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ABSTRACT 
 

 

 

Product differentiation by firms located at the boundary regions of countries or cities is of 

pertinent significance and interest to various segments of society as a result of its attendant 

economic benefits and trickle down effects on the rest of the economy.  The inside-outside 

location model presented in this study offers a simple framework for understanding and 

analysing the price and location decisions of competing duopolists situated on either side of a 

border, as well as the buying and travel decisions of consumers between the domestic firm 

and the competing firm beyond their economic precincts.   

Formulated in the context of product differentiation analogue to Hotelling’s paradigm 

and drawing on the earlier contributions of Gabszewicz and Thisse (1986; 1992), the inside-

outside location model integrates the traditional inside location model and the outside location 

model.  Under horizontal differentiation (inside location), firms offer identical products and 

compete in price.  Consumers will choose the firm that has the lower price, if prices differ.  

Under vertical differentiation (outside location), products differ in quality.  Consumers pay 

more for products higher up along the quality spectrum.   

The inside-outside location model explains firm competition along both horizontal 

and vertical characteristics.  Under parametric firm locations, equilibrium relative prices and 

market shares are always equal regardless of the nature of transportation costs.  When firm 

location is variable, equilibrium in pure strategies is non-existent under linear transportation 

costs but exists under non-linear transportation costs.  Price and location competition in this 

model do not necessarily lead to the same results as the traditional location models and 

possesses stability that is intermediate between the two.   

The predictive power of the inside-outside location model is evaluated by means of 

two experiments.  The first experiment corresponds to the short run situation in which firm 
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location is constant.  The second experiment studies the long run situation in which both price 

and location decisions are made.  A simultaneous price-location game is implemented.  A 

total of ten treatments were conducted, half of which institute a 100% increase in 

transportation costs.   

The experimental results accord fairly strong support for the theoretical predictions.  

Prices and locations under various transportation cost structures generally approached Nash 

prediction.  Under constant location, however, the inside firm players exhibit a strong 

inclination to price close to levels that monopolise the market.  Under variable location when 

the firms are no longer restricted by competition along a single dimension (i.e., price), the 

inside firm shows a smaller inclination (or ability) to monopolise the market through low 

prices.  The results show that a reduction in product differentiation under higher 

transportation costs results in more intensive price competition when location is variable 

rather than fixed. 

Although the inside-outside location model presented here offers solutions in pure 

competition of price and location, further extensions are feasible with respect to mixed 

strategies and collusions between firms, especially in instances where a parent company has 

several outlets on either side of the border.  A myriad of other situations present themselves 

that are worthy of further study by modifying the basic assumptions inherent in the model, 

e.g., by incorporating price discrimination, production costs and a budget constraint.  As such, 

the situations considered here do not pretend to be either exhaustive or comprehensive in the 

range of possible applications within this domain. 
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CHAPTER 1 

INTRODUCTION 
 

 

 

patial theories of product differentiation have their roots as far back as von Thünen, 

Launhardt and Weber, long before the seminal contributions of Hotelling and 

Chamberlin.1  Theories of product differentiation evolved along two broad themes: the first 

distinguishes between horizontally and vertically differentiated goods, while the second 

demarcates goods according to whether they are address or non-address items.2

S

The delineation of product differences along hierarchical lines was first made by 

Lancaster in the late 1970s.3  Broadly speaking, two products are said to be horizontally 

differentiated when one contains more of some characteristics but fewer of other 

characteristics.  Consumers exhibiting heterogeneous preferences will choose the product that 

is closest to their tastes, ceteris paribus.  In other words, there will always be positive demand 

for products offered at the same price.  On the other hand, two products are said to be 

vertically differentiated if one contains more of some or all characteristics than the other.  All 

rational consumers will choose the product in which the characteristics are augmented rather 

than lowered, ceteris paribus.  Consequently, the product with the augmented characteristics 

                                                      
1 The authors are credited as the founding fathers in three areas of location theory: von Thünen for 
agricultural location (Der Isolierte Staat published in 1826), Launhardt for market area analysis 
(Mathematische Begrundung der Volkswirtschaftslehre published in 1885) and Weber for 
industrial location (Über den Standort der Industrie published in 1909).  Besides these authors, 
Christaller and Lösch are known for their contributions to central places theory (major works 
published in 1933 and 1944 respectively).  Others such as Marshall (e.g. Principles of Economics 
first published in 1961) also identified product differentiation but did not cast their work in a 
spatial context.   
2 Phlips and Thisse (1982) classified theories of product differentiation in location models under 
categories that distinguished between the pricing mechanism employed, viz., mill pricing versus 
discriminatory pricing.  A sub-category was then introduced for each according to whether the 
theories differentiated products horizontally or vertically. 
3 Lancaster introduced the concept of differentiated products and consumer tastes in 1966 and 
subsequently categorised heterogeneity as “vertical” differentiation in 1976 and “outside” in 1979.  
He explicitly transformed product characteristics into product space à la Hotelling in 1975 in his 
attempt to find the socially optimal level of product variety.  This work was subsequently revised 
in 1979 (e.g., see Lancaster 1979). 



 2

will always capture the whole demand whenever it is offered at the same price as the other 

product in which the characteristics are lowered.   

Horizontal differentiation lies at the heart of Hotelling (1929)’s analysis, while 

vertical differentiation received a parallel analysis in the same vein as Hotelling only fairly 

recently by Gabszewicz and Thisse (1986).  The authors described horizontal differentiation 

models as inside location models, and vertical differentiation models as outside location 

models.  In inside location models, consumers are located within the same sub-space as firms.  

In outside location models, firms are located outside the residential area of consumers.  The 

product may be homogeneous in all respects except its distance (and hence transportation 

cost) with respect to consumers.  Alternatively, product differentiation may be viewed in 

terms of brand specification rather than physical location.  In terms of product differentiation, 

the product with lower transportation cost can be viewed as possessing higher quality or 

brand preference since consumers always prefer to purchase it, ceteris paribus.4  The 

disutility (if any) arising from consuming the product is then measured by the distance 

between the product and the consumer. 

The alternative method of identifying product differentiation theories is the ‘address’ 

versus ‘non-address’ approach.  The ‘address’ approach runs along the lines reminiscent of 

Hotelling.  It recognises a product as having spatial characteristics with addresses or 

coordinates in space, and consumers who similarly possess addresses for their tastes in the 

same product space.  In contrast, the ‘non-address’ approach, in the spirit of Chamberlin, 

assumes that consumer tastes for differentiated goods are defined over a predetermined set of 

all possible goods (which may be finite or countably infinite) that are purchased by a 

representative consumer (Eaton and Lipsey 1989).  Although the second approach in its 

original framework is not directly applicable to spatial competition in that it disregards 

                                                      
4 Cremer and Thisse (1991) showed that horizontal differentiation models are in fact a special case 
of vertical differentiation models, as long as Shaked and Sutton (1983)’s ‘finiteness property’ is 
satisfied, i.e., only a finite number of firms co-exist with positive demand at a price equilibrium 
where prices exceed marginal cost.  This condition is likely to hold in industries where product 
innovation is accompanied by process innovation, so that marginal cost rises less rapidly than 
quality increases. 
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neighbour effects of firms or products, modifications to basic Chamberlinian precepts by 

authors such as Salop (1979) has made this more tractable. 

While the bulk of the existing literature on spatial product differentiation was 

spawned from either of the two approaches, i.e., horizontal versus vertical, or address versus 

non-address, relatively fewer attempts have been made to study the co-existence of both 

attributes within the same spatial framework.  Launhardt can be regarded as the pioneer of 

this third branch of spatial differentiation theories.  Generally, such theories attempt to 

establish a market boundary that segregates markets geographically or through their pricing 

patterns.  In his ‘economic law of market areas’, Fetter (1924) defined a market boundary as a 

hyperbolic curve separating two geographically competing markets whose position is 

determined by the relative price and relative freight rate of the two markets.  More generally, 

the market boundary can be described as a family of elliptical curves or hypercircle (e.g. 

Hyson and Hyson 1950; Hebert 1972).  The hyperbolic market curve becomes a straight line 

when production prices and freight rates are identical. 

Spatial models that incorporate the market boundary through geographical market 

segregation include Salop (1979)’s non-congruent markets along a circle in which a firm in 

one market sells a homogeneous product while another firm in the other market sells a 

differentiated product.  Cooper (1989) adapted Salop’s model to study indirect competitive 

effects by having the two markets meet at a single point at which a third firm is located.  The 

two firms located within the markets sell differentiated products in their own market but not 

outside it, while the straddling firm can sell in both markets.  DeGraba (1987) used a similar 

framework as Salop and Cooper but, instead of circles, the markets are linear with the market 

boundary at the origin.  The two markets are represented by the lines [  and [  and 

contain one firm each which sell only to consumers located inside their own market, while a 

third firm straddling the two markets at the market boundary sells to consumers in both 

markets.  In a novel approach, Braid (1989) considered location along intersecting roadways 

] ]0,1L 2,0 L
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to yield an asymmetry in market demand realised by the firm located at the crossroads relative 

to that obtained by firms located at one of the road segments. 

In a modified Hotelling duopoly framework that permits firm location beyond the city 

boundaries, Tabuchi and Thisse (1995) showed that under quadratic transportation costs, 

firms locate outside the market at ( )45,41−  if consumers are uniformly distributed, and at 

( )1865,96−  and ( )961,18651 +−  if the consumer distribution is triangular.  The 

latter of the two asymmetric equilibria has one firm locating outside the market.5

Spatial models that define the market boundary through the price structure include 

Dos Santos Ferreira and Thisse (1996)’s variegated transportation technology model, à la 

Launhardt.  In their framework, firms are located in the same market but encounter different 

transportation rates in delivering a homogeneous product to consumers within the market.  

Depending on the distance of the firms from each other, different transportation rates for the 

product will result in horizontal or vertical product differentiation.  On the other hand, 

Greenhut and Ohta (1975) employed discriminatory pricing to determine the market boundary 

in their price conjectural variation model.  Firms form conjectures about rivals’ likely 

responses and enter these conjectures into their decision-making.  In this way, firms select a 

(delivered) pricing policy to maximise profits subject to a given limit price ceiling at the 

market boundary. 

Although non-exhaustive, the above discussion on spatial product differentiation 

models with market boundaries shows clearly that such theories are more reflective of the 

realities of oligopolistic competition.  Introducing a market boundary that segregates diverse 

markets which interact mutually raises the analysis to more realistic levels and hence 

enhances the practical applicability of the conclusions to be drawn. 

With such heuristic intentions in mind, I introduce a new model in Chapter 2 

depicting both horizontal and vertical product differentiation characteristics, formulated in the 

context of product differentiation analogue to Hotelling’s paradigm.  Drawing on the earlier 

                                                      
5 See also Lambertini (1997). 
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contributions of Gabszewicz and Thisse (1986; 1992), an inside-outside location model is 

proposed which integrates the pure inside location model and the pure outside location model.  

Two firms, an inside firm and an outside firm, face the same transportation rate and are 

located in separate linear markets of length [ ]1,0  and ] [+∞,1  respectively.  The market 

boundary is located at the point 1.  Consumers are located only within one of the markets 

which constitutes the linear city in this model, viz. within [ ]1,0 , but may travel to either of the 

two markets to purchase the product.  Firm entry into rival market, however, is closed.  It will 

be shown that the only viable option for the firm outside the city limit is to locate in the 

vicinity of the market boundary.  Intuitively, proximity to the market boundary is crucial for 

the outside firm to remain in competition with the inside firm (situated in the same area as the 

consumers) by reducing the transportation costs incurred by the consumers, ceteris paribus.   

Both horizontal and vertical product differentiation characteristics coexist in this 

model which segregates the markets geographically.  At one extreme, when the inside firm 

locates at the market boundary at point 1 (i.e., closest to the outside firm), the model reduces 

to one that mainly exhibits vertical product differentiation characteristics.  At the other 

extreme, when the inside firm locates at 0 (i.e., furthest from the outside firm), horizontal 

product differentiation characteristics predominate.  At locations away from the endpoints of 

the inside firm, the model naturally displays both horizontal and vertical differentiation 

attributes.   

In this hybrid model, price and location competition do not necessarily lead to the 

same results as in the pure inside or outside location model.  The contrasting findings and all 

possible equilibria under various types of transportation costs are studied in the ensuing 

analysis.  The proposed inside-outside location model is found to possess stability that is 

intermediate between the pure location models. 

The inside-outside location model constructed in this manner is reflective of many 

real world situations in which physical entry by firms into rival markets is either too costly or 

legally prohibitive, but product entry is not.  The outside firm either sells the product to 
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consumers by transporting the good to them and charging them the delivered price, or 

synonymously, consumers travel across the market boundary to purchase the good.  In both 

instances, consumers pay the mill price plus transportation cost.  The first situation is 

reflective of trading nations or cities in which firms produce goods within their own precincts 

and ship them to neighbouring markets to be sold, while the second is reflective of cross-

border shoppers who travel out of their domestic market to shop, and may be adapted to the 

context of workers who travel to a neighbouring country or city to work and return at the end 

of each day or year.  For example, cross-border shopping is a common phenomenon in the 

border regions of US and Canada, US and Mexico, several European countries, and Singapore 

and Malaysia in Southeast Asia (e.g., see Bode et al. 1994; Brodowsky and Anderson 2003; 

Timothy and Butler 1995; Toh 1999).  It is worth noting that the IO model is directly 

applicable to adjoining market areas segmented economically and (or) geographically at the 

border.  It highlights the distinction between an economic boundary and geographical 

boundary between two regions, which in most of the cases do not necessarily coincide.  

The extent to which the IO model has predictive power for the behaviour of 

duopolistic spatial competition is evaluated in a laboratory setting.  Despite the popularity of 

spatial location theories, experimental tests of such models have been relatively few.  Existing 

experimental studies on spatial firm competition typically draw on the inside location models 

à la Hotelling (1929) by varying the conditions in which firms compete.  There are two broad 

categories of such studies.  The first focuses on firm behaviour with a single strategy, which 

may be either price or location.  The second takes a more realistic approach by studying firm 

behaviour with dual strategies, i.e., both price and location.  The experimental tests of the IO 

model in this study follow this two-pronged approach.  Chapter 3 presents the results of an 

experiment that assumes constant firm location, while Chapter 4 highlights the experimental 

study of firm behaviour where both price and location decisions are made. 

The study of firm behaviour with a single strategy forms the bulk of existing 

experimental literature on spatial firm competition.  These studies typically observe location 

decisions by assuming constant price.  Brown-Kruse et al. (1993) and Brown-Kruse and 
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Schenk (2000) conducted experiments on location decisions by assuming elastic consumer 

demand, while Collins and Sherstyuk (2000) and Huck et al. (2002) studied location decisions 

by assuming inelastic consumer demand.  On the other hand, Selten and Apesteguia (2004) 

studied price decisions among varying number of firms with fixed location in a circular 

market.  In all these experiments, buyer decisions are automated.   

The experiment presented in Chapter 3 observes price decisions in a short run 

situation in which firm location is constant.  Six treatments are employed, each corresponding 

to different assumptions of transportation costs.  In three treatments, there is a 100% increase 

in transportation costs.  This permits a comparative study of firm decisions under higher 

transportation costs. 

The second approach to the experimental study of spatial firm competition involves 

both price and location strategic decisions.  Among the few studies that adopt this 

methodology include Barreda et al. (2000) and Camacho-Cuena et al. (2004).  Barreda et al. 

(2000) studied location-then-price decisions in a duopoly faced with horizontal differentiation 

in a discrete framework.  Camacho-Cuena et al. (2004) took a novel approach by studying 

non-automated consumer decisions.  Extending Barreda et al. (2000)’s study, the authors 

observed buyer location-purchase decisions in a four-stage game.  In the first and second 

stages, both sellers and buyers make their location decisions.  In the third stages, sellers set 

prices and in the final stage, buyers make purchase decisions. 

Chapter 4 highlights an experiment that assumes a long run situation in which firms 

compete in both price and location.  A simultaneous price-location game is implemented.  

Four treatments are executed in which varying assumptions are made regarding the type of 

transportation cost structure and its parameters.  In two treatments, a 100% increase in 

transportation costs is assumed. 

The conclusions are drawn in Chapter 5.  The theoretical and experimental results are 

summarised, and comparisons are drawn between the main findings of the two experiments.   



CHAPTER 2 

THE INSIDE-OUTSIDE LOCATION MODEL 
 

 

2.1 INTRODUCTION 

 

ompetition in space arises because market activities occur at dispersed points in space.  

The study of spatial economic interactions has been well established since Hotelling 

(1929)’s pioneering work, with notable contributions by Prescott and Visscher (1977), 

d’Aspremont et al. (1979), Gabszewicz and Thisse (1986; 1992), de Palma et al. (1985), and 

Anderson (1988), inter alia. 

C

In Hotelling’s inside location model, two firms compete in a market along a line 

segment  (typically normalised to the unit interval [l ]1,0

( ) tdd = d

 by subsequent authors) to sell a 

homogeneous product that is produced at zero cost.  The firms have location and price as their 

decision variables.  Consumers are uniformly distributed along the same line segment and 

encounter transportation costs that increase linearly in distance, i.e., c , where  is 

the distance between the firm and the consumer.  The firms play a two-stage game in which 

they decide on location in the first stage and price in the second stage.  Under this 

formulation, Hotelling found that an equilibrium exists which results in firms agglomerating 

at the market centre, a phenomenon which he termed the Principle of Minimum 

Differentiation. 

This solution, however, has been found to be inherently unstable.  In a slightly 

modified version of Hotelling’s framework for which a unique price equilibrium in pure 

strategies exists for any pair of locations ( )21, xx , D’Aspremont et al. (1979) proved that if 

the transportation costs between firms and consumers increase at a quadratic rate, i.e., 
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( ) 2sddc = , the Principle of Maximum Differentiation holds instead.1  Rather than clustering 

at the market centre, firms choose to disperse themselves and locate at opposite ends of the 

market. 

The Principle of Maximum Differentiation has been shown to hold only under certain 

conditions.  Employing a transportation cost function of the form ( ) αddc =  where 21 ≤≤α , 

Economides (1986) showed that maximum differentiation exists for highly convex 

transportation cost functions, in particular, for 226.1 ≤<≅ αα . 

Solving a sequential game in which non-uniformly distributed consumers face a 

quadratic transportation cost function, Neven (1986) showed that the incentive for firms to 

maximally disperse is reduced with increasing densities of consumers toward the centre while 

maximum differentiation occurs under uniform consumer distribution. 

Prescott and Visscher (1977) obtained maximum firm dispersion as a solution for a 

foresighted sequential two-firm entry game.  No equilibrium exists when there are three firms.  

A similar result was obtained by Shaked and Sutton (1982) in an extended study involving 

quality decisions.  In a sequential three-stage game, firms make a decision to enter the market 

in the first stage, followed by a quality choice in the second stage, and a price decision in the 

third stage.  Consumers are identical in tastes but differ in incomes that are uniformly 

distributed.  An equilibrium in pure strategies exists in which only two firms choose to enter 

the market, produce differentiated products and earn positive profit. 

Other authors examined the conditions in which an equilibrium exists under linear 

transportation costs or a combination of linear and quadratic transportation costs.  Osborne 

and Pitchick (1987) presented a solution under Hotelling’s original framework and showed 

that an equilibrium in pure strategies exists in the location stage and in mixed strategies in the 

price stage.  Gabszewicz and Thisse (1986) studied the case in which transportation costs are 

                                                      
1 When transportation costs are linear, a unique price equilibrium exists if and only if 
( )( ) ( ) 322432 21

2
21 xxxx −+≥++  and ( )( ) ( ) 321434 21

2
21 xxxx −+≥−−  when 

, and  when 121 <+ xx 0*
2

*
1 == pp 121 =+ xx  (see d’Aspremont et al. 1979).  Note that  is 

defined from the origin rather than from point 1 in contrast to Hotelling (1929)’s nomenclature.   
2x
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linear-quadratic, i.e., , , and showed that no equilibrium in pure 

strategies exist.  Anderson (1988) extended this result by showing the existence of an 

equilibrium involving pure strategies in the first stage and mixed strategies in the second 

stage. 

( ) 2sdtddc += 0, >st

Various authors also considered several forms of non-linear markets.  For example, 

Salop (1979) introduced a model in which two firms are located along a circle.  A firm in the 

first market sells a homogeneous product while another firm in the second market sells a 

differentiated product.  If there are  firms, then they locate equidistantly from each other at n

n1 .  In terms of prices, three types of equilibria exist: monopoly (segregated or overlapping 

markets at high prices), competitive (overlapping markets at lower prices) and kinked (the 

markets just touch).  De Frutos et al. (2002) showed that under this formulation, the location-

then-price game is strategically equivalent regardless of whether transportation costs are 

convex or concave. 

The Principle of Minimum Differentiation is valid under certain assumptions.  De 

Palma et al. (1985) showed that firms have a tendency to cluster at the market centre if 

consumer choices are probabilistic enough, or equivalently, if preferences are sufficiently 

heterogeneous.  Dudey (1990) obtained the same result for a four-stage sequential game 

involving consumer search.  In the first stage, firms choose their location.  In the second 

stage, consumers decide where to shop.  In the third stage, firms decide on the quantity to 

produce.  In the final stage, consumers learn the terms-of-trade available from the shopping 

centre they have decided to visit, and make their purchase at the market clearing price.  The 

authors defined a shopping centre as one in which there are more than one firm at a single 

location.  An equilibrium in pure strategies is obtained in which firms cluster together, i.e., 

the Principle of Minimum Differentiation.  Other variants of this sequence examined by the 

authors produced the same result, e.g., firms choose quantity and consumers choose shopping 

location simultaneously, or firms and consumers choose location simultaneously. 
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While the Principle of Differentiation (whether maximum or minimum) may be an 

attractive means by which firms attempt to avert rigorous price competition, firms are 

commonly observed to offer products that possess virtually identical features, e.g., some 

electronic products (Motorola and Nokia) and automobiles (BMW and Mercedes).  Rather 

than compete among two or more variants of the same product at the same price (horizontal 

differentiation), competition presides over a quality scale in which the product that has a 

higher quality commands a higher price (vertical differentiation).   

Gabszewicz and Thisse (1986) presented a vertical differentiation or outside location 

model in which firms are located along [ [+∞,1  outside the residential area of consumers.  The 

product may be homogeneous in all respects except its distance (and hence transportation 

cost) with respect to consumers.  The product with lower transportation cost can be viewed as 

possessing higher quality since consumers always prefer to purchase it, ceteris paribus.  An 

equilibrium in pure strategies always exists for the sequential location-then-price game. 

The Hotelling model and its variants have been applied to the study of the impact of 

brand specification (through product quality, variety, prestige or image) on decisions such as 

price and brand loyalty.  Among the authors in this vein are Grossman and Shapiro (1984), 

Ben-Akiva et al. (1989), Martínez-Giralt (1989), Tremblay and Martins-Filho (2001), 

Tremblay and Polasky (2002), Wright (2002), Harter (2004), and many others.  

In the next section, I present a model that integrates the inside location model and the 

outside location model.  This hybrid model possesses both horizontal and vertical 

differentiation characteristics.  Two firms, an inside firm and an outside firm, produce a 

homogeneous good.  They locate on either side of a market boundary along a line segment of 

infinite length [ [+∞,0  and are prohibited from entering each other’s market space.  

Consumers are located within the same market as the inside firm.  They travel to either firm to 

make their purchase by incurring a transportation cost.  This situation is reflective of cross 

border shoppers who travel beyond their residential area to shop.  Synonymously, firms 

located in adjoining market spaces may deliver the good to consumers who bear the delivery 
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costs.  This scenario reflects competition between local and imported goods.  The model 

described in the next section is couched in the first setting à la Hotelling in which consumers 

travel to make their purchase.   

 

2.2 THE INSIDE-OUTSIDE (IO) MODEL 

To examine the duopolistic competition between firms selling a homogeneous product in two 

adjoining markets with entry-barrier to foreign firms, consider an inside-outside location 

model (hereafter termed IO model) adapted from Hotelling (1929) and Gabszewicz and 

Thisse (1986; 1992).  Figure 2.1 gives a graphic representation of the model.   

Two contiguous straight lines represent two markets { }2,1∈i  that sell a homogeneous 

product with no storage, distribution or production costs.  Market 1 is denoted by the bounded 

unit interval [  along which firm 1 (the inside firm) and all consumers are located.    

Market 2 is denoted by the unbounded interval 

]1,0

] [+∞,1  along which firm 2 (the outside firm) 

locates.  The two markets meet at the market boundary situated at point 1 and together 

constitute a continuous straight line of infinite length (although an upper bound is necessary 

for firm 2 to remain viable, as will be shown in Section 2.3).  Consumers are uniformly 

distributed along  with density one.  Firm 1 is located at distance  from the left 

endpoint of the line, i.e., , while firm 2 is located at distance  outside the domestic 

market with 

[ ]1,0 1x

[ ]1,01 ∈x 2x

] +∞[∈ ,12x .  The two firms are assumed to have fixed location and compete only 

in price.  This assumption will be relaxed in Sections 2.4 and 2.5.  Each consumer buys one 

unit of the product from the firm charging the lower full price, i.e., mill price plus 

transportation costs.  Price ties are resolved in favour of the nearer firm.  Consumers are 

assumed to have control over transport and bear the full burden of the transportation costs.  

Let  denote the transportation cost function which is continuous, increasing and convex 

(weakly or strongly) in distance  and presents itself as one of three forms: linear, quadratic 

and linear-quadratic, with .  Let  and  denote the mill price of firm 1 and firm 2  

)(dc

d

( ) 00 =c 1p 2p
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Fig. 2.1     Geographical configuration of the marginal consumer and firms 

 

 

 

respectively.  Let ( )21 , ppm  be the “marginal consumer” [ ]1,0∈y  who is perfectly indifferent 

between travelling to firm 1 or firm 2 satisfying 

  ( ) ( )yxcpxycp −+=−+ 2211  

and is unique whenever he exists. 

 The market is segmented at ( )21 , ppm : consumers located in  buy from 

firm 1 while those in  buy from firm 2.  If 

([ ]21 ,,0 ppm )

]( )[ 1,, 21 ppm ( )21 , ppm  does not exist, then either 

of the following two conditions holds: 

(2.1)  ( ) ( )yxcpxycp −+<−+ 2211 for all [ ]1,0∈y ,  or 

(2.2)  ( ) ( )yxcpxycp −+>−+ 2211 for all [ ]1,0∈y . 

In the first case, firm 1 serves the whole market at price  while in the second case, 

the whole market is served by firm 2 at price .  The strategies of this two-player game are 

 and  with the payoff function of firm 1 given by 

1p

2p

[ +∞∈ ,01p [ [[ +∞∈ ,02p

  ( )21211 ,;, xxpp∏  ( )( )
∫=

21 ,

01

ppm
dzzfp    if ( )21, ppm  exists, 

       =     if equation 2.1 holds, 1p

   = 0    if equation 2.2 holds 

0 1 1x

1xy − yx −2 

2x y  
marginal 
consumer 

firm 1 firm 2 
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  Fig. 2.2     Full price paid by consumers at various locations in [    
             under linear transportation costs 

]1,0

 

 

while the payoff function of firm 2 is defined as 

  ( )21212 ,;, xxpp∏    if ( )
( )∫=

1

,2
21 ppm

dzzfp ( )21, ppm  exists, 

       =     if equation 2.2 holds, 2p

      = 0    if equation 2.1 holds. 

 

Assuming linear transportation costs, figure 2.2 illustrates the full price of the good at 

various locations of the consumer given the cost schedule ABC if he buys from firm 1 and DF 

if he buys from firm 2.  The bold line ABEF depicts the lowest full price at any given 

location.  The intersection of the two cost schedules at  denotes the location of the marginal 

consumer.  It is obvious from the figure that for the marginal consumer to exist, he must 

locate in [ ]. 

y

1,1x
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2.3 EQUILIBRIUM UNDER PARAMETRIC LOCATIONS 

Suppose transportation costs are linear-quadratic bearing the form  where 

and .  If 

( ) 2sdtddc +=

( ) 00 =c 0, >st ( )21, ppm  exists, it must be the solution of the equation 

  ( ) ( ) ( ) ( )2
222

2
111 yxsyxtpxysxytp −+−+=−+−+ . 

Solving, we obtain the demand functions for firm 1 and firm 2, respectively, as 

(2.3)  ( ) ( )[ ]
( )

22
, 21

12

12
211

xx
xxst

pp
ppm

+
+

−+
−

=   and 

(2.4)  ( ) ( )[ ]
( )

2
2

2
, 21

12

21
212

xx
xxst

pp
ppm

−−
+

−+
−

= . 

with the payoff functions given by ( ) ( 2111211 ,, ppmppp ⋅ )=∏  and 

( ) ( )2122212 ,, ppmppp ⋅=∏  respectively.  Maximising profits on the part of firm 1 and  

firm 2 by setting ( ) 0, *
2

*
1 =∂∏∂ ii ppp  where { }2,1=i , gives the following best response 

functions: 

(2.5)  ( )( )([ ]2112
*
2

*
1 2

1 xxxxstpp +−++= )   and 

(2.6)  ( )( )([ ]2112
*
1

*
2 2

2
1 xxxxstpp −−−++= ) .  

Solving equations 2.5 and 2.6 gives the non-cooperative Bertrand-Nash price equilibrium in 

pure strategies 

(2.7)  ( ) ( ) ( ) ( ) ( )⎟
⎠

⎞
⎜
⎝

⎛ −−
−+

++
−+

= 21
12

21
12*

2
*
1 4

3
,2

3
, xx

xxst
xx

xxst
pp . 

For non-zero , we assume that *
2p 421 <+ xx .  In other words, the upper bound on the 

location of firm 2 for it to remain viable is 12 4 xx −< .  If 421 =+ xx , an equilibrium exists 

at  

( ) ( ) ( ) ⎟
⎠

⎞
⎜
⎝

⎛ +
−+

= 0,
2

, 21
12*

2
*
1 xx

xxst
pp .   
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Intuitively, this means that when the distance between the two firms becomes too large, firm 1 

becomes a monopoly and gains the whole market while firm 2 drops out of the competition.  

Equation 2.7 shows that the equilibrium prices are dependent on all the parameters of the 

model, viz., the locations of the two firms as well as the transportation cost.  The distribution 

of market demand between firm 1 and firm 2 at Nash equilibrium is obtained by substituting 

equation 2.7 into equations 2.3 and 2.4 giving  

(2.8)  ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−++= 2121

*
2

*
1 4

6
1,2

6
1, xxxxmm . 

Equation 2.8 shows that the equilibrium demand is dependent only on the location of the two 

firms. 

A similar exposition can be conducted for the cases in which transportation costs are 

linear of the form  where ( ) tddc = ( ) 00 =c  and , and quadratic of the form  

where and  (See Appendices 1 and 2).  In both instances,  whenever 

.  Under linear transportation costs, however, a unique equilibrium exists if and 

only if 

0>t ( ) 2sddc =

( ) 00 =c 0>s 0*
2 >p

421 <+ xx

( )( ) ( ) 322432 21
2

21 xxxx −+≥++  and ( )( ) ( ) 321434 21
2

21 xxxx −+≥−−  when 

 (see the proof in Appendix 1).  The equilibrium price and equilibrium demand are 

given in Table 2.1 for non-zero , along with the contrasting results for the pure inside 

location and outside location models.   

421 ≤+ xx

*
2p

It is obvious from the results that the IO model shares some of the features of the pure 

inside location model as well as the pure outside location model.  The equilibrium price and 

demand are the same for the IO model and the inside location model for all transportation 

costs considered, and are identical for the IO model and the outside location model under 

quadratic transportation costs.  Moreover, the equilibrium demand remains the same 

regardless of the transportation cost structure for both the IO model and the inside location 

model.  The same conclusion, however, cannot be extended to the outside location model 

where both firms are located beyond the residential area of the consumers.  Under duopolistic 

competition, therefore, it appears that when at least one of the firms is located within the same  
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Table 2.1 
Equilibrium price and demand of the inside, outside and IO models under various 
transportation cost structures when location is parametric 

 Price Equilibrium Demand Equilibrium 
Inside Location Model
( ) tddc =  ( ) ( ) ( )⎟

⎠
⎞

⎜
⎝
⎛ −−++= 2121

*
2

*
1 4

3
,2

3
, xxtxxtpp  ( ) ( ) ( )⎟

⎠

⎞
⎜
⎝

⎛ −−++= 2121
*
2

*
1 4

6
1

,2
6
1

, xxxxmm  

2)( sddc =  ( ) ( )( ) ( )( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−−++−= 21122112

*
2

*
1 4

3
,2

3
, xxxxsxxxxspp

 

( ) ( )⎟
⎠

⎞
⎜
⎝

⎛ −−++= 2121
*
2

*
1 4

6
1,2

6
1, xxxxmm  

2)( sdtddc +=  ( ) ( ) ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−

−+
++

−+
= 21

12
21

12*
2

*
1 4

3
,2

3
, xxxxstxxxxstpp

 

( ) ( ) ( )⎟
⎠

⎞
⎜
⎝

⎛ −−++= 2121
*
2

*
1 4

6
1

,2
6
1

, xxxxmm  

Outside Location Model
( ) tddc =  ( ) ( )( )0,, 12

*
2

*
1 xxtpp −=  ( ) ( )0,1, *

2
*
1 =mm  

2)( sddc =  ( ) ( )( ) ( )( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−−++−= 21122112

*
2

*
1 4

3
,2

3
, xxxxsxxxxspp

 

( ) ( )⎟
⎠

⎞
⎜
⎝

⎛ −−++= 2121
*
2

*
1 4

6
1,2

6
1, xxxxmm  

2)( sdtddc +=  ( ) ( ) ( )( ) ( ) ( )( )⎟
⎠

⎞
⎜
⎝

⎛
−−−

−
+++

−
= txxs

xx
txxs

xx
pp 21

12
21

12*
2

*
1 4

3
,2

3
,

 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠

⎞
⎜
⎝

⎛ −−+⎟
⎠

⎞
⎜
⎝

⎛ +++= 2121
*
2

*
1 4

6
1,2

6
1, xx

s
txx

s
tmm

 
Inside-Outside Location Model
( ) tddc =  ( ) ( ) ( )⎟

⎠
⎞

⎜
⎝
⎛ −−++= 2121

*
2

*
1 4

3
,2

3
, xxtxxtpp  ( ) ( ) ( )⎟

⎠

⎞
⎜
⎝

⎛ −−++= 2121
*
2

*
1 4

6
1

,2
6
1

, xxxxmm  

2)( sddc =  ( ) ( )( ) ( )( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−−++−= 21122112

*
2

*
1 4

3
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3
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( ) ( )⎟
⎠

⎞
⎜
⎝

⎛ −−++= 2121
*
2

*
1 4

6
1

,2
6
1

, xxxxmm  

2)( sdtddc +=  ( ) ( ) ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−

−+
++

−+
= 21

12
21

12*
2

*
1 4

3
,2

3
, xxxxstxxxxstpp ( ) ( ) ( )⎟

⎠

⎞
⎜
⎝

⎛ −−++= 2121
*
2

*
1 4

6
1

,2
6
1

, xxxxmm  

 

 

 

Note:  

When transportation costs are linear, a unique price equilibrium exists if and only if 
( )( ) ( )  and ( )( ) ( )

 

 

 

322432 21
2

21 xxxx −+≥++ 321434 21
2

21 xxxx −+≥−−  when (a) 121 <+ xx , and 

 when  for the inside location model (d’Aspremont et al. 1979); and (b) when 
 for the IO model.  A unique price equilibrium exists for all location pairs of the 

outside location model. 

0*
2

*
1 == pp 121 =+ xx

421 ≤+ xx ( 21 , xx )
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sub-space as the consumers, equilibrium demand depends only on the location of the two 

firms when location is parametric.   

The following propositions encapsulate the results of the IO model whenever a 

solution exists in pure strategies with non-zero prices (see Appendix 3 for the proofs). 

 

Proposition 1 

When firm locations are fixed, the equilibrium relative price *
1

*
2 pp  is independent of the 

transportation cost structure. 

 

Proposition 2 

The equilibrium market demand ( )*
2

*
1 , mm  for the good has the following properties: 

2.1 It is the same regardless of the transportation cost structure when firm locations are 

fixed. 

2.2 Relative demand is equivalent to relative prices. 

 

Proposition 3 

Given a transportation cost structure, the inside firm raises (lowers) its price when faced with 

higher (lower) transportation costs.  The outside firm reacts by raising (lowering) its price but 

by a smaller amount. 

 

The equilibrium relative price of the good offered by the outside firm to the inside 

firm is an indication of the “exchange rate” of the good at the two sources.  Intuitively, 

Proposition 1 means that when firm locations are fixed, the outside firm is able to attract the 

consumer by offering the good at the same price relative to that offered by the inside firm 

regardless of the nature of the transportation cost structure of the consumer.  This result is not 

surprising since, by Fetter (1924)’s definition, the market boundary is determined by the 
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relative price and the relative transportation costs, and the latter is constant ( 1' =tt , 1' =ss ) 

by assumption for this model.   

Proposition 2 can be interpreted as follows.  The relative market demand, which 

reflects the market area of the two firms, delineates the market boundary that is determined 

solely by the relative price in the IO model.  This explains the equality of relative market 

demand and relative price at equilibrium. 

Proposition 3 effectively means that under a given transportation cost regime, the 

inside firm offers the product at a higher price when transportation costs increase.  The 

outside firm reacts by attempting to “compensate” the consumer for the higher transportation 

costs incurred, resulting in a corresponding but smaller price increase.  This result holds 

similarly when the inside firm is faced with a change in the transportation cost structure from 

a low cost regime to a high cost regime (see Appendix 3). 

It appears that the propositions also apply to the inside location model.  Looking at 

Table 2.1, it is clear that that in the inside location model, the relative price and relative 

demand under the three transportation cost structures are equivalent.  Proposition 3 applies 

only if  for an increase in transportation cost to  and  to result in .  

The propositions, however, are invalid in the outside location model except for Proposition 

2.2 and Proposition 3 under quadratic transportation costs when the results are identical to the 

IO model. 

21 xx > tt >' ss >' '*
2

'*
1 pp >

 

2.4 THE SIMULTANEOUS PRICE-LOCATION GAME 

In the longer run, the locations of firms are not fixed but variable.  When firms choose price 

and location together, we have a simultaneous price-location game.  The choice of both price 

and location in each period of the market game is reflective of situations in which players 

commit to a price for a period as long as the product lifetime.  For example, firms like chain 

stores publish a catalogue and stick to it for a while.  Agency situations may force an 

employee that work as a seller to commit to the announced price.  The ensuing discussion 
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shows that for the IO model, non-existence of equilibrium in pure strategies emerges under 

linear transportation costs but not under non-linear transportation costs when the game is 

played simultaneously.   

In the simultaneous game, the strategy pairs are ( )11 , xp  for the inside firm 1 and 

 for the outside firm 2, with ( 22 , xp ) [ [+∞∈ ,0, 21 pp , [ ]1,01 ∈x  and .  The Nash 

equilibrium in prices and locations is one in which no firm wishes to change its price and/or 

location given the price and location it anticipates the other firm will choose.  The payoff 

function for firm 1 at equilibrium satisfies 

] +∞∈ ,12x [

(2.9)  ( ) ( )( ) ( ) ( )( )*
2

*
2111

*
2

*
2

*
1

*
11 ,,,,,, xpxpxpxp ∏≥∏  

for all  and , while the payoff function for firm 2 satisfies [ ]1,01 ∈x 01 ≥p

(2.10)  ( ) ( )( ) ( ) ( )( )22
*
1

*
12

*
2

*
2

*
1

*
12 ,,,,,, xpxpxpxp ∏≥∏  

for all ] [+∞∈ ,12x  and . 02 ≥p

It is readily verified that the only pure strategy equilibrium for the simultaneous game 

involves  and  where [ ]1,0*
1 ∈x ε+=1*

2x 0>ε  is a small constant close to zero representing a 

physical divide between two countries, e.g., the sea, a mountain, etc.2  In other words, the 

dominant location strategy for firm 2 is to locate at .  The argument is as follows.  

Suppose that 

ε+=1*
2x

ε+=12x  is not an equilibrium, i.e., we have a candidate equilibrium whereby 

firm 2 locates at ε+>1~
2x  with both firms earning positive market shares.  Firm 2 can then 

increase profit by moving closer to its rival and locating at .  Formally, ε+=1*
2x

  ( ) ( )( ) ( ) ( )( )*
2

*
2

*
1

*
122

*
2

*
1

*
12 ,,,~,,, xpxpxpxp ∏<∏ . 

Hence, ε+>1~
2x  cannot be an equilibrium and firm 2 necessarily locates at .   ε+=1*

2x

 

                                                      
2 When 0=ε , the market boundary at 1 represents a seamless economic and (or) geographical border 
between the two markets.  In the ensuing discussions, we assume that 0>ε .   
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2.4.1 Equilibrium Existence 

Consider the scenario in which firms 1 and 2 experience linear-quadratic transportation costs 

of the form  where ( ) 2sdtddc += ( ) 00 =c and .  The profit functions of firm 1 and 

firm 2 are given by the following equations respectively: 

0, >st

  ( ) ( )( ) ( )[ ]
( )

1
21

12

2
121

22111 22
,,, p

xx
xxst

ppp
xpxp

+
+

−+
−

=∏  

and  ( ) ( )( ) ( )[ ]
( )

2
21

12

2
221

22112 2
2

2
,,, p

xx
xxst

ppp
xpxp

−−
+

−+
−

=∏ . 

Firm 1 maximises profit by choosing  with the first order condition given by *
1x

  
( ) ( )( ) ( )

( )[ ] 01
2

,,,
2*

1
*
2

*
1

*
2

*
1

1

22111 =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−+

−
=

∂
∏∂

xxst

ppsp
x

xpxp
. 

Substituting ( )( )( )[ ] 32*
2

*
1

*
1

*
2

*
1 ++−+= xxxxstp  and ( )( )( )[ ] 34 *

2
*
1

*
1

*
2

*
2 xxxxstp −−−+=  (equation 2.7)) 

obtained by maximising the respective firm’s profit with respect to price into the above gives 

  ( ) 03522
18

*
2

*
1

*
2

*
1 =⎟

⎠
⎞

⎜
⎝
⎛ ++−++

s
txxxxs . 

Since  and 0>s ( ) 02*
2

*
1 >++ xx , this implies that ( ) 0352 *

2
*
1 =++− stxx .  In other words, 

the equilibrium location of firm 1 is at  

(2.11)  
( )

s
tx

x
5
3

5
2 *

2*
1 +

+
=  

which gives the response function in location of firm 1.   

In the case of firm 2, it maximises profit by choosing  such that *
2x

  
( ) ( )( ) ( )

( )[ ] 01
2

,,,
2*

1
*
2

*
2

*
1

*
2

2

22112 <⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−+

−
−=

∂
∏∂

xxst

ppsp
x

xpxp
 

since  from equation 2.7 for all *
2

*
1 pp > 421 <+ xx .  This implies that firm 2 increases profit 

by moving towards the market border, i.e., , ε+=1*
2x 0>ε .  Solving for  by substituting 

 into equation 2.11 gives 

*
1x

ε+=1*
2x ( ) 5153*

1 ε++= stx .  For a unique equilibrium in 
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location to exist,  or 1*
1 ≤x 32≤st .  The equilibrium prices are obtained by substituting  

and  into equation 2.7 so that 

*
1x

*
2x ( )[ ] [ ]εε sststtsp 27225476252*

1 +++++=  and 

( )[ ] [ εε sststtsp 23225434252*
2 +−−−+= ] .  The simultaneous price-location equilibrium in 

pure strategies is, therefore, given by 

(2.12)  ( ) ( )( ) [ ] [ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++−−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛ ++++⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ++= εε

ε
εε

ε 1,232
25
434

25
2,1

5
3,272

25
476

25
2,,, *

2
*
2

*
1

*
1 sst

s
tts

s
tsst

s
ttsxpxp

 

where 0>ε .   

The simultaneous price-location equilibrium in pure strategies under quadratic 

transportation costs can be similarly obtained (see Appendix 4).   

 

2.4.2 Equilibrium Non-Existence 

We will now turn to the non-existence problem of the simultaneous price-location game when 

both firms face linear transportation costs.  Assume that transportation costs are linear of the 

form  where and .  The profit functions of firm 1 and firm 2 are given 

by the following equations respectively: 

( ) tddc = ( ) 00 =c 0>t

  ( ) ( )( ) ( )
1

21
2
121

22111 22
,,, p

xx
t

ppp
xpxp

+
+

−
=∏  

and  ( ) ( )( ) ( )
2

21
2
221

22112 2
2

2
,,, p

xx
t

ppp
xpxp

−−
+

−
=∏ . 

Firm 1 chooses the optimal location  that maximises its profit.  Since *
1x

( ) ( )( )
0

2
,,, *

1

1

22111 >=
∂

∏∂ p
x

xpxp
, 

firm 1 raises its profit by moving towards firm 2 which gives its equilibrium location as 

.  At the same time, firm 2’s dominant strategy is to choose .  This is obvious 

from maximising firm 2’s profit with respect to location which gives 

1*
1 =x ε+=1*

2x

( ) ( )( )
0

2
,,, *

2

2

22112 <−=
∂

∏∂ p
x

xpxp . 
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As a result, firm 2 increases its profit by moving towards the market boundary.  The 

equilibrium location of firm 2 is then given by , ε+=1*
2x 0>ε  is a small constant.  

Substituting  and  into firm 1 and firm 2’s response function (equations A3 and A4 in 

Appendix 1) gives 

*
1x *

2x

( ε+= 43*
1 tp )  and ( )ε−= 23*

2 tp .  This is not possible as the price 

differential results in a price war between the two firms located next to each other.  Their 

attempt to undercut each other by moving apart naturally generates instability in the location 

choice of the two firms.  The simultaneous price-location equilibrium in pure strategies, 

therefore, does not exist when transportation costs are linear. 

 

2.4.3 Comparative Analysis 

The results of the simultaneous game are summarised in Table 2.2, along with the 

comparative equilibrium strategies for the pure inside location and outside location models.  

No simultaneous price-location equilibrium in pure strategies can exist in the inside location 

model while the simultaneous price-location equilibrium in pure strategies for the outside 

location model is for the two firms to always locate at  with prices  

(see Gabszewicz and Thisse 1992).

1*
2

*
1 == xx 0*

2
*
1 == pp

3  The IO model, with the horizontal differentiation 

characteristics of the inside location model, has the same instability problem as the inside 

location model under linear transportation costs.  Incorporating the vertical differentiation 

characteristics of the outside location model, however, has rendered the IO model greater 

stability than the pure inside location model in that an equilibrium in pure strategies exists 

when the transportation cost structure is quadratic and linear-quadratic.  It can be readily 

verified that with variable location of firms (as opposed to fixed location) Propositions 1 and 

2.1 do not hold in the simultaneous game of the IO model but Propositions 2.2 and 3 remain 

valid whenever an equilibrium in pure strategies exists (Appendix 5 Propositions 1A to 3A). 

                                                      
3 De Palma et al. (1985), however, showed that a simultaneous price-location equilibrium exists in 
the inside location model if the product is heterogeneous enough.  Anderson et al. (1992) further 
showed that the only symmetric pure strategy equilibrium occurs when both firms agglomerate at 
the market centre. 
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Table 2.2 
Simultaneous price-location equilibrium of the inside, outside and IO models under various 
transportation cost structures  
 

 

 

 

 

 

 

 

 

 

 

 

 Location Equilibrium Price Equilibrium 
Inside Location Model

( ) tddc =  No equilibrium exists No equilibrium exists 
2)( sddc =  No equilibrium exists No equilibrium exists 

2)( sdtddc += No equilibrium exists No equilibrium exists 
Outside Location Model

( ) tddc =  ( ) ( )1,1, *
2

*
1 =xx  ( ) ( )0,0, *

2
*
1 =pp  

2)( sddc =  ( ) ( )1,1, *
2

*
1 =xx  ( ) ( )0,0, *

2
*
1 =pp  

2)( sdtddc += ( ) ( )1,1, *
2

*
1 =xx  ( ) ( )0,0, *

2
*
1 =pp  

Inside-Outside Location Model

( ) tddc =  No equilibrium exists No equilibrium exists 
2)( sddc =  ( ) ( ) ⎟

⎠
⎞

⎜
⎝
⎛ ++= εε 1,3

5
1, *

2
*
1 xx  ( ) ( ) ( )⎟

⎠
⎞

⎜
⎝
⎛ +−−−= 22*

2
*
1 252

25
4,253

25
4, εεεε sspp  

2)( sdtddc += ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟

⎠
⎞

⎜
⎝
⎛ += εε 1,

5
1

5
3, *

2
*
1 s

txx ( ) ( ) ( )⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛
+−−⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ −++++⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠

⎞
⎜
⎝

⎛ ++= ε
ε

ε
ε

sst
s
t

tssst
s
t

tspp 232
25
4

34
25
2

,272
25
4

76
25
2

, *
2

*
1

 

 

 
 
Note:  
When transportation costs are linear-quadratic, a unique equilibrium in location exists whenever 

32≤st  for the IO model. 

 

 

2.5 THE SEQUENTIAL GAME 

When relocation of firms is more costly than price adjustments, a sequential location-then-

price game becomes more appropriate.  In the sequential game first introduced by Hotelling 

(1929), there is a two-stage process in which the location strategy is played first in full 

anticipation of the ensuing price equilibrium, followed by the price strategy in the second 

stage where prices are decided based on the location choice made in the first stage.  The 

solution to the sequential game is worked out using backward induction.  In a subgame 

consisting of the second stage, a non-cooperative price equilibrium in pure strategies with 

prices  and  are chosen for given locations  and .  The pure strategy 

equilibrium to the first-stage location game is the pair of locations 

( 21
*
1 , xxp ) )( 21

*
2 , xxp 1x 2x

( )*
2

*
1 , xx  which maximises 
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the profit function ( ) ( )( )2121
*
221

*
1 ,,,,, xxxxpxxpi∏  where { }2,1=i .  This profit function is 

well defined whenever the price equilibrium exists and is unique.  The full (subgame perfect) 

equilibrium to the game is then given by the quadruple ( )*
2

*
1

*
2

*
1 ,,, xxpp  where 

( )*
2

*
1

*
1

*
1 , xxpp =  and ( )*

2
*
1

*
2

*
2 , xxpp = .  As in the pure inside location model, it will be shown 

that an equilibrium in pure strategies also fails to exist for the sequential game of the IO 

model when transportation costs are linear.  Unlike the inside location model, however, which 

possesses an equilibrium for the sequential game when transportation costs are quadratic but 

not when they are linear or linear-quadratic (d’Aspremont et al. 1979; Anderson 1988), an 

equilibrium always exists for the IO model whenever transportation costs are strictly convex.  

 

2.5.1 Equilibrium Existence 

Consider the case in which the transportation cost function is linear-quadratic of the form 

 where ,  and .  When ( ) 2sdtddc += ( ) 00 =c 0>t 0>s 421 <+ xx , the unique price 

equilibrium in pure strategies is given by equation 2.7, i.e., 

(2.13)  ( ) ( )( ) ( ) ( ) ( ) ( )⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−

−+
++

−+
= 21

12
21

12
21

*
221

*
1 4

3
,2

3
,,, xx

xxst
xx

xxst
xxpxxp . 

The profit function of the inside firm 1 is given by 

  ( ) ( )( ) ( )[ ]
( )

1
21

12

2
121

212122111 22
,,,,, p

xx
xxst

ppp
xxxxpxxp

+
+

−+
−

=∏ . 

Substituting equation 2.13 gives 

  ( ) ( )( ) ( ) ( )2
21

12
2121

*
221

*
11 2

18
,,,,, ++

−+
=∏ xx

xxst
xxxxpxxp . 

Optimising with respect to  gives 1x

  ( ) ( )( ) ( ) ( )( )232
18

2,,,,, *
1

*
2

*
2

*
1

1

2121
*
221

*
11 −−+

++
=

∂
∏∂

xxst
xx

x
xxxxpxxp . 

Since ( ) 02*
2

*
1 >++ xx , one possible scenario is that ( ) 0232 *

1
*
2 <−−+ xxst  or  

(2.14)  1
2

3 *
2

*
1 +
+

<
xx

s
t . 
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If equation 2.14 holds, then ( ) 0,,, 121
*
2

*
11 <∂∏∂ xxxpp  which implies that as  

decreases, firm 1’s profit increases so that firm 1’s optimal location is at the point 0.  If the 

converse of equation 2.14 holds, then two instances can arise: either 

1x

( ) 0,,, 121
*
2

*
11 >∂∏∂ xxxpp  or ( ) 0,,, 121

*
2

*
11 =∂∏∂ xxxpp .  If the former holds, then      

firm 1’s profit is maximised by locating at point 1. 

Now consider the profit function for the outside firm 2 which is given by 

  ( ) ( )( ) ( )[ ]
( )

2
21

12

2
221

212122112 2
2

2
,,,,, p

xx
xxst

ppp
xxxxpxxp

−−
+

−+
−

=∏ . 

Substituting equation 2.13 gives 

  ( ) ( )( ) ( ) ( )2
21

12
2121

*
221

*
12 4

18
,,,,, xx

xxst
xxxxpxxp −−

−+
=∏ . 

Optimising with respect to  gives 2x

  
( ) ( )( ) ( ) ( )( )txxs

xx
x

xxxxpxxp
243

18
4,,,,, *

2
*
1

*
2

*
1

2

2121
*
221

*
12 −+−

−−
=

∂
∏∂

. 

Since , this implies that for 4*
2

*
1 <+ xx ( ) 0,,, 221

*
2

*
12 =∂∏∂ xxxpp , ( ) 0243 *

2
*
1 =−+− txxs  

or  

(2.15)  
s
txx 243 *

2
*
1 =+− . 

Suppose that equation 2.14 holds, i.e., ( ) 0,,, 121
*
2

*
11 <∂∏∂ xxxpp  and .  

Substituting  into equation 2.15 and solving gives 

0*
1 =x

0*
1 =x stx 3234*

2 −= .  Since ] [+∞∈ ,12x , 

the condition for  to hold is that *
2x ½<st . 

We will now show that the converse of equation 2.14 is never valid.  Suppose that 

( ) 231 *
2

*
1 xxst ++>  holds so that ( ) 0,,, 121

*
2

*
11 >∂∏∂ xxxpp  and .  Substituting 

 into equation 2.15 and solving gives 

1*
1 =x

1*
1 =x stx 3235*

2 −= .  This solution, however, cannot 

exist because it contradicts the assumed condition that ( ) 231 *
2

*
1 xxst ++> .  Substituting 
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1*
1 =x  and stx 3235*

2 −=  gives 25>st .  This condition, however, suggests that 

03235*
2 <−= stx  which cannot hold since ] [+∞∈ ,12x .   

We will now show that ( ) 0,,, 121
*
2

*
11 =∂∏∂ xxxpp  also cannot hold.  Suppose on 

the contrary that ( ) 0,,, 121
*
2

*
11 =∂∏∂ xxxpp .  In that case, equation 2.14 becomes the 

equality stxx 223 *
2

*
1 =+− .  Solving this equation together with equation 2.15 gives 

412*
1 −= stx  and stx 245*

2 −= .  By assumption of the model, we have  and 

.  Consequently, 

[ ]1,01 ∈x

] +∞∈ ,12x [ 412*
1 −= stx  implies that [ ]2

5½,∈st  and stx 245*
2 −=  

implies that ½<st , which contradicts [ ]2
5½,∈st . 

The only solution in pure strategies to the first-stage of the sequential game is, 

therefore, ( ) ( )stxx 3234,0, *
2

*
1 −=  for 421 <+ xx  and ½<st .  The second-stage game is 

then solved by substituting  and  into equation 2.13.  The equilibrium price pair in pure 

strategies is given by 

*
1x *

2x

( ) ( )( ) ( )( )( )278162,271202, *
2

*
1 sttssttspp ++−+= .  The full 

(subgame perfect) equilibrium to the sequential game in pure strategies is given by 

(2.16)  ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ −+=

s
t

s
tts

s
ttsxxpp

3
2

3
4,0,816

27
2,120

27
2,,, *

2
*
1

*
2

*
1  

where  and 421 <+ xx ½<st . 

The equilibrium of the sequential game in pure strategies under quadratic 

transportation costs can be similarly obtained (see Appendix 6).   

 

2.5.2 Equilibrium Non-Existence 

We now turn to the non-existence problem in the sequential game which resurfaces under 

linear transportation costs.  Under linear transportation costs when , the unique 

price equilibrium in pure strategies is given by equation A5, i.e., 

421 <+xx

(2.17)  ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−++= 2121

*
2

*
1 4

3
,2

3
, xxtxxtpp . 
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The profit function of firm 1 is given by 

  ( ) ( )( ) ( )
1

21
2
121

212122111 22
,,,,, p

xx
t

ppp
xxxxpxxp

+
+

−
=∏ . 

Substituting equation 2.17 gives 

  ( ) ( )( ) ( )2
212121

*
221

*
11 2

18
,,,,, ++=∏ xxtxxxxpxxp . 

Optimising with respect to  gives 1x

  
( ) ( )( ) ( ) 02

9
,,,,, *

2
*
1

1

2121
*
221

*
11 >++=

∂
∏∂

xxt
x

xxxxpxxp
 

since  and 0>t ( ) 02*
2

*
1 >++ xx .  Since firm 1’s profit increases as  increases, it 

maximises profit by locating at point 1. 

1x

Now consider the profit function for firm 2 which is given by 

  ( ) ( )( ) ( )
2

21
2
221

212122112 2
2

2
,,,,, p

xx
t

ppp
xxxxpxxp

−−
+

−
=∏ . 

Substituting equation 2.17 gives 

  ( ) ( )( ) ( )2
212121

*
221

*
12 4

18
,,,,, xxtxxxxpxxp −−=∏ . 

Optimising with respect to  gives 2x

  
( ) ( )( ) ( ) 04

9
,,,,, *

2
*
1

2

2121
*
221

*
12 <−−−=

∂
∏∂

xxt
x

xxxxpxxp
 

since  and .  In other words, firm 2’s profit increases as  decreases so that 

it maximises profit by locating at point 

0>t 4*
2

*
1 <+ xx 2x

ε+1  where ε  is a small constant.  The solution in 

pure strategies to the first-stage of the sequential game is, therefore, ( ) ( )ε+= 1,1, *
2

*
1 xx  for 

.   421 <+ xx

The second-stage game is then solved by substituting  and  into equation 2.17.  

The equilibrium price pair in pure strategies is then given by 

*
1x *

2x

( ) ( ) ( )( 32,34, *
2

*
1 ttpp εε −+= ) .  This is not possible as the price differential creates 

opportunities for both firms that are situated next to each other to engage in a price war and 
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undercut each other by moving apart, giving rise to instability in the location choice of the 

two firms.  As with the simultaneous game, therefore, an equilibrium of the sequential game 

in pure strategies does not exist when transportation costs are linear. 

 

2.5.3 Comparative Analysis 

The results of the sequential game are summarised in Table 2.3, along with the comparative 

equilibrium for the pure inside and outside location models.  When transportation costs are 

linear or linear-quadratic, no equilibrium in pure strategies can exist in the inside location 

model, while the equilibrium in pure strategies for the outside location model always exists 

(see Gabszewicz and Thisse 1992).  The IO model, which possesses the horizontal 

differentiation characteristics of the inside location model, has the same instability problem as 

the inside location model under linear transportation costs. 

When transportation costs are quadratic, the Principle of Maximum Differentiation is 

established in the inside location model as well as the IO model.  Simply put, the Principle of 

Maximum Differentiation states that two firms have a tendency to locate in opposite 

directions towards the end points of the linear city as a result of competition.  By locating at 

( ) ( )1,0, *
2

*
1 =xx  and ( ) ( 34,0, *

2
*
1 =xx )

                                                     

 respectively, firms in the inside and IO model exhibit 

greater tendency of differentiation under quadratic transportation costs.4

When faced with linear-quadratic transportation costs, firms in the outside and IO 

models make their location decisions based on all the parameters of the model.  In the case of 

the outside location model, some tendency of increasing differentiation is observed although 

its intensity is lower than that under quadratic transportation costs.  Similarly, the IO model 

reflects a tendency toward increasing differentiation which loses its intensity because of the 

very nature of the transportation cost function.  

 
4 In contrast to Hotelling (1929)’s nomenclature,  in this instance is defined from the origin (see 

Figure 2.1) instead of from point 1 so that 
2x

( ) ( )1,0, *
2

*
1 =xx  rather than  under quadratic 

transportation costs for the inside location model. 
( 0,0 )
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Table 2.3 
Equilibrium in the sequential game of the inside, outside and IO models under various 
transportation cost structures 
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Note:  
When transportation costs are linear-quadratic, a unique equilibrium in location exists whenever the 
following conditions hold: (a) outside location model: 2≤st ; and (b) IO model: ½<st . 

 

 

 

As with the simultaneous game, it can be easily determined that under variable firm 

locations Propositions 1 and 2.1 do not hold in the sequential game of the IO model but 

Propositions 2.2 and Proposition 3 remain valid whenever an equilibrium in pure strategies 

exists (see Appendix 7 Propositions 1A to 3A). 

 

2.6 CONCLUSIONS 

Product differentiation by firms located at the boundary regions of countries or cities is of 

pertinent significance and interest to various segments of society as a result of its attendant 

economic benefits and trickle down effects on the rest of the economy.  The IO model 



 31

presented here offers a simple framework for understanding and analysing the location and 

pricing decisions of firms situated on either side of the border, as well as the purchase and 

travel decisions of consumers between the domestic firm and the competing firm beyond their 

economic precincts.  The IO model is readily applicable to analysing cross-border behaviour, 

whether from the point of view of buying (travel to shop) or selling (travel to work). 

When firm locations are fixed, the market boundary is determined solely by the 

relative price of the two firms.  This property satisfies Fetter (1924)’s economic law of market 

areas.  As such, the IO model is directly applicable to situations in which adjoining markets 

are segmented geographically and (or) economically.  It highlights the distinction between an 

economic boundary and geographical boundary between two regions, which in most cases do 

not necessarily coincide.  Moreover, it appears that under duopolistic competition when at 

least one firm is located within the same subspace as the consumers, equilibrium prices are 

dependent on all the parameters of the model while equilibrium demand is determined only by 

the location of the two firms.  The relevance of this property to oligopolistic competition with 

more than two firms needs to be verified by further study. 

Another interesting observation that surfaced under parametric firm locations is that 

the results of the IO model and the inside location model are identical for all transportation 

costs considered, and for the IO model and the outside location model when transportation 

costs are quadratic.  On the other hand, under variable firm locations and linear transportation 

costs, the results of the IO model and the inside location model are identical to a certain 

extent, i.e., there is a non-existence of equilibrium problem.  However, the non-existence 

problem dissipates in the IO model when price and location decisions are made 

simultaneously under quadratic and linear-quadratic transportation costs but it persists in the 

inside location model.  Moreover, the IO model does not suffer from the non-existence 

problem as the inside location model when the game is played sequentially under linear-

quadratic transportation costs.  This result contrasts with the outside location model where a 

solution always exists when location is variable.  The stability of the IO model can, therefore, 
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be said to be intermediate between the inside location model and the outside location model.  

This is not surprising since the IO model is an integration of the two models. 

Although the IO model focuses on the situation in which there is only one firm on 

either side of the boundary, the framework presented can be generalised to the case in which 

there are multiple firms, as well as to a situation in which the neighbouring firm on the other 

side of the border is capable of locating beyond the boundary.  Although this study offers 

solutions in pure competition of price and location, further extensions are feasible with 

respect to mixed strategies and collusions between firms, especially in instances where a 

parent company has several outlets on either side of the border.  A myriad of other situations 

present themselves that are worthy of further study by modifying the basic assumptions 

inherent in the model, e.g., by incorporating price discrimination, production costs and a 

budget constraint.  As such, the situations considered here do not pretend to be either 

exhaustive or comprehensive in the range of possible applications within this domain. 

The ensuing analyses investigate the extent to which the IO model is validated by 

actual behaviour in a laboratory setting and by cross-border shopping behaviour between two 

cities.  Two experiments are conducted to examine the IO model: the first studies firm 

behaviour under constant firm location while the second looks at firm behaviour when 

location is variable. 

 

 

 



CHAPTER 3 
EXPERIMENTAL EVIDENCE  

WITH PARAMETRIC FIRM LOCATION 
 

 

3.1 INTRODUCTION 

 

 commonly observed phenomenon is the wide dispersion of some firms selling identical 

products in contrast to the close location of others selling products with similar 

attributes.  For example, convenience stores tend to choose disperse locations close to 

consumers while fast food restaurants often agglomerate but differentiate their products 

through advertising.  This situation arises from the multitude of dimensions in which firms are 

able to compete, including price, location and product characteristics.   

A

Theories of oligopolistic competition abound in their attempts to explain competition 

in its diverse dimensions.  A typical vein runs along the spatial product differentiation 

analogue of Hotelling (1929)’s inside location theory.  Two firms select a location along a 

line segment in which consumers are uniformly distributed.  Consumers purchase the good by 

travelling to the firm that offers the lower full price, which is the mill price of the good plus a 

transportation cost that varies with distance.  A large body of work exists in which varying 

assumptions are made within this spatial framework, such as the nature of transportation 

costs, the distribution of consumers and the number of firms.  These theories have been 

discussed at length in Chapter 2. 

Despite the wide interest generated by theories of spatial firm competition, 

experimental tests of such models have been relatively few.  Efforts in this arena typically 

focus on the location decision of firms, e.g., Brown-Kruse et al. (1993), Brown-Kruse and 
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Schenk (2000), Collins and Sherstyuk (2000) and Huck et al. (2002).1  These studies 

occasionally obtain results that are contrary to Hotelling’s prediction of minimum product 

differentiation by varying the conditions in which firms compete.2   

Brown-Kruse et al. (1993) found that in a repeated game of Hotelling’s spatial 

duopoly with elastic demand and probabilistic ending period, minimum product 

differentiation results when both firms cannot communicate but higher product differentiation 

emerges when communication is permitted.  In particular, firms that engage in non-binding 

communication or cheap talk tend to choose the joint-profit maximising market quartiles at 

0.25 and 0.75.  Brown-Kruse and Schenk (2000) extended this study by introducing different 

forms of consumer distribution: uniform, unimodal (consumers concentrated at the market 

centre) and bimodal (consumers dispersed from the centre).  They found that regardless of the 

form of consumer distribution, communication is a robust facilitator of a higher level of 

product differentiation than that obtained under non-collusive outcomes.   

Collins and Sherstyuk (2000) studied competition among three firms randomly 

grouped for each period.  Consumers are uniformly distributed and have an inelastic demand.  

The number of periods is fixed but unknown to the players.  The authors found that firms 

generally locate in the central quartiles of the market over [ ]75.0,25.0  in accordance with 

Shaked (1982)’s prediction.  There is, however, a wider dispersion of location choices due to 

risk averse behaviour and approximate equilibrium behaviour.3  Since the risk neutral 

equilibrium at the market centre gives the maximum profit and the highest standard deviation 

of profit, players who are risk averse are induced to reduce the variance of their profit by 

locating away from the centre, unless the expected profit at the centre is sufficiently high.   

Huck et al. (2002) conducted a similar study but with competition among four firms.  

Although the prediction is for two firms to locate at 0.25 and the other two firms to locate at 
                                                      
1 Few experimental studies on spatial firm competition observe price decisions under constant 
location.  One example, discussed in Chapter 4, is Selten and Apesteguia (2004)’s study of price 
competition of firms located on a circle.  
2 Hotelling argued that both firms should locate at the centre of the market.  
3 An approximate equilibrium behaviour results when players encounter relatively small 
differences in the expected payoff between playing the equilibrium strategy and an alternative 
strategy, and hence adopt an “almost-optimal” strategy that does not fully optimise. 
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0.75, only a third of the decisions fall under one of these outcomes while almost 10% 

congregate at the market centre.  None of the six groups of four-firm players converged to the 

predicted equilibrium.  The authors explained this phenomenon by what they termed 

“myopic” best replies.  When one player moved erroneously toward the market centre, best 

response induced the other players to move likewise, especially when there was no 

perceivable difference in payoff from a single-deviation outcome vs. prediction.  The 

tendency of location choices at the market extremes, however, is low because players do not 

follow best response when the distance from equilibrium increases (presumably because the 

payoff difference between prediction and deviation widens). 

This chapter takes the path less trodden by investigating endogenous price strategies 

of firms with constant location.  In the spatial context of product differentiation, this situation 

is reflective of short run conditions when product redesign is absent.  It is also representative 

of less developed economies where technological innovation or product redesign occurs 

extremely slowly.  For these economies, an entry barrier to large firms is often erected to 

protect selected domestic industries.  This barrier may be economic and (or) geographic.  For 

example, in order to protect small local retailers from hypermarkets, the Malaysian 

government issued guidelines that permitted hypermarkets to operate only outside a 3.5 km 

radius of housing estates and town centres, with one hypermarket per 350,000 residents 

(Malaysia Economic Planning Unit 2003).  When consumers within these protected markets 

travel across the market barrier to purchase the same good at a lower price from rival firms, 

the situation can be analysed in the context of the IO model developed earlier. 

This chapter presents the experimental findings on firm decisions under the 

assumption of constant location.  In an environment that corresponds to the theoretical setup 

of the IO model, two firms make price decisions on the product they intend to sell.  Both 

firms maintain constant location throughout the experiment, with the inside firm situated at a 

point along the same linear market as consumers in [ ]1,0  and the outside firm situated at a 

point beyond the market boundary in ] [+∞,1 .  Consumers are uniformly distributed along 
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[ ]1,0  and possess inelastic demand for the good.  They travel to either firm to purchase the 

good and bear the full burden of travel costs according to a predetermined transportation cost 

structure, with price ties resolved in favour of the nearer firm.  The theoretical prediction of 

the game is that regardless of the nature of transportation costs, the market share of both firms 

remains the same.  While the gain in price is higher for the inside firm when transportation 

costs increase more rapidly, its price relative to that of the outside firm does not change.  The 

constancy of relative demand and relative price in the face of transportation cost changes 

assuming fixed firm location and convex transportation cost structures was discussed in 

Chapter 2.  Under constant location, two Nash-Bertrand equilibria exist in pure strategies for 

differing levels of product differentiation.  At very high levels of product differentiation, the 

inside firm monopolises the market.  At lower levels of product differentiation, both firms 

compete for demand, with the outside firm earning a positive price. 

In order to investigate the theoretical propositions, an experiment was conducted with 

six treatments: three treatments characterise different transportation cost structures while the 

other three treatments implement an increase in transportation costs under each transportation 

cost structure.  In line with theoretical prediction, the experimental results show that market 

demand and relative price remain the same regardless of transportation costs.  Moreover, 

consumers alleviate higher prices by incurring higher transportation costs.  An interesting 

observation in all treatments is that the inside firm typically attempts to monopolise the 

market by pricing much lower than predicted at levels supported by higher-than-warranted 

degrees of product differentiation.  In all but one treatment, such low prices could not be 

sustained as best responses quickly moved prices to prediction. 

The next section summarises the theoretical predictions.  Section 3.3 presents the 

experimental procedures.  Section 3.4 contains the experimental results.  Finally, the 

concluding remarks are made in Section 3.5. 
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3.2 THEORETICAL PREDICTIONS 

The analyses of this chapter focus on the non-cooperative Nash-Bertrand equilibrium in pure 

strategies and the propositions of the IO model.  This section presents the theoretical 

framework and a summary of the theoretical predictions for the game under parametric firm 

location.  Consider a differentiated input market in which two firms, an inside firm  and 

an outside firm , make a decision for an input price  in each exchange period.  Each 

firm lies at a point along the segments 

1=i

2=i ip

[ ]1,0  and ] [+∞,1  respectively and remains unchanged 

throughout the experiment.  Each firm is assumed to be equally efficient in producing a 

homogeneous and perfectly divisible good.  For simplicity, the firms are assumed to incur no 

marginal production costs, storage costs or distribution costs other than transportation (or 

delivery) costs which are borne fully by consumers.  The consumers are assumed to be 

uniformly distributed along the unit interval [ ]1,0  and purchase the good from either firm.  

Price ties are resolved in favour of the nearer firm.  The demand for each firm’s good is 

denoted by .  The distance between consumer and firm locations corresponds to the 

distance d that the consumer travels to purchase the good.  The transportation costs incurred 

by consumers increase according to a predetermined transportation cost schedule which bears 

one of three functional forms: 

im

( ) tdxc =  (linear), ( ) 2sdxc =  (quadratic) and  

(linear-quadratic) where ,  and 

( ) 2sdtdxc +=

0>t 0>s 32≤st .  Each firm earns a profit equivalent to 

 where  is the (constant) average cost of production which for 

simplicity is assumed to be zero. 

ACmp iii −⋅=∏ AC

The non-zero price pair ( )*
2

*
1 , pp  denotes the non-cooperative Nash equilibrium in 

pure strategies and is obtained by the intersection of the two best response functions in price, 

RFp1 for firm 1 and RFp2 for firm 2 (see Figure 3.1).  For levels of product differentiation 

 where , i.e., 12 xxD −= 421 <+ xx 124 xD −< , the equilibrium price is denoted by point A.  

Under very high levels of product differentiation when 124 xD −= , the inside firm captures 

the whole market and the outside firm earns zero prices.  The equilibrium price ( )0,*
1p  for 
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 RFp12p

 

 

 

 

 
Fig. 3.1     Response functions and price equilibria 

 

 

 

 

124 xD −=  is denoted by point B in the same figure.  The best response functions under 

linear-quadratic transportation costs, derived in Chapter 2, are reproduced below.   

(3.1)  ( )( )([ ]211221 2
1 xxxxstpp +−++= )  

(3.2)  ( )( )([ ]211212 2
2
1 xxxxstpp −−−++= )  

The response functions under quadratic transportation costs and linear transportation costs can 

be obtained by setting the transportation cost parameters 0=t  and 0=s  respectively.   

Table 3.1 gives the theoretical predictions of the IO model under the three 

transportation cost structures using the parameter values employed in the experiment.  The 

predicted values for price, demand, relative demand, relative price and profit are shown, along 

with the predictions for a 100% increase in transportation cost parameters t and s.   

The propositions of the IO model pertaining to the parametric location game for non-

zero prices (i.e. for levels of product differentiation 124 xD −< ) are recapitulated below.   

 

 

,1p  

RFp2

( )*
1p 0,

( )*
2

*
1 , pp

A●

 ●B
RFp2=0 
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Table 3.1 
Theoretical predictions 
 

 

 

 

 

t = 2.6 t = 5.2 s = 6.5 s = 13 t = 2.6, s = 6.5 t = 5.2, s = 13
Price (p1, p2) (3.03, 2.17) (6.07, 4.33) (7.58, 5.42) (15.17, 10.83) (10.62, 7.58) (21.23, 15.17)
Demand (m1, m2) (0.58, 0.42) (0.58, 0.42) (0.58, 0.42) (0.58, 0.42) (0.58, 0.42) (0.58, 0.42)
Relative price  p2/p1 0.71 0.71 0.71 0.71 0.71 0.71
Relative demand m2/m1 0.71 0.71 0.71 0.71 0.71 0.71
Profit (r1, r2) (1.77, 0.90) (3.54, 1.81) (4.42, 2.26) (8.85, 4.51) (6.19, 3.16) (12.39, 6.32)

LinearPrediction
Transportation cost structure

Quadratic Linear-quadratic

 

 

Proposition 1 

The equilibrium relative price *
1

*
2 pp is independent of the transportation cost structure. 

 

Proposition 2 

2.1 The equilibrium relative demand *
1

*
2 mm  remains the same regardless of the 

transportation cost structure. 

2.2 The equilibrium relative price is equivalent to equilibrium relative demand. 

 

Proposition 3 

For a given transportation cost structure, the inside firm raises (lowers) its price when faced 

with higher (lower) transportation costs.  The outside firm reacts by raising (lowering) its 

price but by a smaller amount. 

 

Table 3.1 shows that regardless of the transportation cost structure, equilibrium 

relative price remains constant (Proposition 1) and equals equilibrium relative demand 

(Proposition 2).  When transportation costs increases, e.g., when both t and s double under 

linear-quadratic transportation costs, the increase in price by the inside firm is higher than the 

price increase by the outside firm (Proposition 3). 
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Table 3.2 
Treatments 
 

 

 

 

 

Treatment no.
1 PL1 Linear t = 2.6
2 PL2 Linear t = 5.2
3 PQ1 Quadratic s = 6.5
4 PQ2 Quadratic s =13.0
5 PLQ1 Linear-quadratic t = 2.6, s = 6.5
6 PLQ2 Linear-quadratic t = 5.2, s = 13.0

Treatment code Transportation cost structure Parameter values

 

 

3.3 EXPERIMENTAL PROCEDURE 

An experimental environment was created that corresponded to the theoretical IO model as 

closely as possible.  Six treatments were organised: three treatments characterise different 

transportation cost structures, viz., linear, quadratic, and linear-quadratic transportation costs.  

For the other three treatments, there was a 100% increase in transportation cost parameters 

under each transportation cost structure.  The treatments and parameter values are 

summarised in Table 3.2.   

In each treatment, 16 players were seated at computer terminals and given a set of 

instructions (see Appendix 8).  They were randomly assigned the role of inside firm or 

outside firm, and were informed of their location and the transportation cost structure faced 

by the consumers.  The inside firm was located at 0.25 and the outside firm was located at 

1.25.  The players’ role and location, and the consumers’ transportation cost structure all 

remained unchanged throughout the experiment.  In each period, the players made a price 

decision.  They were informed of the functional relationship between price and demand by 

means of a calculator that computes the demand generated from the price decisions entered.  

This calculator was made available at all times throughout the experiment.  Consumers were 

located uniformly along the unit interval [ ]1,0  and were automated to purchase one unit of the 

good from either firm according to the relevant demand function.  They travelled a distance d 
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to the firm and incurred transportation costs in accordance with a predetermined 

transportation cost schedule. 

In order to avoid collusion, players were randomly paired with each other in such a 

way as to prevent any two players from meeting more than twice during the whole 

experiment.  There were no interactions among the players in any way, and their decisions 

were made privately at individual computer terminals.  The players were, however, permitted 

to make clarifications to the facilitator concerning the information provided.   

At the end of each period, the price and market share of the player and his rival were 

displayed.  The market share is the percentage demand for player i ’s good out of total 

demand, i.e., ( ) %100%10021 ×=×+ ii mmmm  since 121 =+ mm .  The payoffs were kept 

private to each player and were computed as the total profit earned, i.e., .  The 

players were informed of the conversion rate from experimental earnings to actual earnings.  

They were also told that there were 16 trading periods after an initial trial period.  No time 

restrictions were imposed, and each session lasted an average of one hour.   

iii mp ⋅=∏

The experiments were conducted in a computer laboratory at the School of Business, 

National University of Singapore over a four-day period in February-March 2004.  A total of 

111 business students were recruited by e-mail.  The number of subjects recruited exceeded 

the number required to run each treatment in order to avoid the problem of no-shows.  No 

subject participated in more than one treatment and almost all had no prior experience in a 

market experiment.  The computerised programmes were developed using ZTree software 

(Fischbacher 1999). 

At the end of the 16 periods, the players were asked to answer a short questionnaire 

(see Appendix 9) that queried the manner in which pricing decisions were made and the 

usefulness of the calculator.  The responses indicated that all subjects employed the calculator 

in their price decisions during the initial periods, while two-thirds used the calculator 

throughout the experiment.  After completing the questionnaire, the players received their 

payment privately in cash.  Their earnings averaged S$7.05 including S$4 as show-up fee. 
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3.4 EXPERIMENTAL RESULTS 

Table 3.3 summarises the mean, median, standard deviation in mean, and dispersion of values 

of all variables under the six treatments.  The table shows that the mean and median prices 

underperform the predicted values, resulting in a lower-than-predicted average profit.  The 

distribution of mean demand is close to the predicted values, with the inside firm gaining 

slightly higher-than-predicted demand than the outside firm. 

The ensuing discussion addresses the theoretical hypotheses and additional issues that 

emerge from the actual trading behaviour of players.  To assess the effect of player experience 

with the experiment, the data is segregated into the early phase (periods 1-8) and late phase 

(periods 9-16).  The latter is further divided into the late1 phase (periods 9-13) and late2 

phase (periods 14-16). 

 

H1: Prices converge to the predicted values. 

Figures 3.2 to 3.13 depict the time series of mean or individual price ( ) of each 

firm, the best responses lagged one period ( ) and the non-cooperative Nash predictions 

( ) for the six treatments.  The per period mean price for each firm is obtained by averaging 

over 8 players with the role of inside or outside firm for each period.  The average best 

response  of firm  to the rival firm’s price , 

itp

1, −tiRF

*
ip

itRF i jtp ji ≠ , for period t  is computed using 

the relevant response functions given in Chapter 2.   

The time series of mean decisions illustrate that in all six treatments, both inside and 

outside firms typically start the experiment by trading at price levels below prediction.  By the 

end of the 16 periods, the mean price of both firms generally converges to a level below 

prediction.  
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Table 3.3 ble 3.3 
Summary statistics of results Summary statistics of results 
  

N Mean Median Prediction S.D. (mean) Maximum Minimum
Treatment 1: PL1
p1 127 2.47 2.50 3.03 1.04 5.50 0.25
p2 128 1.68 1.60 2.17 0.86 4.00 0.49
m1 127 0.59 0.62 0.58 0.24 1.00 0.00
m2 128 0.40 0.38 0.42 0.25 1.00 0.00
r1 128 1.26 1.17 1.77 0.50 2.62 0.00
r2 128 0.64 0.52 0.90 0.49 2.23 0.00
Treatment 2: PL2
p1 128 4.95 4.95 6.07 1.29 9.00 2.00
p2 128 3.74 3.50 4.33 1.57 10.00 0.80
m1 128 0.63 0.61 0.58 0.17 1.00 0.19
m2 128 0.37 0.39 0.42 0.17 0.81 0.00
r1 128 2.94 2.89 3.54 0.70 5.99 1.54
r2 128 1.22 1.21 1.81 0.52 2.79 0.00
Treatment 3: PQ1
p1 127 6.09 6.00 7.58 2.40 12.15 0.25
p2 127 4.25 4.00 5.42 2.37 12.90 0.05
m1 127 0.59 0.60 0.58 0.24 1.00 0.00
m2 127 0.40 0.40 0.42 0.24 1.00 0.00
r1 128 3.13 3.20 4.42 1.20 6.00 0.00
r2 128 1.39 1.38 2.26 0.97 5.06 0.00
Treatment 4: PQ2
p1 128 10.40 9.89 15.17 4.16 19.90 1.50
p2 128 6.13 6.00 10.83 3.27 15.00 0.01
m1 128 0.59 0.57 0.58 0.19 1.00 0.13
m2 128 0.41 0.43 0.42 0.19 0.87 0.00
r1 128 5.50 5.63 8.85 1.75 9.00 1.04
r2 128 2.21 2.11 4.51 1.31 5.71 0.00
Treatment 5: PLQ1
p1 128 8.14 8.00 10.62 2.72 15.90 0.55
p2 128 5.45 5.00 7.58 2.34 12.60 0.50
m1 128 0.60 0.60 0.58 0.19 1.00 0.00
m2 128 0.40 0.40 0.42 0.19 1.00 0.00
r1 128 4.50 4.55 6.19 1.29 7.56 0.00
r2 128 1.90 1.91 3.16 0.99 5.72 0.00
Treatment 6: PLQ2
p1 127 15.95 16.00 21.23 5.15 25.90 5.00
p2 127 12.19 12.10 15.17 4.58 25.00 1.00
m1 127 0.64 0.62 0.58 0.18 1.00 0.20
m2 127 0.35 0.37 0.42 0.18 0.80 0.00
r1 128 9.52 9.57 12.39 2.71 17.45 0.00
r2 128 3.98 3.56 6.32 2.44 11.54 0.00
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Fig. 3.2(a)     Time series of mean prices of inside firm players (PL1) Fig.3.2(b)   Time series of individual prices of inside firm players (PL1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.3(a)     Time series of mean prices of outside firm players (PL1) Fig. 3.3(b)   Time series of individual prices of outside firm players (PL1) 
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Fig. 3.4(a)     Time series of mean prices of inside firm players (PL2) Fig.3.4(b)     Time series of individual prices of inside firm players (PL2) 
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Fig. 3.5(a)     Time series of mean prices of outside firm players (PL2) Fig. 3.5(b)    Time series of individual prices of outside firm players (PL2) 
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Fig. 3.6(a)     Time series of mean prices of inside firm players (PQ1) Fig.3.6(b)     Time series of individual prices of inside firm players (PQ1) 
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Fig. 3.7(a)     Time series of mean prices of outside firm players (PQ1) Fig. 3.7(b)   Time series of individual prices of outside firm players (PQ1) 
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Fig. 3.8(a)     Time series of mean prices of inside firm players (PQ2) Fig.3.8(b)     Time series of individual prices of inside firm players (PQ2) 
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Fig. 3.9(a)     Time series of mean prices of outside firm players (PQ2) Fig. 3.9(b)   Time series of individual prices of outside firm players (PQ2) 47
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Fig. 3.10(a)     Time series of mean prices of inside firm players (PLQ1) Fig.3.10(b)   Time series of individual prices of inside firm players (PLQ1) 
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Fig. 3.11(a)  Time series of mean prices of outside firm players (PLQ1) Fig. 3.11(b)  Time series of individual prices of outside firm players (PLQ1) 48
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Fig. 3.12(a)     Time series of mean prices of inside firm players (PLQ2) Fig.3.12(b)     Time series of individual prices of inside firm players (PLQ2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.13(a)  Time series of mean prices of outside firm players (PLQ2) Fig. 3.13(b)  Time series of individual prices of outside firm players (PLQ2)
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Note: No price was offered 
by player 14 in period 9. 

Note: No price was 
offered by player 2 
in period 11.
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The plots of individual decisions show that in all treatments, four or more players 

taking on the role of either firm commence trading at prices below prediction.  Thereafter, 

prices rise gradually to a higher level but remain below prediction throughout the experiment.  

There are a few exceptions to this behaviour: (1) six inside firm players in PL1 start at prices 

above prediction but only three end at or above prediction.  As a result, the mean price of the 

inside firm in PL1 also converges to a level below prediction; (2) in contrast, six inside firm 

players in PQ1 commence with low prices but three of these players end with prices above 

prediction.  This results in the mean price of the inside firm in PQ1 converging to a level 

above prediction.   

The tendency of both firms to choose low prices is also shown in Figures 3.14 to 

3.19, which depict the distribution of all individual prices, grouped by unit intervals, for the 

six treatments.  The Nash predictions are marked in the figures by a broken vertical line.  It is 

clear that, except for the inside firm in PL1 and PLQ2, the intervals with the highest 

frequency are invariably below prediction, i.e., to the left of the broken vertical line.   

The graphical observations show that a large majority of players in all treatments 

adopt a low price strategy at the start of the experiment but manage to rise to levels closer to 

(but still below) prediction by the end of the experiment.  The following features of the 

experiment are evident.  First, low price behaviour predominates at the start of the experiment 

regardless of the role of the players.  In fact, two-thirds of all players (67.7%) price below 

prediction at the start of the experiment, comprising 72.9% of inside firm players and 62.5% 

of outside firm players.  Second, in half of the treatments, the number of low pricers among 

inside firm players surpasses the number of low pricers among outside firm players.  In 

another two treatments, the number of low pricers among inside firm players and outside firm 

players is equal.  

Why is low price behaviour so prevalent among the players?  Why are there more 

inside firm players who price low compared to outside firm players?  If experimental error is 

an explanation for prices starting below prediction, why are there not more players offering 

supra-prediction prices instead?  



 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.14(a)    Distribution of individual prices of inside firm players (PL1)  Fig. 3.14(b)   Distribution of individual prices of outside firm players (PL1) 
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Fig. 3.15(a)    Distribution of individual prices of inside firm players (PL2)  Fig. 3.15(b)   Distribution of individual prices of outside firm players (PL2) 51
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Fig. 3.16(a)    Distribution of individual prices of inside firm players (PQ1)  Fig. 3.16(b)   Distribution of individual prices of outside firm players (PQ1) 
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Fig. 3.17(a)    Distribution of individual prices of inside firm players (PQ2)  Fig. 3.17(b)   Distribution of individual prices of outside firm players (PQ2) 



 

53 

0%

5%

10%

15%

20%

25%

30%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

Price

Pe
rc

en
ta

ge
 fr

eq
ue

nc
y

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.18(a)    Distribution of individual prices of inside firm players (PLQ1)  Fig. 3.18(b)   Distribution of individual prices of outside firm players (PLQ1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.19(a)    Distribution of individual prices of inside firm players (PLQ2)  Fig. 3.19(b)   Distribution of individual prices of outside firm players (PLQ2) 
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Table 3.4 
Starting price (first three periods), highest monopoly price and predicted price  
of the inside firm 
 

 

 

 

 

Highest monopoly price Predicted price
Mean Median (p2* = 0) p1*

Treatment 1: PL1 3.08 3.00 1.95 3.03
Treatment 2: PL2 4.33 4.40 3.90 6.07
Treatment 3: PQ1 5.30 5.00 4.88 7.58
Treatment 4: PQ2 9.18 8.00 9.75 15.17
Treatment 5: PLQ1 6.56 6.50 6.83 10.62
Treatment 6: PLQ2 15.20 15.00 13.65 21.23

p1t ,   t = 1 to 3

 

 

Table 3.4 compares the mean and median starting price of the inside firm over the 

first three periods, its highest monopoly price (which corresponds to point B in Figure 3.1 

where ) and the predicted price.  It is clear that, for four out of six treatments, the 

mean and median starting prices of the inside firm is close to the highest price at which it can 

capture the whole market.  The two exceptions are PL1 where the starting price of the inside 

firm nears prediction and PLQ2 where the starting price is between prediction and the highest 

monopoly price.   

0*
2 =p

At the start of the experiment, therefore, players tend to be over-competitive, with the 

majority of inside firm players competing to acquire a monopoly.  By adopting a low price 

strategy, both players generally price below prediction, resulting in diminished rent (or 

producer surplus).  Interestingly, as the experiment progresses, both firms realise that they are 

able to capture higher producer surplus by raising their prices.  The discussion under 

hypothesis H2 shows that, with a few exceptions especially in PQ2, players eventually reach 

an equilibrium that is closer to prediction as they increasingly play best strategies. 
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Initial attempts to break out of the low price mould by several players are largely 

unsuccessful due to the player rotation mechanism.4  As one outside firm player said, “I 

aimed to earn more at a mutually higher price level but the opponent refused to collude by 

raising prices.  Instead (he) adopted predatory pricing.  The opponent was content with small 

profits whereas I had wanted both of us to have higher profits by trading at higher price 

levels.  Refer to my period 4 and 5 pricing where I tried to let my opponent see my logic of 

trading at higher prices but (the) opponent refused and engaged in trading at low prices of 1-2 

dollars throughout the rest of the periods.”5

The following highlights some examples of price leader behaviour in which players 

attempt to initiate an overall movement toward higher prices in order to generate higher 

profit.  Players 1 to 8 are inside firm players while players 9 to16 are outside firm players.   

Player 7 in PL1 raised prices sharply by 92.0% in period 7 but lowered prices after 

that when demand fell by a fifth.  The rival firm (player 9) raised prices marginally by 2.3% 

in period 8.  When demand dropped with the higher price, the rival quickly reverted to her 

original price.  Player 13 in PLQ2 raised prices by 2.3 times in period 9 but immediately 

reverted to lower prices in the following period when demand dropped to zero.  The rival firm 

(player 5) raised prices by 38.5% in the next period but a similar sharp drop in demand (of 

41.2%) brought prices back to the original level.   

This scenario is repeated for many other players whose attempts to price lead are 

made ineffective by the rotation of players in each period and the predominance of low price 

behaviour among the players.   

                                                      
4 The instructions did not reveal that a player rotation mechanism is in place. 
5 Comments by player 13 in PL1 in answer to a question on how his price decisions were made. 



 56

To evaluate price convergence to prediction, a Wilcoxon signed rank test is 

conducted on the null hypothesis that price decisions and prediction are equal.  Table 3.5 

shows that the null is significant at the 0.01 level for both firms in the late2 phase of PQ1, 

PLQ1 and PLQ2, and for one firm in PL1 (outside firm) and PL2 (inside firm).  In the case of 

PQ2, the failure of prices to converge to prediction is shown by the insignificant Wilcoxon 

statistic for all phases of the experiment.  Similar conclusions are reached by a Sign test.  The 

tests provide some evidence that, except for PQ2, the firms are pricing near the theoretical 

prediction towards the end of the experiment. 

Alternatively, t-tests can be conducted on the null-hypothesis *
0 : ii ppH =  against the 

alternative hypothesis *: iia ppH ≠  where ip  is the mean price of firm i and  is the Nash 

prediction for the last three periods.  The t-statistics require the data to be normally 

distributed.  This is shown to be otherwise for 4 of the 12 price series at the 0.05 level by a 

Kolmogorov-Smirnov test for normal distribution.  T-tests on 8 price series that exhibit 

normal distribution are given in Table 3.6.  The results show that  cannot be rejected at the 

0.05 level in the late2 phase for PQ1 (inside firm), PLQ1 (outside firm) and PLQ2 (outside 

firm), and at the 0.01 level for PLQ1 (inside firm).  The t-statistic is insignificant for PL1 

(inside firm), PQ2 (both firms) and PLQ2 (inside firm).  For these firms, a difference of 

means test shows prices falling below prediction, with PQ2 registering the highest mean 

difference.  The results of the t-tests are, therefore, similar to that of the Wilcoxon and Sign 

tests.  Since the t-tests are not applicable to all data, the Wilcoxon and Sign tests will be the 

preferred tests henceforth. 

*
ip

0H
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Table 3.5 
Price convergence to Nash prediction  
(probabilities for two-tailed Wilcoxon signed ranks test pW and Sign test pS) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable N pw ps Variable N pw ps
Null hypothesis: pit = pi*

reatment: PL1 Treatment: PL2
l periods All periods
1 128 0.0000 0.0000   p1 128 0.0000 0.0000
2 128 0.0000 0.0000   p2 128 0.0000 0.0000

y phase Early phase
64 0.0180 + 0.0040   p1 64 0.0000 0.0000

2 64 0.0008 0.0087   p2 64 0.0001 0.0087
ate1 phase Late1 phase
1 40 0.0000 0.0000   p1 40 0.0000 0.0000

40 0.0001 0.0177 +   p2 40 0.0003 0.0000
Late2 phase Late2 phase

24 0.0006 0.0003   p1 24 0.0206 + 0.0015
  p2 24 0.0129 + 0.0639 *   p2 24 0.0055 0.0003

reatment: PQ1 Treatment: PQ2
All periods All periods 128 0.0000 0.0000

1 128 0.0000 0.0000   p1 128 0.0000 0.0000
  p2 128 0.0000 0.0000   p2

y phase Early phase
  p1 64 0.0000 0.0000   p1 64 0.0000 0.0000

2 64 0.0000 0.0000   p2 64 0.0000 0.0000
Late1 phase Late1 phase

1 40 0.0004 0.0027   p1 40 0.0000 0.0000
  p2 40 0.0056 0.0003   p2 40 0.0000 0.0000

ate2 phase Late2 phase
  p1 24 0.4748 * 0.8388 *   p1 24 0.0001 0.0000

24 0.1228 * 0.1516 *   p2 24 0.0000 0.0000
Treatment: PLQ1 Treatment: PLQ2

l periods All periods
  p1 128 0.0000 0.0000   p1 128 0.0000 0.0000

2 128 0.0000 0.0000   p2 128 0.0000 0.0000
Early phase Early phase

1 64 0.0000 0.0000   p1 64 0.0000 0.0000
  p2 64 0.0000 0.0000   p2 64 0.0024 0.0040

ate1 phase Late1 phase
  p1 40 0.0000 0.0003   p1 40 0.0000 0.0000

2 40 0.0002 0.0072   p2 40 0.0001 0.0003
Late2 phase Late2 phase

24 0.0129 + 0.0066   p1 24 0.0129 + 0.0066
  p2 24 0.0764 * 0.0639 *   p2 24 0.1700 * 0.1516 *

T
Al
  p
  p
Earl
  p1
  p
L
  p
  p2

  p1

T

  p

Earl

  p

  p

L

  p2

Al

  p

  p

L

  p

  p1

 
+ indicates significance at 0.01 level 
* indicates significance at 0.05 level 
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Table 3.6 
Price convergence to Nash prediction (T-test) 
 

95% confidence interval of difference
lower upper

Null hypothesis: pit = pi*
Treatment: PL1
  p1 24 -4.3850 0.0002 -0.7688 -1.1314 -0.4061
Treatment: PQ1
  p1 24 -0.7804 0.4431 * -0.3617 -1.3203 0.5970
Treatment: PQ2
  p1 24 -6.1829 0.0000 -4.5388 -6.0573 -3.0202
  p2 24 -9.9308 0.0000 -5.1313 -6.2001 -4.0624
Treatment: PLQ1
  p1 24 -2.6609 0.0140 + -1.3054 -2.3203 -0.2906
  p2 24 -1.4744 0.1539 * -0.6096 -1.4649 0.2457
Treatment: PLQ2
  p1 24 -3.0265 0.0060 -2.5717 -4.3294 -0.8139
  p2 24 -1.6085 0.1214 * -1.3825 -3.1605 0.3955

Variable Mean difference 
from predictionSig. (2-tailed)t-statisticN

 

 

 

 

 

 

 

 

 
+ indicates significance at 0.01 level 
* indicates significance at 0.05 level  

 

 

To examine the manner in which individual price decisions are made, the following 

model is used (additional lags proved insignificant in all treatments):6

(3.3)  itjtitit ppp εββα +++= −− 1211  

where  and  are the price of firm i and firm j in period itp jtp t , , { }2,1, ∈ji ji ≠ ; 

.  The model hypothesises that the firm makes an adaptive response to its own 

price as well as a myopic prediction of its rival’s price, i.e., it assumes that the rival will post 

the same price in the current period as it did in the last period. 

{ 16,...,1=t }

                                                     

The regression results are reported in Table 3.7.7  The following tests are conducted 

to verify that there is no instability or misspecification of the regressions (significance 

reported at 0.10 level): (1) Serial correlation in the residuals is shown to be present in almost 
 

6 A random effects specification is used here rather than a fixed effects specification.  Since all 
diagnostic and specification tests show that the estimates are reliable, in particular, White’s 
heteroskedasticity test, the orthogonality condition (disturbances and regressors are uncorrelated) 
for a random effects specification is satisfied. 
7 An augmented Dickey-Fuller test rejected the presence of a unit root in the level for all price 
series at all reported significance levels, indicating that the data are stationary. 
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all estimates based on significant Q-statistics of the correlogram.  This is removed using 

ARMA estimation and the results are re-examined by the Q-statistics and Breusch-Godfrey 

serial correlation Lagrange multiplier (LM) test.8  (2) Heteroskedasticity in the residuals is 

rejected by White’s heteroskedasticity test;  (3) For all but 6 estimates, a Jarque-Bera test 

rejects normal distribution in the residuals.  Checks of the residual plot for the estimates that 

fail the test show 1-3 outlying residual values.  As discussed by Brys et al. (2004), the Jarque-

Bera test fails in the presence of a single outlier, even if the series is normally distributed and 

the outliers are themselves normally distributed.  The failure of the Jarque-Bera test will, 

therefore, be disregarded in this instance; (4) Ramsey’s regression specification error 

(RESET) test verifies an absence of misspecification of functional form; (5) Chow’s 

breakpoint test at mid-sample ( 64=n ) generally shows an absence of structural change at the 

breakpoint.  For PL2 and PQ2, the failure of Chow’s test is due to the location of the outlying 

residual value at or near the breakpoint. 

The regression results show that 1β  is significant at the 0.05 level for both firms in 

all treatments while 2β  is significant at the 0.05 level for both firms in PLQ1 and at the 0.10 

level for the inside firm in PLQ2.  In other words, players generally make their price decisions 

in an adaptive manner to their own price.  Only the firms in PLQ1 and PLQ2 take into 

account the rival’s last price in addition to their own last price.  For all estimates with 

significant β ’s, 121 <+ ββ , implying that prices converge to an equilibrium point.   

If the firms are making predictions based on their own last price and, in the case of 

PLQ1 and PLQ2, the last price of their rival as well, are they using best responses to these 

predictions? 

                                                      
8 Since there are lagged dependent variables on the right-hand side of the regression, the Durbin-
Watson test for autocorrelation is invalid. 
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Table 3.7 
Regression results for price decisions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient S.E. t-statistic
Model: 
Treatment: PL1
p1t

constant 0.7272 0.2352 3.0918 *
p1t-1 0.7386 0.0759 9.7274 *
p2t-1 -0.0550 0.0737 -0.7459
AR(1) -0.2436 0.1095 -2.2256 *
N = 123; Adj R2 = 0.3588; F = 23.7579 (p = 0.0000); SSE = 81.8871; 
LM = 0.5748; White = 0.0325; Jarque-Bera = 0.0000; Chow = 0.2788
p2t

constant 0.3529 0.1510 2.3376 *
p2t-1 0.8155 0.0571 14.2922 *
p1t-1 -0.0191 0.0429 -0.4465
AR(1) -0.2298 0.1031 -2.2287 *
N = 124; Adj R2 = 0.5493; F = 50.9596 (p = 0.0000); SSE = 38.5263; 
LM = 0.8830; White =0.0200; Jarque-Bera = 0.0000; Chow = 0.5326
Treatment: PL2
p1t

constant 2.4710 0.4568 5.4088 *
p1t-1 0.4669 0.0793 5.8906 *
p2t-1 0.0464 0.0653 0.7101
N = 127; Adj R2 = 0.2129; F = 18.0444 (p = 0.0000); SSE = 163.2839; 
LM = 0.2092; White = 0.0574; Jarque-Bera = 0.0000; Chow = 0.0024; RESET = 0.3063
p2t

constant 1.2513 0.5945 2.1048 *
p2t-1 0.7711 0.0649 11.8729 *
p1t-1 -0.0550 0.0865 -0.6363
AR(29) 0.4586 0.0832 5.5112 *
MA(15) 0.8592 0.0001 6601.9660 *
N = 98; Adj R2 = 0.5056; F = 25.7986 (p = 0.0000); SSE = 112.8692; 
LM = 0.1483; White = 0.4391; Jarque-Bera = 0.0002; Chow = 0.0000
Treatment: PQ1
p1t

constant 3.9949 0.6462 6.1823 *
p1t-1 0.4098 0.0895 4.5784 *
p2t-1 -0.1055 0.0725 -1.4552
AR(15) 0.1887 0.0777 2.4269 *
N = 106; Adj R2 = 0.1458; F = 6.9749 (p = 0.0003); SSE = 362.0629; 
LM = 0.7618; White = 0.7277; Jarque-Bera = 0.5898; Chow = 0.2949
p2t

constant 3.2415 0.6202 5.2262 *
p2t-1 0.3604 0.0836 4.3120 *
p1t-1 -0.0862 0.0825 -1.0455

N = 124; Adj R2 = 0.1214; F = 9.5007 (p = 0.0001); SSE = 589.4535; 
LM = 0.0796; White = 0.0311; Jarque-Bera = 0.0000; Chow = 0.9302

itjtitit ppp εββα +++= −− 1211
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Table 3.7 (contd.) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient S.E. t-statistic
Treatment: PQ2
p1t

constant 6.0752 1.1277 5.3873 *
p1t-1 0.4892 0.0769 6.3573 *
p2t-1 -0.1146 0.0982 -1.1667
N = 127; Adj R2 = 0.2573; F = 22.8311 (p = 0.0000); SSE = 1564.118; 
LM = 0.7167; White = 0.1195; Jarque-Bera = 0.2418; Chow = 0.0075; RESET = 0.0233
p2t

constant 1.7717 0.7540 2.3497 *
p2t-1 0.7439 0.0699 10.6414 *
p1t-1 -0.0165 0.0483 -0.3428
AR(1) -0.3338 0.0981 -3.4026 *
N = 126; Adj R2 = 0.3413; F = 22.5865 (p = 0.0000); SSE = 844.5732; 
LM = 0.6598; White = 0.8193; Jarque-Bera = 0.5680; Chow = 0.3405; RESET = 0.6223
Treatment: PLQ1
p1t

constant 4.7610 0.8962 5.3126 *
p1t-1 0.2704 0.0934 2.8967 *
p2t-1 0.2273 0.1033 2.2013 *
AR(5) -0.2519 0.0900 -2.7997 *
MA(2) 0.1880 0.0957 1.9647 +
MA(7) -0.2166 0.0947 -2.2869 *
N = 122; Adj R2 = 0.2306; F = 8.2549 (p = 0.0000); SSE = 655.5547; 
LM = 0.4233; White = 0.0369; Jarque-Bera = 0.0002; Chow = 0.0490; RESET = 0.5748
p2t

constant 1.4511 0.6419 2.2605 *
p2t-1 0.4922 0.0770 6.3948 *
p1t-1 0.1649 0.0680 2.4243 *
N = 127; Adj R2 = 0.2983; F = 27.7859 (p = 0.0000); SSE = 481.6950; 
LM = 0.2546; White = 0.24451; Jarque-Bera = 0.2768; Chow = 0.6556; RESET = 0.1420
Treatment: PLQ2
p1t

constant 8.9896 1.7801 5.0502 *
p1t-1 0.3226 0.0975 3.3095 *
p2t-1 0.1510 0.0849 1.7777 +
AR(2) 0.4132 0.0955 4.3279 *
N = 120; Adj R2 = 0.3584; F = 23.1564 (p = 0.0000); SSE = 1950.691; 
LM = 0.6880; White = 0.5901; Jarque-Bera = 0.7873; Chow = 0.0495
p2t

constant 7.6013 1.4981 5.0741 *
p2t-1 0.4084 0.0797 5.1221 *
p1t-1 -0.0340 0.0719 -0.4730
N = 124; Adj R2 = 0.1648; F = 13.1345 (p = 0.0000); SSE = 2002.350; 
LM = 0.3828; White = 0.2049; Jarque-Bera = 0.6107; Chow = 0.4152  

* indicates significance at the 0.05 level. + indicates significance at the 0.10 level. 
Probability statistics of the following tests are reported: serial correlation Lagrange multiplier test (LM), White’s 
heteroskedasticity test (White), Jarque-Bera normality test (Jarque-Bera), Chow’s breakpoint test (Chow) and Ramsey’s 
RESET test (RESET).  White’s test includes all cross product terms.  RESET test is based on a cubic functional form 
and is not performed if the sample is discontinuous.  Breakpoint for Chow test is at mid-sample (n = 64). 
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H2: Firms play their best strategies. 

To examine the hypothesis that firms play their best strategies, an initial observation 

is made on the frequency of various types of response behaviour relative to best strategy.  The 

types of response behaviour may be classified as follows:  

(1) Appropriate response behaviour is one in which a player moves in the same direction as 

that dictated by best response.  The magnitude of the movement may equal or may not equal 

that called for under best response.  If the magnitude of change surpasses best response but is 

in the correct direction, then it is an over-increase or over-decrease response behaviour 

depending on whether an increase or decrease was expected under best response.   

(2) Inappropriate response behaviour comprises wrong response behaviour and no response 

behaviour.  Wrong response behaviour occurs when a player moves in the opposite direction 

from that dictated by best response, while no response occurs when a player does not make a 

movement although one is called for under best response.   

An over-positive or negative response behaviour comprises both appropriate and 

inappropriate response behaviour.  An over-positive response behaviour is defined as 

comprising over-increase (appropriate) response behaviour and wrong increase 

inappropriate) response behaviour.  Conversely, an over-negative response behaviour 

comprises both over-decrease response behaviour and wrong decrease response behaviour. 

Table 3.8 gives the frequency of various types of response behaviour for both firms in 

the six treatments.  The frequency of appropriate response averages 0.5879 while the 

frequency of inappropriate response averages 0.4121 for both firms in all treatments.  The 

frequency of appropriate response for the inside firm (0.6025) is about the same as that for the 

outside firm (0.5866).  Both firms, therefore, track their best response equally closely.  
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Frequency No response
Over increase Wrong increase Total Over decrease Wrong decrease Total

All treatments 0.5879 0.4121 0.1038 0.0753 0.1791 0.1052 0.1833 0.2885 0.1536
  Inside firm 0.6025 0.3975 0.0983 0.0816 0.1799 0.0900 0.2259 0.3159 0.0900
  Outside firm 0.5866 0.4134 0.1127 0.0793 0.1921 0.1148 0.1503 0.2651 0.1837

PL1 0.5523 0.4477 0.0711 0.0669 0.1381 0.0795 0.1339 0.2134 0.2469
  Inside firm 0.5630 0.4370 0.0672 0.0168 0.0840 0.0756 0.1597 0.2353 0.2605
  Outside firm 0.5417 0.4583 0.0750 0.1167 0.1917 0.0833 0.1083 0.1917 0.2333

PL2 0.6250 0.3750 0.1083 0.0542 0.1625 0.1167 0.1792 0.2958 0.1417
  Inside firm 0.6167 0.3833 0.1083 0.0417 0.1500 0.1250 0.2083 0.3333 0.1333
  Outside firm 0.6333 0.3667 0.1083 0.0667 0.1750 0.1083 0.1500 0.2583 0.1500

PQ1 0.6513 0.3487 0.1261 0.1134 0.2395 0.1261 0.1933 0.3193 0.0420
  Inside firm 0.6639 0.3361 0.1345 0.0924 0.2269 0.1176 0.2101 0.3277 0.0336
  Outside firm 0.6387 0.3613 0.1176 0.1345 0.2521 0.1345 0.1765 0.3109 0.0504

PQ2 0.5625 0.4375 0.0833 0.0792 0.1625 0.1042 0.2625 0.3667 0.0958
  Inside firm 0.5583 0.4417 0.1000 0.1333 0.2333 0.0833 0.2583 0.3417 0.0500
  Outside firm 0.5667 0.4333 0.0667 0.0250 0.0917 0.1250 0.2667 0.3917 0.1417

PLQ1 0.6125 0.3875 0.1208 0.0583 0.1792 0.0875 0.1708 0.2583 0.1583
  Inside firm 0.5667 0.4333 0.0917 0.0500 0.1417 0.0583 0.2000 0.2583 0.1833
  Outside firm 0.6583 0.3417 0.1500 0.0667 0.2167 0.1167 0.1417 0.2583 0.1333

PLQ2 0.6008 0.3992 0.1134 0.0798 0.1933 0.1176 0.1597 0.2773 0.1597
  Inside firm 0.6218 0.3782 0.0672 0.0504 0.1176 0.1008 0.2353 0.3361 0.0924
  Outside firm 0.5798 0.4202 0.1597 0.1092 0.2689 0.1345 0.0840 0.2185 0.2269

Over-positive response Over-negative response Appropriate 
response

Inappropriate 
response

Inappropriate response frequency is the sum of wrong response frequency and no response frequency.  Appropriate response frequency is total response 
frequency less inappropriate response frequency. 

Table 3.8 
Frequency of appropriate and inappropriate response relative to best strategy 
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The low price behaviour is reflected by the much higher frequency of over-negative 

than over-positive response behaviour of both firms in all the treatments.  In PQ2 where both 

firms fared the worst in attaining prediction, the frequency of over-negative behaviour is the 

highest of all treatments: 0.3917 for the outside firm and 0.3417 for the inside firm.  

To study firm experience at playing best strategies, a Wilcoxon signed rank test and a 

Sign test are conducted on the null hypothesis of price decisions equal one-period lag best 

responses.  The results presented in Table 3.9 show that for four treatments (PL1, PQ1, PLQ1 

and PLQ2), the null hypothesis is significant at the 0.01 level by the late2 phase for both 

firms, suggesting that the firms get better at playing best strategies over the course of the 

experiment.  In PL2, the null is significant only for the outside firm.  In PL1, the null is 

significant for both firms in the early and late2 phases, and only for the outside firm in the 

late1 phase.  This explains the decline in convergence for the inside firm in PL1 during the 

late1 phase and the subsequent convergence to an equilibrium closer to prediction in the late2 

phase.  As for PQ2, the inability of prices to attain prediction for both firms is exhibited by 

the insignificant Wilcoxon statistic throughout the experiment. 
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Table 3.9 
Congruence of price decisions to best response  
(probabilities for two-tailed Wilcoxon signed ranks test pW and Sign test pS) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable pw ps Variable pw ps
Null hypothesis: pit = pbrit-1

Treatment: PL1 Treatment: PL2
All periods All periods
  p1 0.0000 0.0043   p1 0.0000 0.0000
  p2 0.0055 0.1207 *   p2 0.0390 + 0.0552 *
Early phase Early phase
  p1 0.1253 * 0.6831 *   p1 0.0000 0.0000
  p2 0.0136 + 0.1416 *   p2 0.4264 * 0.3496 *
Late1 phase Late1 phase
  p1 0.0004 0.0072   p1 0.0008 0.0014
  p2 0.0771 * 0.4292 *   p2 0.1270 * 0.4292 *
Late2 phase Late2 phase
  p1 0.0101 + 0.0639 *   p1 0.0072 0.0015
  p2 0.8639 * 1.0000 *   p2 0.1064 * 0.1516 *
Treatment: PQ1 Treatment: PQ2
All periods All periods
  p1 0.0003 0.0162 +   p1 0.0000 0.0014
  p2 0.0514 * 0.0076   p2 0.0000 0.0000
Early phase Early phase
  p1 0.0001 0.0017   p1 0.0005 0.1416 *
  p2 0.3096 * 0.4962 *   p2 0.0001 0.0002
Late1 phase Late1 phase
  p1 0.1506 * 0.5218 *   p1 0.0032 0.0820 *
  p2 0.0513 * 0.0072   p2 0.0000 0.0000
Late2 phase Late2 phase
  p1 0.9886 * 0.8388 *   p1 0.0097 0.0227 +
  p2 0.4575 * 0.3075 *   p2 0.0001 0.0003
Treatment: PLQ1 Treatment: PLQ2
All periods All periods
  p1 0.0000 0.0000   p1 0.0000 0.0000
  p2 0.0005 0.0034   p2 0.7606 * 1.0000 *
Early phase Early phase
  p1 0.0001 0.0000   p1 0.0000 0.0000
  p2 0.0000 0.0003   p2 0.2500 * 0.6885 *
Late1 phase Late1 phase
  p1 0.0006 0.0009   p1 0.0000 0.0007
  p2 0.2912 * 0.4292 *   p2 0.6793 * 1.0000 *
Late2 phase Late2 phase
  p1 0.0278 + 0.0066   p1 0.0718 * 0.1516 *
  p2 0.7380 * 1.0000 *   p2 0.4654 * 0.6776 *

 + indicates significance at the 0.01 level 
* indicates significance at the 0.05 level 
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The following model is estimated to determine if firms play their best strategies and 

improve their execution of best strategies over time. 

(3.4)  itttitit DUMDUMpbrp εββα +++=− − 22111  

where  is the price of firm i in period t, itp { }2,1∈i , { }16,...,1=t ;  is the one-period lag 

best response in prices;  is a dummy variable that equals 1 if  and 0 

otherwise; and  is a dummy variable that equals 1 if 

1, −tipbr

tDUM 1 { 13,...,9=t }

tDUM 2 { }16,...14=t  and 0 otherwise.  If 

learning occurs in the late1 phase and late2 phase, then 1β  and 2β  respectively would be 

negative. 

Results from the regression are given in Table 3.10.  All diagnostic checks for 

stationary series, specification and stability are conducted as before.  For the inside firm, all 

the β ’s are negative: 1β  is significantly different from zero at the 0.05 level in all treatments 

except PLQ2 (insignificant), while 2β  is significantly different from zero at the 0.05 level for 

all treatments except PLQ1 (significant at the 0.10 level) and PL2 (insignificant).   

For the outside firm, the β ’s are largely insignificant except in two treatments, PL2 

and PLQ1: 1β  is significantly different form zero at the 0.10 level in PL2 (positive) and 

PLQ1 (negative), while 2β  is negative and significantly different from zero at the 0.05 level 

in PLQ1.   

There is evidence, therefore, that learning is occurring for the inside firm but the same 

cannot be said for the outside firm except in PLQ1.  In PL2, prices of the outside firm appear 

to move away from best response in the late1 phase.  In other words, the inside firm in all 

treatments gets better at using best strategies in making their pricing decisions but this is only 

true of the outside firm in PLQ1. 
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Table 3.10 
Regression results for price decisions and best strategies 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LM = 0.0780; White = 0.3733; Jarque-Bera = 0.0000; Chow = 0.2192  

Variable Coefficient S.E. t-statistic
Model: 
Treatment: PL1
|p1t-pbr1t-1|
constant 1.7916 0.3026 5.9202 *
DUM1t -0.7533 0.2836 -2.6561 *
DUM2t -1.1023 0.2065 -5.3372 *
AR(1) 0.1761 0.1097 1.6050
AR(3) 0.4101 0.1146 3.5773 *
AR(18) 0.3350 0.0930 3.6042 *
AR(22) -0.2481 0.0909 -2.7281 *
N = 74; Adj R2 = 0.4463; F = 10.8078 (p = 0.0000); SSE = 21.0731; DW = 2.2276;
LM = 0.1908; White = 0.2121; Jarque-Bera = 0.3979; Chow = 0.0311
|p2t-pbr2t-1|
constant 0.9178 0.2401 3.8220 *
DUM1t -0.1128 0.1365 -0.8263
DUM2t -0.1862 0.1730 -1.0759
AR(1) 0.2960 0.1040 2.8461 *
AR(4) 0.2375 0.0938 2.5328 *
AR(18) 0.1920 0.1030 1.8651 +
N = 83; Adj R2 = 0.1639; F = 4.2156 (p = 0.0019); SSE = 16.9193; DW = 2.0586;
LM = 0.6175; White = 0.1048; Jarque-Bera = 0.2183; Chow = 0.2511
Treatment: PL2
|p1t-pbr1t-1|
constant 1.5508 0.1348 11.5077 *
DUM1t -0.5568 0.1808 -3.0799 *
DUM2t -0.4132 0.2615 -1.5805
AR(8) 0.2072 0.0990 2.0924 *
AR(13) -0.2073 0.0953 -2.1741 *
N = 92; Adj R2 = 0.0876; F = 3.1846 (p = 0.0172); SSE = 79.6093; DW = 1.8700;
LM = 0.4476; White = 0.6916; Jarque-Bera = 0.0840; Chow = 0.1346
|p2t-pbr2t-1|
constant 0.6926 0.2648 2.6153 *
DUM1t 0.5331 0.2953 1.8052 +
DUM2t 0.0802 0.2752 0.2915
AR(1) 0.4607 0.1031 4.4674 *
AR(2) 0.4272 0.1258 3.3952 *
AR(4) -0.3406 0.1330 -2.5619 *
N = 94; Adj R2 = 0.4388; F = 15.5459 (p = 0.0000); SSE = 65.0985; DW = 2.0838;
LM = 0.6870; White = 0.3035; Jarque-Bera = 0.0146; Chow = 0.0000
Treatment: PQ1
|p1t-pbr1t-1|
constant 2.7757 0.4767 5.8228 *
DUM1t -0.8557 0.3677 -2.3274 *
DUM2t -0.9433 0.4028 -2.3418 *
AR(2) 0.2990 0.0997 3.0003 *
AR(3) 0.3143 0.0876 3.5870 *
N = 100; Adj R2 = 0.2490; F = 9.2074 (p = 0.0000); SSE = 200.1905; DW = 1.7974;
LM = 0.9262; White = 0.1071; Jarque-Bera = 0.4973; Chow = 0.2751
|p2t-pbr2t-1|
constant 1.8256 0.2777 6.5731 *
DUM1t 0.0244 0.4538 0.0537
DUM2t 0.1490 0.4859 0.3065
AR(8) -0.2023 0.1032 -1.9608 +
N = 100; Adj R2 = 0.0176; F = 1.5897 (p = 0.1969); SSE = 277.1170; DW = 1.7768;

itttitit DUMDUMpbrp εββα +++=− − 22111
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Table 3.10 (contd.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient S.E. t-statistic
Treatment: PQ2
|p1t-pbr1t-1|
constant 5.2220 0.6656 7.8455 *
DUM1t -1.3703 0.6380 -2.1478 *
DUM2t -1.7528 0.7884 -2.2232 *
AR(2) 0.1839 0.0964 1.9066 +
AR(4) 0.2131 0.0959 2.2212 *
N = 101; Adj R2 = 0.1464; F = 5.2869 (p = 0.0007); SSE = 684.0223; DW = 1.6569;
LM = 0.5389; White = 0.1292; Jarque-Bera = 0.0406; Chow = 0.4821
|p2t-pbr2t-1|
constant 3.5160 0.3376 10.4132 *
DUM1t 0.0324 0.4780 0.0678
DUM2t 0.3723 0.6892 0.5402
AR(2) -0.1064 0.1002 -1.0612
AR(14) -0.2673 0.1011 -2.6446 *
N = 91; Adj R2 = 0.0447; F = 2.0520 (p = 0.0942); SSE = 534.6410; DW = 1.2316;
LM = 0.3446; White = 0.1571; Jarque-Bera = 0.0515; Chow = 0.4803
Treatment: PLQ1
|p1t-pbr1t-1|
constant 2.8190 0.4410 6.3925 *
DUM1t -0.8322 0.3981 -2.0906 *
DUM2t -0.8407 0.4510 -1.8641 +
AR(2) 0.3411 0.0874 3.9024 *
AR(3) 0.1748 0.0849 2.0598 *
N = 102; Adj R2 = 0.1945; F = 7.0962 (p = 0.0000); SSE = 233.1567; DW = 2.0149;
LM = 0.7666; White = 0.3996; Jarque-Bera = 0.1081; Chow = 0.1986
|p2t-pbr2t-1|
constant 2.5203 0.2602 9.6878 *
DUM1t -0.6747 0.3623 -1.8624 +
DUM2t -1.0729 0.4582 -2.3416 *
AR(19) -0.1851 0.0941 -1.9667 +
N = 95; Adj R2 = 0.0680; F = 3.2853 (p = 0.0243); SSE = 248.0614; DW = 1.6488;
LM = 0.8195; White = 0.4180; Jarque-Bera = 0.0000; Chow = 0.0847
Treatment: PLQ2
|p1t-pbr1t-1|
constant 6.2989 1.1003 5.7247 *
DUM1t -1.4104 0.8573 -1.6452
DUM2t -1.9898 0.9889 -2.0122 *
AR(2) 0.3570 0.0976 3.6589 *
AR(3) 0.2399 0.0982 2.4434 *
N = 99; Adj R2 = 0.2421; F = 8.8280 (p = 0.0000); SSE = 1120.511; DW = 1.5453;
LM = 0.6480; White = 0.0864; Jarque-Bera = 0.0715; Chow = 0.3094
|p2t-pbr2t-1|
constant 3.8670 0.7862 4.9185 *
DUM1t -0.7836 0.8141 -0.9626
DUM2t -0.8767 0.9355 -0.9371
AR(6) 0.2008 0.1113 1.8048 +
AR(18) 0.1951 0.1053 1.8519 +
N = 83; Adj R2 = 0.0506; F = 2.0917 (p = 0.0898); SSE = 795.5931; DW = 1.3203;
LM = 0.9105; White = 0.7438; Jarque-Bera = 0.0010; Chow = 0.7354

See Table 3.7 for notes.  Failure of Chow’s test for the outside firm in PL2 is due to an outlying 
residual value at the breakpoint.  Failure of Jarque-Bera test is due to 1-3 outlying values. 
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Fig. 3.20     Relative price under different transportation costs 

 

 

 

H3: Relative price is the same under different transportation costs (Proposition 1). 

Is relative price identical for all transportation cost structures, in accordance with 

Proposition 1?  A plot of the time series of mean relative price ( )12 pp  in Figure 3.20 shows 

that the relative price in five treatments is very close to the predicted level of 0.71 (depicted 

by a broken line) but in PQ2, the relative price is below prediction.  This is a direct 

consequence of the inability of prices in PQ2 to attain prediction.   

A Friedman test accords support for the Proposition 1.  The null hypothesis is relative 

price remains the same regardless of transportation costs, i.e., ktktjtjt pppp 1212 =  where 

 and  denotes the price of firm  in treatment ijp ikp i j  and  respectively,  and 

, 

k { }2,1∈i

{ }6,...,1, ∈kj kj ≠ .  The results in Table 3.11 show that relative price is identical for the six 

treatments at the 0.01 level in the early phase and at the 0.05 level in the late1 and late2 

phases.   
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Table 3.11 
Relative price and relative demand are the same under different transportation costs 
(probabilities for Friedman test pF) 

 

 

 

 

Variable N pF N pF

Null hypothesis: p2jt/p1jt = p2kt/p1kt m2jt/m1jt = m2kt/m1kt

 periods 123 0.0233 + 118 0.0210 +
Early phase 61 0.0331 + 56 0.1481 *

ate1 phase 38 0.2421 * 38 0.0143 +
ate2 phase 24 0.4548 * 24 0.5025 *

All

L
L

+ indicates significance at the 0.01 level 
* indicates significance at the 0.05 level 

kj ≠  represents the treatment number 
 

 

 

 

H4: Relative demand is the same under different transportation costs  

(Proposition 2.1). 

Figure 3.21 shows that the mean relative demand ( )12 mm  for the six treatments is 

equivalent under different transportation cost structures and reaches the predicted level of 

0.71 (depicted by a broken line) fairly early in the experiment.  This observation is verified by 

a Friedman test on the null hypothesis that the relative demand is the same regardless of 

transportation costs, i.e., ktktjtjt mmmm 1212 =  where  and  denotes the demand for 

firm  in treatment 

ijm ikm

i j  and  respectively, k { }2,1∈i  and { }6,...,1, ∈kj , .  The results in 

Table 3.11 show that relative demand is identical for the six treatments at the 0.05 level in the 

early and late2 phases and at the 0.01 level in the late1 phase.   

kj ≠
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Fig. 3.21     Relative demand under different transportation costs 

 

 

H5: Relative demand is equivalent to relative price (Proposition 2.2). 

It can be expected from the results of hypotheses H3 and H4 that relative demand is 

equivalent to relative price regardless of the transportation cost structure.  Figure 3.22 shows 

the time series of mean relative demand ( )12 mm  and mean relative price ( )12 pp  for each 

treatment.  The predicted equilibrium level is depicted by a broken line.  While the two series 

reach the predicted level within five periods in all six treatments, there appears to be a greater 

departure of 12 mm  from 12 pp  in the early phase of PL2 and PLQ2.  This observation is 

verified by a Wilcoxon signed rank test and a Sign test on the null hypothesis that 

1212 mmpp =

                                                     

, using individual player data.  The results in Table 3.12 indicate that the null 

is significant at the 0.05 level throughout the experiment, except for PL2 and PLQ2 where the 

null is insignificant in the early phase at the 0.05 level.9

 

 
9 Comparison of the means using standard t-tests is not meaningful except for PL2 since a 
Kolmogorov-Smirnov Test shows normal distribution for only one relative price series (PL2), and 
three relative demand series (PL2, PQ2, PLQ1) at the 0.01 level and one relative demand series 
(PLQ2) at the 0.05 level. 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Period

M
ea

n 
de

ci
si

on

PL1 PL2 PQ1 PQ2 PLQ1 PLQ2



 

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Period

M
ea

n 
de

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Period

M
ea

n 
de

ci
si

on

p2/p1 m2/m1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.22(a)   Time series of mean relative demand and mean relative price (PL1)         Fig. 3.22(b)   Time series of mean relative demand and mean relative price (PL2) 
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Fig.3.22(c)  Time series of mean relative demand and mean relative price (PQ1)           Fig. 3.22(d)  Time series of mean relative demand and mean relative price (PQ2) 
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Fig. 3.22(e)   Time series of mean relative demand and mean relative price (PLQ1)      Fig.3.22(f)   Time series of mean relative demand and mean relative price (PLQ2) 
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Table 3.12 
Relative demand and relative price  
(probabilities for two-tailed Wilcoxon signed ranks test pW and Sign test pS) 
 

Treatment N pw ps
Null hypothesis:   p2/p1 = m2/m1

Treatment: PL1
All periods 124 0.8850 * 0.7876 *
Early phase 60 0.2959 * 0.2453 *
Late1 phase 40 0.5188 * 0.8744 *
Late2 phase 24 0.5872 * 0.5413 *
Treatment: PL2
All periods 128 0.0134 + 0.0634 *
Early phase 64 0.0031 0.0040
Late1 phase 40 0.8193 * 0.8744 *
Late2 phase 24 0.7533 * 1.0000 *
Treatment: PQ1
All periods 125 0.9617 * 0.5915 *
Early phase 61 0.1602 * 0.6085 *
Late1 phase 40 0.2646 * 0.4292 *
Late2 phase 24 0.4237 * 0.3075 *
Treatment: PQ2
All periods 128 0.2458 * 0.0931 *
Early phase 64 0.7381 * 0.7077 *
Late1 phase 40 0.0696 * 0.0820 *
Late2 phase 24 0.1888 * 0.5413 *
Treatment: PLQ1
All periods 127 0.7236 * 0.5944 *
Early phase 63 0.2178 * 0.1306 *
Late1 phase 40 0.5101 * 0.8744 *
Late2 phase 24 0.4405 * 0.5413 *
Treatment: PLQ2
All periods 126 0.0020 0.0098
Early phase 64 0.0086 0.0336 +
Late1 phase 38 0.0939 * 0.1443 *
Late2 phase 24 0.6071 * 0.8388 *

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ indicates significance at the 0.01 level 
* indicates significance at the 0.05 level 
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To evaluate the extent of divergence of 12 mm  from 12 pp , the following equation 

is estimated for the six treatments: 

(3.5)  t
t

t

t

t

p
p

m
m

εβα ++=
1

2

1

2  

where  and  denote the price and demand respectively of firm i in period t, .   itp itm { }2,1∈i

The regression results are shown in Table 3.13.  All diagnostic and stability tests 

indicate that the estimates are acceptable (normality of the residuals is rejected for all 

treatments by a Jarque-Bera test but the test is dubious given the presence of one or two 

outlying values in each instance).  The β ’s are negative and significant at the 0.05 level in all 

treatments except PQ1 where it is significant at the 0.10 level.  For PQ1, the adjusted 2R  is 

also very low.  In only one treatment, PL1, is β  close to 1.  There is, therefore, little 

evidence from the regressions that relative demand equals relative price.  The lack of price 

convergence to prediction has clearly resulted in an inability of relative price to match relative 

demand.   

 

H6: The price increase is greater for the inside firm than the outside firm when 

transportation costs increase for a given transportation cost structure 

(Proposition 3). 

In treatments PL2, PQ2 and PLQ2, the transportation cost parameters are increased 

by 100% over those in PL1, PQ1 and PLQ1 respectively.  The impact of a transportation cost 

increase on the prices of both firms can, therefore, be observed by comparing prices in PL1 

and PL2, PQ1 with PQ2, and PLQ1 with PLQ2.   

Figure 3.23 shows that the mean price difference of the inside firm under a 100% 

increase in transportation cost parameters is generally larger than the mean price difference 

for the outside firm.  There are between one and seven periods in which the converse holds, 

i.e., the mean price increase of the outside firm surpasses that of the inside firm: (1) linear 

transportation costs: periods 1, 2 and 8; (2) quadratic transportation costs: period 1; and 
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Table 3.13 
Regression results for relative price and relative demand 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient S.E. t-statistic

Model: 

Treatment: PL1
m2t/m1t

constant 1.8719 0.2342 7.9943 *
p2t/p1t -1.1094 0.2240 -4.9534 *
AR(1) 0.7913 0.1124 7.0388 *
AR(6) -0.1386 0.0823 -1.6832 +
AR(14) -0.1884 0.0823 -2.2903 *
N = 99; Adj R2 = 0.4364; F = 19.9709 (p = 0.0000); SSE = 51.6748; DW = 1.5857;
LM = 0.0543; White = 0.1916; Jarque-Bera = 0.0000; Chow = 0.0311
Treatment: PL2
m2t/m1t

constant 1.2182 0.0605 20.1412 *
p2t/p1t -0.7003 0.0682 -10.2691 *
AR(6) -0.7988 0.0692 -11.5476 *
MA(6) 0.8000 0.0403 19.8524 *
MA(8) 0.2166 0.0403 5.3773 *
N = 122; Adj R2 = 0.5335; F = 35.5970 (p = 0.0000); SSE = 8.9981; DW = 1.9307;
LM = 0.2305; White = 0.0140; Jarque-Bera = 0.0000; Chow = 0.3240
Treatment: PQ1
m2t/m1t

constant 1.0059 0.1414 7.1164 *
p2t/p1t -0.1467 0.0853 -1.7193 +
AR(1) 0.1892 0.0910 2.0780 *
N = 122; Adj R2 = 0.0467; F = 3.9611 (p = 0.0216); SSE = 134.6155; DW = 1.9834;
LM = 0.5182; White = 0.7496; Jarque-Bera = 0.0000; Chow = 0.1188
Treatment: PQ2
m2t/m1t

constant 1.0662 0.0828 12.8734 *
p2t/p1t -0.3350 0.0694 -4.8246 *
AR(6) 0.2342 0.0817 2.8668 *
N = 122; Adj R2 = 0.2003; F = 16.1545 (p = 0.0000); SSE = 34.2066; DW = 1.8724;
LM = 0.3215; White = 0.2550; Jarque-Bera = 0.0000; Chow = 0.1750
Treatment: PLQ1
m2t/m1t

constant 1.1434 0.0678 16.8636 *
p2t/p1t -0.5201 0.0745 -6.9780 *
N = 127; Adj R2 = 0.2746; F = 48.6926 (p = 0.0000); SSE = 22.3880; DW = 1.8974;
LM = 0.6396; White = 0.0200; Jarque-Bera = 0.0000; Chow = 0.1825
Treatment: PLQ2
m2t/m1t

constant 1.0292 0.0670 15.3531 *
p2t/p1t -0.4946 0.0684 -7.2281 *
AR(28) -0.1596 0.0892 -1.7886 +
N = 98; Adj R2 = 0.3331; F = 25.2285 (p = 0.0000); SSE = 8.9177; DW = 2.2343;
LM = 0.4478; White = 0.0266; Jarque-Bera = 0.0000; Chow = 0.9969

t
t

t

t

t

p
p

m
m

εβα ++=
1

2

1

2

 
See Table 3.7 for notes.  Failure of Jarque-Bera test due to 1-2 outlying values.
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(3) linear-quadratic transportation costs: periods 3-4, 6-9 and 15. 

To evaluate price increases by the two firms under higher transportation costs over 

the course of the experiment, the following equation is estimated: 

(3.6)  ( ) ( ) ttttttt DUMDUMpppp εββα +++=−−− 221121221112  

where  is the price of firm i for treatment of type j where ijp { }2,1, =ji .  Type  denotes 

the treatment before the transportation cost increase while 

1=j

2=j  denotes the treatment with a 

100% transportation cost increase.   is a dummy variable that equals 1 if  

and 0 otherwise, and  is a dummy variable that equals 1 if  and 0 

otherwise. 

tDUM 1 { }13,...,9=t

tDUM 2 { 16,...14=t }

The regression results are presented in Table 3.14.  All diagnostic and stability tests 

indicate that the estimates are reliable.  In all treatments, α  is positive and significantly 

different from zero, while 1β  and 2β  are not significantly different from zero at the 0.05 

level.  Under quadratic transportation costs, 2β  is positive and significant at the 0.10 level.   

This implies that under higher transportation costs, the price increase by the inside 

firm is consistently higher than the price increase by the outside firm throughout the 

experiment.  Under quadratic transportation costs, the price increase by the inside firm also 

grows larger during the last three periods of the treatments, widening the price gap between 

the two firms.   
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Fig. 3.23 (a)   Time series of mean price difference under higher linear transportation costs 
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Fig.3.23 (b)   Time series of mean price difference under higher quadratic transportation costs  
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Fig. 3.23 (c) Time series of mean price difference under  
higher linear-quadratic transportation costs 
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Table 3.14 
Regression results for impact of transportation cost increase on prices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient S.E. t-statistic
Model: 
Treatments: PL1, PL2
(p12t-p11t)-(p22t-p21t)
constant 2.1287 0.3367 6.3231 *
DUM1t -0.2828 0.3838 -0.7367
DUM2t -0.1663 0.4210 -0.3951
AR(1) 0.5721 0.0746 7.6732 *
N = 125; Adj R2 = 0.3146; F = 19.9763 (p = 0.0000); SSE = 200.9636; DW = 1.9319;
LM = 0.8390; White = 0.9015; Jarque-Bera = 0.0549; Chow = 0.3104
Treatments: PQ1, PQ2
(p12t-p11t)-(p22t-p21t)
constant 4.5131 0.9368 4.8174 *
DUM1t -0.1218 0.9330 -0.1305
DUM2t 1.7737 1.0675 1.6615 +
AR(1) 0.4391 0.0843 5.2085 *
AR(4) 0.1419 0.0786 1.8057 *
N = 118; Adj R2 = 0.2315; F = 9.8134 (p = 0.0000); SSE = 1372.294; DW = 1.9036;
LM = 0.5603; White = 0.0245; Jarque-Bera = 0.0550; Chow = 0.0717
Treatments: PLQ1, PLQ2
(p12t-p11t)-(p22t-p21t)
constant 6.7469 0.8495 7.9420 *
DUM1t -0.1319 1.0901 -0.1210
DUM2t -0.2509 1.1970 -0.2096
AR(1) 0.2463 0.0894 2.7536 *
AR(2) 0.1816 0.0888 2.0458 *
N = 121; Adj R2 = 0.0910; F = 4.0038 (p = 0.0044); SSE = 1962.361; DW = 1.9219;
LM = 0.3391; White = 0.2244; Jarque-Bera = 0.0455; Chow = 0.2172

( ) ( ) ttttttt DUMDUMpppp εββα +++=−−− 221121221112

See Table 3.7 for notes. 
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3.5 CONCLUSIONS 

The experimental results indicate that the IO model is a behaviourally valid framework for 

studying competition between two firms situated on either side of a market border.  Faced 

with fixed location, a large majority of players initially price below prediction, resulting in 

reduced rent.  In particular, the inside firm exhibits a strong tendency to adopt low prices that 

are close to levels that monopolise the market.  Nevertheless, best strategies help to increase 

producer surplus and direct prices closer to (but still below) prediction in all but one 

treatment. 

The results also provide strong support for the propositions that relative price and 

relative demand remain invariant regardless of the transportation cost structure (Propositions 

1 and 2.1).  Moreover, an increase in transportation costs is shown to result in higher price 

increases by the inside firm compared to the outside firm (Proposition 3), i.e., consumers 

alleviate higher prices by incurring higher transportation costs.  Limited evidence, however, is 

accorded to the equivalence of relative price and relative demand (Proposition 2.2) due to the 

general convergence of prices to a level below prediction.   

In the experiment reported here, constant location appears to foster reduced 

competition under higher transportation costs, leading to higher prices.  This is in accord with 

Proposition 3.  Will the scenario differ under variable location?  In the next chapter, we 

modify the experimental design and examine the situation in which both firms are able to 

relocate themselves.   



CHAPTER 4 

EXPERIMENTAL EVIDENCE  

WITH VARIABLE FIRM LOCATION 
 

 

4.1 INTRODUCTION 

 

 basic tenet in traditional location literature is that firms should maximise their level of 

product differentiation to reduce price competition (e.g., Prescott and Visscher 1977; 

d’Aspremont et al. 1979; Shaked and Sutton 1982; Economides 1986).  On the other hand, 

minimum product differentiation is proposed if price competition is absent (e.g., de Palma et 

al. 1985; Dudey 1990; Sorenson 1997), i.e., both firms should locate close together if 

products are horizontally differentiated (in line with Hotelling (1929)’s arguments). 

A

Despite the prominence accorded to both price and product differentiation strategies 

in oligopolistic literature, experimental studies on spatial competition typically treat one of 

these strategies as unchanging.  Brown-Kruse et al. (1993), Brown-Kruse and Schenk (2000), 

Collins and Sherstyuk (2000) and Huck et al. (2002) assume constant prices, while Selten and 

Apesteguia (2004) assume constant location.1  Alternatively, in the context of voting models, 

the focus is on voter location of candidates with the price of vote held constant.  By focusing 

on the location or price of firms, these studies observe the extent to which either decision 

conforms to theoretical equilibrium predictions, rather than a dynamic interplay of the two 

strategies.  For example, Brown-Kruse, et al. (1993) tested Hotelling’s duopoly model in a 

fixed price environment with elastic (linear, downward sloping) consumer demand and 

different treatments in which communication among firms is either permitted or absent.  Their 

findings support the theoretical predictions that firms locate at the centre of the market in the 

absence of communication but congregate towards the collusive equilibrium, i.e., the market 

                                                      
1This does not in any way ascribe to the inferiority of these studies as their intent bears a different 
focus. 
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quartiles, if communication is allowed.  Selten and Apesteguia (2004)’s study of price 

competition among varying number of firms in a circular market (à la Salop (1979) and 

Beckmann (1989)) showed that when firms have no knowledge of the functional relationship 

between price and profit, their behaviour is typically influenced by imitation and cooperation 

tendencies.  In such situations, prices converge to outcomes other than Nash equilibrium, viz., 

the imitation equilibrium with sub-Nash prices and the joint profit maximising equilibrium 

with supra-Nash prices respectively.2

Among the few exceptions that study the interaction of price and product 

differentiation are Barreda et al. (2000) and Camacho-Cuena et al. (2004).  Barreda et al. 

(2000) studied price and product differentiation in a duopoly faced with horizontal 

differentiation in a discrete framework.  Location-then-price decisions are made from finite 

strategic spaces that coincide with discrete consumer locations.  The authors observed that 

product differentiation tends to be low and firms with marginally fewer consumers tend to 

price higher than firms with marginally more consumers.  Camacho-Cuena et al. (2004) 

extended this study by including buyer location-purchase decisions in a four-stage game.  

First, sellers make their location decisions, followed by buyers’ location decisions.  In the 

ensuing stage, sellers set prices and finally, buyers make purchase decisions.  This four-stage 

game is repeated over a fixed time horizon with two different sub-periods representing 

different speeds of technological change or product redesign.  In the slow-innovation 

treatment, location decisions are kept constant for five periods during which only price-

purchase decisions change.  In the rapid-innovation treatment, location decisions are invariant 

over two periods.  The authors found that rapid product redesign is consistent with higher 

product differentiation and prices.  As technology changes more rapidly, buyers attempt to 

mitigate seller monopolistic power by incurring higher transportation costs. 

                                                      
2 Selten and Aspeteguia (2004) reiterated the definition of an imitation equilibrium, first 
introduced in Selten and Ostmann (2001), as one which satisfies the following four stability 
properties: (1) finiteness: all deviation paths are finite, (2) involvement: a destination via a 
deviation path involving a deviator must be the imitation equilibrium, (3) payoff: all deviator 
payoffs other than the one with deviator involvement are lower, and (4) return: all return paths are 
finite and reach the imitation equilibrium.  
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When firms vary price and location decisions at the same time or with equal rapidity, 

a simultaneous price-location game becomes more relevant.  Numerous products in the real 

world experience such price and design changes, e.g. computers, mobile phones, computer 

games and software.  Typical of such products is the invariant price of existing models for a 

short period until a new design enters the market.  Such highly rapid innovation situations 

further shorten Camacho-Cuena et al. (2004)’s two-period constant location decision to a 

single period in which price and location decisions are made at the same time.   

This chapter looks at situations in which endogenous price and product differentiation 

strategies are made simultaneously.  Of pertinent interest are situations in which oligopolistic 

competition occurs with entry barrier of firms into rival markets due to prohibitive legislation 

or costs.  Under these circumstances, firms produce a rapidly innovative product within their 

own precincts and ship it to neighbouring markets to be sold or alternatively, cross-border 

shoppers travel out of their domestic market to shop for the product.  The IO model proposed 

earlier presents itself as an appropriate framework for such a study. 

In an experimental spatial environment that corresponds to the theoretical setup of the 

IO model, two firms simultaneously make location and price decisions regarding the product 

they intend to sell.  The inside firm locates within the same linear market as consumers along 

 while the outside firm locates beyond the market boundary along .  Firm entry 

into rival markets is closed.  Consumer demand is generated by the computer and is assumed 

to be inelastic, with consumer location uniformly distributed along 

[ ]1,0 ] +∞,1 [

[ ]1,0 .  Consumers travel to 

either firm to purchase the product and bear the full burden of travel costs according to a 

predetermined transportation cost structure.  Price ties are resolved in favour of the closer 

firm.  The theoretical prediction of the simultaneous price-location game is that a unique non-

cooperative Nash-Bertrand equilibrium in pure strategies exists only under strictly convex 

transportation costs.  The extent of price and product differentiation is predicted to vary with 

the type of transportation cost structure and rate of transportation cost increase.  In addition, 
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relative price and relative demand is expected to be identical under the same transportation 

cost structure. 

Given the significance ascribed to price and product differentiation strategies under 

varying transportation costs in the IO model, the experiment was conducted with four 

treatments: two treatments characterise different transportation cost structures while two 

treatments pertain to an increase in transportation costs under different transportation cost 

structures.  As predicted by the theoretical model, the results show that higher transportation 

costs entail lower degrees of product differentiation and heightened price competition.  

Pricing behaviours that do not conform to best response were observed, such as low price 

behaviour and price leader behaviour.  These have a tendency of driving profit away from the 

non-cooperative Nash-Bertrand equilibrium in pure strategies.  Cooperative behaviour was 

largely ineffective due to the nature of the experimental design: no communication was 

permitted and players were rotated among themselves with each period of trade.  The results 

accord limited support for the proposition that relative demand and relative prices remain 

constant within the same transportation cost structure.   

This chapter is organised as follows.  In Sections 4.2, we present the theoretical 

predictions.  In Section 4.3, we describe the experimental procedures.  In Section 4.4, the 

results are discussed.  The final section concludes this chapter. 
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4.2 THEORETICAL PREDICTIONS 

The analyses of this chapter focus on the non-cooperative Nash-Bertrand equilibrium in pure 

strategies and the propositions of the IO model.  This section presents the theoretical 

framework and a summary of the theoretical predictions for the simultaneous price-location 

game.  Consider a differentiated product market in which two firms, an inside firm  and 

an outside firm , play a simultaneous price-location game.  During each exchange 

period, the two firms  simultaneously make two decisions: (1) location  where 

 and ,  corresponds to available locations to the outside firm, and 

(2) product price .  The strategy pair of each firm is denoted by 

1=i

2=i

{ }2,1∈i ix

[ ]1,01 ∈x ] ]l,12 ∈x +∞<l l

ip ( )ii xp , .  All locations are 

uniformly distributed along the segments [ ]1,0  and ]  and both firms are equally ex ante 

efficient in producing each firm’s good.  The good is assumed to be homogeneous and 

perfectly divisible among consumers.  For simplicity, the firms are assumed to incur no 

marginal production costs and no storage or distribution costs other than transportation (or 

delivery) costs which are borne fully by consumers.  The consumers are assumed to be 

uniformly distributed along the unit interval 

]l,1

[ ]1,0  and purchase the good from either seller.  

Price ties are resolved in favour of the nearer firm.  In making their purchase decisions, each 

consumer makes a decision on the preferred product specification of the good (price and 

location) offered by the two firms.  The demand for each firm’s good is denoted by .  The 

distance between consumer and seller locations corresponds to the distance d that the 

consumer travels to purchase the good.  The transportation costs incurred by consumers 

increase according to a predetermined transportation cost schedule that bears one of two 

functional forms:  (quadratic) and 

im

( ) 2sdxc = ( ) 2sdtdxc +=  (linear-quadratic) where , 

 and 

0>t

0>s 32≤st .3  Each firm earns a profit equivalent to ACmp iii −⋅=∏  where  is 

the (constant) average cost of production which for simplicity is assumed to be zero. 

AC

                                                      
3 For a unique location equilibrium in pure strategies to exist in the simultaneous game of the IO 
model, 32≤st . 
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Fig. 4.1     Price-location simultaneous equilibrium 
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Table 4.1 
Theoretical predictions 
 

s = 6.5 s = 13 t = 2.6, s = 6.5 t = 5.2, s = 13
Location (x1, x2) (0.61, 1.01) (0.61, 1.01) (0.85, 1.01) (0.85, 1.01)
Price (p1, p2) (3.14, 2.06) (6.27, 4.13) (4.68, 2.60) (9.37, 5.19)
Demand (m1, m2) (0.60, 0.40) (0.60, 0.40) (0.64, 0.36) (0.64, 0.36)
Relative price rp = p2/p1 0.66 0.66 0.55 0.55
Relative demand rm = m2/m1 0.66 0.66 0.55 0.55
Profit (r1, r2) (1.89, 0.82) (3.79, 1.64) (3.01, 0.93) (6.03, 1.85)

Transportation cost structure
Prediction Quadratic Linear-quadratic 

 

 

 

 

 

 

Table 4.1 gives the theoretical predictions of the IO model under the two convex 

transportation cost structures using the parameter values employed in the experiment.  The 

predicted values for location, price, demand, relative price, relative demand and profit are 

provided.  The predictions before and after a 100% increase in transportation cost parameters 

t and s are shown.   

Two propositions of the IO model pertaining to the simultaneous price-location game, 

discussed in Chapter 2, are reproduced below. 

 

Proposition 2.2 

For a given transportation cost structure, relative demand is equivalent to relative price at 

equilibrium. 

 

Proposition 3 

For a given transportation cost structure, the inside firm raises (lowers) its price when faced 

with higher (lower) transportation costs.  The outside firm reacts by raising (lowering) its 

price but by a smaller amount. 
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Table 4.2 
Treatments 
 

Treatment no.
1 VQ1 Quadratic s = 6.5
2 VQ2 Quadratic s =13.0
3 VLQ1 Linear-quadratic t = 2.6, s = 6.5
4 VLQ2 Linear-quadratic t = 5.2, s = 13.0

Treatment code Transportation cost structure Parameter values
 

 

 

 

 

Proposition 2.2 is obvious from Table 4.1 which shows the equality of relative 

demand and relative price under the same transportation cost structure.  Proposition 3 is 

shown by the higher price increase of the inside firm compared to the outside firm when s 

doubles under quadratic transportation costs, and similarly when both t and s double under 

linear-quadratic transportation costs. 

 

4.3 EXPERIMENTAL PROCEDURE 

The experiment was designed to test the theoretical predictions discussed above.  Four 

treatments were run: one treatment with quadratic transportation cost structure, one treatment 

with linear-quadratic transportation costs and another two treatments in which there is a 100% 

increase in transportation parameters under each type of transportation cost structure.  The 

treatments and parameter values are summarised in Table 4.2.   

In each treatment, 16 players were randomly assigned the role of inside firm or 

outside firm at the outset.  Their roles remained unchanged throughout the whole experiment.  

All players were told to make two decisions simultaneously: price and location (up to 2 

decimal places) and were informed of the range of feasible locations: [ ]1,0  for the inside firm 

and  for the outside firm.] +∞,1 [

                                                     

4  In addition, they were informed of the exact nature of 

transportation costs incurred by consumers, and were aware of the functional relationship 

between location, price and demand by means of a calculator that computes the demand 

 
4 Since firms typically price their good up to 2 decimal places in real world situations, players 
were asked to make their decisions up to 2 decimal places. 
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generated from the location and price decisions entered.  This calculator was made available 

at all times throughout the experiment.  The players were also told that there were 16 trading 

periods after an initial trial period.   

Given this design, the experiment corresponds to the theoretical IO model as closely 

as possible by minimising uncontrolled or unobservable behaviour arising from player’s 

subjective probabilities on any aspects of the experiment.  For example, unlike the 

experiments by Collins and Sherstyuk (2000) and Brown-Kruse and Schenk (2000), no 

uncertainty regarding the end period of the experiment was introduced.5  Attempts at 

cooperative behaviour were also minimised or made ineffective by rotating players after each 

trading period.   

Consumers were located uniformly along the unit interval [ ]1,0  and were automated 

to purchase one unit of the good from either seller according to the relevant demand function.  

They travelled a distance d to the seller and incurred transportation costs in accordance with a 

predetermined transportation cost schedule.  At the end of each period, the price, location and 

market share of the player and his rival were displayed.  The market share is the percentage 

demand for the player i ’s good out of total demand, i.e., ( ) %100%10021 ×=×+ ii mmmm  

since 121 =+ mm .  The payoffs, which were kept private to each player, were computed as 

the total profit earned, i.e., price multiplied by quantity demanded.  The players were 

informed of the conversion rate from experimental earnings to actual earnings. 

The experiments were conducted in a computer laboratory at the School of Business, 

National University of Singapore over a four-day period in March 2004.  A total of 98 

students of business and economics were recruited by e-mail.  None of the subjects 

participated in more than one treatment or in an earlier experiment on firm behaviour with 

constant location.  Almost all subjects had not taken part in a market experiment before.  The 

number of subjects recruited exceeded the number required to run each treatment in order to 

avoid the problem of no-shows.  The computerised programmes were developed using ZTree 

                                                      
5 Brown-Kruse and Schenk (2000) randomised the end-period of their experiment by using a 
bingo cage to determine whether a period would be the last period. 
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software (Fischbacher 1999).  At the start of the experiment, subjects were seated randomly at 

isolated computer terminals and no communication was allowed between them.  Instructions 

were handed out and clarifications concerning the information provided were answered.  No 

time restrictions were imposed.  The treatments lasted an average of 2.5 hours each.   

Upon completion of the 16 periods, players were asked to answer a short 

questionnaire before they received their payment privately in cash.  The instructions and 

questionnaire are provided in Appendices 10 and 9 respectively.  The responses from the 

questionnaire indicated that 92.5% of the players employed the calculator in their decisions 

and 78.8% used the calculator throughout the experiment.  On average, the players received a 

profit of S$6.83 including S$4 as show-up fee. 

 

4.4 EXPERIMENTAL RESULTS 

Table 4.3 summarises the mean and median values of all variables under the four treatments.  

The standard deviation in mean and dispersion of values are also provided.  The results show 

that the mean prices attained outperform the predicted values, with higher degrees of product 

differentiation.  The distribution of mean demand is very close to the predicted values and the 

average profit achieved by the players is generally higher than prediction as a result of higher 

prices.   

The following discussion addresses the theoretical hypotheses and highlights 

additional issues that emerge from the actual trading behaviour of players.  Player experience 

with the experiment is observed by segregating the data into three time intervals: early phase 

(periods 1-8), late1 phase (periods 9-13) and late2 phase (periods 14-16).  The latter two 

phases together make up the late phase (periods 9-16) 
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Table 4.3 
Summary statistics of results 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

 

N Mean Median Prediction S.D. (mean) Maximum Minimum
Treatment 1: VQ1
x1 128 0.55 0.60 0.61 0.26 1.00 0.00
x2 127 1.05 1.01 1.01 0.15 2.40 1.01
p1 128 4.19 3.83 3.14 2.61 14.90 0.80
p2 127 3.43 3.00 2.06 2.11 11.00 0.50
m1 128 0.61 0.60 0.60 0.32 1.00 0.00
m2 128 0.39 0.40 0.40 0.32 1.00 0.00
r1 128 2.13 1.91 1.89 1.51 10.45 0.00
r2 128 1.10 0.89 0.82 1.42 11.00 0.00
Treatment 2: VQ2
x1 127 0.59 0.63 0.61 0.23 1.00 0.00
x2 128 1.04 1.01 1.01 0.11 1.90 1.01
p1 127 8.17 7.50 6.27 3.96 23.90 1.00
p2 128 5.88 5.50 4.13 3.24 20.00 0.42
m1 128 0.58 0.59 0.60 0.32 1.00 0.00
m2 128 0.42 0.41 0.40 0.32 1.00 0.00
r1 128 3.99 3.84 3.79 2.76 14.50 0.00
r2 128 1.94 1.84 1.64 1.73 8.54 0.00
Treatment 3: VLQ1
x1 128 0.70 0.67 0.85 0.26 1.00 0.00
x2 127 1.03 1.01 1.01 0.06 1.50 1.01
p1 128 5.05 4.50 4.68 2.84 14.00 0.20
p2 127 3.21 2.55 2.60 2.23 10.00 0.00
m1 128 0.63 0.66 0.64 0.31 1.00 0.00
m2 128 0.37 0.34 0.36 0.31 1.00 0.00
r1 128 2.59 2.49 3.01 1.61 10.00 0.00
r2 128 0.89 0.70 0.93 1.05 6.00 0.00
Treatment 4: VLQ2
x1 128 0.71 0.75 0.85 0.24 1.00 0.00
x2 127 1.02 1.01 1.01 0.02 1.20 1.01
p1 128 10.26 9.90 9.37 3.28 23.90 2.00
p2 128 6.82 6.75 5.19 2.98 18.00 0.00
m1 128 0.66 0.65 0.64 0.24 1.00 0.00
m2 128 0.34 0.36 0.36 0.24 1.00 0.00
r1 128 6.17 6.11 6.03 2.08 13.00 0.00
r2 128 1.98 1.82 1.85 1.44 7.44 0.00



Figures 4.10 to 4.13 show the distributions of all individual prices, grouped by unit 

intervals, for the four treatments.  The Nash predictions are marked in the figures by a broken 

vertical line.  It can be seen immediately that the interval with the highest frequency in VQ1, 

VLQ1 (2 intervals in the case of the inside firm) and VLQ2 coincide with Nash prediction.  In 

the case of VQ2, there is a broader range of intervals in which the highest frequencies 

coincide with Nash prediction: 4 intervals for the inside firm and 3 intervals for the outside 

firm. 
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H1: Prices converge to the predicted values. 

Figures 4.2 to 4.9 show the time series of mean prices and the time series of all prices 

for the inside firm players and the outside firm players in Treatments 1 to 4.  The figures plot 

the per-period mean or individual price ( ) of each firm, their best responses lagged one 

period ( ) and the non-cooperative Nash predictions ( ).  The mean prices for the two 

firms are obtained by averaging over 8 players with the role of inside firm and over another 8 

players with the role of outside firm.  The average best response  of firm  to the rival 

firm’s price  and location , ji ≠ , for period t  is computed using the relevant response 

functions given in Chapter 2.  The figures show a clear convergence of mean prices to the 

non-cooperative Nash prediction under quadratic and linear-quadratic transportation costs.  

Mean prices converge from above to a level at or above prediction for all treatments, except 

for VQ1 (inside firm) and VLQ1 (both firms) where price convergence occurs at a level 

below prediction.   
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Fig. 4.2(a)     Time series of mean prices of inside firm players (VQ1) Fig. 4.2(b)     Time series of individual prices of inside firm players (VQ1) 
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Fig. 4.3(a)     Time series of mean prices of outside firm players (VQ1) Fig. 4.3(b)   Time series of individual prices of outside firm players (VQ1) 
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Fig. 4.4(a)     Time series of mean prices of inside firm players (VQ2) Fig. 4.4(b)     Time series of individual prices of inside firm players (VQ2) 
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Fig. 4.5(a)     Time series of mean prices of outside firm players (VQ2) Fig. 4.5(b)   Time series of individual prices of outside firm players (VQ2) 94
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Fig. 4.6(a)    Time series of mean prices of inside firm players (VLQ1)  Fig. 4.6(b)   Time series of individual prices of inside firm players (VLQ1) 
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Fig. 4.7(a)     Time series of mean prices of outside firm players (VLQ1)         Fig. 4.7(b)     Time series of individual prices of outside firm players (VLQ1) 
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Fig. 4.8(a)     Time series of mean prices of inside firm players (VLQ2)             Fig. 4.8(b)     Time series of individual prices of inside firm players (VLQ2) 
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Fig. 4.9(a)     Time series of mean prices of outside firm players (VLQ2)         Fig. 4.9(b)     Time series of individual prices of outside firm players (VLQ2) 
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Fig. 4.10(a)    Distribution of individual prices of inside firm players (VQ1)           Fig. 4.10(b)   Distribution of individual prices of outside firm players (VQ1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.11(a)    Distribution of individual prices of inside firm players (VQ2)             Fig. 4.11(b)   Distribution of individual prices of outside firm players (VQ2) 
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Fig. 4.12(a)    Distribution of individual prices of inside firm players (VLQ1)           Fig. 4.12(b)   Distribution of individual prices of outside firm players (VLQ1) 
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Fig. 4.13(a)    Distribution of individual prices of inside firm players (VLQ2)          Fig. 4.13(b)   Distribution of individual prices of outside firm players (VLQ2) 
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Table 4.4 
Inadequate and inappropriate price response 
 

 

 

 

 

 

 

 

 

Frequency No response Total
Over increase Wrong increase Total Over decrease Wrong decrease Total

All treatments 0.0670 0.0565 0.1236 0.1047 0.2880 0.3927 0.1099 0.6710
  Inside firm 0.0962 0.1004 0.1967 0.1569 0.1569 0.3138 0.1318 0.7188
Outside firm 0.0377 0.0126 0.0503 0.0524 0.4193 0.4717 0.0881 0.6229

Q1 0.0586 0.0502 0.1088 0.1088 0.2469 0.3556 0.1548 0.5103
Inside firm 0.0833 0.0750 0.1583 0.1167 0.1500 0.2667 0.2083 0.4917

  Outside firm 0.0336 0.0252 0.0588 0.1008 0.3445 0.4454 0.1008 0.5292

VQ2 0.0667 0.0875 0.1542 0.1500 0.2708 0.4208 0.0458 0.6926
Inside firm 0.0917 0.1500 0.2417 0.2167 0.0833 0.3000 0.0667 0.6593
Outside firm 0.0417 0.0250 0.0667 0.0833 0.4583 0.5417 0.0250 0.7260

LQ1 0.0714 0.0420 0.1134 0.0756 0.3361 0.4118 0.1176 0.6471
  Inside firm 0.1092 0.0840 0.1933 0.1429 0.2017 0.3445 0.1176 0.6723
Outside firm 0.0336 0.0000 0.0336 0.0084 0.4706 0.4790 0.1176 0.6218

VLQ2 0.0714 0.0462 0.1176 0.0840 0.2983 0.3824 0.1218 0.5000
Inside firm 0.1008 0.0924 0.1933 0.1513 0.1933 0.3445 0.1345 0.5378

  Outside firm 0.0420 0.0000 0.0420 0.0168 0.4034 0.4202 0.1092 0.4622

Over-positive response behaviour Over-negative response behaviour

  

V
  

  
  

V

  

  

 

 

 

While prices generally follow the best response correspondence (this will be 

discussed under hypothesis H3 below), there exist certain forms of pricing behaviour that 

contribute to decreased proximity of price convergence to Nash prediction.  As a reflection of 

real world behaviour, low price behaviour appears to be a common market strategy among the 

players in which low prices are offered to capture market demand at the expense of profit.  

The ensuing intense price war results in an occasional diminution of profit to near-zero levels.  

Less frequently observed is price leader behaviour in which players attempt to initiate an 

overall movement toward higher prices in order to generate higher profit.6  If either behaviour 

predominates and successfully results in imitation, a decline in price convergence to Nash 

prediction results.   

An indication of both behaviour types may be obtained by the frequency of over-

positive (negative) response behaviour which is defined in Chapter 3 as comprising the 

frequency of (1) over-increase (decrease) response behaviour in which players increase 

(decrease) prices above (below) the response price in the preceding period and (2) wrong 
                                                      
6 The instructions did not reveal that a rotation mechanism is in place. 
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increase (decrease) response behaviour in which players increase (decrease) prices when the 

opposite direction or no change is called for.  An over-increase (decrease) in price 

corresponds to an excessive price increase (decrease) in relation to best response while a 

wrong price increase (decrease) corresponds to a price movement that is opposite in direction 

to best response.   

Table 4.4 shows the frequencies of over-positive and over-negative response 

behaviour.  The table also shows the frequency of “no response” which reflects a failure on 

the part of players to make a price adjustment when one is called for as best response.  The 

total over-response and no response frequencies reflect the overall departure from best 

response.  The table clearly shows that over-negative response behaviour surpasses over-

positive response behaviour as well as no response.  Over-negative behaviour is more 

prevalent among outside firm players than inside firm players for all treatments considered.  

This is not surprising since the outside firm is more limited in varying product differentiation 

(given a dominant location strategy) and effectively has only one strategy (price) to vary in 

the face of stiff competition. 

The following highlights some examples of low price behaviour and price leader 

behaviour observed among the players.  Players 1 to 8 are inside firm players while players 9 

to 16 are outside firm players.   

Low price behaviour was observed in player 4 of VQ1 who adopted a twin strategy of 

increasing product differentiation and reducing price.  On reaching maximum differentiation 

at point 0 in period 6, the player maintained high differentiation and lowered prices with each 

drop in demand for the remaining periods.  Another player, player 5, made deep price cuts of 

50% or more in his attempt to attract demand.  These price cuts did not necessarily coincide 

with a drop in demand in the preceding period (e.g., periods 5, 6 and 9).  A third player, 

player 8, encountered a low-pricing rival (player 13) in period 4 which immediately ignited an 

aggressive price war.  This player adhered to a low-price regime not exceeding 2.0 for the rest 

of the experiment, allowing him to capture the whole market for 8 out of the remaining 12 

periods. 
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In VQ2, player 16 priced at very low levels from period 9 onwards after suffering a 

sharp loss of 57.2% in demand of 0.43 in period 8 compared to an average demand of 0.65 in 

the periods before that.  The player’s low price behaviour, however, results in his near zero 

profit by the end of the experiment. 

In VLQ1, player 11 offered deep price discounts of 50% in period 5 and 90% in 

period 13 (the latter despite experiencing higher demand in the preceding period) as well as a 

zero price offer in period 14.  Player 7 and player 16 also exhibited low price behaviour and 

priced below Nash at the start of the experiment.  The combined effect of these low pricers 

and over-negative response by the other players was strong enough to result in a convergence 

below prediction for this treatment. 

Price leader behaviour was observed in player 12 of VQ1.  Starting the experiment at 

a price higher than any of his counterparts, the player attempted to price lead in periods 10, 14 

and 15 by setting high prices of ,72 =p  11 and 10 respectively.  The ineffectiveness of this 

price leader behaviour is obvious as no upward imitation attempts were made by the 

corresponding rival players in the ensuing period (player 3, player 7 and player 6 

respectively) resulting in a quick return by this player to lower prices and eventual 

convergence toward the Nash prediction. 

To evaluate price convergence to prediction, a Wilcoxon signed rank test is 

conducted on the null hypothesis that price decisions and prediction are equal.  Table 4.5 

shows that the null is significant at the 0.05 level for both firms in all treatments in the late2 

phase (at the 0.01 level for the outside firm in VLQ1 and the inside firm in VLQ2).  Similar 

results are obtained by a Sign test.  The alternative t-test on the null-hypothesis *
0 : ii ppH =  

(where ip  is the mean price of firm i and  is the prediction) can be performed on only 3 of 

the 8 price series shown to be normally distributed by a Kolmogorov-Smirnov test.  T-tests on 

these price series in the late2 phase accept  at the 0.05 level for VLQ2 (outside firm) but 

not VQ2 (both firms) (Table 4.6).  Given the non-normal distribution of several price series, 

the Wilcoxon and Sign tests will be employed henceforth where appropriate. 

*
ip

0H
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Table 4.5 
Price convergence to Nash prediction  
(probabilities for two-tailed Wilcoxon signed ranks test pW and Sign test pS) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable N pw ps Variable N pw ps
Null hypothesis: pit = pi*
Treatment: VQ1 Treatment: VQ2

eriods All periods
  p1 128 0.0002 0.0035   p1 127 0.0000 0.0014
 p2 127 0.0000 0.0000   p2 128 0.0000 0.0001
Early phase Early phase
 p1 64 0.0000 0.0000   p1 63 0.0000 0.0000
  p2 63 0.0000 0.0000   p2 64 0.0000 0.0000

ate1 phase Late1 phase
p1 40 0.2107 * 0.2684 *   p1 40 0.3101 * 0.2684 *

  p2 40 0.4591 * 1.0000 *   p2 40 0.1621 * 0.4292 *
ate2 phase Late2 phase

  p1 24 0.1611 * 0.5413 *   p1 24 0.4232 * 0.1516 *
p2 24 0.4398 * 0.8388 *   p2 24 0.3992 * 0.5413 *

Treatment: VLQ1 Treatment: VLQ2
eriods All periods

  p1 128 0.9053 * 0.4263 *   p1 128 0.0070 0.0421 +
p2 127 0.1121 * 1.0000 *   p2 128 0.0000 0.0001

 phase Early phase
p1 64 0.1540 * 0.7077 *   p1 64 0.0470 + 0.2606 *
p2 64 0.0087 0.2606 *   p2 64 0.0000 0.0007

Late1 phase Late1 phase
p1 40 0.6474 * 0.4292 *   p1 40 0.5540 * 0.6353 *

  p2 39 0.1755 * 0.5218 *   p2 40 0.0018 0.1547 *
ate2 phase Late2 phase

  p1 24 0.0553 * 0.1516 *   p1 24 0.0320 + 0.0639 *
p2 24 0.0231 + 0.0015   p2 24 0.0716 * 0.1516 *

All p

 

 

L
  

L

  

All p

  
Early
  
  

  

L

  

 + indicates significance at 0.01 level 
* indicates significance at 0.05 level 

 

 

 

Table 4.6 
Price convergence to Nash prediction (T-test) 

 

 

 

 

 

95% confidence interval of difference
lower upper

Null hypothesis: pit = pi*
Treatment: VQ2

1 24 -5.6844 0.0000 -0.2362 -1.0137 0.5412
  p2 24 -5.0918 0.0000 0.1842 -0.4520 0.8203

eatment: VLQ2
  p2 24 -1.8276 0.0806 * 0.7342 -0.2798 1.7482

Mean difference 
from predictionVariable N t-statistic Sig. (2-tailed)

  p

Tr

* indicates significance at 0.05 level
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How do firms make their price decisions?  Are their decisions based purely on their 

own last period decisions?  Or do they also take into account the price and location decisions 

of their rival?  The following model is used to examine these questions: 

(4.5)             itjtjtitititjtjtititit xxxxxppppp εβββββββββα ++++++++++= −−−−−−−− 29182716524132211  

where and  are the price of firms i and j respectively in period itp jtp t , , { }2,1, ∈ji ji ≠ , 

, and  are the location of firms i and j respectively. { }16,...,1=t itx jtx

The regression was run using ordinary least squares based on price data pooled from 

8 inside firm players and 8 outside firm players for all periods in each treatment.  Serial 

correlation was removed using ARMA estimation.  The results are presented in Tables 4.7. 7  

Tests for stability and misspecification show that the estimates are reliable at the 0.01 level   

(the tests follow that described in Chapter 3).  In all instances where the Jarque-Bera test for 

normality of residuals failed, the residual plots show the presence of one to three outlying 

residual values.  Since the Jarque-Bera test fails in the presence of a single outlier, even if the 

series is normally distributed and the outliers are themselves normally distributed (Brys et al. 

2004), the failure of the test will be disregarded.  The failure of the Chow test in three 

instances (  in VQ1,  in VQ2 and  in VQL2) is attributable to the location of an 

outlying residual near the breakpoint at 

1p 2p 1p

64=n .   

The adjusted 2R  for the outside firm in all treatments is very low.  One-period lag 

price coefficients of the outside firm are statistically insignificant except for VQ2 where 1β  is 

significant at the 0.05 level.  Two period lag price coefficients are significantly different from 

zero for 2β  in VLQ1 (at 0.10 level) and in VLQ2 (at 0.05 level), and 4β  in VLQ2 (at 0.10 

level).  In contrast, all one-period lag price coefficients ( 1β  and )3β  of the inside firm are 

statistically significant at the 0.05 level in all treatments although two-period lag price 

                                                      
7 An augmented Dickey-Fuller test rejects the presence of a unit root in the level for all price and 
location series at all reported significance levels, indicating that the data are stationary.  Note that 
the Durbin-Watson test for autocorrelation is not valid here due to the presence of lagged 
dependent variables on the right-hand side of the regression.  The Breusch-Godfrey serial 
correlation LM Test is reported instead.  
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coefficients ( 2β  and )4β  are all insignificant.  In other words, the inside firm makes its price 

decisions by adapting to last period prices of itself and its rival, while the outside firm 

generally does not take into account last period prices (except in VQ2) but more of two-

period ago prices of itself (in VLQ1) and its rival as well (in VLQ2). 

With regards to price convergence, evidence is shown that prices converge to an 

equilibrium for the inside firm in all treatments and for the outside firm in VLQ1 and VLQ2 

since 121 <+ ββ  for these treatments.   

Looking at the relative importance of own and rival prices in determining price 

decisions, it can be seen that for the inside firm, prices adjust equally according to own price 

and rival price in VQ2, since 1β  and 3β  are statistically significant and approximately equal 

at the 0.05 level.  In the other three treatments (VQ1, VLQ1 and VLQ2), 31 ββ > , indicating 

that the inside firm adapts more to its own last price than that of its rival.  In the case of the 

outside firm, no evidence is found that price decisions are made by taking into account rival 

prices, except in VLQ2 where 42 ββ > , indicating that the outside firm adapts more to its 

own two-period ago price than that of its rival. 

There is some evidence that the two firms make their price decisions according to 

their own location and that of their rival.  One or more location coefficients of both firms in 

all treatments are found to be statistically different from zero at the 0.05 level or 0.10 level.  

The only exception is the outside firm in VQ2 which shows no evidence of making its price 

decisions based on location decisions of itself and that of its rival ( 8765 ,,, ββββ  and 9β  are 

not significantly different from zero at the 0.05 level).  In contrast to the inside firm, none of 

the outside firm in the four treatments makes its price decisions based on rival location ( 8β  

and 9β  are all insignificant at the 0.05 level).   
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Table 4.7 
Regression results for price decisions 
 

Variable Coefficient S.E. t-statistic
Model: 
Treatment: VQ1
p1t

constant -4.6669 1.7496 -2.6674 *
p1t - 1 0.5865 0.1022 5.7389 *
p1t - 2 -0.0216 0.0905 -0.2385
p2t - 1 0.1958 0.0897 2.1833 *
p2t - 2 0.0635 0.0881 0.7211
x1t 0.7286 0.9489 0.7679
x1t-1 1.1369 1.0079 1.1281
x1t-2 -2.0750 0.9026 -2.2990 *
x2t-1 4.7096 1.1088 4.2476 *
x2t-2 0.6017 1.2516 0.4807
AR(16) 0.2569 0.0993 2.5875 *
N = 107; Adj R2 = 0.5397; F = 13.4270 (p = 0.0000); SSE = 303.7832; 
LM = 0.4211; White = 0.9751; Jarque-Bera = 0.0000; Chow = 0.0028
p2t

constant 0.6195 2.4020 0.2579
p2t-1 -0.0004 0.1010 -0.0040
p2t-2 -0.0669 0.1040 -0.6437
p1t-1 0.0571 0.1137 0.5020
p1t-2 0.1627 0.1048 1.5521
x2t 2.4418 1.3046 1.8717 +
x2t-1 -0.3506 1.2638 -0.2774
x2t-2 -0.4388 1.3803 -0.3179
x1t-1 0.8265 1.0341 0.7993
x1t-2 -0.3395 1.0035 -0.3383
AR(6) -0.2794 0.0979 -2.8525 *
N = 114; Adj R2 = 0.0690; F = 1.8377 (p = 0.0630); SSE = 432.0067; 
LM = 0.5339; White = 0.7977; Jarque-Bera = 0.0000; Chow = 0.1614
Treatment: VQ2
p1t

constant 4.6226 3.7271 1.2403
p1t - 1 0.4802 0.0927 5.1825 *
p1t - 2 0.0322 0.0818 0.3939
p2t - 1 0.4978 0.0894 5.5672 *
p2t - 2 -0.1121 0.0972 -1.1534
x1t 1.1431 1.8189 0.6285
x1t-1 1.2253 2.0944 0.5851
x1t-2 -2.6624 1.7090 -1.5579
x2t-1 2.6419 2.3799 1.1101
x2t-2 -5.3725 2.0631 -2.6041 *
AR(16) 0.5431 0.0887 6.1256 *
N = 104; Adj R2 = 0.3936; F = 7.6862 (p = 0.0000); SSE = 674.5523; 
LM = 0.0582; White = 0.8806; Jarque-Bera = 0.0000; Chow = 0.3054

itjtjtitititjtjtititit xxxxxppppp εβββββββββα ++++++++++= −−−−−−−− 29182716524132211 
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Table 4.7 (contd.) 
 

Variable Coefficient S.E. t-statistic
Treatment: VQ2
p2t

constant 5.1166 4.3055 1.1884
p2t-1 0.1826 0.0927 1.9701 *
p2t-2 -0.0183 0.0924 -0.1982
p1t-1 0.1103 0.0782 1.4113
p1t-2 0.0168 0.0724 0.2327
x2t -1.8523 2.6973 -0.6867
x2t-1 -1.1102 2.4053 -0.4616
x2t-2 0.9035 2.3595 0.3829
x1t-1 0.7354 1.7165 0.4284
x1t-2 0.3647 1.7755 0.2054
AR(15) 0.2730 0.0925 2.9529 *
N = 107; Adj R2 = 0.1249; F = 2.5125 (p = 0.01000); SSE = 667.3489; 
LM = 0.3686; White = 0.1267; Jarque-Bera = 0.0101; Chow = 0.0002
Treatment: VLQ1
p1t

constant 2.5180 11.9387 0.2109
p1t - 1 0.3129 0.0987 3.1709 *
p1t - 2 0.0244 0.0951 0.2565
p2t - 1 0.2798 0.1070 2.6137 *
p2t - 2 -0.0975 0.1103 -0.8838
x1t -2.1900 1.0421 -2.1015 *
x1t-1 1.9841 1.0369 1.9135 +
x1t-2 -0.4766 1.0445 -0.4563
x2t-1 -3.4586 7.5770 -0.4565
x2t-2 4.1093 7.3870 0.5563
AR(5) 0.2143 0.0940 2.2784 *
N = 117; Adj R2 = 0.1808; F = 3.5597 (p = 0.0004); SSE = 636.5835; 
LM = 0.9601; White = 0.8342; Jarque-Bera = 0.0000; Chow = 0.5514
p2t

constant 12.0114 13.9797 0.8592
p2t-1 0.0635 0.1003 0.6326
p2t-2 -0.1786 0.1041 -1.7161 +
p1t-1 0.0192 0.0864 0.2220
p1t-2 -0.1124 0.0864 -1.3011
x2t -13.3433 6.8328 -1.9528 +
x2t-1 0.8296 7.0604 0.1175
x2t-2 5.0077 6.5607 0.7633
x1t-1 -0.8574 0.9800 -0.8749
x1t-2 0.4825 0.9464 0.5098
AR(11) -0.3346 0.0984 -3.3989 *
N = 109; Adj R2 = 0.0832; F = 1.9798 (p = 0.0436); SSE = 488.5638; 
LM = 0.3181; White = 0.3359; Jarque-Bera = 0.0004; Chow = 0.9056

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 107

Table 4.7 (contd.) 
 

Variable Coefficient S.E. t-statistic
Treatment: VLQ2
p1t

constant 5.1883 20.1881 0.2570
p1t - 1 0.3440 0.1070 3.2148 *
p1t - 2 0.1008 0.1007 1.0016
p2t - 1 0.2477 0.1133 2.1858 *
p2t - 2 0.0763 0.1091 0.6993
x1t -5.3785 1.7222 -3.1231 *
x1t-1 4.1317 2.1776 1.8974 +
x1t-2 0.3056 1.7415 0.1755
x2t-1 23.5787 14.0886 1.6736 +
x2t-2 -24.6041 13.6749 -1.7992 +
AR(21) -0.1970 0.0988 -1.9938 *
N = 103; Adj R2 = 0.1982; F = 3.5213 (p = 0.0006); SSE = 805.0833; 
LM = 0.7423; White = 0.1421; Jarque-Bera = 0.0000; Chow = 0.0002
p2t

constant -54.5467 19.8560 -2.7471 *
p2t-1 -0.0220 0.0859 -0.2559
p2t-2 -0.1816 0.0884 -2.0553 *
p1t-1 -0.0270 0.0880 -0.3065
p1t-2 -0.1541 0.0857 -1.7989 +
x2t 29.7729 11.0167 2.7025 *
x2t-1 -8.0383 11.2873 -0.7122
x2t-2 42.7015 11.2941 3.7809 *
x1t-1 -0.8153 1.3851 -0.5886
x1t-2 -0.4271 1.3803 -0.3094
N = 123; Adj R2 = 0.1275; F = 2.9803 (p = 0.0032); SSE = 803.7951; 
LM = 0.9401; White = 1.0000; Jarque-Bera = 0.0001; Chow = 0.8384

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 * indicates significance at the 0.05 level. + indicates significance at the 0.10 level. 
Probability statistics of the following tests are reported: serial correlation Lagrange multiplier test (LM), 
White’s heteroskedasticity test (White), Jarque-Bera normality test (Jarque-Bera) and Chow’s breakpoint test 
(Chow).  White’s test includes all cross product terms.  Breakpoint for Chow test is at mid-sample (n = 64). 
Failure of Jarque-Bera test due to 1-3 outlying values.  Failure of Chow’s test for p1 in VQ1, p2 in VQ2 and p1
in VLQ2 due to outlying residual value near breakpoint.   

 

 

 

 

 

 



The distribution of individual locations, grouped by intervals of 0.1, for the four 

treatments (Figures 4.22 to 4.25), shows that the interval with the highest frequency 

invariably coincides with Nash prediction (depicted by a broken vertical line) for the outside 

firm but this is true only for the inside firm in VQ1 and VQ2.  Moreover, there is a wider 

distribution of location choice by the inside firm under quadratic transportation costs (VQ1 

and VQ2) than under linear-quadratic transportation costs (VLQ1 and VLQ2).  This suggests 

that when transportation costs increase at a rapid rate, the level of product differentiation 

tends to decrease.  This point will be explored further under hypothesis H4. 
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ix 1, −tiRF

*
ix

itRF i jtx

H2: Locations converge to the predicted values. 

Figures 4.14 to 4.21 show the time series of mean locations and the time series of all 

locations for the inside firm players and the outside firm players in Treatments 1 to 4.  As 

with the time series plots for mean prices, three lines are shown on the graphs of mean 

locations: mean location of each firm ( ), the best responses lagged one period ( ) and 

the non-cooperative Nash prediction ( ).  The mean locations for the two firms in each 

treatment are obtained by averaging over 8 inside firm players and 8 outside firm players.  

The best response  of firm  to the rival firm’s location , ji ≠ , for period t  is 

computed using the relevant response functions given in Chapter 2.  The graphs of individual 

locations show the locations over time of each player ( ) and the best response lagged one 

period ( ). 

ix

1, −tiRF

A cursory observation of the graphs reveal that while mean locations for both players 

clearly converge to Nash prediction by the second half of the experiment, there is a general 

failure on the part of several inside firm players in VQ1 and VQ2 to reach prediction values.  

In the case of the outside firm players, the dominant strategy of locating next to the market 

border is generally adopted within the first two periods.  The exceptions are four players in 

VQ2 (location equilibrium reached after 4-6 periods) and one player in VQ1 (failure of 

attaining location equilibrium). 
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Fig. 4.14(a)     Time series of mean locations of inside firm players (VQ1)        Fig. 4.14(b)   Time series of individual locations of inside firm players (VQ1) 
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Fig. 4.15(a)    Time series of mean locations of outside firm players (VQ1)     Fig. 4.15(b)   Time series of individual locations of outside firm players (VQ1) 
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Fig. 4.16(a)     Time series of mean locations of inside firm players (VQ2)      Fig. 4.16(b)     Time series of individual locations of inside firm players (VQ2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.17(a)    Time series of mean locations of outside firm players (VQ2)    Fig. 4.17(b)    Time series of individual locations of outside firm players (VQ2) 
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Fig. 4.18(a)    Time series of mean locations of inside firm players (VLQ1)        Fig. 4.18(b)    Time series of individual locations of inside firm players (VLQ1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.19(a)  Time series of mean locations of outside firm players (VLQ1)        Fig. 4.19(b)  Time series of individual locations of outside firm players (VLQ1) 
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Fig. 4.20(a)    Time series of mean locations of inside firm players (VLQ2)     Fig. 4.20(b)    Time series of individual locations of inside firm players (VLQ2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.21(a)  Time series of mean locations of outside firm players (VLQ2)    Fig. 4.21(b)  Time series of individual locations of outside firm players (VLQ2) 
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Fig. 4.22(a)    Distribution of individual locations of inside firm players (VQ1)          Fig. 4.22(b)   Distribution of individual locations of outside firm players (VQ1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.23(a)    Distribution of individual locations of inside firm players (VQ2)          Fig. 4.23(b)   Distribution of individual locations of outside firm players (VQ2) 
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Fig. 4.24(a)    Distribution of individual locations of inside firm players (VLQ1)     Fig. 4.24(b)   Distribution of individual locations of outside firm players (VLQ1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.25(a)    Distribution of individual locations of inside firm players (VLQ2)     Fig. 4.25(b)   Distribution of individual locations of outside firm players (VLQ2)
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Table 4.8 
Inadequate and inappropriate location response 
 

 

 

 

 

 

 

 

 

 

Frequency No response Total
Over increase Wrong increase Total Over decrease Wrong decrease Total

All 0.0723 0.0409 0.1132 0.0786 0.2872 0.3658 0.2317 0.7107
  Inside firm 0.1069 0.0692 0.1761 0.1048 0.1551 0.2600 0.3753 0.8113
  Outside firm 0.0000 0.0453 0.0453 0.0000 0.0000 0.0000 0.0948 0.1401

VQ1 0.0546 0.0462 0.1008 0.0882 0.2647 0.3529 0.2395 0.6933
  Inside firm 0.0756 0.0672 0.1429 0.0756 0.1849 0.2605 0.3782 0.7815
  Outside firm 0.0000 0.1333 0.1333 0.0000 0.0000 0.0000 0.0500 0.1833

VQ2 0.0750 0.0792 0.1542 0.0958 0.3042 0.4000 0.1417 0.6958
  Inside firm 0.1083 0.1333 0.2417 0.1083 0.1500 0.2583 0.2583 0.7583
  Outside firm 0.0000 0.0083 0.0083 0.0000 0.0000 0.0000 0.0417 0.0500

VLQ1 0.0588 0.0042 0.0630 0.0504 0.2857 0.3361 0.3697 0.7689
  Inside firm 0.0840 0.0084 0.0924 0.0924 0.1008 0.1933 0.6218 0.9076
  Outside firm 0.0000 0.0084 0.0084 0.0000 0.0000 0.0000 0.1345 0.1429

VLQ2 0.1008 0.0336 0.1345 0.0798 0.2941 0.3739 0.1765 0.6849
  Inside firm 0.1597 0.0672 0.2269 0.1429 0.1849 0.3277 0.2437 0.7983
  Outside firm 0.0000 0.0286 0.0286 0.0000 0.0000 0.0000 0.1619 0.1905

Over-positive response behaviour Over-negative response behaviour

 

While the outside firm players recognise their optimal market strategy fairly quickly, 

i.e., to locate as close to the consumers as possible so as to reduce the transportation costs 

borne by them, the effectively wider range of location decisions available to inside firm 

players naturally results in a higher distribution of location choices.  Under linear-quadratic 

transportation costs, transportation costs increase much more rapidly with distance than under 

quadratic transportation costs.  Consequently, fewer inside firm players would choose to 

locate away from those consumers who reside close to the rival firm.  This explains the lower 

frequencies for intervals in the vicinity of point 0 in VLQ1 and VLQ2.   

Table 4.8 shows the relative frequencies of inadequate and inappropriate location 

movements vis-à-vis best response behaviour.  An over-increase (decrease) in location 

corresponds an excessive location movement toward (away from) the market endpoint at 1.0 

in relation to best response, while a wrong increase (decrease) corresponds to a location 

movement that is opposite in direction to best response.  “No response” represents an absence 

of location movement when one is called for as best response.  The total over-response and no 

response frequencies reflect the overall departure from best response.   
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The table clearly shows a higher frequency of inappropriate and inadequate location 

movements by the inside firm players with respect to best response: 0.8113 compared to 

0.1401 by outside firm players.  For all treatments, inappropriate movements by the inside 

firm away from the market border exceeds inappropriate movements toward it.  This is 

reflected by a higher frequency of over-negative response compared to over-positive 

response.  There is, therefore, a higher degree of product differentiation than is called for 

under best response. 

We will now look at a few examples of players who failed to reach Nash prediction in 

location.  The earlier discussion on low price behaviour has highlighted the strategy by player 

4 in VQ1 of lowering price and locating further from his rival with each decline in demand.  

On reaching point 0 (corresponding to maximum product differentiation) in period 6, the 

player maintained this position and lowered price with each fall in demand.  Similarly, player 

7 in VQ2 reached point 0.01 in period 7 in the same manner, i.e., lowering price and moving 

further from his rival with each drop in demand.  Maintaining this position for the next 5 

periods, the player decided to test the profitability of an alternative location with higher price.  

A failure to gain higher demand with this move gave the player the erroneous belief that the 

earlier location was more optimal, resulting in a return to point 0 with continual dives in 

demand and profit.   

In VQ1, there is an outside firm player (player 11) who, contrary to her best response, 

did not locate next to the market border but made somewhat erratic location decisions based 

purely on a one-period lag location of her rival.  A decrease in proximity of the rival would 

mean a movement towards the border while the converse holds for an increase in proximity.  

In response to a question on the reasons for her decisions, the player stated that she made 

location decisions “depending on the location of the previous seller” and price “as low as 

possible to compete with the other seller”.  Such an erratic strategy contributed to an inability 

by this player to reach any price or location equilibrium. 
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Table 4.9 shows that under a Wilcoxon signed rank test, the null hypothesis that 

location equals prediction is significant at the 0.05 level in the late2 phase for all but the 

inside firm in VQ2 and the outside firm in VQ1.  For these two exceptions, the former shows 

significance at the 0.05 level under a Sign test but the latter remained insignificant at the 0.01 

and 0.05 levels.8

The table highlights the universal convergence in location by late1 period of all 

treatments, with the abovementioned exceptions.  The low or decreased location convergence 

under quadratic transportation costs compared to linear-quadratic transportation costs can be 

explained by a higher incidence of location movements contrary to best response.  Table 4.8 

shows that for VQ1 and VQ2, there is a higher frequency of wrong increase contrary to the 

direction dictated by best response and a higher frequency of over-decrease (greater 

movement toward point 0 than called for under best response) compared to the other 

treatments.  In addition, VQ2 has a higher frequency of wrong decrease compared to all other 

treatments.   

The higher location convergence of the inside firm under linear-quadratic 

transportation costs than under quadratic transportation costs concurs with the earlier 

observation of a smaller distribution of location frequencies of the inside firm under linear-

quadratic transportation costs.  Under a faster rate of transportation cost increase, fewer inside 

firm players choose to locate away from those consumers who reside close to the rival firm.   

                                                      
8 A t-test on the hypothesis that the mean price equals prediction cannot be performed because 
none of the location series are shown to be normally distributed by a Kolmogorov-Smirnov test 
for normal distribution: seven location series failed the test at the 0.05 level and one location 
series failed the test at the 0.01 level. 



 118

Table 4.9 
Location convergence to Nash prediction  
(probabilities for two-tailed Wilcoxon signed ranks test pW and Sign test pS) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable N pw ps Variable N pw ps
 hypothesis: xit = xi*

Treatment: VQ1 Treatment: VQ2
 periods All periods

  x1 128 0.0979 * 0.4263 *   x1 127 0.7351 * 0.2141 *
2 127 0.0000 0.0000   x2 128 0.0000 0.0000

Early phase Early phase
1 64 0.0678 * 0.1691 *   x1 63 0.9372 * 0.8011 *

  x2 63 0.0000 0.0000   x2 64 0.0002 0.0000
ate1 phase Late1 phase
1 40 0.7723 * 0.8744 *   x1 40 0.0004 0.0820 *
2 40 0.0004 0.0000   x2 39 0.0066 0.0039

ate2 phase Late2 phase
  x1 24 0.3743 * 1.0000 *   x1 24 0.0050 0.0639 *

2 24 0.0021 0.0005   x2 24 0.0588 * 0.1250 *
Treatment: VLQ1 Treatment: VLQ2

 periods All periods
  x1 128 0.0000 0.0014   x1 128 0.0000 0.0004

2 127 0.0000 0.0000   x2 127 0.0002 0.0000
Early phase Early phase

1 64 0.0000 0.0778 *   x1 64 0.0000 0.0000
  x2 64 0.0008 0.0001   x2 64 0.0009 0.0001

ate1 phase Late1 phase
  x1 40 0.9785 * 0.2684 *   x1 40 0.0712 * 1.0000 *

2 40 0.1025 * 0.2500 *   x2 40 0.1025 * 0.2500 *
Late2 phase Late2 phase

1 24 0.4740 * 0.0639 *   x1 24 0.1560 * 0.4049 *
2 24 0.1797 * 0.5000 *   x2 24 1.0000 * 1.0000 *

Null

All

  x

  x

L
  x
  x
L

  x

All

  x

  x

L

  x

  x
  x

* indicates significance at 0.05 level



 119

To examine the manner in which firms make their location decisions, the following 

model is applied to pooled location data for 8 inside firm players and 8 outside firm players 

for each treatment: 

(4.6)        itjtjtitititjtjtititit pppppxxxxx εβββββββββα ++++++++++= −−−−−−−− 29182716524132211  

where and  are the price of firm i and firm j respectively in period itp jtp t , , { }2,1, ∈ji ji ≠ ; 

, and and  are the location of firm i and firm j respectively. { 16,...,1=t } itx jtx

The regression results are given in Table 4.10.9  All diagnostic and stability checks 

are made to ensure that the estimates are reliable.  Normality of most of the residuals, 

however, is rejected by a Jarque-Bera test at the 0.05 level.  A graphical observation and 

residual statistics show that for these estimates, there is an extremely low variance of 

residuals around the mean zero with a small number of outliers.10  We will, therefore, relegate 

the problem of a non-normal distribution of residuals as one of limited importance in these 

instances.  The failure of Chow’s breakpoint test for the outside firm in VLQ1 and VLQ2 is 

the result of the location of an outlying residual value near the breakpoint. 

The results show that for the inside firm in all treatments, the coefficients for its own 

last location ( 1β ) and two-period lag own location ( 2β ) are positive and significantly 

different from zero at the 0.05 level, with the exception of a negative two-period lag own 

location in VLQ2.  Since 121 <+ ββ , there is convergence in location of the inside firm in 

all treatments.  Moreover, 112 << ββ  in VQ1, VQ2 and VLQ2, indicating that the inside 

firm makes its location decisions by adapting more to its last location than its two-period ago 

location.  The reverse is true for VLQ1 where 121 << ββ .  In the case of the outside firm, 

all 1β ’s and 2β ’s are not significantly different from zero at the 0.05 level in all treatments.  

This is the result of the outside firm predominantly playing its dominant strategy throughout 

the experiment so that generally no adjustments to earlier locations are necessary. 
                                                      
9 An augmented Dickey-Fuller test indicates that all location data series are stationary: the null 
hypothesis of a unit root is rejected in the level at the 0.05 and 0.10 levels for all series and at the 
0.01 level as well for 5 of the 8 series. 
10 For these residuals, the standard deviation from the mean of zero ranges from 0.0070 to 0.2002. 
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Given the largely unvarying location of the outside firm, only the inside firm in VQ1 

and VLQ2 have significant coefficients for two-period lag rival location ( 4β ) at the 0.05 

level.  All other coefficients for last rival location ( 3β ) and two-period lag rival location ( 4β ) 

in the other treatments are not significantly different from zero at the 0.05 level.  Moreover, 

only the outside firm in VLQ1 and VLQ2 show significant coefficients for last rival location 

( 3β ) and only in VLQ2 is the coefficient for two-period lag rival location ( 4β ) significant.   

There is also some evidence that the two firms make their location decisions 

according to their own price and that of their rival.  One or more price coefficients 

( 8765 ,,, ββββ  and 9β ) in all four treatments are found to be statistically different from zero 

at the 0.05 level or 0.10 level.  In contrast to the price decisions of the outside firm which 

generally do not seem to take into account rival locations (see discussion under hypothesis 

H1), location decisions by the outside firm generally take into consideration rival prices ( 8β  

and 9β  are significantly different from zero at the 0.05 level or 0.10 level except in VQ2). 

The results from the regression of equations 4.5 and 4.6 show that when firms make 

their price and location decisions simultaneously, price decisions play an important role in 

location decisions, and vice versa. 
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Table 4.10 
Regression results for location decisions 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient S.E. t-statistic
Model: 
Treatment: VQ1
x1t

constant 0.4548 0.1824 2.4931 *
x1t-1 0.5696 0.1117 5.1007 *
x1t-2 0.2870 0.1077 2.6662 *
x2t-1 -0.0242 0.1309 -0.1850
x2t-2 -0.3447 0.1302 -2.6469 *
p1t 0.0115 0.0096 1.1978
p1t-1 -0.0207 0.0114 -1.8213 +
p1t-2 0.0046 0.0093 0.4996
p2t-1 -0.0005 0.0100 -0.0520
p2t-2 0.0074 0.0099 0.7491
AR(46) -0.4654 0.1366 -3.4082 *
N = 78; Adj R2 = 0.6119; F = 13.1393 (p = 0.0000); SSE = 2.3408; 
LM = 0.5037; White = 0.1395; Jarque-Bera = 0.1771; Chow = 0.0832
x2t

constant 1.2055 0.5804 2.0771 *
x2t-1 0.0326 0.1134 0.2876
x2t-2 0.0164 0.1088 0.1504
x1t-1 0.0196 0.0681 0.2879
x1t-2 -0.0988 0.0700 -1.4122
p2t 0.0084 0.0065 1.3033
p2t-1 -0.0050 0.0065 -0.7672
p2t-2 0.0166 0.0066 2.4985 *
p1t-1 -0.0240 0.0068 -3.5174 *
p1t-2 0.0147 0.0075 1.9603 +

AR(47) 0.9408 0.1415 6.6479 *

N = 76; Adj R2 = 0.3450; F = 4.9503 (p = 0.0000); SSE = 1.2911; 
LM = 0.4455; White = 0.0548; Jarque-Bera = 0.0000; Chow = 0.4350
Treatment: VQ2
x1t

constant 0.0637 0.1708 0.3727
x1t-1 0.5680 0.0929 6.1139 *
x1t-2 0.3344 0.0968 3.4554 *
x2t-1 -0.1049 0.1183 -0.8867
x2t-2 0.1451 0.1180 1.2295
p1t 0.0043 0.0039 1.1266
p1t-1 -0.0059 0.0041 -1.4378
p1t-2 0.0055 0.0034 1.6200
p2t-1 -0.0078 0.0044 -1.7528 +
p2t-2 -0.0051 0.0044 -1.1637
AR(11) 0.2371 0.1002 2.3672 *
N = 109; Adj R2 = 0.6607; F = 22.0343 (p = 0.0000); SSE = 1.7972; 
LM = 0.2335; White = 0.0418; Jarque-Bera = 0.0000; Chow = 0.5255

itjtjtitititjtjtititit pppppxxxxx εβββββββββα ++++++++++= −−−−−−−− 29182716524132211
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Table 4.10 (contd.) 

 Variable Coefficient S.E. t-statistic
Treatment: VQ2
x2t

constant 0.8417 0.1472 5.7189 *
x2t-1 0.0173 0.1029 0.1680
x2t-2 0.1169 0.1031 1.1341
x1t-1 0.0510 0.0627 0.8137
x1t-2 -0.0170 0.0620 -0.2749
p2t -0.0022 0.0037 -0.6097
p2t-1 0.0006 0.0037 0.1630
p2t-2 0.0044 0.0039 1.1297
p1t-1 0.0005 0.0029 0.1615
p1t-2 0.0014 0.0026 0.5294
AR(20) 0.1882 0.0847 2.2207 *
N = 102; Adj R2 = -0.0116; F = 0.8840 (p = 0.5511); SSE = 0.8611; 
LM = 0.9754; White = 0.3227; Jarque-Bera = 0.0000; Chow = 0.9027
Treatment: VLQ1
x1t

constant 1.5155 0.7054 2.1483 *
x1t-1 0.2803 0.0873 3.2104 *
x1t-2 0.3275 0.0872 3.7538 *
x2t-1 -0.8370 0.5257 -1.5921
x2t-2 -0.3458 0.3692 -0.9369
p1t -0.0146 0.0084 -1.7327 +
p1t-1 0.0020 0.0088 0.2304
p1t-2 -0.0070 0.0077 -0.9050
p2t-1 0.0085 0.0098 0.8665
p2t-2 0.0126 0.0099 1.2735
N = 124; Adj R2 = 0.2871; F = 6.5046 (p = 0.0000); SSE = 5.7376; 
LM = 0.1717; White = 0.1438; Jarque-Bera = 0.0002; Chow = 0.2403
x2t

constant 1.1846 0.1636 7.2429 *
x2t-1 -0.0815 0.1178 -0.6920
x2t-2 -0.0838 0.0820 -1.0210
x1t-1 0.0176 0.0088 1.9951 *
x1t-2 -0.0125 0.0092 -1.3636
p2t -0.0012 0.0010 -1.1398
p2t-1 -0.0013 0.0011 -1.2305
p2t-2 -0.0009 0.0011 -0.8597
p1t-1 0.0018 0.0009 1.9512 +
p1t-2 -0.0020 0.0008 -2.4091 *
AR(8) 0.2189 0.0802 2.7290 *
AR(17) 0.2185 0.0822 2.6582 *
AR(30) 0.3927 0.0640 6.1331 *
N = 84; Adj R2 = 0.4903; F = 7.6523 (p = 0.0000); SSE = 0.0319; 
LM = 0.2015; White = 0.0558; Jarque-Bera = 0.0000; Chow = 0.0001
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Table 4.10 (contd.) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Variable Coefficient S.E. t-statistic
Treatment: VLQ2
x1t

constant 0.8925 0.9288 0.9609
x1t-1 1.1804 0.1358 8.6910 *
x1t-2 -0.3872 0.1311 -2.9540 *
x2t-1 0.7651 0.7799 0.9810
x2t-2 -1.5769 0.7817 -2.0173 *
p1t -0.0158 0.0059 -2.6965 *
p1t-1 0.0179 0.0068 2.6092 *
p1t-2 -0.0055 0.0058 -0.9400
p2t-1 0.0223 0.0059 3.7839 *
p2t-2 -0.0057 0.0070 -0.8169
AR(1) -0.4234 0.1329 -3.1853 *
AR(30) -0.1632 0.0737 -2.2134 *
N = 94; Adj R2 = 0.5597; F = 111.7481 (p = 0.0000); SSE = 2.2420; 
LM = 0.7446; White = 0.0142; Jarque-Bera = 0.0130; Chow = 0.4926
x2t

constant 1.0432 0.0613 17.0309 *
x2t-1 -0.0269 0.0411 -0.6549
x2t-2 -0.0111 0.0434 -0.2552
x1t-1 0.0108 0.0055 1.9550 +
x1t-2 -0.0114 0.0053 -2.1576 *
p2t -0.0001 0.0003 -0.3531
p2t-1 -0.0002 0.0003 -0.4864
p2t-2 -0.0001 0.0004 -0.3751
p1t-1 0.0013 0.0003 4.1050 *
p1t-2 -0.0003 0.0003 -0.9768
AR(48) 0.2961 0.0336 8.8010 *
N = 75; Adj R2 = 0.5577; F = 10.3310 (p = 0.0000); SSE = 0.0038; 
LM = 0.6147; White = 0.9110; Jarque-Bera = 0.0000; Chow = 0.0000

 
 See Table 4.7 for notes.  Failure of Jarque-Bera test due to 1-2 outlying values.  Failure of Chow’s 
test for x2 in VLQ1 and VLQ2 due to outlying residual value near breakpoint.   
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Table 4.11 
Frequency of appropriate and inappropriate response relative to best strategy 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Frequency
Appropriate response Inappropriate response Appropriate response Inappropriate response

All treatments 0.4403 0.5597 0.5455 0.4545
  Inside firm 0.4004 0.5996 0.6109 0.3891
  Outside firm 0.8599 0.1401 0.4801 0.5199

VQ1 0.4496 0.5504 0.5481 0.4519
  Inside firm 0.3697 0.6303 0.5667 0.4333
  Outside firm 0.8167 0.1833 0.5294 0.4706

VQ2 0.4750 0.5250 0.5958 0.4042
  Inside firm 0.4583 0.5417 0.7000 0.3000
  Outside firm 0.9500 0.0500 0.4917 0.5083

VLQ1 0.3403 0.6597 0.5042 0.4958
  Inside firm 0.2689 0.7311 0.5966 0.4034
  Outside firm 0.8571 0.1429 0.4118 0.5882

VLQ2 0.4958 0.5042 0.5336 0.4664
  Inside firm 0.5042 0.4958 0.5798 0.4202
  Outside firm 0.8095 0.1905 0.4874 0.5126

Location Price

 Inappropriate response frequency is the sum of wrong response frequency and no response frequency. 
Appropriate response frequency is total response frequency less inappropriate response frequency.  

 
 

 

H3: Firms play their best strategies. 

How closely do the firms follow their best response?  Do they get better at playing 

their best strategies over time?  An indication of the proximity of firm behaviour to best 

response can be obtained by looking at the frequency of appropriate response behaviour 

relative to best strategy.  An appropriate response was defined in Chapter 3 as one in which a 

player moves in the same direction as that dictated by best response.  Table 4.11 shows that 

the frequency of appropriate price response for both firms averages 0.5455 while the 

frequency of appropriate location response averages 0.4403 for all treatments.  The frequency 

of appropriate location response for the outside firm (0.8599) is higher than that for the inside 

firm (0.4004).  On the other hand, the frequency of appropriate price response for the inside 

firm (0.6109) is higher than that for the outside firm (0.4801).  In other words, the inside firm 

tracks its best response for price more closely while the outside firm tracks its best response 

for location for more closely.  Among the four treatments, VLQ1 has the lowest frequency of 
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appropriate location response (by the inside firm) and the lowest frequency of appropriate 

price response (by the outside firm). 

In terms of firm experience at playing best strategies, a Wilcoxon signed rank test and 

a Sign test show that the price and location decisions of both firms match best response by the 

late1 phase in most treatments.  Table 4.12 shows that the null hypothesis of an equivalence 

of location decisions and best response (lagged one period) is predominantly insignificant in 

the early phase but is significant in the late2 phase at the 0.05 level for all treatments except 

the outside firm in VQ1 and the inside firm in VLQ1.  On the other hand, the null hypothesis 

of an equivalence of price decisions and best response (lagged one period) is significant 

throughout the experiment for both firms at the 0.05 level and 0.01 level in all treatments.  

Exceptions are the price decisions of the inside firm in VLQ1 and VLQ2 which do not exhibit 

any significant parity with best response in the early phase at the 0.05 level.   

To evaluate the extent to which firms play their best strategies and improve their 

execution of best strategies over time, the following equations are estimated: 

(4.7)  itttitit DUMDUMpbrp εββα +++=− − 22111  

(4.8)  itttitit DUMDUMxbrx εββα +++=− − 22111  

where  and  are the price and location respectively of firm i in period t, itp itx { }2,1∈i , 

;  is the one-period lag best response in price;  is the one-period lag 

best response in location;  is a dummy variable that equals 1 if  and 0 

otherwise; and  is a dummy variable that equals 1 if 

{ }16,...,1=t 1, −tipbr 1, −tixbr

tDUM 1 { 13,...,9=t }

tDUM 2 { }16,...14=t  and 0 otherwise.  If 

learning occurs in the late1 phase and late2 phase, then 1β  and 2β  respectively would be 

negative. 

The results of the regression can be found in Tables 4.13 and 4.14.  All diagnostic 

checks for stationary series, specification and stability are conducted as before.11  

                                                      
11 An augmented Dickey-Fuller test shows that all the best response data series in the level are 
stationary at all reported levels (except VLQ1pbr2 which rejects the null hypothesis of a unit root 
at the 0.01 level).  The ADF test is not performed for the best response of x2 in all treatments 
because of a near singular matrix. 
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Table 4.12 
Congruence of price and location decisions to best response  
(probabilities for two-tailed Wilcoxon signed ranks test pW and Sign test pS) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable N pw ps Variable N pw ps
Null hypothesis: xit = xbrit-1; pit = pbrit-1

Treatment: VQ1 Treatment: VQ2
riods All periods

  x1 119 0.0410 + 0.1994 *   x1 120 0.9916 * 0.3153 *
2 120 0.0000 0.0000   x2 120 0.0001 0.0000

  p1 119 0.0377 + 0.2713 *   p1 119 0.9218 * 0.3593 *
119 0.2433 * 0.1956 *   p2 119 0.5867 * 0.4633 *

Early phase Early phase
1 55 0.0127 + 0.1272 *   x1 56 0.7694 * 0.6831 *

  x2 56 0.0000 0.0000   x2 56 0.0009 0.0001
55 0.7951 * 1.0000 *   p1 55 0.8048 * 1.0000 *

  p2 55 0.1480 * 0.1344 *   p2 55 0.4334 * 0.7874 *
ate1 phase Late1 phase

  x1 40 0.8846 * 0.8711 *   x1 40 0.9653 * 0.1443 *
2 40 0.0004 0.0000   x2 40 0.1025 * 0.2500 *

  p1 40 0.0513 * 0.6353 *   p1 40 0.9357 * 0.6353 *
40 0.9722 * 1.0000 *   p2 40 0.7318 * 0.8744 *

Late2 phase Late2 phase
1 24 0.3458 * 0.8318 *   x1 24 0.4398 * 0.0639 *

  x2 24 0.0021 0.0005   x2 24 0.1797 * 0.5000 *
24 0.0093 0.1516 *   p1 24 0.7861 * 0.3075 *
24 0.6891 * 0.5413 *   p2 24 0.5111 * 0.5413 *

reatment: VLQ1 Treatment: VLQ2
riods All periods

1 119 0.0000 0.0000   x1 119 0.0000 0.0172 +
2 119 0.0000 0.0000   x2 119 0.0013 0.0002

  p1 119 0.0000 0.0034   p1 119 0.0024 0.0103 +
118 0.0265 + 0.0342 +   p2 119 0.9672 * 0.3593 *

Early phase Early phase
1 56 0.0000 0.0000   x1 56 0.0000 0.0021

  x2 56 0.0017 0.0005   x2 56 0.0047 0.0020
56 0.0012 0.0050   p1 56 0.0035 0.0111 +

  p2 56 0.2211 * 0.0824 *   p2 56 0.6655 * 0.8937 *
ate1 phase Late1 phase

  x1 40 0.0000 0.0000   x1 40 0.1595 * 1.0000 *
2 39 0.0066 0.0039   x2 40 0.1025 * 0.2500 *

  p1 39 0.0707 * 0.5218 *   p1 40 0.0326 + 0.0820 *
38 0.4464 * 1.0000 *   p2 40 0.4721 * 0.2684 *

Late2 phase Late2 phase
1 23 0.0000 0.0000   x1 23 0.3609 * 0.6776 *

  x2 24 0.0588 * 0.1250 *   x2 23 1.0000 * 1.0000 *
24 0.0397 + 0.3075 *   p1 23 0.5034 * 0.6776 *

  p2 24 0.0520 * 0.0639 *   p2 23 0.7610 * 0.4049 *

All pe

  x

  p2

  x

  p1

L

  x

  p2

  x

  p1
  p2
T
All pe
  x
  x

  p2

  x

  p1

L

  x

  p2

  x

  p1

+ indicates significance at the 0.01 level 
* indicates significance at the 0.05 level 
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Table 4.13 
Regression results for price decisions and best strategies 
 

Variable Coefficient S.E. t-statistic
Model: 
Treatment: VQ1
|p1t-pbr1t-1|
constant 1.9570 0.2453 7.9791 *
DUM1t -0.6510 0.3760 -1.7315 +
DUM2t -0.4529 0.4422 -1.0242

N = 118; Adj R2 = 0.0100; F = 1.5901 (p = 0.2084); SSE = 373.5757; DW = 1.5024;
LM = 0.9148; White = 0.1110; Jarque-Bera = 0.0000; Chow = 0.9522
|p2t-pbr2t-1|
constant 1.8881 0.2243 8.4195 *
DUM1t -0.4756 0.3419 -1.3909
DUM2t -0.1319 0.4017 -0.3283
N = 117; Adj R2 = -0.0002; F = 0.9862 (p = 0.3761); SSE = 303.8549; DW = 1.6452;
LM = 0.3783; White = 0.1891; Jarque-Bera = 0.0000; Chow = 0.4054
Treatment: VQ2
|p1t-pbr1t-1|
constant 4.3601 0.6243 6.9841 *
DUM1t -2.4938 0.9377 -2.6596 *
DUM2t -2.4281 1.0979 -2.2117 *
AR(16) 0.2885 0.0961 3.0020 *
N = 100; Adj R2 = 0.1852; F = 8.4985 (p = 0.0000); SSE = 832.1263; DW = 1.5994;
LM = 0.9129; White = 0.0324; Jarque-Bera = 0.0000; Chow = 0.3506
|p2t-pbr2t-1|
constant 3.3861 0.3420 9.9012 *
DUM1t -0.4726 0.5243 -0.9015
DUM2t -1.4478 0.6165 -2.3483 *
N = 118; Adj R2 = 0.0292; F = 2.7587 (p = 0.0676); SSE = 726.3093; DW = 1.6300;
LM = 0.6171; White = 0.2434; Jarque-Bera = 0.0000; Chow = 0.3185

itttitit DUMDUMpbrp εββα +++=− − 22111
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Table 4.13 (contd.) 
 
 Variable Coefficient S.E. t-statistic

Treatment: VLQ1
|p1t-pbr1t-1|
constant 2.5916 0.2405 10.7760 *
DUM1t -0.7998 0.3734 -2.1422 *
DUM2t -0.4687 0.4363 -1.0742
N = 118; Adj R2 = 0.0226; F = 2.3507 (p = 0.0999); SSE = 365.8456; DW = 1.6211;
LM = 0.7768; White = 0.0968; Jarque-Bera = 0.0000; Chow = 0.4686
|p2t-pbr2t-1|
constant 2.8436 0.2519 11.2874 *
DUM1t -0.9986 0.4112 -2.4284 *
DUM2t -0.6889 0.4605 -1.4959
AR(6) -0.1819 0.0966 -1.8833 +
N = 103; Adj R2 = 0.0735; F = 3.6969 (p = 0.0143); SSE = 267.8592; DW = 1.7133;
LM = 0.9703; White = 0.0358; Jarque-Bera = 0.0001; Chow = 0.1325
Treatment: VLQ2
|p1t-pbr1t-1|
constant 3.4001 0.4362 7.7951 *
DUM1t -0.6364 0.6169 -1.0316
DUM2t -0.9283 0.7060 -1.3150
AR(1) 0.1881 0.0945 1.9911 *
N = 110; Adj R2 = 0.0331; F = 2.2427 (p = 0.0876); SSE = 654.0084; DW = 1.9908;
LM = 0.9251; White = 0.0377; Jarque-Bera = 0.0000; Chow = 0.9299
|p2t-pbr2t-1|
constant 3.4233 0.3450 9.9215 *
DUM1t 0.3354 0.5289 0.6341
DUM2t -0.8792 0.6220 -1.4134
N = 118; Adj R2 = 0.0127; F = 1.7538 (p = 0.1777); SSE = 739.3184; DW = 1.9798;
LM = 0.8822; White = 0.2750; Jarque-Bera = 0.0000; Chow = 0.1943

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
See Table 4.7 for notes.  Failure of Jarque-Bera test due to 1-3 outlying values.   
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Table 4.14 
Regression results for location decisions and best strategies 
 

Variable Coefficient S.E. t-statistic
Model: 
Treatment: VQ1
|x1t-xbr1t-1|
constant 0.1829 0.0597 3.0650 *
DUM1t -0.0031 0.0404 -0.0765
DUM2t 0.0601 0.0459 1.3093
AR(1) 0.2716 0.1060 2.5620 *
AR(4) 0.2993 0.1079 2.7748 *
AR(6) 0.2989 0.1150 2.5988 *
AR(7) -0.1959 0.1018 -1.9242 +
N = 81; Adj R2 = 0.3792; F = 9.1435 (p = 0.0000); SSE = 1.6147; DW = 1.7260;
LM = 0.1356; White = 0.1388; Jarque-Bera = 0.1192; Chow = 0.0001
|x2t-xbr2t-1|
constant 0.0647 0.0263 2.4595 *
DUM1t -0.0440 0.0335 -1.3147
DUM2t -0.0167 0.0390 -0.4273
AR(4) 0.1700 0.0957 1.7768 +
N = 106; Adj R2 = 0.0190; F = 1.6786 (p = 0.1763); SSE = 2.4275; DW = 1.1506;
LM = 0.2919; White = 0.4146; Jarque-Bera = 0.0000; Chow = 0.5491
Treatment: VQ2
|x1t-xbr1t-1|
constant 0.3241 0.1757 1.8449 +
DUM1t -0.1496 0.0519 -2.8826 *
DUM2t -0.0770 0.0718 -1.0722
AR(1) 0.7699 0.0695 11.0730 *
AR(15) 0.1376 0.0697 1.9751 +
N = 90; Adj R2 = 0.5746; F = 31.0547 (p = 0.0000); SSE = 1.0857; DW = 2.2368;
LM = 0.5896; White = 0.5686; Jarque-Bera = 0.0403; Chow = 0.2944
|x2t-xbr2t-1|
constant 0.0464 0.0142 3.2673 *
DUM1t -0.0446 0.0219 -2.0401 *
DUM2t -0.0451 0.0257 -1.7523 +
N = 119; Adj R2 = 0.0277; F = 2.6805 (p = 0.0728); SSE = 1.2847; DW = 1.7077;
LM = 0.9557; White = 0.2296; Jarque-Bera = 0.0000; Chow = 0.8391

itttitit DUMDUMxbrx εββα +++=− − 22111
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Table 4.14 (contd.) 

 Variable Coefficient S.E. t-statistic
Treatment: VLQ1
|x1t-xbr1t-1|
constant 9.5176 0.1990 47.8328 *
DUM1t 0.2233 0.3404 0.6559
DUM2t -0.4085 0.4350 -0.9393
AR(28) -0.1989 0.1022 -1.9468 +
N = 85; Adj R2 = 0.0417; F = 2.2199 (p = 0.0921); SSE = 157.4149; DW = 2.1506;
LM = 0.8058; White = 0.2457; Jarque-Bera = 0.0020; Chow = 0.4509
|x2t-xbr2t-1|
constant 0.0101 0.0057 1.7713 *
DUM1t 0.0049 0.0071 0.7005
DUM2t -0.0067 0.0090 -0.7435
AR(30) 0.4249 0.0620 6.8513 *
N = 82; Adj R2 = 0.3616; F = 16.2938 (p = 0.0000); SSE = 0.0482; DW = 2.0264;
LM = 0.2520; White = 0.6489; Jarque-Bera = 0.0000; Chow = 0.0001
Treatment: VLQ2
|x1t-xbr1t-1|
constant 0.2251 0.0386 5.8357 *
DUM1t -0.0107 0.0442 -0.2426
DUM2t -0.0974 0.0478 -2.0389 *
AR(1) 0.3553 0.1272 2.7936 *
AR(2) 0.2672 0.1176 2.2722 *
AR(19) -0.1450 0.0790 -1.8347 +
N = 83; Adj R2 = 0.3425; F = 9.5425 (p = 0.0000); SSE = 1.3039; DW = 1.8175;
LM = 0.9088; White = 0.1357; Jarque-Bera = 0.0000; Chow = 0.8461
|x2t-xbr2t-1|
constant 0.0211 0.0072 2.9431 *
DUM1t -0.0182 0.0074 -2.4670 *
DUM2t -0.0294 0.0079 -3.7351 *
AR(17) 0.6082 0.1397 4.3550 *
N = 96; Adj R2 = 0.1299; F = 5.7264 (p = 0.0012); SSE = 0.0453; DW = 1.2138;
LM = 0.8149; White = 0.2181; Jarque-Bera = 0.0000; Chow = 0.0003

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
See Table 4.7 for notes.  Failure of Jarque-Bera test due to 1-2 outlying values.  Failure of Chow’s test for 
|x1t-xbr1t-1| in VQ1 and |x2t-xbr2t-1| in VLQ1 and VLQ2 due to outlying residual value near breakpoint.    
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Looking at the results for price decisions and best strategies (Table 4.13), it is clear that one 

or more β ’s for the inside firm are negative and significant in all but one treatment (VLQ2).  

1β  is negative and significantly different from zero at the 0.10 level in VQ1 and at the 0.05 

level in VQ2 and VLQ1.  2β  is negative and significantly different from zero at the 0.05 

level in VQ2 and is insignificant in all the other treatments.  For the outside firm, the β ’s are 

mostly insignificant except for 1β  and 2β  in VLQ1 and VQ2 respectively which are negative 

and significantly different from zero at the 0.05 level. 

There is evidence, therefore, that learning is occurring for the inside firm in three 

treatments during the late1 phase but in only one treatment is learning occurring during the 

late2 phase as well.  As for the outside firm, there is evidence that learning is occurring in the 

late1 and late2 phases in only two treatments.  In VLQ2, neither firm shows signs of learning 

as the experiment progresses. 

Turning to location decisions and best responses (Table 4.14), there is little evidence 

of learning with respect to location, with 1β  negative and significantly different from zero 

only for both firms in VQ2 (at 0.05 level), and 2β  negative and significantly different from 

zero only for the outside firm in VQ2 (at 0.10 level) and for both firms in VLQ2 (at 0.05 

level).  The largely insignificant β ’s for the outside firm is a natural phenomenon given that 

the outside firm nearly always plays its best response (i.e., the dominant strategy of locating 

next to the market border) throughout the experiment.   

The greater proximity of location decisions than price decisions to best strategies for 

both firms is reflected in the smaller α ’s for location decisions (significant at the 0.05 level 

in all treatments for both price and location, except at 0.10 level for the inside firm in VQ2).  

One exception is the inside firm in VLQ1 where α  is higher for location decisions.   
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H4: The level of product differentiation decreases with transportation costs. 

Figure 4.26 shows the distribution of individual product differentiation decisions, 

grouped by intervals of 0.1, for the four treatments.  A product differentiation decision is 

obtained by taking the difference between the location decision of each outside firm player 

and the counterpart inside firm player for each period.  The broken vertical line corresponds 

to the theoretical prediction.  The graphs show that the interval with the highest frequency in 

VQ2 coincides with prediction while the interval with the highest frequency is below 

prediction in VLQ1 and above prediction in VQ1 and VLQ2.   

Figure 4.27 shows the time series of mean product differentiation decisions for 

Treatments 1 to 4.  It is evident that the level of product differentiation is higher under 

quadratic transportation costs (VQ1 and VQ2) than under linear-quadratic transportation costs 

(VLQ1 and VLQ2).  When transportation costs increase at a more rapid rate with distance, 

product differentiation decreases as fewer inside firm players choose to locate away from 

consumers who reside close to the rival firm.  

To test the hypothesis that the level of product differentiation decreases when 

transportation costs increase more rapidly, the following equation is estimated: 

(4.9)  jtttjt DUMDUMDD εββα +++=Δ−Δ 2211
*

jtDΔ

 

where  is the difference between product differentiation decisions under transportation 

costs of type j in period t, { }2,1∈j 1 where =j  

2

denotes the ex ante treatment before a 

transportation cost increase and =j

1DΔ

2D

24.0* =ΔD tDUM 1

 denotes the ex post treatment after transportation cost 

increase.   is the difference between product differentiation decisions under VQ1 and 

VLQ1 while Δ  is the difference between product differentiation decisions under VQ2 and 

VLQ2.12   is the predicted equilibrium value.   is a dummy variable that 

equals 1 if { }13,...,9= tDUM 2

{ }16,...14=t

                                                     

t  and 0 otherwise; and  is a dummy variable that equals 1 if 

 and 0 otherwise.  If the change in product differentiation 

 
12 Note that product differentiation under the same transportation cost structure remains 
unchanged under a uniform 100% increase in transportation cost parameters.   
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Fig. 4.26(a)    Distribution of individual product differentiation decisions (VQ1)      Fig. 4.26(b)   Distribution of individual product differentiation decisions (VQ2) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4.26(c)    Distribution of individual product differentiation decisions (VLQ1)    Fig. 4.26(d)   Distribution of individual product differentiation decisions (VLQ2) 
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Fig. 4.27      Time series of mean product differentiation decisions 

 

 

under higher transportation costs grows closer to prediction in the late1 phase and late2 phase, 

then 1β  and 2β  respectively would be negative.  

The regressions results are reported in Table 4.15.  For *
1 DD Δ−Δ , 0.0879=α  is 

close to zero and significant at the 0.05 level.  For *
2 DD Δ−Δ , α  is not significantly 

different from zero at the 0.05 level.  In other words, 1DΔ  and 2DΔ  are very close to the 

predicted value of .  This provides strong evidence of a decrease in the level of 

product differentiation when transportation costs grow at a more rapid rate under a higher 

transportation cost structure.   

24.0* =ΔD

With regards to increasing proximity of 1DΔ  and 2DΔ  to prediction over the course 

of the experiment, only 2β  is negative and significantly different from zero at the 0.05 level 

for .  There is, therefore, growing parity of 2DΔ 2DΔ  to prediction in the late2 phase but there 

is no evidence that  grows closer to prediction over time. 1DΔ
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Table 4.15 
Regression results for product differentiation under higher transportation costs 
 

Variable Coefficient S.E. t-statistic
Model: 

constant 0.0879 0.0391 2.2506 *
DUM1t -0.0146 0.0581 -0.2506
DUM2t -0.0026 0.0654 -0.0396
AR(1) 0.3044 0.0874 3.4844 *
N = 123; Adj R2 = 0.0692; F = 4.0253 (p = 0.0091); SSE = 5.9643; DW = 2.1215;
LM = 0.0879; White = 0.2723; Jarque-Bera = 0.0585; Chow = 0.0589

constant 0.0081 0.0441 0.1830
DUM1t -0.0366 0.0547 -0.6699
DUM2t -0.1421 0.0606 -2.3464 *
AR(1) 0.5201 0.0986 5.2765 *
AR(2) 0.3610 0.0990 3.6444 *
AR(6) -0.1766 0.0760 -2.3221 *
AR(29) -0.2306 0.0902 -2.5562 *
N = 93; Adj R2 = 0.5582; F = 20.3756 (p = 0.0000); SSE = 2.6467; DW = 1.8509;
LM = 0.4423; White = 0.4835; Jarque-Bera = 0.0163; Chow = 0.2817

jtttjt DUMDUMDD εββα +++=Δ−Δ 2211
*

*
1 DD t Δ−Δ

*
2 DD t Δ−Δ

 

 

 

 

 

 

 

 

 

 

 

 

 See Table 4.7 for notes.   

 

 

H5: Higher product differentiation yields higher prices. 

It has been highlighted at the start of this chapter that location literature typically 

proposes that firms should maximise their level of product differentiation to reduce price 

competition.  In other words, higher product differentiation would lead firms away from 

fierce price competition and the resulting lower prices.  To test the positive correlation 

between the level of product differentiation and price, the following equation is estimated for 

the late phase of the four treatments: 13

(4.10)  ittit Dp εβα ++=  

where  is the price of firm ip { }2,1∈i  and  is the level of product differentiation. tD

                                                      
13 One-period lag and two-period lags of Dt in equation 4.10 are all insignificant at the 0.05 level.  
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The regression results in Table 4.16 show clearly that β  is positive and significant at 

the 0.05 level for the inside firm in all treatments except VQ1.  For the outside firm, the β ’s 

are not significantly different from zero at the 0.05 level in all treatments.  The poor fit of 

equation 4.10 for the outside firm is also evident from the negative adjusted 2R .  These 

findings are in accord with the results from a Spearman rank-order correlation test and a 

Kendall rank-order correlation test (Table 4.17).  While higher product differentiation clearly 

results in reduced price competition (and hence higher prices) for the inside firm, the impact 

on the outside firm is not obvious.   

 

H6: Relative demand is equivalent to relative price (Proposition 2.2). 

Is relative demand equivalent to relative price under a given transportation cost 

structure, as suggested by Proposition 2.2 of the theoretical model?  The time series of mean 

relative demand ( )12 mm  and mean relative price ( )12 pp  in Figure 4.28 shows that the two 

series track each other very closely and approach the predicted value (represented by the 

broken horizontal line) for all treatments.  In VQ1, mean relative demand appears to track 

mean relative price less closely than the other treatments.  This observation is borne out by a 

Wilcoxon signed rank test and a Sign test on relative demand and relative price based on 

individual player data in all treatments.  The results given in Table 4.18 indicate that the two 

series are equivalent at the 0.05 level throughout the experiment, with VQ1 having the lowest 

probability of acceptance in the late2 phase among all treatments. 
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Table 4.16 
Regression results for relationship between product differentiation and price 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient S.E. t-statistic
Model: 

reatment: VQ1
p1t

onstant 2.5639 0.4268 6.0078 *
Dt 0.4311 0.4764 0.9049

R(1) 0.7079 0.0927 7.6362 *
N = 63; Adj R2 = 0.4821; F = 29.8544 (p = 0.0000); SSE = 40.6792; DW = 2.0335; 

M =0.8073; White = 0.7698; Jarque-Bera = 0.0249; Chow = 0.0001
2t

onstant 2.5480 0.4789 5.3210 *
t 0.0385 0.8436 0.0456

 64; Adj R2 =-0.0161; F = 0.0021 (p = 0.9638); SSE = 220.6081; DW = 2.2655; 
M =0.2575; White = 0.3167; Jarque-Bera = 0.0000; Chow = 0.4362

Treatment: VQ2
1t

constant 5.5965 0.4525 12.3673 *
t 2.3202 0.9671 2.3992 *

AR(3) -0.2621 0.1385 -1.8925
17) -0.3055 0.1509 -2.0250 *

N = 47; Adj R2 =0.1979; F = 4.7830 (p = 0.0058); SSE = 154.9954; DW = 1.5156;
M =0.6461; White = 0.6667; Jarque-Bera = 0.9725; Chow = 0.2958

p2t

onstant 4.8566 0.5327 9.1164 *
Dt -1.0181 0.8312 -1.2249

14) 0.3944 0.1332 2.9615 *
N = 50; Adj R2 =0.1361; F = 4.8603 (p = 0.01206); SSE = 123.9945; DW = 1.8286; 

M =0.5193; White = 0.6540; Jarque-Bera = 0.9165; Chow = 0.9859
reatment: VLQ1

p1t

onstant 2.1910 0.4657 4.7051 *
Dt 6.5206 0.9618 6.7793 *

1) 0.4972 0.1269 3.9172 *
AR(16) -0.2706 0.1163 -2.3259 *

 48; Adj R2 =0.6227; F = 25.2101 (p = 0.0000); SSE = 90.5326; DW = 2.1434; 
LM =0.3239; White = 0.9336; Jarque-Bera = 0.6275; Chow = 0.2206

2t

constant 2.4743 0.3335 7.4194 *
t 0.1539 0.8384 0.1835

N = 64; Adj R2 =-0.0158; F = 0.0337 (p = 0.8550); SSE = 156.5205; DW = 2.2340; 
M =0.28194; White = 0.5060; Jarque-Bera = 0.2101; Chow = 0.1177

Treatment: VLQ2
1t

onstant 8.7601 0.7248 12.0870 *
t 5.1076 1.9416 2.6306 *

1) 0.4789 0.1147 4.1757 *
 63; Adj R2 =0.3303; F = 15.7933 (p = 0.0000); SSE = 314.3429; DW = 2.1523; 

M =0.2319; White = 0.0157; Jarque-Bera = 0.0004; Chow = 0.0007
p2t

onstant 6.6827 0.4477 14.9265 *
Dt -0.7550 1.4688 -0.5140

 64; Adj R2 =-0.0120; F = 0.2642 (p = 0.6091); SSE = 322.6108; DW = 1.9379; 
LM =0.8546; White = 0.1576; Jarque-Bera = 0.64015; Chow = 0.2293

See Table 4.7 for notes.  Chow’s breakpoint test is at n = 32.  Failure of Jarque-Bera test due to 
1-3 outlying values.  Failure of Chow’s test in VLQ2 due to an outlying residual value near 
breakpoint at n = 31. 
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Table 4.17 
Product differentiation and prices  
(one-tailed Spearman and Kendall rank-order correlation tests) 
 

 

 

 

 

` 

 

 

 

 

 

Table 4.18 
Relative demand and relative price  
(probabilities for two-tailed Wilcoxon signed ranks test pW and Sign test pS) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variables N Spearman pSP Kendall pK

correlation  (1-tailed) correlation  (1-tailed)
Treatment: VQ1

1, D 64 0.1633 0.0987 0.1377 0.0606
p2, D 64 -0.0419 0.3712 -0.0307 0.3653

tment: VQ2
p1, D 64 0.3714 0.0013 * 0.2582 0.0017 *

2, D 64 -0.1354 0.1430 -0.1014 0.1238
Treatment: VLQ1

1, D 63 0.4959 0.0000 * 0.3610 0.0000 *

2, D 63 -0.0117 0.4637 -0.0148 0.4357
tment: VLQ2

1, D 63 0.3693 0.0014 * 0.2870 0.0007 *
p2, D 63 -0.0890 0.2439 -0.0599 0.2519

p

p

p
Trea

p

p

Trea

* indicates significance at the 0.05 level 

* indicates significance at the 0.05 level. 

Treatment N pw ps
Null hypothesis:   p2/p1 = m2/m1

Treatment: VQ1
All periods 117 0.0953 * 0.0777
Early phase 55 0.1856 * 0.1775
Late1 phase 38 0.7115 * 0.8711
Late2 phase 24 0.1909 * 0.2100
Treatment: VQ2
All periods 116 0.9961 * 0.6239
Early phase 55 0.3303 * 0.1447
Late1 phase 37 0.5784 * 0.6069
Late2 phase 23 0.6148 * 1.0000
Treatment: VLQ1
All periods 120 0.5063 * 0.4074
Early phase 58 0.2055 * 0.3580
Late1 phase 39 0.8327 * 0.7423
Late2 phase 23 1.0000 * 1.0000
Treatment: VLQ2
All periods 126 0.2203 * 0.1268
Early phase 62 0.3475 * 0.2530
Late1 phase 40 0.2617 * 0.6353
Late2 phase 24 0.8967 * 0.5235

*
*
*
*

*
*
*
*

*
*
*
*

*
*
*
*
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Fig. 4.28(a)   Time series of mean relative demand and mean relative price (VQ1)      Fig. 4.28(b)   Time series of mean relative demand and mean relative price (VQ2
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Fig.4.28(c)  Time series of mean relative demand and mean relative price (VLQ1)    Fig. 4.28(d)  Time series of mean relative demand and mean relative price (VLQ2) 
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To examine the relationship between relative demand and relative price, the following 

equation is estimated: 

(4.11)  ijttt
it

jt

it

jt DUMDUM
p
p

m
m

εββα +++=− 2211  

where  and  denote the price of firm 1 and firm 2 respectively in period t; and  and 

 denote the demand of firm 1 and firm 2 respectively in period t.   is a dummy 

variable that equals 1 if  and 0 otherwise; and  is a dummy variable that 

equals 1 if  and 0 otherwise.  If relative demand grows closer to relative price in 

the late1 phase and late2 phase, then 

itp jtp itm

jtm tDUM 1

{ 13,...,9=t }

}

tDUM 2

{ 16,...14=t

1β  and 2β  respectively would be negative. 

The regression results are shown in Table 4.19.  All diagnostic and stability tests 

indicate that the estimates are acceptable (except the Jarque-Bera test which fails because of one 

to three outlying residual values).14  The results do not support the hypothesis that relative 

demand equals relative price.  Since α  is significantly different from zero in all treatments at 

the 0.05 level, relative demand falls short of or surpasses relative price.  In VLQ1 and VLQ2, 

the β ’s are insignificant at the 0.05 level.  In VQ2, proximity between relative demand and 

relative price grows in the late1 phase ( 1β  is negative and significant at the 0.05 level) while 

in VQ1, relative demand grows closer to relative price in the late2 phase ( 2β  is negative and 

significant at the 0.10 level).  It appears that decreased price convergence (VLQ1, VLQ2) and 

the lack of location convergence (inside firm of VQ2) to prediction during the late2 phase has 

manifested itself in the inability of relative price to match relative demand (see Tables 4.5 and 

4.9).  This explains the absence of a significant 2β  in the late2 phase of treatments other than 

VQ1. 

 

                                                      
14 All relative price and relative demand data are stationary in the level at all reported significance 
levels based on an augmented Dickey-Fuller test.  
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Table 4.19 
Regression results for relative price and relative demand 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable Coefficient S.E. t-statistic

Model: 

 

 

See Table 4.7 for notes.  Failure of Jarque-Bera test due to 1-3 outlying values.   

Treatment: VQ1

nstant 1.3542 0.1572 8.6131 *
DUM1t 0.1374 0.2460 0.5586

M2t -0.4916 0.2895 -1.6978 +
 116; Adj R2 = 0.0203; F = 2.1904 (p = 0.1166); SSE = 153.6303; DW = 1.7882; 

LM = 0.4714; White = 0.6687; Jarque-Bera = 0.0000; Chow = 0.0615
reatment: VQ2

nstant 2.3119 0.5003 4.6211 *
DUM1t -0.9216 0.4515 -2.0412 *

M2t -0.5643 0.5393 -1.0465
AR(24) 0.3988 0.1257 3.1735 *

 83; Adj R2 = 0.0902; F = 3.7108 (p = 0.0149); SSE = 422.0608; DW = 1.8189; 
M = 0.8149; White = 0.1218; Jarque-Bera = 0.0000; Chow = 0.3310

Treatment: VLQ1

nstant 1.7279 0.4485 3.8529 *
DUM1t 0.0816 0.5752 0.1419

M2t 0.1213 0.6828 0.1776
) 0.2519 0.1154 2.1824 *

N = 88; Adj R2 = 0.0229; F = 1.6809 (p = 0.1773); SSE = 516.1871; DW = 1.9597; 
M = 0.7943; White = 0.8545; Jarque-Bera = 0.0000; Chow = 0.3906

Treatment: VLQ2

constant 0.9606 0.1733 5.5422 *
M1t -0.1111 0.2768 -0.4015

DUM2t 0.0469 0.3281 0.1428

N = 126; Adj R2 = -0.0142; F = 0.1233 (p = 0.8841); SSE = 229.1188; DW = 1.9171; 
M =0.5466; White = 0.1497; Jarque-Bera = 0.0000; Chow = 0.1348
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H7: The price increase is greater for the inside firm than the outside firm when 

transportation costs increase under a given transportation cost structure 

(Proposition 3). 

In treatments VQ2 and VLQ2, the transportation cost parameters are increased by 

100% over those in VQ1 and VLQ1 respectively.  The impact of a transportation cost increase 

under a given transportation cost structure on the prices of both firms can be observed by 

comparing their prices in VQ1 with VQ2, and VLQ1 with VLQ2.  Figure 4.29 shows that the 

mean price difference of the inside firm under a 100% increase in transportation cost 

parameters is larger than the mean price difference for the outside firm (except for two 

periods).   

To validate the above observation, the following equation is estimated using ordinary 

least squares: 

(4.12)  ( ) ( ) ttttttt DUMDUMpppp εββα +++=−−− 221121221112  

where  is the price of firm i for treatment of type j where ijp { }2,1, =ji .  Type  denotes 

the ex ante treatment before a transportation cost increase while 

1=j

2=j  denotes the ex post 

treatment after a transportation cost increase.   is a dummy variable that equals 1 if 

 and 0 otherwise, and  is a dummy variable that equals 1 if  

and 0 otherwise. 

tDUM 1

{ 13,...,9=t } tDUM 2 { }16,...14=t

The regression results are presented in Table 4.20.  All diagnostic and stability checks 

indicate that the estimates are reliable at the 0.05 level (except the Jarque-Bera test which fails 

due to the presence of two outlying residual values in each instance).  In all treatments, α  is 

positive and significantly different from zero at the 0.05 level.  1β  and 2β  are  negative and 

significantly different from zero at the 0.05 level for both transportation cost structures ( 2β  is 

negative and significant at the 0.10 level under linear-quadratic transportation costs).  This 

implies that, throughout the experiment, the inside firm invariably raises its price by a larger 

amount than the outside firm when faced with higher transportation costs (which are borne by  
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Fig. 4.29 (a) Time series of mean price difference under higher quadratic transportation costs  
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Fig. 4.29 (b)   Time series of mean price difference under higher  

linear-quadratic transportation costs 
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Table 4.20 
Regression results for impact of transportation cost increase on prices 
 

Variable Coefficient S.E. t-statistic
Model: 
Treatments: VQ1, VQ2
(p12t-p11t)-(p22t-p21t)
constant 5.6896 1.7060 3.3349 *
DUM1t -1.8911 0.6032 -3.1350 *
DUM2t -2.2104 0.7388 -2.9920 *
AR(4) 0.1881 0.0999 1.8826 +
AR(5) 0.1853 0.0995 1.8615 +
AR(6) 0.2028 0.1016 1.9962 *
AR(26) 0.1924 0.1072 1.7953 +
N = 96; Adj R2 = 0.1477; F = 3.7439 (p = 0.0023); SSE = 1051.444; DW = 1.8372;
LM = 0.8880; White = 0.1507; Jarque-Bera = 0.0000; Chow = 0.5827
Treatments: VLQ1, VLQ2
(p12t-p11t)-(p22t-p21t)
constant 4.4534 0.8482 5.2501 *
DUM1t -3.2229 0.7813 -4.1250 *
DUM2t -1.5364 0.9090 -1.6902 +
AR(3) -0.2077 0.0995 -2.0885 *
AR(8) 0.2496 0.0868 2.8751 *
AR(15) 0.2370 0.0856 2.7695 *
AR(34) 0.2167 0.0850 2.5495 *
N = 89; Adj R2 = 0.2694; F = 6.4095 (p = 0.0044); SSE = 734.6055; DW = 2.3510;
LM = 0.7666; White = 0.0122; Jarque-Bera = 0.0020; Chow = 0.8816

( ) ( ) ttttttt DUMDUMpppp εββα +++=−−− 221121221112

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See Table 4.7 for notes.  Failure of Jarque-Bera test due to 2 outlying values.    

 

 

consumers).  There is also evidence that the increase in price by the inside firm declines over 

the late1 phase and late2 phase given the negative β ’s. 

 

4.5 CONCLUSIONS 

Under variable firm location, the experimental results show that an increase in the level of 

product differentiation results in reduced price competition and higher prices for the inside 

firm, but the effect on the firm located outside the market space is not obvious.  Low price 
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behaviour heightens price competition, regardless of the level of product differentiation, to the 

extent that prices are occasionally driven to very low levels.   

Under higher transportation costs, the level of product differentiation decreases.  At 

first sight, the transitive effect of lower product differentiation (due to higher transportation 

costs) in reducing prices (due to intensified price competition) does not appear to hold.  Both 

firms gain higher prices for the good, with the inside firm earning higher prices vis-à-vis the 

outside firm.  This is in accord with Proposition 3.  In other words, consumers mitigate seller 

power in raising prices by incurring positive transportation costs.  A similar finding was made 

by Camacho-Cuena et al. (2004).  

A closer look reveals that lower product differentiation arising from higher 

transportation costs does have a price reduction effect through heightened price competition.  

This is obvious when one contrasts the situation in which firms are unable to relocate 

themselves in the face of higher transportation costs, i.e., the level of product differentiation 

remains invariant at a higher level ( 00.1=D  of the experiment with constant location vs. 

 and  for linear-quadratic and quadratic transportation costs respectively of 

the experiment with variable location).  Under this situation, price competition is smaller as 

both firms are able to reap higher prices and profits (compare the mean prices of the results in 

Tables 3.3 and 4.3).  In other words, when consumers have no choice on the level of product 

differentiation, they incur even higher transportation costs in their attempts to reduce seller 

power. 

16.0=D 40.0=D

The results in this chapter accord support for the IO model’s equilibrium predictions 

and propositions.  No evidence, however, is obtained for Proposition 2.2 and Fetter’s law of 

market areas, i.e., relative demand is equivalent to relative price under a given transportation 

cost structure as a result of a decline in price and location convergence to prediction in the 

final three periods of the experiment.   

 

 

 



CHAPTER 5 

CONCLUSIONS 
 

 

5.1 THEORY: SUMMARY AND IMPLICATIONS 

 

he mainstream of economic theories explain spatial firm competition in terms of 

horizontal or vertical product differentiation (alternatively address or non-address 

goods).  Following the pioneering steps of Launhardt, this study introduces a model that 

possesses both horizontal and vertical product characteristics within a single framework.  The 

IO model presented in Chapter 2 integrates Hotelling (1929)’s inside location model and 

Gabszewicz and Thisse (1986, 1992)’s outside location model, thereby inheriting the 

properties of both models.  At the same time, the IO model has properties that are unique to 

itself.   

T

An interesting result arising under fixed firm location is that the market boundary is 

determined solely by the relative price of the two firms.  This property satisfies Fetter 

(1924)’s economic law of market areas, i.e., the market boundary is determined by the relative 

price and relative transportation costs.  The latter is assumed to be constant ( 1' =t 1' =sst , ) 

for the IO model.  Another result is that, regardless of whether firm location is fixed or 

variable, relative price is equivalent to relative demand at equilibrium.   

Moreover, when firm location is variable, no equilibrium in pure strategies exists 

under linear transportation costs but a unique Nash equilibrium in pure strategies exists under 

quadratic and linear-quadratic transportation costs.  This is true whether the location-price 

game is played simultaneously or sequentially.  In contrast, for the inside location model, an 

equilibrium in pure strategies exists only when the sequential location-then-price game is 

played under quadratic transportation costs.  In the case of the outside location model, an 

equilibrium in pure strategies always exists.  The stability of the IO model is, therefore, 
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intermediate between the inside location model and the outside location model.  This is not 

surprising since the IO model is an integration of the two models. 

The IO model is directly applicable to situations in which adjoining markets are 

segmented geographically and (or) economically.  It highlights the distinction between an 

economic boundary and geographical boundary between two regions, which in most cases do 

not necessarily coincide.  The model is a useful framework to analyse firm competition on a 

broader dimension than is permissible under either the inside location model or the outside 

location model.  It explains why many firms compete in both horizontal and vertical product 

differentiation characteristics rather than along a single spectrum.  This scenario is reflective 

of firms that compete in both price and quality of a product, e.g., the Filière Qualité brand of 

Carrefour, Charles Shaw wines, etc.   

 

5.2 EXPERIMENTS: SUMMARY AND IMPLICATIONS 

The experimental results accord fairly strong support for the predictions of the IO model.  

Prices and locations under various transportation cost structures generally approached Nash 

prediction.  There are, however, instances in which players’ behaviour (e.g., their preference 

for low price strategy rather than best response) resulted in a failure to reach prediction.  This 

is especially true of the experiment in Chapter 3 that assumes fixed firm location. 

Two contrasting forms of behaviour emerge under constant location (parametric firm 

location game in Chapter 3) and variable location (simultaneous location-price game in 

Chapter 4).  While equilibrium prices under constant location generally fall below prediction, 

the opposite is true under variable location.  Under constant location, the inside firm players 

exhibited a strong inclination to price close to levels that monopolise the market.  By adopting 

low price behaviour, the inside firm players attempt to price their rivals out of the market and 

capture full market demand.  Under variable location when the firms are no longer restricted 

by competition along a single dimension (i.e., price), the inside firm shows a smaller 

inclination (or ability) to monopolise the market through low prices.  While there exist a 
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number of inside firm players who adopted low price behaviour under variable location, these 

are relatively few compared to the large majority engaged in low price behaviour under 

constant location. 

For both experiments, players adhere to best responses although not absolutely.  

Regression of prices with one-period lag best responses provide evidence that the inside firm 

generally gets better at playing best strategies over time but the same cannot always be said of 

the outside firm.  The greater proximity of prices to best strategies under variable location (as 

shown by the generally lower α  values) result in prices reaching an equilibrium that is closer 

to prediction than was obtained under constant location.     

As a result of the disparity of equilibrium prices from prediction, there is an inability 

of the findings to provide full support to the theoretical proposition that relative price and 

relative demand are equal at equilibrium (Proposition 2.2).  Unequivocal support, however, is 

accorded to the other propositions of the IO model: equilibrium relative price (Proposition 1) 

and equilibrium relative demand (Proposition 2.1) are the same regardless of transportation 

cost structure, and the inside firm raises its price by a greater amount than the outside firm 

under higher transportation costs (Proposition 3). 

The results show that when transportation costs increase as consumers are faced with 

a higher transportation cost structure (e.g., from quadratic transportation costs to linear-

quadratic transportation costs), the level of product differentiation decreases.  The price 

increase under variable location, however, is smaller than under constant location with 

relatively higher product differentiation.  A reduction in product differentiation under higher 

transportation costs, therefore, results in more intensive price competition in an environment 

faced with variable location than when location is constant. 

 

5.3 CONCLUDING REMARKS 

The experimental results indicate that the IO model has some predictive power for the 

analysis of spatial competition between two firms located along two contiguous line segments 
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separated by a market border.  In accordance with theory, players in the simultaneous price-

location experiment adopted higher product differentiation under transportation costs that 

increase less rapidly (quadratic costs) than more rapidly (linear-quadratic costs).  Players’ 

behaviour, however, do not correspond exactly to Nash prediction under constant location.  At 

the start of the experiment, players tend to be over-competitive and price below prediction, 

with the majority of inside firm players competing to acquire a monopoly.  Mutual best 

responses gradually managed to bring prices closer to theoretical prediction, enabling both 

firms to capture higher producer surplus.  

When firms experience higher transportation costs, the full price of their product 

naturally increase since it is the sum of the mill price of the product and transportation costs.  

Since the mill price of the product is assumed to be the same for both firms and is constant 

throughout the experiment, the full price of the product is directly dependent on the nature of 

transportation cost increase.  Consequently, when transportation costs increase more rapidly 

(e.g., under linear-quadratic transportation costs), firms are able to increase their price by a 

greater extent.   

The amount of price increase also depends on the ability of firms to vary location (or 

brand specification).  Under constant location, firms are able to increase prices by a larger 

amount than when location is variable.  This is not surprising since a product that enjoys a 

short period before a new design enters the market will not be able to command as large a 

price increase as one that has a longer shelf life.  This provides some anecdotal support for 

products that typically offer a new brand in a short interval of time to be launched at a much 

higher price level than similar products that adhere to a single brand specification.   

Under horizontal differentiation, firms offer identical products and compete in price.  

Well-informed consumers will choose the firm that has the lower price, if prices differ.  

Under vertical differentiation, products differ in quality.  Consumers pay more for products 

higher up along the quality spectrum.  The IO model explains firm competition along both 

horizontal and vertical characteristics.  Firms choose the optimal mix of horizontal and 

vertical differentiation for a product.  This is more reflective of many real world situations.  
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The IO model presents itself as a useful framework to analyse consumer travel and firm 

competition on either side of a market boundary.  It can be adapted to the study of other forms 

of travel decisions between two entities in adjoining markets, e.g., worker migration between 

two cities, or leisure choice between neighbouring destinations.   

The applicability of the IO model to the study of actual firm and consumer behaviour, 

however, is rather limited given its present framework and its restrictive assumptions.  Further 

modifications of the model, therefore, may be useful in enhancing the applicability of the IO 

model to the study of real world situations. By modifying the basic assumptions inherent in 

the model, a myriad of other situations present themselves that are worthy of further study, 

both in theoretical work and in experimental laboratories.  For example, future studies may 

examine the effect of non-uniform consumer distributions, concave transportation costs, 

incorporation of a budget constraint (both temporal and monetary), and the effect of 

interactive communication among firms.  What happens if consumers are able to select their 

own location besides deciding which firm to buy the good from, or if they can withhold 

consumption of the good?  Will the results differ markedly if production costs are variable 

rather than constant in either or both market?  What if there are three or more firms, or when 

there is sequential firm entry by foreign firms into the domestic market?  Can firms choose 

transportation rates that will deter the entry of new firms?  These questions remain open to 

further examination.  Any research in these areas would certainly help to bring new insights 

into firm competition with horizontal and vertical differentiation.   
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APPENDICES 
 

 

APPENDIX 1 

PARAMETRIC LOCATIONS WITH LINEAR TRANSPORTATION COSTS 

 

Assume that the transportation cost function is linear of the form tdcd = , where and 

.  If 

( ) 00 =c

0>t ( )21 , ppm  exists, it must be the solution of the equation 

  ( ) ( )yxtpxytp −+=−+ 2211 . 

Solving, we obtain the demand functions for firm 1 and firm 2, respectively, as 

(A1)  ( ) ( )
22

, 2112
211

xx
t

pp
ppm

+
+

−
=   and 

(A2)  ( ) ( )
2

2
2

, 2121
212

xx
t
pp

ppm
−−

+
−

= . 

The payoff functions are given by ( ) ( 2111211 ,, ppmppp ⋅ )=∏  and 

( ) ( )2122212 ,, ppmppp ⋅=∏  respectively.  Maximising profits on the part of firm 1 and firm 

2 gives the following response functions: 

(A3)  ([ 21
*
2

*
1 2

1 xxtpp ++= )]   and 

(A4)  ( )[ ]21
*
1

*
2 2

2
1 xxtpp −−+= . 

Solving equations A3 and A4 gives the non-cooperative Bertrand-Nash price equilibrium in 

pure strategies, i.e.,  

(A5)  ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−++= 2121
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1 4
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3
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For non-zero , we assume that *
2p 421 <+ xx .  If 421 =+ xx , an equilibrium occurs at 

( ) ( )( )0,2, 21
*
2

*
1 xxtpp += .   
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The distribution of market demand between firm 1 and firm 2 at Nash equilibrium is given by 

substituting A5 into A1 and A2:  

(A6)  ( ) ( ) ( )⎟
⎠
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⎜
⎝
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2
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1 4
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6
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Equilibrium Existence under Linear Transportation Costs 

The following result states the necessary and sufficient conditions for the existence of an 

equilibrium under linear transportation costs. 

Lemma 1 

For , there is an equilibrium in prices if and only if 421 <+ xx
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and whenever it exists, the equilibrium is uniquely determined by 
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Proof 

Let .  We will show that any equilibrium 421 ≤+ xx ( )*
2

*
1 , pp  must satisfy the condition 

( )12
*
2

*
1 xxtpp −<− .   

Suppose on the contrary ( )*
2

*
1 , pp  is an equilibrium but ( 12

*
2

*
1 xxtpp −>− ).  Then 

the firm that charges the higher (strictly positive) price and with zero profit can gain by 
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charging a price equal to the price of the other firm, which contradicts the assumption that 

( )*
2

*
1 , pp  is an equilibrium. 

Suppose that ( )12
*
2

*
1 xxtpp −=− .  If  and firm 1 earns zero profit, then   

firm 1 can gain by charging a positive price below 

0*
1 =p

( )12
*
2 xxtp −+ .  If , then either (1) 

firm 1 captures the whole market and firm 2, which charges a positive price, can increase 

profit by decreasing price, or (2) firm 1 has a fraction of the market, in which case it can 

capture the whole market and increase profit by decreasing its price.  In both instances, the 

assumption that 

0*
1 >p

( )*
2

*
1 , pp  is an equilibrium is contradicted. 

Any equilibrium ( )*
2

*
1 , pp  must, therefore, satisfy ( 12

*
2

*
1 xxtpp −<− ) .  A 

consequence of this condition is that for any ( )*
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*
112

*
1 , xxtpxxtp −+−− .  Taking first order conditions gives equations 3 and 4.  For 

the case when , the first order conditions give equation 421 =+ xx
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For ( )*
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*
1 , pp  to be an equilibrium strategy given any ( )21 , xx , we must have for any 

0>ε  where ε  is arbitrarily small 
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The right hand side of the above inequality is the profit of firm 1 should it charge a price 

slightly lower than .  We will now show that the above inequality can be rewritten as 

equation 1.  Substituting equation 4 gives 
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which is equivalent to equation 1.   

Similarly, for ( )*
2

*
1 , pp  to be an equilibrium strategy given any ( , we must have 
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The right hand side of the above inequality is the profit of firm 2 should it charge a price 

slightly lower than .  The following shows that the above inequality can be rewritten as 

equation 2.  Substituting equation 3 gives 
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which is equivalent to equation 2.   

To show that conditions 1 and 2 are also sufficient for ( )*
2

*
1 , pp  to be an equilibrium, 

it is easily verifiable that they imply that ( )12
*
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QED 
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APPENDIX 2 

PARAMETRIC LOCATIONS WITH QUADRATIC TRANSPORTATION COSTS 

 

Assume that the transportation cost function is quadratic of the form , where 

and .  If 

( ) 2sddc =

( ) 00 =c 0>s ( )21 , ppm  exists, it must be the solution of the equation 
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Solving, we obtain the demand functions for firm 1 and firm 2, respectively, as 
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The payoff functions are given by ( ) ( 2111211 ,, ppmppp ⋅ )=∏  and 

( ) ( )2122212 ,, ppmppp ⋅=∏  respectively.  Maximising profits on the part of firm 1 and  

firm 2 gives the following response functions: 
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Solving equations A9 and A10 gives the non-cooperative Bertrand-Nash price equilibrium in 

pure strategies 
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For non-zero , we assume that *
2p 421 <+ xx .  If 421 =+ xx , an equilibrium exists at 
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APPENDIX 3 

PROOF OF PROPOSITIONS 1, 2 AND 3 

 

Proposition 1 

When the transportation cost structure is linear, i.e., when ( ) tddc = , , the unique price 

equilibrium in pure strategies exists at the pair of prices 

0>t
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The equilibrium relative price of the good is given by 
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When transportation costs are quadratic, i.e., when ( ) 2sddc = , , the unique equilibrium 

in pure strategies exists at the pair of prices 

0>s
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The equilibrium relative price of the good is given by 
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. 

In the case of linear-quadratic transportation costs, i.e., when ( ) 2sdtddc += ,  and 

, the unique equilibrium in pure strategies exists at the pair of prices 

0>t

0>s
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The equilibrium relative price of the good is given by 
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Equations A13, A14 and A15 are all equivalent. 

QED 
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Proposition 2 

Part 1 of the proposition is obvious from the equivalence of equations 8, A6 and A12.  Part 2 

of the proposition is proven as follows.  Since the equilibrium demand is the same for all 

transportation costs and is given by 

( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
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*
2

*
1 4

6
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6
1, xxxxmm , 

we have for all transportation cost functions, the equilibrium relative demand as 
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Since A16 is equivalent to A15, we have *
1

*
2

*
1

*
2 ppmm =  for all transportation cost 

functions. 

QED 

 

Proposition 3 

 

Increase in Transportation Costs Within the Same Transportation Cost 
Structure 
 

Linear Transportation Costs 

When the transportation cost structure is linear, i.e., when ( ) tddc = , , the unique price 

equilibrium in pure strategies exists at the pair of prices 

0>t

  ( ) ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −−++= 2121

*
2

*
1 4
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, xxtxxtpp  

Firm 2 offers a lower price than firm 1 since 24 2121 ++<−− xxxx , i.e.,  

(always true given the firms’ configuration).  When t  increases to , therefore, firm 1 offers 

a higher price at 

121 >+ xx

't

( ) 3221
' ++ xxt , while firm 2 correspondingly raises its price but by a 

smaller amount to ( ) 34 21
' xxt −− . 
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Quadratic Transportation Costs 

When transportation costs are quadratic, i.e., when ( ) 2sddc = , , the unique equilibrium 

in pure strategies exists at the pair of prices 

0>s
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⎠
⎞
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for .  Firm 2 offers a lower price than firm 1 since 421 <+ xx 24 2121 ++<−− xxxx , i.e., 

.  When 121 >+ xx s  increases to , therefore, firm 1 offers a higher price at 's

( )( ) 322112
' ++− xxxxs , while firm 2 correspondingly raises its price but by a smaller 

amount to ( )( ) 34 2112
' xxxxs −−− . 

 

Linear-Quadratic Transportation Costs 

In the case of linear-quadratic transportation costs, i.e., when ( ) 2sdtddc += ,  and 

, the unique equilibrium in pure strategies exists at the pair of prices 

0>t
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for .  Firm 2 offers a lower price than firm 1 since 421 <+ xx 24 2121 ++<−− xxxx , i.e., 

.  When  and 121 >+ xx t s  increases to  and  respectively, firm 1 offers a higher price at 't 's

( )[ ]( ) 322112
'' ++−+ xxxxst , while firm 2 correspondingly raises its price but by a smaller 

amount to ( )[ ]( ) 34 2112
'' xxxxst −−−+ . 

QED 
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Increase in Transportation Costs From Lower to Higher Transportation Cost 
Structure 
 

Linear to Quadratic Transportation Costs 

The difference in equilibrium price offered by firm 1 under quadratic and linear transportation 

costs is given by 

  ( ) ( ) ( )[ ]( )
3

22112*
1

*
1

++−−
=−

xxtxxs
pp LQ  

which is  if and only if 0> 12 xxst −< .  Therefore, under the higher quadratic transportation 

cost structure, firm 1 offers the good at a higher price than when transportation costs are 

linear if 12 xxst −< .   

The difference in equilibrium price offered by firm 2 under quadratic and linear 

transportation costs is given by 
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4 2112*
2

*
2

xxtxxs
pp LQ
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which is  if and only if 0> 12 xxst −< .  For , 0*
2 >p 421 <+ xx .  Therefore, under the 

higher quadratic transportation cost structure, firm 2 offers the good at a higher price than 

when transportation costs are linear if 12 xxst −<  and 421 <+ xx .  

Since 24 2121 ++<−− xxxx  or 121 >+ xx , firm 1 offers a higher price than 

firm 2. 

 

Linear to Linear-Quadratic Transportation Costs 

The difference in equilibrium price offered by firm 1 under linear and linear-quadratic 

transportation costs is given by 

  ( ) ( ) ( )( )
3

22112*
1

*
1

++−
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xxxxs
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which is  since  and .  Therefore, under the higher linear-quadratic 

transportation cost structure, firm 1 offers the good at a higher price than when transportation 

costs are linear.   

0> 0>s 12 xx >
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The difference in equilibrium price offered by firm 2 under linear and linear-quadratic 

transportation costs is given by 

  ( ) ( ) ( )( )
3
4 2112*

2
*
2

xxxxs
pp LLQ

−−−
=−  

which is  since  and .  For , 0> 0>s 12 xx > 0*
2 >p 421 <+ xx .  Therefore, under the higher 

linear-quadratic transportation cost structure, firm 2 offers the good at a higher price than 

when transportation costs are linear. 

Since 24 2121 ++<−− xxxx  or 121 >+ xx , firm 1 offers a higher price than     

firm 2. 

 

Quadratic to Linear-Quadratic Transportation Costs 

The difference in equilibrium price offered by firm 1 under quadratic and linear-quadratic 

transportation costs is given by 

  ( ) ( ) ( )
3

221*
1

*
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++
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xxt
pp QLQ  

which is  since .  Therefore, under the higher linear-quadratic transportation cost 

structure, firm 1 offers the good at a higher price than when transportation costs are quadratic.   

0> 0>t

The difference in equilibrium price offered by firm 2 under quadratic and linear-

quadratic transportation costs is given by 

  ( ) ( ) ( )
3

4 21*
2

*
2

xxt
pp QLQ

−−
=−  

which is  since .  For , 0> 0>t 0*
2 >p 421 <+ xx .  Therefore, under the higher linear-

quadratic transportation cost structure, firm 2 offers the good at a higher price than when 

transportation costs are linear. 

Since 24 2121 ++<−− xxxx  or 121 >+ xx , firm 1 offers a higher price than 

firm 2. 

QED 
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APPENDIX 4 

SIMULTANEOUS PRICE-LOCATION GAME WITH QUADRATIC TRANSPORTATION 

COSTS 

 

Assume that the transportation cost function is of the form ( ) 2sddc =  where  and 

.  The profit functions of firm 1 and firm 2 are given by the following respective 

equations: 
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Firm 1 maximises profit by choosing  with the first order condition given by  *
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2

*
1

*
2

*
1

1

22111 =⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+

−

−
=

∂
∏∂

xxs

ppp
x

xpxp
. 

Substituting ( )( ) 32*
2

*
1

*
1

*
2

*
1 ++−= xxxxsp  and ( )( ) 34 *

2
*
1

*
1

*
2

*
2 xxxxsp −−−=  (equation A11) 

obtained by maximising the respective firm’s profit with respect to price into the above gives 

  ( )( 0522
9

*
2

*
1

*
2

*
1 =+−++ xxxxs ) . 

Since  and 0>s ( ) 02*
2

*
1 >++ xx , this implies that ( ) 052 *

2
*
1 =+− xx .  In other words, the 

equilibrium location of firm 1 is at  

(A17)  
5

2 *
2*

1
x

x
+

=  

which gives the response function in location of firm 1. 

In the case of firm 2, it maximises profit by choosing  such that *
2x

  
( ) ( )( )

( )
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2
,,,

2*
1

*
2

*
2

*
1

*
2

2

22112 <⎟
⎟
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⎜
⎜

⎝

⎛
+

−

−
−=

∂
∏∂

xxs

ppp
x

xpxp
 

 



 167

since  from equation A11 for all *
2

*
1 pp > 421 <+ xx .  This implies that firm 2 increases 

profit by moving toward the market border, i.e.,  with ε+=1*
2x 0>ε  arbitrarily small.  

Solving for  by substituting  into equation A17 gives *
1x ε+=1*

2x ( ) 53*
1 ε+=x .  Finally, the 

equilibrium prices are obtained by substituting  and  into equation A11 which gives *
1x *

2x

( ) 252534 2*
1 εε −−= sp  and ( ) 252524 2*

2 εε +−= sp .  The simultaneous price-location 

equilibrium in pure strategies is, therefore, given by 

(A18)  ( ) ( )( ) ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛ ++−⎟

⎠
⎞

⎜
⎝
⎛ +

−−= εεεεεε 1,252
25
4,

5
3,253

25
4,,, 22*

2
*
2

*
1

*
1

ssxpxp  

where 0>ε  is a small constant. 
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APPENDIX 5 

RELEVANCE OF PROPOSITIONS 1, 2 AND 3 TO THE SIMULTANEOUS PRICE-LOCATION 

GAME UNDER VARIABLE LOCATIONS 

 

The following proves that Propositions 2.2 and 3 hold for the simultaneous price-location 

game of the IO model whenever an equilibrium in pure strategies exists, but Propositions 1 

and 2.1 do not hold. 

 

Proposition 1A 

When firm locations are variable, the equilibrium relative price *
1

*
2 pp  varies with the 

transportation cost structure. 

 

Proof 

Under quadratic transportation costs, the equilibrium relative price is  

  ( ) ( )22
*
1

*
2 253

25
4252

25
4 εεεε −−+−=

ss
p
p

 

(A19)  ( ) ( )
3
2253252 22

*
1

*
2 ≅−−+−= εεεε

p
p

 as 0→ε . 

Under linear-quadratic transportation costs, the equilibrium relative price is 

  
( )

( )⎥
⎦

⎤
⎢
⎣

⎡
+++⎟

⎠
⎞

⎜
⎝
⎛ ++

⎥
⎦

⎤
⎢
⎣

⎡
+−−⎟

⎠
⎞

⎜
⎝
⎛ −+

=
εε

εε

sst
s
tts

sst
s
tts

p
p
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25
476

25
2
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25
434

25
2

*
1

*
2  

(A20)  
( )

( )εε

εε

sst
s
tts

sst
s
tts

p
p

272
25
476

232
25
434

*
1

*
2

+++⎟
⎠
⎞

⎜
⎝
⎛ ++

+−−⎟
⎠
⎞

⎜
⎝
⎛ −+

=
⎟
⎠
⎞

⎜
⎝
⎛ ++

⎟
⎠
⎞

⎜
⎝
⎛ −+

≅

s
tts

s
tts

76

34
 as 0→ε . 

Since equations A19 and A20 are not equal, Proposition 1 does not hold. 

QED 
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Proposition 2A 

Under variable firm locations, the equilibrium market demand ( )*
2

*
1 , mm  for the good has the 

following properties: 

2.1A It varies with the transportation cost structure 

2.2A Relative demand is equivalent to relative prices. 

 

Proof 

Under quadratic transportation costs, the equilibrium demand is obtained by substituting 

( ) ( )( )*
2

*
2

*
1

*
1 ,,, xpxp  into equations A7 and A8 which gives 

  ( ) ( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−−

+
++

=
ε
εε

ε
εε

215
102,

215
10113,

22
*
2

*
1 mm . 

The relative demand is given by 

(A21)  ( )

( )
3
2

10113
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215
10113

215
102

2

2

2

2

*
1

*
2 ≅

++
−−

=

+
++
+
−−

=
εε
εε

ε
εε

ε
εε

m
m

 as 0→ε . 

which is equivalent to equation A19 since ε  is a small constant close to 0. 

Under linear-quadratic transportation costs, the equilibrium demand is obtained by 

substituting ( ) ( )( )*
2

*
2

*
1

*
1 ,,, xpxp  into equations 3 and 4 which gives 

( ) ( ) ( ) ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+−−+

++⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
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++
= 2

2
2

2
*
2

*
1 46443

210
1,414467
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1, εεε

ε
εεε

ε
sst

s
tst

sst
sst

s
tst

sst
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. 

The relative demand is given by 

(A22)  

s
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 as 0→ε . 
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which is equivalent to A20 as 0→ε .  Since equations A21 and A22 are not identical, 

Proposition 2.1 does not hold.  Since *
1

*
2

*
1

*
2 ppmm =  for ε  close to 0, Proposition 2.2 holds 

for the simultaneous game of the IO model whenever an equilibrium in pure strategies exists. 

QED 

 

Proposition 3A 

Given a transportation cost structure, the inside firm raises (lowers) its price when faced with 

higher (lower) transportation costs.  The outside firm reacts by raising (lowering) its price but 

by a smaller amount. 

 

Proof 

When the transportation costs are quadratic, the unique price equilibrium in pure strategies 

exists at the pair of prices 

  ( ) ( )2*
2

2*
1 252

25
4and253

25
4 εεεε +−=−−=

spsp .  

Firm 2 offers a lower price than firm 1 since 2512258 ss <  as long as 21<ε .  When s  

increases to , firm 1 offers a higher price at 's ( 2
'

253
25
4 εε −−

s ) , while firm 2 

correspondingly raises its price but by a smaller amount to ( )2
'

252
25
4 εε +−

s , 21<ε . 

When the transportation costs are linear-quadratic, the unique price equilibrium in 

pure strategies exists at the pair of prices 

( ) ( )⎥
⎦

⎤
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⎣

⎡
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⎜
⎝
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s
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s
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2
*
1

 

Firm 2 offers a lower price than firm 1 since 

 ( ) ( )⎥
⎦

⎤
⎢
⎣

⎡
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⎠
⎞

⎜
⎝
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When  increases to  and t 't s  increases to , firm 1 offers a higher price at 's

( ) 252722762 '''
'

'
''

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++ εε sst

s
tts , while firm 2 correspondingly raises its price 

but by a smaller amount to ( ) 252322342 '''
'

'
''

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−+ εε sst

s
tts . 

 Proposition 3, therefore, holds for the simultaneous price-location game of the IO 

model whenever an equilibrium in pure strategies exists. 

 

QED 
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APPENDIX 6 

SEQUENTIAL GAME WITH QUADRATIC TRANSPORTATION COSTS 

 

Under quadratic transportation costs when 421 <+ xx , the unique price equilibrium in pure 

strategies is given by equation A11, i.e., 

  ( ) ( )( ) ( )( ⎟
⎠
⎞

⎜
⎝
⎛ −−−++−= 21122112

*
2

*
1 4

3
,2

3
, xxxxsxxxxspp ) . 

The profit function of firm 1 is given by 

  ( ) ( )( ) ( )
( )

1
21

12

2
121

212122111 22
,,,,, p
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xxs
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xxxxpxxp
+

+
−
−

=∏ . 

Substituting equation A11 gives 

  ( ) ( )( ) ( ) ( )2
21

12
2121

*
221

*
11 2

18
,,,,, ++

−
=∏ xx

xxs
xxxxpxxp . 

Optimising with respect to  gives 1x

  
( ) ( )( ) ( )( 232

18
,,,,, *

2
*
1

*
2

*
1

1

2121
*
221

*
11 +−++−=

∂
∏∂

xxxxs
x

xxxxpxxp )  

since  and 0>s ( ) 02*
2

*
1 >++ xx .  There are two possible scenarios.  If , or 023 *

2
*
1 >+− xx

(A23)   23 *
1

*
2 +< xx

then ( ) 0,,, 121
*
2

*
11 <∂∏∂ xxxpp  and firm 1 increases profit by moving away from firm 2.  

The equilibrium location for firm 1 would then be .  Otherwise, if the converse of 

equation A23 holds, then either 

0*
1 =x

( ) 0,,, 121
*
2

*
11 >∂∏∂ xxxpp  when  so that firm 1 

will locate at , or 

23 *
1

*
2 +> xx

1*
1 =x ( ) 0,,, 121

*
2

*
11 =∂∏∂ xxxpp  when . 23 *

1
*
2 += xx

Now consider the profit function for firm 2 which is given by 

  ( ) ( )( ) ( )
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2
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12

2
221

212122112 2
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2
,,,,, p
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+
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Substituting equation A11 gives 
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  ( ) ( )( ) ( ) ( )2
21

12
2121

*
221

*
12 4

18
,,,,, xx

xxs
xxxxpxxp −−

−
=∏ . 

Optimising with respect to  gives 2x
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Since  and , we have, for 0>s 04 *
2

*
1 >−− xx ( ) 0,,, 221

*
2

*
12 =∂∏∂ xxxpp , 

(A24)   034 *
2

*
1 =−+ xx

Suppose that equation A23 holds so that .  Substitution of  into equation 

A24 then gives 

0*
1 =x 0*

1 =x

34*
2 =x .   

We will now show that the converse of equation A23 is not valid.  Suppose instead 

that  which implies that  since 23 *
1

*
2 +> xx 1*

1 =x ( ) 0,,, 121
*
2

*
11 >∂∏∂ xxxpp .  The 

condition then gives .  Substituting  into equation A24 gives 5*
2 >x 1*

1 =x 35*
2 =x  which 

contradicts .  This implies that  cannot hold.   5*
2 >x 23 *

1
*
2 +> xx

Next, suppose that ( ) 0,,, 121
*
2

*
11 =∂∏∂ xxxpp  because .  Solving this 

equality together with equation A23 gives 

23 *
1

*
2 += xx

41*
1 =x  and 45*

2 =x .  This solution, however, 

contradicts the equality condition assumed at the outset, since substitution of 41*
1 =x  gives 

411*
2 =x . 

We have now established that the only solution in pure strategies to the first stage 

game if  is 421 <+ xx ( ) ( )34,0, *
2

*
1 =xx .  The second-stage game is then solved by 

substituting  and  into equation A11.  The equilibrium price pair in pure strategies, 

therefore, is given by 

*
1x *

2x

( ) ( )2732,2740, *
2

*
1 sspp = .  The full (subgame perfect) equilibrium to 

the sequential game in pure strategies is then given by 

(A25)  ( ) ⎟
⎠
⎞

⎜
⎝
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3
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27
40,,, *

2
*
1

*
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*
1

ssxxpp  

where . 421 <+ xx
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APPENDIX 7 

RELEVANCE OF PROPOSITIONS 1, 2 AND 3 TO THE SEQUENTIAL GAME UNDER 

VARIABLE LOCATIONS 
 

The following proves that Propositions 2.2 and 3 hold for the sequential game of the IO 

model whenever an equilibrium in pure strategies exists, but Propositions 1 and 2.1 do not 

hold. 

 

Proof of Proposition 1A 

Under quadratic transportation costs, the equilibrium relative price is  

(A26)  
5
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Under linear-quadratic transportation costs, the equilibrium relative price is  
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Since equations A26 and A27 are not equal, Proposition 1 does not hold. 

QED 

 

Proof of Proposition 2A 

Under quadratic transportation costs, the equilibrium demand is obtained by substituting 

( )*
2

*
1

*
2

*
1 ,,, xxpp  into equations A7 and A8 which gives 

  ( ) ⎟
⎠
⎞

⎜
⎝
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9
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9
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The relative demand is given by 
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which is equivalent to equation A26. 

Under linear-quadratic transportation costs, the equilibrium demand is obtained by 

substituting ( )*
2

*
1

*
2

*
1 ,,, xxpp  into equations 3 and 4 which gives 
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The relative demand is given by 
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which is equivalent to A27.   

Since equations A28 and A29 are not identical, Proposition 2.1 does not hold.  Since 

*
1

*
2

*
1

*
2 ppmm = , Proposition 2.2 holds whenever an equilibrium in pure strategies exists. 

QED 

 

Proof of Proposition 3A 

When the transportation costs are quadratic, the unique price equilibrium in pure strategies 

exists at the pair of prices 

  
27
32and

27
40 *

2
*
1

spsp == . 

Firm 2 offers a lower price than firm 1 since 27402732 ss < .  When s  increases to , 's

firm 1 offers a higher price at 2740s , while firm 2 correspondingly raises its price but by a 

smaller amount to 2732s . 

When the transportation costs are linear-quadratic, the unique price equilibrium in 

pure strategies exists at the pair of prices 
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Firm 2 offers a lower price than firm 1 since ( ) ( sttsstts −+ )<++ 120816 .  When  

increases to  and 

t

't s  increases to , firm 1 offers a higher price at 's ( )[ ]( )271202 '''' stts −+ , 

while firm 2 correspondingly raises its price but by a smaller amount to 

( )[ ]( )278162 '''' stts ++ .   

 Proposition 3, therefore, holds for the sequential game of the IO model whenever an 

equilibrium in pure strategies exists. 

QED 
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APPENDIX 8 

INSTRUCTIONS FOR EXPERIMENT WITH PARAMETRIC FIRM LOCATION 
 

Welcome to the experiment!  Please read these instructions and follow them carefully.  Do 

not talk to any person other than the facilitator until the end of the experiment.  If you 

have any questions, you may ask the facilitator after reading the instructions.  

 

In this experiment, we are going to set up a market in which buyers and sellers trade a single 

commodity.  Trading will commence with one practice period, followed by a sequence of 16 

actual periods. 

 

The prices that you negotiate in each trading period will determine your earnings in 

experimental dollars.  At the end of the experiment, your earnings will be paid to you after 

conversion to Singapore dollars.  The exchange rate is set at 2 experimental dollars to 1 

Singapore dollar.1

 

Instructions 

 

In this experiment, you will function as a seller.  In your market, there is one other seller and 

many buyers.  The buyers and sellers are located at different distances from the city centre 

along the same main road.  The distances are measured in ED (experimental distance) units.   

 

0 1

City 
centre 

Seller 1, Buyers Seller 2

 

 

One seller is located between 0 and 1 ED unit while the other seller is located at distances 

beyond 1 ED unit.  The buyers are evenly located along the main road from 0 to 1 ED unit.  

                                                      
1 The exchange rate varies for each treatment. 
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When you start trading, the computer will inform you of your location and the location of the 

other seller.  The locations of all participants remain unchanged throughout the whole of the 

experiment. 

 

Each buyer incurs a travel cost to arrive at either seller to purchase the commodity.  If x is the 

distance a buyer travels to the seller, the buyer pays a transport cost of 2.6x.2  Therefore, if the 

buyer travels x = 1 ED unit, he incurs a transport cost of 2.6, while if x = 2 ED units, he incurs 

a transport cost of 5.2. 

 

0

5

10

15

1 2 3 4 5

Distance

Tr
an

sp
or

t c
os

ts Transport costs increase 
at a rate 2.6x where x is 
the distance travelled. 

 

 

 

 

 

 

 

The buyers choose the seller who offers the lower offer price plus transport cost.  They do not 

consider other factors such as the inconvenience of buying one unit from one seller compared 

to the other seller, or the time spent on travelling.  If there is a tie in offer price plus transport 

cost, the buyers purchase from the seller closer to them. 

 

In this experiment, you make a decision on the price to sell your commodity.  You must 

choose a price from zero upwards.  

 

                                                      
2 The transportation cost structure and its parameters vary for each treatment. 
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To help you with your decision, you are provided with a Market Share Calculator which you 

can use at any time.  The Market Share Calculator determines the percentage of buyers out of 

the total number of buyers in the market that you may capture at the price you have chosen.  

To access the Market Share Calculator, press Alt-Tab to reveal the Excel spreadsheet (see 

Figure below).  You can enter alternative offer price pairs for yourself and the other seller and 

see the resulting market shares.  Once you have decided on your offer price, press Alt-Tab 

again to return to the experiment screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

MARKET SHARE CALCULATOR s = 6.5
a = 0.25
b = 1.25

Please enter your price in the box below:

 
 

Please enter a price that you think the other seller may offer in the box below:

 
 

The market share (percentage of buyers) for you and the other seller at these prices are:

Your market share 75.00 % 0.75

The other seller's market share 25.00 % 0.25

You may continue to enter different offer prices in the blue boxes above to compute the market share you may get.
When you are done, press Alt-Tab to return to the previous screen.

0.00

0.00

 

Enter your offer price in the experiment screen (see Figure below).  Then click on the button 

“Offer”.  The number of buyers who accept the commodity at the price you have chosen will 

be shown to you.  You will also be shown the price and market share of the other seller.   
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Period 1              Remaining time{sec}:     272

                                You are seller number 1

You are located at (in ED units)  0.25 The other seller is at (in ED units)  1.25

Please enter your offer price in the box below:

No offer Offer

INSTRUCTIONS
You must decide on a price to sell your commodity. Choose a price between 0 and 7.9.
Enter your choice in the box above. Then click the "Offer" button.
If you do not wish to offer any price, click the "No Offer" button. To help you with your decision, you
may use the Market Share Calculator which can be accessed by pressing Alt-Tab. To return to this
screen, press Alt-Tab again.

Your earnings are equal to your market share multiplied by the price you charge.  This profit 

is then added to any profits you may earn in the earlier periods to determine your total profits 

in each period. 

 

Period 1

Seller Number Price Percentage market share
1 5 35.8
2 4 64.2

Your earnings this period are 2.79
Your total earnings are 2.79

 

 

 

 

 

 

 

If you have no questions, we will proceed with one trial trading period, followed by the actual 

trading periods.  After you have completed the experiment, you will be asked to complete a 

short questionnaire.  We will then privately pay your earnings after conversion to Singapore 

dollars, including a show-up fee of S$4. 
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APPENDIX 9 

QUESTIONNAIRE FOR EXPERIMENT 

 

Personal Data 

Name 

Age 

Gender 

Nationality 

Telephone 

E-mail 

What is your Faculty? 

What are your subjects of study? Please state your major subject first. 

Which year of study are you?  � � �First Second Third � Honours � �Masters PhD 

Have you participated in a market experiment before? � �Yes No 

Have you participated in a market experiment the same as the one you just did? � �Yes No 

Would you like to participate in other experiments? � �Yes No 

Questions on the experiment 

How did you arrive at your price decisions? 

Did you find the Market Share Calculator useful? 

Did you use the Market Share Calculator to arrive at an optimal price target that you have set 

for yourself? 

Please write down any other comments you have about this experiment. 

Additional questions for experiment on variable firm location

How did you arrive at your location decisions? 

Did you use the Market Share Calculator to arrive at an optimal location target that you have 

set for yourself? 
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APPENDIX 10 

INSTRUCTIONS FOR EXPERIMENT WITH VARIABLE FIRM LOCATION 

 

Welcome to the experiment!  Please read these instructions and follow them carefully.  Do 

not talk to any person other than the facilitator until the end of the experiment.  If you 

have any questions, you may ask the facilitator after reading the instructions.  

 

In this experiment, we are going to set up a market in which buyers and sellers trade a single 

commodity.  Trading will commence with one practice period, followed by a sequence of 16 

actual periods. 

 

The prices that you negotiate in each trading period will determine your earnings in 

experimental dollars.  At the end of the experiment, your earnings will be paid to you after 

conversion to Singapore dollars.  The exchange rate is set at 21 experimental dollars to 1 

Singapore dollar.3

 

Instructions 

 

In this experiment, you will function as a seller.  In your market, there is one other seller and 

many buyers.  The buyers and sellers are located at different distances from the city centre 

along the same main road.  The distances are measured in ED (experimental distance) units.   

 

 

0 1

Seller 1, Buyers Seller 2
City 

centre  

 

 

                                                      
3 The exchange rate varies for each treatment. 
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One seller is located between 0 and 1 ED unit while the other seller is located at distances 

beyond 1 ED unit.  When you start trading, the computer will inform you which of the two 

sellers you are.  The buyers are evenly located along the main road from 0 to 1 ED unit.   

 

Each buyer incurs a travel cost to arrive at either seller to purchase the commodity.  If x is the 

distance a buyer travels to the seller, the buyer pays a transport cost of 2.6x + 6.5x2.4  

Therefore, if the buyer travels x = 1 ED unit, he incurs a transport cost of 9.1, while if x = 2 

ED units, he incurs a transport cost of 31.2. 
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Transport costs increase at 
a rate 2.6x+6.5x2 where x 
is the distance travelled. 

 

 

 

 

 

 

The buyers choose the seller who offers the lower offer price plus transport cost.  They do not 

consider other factors such as the inconvenience of buying one unit from one seller compared 

to the other seller, or the time spent on travelling.  If there is a tie in offer price plus transport 

cost, the buyers purchase from the seller closer to them. 

 

                                                      
4 The transportation cost structure and its parameters vary for each treatment. 
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The numerical examples below illustrate how the total cost (price plus transport cost) of 5 

buyers change with the sellers’ location and price. 

 
Buyer located at

Transport cost Price Total Cost Transport cost Price Total Cost
0.00 0.00 14.40 14.40 18.53 8.23 26.76
0.25 1.06 14.40 15.46 13.41 8.23 21.64
0.50 2.93 14.40 17.33 9.10 8.23 17.33
0.75 5.61 14.40 20.01 5.61 8.23 13.84
1.00 9.10 14.40 23.50 2.93 8.23 11.16

Market share 50.02% 49.98%

Seller 1 located at 0 Seller 2 located at 1.5
 

 

 

 

 
Buyer located at

Transport cost Price Total Cost Transport cost Price Total Cost
0.00 0.00 14.40 14.40 9.26 14.31 23.57
0.25 1.06 14.40 15.46 5.73 14.31 20.04
0.50 2.93 14.40 17.33 3.02 14.31 17.33
0.75 5.61 14.40 20.01 1.12 14.31 15.43
1.00 9.10 14.40 23.50 0.03 14.31 14.34

Market share 50.01% 49.99%

Seller 1 located at 0 Seller 2 located at 1.01
 

 

 

 

 
Buyer located at

Transport cost Price Total Cost Transport cost Price Total Cost
0.00 9.10 13.00 22.10 9.26 10.36 19.62
0.25 5.61 13.00 18.61 5.73 10.36 16.09
0.50 2.93 13.00 15.93 3.02 10.36 13.38
0.75 1.06 13.00 14.06 1.12 10.36 11.48
1.00 0.00 13.00 13.00 0.03 10.36 10.39

Market share 50.97% 49.03%

Seller 1 located at 1 Seller 2 located at 1.01
 

 

 

 

 

 

In this experiment, you make two decisions: (1) Deciding where to locate your shop to sell 

your commodity, and (2) Deciding what price to sell your commodity. 

 

(1) Deciding Your Location 

At the start of each trading period, you will be asked to decide on a location for your shop.  

The computer will inform you whether you are Seller 1 who must locate within 0 to 1 ED 

unit, or Seller 2 who must locate at distances beyond 1 ED unit.  You must then make your 

location decisions within the relevant boundaries.  Your role as Seller 1 or Seller 2 will not 

change throughout the experiment. 
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(2) Deciding on Your Price 

Next, you must decide on a price to sell the commodity.  You must choose a price from zero 

upwards.  

 

To help you with your decisions, you are provided with a Market Share Calculator which you 

can use at any time.  The Market Share Calculator determines the percentage of buyers out of 

the total number of buyers in the market that you may capture at the location and price you 

have chosen.  To access the Market Share Calculator, press Alt-Tab to reveal the Excel 

spreadsheet (see Figure below).  You can enter alternative offer price pairs for yourself and 

the other seller and see the resulting market shares.  Once you have decided on your offer 

price, press Alt-Tab again to return to the experiment screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MARKET SHARE CALCULATOR s = 6.5

Please enter your location in the box below:  
0.00  

Please enter the location that you think the other seller may choose in the box below:

2.00  

Please enter your price in the box below:

 
 

Please enter a price that you think the other seller may offer in the box below:

 
 

The market share (percentage of buyers) for you and the other seller at these locations and prices are:

Your market share 100.00 % 1.00

The other seller's market share 0.00 % 0.00

You may continue to enter different locations and offer prices in the blue boxes above to compute the market share you may get. 
When you are done, press Alt-Tab to return to the previous screen.

0.00

0.00
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Enter your location and offer price in the experiment screen (see Figure below).  Then click 

on the button “Offer”.  The number of buyers who accept the commodity at the location and 

price you have chosen will be shown to you.  You will also be shown the location, price and 

market share of the other seller.   

 

 

 

 

 

 

 

 

 

 

Period 1              Remaining time{sec}:     272

                                You are seller number 1

Enter your location choice in the box below: Enter your offer price in the box below:

No offer Offer

Instructions
You must decide on a location for your shop and a price at which to sell your commodity.
First, choose a location from 0 to 1. Next, choose a price between 0 and 14.9.
Enter your choices in the relevant boxes above. Then press the "Offer" button.
If you do not wish to make a price or location decision, press the "No Offer" button.
To help you with your decisions, you may use the Market Share Calculator which can be accessed by
pressing Alt-Tab. To return to this screen, press Alt-Tab again.

Your earnings are equal to your market share multiplied by the price you charge.  This profit 

is then added to any profits you may earn in the earlier periods to determine your total profits 

in each period. 

 

 

 

 

 

 

 

Period 1

Seller Number Location Price Percentage market share
1 0.25 7 55.77
2 1.25 6 44.23

Your earnings this period are 2.65
Your total earnings are 2.65 OK

If you have no questions, we will proceed with one trial trading period, followed by the actual 

trading periods.  After you have completed the experiment, you will be asked to complete a 

short questionnaire.  We will then privately pay your earnings after conversion to Singapore 

dollars, including a show-up fee of S$4. 
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