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Summary 

Continuous chemical plants have multiple steady state operating modes. Process 

monitoring, fault diagnosis and state identification during process transitions is an 

important task for plant operators and engineers. The ability to automatically identify 

process state would allow the control system to work properly. It is also important in 

order to ensure optimal operation, maintain quality of products and prevent accidents 

in processes operation. Online data from the process signal is a rich source of 

information and can be used for this purpose. Despite developments in process state 

identification from data, many important and challenging problems still persist in this 

area.  In this thesis, new methodologies for computationally efficient process state 

identification have been developed. 

Firstly, a new approach for temporal signal comparison has been developed. 

Information content is not homogenously distributed throughout a signal; rather the 

majority of the features of the signal are concentrated in a small number of points. In 

this thesis, such points, which are landmarks in the signal evolution, are termed as 

singular points. Process data is first segmented based on singular points. Dynamic 

programming and dynamic time warping (DTW) is used to find their optimal match 

and obtain the signal difference. Singular point augmentation can be used with 

traditional DTWs, the role of the latter in this case is for episode-wise comparison. In 

such cases, the proposed method improves the quality of signal comparison.  A 

computationally efficient extrapolative time warping method which uses a greedy 

search instead of dynamic programming has also been developed in this thesis. A 

performance comparison of the singular point augmented time warping method with 

DTW reveals a substantial decrease in computational cost, which makes it amenable 
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for large-scale case studies. The extension of singular points based methodology for 

online signal comparison has also been developed and reported in this thesis. 

Secondly, a new signal comparison-based approach, called dynamic locus 

analysis, for online state identification and fault diagnosis during process transitions 

has been proposed. Dynamic locus analysis is an extension of Smith and Waterman’s 

(1981) discrete sequence comparison algorithm to continuous signals.  It uses dynamic 

programming to efficiently identify the portion of a long reference signal that best 

matches another signal. During online application, signals from real-time sensors are 

compared with those from prior process runs to identify the current process state as 

well as estimate its progress. Run-to-run variations between the reference and online 

signals are accounted for by using dynamic time warping (DTW) for signal 

comparison. Dynamic locus analysis can be directly used for multivariate temporal 

signals and has the computational efficiency needed for real-time application. 

The large-scale and complexity of modern chemical plants makes it difficult for 

the operator to constantly monitor all process variables. Numerous methods exist for 

monitoring processes; however most of them suffer from computational complexity 

problems when applied to large-scale processes. In this thesis, a new method called 

state-specific key variables selection has also been developed for large-scale processes. 

The state-specific key variables provide a basis for defining key variables dynamically. 

The state-specific key variables are selected based on properties of process signals and 

their features. State-specific key variables solve the problem of desynchronization 

across different sections and improve the sensitivity of state identification. From the 

operations standpoint, the monitoring load is also reduced.  

All the methodologies proposed in this thesis have been tested using data from 

different kinds of agile operations - startup of a simulated Fluidized Catalytic Cracking 
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Unit, multi-mode operation in the Tennessee Eastman challenge process, a lab-scale 

fed-batch fermentation process, and a lab-scale distillation column. Their performance 

are compared with traditional methods and shown to be superior. 
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Nomenclature 

c Index of variable  

i  Time index of signal R, current segment    
j  Time index of signal T, reference signal 

k, m Index of singular points of  T 

l,  n Index of singular points of R 

  

A Sequence },...,,,{ 321 iaaaaA =  

B Sequence },...,,,{ 321 jbbbbB =  

D(t,r) Normalized DTW distance between signals T and R 
*( , )D t r  Minimum DTW distance between signals T and R 

DA(i,j) Minimum accumulated distance from point (1,1) to point (i,j). 

SD  Dissimilarity matrix of X and Y 

( , )SP SP
k lE T R  Distance between ( , ) and ( , )T Rm M n N∑ ∑  

F  Sequence of DTW warping path { (1), (2),..., ( ),... ( )}c c c p c P=  

fm The mth stage signal difference 

K Collection of reference signals 

k  Position in reference signal which has the minimum ),( km yxD  

m Length of  current segment = Length of evaluation window 

( )N w  Normalization factor in DTW 

n Length of reference signal 

l  Corresponding the start point ),( 1 lyx in reference signal which 
corresponding to ),( jiS yxD  

P  Path matrix  

Q Number of variables in process  

R  A sampled signal with length r 
SP
nR  Singular points of signal R  1 2{ , ,..., ,... }SP SP SP SP

n NR R R R∈ } 

S Group separability ratio 

T  A sampled signal with length t 
SP

mT  Singular points of signal T 1 2{ , ,..., ,... }SP SP SP SP
m MT T T T∈  
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w Width of band global constraint 

( )w p  Weight coefficient for local distance 

X Real-time signal segment { }mxxxxX ,...,, 321=  

Hx  High limit of sensor range 

Lx  Low limit of sensor range 

'
ix  Normalized process variable 

Y Reference signal { }nyyyyY ,...,, 321=  

*jy  Point in reference signal that corresponds to mx  

Z  Segment of signal Y, { }jll yyyZ ,...,, 1+=  

( , )i jx yΔ  Difference between ix  and jy  

α  Inseparability ratio = Ratio of normalized difference between best 

matching and second-best matching reference signals. 0 1α≤ ≤  

minα  Minimum inseparability  threshold  

β  Duration of a singular episode 

δ  Jump threshold for singular point identification 
{ ( , ), ( , )}T Rm k n lε ∑ ∑  Difference between signal segments ( , )T m k∑  and ( , )R n l∑  

η  Normalized difference  

τ  Size of neighborhood for singular point identification 

xτ  Time of the reference signal that corresponds to mx  

yτ   Time of the reference signal that corresponds to *jy  

ϑ  State-differentiability 
ς  Signal uniqueness 

ω  Size of inspection window for singular point identification 

( , )T Rκ  Optimal distance between signal T and R 

( , )R n l∑  Segment of signal R from SP
nR  to SP

lR  

( , )T m k∑  Segment of signal T from SP
mT  to SP

kT  
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Chapter 1 Introduction 

Modern chemical industries are large in scale and highly complex. Most continuous 

chemical process plants are operated in a multitude of states. Some of these are steady 

states while others including grade changes, startup, shutdown, and maintenance 

operations are transitions. Transition operations are usually challenging and more 

prone to abnormalities. Even when a transition is a desired change, there is often a 

flood of false alarms which distract the operators. This is because, at present, process 

automation applications like alarm management and advanced control are usually 

configured for a single operating state – typically a steady state mode. During 

transitions, operation errors are more likely to occur and equipments are likely to 

malfunction. Therefore, operators need more help than during steady state operation. 

But operations support systems have difficulties in working properly during 

transitions. There has been a large push consequently to create intelligent systems to 

manage transitions and detect faults during multiple state process operations. Early and 

accurate transition identification, fault detection and diagnosis can increase safety of 

process operation. It is also helpful in environmental protection and using resources 

effectively.  

Online data from the process is a rich source of information and can be used for this 

purpose. Despite developments in state identification from online process 

measurements, many important and challenging problems still persist in this area.  In 

this thesis, new methodologies for computationally efficient process state identification 

have been developed.  
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Signal comparison is important for process monitoring, fault diagnosis, and process 

stage identification. In Chapter 3, a new approach for signal comparison based on 

singular points and time warping has been presented.  A robust method for uni-variate 

signal synchronization based on dynamic time warping (DTW) is proposed. The high 

computational complexity of DTW, which deters its widespread adoption, is 

significantly reduced by exploiting landmarks such as extreme values and sharp 

changes in the data, called singular points. Singular points are used to segment the 

process signal into regions, called episodes, with homogeneous properties. Comparison 

of signals is based on linking their singular points or episodes using dynamic 

programming.  Time warping methods are used to match the corresponding episodes of 

the two signals. This two-step comparison approach leads to significant improvements 

in the speed, memory requirement, and efficiency of signal comparison. Another 

important advantage of the proposed approach is that since the singular points have 

physical meaning such as the beginning or ending of a process event, they can be 

directly used for state identification, monitoring, and supervision. A performance 

comparison of the singular points augmented time warping method with DTW reveals 

a substantial decrease in computational cost, which makes it amenable for large-scale 

case studies.  

 

In Chapter 4, a new signal comparison-based approach, called dynamic locus analysis 

(DLA), for online state identification and fault diagnosis during process transitions has 

been proposed. Dynamic locus analysis is an extension of Smith and Waterman’s 

(1981) discrete sequence comparison algorithm to continuous signals.  It uses dynamic 

programming to efficiently identify the portion of a long reference signal that best 

matches another signal. There are two problems, first, which part in reference signal 
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that corresponds to real-time signal. Second, real-time segment and corresponding part 

in reference signal would not match exactly due to noise and run-to-run differences. 

With dynamic locus analysis, all potential matching segments are compared for find 

the optimal results. Dynamic locus analysis is also used for segment synchronization 

make it robust to run-to-run differences and noise. During online application, signals 

from real-time sensors are compared with those from prior process runs to identify the 

current process state as well as estimate its progress. Run-to-run variations between the 

reference and online signals are accounted for by using dynamic time warping (DTW) 

for signal comparison. Dynamic locus analysis can be directly used for multivariate 

temporal signals and has the computational efficiency needed for real-time application. 

 

 

The extension to online signal comparison has also been developed and reported in 

Chapter 5. During online process monitoring, there are two different stages in signal 

comparison – (1) Identifying the correct reference signal, and (2) Confirming that the 

real-time signal is similar with the previous identified reference signal. We solve the 

first stage using singular points, dynamic time warping, and dynamic programming. 

Dynamic programming is used to find the optimal linkage of the corresponding 

singular points between the real-time and reference signals and to calculate the extent 

of the real-time signal with respect to the reference. The total difference between the 

two signals is calculated using dynamic time warping. The total difference helps us 

identify the reference which is most similar to the real-time signal.  A real-time 

extension of time warping has been used for the second stage of confirming the 

continued similarity with the same reference signal. 
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The large-scale and complexity of modern chemical plants makes it difficult for the 

operator to constantly monitor all process variables. Numerous methods exist for 

monitoring processes; however most of them suffer from computational complexity 

problems when applied to large-scale processes. In Chapter 6, a new approach for 

identifying a subset of the process variables, called key variables, which indicate the 

current processing state has been developed. Traditional process monitoring methods 

can then focus on this subset for effective monitoring.  Key variables have been 

classified into six types and are determined using a hierarchical procedure that reflects 

the division of the process operation at different levels of granularity. The state-

specific key variables provide a basis for defining key variables dynamically and solve 

the problem of desynchronization across different sections as well as improve the 

sensitivity of state identification.  

 
All the above methods have been tested using three different case studies – operations 

stage identification during startup of ShadowPlant (a simulated fluidized catalytic 

cracking unit), disturbance identification in the Tennessee Eastman challenge plant, 

and faults identification during startup of a lab-scale distillation column. In all cases, 

the proposed methods correctly identified the corresponding points of the variables and 

found an operationally relevant signal difference.  
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Chapter 2 Literature Review 

2.1 Signal Comparison 

Modern chemical plants are large in scale and highly complex.  Due to 

significant advances in data collection and storage, vast amount of historical data is 

becoming commonly available.  This data is a rich source of information about the 

process that can be used to improve the plant operation. Potential areas of application 

of data-driven methods include process control, visualization of processing, operation 

improvement, and fault diagnosis. Data based approaches have been gaining in 

popularity due to significant developments in pattern classification (Webb, 2002) and 

statistical, information and systems theories (Chiang et al., 2001). Despite these 

developments in extracting information and knowledge from data, many important and 

challenging problems persist in knowledge extraction.  In this thesis, we address one 

such problem – the comparison and matching of temporal signals in Chapter 3 and 

Chapter 5. 

Dynamic Time Warping (DTW) is a popular method for signal comparison. In 

this thesis, we propose an extension of DTW that meets the above criteria for signal 

comparison.  

2.1.1 Dynamic Time Warping 

As described above, it is normal for two similar signals to be slightly different 

and not match each other perfectly. Comparison of signals with distortions is necessary 

for automatic word and speech recognition as well. Dynamic Time Warping is a robust 

method that has been widely used for matching speech patterns and calculating the 

difference between two signals. Two classes of DTW methods – Symmetric DTW and 

Asymmetric DTW – can be distinguished (Sankoff and Kruskal, 1983). A symmetric 
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algorithm treats the two signals equally, that is, both their time axis are mapped onto a 

common time axis and both patterns may be changed after the alignment. An 

asymmetric algorithm on the other hand, maps the time axis of the test signal onto the 

time axis of the reference signal. So the test signal will change to match the reference 

signal while the reference signal will remain unchanged. The asymmetric class is the 

one considered in this thesis for simplifying the comparison algorithm of DTW. 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 2-1: DTW of signal T on signal R  
 

Let T and R denote two time-sampled signals of lengths t and r, and let j and i 

denote the time index of their trajectories, respectively. DTW finds a sequence F* of P 

points on an r*t grid such that a total distance measure between the two trajectories is 

minimized as shown in 3Figure 2-1.  

 * { (1), (2),..., ( ),... ( )}F c c c p c P=  (2-1) 

 ( ) [ ( ) ( )]c p i p j p=  (2-2) 

The minimum normalized distance * ( , )D r t between the signals is found by 

warping their time axis and can be formulated as: 

  

 *

F
( , ) min[ ( , )]D r t D r t=  (2-3) 

 

 

t 

j 

r i 1 

Signal T Warping function 

Signal R 
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1

1( , ) [ ( ), ( )]* ( )
( )

P

p

D r t d i p j p w p
N w =

= ∑  (2-4) 

Here, ( , )D r t is the normalized total distance between the two signals, 

[ ( ), ( )]d i p j p  is the local distance between the point j(p) of T and point i(p) of R, 

( )w p is a nonnegative weight coefficient, and ( )N w (usually
1

( )
P

p
w p

=

= ∑ ) a 

normalization factor. ( )w p provides the flexibility to differently weigh horizontal and 

vertical steps in the DTW path. In this thesis, we have used ( ) 1w p =  for all cases.  The 

optimal path *F is found as * [ ( , )]argmin
F

F D r t= . 

 

Constraints are often used to define and restrict the search space and find an 

alignment that optimizes some criterion. They are motivated by physical 

considerations, to avoid excessive compression or expansion, speed up the calculation, 

or other problem specific limits on the alignment. As an example, endpoint constraints 

are commonly used in offline signal comparison and require the endpoints of S  and T  

to match.  

 (1) (1,1)  & ( ) ( , )c c P r t= =  (2-5) 

 

Local constraints determine local features for each point. For example, the 

Sakoe-Chiba local constraint allows a point (i, j) in the grid to be reached from points 

(i–1, j), (i–1, j–1), and (i, j–1). The optimization problem in (1) is then transformed to 

the following problem, which can be solved using dynamic programming. 

 
( 1, ) ( , )

( , ) min ( 1, 1) 2* ( , )
( , 1) ( , )

A

A A

A

D i j d i j
D i j D i j d i j

D i j d i j

− +⎧ ⎫
⎪ ⎪= − − +⎨ ⎬
⎪ ⎪− +⎩ ⎭

 (2-6) 
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where ( , )AD i j  the minimum accumulated distance between (1,1) and the point 

(i, j).  

 

The Itakura local constraint defines a different set of predecessors – (i–1, j), (i–1, 

j–1), and (i–1, j–2) and results in a local slope in [½  2]. The optimization problem in 

(6) then changes to: 

 
( 1, ) ( , ) [ ( *)]

( , ) min ( 1, 1) ( , )
( 1, 2) ( , )

A

A A

A

D i j d i j or if Condition A
D i j D i j d i j

D i j d i j

− + ∞⎧ ⎫
⎪ ⎪= − − +⎨ ⎬
⎪ ⎪− − +⎩ ⎭

 (2-7) 

where (1,1) (1,1)AD d=  and Condition (A*) indicates that the predecessor of 

point (i–1, j) is the point (i–2, j). 

 

Another family of constraints – global constraints – defines the subset of the total 

search space for finding the optimal path. These are motivated by the fact that a wide 

search space is expensive in terms of both computation time and storage space. Band 

global constraint is a typical global constraint and it limits the maximum deviation of 

the optimal path from the linear one starting at (1,1) to a pre-specified amount, w. 

w t r≥ −  Global constraints are however not essential since the same objectives may 

be achieved through local constraints. More details of DTW can be found in Sankoff 

and Kruskal (1983) and Kassidas (1997).  

 

Kassidas et al. (1998a) used DTW for synchronizing batch trajectories by 

combining it with multiway PCA/PLS. Kassidas et al. (1998b) reported its use for fault 

detection and diagnosis in continuous chemical processes and Nomikos and 

MacGregor (1994) for batch process monitoring. Li et al. (2004) combined DTW with 



Chapter 2                                                                                            Literature Review 
_____________________________________________________________________ 

 - 9 - 

wavelet decomposition for synchronizing batch trajectories. The original signals were 

decomposed into approximations and details at different scales and matched at each 

scale separately using DTW. The matched signals were than reconstructed to obtain 

the synchronized signal.  

 

In some situations DTW can fail to identify the correct correspondence between 

two signals. This would happen if the search range is not allowed to be sufficiently 

large. In situations with differences in the magnitude of the two signals, DTW would 

try to solve the variability in the Y-axis by warping the X-axis and thus result in 

inappropriate warping. The local nature of the search incorporated in DTW precludes a 

global perspective (See Section 3). Also, DTW is computationally intensive (in both 

time and memory) and is seldom suitable for online signal comparison. 

 

To overcome these limitations, Colomer et al. (2002) combined DTW with 

qualitative representation of signals. Each signal was first decomposed into episodes 

which provided a higher-level representation of the signal.  DTW was then used to find 

the optimal match between the episodes of the two signals. The method proposed in 

this thesis is an alternative approach that constrains the search for the corresponding 

points of the two signals based on landmarks in the signal that are derived from 

operators’ perspectives. These constraints can be used with DTW or other signal 

comparison approaches. We illustrate it using two variants of traditional DTW – 

DTW1 based on Itakura local constraint and no global constraint, and DTW2 based on 

Itakura local constraint with a band global constraint. Of the two, DTW1 always find 

the minimum distance between two signals since it considers the whole search space 

which usually ensures the comparison is between the corresponding parts of the two 
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signals, but this makes the calculation slow especially for long signals. The search 

space considered by DTW2 is determined by the search band B. A smaller B would 

require less calculation time, but may not eliminate all the differences between the two 

signals and result in a sub-optimal synchronization.  

2.1.2 Signal Comparison based on Principal Components Analysis 

Other methods for signal comparison based on Principal Components Analysis 

(PCA) have also been proposed in literature. In contrast to DTW which is based on the 

actual signal, these methods use the transformed principal components of the signals.  

Krzanowski (1979) proposed a PCA similarity factor that compares reduced subspaces 

of the original signals: 

 2

1 1

1 cos
k k

PCA pq
p q

S
k

θ
= =

= ∑ ∑  (2-8) 

where pqθ  is the angle between the pth principal component of dataset S and qth 

principal component of dataset T. Raich and Cinar (1997) used the PCA similarity 

factor for diagnosing process disturbances. Singhal and Seborg (2002) modified the 

PCA similarity factor by weighing the principal components with the square root of 

their corresponding eigenvalue, λ. 

 
2

1 1

1

cosk k S T
p q pqp q

PCA k S T
p pp

S λ
λ λ θ

λ λ
= =

=

=
∑ ∑

∑
 (2-9) 

The PCA similarity factor is only applicable for stationary signals. To extend 

them to non-stationary signals, Srinivasan et al. (2004) proposed a Dynamic PCA 

based similarity factor DPCAS λ  that accounts for the temporal evolution of the signal. 

The main advantage of the PCA-based methods is their inherent ability to deal with 

multivariate signals and their low computational requirements. Their main 

shortcomings are: (1) they do not explicitly consider the synchronization problem; (2) 
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they are non-intuitive, especially for plant operators, since the comparison is based on 

a derived quantity with no physical significance; and (3) they consider the data as 

monolithic and arising from a single process state with specified statistical properties.  

This last requirement makes them unsuitable for online applications especially in 

multi-mode processes that can operate in multiple states. Also, for operator decision 

support, it is important to not only calculate the extent of similarity but also identify 

the point of divergence, i.e., the point in time from when the two signals start to 

deviate from one another. Since the PCA based methods consider the whole data as a 

single block they cannot directly detect the point of divergence.  

2.2 Online Process State Identification 

Due to significant advances in data collection and storage, vast amount of 

historical data is becoming commonly available.  This data is a rich source of 

information about the process that can be used to improve plant operation. Multivariate 

statistics such as principal component analysis (PCA) have been widely used for 

process data classification, process fault detection and diagnosis (Chiang and Braatz, 

2003, Kano et al., 2001, Chen and Liao, 2002). PCA reduces the dimensionality of 

data with minimum loss of information. This is achieved by projecting the high 

dimensional data onto uncorrelated vectors. The projections are chosen so that the 

maximum amount of information, measured in terms of its variability, is retained in the 

smallest number of dimensions.  

A major limitation of the classical PCA-based approaches is that the PCA model 

is time invariant. A number of modifications have been developed to overcome this 

limitation. Nomikos and MacGregor (1994) presented a multi-way PCA method which 

organizes time-varying data from multiple runs first into a time-ordered three-

dimensional array. The array is then unfolded into a two-dimensional matrix, and a 
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statistical model for the deviation of process variables between the runs built.  One 

strong assumption of this method is that all batches have equal duration and all are 

synchronized. Undey and Cinar (2002) presented an adaptive hierarchical PCA for 

monitoring multi-stage processes. The progress of the process is modeled at each time 

instance by incorporating information from previous time slices. 

Another family of data-driven approaches to fault diagnosis is based on signal 

comparison. These are based on the precept that the same types of faults or 

disturbances show similar features in the process signal. By comparing the online 

signal with a database of signals corresponding to the different fault classes, any fault 

in the process can be identified. The challenge in these methods is that it is normal for 

two similar signals to be slightly different and not match each other perfectly. One 

approach to overcome this synchronization problem is based on Dynamic Time 

Warping (DTW). 

DTW has been used for fault detection and diagnosis in chemical processes by 

Kassidas (1998). However, DTW is computationally intensive (in both time and 

memory) and is seldom suitable for online signal comparison. To overcome these 

limitations, Colomer et al. (2003) combined DTW with qualitative representation of 

signals. Each signal was first decomposed into episodes which provided a higher-level 

representation of the signal.  DTW was then used to find the optimal match between 

the episodes of the two signals. Srinivasan and Qian (2005) augmented DTW with 

landmarks in the signal, called singular points, to minimize the search space and 

improve the computational performance.  

Trend analysis-based approaches adopt a different strategy to improve the 

computational performance of signal comparison. Rather than compare the raw signal, 

their abstraction them based on qualitative features – such as increasing trend, 



Chapter 2                                                                                            Literature Review 
_____________________________________________________________________ 

 - 13 - 

decreasing trend, etc – is analyzed. Rengaswamy et al. (1995) used syntactic pattern 

recognition methods to compare the trends and identify abnormal situations during 

steady state operations. As an extension to multi-state operations, Sundarraman and 

Srinivasan (2003) proposed the enhanced trend analysis approach which considers 

additional semi-quantitative features such as duration and magnitude of trends. 

Long term process signal was used to identify process transition with these 

approaches. DTW needs the corresponding starting and ending points of the two 

signals to be known a priori. 

2.2.1 Dynamic Programming Approaches to Discrete Sequence 

Comparison 

During online state identification, we are interested in finding the segment of a 

long reference signal that is most similar to a given real-time signal. This is similar to 

the bioinformatics problem of identifying maximally homologous (similar) 

subsequences among set of long discrete sequences. This problem is generally 

formulated as follows: Given two long molecular sequences, find a pair of segments – 

one from each sequence – such that there are no other pair of segments with greater 

similarity. The search seeks not only contiguous subsequences but also allows for 

small variations among the two including mismatches and insertion/deletions.   

Several heuristic (Needleman and Wunsch, 1970) as well as mathematically 

rigorous approaches have been proposed in literature. One such is the dynamic 

programming approach of Smith and Waterman (1981). Let 

},...,,,{ 321 naaaaA = and },...,,,{ 321 mbbbbB = be the two sequences to be compared.  A 

similarity measure between sequences elements a and b is defined as ( , )s a b , where 

( , )s a b >0 if a b=  and ( , )s a b <0 for at least some cases of a b≠ . Insertions or 

deletions of length k receive weight - kw .   
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To find parts of segments with high degree of similarity, we setup a matrix H 

whose values Hi,j are the maximum similarity of two segments ending in ai and bj 

respectively.  The similarity algorithm is started with: 

 ,0 0, 0,1 ,1i jH H i n j m= = ≤ ≤ ≤ ≤  (2-10) 

Other elements of H are calculated as  

 , 1 1max{0; ( ... , ... )}   1 ,1i j x x i y y jH S a a a b b b x i y j+ += ≤ ≤ ≤ ≤   

which can be rewritten in recursive form as  

 , 1, 1 , ,max{0, ( , ), , }i j i j i j i j i jH H s a b F G− −= +   (2-11) 

Where: 

 , 1 ,max { ( )}i j k i i k jF H w k≤ ≤ −= −  (2-12)  

 , 1 ,max { ( )}i j k j i j kG H w k≤ ≤ −= −   (2-13) 

In the above, Hi,j  allows for the various possibilities for ending the segments at 

any ai  and bj.  ),(1,1 jiji basH +−−  considers the case where ai-1  and bj-1 have been 

associated previously and ai  and bj with similarity ),( ji bas  are being associated; while 

Fi,j and Gi,j consider the possibilities of deletions in sequence A and sequence B 

respectively. Finally, the zero is included in (9) to prevent similarity from becoming 

negative and indicates no similarity between ai  and bj.   

The pair of segments with maximum similarity is found by first locating the 

maximum element of H. The other matrix elements leading to this maximum value are 

than sequentially traced back until an element of H with value 0 is found. This 

procedure thus identifies the maximal similarity segment as well as produces the 

corresponding alignment. The pair of segments with the next best similarity can be 
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found by applying the same procedure to the second largest element of H not 

associated with the first trace back. Waterman and Eggert (1987) extended the above 

algorithm to identify all non-intersecting similar subsequences with similarity above a 

pre-specified threshold.  

Next, we illustrate the above procedure with a simple example. Consider the 

comparison of two DNA sequences A=AAUGCCAUUGACGG and 

B=CAGCCUCGCUUAG. In this example, we define ( ) 1, =ji bas  if ai  = bj  and 

( ) 3
1, −=ji bas  otherwise. 31 kwk += . The H matrix shown in Table 2-1 is 

constructed following (8) – (11). The maximal value of 3.3 indicates that the matching 

ends at (a10, b8) and matching segments are GCCAUUG and GCCUCG as highlighted 

in the table. It can be noted that although the two segments differ through a missing 

element and a mismatch (4th and 6th positions in A), this segment has the maximum 

match among all possible segments of a and b. This algorithm provides not only a 

mathematically rigorous basis for searching for maximally similar segments, but it can 

be efficiently programmed with low computational complexity. 

Table 2-1: H matrix for comparing sequences A=AAUGCCAUUGACGG and 
B=CAGCCUCGCUUAG  

 Δ C A G C C U C G C U U A G 
Δ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
A 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 
A 0.0 0.0 1.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.7 
U 0.0 0.0 0.0 0.7 0.3 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0 0.7 
G 0.0 0.0 0.0 1.0 0.3 0.0 0.0 0.7 1.0 0.0 0.0 0.7 0.7 1.0 
C 0.0 1.0 0.0 0.0 2.0 1.3 0.3 1.0 0.3 2.0 0.7 0.3 0.3 0.3 
C 0.0 1.0 0.7 0.0 1.0 3.0 1.7 1.3 1.0 1.3 1.7 0.3 0.0 0.0 
A 0.0 0.0 2.0 0.7 0.3 1.7 2.7 1.3 1.0 0.7 1.0 1.3 1.3 0.0 
U 0.0 0.0 0.7 1.7 0.3 1.3 2.7 2.3 1.0 0.7 1.7 2.0 1.0 1.0 
U 0.0 0.0 0.3 0.3 1.3 1.0 2.3 2.3 2.0 0.7 1.7 2.7 1.7 1.0 
G 0.0 0.0 0.0 1.3 0.0 1.0 1.0 2.0 3.3 2.0 1.7 1.3 2.3 2.7 
A 0.0 0.0 1.0 0.0 1.0 0.3 0.7 0.7 2.0 3.0 1.7 1.3 2.3 2.0 
C 0.0 1.0 0.0 0.7 1.0 2.0 0.7 1.7 1.7 3.0 2.7 1.3 1.0 2.0 
G 0.0 0.0 0.7 1.0 0.3 0.7 1.7 0.3 2.7 1.7 2.7 2.3 1.0 2.0 
G 0.0 0.0 0.0 1.7 0.7 0.3 0.3 1.3 1.3 2.3 1.3 2.3 2.0 2.0 
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In this thesis, we extend the above algorithm for discrete sequences to the 

continuous domain and online signal comparison. Real-time fault diagnosis and state 

identification are shown to be equivalent to locating the best match of a short signal 

segment derived from real-time sensor readings in a long historical reference signal. 

The minimal difference between the real-time and reference signals reveals the process 

state (for eg, normal vs. abnormal, identity of transition, etc) and also an estimate of its 

extent of progression (from the relative position in the reference signal).  

2.3 Key variables selection for Complex Chemical Process 

In a complex chemical process, there are a lot of variables. The information 

available from each variable is different. During certain operations or for certain 

purposes, some variable can give much more useful information than others. These 

variables are called key variables for this purpose.  

There have been some previous works on key variables selection for different 

purposes. The common approach of using the magnitude or range of variation of the 

variable as a measure of its importance is not a robust indicator of a variable’s 

importance. Some variables like the temperature of the delayed-coking furnace vary 

over a small range during normal operation. However, these variables could be very 

important to the safety and efficiency of the operation and even minor changes can be 

detrimental. Thus, the effect of the change on the system should be used to identify key 

variables. Yuan and Klir (1997) presented a method for determining the key variables 

that contribute most to a specific partition of data. Their method is based on fuzzy c-

means algorithm. The contribution of each variable to a partition is inferred from the 

optimal Mahalanobis distance. Key variables were selected based on the variables’ 

affects on a specific partition of the data.  
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Some effort has been devoted to finding the key variables for partial process 

control, design and monitoring. Complex chemical process having a large number of 

process variables but poorly understood models can be controlled reasonably by 

controlling only a small subset of process variables. This is referred to as partial 

control. Kothare et al. (2000) gave a definition of the partial control problem. They 

introduced concepts such as variable dominance, and modelable responses that is also 

useful in selecting key variables for monitoring chemical process transition. A subset 

of process variables is said to be dominant for a given process if that subset is 

preponderant in achieving the specified process objectives. Arbel et al (1995, 1996, 

and 1997) gave a good example of partial control using a seventeen variable FCCU 

model.  

Many researchers have addressed optimal sensor placement. Kretsovalis and 

Mah (1987) proposed a sensor-placement strategy based on the precision of the 

reconciled variables. Bagajewicz (1997) formulated this as a capital cost optimization 

problem subject to reconciliation precision bounds. This problem is defined as a 

mixed-integer nonlinear program (MINLP). Bhushan and Rengaswamy (2000) 

proposed a method for selecting the optimum number of sensors for a given process 

based on a process digraph. Bhushan and Rengaswamy (2002) proposed a method to 

design a sensor network for chemical plant based on various diagnose ability and 

reliability criteria. A methodology for obtaining the best sensor location irrespective of 

fault assumption was presented in that paper. Reliability maximization was achieved 

on a optimization framework for sensor location from a fault diagnosis perspective. A 

minimum-cost model that minimizes the cost of the fault monitoring system was also 

presented in that paper. They applied the sensor location procedure to the Tennessee-

Eastman process.  
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Sadeghbeigi (2000) presented a principle for monitoring FCCU. He said that 

periodic material and heat balance survey on the unit was the only proper way to 

monitor the performance of a FCCU. All the operation of FCCU was based on three 

balances: material balance, heat balance, and pressure balance. Understanding of the 

heat balance was deemed very critical for the operator since any change to feedstock 

quality, operating conditions, and catalyst flow change will affect the heat balance. 

These principles are therefore useful for key variables selection.   

Methods for reduced variable dimensional space like principal component 

analysis (PCA) and independent component analysis (ICA) have also been used for 

finding key variables (Hyvarinen, 2000). PCA aims to find uncorrelated principal 

components that are linear combinations of observed variables while ICA is designed 

to separate components that are independent and constitute the observed variables (Li 

and Wang, 2002). The problem with PCA and ICA based methods is that the new 

signal has no physical meaning. There are also difficult to use for operator monitoring. 

Another problem is that there are some signals that may not vary extensively but they 

may be important during certain operations. PCA and ICA based methods will miss 

such variables.  

Finally, all the above methods consider the process as stationary - i.e., the same 

key variables are used in different process states. In this thesis, we define state-specific 

key variable and develop a systematic method for identifying the key variables  
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Chapter 3 Offline Temporal Signal 

Comparison Using Singular Points 

Augmented Time Warping 

3.1 Introduction 

Advances in instrumentation and data storage technologies have allowed the 

process industries to collect extensive operating data which can be used for extracting 

information about the underlying process.  

One class of data-driven methods takes advantage of the notion that in many 

engineering problems, similar process changes – desired or undesired – usually result 

in similar evolution of process variables. The basic precept of these methods is that if a 

representative historical database of signals has been previously analyzed and suitably 

annotated, it can be used to identify the root cause of a change and develop an effective 

remedy. The online problem then is to locate an instance in the historical database that 

is most similar to a specific data. Pattern classification or signal comparison is a 

popular method for finding similar signals in historical data. The challenge in this 

approach arises from the fact that due to the nature of industrial processes, signals 

arising from two instances of the same change are not exact replicates – invariably 

there are deviations between the two instances. The differences could be in the length 

(total-time) of the two signals; duration of the constituent stages (or phases); or in the 

magnitudes or profiles of the variables due to run-to-run variations arising from 

impurities, initial conditions, seasonal effects, or operator actions. Direct comparison 

of two signals would therefore be incorrect since there is no guarantee that the 

corresponding segments of the signal are being compared. Robust yet sensitive 
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methods for comparing such unsynchronized signals are therefore an active area of 

research. 

From the above review, it is apparent that an ideal signal comparison method 

should be:  

1. Robust: It should be able to match corresponding parts of two signals and be 

robust to magnitude and duration differences, noise, and other run-to-run 

variations.  

2. Sensitive: It should be sensitive to structural differences such as unmatched 

trends in the signals.    

3. Consistent with process state: The correspondence between two signals 

should be based on the process state; that is, for signals from multi-state 

operations, signal segments from the same process state should be compared. 

This would ensure results that are compliant with operator’s intuition, which is 

important for acceptability of the results (Jain et al., 2000).  

4. Adaptive: The method should not require precise knowledge of the end-points 

of the signal. It is not easy to identify the exact start and end points of signals to 

be compared, especially during online signal comparison. This requirement is 

less critical for offline usage and will not be considered in this thesis.  

5. Computationally inexpensive: The computational load should be modest both 

in terms of memory and time required. 

Towards these objectives, we propose a time warping-based signal comparison 

approach in this thesis. The aforementioned deficiencies of DTW are overcome by 

augmenting the comparison with singular points.  

Dynamic Time Warping (DTW) is a popular method for signal comparison. In 

this thesis, we propose an extension of DTW that meets the above criteria for signal 
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comparison.  Singular points are defined in Section 3.2. Algorithms for identifying 

singular points are also described. For signal comparison, dynamic programming is 

used to find the optimal link between the singular points of two signals. This yields the 

corresponding segments of the two signals which can then be compared through time 

warping. This singular points and time warping based signal comparison methodology 

is proposed in Section 3.3. A detailed description of data generation is given in Section 

3.4. In Section 3.5, we illustrate the proposed approach using signals from three case 

studies – the Tennessee Eastman process simulation, simulation of a fluidized catalytic 

cracking unit, and a lab-scale fermentation process. 

3.2 Singular Points 

Information content is not homogenously distributed throughout a signal; rather 

the majority of the features of the signal are concentrated in a small number of points. 

In this thesis, we term such points, which are landmarks in the signal evolution, as 

singular points. This philosophy can also be noted in Bakshi and Stephanopoulos’ 

(1996) use of inflexion points to separate signal segments and Mallet and Hwang’s 

(1992) use of singularity as the compact representation of a signal. Our singular points 

consist of points of discontinuities, trend changes, and extrema.  The singular points of 

a sample signal are shown in Figure 3-1. These landmarks can be used to segment the 

signal into portions with homogenous properties.  The segment of a signal between 

adjoining singular points is called a singular episode. An episode thus consists of 

regions of nearly-constant slope, small oscillations, etc.  
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Figure 3-1: A typical signal and its singular points 

Mathematically, each singular point is a triplet { , , }SPT = Γ Ω Ψ  where Γ is the 

time of occurrence of the singular point, Ω  is the magnitude of the variable at the 

singular point, and Ψ  its type. Three types of singular points can be differentiated as 

(1) extrema, where the derivative of the variable changes sign (indicated by Ψ =e); (2) 

sharp changes and discontinuities, where the process variable changes by a large 

amount in a short period of time ( Ψ = s); and (3) trend change points ( Ψ =t). The 

reader may note that these three types broadly correspond to local extrema in the 

variable, its first derivative, and second derivative, respectively. In addition to these 

three types, for ease of explanation, the beginning and end of each signal is also 

nominally considered to be singular points of type Ψ = b and Ψ = c, respectively. It 

should be noted that the different types of singular points are not mutually exclusive 

and the same point may meet more than one of the above criteria. This is illustrated in 

Figure 3-1 – 1P  is both an extreme point and a sharp change point; similarly, 2P  and 

4P  are trend change points as well as sharp change points. In such cases, the list of all 
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matching types is noted. The term ‘singular points of a signal’ refers to the ordered list 

of triplets.  In the following, we describe how singular points can be identified. 

3.2.1 Methods for Identifying Singular Points 

Consider a signal { }1 2, ,..., ,...i rR x x x x=  and RΔ  be the first derivative of R . 

1     2,3,...,i iR x x i r−Δ = − =   

Sharp changes usually occur over a period of time. The beginning and end 

points of this period are marked as sharp change singular points. Sharp changes are 

identified based on the signal range within an inspection window W of sizeω . If the 

difference between the maximum value and the minimum value within the window is 

larger than a pre-specified jump-threshold δ  then the window is considered to have a 

sharp change episode. A period containing a sharp change is characterized by the 

beginning and end points of the episode. If adjoining sharp change points fall within a 

neighborhood of size τ , then they are concatenated into one sharp change episode.  

Noise will show on RΔ difference. The change will take the total different 

between the data within the inspection window W which reduce the effect of random 

noise.  Jump-threshold δ  is also affected by the signal noise level which will also 

reduce the effect of noise in identifying sharp changes 

 

Extrema points can be identified directly from sign changes in RΔ , but this 

would be susceptible to noise and a large number of local maxima and minima will be 

identified. In order to overcome this, we require additionally that the difference 

between adjoining extrema points is larger than / 2δ . Also, extrema consistency, that 

is, alternating maxima and minima, is enforced among the identified extrema. 
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         The δ chosen is based on the signal feature and noise level. In this thesis, the 

difference between real signal and DWT de-noise signal was used as the reference and 

a minimum value was also given 

Trend change points are singular points where the trend of the signal undergoes 

a change. These are identified through statistical analysis and linear regression of the 

signal over a neighborhood of sizeτ  (τ ω> ). A point is considered to be a trend 

change point if all its left neighbors lie within three standard deviations from the 

regressed model, while all its right neighbors lie outside, or vice versa. These 

algorithms are applied to each signal to identify all the three types of singular points. 

The algorithm for Singular points detection is attached in Appendix A.  

 

3.2.2 Properties of Singular Points 

The following properties follow from the definition of singular points: 

1. If two signals completely overlap, their singular points will be the same. 

2.  If two signals have the same magnitude profiles and the only difference 

between them is in the duration of the episodes, their singular points will have 

the same Ω  and Ψ ; the differences will only be in the Γ . 

3. If two signals have the same general profile, but vary in magnitude and 

duration of episodes, their singular points will vary in Ω  and Γ ; the sequence 

of Ψ  will be the same. 

4. If two signals are completely different, their singular points will be 

uncorrelated.  

These properties of singular points make them robust to noise. This is illustrated 

using an example.  Table 3-1 shows the singular points of a signal when corrupted with 

varying levels of noise (from 0 to 10%). As can be seen, the same number of singular 
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points is identified in all cases. The types of the different singular points at all the noise 

levels are also the same. The error in Ω , that is the difference in the magnitude of the 

singular point in the signals with and without noise, varies from 0.4% to 2.63% as 

noise level increases from 1% to 10%. The error in Γ , that is the position shift of the 

singular points, varies from 1 to about 4 samples in a signal of length 1920 samples. 

These show that singular points can be robustly identified even if the underlying signal 

is noisy. We elaborate on robustness during signal comparison in Section 3.5.  

 

Table 3-1: Singular points of a signal with different noise levels 

Noise free signal 1% noise 3% Noise 5% Noise 10% Noise 
Γ  Ω  Ψ Γ  Ω  Ψ Γ  Ω  Ψ Γ  Ω  Ψ  Γ  Ω  Ψ
221 0.5767 t 222 0.5809 t 239 0.5775 t 222 0.5798 t 224 0.5835 t 
847 0.6772 s 844 0.6817 s 842 0.683 s 841 0.671 s 830 0.7194 s 
847 0.6772 e 847 0.6765 e 845 0.6909 e 847 0.6982 e 843 0.6738 e 
853 0.4259 e 853 0.4304 e 854 0.4325 e 854 0.4469 e 853 0.3889 e 
905 0.8441 e 905 0.8484 e 905 0.8391 e 905 0.8366 e 906 0.8565 e 
920 0.4015 s 920 0.3971 s 920 0.4063 s 920 0.3861 s 919 0.4536 s 
920 0.4015 t 920 0.3971 t 920 0.4063 t 927 0.3755 t 927 0.3978 t 

1072 0.3999 s 1072 0.4046 s 1067 0.3968 s 1066 0.405 s 1069 0.379 s 
1072 0.3999 t 1072 0.4046 t 1072 0.3982 t 1072 0.3905 t 1072 0.3959 t 
1083 0.6569 s 1083 0.6579 s 1083 0.6638 s 1083 0.6684 s 1083 0.622 s 
1083 0.6569 t 1084 0.6523 t 1085 0.6643 t 1091 0.6645 t 1091 0.7037 t 
1271 0.6682 t 1269 0.6655 t 1256 0.6609 t 1263 0.6787 t 1276 0.6371 t 
1329 0.7948 e 1322 0.7983 e 1320 0.8032 e 1325 0.8171 e 1329 0.8422 e 

Error 1.076 0.0037  1.615 0.0058  3.150 0.0128  3.769 0.0263  

3.3  Signal Synchronization and Comparison Using Singular Points 

Singular points can be used to synchronize and compare signals. Consider the 

synchronization of a test signal T with a reference signal R. Let the singular points of 

the test signal T be  1 2( , ,... ,..., )  SP SP SP SP
m MT T T T M t  . Let the singular points of the 

reference signal R be 1 2( , ,... ,..., )  SP SP SP SP
n NR R R R N r . The singular episode between 

SP
mT and SP

kT  (m<k) is noted as ( , )T m k∑ . The segment of the signal from SP
mT  to the 

end of the signal ( SP
MT ) is reported as ( , )T m M∑ . Let { ( , ), ( , )}T Rm k n lε ∑ ∑ be the 
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distance between the episodes ( , )T m k∑ and ( , )R n l∑ of signals T and R, respectively. 

The accumulated distance between ( , )T m M∑ and ( , )R n N∑  is indicated by 

( , )SP SP
m nE T R . From the geometry of the signal, it can be seen that, if m < k and n < l, 

then  

 ( , ) { ( , ), ( , )} ( , )SP SP SP SP
m n T R k lE T R m k n l E T Rε= ∑ ∑ +  (3-1) 

In contrast to DTW where the entire signal is monolithically compared, in the 

proposed method, comparison is made only between corresponding singular episodes. 

For this purpose, the corresponding singular points and episodes of the two signals 

have to be linked. As an illustration of this, for the signals in Figure 3-2, the episode A-

1 of T is homologous to episode B-1 of R although the two have duration and 

magnitude differences. So they should be linked.  Similarly episodes A-2 and B-2 in 

the figure should be linked. 

 

Figure 3-2: Illustration of signal comparison using singular points 
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In the general case, many sets of links between the singular points of the test and 

reference signals may be possible. Further, the corresponding singular episodes of the 

two signals may vary in magnitude and length but can be synchronized using time 

warping. Sequential decision making is therefore used to find the linkage that 

minimizes the total distance between the two signals. The total distance between the 

test signal and reference signal is calculated as the sum of the episode-wise time-

warped distances.   

The following constraints are applied when linking singular points: 

1. For any pair of singular points ( , ) ( , )SP SP SP SP
m n k lT R T R in the two sequences, if 

km < then ln <  

2. Corresponding singular points in the two series should be of the same type. 

3. A singular point in one series may not have a corresponding singular point in 

the other. This could be because of run-to-run variations or the singular point 

may be unidentified because of noise. Such cases are considered as a link with 

a [Empty] singular point. 

 

The sequential decision making problem for synchronizing the two signals is 

solved in a stage-wise manner using dynamic programming. The decision md at stage 

m is to find the optimal singular point of R (say lR ) that should be linked to SP
mT .   The 

signal distance for a decision at stage m is calculated as the resulting time warped 

distance from ( 1, )T m m∑ − .  We use rm to represent the mth stage of the process. Let 

mf  be the total return (or signal distance) over m stages using the optimal decision. 

Mathematically (Williams, 1970):   

 
1 2 1

1 2 1, ,..., ,
min { ... }

M M
M M Md d d d

f r r r r
−

−= + + + +  (3-2) 
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To obtain a recurrence relation for Mf  we make the trivial observation that the 

Mth   stage return does not depend upon dM-1, dM-2, etc, but only on dM,  so that 

 
1 2 1

1 2 2 1,..., ,
min{ min ( ... )}

M M
M M M Md d d d

f r r r r r
−

− −= + + + + +  (3-3) 

which can be rewritten as  

1min{ }
M

M M Md
f r f −= +     (3-4) 

  
Based on the Principle of Optimality (Williams, 1970), the optimal linkage of 

singular points is the one that results in minimum 1( , )SP SP
lE T R where l is all the 

possible corresponding singular points to 1
SPT .  In this chapter, we assume that for 

offline signal comparison the corresponding starting points of the two signals are 

known a priori, the optimal distance between signals T and R ( , )T Rκ is 

therefore 1 1( , )SP SPE T R . In the following, we explain how this can be implemented.  

 

3.3.1 Algorithm for Signal Comparison Using Singular Points 

Augmented Time Warping 

The singular points of the two signals are linked as follows: 

Step 0: Normalization: Identify the singular points of T.  Normalize signal T to [0 1] 

based on the sensor range of the signal (See Srinivasan et al. 2004).  

Step 1: Initiation: Start the search for optimal link from the last episode of signal T 

( 1, )T M M∑ − . This is deemed as Stage M. Set m=M, l=N, and 

( , ) 0SP SP
M NE T R = .  

Step 2: Stage-wise Propagation Stage m: We need to find the corresponding episode 

in signal R for episode ( 1, )T m m∑ − of signal T. Define β  as the duration of 
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the episode ( 1, )T m m∑ − . Find all the corresponding singular points (based 

on the constraints above) in signal R within the search window 

1[ 2   ]
2

SP SP
l lR Rβ β− − . Here, we have allowed a singular episode to elongate 

or compress by a maximum factor of 2. This factor is found to be adequate 

for process signals; but any other factor can also be used.  

 

For each possible corresponding singular point in Signal R, say SP
nR , calculate 

the local episode distance { ( 1, ),  ( , )}T Rm m n lε ∑ − ∑  using time warping. The 

possibility that the corresponding singular point in signal R is missing is also 

explicitly considered. In this case, time warping is used to find the matching 

point in R (may not be a singular point) that has the smallest distance from 

( 1, )
T

m m−∑ . Note that a missing singular point in signal T would not affect 

the result since the comparison will consequentially be made on a longer 

signal segment but still bounded by singular points at either end. The 

accumulated distance is obtained from (3-1) as 

 1( , ) { ( 1, ), ( , )} ( , )SP SP SP SP
m n T R m lE T R m m n l E T Rε− = ∑ − ∑ + . 

 

Resolving multiple paths: It is possible that there are multiple paths between 

a pair of linked singular points in T and R. In order to minimize the search 

computation, one can take advantage of the Principle of Optimality by which 

the link with the smallest accumulated distance is globally optimal and is the 

only one which has to be considered in further steps.  

Step 3: Termination: Repeat Step 2 until the first singular point in T, 1
SPT has been 

linked. That is,  if m < 1 then set m = m – 1 and go to Step 2. 
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Step 4: Optimal link: Among the various paths, the one with the smallest total 

accumulated distance is the optimal one. The minimum 1 1( , )SP SPE T R  is 

deemed as the signal  distance ( , )T Rκ . The optimal linkage of the singular 

points is found by retracing the decisions from 1
SPT   to SP

MT .  

In the following, we illustrate the above algorithm. 

3.3.2 Illustration of Linking Singular Points  

Consider the two signals in Figure 3-3 that need to be synchronized. Their 

singular points are marked in the figure and need to be linked. The endpoints are 

known to correspond, so 13
SPT links to 15

SPR  and 1
SPT to 1

SPR . Only the remaining points 

need to be linked. The linking process can be visualized using a tree, called the 

singular points linkage tree, an example of which is shown in Figure 3-4. In this tree, 

the singular points of the test signal are shown as stages in the left side. The different 

possible links with R at each stage are shown as the nodes at that level of the tree. An 

arc connects the linkage at a given stage to the previous decisions (or linkages). There 

are twelve search stages in this case as shown in Table 3-2 and depicted by the partial 

linkage tree in Figure 3-4. 
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Figure 3-3: Two signals and their singular points 
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Table 3-2: Stage-wise linkage of singular points of T and R  
Stage m 

(Singular Point 
in T) 

Possible links in R (l) ( , )SP SP
m lE T R

 
10            9.0824
12            1.5799
14            0.255

12 

EMPTY            0.2545
10 9           22.1186
12 11           3.508
14 13           0.2905

11 

14 EMPTY           0.2901
12 11 10          8.9268
14 13 12          0.350110 
14 13 EMPTY          0.3432
12 11 10 9         19.7158
14 13 12 11         0.45729 
14 13 12 EMPTY         0.4256
14 13 12 11 10        0.56138 
14 13 12 11 EMPTY        0.5499
14 13 12 11 10 9       0.98587 
14 13 12 11 10 EMPTY       0.7303
14 13 12 11 10 9 8      1.54726 
14 13 12 11 10 EMPTY EMPTY      1.7527
14 13 12 11 10 9 8 5     4.363
14 13 12 11 10 9 8 7     5.25685 
14 13 12 11 10 9 8 EMPTY     3.4849
14 13 12 11 10 9 8 5 4    4.9984 
14 13 12 11 10 9 8 7 EMPTY    12.7948
14 13 12 11 10 9 8 5 4 2   5.9973
14 13 12 11 10 9 8 5 4 3   5.05733 
14 13 12 11 10 9 8 5 4 EMPTY   5.0448
14 13 12 11 10 9 8 5 4 3 2  5.46432 
14 13 12 11 10 9 8 5 4 2 EMPTY  8.1623
14 13 12 11 10 9 8 5 4 3 2 1 5.84191 
14 13 12 11 10 9 8 5 4 2 EMPTY 1 8.7146
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1. The search starts from the last unlinked singular point of T ( 12
SPT ) and proceeds 

to the first ( 1
SPT ). Matching begins at the last episode of the reference signal 

(12,13)T∑ . 

2. It is required to find the corresponding episode in signal R that yields the 

lowest error. Since the endpoint of signal R is known to be 15
SPR , only the 

beginning of the episode has to be identified. This can be considered to be akin 

to finding the singular points in signal R that can link with 12
SPT . As shown in 

the first row of Table 3-2 and the top of Figure 3-4, there are four possible 

choices – 10
SPR , 12

SPR , 14
SPR , and [Empty]. 

3. For each possible link, for example, 12
SPT and 10

SPR , the distance between the 

corresponding episodes of the two signal is calculated using DTW1. In this 

case, { (12,13), (10,15)} 9.0824T Rε ∑ ∑ = . The accumulated distance 

( , )SP SP
m nE T R is shown next to the arc in Figure 3-4 and in the right side of Table 

3-2.  

4. The above process is repeated for the preceding singular points of T, e.g. 11
SPT . 

At this stage, the previous linkages (say 12
SPT to 10

SPR ) will constrain the choices. 

The previous decision is shown by the arc in Figure 3-4. The accumulated 

distance for the 11
SPT – 9

SPR  link is calculated as 

11 9 12 10( , ) { (11,12), (9,10)} ( , )SP SP SP SP
T RE T R E T Rε= ∑ ∑ +  =  13.0362 9.0824+  

22.1186= .   

5. At any stage, it is possible that a singular point in signal T is linked to the same 

singular point in R by multiple paths. For example, 12
SPR  can be linked with 

10
SPT in Stage-3 by two paths – { 12 14( , )SP SPT R , 11( ,[Empty])SPT , 10 12( , )SP SPT R } and 
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{ 12 14( , )SP SPT R , 11 13( , )SP SPT R , 10 12( , )SP SPT R }. Since the link in the latter path has the 

smaller distance (0.3566 vs. 0.3501), it is optimal and the former link need not 

be considered in subsequent steps.  

6. The entire singular point linkage tree is constructed by repeating this process. 

The detailed results for all stages are shown in Table 3-2.  

7. The optimal set of assignment is the path with the smallest accumulated 

distance for 1 1( , )SP SPD T R . A path in the tree starting from a Stage 1 node and 

ending in a last stage node shows the linkages for one set of assignment. Many 

feasible paths may exist; the one with the least accumulated 

distance 1 1( , )SP SPE T R  is the optimal one. In this case, of the two possible paths, 

the path 12 14{(T , R ),  11 13 10 12(T , R ),(T , R ),  9 11(T , R ),  

8 10(T , R ), 7 9 6 8 5 5 4 4(T , R ),(T , R ),(T , R ),(T , R ), 3 3 2 2 1 1(T , R ),(T , R ),(T , R )} with 

*
1 1( , ) ( , ) 5.8419SP SPT R E T Rκ = =  is the optimal one. It should be noted that in 

this path, there are no corresponding points in Signal T for R6 and R7 because of 

run-to-run variation. This is automatically identified by the method when 

deriving the optimal linkage. 
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Stage 12: T12
SP R10

SP

(9.0824)
R12

SP

(1.5799)
R14

SP

(0.2550)

Stage 11: T11
SP

Empty
(0.2545)

R9
SP

(22.1186)
Empty
(14.1875)

R11
SP

(3.5080)
Empty
(1.7564)

R13
SP

(0.2905)
Empty
(0.2901)

Empty
(0.2935)

Stage 10: T10
SP Empty

(29.4206)
R10

SP

(8.9268)
Empty
(8.4957)

R12
SP

(0.3501)
Empty
(0.3432)

R12
SP

(0.3566)
Empty
(0.3514)

Stage 9: T9
SP

Stage 2: T2
SP

Stage 1: T1
SP

R2
SP

(5.4643)
Empty
(8.1623)

R1
SP

(5.8419)
R1

SP

(8.7146)

R13
SP

(0.2981)

 
 

Figure 3-4: Singular points linkage tree  
 

3.3.3 Extrapolative Time Warping: An Efficient Algorithm for 

Episode Comparison 

The traditional DTW used above for calculating the distance between episodes 

provides global optimality, but at a high computational cost. The singular points 

method proposed here enforces the optimal linkage of the major landmarks of the two 

signals using dynamic programming. The global optimality of the episode-level 

comparison is therefore not a critical requirement since the optimal assignment of each 

time point within an episode has no physical significance and is rarely necessary in 

practical applications. The steep computational cost for episode comparison using 

DTW motivates an alternative algorithm for episode comparison as described next.  
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Figure 3-5: Search space for XTW and local constraints 

An efficient signal comparison algorithm, called extrapolative time warping 

(XTW), based on a greedy search modification of classical DTW with Itakura local 

constraint is proposed here. The XTW method obviates dynamic programming for 

each local point by optimizing each point locally. In contrast to DTW, in XTW, search 

proceeds in the forward direction starting from the first point of the signal to the last. 

As shown in Figure 3-5(a), the local search is formulated as follows. Let (i, j) be a 

warping assignment time at a given step. In XTW, the optimal warping for the 

subsequent step, i.e., the location of j* that corresponds to (i+1), is based only on the 

previous decision and the current distance. Three possible successors – (i+1, j), (i+1, 

j+1) and (i+1, j+2) – are considered. The optimal search path is therefore defined as: 

( , ) ( 1, ) or [  if Condition( *)] *
( 1, *) min ( , ) ( 1, 1)                                          * 1

( , ) ( 1, 2)                                        * 2

A

A A

A

D i j d i j B j j
D i j D i j d i j j j

D i j d i j j j

+ + ∞ =⎧ ⎫
⎪ ⎪+ = + + + = +⎨ ⎬
⎪ ⎪+ + + = +⎩ ⎭

   (3-5) 

With initial condition (1,1) (1,1)AD d= , Condition (B*) indicates that the 

predecessor of point j*=j. Thus, for each step, the decision for the corresponding point 

for i is based only on three comparisons – to increase j by 0, 1 or 2. Following the 

Itakura local constraint, if the previous decision was to increase j by 2, then the 



Chapter 3                                                              Offline Temporal Signal Comparison 
_____________________________________________________________________ 

 - 37 - 

successor would not have this option (so as to maintain the local slope in the [½ 2] 

range) and j can increase only by 0 or 1. Similarly, if in the preceding step, if j did not 

increase, the successor would not have the option to remain at the same j and j*=j+1 

or j*=j+2. Since any decision is based only on the previous decision and the current 

difference, dynamic programming is obviated. The search space of the XTW is the 

same as DTW with the Itakura local constraint and is shown in Figure 3-5(b). 

However, unlike DTW, in XTW once a match has been assigned, future assignments 

will not affect it. The greedy extrapolative search for any point decreases the 

computational time, but since global information is not used at each step, an optimal 

solution is not guaranteed by XTW.  The assignment history tree, which is the origin 

for the large computational storage requirements of DTW, is not necessary in XTW; 

instead only the list of assignments needs to be maintained.  

It has been shown in Section 3.5 that both XTW and DTW result in the same 

warping when signals differ only in synchronization. When XTW is used for 

comparing signals with magnitude differences, it places a larger emphasis on local 

magnitude similarity instead of globally optimal warping. But since in our approach, 

XTW is combined with the singular points linkage described above, and the latter 

incorporates the global information and optimization, this non-optimality of the signal 

comparison is not critical. Rather, it provides the computational speedup for large-

scale signal comparison as illustrated next. In the following section, we use the 

proposed singular points augmented DTW algorithm for state identification, clustering, 

and transition identification in three different case studies. 

3.4 ShadowPlant and Tennessee Eastman Process Description 

In this thesis, all the research is based on process data. There are several 

simulators and lab-scale pilots are used for generating data. The main data for this 
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thesis is from ShadowPlant and Tennessee Eastman process. In this section, the details 

of process data generation are discussed.  

3.4.1 ShadowPlant: A simulator of Fluidized Catalytic Cracking Unit 

(FCCU)  

The FCCU converts a mixture of heavy oils into more valuable light products 

and is the dominant conversion process and the major contributor to value-addition in 

the refining process. Successful operation of the FCCU is critical to the operating 

success of most refineries. The FCCU can be operated to maximize the yield of 

gasoline or middle distillate. This flexibility allows the refiner to tune the product slate 

to change in demands. This results in transitions during the FCCU operation. A high-

fidelity dynamic simulator of a FCCU, called ShadowPlant, is used here (Honeywell, 

2000). The ShadowPlant consists of five main sections as shown in Figure 3-6: 

(1), Feed preheater, (2), Riser/Regenerator, (3), Main fractionator, (4), Waste heat 

boiler, (5) Air-preheater. 

 
Figure 3-6: Schematic of ShadowPlant FCCU  
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Among the main operational states of the ShadowPlant, the startup is one of the 

most difficult transitions. One of the first steps in the startup of the ShadowPlant is the 

startup of the air-preheater section. The air blower is started slowly and operated at a 

steady state speed of about 4000 rpm. Air is heated in the preheater furnace to about 

370°C and is used to initially increase the temperature of reactor/regenerator. Once this 

operation is stabilized, torch oil flow is started in the regenerator. This supplies the 

necessary heat and the fuel gas supply to the air-preheater is stopped. Catalyst is then 

added to the regenerator gradually and the temperature maintained around 400°C by 

manipulating the torch oil flow rate. When the catalyst level in the riser reaches 60%, 

the regenerator slide valve is opened and the catalyst moves through the riser to the 

reactor. Once the regenerator/reactor section has reached an intermediate steady state, 

with the regenerator temperature around 600°C, the fractionator is flushed with 

kerosene and started up with fresh feed. When the fractionator reaches a steady state, it 

is connected to the reactor/regenerator. Feed is started through the reactor and cracked 

products are fed to the main fractionator. Throughput is gradually increased and steady 

state flow established.  In Figure 3-7 and Figure 3-8, waste heat boiler and Feed 

preheater normal operation snapshot are shown. 

Details of the unit and the startup transition are reported by Honeywell (2000), 

Sundarraman and Srinivasan (2003) and Srinivasan et al. (2004).  

Data Generation:  

Startup is the most difficult part of FCCU operation. There are seven main stages 

during the startup of ShadowPlant:  (1), Previous air blower startup, (2), Air blower 

startup, (3), Regenerator warm-up and catalyst loading, (4), Main fractionator startup, 

(5), Connecting reactor and main fractionator, Catalyst circulation, (6), Introduction 

of fresh feed, (7), Wet gas compressor startup, Increasing feed to design. 
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Figure 3-7: Waste heat boiler section of Shadow Plant (Normal operation) 

 

Figure 3-8: Feed preheater section of Shadow Plant (Normal operation) 

The startup operation described above takes 40 to 60 hours. Several runs of the 

startup were performed following the standard operating procedure and data collected 

at 10 second intervals. While the procedure for starting up the FCCU was the same in 

all the runs, minor differences in the magnitudes and duration were introduced between 
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the runs. Several runs data (G1 G2 … G8) are generated by startup ShadowPlant in this 

thesis.  While the procedure for starting up the FCCU was the same in all the runs, 

operation differences in the magnitudes and duration were introduced between the 

runs. The average duration of the startup transition in these runs was 54 hours. 

Random noise was also added to the measured variables to simulate measurement 

noise in the real process. The entire process has 335 measured variables. 

3.4.2 Tennessee Eastman Process 

The Tennessee Eastman (TE) plant (Downs and Vogel, 1993) is a popular test 

bed for process systems applications such as plant-wide control, optimization, 

predictive control, faults diagnosis and signal comparison. The TE process produces 

two products (G and H) and a byproduct (F) from reactants A, C, D, and E. The 

reactions are given below, all of which are irreversible and exothermic and the reaction 

rates are a function of temperature through an Arrhenius expression.  
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Figure 3-9: Flowsheet of Tennessee Eastman challenge process 

( ) ( ) ( ) ( )A g C g D g G liq+ + →  
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( ) ( ) ( ) ( )A g C g E g H liq+ + →  

( ) ( ) ( )A g E g F liq+ →  

3 ( ) 2 ( )D g F liq→   

The plant flowsheet is shown in Figure 3-9. The process has five unit operations: 

a two-phase reactor, a product condenser, a flash separator, a recycle compressor, and 

a product stripper. There are 53 variables in the TE plant: 22 of these are process 

measurements variables, 19 are component compositions, and 12 process manipulated 

variables. The base case values for the process measurements and the manipulated 

variables are shown in Table 3-3 and 3-4 respectively. The closed-loop process Matlab 

simulator developed by Singhal (2001) based on the base control structure of McAvoy 

and Ye (1994) is used in this work. During the simulation, variable values are recorded 

every minute.  

Table 3-3: Process measurements and their base value 

Variable name Variable number Base case value Units 
A feed (stream 1) XMEAS (1) 0.25052 kscmh 
D feed (stream 2) XMEAS (2) 3664.0 kgh-1 
E feed (stream 3) XMEAS (3) 4509.3 kgh-1 
A and C feed (stream 4) XMEAS (4) 9.3477 kscmh 
Recycle flow (stream 8) XMEAS (5) 26.902 kscmh 
Reactor feed rate (stream 6) XMEAS (6) 42.339 kscmh 
Reactor pressure XMEAS (7) 2705.0 kPa gauge 
Reactor level XMEAS (8) 75.0 % 
Reactor temperature XMEAS (9) 120.40 °C  
Purge rate (stream 9) XMEAS (10) 0.33712 kscmh 
Product separator temperature XMEAS (11) 80.109 °C  
Product separator level XMEAS (12) 50.000 % 
Product separator pressure XMEAS (13) 2633.7 kPa gauge 
Product separator underflow (stream 10) XMEAS (14) 25.160 m3h-1 
Stripper level XMEAS (15) 50.000 % 
Stripper pressure XMEAS (16) 3102.2 kPa gauge 
Stripper underflow (Stream 11) XMEAS (17) 22.949 m3h-1 

Stripper temperature XMEAS (18) 65.731 °C  
Stripper steam flow XMEAS (19) 230.31 kgh-1 
Compressor work XMEAS (20) 341.43 kW 

Reactor cooling water outlet temperature XMEAS (21) 94.599 °C  
Condenser cooling water outlet temperature XMEAS (22) 77.297 °C  

Table 3-4: Process manipulated variables 
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Variable name Variable number Base case value Units 
D feed flow (stream 2) XMV (1) 63.053 kgh-1 
E feed flow (stream 3) XMV (2) 53.98 kgh-1 
A feed flow (stream 1) XMV (3) 24.644 kscmh 
A and C feed flow (stream 4) XMV (4) 61.302 kscmh 
Compressor recycle valve XMV (5) 22.21 % 
Purge valve (stream 9) XMV (6) 40.064 % 
Separator pot liquid flow (stream 10) XMV (7) 38.1 m3h-1 
Stripper liquid product flow (stream 11) XMV (8) 46.534 m3h-1 
Stripper steam valve XMV (9) 47.446 % 
Reactor cooling water flow XMV (10) 41.106 m3h-1 
Condenser cooling water flow XMV (11) 18.114 m3h-1 
Agitator speed XMV (12) 50 rpm 

 

Process Disturbances Data Generation 

In this thesis, data from TE plant is used for evaluating methods for signal 

comparison and process state identification. One application of signal comparison is in 

differentiating between process disturbances and between process operating states for 

offline analysis or online process monitoring, disturbance rejection, and other 

supervisory applications. The 22 PV values are usually used for such applications, as is 

the case here.  

Next, consider intra-class differentiation that is, identifying a disturbance 

accurately, even if its magnitude or duration is different in different instances. This is a 

greater challenge for a classifier since there will be small or large differences among 

the time-series especially for nonlinear and noisy processes such as the TE plant. In 

order to generate such varying magnitude cases, we have introduced five new servo 

control type disturbances. 

The five new disturbances XD1 to XD5 affect the A feed flowrate, reactor 

pressure, reactor level, reactor temperature, and compressor work. These are 

representative of set point changes or servo control problems in real industrial process 

operations. To generate different instances of the same disturbance, different start 

times, duration, and magnitude were used. For each disturbance, three different 



Chapter 3                                                              Offline Temporal Signal Comparison 
_____________________________________________________________________ 

 - 44 - 

parameter settings were used to make the signal different in both magnitude and 

duration. The disturbance XD1 is described in detail below. 

XD1: Change in ‘A’ feed flowrate   

During XD1-A, the flowrate of A feed from upstream is increased from the base 

case value of 0.25052 kscmh to 0.3902 kscmh in three steps, at t=180 min, t=190 min, 

t=200 min, as shown in Figure 3-10. In the simulation, this is brought about by quickly 

opening the control valve XMV(3). To recover from this disturbance, the pressure 

controller brings back the flow to the original base case value. The inverse disturbance 

of quickly decreasing the A feed flow is introduced at t=780 min. The downstream 

pressures (XMEAS(13) and XMEAS (16)) are also affected by these changes. . The 

effect on the A flow rate (XMEAS(1)) and the downstream pressures (XMEAS(13) 

and XMEAS (16)) is shown in Figure 3-10. Two other instances XD1-B and XD1-C 

with changes of magnitude 55% and 50% were also introduced.  

For each disturbance XD1 to XD5, three different instances were generated by 

varying the time of set point change, the durations, and the magnitude. The detail of 

the set point changes in the different runs of XD1, XD2, XD3, XD4, and XD5 are 

shown in Tables 3-5 to 3-9 respectively. Figures 3-10 show the corresponding variable 

evolutions of XD1. Thus, the set of time series for each disturbance are different in 

both synchronization and magnitude. 
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Figure 3-10: Three runs of XD1 disturbance with different magnitudes and duration 

A simple signal-difference metric ( 1ε ) is first used to illustrate the complexity of 

the signal comparison. 1ε  is the average magnitude difference between the 

corresponding normalized signals of two multivariate time series.  

1 1

1( , ) ( , ) ( , )
V T

p q
N N

i t
p q XMEAS t i XMEAS t i

VT
ε

= =

= −∑∑    (3-6) 

Here ( , )p
NXMEAS t i  is the normalized measurement signal for variable i during 

disturbance P.  

The 15 runs (XD1A to XD5C) are similar to each other and distinguishing among the 

classes is difficult. The 1ε difference among the 15 runs is shown in Table 3-10. As can 

be seen, the simple 1ε  comparison (as well as other comparisons such as Dynamic time 

warping) cannot successfully classify the disturbances since the inter-class and intra-

class distances are comparable. In seven of the cases, the difference between the 

instances of the same disturbance is larger than that with at least one of the other 
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disturbance. For example, the difference between XD3A and XD3B is 0.01991 while 

the differences between XD3A and XD5A, XD5B, XD5C are all less than 0.01719. 

The intra-& inter-group differences are shown in Table 3-11. 

Table 3-5: Disturbance profile for XD1 

  Target 
Time 
(min) Target 

Time 
(min) Target 

Time 
(min) Target 

Time 
(min)

XD1-A  1.20*Base value 180 1.40*Base value 190 1.60*Base value 200 1.0*Base value 780
XD1-B 1.15*Base value 240 1.35*Base value 254 1.55*Base value 268 1.0*Base value 900
XD1-C 1.10*Base value 300 1.30*Base value 318 1.50*Base value 336 1.0*Base value 1020

Table 3-6: Disturbance profile for XD2 

  Target 
Time 
(min) Target 

Time 
(min) Target 

Time 
(min) Target 

Time 
(min)

XD2-A  1.03*Base value 180 1.05*Base value 190 1.07*Base value 200 1.0*Base value 1020
XD2-B 1.025*Base value 240 1.045*Base value 254 1.065*Base value 268 1.0*Base value 1080
XD2-C 1.02*Base value 300 1.04*Base value 318 1.06*Base value 336 1.0*Base value 1200

Table 3-7: Disturbance profile for XD3 

  Target 
Time 
(min) Target 

Time 
(min) Target 

Time 
(min) Target 

Time 
(min)

XD3-A  1.05*Base value 180 1.10*Base value 190 1.15*Base value 200 1.0*Base value 780
XD3-B 1.045*Base value 240 1.09*Base value 254 1.135*Base value 268 1.0*Base value 900
XD3-C 1.04*Base value 300 1.08*Base value 318 1.12*Base value 336 1.0*Base value 1020

Table 3-8: Disturbance profile for XD3 

  Target 
Time 
(min) Target 

Time 
(min) Target 

Time 
(min) Target 

Time 
(min)

XD3-A  1.05*Base value 180 1.10*Base value 190 1.15*Base value 200 1.0*Base value 780
XD3-B 1.045*Base value 240 1.09*Base value 254 1.135*Base value 268 1.0*Base value 900
XD3-C 1.04*Base value 300 1.08*Base value 318 1.12*Base value 336 1.0*Base value 1020

Table 3-9: Disturbance profile for XD5 

  Target 
Time 
(min) Target 

Time 
(min) Target 

Time 
(min) Target 

Time 
(min)

XD5-A  0.95*Base value 180 0.90*Base value 190 0.85*Base value 200 1.0*Base value 780
XD5-B 0.955*Base value 240 0.91*Base value 254 0.865*Base value 268 1.0*Base value 900
XD5-C 0.96*Base value 300 0.92*Base value 318 0.88*Base value 336 1.0*Base value 1020
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Table 3-10: 1ε difference between the fifteen disturbances (x10-1) 
 XD1-A XD1-B XD1-C XD2-A XD2-B XD2-C XD3-A XD3-B XD3-C XD4-A XD4-B XD4-C XD5-A XD5-B XD5-C 
XD1-A 0 0.0686 0.074 0.2228 0.2052 0.1983 0.1735 0.1647 0.161 0.3631 0.3589 0.3443 0.0977 0.1108 0.1054
XD1-B 0 0.0629 0.2235 0.2028 0.1953 0.1735 0.1564 0.1476 0.3739 0.3483 0.3387 0.1136 0.0903 0.1023
XD1-C  0 0.2241 0.2009 0.1885 0.1847 0.1587 0.1383 0.3694 0.357 0.3278 0.1114 0.1018 0.0824
XD2-A   0 0.1446 0.166 0.2327 0.2309 0.1892 0.4558 0.4544 0.4107 0.2004 0.2015 0.1739
XD2-B   0 0.11 0.2631 0.2342 0.2413 0.4555 0.4219 0.4247 0.1914 0.1791 0.1801
XD2-C   0 0.2465 0.2424 0.2157 0.4556 0.4351 0.4001 0.1875 0.1786 0.1624
XD3-A   0 0.1991 0.1816 0.4143 0.4318 0.4113 0.1591 0.1718 0.1626
XD3-B   0 0.1736 0.4482 0.3953 0.4007 0.176 0.1415 0.1565
XD3-C   0 0.4294 0.4175 0.3697 0.1681 0.1521 0.124
XD4-A   0 0.2139 0.2909 0.3386 0.3605 0.3812
XD4-B    0 0.2003 0.3616 0.3262 0.3425
XD4-C    0 0.3589 0.337 0.3063
XD5-A    0 0.1005 0.0868
XD5-B    0 0.0864
XD5-C    0
 

Table 3-11: Mean difference, max difference and Standard deviation of 1ε difference between XD1 to XD5 
 Mean difference Max difference Standard deviation of difference 

Difference XD1 XD2 XD3 XD4 XD5 XD1 XD2 XD3 XD4 XD5 XD1 XD2 XD3 XD4 XD5
XD1 0.0457 0.2068 0.162 0.3535 0.1017 0.074 0.2241 0.1847 0.3739 0.1136 0.0345 0.0134 0.0141 0.015 0.0103
XD2  0.0934 0.2329 0.4349 0.1839 0.2241 0.166 0.2631 0.4558 0.2015 0.0729 0.0208 0.0216 0.0126
XD3  0.1232 0.4131 0.1569 0.1847 0.2631 0.1991 0.4482 0.176 0.0929 0.023 0.0162
XD4  0.1567 0.3459 0.3739 0.4558 0.4482 0.2909 0.3812 0.1225 0.0223
XD5  0.0608 0.1136 0.2015 0.176 0.3812 0.1005 0.046
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3.5 Case Studies 

3.5.1 Typical signal Difference between Singular points Augmented 

DTW, DTW and direct comparison 

In this section, we show two examples to illustrate the efficacy of the presented 

approach. The difference between two signals is calculated by different methods – 

direct comparison, using DTW, and using singular points augmented DTW and XTW. 

DTW with Itakura (1975) local constraint is used in this thesis. If the two signals are 

exactly the same, it is obvious that there is no difference among all the methods. Figure 

3-11(a) shows two signals different only in synchronization. The signals which are 

shown in Figure 3-11(b) are different in both synchronization and magnitude. The 

results for the two examples are shown in Table 3-12. The time cost of singular points 

augmented methods include the time for singular points detection. 

 

(a) 
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(b) 

 
(c) 

Figure 3-11: Signals are different in (a), synchronization (b), both in synchronization 
and magnitude (c), Synchronized signal for (a) using XTW 

It is clear that for cases where the only difference is in synchronization, XTW 

alone can work as well as the proposed method like SPXTW , DTW1, SP
1DTW . 

However, if two instances of a same type signal change differ in synchronization 

and magnitude, the proposed method using SPXTW is more efficient compared with 

the other methods. In some cases, using XTW alone may lead to worse results than 
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direct comparison as illustrated in Table 3-12 where the difference from XTW alone is 

larger than that from direct comparison. XTW is working well for signal difference 

only in synchronization (See Figure 3-11(c)). For typical Itakura DTW such as DTW1 

and DTW2, the results are better than Direct Comparison of the signal.  DTW1 always 

find the minimum difference between two signals since it does a full space search. 

Since DTW1 is using full space search, the time cost will increase dramatically as the 

signal length increases. It is therefore difficult to use for complex systems with lot of 

signals. SPXTW  provides a balance between high accuracy and low computational 

cost.  

Table 3-12: Comparison results from different methods 

 Figure 3-11 (a) Figure 3-11 (b) 
 Difference Time Cost 

(min)
Difference Time Cost 

(min)
Direct Comparison 0.0269 0.0007 0.0746 0.0007 
XTW 8.52E-04 0.0059 0.1384 0.0033 
DTW2 0.0181 1.6543 0.0635 0.1234 
DTW1 1.78E-04 17.5381 0.0338 2.6155 

SPXTW  3.57E-04 0.0255 0.0360 0.0157 
SP
2DTW  0.0074 1.7437 0.0472 0.3383 
SP

1DTW  1.79E-04 3.3845 0.0355 0.7147 
 
3.5.2 Case Study 1: Identifying Process States during Multi-mode 

Operation  

Singular points augmented time warping can be used for identifying the state of 

multi-mode process operations such as a fluidized catalytic cracking.  

Several runs of the startup of ShadowPlant were performed following the 

standard operating procedure and data for all 335 measured variables collected at 10 

second intervals. Random noise was also added to the measured variables to simulate 

measurement noise in the real process. Two runs G5 and G6 are considered in detail 
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here. The duration of the startup transition in these runs was 23 and 25 hours, 

respectively. In G6, operations such as air pre-heating and catalyst loading into the 

regenerator is initiated earlier; also the amount of catalyst loaded is larger. These 

changes lead to numerous differences between the signals from the two runs.  

 
Figure 3-12: Variable profiles during the different stages of regenerator startup of G5 

 
Figure 3-13: Singular points in regenerator temperature during different stages of 

regenerator startup 
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Consider the startup of the regenerator section. As shown in Table 3-13 and 

Figure 3-12, from the process operation and control points-of-view, there are six 

important stages during the startup of the regenerator. Given these stages of operation 

in G5, the objective is to find the corresponding stages in G6 by signal comparison 

alone without any other prior knowledge. As shown in Figure 3-13, the signals of 

many variables vary in both magnitude and duration between G5 and G6. We therefore 

match the signals using the singular points augmented time warping.  

Table 3-13: Important process stages during startup of regenerator section of 

ShadowPlant 

Stage Operational  description 
T1 Activate air flow to regenerator 
T2 Adjust system pressure and air flow 
T3 Load catalyst into regenerator 
T4 Stop catalyst loading 
T5 Introduce torch oil to regenerator 
T6 Turn off  fuel gas for air preheater 

 
Figure 3-14: SPXTW warped G6 regenerator temperature plotted with G5 regenerator 

temperature 
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Any of the variants of time warping described above can be used for this 

purpose. Here, we report results from DTW1 and singular points augmented time 

warping SPXTW . There is a difference of 360 samples between the two runs for this 

part of the startup. As an illustration of the run-to-run difference, the regenerator 

temperature profile and the singular points in the two runs are shown in Figure 3-13. 

Despite these significant differences, as shown in Table 3-14, the corresponding points 

of the stages are correctly identified by XTWSP. A plot of the warped profile of G6 

regenerator temperature when plotted with G5 regenerator temperature profile reveals 

the operational correctness of the result (See Figure 3-14).  

Table 3-14: Corresponding singular points identified by signal comparison 

 Start T1 T2 T3 T4 T5 T6 End 
G5 1 2015 3024 4349 6492 7131 7338 8640 
G6 (Actual) 1 1937 3041 3954 6510 7074 7348 8280 
G6 (XTWSP) 1 1937 3041 3954 6511 7074 7339 8280 
G6 (DTW1) 1 1937 3041 3954 6401 7067 7247 8280 

 

 

Figure 3-15: Synchronizing signals from G5 and G6 using DTW1 
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In contrast, when DTW1 is used to match the two signals, there are operational 

inconsistencies among the profiles as shown in Figure 3-15. An obvious mismatch 

occurs at the start of Stage 6 (at time 7348) in run G6 as highlighted in Figure 3-16. 

While the actual start of Stage 6 occurs at Point P, DTW1 identifies a point 101 

samples earlier. This is because DTW1 finds the minimum distance between the two 

signals but in this case, because of the significant magnitude and duration differences, 

the mathematical minimum does not coincide with the corresponding stages of 

operation. The singular points augmented time warping is not susceptible to this 

failure. The benefit of the proposed approach is also clear when a computational time 

comparison is made – 1248.60s for DTW1 and 9.94s for SPXTW  – an improvement by 

a factor of 125. The time cost of singular points augmented method is included the 

time for singular points detection. Other variables such as air flowrate into regenerator, 

catalyst level in regenerator, and regenerator pressure were also similarly studied. It 

was found that the corresponding stages of G5 and G6 were correctly identified in all 

cases.  

 

Figure 3-16: Misidentification of Stage T6 in Case Study 1 by DTW1 

Correct start point of 
Stage T6 

Start point of Stage T6 
identified by DTW1 
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The important stages of other variables such as airflow rate, catalyst levels in 

regenerator, regenerator pressure were also studied with this method. By comparing 

the signal from G5 and G6, the corresponding stage in G6 could be identified 

successfully with corresponding singular points. Key stages of air blower are: 1
AT , start 

air blower controller,  2
AT , air blower speed reached 100%, 3

AT , increase down stream 

pressure, 4
AT , down stream pressure stable, 5

AT , airflow affected by catalyst loading,  

6
AT , airflow affected by regenerator pressure switch.  Key stages of regenerator are:  

1
RT , increase regenerator pressure,  2

RT , regenerator pressure stable, 3
RT , regenerator 

vent open, 4
RT , load catalyst to regenerator , 5

RT , catalyst level increasing from zero, 

6
RT , stop catalyst loading, 7

RT , regenerator vent closed, 8
RT , regenerator pressure 

switch control, 9
RT , transfer catalyst to stripper, 10

RT , transfer catalyst finished.  As 

shown in Table 3-15, 3-16 and Table 3-17, all the key stages of air blower (through air 

flowrate) and regenerator (through catalyst level, and regenerator pressure) are 

identified. The average difference from actual stage is only 3.2 points.  

Table 3-15: Different stages of air blower identified by comparison of airflow 

  Start 
1

AT  2
AT  3

AT  4
AT  5

AT  6
AT  

G5 1 1849 2015 3008 3016 4356 7193 
G6 (Actual) 1 1771 1937 3028 3037 3958 7113 
G6 (XTWSP) 1 1771 1937 3025 3037 3960 7121 

 

Table 3-16: Different stages of regenerator identified by comparison of catalyst level 

 
5
RT  6

RT  9
RT  10

RT  
G5 5026 6447 7252 7828 
G6 (Actual) 4746 6490 7221 7795 
G6 (XTWSP) 4738 6485 7225 7793 
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Table 3-17: Different stages of regenerator identified by comparison of pressure 

 
1
RT  2

RT  3
RT  4

RT  7
RT  8

RT  
G5 1992 3008 3046 4354 6483 7178 

G6 (Actual) 1926 3029 3062 3960 6493 7109 
G6 (XTWSP) 1914 3029 3059 3961 6496 7105 

 

3.5.3 Case Study 2: Clustering of Process States in the Tennessee 

Eastman Process  

Another application of singular points augmented time warping is for disturbance 

classification and fault diagnosis. The Tennessee Eastman (TE) plant is a popular test 

bed for process control, fault diagnosis and signal comparison. There are 53 variables 

in the TE plant: 22 of these are process measurements variables, 19 are component 

compositions, and 12 are process-manipulated variables. The closed-loop process 

simulator used here was developed by Singhal (2001) based on the base control 

structure of McAvoy and Ye (1994). During the simulation, variable values are 

recorded every minute.  

To generate signals with magnitude and duration differences, we introduced five 

set point changes in the process. These five new disturbance classes XD1 – XD5 are 

described in Section 3.4.2. The objective is to cluster the disturbances by comparing 

the signals. Only the 22 process measurements variables are used for signal 

comparison. Different methods such as DTW1, DTW2, and their singular points 

augmented versions, SP
1DTW  and SP

2DTW  as well as SPXTW are compared based on 

the average variable-wise distance. For DTW2 and SP
2DTW the band global search 

width was set to B=50, however any value can be used. The average signal difference 

between the 15 groups is calculated using the various signal comparison methods and 

shown in Tables 3-18, 3-19, and 3-20. The table is not symmetric since the asymmetric 

DTW is used for this thesis. The ability of different method in differentiating between 
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the disturbances is shown in Table 3-18. Since the maximum intra-cluster distance 

(0.2008 between XD4-A and XD4-C) is greater than a large number of the inter-cluster 

distances, 12 out of the 20 different clusters cannot be separated by DTW2. SP
2DTW  

improves the separability and only four of these cannot be differentiated. DTW1 and 

SP
1DTW  seek global optima and can differentiate among all the clusters; however this 

is attained at a large computational expense – a 33-fold increase in computational time. 

Singular points augmentation proves beneficial in this case, since SP
1DTW  has a 28% 

processing speed advantage over DTW1. SPXTW is better than DTW2 and cannot 

differentiate between only one pair – XD1 and XD5. While, this performance is not as 

good as DTW1, the advantage of SPXTW comes to the fore when a time comparison is 

made. On an average, SPXTW requires only 37 cpu seconds (on a Pentium 4, 2.4 GHz 

processor) to compare the 22 sets of signals from any two clusters in contrast to 2661 

seconds for DTW1 
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Table 3-18: Signal differences between process disturbances in TE process calculated using SPXTW  (x10-1) 
SPXTW  XD1-A XD1-B XD1-C XD2-A XD2-B XD2-C XD3-A XD3-B XD3-C XD4-A XD4-B XD4-C XD5-A XD5-B XD5-C 

XD1-A 0 0.0269 0.0382 0.1735 0.1730 0.1686 0.1294 0.1235 0.1156 0.3309 0.3012 0.2763 0.0772 0.0761 0.0760
XD1-B 0.0238 0 0.0214 0.1893 0.1799 0.1622 0.1375 0.1233 0.1095 0.3244 0.2978 0.2892 0.0789 0.0687 0.0698
XD1-C 0.0335 0.0249 0 0.1885 0.1794 0.1655 0.1264 0.1220 0.1070 0.3384 0.3113 0.2883 0.0831 0.0713 0.0659
XD2-A 0.1861 0.1899 0.1891 0 0.0301 0.0549 0.1935 0.1724 0.1550 0.3837 0.3490 0.3246 0.1469 0.1489 0.1430
XD2-B 0.1735 0.1752 0.1749 0.0311 0 0.0346 0.1808 0.1631 0.1515 0.3636 0.3260 0.3134 0.1514 0.1336 0.1300
XD2-C 0.1640 0.1641 0.1652 0.0518 0.0318 0 0.1998 0.1701 0.1546 0.3703 0.3718 0.3327 0.1559 0.1443 0.1255
XD3-A 0.1282 0.1418 0.1474 0.1778 0.1860 0.2035 0 0.0296 0.0586 0.3274 0.3053 0.2980 0.1033 0.1144 0.1210
XD3-B 0.1242 0.1158 0.1308 0.1595 0.1603 0.1767 0.0289 0 0.0298 0.3040 0.3091 0.2861 0.0981 0.0980 0.1037
XD3-C 0.1161 0.1105 0.1070 0.1478 0.1502 0.1567 0.0529 0.0290 0 0.3323 0.3075 0.2970 0.0903 0.0889 0.0870
XD4-A 0.3249 0.3337 0.3399 0.3638 0.3709 0.3916 0.3450 0.3301 0.3278 0 0.0389 0.0765 0.2886 0.3039 0.3062
XD4-B 0.3220 0.3229 0.3279 0.3471 0.3544 0.3598 0.3386 0.3205 0.3126 0.0437 0 0.0393 0.2984 0.2928 0.3071
XD4-C 0.2989 0.3045 0.3077 0.3257 0.3281 0.3339 0.3365 0.3109 0.2955 0.0854 0.0396 0 0.2861 0.2736 0.2816
XD5-A 0.0812 0.0824 0.0835 0.1455 0.1518 0.1499 0.1065 0.0975 0.0900 0.2885 0.2598 0.2541 0 0.0285 0.0440
XD5-B 0.0755 0.0750 0.0754 0.1397 0.1350 0.1410 0.1142 0.0992 0.0915 0.2868 0.2684 0.2478 0.0250 0 0.0243
XD5-C 0.0706 0.0715 0.0690 0.1395 0.1332 0.1296 0.1208 0.1010 0.0885 0.3178 0.2902 0.2660 0.0427 0.0255 0
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Table 3-19: Signal differences between process disturbances in TE process calculated using DTW1 and SP
1DTW  (x10-1) 

SP
1DTW  XD1-A XD1-B XD1-C XD2-A XD2-B XD2-C XD3-A XD3-B XD3-C XD4-A XD4-B XD4-C XD5-A XD5-B XD5-C 

XD1-A 0 0.0123 0.0198 0.1478 0.1429 0.1367 0.1014 0.0971 0.0937 0.2903 0.2759 0.2538 0.0564 0.0576 0.0588
XD1-B 0.0121 0 0.0108 0.1516 0.1376 0.1339 0.1101 0.0955 0.0884 0.2926 0.2798 0.2569 0.0613 0.0543 0.0546
XD1-C 0.0190 0.0124 0 0.1519 0.1395 0.1339 0.1041 0.1011 0.0871 0.2953 0.2925 0.2644 0.066 0.0564 0.0501
XD2-A 0.1786 0.1789 0.1820 0 0.0202 0.0363 0.1557 0.1366 0.1223 0.3200 0.3013 0.2644 0.1356 0.1354 0.1264
XD2-B 0.1643 0.1635 0.1553 0.0210 0 0.0259 0.1479 0.1357 0.1213 0.307 0.2698 0.2767 0.1435 0.121 0.1146
XD2-C 0.1516 0.1494 0.1507 0.0323 0.0204 0 0.1724 0.147 0.1232 0.3138 0.3188 0.2699 0.1401 0.1378 0.1198
XD3-A 0.1237 0.1332 0.1387 0.1736 0.1761 0.1964 0 0.0176 0.0293 0.3031 0.2837 0.2844 0.0931 0.1046 0.1142
XD3-B 0.1151 0.1108 0.1224 0.1506 0.1531 0.1696 0.0194 0 0.0191 0.2896 0.2852 0.2738 0.0853 0.084 0.0937
XD3-C 0.1080 0.1030 0.1000 0.1378 0.1416 0.1475 0.0302 0.0170 0 0.2926 0.2744 0.2649 0.0816 0.0782 0.0733
XD4-A 0.3140 0.3258 0.3309 0.3510 0.3547 0.3709 0.2900 0.2936 0.3116 0 0.0272 0.0386 0.2714 0.2896 0.294
XD4-B 0.3141 0.3014 0.3108 0.3234 0.3375 0.3467 0.2947 0.2911 0.2823 0.0253 0 0.0251 0.2792 0.2746 0.2886
XD4-C 0.2868 0.2917 0.2905 0.3083 0.3149 0.3250 0.2638 0.268 0.2683 0.0366 0.0283 0 0.268 0.2614 0.267
XD5-A 0.0669 0.0723 0.0778 0.1262 0.1359 0.1295 0.0860 0.082 0.0726 0.2613 0.2488 0.2379 0 0.0142 0.0221
XD5-B 0.0633 0.0597 0.0651 0.1190 0.1176 0.1231 0.0889 0.0768 0.0666 0.2773 0.2546 0.2428 0.0151 0 0.0122
XD5-C 0.0639 0.0591 0.0557 0.1150 0.1080 0.1151 0.0976 0.0807 0.0706 0.2829 0.266 0.2473 0.0219 0.0137 0
DTW1 XD1-A XD1-B XD1-C XD2-A XD2-B XD2-C XD3-A XD3-B XD3-C XD4-A XD4-B XD4-C XD5-A XD5-B XD5-C 
XD1-A 0 0.0075 0.0125 0.1399 0.1269 0.1192 0.0940 0.0827 0.0700 0.2830 0.2720 0.2537 0.0416 0.0400 0.0391
XD1-B 0.0075 0 0.0073 0.1395 0.1260 0.1188 0.0975 0.0816 0.0698 0.2859 0.2706 0.2525 0.0436 0.0369 0.0369
XD1-C 0.0123 0.0072 0 0.1414 0.1275 0.1193 0.1033 0.0872 0.0712 0.2887 0.2741 0.2531 0.0467 0.0400 0.0346
XD2-A 0.1372 0.1371 0.1394 0 0.0150 0.0247 0.0935 0.0860 0.0810 0.2880 0.2758 0.2600 0.0893 0.0919 0.0927
XD2-B 0.1248 0.1234 0.1254 0.0149 0 0.0143 0.0941 0.0855 0.0785 0.2889 0.2756 0.2588 0.0825 0.0820 0.0837
XD2-C 0.1166 0.1160 0.1172 0.0247 0.0143 0 0.0956 0.0865 0.0777 0.2906 0.2773 0.2580 0.0780 0.0773 0.0771
XD3-A 0.0910 0.0945 0.0993 0.0915 0.0928 0.0938 0 0.0137 0.0238 0.2430 0.2355 0.2240 0.0675 0.0753 0.0813
XD3-B 0.0796 0.0793 0.0839 0.0855 0.0845 0.0855 0.0136 0 0.0137 0.2457 0.2334 0.2207 0.0590 0.0615 0.0675
XD3-C 0.0676 0.0673 0.0682 0.0803 0.0786 0.0777 0.0242 0.0135 0 0.2473 0.2344 0.2181 0.0502 0.0520 0.0534
XD4-A 0.2795 0.2820 0.2850 0.2859 0.2866 0.2876 0.2409 0.2444 0.2459 0 0.0202 0.0317 0.2553 0.2647 0.2714
XD4-B 0.2675 0.2665 0.2702 0.2736 0.2735 0.2745 0.2337 0.2325 0.2344 0.0202 0 0.0179 0.2429 0.2487 0.2561
XD4-C 0.2496 0.2486 0.2490 0.2577 0.2571 0.2559 0.2223 0.2207 0.2178 0.0324 0.0181 0 0.2277 0.2337 0.2367
XD5-A 0.0406 0.0428 0.0454 0.0902 0.0833 0.0775 0.0680 0.0586 0.0498 0.2583 0.2460 0.2308 0 0.0104 0.0162
XD5-B 0.0388 0.0361 0.0390 0.0933 0.0835 0.0778 0.0773 0.0619 0.0520 0.2685 0.2520 0.2362 0.0104 0 0.0089
XD5-C 0.0378 0.0355 0.0336 0.0945 0.0854 0.0782 0.0838 0.0691 0.0534 0.2750 0.2595 0.2394 0.0162 0.0088 0
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Table 3-20: Signal differences between process disturbances in TE process calculated using DTW2 and SP
2DTW  (x10-1) 

SP
2DTW  XD1-A XD1-B XD1-C XD2-A XD2-B XD2-C XD3-A XD3-B XD3-C XD4-A XD4-B XD4-C XD5-A XD5-B XD5-C 

XD1-A 0 0.0136 0.0258 0.1522 0.1436 0.1366 0.1152 0.1073 0.0945 0.2969 0.2862 0.2574 0.0564 0.0578 0.0587
XD1-B 0.0125 0 0.0112 0.1478 0.1337 0.1309 0.1106 0.0967 0.0877 0.2947 0.2816 0.2588 0.0628 0.0523 0.0548
XD1-C 0.0222 0.0125 0 0.1531 0.1394 0.1306 0.1093 0.1090 0.0871 0.2888 0.2992 0.2721 0.0674 0.0597 0.0509
XD2-A 0.1953 0.1853 0.1878 0 0.0216 0.0764 0.1593 0.1383 0.1239 0.4279 0.3276 0.2698 0.1432 0.1439 0.1368
XD2-B 0.1684 0.1727 0.1576 0.0310 0 0.0332 0.1535 0.1360 0.1221 0.3397 0.2933 0.2868 0.1559 0.1317 0.1181
XD2-C 0.1556 0.1588 0.1552 0.0628 0.0425 0 0.1761 0.1568 0.1264 0.3519 0.3349 0.2838 0.1419 0.1435 0.1312
XD3-A 0.1285 0.1367 0.1396 0.1928 0.1960 0.2026 0 0.0234 0.0604 0.3032 0.3032 0.3179 0.0954 0.1107 0.1199
XD3-B 0.1274 0.1141 0.1242 0.1661 0.1752 0.1778 0.0223 0 0.0251 0.3811 0.2894 0.2895 0.0878 0.0877 0.0971
XD3-C 0.1227 0.1141 0.1036 0.1409 0.1466 0.1541 0.0635 0.0201 0 0.3007 0.2729 0.2624 0.1015 0.0839 0.0756
XD4-A 0.3197 0.3343 0.3391 0.3798 0.3864 0.4163 0.2928 0.3127 0.3308 0 0.0278 0.0611 0.2917 0.3115 0.3268
XD4-B 0.3128 0.3011 0.3137 0.3678 0.3804 0.3871 0.2965 0.2931 0.3064 0.0411 0 0.0252 0.2851 0.2875 0.2977
XD4-C 0.3014 0.2956 0.2900 0.3300 0.3440 0.3562 0.2671 0.2765 0.2741 0.0988 0.0456 0 0.2824 0.2807 0.2776
XD5-A 0.0672 0.0744 0.0801 0.1497 0.1509 0.1430 0.0860 0.0831 0.0740 0.2748 0.2640 0.2576 0 0.0186 0.0392
XD5-B 0.0659 0.0611 0.0679 0.1333 0.1368 0.1340 0.0900 0.0810 0.0668 0.2876 0.2628 0.2596 0.0153 0 0.0125
XD5-C 0.0646 0.0592 0.0574 0.1222 0.1218 0.1234 0.0981 0.0831 0.0696 0.2925 0.2758 0.2532 0.0309 0.0143 0
DTW2 XD1-A XD1-B XD1-C XD2-A XD2-B XD2-C XD3-A XD3-B XD3-C XD4-A XD4-B XD4-C XD5-A XD5-B XD5-C 
XD1-A 0 0.0347 0.0460 0.1700 0.1580 0.1520 0.1045 0.1090 0.1100 0.2846 0.2805 0.2701 0.0608 0.0681 0.0700
XD1-B 0.0332 0 0.0321 0.1661 0.1583 0.1504 0.1045 0.0944 0.0972 0.2879 0.2749 0.2648 0.0670 0.0566 0.0636
XD1-C 0.0435 0.0312 0 0.1659 0.1564 0.1504 0.1148 0.0966 0.0845 0.2867 0.2782 0.2623 0.0707 0.0625 0.0537
XD2-A 0.1899 0.1871 0.1893 0 0.0459 0.0965 0.1768 0.1645 0.1419 0.3762 0.3565 0.3305 0.1570 0.1525 0.1370
XD2-B 0.1744 0.1748 0.1725 0.0452 0 0.0657 0.1818 0.1620 0.1558 0.3652 0.3447 0.3170 0.1464 0.1367 0.1282
XD2-C 0.1662 0.1653 0.1643 0.0901 0.0602 0 0.1836 0.1688 0.1518 0.3695 0.3541 0.3280 0.1487 0.1380 0.1285
XD3-A 0.1291 0.1324 0.1396 0.1900 0.1955 0.1981 0 0.0984 0.1354 0.3091 0.3302 0.3395 0.0945 0.1060 0.1192
XD3-B 0.1274 0.1158 0.1210 0.1671 0.1691 0.1813 0.0924 0 0.0858 0.3332 0.2967 0.3106 0.1070 0.0869 0.0964
XD3-C 0.1237 0.1125 0.1027 0.1408 0.1590 0.1557 0.1201 0.0800 0 0.3366 0.3115 0.2803 0.1177 0.0933 0.0768
XD4-A 0.3299 0.3346 0.3371 0.4041 0.3997 0.4050 0.3209 0.3600 0.3686 0 0.1262 0.2111 0.3019 0.3227 0.3407
XD4-B 0.3228 0.3163 0.3207 0.3810 0.3700 0.3849 0.3361 0.3096 0.3395 0.1155 0 0.1150 0.3120 0.2942 0.3087
XD4-C 0.3068 0.3034 0.2991 0.3514 0.3327 0.3510 0.3451 0.3163 0.2941 0.2008 0.1056 0 0.3176 0.2946 0.2790
XD5-A 0.0648 0.0724 0.0776 0.1474 0.1412 0.1416 0.0793 0.0959 0.1082 0.2682 0.2860 0.2881 0 0.0479 0.0596
XD5-B 0.0709 0.0598 0.0660 0.1391 0.1273 0.1320 0.0863 0.0738 0.0833 0.2805 0.2611 0.2696 0.0455 0 0.0415
XD5-C 0.0721 0.0659 0.0561 0.1238 0.1155 0.1192 0.0971 0.0785 0.0662 0.2965 0.2691 0.2482 0.0543 0.0403 0
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The problem of identifying a run of the process is relatively simpler.  Let S be 

the group separability ratio defined as the ratio between the minimum inter-group 

distance and the maximum intra-group distance. The larger the S, the easier it is to 

distinguish between the groups of operation. For each case, if S is larger than 1, the 

different operations can be differentiated clearly; else the operations cannot be 

uniquely identified by signal comparison. The S for the different signal comparison 

methods is shown in Table 3-21. The minimum S value for DTW2 is 0.4889, and 

DTW2 cannot differentiate between instances of XD3 and XD5. SP
2DTW  does not 

suffer from this problem and can clearly differentiate between all the groups 

(minimum S is 1.1060). With minimum S values of 2.0904 and 2.2670 respectively, 

both DTW1 and SP
1DTW can separate all the groups clearly as can XTW. Thus, the 

singular points augmented time warping methods are better than the traditional ones.  

Table 3-21: Group separability ratio for TE process 

 1DTW  SP
1DTW  2DTW  SPXTW  SP

2DTW  

XD1-A 3.0860 3.3316 1.4899 2.1055 2.9099 
XD1-B 4.7001 4.7661 1.7248 2.6582 4.3529 
XD1-C 2.6838 2.8131 1.2200 1.8040 2.2248 
XD2-A 3.2515 3.5604 1.3739 2.6961 1.9459 
XD2-B 5.2574 5.2941 1.9183 4.1853 2.8659 
XD2-C 3.1409 3.1708 1.2346 2.3602 1.6152 
XD3-A 2.8063 2.8477 0.6606 2.0151 1.3543 
XD3-B 4.2819 4.3636 0.7505 3.2902 3.4615 
XD3-C 2.0904 2.2730 0.4889 1.5100 1.1060 
XD4-A 7.5026 7.1393 1.3356 3.3571 2.7814 
XD4-B 11.5500 8.7915 2.0688 6.5626 5.7632 
XD4-C 6.8852 6.1632 1.1760 3.2417 4.1440 
XD5-A 2.5710 2.5753 1.1205 1.8074 1.8252 
XD5-B 3.5392 3.8239 1.1824 2.4090 2.8118 
XD5-C 2.1326 2.2670 0.9016 1.4990 1.2985 

 

The Swain-Fu distance (Kotz and Johnson, 1988) is a measure of distance 

between two classes and provides a metric for clustering efficiency. The Swain-Fu 
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distance 12Φ  between two n-dimensional distributions with mean iμ  and covariance 

iΛ  is defined as 

 1 2
12

1 2H H
μ μ−

Φ =
+

 (3-7) 

where distance ( 1,2)iH i =  is calculated as: 
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  (3-8) 

Table 3-22: Swain-Fu distances between disturbance classes in TE process using 
SPXTW   

 XD1 XD2 XD3 XD4 XD5 
XD1 - 6.1088 3.5912 4.853 4.0327 
XD2 37.4667 - 3.4793 5.4281 5.8406 
XD3 13.2203 5.9372 - 6.9653 7.6293 
XD4 27.5624 14.4365 8.7958 - 21.8929 
XD5 20.7789 11.686 2.5355 4.6523 - 

 
Table 3-23: Swain-Fu distances between disturbance classes in TE process using 

SP
1DTW  and DTW1 

 SP
1DTW  1DTW  

 XD1 XD2 XD3 XD4 XD5 XD1 XD2 XD3 XD4 XD5 
XD1     - 6.2107 4.5502 7.788 5.2615 - 5.3289 2.6305 7.7558 3.7259
XD2 39.1359       - 3.4532 6.7929 6.0894 36.988 - 4.4738 8.4697 22.6327
XD3 15.8514 6.4657       - 12.6588 8.8015 13.2063 19.2704 - 8.5441 5.7449
XD4 40.8741 13.5088 30.4676      - 22.0161 63.6292 72.4435 57.6182 - 18.0194
XD5 13.0514 12.0842 2.8562 8.0416       - 11.75 4.4832 2.1063 7.4072 - 

 
Table 3-24: Swain-Fu distances between disturbance classes in TE process using 

SP
2DTW  and DTW2  

 SP
2DTW  2DTW  

 XD1 XD2 XD3 XD4 XD5 XD1 XD2 XD3 XD4 XD5 
XD1 - 3.7693 2.3385 5.0614 3.5331 - 3.7315 1.4898 3.7475 4.0377 
XD2 17.4189 - 2.5111 2.8686 5.7546 29.3136 - 2.4418 3.6402 5.2075 
XD3 14.9503 6.111 - 4.5207 9.3163 9.8118 4.7159 - 4.8798 4.7557 
XD4 43.8458 9.2131 9.0473 - 15.5219 54.6438 11.6558 14.294 - 26.8869
XD5 8.5421 6.5947 1.7665 5.2571       - 6.2438 3.6404 1.0057 4.2501 - 

 

The Swain-Fu distances between the five different classes among the 15 runs 

were calculated for the different signal comparison methods as shown in Table 3-22 to 
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Table 3-24. The larger the minimum distance, the clearer a method can separate each 

class of operation. When the minimum distance is less than 1, the five disturbances are 

not clearly separable. The minimum distance from SPXTW , SP
1DTW , and SP

2DTW are 

2.5355, 2.8562, and 1.7665,  respectively and all the disturbance classes can be 

effectively differentiated. In contrast, the minimum distance from DTW1 and DTW2 

are 2.1063 and 1.0057, respectively. The larger Swain-Fu distances of the singular 

points enhanced time warping methods reiterate their superiority to traditional DTW. 

3.5.4 Case Study 3: Identifying Transitions during a Fed-batch 

Fermentation 

In this section, we describe the use of the proposed method for state 

identification in a lab-scale fed-batch fermentation process. This process uses the yeast 

Pichia pastoris for the production of proteins such as antigens. The reader is referred 

to Muthuswamy and Srinivasan (2003) for more details of the process. Eight variables 

are being measured online in the process: Airflow, Stirrer speed, Dissolved oxygen 

(pO2), Cumulative base addition, Cumulative acid addition, pH, Exit O2 concentration, 

and Exit CO2 concentration. Further the carbon-dioxide evolution rate and O2 uptake-

rate are calculated by the control system based on the online measurements of O2, CO2. 

Data from seven of these variables are used for phase identification; Cumulative acid 

and base addition and pH are not used here. There are four important transitions in the 

operation of the fermentation process. T1 occurs when dissolved oxygen level drops; 

T2 and T4 occur due to nutrient-exhaustion; T3 occurs when the process has a critical 

cell mass. It should be noted that the duration of the different states are not the same 

across runs; neither do the state changes occur at the same times. The objective is to 

identify the transitions in the test run based on the knowledge of the transitions in a 

standard run. We have used data from Run SMB74 as the standard and from Run 
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SMB78 as the test. Only T1, T2 and T4 are considered here since T3 is based on offline 

cell mass measurements. 

For state identification, singular points were identified in all the seven variables. 

By analyzing the singular points and the transition times during SMB74, it is clear that 

dissolved oxygen is the key signal in the process and there are singular points in the 

data corresponding to T1, T2, and T4 as shown in Figure 3-17(a). For SMB78 transition 

identification, in the interest of space, we report results only for the corresponding 

singular points although all singular points were used during signal comparison.  

SPXTW  was used for this purpose. The corresponding singular points in SMB78 are 

shown in Figure 3-17(b). The warped signal from SMB78 when plotted with the raw 

signal from SMB74 in Figure 3-17(c) shows the effectiveness of the time warping 

despite the large noise in the variable. As can be seen from the identified SMB78 

transition timings in Table 3-25, the results are comparable to those reported by 

Muthuswamy and Srinivasan (2003) using a rule-based approach. The average 

difference of only 7 min illustrate that critical events during process operations 

coincide with singular points; therefore the proposed singular point augmented time 

warping is an efficient and intuitive data-driven approach to identify process 

phenomena. In the following, we illustrate the robustness of the proposed method.. 

Table 3-25: Comparison between rule-based and XTWSP-based transition detection 

 SMB74 (min) SMB74* (min) SMB78(min) SMB78* (min) 

Start 1084 1084 895 895 
T1 1132 1134 951 960 
T2 1202 1231 1031 1042 
T4 1641 1641 1363 1364 
End 1712 1712 1405 1405 

(* reported by Muthuswamy and Srinivasan, 2003) 
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 (a) 

 
 (b) 

 
(c) 

Figure 3-17: Dissolved Oxygen profile during (a) SMB-74 and (b) SMB-78. (c) Signal 
Warping for transition identification based on singular points 
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3.5.5 Robustness to Tuning Parameters 

Robust signal comparison using the singular point enhanced time warping 

methods depends on the robustness of (1) singular point identification, and (2) the 

singular point linking. The comparison of the singular episodes using time warping 

methods itself is deterministic and does not affect the performance. In the following, 

we illustrate the robustness of the former through a parametric study.  

Singular point identification involves three parameters – ω , δ , and τ  which 

affect singular point identification.  While in general, different process signals may 

require different values for these parameters, we have found that most of the parameter 

settings can be used across variables and case studies. If necessary, fine-tuning can be 

done based on the features of a process signal. It should be noted that the comparison 

algorithm itself does not involve any case-specific parameters. Some basic guidelines 

are given below and illustrated using results from SPXTW  for two case studies. 

The inspection window ω  for finding the sharp changes points can be specified 

based on the variable’s speed of response. If the sampling time is short compared to 

the time-constant of the variable, ω would have to be increased; conversely, if the 

sampling time is long, ω  should be decreased to prevent the accumulated effect of a 

slow change from being flagged as a sharp change. In all the case studies in Section 4, 

the inspection window was set to 8 samples.  A study of the sensitivity to ω  was 

performed for Case Study 1. Consider the signal in Figure 3-15. Setting 0.05δ =  and 

96τ = , ω was varied from 4 to 12 as shown in Table 3-26. There is no difference in 

the time of detection of most of the stages; even in the others the difference was found 

to be at most 12 samples, that is, two minutes in the entire 23 hour long startup of the 

process. This illustrates the robustness of the method to the settings ofω . 
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The neighborhood τ  can be identified based on the distance between two sharp 

changes points that can be concatenated into one sharp change episode. It needs to be 

specified based on the signal characteristics, sampling time, and process knowledge. If 

the variable has extensive high frequency noise which should be discounted during 

signal comparison, τ  should be increased so that adjacent sharp change episodes are 

concatenated.  The proposed method is robust to a wide range of τ  values. In Case 

Study 1, with 0.05δ =  and 8ω = , when τ  is increased from 40 to 120 samples, the 

maximum variation in the results is 22 samples, that is 3.67 minutes (see Table 3-27), 

which is acceptable for this process.  

Table 3-26: ShadowPlant stage identification using XTWSP with different ω  

ω  4 5 6 7 8 9 10 11 12 Max shift 
Start 1 1 1 1 1 1 1 1 1 - 

T1 1935 1935 1935 1935 1937 1937 1931 1931 1927 10 
T2 3041 3041 3041 3041 3041 3041 3041 3041 3041 0 
T3 3960 3959 3959 3954 3954 3948 3948 3948 3948 12 
T4 6511 6511 6511 6511 6511 6511 6511 6511 6511 0 
T5 7074 7074 7074 7074 7074 7074 7074 7074 7074 0 
T6 7339 7339 7339 7339 7339 7339 7339 7339 7339 0 

End 8280 8280 8280 8280 8280 8280 8280 8280 8280 - 

Table 3-27: ShadowPlant stage identification using XTWSP with different τ  

τ 40 48 56 64 72 80 88 96 120 Max shift 
Start 1 1 1 1 1 1 1 1 1 - 

T1 1937 1937 1937 1937 1937 1937 1937 1937 1937 0 
T2 3041 3041 3041 3041 3041 3041 3041 3041 3041 0 
T3 3954 3954 3954 3954 3954 3954 3954 3954 3954 0 
T4 6511 6500 6500 6500 6511 6511 6511 6511 6511 11 
T5 7073 7073 7073 7073 7074 7074 7074 7074 7073 1 
T6 7326 7324 7321 7321 7321 7317 7317 7339 7339 22 

End 8280 8280 8280 8280 8280 8280 8280 8280 8280 - 
 

Threshold is the most important parameter in singular points identification and 

may require tuning based on the noise level and signal profile. If the noise in the signal 

increases, δ should also be increased. If adjacent extrema can have a large difference 

in their magnitudes, the δ value should be increased. For most variables in all the case 

studies, we foundδ =5% to be a suitable choice. The robustness of δ was also studied 
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in Case Study 1 by varying it from 0.02 to 0.10, with ω andτ  fixed at 8 and  96 

respectively, as shown in Table 3-28. A shift of about 16 samples, that is 2.66 min, was 

observed in two stages. For all other stages, there were no differences in the stage 

identification time. 

Table 3-28: ShadowPlant stage identification using XTWSP with different δ  

δ  0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 Max shift 
Start 1 1 1 1 1 1 1 1 1 - 
T1 1922 1928 1937 1937 1937 1937 1935 1935 1935 15 
T2 3041 3041 3041 3041 3041 3041 3041 3041 3041 0 
T3 3944 3944 3946 3954 3960 3960 3960 3961 3961 17 
T4 6511 6511 6511 6511 6511 6511 6511 6511 6511 0 
T5 7074 7074 7074 7074 7074 7074 7074 7074 7074 0 
T6 7339 7339 7339 7339 7339 7339 7339 7339 7339 0 

End 8280 8280 8280 8280 8280 8280 8280 8280 8280 - 

From the process state point of view, T1 and T3 are denoted by sharp change 

points which are affected only by ω  and δ . Stage T2 is indicated by an extreme point; 

such singular points are only weekly affected by δ and unaffected by ω and τ . Stages 

T4,  T5, and T6 are associated with trend change points and are affected only by τ  

Table 3-29: Minimum Group separability ratio in TE process for different parameter 
settings 

 96 0.06τ δ= =  
ω  4 6 8 10 12 

XD3-C 1.5901 1.5717 1.5371 1.3338 1.6175 
XD5-C 1.5205 1.5582 1.5566 1.4614 1.6796 

 8 0.06ω δ= =  
τ  64 80 96 120 160 

XD3-C 1.5562 1.4753 1.5371 1.6314 1.5652 
XD5-C 1.5164 1.5143 1.5566 1.6010 1.4568 

 8 96ω τ= =  
δ  0.04 0.06 0.08 0.10 0.12 

XD3-C 1.6303 1.5371 1.2967 1.1777 1.0443 
XD5-C 1.6566 1.5566 1.4765 1.4413 1.4403 

A similar robustness study was conducted for the other case studies as well. In 

the interest of space, only a summary of the results from Case Study 2 is presented 

here. Table 3-29 shows the two smallest group separability ratios S for different ω ,τ , 

and δ  settings. In all cases, S was larger than 1 and all the different operating states 
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can be easily distinguished. The minor changes in S for different settings of ω , τ and 

δ  show that singular point augmented time warping is a robust method. Whenever the 

major singular points was detected the algorithm will works.  

3.6 Discussion  

Signal comparison is important for process monitoring, fault diagnosis, and 

process stage identification. In this chapter, we presented a new approach for signal 

comparison based on singular points and time warping. Process data is first segmented 

based on singular points. Dynamic programming and time warping is used to find their 

optimal match and obtain the signal difference. Singular point augmentation can be 

used with traditional DTWs, the role of the latter in this case is for episode-wise 

comparison. In such cases, the proposed method improves the quality of signal 

comparison.  It can also be used with the computationally efficient extrapolative time 

warping method which uses a greedy search instead of dynamic programming. The 

disadvantage of XTW is that it does not guarantee a globally optimal difference 

between two signals, but this is not an essential requirement since the linkage of the 

singular points enforces the matching of the corresponding episodes. A performance 

comparison of the singular point augmented time warping method with DTW reveals a 

substantial decrease in computational cost, which makes it amenable for large-scale 

case studies. Its extension for online signal comparison has been explored and will be 

reported in a subsequent communication.  

The XTWSP represents an attractive tradeoff between computational complexity 

and mathematical optimality that is suitable for process operation applications. This 

was established using three different systems to solve three different operational 

problems: operations stage identification during startup of a simulated FCCU, 

disturbance identification in the Tennessee Eastman plant, and transition identification 
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in a fed-batch fermentation process. In all cases, the method correctly identified the 

corresponding points of the variables and found an operationally relevant signal 

difference.  

The proposed method bears some similarity with the correlation optimized 

warping (COW) method proposed by Nielsen et al. (1998). COW aligns two signals by 

splitting them into a number of equal segments and segment-wise linear stretching and 

compression. The quality of alignment of each segment is calculated based on the 

correlation coefficient of the corresponding segments. The optimal combination of 

segment warping is the one that yields the largest value of the summed correlation 

coefficients and obtained using dynamic programming (Pravdova et al., 2002). In 

contrast to COW, where the original signal is divided into equal sections, in our work, 

segments are defined based on singular episodes of varying lengths. Also, we use time 

warping to warp the signals in contrast to the linear interpolation used in COW.  

The proposed approach also shares similarities with the qualitative trends of 

Rengaswamy and Venkatasubramanian (1995). Qualitative trends as well as singular 

episodes decompose the signal into segments – the former based on shapes and the 

later based on singular points.  Both these classifications are broadly based on first and 

second derivatives of the signal. The singular episodes retain the magnitude and 

duration information and are therefore more akin to the enhanced trends of 

Sundarraman and Srinivasan (2003). The proposed approach has several advantages 

when compared with the trend-based approaches. (1) The singular points guarantee 

that only the corresponding process states will be compared – an essential requirement 

in transition type operations. (2) It is more robust to slow drifts and high frequency 

changes which are usually difficult to deal with using qualitative trends. The episode-

wise difference calculated by the proposed approach also has another application. It 
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can be used to locate the stages in the process where large differences are observed; 

this can be used to provide additional stage specific information, such as root cause 

identification for deviations in batch-type operations. 

A performance comparison of the singular point augmented time warping 

method with DTW reveals a substantial decrease in computational cost, which makes it 

amenable for large-scale case studies. Its extension for online signal comparison is 

reported in Chapter 5. 
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Chapter 4 Online Fault Diagnosis and State 

Identification using Dynamic Locus Analysis  

4.1 Introduction 

Modern chemical plants are large in scale and highly complex. Due to market 

forces, increasingly, these plants are operated in a multitude states and frequently 

transition between them to accommodate varying raw materials, product grades, 

demands, etc. Transitions also arise during startup, shutdown, and maintenance 

activities. Although essential, transitions are uneconomical states and there is a 

constant push to decrease the duration of the transition.  Operator involvement in the 

operation of the plant is also higher through the course of transitions; consequently the 

occurrence of human error is higher during these periods (Nimmo, 1993).  Since 

present day process automation applications like alarm management and advanced 

control systems are usually configured for a single operating state – typically a steady 

state mode – and these do not function effectively during transitions (Srinivasan et al., 

2005) the operators do not have decision support applications during transitions. There 

is therefore a need to develop intelligent systems that can detect occurrence of faults 

during multiple state operations. Timely and accurate fault diagnosis would enable the 

operator to correct errors and recover from abnormal situations which may otherwise 

compromise the safe and economic functioning of the plant.   

Fault diagnosis has received a lot of attention in literature (Venkatasubramanian, 

et al., 2003). However, most online fault detection and diagnosis methods in literature 

assume that the process is in a known, well characterized state (for e.g., a normal 

steady state) when diagnosis is started. This assumption becomes untenable for agile 
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processes that undergo transitions. The following are some key challenges during 

online fault diagnosis and state identification during process transitions:  

1) Unknown initial state: Since agile processes are frequently in dynamic states, 

the diagnoser cannot assume that the process is in an a priori known state 

when diagnosis is started. It is therefore necessary to first identify the current 

state of the process from the online signals before evaluating if the process is 

in a normal condition. 

2) Partial information: Since state identification to be performed as early as 

possible without having to wait for the current state to end or a new state to 

begin, the method should work even if it is initiated in the middle of a change 

and based on incomplete information such as unknown start times.  

3) Run-to-run variations: The method should be robust to changes in process 

signals induced by the different strategies of different operators. Signal 

synchronization is therefore critical.  

4) Process complexities: Transitions involve large changes which bring forth 

process nonlinearities, discontinuities, non-stationary signals, as well as time-

delays.  

5) Low computation cost: The computational load should be modest, so that 

method can be deployed online even for large-scale processes with thousands 

of sensors.   

In this Section, we propose a signal comparison based approach to state 

identification and fault diagnosis during process transitions. We use a short segment 

of online sensor signals as a fingerprint and develop a methodology inspired by 

sequence comparison approaches in bioinformatics to quickly and computationally 

inexpensively identify the current process state. The rest of this section is organized as 
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follows:  The dynamic locus analysis methodology for online state identification is 

proposed in Section 4.2. In Section 4.3, we illustrate the proposed approach using 

three case studies – the Tennessee Eastman challenge process, a lab-scale distillation 

column, and a simulation of a fluidized catalytic cracking unit.  Summary and 

discussion from this work are presented in Section 4.4. 

 
4.2 Dynamic Locus Analysis 

Consider the signal segment },...,,,{ 321 mxxxxX = which is the last m samples 

from an online sensor. This signal has to be compared with a reference of K signals to 

identify the one that best matches X. Let },...,,,{ 321 nyyyyY =  be one of the reference 

signal. Here m is called the evaluation window. nm <<  since only a small segment of 

the online signal is used for identification.  

Definition: For every segment of Y, say 1{ , ,..., }l l jZ y y y+= , a segment 

* * *
*

1
{ , ,..., }

l l j
Z y y y

+
= , is called the locus of X iff { }* * *

,
( , )  min ( , )

l j
D X Z D X Z= . Also, 

*l
y is called the corresponding point of 1x and *y

j
the corresponding point of mx . 

For online state identification, since the real-time signal is generated 

dynamically, it is incomplete and its corresponding start time vis-à-vis the reference 

signal is not known. Therefore, two aspects are essential in the identifying the current 

state of a process – (1) finding the corresponding start point in the reference signal 

(that is, linking l to *l ); and (2) comparing the real-time signal segment and possible 

segment in reference signal (that is, calculating the difference between two segments). 

If starts from each possible point do an independent comparison, the computation load 

will be unacceptable. We overcome this requirement using a concept similar to 

Waterman’s (1987) RNA matching algorithm.  The computational performance is 
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suitable even for real-time usage since a short real-time signal is usually adequate for 

state identification (See Section 4.3). In this thesis, a methodology which can identify 

the optimal section which has minimum warping distance with real-time signal 

segment was called dynamic locus analysis. It can identify the locus in reference 

signal with the real-time signal evolution.   

Let i and j be the time index of X and Y respectively. The locus of X is identified 

using a Dissimilarity Matrix, DS. The (i, j) element of DS measures the minimal 

difference between the sub-segment 1 2 3{ , , ,..., }ix x x x  in X and the sub-segment 

1 2{ , , ,..., }l l l jy y y y+ +  in Y. In the general case, l is unknown and is determined using 

dynamic programming. 

 ( )
1

( , ) min ( , )
i

S d j dF d

D i j x y
=

⎧ ⎫= Δ⎨ ⎬
⎩ ⎭
∑    (4-1) 

 ( ) ( , ( ))c d d j d=  

 { }(1), (2),..., ( )F c c c i=  

where F is a sequence of matches between X and Z. ( )j dy is the time warped point that 

matches with dx , and ( )( , )d j dx yΔ is the difference between dx and ( )j dy . While a 

variety of metrics can be used to calculate Δ , in this thesis we use the Euclidean metric  

 ( , )i j i jx y x yΔ = −   (4-2) 

Note that ( , )SD i j  is not the total minimum distance between 1 2 3{ , , ,..., }ix x x x  

and 1 2{ , ,..., }jy y y , rather it is the total minimum distance between X and its locus in Y.   

The optimal match between X and the locus in Y is given by ( , ( ))SD m j m . As 

mentioned earlier, there are two problems in calculating ( , ( ))SD m j m . First, the point 

in Y that corresponds to x1 is not known a priori. Second, X and Y would not match 
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exactly due to noise and run-to-run differences. Therefore, there can be 

synchronization and magnitude differences between X and Y. We solve the former 

using Waterman’s (1987) dynamic programming approach and the latter through Time 

Warping.  

In dynamic locus analysis, the optimal matching path between 

1 2 3{ , , ,..., }ix x x x and the corresponding part of Y must be found. The dissimilarity 

matrix is used for the purpose. The dissimilarity matrix is constructed based on the 

principle of optimality (Williams, 1970) using dynamic programming. Since the 

optimal search should allow for compression and elongation in Y relative to X, time 

warping with Itakura local constraint is used to synchronize X and Y. Here, X is 

considered as the key signal and Y as the warping signal. A warping slope between [½ 

2] has been found to be adequate in terms of computational complexity while 

minimizing over-warping.   

Step 1: Dissimilarity Matrix Initialization: 

The first column and row of the dissimilarity matrix are initialized at this stage. 

The first column of Ds considers all possible matches for x1 in Y.  

 1(1, ) ( , )    [1 ]S jD j x y j n= Δ ∈  (4-3) 

The first row of Ds is calculated based on the Itakura local constraint as follows: 

 2 1(2,1) (1,1) ( , )S SD D x y= + Δ      

 ( ,1)    [3 ]SD i i m= ∞ ∈  (4-4) 

Step 2: Matrix Propagation 

Other elements of DS are constructed recursively using the Itakura local 

continuity constraint as follows:  
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      { }, ,( , ) min ( 1, 1) ( , ), ,   [2 ]   [2 ]S S i j i j i jD i j D i j x y F G i m j n= − − + Δ ∈ ∈  (4-5) 

 , ( 1, 2) ( , ) i j S i jF D i j x y= − − + Δ  (4-6) 

 *
, ( 1, ) ( , ) or  if i j S i jG D i j x y G= − + Δ ∞  (4-7) 

G* indicates that the predecessor of point (i–1, j) is the point (i–2, j).  

Since we seek the segment in Y that matches the complete X, the minimal 

distance between X and Y is obtained as the smallest value in the last column, i.e., the 

minimal distance is *( , )SD m j  where  

 { }* argmin ( , )    [1 ]s
j

j D m j j n= ∈  (4-8) 

In the following, the time at which y(j*) occurred in the reference signal is 

notated as yτ  and the time of x(m) as xτ .  

From the Principle of Optimality (Myers et al. 1980), an optimal policy must 

follow two rules – (1) If F* is an optimal path which goes through point (i, j), then the 

optimal path to point (i, j) is part of F*, and (2) The optimal path to point (i, j)  depends 

only on previous points. The above recursive relationship satisfies these two rules, 

therefore, here the optimal dissimilarity ),( jiDS is found since all possible 

predecessors are considered and the one that minimizes the total dissimilarity is 

selected.  The local search space at each point is schematically shown in Figure 4-1a 

and the resulting total search space for dynamic locus analysis is shown in Figure 4-

1b. It should be noted that the dynamic locus analysis search space for calculating  

*( , )SD m j is larger than DTW’s search space for *( , )D X Z . 

Step 3: Tracing the locus of X in Y 
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To re-create the optimal path, we track the predecessor to each element in ),( jiDS  

while constructing DS using the Parent matrix P. Each element in P(i,j) gives the 

relative position of its predecessor. 

 
,

,

0  if ( , )

( , ) 1  if ( , ) ( 1, 1) ( , )

2  if ( , )  

S i j

S S i j

S i j

D i j G

P i j D i j D i j x y

D i j F

⎧ =
⎪

= = − − + Δ⎨
⎪ =⎩

  (4-9) 

The optimal matching path is identified by tracing the Parent matrix starting from 

*( , )m j  and recursively identifying the optimal predecessor * *( 1, ( , ))m j P m j− − . 

Note that, because of the local continuity constraint , * * * 12* *
2

j m l j m− ≤ ≤ − .  

Once the locus has been determined, the normalized difference η between X and Y can 

be calculated as 

                                                    
( )

1

n

j d d
d

y x

n
η =

−
=

∑
                                          (4-10) 

and is the DTW distance between X and the locus of Y. 

Step 4: Online Fault Diagnosis and State Identification 

Once the locus of X in Y is known, the current state of the process can be 

determined. For this, consider a suitably annotated reference database that has 

historical data of common transitions in the process (such as startup, shutdown, grade 

change, etc) as well as from periods when the process underwent abnormal operations 

(faults, human errors, etc). During online monitoring, the real-time signal is compared 

with every reference signal in the database. If the normalized difference of the best 

matching reference signal (i.e., one with the smallest η ) is greater than a user defined 

threshold maxη , the process can be said to be in an novel state. If the best matching 

reference signal in the database corresponds to an abnormal event, the fault can be 
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flagged and diagnosed using the associated annotations in the reference database.  The 

specificity of online disturbance identification can be measured using inseparability  

α , which is defined as the ratio of the normalized differences of the best matching 

reference signal and that of the second-best one. A small value of α  ( 0≈ ) implies 

that the real-time signal clearly matches a specific reference pattern while 1α ≈  

implies that the real-time signal cannot be clearly differentiated from two or more 

reference patterns. An online state can be identified when the inseparability decreases 

below a user-specified minimum inseparability threshold minα . 

The coherence indicates the smooth progression of the corresponding point in 

the reference signal as the process evolves in real-time. It is measured as the standard 

deviation of y xτ τ−  within the evaluation window. The application of these metrics is 

illustrated using case studies in Section 4.3. During transitions in large-scale agile 

processes, because of simultaneous manual or automated control actions in different 

sections, operations personnel need information about known the current state of each 

plant section. Information from the corresponding point calculated during dynamic 

locus analysis can be used for online state identification and characterization as 

illustrated in Section 4.3.3.  

 



Chapter 4                            Online State identification Using Dynamic Locus Analysis                          
_____________________________________________________________________ 

 - 80 - 

 
(a)                                                           (b) 

Figure 4-1: (a): Search space of dynamic locus analysis (b) Itakura local constraint  
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Figure 4-2: Flowchart of dynamic locus analysis 
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4.2.1 Illustration of Dynamic Locus Identification 

In this section, we illustrate the dynamic locus analysis algorithm described 

above using the X and Y signals shown in Figure 4-3.  

 
Figure 4-3: (a) Reference and real-time signal for illustrative example. (b) 

Corresponding points as identified by dynamic locus analysis   

Step 0: Signal normalization 

Normalize X and Y to [0 1] based on the range of the sensor (Srinivasan et al. 

2004). 

Step 1: Dissimilarity matrix initialization 

The dissimilarity matrix is next calculated. The first column of DS is calculated 

following (14). For example, 0082.03988.04070.0)1,1( =−=SD . At the end of this 

stage, 0001.04071.04070.0)36,1( =−=SD has the smallest value indicating that x1 

best matches y36. The first row of Ds is calculated following (15). Thus, 

(2,1)SD = (1,1) 0.4310 0.3988 0.0404SD + − = . Also, 

 (3,1) (4,1)  ... (8,1)S S SD D D= = = = ∞ ..  
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Step 2: Dissimilarity Matrix Propagation 

All other elements of DS are calculated using (4-5, 4-6 and 4-7) using dynamic 

programming. This is similar to the Itakura local constraint in DTW. For example,   

{ }2 25 2,25 2,25(2, 25) min (1,24) ( , ), ,   S SD D x y G F= + Δ      

Here, 2 25(1,24) ( , ) 0.0167 0.0037 0.0204SD x y+ Δ = + = , 2,25G = 2 25(1, 25) ( , )SD x y+ Δ =  

0.0277 0.0037 0.0314+ = , and 2,25 2 25(1,23) ( , ) = 0.0415 0.0037 0.0452SF D x y= +Δ + = . 

Therefore (2,25)SD = 0.0204 and P(2,25) = 1 as shown in Tables 4-1 and 4-2, 

respectively. All other elements in the 2nd column are similarly calculated. This 

process is repeated for columns 3 – 8 as well.   

The optimal match for Y is found from the last column. In this example, the 

minimum value in this column, i.e., the minimal distance between X and the locus of 

Y, is (8,32) 0.0656SD = , so 32y  is the corresponding point to 8x    

Step 3: Tracing the locus of X 

The optimal path can then be identified from Table 4-2 starting from P(8, 32). 

As shown there, P(8, 32) = 1, which implies that the optimal predecessor is (7, 31). By 

applying this recursively, the optimal path is 

{ }(1, 24) (2, 25) (3, 26) (4, 28) (5, 28) (6,30) (7,31) (8,32) and [ ]24 32 y y  is the locus of 

X in Y.  The search map is shown schematically in Figure 4-4.  

The reader may note from Table 4-1 that parts of X may better match other 

segments of Y. For example, from the fifth column, 0277.0)12,5( =SD and lower then 

0474.0)28,5( =SD  . This indicates that the sub-segment },,,{ 1211109 yyyy  better 

matches with },,,,{ 54321 xxxxx as can be confirmed from Figure 4-3. However, since 

6 7 8{ , , }x x x  does not have a good match in the neighborhood of y12, this sub-segment 
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does not serve as the locus for the complete X. The best segment match from this has a 

dissimilarity of 6201.0)14,8( =SD which is almost 10 times larger then (8,32)SD .  

The stability of the locus identified by this method is also apparent from Table 

4-1. The five next larger values in the final column of DS are in the immediate 

neighborhood of (8,32)SD . Thus, even if there is significant variation between X and 

Y due to noise, a similar segment in the same neighborhood will be identified as the 

locus. The stability and coherence of the dynamic locus analysis method is further 

illustrated in Section 4.  

While the above example illustrated the dynamic locus analysis method using a 

single variable, the extension to the multivariate case is straightforward if X and Y are 

considered as Q-dimensional vectors of all the sensors to be monitored in the process. 

In the general case, different sensors can be weighted differently, so the distance 

metric of (4-2) has to be replaced by: 

 ( ), ,
1

( , )
Q

i j c i c j c
c

x y w x y
=

Δ = −∑  (4-11) 

where ,i cx is the value of the cth variable at time i; ,j cy  its value in reference 

signal Y at time j; and wc the weight for the variable. In this thesis, since all variables 

are normalized based on the sensor range, we use the same weight for all variables. 

Similarly, while the time warping method can be generalized to consider different 

warping for different variables, for multivariate cases we have selected to use the 

same warping for all variables and ignored cross-variable desynchronization in X. In 

industrial-scale processes with a large number of variables, key variable selection or 

hierarchical grouping (Srinivasan, et al, 2005) may be needed to reduce computational 

cost or memory requirements.  
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j

i

3653.0)44,8( =SD

0656.0)32,8( =SD

6201.0)14,8( =SD

i

 
Figure 4-4: Illustrate case searching path 
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Table 4-1: Dissimilarity matrix of illustrate case 
),( jiDS  i 1 2 3 4 5 6 7 8

j jy  ix  0.4070 0.4310 0.4999 0.5441 0.5556 0.5477 0.5214 0.4677
1 0.3988 0.0071 0.0382 Inf. Inf. Inf. Inf. Inf. Inf.
2 0.3996 0.0074 0.0385 0.1385 0.2831 Inf. Inf. Inf. Inf.
3 0.4015 0.0055 0.0351 0.1366 0.2793 0.4372 0.5835 Inf. Inf.
4 0.4080 0.0010 0.0240 0.1270 0.2631 0.4269 0.5666 0.6969 0.7566
5 0.4134 0.0064 0.0186 0.1051 0.2577 0.3998 0.5612 0.6691 0.7512
6 0.4287 0.0217 0.0033 0.0745 0.2205 0.3474 0.5188 0.6116 0.7081
7 0.4211 0.0141 0.0163 0.0821 0.1975 0.3319 0.4740 0.5742 0.6581
8 0.3855 0.0215 0.0596 0.1306 0.2331 0.3675 0.4941 0.6098 0.6564
9 0.4040 0.0030 0.0300 0.1555 0.2222 0.3491 0.4756 0.5914 0.6379

10 0.4319 0.0249 0.0039 0.0719 0.2428 0.3458 0.4616 0.5651 0.6009
11 0.4967 0.0897 0.0687 0.0072 0.0546 0.3017 0.3527 0.4863 0.5153
12 0.5601 0.1531 0.1540 0.0641 0.0232 0.0277 0.3141 0.3528 0.5787
13 0.6844 0.2774 0.3430 0.3385 0.1474 0.1519 0.1643 0.3273 0.5695
14 0.7605 0.3535 0.4826 0.6036 0.5549 0.2281 0.2405 0.4034 0.6201
15 0.7973 0.3903 0.6437 0.7800 0.5917 0.7966 0.4015 0.4402 0.6569
16 0.7829 0.3759 0.7054 0.9267 0.8424 0.7822 1.0174 0.6631 0.7186
17 0.7336 0.3266 0.6292 0.9391 0.9695 1.0204 0.9681 1.1803 0.9290
18 0.6529 0.2459 0.4678 0.7822 0.8911 1.0668 1.1257 1.0996 0.8483
19 0.5578 0.1508 0.2776 0.5257 0.5394 0.8932 0.9033 1.0045 1.0946
20 0.4675 0.0605 0.0971 0.3099 0.3865 0.6275 0.7076 0.9572 0.9574
21 0.4048 0.0022 0.0283 0.1921 0.3314 0.5373 0.6801 0.8242 0.8871
22 0.3704 0.0366 0.0628 0.1578 0.3315 0.5166 0.6939 0.8311 0.9215
23 0.3655 0.0415 0.0676 0.1627 0.3364 0.5215 0.6988 0.8360 0.9264
24 0.3903 0.0167 0.0575 0.1724 0.3117 0.4770 0.6740 0.8052 0.9086
25 0.4347 0.0277 0.0204 0.0856 0.2818 0.4028 0.5900 0.6767 0.8382
26 0.4844 0.0774 0.0701 0.0359 0.0957 0.3531 0.4164 0.6271 0.6437
27 0.5262 0.1192 0.1228 0.0467 0.0539 0.0833 0.3746 0.3794 0.6855
28 0.5525 0.1455 0.1988 0.1754 0.0443 0.0474 0.0881 0.1192 0.4642
29 0.5619 0.1549 0.2501 0.2609 0.1932 0.0506 0.0617 0.1022 0.2134
30 0.5463 0.1393 0.2546 0.2965 0.1776 0.1869 0.0489 0.0737 0.1808
31 0.5123 0.1053 0.1866 0.2670 0.2926 0.2209 0.0860 0.0579 0.1026
32 0.4754 0.0684 0.1128 0.2112 0.2799 0.3729 0.2592 0.1320 0.0656
33 0.4468 0.0398 0.0556 0.1659 0.2632 0.3887 0.3218 0.3339 0.0788
34 0.4302 0.0232 0.0240 0.1253 0.2392 0.3886 0.4904 0.4130 0.1696
35 0.4140 0.0070 0.0240 0.1099 0.2400 0.3808 0.5145 0.5978 0.3875
36 0.4071 0.0001 0.0240 0.1168 0.2469 0.3877 0.5214 0.6288 0.4736
37 0.4106 0.0036 0.0205 0.1099 0.2434 0.3850 0.5179 0.6253 0.6549
38 0.4162 0.0092 0.0149 0.0987 0.2378 0.3772 0.5165 0.6218 0.6769
39 0.4276 0.0206 0.0070 0.0793 0.2152 0.3432 0.4974 0.5912 0.6619
40 0.4396 0.0326 0.0177 0.0673 0.1719 0.3312 0.4394 0.5792 0.6074
41 0.4538 0.0468 0.0434 0.0638 0.1541 0.2737 0.3676 0.5070 0.5209
42 0.4650 0.0580 0.0666 0.0782 0.1429 0.2334 0.3564 0.4127 0.5097
43 0.4700 0.0630 0.0858 0.0965 0.1380 0.2236 0.3112 0.3626 0.4150
44 0.4650 0.0580 0.0921 0.1206 0.1573 0.2285 0.3062 0.3626 0.3653
45 0.4575 0.0505 0.0769 0.1345 0.1832 0.2554 0.3138 0.3702 0.3728
46 0.4478 0.0408 0.0575 0.1291 0.2170 0.2910 0.3284 0.3799 0.3825
47 0.4337 0.0267 0.0295 0.1237 0.2340 0.3388 0.3694 0.4161 0.4041
48 0.4269 0.0199 0.0240 0.1025 0.2196 0.3627 0.4118 0.4638 0.4569
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Table 4-2: Parent matrix of illustrate case 
),( jiDS  i 1 2 3 4 5 6 7 8

j jy  ix  0.4070 0.4310 0.4999 0.5441 0.5556 0.5477 0.5214 0.4677
1 0.3988 1 0 - - - - - -
2 0.3996 1 1 1 0 - - - -
3 0.4015 1 0 2 0 1 0 - -
4 0.4080 1 0 1 0 1 0 1 0
5 0.4134 1 1 0 1 0 1 0 1
6 0.4287 1 2 0 1 0 1 0 1
7 0.4211 1 2 1 1 0 1 0 1
8 0.3855 1 1 1 2 1 1 1 1
9 0.4040 1 0 1 2 2 2 2 2

10 0.4319 1 1 0 2 1 0 1 0
11 0.4967 1 2 1 0 1 0 1 0
12 0.5601 1 2 2 1 0 1 0 1
13 0.6844 1 2 1 2 1 1 0 1
14 0.7605 1 2 1 1 2 2 1 1
15 0.7973 1 2 1 2 1 2 2 2
16 0.7829 1 2 1 2 2 0 1 2
17 0.7336 1 0 1 2 1 1 0 1
18 0.6529 1 0 1 0 1 1 1 2
19 0.5578 1 0 1 0 1 0 2 0
20 0.4675 1 0 1 0 1 0 1 0
21 0.4048 1 0 1 0 1 0 1 0
22 0.3704 1 1 1 0 1 0 1 1
23 0.3655 1 2 2 1 2 1 2 2
24 0.3903 1 0 2 2 0 2 0 2
25 0.4347 1 1 0 1 0 1 0 1
26 0.4844 1 2 1 0 1 0 1 0
27 0.5262 1 2 2 1 0 1 0 1
28 0.5525 1 2 1 2 0 1 0 1
29 0.5619 1 2 1 1 1 1 0 1
30 0.5463 1 0 1 2 0 2 0 1
31 0.5123 1 0 1 2 1 2 1 0
32 0.4754 1 0 1 0 1 2 1 1
33 0.4468 1 0 1 0 1 2 1 2
34 0.4302 1 0 1 0 1 2 1 2
35 0.4140 1 0 1 0 1 0 1 2
36 0.4071 1 0 1 1 2 1 1 2
37 0.4106 1 1 0 2 2 2 2 2
38 0.4162 1 2 0 1 0 1 0 1
39 0.4276 1 2 0 1 0 1 0 1
40 0.4396 1 2 1 0 1 0 1 0
41 0.4538 1 2 1 0 1 0 1 0
42 0.4650 1 2 1 1 0 1 0 1
43 0.4700 1 2 1 2 0 1 0 1
44 0.4650 1 2 1 2 1 1 0 1
45 0.4575 1 0 1 2 1 2 1 1
46 0.4478 1 0 1 2 1 2 2 2
47 0.4337 1 0 1 0 1 2 1 2
48 0.4269 1 0 1 0 1 2 1 1
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4.3 Case Studies 

In this section, we evaluate the proposed dynamic locus analysis for online fault 

diagnosis and state identification disturbance using three case studies 

4.3.1 Case Study 1: Online Disturbance Identification in Tennessee 

Eastman Plant  

In this section, we use dynamic locus analysis to identify unknown process 

disturbances online and estimate their progress. Five disturbances henceforth referred 

to as XD1 – XD5, which affect the A feed flowrate, reactor pressure, reactor level, 

reactor temperature, and compressor work are considered. Different instances (runs) of 

the same disturbance class have different start times, duration, and magnitude. For 

example, during XD1-A, the flowrate of A feed from upstream is increased from the 

base case value of 0.25052 kscmh to 0.3902 kscmh (a 60% change) in three steps 

starting at t=51 min as shown in Table 4-3. After the process recovers from these, the 

inverse change, decreasing the A feed flow is introduced at t=651 min. The process is 

then allowed to return to a steady state. The effect on the A flow rate (XMEAS(1)) and 

the downstream pressures (XMEAS(13) and XMEAS (16)) is shown in Figure 3-11. 

Two other instances XD1-B and XD1-C with changes of magnitude 55% and 50% 

were also introduced. Similar changes were introduced to bring forth disturbance 

classes XD2 – XD5. The details of the TE process data generation is described in 

Section 3.4.2. 

Table 4-3: Disturbance profiles for TE process XD1  
 

 Target Time 
(min) 

Target Time 
(min) 

Target Time 
(min) 

Target Time 
(min) 

XD1
-A 

1.20*Base 
value 

51 1.40*Base 
value 

61 1.60*Base 
value 

71 1.0*Base 
value 

651 

XD1
-B 

1.15*Base 
value 

51 1.35*Base 
value 

65 1.55*Base 
value 

79 1.0*Base 
value 

711 

XD1
-C 

1.10*Base 
value 

51 1.30*Base 
value 

69 1.50*Base 
value 

87 1.0*Base 
value 

771 
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Like any process history-based method, the accuracy of the dynamic locus 

analysis method depends on the representative-ness of the reference signal.  A good 

reference signal should adequately capture the dynamics of the key variables including 

not only their magnitudes and trends, but also the various sub-states, their time of 

occurrence, and sequence. The latter aspect is discussed further in Section 4.3.3.  In 

this case study, XD1-B, XD2-B, XD3-B, XD4-B and XD5-B were used as the 

references for the five disturbances. In these, the samples which correspond to signals 

from normal operation were omitted, resulting in a length of 1220 samples. A separate 

reference of normal operation, notated as XD0-B was also added to the reference 

database. Other runs were used to evaluate the method. 

 
Figure 4-5: Online comparisons of real-time signal and reference signal XD0 at 10 

sample snapshots from xτ = 8 to 108 

The dynamic locus analysis method is used for online disturbance identification 

as follows. Analysis starts at t=1 with the process in an unknown state. With an 

evaluation window of m= 8 samples, the locus can be identified in each reference 

signal starting at 8=t  min when the first real-time signal segment is available. The 
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normalized signal differences, corresponding points, and inseparability can then be 

calculated. At every subsequent time point, the evaluation window is moved forward 

by one sample (rolling evaluation window) and the analysis repeated. A fault is 

introduced into the process at t = 51 min. Figure 4-5 shows the results from dynamic 

locus analysis of real-time signals from time xτ = 8 samples to 108 samples when 

compared with reference signal XD0-B.  Initially the process is in a normal steady 

state as can be seen from the small normalized difference η .  Starting at xτ  = 54 

samples, the η  with XD0-B increases as does the inseparability ratio α  shown in 

Figure 4-6 indicating a process abnormality. When the real-time signal is compared 

with the other references in the database, from the 55th sample η is the smallest with 

XD2 (See Figure 4-6). At xτ = 56 samples, α  falls below minα  identifying that the 

process is undergoing disturbance XD2 (See Figure 4-7).  The location of minimum 

η in these plots indicate the progression of the disturbance – thus xτ = 56 samples 

corresponds  to yτ  = 6th sample in the XD2-B. The progression of  yτ  with time is 

coherent only with reference XD2-B as shown in Figure 4-8; the erratic progression 

with all other references also bears confirmation that the disturbance in this run is 

XD2. Figure 4-9 (c) reveals the clear separability of the disturbance throughout the 

run. 

To further test the accuracy of the approach, starting at xτ = 250 samples, we 

introduced a major variation in both duration and magnitude during this run as 

compared to XD2-B. This results in the increase in α  between xτ = 258 to 400 

samples. However, even during this period, α is substantially below the minα of 0.75.  

Thus while run-to-run variations will also lead to an increase in η with XD2-B, this 
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effect is small when compared to η with other types of disturbances.  A summary of 

the result for this run is reported as Run-3 in Table 4-4. A similar study was performed 

for nine other runs. The comparison results of real-time signal with all reference signal 

from xτ = 8 to 1270 samples are shown in Figure 4-9 (a, Run-1, b, Run-2, c, Run-3, d, 

Run-4, e, Run-5, f, Run-6, g, Run-7, h, Run-8, i, Run-9, j, Run-10).  In all cases, the 

proposed method correctly identified the disturbance with an average delay of 5 

samples. Figure 4-9 reveals the clear separability of the disturbance throughout all 

runs. The computation time for the complete analysis at each time sample is 2.26 

seconds (on a Pentium IV, 2.4 GHz cpu). 

 
Figure 4-6: Inseparability ratio during the first 110 minutes of Run-3 of TE process 
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Figure 4-7: Online comparisons of real-time signal and reference signal XD2 at 10 
sample snapshots from xτ = 8 to 108 samples 

 

 
Figure 4-8: Time progression of corresponding points when real-time signal is 

compared with all the reference signals throughout the run.  
 

 
(a) 
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(b) 

 
(c) 
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(d) 

 
(e) 
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(f) 

 
(g) 

 
(h) 
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(i) 

 
(j) 

Figure 4-9: Run-1 to Run-10, online comparisons of real-time signal with all reference 
signals from xτ = 8 to 1270 samples 
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Table 4-4: Online process disturbance detection in TE process 
 η at time of identification  

 XD1 XD2 XD3 XD4 XD5 XD0 α  

Best-
matching 
reference 

yτ  
(sample)

xτ  
(sample) 

Delay  
(sample) 

Time 
Cost (s)

Run-1 0.0018 0.0056 0.0051 0.0056 0.0039 0.0029 0.6151 XD1 6 56 5 2.24 
Run-2 0.0015 0.0049 0.0043 0.0050 0.0033 0.0023 0.6686 XD1 6 56 5 2.25 
Run-3 0.0061 0.0023 0.0075 0.0075 0.0054 0.0051 0.4457 XD2 6 56 5 2.26 
Run-4 0.0045 0.0020 0.0057 0.0060 0.0039 0.0035 0.5729 XD2 6 56 5 2.26 
Run-5 0.0051 0.0072 0.0019 0.0067 0.0053 0.0044 0.4261 XD3 6 56 5 2.25 
Run-6 0.0044 0.0064 0.0016 0.0060 0.0046 0.0034 0.4737 XD3 6 56 5 2.25 
Run-7 0.0055 0.0072 0.0067 0.0019 0.0054 0.0042 0.4483 XD4 6 56 5 2.25 
Run-8 0.0050 0.0063 0.0058 0.0017 0.0046 0.0040 0.4205 XD4 6 56 5 2.28 
Run-9 0.0038 0.0049 0.0050 0.0052 0.0017 0.0029 0.5914 XD5 6 56 5 2.30 
Run-10 0.0034 0.0045 0.0041 0.0048 0.0015 0.0025 0.5933 XD5 6 56 5 2.25 
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4.3.2 Case Study 2: Fault Diagnosis during Startup of a Lab-scale 

Distillation Column 

 
Figure 4-10: Schematic of the distillation unit set up 

In this section, the proposed methodology is illustrated on a lab-scale distillation 

unit. The schematic of the unit is shown in Figure 4-10. The distillation column is of 2 

meters height and 20 cm inner-diameter and has 10 trays. The feed enters at tray 4. The 

system is well integrated with a control console and data acquisition system. 19 

variables comprising of all tray temperatures, reboiler and condenser temperature, 

reflux ratio, top and bottom column temperatures, feed pump power, reboiler heat 

duty, and cooling water inlet and outlet temperatures are measured at 10-second 

intervals. Cold startup of the distillation column with ethanol-water 30% v/v mixture is 

performed following the standard operating procedure shown in Table 4-5. The feed 

passes through a heat exchanger before being fed to the column. The startup normally 



Chapter 4                            Online State identification Using Dynamic Locus Analysis                          
_____________________________________________________________________ 

 - 98 - 

takes two hours and different faults such as sensor fault, failure to open pump, too high 

a reflux ratio etc., can be introduced at different states of operation. For fault diagnosis 

using dynamic locus analysis, the reference database is first populated using data from 

eleven runs of the process – one normal startup and the ten faults summarized in Table 

4-6. For example, a higher than normal pumping rate was induced when developing 

the reference for DST03. This causes instability in the column and there is a drastic 

drop in the column temperatures as can be seen in Figure 4-11.  

Table 4-5: Standard operating procedures (SOP) for startup 
Distillation column startup SOP 

1. Set all controllers to manual 
2. Fill reboiler with liquid bottom product 
3. Open reflux valve and operate the column on full reflux 
4. Establish cooling water flow to condenser 
5. Start the reboiler heating coil power 
6. Wait for all of the temperatures to stabilize 
7. Start feed pump 
8. Activate reflux control and set reflux ratio 
9. Open bottom valve to collect product 
10. Wait for all the temperatures to stabilize 

 

Table 4-6: Process disturbances for the distillation column operation 
Case Disturbance Type 

DST01 Reboiler power low Step 
DST02 Reboiler power high Step 
DST03 Feed pump high Step 
DST04 Feed pump low Step 
DST05 Tray Temperature Sensor T6 fault Random variation 
DST06 Reflux ratio high Step 
DST07 Reflux ratio low Step 
DST08 Bottom valve  Sticking 
DST09 Low cooling water flow Step 
DST10 Feed pump malfunction Step 
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Figure 4-11: Process signals for Run-03 of lab-scale distillation column 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 
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(f) 

 
(g) 

 
(h) 
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(i) 

Figure 4-12: Normalized difference with all reference signals during Run-1 to Run-
10 of lab-scale distillation column 

 

The online dynamic locus analysis algorithm was used for fault diagnosis and 

decision support during subsequent startups of the column. Consider one run (Run-3) 

when a fault was introduced at t = 3590 s. Results from this run is shown in Figure 4-

12 (c) which shows the normalized difference between the real-time signal and the 

eleven references in the database throughout the startup. As can be seen there, the real-

time signal is close to normal till about 3700s. The difference between real-time signal 

and all other references is much higher. Starting around t=3700s, the difference 

between real-time signal and the normal reference increases indicating that there is a 

fault during the startup operation. The difference between real-time signal and DST03 

decreases and falls below that of the normal reference. At t=3710s, α  falls below minα   

and identifies the fault as of class DST03. The accuracy of the identification is evident 

from Figure 4-13 which tracks xτ over time and shows that the evolution of the current 

state continuously matches DST-03.  The slight fluctuations around t= 5000s are due to 

measurement noise and run-to-run differences.  
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Figure 4-13: Time evolution of progression of fault between t = 0 to 550 samples 

during Run-3 of lab-scale distillation column 

Similar tests were done for all other cases. The normalized difference between 

the real-time signal and the eleven references in the database throughout the startup is 

shown in Figure 4-12 (a, Reboiler power low, b, Reboiler power high, c, Feed pump 

high, d, Feed pump low, e, Tray temperature sensor fault, f, Reflux ratio high, g, reflux 

ratio low, h, bottom valve sticking , i, Low cooling water flow). A summary of the 

findings is presented in Table 4-7. All faults could be accurately identified within an 

average of 43 seconds of their occurrence (about 4 samples). The maximum 

identification delay was about 120 seconds (12 samples). The average time cost at each 

sample was only 0.468 second. The evolution of the faults was also identified clearly 

with an average incoherence of 1.55.  
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Table 4-7: Faults diagnosis results for Lab-scale Distillation Column 
 

Case Time Fault  
Introduced (s) 

Detection Time 
(sample) 

Detection Delay
(sample) 

Identification Time 
(sample) 

Identified 
Fault 

Identification Delay
(sample) 

Incoherence Time 
cost 
(s) 

Run-01 10 6 5 6 DST01 5 1.612 0.473 
Run-02 10 6 5 6 DST02 5 1.544 0.468 
Run-03 3590 370 11 371 DST03 12 0.855 0.470 
Run-04 3560 356 0 357 DST04 1 0.995 0.464 
Run-05 4250 427 2 429 DST05 4 0.279 0.467 
Run-06 3500 352 2 352 DST06 2 2.391 0.470 
Run-07 3450 346 1 346 DST07 1 3.609 0.470 
Run-08 4700 472 2 472 DST08 2 1.612 0.465 
Run-09 10 6 5 6 DST09 5 1.618 0.464 
Run-10 3000 301 1 306 DST10 6 0.988 0.467 
Average - - 3.4 -  4.3 1.550 0.468 
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4.3.3 Case Study 3: Process State Identification in Simulator of 

FCCU 

Dynamic locus analysis can be used for identifying the state of multi-mode 

process operations such as during startup, shutdown and other transitions in 

ShadowPlant. ShadowPlant has the main function of a real FCC unit. It has more than 

four hundreds variable to description the process state change during process 

operating. We also use the data from ShadowPlant as a complex process signal for 

testing the method developed in this thesis.  In this thesis, we focus on how to identify 

the real state of the process fast.  

 
Figure 4-14: Real-time signal and reference signal of ShadowPlant 

Several runs of the startup were performed following the standard operating 

procedure and data for all 335 measured variables collected at 10 second intervals. 

Random noise was also added to the measured variables to simulate measurement 

noise in the real process. While the procedure for starting up the FCCU was the same 
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in all the runs, minor differences in the magnitudes and duration were introduced 

between the runs. 

Three runs – G1, G2 and G3 – with average startup duration of about 23 hours are 

considered in detail here. Data from G3 was used as the reference signals while data 

from G1 and G2 are used for testing the dynamic locus analysis method. Using prior 

knowledge, the nine main sub-states listed in Table 4-8 and shown in Figure 4-14 were 

identified as important from an operations perspective. Their times of occurrence in the 

reference signals were also stored in the database so that the corresponding points can 

be identified during real-time runs.  It should be noted that the two test runs differ in 

the start time, duration and variable magnitudes during each sub-state. Dynamic locus 

analysis was used to identify the progression of the transition in real-time. Results for 

online sub-state identification are given in Table 4-8. In all cases, the sub-states were 

correctly identified within an average delay of 1.7 samples (or 17 seconds) since the 

inception of the sub-state. This compares favorably with other approaches such as the 

trend-based state identification reported by Srinivasan (2005), where the average delay 

was 20 samples (about 3 min). This decrease in detection delay can be attributed to the 

use of the original signal (rather than its abstracted qualitative equivalent); hence there 

is no lose of information and process operations like opening of valves and setpoint 

changes that are direct indicators of specific sub-states can be easily and accurately 

identified even in the face of noise and run-to-run variations. Despite the large-scale of 

the case study (335 online measurements) the average time cost for each sample was 

only 6.6 seconds.  



Chapter 4                            Online State identification Using Dynamic Locus Analysis                                                         
_____________________________________________________________________ 

 - 107 - 

 

Table 4-8: State Identification Results during Startup Transition in ShadowPlant  
Reference 

Signal 
Test Run G5 

 
Test Run G6 

 Sub-state of 
startup Occurrence 

Time 
(x10 s) 

Occurrence 
Time 

(x10 s) 

Detection 
Time 

(x10 s) 

Detection 
Delay 
(x10 s) 

Occurrence 
Time 

(x10 s) 

Detection 
Time 

(x10 s) 

Detection 
Delay  
(x10 s) 

Time cost for 
each data 
sample  

(s) 

Unit checking 
(SS-1) 

11 11 11 0 11 11 0 6.453 

Waste heat boiler 
startup (SS-2) 

352 325 326 1 382 383 1 6.625 

Preparation for 
air-blower 
startup (SS-3) 

1471 1642 1643 1 1568 1569 1 6.610 

Startup of main 
air-blower (SS-4) 

1632 1753 1754 1 1687 1688 1 6.656 

Operation 
adjustment (SS-5) 

1880 1967 1967 0 1893 1894 1 6.609 

Flue gas lighting 
(SS-6) 

2983 2931 2932 1 2963 2964 1 6.687 

Temperature 
ramp-up (SS-7) 

2998 2952 2953 1 2979 2980 1 6.688 

Catalyst loading 
(SS-8) 

4346 4365 4367 2 3969 3972 3 6.625 

Catalyst transfer 
(SS-9) 

7234 7258 7266 8 7227 7229 2 6.656 

Average  - - 1.667 - 1.222 - 6.623 
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4.3.4 Robustness to Tuning Parameters 

4.3.4.1 Effect of Parameters on Dynamic locus analysis 

The performance of dynamic locus analysis is affected by two main parameters – 

the evaluation window m and the minimum inseparability threshold minα .  While in 

general, different process signals may require different values for these parameters, we 

have found that most of the parameter settings can be used across variables and case 

studies.  m is around 6 to 12 which can catch the signal feature and reduce the noise 

effect. minα is around 0.50 to 0.80. In this thesis, minα was set as 0.70 for all the case. 

We test the parametric sensitivity of dynamic locus analysis in this section. 

Evaluation Window: To test the effect of m, we repeated the above ten test runs 

with various m values as shown in Table 4-9 and Table 4-10. In all cases the proposed 

method identified the correct disturbance. The results shown in Table 4-9, 4-10 reveal 

the following: Increasing the evaluation window leads to an increase in the detection 

delay. This is because the normalized difference is calculated over the entire window. 

For large m, the inclusion of samples from the initial normal periods decreases the 

sensitivity during calculation ofη . The time cost of dynamic locus analysis also 

increases (almost linearly) with increase in m.  The benefit of increasing m is however 

apparent from the improvement in coherence for larger values as shown in Figure 4-

15, 4-16, 4-17. Smaller evaluation windows can lead to suboptimal matches since only 

a short segment of the real-time signal has to match the reference signal. In the face of 

noise, the time progression of yτ  versus xτ will have fluctuations. At large m values, 

since a longer signal segment has to match with the reference, noise induced variations 

in yτ  is minimal and the coherence is high.  We have found that, in all cases, m = 8 
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samples provides an acceptable detection delay, low computational cost, as well as 

adequate coherence.  

Evaluation window size is a trade-off between sensitivity and robustness. In the 

Lab-scale distillation column case, the incoherence is always less than 6 when 8m = . 

In ShadowPlant case study, there is an obvious drop in incoherence with 20m =  

which may be due to slow evolution of the process.  

Table 4-9: Effect of evaluation window on identification delay and time cost in TE 
case study  

 Identification Delay (samples) Time Cost (second) 
m 4 8 12 16 20 24 4 8 12 16 20 24
Run-1 3 5 8 11 14 17 1.19 2.24 3.19 4.16 5.13 6.13
Run-2 3 5 9 12 15 20 1.21 2.25 3.18 4.15 5.12 6.04
Run-3 3 5 7 10 13 15 1.21 2.26 3.25 4.20 5.15 6.14
Run-4 3 5 8 12 15 20 1.22 2.26 3.21 4.15 5.14 6.06
Run-5 3 5 7 10 12 15 1.21 2.25 3.25 4.21 5.20 6.14
Run-6 3 5 8 11 13 16 1.21 2.25 3.22 4.18 5.15 6.11
Run-7 3 5 7 9 12 14 1.21 2.25 3.26 4.25 5.19 6.16
Run-8 3 5 7 10 12 14 1.21 2.28 3.25 4.20 5.19 6.18
Run-9 3 5 8 10 13 16 1.21 2.30 3.22 4.20 5.16 6.11
Run-10 3 5 8 11 14 17 1.21 2.25 3.21 4.17 5.15 6.09
Average 3 5 8 11 13 16 1.21 2.26 3.23 4.19 5.16 6.12

 
Table 4-10: Effect of evaluation window on identification delay and time cost in 

distillation column startup case study  

 Identification Delay (samples) Time Cost (second) 
m 6 8 10 12 14 16 6 8 10 12 14 16
Run-1 5 7 9 11 13 15 0.473 0.637 0.803 0.968 1.132 1.295
Run-2 5 7 9 11 13 15 0.468 0.631 0.796 0.957 1.117 1.273
Run-3 12 13 13 14 14 14 0.470 0.636 0.802 0.966 1.129 1.291
Run-4 1 1 2 3 3 4 0.464 0.635 0.801 0.965 1.127 1.288
Run-5 4 4 5 5 6 5 0.467 0.636 0.802 0.967 1.131 1.293
Run-6 2 3 3 3 3 4 0.470 0.635 0.802 0.965 1.128 1.289
Run-7 1 1 1 1 1 1 0.470 0.634 0.798 0.962 1.124 1.283
Run-8 2 2 2 2 2 2 0.465 0.636 0.800 0.963 1.126 1.289
Run-9 5 7 9 11 13 15 0.464 0.636 0.802 0.967 1.131 1.292
Run-10 6 6 6 6 8 9 0.467 0.627 0.787 0.944 1.099 1.253
Average 4.3 5.1 5.9 6.7 7.6 8.4 0.468 0.634 0.799 0.962 1.124 1.285
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Figure 4-15: Effect of evaluation window on incoherence metric during Run-3 of TE 

process 

 
Figure 4-16: Effect of evaluation window on coherence metric during Run-06 of Lab-

scale Distillation Column 
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Figure 4-17: Effect of evaluation window on coherence metric of ShadowPlant 
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Minimum Separability Threshold: minα  affects the detection delay as shown in 

Figure 4-18. Increasing  minα  decreases the detection delay but at the cost of accepting 

a smaller difference between the best matching and the next-best matching reference 

signals as the basis for the result. We have found minα = 0.75 as a suitable threshold for 

all case studies.  

 
Figure 4-18: Effect of minimum inseparability threshold minα on identification 

delay in TE process 

4.3.4.2 Robustness of Noise  

 Dynamic locus analysis method is a noise robust method. The robustness of the 

proposed method to sensor noise is studied using data from TE plant. Extra 

measurement noise of 2%, 4%, 6%, 8% and 10% were added to the original signals. 

The results are shown in Table 4-11. There is some variation in the stage identification 

at different noise levels and the identification delay increases with noise. Even at 10% 

noise level, the average identification delay is still only 7.7 sample points which is 

only 2.7 point higher than the no noise case. Overall, the online signal comparison 

method is robust to noise and there is no significant affect on the result. 
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Table 4-11: Robustness of noise in TE disturbances identification 

 Identification Delay (samples) 
Noise 0% 2% 4% 6% 8% 10% 
XD1-A 5 5 5 6 6 6 
XD1-C 5 5 6 6 6 6 
XD2-A 5 5 5 6 6 6 
XD2-C 5 6 6 6 7 12 
XD3-A 5 5 5 6 6 10 
XD3-C 5 5 6 6 6 8 
XD4-A 5 5 6 7 7 9 
XD4-C 5 5 6 6 7 8 
XD5-A 5 5 5 6 6 6 
XD5-C 5 5 5 6 6 6 
Average 5 5.1 5.5 6.1 6.3 7.7 

 
 

4.4 Discussion 

Dynamic locus analysis is an extension of Smith and Waterman’s (1981) discrete 

sequence comparison algorithm to continuous signals.  It uses dynamic programming 

to efficiently identify the portion of a long reference signal that best matches another 

signal. During online application, signals from real-time sensors are compared with 

those from prior process runs to identify the current process state as well as estimate its 

progress. Run-to-run variations between the reference and online signals are accounted 

for by using dynamic time warping (DTW) for signal comparison. Dynamic locus 

analysis can be directly used for multivariate temporal signals and has the 

computational efficiency needed for real-time application. With dynamic locus 

analysis, all potential matching segments are compared for find the optimal results. 

Extensive testing on three case studies – the Tennessee Eastman challenge problem, a 

lab-scale distillation column, and a simulated fluidized catalytic cracking unit – reveal 

that the proposed method can quickly identify normal as well as abnormal process 

states. 

In the next chapter, dynamic locus analysis is used for identifying the 

corresponding point between real time signal and reference signal.  
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Chapter 5 Online Signal Comparison Using 

Singular Points Augmented Time Warping 

5.1 Introduction 

One of the main challenges for monitoring process is to identify process signal 

online. Online signal identification is different from offline signal identification in that 

data from the process is obtained dynamically. So the state of the process has to be 

identified without full information. The earlier we wish to decide on the signal, the 

lesser the information to base it on. Each process change has its own characteristic 

features as revealed by the variables evolutions. Abnormal situations such as 

maloperation, equipment failure, etc, lead to changes in these features. In this chapter, 

we use signal comparison technique to identify the process state from such changes. 

Dynamic locus analysis is used to identify the reference signal and the base point that 

best fits the real-time signal. Singular point augmented DTW is then used to extend the 

match when new sensor samples are obtained in real-time. We can use this information 

to guide plant operators or engineers during abnormal situations and help them in 

solving process problems. The outline of this chapter is as follows: The methodology 

for online signal comparison using Singular points augmented Time Warping is 

discussed in Section 5.2. In Section 5.3, the application of the method to TE case and 

ShadowPlant data is discussed. Summary and conclusions from this work are 

presented in Section 5.4. 
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5.2 Online Signal Comparison Using Singular points Augmented 

Time Warping 

The singular points based time warping approaches enforce the optimal linkage 

of the major landmarks of the two signals using dynamic programming. The global 

optimality of the episode-level comparison is therefore not a critical requirement since 

the optimal assignment of each time point within an episode has no physical 

significance and is rarely necessary in practical applications. The two-step comparison 

also leads to significant improvements in speed, memory requirement, and efficiency 

of signal comparison. Another important advantage is that since the singular points 

have physical meaning such as the beginning or ending of a process event, they can be 

directly used for state identification, monitoring, and supervision.  

Singular point augmented time warping is suited for signals whose endpoints are 

known to correspond as these are used in the initial warping assignment (1, 1) and (t, 

r). This is not the case in real-time signal comparison where the online signal is 

available starting from an unknown state. We use dynamic locus analysis to identify 

the endpoints in the library signal that correspond to those of the real-time signal.  

The online signal comparison problem can be stated as follows: Given a set of 

reference signals K and a real-time signal (T) emanating from the process operating at 

an unknown state, (1) identify the reference signal that best matches the current state of 

the process, and (2) identify the progress of the process with respect to the reference 

signal. The former is called the optimal reference signal identification problem while 

the latter is referred to as real-time signal (or state) tracking. The first step involves 

comparison of the real-time signal with many reference signals and is computationally 

more intensive than the 2nd step; hence although the first step could be repeated at 

every instant, it is not tenable for online application, where the requirement is that the 
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calculation time at every sample must be less than the sampling interval τΔ . The 

proposed online signal comparison approach therefore addresses the two sub-problems 

separately, as described next.  

5.2.1 Real- time Signal Tracking using Singular Points Augmented 

Time Warping 

This step uses the optimal reference signal *R  calculated a priori (See Section 

5.2.2) and seeks to confirm that the process continues to operate in the same state (i.e., 

same reference signal). It thus calls only for resynchronization based on the additional 

real-time sample with *R . In the following, for ease of explanation, the time variable 

for the real-time signal is denoted as τT and that of reference signal R as τR. The two 

signals can be compared starting from the beginning (i.e, 1Tτ = ); alternatively a 

smaller  evaluation window can be used. We pursue the latter option here for 

computational efficiency purposes. 

Consider the real-time signal 1 2 3 1{ , , ,..., }mT t t t t −=  with time index i. Our 

evaluation window is defined based on singular points.  Let the last singular point in T 

be at time SP
T Tτ τ= and let the value of T at that time be SP

T
t
τ

. The corresponding 

singular point in *R  can be obtained using XTWSP. The pair of corresponding singular 

points in T and R*  is called the anchor of the evaluation window. The evaluation 

window Tw extends from the anchor point mark to 1mt −  at time 1T mτ = − , i.e., 

11
{ , ,..., }SP SP

T T
w mT t t t

τ τ −+
= . The base point at 1T mτ = −  is the point in the reference signal 

*R  that corresponds to 1mt −  in T.  The corresponding segment of *R  which matches 

with wT  is denoted as *
wR . When a new sample mt  becomes available at T mτ = , i.e., 

wT is updated, the task in real-time signal tracking is to update the base point and *
wR  
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through resynchronization and confirm that *
wR  continues to match wT . In our 

approach this is achieved in two steps as follows: 

Step A: Efficient calculation of difference between real-time signal and 

reference signal 

Any signal comparison method can be used for calculating the difference 

between wT and *
wR . We use XTW for this purpose because of its advantageous time 

and space requirements. The normalized time-warped distance between wT  and *
wR  is 

calculated as follows: 

 
( )

*( , )
1

SP
T

m

j i i
i

w w SP
T

r t
T R

m
τη

τ
=

−
=

− +

∑
   (5-1) 

The numerator is the XTW difference between wT and *
wR  while the denominator 

is the length of the evaluation window. The difference between the latest real-time 

sample mt  and its warping assignment in *R , notated as  
*

( , )
R

mt rτΔ , is also calculated. 

If 

 ( ) ( )*

*
max max( , ) and ( , ) 2

R
w w mT R t rτη η η< Δ < ×  (5-2) 

is satisfied, the process is considered to continue in the same stage of operation, 

and only the base point *R
τ is updated. The first condition ensures that the broad 

overall trend of the reference and real-time signals is the same while the second 

condition allows for larger local variations in the signal due to noise or run-to-run 

differences.  The computational efficiency of XTW comes at a price, a large 

*( , )w wT Rη does not guarantee that Tw is dissimilar from 
*
wR  since the local greedy search 

in XTW can lead to an overestimate of the difference when signals become long1. Such 
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artifacts can be eliminated by a more accurate calculation using XTWSP, when 

necessary.  

Step B: Accurate calculation of difference between real-time signal and 

reference signal 

XTWSP links the singular points in the real-time and reference signals and thus 

calculates a accurate difference between Tw and 
*
wR . So if condition (5-2) is not 

satisfied, a more accurate difference, notated as 
*

*( , ) and ( , )
R

w w mT R t rτη Δ are calculated 

using SPXTW and a condition analogous to (5-2) is evaluated.  

 ( ) ( )*

*
max max( , ) and ( , ) 2

R
w w mT R t rτη η η< Δ < ×  (5-3) 

If this is satisfied, the process is considered to continue in the same state, and the 

base point is updated. Otherwise a new reference signal has to be identified, starting at 

T mτ =  as the point of divergence POD
Tτ   (See Section 5.2.2).  

Step C:  Updating the Anchor  

One byproduct of performing XTWSP in the previous step is that corresponding 

singular points between Tw and 
*
wR  are identified. If the process continues to be in the 

same state (as per (5-3)), the last corresponding singular points are henceforth used as 

the anchor. This results in the shortening of the evaluation window, so future Step A 

and Step B calculations become more efficient and accurate. If (5-3) is not satisfied, 

the process is considered to have moved to a new state and another optimal reference 

signal has to be identified. Algorithm for real-time signal tracking is shown in Figure 

5-1.  
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*
* *Update , , and SP SP

w wR
R T Rτ

*

*( , ) and ( , )
R

w w mT R t rτη Δ

*

*Calculate ( , ) and ( , ) using 
R

SP
w w mT R t r XTWτη Δ *Update 

R
τ

( ) ( )*

*
max maxIs ( , ) and ( , ) 2 ?

R
w w mT R t rτη η η< Δ < ×

POD
Tτ

*
*Update ,  and SP SP

w wR
T Rτ

( ) ( )*

*
max maxIs ( , ) and ( , ) 2 ?

R
w w mT R t rτη η η< Δ < ×

Figure 5-1: Algorithm for real-time signal tracking 

 

5.2.2 Optimal Reference Signal Identification using Flanking 

Strategy 

The task in this stage is to identify the reference signal *R  that best matches the 

state of the process at time tm. This would be required at 1Tτ =  when the reference 

signal is not known and when the real-time signal has diverged from the previous 

reference (i.e., Equation (5-3) is not satisfied). Consider a divergent segment of T 

ranging from the point of divergence to the latest sample: 

  
1

{ ,..., }    if 

{ ,..., }  if 

POD
T

POD
m T

D POD
m m T

t t m
T

t t m
τ

ν

τ ν

ν τ ν− +

⎧ ≥ +⎪= ⎨
≤ < +⎪⎩

  (5-4) 
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Note that 1
POD

Tτ =  at 1Tτ = . The process state is identified by comparing the 

divergent segment with all the reference signals in the library (K). Consider a reference 

signal 1 2 3{ , , ,..., }nR r r r r=  from K with time index  j. Let ( , )DT Rη  be the normalized 

difference between the DT  and R. The optimal reference signal R* is defined as: 

 * arg min( ( , ))D
R K

R T Rη
∈

=  (5-5) 

A tradeoff exists between the speed and accuracy of reference signal 

identification. If the divergent segment used for identifying *R is small, several good 

matches may exist in K. We quantify the accuracy of the located optimal reference 

signal in terms of the inseparability ratio α , defined as the ratio of the normalized 

difference of the best matching reference signal to that of the second-best one:  

 
*

*

,

( , )
min ( ( , ))

D

DR K R R

T R
T R

ηα
η

∈ ≠

=  (5-6) 

The inseparability ratio thus reflects the uniqueness of *R . The criterion for the 

optimal reference  signal at mT =τ  with base point *R
τ  is  

 ( ) ( )*
max max( , )  and DT Rη η α α< <  (5-7) 

where the first condition ensures low difference between DT and *R  while the latter 

ensures its uniqueness. If (5-7) is not satisfied at mT =τ , an unknown state is flagged 

and the calculation of *R and *R
τ  repeated when the next real-time sample becomes 

available at 1T mτ = + .  

Algorithm for optimal reference signal *R identification is shown in Figure 5-2.  

Next, we describe how the difference ( , )DT Rη is calculated. Since the suitable start and 

endpoints of DT  in R are not known a priori, the locus of DT in R has to be first 

calculated. This can be directly performed using DLA if the divergent segment is small 
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as is the case immediately after the point of divergence. We term such comparisons as 

en bloc.  

En Bloc comparison phase, calculate Flanking Phase: Use DLA to identify all
possible locus for anterior and posterior

flanking segment correspond to XA and XB

Form composite segment with one set of YA

and YB

More pairs of corresponding locus?

More reference signal R?

NO

Yes

* is not availableR

Yes NO

                        Select min

Yes

NO

Yes

NO R*  not identifiable

*
*Report  and 

R
R τ

Select R* with the smallest

Is 2 ?POD
Tm τ ν− <

Select a R

( )
1( , )

m

j i i
i m

D

r t
T R νη

ν
= − +

−
=

∑

Use XTWSP to synchronize composite segment
with TD, calculate
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1
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m

j i i
i
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T

r t

T R
m

τη
τ

=
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=
− +

∑
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( ) ( )*
max maxIs ( , )  and ?DT Rη η α α< <

( , )DT Rη

 

 Figure 5-2: Algorithm for optimal reference signal *R identification 

 

En Bloc Difference Calculation  
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The DLA strategy is best suited for small signal lengths (See Section 4.2). 

When 2POD
Tm τ ν− < , the locus of the last ν  points on the divergent segment is 

identified for each R directly using DLA. The normalized difference is calculated as: 

 
( )

1( , )

m

j i i
i m

D

r t
T R νη

ν
= − +

−
=

∑
   (5-8) 

where ( , )i j  is the warping assignment between 1 2,{ , ..., }m v m mt t tν− + − +  and its locus in R . 

As mentioned above, if (5-7) is not satisfied and the optimal reference signal cannot be 

clearly determined, comparison is repeated when an additional real-time sample 

becomes available. Thus the length of the divergent segment would increase with time.  

Once the length of the divergent segment in DT  becomes large, DLA becomes 

computationally expensive. We minimize the computational complexity for such cases 

( 2POD
Tm τ ν− ≥  ) using a flanking-based comparison strategy. 

Flanking Based Difference Calculation  

In the flanking-based strategy, DLA is augmented with SPXTW  to calculate 

( , )DT Rη . Short segments from the start and end of DT , called flanking segments 

provide the basis for identifying the locus of DT  in R. The anterior flanking segment 

XA is defined as a segment of size v from the start of DT , 
1 1

{ , ,..., }POD POD POD
T T T

A
v

X t t t
τ τ τ+ + −

= . 

Similarly, the posterior flanking segment is a short segment from the end of DT , 

1 2,{ , ..., }B
m v m mX t t tν− + − += . DT  can be considered  to be sandwiched between the 

anterior and posterior flanking segments. It is obvious that any segment of the 

reference signal R that is the locii of DT  (called the composite segment) should also 

have sub-segments that have high similarity with the anterior and posterior flanking 
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segments. The flanking strategy for difference calculation exploits this property. The 

Flanking segments used for signal comparison are shown in Figure 5-3 and Figure 5-4.   

 
Figure 5-3: Flanking segments used for reference signal identification 

DLA is used to identify all the matching segments YA in R such that 

( ) max,A AX Yη η< . The same is also applied to obtain all possible reference signal 

segments YB that match the posterior flanking segment. Each pair of YA and YB defines 

a different composite segment in R, of which the one with the least difference with DT  

is the locus. Since in general these composite segments can be long, XTWSP is used to 

synchronize them with DT . The difference between DT  and R is then calculated as 

follows: 

 
( )

( , )
1

POD
T

m

j i i
i

D POD
T

r t

T R
m

τη
τ

=

−

=
− +

∑
   (5-9) 

A detailed illustration is given next to explain the above described online signal 

comparison algorithm. 
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T

PODτ

Tτ

  
Figure 5-4: Temporal Development and Translation of Flanking segments for 

( , )T Rη calculation 

5.2.3 Illustration: Online Computation the optimal match of the two 

signals 

Consider the test signal T and the two reference signals R1 and R2 shown in 

Figure 5-5. Online data has been collected starting at 1Tτ = . Since the optimal 

reference signal is unknown initially, it has to be identified first following the 

description in Section 5.2.2. 1
POD

Tτ =  and signal comparison starts at 8 ( )Tτ ν= = . The en 

bloc difference calculation strategy is first used for finding the locus in reference 

signals R1 and R2 since the signal length at 8Tτ =  is less than 2ν . At 8Tτ = , the DLA 

difference for R1 and R2 are as shown in Figure 5-6. 
1

( , )S RD ν τ  has a clear minimum at 

1
199Rτ =  and 1 max( , ) 0.0151 ( 0.05)T Rη η= < = . The locus for the divergent segment in 

R2 is at 
2

1083Rτ =  and 2 max( , ) 0.0836( )T Rη η= > . Therefore 



Chapter 4                            Online State identification Using Dynamic Locus Analysis                          
_____________________________________________________________________ 

 - 124 - 

max0.1810 ( 0.70)α α= < = . So at 8Tτ = , 1R is confirmed to be the optimal reference 

signal with 
1

199Rτ =  as the base point. From the next sample, 9Tτ = , real-time signal 

tracking as described in Section 5.2.1 is performed to confirm that T progresses as per 

reference signal R1. 

 
Figure 5-5: Test signal T and reference signals (R1 and R2) for illustrative example 
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Figure 5-6: The comparison of real-time signal T at 8Tτ =  with 1R (shown in b) 

reveals a minima at 
1

199Rτ =  (shown in c). Similar comparison with R2 depicted in (d) 
shows a minimum at 

2
1083Rτ = as shown in (e) 

A snapshot of the real-time signal tracking at 226Tτ = is shown in Figure 5-7. At 

this time, the anchor for comparison between T and R1 is the previous corresponding 

singular points with 164SP
Tτ = and 

1
359SP

Rτ = . The base point is at
1

413Rτ = . Therefore, 

the evaluation window 164 226{ ,..., }wT t t=  is compared with *
359 413{ ,..., }wR r r=  using 

XTW. *
max( , ) 0.0180 ( )w wT Rη η= <  and 

* max( , ) 0.0086( 2 )
R

mt rτ ηΔ = < × , so condition (5-

2) holds and tracking can continue. Online tracking proceeds similarly till 682Tτ =  

when *( , ) 0.0217w wT Rη =  but 
* max( , ) 0.3666 ( 2 )

R
mt rτ ηΔ = > × , so equation (5-2) is 

violated. XTWSP is then used for accurate calculation of the difference between Tw and 

*
wR .  *( , ) 0.0213w wT Rη =  and

* max( , ) 0.3633( 2 )
R

mt rτ ηΔ = > × , so equation (5-3) is 
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violated too. This confirms that the real-time signal is no longer similar to R1 and the 

reference signal has to be re-identified with 682POD
Tτ =  (see Figure 5-8).  

 
Figure 5-7: Snapshot ( 226Tτ = ) the Signal comparison betweenT and R 

 
Figure 5-8: Snapshot ( 682Tτ = ) the Signal comparison betweenT and R 
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The divergent segment 675 676, 682{ , ..., }DT t t t= is used to find the new reference 

signal through DLA. Initially, 2POD
Tm τ ν− < , so en bloc difference calculation is 

performed. At 682Tτ = , 2( , ) 0.0641DT Rη = , 0.9596α =  and equation (5-7) does not 

hold and the reference signal cannot be conclusively identified. Comparison is 

therefore repeated when subsequent samples becomes available. As shown in Figure 5-

9, at 685Tτ = , 2 max( , ) 0.0388( )DT Rη η= < , and max0.6039( )α α= < . So the new 

reference signal is confirmed to be R2 with 
2

1082Rτ = as the anchor point and 

* 1087
R

τ = as base point. 

 
Figure 5-9: The comparison of real-time signal T at 685Tτ =  with 1R (shown in b) 

reveals minima at 
1

185Rτ =  (shown in c). Similar comparison with R2 depicted in (d) 
shows a minimum at 

2
1087Rτ = as shown in (e)
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5.3 Case Studies 

5.3.1 Online Process Disturbance Identification for the Tennessee 

Eastman Plant 

The Tennessee Eastman (TE) plant is a popular testbed for process control, fault 

diagnosis and signal comparison as described in Sections 3 and 4. In this section, we 

use the above described online signal comparison method to identify process 

disturbances XD1 – XD5 and estimate their progress online. Figure 5-10 shows three 

runs where disturbance XD2 has affected the process.  

 
Figure 5-10: Three runs of XD2 with different magnitudes and duration 

In this case, we use dynamic signal matching to identify process disturbances 

online. The difficulty in identifying the disturbance online can be estimated by a 

preliminary analysis (Section 3.4.2). Therefore, difference between the classes by 

direct comparison, even if the complete signal is available, is a nontrivial exercise. In 

this work, we consider the even more difficult task of differentiating between the 

disturbances as they evolve.  
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The proposed online signal comparison method is used for online disturbance 

identification as follows. Consider Run-4 where the process is in state XD2 

until 1030Tτ = . An unknown disturbance occurs starting at 1030Tτ =  which is 

initially indicated when *( , ) 0.0028w wT Rη =  and 
*

( , ) 0.3147
R

mt rτΔ = , and equation (5-

2) is violated. An accurate difference is calculated using XTWSP and *( , )w wT Rη  = 

0.0022 and 
*

( , ) 0.3065
R

mt rτΔ = . Since this is larger than the max2 η× threshold even 

after resynchronization, as per equation (5-2) it is evident that the real-time signal does 

not confirm to reference signal 2R  starting from 1030Tτ =  (= point of divergence 

POD
Tτ ).  The disturbance can be identified by calculating the new optimal reference 

signal *R  and the base point *R
τ using the divergent segment 1 2,{ , ..., }D m v m mT t t tν− + − += . 

In the first iteration, at time 1030Tτ = , 1( , ) 0.0501T Rη = , 3( , ) 0.0511T Rη = , 

4( , ) 0.0514T Rη =  and 5( , ) 0.0512T Rη =  (See Table 5-1). Since the η for all the 

reference signals are similar (as indicated by the inseparability ratio 

max0.9804α α= > ), *R cannot not been identified at this point and further iterations 

are necessary.  In each subsequent iteration, as the real-time signal T evolves, the 

evaluation window is updated (as shown in Figure 5-4) and the analysis repeated. As 

the disturbance becomes more evident with time, α  decreases (see Table 5-1) and 

at 1034Tτ = , 4( , )T Rη falls below maxη . The optimal reference *R is then identified 

as 4R  (i.e. disturbance XD4).  The base point at * 314
R

τ =  in 4R is found to correspond 

to 1034Tτ = . Real-time signal tracking is then resumed for subsequent samples. The 

average time cost for this run was 0.0273 cpu seconds with the proposed method as 

against 55.2721 cpu s with DTW as summarized in Table 5-2 (depicted as the second 
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disturbance in Run-4).This brings out the computational advantages of the proposed 

strategy.   

Table 5-1: TE Disturbance Identification (Run-4) 

η  
Tτ  

1R  3R  4R  5R  
α  

1030 0.0501 0.0511 0.0514 0.0512 0.9804 
1031 0.0592 0.0593 0.0589 0.0581 0.9864 
1032 0.0659 0.0656 0.0654 0.0647 0.9970 
1033 0.0693 0.0654 0.0572 0.0683 0.8746 
1034 0.0723 0.0604 0.0408 0.0702 0.6755 
1035 0.0755 0.0556 0.0240 0.0723 0.4317 
1036 0.0782 0.0510 0.0072 0.0742 0.1412 
1037 0.0779 0.0506 0.0070 0.0739 0.1383 
1038 0.0773 0.0508 0.0068 0.0732 0.1339 
1039 0.0767 0.0507 0.0065 0.0729 0.1282 
1040 0.0760 0.0506 0.0064 0.0723 0.1265 
1041 0.0752 0.0504 0.0061 0.0716 0.1210 
1042 0.0745 0.0500 0.0061 0.0712 0.1220 
1043 0.0737 0.0505 0.0060 0.0707 0.1188 
1044 0.0729 0.0504 0.0060 0.0703 0.1190 

 

A similar study was performed for fourteen other runs. A summary is presented 

here. The same accuracy was found in all test runs the online comparison tracking 

stage as well as shown in Table 5-2. In each run, two disturbances were introduced. In 

all cases, the proposed method correctly identified the disturbance with an average 

delay of 5.23 mins. The average time cost for online signal comparison is only 0.0989 

cpu seconds (on a Pentium IV, 2.4 GHz cpu) in contrast to 55.3 seconds for DTW. 

This factor of 559 speedup in computation over DTW clearly shows the efficiency of 

the proposed method and illustrates its suitability for large-scale applications. For Run-

9, the time cost is 0.2509 second for each update point which is obviously higher than 

other runs. It is because the difference between test signal and reference is larger than 

other cases. Once the difference larger than threshold, it needs resynchronization the 

real-time signal and reference signal which cost extra time than using normal XTW 

propagation alone.  
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Table 5-2: Online process disturbance detection in TE process 

 Disturbance 
Introduction 

Time 

Disturbance 
Identification 

Time 

Best-matching 
reference 

Identification 
delay 
(min) 

Second 
Disturbance 
Introduction 

Time 

Disturbance 
Identification 

Time 

Best-matching 
reference 

Identification 
delay 
(min) 

Average 
Time Cost 

(cpu s) 

Average 
Time Cost 
of DTW 
(cpu s)      

Run-1 9 15 XD1 6 1020 1025 XD4 5 0.0501 55.3446 
Run-2 9 13 XD1 4 670 675 XD4 5 0.0699 55.2385 
Run-3 9 13 XD1 4 680 684 XD4 4 0.1233 55.2589 
Run-4 9 17 XD2 8 1030 1034 XD4 4 0.0273 55.2721 
Run-5 9 13 XD2 4 1100 1107 XD5 7 0.0734 55.3044 
Run-6 9 16 XD2 7 420 427 XD5 7 0.1289 55.3314 
Run-7 9 16 XD3 7 860 867 XD1 7 0.0367 55.3578 
Run-8 9 13 XD3 4 970 974 XD1 4 0.0689 55.3446 
Run-9 9 13 XD3 4 1100 1105 XD1 5 0.2509 55.3374 

Run-10 9 14 XD4 5 820 825 XD2 5 0.0373 55.2985 
Run-11 9 13 XD4 4 380 387 XD2 7 0.0535 55.3051 
Run-12 9 17 XD4 8 400 407 XD2 7 0.2024 55.2517 
Run-13 9 13 XD5 4 500 505 XD3 5 0.0784 55.2919 
Run-14 9 13 XD5 4 600 604 XD3 4 0.0712 55.3051 
Run-15 9 13 XD5 4 1080 1084 XD3 4 0.2115 55.2517 

Average    5.1333    5.3333 0.0989 55.2996 
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5.3.2 Case Study 2: Online Fault Diagnosis during Startup of a Lab-

scale Distillation Column 

In this section, the proposed methodology is illustrated on a lab-scale distillation 

unit (Section 4.3.2) 

The online signal comparison algorithm was then used for fault diagnosis and 

decision support during subsequent startups of the column. Consider one run (Run-3) 

when a fault was introduced at 3590T sτ =  when the operators introduced too large a 

feed pump flowrate (200 rpm) to the column. This causes instability in the column 

resulting in a drastic drop in the column’s temperatures. Results from this run show 

that the real-time signal is initially close to normal. The difference between the real-

time signal and all other references is much higher. 0.2235α = at 6Tτ =  Starting from 

t=3700s, the difference between real-time signal and the normal reference increases 

indicating that there is a fault during the startup operation. The differenceη  between 

the real-time signal and DST03 is less than maxη  (0.05). Also, the α  falls below maxα  

(0.70) and is identified as DST03.  

Similar tests were done for all other cases. A summary of the findings is 

presented in Table 5-3. Faults in all the test runs were correctly identified with an 

average delay of 3.6 samples (and maximum detection delay of 11 samples for Run-

03). All faults could be accurately identified within an average of 5.4 samples of their 

occurrence. The maximum identification delay was about 12 samples for Run-03. The 

average α at time of identification is 0.3828 against the maxα threshold of 0.7 which 

shows the clear identification of the faults. The average computation time cost at each 

sample was 0.0594 second which is much less than the sampling rate of 10 seconds. 
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The proposed method is therefore clearly suitable for online fault diagnosis in this case 

as well. 

5.3.2.1 Robustness and Parameter Tuning 

In this section, the robustness of proposed online signal comparison method is 

studied. Varying amount of noises level were added to the online signal to investigate 

robustness to noise. The affect of the tuning parameter settings on online signal 

comparison was also studied. The proposed method uses maxα , maxη etc for detection. 

While in general, different process signals may require different values of these 

parameters, we have found that most of the parameter settings can be used across 

variables and case studies.  

The robustness of the proposed method to sensor noise is reported in this part 

using data from the lab-scale distillation column case study. Additional measurement 

noises ranging from 1%, to 5% were added to all the original signals and fault 

diagnosis performed. Results are shown in Table 5-4. As has to be expected, there is an 

increase in the fault identification delay with increasing noise, however the effect is 

minimal with the average delay increasing from 5.3 samples to 6.6 samples. A similar 

study was performed for the TE case study as well (see Table 5-5) and the average 

identification delay increased from 5.1333 samples to 17.7333 samples at 5% noise 

level. This larger variation in the TE case arises from the inherent complexity and 

larger noise levels in the base process. Overall, the proposed method online signal 

comparison method is robust to noise.  

The proposed method uses two tunable parameters – maxα  and maxη . While in the 

general case, different process signals may require different values of these parameters, 

we have found that the same parameter settings can be used across variables and case 
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studies. The results of decreasing maxα  from 0.80 to 0.60 for the distillation column as 

well as the TE case studies show that maxα  has no significant affect on fault detection 

delay. A smaller maxα  would require a clearer separation between the reference signal 

and the optimal reference signal before a fault is confirmed. This would lead to a delay 

in fault identification. The average identification delay for TE case changed from 

4.333 to 15.80  samples when maxα was reduced from 0.80 to 0.60 (See Table 5-6) 

while for the distillation column case study the delay increased from 5.3 to 6.1 samples 

(See Table 5-7). The extent of robustness of maxα  is further revealed by the fact that 

for the distillation column case study, even setting max 0.30α =  results in an average 

identification delay of only 9.1 samples. Overall these results clearly establish the 

robustness of the proposed method to the two tuning parameters.  

A similar result was obtained for maxη as well. maxη was changed from 0.03 to 0.07 

and tested in the TE process (See Table 5-8) and lab-scale distillation column data 

(Table 5-9). As can be seen there maxη has no significant affect on fault detection delay 

and the average delay remains around 5.1 sample points for the TE case and 5.5 

sample points for the lab-scale distillation column. 
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Table 5-3: Faults diagnosis for Lab-scale Distillation column 

Case Time Fault  
Introduced 

(s) 

Detection 
Time  

(sample) 

Detection 
Delay 

(sample) 

Identification 
Time 

(sample) 
yτ  

(sample) 

Best 
matching 
reference 

η  α  Identification 
Delay 

(sample) 

Time 
cost 
(s) 

Run-01 10 6 5 6 6 DST01 0.0162 0.2817 5 0.1716 
Run-02 10 6 5 6 6 DST02 0.0097 0.1091 5 0.1028 
Run-03 3590 370 11 371 13 DST03 0.0101 0.3456 12 0.0317 
Run-04 3560 357 1 360 5 DST04 0.0217 0.6663 4 0.0342 
Run-05 4250 426 1 430 6 DST05 0.0109 0.4113 5 0.0256 
Run-06 3500 353 3 355 4 DST06 0.0268 0.2379 5 0.0368 
Run-07 3450 346 1 347 3 DST07 0.0319 0.6940 2 0.0264 
Run-08 4700 472 2 473 4 DST08 0.0100 0.2330 2 0.0256 
Run-09 10 6 5 6 7 DST09 0.0103 0.1582 5 0.0556 
Run-10 3000 302 2 309 5 DST10 0.0119 0.6910 9 0.0840 
Average - - 3.6 - 5.9 - 0.0156 0.3828 5.4 0.0594 
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Table 5-4: Robustness of noise in TE disturbances identification 

 Disturbances Identification Time (sample) Identification Delay 
 Introduction Time 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 

Run-1 181 187 192 194 194 199 6 11 13 13 18 
Run-2 241 245 246 245 245 246 4 5 4 4 5 
Run-3 301 305 306 313 313 313 4 5 12 12 12 
Run-4 181 189 196 198 201 205 8 15 17 20 24 
Run-5 241 245 244 254 256 265 4 3 13 15 24 
Run-6 301 308 316 317 323 316 7 15 16 22 15 
Run-7 181 188 199 201 195 203 7 18 20 14 22 
Run-8 241 245 246 249 256 255 4 5 8 15 14 
Run-9 301 305 317 318 326 329 4 16 17 25 28 
Run-10 181 186 191 205 220 220 5 10 24 39 39 
Run-11 241 245 253 253 253 253 4 12 12 12 12 
Run-12 301 309 314 314 315 314 8 13 13 14 13 
Run-13 181 185 188 196 193 198 4 7 15 12 17 
Run-14 241 245 245 247 247 249 4 4 6 6 8 
Run-15 301 305 313 315 314 316 4 12 14 13 15 
Average       5.1333 10.0667 13.6000 15.7333 17.7333 
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Table 5-5: Robustness of noise in Lab-scale distillation column fault diagnosis  

 

 

 

 

 

 

 

  Identification Time (sample) Identification Delay 
 Faults Introduction Time 1% 2% 3% 4% 5% 1% 2% 3% 4% 5% 

Run-1 1 6 6 6 6 6 5 5 5 5 5 
Run-2 1 6 6 6 6 6 5 5 5 5 5 
Run-3 359 371 371 371 371 371 12 12 12 12 12 
Run-4 356 360 360 360 360 360 4 4 4 4 4 
Run-5 425 430 430 430 430 438 5 5 5 5 13 
Run-6 350 354 355 355 355 355 4 5 5 5 5 
Run-7 345 347 347 347 347 348 2 2 2 2 3 
Run-8 470 473 473 473 473 473 3 3 3 3 3 
Run-9 1 6 6 6 6 6 5 5 5 5 5 
Run-10 300 308 308 309 309 311 8 8 9 9 11 
Average  5.3 5.4 5.5 5.5 6.6 
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Table 5-6: Effect of minα on identification delay in TE case study 

 

 

 

 

 Disturbances Identification Time (sample) Identification Delay 
 Introduction Time max 0.80α = max 0.75α = max 0.70α = max 0.65α = max 0.60α =  max 0.80α = max 0.75α = max 0.70α = max 0.65α = max 0.60α =  

Run-1 181 187 187 187 187 187 6 6 6 6 6 
Run-2 241 245 245 245 245 245 4 4 4 4 4 
Run-3 301 305 305 305 311 313 4 4 4 10 12 
Run-4 181 189 189 189 190 191 8 8 8 9 10 
Run-5 241 245 245 245 245 267 4 4 4 4 26 
Run-6 301 304 305 308 313 313 3 4 7 12 12 
Run-7 181 186 187 188 189 189 5 6 7 8 8 
Run-8 241 245 245 245 249 249 4 4 4 8 8 
Run-9 301 305 305 305 315 316 4 4 4 14 15 

Run-10 181 185 185 186 186 186 4 4 5 5 5 
Run-11 241 245 245 245 247 247 4 4 4 6 6 
Run-12 301 305 308 309 313 327 4 7 8 12 26 
Run-13 181 184 184 185 185 185 3 3 4 4 4 
Run-14 241 245 245 245 245 282 4 4 4 4 41 
Run-15 301 305 305 305 313 355 4 4 4 12 54 
Average       4.3333 4.6667 5.1333 7.8667 15.8000 
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Table 5-7: Effect of minα on identification delay in Lab-scale distillation column case study 

 

 
 
 
 
 
 
 
 
 
 
 

  Identification Time (sample) η  
 Faults Introduction Time max 0.80α = max 0.75α = max 0.70α = max 0.65α = max 0.60α = max 0.80α = max 0.75α = max 0.70α = max 0.65α = max 0.60α =  

Run-1 1 6 6 6 6 6 5 5 5 5 5 
Run-2 1 6 6 6 6 6 5 5 5 5 5 
Run-3 359 371 371 371 371 371 12 12 12 12 12 
Run-4 356 359 359 360 360 361 3 3 4 4 5 
Run-5 425 430 430 430 432 432 5 5 5 7 7 
Run-6 350 355 355 355 355 355 5 5 5 5 5 
Run-7 345 347 347 347 347 348 2 2 2 2 3 
Run-8 470 473 473 473 473 473 3 3 3 3 3 
Run-9 1 6 6 6 6 6 5 5 5 5 5 

Run-10 300 308 308 309 310 311 8 8 9 10 11 
Average       5.3 5.3 5.5 5.8 6.1 
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Table 5-8: Effect of maxη on identification delay in TE case study 

 
 
 
 
 
 
 
 
 

 Disturbance Identification Time (sample) Identification Delay (sample) 
 Introduction Time 0.03 0.04 0.05 0.06 0.07 0.03 0.04 0.05 0.06 0.07 

Run-1 181 187 187 187 187 187 6 6 6 6 6 
Run-2 241 245 245 245 245 245 4 4 4 4 4 
Run-3 301 305 305 305 305 305 4 4 4 4 4 
Run-4 181 189 189 189 189 189 8 8 8 8 8 
Run-5 241 245 245 245 245 245 4 4 4 4 4 
Run-6 301 308 308 308 308 308 7 7 7 7 7 
Run-7 181 188 188 188 188 188 7 7 7 7 7 
Run-8 241 245 245 245 245 245 4 4 4 4 4 
Run-9 301 305 305 305 305 305 4 4 4 4 4 
Run-10 181 186 186 186 186 186 5 5 5 5 5 
Run-11 241 245 245 245 245 245 4 4 4 4 4 
Run-12 301 309 309 309 309 309 8 8 8 8 8 
Run-13 181 185 185 185 185 185 4 4 4 4 4 
Run-14 241 245 245 245 245 245 4 4 4 4 4 
Run-15 301 305 305 305 305 305 4 4 4 4 4 
Average       5.1333 5.1333 5.1333 5.1333 5.1333 
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Table 5-9: Effect of maxη on identification delay in Lab-scale distillation column case study 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  Identification Time (sample) Identification Delay (sample) 
 Fault Introduction Time 0.03 0.04 0.05 0.06 0.07 0.03 0.04 0.05 0.06 0.07

Run-1 1 6 6 6 6 6 5 5 5 5 5
Run-2 1 6 6 6 6 6 5 5 5 5 5
Run-3 359 371 371 371 371 371 12 12 12 12 12
Run-4 356 360 360 360 360 360 4 4 4 4 4
Run-5 425 430 430 430 430 430 5 5 5 5 5
Run-6 350 355 355 355 355 355 5 5 5 5 5
Run-7 345 348 347 347 347 347 3 2 2 2 2
Run-8 470 473 473 473 473 473 3 3 3 3 3
Run-9 1 6 6 6 6 6 5 5 5 5 5
Run-10 300 309 309 309 309 309 9 9 9 9 9
Average   5.6 5.5 5.5 5.5 5.5
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5.4 Discussion 

Online signal comparison is important for process monitoring, fault diagnosis, 

and process state identification. In this section, we have proposed a signal comparison 

based strategy for online disturbance or fault identification. Given a suitably annotated 

historical database of process states – normal and abnormal, the proposed method finds 

the best matching state at any given time by comparing the real-time sensor 

measurements with the signals in the database. In contrast to signal comparison 

strategies reported in literature, which are designed for offline signal comparison, the 

proposed method does not require any a priori knowledge about the online signal – 

specifically the beginning and end of the real-time signal do not need to coincide with 

those of the library signals. The endpoints of the two signals are synchronized 

automatically using the dynamic locus analysis methodology.  DLA is inherently 

computationally efficient when the real-time signal is small; the flanking strategy 

proposed here reduces the search complexity tremendously when a long segment of the 

real-time signal has to be compared. The real-time signal tracking strategy based on 

XTW and XTWSP further reduces the computational load required when the process 

essentially follows a previously determined reference signal. These endow the main 

advantage of the proposed method – is that it is significantly faster in comparison with 

other time warping methods. This has been illustrated clearly using two different case 

studies – disturbance identification in the Tennessee Eastman challenge plant and fault 

online diagnosis during startup of a lab-scale distillation column. As shown in Section 

4, the method is also robust to noise as well as parameter settings. 

 

Signal comparison methods use long term process signal to identified process 

state. With the comparison similarity between different signal groups, the similar 
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process state can be found. If the comparison was applied to all the variables in a 

complex process, the computation load will be very heavy. In next chapter, a novel 

approach - selecting state-specific key variables is introduced which will reduce the 

variables number for monitoring and comparison.       
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Chapter 6 Selecting State-Specific Key 

Variables  

6.1 Introduction 

A complex unit with a large number of variables may be operated in multiple 

states. The optimal set of sensors or key variables for monitoring a process may differ 

in different states of the process. It is therefore beneficial if a state-specific subset of 

variables is used for monitoring complex processes. The benefits of state-specific key 

variables are studied in this chapter. The outline of this chapter is as follow: In Section 

2.3, previous work in key variables selection is reviewed. We describe some basic 

axioms regarding key variables and their selection in Section 6.2. Methodologies for 

identify different kinds of key variables are also given in this Section. We give a 

detailed example of its application to the ShadowPlant in Section 6.3.  In Section 6.4, 

conclusions and discussion from this work are presented. 

 

6.2 Basics of State-Specific Key Variables 

Definition: Key variables are group of variables that can give much more information 

of a chemical process transition than other variables. They also have more effect on the 

process. Key variables will change according to the process state and purpose of use. 

The following are basic axioms for key variables:  

 1.  Key variables will change according to different observers 

The subset of the process variables which are deemed to be key variables 

depends on the purpose that they are to be used for. Therefore, the set of key variables 

used for the purpose of controlling a process unit may not be the same as the set for 

monitoring the same unit.  
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For example, during normal operation, operations personnel pay attention to 

process balances, reactor temperature, catalyst performance, distillation column levels, 

etc. However, personnel in the commercial department may be interested in variables 

such as the product flow, yield, quality and quantity of products. From an 

environmental and energy efficiency point-of-view, the key variables would relate to 

flue gas components, wastewater processing, and energy cost.  

2. Key variables will change for different states of the unit 

The set of key variables should be dynamic, that is, as the process evolves 

through different states of operation, the key variables would change. For each state of 

startup, there are some variables that are very active (varying widely) and hence 

important. At the same time, other variables may have to be maintained stably within a 

narrow range. 

3. Key variables depend on features of the unit and its operation 

In general, key variables can be identified based on the type of the unit operation. 

For example, fuel and airflow rate, and outlet temperature are key variables for furnace 

operation. Similarly, temperature and pressure are important in reactors. More 

specifically, for a Continue Catalyst Reforming (CCR) unit, the most important 

variables for operation are reactor pressure, temperature sulfur, heavy metal atom of 

the feed, and H2/Oil rate. The actual decision on the importance of a variable depends 

on detailed analysis of the process and the role of the variable in the broader context of 

the actual processing. 

4. Key variables depend on the hierarchical organization of the process 

Key variables should be defined hierarchically to reflect the division of the 

process operation into different levels of granularity. Three layers of key variables 

should be distinguished. At the top-layer, process operation is comprised of macro 
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states. Each macro state is in turn comprised of one or more sub-states. The actual 

operation steps such as opening and closing valves comprise the detailed sub-states. 

Each sub-state is associated with a set of key variables. That is, a subset of all the 

process variables that can clearly distinguish one macro state from another is used as 

key variables at the macro-state level. Similarly, key variables that are used at the sub-

state level can distinguish among the sub-states.   

6.2.1 Principles for Key Variables Selection from an Operational 

Standpoint 

The following factors should be considered when selecting key variables. 

1. Comprehensibility  

Every key variable should have easy to understand relationships with other 

variables. The ability to predict either quantitatively or at least qualitatively the effect 

of the key variables on other variables is important. If the variable doesn’t have any 

obvious relation with other variables, it cannot serve as a key variable.  

2. Comprehensive spatial coverage  

Key variables should be selected so that they reflect and affect the status of all 

parts of a process. If all key variables are focused on one or a few subunits, other 

sections of the process will become unobservable, with adverse consequences on the 

safety and controllability of those sections.   

3. Comprehensive temporal coverage  

While selecting key variables, their response times should be considered. This is 

not to say that the faster a variable’s response, the better it is suited to be a key 

variable. The group of key variable should be selected to reflect all the time scales that 

the process operates in.   

4. Sufficiency  
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The set of key variables should be complete so as to represent the most important 

changes in the process and to be able to reflect disturbances quickly. At the same time, 

the number of key variable should not be large.  

To derive a systematic basis for identifying key variables, we first classify the 

key variables.   

6.2.2 Key Variable Classification  

Key variables can be characterized into six types: (1) State-indication variable, 

(2) State-differentiation variable, (3) State-progression variable, (4) External-affect 

variable, (4) Active variable and (6) Important-balance variable.  

1. State-indication Variable  

This kind of variables is usually useful in indicating the beginning or end of the 

macro-state of a unit. In most chemical process, the states of some valves, flow rates, 

and temperatures would indicate the state of operation. In general, these variables are 

useless in routine operation.   

2. State-differentiation Variable 

State-indication variables alone cannot identify process state completely. The 

state-indication variables will respond when a new state starts but they don’t 

conclusively differentiate among the states. Variables that have most differentiation 

value in each state are called State-differentiation variables.  Their values are in 

different ranges during different states of the process operation. 

3. State-progression Variable  

For most process transitions, there are some variables that reflect the progress of 

the state (Davis, 1984).  

4. External-affect Variable 
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In many modern integrated chemical plants, the state of an upstream unit would 

have some affect on the downstream unit’s operation. It is easy to understand that 

operations in other subsections may affect the state of a subsection. The variables that 

display this kind of effect are called external affect variables.  

5. Active Variable 

Signals which show variation in a state should be monitored as well. These 

variables commonly provide detailed insight into the operation. Most operating 

variables fall into this category. The standard way for evaluating activity is based on 

the singular points analysis of the signal. 

6. Important-balance Variable 

For most chemical process operation, there are some important balances - mass, 

energy, pressure and others. The variables that affect these important balances called 

Important-balance variables. 

The same variable can exhibit more than one characteristic, for example, the 

same variable can be both a state indication and a state-progression variable.  

Different classes of key variables should be defined at different levels in the 

process hierarchy. The bottom-layer key variables are used to give the detailed 

operating information about current operation. For example, only active variables, 

external-effect variable, and balance variables need to be monitored within each 

detailed-state to effectively identify if the process is being operated correctly. State-

indication and state differentiate variables are suited for the top-layer to find the active 

macro-states of the whole process. In the middle layer, key variables are used to find 

the sub-state of the system based on the macro-state. The key variables in the middle-

layer and bottom-layer will change according to the progress of the process transition. 

The different variable types for each level are shown in Table 6-1. 
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Table 6-1: Relation between variable type and state level 

Variable type Macro-State Sub-State Detailed-State 
State-indication Variable √ √ × 
State-differentiation Variable √ × × 
Stag-progression Variable × × √ 
External-affect Variable × × √ 
Active Variable × × √ 
Important-balance Variable × × √ 

 

6.2.3 Methodology for finding each type of key variable 

State-indication Variable 

Since it is not easy to demarcate two adjacent states clearly, we need to use some 

simple operations for separation. State-indication variables are used for this purpose. 

Most of the time, the state-indication variable can be identified from the standard 

operation procedure (SOP) which specify the operations to be performed in different 

states. Examples include status of valve, equipment status, etc.  Special valve or 

equipment status could also be use for this class of key variables.  

 

State-differentiation Variable 

The state-differentiation variable is determined based on signals that have 

different values in each state. In this chapter, we use a method motivated by the 

Analytical Hierarchy Process (AHP) popular in decision-making, to find the best 

subset of variables for separating the different states of a process transition. 

First the differentiability of a single variable is measured. Consider a variable x 

whose signal 1 2{ , ,..., ,... }i mT x x x x=  corresponds to all states of the process’ operation. 

Let 1' { , ,..., }i i jT x x x+=  be the signal from a specific state MS for which the suitability 

of variable x to serve as a key variable is being considered.  The state-differentiability 
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ϑ  of signal T during MS is defined based on the average overlap of the max and min 

values of every non-extreme three-sample window in 'T  with T: 

1
1 1 1 1

1 1 1 1 1

Total number{min( , , ) ' max( , , )}1
1 Total number{min( , , ) max( , , )}

j
n n n n n n

n i n n n n n n
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− + − +

= + − + − +

≤ ≤
=

− − ≤ ≤∑  (6-1)      

1 1
2

j i
m

ϑ− −
< ≤

−
 

Here the operation Total number( )calculates the number of times the condition 

in the operand is satisfied by the given signal. A small ϑ  indicates that variable x 

cannot be used for positively identifying state MS, while a value of 1ϑ = indicates that 

the variable can conclusively locate when the process is in MS. While ϑ  can indicate 

the state-differentiability of a single variable, it is necessary to identify the state-

differentiability of a set of variables. The extension to the multivariate case where the 

differentiability of a set of variables is considered next. 

Let the process be operated in s states. A subset q key variables from the total of 

Q measurements has to be selected so as to provide best overall differentiability of 

every state.  

The Q x s dimensioned variable differentiability matrix A is first calculated by 

calculating the state-differentiability of each variable for each state by following the 

above procedure.  Let the relative importance of differentiating any state be κ.  

0 1κ≤ ≤  The relative importance matrix for all the states is constructed 

as 1 2 s[  ... ]B κ κ κ= . One way to estimate the relative importance of a state is based on 

its extent relative to other states. The correlation among the Q variables is measured 

using their covariance C. The following decision procedure is then used to select the q 

key variables using A, B, and C: 
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1. Calculate the overall differentiability matrix *W A B=  and select the variable 

whose coefficient in W is the largest. This yth variable is deemed to be a State-

differentiation key variable. 

2. Each element of the variable differentiability matrix A is then updated using 

the covariance matrix C as follows: , , *(1 ( , ))m n m nA A C y m= −  . Step 1 is then 

repeated to find the overall differentiability matrix and select the next best State-

differentiation key variable. This is repeated until max (W) < a user specified 

threshold or q variables have been selected. 

The above procedure provides a systematic way to discount variables that are 

correlated and is necessary since many variables offer only similar information. 

 

State-progression Variable 

These key variables are identified based on the variable’s ability in indicating the 

progress of a state. These can be identified from the nature of the state. If a variable 

shows different values during the progression of a state, it is suitable for use as a state-

progression variable. Consider a signal 1 2{ , ,..., ,... }i nT x x x x= . The variable’s ability to 

indicate the progress of a state MS is calculated based on its uniqueness index ς within 

that state: 

1

2 1 1 1 1

1 1
2  {min( , , ) max( , , )}

n

i i i i i i in Total number x x x T x x x
ς

−

= − + − +

=
− ≤ ≤∑   (6-14)      

As in the case of state-differentiation variable, state-progression is calculated 

based on how many other points are located in the [ 1 1min( , , )i i ix x x− + , 1 1max( , , )i i ix x x− + ] 

range during the given state. 1/ 1n ς< ≤ . A small value of ς  reveals that the variable 

has a poor capability to serve as a state-progression key variable while 1ς = indicates 

that every value of the variable is unique through the state; thus the variable can 
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exactly reveal the progression of the state. The method described above for identifying 

sets of variables that together have high differentiation ability can also be used here to 

find a set of state-progression variables. 

 

External-affect Variable 

The external-affect variable is identified based on the definition of the plant 

sections. It should be noted that a variable that is the input to a given section would be 

an output from another section. Identification of these kinds of variables has to be 

based on the process flow sheet and the division of the process into sections.  

 

Active Variable 

In this work, signals that are active in a state are identified from the number of 

singular points. A signal that has more singular points within a given period (state) is 

more active than another variable with fewer singular points. The algorithm for 

identifying singular points has been reported earlier. Other analysis techniques such as 

PCA and ICA may also be used for evaluating signal activity.  

 

Important-balance Variable 

Identification of such variables is based on the heat and mass balance of the 

process. All transient process states – normal transitions and all abnormal operations – 

occur when a steady-state balance is broken. Process knowledge is important to find 

the group of variables that affect a specific balance.  

In the next Section, we describe a systematic methodology for selecting key 

variables in real-time. 
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6.2.4 Online Identification of Key Variables  

The methodology for identifying key variables described above has to be applied 

offline. A knowledge-base of these key variables can then be used for online 

applications. The flow chart for online key variables selection is shown in Figure 6-1.   

Get the online signal for all variable

Lookup the sub-state map for key variable for
identify the sub-state

Lookup the macro map for the key variables for
macro-state identification

Identify the macro-state of the process

Using rules based on these variables to
identify the sub-state

Look up the detailed-state map for key variables for
monitoring current process operation

Hierarchy analysis to build macro-
state map

SOP for building the sub-state map
and rules

Activity signal variable, External
effect variable, Stage progress
variable and important balance
variable was found for building

detailed state map

 

Figure 6-1: Flow chart for online key variables identification 

We use different methods to find each type of key variables dynamically.  The 

macro-state is first identified using state-indication and state-differentiation variables. 

These variables are used as input to a neural network which identifies the macro-state. 

Once the macro-state is identified, we use sub-state maps to obtain the key variables 

for identifying the sub-state. The sub-state map is obtained from the SOP and contains 

the variables that can be used for differentiating about the sub-states. In this layer, 

since the macro-state is already fixed, simple rules on the operation variable are 

adequate to distinguish between the sub-states. Given the sub-state, we lookup the 

detailed-map to obtain the detailed key variables in that sub-state. The detailed state is 
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obtained using active, external-affect, as well as important-balance variables through 

state-progression analysis.  

A detailed illustration of the above methods for finding key variables is provided 

next. We also describe dynamic key variables selection and its benefits using the 

ShadowPlant startup case study. 

6.3 Case study 

State-specific key variables selecting can be used for aiding complex process 

operations such as the startup of a fluidized catalytic cracking. The FCCU converts a 

mixture of heavy oils into more valuable light products and is the dominant conversion 

process and the major contributor to value-addition in the refining process. Successful 

operation of the FCCU is critical to the operating success of most refineries. A high-

fidelity dynamic simulator of a FCCU, called ShadowPlant, is used here. The tags for 

these and other important equipment in the unit are shown in Table 6-2. Details of the 

unit and the startup transition are reported in Section 3.4.1.  

Table 6-2:  Major Process Equipment 

Tag Description 
C-100 Air Blower 
C-200 Wet Gas Compressor 
D-100 Waster Heater Boiler Steam Drum 
D-200 Main Fractionator Overhead Receiver 
E-100 Waster Heat  Boiler 
H-100 Air Preheater 
H-200 Feed Preheater 
R-100  Regenerator 
T-200 Main Fractionator 

6.3.1 Selecting Key Variables for Monitoring ShadowPlant Startup 

Since the ShadowPlant has more than four hundred variables, a hierarchical 

division of the process is essential. Top layer variables are used to monitor the Macro-

State of ShadowPlant. The middle layer key variables are used to identify sub-state of 
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the ShadowPlant during the startup transition. Bottom layer variables are used to 

monitor the detailed operation. 

There are seven main states during the startup of the ShadowPlant: 

1. Preparation for air blower for startup:  In this state, the unit is checked 

offline. 

2. Air blower startup: In this state, the air blower is connected to the vent and 

turned on. The operator also checks the lines to the downstream units and 

subsequently establishes airflow to them by closing the vent. 

3. Regenerator warm-up and catalyst loading: Fuel gas and diesel are used to 

increase the regenerator temperature following a specified profile. Catalyst is 

also loaded into the regenerator at this state. 

4. Main fractionator startup: In this part, the main work is to preheat the feed 

and bring kerosene to the distillation system. Slurry boiler is started up. 

5. Connecting reactor to main fractionator and catalyst circulation: Connecting 

the two main parts of the ShadowPlant together is the main purpose in this 

state. Cycling of the catalyst between regenerator and riser is also begun.  

6. Introducing fresh feed: This is the key operation of the FCCU and a major 

milestone during the startup. The main work is to maintain a steady reaction 

temperature and fractionator adjustment.  

7. Wet gas compressor startup and increasing feed to design capacity: In this 

period, the wet gas compressor is started up and the feed increased slowly to 

design capacity.  

State-indication Variables: 

State-indication variable are selected based on the SOP to give a clear differentiation 

between the above seven states. For example, FOD111.OP (Air blower speed %) is a 
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good indication for the air blower startup state. Other variable are also useful to 

confirm the state of process, for example, the regenerator temperature should register a 

significant increase when the airflow has been established. Similarly, FOD101.PV is a 

good indication variable for Regenerator warm-up and catalyst loading state. The lists 

of state-indication variables for the different states are listed below. 

State State-Indication Variable Tag 
Air blower startup C-100 Air Blower Speed FOD111.OP 
Regenerator warm-up and catalyst 
loading 

H-100 Regenerator Air Bypass FOD101.PV 

Main fractionator startup Startup Fuel Gas to Main 
Fractionator Overhead Receiver 

FOD228.OP 

Connecting reactor to main 
fractionator and catalyst circulation 

Disengager Startup Vent 16PC105.SP 

Introducing fresh feed Line up Hot Feed FOD200.PV 
Wet gas compressor startup C-200 Wet Gas Compressor  FOD233.PV 
 

State-differentiation Variables: 

In order to find the key variables for differentiating the macro-states, the above 

described hierarchical method is used (see Figure 6-2). The variable differentiability 

for 23 selected variables is shown in Table 6-3. The coefficient for each variable in a 

state is based on the variable’s ability to distinguish that state from other states. Thus, 

FOD111.OP with a variable differentiability coefficient of 1.0 is a good variable to 

differentiate MS-1 whereas FOD101.PV with a value of 0.3489 has poor differentiation 

ability for this state. Similarly 16FC105.PV has high differentiation ability for MS-1 

and MS-2.  
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Figure 6-2: Hierarchical structure for finding the key variables for differentiating 

among the macro-states 

The overall differentiability among the variables is used to select a small set of 

variables for state-differentiation. The correlation matrix among these 23 variables 

shown in Table 6-4 is used for this purpose.  For instance, FOD102.OP has high 

correlation with 16FC105.PV (0.7621), and should not be included in the set. The 

following is the list of all the state-differentiation variables selected for the 

ShadowPlant startup. 

16FC105.PV C-100 Regeneration Air 
16FC200.PV  Gas Oil Feed 
16TC116.PV R-100 Riser Temperature Control 
16LI100.PV R-100 Regenerator Catalyst Level 
FOD111.OP C-100 Air Blower Startup Speed 
16PC205.OP D-200 Wet Gas to C-200 
FOD228.OP Startup Fuel Gas to Main Fractionator Overhead Receiver 
16LC201.PV T-200 Bottom Level 

 

 
Figure 6-3: Result of ShadowPlant macro-state identification with Neural Network 



Chapter 6                                                             Selecting State-Specific Key Variables                         
_____________________________________________________________________ 

 - 158 - 

A neural network was trained to differentiate among the seven states using the 

combined set of twelve state-indication and state-differentiation variables. It was 

confirmed that the macro-state of the ShadowPlant could be differentiated with an 

accuracy of 99.48%. Misdetection only occurs between States 4 and 5 as shown in 

Figure 6-3. 

Table 6-3: Variable differentiability matrix for each candidate variable in case study 

Index State MS-1 MS-2 MS-3 MS-4 MS-5 MS-6 MS-7

V1 FOD111.OP 1.0000 0.2415 0.3445 0.2059 0.0134 0.1251 0.2746 
V2 16PC111.OP 0.5861 0.4040 0.4769 0.2512 0.0163 0.1526 0.3349 
V3 16PC105.OP 0.8280 0.5669 0.3518 0.2102 0.0136 0.1277 0.2833 
V4 16FC105.PV 0.8280 0.7796 0.4308 0.2596 0.0168 0.1577 0.6509 
V5 16HC100.OP 0.0241 0.3499 0.3391 0.2026 0.0131 0.1231 0.2702 
V6 FOD101.PV 0.3489 0.6579 0.3576 0.2137 0.0139 0.1298 0.2850 
V7 16FC109.PV 0.0614 0.1146 0.3769 0.3256 0.0211 0.1978 0.2780 
V8 16FC107.PV 0.0296 0.0552 0.6574 0.2470 0.0160 0.1501 0.3294 
V9 FOD102.OP 0.3349 0.6248 0.3529 0.2144 0.0139 0.1302 0.2859 
V10 FOD106.OP 0.0256 0.0478 0.3415 0.2139 0.0139 0.1299 0.2852 
V11 16LI100.PV 0.1465 0.2734 0.7307 0.7697 0.2331 0.3130 0.6870 
V12 FOD228.OP 0.0266 0.0496 0.3712 0.1868 0.1260 0.1323 0.2958 
V13 FOD223.PV 0.0323 0.0603 0.4514 0.2698 0.0175 0.1639 0.9866 
V14 16LC200.PV 0.0483 0.0902 0.6751 0.1999 0.0255 0.2388 0.5242 
V15 16FC200.PV 0.0532 0.0993 0.7439 0.7741 0.0402 0.6054 0.8293 
V16 16TI203.PV 0.0540 0.1007 0.7539 0.1959 0.0245 0.2292 0.5031 
V17 FOD205.OP 0.0528 0.0985 0.7378 0.2313 0.0236 0.2206 0.4841 
V18 FOD211.OP 0.0395 0.0736 0.5515 0.3296 0.0189 0.3056 0.6707 
V19 16TC116.PV 0.0799 0.1491 0.6753 0.7213 0.4493 0.3186 0.7163 
V20 16HC103.OP 0.2047 0.3820 0.6823 0.5340 0.0346 0.3065 0.8494 
V21 16LC201.PV 0.0559 0.1044 0.7815 0.5288 0.0266 0.2495 0.5475 
V22 FOD200.PV 0.0389 0.0725 0.5430 0.3246 0.0211 0.3130 0.6891 
V23 16PC205.OP 0.0544 0.1015 0.7597 0.6143 0.0489 0.4575 0.8117 
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Table 6-4: Correlation matrix for candidate variables 

COV V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16 V17 V18 V19 V20 V21 V22 V23 
V1 1.0000 0.45100.4463 0.5933 0.2725 0.65440.1836 0.07970.64010.04830.3516 0.0675 0.1056 0.1796 0.1592 0.1906 0.1953 0.1435 0.1886 0.3207 0.2020 0.1407 0.1858 
V2 0.4510 1.00000.2602 0.6089 0.3234 0.64320.5102 0.34300.65620.30860.8756 0.1876 0.2934 0.4989 0.4424 0.5296 0.5428 0.3987 0.5241 0.7733 0.5612 0.3909 0.5162 
V3 0.4463 0.26021.0000 0.7353 0.4209 0.40860.3873 0.06890.38660.00450.2840 0.5608 0.7326 0.4734 0.7293 0.4428 0.4304 0.6075 0.6115 0.2163 0.4272 0.6249 0.5821 
V4 0.5933 0.60890.7353 1.0000 0.4707 0.75120.0588 0.02970.76210.01750.5408 0.3655 0.5633 0.4639 0.6840 0.4514 0.4607 0.4889 0.5463 0.5477 0.4670 0.4922 0.5553 
V5 0.2725 0.32340.4209 0.4707 1.0000 0.49830.0763 0.03210.48820.01950.2912 0.1144 0.1770 0.1907 0.2282 0.1933 0.1976 0.1787 0.2135 0.2778 0.2022 0.1781 0.2141 
V6 0.6544 0.64320.4086 0.7512 0.4983 1.00000.2806 0.12170.97810.07380.5373 0.1032 0.1613 0.2744 0.2433 0.2913 0.2985 0.2192 0.2882 0.4901 0.3086 0.2149 0.2839 
V7 0.1836 0.51020.3873 0.0588 0.0763 0.28061.0000 0.44880.28690.28250.3014 0.3983 0.3846 0.0879 0.2404 0.1483 0.1685 0.1252 0.0214 0.5839 0.1890 0.1557 0.0077 
V8 0.0797 0.34300.0689 0.0297 0.0321 0.12170.4488 1.00000.12410.67890.1521 0.1712 0.2678 0.4553 0.4038 0.4833 0.4953 0.3638 0.4783 0.5241 0.5122 0.3567 0.4711 
V9 0.6401 0.65620.3866 0.7621 0.4882 0.97810.2869 0.12411.00000.07550.5493 0.1055 0.1649 0.2805 0.2487 0.2978 0.3052 0.2241 0.2947 0.5010 0.3155 0.2198 0.2902 
V10 0.0483 0.30860.0045 0.0175 0.0195 0.07380.2825 0.67890.07551.00000.2203 0.1039 0.1624 0.2762 0.2449 0.2932 0.3005 0.2207 0.2902 0.2978 0.3107 0.2164 0.2858 
V11 0.3516 0.87560.2840 0.5408 0.2912 0.53730.3014 0.15210.54930.22031.0000 0.2778 0.3241 0.4213 0.4011 0.4287 0.4193 0.4407 0.4841 0.4824 0.4248 0.4327 0.4429 
V12 0.0675 0.18760.5608 0.3655 0.1144 0.10320.3983 0.17120.10550.10390.2778 1.0000 0.6513 0.4220 0.6023 0.4141 0.3735 0.7134 0.6962 0.0118 0.3720 0.7444 0.5095 
V13 0.1056 0.29340.7326 0.5633 0.1770 0.16130.3846 0.26780.16490.16240.3241 0.6513 1.0000 0.5880 0.8178 0.5611 0.5405 0.7359 0.7504 0.2132 0.5379 0.7506 0.7064 
V14 0.1796 0.49890.4734 0.4639 0.1907 0.27440.0879 0.45530.28050.27620.4213 0.4220 0.5880 1.0000 0.7976 0.9360 0.9193 0.7990 0.8358 0.4368 0.9161 0.7834 0.8588 
V15 0.1592 0.44240.7293 0.6840 0.2282 0.24330.2404 0.40380.24870.24490.4011 0.6023 0.8178 0.7976 1.0000 0.7937 0.8057 0.8063 0.8422 0.4332 0.8012 0.7989 0.8722 
V16 0.1906 0.52960.4428 0.4514 0.1933 0.29130.1483 0.48330.29780.29320.4287 0.4141 0.5611 0.9360 0.7937 1.0000 0.9719 0.7840 0.8342 0.4761 0.9709 0.7710 0.8854 
V17 0.1953 0.54280.4304 0.4607 0.1976 0.29850.1685 0.49530.30520.30050.4193 0.3735 0.5405 0.9193 0.8057 0.9719 1.0000 0.7345 0.7977 0.5160 0.9808 0.7201 0.8709 
V18 0.1435 0.39870.6075 0.4889 0.1787 0.21920.1252 0.36380.22410.22070.4407 0.7134 0.7359 0.7990 0.8063 0.7840 0.7345 1.0000 0.9665 0.2479 0.7293 0.9805 0.8519 
V19 0.1886 0.52410.6115 0.5463 0.2135 0.28820.0214 0.47830.29470.29020.4841 0.6962 0.7504 0.8358 0.8422 0.8342 0.7977 0.9665 1.0000 0.4207 0.8006 0.9696 0.8923 
V20 0.3207 0.77330.2163 0.5477 0.2778 0.49010.5839 0.52410.50100.29780.4824 0.0118 0.2132 0.4368 0.4332 0.4761 0.5160 0.2479 0.4207 1.0000 0.5424 0.2428 0.4715 
V21 0.2020 0.56120.4272 0.4670 0.2022 0.30860.1890 0.51220.31550.31070.4248 0.3720 0.5379 0.9161 0.8012 0.9709 0.9808 0.7293 0.8006 0.5424 1.0000 0.7169 0.8819 
V22 0.1407 0.39090.6249 0.4922 0.1781 0.21490.1557 0.35670.21980.21640.4327 0.7444 0.7506 0.7834 0.7989 0.7710 0.7201 0.9805 0.9696 0.2428 0.7169 1.0000 0.8403 
V23 0.1858 0.51620.5821 0.5553 0.2141 0.28390.0077 0.47110.29020.28580.4429 0.5095 0.7064 0.8588 0.8722 0.8854 0.8709 0.8519 0.8923 0.4715 0.8819 0.8403 1.0000 
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State-indication variables and State-differentiation variables are useful for 

process state identification, unfortunately they are not suitable for process monitoring 

since most of these variable only change dramatically in the beginning of the new 

state. For process monitoring we need the other types of key variables. The structure 

for monitoring ShadowPlant startup during one macro-state is shown in Figure 6-4.  As 

shown there, from an operator standpoint, the Regenerator warm-up and catalyst 

loading state can be divided into four sub-states: 

1. Flue gas lighting 

2. Increasing temperature 

3. Catalyst loading 

4. Catalyst transfer 

 

Figure 6-4: An illustration of the structure for monitoring the Regenerator warm-up 

state 
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There are four types of key variables in detailed state level – state-progression 

variable, external-affect variable, Active variable and Important-balance variable. In 

the following, we use the Increasing temperature sub-state to explain how these four 

types of key variables are identified. The preheater and Riser/Regenerator sectiions 

shown in Figure 6-5 are involved in this stage.  

 
(a) 

 
(b) 

Figure 6-5: (a) Preheater of ShadowPlant, (b) Riser/Regenerator of ShadowPlant 
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State-progression Variables: 

The state-progression coefficient ς  was calculated for all the variables. The 

variables with high values are listed below: 

Tag State-progression Variable ς  
16TI120.PV R-100 Flue Gas to E-100 0.9032  
16TI107.PV Regenerator Temperature 0.9032  
16TI106.PV R-100 Regenerator #1 2nd Cyclone 0.9032  
16TI105.PV R-100 Regenerator Dense Bed #1 0.7692  
16TI104.PV R-100 Regenerator Dense Bed #2 0.7692  
16TI103.PV R-100 Regenerator Dense Bed #3 0.7692 
16PC108.PV R-100 Regenerator pressure Discharge Valve 0.7158  
16FC118.PV D-100 Condensate Supply 0.6402  
16LC102.PV D-100 Steam Drum Level 0.6111  
16PI110.PV R-100 Flue Gas Stack Pressure 0.4966 

Based on these, 16TI107.PV (Regenerator Temperature) is selected as the first State-

progress variable. Other state-progression variables are selected based on their 

correlation with 16TI107.PV. 16LC102.PV (D-100 steam drum level) and 

16PC108.PV (R-100 Regenerator pressure) are selected as State-progress variable for 

this state on this basis. 

External-affect Variables: 

During regenerator temperature increase sub-state, although the purpose is 

increasing the regenerator temperature, 16TI120.PV (R-100 Flue gas to E-100) will be 

directly affected by the regenerator temperature and is therefore a key input to the 

downstream process. Similarly, 16TI102.PV the air temperature from preheater is the 

main upstream factor which affects the regenerator temperature. The flowrate 

16FC105.PV (air flow to regenerator) and pressure control 16PC108.OP (Flue 

discharge control valve opening) variables are also included as external affect variables 

based on the process knowledge and PFD.   

16TI120.PV  R-100 Flue gas to E-100 
16TI102.PV H-100 Outlet Temperature 
16FC105.PV Air Flow to Regenerator 
16PC108.OP R-100 Regenerator Pressure Discharge Valve 



Chapter 6                                                             Selecting State-Specific Key Variables                         
_____________________________________________________________________ 

 - 163 - 

Active variables: 

The following variables were found to have the maximum number of singular 

points during the sub-state.  

16FC107.SP Fuel Gas to H-100 Preheater 
16TI118.PV R-100 Catalyst from Stripper 
16TI122.PV R-100 Catalyst to Stripper 
16PDC112.PV R-100 Regenerator/Disengager delta P 
16PC105 Disengager Start-up Vent 

They are therefore selected as the active-variables. 

Important-balance variables: 

During temperature increase sub-state, the most important balance is the energy 

balance around the regenerator, specifically the fuel has to be combusted 

instantaneously. Accumulation of fuel in the regenerator may lead an explosion. So 

combustion and heat balance need to be monitored carefully. The following are the 

important-balance variables needed for this purpose.  

16FC107.PV  Fuel Gas to H-100 Preheater 
16FC105.PV C-100 Regeneration Air 
16TI102.PV H-100 Outlet Temperature 
16TI105.PV R-100 Regenerator Dense Bed #1 
16FC109.PV R-100 Torch Oil 
16AI100.PV R-100 Flue Gas Stack O2 

6.3.2 Process State Identification with State-Specific Key Variables   

The online selection of key variables has been used to reduce the computational 

complexity of the online state identification methods reported in the previous chapters. 

With a short segment of real-time signals from the key variables, the state of process 

could be identified correctly. The time cost of the two approaches – with and without 

state-specific key variables – is shown in Tables 6-5 and 6-6. As seen there, the time 

cost with state-specific key variables selection can reduce the time cost dramatically by 

about seven times. This is easy to understand since with the macro-state and sub-state 



Chapter 6                                                             Selecting State-Specific Key Variables                         
_____________________________________________________________________ 

 - 164 - 

identification, the search range for dynamic locus analysis is narrowed. With the 

selection of key variables, the number of variables for state identification is between 

20 to 30, which reduces the computation cost and storage space for calculation. The 

quality of results was also calculated using two methods.  

Definition:  normalized difference η between X and Y can be calculated as 

                                                    
( )

1

n

j i i
d

y x

n
η =

−
=

∑
                                           (6-15) 

Where ix  is real time signal, ( )j iy is the optimal warping reference signal 

corresponding to ix . In this chapter, ix and )(ijy could be one value or vector, if it is a 

vector, the difference between the two vector following Eq. 6-4. 

 ( , ) ( , )
1

( , ) ( , )
Q

i j i c j c
c

x y x y
=

Δ = Δ∑  (6-16) 

Where Q is dimension of vector ix , jy , the dimension must be same for ix  

and jy . ( , )i cx is value of vector ix value at c direction. ( , )j cy is value of vector iy value at 

c direction. 

Definition: maxErr    is maximum position shift in difference detection results over the 

total signal length. 

If maxErr  is large, it means that the consistency of the difference detection results 

is unsatisfactory.  From Table 6-5, the largest maxErr  in all segments is only 0.020%, 

i.e, the detected results from different length segments show good consistency. The 

improvement of consistency with the key variable is easy to understand. For a complex 

chemical process, even during process transition, there are a lot of variables that are 

non-varying. If all variables are used for process state identification, these variables 

will reduce the sensitivity.  With state-specific key variables, for any state, only the 

selected key variables are used for monitoring, state identification, etc, which improves 
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sensitivity. Figure 6-6 shows the difference in results while using key variables only as 

versus using the complete set of variables for identifying the state during air blower 

startup. 

  
(a) 

 
(b) 

Figure 6-6: Comparison between key variables and complete variable for state 

identification with dynamic locus analysis
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Table 6-5: Process state identification performance with state-specific key variables 

ky  η  Time Cost (CPU Sec) 
Sx  L=10 L=20 L=30 L=10 L=20 L=30 L=10 L=20 L=30 Sub-State maxErr

1100 1140 1137 1137 0.0031 0.0024 0.0019 0.9410 1.0310 2.704 Operation adjustment 0.014%
2100 2125 2125 2128 0.0001 0.0001 0.0002 2.0230 3.5950 5.358 Temperature increasing 0.014%
3100 3118 3120 3118 0.0002 0.0003 0.0005 2.1030 3.6840 5.288 Catalyst loading 0.009%
4100 4097 4097 4097 0.0001 0.0001 0.0001 2.4840 4.3150 6.21 Catalyst loading 0.000%
5100 5121 5121 5121 0.0001 0.0001 0.0001 2.3840 4.2260 6.069 Catalyst loading 0.000%
6100 6095 6095 6095 0.0002 0.0002 0.0002 2.3840 4.2050 6.049 Catalyst loading 0.000%
7100 7238 7233 7227 0.001 0.0010 0.001 1.3920 2.4930 3.596 Catalyst transfer 0.051%
8100 7644 7682 7689 0.0002 0.0002 0.0002 1.4720 2.5730 3.746 Catalyst transfer 0.208%
9100 9095 9099 9102 0.0026 0.0026 0.0026 0.9120 1.5520 2.244 Bring kerosene 0.032%

10100 10158 10158 10158 0.0005 0.0005 0.0005 1.4020 2.4730 3.545 Feed preheater 0.000%
11100 11073 11072 11072 0.0055 0.0044 0.004 1.1320 1.9520 2.804 Start slurry boiler 0.000%
12100 12035 12036 12036 0.0008 0.0009 0.0011 1.1220 1.9620 2.824 Start slurry boiler 0.005%
13100 13130 13130 13130 0.0008 0.0008 0.0007 0.4410 0.4410 0.541 Catalyst circulation 0.005%
14100 14261 14262 14262 0.0035 0.0035 0.0035 1.7730 3.1340 4.526 Introducing feed 0.000%
15100 15001 15001 15001 0.0021 0.0021 0.0021 1.7830 3.1440 4.487 Introducing feed 0.000%
16100 16167 16171 16175 0.0015 0.0015 0.0014 1.5120 2.6730 3.836 Wet gas compressor start up 0.037%
17100 16196 16196 16196 0.0013 0.0013 0.0013 1.8230 3.2140 4.607 Wet gas compressor start up 0.000%
18100 18131 18131 18131 0.0014 0.0014 0.0014 1.8330 3.2240 4.597 Increasing Feed 0.000%
19100 19133 19133 19133 0.0014 0.0015 0.0022 1.8501 3.3213 4.688 Increasing Feed 0.000%

Average - - - 0.0014 0.0013 0.0013 1.619 2.801 4.090  0.020%
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Table 6-6: Process state identification performance with all variables 

ky  η  Time Cost (CPU Sec) 
Sx  L=10 L=20 L=30 L=10 L=20 L=30 L=10 L=20 L=30 Sub-State maxErr

1100 1138 1136 1136 0.0004 0.0003 0.0003 11.146 20.649 31.285 Operation adjustment 0.009%
2100 2129 2129 2129 0.0002 0.0002 0.0002 11.236 20.589 30.855 Temperature increasing 0.000%
3100 3135 3135 3135 0.0002 0.0003 0.0003 11.126 20.609 30.654 Catalyst loading 0.000%
4100 4134 4134 4134 0.0001 0.0001 0.0001 11.126 20.699 30.644 Catalyst loading 0.000%
5100 5132 5132 5132 0.0001 0.0001 0.0001 11.166 20.689 30.784 Catalyst loading 0.000%
6100 6094 6094 6094 0.0002 0.0002 0.0002 11.106 20.810 30.685 Catalyst loading 0.000%
7100 7076 7084 7084 0.0034 0.0034 0.0033 11.146 20.630 30.544 Catalyst transfer 0.037%
8100 8169 8169 8169 0.0004 0.0004 0.0004 11.166 20.580 30.504 Catalyst transfer 0.000%
9100 9087 9087 9092 0.0007 0.0007 0.0007 11.086 20.580 30.544 Bring kerosene 0.023%

10100 10141 10141 10141 0.0010 0.0010 0.0010 11.167 20.650 30.624 Feed preheater 0.000%
11100 11168 11138 11063 0.0039 0.0050 0.0049 11.146 20.740 30.504 Start slurry boiler 0.486%
12100 12033 12034 12034 0.0010 0.0010 0.0011 11.296 20.710 30.534 Start slurry boiler 0.005%
13100 13127 13127 13127 0.0014 0.0014 0.0014 11.126 20.660 30.403 Catalyst circulation 0.000%
14100 14227 14333 14332 0.0052 0.0047 0.0045 11.076 20.600 30.704 Introducing feed 0.491%
15100 15019 14996 14997 0.0011 0.0011 0.0011 11.066 20.570 30.484 Introducing feed 0.106%
16100 16129 16129 16129 0.0015 0.0017 0.0022 11.046 20.700 30.454 Wet gas compressor start up 0.000%
17100 16676 16679 16812 0.0010 0.0010 0.0010 11.096 20.630 30.584 Wet gas compressor start up 0.630%
18100 18128 18128 18128 0.0012 0.0011 0.0011 11.105 20.650 30.514 Increasing Feed 0.000%
19100 19128 19128 19128 0.0013 0.0014 0.0016 11.165 20.750 30.524 Increasing Feed 0.000%

Average - - - 0.0013 0.0013 0.0013 11.1365 20.6576 30.6225  0.094%
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6.3.3 Fault Detection using State-Specific Key Variables 

Normal startup of the ShadowPlant takes 40 to 60 h depending on the 

experience-level of the operator. State-specific key variables can be used for fault 

detection during this long startup. The overall process-monitoring problem is then 

decomposed into a much smaller one of monitoring a small fraction of the available 

variables. In this section, fault detection results from two failures are reported 

Case 1: Failure of air blower during the ‘Increasing regenerator temperature’ state 

According to the procedure of ShadowPlant startup, the air blower is connected 

to the air preheater and regenerator after it reaches a steady state. At this time, the 

system pressure is increased by closing the vent valve. Fuel gas is introduced and 

lighted to heat the air which is used to warm the regenerator. At 1 hour 10 minutes (= 

4200 seconds) during the startup, a failure of the air blower was simulated.  

The state-specific key variables identification methodology described above has 

been first used to identify the key variables during the state of the process startup. The 

similarity between the real-time and reference signals for these key variables was 

estimated using the dynamic locus analysis method.  The failure could be detected at 

4220 second which is 20 seconds after the failure was introduced. The profiles of some 

key variables during this state are shown in Figure 6-7. The difference between the 

real-time and reference signals is shown in Figure 6-8. As can be seen there, at the 

occurrence of the failure, there is a distinct increase in the difference. 
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(a) 

 
(b) 

Figure 6-7: (a) Air blower discharge pressure, and (b) Regenerator temperature during 

normal and abnormal startup 

 

Figure 6-8: Difference between real-time and reference signals for the key variables 

during Case 1 
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Case 2: Air blower vent valve fails open 

A failure of air blower vent valve was simulated at 1 hour 10 minutes. The result 

of this failure is that the air will be discharged through the vent valve, which leads to 

malfunction of the whole system since there is no air to warm the regenerator. Some 

key variables of this state (air blower discharge, air blower to regenerator) respond 

immediately to the vent valve failure as shown in Figure 6-9.  

The difference between real-time key variables and reference key variables is 

shown in Figure 6-10. The failure can be very sensitively detected by the key variables 

of this state with a detection delay of 10 seconds. In comparison, Sundarraman and 

Srinivasan (2003) reported a detection delay of 5 minutes and 2 minutes for the two 

cases respectively when using monitoring the startup using trend analysis of all the 

variables. Thus, using state-specific key variables results is more sensitive fault 

detection. 

 

(a) 
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(b) 

Figure 6-9: Profiles of (a) Air blower to regenerator, and (b) Air blower discharge flow 

during normal and abnormal runs 

 

Figure 6-10: Difference between real-time signal and reference signal during Case 2 

6.3.4 Synchronization with State-Specific Key Variables Approach 

In chemical process state identification, process signal synchronization is one of the 

challenging problems. It is normal for two similar signals to be slightly different and 

not match each other perfectly. Synchronization between signals can be achieved 

through DTW or DLA as described in previous chapters. Dynamic locus analysis can 

be applied variable-by-variable which will increase the time cost. Alternatively, the 
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different variables are formed into a vector and warped by the same path. This can 

reduce the time cost but all variables are forced to be warped with the same path. 

In real processes, different sections of a process can be operated at different paces. 

Within the same section, most variables would show a similar pace because of the 

interrelations between the variables. During ShadowPlant startup, the five different 

sections can be operated at different paces. For example, the regenerator/riser startup 

will not affect the signals in the air blower section. So any signal shift in the 

regenerator/riser section will not be carried over to the air blower signals. If all of the 

variables are warped at same pace, it will introduce desynchronization among the 

different sections, as shown in Figure 6-11.  

 
Figure 6-11: State identification using key variables and complete variables 

The desynchronization among sections will increase the dynamic locus analysis 

difference and lead to improper location of the optimal corresponding point in 

reference signal when all the variables are used in the analysis. Using the key variables 

alone to synchronize the signals does not suffer this shortcoming as shown in Figure 

12. The key variable has a unique minimum point in reference signal at t = 13128 

sample, which was manually confirmed to be the correct location. In contrast when all 
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the variables are used, a latter time t=13413 sample in the reference signal is identified. 

This is because the key variables are from related sections and have a similar pace. 

 
6.4 Discussion  

A new approach for identifying a subset of the process variables, called state-

specific key variables, which adequately describe the current processing status, has 

been developed. This is motivated by the fact that the large-scale and complexity of 

modern chemical plants makes it difficult both for the operator to constantly monitor 

all process variables as well as for automated methods which face heavy computational 

loads. Key variables are groups of variables that have information content with respect 

to specific operational problems. In this chapter, we describe the state-specific nature 

of key variables. Different variables maybe deemed as key variables in different states 

of a process transition.  Even during the same state, different plant personnel – 

operators, safety manager, financial supervisors, etc – may use different groups of 

variables as key variables. Therefore, key variables selection should be dynamic.  

In this chapter, we have defined the key-variable selection problem and proposed 

a solution methodology. Using a hierarchical structure, key variables for process 

monitoring are separated into macro-state layer, sub-state layer and detailed variable 

layer. The problem of defining appropriate key variables in each layer of the hierarchy 

is addressed through an offline analysis. Different kinds of detailed state key variables 

are identified by different methods. Some are based on signal analysis while others are 

based on process analysis.  

Once the key variables for each state have been determined, they are stored in a 

knowledge base and used online for state-specific process monitoring. This state 
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specific monitoring problem is computationally efficient even for large-scale process 

and retains the intuitiveness required for operator acceptance.  

The key variable selection approach enables manual and automated monitoring 

to be restricted to a small subset of variables without degradation in safety or quality of 

results.   In many cases, using key variables increases the sensitivity of monitoring and 

state detection as has been shown with examples of dynamic locus analysis. 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

Chemical plants operate in a variety of states; some of these are steady states 

while others including grade changes, startup, shutdown, and maintenance operations 

are transitions.  Transition operations are usually challenging and more prone to 

abnormalities. Therefore, automated process monitoring during transitions is 

important. In this thesis, we have proposed new signal comparison-based approaches 

for online state identification and fault diagnosis during process transitions. 

Firstly, we developed a new approach for signal comparison called singular 

points augmented time warping. This method uses the major landmarks in the signal – 

called singular points – as the basis to restrict comparison of signals to related 

segments. It therefore has several advantages over traditional DTW. 

1. The comparison of the signals is between the corresponding episodes of the 

two, it therefore yields the true distance from the operations perspective. 

2. Singular points are based on operation’s standpoint; so they have physical 

meaning and help the operator understand the real state of the process.  

3. Time warping is required on shorter signal segments and optimal difference 

between the signals is not essential. This leads to substantial reduction in the 

computation time especially for long signals as is the case in many chemical 

engineering applications. This also makes it amenable to real-time applications. 

4. This new approach integrates global information in the form of features in the 

signal to find the best linkage. It is thus more robust when the signals have 

magnitude differences and/or are substantially unsynchronized.   
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5. Since the proposed approach is uni-variate, it can work well even in situations 

where different signals of a process do not progress at the same rate as is 

common in real cases. 

 
As shown in Chapter 3, the method is robust to both time shifts as well as 

magnitude differences between the reference and test signals.  The time warping 

algorithm makes the comparison robust to time shifts in the test signal; the optimal 

linkage of corresponding singular point between test signal and reference signal makes 

the method robust to magnitude distortions. Even if some singular points are not 

detected due to process noise, the linkage algorithm ensures an optimal match. The 

singular point augmented methods also significantly reduce the computational load of 

signal comparison and are overall better than traditional time warping methods. 

Secondly, we proposed an approach, called dynamic locus analysis, which is 

applicable in cases were the reference and test signals do not have coincident end 

points. Such situations occur during online signal comparison since the endpoint in the 

reference signals that corresponds to the real-time signal at any instant is unknown.  

Dynamic locus analysis is an extension of Smith and Waterman’s (1981) discrete 

sequence comparison algorithm to continuous signals. The approach solves the online 

signal comparison problem considering two facets – first, the part of the reference 

signal that corresponds to the real-time signal is identified using a small window of 

data from real-time sensor measurements; second, since the real-time segment and the 

corresponding part in the reference signal would not match exactly due to noise and 

run-to-run differences, the method uses dynamic time warping approaches to account 

for synchronization differences. With dynamic locus analysis, all segments in the 

reference signal that can potential match the online signal are considered and the 

optimal one is identified based on minimal difference. Dynamic locus analysis can be 
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directly used for multivariate temporal signals and has the computational efficiency 

needed for real-time application. As can be seen from Chapter 4, the approach is 

accurate, computationally efficient and robust.  

Thirdly, in this thesis, singular points augmented time warping methods have 

been combined with dynamic locus analysis for online signal comparison. Dynamic 

locus analysis is first used to identify all the segments of reference signals that 

adequately match the extreme segments of the real-time signal. In the second state, 

singular point augmented time warping is used to find the best matching reference for 

the complete real-time signal.  The best matching is then extended in real-time as new 

measurements are obtained, using a computationally efficient match-point elongation 

algorithm. The real-time capability of the approach arises from the computational 

efficiency of the dynamic locus analysis and the singular point augmented time 

warping approaches.   As shown in Chapter 5, the method is robust to noise as well as 

run-to-run differences. 

The above methods were extensively tested using data collected from different 

kinds of agile operation – startup of a simulated FCCU, startup of a lab-scale 

distillation column, multi-mode operation of the Tennessee Eastman challenge process, 

and a lab-scale fed-batch fermentation process. Robustness to parameter settings and 

measurement noise were studied in all cases. From these studies, it was shown that 

most of the parameter settings can be used across variables and case studies. 

Finally, in Chapter 6, a new approach for identifying a subset of the process 

variables, called key variables, which adequately describe the current processing state 

has been developed. This is motivated by the fact that the large-scale and complexity 

of modern chemical plants makes it difficult both for the operator to constantly 

monitor all process variables as well as for automated methods which face heavy 
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computational loads. The key variable selection approach enables manual and 

automated monitoring to be restricted to a small subset of variables without 

degradation in safety or quality of results.   In many cases, uses key variables increases 

the sensitivity of monitoring and state detection as has been shown with examples of 

dynamic locus analysis.  

 
7.2 Suggestions for Future Work 

While the developments in this thesis provide a new basis for signal processing 

based process state identification and fault diagnosis, they can be further extended in 

the future along the following directions. 

1. This thesis has explored the use of singular points only in the context of signal 

comparison. However, the concept of singular points introduced here can be used 

for other applications as well – examples, include data compression, operator 

decision support for process monitoring, fault detection, fault identification, and 

recovery planning – even without explicit signal comparison since the singular 

points and the singular episodes themselves encapsulate all the essential 

information from the signal.  

2. The computational load and robustness of singular points identification can be 

improved. This particularly applies to trend change points in complex, noisy 

signals. It has been our observation that the algorithm for trend change point 

identification proposed in this thesis results in a large number of hits – many of 

which would not be intuitively considered as such by an experience operator.  

3. The concept of singular point has been defined solely for uni-variate signals. Its 

extension to multivariate signals would be useful. 

4. The dynamic locus analysis method as described in Chapter 4 is a multi-variate 

approach. But it assumes that all the signals are either synchronized to start or are 
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desynchronized to the same levels. This assumption allows the same time warping 

to be applied to all the signals. In large-scale processes, this assumption may not be 

valid and different variables may have different levels of desynchronization.  

Further work is needed to extend the dynamic locus analysis to such situations. 

5. The dynamic selection of state-specific key variables could have a number of 

applications although it has been explored only in the context of process 

monitoring in this thesis. One such example is state-specific alarm management. 

Currently, a flood of false alarms arise especially during process transitions. The 

dynamic key variable selection can be used to systematically identify critical as 

well as nuisance alarms. 

6. The key variable selection method proposed in this thesis is rudimentary and 

establishes only a proof-of-concept. More sophisticated methods which require less 

user expertise and are less data intensive should be developed.  
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Appendix A: 

Algorithm for Sharp changes Detection: 
 
%%%% This file is using for finding the place where the signal start change quickly where it stop change quickly 
%%% THD is jump-threshold; Duration is inspection window; signal is the uni-variate signal   
 
function [A4,B4]=sharpChange(signal,THD) 
Duration=8; 
threshold=THD; 
 
%%%% get the change mark for short period 
excessValue = mod(length(signal),Duration); 
noOfInputs = (length(signal)-excessValue)/Duration; 
reshapedInput = reshape(signal(1:end-excessValue),Duration,noOfInputs); 
nonFlatTrends = find((max(reshapedInput)- min(reshapedInput)) > threshold); 
flatTrends = find((max(reshapedInput)- min(reshapedInput)) <= threshold); 
trend(:,nonFlatTrends)=4; 
trend(:,flatTrends)=1; 
 
%%%% get the quick transition start at 8*n 
Q=diff(signal); 
QQ=find(abs(Q)>threshold); 
if length(QQ)>0 
    P=find(mod(QQ,Duration)==0); 
    if P 
       Change=QQ(P)/Duration+1; 
       if Change<noOfInputs 
          trend(:,Change)=4; 
       end 
    end 
end 
 
%%%% find the real sharp Change period 
Position=find(trend==4); 
if length(Position)==0 
    startPoint=[]; 
    endPoint=[]; 
elseif length(Position)==1 
    startPoint=Position(1)*Duration-(Duration-1); 
    endPoint=Position(1)*Duration; 
else 
    left=diff(Position(1:end)); 
    keyPositionLeft=find(left>Duration); 
    startPoint(1)=Position(1)*Duration-(Duration-1); 
    if length(keyPositionLeft)>0 
        startPoint(2:length(keyPositionLeft)+1)=Position(keyPositionLeft+1)*Duration-(Duration-1); 
        endPoint(1:length(keyPositionLeft))=Position(keyPositionLeft)*Duration; 
        endPoint(end+1)=Position(end)*Duration; 
    else 
        endPoint(1)=Position(end)*Duration; 
    end 
end 
 
%%% % find the exact change point in inspection window 
if startPoint 
    for i=1:length(startPoint) 
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        P=startPoint(i); 
        for j=1:Duration-1 
            if max(signal(P-j:P-j+Duration-1))-min(signal(P-j:P-j+Duration-1))>threshold 
                if abs(signal(P-j+1)-signal(P-j))>threshold/5 
                    startPoint(i)=startPoint(i)-j; 
                end 
            end 
        end 
        C=signal(startPoint(i):startPoint(i)+Duration); 
        C1=diff(C); 
        C2=find(abs(C1)>threshold/5); 
        if isempty(C2) 
            C2=0; 
        end 
        startPoint(i)=startPoint(i)+C2(1)-1; 
         
        Q=endPoint(i); 
        for j=1:Duration-1 
            if max(signal(Q-Duration-1+j:Q+j))-min(signal(Q-Duration-1+j:Q+j))>threshold 
                if abs(signal(Q+j)-signal(Q+j-1))>threshold/5 
                    endPoint(i)=endPoint(i)+j; 
                end 
            end 
        end 
        D=signal(endPoint(i)-Duration:endPoint(i)); 
        D1=diff(D); 
        D2=find(abs(D1)>threshold/5); 
        if isempty(D2) 
            D2=0; 
        end 
        endPoint(i)=endPoint(i)-(Duration-D2(end)); 
    end 
end 
A4=startPoint; 
B4=endPoint;    
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Extrema points Detection 

Algorithm for Maxima Detection 

%%%% This file is using for find the extreme points (Maxima) in a signal 

%%%% There too many local extreme points in a noise signal which need remove from identification 

%%% THD is threshold; signal is the uni-variate signal   

 

function [A1,B1]=maxPoint(signal,THD) 

threshold=THD; 

keepMax=[]; 

 

%%%% find the max points in signal 

t=1; 

[a{t},b{t}]=maxFinder(signal); 

positionMax=b{t}; 

if length(positionMax)>2 

keep=[]; 

%%%% review all the local maxima points  

    for i=1:length(positionMax)-1 

        if isempty(keepMax)&isempty(keep) 

            D1=signal(positionMax(i))-min(signal(1:positionMax(i))); 

           %%%% Make sure left side has difference with the smallest point 

            if D1<threshold/2 

            else 

                D2=signal(positionMax(i))-min(signal(positionMax(i):positionMax(i+1))); 

                keep=positionMax(i); 

                if D2>threshold 

                    keepMax=[keepMax positionMax(i)]; 

                    keep=[]; 

                elseif signal(positionMax(i+1))>signal(keep) 

                    keep=positionMax(i+1); 

                end 

            end 

        elseif isempty(keepMax)&keep 

            D3=signal(keep)-min(signal(keep:positionMax(i+1))); 

            %%%% ensure the signal between two neighbor maxima points has a minima point 

            if D3>threshold/2 

                keepMax=[keepMax keep]; 

                keep=[]; 
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            elseif signal(positionMax(i+1))>signal(keep) 

                keep=positionMax(i+1); 

            end 

        elseif keepMax&isempty(keep) 

            D4=signal(positionMax(i))-min(signal(keepMax(end):positionMax(i))); 

            if D4<threshold/2 

            else 

                D5=signal(positionMax(i))-min(signal(positionMax(i):positionMax(i+1))); 

                keep=positionMax(i); 

                if D5>threshold/2 

                    keepMax=[keepMax positionMax(i)]; 

                    keep=[]; 

                elseif signal(positionMax(i+1))>signal(keep) 

                     keep=positionMax(i+1); 

                end 

            end 

        elseif keepMax&keep 

            D6=signal(keep)-min(signal(keep:positionMax(i+1))); 

            if D6>threshold/2 

                keepMax=[keepMax keep]; 

                keep=[]; 

            elseif signal(positionMax(i+1))>signal(keep) 

                keep=positionMax(i+1); 

            end 

        end 

    end 

    if keep 

        D=signal(keep)-min(signal(keep:end)); 

        if D>threshold/2 

            keepMax=[keepMax keep]; 

        end 

    end 

end  

A1=keepMax'; 

B1=signal(A1); 
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Algorithm for Minima Detection 

%%%% This file is using for find the extreme points (minima) in a signal 

%%%% There too many extreme points in a noise signal which need remove from identification 

%%% THD is threshold; signal is the uni-variate signal   

 

function [A2,B2]=minPoint(signal,THD) 

threshold=THD; 

 

keepMin=[]; 

%%%% find the max points in signal 

t=1; 

[a{t},b{t}]=minFinder(signal); 

positionMin=b{t}; 

if length(positionMin)>2 

    keep=[]; 

    for i=1:length(positionMin)-1 

        if isempty(keepMin)&isempty(keep) 

            D1=abs(signal(positionMin(i))-max(signal(1:positionMin(i)))); 

           %%%% Make sure left side has difference with the minima point 

            if D1<threshold/2 

            else 

                D2=abs(signal(positionMin(i))-max(signal(positionMin(i):positionMin(i+1)))); 

                keep=positionMin(i); 

                if D2>threshold 

                    keepMin=[keepMin positionMin(i)]; 

                    keep=[]; 

                elseif signal(positionMin(i+1))<signal(keep) 

                    keep=positionMin(i+1); 

                end 

            end 

        elseif isempty(keepMin)&keep 

            D3=abs(signal(keep)-max(signal(keep:positionMin(i+1)))); 

            if D3>threshold/2 

                keepMin=[keepMin keep]; 

                keep=[]; 

            elseif signal(positionMin(i+1))<signal(keep) 

                keep=positionMin(i+1); 

            end 

        elseif keepMin&isempty(keep) 
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            D4=abs(signal(positionMin(i))-max(signal(keepMin(end):positionMin(i)))); 

            if D4<threshold/2 

            else 

                D5=abs(signal(positionMin(i))-max(signal(positionMin(i):positionMin(i+1)))); 

                keep=positionMin(i); 

                %%%% ensure the signal between two neighbor minima points has a maximapoints 

                if D5>threshold/2 

                    keepMin=[keepMin positionMin(i)]; 

                    keep=[]; 

                elseif signal(positionMin(i+1))<signal(keep) 

                     keep=positionMin(i+1); 

                end 

            end 

        elseif keepMin&keep 

            D6=abs(signal(keep)-max(signal(keep:positionMin(i+1)))); 

            if D6>threshold/2 

                keepMin=[keepMin keep]; 

                keep=[]; 

            elseif signal(positionMin(i+1))<signal(keep) 

                keep=positionMin(i+1); 

            end 

        end 

    end 

    if keep 

        D=abs(signal(keep)-max(signal(keep:end))); 

        if D>threshold/2 

            keepMin=[keepMin keep]; 

        end 

    end 

end  

A2=keepMin'; 

B2=signal(A2); 
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Algorithm for Trend change points Detection 

%%%% This file is using for finding the trend change points during process transition 
%%%% Trend change point is a point where process stable trend changed 
%%%% THD is threshold; distance is the stable neighborhood window, signal is the uni-variate signal   

 
function [A5, B5]=trendChange(signal,THD) 
threshold=THD; 
distance=100; 
Number=fix(distance/10); 
limit=1.0e-2; 
keep=[]; 
i=distance 
while i<length(signal)-distance 
    %%% left checking 
    yy=signal(i-distance+1:i); 
    [Rate,Start,R]=Regessive(yy); 
    DD(1)=Start; 
    DD(2)=Rate; 
    Flag1=1; 
    if R>(1-limit)|abs(Rate<limit) 
        B=DD(1)+DD(2).*([1:distance]./distance); 
        STD=sqrt(sum((yy-B').^2)/(distance-1)); 
        %%%% check any points out 3 standard deviation  
        if isempty(find(yy<B'-3*STD|yy>B'+3*STD))&STD<limit 
            Flag1=0; 
        elseif max(abs(yy-B'))<threshold/5 
            Flag1=0; 
        end 
    end 
    if Flag1==0 
        D1=DD(1)+DD(2).*(distance/(distance+1)); 
        %%%% check whether the next point out 3 standard deviation  
        if signal(i+1)<D1-3*STD|signal(i+1)>D1+3*STD 
            if abs(signal(i+1)-D1)>threshold/5; 
                QQ=abs(diff(signal(i-Number+1:i+1))); 
                QQ1=find(QQ>limit); 
                QQ2=QQ1(1); 
                keep=[keep i-Number+QQ2]; 
                i=i+distance; 
            else 
                Pre=signal(i)+DD(2).*([1:Number]./distance); 
                PART=signal(i+1:i+Number)-signal(i); 
                if PART(1:end)>limit 
                    keep=[keep i]; 
                    i=i+distance; 
                elseif PART(1:end)<-limit 
                    keep=[keep i]; 
                    i=i+distance; 
                end    
            end 
        end 
    end 
     
    %%% right checking 
    yy=signal(i:i+distance-1); 
    [Rate,Start,R]=Regessive(yy); 
    DD(1)=Start; 
    DD(2)=Rate; 
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    Flag2=1; 
    if R>(1-limit)|abs(Rate)<limit 
        B=DD(1)+DD(2).*([1:distance]./distance); 
        STD=sqrt(sum((yy-B').^2)/(distance-1)); 
        if isempty(find(yy<B'-3*STD|yy>B'+3*STD))&STD<limit 
            Flag2=0; 
        elseif max(abs(yy-B'))<threshold/5 
            Flag2=0; 
        end 
    end 
    if Flag2==0 
        D1=DD(1); 
         %%%% check whether the next point out 3 standard deviation  
        if signal(i-1)<D1-3*STD|signal(i-1)>D1+3*STD 
            if abs(signal(i-1)-D1)>threshold/5; 
                Q=abs(diff(signal(i-1:i-1+Number))); 
                Q1=find(Q>limit); 
                Q2=Q1(end); 
                keep=[keep i+Q2-1]; 
                i=i+distance; 
            else 
                Pre=signal(i)+DD(2).*([-Number:-1]./distance); 
                PART=signal(i-Number:i-1)-.Pre; 
                if PART(1:end)>limit 
                    keep=[keep i]; 
                    i=i+distance; 
                elseif PART(1:end)<-limit 
                    keep=[keep i]; 
                    i=i+distance; 
                end    
            end 
        end 
    end 
    i=i+1; 
end 
 
A5=keep; 
B5=signal(keep); 
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