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Summary

In the last 20 years, embedded computing systems have become most prevalent

carriers of advanced hardware and software technologies. The use of embedded

systems in many common place applications and household products requires more

stringent requirements not normally expected from traditional computer systems.

Additional, product cycles continue to shrink as evidenced by the adoption rate of

consumer electronic items. This has fueled the needs for better methodologies and

tools to design, analyze, implement, and deploy such systems.

The implementation of embedded systems has evolved from using micro-controllers

and discrete components to fully integrated systems-on-chip (SoC). Leading edge

SoCs being designed today could reach 20 million gates and 0.5 to 1 GHz operating

frequency. Consequently, it is impossible for a single company to design and man-

ufacture an entire electronic system in time and within reasonable cost. Hence,

design re-use based on pre-designed intellectual property (IP) cores has become an

absolute necessity for embedded system companies to remain competitive. Since

IP cores are pre-designed and pre-verified, the designer will be able, in principle,

concentrate on the whole system at a high level without having to worry about the

vi



Summary vii

correctness and performance of the individual components. However, the vision of

quickly assembling an SoC using IP cores has not yet become reality for various

reasons. One of the difficulties in IP reuse is the incompatibilities between the

protocols used by various parts. Hence, reusing IP cores often requires designing

converters (glue-logic) to enable their communication.

In this work, we study the problem of automatically generating a protocol con-

verter which enables various embedded system components - using different (possi-

bly incompatible) protocols - to talk to each other. The novelty of our approach is

that it takes as input a scenario-based description of inter-component interactions

described as a collection of Message Sequence Charts. From this specification, we

systematically synthesize, when possible, the protocol converter that lets the com-

ponents to use their native protocols while overall pattern of interaction is correctly

realized. Both of the input component protocols and the synthesized protocol con-

verter are described in SystemC hence we are able to compile the converter along

with the component protocols. The result system can be simulated using the Sys-

temC kernel. Our work is not restricted to uni-directional communication, and

the converter can be used to broker communication among many components. We

demonstrate the feasibility of our approach by modeling some important features

of existing Systems-on-Chip bus protocols.
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1.1 Motivation 2

1.1 Motivation

In the last 20 years, embedded computing systems have become prevalent. More

than 90 percent of existing computer systems are embedded systems consisting of

both hardware and software components. As we are marching forward in the 21

century, embedded systems will surely play a dominant role; they will be present

into every aspect of our daily life.

The use of embedded systems in many common place applications and household

products requires more stringent requirements not normally expected from tradi-

tional computer systems. These applications demand high performance, power-

consciousness, high reliability and predictability. Additionally, product cycles con-

tinue to shrink as evidenced by the adoption rate of consumer electronic items.

This has fueled the needs for better methodologies and tools to design, analyze,

implement and deploy such systems.

IP Reuse The implementation of embedded systems has evolved from using

micro-controllers and discrete components to fully integrated systems-on-chip (SoC).

The concept of systems-on-chip is to integrate all components on a board into a

single chip. Designing a SoC, however, is extremely complex. Leading-edge SoCs

being designed today could reach 20 million gates and 0.5 to 1 GHz operating

frequency. Consequently, it is impossible for a single company to design and man-

ufacture an entire electronic system in time and within reasonable cost.

As a result, design re-use based on pre-designed intellectual property (IP) cores

has become an absolute necessity for embedded system companies to remain com-

petitive. A new industry has evolved to devote solely to the development of IP cores

as reusable building blocks for SoCs. Since IP cores are pre-designed and pre-

verified, the designer is in a better position to concentrate on the complete system

without having to worry about the correctness and performance of the individual
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components.

In practice, however, the vision of quickly assembling an SoC using IP cores has

not yet become reality for various reasons. Some of the reasons have been identified

in (Bergamaschi and Lee, 2000); they vary from the need to understand electrical

characteristics of components to complexities of system verification. We highlight

some main difficulties here:

• The designers need to fully understand the functionality, interfaces and elec-

trical characteristics of complex IP cores.

• Even if the cores are pre-verified, it does not mean the whole system will

work when they are put together. Various interface and timing issues can

cause systems to fail even though the individual cores are correct.

• The lack of the established standard deliverables and the lack of efficient

interface synthesis tools make it difficult for IPs from different providers to

be integrated into the same SoC.

We can see that the incompatibility between multiple interface protocols and

non-standard specifications are among the main difficulties of the IP-based SoC

design.

System Level Design The complexity of the current systems and the need to

increase the productivity require us to raise the level of abstraction in which SoC

designs are performed. Traditionally, computer-aided-design tools have focused

on low-level design issues, such as synthesis, timing, layout and simulation. Re-

cently, modeling approaches using system-level design languages have been devel-

oped (Arnout, 2000; Flake and Davidmann, 2000; SystemC; SystemVerilog, 2005;
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Website, 2005). One advantage of system-level design-languages is that it encour-

ages the incorporation of the IP cores from various sources. All of IP cores devel-

oped in different companies need to use a common system-level design language so

that the entire system can be modeled in a single framework. Without a standard

system-level design language, IP vendors are forced to choose the language(s) they

want to support to describe IP interfaces - IP designs are, in general, not available.

The designer is then faced with integrating IP cores described in different and in-

compatible modeling languages. This is a barrier to realize the IP-based design

approach. Once we have a common system level design language, one way to help

to build an SoC by integrating and being configured IP cores easily is to provide

high-level tools to automate the integration of IP cores with different interfaces

and communication protocols.

Hardware-Software Codesign Another source for the need of interface syn-

thesis tools is due to Hardware-Software Codesign. In the recent past, significant

effort in embedded systems research communities has been put in this topic (Chi-

nook; Polis). The problem here is to coordinate the design of the parts of the

system to be implemented as software and the parts to be implemented as hard-

ware, avoiding the HW/SW integration problem. The system is first specified in

terms of functionalities, this can be done in formal models or systems level de-

sign languages. After that the system is partitioned into components to map to

hardware/software blocks. The HW-SW partitioning decisions are based heavily

on design experience and very difficult to automate. The designer needs an envi-

ronment in which evaluation of such decisions in terms of various criteria can be

done easily and quickly. In the HW-SW codesign paradigm, a component which

is first mapped to hardware for performance gain can latter be implemented as

a software component for flexibility. This introduces the need for an automatic

way to synthesize the interfaces between components. We have to deal with three
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kinds of interfaces: interfaces between software and software components, between

hardware and hardware components, and between software and hardware compo-

nents. It is often to be seen that the interfaces between software and hardware

components is harder to synthesize than other twos.

Intra- and Inter- view in System Level Design In order to cope with the

complexity of the current systems, an important component of a new system design

paradigm is the orthogonalization of concerns, i.e., the separation of the various

aspects of design (Gajski, Zhu, and Domer, 1997; Grotker, Liao, Martin, and Swan,

2002; Metropolis Project; Sangiovanni-Vincentelli, Sgroi, and Lavagno, 2000). The

two common ones are:

• the separation between function (what the system is supposed to do) and

architecture (how the system is implemented);

• the separation between computation and communication.

The second point above plays an important role in promoting the IP-based design.

If in a design component behaviors (computation) and communications are tightly

coupled, it is very difficult to re-use components since their behaviors are dependent

on the communication mechanisms of other components of the original design. If

we can achieve the separation between computation and communication at the

functional level, the designer will be able to easily try out various implementation

solutions for each component which in turn will promotes the IP-based design

paradigm. Hence it is fruitful to have two dual views of the overall system:

• An intra-component view where one provides per component its computa-

tional and control flow with its communication activities abstracted as atomic

actions; each such action will stand for a possibly complex interaction with

other components.
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• An inter-component view which suppresses the computational aspects of the

individual components and instead provides a global specification of the in-

teraction patterns that need to be realized.

The relationship between intra-component and inter-component (scenario-based)

system descriptions is complex and subtle (Harel and Marelly, 2003). We feel that,

from a pragmatic standpoint, it is best to have both forms of description. Of course,

this raises the issue whether the two dual views of the same system are consistent.

We feel this question can be settled given the rich body of results concerning MSCs

that are available (see for instance, the survey (Harel and Thiagarajan, 2003) and

the references therein).

In conclusion, the wide spread of embedded systems with ever increase of their

complexity make design re-use based on IP cores an absolute necessity. To facilitate

the effective reuse of IP cores, we need standard languages for the documentation

and interface specification, along with methods for checking the compatibility of

components in a design. The modeling languages to be used must be flexible enough

to be able to describe both hardware and software components. Moreover, there

must be automatic tools for synthesizing the component adaptors to bridge between

incompatible interfaces. In the task of bridging the interface incompatibilities, we

deal mostly with the interaction patterns between blocks; the inter-component

view of the system can be extremely useful here as we demonstrate later on.

1.2 Protocol Converter Synthesis Problem

Protocol converter synthesis seeks to automate the process of interconnecting com-

ponents. A major problem here is the realization of the interconnect fabric; the

system will consist of multiple components, typically supplied by different vendors

that will have to communicate with each other in specified patterns. However,
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the protocols assumed by the different components are often incompatible. For

instance, Figure 1.1 shows an example in which a sender would like to send a

data token to a receiver. The sender IP core has been designed on the basis of

the Ack-Nack protocol for transferring data in which it keeps trying to transmit

data message msg until it gets back a ack signal, whereas the receiver IP core

has been designed on the basis of the Pull-End protocol where it sends out a pull

signal followed by the reception data message and a end signal. If we let these

two components talk to each other directly, they ,obviously, cannot communicate.

Hence, we need a glue logic which enables such pairs of incompatible components

to communicate. The role of this glue logic is to let the components to use their

native protocols and be oblivious to the incompatibility of the protocol being used

by other parties.

For instance, in the example in Figure 1.1, we can insert between the sender and

the receiver a glue logic which will do the following:

• Receive the msg signal from the sender,

• Receive the pull signal from the receiver,

• Translate the msg message to the data message and send data to the receiver,

• Send ack signal to sender and end signal to receiver.

This simple glue logic will enable the sender and the receiver to communicate

using their own protocols. So the system becomes like in Figure 1.2. The main

job of the glue logic here is to convert one protocol to the other, hence we call

it a protocol converter. There are many levels of interconnection that must be

considered including electrical, power, logic, register-transfer, device drivers, and

higher software levels (Borriello, Lavagno, and Ortega, 1998). We are particularly

interested in communication protocols in system level designs of systems-on-chip.
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Sender Receiver

−pull +end

+data

+nack

−msg(−err)

−msg(−err)

+ack

Figure 1.1: A pair of incompatible protocols: the sender using the Ack-Nack proto-

col and the receiver using the Pull-End protocol. Outgoing messages are denoted

with the negative sign; for instance, −msg and −pull. Incoming messages are de-

noted with the positive sign; for instance, +nack and +end. The notation is from

the viewpoint of the protocols involved.

1.3 Our Approach

In this thesis, we investigate the use of scenarios for the specification and realiza-

tion of protocol converters. We show how the popular visual formalism of Mes-

sage Sequence Charts (MSCs) and High-level Message Sequence Charts (HMSCs)

(Z.120, 1996) can be used to specify communication patterns, in which each of the

participating component has its own view of the protocols being deployed. From

this specification, one can systematically synthesize, where possible, the protocol

converter that lets the components to use their native protocols while the over-

all pattern of interactions is correctly realized. We say “where possible” because

there will be native protocols that are inherently incompatible, and in this case

our synthesis method will abort after detecting and declaring this incompatibility.

In the inter-component description of a system, we view an MSC as an atomic
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Sender ReceiverConverter

Figure 1.2: The role of the protocol converter

unit of interaction involving two or more components. Even when there are only

two components- which will often be the case- the flow of information will not be

unidirectional. Data might flow only one way but control signals will typically

flow both ways. An interaction pattern will consist of a (concatenated) sequence

of MSCs and the set of all such patterns of interest will be captured by an HMSC.

An HMSC is a standard way of specifying a collection of MSCs. It is basically

a finite state automaton which has an MSC associated with each state. Each

sequence of states allowed by the automaton will induce a sequence of MSCs whose

concatenation, will yield an MSC. The collection of all such MSCs is the set of

interaction patterns specified by the HMSC.

In our setting, each node of the HMSC represents a mode of interaction, that

is, a snippet of a protocol. Consequently, each node of the HMSC will have , in

general, not just one MSC associated with it. Instead, it has a set of associated

MSCs: one corresponding to the “view” (or the native protocol) of each compo-

nent taking part in this snippet. Figure 1.3 shows our HMSC description of the

interaction between two protocols described in Figure 1.1. The two components

go through various modes of interaction or phases. In each phase, each component
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has its own view of the communication pattern. A node will typically contain

two MSCs Chm and Chs; Chm describes the master ’s view and Chs captures the

slave component’s view of transfer. For example, the sender using the Ack-Nack

protocol does not have set-up phase, hence the MSC describing its view in the

set-up node is empty. On the other hand, the MSC describing the receiver’s view

in the error-recovery node is empty, since the Pull-End protocol does not have this

function.

receiver sender receiversender

nack

err

sender

set−up phase

release phase

error recovery phasetransfer phase

sender

end

receiver receiver

senderreceiver

pull

sender receiver

senderreceiversender

data
ack

msg

receiver

Figure 1.3: An HMSC description of the interaction between incompatible proto-

cols
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Technical Contributions Our goal is to design a converter that will realize

all possible interaction patterns (i.e. runs) of a given HMSC while permitting

all the components involved to execute their views of the modes of interaction

they participate in. Our converter will sit in the midst of the components. All

the signals/data sent by the components will flow to the converter and all the

signals/data received by the components will be generated by the converter.

Our converter will deploy a number of techniques in the attempt to smooth out

incompatibilities between different views of the components. First, it will generate

or consume control signals. We allow the converter to speculatively generate control

signals in advance which might resolve potential deadlocks. However, as might

be expected, the converter will not generate data values speculatively. Secondly,

for messages which carry data values a message relationship specification is given

to guide the converter to translate and map messages across components. The

converter is able to deal with data format incompatibilities such as 16 bit sends

vs. 8 bit receives etc. In this process, the converter will store data in order

to resolve incompatibilities. Lastly, in certain settings, the converter should not

generate speculatively control signals; for example, when these signals are a part

of a protocol ensuring mutual exclusion. To cope with this situation, we allow

the designer to specify, in addition of HMSC specification, additional behavioral

requirements to have additional control on the behavior of the protocol converter.

We have implemented our technique using SystemC. The (textual) input to our

converter generator is an HMSC with multiple MSCs associated with each node

of the HMSC; one for each component taking part in the mode represented by

the node. This input together with the behavioral requirements and the message

relationship specifications are used to generate a SystemC implementation of the

converter, when one exists. The validation of the converter is carried out by sup-

plying a path through the HMSC using which the SystemC simulator will execute
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the converter and display the resulting run in the form of an MSC. Due to trans-

lation into SystemC we have been able to introduce clock sensitivities and timers

in our input specification language.

1.4 Thesis Organization

The rest of this thesis is organized as follows. In the next chapter, we briefly recall

the basic features of MSCs and HMSCs together with their precise formal seman-

tics. In chapter 3, we survey related work on the protocol converter generation

problem. In chapter 4, we formulate the protocol converter generation problem

and describe our solution in details. The next two chapters provide information

about our implementation and the applications of our technique. Chapter 7 con-

cludes the thesis with a summary of the contribution of this thesis and a discussion

on directions for future research.
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We present in this chapter the basic notions and formalism concerning MSCs

and HMSCs. For a more detailed survey, the reader is referred to (Harel and

Thiagarajan, 2003).

2.1 Message Sequence Charts

An MSC describes a snippet of behavior involving multiple components interacting

with each other. In its simplest form (which is the one we use here), the components

communicate with each other through FIFOs. The visual representation of an

example MSC is shown in Figure 2.1. The vertical lines, often referred to as

lifelines or instances, capture the behavior of the components. A horizontal edge

captures a communication; the origin of the edge is the sender, the target of the

edge is the receiver, and the label associated with the edge is the message being

communicated. We adopt the usual MSC convention that horizontal edges can be

drawn either horizontally or sloping downwards, but not upwards. The darkened

rectangular boxes are the events associated with the MSC. In the following we will

often refer to an MSC as a chart.

The example shown in Figure 2.1 describes a scenario in which a user U sends

a request to an interface I to gain access to a resource R. The interface in turn

sends a request to the resource and receives grant as a response, after which it sends

yes to U . The internal event labeled count may involve the interface component

incrementing the variable to track the number of times the user has gained access

to R.

Next, we give the formal definition of MSCs. We fix a finite set of processes (or

components) P and let p,q,r range over P. We shall use Σp to denote the set of

actions executed by the process p. We define Σp = {〈p!q,m〉 | p 6= q and m ∈

M} ∪ {〈p?q,m〉 | p 6= q and m ∈ M} ∪ {〈p, a〉 | a ∈ Act} where M is an alphabet
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U I R

grant

yes
count

req

req

Figure 2.1: A Simple Message Sequence Chart.

of messages and Act is an alphabet of internal actions. The communication action

〈p!q,m〉 is to be read as p sends the message m to q, and the communication action

〈p?q,m〉 is to be read as p receives the message m from q. On the other hand, the

internal action 〈p, a〉 stands for p executes action a. We set Σ =
⋃

p∈P Σp. We also

denote the set of channels by Ch = {(p, q) | p 6= q} and let c,d range over Ch.

Turning now to the definition of MSCs, we first define a Σ-labeled poset to be

a structure M = (E,�, λ) where (E,�) is a poset and λ : E → Σ is a labeling

function. For e ∈ E we define ↓ e = {e′ | e′ � e}. For p ∈ P, we set Ep =

{e | λ(e) ∈ Σp}, these are events that p takes part in. Furthermore, Ep!q = {e | e ∈

Ep and λ(e) = 〈p!q,m〉} for some m in M , Ep?q = {e | e ∈ Ep and λ(e) = 〈p?q,m〉}

for some m in M . For each c ∈ Ch, we define the communication relation Rc =

{(e, e′) | λ(e) = (p!q,m) and λ(e′) = (q?p,m) and | ↓ e ∩ Ep!q| = | ↓ e′ ∩ Eq?p|}.

Finally, for each p ∈ P, we define the p-causality relation Rp = (Ep × Ep)∩ �.

Definition 1 (Message Sequence Charts). An MSC over (P,M,Act) is a finite

Σ-labeled poset M = (E,�, λ) which satisfies the following conditions:

1. Each Rp is a linear order,
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2. For every p, q with p 6= q, |Ep!q = Eq?p|,

3. Suppose e ∈ Ep?q. Then | ↓e ∩ Ep?q| = | ↓e ∩ Eq!p|,

4. Suppose λ(e) = 〈p!q,m〉 and λ(e′) = 〈q?p,m′〉 and | ↓e∩Ep!q| = | ↓e′∩Eq?p|.

Then m = m′.

5. � = (RP ∪ RCh)
∗ where RP =

⋃
p∈P Rp and RCh =

⋃
c∈Ch Rc.

The first condition says that all the events that a process takes part in are linearly

ordered; each process is sequential. The second condition says that there are no

dangling communication edges in an MSC; the number of sent message must be

equal to the number of received messages. The third condition says that messages

must be sent before they can be received; the order of communication actions must

be correct. Furthermore, the fourth condition requires that the message names

must be correctly ordered. Lastly, the partial order of an MSC is its visual order ;

This partial order is the transitive closure of (a) the total order of the events in

each process (time flows from top to bottom in each process) and (b) the ordering

imposed by the send-receive of each message (the send event of a message must

happen before its receive event). Semantically, a chart denotes a set of events

(message send, message receive and internal events corresponding to computation)

and prescribes a partial order over these events. Any sequence of these events

in which each event of the chart occurs exactly once and in which the order of

appearances of the events respects this causal order will be called a linearization

of the chart. Each linearization constitutes an execution of the chart.

2.2 High-level Message Sequence Charts

One standard mechanism (Z.120, 1996) for presenting a collection of MSCs is

called high-level MSCs (HMSCs). An HMSC is basically a finite state automaton
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whose states are labeled by MSCs. Consequently, one can write out specifications

involving choice, concatenation and iteration operations over a finite set of seed

MSCs. In general, a HMSC specification can be hierarchical in which a state of

the automaton can be labeled by an HMSC instead of an MSC. In this thesis, we

shall ignore this feature and instead consider flattened HMSCs.

reqreq

U I R

grant

yes
count

no

U I R

denied

Ch

3Ch2Ch1Ch

U I R

req

1

3Ch2Ch

Figure 2.2: A Simple HMSC

An example of an HMSC is shown in Figure 2.2. Intuitively, this HMSC captures

a collection of scenarios consisting of a user U sending a request to an interface I to

access a resource R. The interface queries the resource, and if it gets the response

denied, it sends a no to the user and tries again. It will keep trying until it gets

the response granted, at that point it send yes to U , and the transaction ends.
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The edges in an HMSC represent the natural operation of chart concatenation.

The collection of charts represented by an HMSC consists of all those charts ob-

tained by tracing a path in the HMSC from an initial control state to a terminal

control state and concatenating the MSCs that are encountered along the path.

In our setting, the terminal states will not be important. Hence we will assume

that by default all the states are terminal states. There are two intuitive ways of

concatenating charts. In synchronous concatenation, Ch1 ·Ch2 denotes a scenario

in which all the events in Ch1 must finish before any event in Ch2 can occur.

Thus synchronous concatenation requires all the concerned life-lines to synchro-

nize at the end of any MSC. It rules out the parallelism that could arise had we

let the second chart start its operation before the predecessor chart has completely

finished.

req

count
yes

grant

Ch2

Ch3

req

denied

RIU

no

Figure 2.3: Concatenation of MSCs

The second way of concatenating charts - which is the one we will consider in



2.2 High-level Message Sequence Charts 19

this thesis - is the asynchronous concatenation. Here the concatenation is carried

out at the level of life-lines. In Figure 2.3 we show the chart Ch23 obtained via the

asynchronous concatenation Ch2 ◦Ch3 where Ch2 and Ch3 are as shown in Figure

2.2. Note that the receipt of no in Ch2 can take place after the sending of req in

Ch3 under asynchronous concatenation.

More formally, let Ch1 = (E1,�1, λ1) and Ch2 = (E2,�2, λ2) be a pair of MSCs.

Assume that E1 and E2 are disjoint sets. Then Ch1 ◦ Ch2 is the MSC (E,�, λ),

where:

• E = E1 ∪ E2

• λ(e) = λ1(e)(λ2(e)) if e is in E1(E2)

• � is the minimal ordering relation over E that contains �1 and �2 and

satisfies: If e ∈ E1
p and e′ ∈ E2

p for some p, then e � e′.

Recall that the meaning of an HMSC is given by a -potentially infinite- collection

of MSCs; these are generated from the paths from an initial state (to a final

state) in the graph - again, we assume all states are final. For each such path,

we asynchronously concatenate the induced sequence of MSCs, and the resulting

MSC is in the collection represented by the HMSC. Thus, for the HMSC in Figure

2.2, the chart Ch1 ◦ Ch2 ◦ Ch2 ◦ Ch3 is in the collection while Ch1 ◦ Ch3 ◦ Ch2 is

not.

We conclude by introducing the notion of cycle bounded executions of an HMSC.

This notion will be used to restrict the amount of overtaking allowed between

processes in our SystemC implementation. Suppose

s0s1 . . . sisi+1si+2 . . . sm

is a path in an HMSC. In other words s0 is an initial state and (sj, sj+1) is an edge

in the HMSC for 0 ≤ j < m. Suppose now further si = sn+i with 0 ≤ i < n+i ≤ m
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so that π = sisi+1 . . . sn+i constitutes a cycle in the HMSC. Let Chj be the chart

associated with sj for each j in {0, 1, . . . n + i} and Ch = Ch0 ◦Ch1 ◦ . . . Chm. We

will say that the execution σ of Ch is π-bounded iff all the events of Chi appear

in σ before any event of Chn+i appears in σ. Now let Ch be an MSC generated

by an HMSC and σ an execution of Ch. We will say that σ is cycle-bounded if it

is π-bounded for every cycle π contained in the path that generates Ch.

2.3 Notational Conventions

Our technique for automatically generating protocol converters takes in as input

an extension of the HMSC description of the interaction among a network of com-

ponents. In our extended HMSC description, each node contains a set of MSCs;

one MSC for each component taking part in the corresponding mode of interaction

associated with that state. Figure 1.3 shows an example of our extended HMSCs.

For convenience, we will refer to this extended notation too as an HMSC.
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3.1 Related Work

The problem of generating glue logic for protocol conversion has been studied in

the past. There are many levels of interconnection that need glue logic including

electrical, power, logic, register-transfer, device drivers, and higher software levels

(Borriello et al., 1998). In this chapter, we survey the previous work on the problem

of automatically generating protocol converters. In particular, we are interested in

communication protocols in system level designs of systems-on-chip.

Borriello (1988) generated glue logic between two circuit blocks, whose interface

behavior is captured by timing diagrams, via transducer synthesis. The work of

(Akella and McMillan, 1991) describes protocols as finite state machines and devel-

ops the protocol converter from the product machine. Narayan and Gajski (1995)

develop a protocol converter from the HDL description of two component proto-

cols; a nice feature of this work is the ease of simulation of the protocol converter

along with the component interfaces. These works generate a protocol converter

for enabling communication among two components; on the other hand, our work

focuses on generating a converter to broker communication among multiple com-

ponents.

To the best of our knowledge, our work is the first one to study protocol con-

verters using scenario-based descriptions. Previous works that have influenced our

research have been carried out in intra-component settings (de Alfaro and Hen-

zinger, 2001; Passerone, de Alfaro, Henzinger, and Sangiovanni-Vincentelli, 2002;

Passerone, Rowson, and Sangiovanni-Vincentelli, 1998). In these works, one de-

scribes the protocol behavior of each component using automata, or equivalently,

regular expressions. In doing so, one abstracts away the internal computational

aspects of the components and focuses mainly on the flow of signals and data across

the communication interface of the component.
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In (Passerone et al., 1998) the authors address the problem of synthesizing pro-

tocol converters between communicating components that use different signaling

conventions. More specifically, given two protocol descriptions of two components,

an algorithm is proposed to build an protocol converter (interface machine in their

terms) so that data transfers are consistent with both protocols. The focus here is

on a single transaction (i.e. roughly corresponding to a single MSC in our terms)

with all information flowing one way between two components, and the compo-

nent protocols are described using regular expressions. There are few simplifying

assumptions as follows.

• The generated converter is only for point-to-point communication between

two components.

• Both components agree on a composite data structure called token, and all

the data transfers between two components are referred to this token.

• The converter can temporarily store the data, and it has enough memory to

store the whole token which is all the data which need transferring.

• Components are fully synchronous by the same clock.

The objective of the synthesis algorithm is to produce a finite state machine

that when placed between the two modules implementing the specified protocols

it will make the communication possible. The interface recognizes symbols on the

producer side and generates proper symbols on the receiver side. The algorithm

given in paper can be divided into three steps. First, the regular expressions

representing two protocols are translated into automata. After that these two

automata are composed to get the product finite state machine. The alphabet of

the product machine is the Cartesian product of the two alphabets. Signals from

the producer become inputs, signals from the receiver become outputs. Finally, the



3.1 Related Work 24

product machine is reduced so that it only contains legal sequences of operations.

Any non-determinism is also resolved according to the following rules: 1) never

output a piece of data that has not been received 2) transfer the data 3) minimize

the latency.

The authors mentioned some of interesting extensions: asynchronous protocols,

many parties in the communication, and reactive components (not just a single

transaction). The reactive component extension is later tackled in (Passerone

et al., 2002). However, it is not clear how to extend the approach in this paper for

situations with more than two components.

de Alfaro and Henzinger (2001) proposed to use automata to capture the tem-

poral aspects of software component interfaces. The formalism is called interface

automata. Since the components are software, the input/output mechanism here

is not viewed as message passing, but viewed as method calling. The model can

capture the input assumptions and the output guarantees. The input assumption

of a component is the order in which the component’s methods are called (assump-

tions about the environment), and the output guarantee is the order in which the

component calls external methods. The formalism supports the automatic compat-

ibility check between interface models; the main focus is on determining whether

two components can interact in a compatible way taking into account of the con-

straints imposed by individual interface automata. The authors use an optimistic

approach to composition, and an alternative approach to design refinement. The

game-theoretic foundation for the compatibility checking problem is mentioned and

treated more carefully in (Passerone et al., 2002).

More precisely, an interface automaton is a simple automaton with a set of states

and labeled transitions. A transition from state p to state q labeled by an input ?a

means the method a() of the component is called by the environment. Similarly,

when a component moves from state p to state q under an output action !b, it



3.1 Related Work 25

means the component calls an outside method b(). The internal actions are used

to describe the internal computation. Interface automata interact with one another

through the synchronization of input and output actions while internal actions are

interleaved asynchronously.

One of the interface automata features is that not all the input actions are enabled

at a state. This reflects the assumptions of a component about the environment

which are twofold. First, output actions are always accepted by the environment.

Second, the environment will not produce input actions that are not available at

the current state.

When two or more components interact, there might be an execution trace leading

to a state in which a component can call a non-enabled method of the other. Let the

set Illegal(P,Q) denotes such illegal states. The approaches to compatibility check

and component refinement are treated under a new optimistic view. Traditionally,

two components are compatible if they can work together without going to an

illegal state under any environment. Under the optimistic view, component P

and component Q are compatible if there exists an environment in which states in

Illegal(P,Q) are not reachable. Such environments are called legal environments.

Accordingly, there is always a “best” environment which accepts all output of

P ⊗ Q, and generates no inputs to P ⊗ Q.

There is a linear time algorithm to decide whether two components are com-

patible. To check for the compatibility between two component P and Q, we can

simply restrict the states of the product P ⊗Q within the legal states. The result

of this is the composition P ‖ Q. If the composition is non-empty then P and Q

are compatible.

Under the optimistic view, the refinement relation is used to formalize the rela-

tion between abstract and concrete versions of the same component. For example,

between an interface specification and its implementation. An implementation of a
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specification relaxes the input assumptions (accepts more inputs), and restricts the

output guarantees (produces fewer outputs). More formally, an interface automa-

ton P refines an interface automaton Q if all input steps of Q can be simulated by

P , and all the output steps of P can be simulated by Q. Furthermore, there is a

specialized single-threaded version of the interface automata which assumes that

there is only one active thread of control (only one component active at a time)

in a system. This assumption reduces the complexity of compatibility check by

pruning out redundant states.

The work of (Passerone et al., 2002) introduces the notion of interface adaptability

using a game-theoretic framework. Two interfaces are said to be adaptable if they

can be made compatible by communicating through a converter satisfying certain

specifications. In other words, the converter makes each component believe that

it communicates with the other using its own interface protocol. Under the game-

theoretic framework, the synthesis of a converter is interpreted as a game played by

components and the specifications. The winning strategy of the game can be used

to synthesize a converter. This can be seen as an extension of the results of both

(Passerone et al., 1998) and (de Alfaro and Henzinger, 2001). In particular, the

game-theoretic interface paradigm of (de Alfaro and Henzinger, 2001) is used not

only to check compatibility of interfaces, but also to synthesis interface adaptors.

This work extends the approach of (Passerone et al., 1998) by allowing to specify

the properties of the converter(adaptor) as an extra automaton. The protocol of

interfaces are defined using automata. Note that there is no relationship between

the alphabets of the automata. It is a specification automaton that defines the

partial order in which the symbols can be presented to consumer, and produced

by the converter.

A specification is an automaton whose alphabet is derived from the Cartesian

product of the alphabets of the two protocols. Specifications are not concerned
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with the particular form of protocols being considered, but they make precise

what the converter can and cannot do.

Synthesis of the converter can be divided into two steps by an automata-based

approach. First, the product machine of the two protocols is composed. The

direction of the signals is reversed; the input to the protocols becomes the output

of the converter, and vice versa. Note that this composition is also a specification

for the converter, since, on both sides the converter must comply with the respective

protocols. Next, the product machine is composed with the specification to get the

converter. This is to ensure that the converter satisfies both interface protocols

and the given specification. Some transitions and states of the converter become

illegal as a result of this composition. Hence, the final converter is the product

machine with all illegal states/transitions removed.

The problem of protocol conversion discussed above can be re-casted into a more

generic game-theoretic framework. Under this framework, synthesizing a converter

corresponds to solving a game: Can the converter, by reading output of the pro-

ducer, provide inputs for the consumer that satisfy both the interface protocols

and the specification? The game is played between the protocols and the specifi-

cation, on one side, and the converter on the other side. In the given example, the

goal of the game for the converter, is to ensure that if the producer emits signals

according to its definition, then the converter produces signals that corresponds to

the transition of the consumer and the specification.

The solution of the above example can be solved by using memory-less strategies

which are entirely classical. When the specification includes a fairness condition

φ (described in temporal logic), the winning strategy must be history-dependent.

Games with fairness conditions and history-dependent strategies are examples of

games with w-regular wining conditions, and there exist methods to solve them.

From the resulting winning strategy, the converter can be easily synthesized as an
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automaton. In the example given (also in (Passerone et al., 1998)), one component

merely produces signals, and the other merely receives signals. In a more realis-

tic setting, a component might both sends and receives signals. The question is

whether it is hard to formulate the synthesis converter problem into game-theoretic

framework when components both send and receive signals?

3.2 Summary of Previous Work

We now summarize the main features of previous work and attempt to compare

with our work.

• All of the previous work only deal with point to point communication, in the

other words, there are only two components talking with each other. Even

though some of the work (de Alfaro and Henzinger, 2001; Passerone et al.,

2002, 1998) can be extended to cope with multiple component situations,

it is not clear whether it is scalable to do so. For instance, in (Passerone

et al., 2002) to specify the property of the resulting protocol converter, the

designer needs to construct a property automaton whose alphabet is the

Cartesian product of all the alphabets. This will become unmanageable

when the number of parties increase. The work (de Alfaro and Henzinger,

2001) can deal with multiple components, but the focus there is to determine

the constraints under which components can interact, no attempt is made

to insert a converter to resolve the incompatibilities. To the best of our

knowledge, our work is the first one to study the problem of synthesizing

protocol converters using scenario-based descriptions which can naturally

present the interaction among multiple parties.

• The focus of many of previous works is on a single transaction (i.e. roughly



3.2 Summary of Previous Work 29

corresponding to a single mode of interaction in our terms) with all infor-

mation flowing in one direction (Narayan and Gajski, 1995; Passerone et al.,

2002, 1998). In our inter-component description of a system, the interaction

among components consists of multiple modes of interaction. Each mode is

described by MSCs in which control/data signals can flow in both ways. As

a result, we can model fairly complex systems as demonstrated in chapter 5.

• Based on the SystemC simulation engine, we can easily simulate the protocol

converter along with the component interfaces. The approach in (Narayan

and Gajski, 1995) also has this ease of simulation. In addition, we produce

the MSC depicting the simulation.

• A nice feature in (Passerone et al., 2002) is that additional behavioral con-

straints may be imposed on the generated converter using a specification

automaton. We also extend our previous work (Roychoudhury, Thiagarajan,

Tran, and Zvereva, 2004) to allow this feature. This adds extra expressive

power to our modeling capability as we will show in Chapter 5.

In conclusion, the existing work on protocol converter synthesis serve as valuable

guideposts to our problem domain. However, our scenario-based formulation and

solution of the converter synthesis problem is somewhat orthogonal to these work.
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Figure 4.1: A simple HMSC specification of incompatible protocols
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In this chapter, we outline our technique for automatically generating protocol

converters. We first discuss about what the generated protocol converters have

to do to bridge the protocol incompatibilities. Next, we present the generated

converter as a sequential machine in order to highlight the main features. Our

implementation in fact is a multi-threaded one, and this will be brought out in

Section 4.2 in which we explain how we generate protocol converters for a mode

of interaction - a node in an HMSC. In the section 4.3, we describe how we merge

all the converters for individual nodes in an HSMC to get the protocol converters

for the whole HMSC. Last but not least, we present how we impose additional

constraints on behavior of the generated protocol converters.

The protocols executed by the network of components is assumed to be described

as an HMSC, but each node of the HMSC will have a set of MSCs associated with

it; one MSC for each process taking part in the mode of interaction associated with

that node. For convenience, we will refer to this extended notion too as an HMSC.

We show a simple example of an HMSC in Figure 4.1. This HMSC describes the

interaction between two processes named P and Q. The HMSC has only one node

which is, of course, assumed to be the initial node. This node contains two MSCs

corresponding to the protocols of P and Q with ChP (ChQ) describing P ’s (Q’s)

view of the protocol. As a matter of fact, Q’s (P ’s) lifeline in ChP is simply an
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assumption made by P (Q)regarding Q’(P ’s) contribution to the protocol. As long

as the events associated with P ’s lifeline in ChP are executed in the order in which

they appear, P will walk away from this node with the belief that the protocol

associated with this node has been executed correctly.

In the rest of this chapter, we assume that each node n of a HMSC has a set

of processes Pn associated with it, called the agents of n. Typically this set is

clear from the context. We assume each node n has a family of charts {ChP}P∈Pn

associated with it; one for each P in Pn. Suppose P is an agent of the node n. By

the P-view at the node n, we mean the sequence of events associated with P ’s

lifeline in the chart ChP . Thus, (1) below is the P-view and (2) is the Q-view of

the HMSC node shown in Figure 4.1. We note that in the MSC associated with

the P -view of a HMSC node, events in the lifelines of processes other than P are

not part of the input.

〈P !Q, req〉, 〈P !Q, data〉, 〈P?Q, ack〉 (1)

〈Q!P, ready〉, 〈Q?P, msg〉, 〈Q?P, finish〉, 〈Q!P, ack〉 (2)

Protocol Analysis The first task in designing (or generating) a protocol con-

verter for incompatible protocols is to understand the functions of the protocols

involved. The designer can then decide what functionality can be translated or

mapped between incompatible protocols. Many times, communication protocols

comprise of different phases/transactions (in our terms, mode of interactions) which

implement different functionality. For instance, a communication protocol can have

a phase for handshaking, other phase for data transfer, and yet another for error

correcting. For that reason, scenario-based descriptions of the incompatible pro-

tocols are very useful, since they clearly show how a protocol is structured into

phases and where the incompatibilities locate.

In the generating protocol converter problem, we would like to have a converter
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Figure 4.2: Inputs/Outputs of Protocol Converter for Figure 4.1

to make incompatible protocols communicate with one another as if there is no

incompatibilities. Because of the fact that messages are basic mechanisms by

which protocol functions are implemented, for a protocol converter to be able to

mediate the communications between different protocol entities, it must somehow

map the messages across components. The scenario-based descriptions can be used,

in protocol analysis, to help the designer derive specifications instructing how to

translate messages and when to do so.

4.1 Protocol Converters for MSC protocols

We now demonstrate our converter synthesis technique on a single node of the

HMSC. Later, we will extend the technique to general HMSCs. Let the agents of

the single node be p1, . . . , pk with Chpi
being denoted for convenience as Chi.

First, we partition the whole space of messages(signals) into control messages

and data messages. The difference between them is that data messages carry

some content (data) which the converters cannot know before receiving the actual

messages. Secondly, both control and data messages can be further classified as

follows.

• Input Messages: Messages which are sent by a process pi according to its

chart Chi, e.g. req, data, ack from process Q, and ready in Figure 4.1.
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• Output Messages: Messages which are received by one process pi according

to Chi, e.g. message finish, ack received by P , and msg in Figure 4.1.

Based on the above categorization, we can identify the inputs and outputs of the

desired protocol converter for the specification of Figure 4.1. The Input messages

will be consumed, and Output messages will be produced by the protocol converter.

In our previous work (Roychoudhury et al., 2004), we identify another message

category called shared messages which are sent by one process pi according to

Chi and received by the corresponding process pj according to Chj ; the generated

converters are allowed to speculative send shared control control messages and

relay the shared data messages. However, as noted in (Roychoudhury et al., 2004),

the definition of shared messages could lead to name clashes in message names,

since more than two components are involved in an HMSC node, in general. Hence,

an implicit assumption in our previous work is that message name clashes do not

occur (i.e. clashes are avoided through renaming if necessary). This also creates

difficulties when addressing the issue of data formatting, where the format of data

sent by one process may be different from the format of data expected by another

process. In such cases, the converter should be able to chop/merge/rotate data

packets to satisfy the protocols of both the processes as discussed in (Passerone

et al., 1998).

Message relationship specification We tackle this problem by taking in a

other input called message relationship specifications to assist us on the decision

of what messages the converter can automatically generate/consume and what

messages it will relay from one side to the other. This can be a result of the protocol

analysis, and this approach allows more flexibility than the previous approach we

did in (Roychoudhury et al., 2004) as illustrated below.

If MA and MB are the message sets of two protocols A and B, then a message
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relationship specification MK is a non-empty subset of {(ma,mb)|ma ∈ MA,mb ∈

MB}. Those ma’s and mb’s are called significant messages of A and B. Each

(ma,mb) consists of exactly one send message and one receive message, and are

said to be the image of each other. If message m occurs in MK more than once,

the m is said to be a multi-image message. Typically, MK specifies what the

the data messages must be translated from one side to the other. It also able to

described the merging and chopping of data packages in case the data messages

are mismatched in sizes.

For instance, for the example, in Figure 4.1, P wants to send to Q a token of

data which is the content of the message data, however Q expects the data sent as

the message msg. Therefore, the protocol converter needs to get the message data

from P and converts it to the message msg to send to Q. To instruct the protocol

converter to do that we give a message relationship specification {(data,msg)}.

The chopping of data packages can be easily specified too. If a component A would

like to send to component B a message a which is 16 bit-wide, but the component

B expects two 8 bit-wide messages b and c, the protocol converter needs to get

the message a and chop it into b and c. To generate such a protocol converter we

will give a message relationship specification MK = {(a, b), (a, c)}. The merging of

data packages is done in the same way.

Generating the protocol converter We now show the protocol converter gen-

eration for one node HMSC specification in Figure 4.1. For simplicity, we generate

a protocol converter which automatically sends and receives messages which are

not specified in any message relationship specifications. For “important” messages

which are specified in some MK - those need converting and relaying - the protocol

converter will first receive all the necessary messages before combining or chopping

into new messages to send out. So the message relationship specification MK we
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use in this example is {(data,msg)}. Our protocol converter for the example in

Figure 4.1 does the following:

• It first receives the input messages req and ready which may arrive in any

order.

• After req is received, the converter waits to receive the data message data

from P ; after data arrives, the converter converts it to msg and sends to Q.

• At this stage, P is expecting to receive ack while Q is expecting to receive

message finish before sending message ack.

• So at the interface with P the converter will generate ack, and at the interface

with Q the converter will generate output message finish before waiting to

receive ack. The actions at two sides can be interleaved.

The transition system corresponding to the protocol converter described above

appears in Figure 4.3. We note that it has a unique initial state and final state. In

fact, this will always be the case for the converter for a single node n of an HMSC.

The initial (final) state corresponds to the situation where none (all) of the agents of

n have started (completed) the events in their own view of node n. If the agents of

the node n are p1, . . . , pk, then the sequence of events σi in the pi-view of n induces

a sequence of states of length | σi | whose prefixes keep track of which events of σi

have happened so far. If this sequence is si,1,, . . . , si,ni
then: (a) the states of the

converter’s transition system are drawn from {s1,1, . . . , s1,n1
}×. . .×{sk,1, . . . , sk,nk

},

(b) the initial state of the converter is s1,1 × . . .× sk,1 and (c) the final state of the

converter is s1,n1
× . . . × sk,nk

.

We now present more formal descriptions; these are based on the work of (Tran,

2004; Zvereva, 2004). We start with the formal definition of communicating finite

state machines.
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?ready

?ready

?req

?data ?data

?ready !msg

?req

!ack

!finish ?ack

?ack!finish

!ack !ack

Figure 4.3: Protocol converter for the specification of Figure 4.1

Definition 2. A quintuple P = (S, q0, F,M, δ) is a communicating finite state

machine (cfsm) where:

• S is a finite set of states.

• q0 ∈ S is the initial state.

• F ⊆ S is the set of final states.

• M is a finite set of messages, M =!M ∪ ?M . !M and ?M are not necessarily

two mutually disjoint sets. An element m of M is an input if m ∈ ?M , and

an output if m ∈ !M .

• δ, the transition relation, is a subset of S × M × S.

A MSC specifying a protocol of component P has several life-lines, one for each

of the participating components. However, we are only interested in the life-line

of component P , since the actions located along this life-line show the order in

which P is supposed to send and receive messages. We can view the life-line

of component P as a simple cfsm which starts from the top of the life-line and
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executes the send/receive actions in sequence. Figure 4.4 shows the corresponding

cfsm of the Q component in the example in Figure 4.1.

!ack

?msg

?finish

!ready

Figure 4.4: Communicating finite state machine.

Denote MP as the set of messages along the life-line of component P in an

MSC. By the definition of MSCs, MP is an ordered set {m1,m2, . . . ,mn} in which

mi � mj if i < j for i, j ∈ {1 . . . n}. From an MSC specifying the view of a com-

ponent P , we can formally construct corresponding cfsm as (SP , qP
0 , FP ,MP , δP ).

In particular,

• SP = {s0, s1, . . . , sn} is set of the control locations inserted along the life-line,

• qP
0 = s0,

• FP = {sn},

• MP is the set of messages along the life-line described above,

• δP = {(si,mi+1, si+1) | for all i = 0 . . . n − 1}.
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That is we have a total order for both control locations and the messages. As

usual, we assume finite state machines communicate with each others through

FIFO channels. So between two component P and Q, there is a FIFO channel from

P to Q and another channel from Q to P . However, when we insert between them

a protocol converter; P will only communicate through FIFOs with the converter

but not with Q; similar situation holds for Q.

Definition 3. Given two cfsms which represent protocols component P and Q, a

set MK is a message relationship specification which satisfies

• MK 6= ∅,

• MK ⊂ {(mp,mq)|mp ∈ MP ,mq ∈ MQ},

• For every (mp,mq) ∈ MK either mp ∈!MP ∧ mq ∈?MQ or mp ∈?MP ∧

mq ∈!MQ.

The message relationship specification is a non-empty set of message pairs. A

pair in the set must include an input message of one component and an output

message of other component.

Definition 4. Given two cfsms which represent protocols component P and Q

with a message relationship specification MK we can construct the interface as a

cfsm H = (SH , qH
0 , FH ,MH , δH) which consists of the following elements:

• SH = SP × SQ,

• qH
0 = (qP

0 , q
Q
0 ),

• FH = {(qP
n , qQ

m)} where qP
n ∈ FP and qQ

m ∈ FQ,

• MH = MP ∪ MQ, !MH =?MP∪?MQ and ?MH =!MP∪!MQ,
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•

δH = {((p, q),m, (p′, q)) | (p,m, p′) ∈ δP

∧ there not exists (m,mq) ∈ MK for some mq}
⋃

{((p, q),mp, (p′, q)) | (p,mp, p′) ∈ δP

∧ there exists (mp,mq) ∈ MK for some mq and mp ∈!MP}
⋃

{((p, q),mq, (p, q′)) | (q,mq, q′) ∈ δQ

∧ there exists (mp,mq) ∈ MK for some mp and mq ∈!MQ}
⋃

{((p, q),m, (p, q′)) | (q,m, q′) ∈ δQ

∧ there not exists (mp,m) ∈ MK for some mp}
⋃

{((p, q),mp, (p′, q)) | (p,mp, p′) ∈ δP

∧∀(mp,mq) ∈ MK where mp ∈?MP then mq �Q q}
⋃

{((p, q),mq, (p, q′)) | (q,mq, q′) ∈ δQ

∧∀(mp,mq) ∈ MK where mq ∈?MQ then mp �P p}

In short, given two protocols and a specification about what messages needed to

be converted between them, we can construct a protocol converter as a product

state machine of the two protocols. The starting state of the machine is a state

where two protocol components are at their starting states; similarly to the final

state. The outgoing messages of the protocols now become the incoming mes-

sages of the protocol converter; similarly the incoming messages of the protocols

now become outgoing messages of the protocol converter. For the messages not

specified in the message relationship specification, the protocol converter can just

send to (receive from) components. For the incoming messages (as outgoing for

the components) which are specified in the message relationship specification, the

protocol converter will take in. The protocol converter actually remember those

messages; so it should have some form of memories; however at this level of ab-

straction we do not express this information. The protocol converter will send out

those outgoing messages specified in the message relationship specification when

the component want to receive and when the protocol converter itself has received
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the corresponding message (it is a pair) from the other component.

Incompatibility Detection As mentioned earlier, the converter cannot specu-

latively send important messages - those specified in some message relation spec-

ifications - which are usually data messages. Therefore in certain situations we

cannot synthesis a protocol converter; for example, the Figure 4.5(a) shows an

such example. In this situation, component P expects to receive message data1

before sending message data2 while component Q expects to receive message msg1

before sending message msg2. By analyzing the two protocol semantics, we find

out that data1 corresponds to msg2 and msg1 corresponds to data2. Hence, a pro-

tocol converter needs to receive msg2 from Q and to convert it to data1 to send

to P ; the converter also needs to receive data2 from P and to convert it to msg1

to send to Q. The message relationship specification describing this requirement

is MK = {(data1,msg2), (msg1, data2)}.

However, no protocol converters can handle this situation. Because the first thing

a protocol converter has to do here is to either send data1 to P or send msg1 to

Q which the converter cannot do since it does not have the content. In the other

words, we have a deadlock situation. Consequently, in the process of synthesizing

a protocol converter as a finite state machine, there will be a state in which the

only moves available are speculatively sending “important” messages; in this case

it is the starting state. Hence we declare incompatibility and abort. We give the

formal definition as follows.

Definition 5. We say that protocols of component P and Q are adaptable, if and

only if, the final states F H of the protocol converter are reachable from the initial

state.

If two protocols are not adaptable, we say they are incompatible.

From the protocol converter synthesis angle, when the two protocols are not
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msg2

msg1

data2

Ch
QPCh

QPQP
data1 msg1???

data1???

(a) (b)

Figure 4.5: (a) A pair incompatible protocols with MK =

{(data1,msg2), (msg1, data2)} (b) A converter for the specification in (a)

compatible, we cannot synthesis a functional protocol converter. That means the

protocol converter synthesized according to the Definition 4 when put in between

two protocols will create dead-lock situations.

4.2 Multi-threaded Protocol Converters

In the previous section, we have built the converter as a single sequential finite

state transition system. In general, for deriving a converter involving k processes

p1, . . . , pk (described via k MSCs) we view the converter as a multi-threaded pro-

gram with k threads T1, . . . , Tk. Each thread Ti of the converter communicates

with exactly one process pi. Any interleaving of events across converter threads

is allowed. Any two converter threads communicate with each other via point-to-

point message passing. In particular, for a converter with k threads we will have

k(k − 1) message buffers; buffer qi,j contains messages sent by converter thread Ti

to converter thread Tj. This model of the converter is a more faithful reflection of

SystemC protocol converters automatically generated by our toolkit.

Why do the converter threads need to communicate? Recall that converters have

to match and convert messages specified in message relationship specifications.
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For instance, in the example in Figure 4.1 message data from P is matched with

message msg to Q, hence the converter thread servicing process Q needs to know

if the converter thread servicing process P has received the message data so that

it can convert data to msg to send to Q. Clearly only “important” messages will

be exchanged between converter threads via message buffers. Other than that any

converter threads consumes input messages and generates output messages without

communicating with other threads.

We develop a multi-threaded protocol converter for the HMSC specification of

Figure 4.1 as follows. The converter has two threads TP (communicating with P )

and TQ (communicating with Q). The sequence of events executed by TP and TQ

are obtained from the P -view and Q-view in Figure 4.1. According to the P -view,

TP executes the sequence of events ?req, ?data, !ack and TQ executes the sequence

of events ?ready, !msg, !finish, ?ack. Any interleaving of TP and TQ is allowed.

The task involved within the converter in the events mentioned in the preceding

are different. Since req and ready, and ack from Q are input messages, their

receipt only requires the converter to wait until the messages actually arrive. The

message finish and ack to P are output messages, so they are simply sent off by

corresponding converter threads. On the other hand, data needs to be converted

to msg, therefore when TP executes ?data it appends data to the buffer qP,Q. And

when TQ executes !msg it first checks whether data is in qP,Q; if so, it removes

data from qP,Q, converts it to msg, and sends off to process Q. Figure 4.6 describes

the multi-threaded implementation of our protocol converter.

We now formally define the definition of the protocol converter for more general

cases in which multiple components interact with each others.

Definition 6. Denote P is the set of N components. The cfsm Pi = (Si, q
i
0, Fi,Mi, δi)

is extracted from the view(MSC) of components Pi ∈ P with i = 1 . . . N . The set

MK ⊆ {(mi,mj)|mi ∈ Mi,mj ∈ Mj 1 ≤ i, j ≤ n, i 6= j} is a message relationship
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Figure 4.6: The Multi-threaded Protocol Converter for the HMSC in Figure 4.1

specification. The protocol converter will be a cfsm H = (SH , qH
0 , FH ,MH , δH) in

which the elements are:

• SH =
∏

i=1...N Si,

• qH
0 = (q1

0, q
2
0, . . . , q

N
0 ),

• FH = {(q1, q2, . . . , qN )} where qi ∈ Fi.

• MH =
⋃

i=1,...,N Mi.

•

δH = {((p1, . . . , pi, . . . , pN ),mi, (p1, . . . , pi′, . . . , pN )) |

(pi,mi, pi′) ∈ δi ∧ there not exists (mi,m) ∈ MK or (m,mi) ∈ MK for some m}
⋃

{((p1, . . . , pi, . . . , pN ),mi, (p1, . . . , pi′, . . . , pN )) |

(pi,mi, pi′) ∈ δi ∧ there exists (mi,m) ∈ MK or (m,mi) ∈ MK for some m

∧m ∈!Mi}
⋃

{((p1, . . . , pi, . . . , pN ),mi, (p1, . . . , pi′, . . . , pN )) |

(pi,mi, pi′) ∈ δi ∧ there exists (mi,mj) or (mj,mi) ∈ MK for some m

∧mi ∈?Mi ∧ mj � pj for all such mj}
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A implicit assumption here is that for each HMSC node we will have only one

message relationship specification, but it is not a limitation. Theorectially, we can

easily combine/decompose message relationship specifications.

4.3 Protocol Converter for HMSC-specifications

We now extend our converter generation technique to arbitrary HMSC specifi-

cations. For this purpose, we need to deal with (a) concatenation of nodes (b)

branching behavior (i.e. a node in the HMSC having multiple immediate succes-

sors) and (c) loops.

Since we adopt asynchronous concatenation, it is appropriate to view the con-

verter at each node as a multi-threaded system (refer Section 4.2). If we have a

protocol involving k processes and the converter threads are T1, . . . , Tk, the con-

verter for a sequence of nodes n1, . . . , nN can be synthesized by connecting the

end of thread Tj (for all 1 ≤ j ≤ k) in node ni to the beginning of thread Tj in

node ni+1. Note that even for synchronous concatenation, we can develop a multi-

threaded converter for each node of the HMSC; however the converter threads will

synchronize at the end of each HMSC node.

We now consider branching. If a node n of an HMSC has multiple successors (say

n → n1 and n → n2), we need to ensure that all the converter threads move to

either n1 or n2 (i.e. we want to prevent the situation where certain threads move

to n1 and the others move to n2 as this will generate behaviors not allowed by the

HMSC specification (Uchitel, Kramer, and Magee, 2001)). Since we are working

with asynchronous concatenation, several nodes of the HMSC may be active at

any point of time ; we require an external thread (which we call the environment

thread) to decide on the immediate successors of each of these nodes. This decision

is assumed to be available in a channel called RUN. Each agent of a node and
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each converter thread associated with the node, on completion, will query the

RUN channel to determine which node it should enter (or which thread it should

pass control to) next. In our actual implementation, the environment thread is a

simple file containing a finite run of the HMSC - a path in the HMSC starting from

the initial node. However, it is easy to extend the implementation such that the

environment thread is modeled as a non-deterministic process.

Finally, we deal with loops. For HMSCs containing loops, a process can unbound-

edly overtake another since asynchronous concatenation of nodes is assumed. This

will create unboundedly many active nodes of the HMSC. To avoid this situation,

we do not allow multiple active copies of the same node at any stage in any ex-

ecution. More precisely, we allow only cycle-bounded executions (as defined in

Chapter 2). This policy is easily enforced by the RUN channel. Along the path

supplied to it (either statically as in our current implementation or dynamically)

by the environment thread, it keeps track of where each process is. It also keeps

track of the currently active nodes. Thus, it provides the name of the next node

(say n′) to any process p exiting a node of the HMSC only if the node n′ is not

currently active. If the next node is still active, it provides a WAIT signal as a

response which blocks p from proceeding. Naturally, this policy is also applied to

the individual threads of the converter.

We provide a formal treatment by starting with the definition of our HMSC.

Definition 7. An HMSC is a tuple G = (T , τ0,F , E) where:

• T is a finite set of transactions. Each transaction τ is of the form {[Chi]}
N
i=1

where Chi is a MSC presenting the view of component Pi.

• τ0 ∈ T is the initial transaction.

• F ⊆ T is set of final transactions.
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• E ⊆ T × T is the set of edges.

The HMSCs we are defining here are similar to the HMSC definition in Chap-

ter 2. Except that in each node there is a set of MSCs; each MSC represents

the view(protocol) of a component in that node. We now describe the protocol

converter synthesizing for inter-component HMSC descriptions. First, we need to

extract a cfsm for each component in the HMSC, then we synthesize the converter

from there. Previously, we have already defined the cfsm which presents the view

of each component in a single node. The cfsm of component P in the HMSC will

be a concatenation of cfsms of P in all the nodes according to the edges. Let call

Pτ = (Sτ , q
τ
0 , Fτ ,Mτ , δτ ) be the cfsm of component P in the node τ . Notice that

we define the cfsms below to be used to synthesize the converter. They are not

the equivalent representations of the components of the HMSC.

Definition 8. Given an HMSC, the cfsm of representing the component P is

(SP , qP
0 , FP ,MP , δP ) where

• SP =
⋃

τ∈T Sτ ,

• qP
0 = qτ0

0 ,

• FP =
⋃
{Fτ | τ ∈ F},

• MP =
⋃
{Mτ | τ ∈ F}, !MP =

⋃
{!Mτ | τ ∈ F} and ?MP =

⋃
{?Mτ | τ ∈ F}

•
δP = {(p,m, q) | (p,m, q) ∈ δτ where τ ∈ T }

⋃
{(p, ε, q) | p ∈ Fτ ∧ q = qτ ′

0 ∧ (τ, τ ′) ∈ E}
.

In the definition above there are special transitions marked with ε. They are

points where components finish their work in one HMSC node and move to the next

one. As mentioned earlier, the semantics of HMSCs assume all the components

make consistent choices. In our implementation, we use an environment thread
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to decide. With this semantical assumption, the protocol converter defined in

Definition 6 can now be extended for HMSCs in the same manner.

4.4 Additional Behavioral Requirements

So far, our protocol converters will automatically generate and consume messages

(signals) when needed and will convert important messages according to given

message relationship specifications to allow incompatible components communicate

with each other while still using their own native protocols. Our technique is able

to deal with fairly complicated systems. However, in many situations we need to

impose additional behavioral requirements on generated protocol converters. We

would like to have a mechanism to specify additional requirements on the behavior

of a generated protocol converter on top of what it has done. For example, we

would like to be able to say things like certain messages cannot be sent until some

conditions are satisfied, or certain sequences of actions are not allowed.

One reason for such a mechanism is that control messages cannot always spec-

ulatively generated because they might represent access authorization to shared

resources which are not explicitly modeled in an HMSC. So in these kind of situa-

tions, we would like to control the send and receive of certain messages so that only

one component can access the shared resource at any moments. Another reason for

which we need additional behavioral requirements is to make generated protocol

converters to have some desired properties. For example, let us look at the exam-

ple in Figure 4.7, to be able to make the sender and the receiver communicate

to each other we only need to specify a message relationship specification to be

MK = {(msg, data)}. However, if we would like to limit the buffer size of the con-

verter such that only one message is in transit at any moment, we possibly want

to impose that the ack message is sent only after the data message is delivered to
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the receiver. Or if the sender runs faster than the receiver and it cannot tolerate

any delay, we can impose that the ack message is sent immediately after msg is

received - assume that sending data takes a certain time. In this specific exam-

ple, the additional behavioral requirements, which we want to impose, only involve

actions in one node of the HMSC, but, in general, we would like to have a mecha-

nism to impose additional requirements on overall behavior of protocol converters;

in other words, an additional behavioral requirement might relate messages across

the whole HMSC.

receiver sender receiversender

nack

err

sender

set−up phase

release phase

error recovery phasetransfer phase

sender

end

receiver receiver

senderreceiver

pull

sender receiver

senderreceiversender

data
ack

msg

receiver

Figure 4.7: An HMSC example
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Behavioral Specifications We use automata to specify additional behavioral

requirements; we can call them behavioral specifications. A behavioral specification

SK is a finite state machine (S, s0,M, δ) which only has one starting state and all

states are ending states; the alphabet is a subset of all messages of all components

M ⊆
⋃

P∈P MP . As stated a SK specifies some desired properties of the whole

system. For example, a protocol converter may be designed to provide - besides

bridging the incompatibilities - end-to-end or local acknowledgment depending on

how SK is specified.

Definition 9. A behavioral specification is a tuple (S, s0,M, δ) where

• S is the set of states,

• s0 ∈ S is the initial state,

• M ⊆
⋃

P∈P MP is the set of special messages,

• δ is the transition function.

Formally, a SK restricts what are legal behavior of a generated protocol converter;

more precisely, given a run σ of a protocol converter, we say σ is a legal run if

σ|M ∈ L(SK). In other words, any sequences of actions of a protocol converter after

removed all the unrelated messages must be accepted by SK . For a scenario-based

description, we can have more than one behavioral specifications, each describes

some desired properties of the protocol converter. The behavioral specification

which limits the buffer size of the converter for the example in Figure 4.7 is shown

in the Figure 4.8.

For a given behavioral specification, we implement it as a monitor to the protocol

converter generated using techniques described in above sections. More precisely,

given a protocol converter and a behavioral specification SK , we will monitor all

the actions sending or receiving a message which is in the alphabet M . If an
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−data −ack

Figure 4.8: The behavioral specification which limits the converter buffer size of

the example in Figure 4.7

action - send or receive message m - is ready to execute, the converter will check

with the corresponding monitor to see if there is a transition labeled m available

at the current state of SK . If there is, the converter will go ahead to execute

the action and inform the monitor to update the current state of SK ; otherwise,

the action is blocked until there is a transition labeled m available at SK . Note

that the converter as a whole is not blocked; recall that our protocol converters are

implemented as multi-thread programs. So every action belongs to some threads; if

an ready action in thread Ti is blocked due to an behavioral specification, actions in

other threads are still free to go. In the next chapter, we will show more examples

to illustrate the use of behavioral specifications.

Definition 10. Given a protocol converter (SC, qC,MC, δC) and a behavioral spec-

ification (SK, s0,MK, δK) where MK ⊆ MC, the converter which comply to the

behavioral specification is a cfsm (S, q,M, δ) where

• S = SC × SK,

• q = (qC, s0),

• M = MC,
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• δ = {((p, q),m, (p′, q))|(p,m, p′) ∈ δC ∧ m 6∈ MK}
⋃
{((p, q),m, (p′, q′))|(p,m, p′) ∈ δC ∧ (q,m, q′) ∈ δK}

As described we use message relationship specifications to guide the converter

regarding message conversion. Theoretically speaking, message relationship spec-

ifications can be, however, described by behavioral specifications. For example,

the MK = {msg, data} is actually an syntactical sugar form of the automaton in

Figure 4.9. This automata imposes requirements on the message sequence of legal

runs, but it does not explicitly specify the message relationship. Therefore, for

the practical purposes we prefer to use sets of message tuples to represent message

relationship specifications. Nevertheless, by using automata to represent all kind

of requirements a designer would like to impose/guide the process of generating

protocol converters, we achieve a unified framework to reason about the system.

−msg−data

Figure 4.9: Automaton representation of MK = {msg, data}
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In this chapter, we use selected features of some SoC bus communication protocols

to illustrate the use of our converter synthesis technique. We mainly model the

protocols of the bus master(s) and the bus slave. In other words, each node of

the input HMSC specification contains a MSC for each master and each slave.

However, the bus masters can communicate with the bus slaves only with the help

of the bus controller. We have modeled several features from existing SoC bus

protocols which enable high speed data transfer e.g. split transactions, different

bus priorities, concurrent transactions, etc. Many of these features are common in

SoC bus protocols such as AMBA AMBA, CoreConnect Architecture etc. We will

use different examples to incrementally show various capabilities of our approaches.

5.1 Basic Bus Communication Protocols

In the following, we do not model the bus-controller as a separate process. In-

stead, we synthesize the protocol converter which enables communication between

masters and slaves. Note that in the next two examples we do not impose any

constraints on the synthesized protocol converter beyond enabling masters/slaves

to execute their individual projected views. The work of (Passerone et al., 2002)

allows specification of additional temporal properties of the converter to be syn-

thesized via a “specification automaton”. Our approach also allows this feature by

using the behavioral specifications as will being shown in the next section.

The first example is shown in Figure 5.1. It exhibits “split transactions”; thus

the master which has been granted access to the bus may not get its request

serviced because the slave cannot service it currently (this is communicated by

the slave via a split signal). Subsequently, the master’s right to access the bus

will be ignored (i.e. it will not even be considered for bus contention) until the

slave indicates its willingness to serve the master via a resume signal. The signal
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transfer shown in Figure 5.1 indicates data transfer (i.e. it is a data signal).

In this case, there are no incompatibilities in the data transfer; both the master

and the slave agree that when they want to transfer data they will send/receive

the transfer signal(message). So the message relationship specification is MK =

{transfermaster, transferslave}. Note though only one master has been modeled,

the effect of other masters is implicitly captured via the grant and nogrant signals.
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Figure 5.1: Split transfers example

Another example modeling two masters with different priorities (assigned stati-

cally) is shown at Figure 5.2. It contains three components: two masters and one

slave; the master m1 has higher priority than the master m2 in terms of bus access.

The bus controller mediates their access and it is synthesized as the converter.

Note that m2 can successfully transmit data (node E) only if m1 has sent a req0

message (indicating that it does not want to request bus access); the req1 signal

in this example indicates willingness to access the bus. We have also generated
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Figure 5.4: Simulation run of synthesized converter for (a) Figure 5.1 with input

path ABACEFGFHABACD and (b) Figure 5.2 with input path BDADCEAD

the converter for more involved features of common bus protocols. For example,

we have used our converter generator toolkit to synthesize the bus controller of a

simple bus protocol involving (i) multiple masters with individual static priorities

and (ii) split transactions between master and slave; in other words, the example

is the combination of the two above examples; it is shown at Figure 5.3.

Experimental Results Finally, we present the simulation results of the gener-

ated protocol converters for the two simple examples we presented in this section.
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Figure 5.4(a) shows the simulation run of the synthesized converter for the HMSC

specification in Figure 5.1; the input path through the HMSC which was used

to drive this simulation is ABACEFGFHABACD. This corresponds to the following se-

quence of scenarios:

• The master requests bus access and is denied (sequence AB).

• The master requests bus access again and is granted (sequence AC).

• The slave splits master’s transfer as a result of which master is ignored as a

candidate for bus access (sequence EFGF).

• The slave indicates that it is ready to resume communication with master

(node H).

• The master makes a fresh request for bus access which is considered for

contention, but is not granted (sequence AB).

• The master makes another request which is granted (sequence AC)

• The master’s transfer is finally completed (node D).

Similarly, Figure 5.4(b) shows the simulation run of the synthesized converter for

the HMSC specification in Figure 5.2; the input path through the HMSC which

was used to drive this simulation is BDADCEAD.

We present simulation runs in a MSC format; this allows us to visualize the

interaction between the synthesized converter and the master/slave processes. Each

signal shown in the MSCs of Figure 5.4(b) is marked with the node in the HMSC

specification to which it belongs; thus the req signal of node A is marked as reqA

and so on. Note that our synthesized converter is responsible for generating the

grant, nogrant signals (i.e. it is acting as the bus controller to decide on bus
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access by masters); at the same time, the converter is also responsible for receiving

the request signals from the master(s) since these signals are not visible to slave(s).

5.2 More Advanced Examples

By using message relationship specifications, we are able to handle mismatches

in data message names and sizes; and the behavioral specifications allow us to

describe additional temporal properties of the converter to be synthesized. These

brings us enormous modeling power. The next example, shown in Figure 5.5,

models two masters with different priorities (prefixed statically) want to read/write

data from/to a slave. The master2 has higher priority than the master master1 in

terms of bus access. The synthesized converter acts as the bus controller here to

mediates the master accesses.

There are few additional functionalities which the converter handle here. First,

the two master use word(32-bit) transfers while the slave uses half-word(16-bit)

transfers. Therefore, the converter needs to perform dynamic bus sizing to allow

components with different data widths to efficiently communicate. In our example,

the converter will read the data message from a master and break it into D1

and D2 messages to write to the slave, vice versa the converter will collect D1

and D2 to merge them together and transfer to a master. The converter uses

message relation specifications to guide the merge/split messages. For instance,

the mode of interaction E is attached with a message relation specification ME
K =

{(D1, data), (D2, data)}, similarly for other modes of interaction.

Second, in this example there is an implicit assumption that the common bus

shared by three components - two masters and a slave - has separate read/write

wires. That means when both two masters want to read/write to the slave the con-

verter has to mediate, and only one master is granted to access the bus. However,
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if a master requests to read and the other requests to write, both operations can

be overlapped at the same cycle (but on different clock edges) yielding a maximum

bus utilization of two data transfer per clock. The scenarios G and H describe

these read/write overlapped situations. Note that in order to have two operations

in the same cycle, we have to make sure they are done overlapped each other to

avoid the bus contention. For instance, in the scenario G, the slave must receive

the startW signal only after the done signal is sent to master2; this is to make

sure that the bus is free for the master1 to do a write operation. We impose this

condition by specifying a behavioral specification as in Figure 5.6.

Another example is shown in Figure 5.8. This example has the same setup

with the previous one: two masters with different priorities and one slave using a

common bus. In this example, the master1 having higher priority can interrupt a

transaction in process of the master0 as shown in the scenario F in Figure 5.8. Only

after the split transaction is done, the transaction in process of the lower priority

master0 is resumed. Beside merely making sure all the component executes the

transaction with their own protocol, additional temporal order of message in this

scenario is needed. In this situation, the split signal only can be sent to master0

after receiving a req signal, and following by sending grant signal back to master1.

This requirement is specified in Figure 5.7.
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−startW−done

Figure 5.6: Behavioral requirement for overlap read/write example

+req −grant

−split

Figure 5.7: Behavioral requirement for split transaction example
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6.1 Overall System Design

In this chapter, we describe the SystemC-based implementation of our converter

generator.

SystemC – viewed as a programming language – is a collection of class libraries

built on top of C++ and hence is naturally compatible with the object-oriented

design philosophy. It allows both applications and platforms to be expressed at high

levels of abstraction, while enabling the linkage to hardware implementation and

performance evaluation. The semantics of SystemC has been standardized through

a kernel simulator. For more background information concerning SystemC, we refer

the reader to (Arnout, 2000; Grotker et al., 2002; SystemC).

Our tool takes as input an HMSC description of interactions among multiple

components. This description comes in two parts: the HMSC description and the

converter specifications. The HMSC description includes the graph structure of

the HMSC and the component views (or MSCs) inside each node. The converter

specifications are comprised of message relationship specifications and behavioral

specifications. Our technique automatically generates a converter in the form of

SystemC code. In our scheme, the component views are also specified in SystemC,

and hence we can compile the converter along with the component views. The

resultant system can be simulated using the SystemC simulation kernel. The sim-

ulation is driven by a path through the HMSC, which we provide as an input for

the simulation. The converter generator is written in C++ and its structure is

shown in Figure 6.1. We, next, look at the format of input files in details.
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(SystemC)

Figure 6.1: Overall structure of the implementation

6.2 Input Formats

The first part of the input, the converter specifications are described in a text file

comprised of all message relationship specifications and behavioral specifications.

The converter specification description file of the example in Figure 5.5 is shown

below.

1 DATA=(D1OneE ,dataOneE):(D2OneE ,dataOneE)

2 DATA=(dataOneF ,D1OneF):(dataOneF ,D2OneF)

3 DATA=(D1OneG ,dataOneG):(D2OneG ,dataOneG)

4 DATA=(dataTwoG ,D1TwoG):(dataTwoG ,D2TwoG)

5 DATA=(D1TwoH ,dataTwoH):(D2TwoH ,dataTwoH)

6 DATA=(dataOneH ,D1OneH):(dataOneH ,D2OneH)

7 CONSTRAINT=state1:state1 doneOneG state2:state2 startReadTwoG state1:

8 CONSTRAINT=state1:state1 doneTwoH state2:state2 startReadOneH state1:
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Each line describes a specification; a message relationship specification has a

corresponding line marked with DATA, and a behavioral specification has a cor-

responding line marked with CONSTRAINT. For instance, the first line of the

above file says that in the scenario E data message in the master1 view will be

chopped into D1 and D2 messages in the slave view. The last line of the above

file describes a behavioral automaton/specification that requires in the scenario H,

the done message must be sent to master1 before startRead signal is sent to slave.

This last line is, basically, the textual description of the automaton in Figure 5.6.

The second part of the input, the graph structure of an HMSC (i.e. the name

of nodes and the edges between nodes), is described in a simple text file; and the

views of the components (i.e. the MSCs inside each node), is specified in SystemC

in the following way. All components described in the HMSC are presented as Sys-

temC modules that exchange messages through FIFO channels. For each module

representing a component, a number of ports are specified, one for each message

in MSCs of that component. The port declarations only differ in types of data

transmitted through them. For a control message, the type of the corresponding

port is boolean; while for a data message, it can be a SystemC data type or a

user-defined one. The view of any component p at any node n of the HMSC is

encoded as a SystemC function in the module representing p. The body of this

function is just a list of write and read port actions corresponding to send or receive

message actions along the life-line of p in the corresponding MSC. In addition, in

each module there is a main thread which interacts with the environment thread.

It will call the corresponding function when the control point of the component

reaches a node in the HMSC. A snippet of the SystemC module representing the

master component of the example in Figure 5.1 is shown below.

1 // SystemC Module

2 SC_MODULE(master) {

3 // Port declaration
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4 sc_fifo_out <bool > reqA;

5 sc_fifo_in <bool > nograntB;

6 sc_fifo_out <sc_int <32>>transferB;

7 sc_fifo_in <bool > grant;

8 ...

9 // Constructor

10 SC_CTOR(master){

11 SC_THREAD(main_action);

12 }

13 // main thread

14 void main_action(){

15 char* next = path ->nextNode();

16 while(strcmp(next ,"")!=0){

17 if (strcmp(next ,"A") == 0) NodeA();

18 if (strcmp(next ,"B") == 0) NodeB();

19 if (strcmp(next ,"C") == 0) NodeC();

20 if (strcmp(next ,"D") == 0) NodeD();

21 ...

22 next = path ->nextNode(); }

23 }

24 // protocol of master at node B

25 void NodeB() {

26 bool b = nograntB ->read();

27 transferB ->write(data);

28 }

29 // protocol of master at node C

30 void NodeC() {

31 bool b = grant ->read();

32 // request signal sent

33 transferC ->write(data);

34 // data sent

35 }

6.3 Generated Protocol Converters

The generated converter is a SystemC module too. The converter is multi-threaded.

As discussed in Section 6.1, the converter threads interact with the environment

thread (a simulation path in our implementation). We show here only the task of
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the converter thread dealing with master component in node C of the example in

Figure 5.1.

1 void node_C_master(){

2 while(true){

3 wait(event_C_master

4 | termComp[0]. value_changed_event ());

5 if(termComp[0].read()) return;

6 wait(clock ->posedge_event());

7 // send grant message

8 port_master_grantC ->write(true);

9 time = clock ->time_stamp().value();

10

11 if (port_master_transferC ->num_available()==0)

12 wait(port_master_transferC.data_written_event ());

13 // receive transfer message

14 sc_int <8> d = port_master_transferC ->read();

15 q_transferC ->push(d);

16 time = clock ->time_stamp().value();

17

18 chooseNextNode(...);

19 }

20 }

Basically, a converter thread dealing with a component in a node is a nontermi-

nating while loop - this is the standard way in SystemC to model threads; at the

beginning of the loop the converter thread checks to see (1) if it is allowed to exe-

cute and (2) if the simulation is finished. If the simulation is finished, the thread

just terminates; otherwise, it will execute the body of the loop. As we described

in the Section 4.2 the actions in the body of the loop are just the dual-view of

the component view which it interfaces. At the end of the loop, the thread will

check with the RUN channel to get which converter thread of a node it should

pass control to.

A behavioral specification is implemented as a monitor. The converter will check

with the monitor before executing any action which sends or receives a message

which is in a alphabet of a behavioral specification, and it will update the monitor
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after executing the action. The following snippet of codes shows the implementa-

tion details:

1 while ( !isMoveable("splitZeroF") )

2 {

3 wait( clock ->posedge_event() );

4 }

5 port_masterzero_splitZeroF ->write(true);

6 doAct("splitZeroF");

Also based on message relationship specifications, the converter will automatically

handle dynamic data-sizing. The following is the snippet of codes merging message

D1 and D1 from the slave to send them to master0 as data message in the scenario

E of the example shown at Figure 5.5.

1 // wait for D1 and D2

2 while (q_dataZeroE_D1SlaveE ->empty()) {

3 wait(cycle , time_unit);

4 }

5 while (q_dataZeroE_D2SlaveE ->empty()) {

6 wait(cycle , time_unit);

7 }

8 sc_int <32> d_D1SlaveE = q_dataZeroE_D1SlaveE ->front();

9 q_dataZeroE_D1SlaveE ->pop();

10 sc_int <32> d_D2SlaveE = q_dataZeroE_D2SlaveE ->front();

11 q_dataZeroE_D2SlaveE ->pop();

12 sc_int <32> d_masterzero_dataZeroE;

13 // merge D1 and D2 to have data

14 d_masterzero_dataZeroE = (d_D1SlaveE ,d_D2SlaveE);

15 // send data message to the master zero

16 port_masterzero_dataZeroE ->write(d_masterzero_dataZeroE);

Timing constraints and clock sensitivities Since SystemC supports clock

sensitivities and timers, we have augmented our HMSC specification with these

features. This ensures that the results obtained by simulating the synthesized

converter over the SystemC simulation kernel will be more accurate (in terms of

number of clock cycles to execute a sequence of transactions). In particular, we
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allow any send/receive/internal event inside any node of the HMSC to be guarded

by two special conditions: pos edge and neg edge. pos edge is true at each positive

edge of the system clock and neg edge is true at each negative edge of the system

clock. As a trivial example, if two events e1, e2 in an MSC are both guarded by

pos edge and e1 happens-before e2 (as per the partial order of the MSC), then there

must be at least one clock cycle delay between e1 and e2.

In our implementation, we also allow for one timer per process in the HMSC

specification. The timer may be set, reset, counted down or timed out. This allows

us to specify a bound on the delay between two events within a process/component.

We note that several other approaches are possible for specifying timing constraints

in the MSC-based specifications (e.g. see (Harel and Marelly, 2002)). Incorporating

these mechanisms in our converter generation toolkit is a topic of future work.

6.4 Implementation Framework

We present the framework of our implementation in this section. The following is

the structure of the working directory:

• data\ this folder contains the code-templates to generate the protocol con-

verter and the code-templates to produce the simulation file.

• input\ this folder contains all the input files which are the converter speci-

fications, the HMSC graph structures, and the component views in form of

SystemC code.

• output\ this folder contains the generated protocol converters, and all other

supplementary modules to run the simulation.

• generator\ this folder contains the generator program.
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• parser\ this folder contains the parser to analyze the component views in

SystemC codes. The parser is written using Bison and Lex.

• util\ all other support modules.

The workflow The workflow of the system is as follows. To generate the pro-

tocol converter the generator generator\gen reads the file input\Generator.ini

to get all parameters. The ini file provides all the information for the genera-

tor to produce the protocol converter which will be put at output\Converter.h.

The generator will also generates the output\Main.cpp which pulls all the nec-

essary modules together to run the simulation. To run the simulation, using the

output\Makefile to compile the simulation. A executable file converter.x will

be produced; running it will produce the simulation trace as output\msc.fig.

The structure of the ini file contains multiple pair of property=value.

• modulesFile= the file contains component views in SystemC.

• graphFile= the file contains the structure of the HMSC.

• SimPath= the file specifies the simulation path which is a list of HMSC node

following the structure of the HMSC graph.

• ConstraintFile= the file specifies converter constraints.

• converterFile= the file in which the generated protocol converter will be

stored.

• mainFile= the file in which the simulation module will be stored.

• converterSkel= the template used in the converter generation process.

• mainSkel= the template used to generate the simulation file.
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• time output= if the value is true, the converter will time stamp the log file.

• clock sensitivity= if set to true, the actions will be guarded by clock

edges.

• time unit= the SystemC time unit to be used. Normally set to SC PS.

• cycle= the smallest time unit to be used.

Generation Algorithm We now present how we implement the generator. The

generator contains two big tasks.

1 int main() {

2 // Create the parse tree of the component views in SystemC

3 CreateComponents ();

4

5 // Generate the protocol converter

6 GenerateConverter ();

7 }

Parsing the SystemC code is straightforward because we restrict the format of

the code as explained in Section 6.2. The general converter structure is fixed and

what differs among the converters is the converter threads communicating with

the components. Therefore, we actually pre-build a code-skeleton for the protocol

converter and insert only the missing parts when generate a new protocol converter.

The general structure of a protocol converter is presented below.

1 SC_MODULE(Converter)

2 {

3 // internal queue declaration - generated

4 queue <sc_int <32> >* q_dataZeroE_D1SlaveE;

5 queue <sc_int <32> >* q_dataZeroE_D2SlaveE;

6 ....

7

8 // port declarations - generated

9 sc_fifo_in <bool > port_masterzero_reqZeroB;

10 sc_fifo_out <bool > port_masterzero_grantZeroB;
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11 sc_fifo_in <bool > port_masterzero_reqZeroC;

12 ....

13

14 // thread enable events - generated

15 sc_event event_A_masterzero;

16 sc_event event_D_masterzero;

17 sc_event event_B_masterzero;

18

19 SC_CTOR(Converter)

20 {

21 // Initialize internal queues

22 // Initialize thread enable events

23 // Initialize all converter threads

24 // Take in the simulation path

25 }

26

27 // Converter threads for each node

28 void node_A_masterzero (){

29 .....

30 }

31

32 void node_D_masterzero() {

33 ....

34 }

35

36 }

The most important aspect of the generator is to generate the converter threads

in each HMSC node. In each HMSC node, we have a separate converter node

talking to each component. The algorithm to generate those threads is presented

below.

1 void generateConverterThread(component , HMSCNode) {

2 // Get the life -line of the component in the HMSCNode

3 GetMSCLine(component , HMSCNode);

4

5 foreach message in the MSCLine {

6 if (message ->direction() == incoming) {

7 // generate converter outing message

8 if (message ->isNormalMessage()) {

9 // this message is not specified in the converter specification
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10 // Generate the converter code such that

11 // it just send out the same message to the component

12 }

13 else if (message ->isConstraintMessage ()) {

14 // This message is constrained by the extra automata

15 // but it is not a data message

16 // Generate the converter code such that

17 // the converter will consult the automata before

18 // send out the message to the component

19 }

20 else if (message ->isTranferMessage()) {

21 // This message is data message which need transfered among

22 // components

23 // Generate the converter code such that

24 // the converter check the queue to see if

25 // the corresponding message has come; if yes , send out the

26 // message to the component , otherwise wait.

27 }

28 } else { // outgoing

29 // generate converter incoming message

30 // The algorithm is similar to the above incoming message case.

31 }

32 }

33 }

The generator is based heavily on the template, hence the algorithm is quite strait

forward, most of the details are pre-built in the template codes. We have so far

through the code snipets shown all the aspects of the generation process. For more

details and further information, readers can refer to the actual implementation.



Chapter 7
Discussion

77



7.1 Summary of the Thesis 78

In this chapter, we summarize our contributions of the work in this thesis and

suggest some future research directions.

7.1 Summary of the Thesis

In this thesis, we have investigated the problem of automatically generating con-

verters which enable communication among embedded system components using

incompatible protocols. An important feature of our work is that it is based on

scenario-based descriptions of component interactions. Given the overall compo-

nent interaction patterns of the system in form of an HMSC, we automatically

generate a multi-threaded protocol converter in SystemC. This allows us to exploit

the SystemC simulation kernel for simulating the converter along with component

interfaces at a fairly high level of abstraction. We summarize our main contribu-

tions below.

• To the best of our knowledge, our work is the first one to study the problem of

synthesizing protocol converters using scenario-based descriptions. Our ap-

proach has many advantages over previous works. For instance, HMSC-based

descriptions can naturally and intuitively present the interaction among mul-

tiple parties. We can model complex systems comprising of components in-

volved in multiple mode of interactions in which control/data signals can

flow in both directions. Based on the SystemC simulation engine, we can

easily simulate the generated protocol converter along with the component

interfaces. For a more in-depth comparison, please refer to Section 3.2.

• We have built a complete system to conduct experiments to test the effec-

tiveness of our approach. Our generator is written in C++, and it produces

converters in SystemC which can be compiled with the component views for
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simulation. The system also provides MSC-descriptions of result simulation

traces for easy inspection.

• We have extended our previous work to handle dynamic data sizing in which

the converter need to combine/chop data packets. In order to have this

capability we introduce the use of message relationship specifications.

• We incorporate behavioral specifications in form of automata as the mean

for imposing additional behavioral constraints on the generated protocol con-

verters. This allows us to model more complicated systems.

7.2 Future Work and Concluding Remarks

In terms of future work, there exist various opportunities for extending our con-

verter generator’s capabilities.

• One direction will be to specialize the converter generation technique to han-

dle software/hardware interfaces. In a larger context, the work initiated here

has a bearing on hardware/software co-design. If each component is chosen

to be realized fully in hardware or software, our scenario-based description

clearly identifies the communication interfaces. Consequently, our approach,

especially after the enhancements suggested above, will rapidly yield an ex-

ecutable description of the interconnect fabric.

• Another line of work is to study and extend the scenario-based descriptions

themselves. Instead of using standard HMSCs, we can use similar formalisms

such as Communicating Transaction Processes (CTP) (CTP; Roychoudhury

and Thiagarajan, 2002, 2003). Since an executable specification can be ex-

tracted from CTP in a straightforward manner, it can potentially make it
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easier to generate an executable description of the interconnect fabric. One

limitation of our our current work is that a converter needs a environmental

thread to guide the simulation. The idea is that by exploring some other

forms of scenario-based descriptions we can eliminate the need for an envi-

ronmental thread.
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