 
The modern Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) was 

successfully demonstrated in the 1960’s, when the silicon technology was mature 

enough to realize MOS gate stacks based on the thermal SiO2-Si framework. Large-

scaled commercialization of MOS technology took place from then on. In 1963, the 

complementary MOSFET (CMOS) was proposed [1]. It soon emerged ast the work-

horse in the semiconductor industry due to its low power consumption and high 

packing density. It still prevails as the technology of choice for today’s ultra-large-

scale-integration (ULSI) applications. 

For the goals of reducing gate delay, increasing operating frequency, increasing 

transistor density and reducing power dissipation, the modern MOSFETs has been 

continuously downsized based on a set of guidelines established over the past four 

decades. The basic scaling parameters include channel length L, power supply voltage 

Vdd, threshold voltage Vth, and gate oxide thickness tox. According to Moore’s law [2], 

for every three years, the device dimension is reduced by approximately 2/1 , the 

chip size is increased by about 1.5 times, and the number of transistors in a chip is 

increased by a factor of four. By reducing the device dimensions, in particular the 
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transistor gate length the amount of current supplied by a transistor is increased. 

Higher current allows the circuits to switch more quickly, leading to faster 

computations. In addition, the reduction in transistor size also allows more transistors 

to be integrated on a single chip. Consequently the complexity and functionality of ICs 

can be increased while keeping the cost of the circuit fabrication low. This in turn 

constantly expands the realm of possible applications of semiconductor products. 

On the other hand, with the reduction in gate length, gate is losing its control over 

the channel because of a channel control competition from the drain side.  To keep the 

pace with drive current demands and the better gate control over channel, the gate 

dielectric thickness must also be scaled down in accordance with the gate length. As 

can be seen from Fig. 1.1, gate dielectric thickness continues to shrink aggressively to 

offer higher drive current and gate capacitance required by scaled MOSFETs. 

 

Fig.1-1 Decrease in gate EOT with device scaling. (Extracted from ITRS [3]).  
 

Though promising for high performance MOSFETs, ultra-thin gate dielectric layer 

leads to critical issues in the following areas, namely: (i) Direct tunneling current (DT); 

(ii) Boron penetration and gate poly-silicon depletion; (iii) Quantum mechanical 
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effects; (iv) Integration issue and manufacturability; and, (v) Oxide reliability. These 

issues pose serious challenges for device engineering and could become significant 

hurdles for further MOSFET scaling. 

  

1.2 Oxide reliability and motivation 

 
Oxide reliability is one of the most important issues introduced by gate dielectric 

scaling down. It has received increasing attention since it causes degradation and 

failures in advanced ULSI devices, and therefore, is a serious challenge to the 

downscaling trend of oxide thickness and MOSFET size.  

A critical reliability issue that is associated with dielectric scaling is negative bias 

temperature instability (NBTI). In recent years, it has been widely recognized that 

NBTI is the most serious reliability issue in the ultra-thin SiO2 or SiON gate dielectric 

p-channel MOSFETs (p-MOSFETs) [4] [5]. It could increase the amplitude of the 

threshold voltage (ΔVth) by as much as 50 – 100mV in a p-MOSFET over a period 

ranging from months to years, depending on the operating condition. As a result, it 

would be more difficult to turn on the p-MOSFET, causing a significant reduction in 

circuit speed and even logical mal-function. With these concerns, the reliability of 

ultra-thin gate dielectrics has become one of the limiting factors for future ULSI 

development. 

As a result of the NBTI issue in the p-MOSFET, an evolutionary change in the 

lifetime limiting factor for CMOS technology has occurred in the past few years. 

Traditionally, for 0.35μm technology and above, hot-carrier injection (HCI) induced 

degradation of n-channel MOSFETs limits the lifetime of CMOS circuitry, and 
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therefore considerable work has been carried out to understand the mechanism 

responsible for defect generation in n-MOSFETs under HCI stress. However, with 

aggressive scaling of the thickness of gate oxide film into the direct-tunneling regime, 

NBTI degradation in p-MOSFETs, instead of the HCI degradation in n-MOSFETs, 

limits the CMOS lifetime [5]. Therefore, investigation into NBTI issue becomes 

paramount especially when the gate dielectric thickness is reduced to barely a few 

atomic layers. 

Another challenge is that the NBTI reliability physics of ultra-thin gate dielectric 

becomes more complicated when continued scaling requires material-based 

modification like incorporation of nitrogen into the thin SiO2 film to form silicon 

oxynitride (SiON) or even totally change the SiO2 based dielectric material to high-κ 

material, for instance, HfO2. Many existing NBTI models for thick pure SiO2 might 

then be challenged [6]. Hence, it is essential that a systematic study on this topic could 

be carried out as soon as possible. 

Significantly, G. Chen et al. [7] reported a recovery effect of NBTI stress which 

prolongs the device lifetime in real application. A debate on what is the origin of this 

recovery effect was then raised. G. Chen et al. [7] and also some other groups claimed 

that the Vth recovery in the passivation phase is due to the passivation of SiO2/Si 

interface traps [8]-[12]. On the contrary, V. Huard et al. [13] argued that the transient 

recovery of Vth in the passivation phase is due to de-trapping of hole traps in the 

dielectric.  To clarify this conflict is demanded not only for physics study, but also has 

important implications for real IC application and further studies on high-κ  dielectric 

MOSFETs. 

All the above factors form the major motivation of this research work, which 

addresses the issue of NBTI in the ultra-thin gate dielectric MOSFETs. 
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1.3 Review of previous studies on NBTI in p-MOSFETs 

 
Researches on NBTI can be traced back to the very early days of MOS device 

development. In 1967, Deal et al. [14] found that both the interface trap density Nit and 

oxide charge density Nox increased after negative bias stress. The rates of increase of 

both Nit and Nox were very similar. In 1973, Goetzberger et al. reported the same 

observation using metal gate devices with 100 nm thick oxides, stressed at –106V/cm 

at 300°C [15]. Later on, many other research groups confirmed the observation that 

there is an equal growth of oxide charge (reflected by Vth shift) and surface trap density, 

which are independent of the NBTI stress field and temperature. Another common 

observation is that the generation of interface trap and positive oxide charge follow a 

power-law time dependence with the exponent having values in the range of 0.20 ~ 

0.25 [16]-[20]. To explain the interface trap generation, many researchers adopted the 

Si-H dissociation mechanism, which is a two-reaction model involving atomic 

hydrogen dimerization and hydrogen-interface reactions [21]. At that time, it is 

commonly acknowledged that the threshold voltage shift is only because of interface 

trap generation. Since the dielectric layer was so thick that no direct tunneling or FN 

tunneling could occur, no one took the bulk trap into consideration. 

Recently, Dynamic NBTI stress test is widely used to predict the device lifetime 

and to study the physical mechanisms of BTI degradation since it is more similar to the 

real device operation conditions. In the year of 2002, G. Chen et al. applied an AC 

stress on the gate to simulate an inverter’s operation conditions: switch on and off [22]. 

Consequently, they found that the Dynamic NBTI effect significantly prolongs the 

lifetime of p-MOSFETs operating in a digital circuit. As shown in Fig.1-2 [22], the 
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projected 10-year lifetime operating voltage V10Y is 1.2V for Dynamic NBTI stress, 

and is 0.9V for Static NBTI stress, which overestimates the degradation in real digital 

circuit operation. 

   
Fig.1-2 SNBTI and DNBTI lifetime projections for p-MOSFETs. The SNBTI stress 

overestimates the degradation in real digital operation. 
 

From then on, many groups started trying to do more researches on this DNBTI 

effect [23]-[26], not only on pure SiO2 dielectrics, but also other materials such as 

HfO2 based high-κ dielectric, Si3N4 etc.. 

With the advent of high-κ dielectric, more advanced measurement technologies [6] 

[27] are now being used in BTI research, especially for measuring the fast Vth shift. 

The Vth shift can no longer be ascribed to only the interface traps, but the charge 

trapping and de-trapping in the bulk dielectric layer [6], [27] also contributes to it. 

Fig.1-3 gives a comparison on ΔVth measured by fast and conventional DC methods on 

both n- and p-MOSFETs respectively, showing significant difference. 
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Fig.1-3 Comparison of measured ΔVth under DNBTI stress by fast and conventional 

DC methods on both n- and p-MOSFETs. 
 

A new reaction-diffusion model was proposed by M. A. Alam [8] to study the 

physics of frequency-dependent shift in transistor parameters due to NBTI. C. Shen et 

al. also made a frequency dependent model and explained the BTI frequency 

dependence of the slow traps by the –U property of these traps [6].  

However, there has been no research work using the fast measurement method to 

study on SiON dielectrics, which is widely be used in present day CMOS technology. 

Does SiON also have fast traps? If so, does it affect the circuit performance and device 

lifetime? These questions are to be discussed based on the experimental result. 

 

1.4 Major contribution of this work 

 
The followings are the major contributions of this work. 

1. For the first time, a systematic study on the impact of Nit measurement on Nit 

and Vth recovery has been done. 
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2. The recent debate in the slow DNBTI component measured by conventional 

DC method has been clarified. 

3. The fast DNBTI component measured by fast measurement method has been 

demonstrated and analyzed for the first time.  Device lifetime has been re-

evaluated based on the new results and its impact on circuit application has 

also been studied. 
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Chapter Two  

Measurement methods for NBTI 

Characterization 

 

2.1 Introduction of the conventional DC technique for Vth 

characterization 

 
The NBTI degradation of CMOS devices with conventional gate dielectrics is 

commonly studied using static (DC) measurement techniques. The Id−Vg curves are 

monitored by measure-stress-measure cycles with DC parametric measurement tools 

such as the HP4156 semiconductor parameter analyzer. The linear extrapolation (LE) 

method is widely used to extract threshold voltage (Vth) from measured Id−Vg curves. 

From the extracted ΔVth as stress time curves, the device stability degradation is 

investigated.  

Fig.2-1 illustrates the typical DC measurement waveform applied to the gate when 

interrupting the stress for measurement. Stress is stopped at time t1. Since parameter 

analyzer needs time to set up the measurement parameters, the measurement is actually 

started after a delay (t2-t1). At time t2, the gate voltage starts to scan from 0V to the 

device operation voltage (usually smaller than the stress voltage) and at the same time, 

the analyzer captures the Id−Vg information. This measurement period takes around 
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0.5sec or more. Then, also after a small delay, the stress is resumed at time t4. The 

whole measurement cycle from stopping stress to resuming stress takes around 1~2sec. 

0

2

t4t3t2

-V
g

Time

stress
stop stress

delay

measure
(~0.5s)

Stress
  Vg

resume stress

t1

 
Fig.2-1 Illustration of the conventional DC NBTI measurement cycle. 

 

However, since there is always a time delay, which is typically in the order of 

0.1−1 second, between the end of stress and the Id−Vg measurement for Vth extraction, 

using this method to extract the ΔVth characteristic is only able to observe the slow 

component in NBTI degradation.  

 

2.2 An advanced fast technique for Vth characterization 

 
Since the aggressive scaling of CMOS devices, the pure SiO2 gate dielectric is 

being driven to its physical limits. Alternative gate dielectrics, such as SiON and HfO2 

based materials, are currently being investigated extensively as a replacement for SiO2 

as a gate insulator. With the equivalent oxide thickness (EOT) scaling down, charge 
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trapping / de-trapping in these alternative gate dielectrics makes degradation and 

recovery in Vth significant even within a 1ms delay [1]–[4]. The conventional 

measurement method greatly underestimates the real Vth NBTI degradation. Though 

the Vth recovery during the short delay in conventional DC measurement method has 

long been thought negligible in devices with SiO2 as the gate dielectric, it must be 

taken into consideration in the investigation of SiON gate dielectric devices. Therefore, 

a fast technique is necessary to be developed in order to give more accurate analysis in 

SiON gate dielectric investigation. 

The measurement method developed by Kerber et al. has been widely used to 

evaluate the fast charging trapping in high-κ dielectrics [1]. The method setup is shown 

in Fig.2-2.  

 

 
Fig.2-2 Schematic drawing of measurement setup used for pulsed Id-Vg experiments 

in the μs range. 
 

A pulse generator is used to apply the gate voltage to the MOSFET. The 

oscilloscope monitors the gate voltage, and measures the voltage drop across the sense 

resistor R at the drain, from which one is able to extract the drain current by the 

following equation: 
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)
100

(100

L

d

d
d R

VmV
V

mVI
−

⋅=  ,      2.1 

where RL is the load of the inverter circuit. The pulsed Id-Vg measurement 

technique enables drive current measurements down to less than millisecond. More 

importantly, the time delay between stressing and sensing is significantly shrunk. 

However, this method brings some constraints for ultra-fast measurement. In this 

method, the drain voltage of the MOSFET under test is not a constant, but changes 

with the change of drain current. The parasitic capacitor C0 and Cgd are charged or 

discharged since the change of gate or drain voltage during the measurement, and this 

charging current distorts the measured drain current. To circumvent this problem, an 

improved pulsed Id−Vg measurement technique was developed by C. Shen et al [6], as 

shown in Fig.2-3. 

 

 

Fig.2-3 Schematic diagram of the setup used for improved pulsed Id-Vg measurement 
technique 

 

In this setup, an Op-Amp is inserted between the drain and source/substrate. Since 

the virtual short circuit property of Op-Amp (the two input terminals are forced to be 
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equal), the drain voltage of the MOSFET is fixed at Vds supplied by the voltage source. 

Therefore, there is no charging or discharging current flows through C0. A high-speed 

Op-Amp (OPA655) with 400MHz unity gain bandwidth is used to achieve fast 

measurement. 

As samples are measured in probe station environment, the Op-Amp circuit 

(enclosed by the dashed line in Fig.2-3) is mounted immediately above the probe 

holder. Probe holders are modified to make the wire connection from voltage source to 

the transistor source and drain terminal less than 10cm, so that the parasitic effects are 

minimized. All the transmission lines are 50Ω  co-axial cables, and cable 2 and 3 have 

the same length to minimize the difference in cable delay. The drain current is 

measured by the sense resistor R. Resistor R0 = R is used to ensure circuit stability 

when the MOSFET is off. The output voltage measured at the oscilloscope is related to 

the MOSFET drain current by: 

dsgddout VRIIV +⋅−= )( ,       2.2 

where R is the sense resistance, Vds is the drain voltage, and Igd is the current from 

gate to drain through the parasitic capacitor Cgd. The current Igd is caused by the fast 

transient at the gate and is given by: 

dt
dV

C
dt

dV
CI gs

gd
gd

gdgd ⋅=⋅= .      2.3 

In the measurement, the MOSFET is biased in linear region in Id−Vg measurements, 

and Cgd is given by: 

invdoverlapgd CCC
2
1

, += ,       2.4 

where Coverlap,d and Cinv are the capacitance of the drain overlap region and the 

inversion capacitance, respectively. 
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Fig.2-4 Id−Vg characteristics measured from a short-channel nMOSFET with SiON 

gate dielectric, with the Vg waveform shown in the inset.  
 

For short-channel devices, since Cgd is small, the corresponding Igd is much smaller 

than the drain current, and therefore the charging current through Cgd can be ignored. 

When a symmetric triangular pulse is applied at the gate as shown in the inset of Fig.2-

4, Id−Vg curve can be measured at both the up-trace and down-trace of the pulse. In the 

two cases, dVg/dt are of the same magnitude but of opposite polarity. For nMOSFET 

with short channel length L = 0.1μm, the Id−Vg curves measured in the up-trace and 

down-trace (1μs measurement time) of Vgs both coincide with that from DC 

measurement, as shown in Fig.2-4, which indicates that the effect of charging current 

through Cgd with a measurement time down to 1μs is negligible. 

This improved pulsed Id-Vg measurement method is used to evaluate the charge 

trapping in ultra-thin SiON gate dielectric devices. It distinguishes the fast and slow 

NBTI component in SiON [4]. The 1μs measurement time is shown to be fast enough 
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for this particular application. Results of the fast measurement will be discussed in 

Chapter 4.  

 

2.3 Improved Charge Pumping and DCIV techniques for Nit 

characterization on thin gate dielectric 

 
The charge-pumping (CP) technique is a well-known experimental approach for 

assessing the interface-state density of MOSFET’s [5] [6]. Using this technique, it has 

been possible to measure the spatial variation of hot carrier induced Dit near the drain 

[7]-[9]. The pulses applied to the gate of the MOSFET can be square, triangular or 

sawtooth waves. The basic arrangement for the conventional CP measurements is 

presented in Fig.2-5.  

 

Fig.2-5 Schematic diagram for Charge Pumping measurement setup 
 

An HP8110 pulse generator is used to supply the gate pulses, and a small reverse 

bias is applied to the source and drain of the MOSFET. The substrate current of the 

device can be measured by an HP4156 parameter analyzer with varying pulse base 

level to drive the silicon surface from accumulation to inversion, while the amplitude 

of the pulses is kept constant.  
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Fig.2-6 shows the measurement result on a long channel device with a thick EOT 

around 20nm [10]. The pulses added on gate were trapezoidal in shaped, and three 

different rise and fall times of the pulse were used in the measurements. As shown in 

this figure, the leakage gate current is very low during the measurement even when the 

amplitude of gate voltage exceeds 6V, hence it is generally thought to be accurate 

when measuring the devices with EOT>30Å. 

 

 
 

Fig.2-6 Measured Icp on a long channel thick dielectric device by the conventional 
Charge-Pumping measurement. 

 

However, scaling of sub-l00nm device nowadays needs a tox in the range of 10-

15Å, and as predicted from the roadmap, this thickness is even reaching the range of 

<10Å in the next couple of years. It is well known that two pronounced effects occur 

as a result of the gate oxide scaling below 30Å, i.e., direct tunneling gate leakage and 

the quantum mechanical effect [11] [12]. Since large gate leakage current occurs 

during the measurement, this conventional Charge-Pumping measurement becomes 

inaccurate for the tox<2nm. With the gate leakage current becoming dominant for 

tox<1.3nm, it is even impossible to observe the peak Icp by the conventional Charge-
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Pumping method. Then one faces a severe problem on how to measure the oxide 

quality with thickness below 20Å, in particular the interface traps Nit.  

An  improved method – high-low frequency CP method, derived from the 

conventional charge pumping method was demonstrated by S. S. Chung et al. [13] for 

accurate determination of the interface traps in ultra-thin dielectric devices. 

 
Fig.2-7 Icp measured by high-low frequency CP method. 

 

High-low frequency CP method is shown in Fig.2-7. First, the Icp for various 

frequencies was measured. Curve (1) was measured by a high frequency, while group 

(2) curves were measured by several low frequencies and are considered as the leakage 

current. Using curve (1) subtract group (2) curves can have the correct Icp (group 3) 

without leakage component. Since the charge pumping current is proportional to the 

measurement frequency, one is now able to extract the Nit parameter from the Icp 

curves after low frequency calibration.   

Another method commonly used to characterize Nit is direct-current current–

voltage (DCIV) technique [14].  

Fig.2-8 illustrates the DCIV measurement set-up for a p-MOSFET. The drain p+, n- 

well and p- substrate form a vertical BJT transistor. Since the base current Ib comes 
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from the recombination current at the interface traps generated during operation, it is 

directly proportional to Nit. Therefore, by measuring Ib, one is able to get the 

information of Nit in the channel. Adjust Vg until the interface trap energy in the middle 

of the Si energy gap becomes coincident with the Fermi energy; a peak value of IDCIV 

can then be observed, and this peak amplitude is actually proportional to the effective 

number of interface traps Nit. 

 
 

Fig.2-8 Cross-sectional schematic of a PMOS and the DCIV measurement set-up.  
 

However, this method also suffers from the high leakage current with dielectric 

scaling down. G. Chen et al. [15] proposed an improved DCIV method to monitor the 

interface traps in MOSFETs with gate oxide thicknesses down to 1.3 nm by proper 

biasing and signal processing. By measuring Ib under bias Ve>0 and Ve=0, respectively, 

one finds the difference (Ib(Ve) -  Ib(0)) is exactly the DCIV current combined with 

background recombination current (from drain to n-well) and thermal-trap-tunneling 

current at s/d extension, which are both independent of the Nit. Since BTI 

characterization usually only concentrates on the increase or recovery in Nit during 

stress or passivation, using the difference (Ib(Ve) -  Ib(0)), one is able to eliminate the 

influence from the gate leakage current.  
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Chapter Three  

A detailed analysis on conventional DC 

measurements 

 

3.1 Debate on the origin of NBTI recovery effect in p-MOSFET with 

SiON gate dielectric by DC method 

 
It is commonly known that under static NBTI stress, the p-MOSFET shows a 

significant negative threshold voltage shift. By adding a passivation phase (applying a 

positive or zero gate bias) after the NBTI stress, recovery of NBTI degradation can be 

observed. Recently, several studies on the origin of this NBTI recovery effect have 

been reported [1-7]. G. Chen et al. [1], by using DCIV method [8], found that the Vth 

recovery in the passivation phase is due to the passivation of SiO2/Si interface traps, 

which is consistent with some other works [2-4, 9, 10]. On the contrary, V. Huard et al. 

[5] using the charge pumping method (CP) [11], and inferred that the interface trap 

density remains as a constant during the passivation phase, and the transient recovery 

of Vth in the passivation phase is due to de-trapping of hole traps in the dielectric.  In 

this chapter, the contradicting views on the Vth recovery mechanism in the passivation 

phase will be clarified. The NBTI degradation and recovery effects observed by the 

conventional DC measurement method is mainly due to the creation and dissipation of 
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interface traps at the SiON/Si interface by releasing  and retracting hydrogen-related 

species, rather than trapping/de-trapping of the pre-existing hole traps in SiON bulk. 

 

3.2 Experimental results and discussion 

 
Transistors were fabricated using CSM 0.11μm CMOS technology. The gate 

dielectric with two equivalent oxide thicknesses (EOT), 1.3nm and 4.5nm, were grown 

by thermal oxidation followed by decoupled plasma nitridation (DPN) and post-

deposition thermal annealing. An HP4155C parameter analyzer was used to measure 

the device characteristics. CP pulse was generated by HP41501B pulse generator. For 

Nit measurement of p-MOSFET with EOT=1.3nm, the improved DCIV method and the 

improved CP method as illustrated in Chapter 2.3 were used. 

For the NBTI characterization, devices with EOT=1.3nm were stressed under a 

constant negative gate voltage followed by a passivation phase (Vg=0V), while the 

source, drain and bulk were grounded. Stress in the stress phase was intermittently 

interrupted for Vth and Nit measurement. During each interruption, both Vth (extracted 

by Id-Vg measurement) and Nit (extracted by DCIV measurement) were measured by 

two characterization approaches: in the first approach, Vth was measured first, followed 

by Nit measurement; in the second one, Nit was measured first, followed by Vth 

measurement. NBTI stress was conducted under a wide range of gate voltage.  

From the IDCIV curves as shown in Fig.3-1, one can observe an unambiguous ∆Nit 

generation and recovery. No doubt, interface traps do have recovery effect. Fig.3-2 

plots both measured ΔVth and ΔNit data by two approaches. 
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Fig.3-1 Measured DCIV curves in both stress and passivation phases. 
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Fig.3-2 NBTI degradation of pMOSFET characterized by ΔVth and ΔNit under a stress 

phase (t=0 to 1000s) and a passivation phase (t=1000 to 2000s).  
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At a first glance, the four curves in Fig.3-2 do not look consistent.  For further 

understanding the result, Fig.3-2 illustrates what really happens when measuring by 

two different approaches in both stress and passivation phases. 

 

Fig.3-3 Illustration of the NBTI degradation in both stress and passivation phases 
using two approaches. 

 

In the stress phase, as shown in Fig.3-3(a) and (b), once the stress is interrupted for 

measurement, the NBTI degradation starts to recover with a trend shown as the dash 

curves. After the measurement is finished, the stress is resumed, and the NBTI 

degradation goes up rapidly. If one measures Vth first, followed by Nit, the Vth value 

(square symbol) will be extracted at a higher NBTI degradation level, and Nit (triangle 

symbol) at a lower level; if measures Nit first followed by Vth, then the Nit value is 

extracted at a higher level, and Vth the lower. However, in the passivation phase, as 

shown in Fig.3-3(c) and (d), once the stress is stopped for passivation, the NBTI 
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degradation recovery starts. Until the time point to do the measurement, the recovery 

rate is already very slow. Therefore, no matter measuring Vth first or Nit first, the 

extracted data are taken at almost the same degradation level. 
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Fig.3-4 The correlation of ΔVth and ΔNit for NBTI stress under various stress voltage, 

in the stress and passivation phases, using both measurement approaches. 
 

Fig.3-4 gives further proof on this explanation. It shows the correlation of ΔVth and 

ΔNit for NBTI stress under various stress voltage, in stress and passivation phases, 

using two measurement approaches. In the stress phase, the two measurement 

approaches (Id-Vg first or DCIV first) yield different correlation (different slopes in 

ΔVth-ΔNit plot). However, in the passivation phase, two approaches yield the same 

correlation. The real correlation between ΔVth and ΔNit is shown in the passivation 

phase because of no interface traps passivation during measurement. Therefore, the 
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normalization of the four curves should be made at the end of passivation phase (point 

P). 

Before alignment of the four curves together, ΔVth curves and ΔNit curves were 

plotted separately first. Plotting first (solid squares) and second measured ΔVth (open 

squares) together in one figure gets Fig.3-5(a); and plotting first measured ΔNit (solid 

cycles) and second measured ΔNit (open cycles) together gets Fig.3-5(b). 
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Fig.3-5 Measured (a) ΔVth and (b) ΔNit by two measurement approaches. 
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Both figures show obvious bifurcation in the stress phase, which is because of Nit 

recovery during the other measurement, while both ΔVth and ΔNit overlap in the 

passivation phase, showing no influence of the measurement approaches. Normally, it 

takes different time for Vth and Nit measurements. Define the time for a Vth 

measurement as tVth and the time for a Nit measurement as tit. Since the DCIV current is 

several orders smaller than the drain current, usually it takes longer time for Nit 

measurement than for Vth, and therefore, tit> tVth, so the gap in the stress phase shown 

by the two ΔVth curves is much greater than that shown by ΔNit curves. Therefore, 

when plotting four curves together in one figure, it reasonably gets Fig.3-2. 

 

3.3 Impact of Nit measurement on NBTI recovery 

 
Further experiments are designed to illustrate the interface trap passivation effect 

and show a significant impact of Nit measurement on NBTI recovery.  

For each fresh device in Fig.3-6, the Vth and Nit were first measured, giving the 

initial threshold voltage Vth,0 and the initial interface trap density Nit,0.  A stress (Vg = -

2.4V for EOT=1.3nm devices, -4.5V for EOT=4.5nm devices) was then applied for 

500sec. Threshold voltage shift ∆Vth1,S was measured at the end of the stress (point SS 

as indicated in Fig.3-2), followed by a measurement of the change in interface trap 

density ∆Nit,S using CP or DCIV method, and another measurement of the threshold 

voltage shift ∆Vth2,S was followed. After a 500ses lapse in the passivation phase (Vg = 

0V), ∆Vth1,P, ∆Nit,P, and ∆Vth2,P were measured sequentially again at the end of 

passivation phase (point P as indicated in Fig.3-2).  In Fig.3-6 (b), ΔNit and ΔVth data 

are normalized at point P because little passivation of Nit occurs at P. 
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Fig.3-6 (a): Measurement sequences at both S and P points (indicated in Fig.1) 
(b): Measured ∆Vth1, ∆Nit, and ∆Vth2 data at points S and P. ∆Nit and ∆Vth2 data are 

normalized at point P. 
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negligible and no charge trapping/de-trapping in the dielectric. All variation of Vth is 

due to variation of Nit (generation and passivation). The reduction of ΔVth is due to the 

passivation of interface traps. The Nit measurement accelerates the reduction of ΔVth 

due to the positive gate bias applied to the device during Nit measurement. Fig.3-6 (b) 

also clearly shows that no obvious recovery of ΔNit can be observed in the passivation 

phase using CP measurement [5], because most of the interface traps have already 

been passivated during the CP measurement. Since the thin dielectric device has the 

same trend as the thick dielectric device, it is believed that the Vth recovery is 

dominated by Nit passivation [1] rather than Not de-trapping [5]. 
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Fig.3-7 In the measurement sequence of Fig.3-6(a), the measurement of Nit is replaced 

by a 0.5 s positive gate bias stress Vg (for both points S and P). Plot ∆Vth,2 as a 
function of different Vg, normalized by ∆Vth,1  at point S.  
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Fig.3-7 illustrates the acceleration effect of interface trap passivation under a 

positive gate bias. The same measurement sequence as that in Fig.3-6 was used, 

however the measurement of Nit was replaced by a 0.5s positive gate bias stress Vg (for 

both points S and P). Fig.3-7 plots ∆Vth,2 as a function of different positive Vg, 

normalized by ∆Vth,1 at point S. The results show clearly that the positive bias 

accelerates ∆Vth passivation. This explains the different results obtained by DCIV and 

CP measurements in Fig.3-6 (b). In DCIV measurement, a recombination current IDCIV 

through the interface traps shows a peak when the Fermi level coincides with the Si 

mid gap at surface [13].  In our measurement, the maximum Vg applied to the device to 

show the peak is around +0.5~0.6V.  In the stress phase measurement, the interface 

traps have already passivated to some extend before reaching the IDCIV peak gate 

voltage (Fig.3-7 data measured at point S), so the result is always underestimated. 

However after a time period of passivation in the passivation phase at point P, the 

passivation rate is almost zero (Fig.3-7 data measured at point P) and therefore DCIV 

method measures the real interface trap density.  

The underestimation is more serious when using Charge Pumping (CP) technique. 

In CP measurement, the device changes from inversion to accumulation to pump the 

electrons between conduction/valence bands through the interface states [11]. 

Therefore, comparing to the DCIV measurement, a larger positive Vg should be applied. 

In our CP measurement, the maximum positive Vg applied to the device is +1.2V. In 

addition, CP measurement uses longer time than DCIV measurement. This explains 

why ΔVth,2,s and ΔNit measured by CP is smaller than that measured by DCIV as 

indicated in Fig.3-6(b), that is, more interface traps are passivated during the CP 

measurement. 
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Fig.3-8 The data of ∆Vth and ∆Nit measured by both CP and DCIV, plotted versus 
stress and passivation time: (a) all data aligned at point S [5]; (b) all data aligned at 

P point (this work). 
 

According to the discussion in [5], all curves are aligned at point S in Fig.3-8(a). 

However, this alignment is misleading because the measured Nit is underestimated 
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during the stress phase. Due to this incorrect alignment, Nit is lifted up at the 

passivation phase. Nit is lifted more by using CP measurement, consistent with Fig.1 of 

[5], even looks like no interface trap recovery. Thus, the contradiction between two 

different interpretations of the Vth recovery phenomena in the passivation phase is 

clarified. 
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Chapter Four  

Fast NBTI components in p-MOSFET with 

SiON gate dielectric and its impact on circuit 

applications 

 

4.1 Introduction 

 
As discussed in the previous chapters, using the conventional DC measurement 

method to characterize the NBTI degradation, time delay between the stopping of the 

stress and actual measurement is typically in the order of 1 second. Since the NBTI Vth 

degradation starts to recover as soon as the stress voltage is removed, this time delay 

leads to underestimation of Vth degradation which has already been found to be 

significant in thin high-κ  dielectrics [1][2]. Therefore a fast measurement method is 

necessary to minimize the Vth recovery effect prior to measurement. In this chapter, the 

fast pulsed measurement method as introduced in Chapter 2.4 is used for the DNBTI 

study of ultra-thin SiON gate dielectrics. By using the fast pulsed measurement method, 

a distinctive fast trapping / de-trapping transient component that is responsible for 

large Vth shifts has been found, in addition to the widely-reported slower DNBTI 

degradation component. The frequency and voltage dependencies of the fast DNBTI 
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component are also investigated. A model for charge trapping is developed, and the 

impact of the fast DNBTI component is analyzed. 

 

4.2 Experimental results and discussion 

 
Transistors were fabricated using CSM 0.11 μm CMOS technology. The gate 

dielectric has an equivalent oxide thickness (EOT) of 1.3 nm and was grown by 

thermal oxidation followed by decoupled plasma nitridation (DPN) and post-

deposition thermal annealing. Both NBTI and DNBTI stress were performed using the 

fast pulsed Id-Vg measurement technique as described in Chapter 2.4 to examine the 

fast component of the de-trapping charge as stress progresses.  

0

2

-V
g

Time

stress

triangle pulse

stress

2.4
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measure Id-Vg
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Fig.4-1 Pulsed waveform for NBTI characterization in static stress phase. 

 

For NBTI stress, short triangular voltage pulses (from stress voltage to 0V and 

back to stress voltage) are inserted in the constant gate voltage stress to intermittently 

monitor the Id-Vg characteristics, as illustrated in Fig.4-1. The Id-Vg curves are derived 
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from the falling edge (from stress voltage to 0V) or rising edge (from 0V to stress 

voltage) of the triangular voltage pulses. For DNBTI stress, dynamic stress voltage 

with a square waveform is applied on the gate with different frequencies, and the Id-Vg 

characteristics are measured at both rising (R) and falling (F) edges of the square wave 

during stress, as illustrated in Fig.4-2. For both NBTI and DNBTI stresses, the 

measurement time tm can be adjusted by changing the rising or falling time of the 

pulses, and therefore the delay between stress and measurement can be minimized. As 

long as tm is short enough, the extracted transistor threshold voltage is negligibly 

affected by the Vth recovery effect. 
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Fig.4-2 Waveform for DNBTI characterization by the fast pulsed measurement. 

 
 

Fig.4-3 shows an example of measured Id−Vg curves. The waveform applied on the 

gate is shown in the inset. First, a triangle pulse was applied on the gate, and the falling 

edge of the pulse was used to derive Id−Vg curve of a fresh device; then after a 1 

second stress, the falling edge of the stress was monitored to derive the Id−Vg after 

stress. From the result, one can see an obvious Vth shift.  
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Fig.4-3 Id−Vg curves measured by fast pulsed measurement. 
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Fig.4-4 ΔVth as measured using different measurement time tm (Fig.4-3 inset), after 

1sec stress.  ΔVth measured using a conventional DC method is also shown.  
 

Since result shows the measured Vth shift depends on the measurement time, 

different tm was used to repeat the above experiment. As shown in Fig.4-4, when tm is 
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increased above 100μs, the measured ∆Vth decreases dramatically due to Vth recovery 

during the measurement. It is also seen from Fig.4-4 that the ΔVth measured by the fast 

pulsed method approaches the value obtained by the conventional DC method when tm 

is longer than 0.5s, which means that the result of pulsed and DC methods are 

consistent with each other. On the other hand, when tm is kept below 100μs, the 

measured ∆Vth is almost independent of tm, indicating that recovery of ∆Vth during that 

time period is negligible.  
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Fig.4-5 ΔVth as measured using different measurement time tm (Fig.4-3 inset), after: (a) 

different stress time with same stress voltage; (b) different stress voltage with fixed 
stress time.  
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In addition, different samples with different stress voltage Vg and different stress 

time ranging from 1ms to 100s were measured, and all the results (Fig.4-5) show a 

saturation ∆Vth at tm~100μs.  Therefore tm=50μs is fast enough for the specific devices 

used in this experiment, and it is employed for all the fast NBTI measurements in this 

work. 
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Fig.4-6 (a) ΔVth under dynamic stress as measured by fast pulsed and DC methods for 

frequency of 0.0005Hz; (b) ΔVth due to fast component.  
 

Fig.4-6 shows the ∆Vth evolution measured on a p-MOSFET under DNBTI stress 

at a very low frequency (0.0005Hz), using both fast pulsed measurement described 

above and the conventional DC method. Sf and Ss are the points of the end of stress 
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phase measured by fast pulsed and DC method respectively; P is the end of the 

passivation phase. 

The result shows that during stress phase, ∆Vth measured by fast pulsed 

measurement is much higher than that by DC method (about 100mV larger for -2.4V 

stress at 100°C for 1000s). On the other hand, during passivation phase, the difference 

in Vth shift between fast pulsed measurement and DC measurement diminishes quickly. 

This indicates that there is a distinctive fast component in the observed NBTI result. 

From Fig.4-4, one can estimate that the recovery time constant of this fast component 

is less than 0.1s. The pulsed measurement method captures both the fast and slow 

components, while the slow DC measurement measures only the slow component 

since its inevitable delay between stress and measurement, which is much greater than 

0.1s. Therefore, the difference between Vth shift measured by fast pulsed method and 

DC method (∆Vth,pulse-∆Vth,DC) can be used as an estimation of the fast component, as 

shown in Fig.4-6(b). 
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Fig.4-7 Measured ΔVth due to DNBTI using DC method and fast pulsed method (using 

R edge to measure the accumulation degradation at P).  
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Using rising edge to measure the accumulation degradation at point P by a 100Hz 

DNBTI stress got Fig.4-7. The point in the circle is the result of fast pulsed 

measurement stop at 1000s and measured after 1s delay. The charge accumulated in 

Not in the stress phase is not completely de-trapped in the passivation phase. Hence, 

there is a net charge accumulation and Not contributes to an additional DNBTI 

degradation. 

Fig.4-8 explores the frequency dependence of ∆Vth as measured using the fast 

pulsed method at the end of the stress phase (point Sf) and at the end of the passivation 

phase (point P). As shown in Fig.4-8(a), ΔVth at Sf (open symbols) and P (solid 

symbols) were measured at the falling and rising edges, respectively. Stress-

passivation cycles determined by the frequencies are repeated so as to get total stress 

time of 1000s. At point P of each stress cycle, a net charge accumulation which 

increases with increasing stress time can be observed. This also proves that the charge 

cumulated in Not in the stress phase is not completely de-trapped in the passivation 

phase and Not contributes to an additional DNBTI. The Vth degradation due to the fast 

component is also a cumulative process.  
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Fig.4-8 (a) Stress pulse frequency dependence of ΔVth due to DNBTI as measured by 

fast pulsed method. (b) Stress pulse frequency dependence of the fast DNBTI 
component. The difference between Sf point and P point represents the transient 

amplitude of ΔVth indicated in Fig.4-6(a). 
 

Fig.4-8(b) shows that the transient amplitude (∆Vth, Sf -∆Vth, P) under dynamic stress 

is reduced and approaches zero when the frequency is increased. This implies that if 

the device is working under a very high frequency, little transient effect is expected. 

On the other hand, DNBTI measured by DC method shows frequency independent 

behavior as reported in [3]. The same experiment was repeated in SiON samples in this 

experiment and same conclusion can be drawn from the result. This implies that the 

fast component and the slow component in NBTI or DNBTI have different origins. 

According to different results from this frequent dependence experiment, slow 

component can be attribute to the generation and passivation of interface traps as 

proposed in [6]-[8], which fits well with the reaction-diffusion model and shows 

frequency independent; while the fast DNBTI component can be attributed to the 

trapping and de-trapping at hole traps in SiON dielectric [4]. 
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Measured ΔVth under dynamic and static stresses by fast pulsed and DC methods is 

shown in Fig.4-9. After 5x105s stress, the measured Vth shift is around 130mV, still no 

degradation enhancement or saturation was observed. However, the experiment fit data 

of ΔVth,pulse - ΔVth,slow, shown as the “X” symbols, shows a saturation tendency at long 

stress time, implying the fast component might lose its dominance at very long stress 

time.  
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Fig.4-9 Measured ΔVth under dynamic and static stresses by fast pulsed and DC 

methods as stress time.  
 

Temperature dependence measured by fast pulsed and DC methods under dynamic 

stress is shown in Fig.4-10. The slow component shows an activation energy (Ea) of 

0.11eV, while that of the fast component is only 0.05eV, much less temperature 

dependent. In addition, at very high temperature, the slow component can be even 

more significant than the fast component as shown in Fig.4-10.  



 
Chapter 4 Fast NBTI components in p-MOSFET with SiON gate dielectric 

 47

30 32 34 36 38 40

30

60

Ea=0.11eV

 

 

-Δ
V th

 (m
V)

1/kT (eV-1)

Ea=0.05eV

ΔVth@1000sec

 Pulsed method
 DC method
 Fast component (pulsed-DC)

Dynamic stress
        Vg= -2.4V
            F=100Hz

 
Fig.4-10 Temperature dependence by fast pulsed and DC methods under dynamic 

stress (measured at P).  
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Fig.4-11 ΔVth of p-MOSFET as different stress Vg as measured by both fast pulsed 

method and DC method under: (a) static and (b) dynamic NBTI stress. 
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The stress voltage dependence is shown in Fig.4-11. Both static and dynamic NBTI 

stresses with different stress Vg were applied in the experiment. ∆Vth measured by both 

DC and fast pulsed methods shows exponential dependence on stress Vg.  

 

4.3 Modeling of fast DNBTI component in SiON gate dielectric 

 
The fast DNBTI component in SiON gate dielectric can be simulated using the 

following equations of trapping and de-trapping of the pre-existing hole traps Not [11] 

in bulk gate dielectric: 

ppN
dt
dp

E
ot

C 1

1)(1
ττ

−−=
     (1) 

p
dt
dp

E 2

1
τ

−=
      (2) 

where p is the trapped hole concentration; Not is the trap concentration, which has a 

wide distribution over trapping and de-trapping time constants τC and τE as shown in 

the inset of Fig.4-12. 

Using (1) & (2), the simulated time evolutions of fast NBTI degradation are fitted 

to the experimental data. Fig.4-12 shows the frequency dependence of the fast DNBTI 

component (∆Vth,pulse - ∆Vth,DC after 1000s stress) re-plotted on a normalized scale. 

Simulated results are plotted using solid lines, which are also in good agreement with 

the experimental data. The inset of Fig.4-12 shows the spectrum of trap concentration 

probability distribution function (PDF) over trapping and de-trapping time constants τC 

and τE employed in eq. (1) and (2). The continuous distribution of PDF is proposed to 

explain the power law of time evolution of NBTI degradation [9].  
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Fig.4-12 ΔVth of p-MOSFET under static and dynamic NBTI stress (measured at P) as 

measured by both fast pulsed method and DC method. 
 

The simulated time evolution of the fast components (∆Vth,pulse-∆Vth,DC) is also 

plotted in Fig.4-8(b) and Fig.4-9 using solid lines. The measured ΔVth trend agrees well 

with simulated Not. 

 

4.4 Impact of the fast NBTI components on circuit applications 

 
Fig.4-8 shows that the transient amplitude of ΔVth under dynamic stress is reduced 

and approaches zero when the frequency is increased. Therefore no transient effect is 

expected in the fast digital circuit applications.  

For analog applications, a good example is shown in Fig.4-13. Device was stressed 

under an ultra-low frequency sine wave signal, and ΔVth was measured using the fast 

pulsed method every few seconds. Since the exponential ΔVth-Vg relationship, the 
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measured ΔVth is no longer a sine function. This would induce a non-linear signal 

distortion in ultra-low frequency large signal analog applications. 
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Fig.4-13 ΔVth under a sine wave Vg stress, measured ΔVth is not a sine function of time. 

 

As for the device lifetime, if the charge accumulated in Not in the stress phase is 

completely de-trapped in the passivation phase, there is no net accumulation and no 

effect on the DNBTI device life time. Otherwise there is a net charge accumulation and 

Not will contribute to additional DNBTI degradation. Fig.4-7 clearly shows that the 

later case is true. 

Choosing ΔVth=30mV as the failure criterion, the device lifetime is re-estimated 

under dynamic NBTI stress. Both fast pulsed method and conventional DC method 

were used, and the result is plotted in Fig.4-14. The DC method overestimates the 

device lifetime at high stress voltage Vg. However, with stress Vg decreasing and stress 

time increasing, the slow DNBTI component becomes more significant. Therefore, 

when doing the lifetime extrapolation to 10 years’ time, the DC method is still valid to 

predict the device lifetime. 
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Fig.4-14 Device lifetime re-evaluated under dynamic stress. The fast DNBTI 

component affects the device lifetime at high voltage. 
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Chapter Five  

Proton implanted high-Q inductors 

 

5.1 Introduction 

 
The on-chip inductors are one of the most important components for 

implementation of RF circuits in CMOS. Due to the lossy nature of Si substrate, the 

quality factor of CMOS on-chip inductors is low, which has become one of the 

fundamental barriers of Si VLSI [1]-[6]. There are many techniques reported in the 

literature to enhance the quality factor of the inductors. These include (i) use of high 

resistivity silicon substrate, (ii) removal of silicon substrate by micromachining 

techniques, (iii) use of very thick dielectric layers below the spiral inductors, and (iv) 

use of high energy proton implantations as a post processing add-on step[4]-[9]. 

In this chapter, the role of proton implantation in enhancing the Q-factor of 

inductors has been investigated. The DC resistance of the inductor spirals has been 

measured for the spirals without proton implantation as well those had undergone the 

proton implantation. Open pads have been modeled to investigate the influence of 

proton implantation on the bulk silicon resistivity. The inductors in two cases are both 

modeled. The improved inductor quality factor results are interpreted in terms of 

enhanced substrate resistivity by proton implantation. 
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5.2 Experiments 

 
Circular spiral inductors having turns from 1 to 8 and with two internal diameters 

of 75μm and 100μm were used in this study. The width of the spiral was 6μm and 

10μm respectively in the two cases. A small piece of wafer with the inductors was 

implanted with high energy protons. The DC resistance of the inductors with and 

without proton implantation was measured.  

For RF characterization, Scattering Parameters (or S-parameters) are essential for 

practical system characterization in RF regime. S-parameters, which are the reflection 

and transmission coefficients between the incident and reflection waves, describe 

completely the behavior of a device under linear conditions at microwave frequency 

range. Each parameter is typically characterized by magnitude, decibel and phase. The 

wave functions used to define S-parameters are shown in Fig.5-1 [10] [11].  

 

Fig.5-1   Wave functions used to define S-parameters for a two-port network. 
 

Here αn and bn (n = 1, 2) are the normalized incident and reflected power waves. 

The definition equations of S-parameter as shown below: 
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For a two port network using matched loads Z0=ZL=50Ω, S11 is the reflection 

coefficient of the input, S22 is the reflection coefficient of the output, S21 is the forward 

transmission gain, and S12 is the reverse transmission gain (from output to input).  

One-port S-parameters of open pads were modeled using the equivalent circuit 

shown in Fig.5-2. The equivalent circuit shown in Fig.5-3 was used to model the 

inductors. In this experiment, S-parameters of the inductors together with the open 

pads were measured from 50 MHz to 10 GHz using HP 8510C network analyzer with 

the GGB's air coplanar probes (ACP) for ground-signal-ground (GSG) configuration. 

 

 

 

 

 

 

 

Fig.5-2   Equivalent RF modeling circuit of the open pad. 
 

 

 

Fig.5-3   Equivalent RF modeling circuit of the inductor. 

RsubC100

C10
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5.3 Results and discussion on the impact of proton implantation 

 
Fig.5-4 plots the Q values of the inductors as a function of frequency for a 5 and a 

half turns inductor for the two cases, namely, (i) without proton implantation and (ii) 

with proton implantation. There is significant improvement in the Q values in case (ii).  

 

Fig.5-4 Q-Value w/ and w/o proton implantation over frequency (c75n5p5) 

 
Fig.5-5 Q-Value w/ and w/o proton implantation @5GHz 
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Fig.5-5 shows the Q-value with and without proton implantation as a function of 

inductance values. One observes more improvement in quality factor for larger 

inductance values. Fig.5-6 shows the improvement ΔQ as a function of number of 

turns.  More improvement was achieved with larger number of turns, or inductors with 

larger area. 

 
Fig.5-6 ∆Q enhanced by post proton implantation on different scales @5GHz 

 

 
Fig.5-7 DC resistance of the metal spirals w/ and w/o post proton implantation 
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To investigate the influence of proton implantation on the resistance of metal 

spirals, the DC resistance of the coils was measured through IV characteristics. Fig.5-6 

shows the results. There is no significant change in the DC resistance of the coils as a 

result of proton implantation.  

To investigate the influence on the substrate, one-port S-parameters of open pads 

were modeled by the equivalent circuit shown in Fig.5-2. The extracted value of 

substrate resistance – before and after implantation – is indicative of the effect of 

proton implantation. The substrate resistivity appears to be improved by almost one 

order of magnitude after proton implantation, while the parasitic capacitors were 

remained almost the same (as shown in Table. 1-1). 

 
 

w/o Imp 
 

w Imp 

 

C10 
 

110fF 
 

100fF 

 

C100 
 

40fF 
 

34fF 

 

Rsub 
 

210Ω 
 

2310Ω 

 
Table.5-1 Substrate parameters of the inductors w/ and w/o post proton 

implantation 
 

For inductors with small area, the increased substrate resistance does not have very 

large influence; however, for the larger inductors, this increment is very significant 

since the substrate loss plays a more significant role in quality factor degradation. 

In conclusion, post fabricated proton implantation can increase the substrate 

resistance significantly, resulting in enhanced Q-value of inductor. This enhancement 

is significant for the inductors whose value is greater than 2nH and which occupies 

larger silicon area. 
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Chapter Six  

High-κ dielectric MIM capacitors  

 

6.1 Introduction 

 
Metal-insulator-metal (MIM) capacitors in silicon integrated circuits have attracted 

great attention due to their high conductive electrodes and low parasitic capacitance. 

MIM capacitors are needed for applications including de-coupling of integrated 

circuits from power supplies, analog functions for RF/wireless applications and 

termination of transmission lines. Circuit designers need MIM capacitors with good 

capacitance-voltage linearity, low leakage, high capacitance, a high Q (quality) factor, 

good device matching, low dielectric loss and 100,000 hours of power-on (POH) 

reliability with low failure rates. 

With device scaling down, the capacitance density of conventional MIM capacitors 

using silicon dioxide (SiO2) and silicon nitride (Si3N4) is not high enough to meet the 

requirement predicted by ITRS [1]. Therefore, high-κ material is demanded for the 

dielectric to obtain greater capacitance on smaller area. 

HfO2 based high-κ dielectrics are able to achieve higher capacitance and to further 

reduce the parasitic in the MIM capacitors. They are needed to replace silicon nitride 

and silicon dioxide (SiO2) in passives and CMOS devices to curb the current leakage 

that occurs when thin dielectrics are used for device scaling. Continued thickness 
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reduction of SiO2 also results in reliability degradation. High-κ dielectrics can be made 

thicker than conventional dielectric materials, with the same equivalent capacitance, 

and thereby reducing leakage. 

In this chapter, researches have been done on high-κ MIM capacitors using HfO2 

based dielectrics. Extensive electrical characterization was conducted to evaluate these 

high-κ MIM capacitors. DC properties in terms of leakage, voltage coefficients, 

reliability etc, have been analyzed. In addition, a well behaved RF high-κ MIM model 

was extracted showing a stable dielectric constants of HfO2 based dielectrics in wide 

range of frequency.  

 

6.2 Device fabrication and experimental results 

 
The MIM capacitors with RF test structures were fabricated on standard p-type Si 

substrates with a resistivity of 4-8Ω·cm. Before defining the bottom electrode of the 

HfO2 MIM capacitors, 500nm SiO2 was deposited on silicon substrate for isolation. 

The bottom electrode of Ta/TaN was formed by sputtering. Ta was used to reduce the 

parasitic resistance of the electrode and TaN was acted as an oxidation-resistant barrier 

layer [2]. Laminated dielectrics with alternate Al2O3 (1nm) and HfO2 (5nm) layers 

were deposited using Atomic-Layer-Deposition (ALD) technique, as illustrated in 

Fig.6-1. 
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Fig.6-1   TEM cross section of 13 nm HfO2-Al2O3 laminated dielectric. 
 

The beginning and end layers were both Al2O3, which were used to improve the 

metal/dielectric interface quality [4]. Three thicknesses of laminated dielectrics (i.e. 13, 

31 and 43nm) were deposited for electrical evaluation. TaN was then sputtered as the 

top electrode, followed by the post deposition annealing in N2 at 420oC for 30min. At 

last, a photolithography step and dry etching were used to define the MIM capacitors. 

Fig.6-2 illustrates major fabrication steps and schematic top views of MIM capacitor 

structure for RF characterization. The open dummy device was used to de-embed the 

parasitic from the bond-pads and transmission lines [5] [6]. In consideration of RF 

characterization, the coplanar transmission lines were fabricated, which also served as 

the top and bottom electrodes. Al was used as contact pads after TaN top electrode 

formation. 

 

(a) Mask 1: Transmission line patterning after bottom electrode deposition 
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(b) Mask 2: Contact hole etching after high-κ HfO2 deposition 

 

(c) Mask 3: RF MIM structures patterning after top electrode deposition 
 

Fig.6-2 Major fabrication steps and schematic top views of RF HfO2 MIM 
capacitor and open dummy structure. 

 

Leakage current of the MIM capacitors was measured by an HP4156A 

semiconductor parameter analyzer. The capacitance voltage characteristics were 

acquired with the help of HP4284A precision LCR meter with frequency ranging from 

10kHz to 1MHz. On-wafer S-parameters were measured by HP 8510C network 

analyzer with the GGB's air coplanar probes (ACP) in ground-signal-ground (GSG) 

configuration for RF characterization, and a precise calibration procedure including 

open, short, through, 50Ω load has been implemented using impedance standard 

substrate before extracting device characterization. 

Fig.6-3 shows the dependence of leakage current density (J) on biasing voltage at 

125oC for MIM capacitors with different thicknesses of laminate. From the result, the 
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leakage current density decreases with the increase of the laminate thickness at the 

same voltage. However, the 13nm HfO2-Al2O3 laminated MIM capacitor can provide 

much smaller leakage current than previous reported MIM capacitors [7] [8] while 

maintaining similar capacitance density. 

 

Fig.6-3 Leakage current as bias voltage measured on samples with different 
dielectric thickness. 

 
Voltage coefficients of capacitance (VCCs) were analyzed by fitting the measured 

data with the second order polynomial equation: 

)1()( 2
0 ++= VVCVC βα ,       (1) 

where C0 is the zero-biased capacitance, α and β represent the quadratic and linear 

voltage coefficients of capacitance, respectively. Fig.6-4 shows bias-dependent 

normalized capacitance (ΔC/C0) fitted by equation (1). Obviously, α decreases with 

increasing the laminate thickness. In the case of the 13nm laminated MIM capacitor, β 

is equal to 211ppm/V at 1MHz, which can easily meet RF capacitor requirement (1000 

ppm/V) [1]. 
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Fig.6-4   The voltage-dependent normalized capacitance (ΔC/C0) at 1MHz for 13, 
31 and 43 nm laminated capacitors, fitted by a second order polynomial 

equation 
  

6.3 RF modeling on high-κ MIM capacitors 

 
To investigate the capacitance characteristics of HfO2 based high-κ MIM 

capacitors in RF regime, a π network based equivalent circuit model was used as 

shown in Fig.6-5 [2].  

 

Fig.6-5 The equivalent circuit model for capacitor simulation at RF regime. 
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The Rp and C describe the basic electrical capacitor model. Rs, Ls1 and Ls2 

represent the parasitic resistance and inductance from the coplanar transmission lines 

used for RF measurements. The elements (Cox1, R1, C1 and Cox2, R2, C2) in the shunt 

branches represent the coupling from the top and bottom electrodes to ground through 

SiO2 and Si substrate. Standard procedures were used to de-embed the parasitic from 

the probe-pads [9].  

 

Fig.6-6 Measured and simulated S-parameters for laminated MIM capacitors 
 

The measured two-port S parameters (S11 and S21) after de-embedding shunt 

elements are shown in Fig.6-6. To make the comparison, two-port S parameters 

simulated by the equivalent circuit (shown in Fig.6-5) are also shown here. It can be 

found that the measured and simulated data over the entire frequency range from 

50MHz to 20GHz are in excellent agreement, suggesting this model is suitable and 

reliable.  
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Chapter Seven  

RF and analog circuits using advanced passive 

devices 

 

7.1 5GHz low noise amplifier (LNA) using high-Q inductors 

 
With the growing of 5GHz wireless LAN (WLAN), high-Q inductors is now 

essential for the front-end transceiver, i.e. the 5GHz low noise amplifier (LNA). 

Higher signal gain, lower noise figure (NF) and nice input/output impedance matching 

(50Ω) at the demanded frequency regime are required to achieve a well performed 

LNA. In this section, two LNAs were designed using the proton implanted inductors 

and simulated by CSM 0.18 technology. Circuit characteristics before and after post 

proton implantation were studied and compared. Simulation results show that the post 

proton implantation is able to improve the overall characteristic of the RF circuit. 

 

7.1.1 One stage LNA design 
 

Schematic of the one stage LNA is shown in Fig.7-1. Three inductors are used to 

meet the input/output matching requirement and reach the highest signal gain at 5GHz. 
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Fig.7-1   Schematic of one-stage LNA. 
 

The circuit was first simulated under frequencies ranging from 50MHz to 10GHz 

with a standard spiral inductor model without proton implantation. The results are 

shown in Fig.7-2. The S21 parameter, which presents the signal gain of the LNA, is 

8.5dB at 5GHz, while the noise figure (NF) is 4.0dB at 5GHz. 

 
(a) 
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(b) 

Fig.7-2   Simulated results of one-stage LNA w/o proton implantation on  
(a) S21 parameter; (b) Noise figure. 

 

Simulation was also done with the model of proton implanted inductor (as shown 

in Fig.7-3). The S21 parameter is then increased by 86%, having a value of 15.9dB at 

5GHz and the noise figure is suppressed to 2.0dB. Fig.7-4 shows the Smith-Chart of 

simulation results on input/output impedance (S11 and S22 parameters), implying very 

nice input and output matching at 5GHz. 

From the simulation results on one-stage LNA circuit, the step of post proton 

implantation is able to improve the overall performance.  

 

 
(a) 
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(b) 

Fig.7-3   Simulated results of one-stage LNA with proton implantation on  
(a) S21 parameter; (b) Noise figure. 

 
 

 
 

Fig.7-4   S11 and S22 parameters on Smith Chart of a one-stage LNA after proton 
implantation 

 

7.1.2 Two stage LNA design 
 

Schematic of the one stage LNA is shown in Fig.7-5.  

The simulation results without and with post proton implantation are shown in 

Fig.7-6 and Fig.7-7 respectively. The S21 parameter was increased by about 50% using 

proton implanted inductor model, while also suppress the noise figure.  
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Fig.7-5   Schematic of a two-stage LNA. 
 

 
(a) 

 
(b) 

Fig.7-6   Simulated results of two-stage LNA w/o proton implantation on  
(a) S21 parameter; (b) Noise figure. 
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(a) 

 
(b) 

Fig.7-7   Simulated results of two-stage LNA with proton implantation on  
(a) Noise figure; (b) S21 parameter. 

 
 

 
 

Fig.7-8   S11 and S22 parameters of two-stage LNA after proton implantation 
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However, the input/output matching is worse after the implantation as shown in 

Fig.7-8. It implies that the improvement of Q-factor can sometimes also change the 

input/output impedance matching. Therefore, if using this technology to design 

complicated circuits, these issues need to be under consideration carefully. 

 

7.1.3 Conclusions 
 

Table 7-1 summarized the parameters of both one-stage and two-stage LNA with 

and without post proton implantation upon simulation result. As can be seen from the 

table, all parameters of one-stage LNA are improved after implantation, while the two-

stage one has impedance matching degradation. 

 One-stage 
w/o Imp 

One-stage 
w/ Imp 

Two-stage 
w/o Imp 

Two-stage 
w/ Imp 

S11 -11.431 -22.377 -30.540 -11.438 

S22 -10.521 -19.574 -25.390 -9.238 

S21 8.548 15.900 12.183 23.919 

NF 3.998 1.994 7.735 4.351 
 

Table 7-1 Summary of circuit parameters w/ & w/o post proton implantation 

 

7.2 8-bit successive approximation ADC using high-κ MIM capacitor 

array 

 
In modern CMOS technology, with shrinking of chip size, the area occupied by 

passive device is becoming a major issue in area scaling down for some circuits, such 

as charge redistribution based successive approximation analog to digital converter 

(ADC). Fig.7-9 shows a chip photograph of a 9-bit successive approximation ADC 
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using conventional passive devices [3]. As show in the figure, more than half of the 

chip area is occupied by the capacitor array. Therefore, high density MIM capacitors 

are demanded to decrease the total area of the chip. 

 

Fig.7-9   Chip photograph of a successive approximation ADC using conventional 
MIM capacitor 

 

In Fig.7-10, a converter based on a charge redistribution principle is depicted. The 

converter consists of an S&H stage, a comparator, a successive approximation register 

(SAR), and a capacitor-based DAC.  

 

 

Fig.7-10   Successive approximation architecture based on a charge redistribution 
principle. 

 
The S&H circuit block diagram is given in Fig.7-11(a). The sampling clock fs 

provided by the SAR is divided by two and a non-overlapping two-phase clock is 
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generated. Both signals are provided in complementary form to control the NMOS 

switches and the related NMOS dummy switch devices. The sampling capacitors CH1 

and CH2, which are also integrated on-chip here, are alternately operated in sample and 

in hold operation. Fig.7-11(b) and (c) show the schematic and layout of the S&H 

circuit respectively. 

 (a)  

(b)  

(c)  

Fig.7-11   S&H circuit: (a) block diagram; (b) schematic; (c) layout. 
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A two-stage latch-up amplifier is used as the comparator. The circuit schematic is 

shown in Fig.7-12. 

 

 (a)  

 (b)  

Fig.7-12   Comparator circuit: (a) schematic; (b) layout. 
 

 

Fig.7-13   Layout of the capacitor array. 
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The capacitors C0–CN in Fig.7-10 are realized as multiples of a unit capacitor of 

20fF. The layout is shown in Fig.7-13. 

Table 7-3 summarizes the area consumption of each circuit block and whole ADC 

using high-κ MIM capacitors and conventional MIM capacitors respectively. From the 

comparison, the advantage of using the high-κ MIM capacitors is obvious. It 

significantly shrinks the whole chip area by almost a half, even with the sampling 

capacitors integrated on-chip. The simulation result shows good INL and DNL 

parameters. 

 S&H Comp SAR Cap array Whole chip 

High-κ  MIM 80×28 45×35 55×110 165×100 175×195 

Conventional MIM 80×25 60×25 60×260 150×400 250×400 
 

Table 7-3 Comparison of area of ADC using high-κ MIM and the conventional 
circuit. (Unit: μm2) 
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Chapter Eight  

Conclusions 

 
Studies have been done on both active and passive devices in this work. The 

important findings and conclusions obtained in the course of the studies can be 

summarized as the following: 

In Part One, different measurement techniques used for monitoring the NBTI 

degradation have been studied thoroughly. The debate on the slow DNBTI component 

has been clarified. The ΔVth recovery in passivation phase is mainly due to passivation 

of interface traps Nit, rather than Not de-trapping. Due to passivation of Nit during 

measurement, the conventional CP and DCIV methods seriously underestimate Nit. 

In addition, a fast DNBTI component due to trapping and de-trapping of hole traps 

in SiON is distinguished from the slow one for the first time. The fast DNBTI 

component affects the device lifetime at high voltage and introduces a non-linear 

distortion in large signal ultra-low frequency analog applications. 

In Part Two, proton implanted high quality inductor and high-κ MIM capacitor 

have been investigated. Simulation results on both analog and RF circuits show 

improved circuit performance by using these advanced passive devices. 
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