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Summary

Many types of data, such as images and biometric templates, are noisy

in nature in the sense that, small noises can be added to the data without

changing their semantics and authenticity. This leads to the research of

robust authentication schemes that can tolerate random noises. On the other

hand, additional information (watermarks) can be purposely embedded into

noisy data to carry secret messages. Such digital watermarking techniques

have been intensively studied.

In this thesis, we study the security aspect of digital image watermarking

and biometric authentication. Many previous works focus on the robustness

of the schemes, that is, the noises are assumed to be random. In contrast, we

consider “smart” attackers, who know the algorithms that are used in the

systems, and insert carefully designed noises that aim to fail the systems.

For these attackers, we do not assume in anyway their algorithms, but only

specify their capabilities in different scenarios.

We consider three scenarios in digital image watermarking: (1) We con-

sider watermark detection with proxies, where the owner wants to designated

the watermark detection routine to third parties, in such a way that the se-

crecy of the watermark is preserved. We propose a new framework in which

the security can be achieved with a group of proxies, as long as the majority

of them are honest. (2) We also consider oracle attacks, where the attackers

try to remove the watermark in an image by repeatedly probing a publicly

iv



available watermark detector with carefully chosen images. We study a class

of watermarking schemes and give a lower bound of the effort required by

the attackers. We also give an attack algorithm that matches the lower

bound. (3) Lastly, we consider inversion attacks, where the attackers try

to create ambiguities on the ownership of a work. Adelsbach et al. [2] give

the first formal definition of such an attack. We make subtle and important

modifications to the definition of a successful attacker, and give a provably

secure scheme.

Fault-tolerant authentication can be achieved using helper information,

which is to be made public and is used to guide the authentication. An im-

portant requirement on the helper information is that it should not reveal too

much information about the original data (low entropy loss). We study the

problem of minutiae-based fingerprint authentication using helper informa-

tion, where the templates can be modeled as point-sets under a combination

of different noises. Clancy et al. [14] propose to add random minutiae points

into templates to confuse the attackers, but they only considered random

attackers. We give several schemes and prove bounds of the entropy loss.

v



List of Tables

3.1 Improved Scheme for d = 1. . . . . . . . . . . . . . . . . . . . 69

3.2 Entropy loss in five scenarios. . . . . . . . . . . . . . . . . . . 72

vi



List of Figures

2.1 Scenario 1: Watermark detection with proxies . . . . . . . . . 8

2.2 The proposed setting in scenario 1. . . . . . . . . . . . . . . 11

2.3 Scenario 2: Oracle attacks . . . . . . . . . . . . . . . . . . . . 25

2.4 Scenario 3: Inversion attacks . . . . . . . . . . . . . . . . . . 38

3.1 Improvement in one dimension. . . . . . . . . . . . . . . . . . 70

3.2 Cells of size 5. The black point is a data point. . . . . . . . . 71

3.3 Cells in 2-D. A point x ∈ X is in cell d1. . . . . . . . . . . . . 73

vii



List of Symbols

I Original image. It is often represented by a vector of real numbers.

That is, we write I = 〈x1, · · · , xn〉.

W Watermark. This is also often represented by W = 〈w1, · · · , wn〉.

Ĩ Watermarked image. In the spread-spectrum based watermarking
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Chapter 1

Introduction

Many types of data are noisy in nature in the sense that, some small noises

can be added to the data, either purposely or accidentally, without changing

their semantics and authenticity. The possibility of hiding messages in noisy

data leads to numerous research papers in digital watermarking, whereas

challenges have been posed in designing robust authentication schemes that

can tolerate such noises.

In many previous works on digital watermarking and robust authenti-

cation, robustness is the focus. In other words, the noises are assumed to

follow some random distributions. Although important, these results are not

sufficient to show the security of the schemes. In fact, we would never know

what an attacker would do in practice, and random attacks are probably the

last thing we would expect. In contrast with previous approaches, we focus

on “smart” attackers, who know the algorithms and public parameters that

we use in the schemes, and carefully insert arbitrary noises into the data so

as to fail the systems. In this thesis, we give rigorous treatments for such

smart attackers in different scenarios. We do not assume the algorithms

the attackers use, and only specify the capabilities of the attackers in those
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scenarios.

In a digital image watermarking scheme, a piece of information (i.e., a

watermark) is embedded into a digital image by slightly modifying the im-

age. Such a watermark is essentially an intentional noise, under which the

quality of the image remains the same, for example, as perceived by human

eyes. The hidden watermarks can later be detected or extracted from the

watermarked image. This technique can be used in many applications. For

example, the information about the creator of an image can be embedded

into the image before it is published. The presence of the watermark serves

as an evidence of the ownership of the image. Note that a robust water-

marking scheme may not be secure in many circumstances. For example, we

should consider removal attacks, where the a smart attacker tries to remove

the watermark by carefully modifying the image. In that case, the noise

added to the image would not necessarily be random.

In this thesis, we consider three scenarios in digital image watermarking:

watermark detection with proxies, oracle attacks, and inversion attacks. In

these scenarios, the attackers have different capabilities, and the security

goals that we want to achieve are different. Our approach differs from many

previous works on secure watermarking schemes in that, we do not presume

the attack algorithms in any way, but only make assumptions on the capa-

bilities of the attackers. We focus on provable security in all these scenarios,

and make use of well accepted techniques in cryptography.

The first scenario we consider is watermark detection with proxies (Sec-

tion 2.1). Under this scenario, the application requires a publicly available

watermark detector, such that any user, including attackers, can send ar-

bitrary images for watermark detection. In this case, it is desirable that

the watermark detector reveals as little information about the secret water-
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mark as possible. One approach is to use asymmetric watermarking scheme

[27, 24, 25], where different keys are used to embed and to detect the wa-

termarks. However, as shown in [25], known schemes are not satisfactory.

Another simple method is to let a Trusted Third Party to perform the

watermark detection. Recently, [3, 19] give an interesting method to re-

move the assumption of the existence of a TTP. Their methods employs

zero-knowledge interactive proofs, which can be quite expensive in terms of

network communications, and does not allow the owner of the watermark to

designate the watermark detection to a third party. We propose an alterna-

tive setting that can be considered as a modification to the above approach.

Instead of using a TTP or zero-knowledge proofs, we give a secure and effi-

cient scheme that makes use of multiple proxies. Although each individual

proxy cannot be trusted, we assume that the group as a whole can be trusted

in the sense that the majority of them are always honest.

In the second scenario we consider oracle attacks, or sensitivity attacks

(Section 2.2). Similar to the first scenario, there is a publicly available

watermark detector acting as a black-box. Unlike the first scenario, we

assume that the detector can be trusted, and study how attackers can make

use of the very limited information revealed by the detector to remove the

embedded watermark with small modification to the image. We assume

that the attackers, based on previous queries and the responses from the

watermark detector, are able to perform some computations and choose

carefully the next (modified) image and send it to the detector for watermark

detection. We study a class of watermarking schemes for binary sequences,

and relate it to the Twenty Questions Game, which is originally studied by

Ulam in 1976 [46]. We give a variant of the game that corresponds to the

game between the watermark detector and the attackers. We give a lower
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bound of the effort required by the attackers, which is measured by the

number of queries sent by the attackers. We also give an attack algorithm

that matches the lower bound.

The third scenario we consider is inversion attacks, or ambiguity attacks,

where the attackers try to create ambiguities on the ownership of a work

(Section 2.3). This type of attacks are first considered in [20] for digital

images with spread spectrum watermarking, where a remedy is proposed

based on a secure hash function. This problem is further studied in [40, 41]

for video and audio, and new schemes are proposed. After that, there are

a number of works [42, 1, 2] that exploit the weaknesses of known schemes

that are claimed to be non-invertible. As mentioned in [1, 2], most pro-

posed scheme either do not come with a satisfactory proof of security, or

the proofs are flawed. Due to the difficulty in designing such non-invertible

watermarking schemes, [2] proposed a provably secure scheme by making

use of a Trusted Third Party. We discuss this type of attacks in detail in

Section 2.3, and show that it is possible to construct non-invertible water-

marking schemes without a TTP by giving a construction. We make subtle

but important changes to the formal definition of a successful attacker given

in [2], and prove the security of the scheme using well accepted methods in

cryptography.

In a typical biometric authentication system, biometric templates are

extracted from biometric samples of the users during the registration and

stored in a database. These templates are matched with the newly extracted

templates at the time of authentication. In such a system, the secrecy

of the biometric data stored in the system becomes the most vulnerable

link. If the biometric data of a legitimate user is leaked out, it is possible

that they will be used by an attacker to impersonate that legitimate user.
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In traditional password-based systems, similar problems of lost or revealed

passwords can be resolved by applying a secure one-way hash function on

the stored passwords, and by regularly changing the passwords. But this is

not applicable in biometric authentication systems because biometric data

are usually permanently associated with their owner, and it is difficult to

design a secure hash function that can tolerate the noises.

Such problems can be solved using helper information, which is also

referred to as helper data, fuzzy commitment, fuzzy vault, secure sketch,

shielding function, and so on [34, 33, 23, 9]. Given some noisy data, some

helper information can be computed in such a way that when the data are

corrupted by a small noise, the original data can be reconstructed from the

corrupted data and the helper information. After that, an almost-uniform

cryptographic key can be extracted from the original data and used in tra-

ditional cryptographic schemes. An important requirement on the helper

information is that it should not reveal too much information about the

original data. Dodis et al. [23] give a notion of entropy loss that measures

the information revealed by the helper information.

Hence, in biometric authentication systems, helper information with low

entropy loss can be computed from biometric templates and stored in the

database. In this way, even if the database is compromised, not much infor-

mation about the templates would be revealed.

Not surprisingly, the construction of helper information highly depends

on the underlying distance metrics. The constructions of helper information

with respect to Hamming distance and set difference are closely related to

error-correcting codes, and are being intensively studied. However, these

metrics are not sufficient to describe the noises commonly encountered in

biometric applications.
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Let us take minutiae-based fingerprint verification systems as an exam-

ple. In such systems, minutiae points are extracted from the fingerprint

images as the templates. Each point can be represented by its location in

the 2-dimensional space, and probably some other attributes, such as type

and orientation. Under noise, each point can be shifted by a small distance,

be removed, and new points can be added in. We use point-set difference

as the distance measure under this combination of noises. We say that two

points are close if they are near each other in the 2-dimensional space, and

we say that two sets of points are close if the number of pairs of close points

between these two sets exceeds a certain threshold.

Clancy et al. [14] proposed a scheme that hides the actually minutiae

points by adding random points into the space, and considered random

attackers. However, it is very difficult to analyze the entropy loss of the

scheme to give a rigorous proof of the security. In Section 3.1, we give

several provably secure helper information schemes for point-set difference,

which can be extended to higher dimensions, and give upper bounds on the

entropy loss.
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Chapter 2

Security in Digital Image

Watermarking

2.1 Scenario 1: Watermark Detection with Prox-

ies

2.1.1 Scenario Settings

In this scenario (Figure 2.1), the owner of an image I embeds a secret

watermark W into I and publishes the watermarked Ĩ. The owner wants to

designate the task of watermark detection to a group of proxies. There is

a verifier, who can ask the proxies to perform watermark detection for any

image J . We assume that none of the individuals (which include the owner,

the proxies, and the verifier) can be trusted.

We want to design a scheme such that, as long as the majority of the

individuals are honest, (1) during the watermark detection the verifier does

not obtain any information about W , except whether J is watermarked

by W or not, (2) no proxy can learn the secret watermark W , and (3) the

7



validity of the watermark W and the correctness of the watermark detection

can be verified.

Owner

Proxy

Proxy

Proxy

W I

Verifier

...

Yes/No

Figure 2.1: Scenario 1: Watermark detection with proxies

2.1.2 Introduction

To achieve the second requirement that the detector should not reveal too

much information about the watermark, one possible approach is asymmet-

ric watermarking schemes [27, 24, 25], where the key to embed watermarks

is different from the key required during detection. However, the detection

keys of known methods do reveal some crucial information, which leads to

a number of successful attacks (for e.g., [25] listed a few attacks on specific

schemes).

A simple approach achieves secrecy by introducing a trusted third party

T . In which case the owner of the watermark gives his watermark W to T ,

and distributes images. To check if an image is watermarked, a user sends it

to T via the Internet, and the result is sent back from T . In this case both

the secrecy of W and the interest of the users are protected assuming that

T is honest.

Recently, [3, 19] gave interesting methods to remove the assumption of a

trusted third party. The methods employ a prover (the owner) who proves

the existence of the watermark in given images to verifiers (the users). The

8



prover is prevented from cheating by the means of commitment schemes,

and the secrecy of the watermark is maintained through zero-knowledge

interactive proofs. Although these schemes are cryptographically secure,

a main drawback is the large number of rounds and bandwidth required

in the communications, and they are not easy to implement in practice.

Furthermore, if the owner wishes to designate another party to perform the

checking and proving, he has to reveal the secret key to this trusted party.

Here, we propose an alternative setting that can be viewed as a modifi-

cation of the above approach. In this setting, we remove the expensive zero-

knowledge interactive proofs without assuming the existence of a trusted

third party. Instead, we replace the trusted third party T with a group of

proxies. Security is maintained if the majority of the proxies are honest.

The individuals in our setting are an owner, a few proxies, and a verifier.

At the beginning, the owner generates a secret watermark W and performs

a registration with the proxies. During registration, the owner distributes

some information about the watermark W to the proxies, so that they can

carry out watermark detections on their own. After that, the owner embeds

the watermark W into his images, which are then released to the public.

(The owner could also request the proxies to perform the embedding, with-

out revealing the watermark. We will not describe this operation here.)

On the other hand, when a verifier wants to determine if a given image is

watermarked by W , he requests the proxies to perform a detection. During

detection, the verifier sends information about the image to the proxies, who

then perform some computations and return the results back to the verifier.

Based on these results, the verifier would be able to decide whether the im-

age is watermarked. The registration and detection processes are illustrated

in Fig. 2.1.2 below.
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Since we do not assume the existence of a trusted third party, no individ-

ual can be trusted. Therefore, during registration, the owner does not trust

any individual proxy, so he cannot simply send W to each of them. Instead,

he needs to distribute the watermark in such a way that it is information-

theoretically impossible to compute W even if some of the proxies collude.

During detection, the verifier does not trust all proxies because some of

them might give wrong results, either intentionally or accidentally. There-

fore, there has to be some mechanisms to allow the verifier to detect errors,

or even correct them. Furthermore, the verifier does not trust the owner

either. A dishonest owner might distribute a watermark that correlates

with many images (for instance, in the well-known spread spectrum method

[17], a watermark with very high energy would likely give a high correla-

tion value with a randomly chosen image). The dishonest owner might also

collude with a few proxies to mislead the verifier.

Note that in this setting, the role of the proxies (as a group) is similar

to that of a trusted third party, who will not leak any information of the

secret W , and will not cheat the verifier. The main difference is that, in this

setting, we only require the integrity of the proxies as a group, which is a

much weaker requirement than having a trusted third party. It is also noted

that our setting relieves the owner from performing the detections. This is

a secondary advantage of using proxies for detection.

The proposed setting naturally suggests the use of secret sharing schemes

[44] as a basic building block. A secret sharing scheme breaks a secret z into

shares and distributes each to a server. No individual server will know the

secret unless a number of dishonest servers collude. There are many secret

sharing schemes, satisfying various useful properties. For example, Shamir’s

scheme is also a threshold scheme, and with further modifications it can be

10



verifiable [12, 26] and proactive [30]. An important property required in our

setting is that, both multiplications and additions can be supported on the

shares. That is, if secrets z1, z2 and z3 are integers and are shared among n

severs, the shares of z1z2 + z3 can be generated without revealing the values

of z1, z2, z3, and z1z2 + z3. We give a scheme based on secret sharing. This

scheme achieves public watermarking as long as not too many individuals

collude. This scheme is arguably easy to implement and is efficient in terms

of computation and communication cost.

In Section 2.1.3, we describe the basic watermarking method (spread-

spectrum method) used for discussion. Section 2.1.3 gives our proposed

multiple proxies setting, and the security requirements. Section 2.1.4 gives

a brief description of secret sharing schemes. Our scheme is described in

Section 2.1.5, followed by the security analysis in Section 2.1.6. Some dis-

cussions on the error-correcting capability of the scheme will be given in

Section 2.1.7.

S1 (w) S (w)n

S (c)n

S1 (c)

1S (J)
S (J)nS (J)2

S (c)2

S (w)2

... ... Proxy nProxy 2Proxy 1

Verifier

Owner

Figure 2.2: The proposed setting in scenario 1.
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2.1.3 Notations and Models

Watermarking Model

We employ a variant of the well-known spread spectrum method [17] to

embed and detect watermarks. Other watermarking schemes can also be

employed as long as the detection involves only multiplication and addition.

Our images and watermarks are “discretized”. An image I is a vector

I = 〈x1, x2, . . . , xm〉 where each xi ∈ {0, 1, 2, . . . , d−1} and d is some integer

determined by the media/image representation. For example, d could be

256 if each xi represents a pixel. The watermark W is also a vector W =

〈w1, w2, . . . , wm〉 where each wi ∈ Z is an integer. In addition, the energy of

the watermark W is fixed, that is W · W = E where E is some predefined

threshold, and · is the vector inner product. The constant E is made known

to the public.

During embedding, given an image I and the watermark W , the wa-

termarked image Ĩ is computed as Ĩ = trunc(I + W ), where the function

trunc() truncates/rounds the coefficients where values are not in the range

{0, 1, 2, . . . , d−1}. During detection, given an image J , the correlation value

(J ·W ) is computed. If the correlation value exceeds certain threshold, then

J is declared to be watermarked. 1

Owner, Proxies & Verifier

The individuals in the proposed setting are the owner, n proxies, namely

T1, T2, . . . , Tn, and the verifiers. The number of verifiers is not important,

so we assume that there is only one verifier.

During registration, the owner generates a secret watermark W which

1We have omitted the normalization of images in the embedding and detection for
simplicity. Normalization is not required in our discussion, but still can be incorporated
if required.
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satisfies (W · W ) = E, where E is a constant that every individual knows.

The owner sends information of W to the n proxies. Let S
(0)
i (W ) be the

data the owner sends to the proxy Ti. Let Si(W ) be the data that Ti keeps

and uses in subsequent computations. Note that it is not necessary that

S
(0)
i (W ) = Si(W ). To guard against dishonest owner, the proxies might

wish to transform the original S
(0)
i (W )’s distributed by the owner.

During detection, a verifier wishes to know the correlation value c = J ·W

of a given image J with the secret watermark W . Firstly, the verifier splits

J into n pieces, Si(J), 1 ≤ i ≤ n, such that each of them contains partial

information about J . Then it sends Si(J) to proxy Ti respectively. Next,

each proxy Ti computes and sends the verifier partial information Si(c) of

the correlation value c. After receiving data from all proxies, the verifier

reconstructs the correlation value (J · W ) (Fig. 2.1.2).

In our proposed scheme, the partial information communicated through

the network, namely S
(0)
i (W ), Si(W ), Si(J) and Si(c), corresponds to the

“shares” in secret sharing schemes (see Section 2.1.4). Therefore, we will

refer to those pieces of information as shares in the rest of this section, even

if some of them may be fraud sent by dishonest individuals.

Security Requirements

A parameter for the security requirement is the security threshold t where

t ≤ n. Vaguely, the scheme should tolerate at most (t − 1) dishonest in-

dividuals (including the proxies, the verifier and the owner). The security

requirements can be roughly classified into (a) maintaining the secrecy of

W , and (b) protecting the interest of the the verifier. In the following, the

first requirement S1 belongs to the first class and the remaining belong to

the second class.
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S1. Secrecy of W . The owner generates and keeps the watermark W .

Recall that the energy (W ·W ) is a predefined constant E, which is known by

everyone. For any (t−1) proxies, even if they collude, they should not know

W . Specifically, to any group of (t − 1) proxies, any vector W ′ satisfying

(W ′ · W ′) = E is a possible candidate for the secret watermark.

On the other hand, after detection, from the n sets of data Si(c)’s ob-

tained, the verifier should not know W . Specifically, to the verifier, any

vector W ′ satisfying (W ′ ·W ′) = E and (J ·W ′) = c is a possible candidate

for the secret watermark.

In general, any (t − 1) individuals, including the proxies and verifier,

should not know W . That is, by combining all the data held by them, any

vector W ′ satisfying (W ′ ·W ′) = E and (J ·W ′) = c is a possible candidate

for the secret watermark.

S2. Dishonest owner during registration. During registration,

instead of honestly sending Si(W ) to the proxies, an owner may send other

values so as to mislead the proxies to give high correlation value during

detection. Here is an example of dishonest owner: the dishonest owner

chooses a watermark w and embeds it into images according to the scheme,

but registers with the proxies another watermark Aw where A is a very

large constant. Thus, in the subsequent detections, whatever correlation

value determined will be based on Aw, instead of w. Owe to the large value

of A, the probability that a randomly chosen image is wrongly declared as

watermarked is higher. Therefore, we require that, after registration, with

at most (t− 1) dishonest proxies, any malicious behaviour of the owner can

be detected. Specifically, the proxies can check that, indeed, (W · W ) = E.
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S3. Dishonest proxies during detection. During detection, some

of the proxies may collude so as to mislead the verifier. Thus, we require

that, if at most (t − 1) proxies are dishonest, the verifier can detect that.

S4. Collusion among proxies and the owner during detection.

A more interesting case is collusion among the owner and proxies. The

owner may collude with a few proxies and mislead the verifier. The main

difference of this case from the case in previous paragraph is that: here, the

owner can reveal the watermark to the proxies. With this extra information,

it is easier for the proxies to influence the detection. Thus, we require that,

if the owner colludes with at most (t − 2) proxies (so the total number of

dishonest individuals is at most t − 1), the verifier should be able to detect

that.

S5. Collusion among the owner, proxies and a verifier. It is

interesting that we should consider collusion among dishonest owner and

verifier. The owner may collude with the verifier and a few proxies, so

as to obtain the Si(W ) held by an honest proxy Ti. After obtaining the

information, they can use it to influence subsequent detections. Thus we

require that, by combining information from a verifier, (t − 3) proxies, and

the owner, no sufficient information on data held by honest proxies can be

derived.

Remarks. Note that currently we do not consider verifier/proxies who

keep the history of communications. For example, a verifier who probes the

proxies by sending in a series of images. This type of attacks is generally

known as sensitivity attacks. We will address this in Section 2.1.8.
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Requirement on Error-Correcting

A secondary requirement is error-correcting capability. More specifically,

even if some proxies are dishonest or failed, detection can still be carried

out. Note the difference between security and error-correcting capability. A

scheme that immediately shuts down when malicious activities are detected

is considered to be secure, but it is not capable of correcting errors. We

say that the error-correcting threshold of a scheme is R, if all detection

operations can be carried out when there are at least R honest proxies.

2.1.4 Backgrounds on Secret Sharing Schemes

A (t, n) secret sharing scheme splits a secret into n shares, which are dis-

tributed to n servers respectively. The knowledge of any t − 1 shares will

not reveal any information about the secret but the secret is reconstructible

by putting together any t shares. Shamir gave such a scheme in 1979 [44].

For a secret z ∈ Z
∗
p, where p is a public large prime, the share for the i-th

server is f(i) (mod p) where f(x) is a random polynomial of degree (t − 1)

whose free coefficient f(0) = z. No individual server knows the coefficients

of f(x), thus any t − 1 servers can not derive z from their shares. However,

if t servers put their shares together, they can solve for the coefficients of

f(x) and thus reconstruct the secret z.

Shamir’s scheme can be modified to achieve useful properties. For ex-

ample, the schemes can be verifiable [12, 26] and proactive [30]. It is also

known that certain arithmetic operations of the secrets can be performed

on their shares, such that the shares of the result can be obtained with-

out revealing any of the secrets [7, 31]. In our scheme, we mainly make

use of arithmetic operations on the shares. Proactive schemes can also be

employed to enhance security.
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Notations on Secret Sharing. A secret is an integer in Z
∗
p where p

is a prime. In this section, all arithmetic operations (multiplications and

additions) performed are followed by modulo p. Thus, for simplicity, we omit

the notation (mod) when writing an arithmetic expression. For example, we

simply write z1 + z2z3 (mod p) as z1 + z2z3.

With respect to a secret sharing scheme, let Si(z) be the i-th share of

z, the secret 2. Let S(V ) be the i-th share of a vector V = (v1, v2, . . . , vm).

Note that the “secret” in the secret sharing scheme is an integer, whereas

the watermark W and image I are vectors. To compute S(V ), we treat each

vi as an independent secret. That is, Si(V ) = (Si(v1), Si(v2), . . . , Si(vm)).

Since the shares are associated with the proxies, we also call Si(V ) the share

of V for the proxy Ti.

Arithmetic Operations on Shares. Consider two secrets α and β,

which are encoded by f(x) and g(x) respectively as in Shamir’s scheme,

and the shares are distributed to 2t − 1 servers. Now, suppose the servers

want to compute the shares of α + β without revealing the values of α, β or

α+β. This can be easily done by instructing each server to locally construct

the new share by adding the two shares it holds.

The shares for αβ can be computed similarly by computing si,1si,2, which

is the share of αβ encoded by k(x) = f(x)g(x). However, the degree of k(x)

is raised to 2t−2, thus 2t−1 servers are required to reconstruct the secrets.

In our application, instead of general combinations of multiplications

and additions, we require only inner products. That is, given the shares

of x1, x2, . . . , xm, and v1, v2, . . . , vm, we want to compute the shares of the

inner product c =
∑m

i=1 xivi, without revealing the secrets x1, x2, . . . xm,

2Note that the shares are computed based on some randomly chosen numbers. Thus
to be more precise, we should write Si(R, z) for the share where R is the chosen sequence
of random numbers. For simplicity, we omit R in the notation.
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v1, v2, . . . , vm, and the inner product c. For each server, its share of c can

be easily computed locally by simply computing the summation of products

on its shares of xi, vi’s.

2.1.5 Watermark Detection Using Secret Sharing

The multiple proxies setting naturally suggests the use of secret sharing

as a basic construction block. Assume that there are n proxies. Suppose

the security threshold we want to achieve is t, that is, if not more than

(t − 1) individuals collude, the security is maintained. We also require that

(2t − 1) ≤ n. We choose a (t, n) secret sharing scheme where (2t − 1) ≤ n.

Recall that n is the number of proxies, and (t−1) is the number of dishonest

individuals the system can tolerate.

The scheme consists of two parts: registration and detection.

Registration

§1. Distributing watermark. The owner, using the secret sharing scheme

(with the notations defined in Section 2.1.3 and 2.1.4), computes S
(0)
i (W ),

the share of W for each proxy Ti, 1 ≤ i ≤ n. The owner then sends

S
(0)
i (W ) to Ti secretly for all proxies.

§2. Refreshing the shares. After receiving the shares from the owner,

the proxies refresh the shares of W using the mechanisms described in

Section 2.1.4. At the end of this step, each proxy Ti has Si(W ) as a

new share of W , and old shares S
(0)
i (W )’s are discarded.

§3. Checking W is genuine. Each proxy Ti computes the value (Si(W )·

Si(W )), and broadcasts it to other proxies. Note that this value is also

the share of the inner product (W ·W ) for each proxy. After receiving

all data from other proxies, each proxy reconstructs (W · W ) and
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confirms that indeed (W · W ) = E. If not, the registration fails.

The detection is initiated by a verifier. The verifier wants to know whether

an image J is embedded with the watermark claimed by the owner.

Detection

§1. Distributing the image. The verifier computes the shares of J and

sends the shares to the respective proxies.

§2. Computing the shares of the correlation value. Each proxy Ti

computes the inner product (Si(J) · Si(W )) and sends it back to the

verifier.

§3. Reconstructing the correlation value. After receiving all the

shares, the verifier reconstructs the correlation value (J · W ). Re-

call that (2t−1) shares are necessary and sufficient for reconstruction.

Therefore, if (2t − 1) = n, there is only one possible way to recon-

struct such value. Otherwise, (2t − 1) < n, and there are more than

one group of (2t − 1) shares. For each group, the verifier reconstructs

the value.

§4. Checking for corrupted data. Since the error-correcting threshold

is (2t− 1), all proxies must be honest if (2t− 1) = n. In this case, the

only value the verifier reconstructed must be correct. Otherwise, the

verifier checks whether there is any inconsistency among the values

reconstructed from different groups of (2t−1) shares. If so, it declares

that some proxies are cheating.

To enhance security, the proxies can refresh their shares regularly. This

is to guard against sensitivity attacks. We will revisit these issues later.
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2.1.6 Security Analysis

We want to show that the proposed scheme satisfies the requirements stated

in Section 2.1.3. The requirements are generally in this form: if at most

(t−1) individuals collude, then either no extra information on W is revealed,

or no sufficient information is revealed so that the colluders can manipulate

the results.

In the following analysis, we treat each share as an equation, where the

unknowns are the random numbers used to generate the share. To illustrate,

consider a proxy Ti who is holding the share S
(0)
i (W ), and it wants to guess

the watermark W . This share is generated by the owner using (t − 1)m

random numbers (note that W is a vector of m coefficients). For example,

let us consider only the first coefficient w1, the proxy Ti can expresses what

it has as the equation

S
(0)
i (w1) = w1 + r1i + r2i

2 + . . . + rt−1i
t−1

where w1, r1, . . . , rt−1 are the unknowns. If a proxy manages to gather t

such equations or more, he would be able to solve for w1. Otherwise, any

value is a possible candidate for w1.

Note that the security is achieved unconditionally. That is, even if the

colluders have infinite computing power, they can not compute the secret.

This is in contrast to schemes that are computationally secure, where the

security is based on the assumption that certain problem is computationally

difficult. We will omit the details for security requirements S4 and S5.

S1. Secrecy of W . First, we investigate the case where all the

(t− 1) colluders are proxies. Without loss of generality, let the colluders be
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the proxies T1, T2, . . . , Tt−1. Note that each Ti has the shares Si(W ) and

S
(0)
i (W ), and all proxies know Sj(E) for all j, and that (W ·W ) = E. Now,

we want to know whether combining the information from (t − 1) proxies

will reveal additional information on W .

Let us consider only S
(0)
i (W ) first. For each coefficient wi in vector W ,

t − 1 random numbers are used to generate the shares. For wi, there are

t unknowns. On the other hand, the corresponding entry in each S
(0)
i (W )

proxy Ti possesses is equivalent to 1 equation. Therefore, for t − 1 prox-

ies, there are only t − 1 equations, and any integer (in Z
∗
d) is a possible

solution for wi, as shown in [44]. This shows that these equations do not

give the proxies any advantages in computing W . Furthermore, the new

shares Si(W ) are obtained after refreshing, and no information about W

or S
(0)
i (W ) is exchanged among the proxies during this process. Therefore

these values do not give any advantages in computing W either. Lastly,

after computing Sj(E) = Si(W ) · Si(W ), information about the elements

of Si(W ) is hidden in the inner product, given that m is sufficiently large

(which is true for most practical applications).

Next, suppose (t−1) colluders are the verifier and (t−2) proxies T1, . . . , Tt−2.

The verifier knows the shares Si(c) for all i, where Si(c) = Si(W ) · Si(J).

Similar to the above argument, given sufficiently large m, the information

contained in the inner product is useless in attempts to obtain W .

S2. Dishonest owner during registration. The owner could be

dishonest and try to mislead the proxies so that they give false results in the

detection. For instance, he could give a false watermark with high energy, so

that the correlation value of the watermark and any randomly chosen image

would be large with high probability. This is prevented in the registration
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because the proxies compute the energy of the watermark and compare it

to a known constant E (Step §3 in registration). If the energy is not E, the

watermark would be rejected by the proxies, and the registration would fail.

S3. Dishonest proxies during detection. The proxies could also

send false results of their inner products Si(W )·Si(J) to mislead the verifier.

However, since we have more than 2t − 1 proxies in the system, we can

perform reconstruction of J · W multiple times from different set of shares

(Step §4 in detection). It is unlikely that the results are consistent if some

proxies cheat. In this case, we can employ the method mentioned in Section

2.1.7 to both detect and correct the error.

2.1.7 Analysis on Error-Correcting

Besides the security requirement that no more than t − 1 proxies collude,

we also require that the verifier can detect errors from proxies and correct

them if there are at least (2t − 1) honest proxies 3.

Here are two methods of error correction. The first method is to let

the verifier compute a new image J ′ = kJ , where k is some integer chosen

by the verifier. If the proxies are honest, the resulting correlation value

c′ = J ′ ·W = k(J ·W ) would have the integer k as its factor. If some proxies

are dishonest, it is highly unlikely that the reconstructed correlation will

still have k as its factor.

The other method let the verifier repeat the detection using the same

image J , but using different random numbers to generate the shares of J .

Thus, a group of 2t− 1 proxies would be able to give consistent results only

if all of them are honest. By repeating the detections, the correct results

3If an accidental error happens, say, during network transmission from a proxy to the
verifier, we consider it as a dishonest behaviour (of the proxy).
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can be obtained with arbitrarily high probability. It is noted that the above

two methods can be used together.

2.1.8 Sensitivity Attacks

A dishonest verifier might probe the proxies for the watermark. By designing

the probes carefully, it may be able to get a good approximation of, or erase,

the watermark, using small numbers of probes. This is generally known as

sensitivity attacks. Some general attacks are given in [16, 35]. Practical

attacks usually target at the image representation. For example, the well-

know Stir-Mark provides a list of attacks [38].

We classify these attacks into two types. The first type is specific to

our proposed scheme and not applicable to others schemes, for instance the

zero-knowledge detector [3]. The second type of attacks are designed for

general public watermarking schemes. For example, the attacks described

in [16, 38, 35]. In this analysis, we focus on the first type. Further research

is required to handle the second type of attacks.

Let us consider a dishonest verifier. The verifier may collude with (t−2)

proxies in attempt to get the secret watermark. Let S = (s1, s2, . . . , sm) be

the shares of W kept by an honest server. In each detection, the verifier

knows the inner product of S · V where V is some vector chosen by the

verifier. Although knowing S · V will not reveal any useful information of

the watermark W , by sending in many different vectors, the verifier can

determine S. If the verifier knows the inner product of S ·Vi for i = 1, . . . ,m

and the Vi’s are independent, then the verifier can solved for S. By knowing

the shares in t proxies, the verifier can solve for W . Note that this attack is

specific to our scheme. To prevent this, we can require the proxies to refresh

their shares regularly, for example, after every m − 1 detections.
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2.1.9 Communication Cost

We measure the communication cost by the number of rounds of commu-

nication and the amount of data transmitted. The size of a coefficient is

not more than dlog pe bits, where p is the prime used in the secret sharing

scheme. Note that we only require p > n and p is larger than the range of

the original image coefficient. Thus, it is not required to be very large. In

contrast, for the zero-knowledge detector in [3], the size of one coefficient

has to be large (for e.g., more than 200 bits), so that it is computationally

infeasible to break the commitment scheme.

Let us assume that the size of each coefficient is 1 unit. Thus, the size

of W and J is m. The size of each share is also m. During detection, the

verifier sends the share Si(J) to each proxy Ti, and Ti returns the share Si(c)

of the correlation value. Thus, only 1 round of communication is required.

Since the size of each share Si(J) is m, and the size of each share Si(c) is

1, the total amount of data transmitted is (mn + n). The zero-knowledge

detector in [3] invokes an interactive proof protocol during detection. Due

to the “probabilistic” nature of interactive proof, many rounds are required

for high level of confidence.

Higher communication cost is required during registration. This is due to

the communication required in refreshing. Fortunately, registration is only

performed once for each watermark. During registration, refreshing without

verification can be done in 1 round with mn2 units of data. If verification is

required, then the communication cost depends on the commitment schemes

and the interactive proof protocol employed.

24



2.2 Scenario 2: Oracle Attacks

2.2.1 Scenario Setting

In this scenario (Figure 2.3), we assume that there is a publicly available

watermark detector, anyone can send queries to the detector with any image,

and the detector will answer 1 if the the image is watermarked by a secret

watermark known only to the detector, and 0 otherwise.

The goal of an attacker is the following: Given a watermarked image

Ĩ, find a non-watermarked image I ′, such that I ′ is close to Ĩ, with as few

queries sent to the detector as possible. We study the security of a class

of watermarking schemes for binary sequences, which is measured by the

minimum effort needed by the attacker.

1I

2I

1/0

1/0

...

Detector AttackerW I
~

Figure 2.3: Scenario 2: Oracle attacks

2.2.2 Introduction

Under the above setting, Cox et al [16] give a heuristic for general water-

marking schemes and an estimated number of queries required. The well-

known Stir-mark [38] provides a list of practical attacks, many of which are

based on image properties. Here, we view the attacks as games between

the attacker and the watermarking scheme. We focus on a few schemes for

binary sequences, and take the Hamming distance as the measure.
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Our problem is related to the Twenty Questions Game proposed by

Ulam in 1976 [46]. In the original game, a target is an integer between

1 and 220, and a player is to guess the target by asking twenty questions.

There are several variants of the Twenty Questions Game since then. For

example, the Twenty Questions Game with Genes[39], and [5, 21]. We give

a variant that corresponds to the game between the watermarking scheme

and the attacker. In this game, the player corresponds to the attacker

of the watermarking scheme, and the player’s questions correspond to the

queries sent to the detector. We give a randomized player who uses expected

O(d(1 + log(n/k))) questions, where d and k are parameters of the game.

This player is optimal when k = o(n). The number of queries required by

the attacker can serve as a measure of watermarking security. This can be

traded-off with the requirements on false alarm and distortion.

In Section 2.2.3, we describe the notations used in this section. We

describe a watermarking scheme in Section 2.2.4. In Section 2.2.5, we focus

on the Twenty Questions Game. We first give a lower bound in Section

2.2.5, followed by the randomized player in Section 2.2.5, and how the game

relates to the original watermarking problem in Section 2.2.5. In Section

2.2.6, we give a few variations.

2.2.3 Notations and Models

A watermarking scheme consists of an encoder and a detector. The encoder

of a watermarking scheme takes a sequence I = 〈a1, a2, . . . , an〉 as input and

gives an encoded sequence Ĩ. Let K, the kernel, be the set of all possible

encoded sequences. The encoder satisfies the distortion constraint, which

requires the distance of Ĩ from I to be bounded by a predefined distortion

ε. In the other end, the detector takes a sequence as input and outputs a 1
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or 0 indicating whether the sequence is watermarked. Let W be the set of

all watermarked sequences. The detector satisfies the constraint on the false

alarm ratio F , that is, the probability of a randomly selected sequence being

watermarked is bounded by F . If the underling distribution is the uniform

distribution, then F = 2−n|W|. Besides the above constraint, the encoded

sequence Ĩ should remain watermarked even under attacks. There are many

different models of attacks. Many previous works, e.g., [15, 11, 13], focus on

the robustness of the scheme. We consider smart attackers in this scenario.

2.2.4 A Watermarking Scheme

Now we describe a class of watermarking schemes for binary sequences of

length n. This watermarking scheme is analogous to that in [10]. Each

scheme is parameterized by the integers d, ε and k. The value of d, ε and

k is made known to the public, including the potential attackers. What

are kept secret by the encoder is a secret key K and a secret codebook C.

The codebook C is a collection of codewords, which are binary sequences of

length k. The codebook satisfies the distortion requirement ε in the sense

that the distance between any two codewords is at most 2ε + 1. The se-

cret key K = {h1, h2, . . . , hk} is a set of k indices, where 1 ≤ hi ≤ n for

all 1 ≤ i ≤ k. For a sequence I, call the sequence 〈ah1
, ah2

, . . . , ahk
〉 the

watermarking coefficients of I. Given a sequence I to be watermarked, the

encoder quantizes the watermarking coefficients of I to the nearest code-

word in C. For example, if 〈a1, a2, . . . , ak〉 is the watermarking coefficients,

and 〈a′1, a′2, . . . , a′k〉 is the codeword in C that is nearest to 〈a1, a2, . . . , ak〉,

then the watermarked sequence Ĩ is the same as I except its watermarking

coefficients are replaced by 〈a′1, a′2, . . . , a′k〉.

In the other end, the detector declares a sequence I to be watermarked
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if and only if the watermarking coefficients are within a distance d from

a codeword in C. Thus, the kernel K of this scheme consists of sequences

whose watermarking coefficients are in C, and the watermarked sequences W

are all the sequences whose watermarking coefficients are within a distance

of d from C.

Define VN,R to be the volume of a sphere in N -dimensional space with

radius R, where the distance is measured as Hamming distance. That is,

VN,R =
∑R

i=0




N

i


. The false alarm F satisfies the following bound,

F ≥ Vk,d

Vk,ε
. (2.1)

The equality holds if and only if C is an ε-error-correcting perfect code. In

this case, the distortion D is:

D = ε. (2.2)

For k � d � ε, the right-hand-side in (2.1) is approximately kd−ε. Note

that the false alarm (2.1) and distortion (2.2) do not depend on the size

n. The size n plays an important role in security. To see how the se-

curity requirement affects the choice of d and k, let us assume that low

false alarm and small distortion are the only desirable properties. Then,

with fixed distortion, k should be as large as possible and d should be 0.

Since d = 0, the watermarked sequences are isolated “points” in [0, 1]n.

This amounts to finding a good source code for the binary sequence. By

bringing in the security requirement, each sequence in the kernel should be

surrounded by watermarked sequences. If not, an attacker can easily find

a non-watermarked sequence by random perturbation. Intuitively, d should
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be as large as possible to enhance security. However, larger d will raise the

false alarm (from (2.1)). Thus an important question is how to choose d and

k for given requirements of false alarm, distortion and security. Next section

gives an analysis on security that provides a trade-off for the watermarking

requirements.

2.2.5 Twenty Questions Game with Watermark Attacker

Before we describe a watermark attacker, let us consider this guessing game

involving a player and a target. The target K is a set containing k integers

from U = {1, 2, . . . , n}. The player knows the size of K and U before the

game starts. The goal of the player is to determine at least d+1 elements in

K, using as few queries as possible. A query is represented by a set Q ⊆ U .

The outcome of a query Q, denoted by Q(Q), is Yes if and only if

|Q ∩ K| > d.

This game can be considered as a variant of the Ulam’s game [46], and

is similar to the Twenty Questions Game with Genes in [39]. In the Twenty

Questions Game with Genes, the query is of the form “does a given interval

contain an integer from K”. The goal is to reconstruct K using as few

queries as possible. The lower bound for a deterministic player of the Twenty

Questions Game with Genes is log




n

k


, which is approximately k log(n/k)

for k � n.

Our game differs from the Twenty Questions Game with Genes in a few

ways. Our player has an easier job because he only needs to determine d+1

elements in K. On the other hand, our queries are more general, and thus

might provide less information.

29



Lower Bound

A lower bound for any deterministic player in our game is

log







n

d + 1


 /




k

d + 1





 . (2.3)

In the guessing game, the player wins if he can identify d+1 elements in the

target K. Before the game starts, from the player point of view, all the




n

k




sets of k elements are possible targets. This class of possible targets reduces

as the player asks questions. When all the possible targets contain d + 1

common elements, the player can confidently outputs these d + 1 elements

and wins the game.

Let us look at the decision tree where each node is a class of possible

targets. Thus, the root is the class of size




n

k


. In the best scenario for the

player, each leaf is a class with largest possible number of targets, which is


n − (d + 1)

k − (d + 1)


 (this is the number of possible targets where d + 1 elements

are fixed). Therefore, the height of the tree is at least

log







n

k


 /




n − (d + 1)

k − (d + 1)





 ,

which is equal to (2.3). This gives the claimed lower bound. Note that the

bound is in Ω(d log(n/k)), and for small k and d, the bound is approximately

d log(n/k).

By assigning each node with equal probability, and using the Yao’s

principle[48], we can also show that any randomized player requires expected
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Ω(d log(n/k)) questions.

A Player (Deterministic and Probabilistic)

The job of a player is to identify at least d + 1 elements in K. Our strategy

is to first find a small subset U0 ⊂ U that contains at least d + 1 elements

in K. Next, the size of U0 is gradually reduced in a way similar to binary

search, until its size becomes d+1, which is what we want. To find the small

U0, the deterministic player uses step §1 in the algorithm below. However,

this step requires (k − 1)/d − 1 queries in the worst case. The randomized

player improves this step to expected constant number of queries by first

shuffling the coefficients (§0).

Deterministic Algorithm. Here we present a deterministic algorithm

for the guessing game.

§1. Divide U evenly into (k − 1)/d groups, U1, U2, . . . , U(k−1)/d. Find an i

such that Q(Ui) gives Yes. Let Q0 = Ui.

§2. Divide Q0 evenly into 2d + 2 groups, G1, G2, . . . , G2d+2. Let L = φ

and G0 = φ, where φ is the empty set.

§3. Find the largest i ∈ {0, 1, 2, . . . , 2d + 2} such that Q((G0 ∪ G1 ∪ G2 ∪

. . .∪Gi)∪L) gives No. Update L to be L∪Gi+1. Repeat step §3 until

no such i exist.

§4. Update Q0 to be L. If Q0 contains only d + 1 elements, Q0 is the

result. Otherwise repeat from step §2.

By the pigeon-hole principle, there exists one group Ui in step §1 that

contains at least d + 1 elements from K, and Q(Ui) gives Yes. Therefore,

the number of queries needed for this step is at most (k − 1)/d − 1.
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Since each Ui+1 identified in step §3 contains at least 1 element from

K, the repeat-loop in step §3 repeats for at most d + 1 rounds before Q(L)

gives Yes. Therefore, step §2 to §3 identify at most d + 1 groups among

G1, . . . , G2d+2, which in total contain at least d + 1 elements from K. It

follows that the size of L is at most |Q0|/2. These two steps can be completed

using a total of 2d + 2 queries.

Step §2 to §4 are repeated until |Q0| is reduced to d + 1. Thus, the

total number of rounds is at most max(1, log(n/k)) and the total number of

queries required to complete the outer-loop is O (d(1 + log(n/k))).

In the worst case, the number of queries needed by the player is O(k/d+

d(1 + log(n/k))).

Randomized Algorithm. When k is small, the above is dominated by

the term d log(n/k). However, if k is large, the term k/d would dominate,

which is undesirable. Now we introduce a probabilistic player, who uses

expected O(d(1 + log(n/k))) queries.

§0. Permutes the set U uniformly at random.

This probabilistic player performs step §0, and then proceeds from step

§1 of the deterministic player.

Recall that the size of a group Ui in step §1 is dn/(k−1). Since the input

U is randomly shuffled in step §0, each element in Ui has the probability k/n

to be from K. Let Z be the number of elements in Ui that are from K. Then

the expected value of Z is E(Z) = dk/(k−1). Since d < dk/(k−1) < d+1,

the probability Pr[Z ≥ (d + 1)] = Pr[Z > E(Z)], which is greater than

some constant that is approximately 1/2.

Since we are doing selection without replacement in step §1, if the group

we select contains less than d + 1 elements from K, the following groups
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would have greater probability to contain at least d + 1 elements from K.

Thus, step §1 can be completed in expected O(1) queries. This gives

expected O(d(1+ log(n/k))) for the randomized algorithm. When k = o(n),

we have a tight O(d log(n/k)) algorithm.

A Watermark Attacker

For a set X of indices, let IX be the sequence whose i-th coefficient is 1 if and

only if i ∈ X. Given a sequence I and a (n, k, d, ε) scheme, the task of the

attacker is to find a non-watermarked sequence I ′ such that ‖I ′−I‖ ≤ d+1.

The attacker knows the values of n, k, d, and ε. What he does not know is

the codebook and the secret key K. Here, we assume that the codebook is

a perfect binary code.

Without loss of generality, we can assume that the given sequence I

consists of only 0’s, that is I = 〈0, 0, . . . , 0〉, and the codebook contains

〈0, 0, . . . , 0〉. Now, it suffices for the attacker to find a set of indices X such

that |X| = d + 1 and X ⊆ K. Since |X ∩ K| = d + 1 and C is a perfect

code, IX is non-watermarked.

The watermark attacker corresponds to the player in the Twenty Ques-

tions Game in Section 2.2.5, the secret key K corresponds to the target, and

the detector corresponds to the query. The sequence IX is watermarked if

Q(X) gives No. Note, however, the two problems are not completely equiv-

alent. Consider a X ′ where |X ′ ∩ K| > d. It is possible that IX′ is still

watermarked, although Q(X ′) gives Yes. However, the number of such X ′

is insignificant comparing to the number of X̃ where |X̃ ∩K| > d and IX̃ is

not watermarked.
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Trade-off with False Alarm and Distortion. For a given false alarm

F and distortion D, we want to know how to choose d, k, and ε to achieve

the highest security. By taking the approximate lower bound on the number

of calls to the detector required as a measure of the security S,

S = log







n

d + 1


 /




k

d + 1





 , (2.4)

combining with the equation for false alarm (2.1) and distortion (2.2), we

can determine the right parameters. For simplicity, use the approximations

S ≈ d log(n/k) and F ≈ kd−ε. Together with (2.2) and (2.4), it can be

shown that S has the maximum value

Smax = (
√

D log n −
√

log F−1)2 (2.5)

when d = D −
√

D logn F−1. (2.6)

We can trade-off the requirements on security, the false alarm (2.1) and

the distortion (2.2). For instance, in order to make the watermarking scheme

more secure, we can increase the value of d or decrease the value of k. But

by doing that, we will increase the false alarm F . In order to compensate

for F , we can also choose to increase the value of ε, which would in turn

raise the distortion D. If the requirements for the false alarm and distortion

are fixed, we can then use (2.5) to find out the maximum security that we

can achieve.

2.2.6 Variations of the Game

In this section we will examine some variations of the game and the corre-

sponding watermarking schemes. These variations try to confuse the player
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by introducing a liar and multiple targets into the game. However, as we will

see, although these mechanisms make the game more difficult, they degrade

the performance on false alarm and distortion. In the overall trade-off, they

do not improve the security.

Twenty Questions Game Between Watermark Attacker and Liar

The Twenty Questions Game with watermark attacker can be extended to

a game with a liar. That is, with some constant probability p < 1/2, the

answer to the query would be wrong. The error can be two-sided: a type-1

error with probability p1, when |Q ∩ K| > d but the answer is No; and a

type-2 error with probability p2, when |Q ∩ K| ≤ d but the answer is Yes.

If p2 = 0, our algorithm will still give a correct solution. However,

because of the effect of p1, the expected number of groups identified in step

§2 and §3 will be increased to (d + 1)(1 + p1). So the factor by which U0 is

reduced is not 1/2 but (1+p1)/2. Thus the expected cost of our randomized

algorithm will be increased by a constant factor 1/(1 − log(1 + p1)), but is

still O(d log(n/k)). To take p2 into consideration, we need to slightly modify

step §3 as the following.

§3. Find the largest i ∈ {0, 1, 2, . . . , 2d + 2} such that Q((G0 ∪ G1 ∪ G2 ∪

. . . ∪ Gi) ∪ L) gives No. Update L to be L ∪ Gi+1. Repeat step (3)

until no such i exist. If L = Q0, stop with no solution.

Now our algorithm becomes a Monte Carlo algorithm, which gives a

correct solution with certain probability. Obviously, if no errors occur in all

the queries, the result would be correct. The probability of such cases is

P = (1 − p)c1d log(n/k), where c1 is some positive constant.

If we repeat the same query for T times and take the majority an-

swer, the new probability of error p′ < e−c2T , for some positive constant
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c2. Now the probability for our algorithm to give a correct solution is P =

(1−p′)c1d log(n/k), which is approximately 1−p′c1d log(n/k) for small p′. Let

p′c1d log(n/k) < e−c2T c1d log(n/k) < 1/2, then T > (1/c2) ln(2c1d log(n/k)).

Thus for P > 1/2, the expected number of queries required by our algorithm

is O(d log(n/k) log(d log(n/k))). Therefore, by repeating the algorithm for

an expected constant number of times, we will have a correct solution.

The liar in the Twenty Questions Game corresponds to a detector that

gives a wrong answer in the watermarking scheme. With probability p1, the

sequence is not watermarked but the detector says that it is; with probability

p2, the sequence is watermarked but the detector says that it is not. We

can see that in practice p2 should be negligible, otherwise we could just

randomly select a sequence near the watermarked one, and make the detector

say that it is not watermarked by repeatedly sending the sequence to it.

Because of p1, the false alarm F will be increased to F ′ = F + p1. In

order for p1 to be significant enough to our algorithm, p1 has to be greater

than c3/d log(n/k), for some constant c3. However, since the original false

alarm F ≈ kd−ε � 1/d log(n/k), it is very difficult, if not impossible, to

compensate for the false alarm by adjusting the values of k and d. Even if

we want to do so, the number of queries will increase because of the changes

to d and k.

Modified Twenty Questions Game with Multiple Targets

We can also extend the Twenty Questions Game to have two secret sets

K1 and K2. The answer to the query would be Yes if |Q ∩ K1| > d and

|Q∩K2| > d, and No otherwise. The player is still required to identify more

than d elements from K1.

Interestingly, the algorithm and analysis in Section 2.2.6 are still applica-
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ble, with p2 = 0. Therefore it also can be solved in expected O(d log(n/k))

queries. This variation can be easily extended further to more than two

secret sets, where different secret sets may have different values of d and k.

However, those variations will not make the game more difficult.

The corresponding watermarking scheme would have multiple codebooks,

and only use one of them to watermark a sequence. The choice of the code-

book to be used can be random, or based on sequence specific information,

such as the nearest distances from the codewords of each codebook. Similar

to the watermarking scheme in Section 2.2.6, the false alarm F increases

significantly due to p1, and the number of calls to the detector increases if

we want to compensate for F .

2.2.7 Remarks

We have explored other watermarking schemes on binary sequences. It turns

out that the simple watermarking scheme in Section 2.2.4 outperforms them.

This leads to a general question: given the requirements on false alarm and

distortion, what is the highest security (measured in term of number of calls

to the detector) we can achieve. We do not know the solution to this general

question. We suspect that the security of a watermarking scheme is closely

related to the critical distance, that is, the radius of the smallest sphere

centered at the kernel, whose surface contains roughly half watermarked

sequences. Note that our randomized player given in Section 2.2.5 uses this

distance to obtain the set U0. We also do not know any non-trivial bound

of this distance with a given false alarm and distortion. Many interesting

problems remain open.
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2.3 Scenario 3: Inversion Attacks

2.3.1 Scenario Settings

Under this scenario (Figure 2.4), Alice has the original image I and a secret

watermark WA. She releases the watermarked image Ĩ = I + WA into the

public domain. Given Ĩ and not knowing WA, Bob (who is an attacker) wants

to find a watermark WB that is present in both Ĩ and I. If such a watermark

WB is found, Bob can create confusion of the ownership by claiming that:

(1) Ĩ is watermarked by his watermark WB, and (2) the image I ′ = Ĩ − WB

is the original. If Bob can successfully and efficiently find such WB, we say

that the scheme is invertible.

AliceI

WA

I
~

Bob

WB

I’

Figure 2.4: Scenario 3: Inversion attacks

In this section we give a construction of a non-invertible watermarking

scheme, and prove its security using well accepted cryptographic techniques.

2.3.2 Introduction

There are many discussions on the uses of watermarking schemes in resolving

ownership disputes. An interesting and well-known scenario is the inversion

attacks studied by Craver et al. [20], which gives an attacker when the un-

derlying watermarking scheme is the well-known spread spectrum method.

To overcome such attackers, they propose a protocol that employs a secure

hash, and claim that it is non-invertible. Qiao et al. [40, 41] also give water-

marking schemes for video and audio which are claimed to be non-invertible.
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Subsequently, there are a number of works [42, 1, 2] exploiting weaknesses of

known non-invertible schemes. Ramkumar et al. [42] give an attack for the

scheme by Craver et al. [20], and they also give an improved scheme. On the

other hand, [1, 2] give a formal definition of ambiguity attacks and mention

that most proposed non-invertible schemes either do not come with a satis-

factory proof of security, or the proofs are flawed. They also point out that

if the false alarm of the underlying watermarking scheme is high (for e.g.

2−10), then successful ambiguity attacks are possible. However, there is no

mention of cases when the false alarm is low. Thus, it is interesting to know

whether non-invertibility can be achieved when false alarm is low. Due to the

difficulty of obtaining a non-invertible scheme, [2] propose to use a trusted

third party (TTP) to issue valid watermarks. Although using a TTP is prov-

ably secure, there is still a question of whether it can withstand attackers

that probe the system. The development of the studies of non-invertibility

seems to lead to the conclusion that a stand-alone (in the sense that there is

no TTP) non-invertible scheme does not exist. Here, in contrast, we argue

that with low false alarm, it is possible to have a non-invertible scheme. We

support our argument by giving a provably secure protocol that employs a

cryptographically secure pseudo-random number generator (CSPRNG). The

main idea is to show that if the scheme is invertible, then the CSPRNG is

not secure, and thus lead to a contradiction.

Our protocol requires a computationally secure one-way function, whose

existence is a major open problem in computer science. Nevertheless, it is

well accepted that such functions exist. In practice, many cryptographic

protocols rely on this unproven assumption.

We show that our protocol is secure against ambiguity attacks, of which

inversion attacks are a special case. Given a work Ĩ, a successful ambiguity
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attack outputs a watermark W that is embedded in Ĩ, and a key K that is

used to generate W . In a weaker form, the attack is also required to output

an original I. In our discussion, we do not require the attacker to do so.

There are two components in our scheme. The first component addresses

the issue of robustness, false alarm and distortion. This component is often

called the underlying watermarking scheme. Due to the theoretical nature

of this problem, we adopt the usual assumption that the hosts and noise are

Gaussian, and distortion is measured by Euclidean 2-norm. We employ the

well-known spread spectrum method as the underlying scheme.

The second component consists of key-management and watermark gen-

eration. In our setting, Alice (the owner) has a secret key KA, and she

generates a watermark WA using a CSPRNG with KA as the seed. Next, she

watermarks the original I using WA. To prove the ownership, Alice needs

to reveal (or show that she knows) KA and WA. Interestingly, our scheme

does not use the original I to derive the key KA, nor the watermark WA.

Hence the watermark is statistically independent from the original. This is

in contrast to the method given by Craver et al. [20], where Alice computes

the hash of the original I, and uses the hash value h(I) to generate the

watermark WA. Hence, to achieve non-invertibility, it is not necessary to

enforce a relationship between the watermark and the original work.

We give our main idea of our protocol in Section 2.3.3. We further give

precise notations and describe the models that we use in Section 2.3.4. The

details of the non-invertible scheme will be given in Section 2.3.5, followed

by a proof of security in Section 2.3.6. At the end of this section we give

some remarks (Section 2.3.7).
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2.3.3 Main Idea

In our scheme, a watermark W is a sequence of −1 and 1 of length n, i.e.

W ∈ {−1, 1}n. We call W a valid watermark if it is generated by a CSPRNG

using some m-bit seed, where m < n. Thus, the number of valid watermarks

is not more than 2m, and not all sequences in {−1, 1}n are valid watermarks.

Suppose we have a probabilistic polynomial-time algorithm B such that

given any work Ĩ that is embedded using some valid watermark W , B can

successfully find a valid watermark Ŵ embedded in Ĩ with probability that

is not negligible4.

Now, we want to use B to construct a polynomial statistical test T that

distinguishes a truly random sequence from a sequence generated by the

CSPRNG, thus lead to a contradiction.

Given a sequence W , T carried out the following steps:

1. Embed W in I to get Ĩ, where I is a randomly chosen work.

2. Ask B for a valid watermark Ŵ embedded in Ĩ.

3. Declare that W is from the random source if B fails to find such a wa-

termark, and declare that W is generated by the CSPRNG otherwise.

By carefully choosing parameters for the underlying watermarking scheme,

the probability that a valid watermark exists in a randomly chosen Ĩ can be

exponentially small.

Hence, if W is generated by the truly random source, then it is very

unlikely that a valid watermark exists in Ĩ, and thus most of the time, B

fails and the decision by T is correct. On the other hand, if W is indeed

generated from the CSPRNG, the chances that a valid Ŵ can be found is

4W and cW can be different.
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not negligible since B is a successful attacker. So, with probability that is

not negligible, the decision made by T is correct.

Combining the above 2 cases leads to the conclusion that T can distin-

guish the two distributions. This contradicts with the assumption that the

pseudo random number generator is secure. Therefore, no such B exists,

and the scheme is non-invertible as a consequence.

2.3.4 Notations and Models

Overall Setting

A work is a vector I = 〈x1, . . . , xn〉 where each xi is a real number. A

watermark W is a sequence in {−1, 1}n. A key K is a sequence of m binary

bits. A watermark generator f : {0, 1}m → {−1, 1}n maps a key to a

watermark. We say that a watermark W is valid if and only if w is in the

range of f , i.e., it is generated from some key K by f .

The underlying watermarking scheme consists of an embedder and a

detector. Given an original work I and a watermark W , the embedder

computes a watermarked work Ĩ. Given a work Ĩ and a watermark W , the

detector declares whether W is embedded in Ĩ, or not.

Before watermarking an original work I, Alice chooses a secret key KA

and generates a watermark WA = f(KA). Alice then embeds WA into I. To

resolve disputes of ownership, Alice has to reveal both the secret key KA and

the watermark WA. (In zero-knowledge watermarking setting [3, 18], Alice

only has to prove that she knows KA and WA).

In a successful ambiguity attack, given Ĩ, Bob (the attacker) manages to

find a pair KB and WB such that f(KB) = WB and WB is already embedded

in Ĩ. A formal description of ambiguity attacks will be presented in Section

2.3.4.
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It is unreasonable to require a successful attacker to be always able to

find the pair KB and WB for every work Ĩ. Thus, we consider an attacker

successful as long as the probability that he succeeds, on a randomly cho-

sen Ĩ, is non-negligible (greater than 1/p(n) for some positive polynomial

p(·)). Note that the probability distribution to be used in the definition of a

successful attacker is important in the formulation. In Section 2.3.4 we will

give more details on this.

We measure computational efficiency with respect to n, the number of

coefficients in a work. Thus, an algorithm that runs in polynomial time with

respect to n is considered efficient.

Statistical Models of Works and Watermarked Works

In this section, we give the statistical models of works. Recall that a work I

is expressed as I = 〈x1, . . . , xn〉, where each xi is a real number. We assume

that I is Gaussian. That is, the xi’s are statistically independent and follow

zero-mean normal distribution. Thus, to generate a random I, each xi is

to be independently drawn from the normal distribution N (0, 1). Note that

the expected energy E(‖I‖2) is n.

Although the distribution of the original works is Gaussian, the distri-

bution of the watermarked works is not necessarily Gaussian. Consider the

process where an Ĩr is obtained by embedding a randomly chosen Wr from

{−1, 1}n into a randomly chosen original work I. If the embedder simply

adds the watermark to the original work, then the distribution of such wa-

termarked work Ĩr is the convolution of the distribution of the watermarks

and that of the original works, which is not necessarily Gaussian. Let us

denote the distribution of Ĩr as Xr and call it the distribution of randomly

watermarked works.
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Now, consider the process where a valid watermark Wv is uniformly

chosen (by uniformly choosing the key for the watermark generator), and

then the watermarked work Ĩv is obtained by embedding Wv into a randomly

chosen original work I. Let us denote the distribution of such Ĩv as Xv, and

call it the distribution of valid watermarked works.

For clarity in notation, we use the symbol I to denote an original work,

and add the tilde Ĩ to denote a work drawn from either Xr or Xv
5.

Formulation of Ambiguity Attacks

We follow the formulation of ambiguity attacks given in [2] with slight but

important modification.

Let B be a probabilistic polynomial-time algorithm. Given some water-

marked work Ĩ, we say that B successfully attacks Ĩ if it outputs a pair

(W,K) s.t. Ĩ contains the watermark W and W = f(K), or outputs a

symbol ⊥ to correctly declare that such pair does not exist. Let us write

B(Ĩ) = PASS when the attack is successful. We denote Pr[B(Ĩ) = PASS] to

be the probability that B successfully attacks a particular Ĩ. The proba-

bility distribution is taken over the coin tosses made by B. Note that for

Ĩ there does not exist such a pair (W,K), B has to output ⊥ and hence is

always successful.

We further denote Ĩn to be a work that consists of n coefficients, and

that is randomly drawn from the distribution of valid watermarked works

Xv. Let Pr[B(Ĩn) = PASS] to be the probability that an attack by B is

successful. In this case, the probability distribution is taken over the coin

tosses made by B, as well as the choices of watermarked Ĩn. Then we have

5Clearly these two distributions Xr and Xv are different. However, by an argument
similar to that in Section 2.3.6, it is not difficult to show that these two distributions are
computationally indistinguishable.
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the

Definition 1 Let B be a probabilistic polynomial-time algorithm. We say

that B is a successful attacker if, there exists a positive polynomial p(·), s.t.

for all positive integer n0, there exists an integer n > n0, and

Pr[B(Ĩn) = PASS] > 1/p(n).

In other words, B is a successful attacker if B successfully output a watermark-

key pair with probability that is not negligible.

Note that our definition is a slight modification from [2]. The definition

in [2] does not take into account cases where there is no valid watermark in a

work. Moreover, the distribution of the watermarked work Ĩ is taken over the

random choices of the original works. In our formulation, the watermarked

work is drawn from Xv, and we differentiate the case where there are some

valid watermarks in the given work from the case where there is not any.

This modification is important. We cannot simply say that an attacker

is successful if Pr[B(Ĩn) = PASS] is high. This is because we observe that, it

is possible to design a watermarking scheme such that for a randomly chosen

work Ĩ, the probability that it does not contain a valid watermark is very

high. In that case, a trivial algorithm that always declares “can not find a

valid watermark” is correct with high probability, and thus by definition is

a successful attacker. Due to this consideration, we decide to consider Xv

in the definition, and separate the two cases where valid watermarks do or

do not exist.
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Cryptographically Secure Pseudo-Random Number Generator

Loosely speaking, a pseudo-random number generator (PRNG) takes a seed

of a certain length as input and outputs a string, which is of a longer length

than that of the seed.

A cryptographically secure pseudo-random number generator (CSPRNG)

is a PRNG whose output string cannot be computationally distinguished

from a truly random distribution. Formal definition of the security of

CSPRNG is done in terms of polynomial statistical tests [49]. We follow

a simplified definition of statistical tests used in [8].

Let {0, 1}n be the set of binary strings of length n, and {0, 1}∗ denotes

the set of all binary strings of all lengths. Formally, we have the following

definitions.

Definition 2 A PRNG g is a deterministic polynomial-time algorithm g :

{0, 1}m → {0, 1}q(m), for some positive integer m and positive polynomial

q(m).

Definition 3 A probabilistic polynomial-time statistical test T is a proba-

bilistic polynomial-time algorithm that assigns to every input string in {0, 1}∗

a real number in the interval [0, 1].

In other words, T can be considered as a function T : {0, 1}∗ → [0, 1],

which terminates in polynomial time, and whose output depends also on the

coin tosses during execution. Let rn be the expected output of T over all

truly random n-bit strings drawn uniformly from {0, 1}n, and all coin tosses

made by T . We have

Definition 4 A PRNG g passes test T if, for every positive integer t, and

every positive polynomial q(m), there exists a positive integer m0, such that
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for all integers m > m0, the expected output of T , given a q(m)-bit string

generated by g, lies in the interval (rq(m) −m−t, rq(m) + m−t), assuming the

seed of g is uniformly distributed over {0, 1}m.

If a PRNG g does not pass a test T , we say that T has an advantage in

distinguishing g from a truly random source. Then we can define CSPRNG

as

Definition 5 A CSPRNG is a PRNG g that passes every probabilistic

polynomial-time statistical test T .

In other words, no test T can have an advantage in distinguishing a

CSPRNG g from a truly random source.

Here, we employ the CSPRNG due to Blum et al. [8]. A Blum number

N is an integer that is the product of two primes, each congruent to 3 (mod

4). Let QRN be the set of all quadratic residues in Z
∗
N . That is, x ∈ QRN if

and only if there exists an x0 ∈ Z
∗
N such that x2

0 ≡ x mod N . Let s ∈ QRN

be a seed to the Blum CSPRNG, the i-th bit bi in the output string is

computed as

bi = (s2i

mod N) mod 2. (2.7)

In other words, we compute the output string by squaring the current num-

ber (starting from the seed) to get the next number, and take the least

significant bit as the output. Following the above notations, we have the

Definition 6 A Blum PRNG is a function g : QRN → {0, 1}q(m) defined

as g(s) = b0, b1, · · · , bq(m)−1, where bi = (s2i

mod N) mod 2, N is a Blum

number of length m, and q(m) is a positive polynomial of m.

It is proved in [8] that, under the well accepted assumption that integer fac-

torization is hard, this PRNG is secure. That is, it passes every polynomial
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statistical test T . We shall refer to it as the Blum CSPRNG.

2.3.5 A Non-Invertible Scheme

Now, we describe the proposed secure protocol. The parameters for the pro-

tocol are three constants T, k and m. In the proof of security, the parameters

should be expressed in terms of n. We will choose

k = 1/100, T = nk/2 = n/200, m =
√

n. (2.8)

Underlying Watermarking Scheme

The underlying watermarking scheme is essentially the spread spectrum

method. For completeness and clarity, we describe the embedding and de-

tection processes.

Embedding: Given an original I and a watermark W , the watermarked

Ĩ is computed as Ĩ = I + kW , where k is a predefined parameter. 6

Detection: Given a work Î and a watermark W , declare that Î is water-

marked if and only if Î · W ≥ T , where · is the vector inner product and T

is a predefined parameter.

False Alarm, Robustness and Distortion (Parameters T and k)

The performance of a watermarking scheme is measured by its false alarm,

robustness and distortion. Detailed analysis can be found in [17]. Here,

we are more concerned with the false alarm F , which is the probability

6For simplicity, we omit normalization in the embedding. Thus, the energy ‖eI‖2 of
a watermarked work is expected to be higher than the original work. Our proof can be
modified (but tedious) when normalization is to be included.
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that a randomly chosen Ĩ is declared to be watermarked by a random valid

watermark W . That is

F = Pr[Ĩ · W > T ] (2.9)

where Ĩ is drawn from the distribution of randomly watermarked works Xr,

and W is uniformly chosen from W the set of valid watermarks.

The false alarm F is small. To see that, consider any given W ∈ W

and Ĩ randomly chosen from distribution Xr, it is not difficult to show that

the distribution (Ĩ · W ) is a zero-mean normal distribution with standard

derivation δ where δ can be analytically derived. If T = C0δ where C0 > 0

is some positive constant, then the probability that a random Ĩ satisfies

(Ĩ · W > T ) is less than exp(−C2
0/2). Using the parameters in (2.8),

δ < 2
√

n. Since T = n/200, it is many times larger than the standard

derivation δ.

For each Wi ∈ W, where 1 ≤ i ≤ |W|, let Fi be the probability that

Ĩ ·Wi > T for random Ĩ from Xr. By the argument above, Fi is exponentially

small with respect to n. More precisely, given the parameters in (2.8) and

random Ĩ from Xr,

Fi = Pr[Ĩ · Wi > T ] = exp(−din) (2.10)

for some positive constant di. Therefore,

F =

|W|∑

i=1

Fi Pr[W = Wi] ≤ exp(−C1n) (2.11)

where C1 is the maximum di in (2.10), which is a positive constant.

By choosing k = 1/100, the distortion introduced during embedding is

1% of the original work. We could also choose k to be a slow decreasing
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function, for e.g. k = 1/
√

log n, so that the ratio of the distortion over the

energy of the work tends to 0 as n increases. Our proof still holds for this

set of parameters.

Similarly, the scheme is very robust. Since the expected inner product of

a watermarked image and the watermark is E[(I + kW ) ·W ] = kn, a noise

of large energy is required to pull the inner product below the threshold

T = kn/2. In this case, for noise with energy n (i.e. same as the original

image), the watermark can still be detected in the corrupted work with high

probability.

Watermark Generation (Parameter m)

A watermark is generated using a CSPRNG f : {0, 1}m → {−1, 1}n where

m ≤ n. Thus, it takes a small seed of m bits and produces a watermark.

Note that this CSPRNG can be easily translated from the Blum CSPRNG

by mapping the output 0 to −1, and 1 unchanged. Let W to be the range

of the function f , and it is actually the set of valid watermarks. Clearly,

|W| ≤ 2m.

Intuitively, for better security, we should have large m so that given a

valid watermark, it is computationally difficult for an attacker to find the key

K, such that f(K) = W . However, in some applications and our proof, we

need the number of valid watermark to be small, so that it is computationally

difficult for an attacker to find a valid watermark. On the other hand, if

m is too small, an attacker can look for a suitable valid watermark using

brute-force search.

In our construction, we choose m =
√

n, thus |W| = 2
√

n. As a result,

it is computationally infeasible to do a brute-force search in the set of valid

watermarks. At the same time, consider a randomly watermarked work Ĩn
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drawn from distribution Xr, which is of length n. With the parameters as

in (2.8), the probability that Ĩn contains any valid watermark W ∈ W is

very small. Let us denote this probability V (n) as a function of n, that is,

V (n) = Pr[∃W ∈ W, Ĩn · W > T ] (2.12)

where Ĩn is drawn from Xr. Recall from Section 2.3.5 that the probability

Fi that a randomly watermarked work can be declared as watermarked by

a given valid watermark Wi ∈ W is exponentially small with respect to n.

In particular, Fi ≤ exp(−C1n) for some positive constant C1 and for all

1 ≤ i ≤ |W|. Therefore,

V (n) = 1 −
|W|∏

i=1

(1 − Fi) ≤ 1 − (1 − exp(−C1n))2
m

< 2m exp(−C1n) < exp(−C1n +
√

n)

(2.13)

where C1 is some positive constant. Note that V (n) is a negligible function

of n.

2.3.6 Proof of Security

Now, we are ready to prove that the proposed protocol is secure. We assume

that the function f is a CSPRNG. Suppose that there is a successful attacker

B as defined in Definition 1, we want to extend it to a statistical test

T that has an advantage in distinguishing sequences produced by f from

that by a truly random source. Since f is a CSPRNG, this leads to a

contradiction, and thus such a B is impossible.

Given an input W ∈ {−1, 1}n, the following steps are carried out by T :

1. Randomly pick an original work I.
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2. Compute Ĩ = I + kW . That is, embed W into I.

3. Pass Ĩ to B and obtain an output.

4. If the output of B is a pair (Ŵ , K̂), such that Ŵ = f(K̂), then T

declares that W is generated by f by outputting a 0. Otherwise B

outputs a ⊥, then T declares that W comes from a random source by

outputting a 1.

We want to calculate the expected output of T for the following 2 cases.

If the difference of the expected outputs of these 2 cases is non-negligible,

then by the definitions in Section 2.3.4, f is not a CSPRNG, thus leads to

a contradiction.

Case 1: W is from a random source. Suppose W is from a random

source, then the probability that there exists a valid watermark Ŵ ∈ W in

Ĩ is exactly the probability V (n) in (2.13), which is negligible with respect

to n as we have shown in Section 2.3.5. Hence, we know that T will almost

always output a 1 to correctly declare that it is from the random source,

except in the unlikely event E where Ĩ happens to contain a valid watermark.

Clearly E happens with negligible probability V (n). We observe that, when

E happens, T may output a 0 with a probability that is not negligible (since

B is a successful attacker). We consider the obvious worst case (best case

for the attacker) that, T always output 0 when E happens. In this case, the

fraction of 0’s output by T is V (n), which is still negligible. Therefore, let

E1(T ) be the expected output of T , we have

E1(T ) > 1 − V (n). (2.14)
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Case 2: W is from the CSPRNG f . Suppose W is generated by f ,

then W is a valid watermark. Since B is a successful attacker, by definition

B is able to find a valid watermark Ŵ that is already embedded in Ĩ with a

probability that is not negligible. More specifically, for any positive integer

n0,

Pr[B(Ĩ) = PASS] > 1/p(n)

for some positive polynomial p(·) and for some n > n0. Hence, the proba-

bility that T decides that W is from the CSPRNG f is more than 1/p(n).

Hence, let E2(T ) be the expected output of T in this case, and we have

E2(T ) <

(
1 − 1

p(n)

)
. (2.15)

Consider the difference between (2.14) and (2.15). Since V (n) is negli-

gible but 1/p(n) is not, the difference cannot be negligible because the sum

of two negligible functions is still negligible. Hence, the difference between

E1(T ) and E2(T ) is not negligible. Thus T has an advantage in distin-

guishing the truly random source from the the output of f , therefore f by

definition is not a CSPRNG, which is a contradiction. As a result, such a

successful attacker B does not exist.

2.3.7 Remarks

Choice of m. In our construction we require the parameter m to be

small. However, it seems that even if it is large, say m = n/2, the protocol

is still secure. Thus it would be interesting to find an alternative proof that

handles large m.
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Underlying watermarking scheme. For simplicity in the proof,

we use a simple watermarking scheme, and “discretized” watermark W ∈

{−1, 1}n. The draw back is that the performance of false alarm, robustness

and distortion would be far from optimal. Recent results in communication

theory offer schemes that can achieve much higher performance. Thus, we

can have much lower false alarm, with other requirement fixed. On the

other hand, it is also not clear whether we can make these schemes secure

against inversion attacks. This is because in these schemes, the watermark

is usually derived from the original in an insecure manner. It is interesting

to investigate this issue. Furthermore, our proof requires valid watermarks

to be “sparsely populated” in {−1, 1}n. On the other hand, schemes with

high performance usually require the watermarks to be densely populated,

so as to reduce the distortion. Therefore, it is interesting to know if our

proof can be extended.

Proving ownership. As mentioned earlier, to prove the ownership

of a work Ĩ, Alice has to show that she knows a pair (KA,WA), such that

WA is correctly generated from KA and is detectable in Ĩ. However, directly

revealing such a pair in the proof might leak out information that leads

to successful attacks. One alternative is to use zero-knowledge interactive

proofs to prove the relationship between KA and WA without revealing the

actual values. We note that it is straight forward to apply known zero-

knowledge interactive proofs efficiently in our scheme. This is an advantage

of our construction over schemes that involves hash functions (such as [20]),

which are difficult to prove using known zero-knowledge interactive proofs.

Generation of watermarks. In Craver et al. [20], Alice computes a

secure hash of the original I, and uses the hash value h(I) to generate the
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watermark WA, which is then embedded into I. It is commonly believed that

we need to generate the watermark from the original in a one-way manner

to achieve non-invertibility since the attacker would be forced to break the

underlying one-way function.

Interestingly, our scheme does not use the original I to derive the key KA,

nor the watermark WA. Hence the watermark is statistically independent

from the original. Although we can view the hash value h(I) as the secret

key KA in our setting, our results show that it is not necessary to enforce a

relationship between the watermark and the original work.
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Chapter 3

Secure Authentication Using

Helper Information

3.1 Secure Biometric Authentication

Many biometric data are noisy in the sense that small noises are introduced

during acquisition and processing. Hence, two biometric samples that are

different but close to each other, are considered to belong to the same iden-

tity. This poses technical challenges in applying classical cryptographic oper-

ations on them. Recently, new generic techniques such as fuzzy commitment

[34], helper data [45] and secure sketch [23] are introduced to handle noisy

data. These techniques attempt to remove the noise with the aid of some

additional public data P . Given original data X, P is constructed and made

public. During reconstruction, from Y , which is close to X, together with

P , the original X can be determined. Here we call such data P the helper

information.

An important requirement for helper information is that the amount of

information about X revealed by publishing P should be limited. Dodis
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et al. [23] propose a notion of entropy loss to measure the security of the

scheme, which provides a convenient way to bound the entropy loss for any

distribution of X (Section 3.1.2 gives the details). Such worst case analysis

is important in practice because typically, the actual distribution of the

biometric data is not known. It is also desirable, although of a secondary

concern, to avoid using randomness during the construction of P , and to

make it short. Helper information that can be constructed deterministically

can achieve some limited form of reusability [9].

Not surprisingly, the design of helper information is very much dependent

on the definition of closeness. Helper information for the following two main

types of data have been proposed: (1) The data are from a vector space,

and two sequences are close to each other if their distance (e.g., Hamming

distance) is less than a threshold. (2) The data X and Y are subsets of a

universe U , where |X| = |Y | = s, and they are close if the set difference

s − |X ∩ Y | ≤ t, for some threshold t.

We observe that in many applications, a combination of the above is

required. For example, a fingerprint template is typically represented as a set

of minutiae points in a discrete 2-dimensional space, or even 3-dimensional

if the less reliable orientation attribute is included [28]. Under noise, each

points may be slightly perturbed, and a small number of points may be

replaced.

We study helper information for such point-sets. A point-set X is a

set of s points from a discrete d-dimensional domain [0, N − 1]d. Under

permissible white noise, for each point 〈x1, .., xd〉 ∈ X, each xi, 1 ≤ i ≤ d,

may be perturbed by at most δ. In addition, at most t points in X may

be replaced by the replacement noise. In other words, two sets X and Y

are close to each other, if we can find a subset X ′ ⊂ X, |X ′| ≥ s − t, such
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that for each x ∈ X ′, there is a unique y ∈ Y that satisfies ‖x − y‖∞ ≤ δ,

where ‖ · ‖∞ is the infinity norm. We assume that a point-set X is always

well-separated, that is, for any x, x′ ∈ X, the distant ‖x − x′‖∞ ≥ 3δ. This

assumption is reasonable in practice. For example, in a fingerprint template,

two minutiae points cannot be too close to each other, otherwise they will

be considered as false minutiae and should be corrected [36].

Clancy et al. [14] give the following construction of helper information

for a point-set that consists of two parts. Given the original point-set X, a

set R of random points are generated in a way that no two points in (X∪R)

are close to each other. We call the set C = (X ∪R) the codebook, and each

point in C a codeword. The codewords are indexed according to some pre-

defined order, and the description of the codebook forms the first part of the

helper information. Next, using known techniques for set difference, helper

information for the indices of the points in X (with respect to the ordered

codebook) are constructed. This serves as the second part of the helper

information. During reconstruction, for each point y ∈ Y , it is matched

with the closest point x ∈ C. If Y is close to X, at least s − t points in

X will be matched. By using the helper information for set difference, the

replaced points (at most t of them) can be recovered.

Clancy et al. propose generating R iteratively. A point that is not close

to the already generated points and X is uniformly chosen. The process is

repeated until it is impossible to add more points. Such process is essentially

the online parking problem which has intrinsic statistical properties [32].

However, it is not easy to analyze the above stochastic process and bound

the entropy loss. For instance, it is not clear whether it would be better

use a fixed number of iterations and hence obtain a fixed number of random

points, or as suggested, generate maximum possible number of points. In
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addition, it is not easy to avoid using randomness during construction.

Here, we follow the approach of dividing the helper information into two

parts. We focus on the first part (for white noise), and investigate different

ways of generating the random R. For the second part, we employ known

techniques for set different. Let LSD(s, t, n) be the entropy loss of the helper

information for set difference, where n = |C| is the size of codebook. There

are schemes such that LSD(s, t, n) is in O(t log n) (e.g., those in [23]). When

t = 0, the total entropy loss is the same as that of the helper information

for the white noise.

We first give a generic method of generating R, and an upper bound

LH for the entropy loss of C = (X ∪ R). We show that LH < s(d log(4δ +

1) + log e), where e is the base of natural logarithm and log e ≈ 1.443. The

overall entropy loss is at most LH + LSD(s, t,Nd/(4δ + 1)d). The bound

is quite tight in the sense that there is a distribution of X such that the

entropy loss of C is at least LH − ε where ε is a positive constant that is at

most 3. By pre-rounding and carefully partitioning the domain [0, N − 1]

into cells, we can improve the entropy loss in d = 1 to at most s(2+ log δ)+

LSD(s, t,N/(3δ)). We further apply the technique of partitioning to some

special cases in two dimensions (d = 2) and obtain some improvements.

Such techniques probably can be extended to d = 2 in general, and to

higher dimensions. In addition, we give a method to reduce the size of the

helper information, and avoid using randomness during the construction.

We also give another method in one dimension to demonstrate that, using

the size of R as the security measure would be misleading.
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3.1.1 Related Works

Recently, a few new cryptographic primitives for noisy data are proposed.

Fuzzy commitment scheme [34] is one of the earliest formal approaches to

error tolerance. The fuzzy commitment scheme uses an error correcting

code to handle Hamming distance. The notions of secure sketch and fuzzy

extractor are introduced in [23], which gives constructions for Hamming

distance, set difference, and edit distance. Under their framework, a reliable

key is extracted from noisy data by reconstructing the original data with

a given sketch (i.e., the helper information), and then applying a normal

extractor (such as pair-wise independent hash functions) on the data. The

issue of reusability of the helper information is addressed in [9]. It is shown

that a helper information scheme that is provably secure may be insecure

when multiple constructions of the helper information of the same biometric

data are obtained.

The set difference metric is first considered in [33], which gives a fuzzy

vault scheme. Later, [23] proposed three constructions. The entropy loss by

all these schemes are roughly the same. They differ in the sizes of the helper

information, decoding efficiency and also the degree of ease in practical

implementation. The BCH-based scheme [23] has small helper information

and achieves “sublinear” (with respect to the size of the universe) decoding

by careful reworking of the standard BCH decoding algorithm. All these

schemes cannot handle multi-sets. The set reconciliation protocol presented

in [37] is designed for two parties to jointly discover the union of their data,

with as little communication cost as possible. Although the problem settings

are different, the techniques in handling set difference is similar and can be

employed to obtain helper information.

A fuzzy fingerprint vault scheme is proposed in [14], where a fuzzy vault
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scheme is used in secure fingerprint verification using a smart card, and

brute force attackers are considered.

Another line of research yields the constructions of approximate message

authentication codes ([29, 6, 47, 22]), which can authenticate images that

are corrupted by certain levels of noises, which are common to images (such

as white noise and compression). There are also attempts in refining the

extraction of biometric features so that the features are invariant to per-

missible noises [50]. Unfortunately, the reliability of such systems is not

high.

3.1.2 Preliminaries

Entropy and entropy loss. We follow the definitions of entropy in [23].

They propose to examine the average min-entropy of X given P , which gives

the minimum length of an almost uniform secret key that can be extracted

even if P is made public.

Let H∞(A) be the min-entropy of random variable A, i.e., H∞(A) =

− log(maxa Pr[A = a]). For two random variables A and B, the average min-

entropy of A given B is defined as H̃∞(A | B) = − log(Eb←B [2−H∞(A|B=b)]).

The entropy loss of X given P is defined as L = H∞(X) − H̃∞(X|P ).

When X is clear from the context, we just call it the entropy loss of P . This

definition is useful in the analysis of entropy loss, since for any `-bit string

B, we have H̃∞(A | B) ≥ H∞(A) − `. For any helper information scheme,

let R be the randomness invested in constructing the helper information, it

can be shown that when R can be recovered from X and P ,

L = H∞(X) − H̃∞(X | P ) ≤ |P | − H∞(R). (3.1)
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This gives a general method to find an upper bound of L that is independent

of X, hence it applies to any distribution of X.

Helper information. Let M be a set with a closeness relation C ⊆

M×M. When (X,Y ) ∈ C, we say the Y is close to X, or (X,Y ) is a close

pair. Similar to the definitions in [23], we have

Definition 7 A helper information scheme is a tuple (M, C,Enc,Dec), where

Enc : M → {0, 1}∗ is an encoder and Dec : M× {0, 1}∗ → M is a decoder

such that for all X,Y ∈ M, Dec(Y,Enc(X)) = X if (X,Y ) ∈ C. The

string P = Enc(X) is to be made public and we call it the helper infor-

mation. We say that a helper information scheme is L-secure if for all

random variable X over M, the entropy loss of P is at most L. That is,

H∞(X) − H̃∞(X | Enc(X)) ≤ L.

Closeness relations. For any two points x and y, we define the

closeness Cδ, where (x, y) ∈ Cδ if ‖x − y‖∞ ≤ δ. We further define the

closeness PSδ,s,t for two point-sets.

Definition 8 For any X = {x1, . . . , xs} and Y = {y1, . . . , ys}, which are

subsets of some universe U , we say that (X,Y ) ∈ PSδ,s,t if there exists a 1-1

correspondence f on {1, . . . , s} such that |{i | (xf(i), yi) ∈ Cδ}| ≥ s − t.

In other words, two point-sets are close if the maximum number of matched

points (in infinity norm sense) is greater than some threshold.

A Lower Bound of The Entropy Loss

Here we give a lower bound L0 of the entropy loss. That is, for any helper

information scheme (P([0, N −1]d), PSδ,s,t,Enc,Dec), there exists a distribu-

tion of X such that the entropy loss of P = Enc(X) is at least L0.
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For any distribution of X, let Xb to be the set of all possible original

given P = b. We observe that

max
a

Pr[X = a | P = b] ≥ 1

|Xb|
. (3.2)

Substitute it into the definition, we have

H̃∞(X|P ) ≤ max
b,Pr[P=b] 6=0

log |Xb|. (3.3)

Now, note that during reconstruction we require that Dec(Enc(X), Y ) = X

for all (X,Y ) ∈ PSδ,s,t, by counting, the right hand side is bounded by

log m −


ds log δ + log




s

t


 + log




(bN/2δc)d − 2ds

t





 (3.4)

in d-dimensional spaces, where m is the total number of well-separated sets

that are of size s in M.

Now, considering X that is uniformly distributed over all well-separated

sets of size s in [0, N − 1]d, the min-entropy of X is H∞(X) = log m, and

the entropy loss can be bounded by

L0 = H∞(X) − H̃∞(X|P ) ≥ ds log δ + log




s

t


 + log




(bN/2δc)d − 2ds

t




(3.5)

in d-dimensional space.

Furthermore, we can see that L0 is in ds log(2δ+1)+Ω(d log(N/(4δ+2))),

when t is a positive constant, and s < N/(4δ + 2). The second term is due

to the replacement noise, and the first term is due to the white noise, which

we are more interested in.
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3.1.3 The Basic Construction

Recall that the helper information consists of two parts PHPS , where PH

is the helper information that removes the white noise. During encoding, a

large number of points R is generated to form the codebook C = (X ∪ R),

and PH is its description. During decoding, the points in Y are matched

with the nearest codewords in C, so that white noise can be removed. The

helper PS for set difference is constructed using known schemes on C to

correct the replacement noise. We also assume that X is well-separated.

Here we focus on the construction of PH . We will first give our basic

construction in one dimension (d = 1), and then show that it can be extended

to higher dimensions.

Construction of PH in One Dimension (d = 1)

For any point x ∈ [0, N − 1], call the set S1(x) = {x + 1, x + 2, . . . , x + 2δ}

the half-sphere of x.

Given X = {x1, . . . , xs}, we construct as below the helper information

PH to be a sequence 〈h0, h1, . . . , hN−1〉, where each hi ∈ [0, p1 − 1], and p1

is a parameter that is chosen to be 2δ + 1 for optimal performance.

1. For each x ∈ X, set hx = 0, and for each a ∈ S1(x), ha is uniformly

chosen at random from {1, . . . , p1 − 1}.

2. For each hi that has not been set in step 1, uniformly choose its value

from {0, . . . , p1 − 1}.

From PH , the codebook C = (X ∪R) can be determined. For each point

x ∈ [0, N − 1], x ∈ C if and only if hx = 0 and ha 6= 0 for all a ∈ S1(x). We

then construct the second part PS on C.
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During decoding, given Y , each point y ∈ Y is matched with its nearest

point in C. Suppose y is a noisy version of an x ∈ X, i.e. |y − x| ≤ δ, it is

easy to to verify that x is its closest point in C. Hence, PH can correct the

white noise. Lemma 9 gives the entropy loss, and Lemma 10 shows that the

bound is quite tight.

Lemma 9 The entropy loss of X given PH is at most

s

(
log(2δ + 1) + 2δ log(1 +

1

2δ
)

)

which is no greater than s (log(2δ + 1) + log e), where e is the base of natural

logarithm.

Proof: Since the randomness invested in constructing PH can be recov-

ered from X and PH , we can apply (3.1) as in Section 3.1.2. In particular,

we look at the difference between the size of PH , which is N log p1, and the

randomness invested in constructing PH . For any hi in PH , if it is not set

in Step 1 of the above construction, |hi| = log p1, which equals the invested

randomness, and hence it does not contribute to the difference. For each hx

such that x ∈ X, it is set to 0, which contributes log p1 to the difference.

For each ha such that a ∈ S1(x) for some x ∈ X, we use log(p1 − 1) bits of

randomness, hence the difference introduced is log p1

p1−1 .

Therefore, the total difference (hence the entropy loss) is at most

s

(
log p1 + 2δ log

p1

p1 − 1

)
.

When p1 = 2δ + 1, we have

LH ≤ s

(
log(2δ + 1) + 2δ log(1 +

1

2δ
)

)
.
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Since (1 + 1
2δ )2δ approaches e from below when δ approaches infinity, we

have the above claimed bound.

Lemma 10 There exists a distribution of X, where the entropy loss of X

given PH is at least s(log(2δ + 1) + 2δ log(1 + 1
2δ )) − ε for some positive

constant ε.

Proof: Let ∆ = 2δ + 1. Consider the distribution X = {x1, x1 +

2∆, · · · , x1 + 2(s − 1)∆}, where x1 is uniformly chosen from a set A =

{a1, · · · , aλ} of λ points. Hence, H∞(X) = log λ. Given PH , a point ai ∈ A

is a candidate for x1 if and only if hai
= 0 and hb 6= 0 for all b ∈ S1(ai).

For any ai 6= x1, the probability that ai is a candidate for x1 is at most

1
∆s (1 − 1

∆)(∆−1)s. Let C be the number of candidates of x1 for a given PH ,

then E[C] ≤ 1 + λ−1
∆s (1 − 1

∆)(∆−1)s ≤ 1 + λ
∆s (1 − 1

∆)(∆−1)s. Now choose

λ = 2s(log ∆+(∆−1) log(1+ 1

∆
)), we have E[C] ≤ 2. By Markov’s Inequality, we

have Pr[C ≤ 4] ≥ 1 − E[C]/4 ≥ 1/2. We note that

Eb←PH

[
2−H∞(X|PH=b)

]

=Eb←PH

[
max

a
Pr[X = a|PH = b]

]

≥1

4
Pr[C ≤ 4] ≥ 1

8
.

(3.6)

Therefore, the left-over entropy H̃∞(X|P ) ≤ − log 1
8 = 3. Considering that

H∞(X) = log λ = s
(
log(2δ + 1) + 2δ log(1 + 1

2δ )
)
, and let ε = 3, we have

the claimed bound.
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Extension to Higher Dimensions

Let us first define a total order for the points in [0, N − 1]d. We define a

total order 〈x1, x2, . . . , xd〉 � 〈x′1, x′2, . . . , x′d〉 if and only if there exists an i

such that xi > x′i and xj = x′j for all 1 ≤ j < i. We define the half-sphere

Sd(x) = {y | 0 < ‖y − x‖∞ ≤ 2δ and y � x}.

The helper information PH is a set of Nd symbols. For each hy ∈ PH ,

we have y ∈ [0, N − 1]d and hy ∈ {0, . . . , pd − 1} for some parameter pd that

is to be chosen later. We construct PH as below.

1. For each x ∈ X, set hx = 0. For every a ∈ Sd(x), uniformly choose ha

at random from {1, . . . , pd − 1}.

2. For each hy that is not set in step 1, choose its value uniformly at

random from {0, . . . , pd − 1}.

From PH we can determine the codebook C as follows. A point x ∈

[0, N −1]d is in C if and only if hx = 0 and for every a ∈ Sd(x), we have ha 6=

0. We can then construct the second part PS of the helper information for set

difference. Suppose y is a noisy version of an x ∈ X, that is, ‖y − x‖∞ ≤ δ,

it is not difficult to verify that its closest point in C is x.

In fact, this construction is essentially the same as the construction for

d = 1, except that the size of Sd(x) is larger when d > 1. By simple counting

we have

|Sd(x)| =
(4δ + 1)d − 1

2
. (3.7)

Similar to the one-dimensional case, we choose pd = |Sd(x)|+1, and we have

the
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Theorem 11 The entropy loss of X given PH is at most

s

(
log pd + (pd − 1) log(1 +

1

pd − 1
)

)
≤ s (d log(4δ + 1) + log e)

in d-dimensions, where pd = (4δ+1)d+1
2 , and e is the base of natural loga-

rithm.

Similarly, the above bound is tight. That is, there is a distribution of X

such that the entropy loss is at least s
(
log pd + (pd − 1) log(1 + 1

pd−1)
)
− ε

for some positive constant ε. Taking into consideration the entropy loss of

helper information for set difference, we have

Corollary 12 The entropy loss of X given PHPS is at most

s (d log(4δ + 1) + log e) + LSD

(
s, t,

Nd

(2δ + 1)d

)

in d-dimensions.

3.1.4 Improved Schemes

The generic construction in Section 3.1.3 can indeed be further improved in

terms of entropy loss. We employ two techniques. The first is pre-rounding.

That is, each point in X and Y is rounded prior to both encoding and decod-

ing. We observe that, the effect of the white noise is reduced on the rounded

points. The second technique is partitioning, where we carefully partition

the domain into cells, and require that there is at most one codeword in

each cell. Both techniques are useful in reducing the randomness required

in constructing PH .
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Improvement in One Dimension (d = 1)

First, we give an improvement for δ = 1 using partitioning, and we observe

that this scheme can be extended to any δ > 1 by pre-rounding.

We partition the domain [0, N − 1] into cells of size 3, such that each

cell contains 3 consecutive points of the form 3k, 3k + 1, 3k + 2. Now we

construct PH as a binary sequence of size dN/3e, in which we assign one

bit for each cell. Firstly, for each point x ∈ X, let i = bx/3c, and r = x

mod 3. Considering the set {hi−1, hi, hi+1}, we set the values for two of them

according to Table 3.1(a), where a ‘-’ indicates that the value is not set. For

all hi that is not set in the previous step, we uniformly choose it from {0, 1}

at random. For any i, we find the codeword in the cell {3i, 3i+1, 3i+2} using

the value of hi and hi+1, according to Table 3.1(b). This is also illustrated

hi−1 hi hi+1

r = 0 0 0 -

r = 1 - 1 0

r = 2 - 1 1

hi+1 = 0 hi+1 = 1

hi = 0 3i 3i

hi = 1 3i + 1 3i + 2

(a) (b)

Table 3.1: Improved Scheme for d = 1.

in Figure 3.1.

During decoding, each point y ∈ Y is rounded as the following. If there

is a codeword w ∈ C such that it is within the same cell as y and |w−y| ≤ 1,

then y is rounded to w, otherwise it is rounded to the nearest codeword in

C.

Similar to the results we have in Section 3.1.3, it is not difficult to

show that for each x ∈ X we need specify at most 2 bits in the sequence

〈h0, . . . , hN−1〉, which introduces 2 bits of entropy loss. Hence, the entropy

loss due to PH constructed here is at most 2s. Therefore, we have the
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Figure 3.1: Improvement in one dimension.

Lemma 13 The entropy loss for the above scheme when δ = 1 is at most

2s + LSD(s, t,N/3).

To extend this scheme to any δ, we employ pre-rounding. In particular,

let Ũ = [0, dN/δe − 1], for each point x ∈ [0, N − 1], we round it to k ∈ Ũ if

and only if k is the largest value such that kδ ≤ x. Note that x under noise

can only be rounded to one of the values in {k − 1, k, k + 1}. Let X̃ ⊂ Ũ be

the rounded points. Next, we apply the above scheme on X̃ in universe Ũ .

Furthermore, the entropy loss due to the pre-rounding is at most log δ for

each point. Hence, we have the

Theorem 14 The entropy loss for the above scheme is at most

(2 + log δ)s + LSD (s, t,N/(3δ)) .

Improvement for d = 2 and δ = 1

For δ = 1 in two dimensions, with a parameter α ∈ [0, 4], we partition the

space such that every 5 points of the form {(x, 5k+α), (x, 5k+α+1), (x, 5k+

α + 2), (x, 5k + α + 3), (x, 5k + α + 4)} for some non-negative integer k, are
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grouped into a cell (Figure 3.2). Each cell is assigned a number q ∈ [0, p2−1]

for some parameter p2 ≥ 6. If q ≤ 4, then (x, 5k+q) is a codeword, otherwise

there is no codeword in this cell.

d1 d3

d4

d5

d6
d2

� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
	 	
	 	

 


 

� �
� �

(a) (b) (c)

� �
� �
 
 
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �

(d) (e)

Figure 3.2: Cells of size 5. The black point is a data point.

All five possible scenarios for a data point x are illustrated in Figure 3.2.

In each of these scenarios, the black point is a data point in X, and by our

construction we require that all the white points are not codewords, and for

the shadowed points, we do not care.

Now we count the entropy loss for the scenario in Figure 3.2(a). By the

same principle as in Section 3.1.3, all the white points in the figure cannot

be a codeword. Hence, for cell labelled d1, there is only 1 choice for the

value of the corresponding q, for d3 and d5, there are p2 − 3 choices, and for

d2, d4, and d6, there are p2−2 choices. Hence the entropy loss for this point

is log p2 + 2 log(p2/(p2 − 3)) + 3 log(p2/(p2 − 2)).

Now we choose p2 = 14, and the entropy loss for all five scenarios are as

shown in Table 3.1.4. Next, we choose a value for α, such that scenario (e)
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(a) log p2 + 2 log(p2/(p2 − 3)) + 3 log(p2/(p2 − 2)) < 5.1704

(b) log p2 + 2 log(p2/(p2 − 4)) + 3 log(p2/(p2 − 1)) < 5.0990

(c) log p2 + 2 log(p2/(p2 − 5)) < 5.0823

(d) log p2 + 2 log(p2/(p2 − 4)) + 2 log(p2/(p2 − 1)) < 4.9921

(e) log p2 + 2 log(p2/(p2 − 3)) + 2 log(p2/(p2 − 2)) < 4.9480

Table 3.2: Entropy loss in five scenarios.

happens most often. By this choice of α, it is not difficult to see that the

worst case is that each of the scenarios (a), (b), (c) and (e) happens 1/4 of

the times. In this case, we have

LH ≤ 5.0750s (3.8)

whereas in the basic construction in Section 3.1.3, the bound is at least

5.0861s for δ = 1.

Although the improvement is small, this construction suggests that the

basic construction can be further improved by partitioning, and this tech-

nique is likely to be extensible to higher dimensions.

A Scheme in Two Dimensions (d = 2) for 0-1 Noise

In 2-dimensions, we have a better scheme for a special type of white noise,

under which each point in (x1, x2) ∈ X is perturbed to one of the four

possible points in {(x1, x2), (x1 + 1, x2), (x1, x2 + 1), (x1 + 1, x2 + 1)}. We

call this noise the 0-1 noise.

Note that each point x ∈ X is of one of the four types (2k, 2j), (2k +

1, 2j), (2k, 2j + 1), (2k + 1, 2j + 1), for some k and j. Assume that the most

common type of these points is (2k+α, 2j+β), where α, β ∈ {0, 1}. Now we

group together in a cell every four points of the form (2k + α, 2j + β), (2k +

α + 1, 2j + β), (2k + α, 2j + β + 1), (2k + α + 1, 2j + β + 1), for some k
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and j (Figure 3.3). We call the point (2k + α, 2j + β) the base point of the

cell. The values of α and β form part of PH , and introduce at most 2 bits

of entropy loss. In the following discussions, without loss of generality, we

assume that α = β = 0. We assume that each cell is given a unique index

in [0, N2/4 − 1]. For instance, for the cell containing point (x1, x2), we can

define its index as ind(x1, x2) = bx2

2 cN
2δ + bx1

2 c, assuming N is divisible by

2δ. Let ind(x) be the index of the cell where x is in.

d1
d2

d4 d3d5

b

c

f

d

a

e g h

p

q

Figure 3.3: Cells in 2-D. A point x ∈ X is in cell d1.

We now construct a binary sequence PH as the following. For each

x = (x1, x2) ∈ X, the point a = (2bx1/2c, 2bx2/2c) is the base point of the

cell that x is in. Let d1 = ind(x), d2 = ind(x + (2, 0)), d3 = ind(x + (2, 2)),

d4 = ind(x + (0, 2)), and d5 = ind(x + (−2, 2)), as illustrated in Figure 3.3.

• Set h2d1
= x1 mod 2, and set h2d1+1 = x2 mod 2.

• If x = a is the base point. No other action is required.

• If x = b, set h2d2
= 1, and h2d2+1 = r1.

• If x = c, set h2d4
= r2, h2d4+1 = 1, h2d5

= r3, and h2d5+1 = r4.

• If x = d, set h2d2
= r5, h2d2+1 = r6, h2d4

= r7, h2d4+1 = 1, h2d3
= r8,

and h2d3+1 = r9.
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Where r1, r2 and r7 are uniformly chosen from {0, 1}, r3r4, r5r6 and r8r9

are uniformly chosen from the three combinations {00, 01, 11}, {00, 10, 11}

and {10, 01, 11} respectively.

During decoding, we can find the codeword in a cell with index d and

base point a as a+(h2d, h2d+1). Given a corrupted data point y = (y1, y2) ∈

Y , Consider the three points w1 = (y1 − 1, y2), w2 = (y1, y2 − 1), and

w3 = (y1 − 1, y2 − 1) in sequence. If one of them is within the same cell as

y, then y is rounded to it. Otherwise y is rounded to the first codeword in

those three. In case none of these points is a codeword, we round y to any

codeword in C.

Since x is most likely to be the base point a, it is not difficult to show

that the entropy loss of PH is at most (8/3 + log(4/3))s + 2 ≈ 3.08s + 2.

Hence, we have the

Theorem 15 The entropy loss for the above scheme is at most (8
3+log 4

3)s+

2 + LSD(s, t, N2

4 ) ≈ 3.08s + 2 + LSD(s, t, N2

4 ).

Note that in the basic construction when d = 2 and δ = 1, the entropy loss

is 5.09s.

3.1.5 Short Description of PH

In the basic constructions (Section 3.1.3), we can view PH as a random

sequence of length Nd log pd with two types of constraints: Type 0 constraint

is of the form (k, 0), which requires that hk = 0, and type 1 constraint is of

the form (k, 1) which requires that hk 6= 0. The main idea is as follows: Find

the seed of some pseudo-random generator, such that the generated sequence

satisfies all the type 0 and 1 constraints, and use the seed as the helper

information. In this section, we give two methods. The first method has

74



efficient decoding and encoding algorithms, but still requires randomness.

The second method eliminates all randomness but there is no known efficient

encoder.

Using High Degree Polynomials

Let n = Nd, and assign each x ∈ [0, N − 1]d a unique index ind(x) in

[0, n − 1]. Given a constraint set S = {(k1, r1), . . . , (km, rm)}, we construct

a polynomial f(x) of degree at most m − 1 in Z
∗
n as the following.

1. Uniformly choose d1, . . . , dm ∈ Z
∗
n at random such that for 1 ≤ i ≤ m,

if ri = 0, then di ≡ 0 mod pd, otherwise di 6≡ 0 mod pd.

2. Find the polynomial f of degree at most m−1 such that f(ind(ki)) ≡

di mod n for 1 ≤ i ≤ m.

The m coefficients of f is published as the helper information. During

decoding, each hk in PH can be recovered by computing hk = (f(ind(k))

mod n) mod pd. Since for each point x we can have at most |Sd(x)| + 1

constraints, The polynomial f can be represented using ds((4δ+1)d+1)
2 log N

bits.

When pd divides n, the entropy loss of this helper information is the

same as the basic construction.

Using Almost k-Wise Independence

We observe that the helper information can be further shortened and made

deterministic by employing an almost k-wise independent sample space [4].

A sample space on n-bit strings is k-wise independent if, the probability

distribution, induced on every k bit locations in a randomly chosen string
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from the sample space, is uniform. Alon et al [4] considered almost k-wise

independence with small sample size, and gave several constructions.

Definition 16 (Almost k-wise independence [4]) Let Sn be a sample

space and X = x1 · · · xn be chosen uniformly from Sn. Sn is almost k-wise

independent with ε statistical difference if, for any k positions i1 < i2 <

. . . < ik, and any k-bit string α, we have

∑

α∈{0,1}k
|Pr[xi1xi2 . . . xik = α] − 2−k| ≤ ε. (3.9)

If we choose ε = 2−k, the probability Pr[xi1xi2 . . . xik = α] in (3.9) is

non-zero. To see this, let X ′ = xi1xi2 . . . xik , then Pr[X ′ = α] = 0, and

there exists some β 6= α such that Pr[X ′ = β] > 2−k, since otherwise

∑
α∈{0,1}k Pr[X ′ = α] < 1. Thus |Pr[X ′ = α]− 2−k|+ |Pr[X ′ = β]− 2−k| >

2−k, which is a contradiction. Hence, we can always find such X given any

i1, . . . , ik and any α. Furthermore, the number of bits required to describe

the sample is (2+ o(1))(log log n+3k/2+ log k) which is in O(k +log log n).

Note that the construction of such a k-wise independent space does not

require any randomness.

We observe that this construction can be employed to make the helper

information shorter. For instance, for d = 1 and δ = 1 in our basic con-

struction, we can construct such a sample space with k = 3s and n = N ,

and use the first sample that satisfies the constraints. The size of the helper

information is in o(s + log log N), which is also an upper bound for the en-

tropy loss. It is possible to extend it to any d and δ, but we do not have a

good upper bound of the entropy loss.
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3.1.6 Entropy Loss of a Random Placement Method

Intuitively, it seems that it is better to have the codebook C = (X ∪ R)

as large as possible, since then a brute-force attacker will need to try the

maximum number of times to guess X. In this section we give a seemingly

natural random placement method to construct PH with a large R in one

dimension, and we show that the entropy loss is high for certain distributions

of X.

1. Let r0 = −δ, i = 1, and ∆ = 2δ + 1.

2. If there is an x ∈ X s.t. x − ri−1 ∈ [2δ, 4δ] then let ri = x.

3. If there is an x ∈ X s.t. x − ri−1 ∈ [4δ + 1, 6δ], uniformly choose ri

from [ri−1 + 2δ, x − ∆]. Otherwise, uniformly choose ri from [ri−1 +

2δ, ri−1 + 4δ].

4. Increase i by 1, and repeat from Step 2 until i = dN/(2δ + 1)e + 1.

5. Output PH = {r1, . . . , rdN/(2δ+1)e}.

In other words, we randomly choose the smallest random point first, then

the second smallest, and so on, until no further point can be added. The

codebook is PH , where ri’s are ignored if they are greater than N − 1. The

extra padding is only for the ease of the proof.

Consider X = {x1, x1 + 2∆, . . . , x1 + 2(s − 1)∆}, where x1 is uniformly

distributed. It can be shown that the entropy loss of X given PH is at

least 2s log ∆− ε for some small positive constant ε. Comparing with other

constructions in this section, this method reveals the most information, even

though it produces the largest number of codewords.
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3.1.7 Helper Information for Set Difference

It is observed that in previous works, the schemes for set difference cannot

handle multi-sets, i.e., sets that may contain duplicated elements. Further-

more, it seems to be difficult to have a scheme with efficient encoder and

decoder and small helper information.

Here we give a scheme that can handle the case where X is a multi-set.

The size of the helper information is at most 2t(1 + log N). In addition,

there exists a simple and yet efficient decoding algorithm – we just need to

solve a linear system with 2t equations and unknowns and find the roots of

two degree t polynomials.

To handle a special case, we assume that X does not contain any element

in {0, 1, . . . , 2t− 1}, and will discuss how to remove this assumption later at

the end of this section. Our construction is similar to the set reconciliation

protocol in [37], but the problem settings are different.

In the following algorithms, we assume that N is prime and all compu-

tations are done in Z
∗
N .

The encoder Encs. Given X = {x1, . . . , xs}, the encoder does the

following.

1. Construct a monic polynomial p(x) =
∏s

i=1(x − xi) of degree s.

2. Publish P = 〈p(0), p(1), . . . , p(2t − 1)〉.

The decoder Decs. Given P = 〈p(0), p(1), . . . , p(2t − 1)〉 and Y =

{y1, . . . , ys}, the decoder follows the steps below.

1. Construct a polynomial q(x) =
∏s

i=1(x − yi) of degree s.

2. Compute q(0), q(1), . . . , q(2t − 1).
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3. Let p′(x) = xt +
∑t−1

j=0 ajx
j and q′(x) = xt +

∑t−1
j=0 bjx

j be monic poly-

nomials of degree t. Construct the following system of linear equations

with the aj’s and bj’s as unknowns.

q(i)p′(i) = p(i)q′(i), for 0 ≤ i ≤ 2t − 1 (3.10)

4. Find one solution for the above linear system. Since there are 2t

equations and 2t unknowns, such a solution always exists.

5. Solve for the roots of the polynomials p′(x) and q′(x). Let them be X ′

and Y ′ respectively.

6. Output X̃ = (Y ∪ X ′) \ Y ′.

The correctness of this scheme is straight forward. When there is exactly

t replacement errors, we can view p′(x) as the “missed” polynomial whose

roots are in X ′ = X \ Y . Similarly, q′(x) is the “wrong” polynomial, whose

roots are in Y ′ = Y \ X. Since the roots of p(x) and q(x) are in X and Y

respectively, we have q(x)p′(x) = p(x)q′(x). This interpretation motivates

the equation (3.10).

When there are less than t replacement errors, there will be many degree

t monic polynomials p′(x) and q′(x) that satisfy q(x)p′(x) = p(x)q′(x). For

any such p′(x) and q′(x), they share some common roots, which could be

some arbitrary multi-set Z. That is, X ′ = (X \Y )∪Z, and Y ′ = (Y \X)∪Z.

In Step 6, this extra Z will be eliminated.

When X∩{0, . . . , 2t−1} 6= ∅, some equations in (3.10) would degenerate,

which makes the rank of the linear system less than 2t. In this case, it is

not clear how to find the correct polynomial in the solution space. Hence

we require that X ∩ {0, . . . , 2t − 1} = ∅.
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Note that in the above we do not require the elements of X and Y to be

distinct, so this scheme can handle multi-sets. Furthermore, since the size

of each p(i) for 1 ≤ i ≤ 2t is (log N), the size of P is 2t(log N). Therefore,

we have the

Lemma 17 When X ⊂ Z
∗
N and X ∩ {0, . . . , 2t − 1} = ∅, the entropy loss

due to Encs(X) is at most 2t log N .

Removing the assumption on X and Y . The assumption that X

cannot contain any element from {0, . . . , 2t − 1} can be easily relaxed. We

can find the smallest prime M such that M − N ≥ 2t, and then apply the

scheme on Z
∗
M . But instead of publishing p(0), . . . , p(2t − 1), we publish

p(M − 1), . . . , p(M − 2t). In this way, the size of the helper information is

2t log M . In practice, this is not a problem since the size of the universe

may not be prime, and we will need to choose a larger finite field anyway.

For t that is not too large (say, t ≤ N/4), we can always find at least one

prime in [n + 2t, 2n], using the bounds in [43]. Hence, we have the

Lemma 18 When t ≤ N/4, the entropy loss due to Encs(X) is at most

2t(1 + log N).

3.1.8 Future Work

Having obtained some preliminary results in handling point-sets, it is inter-

esting to investigate further the following issues in secure biometric authen-

tication.

Better understanding of the problem: After having a helper infor-

mation scheme for point-set difference, it would be meaningful to go deeper

and gain better understanding of the problem. Currently our solution is
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to put a large number of “fake” data points to confuse the attacker, while

allowing a legitimate user to recover the original data points with some data

that are close to the original. However, the following questions remain: Is

this only the abstract view of our particular solution, or does it represent the

fundamental characteristics of the problem? Does this interpretation leads

to the optimal solution to the original problem? Under our setting, there is

still a gap between the lower bound that we can prove, and the entropy loss

we actually achieve. It would be interesting to investigate how to fill in this

gap.

Towards a working system: Our initial motivation is secure fingerprint

authentication by making use of helper information. Beside the results we

have already obtained, there are further problems to be solved before we

can achieve this goal.

For example, our preliminary scheme assumes that the data points are

well separated in space. It is not clear what the best way is to handle points

that are close to each other. Also, a minutiae point is often represented in

3-dimensional space, where a orientation attribute is included. In this case,

it is necessary to investigate how to make use of this third attribute.

Furthermore, the actual fingerprint verification system will also depend

on the performance the minutiae point extraction algorithm. It might not

be straight forward to incorporate our scheme. Our scheme also requires

that the fingerprints to be pre-aligned in a consistent way, which may be

difficult with the current techniques.

Other biometrics: Besides fingerprints, there are other biometrics that

are possible candidates for authentications. For example, hand geometry,

voice, retina, iris pattern, face, etc. Each of these biometrics has different
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characteristics such that we will not be able to adapt the existing schemes

easily. For example, some state-of-the-art facial recognition techniques ex-

tract feature points in 3-D space, where each point may have its own se-

mantics. It would be interesting to investigate how the ideas of helper

information can be extended to handle such feature points and/or other

biometrics.

Other distance metrics: Under our setting, we considered the combi-

nation of white noise and replacement noise on the point-sets, which corre-

spond to infinity-norm and set difference, respectively, in terms of distance

metric.

It is also interesting to consider other distance metrics or different combi-

nations of them. For example, suppose an authentication system is designed

in such a way that a user needs to enter five passwords to be authenticated,

each password is considered as correct if and only if at most two symbols are

not the same as the original password, and the user is authenticated if four

out of the five passwords are correct. In this example, we could consider the

combination of set difference and Hamming distance.
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Chapter 4

Conclusions

In this thesis, we study the security aspect of digital image watermarking

and biometric authentication, where the attackers are smart.

For digital watermarking schemes, we consider the inversion attacks,

where the attackers try to create ambiguities on the ownership of a work. We

show that it is possible to construct a non-invertible watermarking scheme

by giving a scheme and prove its security using well accepted methods in

cryptography. We also consider group watermark detection, where the wa-

termark detection routine is designated to some proxies. Under our setting,

each individual is not trusted, but we show that a certain level of trust

can be established on the group as a whole, when the majority is honest.

Next, we consider oracle attacks, or sensitivity attacks, on a class of spread-

spectrum based watermarking schemes on binary sequences. We relate this

type attacks to the Twenty Questions Games, and give both a lower bound

and a matching upper bound of the effort required by the attackers.

In this thesis we also study the problem of biometric authentication by

making use of helper information. In particular, we examine the problem of

secure authentication of fingerprints that are represented by minutia points
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in a 2-dimensional space. We observe that the problem is reduced to the

construction of helper information with respect a combination of white noise

and replacement noise on point-sets. We give a general construction with

provably small entropy loss, and give some improvements for certain special

cases.

We further extend the idea of helper information in image authentication,

where the images are represented by a vector of coefficients. We construct

helper information from these coefficients and use it as the authentication

tag. We consider the robustness, sensitivity, and the size of the authen-

tication tag, and show how to obtain optimal parameters under different

constraints.
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Appendix A

A.1 List of Publications

• Qiming Li, Ee-Chien Chang and Mun Choon Chan. On the Effective-

ness of DDoS Attacks on Statistical Filtering. In IEEE INFOCOM,

2005.

• Qiming Li and Ee-Chien Chang. On the Possibility of Non-Invertible

Watermarking Schemes. Information Hiding Workshop, volume 3200

of LNCS, pages 13-24, 2004. Springer Verlag.

• Qiming Li and Ee-Chien Chang, Public Watermark Detection Us-

ing Multiple Proxies and Secret Sharing. International Workshop on

Digital Watermarking, volume 2939 of LNCS, pages 558–569, 2003.

Springer Verlag.

• Qiming Li and Ee-Chien Chang, Security of Public Watermarking

Schemes for Binary Sequences. Information Hiding Workshop, vol-

ume 2578 of LNCS, 119-128, 2002. Springer Verlag.

A.2 Papers under Review

• Secure Sketch for Point-Sets
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