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SUMMARY 

SUMMARY 

 

Accurate treatment of material interfaces and accurate modeling of unsteady 

cavitation are critical for simulating shock-cavitation-structure interaction. The Ghost 

Fluid Method (GFM)-based algorithms (the original GFM and the new version GFM) 

developed by Fedkiw et al (1999, 2002) are cost-effective techniques but do not work 

well in the simulation of compressible multi-medium flows involving strong shock 

wave or jet impact. A modified GFM, with an approximate Riemann problem solver 

(ARPS) coupled, has been proposed and developed by Liu et al (2003) and can work 

effectively for gas-gas and gas-liquid compressible flows. The iteration required in the 

ARPS is, however, found to take quite many steps and sometimes may fail to converge 

efficiently especially in the low pressure situation when applied to fluid-flexible 

structure interaction. This is because the solid medium is governed by a very stiff 

equation of state and the pressure (stress) to the solid density is extremely sensitive. To 

reduce the computational cost, an explicit characteristic method is developed to predict 

the interfacial status in this work where only an algebraic equation is solved and no 

iteration is required. The resultant algorithm (called the present GFM) is more accurate 

than the original GFM because the interfacial status is solved to define ghost fluids. To 

define the application ranges of each GFM-based algorithm, some analysis for 

gas/liquid-solid flows is carried out. The present algorithm is able to reduce the 

computational cost and is accurate for the gas/liquid-solid simulations.  

The transient cavitation, as usually occurring in underwater explosions, can be 

simulated via a one-fluid cavitation model where no additional governing equation is 

required. A few commonly employed one-fluid cavitation models can be found in the 

literature to date. These are the Cut-off model, the Vacuum model and the Schmidt 
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SUMMARY 

model. To remove the mathematical/physical inconsistency in these models or achieve 

wider application, we proposed a mathematically self-consistent isentropic one-fluid 

cavitation model where a model parameter should be determined (see also Liu et al, 

2004a). To obtain a faster and more straightforward application of the Schmidt model, 

we further developed a modified Schmidt model without undetermined model 

parameters (see also Xie et al, 2005a). Extensive analysis and tests show that those 

models capture different cavitation sizes and have different application ranges (i.e. 

density ratio of liquid to vapor). The numerical results demonstrate that the proposed 

isentropic one-fluid model and the modified Schmidt model work much more 

consistently and have much wider applications than the others. 

In this work, it has been found that the various one-fluid cavitation models 

mentioned above produce different periods and peak pressures of cavitation collapse 

for 1D cases like water hammer problem while provide similar solutions for 1D 

cavitating flow of large surrounding flow pressure. The present GFM and the various 

cavitation models are further extended to underwater explosion applications where 

there is the presence of large surrounding flow pressure. The present algorithm for 2D 

Euler system is derived and those one-fluid cavitation models are directly applied to 

multi-dimensions without any additional technique/modification. In addition, a fix is 

proposed to prevent the possible negative (water-solid) interface pressure. The present 

GFM is shown to be fast and robust for treating the material interface of 

multi-dimensions and the Isentropic model or the modified Schmidt model is able to 

simulate the dynamics of 2D cavitation well.  
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NOMENCLATURE 

Nomenclature 

English alphabets 

a  Speed of sound 

a~  Roe average speed of sound  

A  Constant in Tait’s Equation 

B  Constant in Tait’s Equation 
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d  Derivative operator 
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r
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s  Interface velocity 
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Identification matrix for mediums 
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W  Variable related interface information 

x  x coordinate 

y  y coordinate 
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Greek alphabets  

α  Void fraction 
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γ  specific heat Ratio of for gas 
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EOS constants for water and solid 

ρ  Flow density 

τ  Shear stress 

φ  Flow composition 

t∆  Time step size 

x∆  Spatial step size 
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Superscripts 

1 Fluid/medium one  

2 Fluid/medium two 

c  Index of a liquid flow status 
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G  Ghost fluid index 

I  Index of interface 
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' A reference status 

 

Subscripts 
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CHAPTER 1 INTRODUCTION 

Chapter 1 

Introduction 

1.1 Fundamentals of Cavitation in Underwater Explosion 

    Fluid flows with cavitation are of practical importance in many fields where the 

main working liquid is water. One typical example is the flow generated by the 

underwater explosions near structures and a sea surface. The underwater explosion is a 

very complicated process but its initial effects on nearby structures can be taken as a 

high-pressured shock and a cavitation collapse. The highly-pressured shock wave in an 

underwater explosion has been investigated in several previous studies [Sedov, 1959; 

Cole, 1965; Holt, 1977], where analytical and experimental solutions for the 

underwater explosion were presented and the process of shock was described very 

well. Behind the high-pressured shock, cavitation forms near the structure and the 

fluid-flow becomes a cavitating flow. This cavitating flow occurs since the low 

pressure in the liquid reaches towards the limit of vapor pressure. A few studies have 

been carried out to compute the flows with cavitation and describe the cavitation zone 

in detail. To obtain a more insight into the cavitating flow the knowledge of cavitation 

physics and classifications is essential.  

1.1.1 Physics of cavitation  

    Minute particles are always present in liquid which serve as initiation for vapor 

bubbles when the local pressure is low enough or temperature is sufficiently high. The 

bubbles could grow and collapse dynamically and have strong interactions with the 

surrounding liquid and structures. Such interactions may have significant desirable or 

undesirable effects on nearby floating or submerged structures. Desirable effects come 

from supercavitation that is associated with viscous drag reduction and lift force on 
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hydrofoils enhancement. Undesirable effects are major characteristics of cavitation 

such as surface erosion, excessive noise generation and structure devastation. For 

example, an underwater explosion near a structure or a free surface (Liu et al, 2003a), 

where (bulk) cavitation just below the free surface and (hull) cavitation nearby the 

structure surface are usually created and collapse very violently, can have serious 

damage to nearby structures. The shock wave, produced by the explosion, travels in 

water at a high speed and reaches the structures in a short time if structures are close to 

the explosion center. Consequently, the shock will impact on the structures at a very 

high pressure. Normally this process is taken as the main damage effect of an 

underwater explosion on nearby structures. When rarefaction wave reflects from the 

free surface or structures, the cavitation occurs at the adjacent water and may prevent 

the structures from full shock wave loading since it separates the structures from the 

water. Although this reduces the damage caused by shock wave, the structure has to 

subsequently withstand the high pressure caused by cavitation collapse. Sometimes the 

cavitation between the structures and water can be seen as a high-pressured bubble, 

whose dynamics are related to the structural damage. When the cavitation is 

compressed, the decrease of the cavitation dimension or collapse of cavitation leads to 

rapid increase of the pressure in the original cavitation region, thereby resulting in the 

emission of pressure pulse into the surrounding water. Although the peak pressure of 

this pulse is lower than that of shock wave generated by the explosion, its duration of 

exertion is much longer than the shock wave and therefore the damage can be 

comparable to that caused by the shock wave.  

1.1.2 Classifications of Cavitation 

    In fluid flow, different kinds of cavitations can be observed and each of them has its 

distinct shape and physical characteristics. Therefore, the employed numerical method 
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and model to compute for the cavitating flow are highly dependent on the different 

kinds of cavitation. Generally no single model can be used to simulate all kinds of 

cavitation. Knapp et al (1970) classified five types of cavitation in their papers and 

presented the underpinning basis or source of formation for each type of cavitation. In 

the same paper, the effects of each type of cavitation were described. In Table 1.1, an 

overview of the cavitation types and characteristics is presented. Here some types of 

cavitation posed in Knapp’s paper are described briefly, and the bulk/hull cavitation 

that usually occurs in an underwater explosion is also introduced. 

    Bulk/Hull cavitation is the disruption of what would otherwise be a continuous 

water phase, which is typically observed in an underwater explosion near a structure or 

a free surface and in some pipe flows. Such cavitation collapses very violently and 

may cause great damage to the nearby structure and pipe. The major characteristics of 

such cavitation are that cavitation region is relatively large and interaction between 

cavitation and structure is violent.  Bulk cavitation in pipe flows is shown in the work 

of Qin et al (1999, 2000, and 2001). 

    Traveling cavitation moves in the liquid while it expands and shrinks. Sometimes 

the geometries of such cavitations are dependent on the amount of nuclei present in the 

incoming flow (Lecoffre, 1999). Cloud cavitation is generated by vorticity shed into 

the flow field and it can cause vibration, noise and erosion (Knapp et al, 1970). Sheet 

cavitation is a type of cavitation like attached cavity or pocket cavitation. Such 

cavitation normally has a well-shaped cavity and is stable in a quasi-steady sense 

(Senocak, 2002). The effect of sheet cavitation on downstream flow is introduced in 

detail in Gopalan and Katz (2000). Supercavitation occurs when the whole solid body 

is overlaid by the sheet cavity. Supercavitation can be observed on an underwater high-

speed vehicle. To achieve viscous drag reduction and increase the lift force on 
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underwater hydrofoils, the supercavitation is created and enhanced. One application of 

supercavitation, the supersonic operation of underwater projectiles, is reported in 

Kirschner (2001). The tip vortex cavitation occurs at the tips of lifting surfaces and at 

the hubs of propellers and hydraulic turbines. Tip vortex cavitation can be viewed as a 

canonical problem that captures many of the essential physics associated with vortex 

cavitation in general. Franc et al (1995) produced the visualization of different types of 

cavitation, in which the shape and process of the different types of cavitation can be 

distinguished clearly. To capture these cavitations, a robust numerical algorithm and a 

cavitation model are compulsory. 

1.2 Numerical Method Studies 

    As high resolution schemes for compressible flows, present commonly used 

numerical methods can be roughly classified into two groups. The first one is Total-

Variation-Diminishing (TVD) schemes. The original idea and some examples of TVD 

schemes can be found in many papers (Harten, 1983, 1984; Yee, 1987, 1989; Zalesak 

1987). The other one is Essentially Non-Oscillatory (ENO) schemes, about which one 

can refer to the work of Harten and Osher (1987). The main contributions of ENO 

reconstruction can be retrieved from the work of Shu and Osher (1988, 1989). All of 

these methods work well in a single phase. To simulate multi-medium compressible 

flows with a material interface, an additional numerical algorithm should be developed 

for treating material interface. In general, there are two basic approaches to treat 

material interfaces in the solution of hyperbolic system of conservation laws. One is 

Front capturing methods and the other is Front tracking methods. Front capturing 

methods solve the discontinuities (material interfaces) over a few grid cells and the 

algorithm construction is relatively simple. The application of Front capturing methods 

to multidimensional problems is straightforward. In the numerical algorithms 
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associated with front capturing methods, the interfaces are usually tracked through 

volume of fluid (Hirt and Nichols, 1981), mass fraction (Larrouturou, 1991), ratio of 

specific heats (Karni, 1994; Abgrall, 1996), or level set function (Osher and Sethain, 

1988). However, numerical inaccuracies and oscillations may occur at the contact 

discontinuity and a sharp interface may not be obtained due to numerical dissipation. 

To overcome these difficulties, treating an interface using Lagrangian method is 

reasonable when the deformation of the interface is not large. But when the interface 

has large deformation this method may give rise to inaccuracy in the computation near 

the interfaces. Therefore, Farhat and Roux (1991) develop a robust method called 

Arbitrary Lagrangian-Eulerian (ALE) to reduce the mesh distortions of Lagrangian 

method but the effect is still limited. Also, Lagrangian methods and ALE methods 

need more computation time when compared to Euler method. To avoid this difficulty 

the idea that the interface is tracked in a fixed grid system is developed. The resultant 

technique is now usually called front tracking methods. Hyman (1984) did a detailed 

survey on the early front tracking methods. Front tracking, where discontinuities are 

treated as internal moving boundaries, is still quite complicated to use although it can 

solve discontinuities very well. This problem can be seen from the studies by Youngs 

(1984), Lafaurie et al (1994), Mao (1995), and Glimm et al (1998). Another 

disadvantage arising from the front tracking methods is the possible numerical 

instability caused by the presence of extremely small grid sizes/volumes when the 

interface moves towards a fixed grid node. Some examples of novel front tracking 

methods to avoid such instability can be found in (Falcovitz and Birman, 1994; 

Hilditch and Colella, 1995; Mao, 1995 and Shyy et al, 1996). Recently, Liu et al 

(2001a) developed a local solver based on the integral conservation laws over variable 

intervals which is used to solve for the flow field near the interface. Liu’s method can 
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work well in underwater shock bubble interaction and underwater explosions near a 

free surface which can lead to a very strong shock to impact on the material interface. 

    One notable method proposed by Fedkiw et al (1999b) is the Ghost Fluid Method 

(the original GFM). They use a level set function (Osher and Sethian, 1988; Mulder 

and Osher, 1992) to track the motion of a multi-material interface in an Eulerian 

framework, and then use the ghost cells and an isobaric fix technique to obtain the 

flow field near the interface. The original GFM is very robust and easy to program. 

However, the original GFM may not work consistently using isentropic fix when 

applied to a strong shock impacting on a material interface (Liu et al, 2003b). Liu et al 

(2003b) analyses such inapplicability of the original GFM and develop a more robust 

and consistent method (the modified GFM). The modified GFM (henceforth called 

MGFM) is to solve an approximate Riemann problem (ARPS) at the interface for 

better prediction of the interface information (pressure and velocity). Iteration is 

needed to obtain the solution of the approvimate Riemann problem. It has been found 

that it may take many steps to obtain converged solution for such iteration when the 

MGFM is applied to water-solid compressible flows where the equation of state for 

solid is very stiff and the pressure is not high. Also, the MGFM is apparently more 

complex than the original GFM due to the employment of the approximate Riemann 

solver. Therefore, an explicit characteristic method will be developed to replace ARPS 

as for the MGFM in this work. 

1.3 Cavitation Model Studies 

    Due to complex physics involved in cavitating flows and limitation of current 

computational capabilities, it is still impossible to simulate cavitations by resolving 

each tiny bubble. Therefore, some viable cavitation models which can simulate salient 

features of cavitation have to be employed. The dominant difficulties of modeling 
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cavitating flows lie in the complicated cavitation physics involved in the phase change, 

high gradients of flow variables and unsteadiness. Generally transient cavitating flows 

includes three main processes: cavitation creation, cavitation evolution and cavitation 

collapse. Therefore, the employed models should be able to capture all three processes 

and suppress the possible pressure oscillation.  

    In numerical modeling of cavitating flow so far, most of the works are focused on 

the attached/sheet cavitation. Such cavitation normally has a fairly well-defined cavity 

full of vapor at saturated pressure together with a mixed wake part. The wake part 

consists of bubbly flow and is fully turbulent. For the attached cavity, its shape is 

usually under steady/quasi-steady conditions or changes relatively slowly and/or 

periodically. Furthermore, the ambient liquid flow is generally taken as 

incompressible. Due to the steady state status or relatively slow change of the cavity 

shape, the velocity slip conditions and the continuity of pressure and normal velocity 

across the cavity boundary are imposed (Chen and Heister, 1994). Wesseling and co-

authors has also developed models to simulate the attached cavitation (Wesseling et al, 

1999; Duncan et al, 2000). The numerical simulation for the attached/sheet cavitation 

can be broadly divided into two categories: the interface tracking method and the 

continuum modeling method. Interface tracking method assumes that there is a clear 

and distinct interface between the liquid and vapor (Chen and Heister, 1994; 

Deshpande et al, 1994, 1997). For the said method, there is no calculation made inside 

the cavity. On the other hand, the treatment for the wake part is usually required and 

the liquid-vapour interface (cavity boundary) is determined via an iterative procedure. 

Besides these models, there are other cavitation models or techniques have been 

developed to simulate attached and sheet cavitating flow. More specifically, Mazel et 

al (1996) developed a bubble dynamic model based on Rayleigh equation for vapor 
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bubbles, which have to be assumed present initially. To model the cavitation pockets 

around airfoils, a VOF technique is developed in (Molin et al, 1997). This technique is 

suitable for the simulation of cavitation pockets but it cannot model the unsteady 

transient cavitation of present interest because the new interface creation is not 

allowed. In practice, there may be much less distinction or even no distinct interface 

between the liquid and vapor in the cavitation region. Therefore, it is also reasonable to 

build continuum models for the cavitating flows.  

    One continuum cavitation model was developed by Delannoy and Kueny (1990) 

who used a simple method to close the hydrodynamic equations. They assumed a 

barotropic equation of state where density is a function of pressure. The densities of 

two phases were considered as constant and joined by a sine function whose maximum 

slope was chosen to represent the speed of two-phase mixture. Delannoy and Kueny 

improved the stability of the model but their method was limited to density ratios of 

one hundred to one. Kubota et al (1992) developed one of the earliest continuum 

models for a cavitating flow, in which a constitutive relation for pressure is built based 

on the assumption that the fluid was a uniform mixture of liquid and very small, 

spherical bubbles. This model encountered severe stability problems and thus their 

methods were limited to small void fractions. Avva and Singhal (1995) used an energy 

equation to replace constitutive relation for closure. They assumed a homogenous flow 

of no velocity slip and thermodynamic equilibrium. Based on these assumptions the 

energy equation was simplified to a single fluid energy equation as a function of mean 

cell density. However, this model also suffered from problems of instability. To 

overcome this instability, Senocak and Shyy (2002), based on the work of Kunz et al 

(2000), developed a set of governing equations consists of the conservative form of the 

Reynolds averaged Navier–Stokes equations, plus a volume fraction transport equation 
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to account for the cavitation dynamics. The cavitation process is governed by the 

thermodynamics and the kinetics of the phase change dynamics occurring in the 

system. Song (2003) applied the same method to simulate unsteady compressible flow. 

The only difference between Song’s method and Senocak’s method is that the fifth 

order polynomial is used to simulate the cavitating process. Such type of model was 

also used to compute high speed cavitating flows (Owis and Nayfeh, 2003). 

    A continuum method as mentioned above makes no attempt to track the cavity 

interface but instead treats the flow as two-phase with an averaged mixture density. 

Such an approach is to apply a single continuity equation for both phases, with the 

fluid density being described as a continuous function varying between the vapor and 

liquid phases (Merkle et al, 1998; Song and Chen, 1998). This model is also 

sometimes called a two-phase model. In the two-phase model, liquid and vapor phases 

co-exist in the flow field and transform from one to the other, depending on the local 

conditions. The two-phase model is becoming more and more popular in recent times 

because it is able to include all the possible physics of cavitating flows and no special 

wake treatment is required. In its implementation, there are generally two different 

approaches. One is called the two-fluid method. The other is the one-fluid method. The 

former one assumes that both phases co-exist at every point in the flow field and each 

phase is governed by its own set of differential equations. Recently, Saurel and co-

workers (1999a, 1999b, and 2001) developed a multiphase two-fluid model and 

showed applications of this model to compressible multi-medium/multiphase flows. A 

satisfactory application of such a two-fluid model is for multi-medium problems and 

problems of phase change caused by temperature difference and chemical reaction at a 

well-defined interface (Allaire et al, 2002; Evje, 2002). However, this model is quite 

complex and involves non-conservative terms in the momentum and energy equations 
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with quantities related to phase exchange. A 1D computation using this model already 

involves six equations plus a seventh equation for the evolution of volume fraction 

necessarily to close the system. Because the exchange of mass, momentum and energy 

is treated explicitly as transfer terms in this approach, some quantities such as 

exchange rates (Ahuja, 2001; Kunz, 2000; Lindau, 2002; Senocak, 2002; 

Venkateswaran, 2002) and the viscous friction between the two phases (Kubota, 1992; 

Senocak, 2002) have to be known a priori to represent the phase-change phenomena. 

Such quantities, however, are usually very difficult to measure whether experimentally 

or otherwise. To simulate the unsteady cavitation using this two-fluid model, the initial 

pure liquid has to be supposedly mixed with a negligible amount of vapor. Thus far, 

we are only aware that this model has been used to simulate cavitating flow of Case 1 

as detailed in Chapter 3. On the other hand, the one-fluid method treats the cavitating 

flow as a mixture of two fluids behaving as one. Thus, one set of differential equations 

similar to the single-phase flow are used to govern the whole fluid motion. The most 

challenging task of this category of approach is to define a proper constitutive relation 

(equation of state) for the mixture to close the system. A barotropic or homogeneous 

assumption can be used to develop a reasonable constitutive relationship. Coutier-

Delgosha et al (2002, 2003) developed a very simple barotropic relationship associated 

with a turbulence model for the simulation of cavitating flows. The main idea of this 

work was to define a minimum speed of sound in the mixture depends on the two-

phase structure of the medium and remains an adjustable parameter of the model. 

Felipe (2003), in the parallel effort, built a consistent thermodynamic homogeneous 

model to describe the vaporous cavitation phenomenon by means of an internal 

variable theory. In this model, the temperature is supposed to be the same for both 

phases and the cavitation process assumed to be an isothermal transformation, and then 
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the constitutive equations of this model are derived within the framework of the 

thermodynamics of irreversible processes. Other recent works in homogeneous 

cavitation models can be found in Clerc (2000) and Shin et al (2003). On the other 

hand, another kind of constitutive relationship can be obtained if the mixture is usually 

supposed or assumed to be both homogeneous and barotropic (Delannoy and Kueny, 

1990; Schmidt et al, 1999; Ventikos and Tzabiras, 2000). Such kind of cavitation 

model is effective for simulation of unsteady cavitation generated from pressure drop. 

If possible, one can also define this relation using the well-tabled mixture properties 

similar to that carried out in by Ventikos and Tzabiras (2000) for simulating water and 

vapor mixture.  

    The interest of this work lies in the unsteady cavitation caused by pressure jump 

across the cavitation boundary. Such unsteady cavitation is commonly observed in the 

underwater explosion, where both the ambient liquid and the mixture have to be 

considered as compressible. In contrast to the attached/sheet cavitation, where 

relatively extensive studies have been carried out, there is much less work on the latter 

in literature. For simulation of such cavitation the one-fluid models are efficient and 

straightforward. Table 1.2 give an overview of past one-fluid models for such unsteady 

cavitation. In the following, selected studies are summarized.  

    One commonly used model is the Cutoff model which is essentially pure-fluid 

model and no phase exchange is taken into account. In the Cutoff model like those 

used by Aanhold et al (1998) and Wardlaw and Luton (2000), flow pressure is simply 

re-instated as a given value and computation continues whenever the liquid pressure is 

detected lower than a given critical level. In the pressure-cut-off (cavitation) region, 

the flow medium is still taken as liquid and no phase change is considered. The Cutoff 

model is quite easy to implement and use. However, there are obvious physical 
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violations because the conservation law may not be maintained and the hyperbolic 

system of equations is non-physically degenerated due to the pressure and the 

associated density cut-off. As a result, errors can incur in the cavitation region, as 

shown later in Chapter 3. The Vacuum model as developed by Tang and Huang (1996) 

treats the cavitation zone of zero mass inside and is an ideal approximation of 

cavitation. This model is physically reasonable because usually only a small amount of 

liquid transfers into vapor and the vapor density is about O (10-4) of the liquid density. 

The idea of neglecting the amount of vapor is also used in the simulation of sheet 

cavitation (Kubota et al, 1992). The vacuum model is presently only applied to study 

1D inviscid cavitating flow because it was based on the solution of a local gas-water-

vacuum Riemann problem which is quite complex. The extension of this model to 

multi-dimensions, as we are aware, has yet to be established probably due to the 

requirement of constructing a local Riemann solver, where the vacuum boundary needs 

to be tracked and a special Riemann problem in the neighborhood of the vacuum 

region has to be solved. Schmidt (1997) developed a one-fluid model for modeling 

high-speed cavitating nozzles. This method can be considered as an isentropic model 

associated with phase change, where the sound speed is given by Wallis (1969). The 

pressure is given by an analytical function of density. This closure means that no 

partial differential equation is required and the pressure can be found analytically from 

the cell density which reduces the computational cost of a time step. Schmidt et al used 

this model to simulate small scale high speed cavitating nozzle flow and then obtained 

some reasonable results. However Schmidt developed a constitutive relation based on 

the assumption of constant sound speeds and densities for the respective saturated 

vapor and liquid in the cavitation zones, which contradicted Wallis’ sound speed 

equation. Moreover this method has not been used for large scale, low speed cavitation 
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calculations. To extend the application of this model, Qin et al (1999, 2001) 

incorporated a model constant into the Schmidt model to prevent the pressure from 

becoming lower than the vapor pressure. However, by a strict mathematical analysis, 

this model constant, which was chosen to range from 10-3 to 10-5 should be 

determinable and equal to one.  To remove the mathematical and physical 

inconsistencies in the one-fluid models as mentioned above, we proposed an Isentropic 

one-fluid model which is mathematical self-consistent and able to capture the transient 

cavitation in various flow conditions (see also Liu et al, 2004a). Before the Isentropic 

model can be employed, a model parameter has to be determined, which is a major 

limitation of the Isentropic one-fluid model. The modified Schmidt model is, therefore, 

proposed for a straightforward engineering application (see also Xie et al, 2005a) 

where no model parameter is required to be solved. 

1.4 Objectives and Organizations of This Work 

    As mentioned above, the GFM-based algorithms are simple and flexible for multi-

medium/multiphase compressible flows. However, the application of the GFM-based 

algorithms developed by Fedkiw et al (1999b, 2002) is limited as applied to a strong 

shock impacting a gas-water interface (Liu et al, 2003b). The MGFM is able to 

overcome the difficulties as for the original GFM-based algorithms but application of 

the MGFM to water-solid simulation is costly as the converged solution is not easy to 

obtain via iteration for the Riemann problem at the interface when the pressure is not 

high in the solid medium. On the other hand, the main drawbacks of the existing one-

fluid cavitation models are: mathematical inconsistency and physical inconsistency. 

Therefore, the main goal of this research is to propose a newly developed GFM-based 

algorithm and compare four one-fluid cavitation models by simulating various 

transient cavitating flows. The more specific objectives are as follow:      
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►To propose a GFM-based method to achieve higher level of accuracy and wider 

application than the original GFM and the new version GFM, and to obtain faster 

computation than the MGFM for water-solid compressible flows. The range of 

applicability of this GFM-based algorithm is also defined via mathematical analysis. 

►To analyze and compare the existing one-fluid models. The range of applicability    

for each one-fluid model is then defined. 

►To apply the present GFM and four one-fluid cavitation models as mentioned above 

to simulate 1D unsteady cavitation flows. The different cavitation sizes, periods and 

peak pressure of cavitation collapse are observed and analyzed as well. 

►To apply the present GFM and various one-fluid cavitation models to 2D 

underwater shock-cavitation-structure interactions. Especially, the response of the 

flexible wall is investigated in our computations to observe its effect on cavitation 

dynamics.   

The scope of this research focuses on the simulation of unsteady cavitating flows 

where cavitation is caused by a sudden pressure drop such that there is insufficient 

time for heat transfer to take place like the cavitation occurring in underwater 

explosions. Such cavitation usually consists of an unsteady and dynamically 

developing boundary and can evolve to a certain dimension before collapsing. In such 

situations, the variation of pressure with temperature, thermal non-equilibrium and 

cavitation surface tension can be neglected. 

The thesis is organized as follows. Chapter 2 describes the numerical methods for 

multiphase compressible flows. Firstly, the equation of state (EOS) for each medium is 

presented, and then the employed numerical method for the regions away from the 

interface is introduced, followed by the existing various GFM-based algorithms. The 

present GFM is also developed and presented in detail in this chapter. The 
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comparisons of these GFM-based algorithms are carried out via mathematical analysis 

and numerical examples with analytical solutions. 

    Chapter 3 introduces the one-fluid cavitation models using the 1D Euler equations. 

Four one-fluid cavitation models besides the very recently developed Isentropic model 

and the newly developed modified Schmidt model are described and compared in 

detail. Also, some numerical examples with analytical solutions are also calculated to 

verify the analysis. 

    In Chapter 4, the numerical methodology is applied to model several 1D cavitating 

flows where the experimental results or numerical results are available. Chapter 4 

investigates two pipe/tunnel cavitation problems in detail. One is a water hammer 

problem where the cavitation may occur at the different locations of tube under 

different initial conditions. The other is a cavitating flow in a close tunnel with the 

complex wave propagation and shock-cavitation interaction.  

    Chapter 5 extends numerical methodology to multi-dimensional cavitating flows. 

The cavitating flows generated by underwater explosions nearly structures are 

investigated. The solid walls are considered as rigid or flexible for comparisons to 

investigate the effect of solid deformation on cavitation dynamics. To better observe 

such effect, the pressure histories at the center point of the solid surface, the pressure 

impulses and overall forces exerted on the solid surface are calculated for both rigid 

and flexible walls. A method to suppress the possible negative pressure in solid next to 

interface is also proposed.  

The overall conclusions and recommendations for further work are provided in 

Chapter 6.     
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Cavitation type Major characteristics 

Bulk/Hull cavitation Has large cavitation region  

Traveling cavitation Moves in the liquid while expand and 
shrink 

Cloud cavitation Causes vibration, noise and erosion 

Sheet cavitation Has a well-shaped cavity and relatively 
stable  

Supercavitation Achieves viscous drag reduction and 
increase the lift force  

Tip vortex cavitation Occurs at rotating blades 

 
Table 1.1 An overview of the cavitation types and major characteristics. 

 
 
 
 

Author & Reference Methodology Main characteristic 

1.Chen and Heister(1994) 
Interface tracking scheme 
associated with vpp =  
when vpp ≤  

Easy to apply and not 
fully conservative 

2. Tang and Huang(1996) 
Vacuum model based on 
local gas-water-vacuum 
Riemann solver 

Physically conservative 
but difficult to extend to 
multidimensional. 

3.Deshpande et al (1997) 

Interface tracking scheme 
associated with vpp =  
when vpp ≤  and cavity 
shape determination 

More accurate than 
model 1 but conservation 
limited 

4.Schmidt et al (1997) 

Mixture analysis. 
Cavitation pressure is 
analytically obtained 
from density 

Pressure is a sole 
function of density. 
Strictly for high speed 
nozzle cavitating flows 

5.Qin et al (1999) 

Mixture analysis. The 
cavitation pressure is 
artificially reduced via a 
model constant. 

Wider application than 
model 3 but 
mathematically 
inconsistent. 

 
Table 1.2 An overview of the past one-fluid cavitation models. 
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Chapter 2 

Mathematical Formulation: Numerical Methods 

In this chapter, the numerical methodology for multi-medium or multiphase 

compressible flows is presented using 1D Euler equation. Various equations of state 

(EOS) are described in detail. The numerical method consists of two parts. One is a 

high-resolution numerical scheme for the fluid flow away from the material interface. 

Such numerical scheme has been extensively analyzed and reviewed in Toro (1997) 

and therefore only a brief introduction is presented here. The other is the numerical 

technique for treating the material interface, which is the major work to simulate the 

multiphase compressible flows using the Eulerian method. A recently developed 

method called the Ghost Fluid Method (henceforth called the original GFM for ease of 

referral) by Fedkiw et al (1999b) has been found to be inaccurate to simulate a strong 

shock impacting a gas-water interface (Liu et al, 2003b). In this chapter, the two 

conditions developed by Liu et al (2005) are extended to analyze the main 

characteristics and shortcomings of various GFM-based algorithms for the 

compressible gas-solid and liquid-solid Riemann problems, and then the possible 

application ranges for each GFM-based algorithm are determined. An explicit 

characteristic method based GFM is then proposed and analyzed as well. 

2.1 Introduction 

The high-resolution conservative Eulerian algorithms like TVD and ENO as 

mentioned in Chapter 1 are very robust when applied to single-medium compressible 

flows. Such an algorithm can obtain high-order numerical accuracy and capture the 

wave position and motion in the single-medium flow accurately with low 

computational cost. When these algorithms are applied to the multi-medium/ 
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multiphase compressible flows, computations invariably run into unexpected 

difficulties due to numerical oscillations generated at material interfaces. Such 

oscillations are arisen from the different specific ratio of heat for different materials, 

which are analyzed mathematically by Abgrall and Karni (2001). To suppress 

oscillations, some non-conservative discretization techniques have been developed by 

Abgrall (1996), Karni (1994, 1996), Shyue (1998) and Saurel and Abgrall (1999b). 

With these techniques, numerical oscillations are greatly suppressed but may not 

vanish completely at the material interface partly because the conservative property at 

the interface can not be maintained. Much effort has been made to develop a 

conservative numerical method for material interfaces (Liu et al, 2001a, 2001b; Van 

Brummelen, 2003). Conservative methods, however, are relatively much more 

complex in the treatment of material interfaces and computationally costly. 

Furthermore, the extension of conservative methods to multi-dimensions is not trivial. 

To maintain the simplicity of Eulerian algorithms while still able to remove possible 

numerical oscillations at the material interface, the original GFM is developed recently 

by Fedkiw et al (1999b) to overcome the difficulties associated with using Eulerian-

based algorithm for multi-medium compressible flows. The original GFM assumes 

that both the real fluid and ghost fluid coexist at each grid point in the computational 

domain. The pressure and (normal) velocity of the ghost fluid are defined with the 

pressure and (normal) velocity as for the real fluid while the density is obtained via 

isobaric fix (Fedkiw et al, 1999a) which is developed to suppress the “overheating 

effect” phenomenon which may occur at solid wall boundaries (Glaister, 1988). In 

(Fedkiw et al, 1999a), three types of isobaric fixes called internal energy fix, 

temperature fix and isentropic fix are developed. Once the ghost fluid is properly 

defined, the standard Eulerian algorithm for the single-medium flows as mentioned 
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above can be applied directly to multi-medium flows. The numerical oscillations at the 

material interface are then expected to be eliminated. One main advantage of the 

original GFM is that only a single phase solver is needed and thus the extension to 

multidimensional applications is fairly straightforward. The original GFM has been 

found to be workable for shock tube problems and even for a not very strong shock 

wave interaction with the material interface. The application of the original GFM for a 

strong shock wave impacting on a material interface has been found to suffer from 

numerical inaccuracy at the material interfaces. Such numerical inaccuracy arises due 

to the GFM Riemann problems not being able to provide for the correct Riemann 

waves at the respective real fluid where the effects of material properties and wave 

interactions with the interface should be taken into account (Liu et al, 2003b). 

    To overcome the difficulties of the original GFM applied to gas-liquid flow, a 

subsequent new version GFM was proposed by Fedkiw (2002) (henceforth called the 

new version GFM for ease of referral) where the effect of material properties on 

interface status is partly considered using extrapolation, i.e. the interface pressure is 

determined by the fluid on one side of interface while the interface normal velocity is 

determined by the fluid on the other side. Generally, the interface normal velocity is 

obtained from the fluid with stiff equation of state (water or solid) while the interface 

pressure is obtained from the other fluid (gas). By using the new version GFM, the 

material properties are partially taken into account resulting in a better performance 

compared to the original GFM when applied to the gas-water and gas-solid flows. 

However, it has been found by Liu et al (2003b) that the new version GFM is not as 

effective as the original GFM when applied to gas-gas flows. A problem may arise as 

to which GFM-based algorithm is most appropriate is obviously problem-related. To 

taken into account the influence of the material properties, an approximate Riemann 
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problem at the interface is solved to predict the interface status and this leads to the 

modified Ghost Fluid Method (henceforth called the MGFM for ease of referral) as 

proposed by Liu et al (2003b), which is able to overcome the difficulties encountered 

by the original GFM in the application of a strong shock impacting on material 

interfaces. Unlike the original GFM or even the new version GFM, the MGFM is more 

universally applicable. To understand better the underlying cause(s) for the differences 

between the mentioned GFMs, Liu et al (2005) compare the GFM Riemann waves 

generated from the original GFM and the new version GFM to the original Riemann 

waves generated from gas-water Riemann problems. All the possible wave patterns at 

the material interface for gas-water flows are analyzed in Liu et al (2005) which then 

leads to two necessary conditions imposed to identify the ranges of conditions of 

inapplicability for the various GFM-based algorithms. It is found that the approximate 

Riemann problem solver (ARPS) in Liu et al (2003) can provide the correct interface 

status except for nearly cavitating flows where a double rarefaction wave solver has to 

be developed to obtain the correct interface status. However, it is found that the 

converged solution of the ARPS can be (very) difficult to obtain when the MGFM is 

applied to gas-solid or water-solid simulations where the hydro-elasto-plastic EOS 

(Tang and Sotiropoulos, 1999) is used for the solid medium. This is because the 

iteration required for ARPS does not converge effectively when a low pressure is 

employed to solve for the density as in the hydro-elasto-plastic solid EOS. In this 

chapter, an explicit characteristic method is applied to replace the ARPS for the 

calculation of interface status without any iteration. Based on the explicit characteristic 

method, a GFM-based algorithm (henceforth called the present GFM for ease of 

referral) is developed for modeling of gas-solid or gas-water flows (see also Xie et al, 
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2005b, 2005c). The applicability of the present GFM is verified by comparing to the 

MGFM and the analytical results in this chapter. 

The remaining text of this chapter is organized as follows. The 1D Euler equations 

with the EOS for gas, water, and solid are presented in Section 2.2. A high-resolution 

numerical scheme is used to discretize the governing equations in Section 2.3. The 

various GFM-based algorithms are presented and compared in Section 2.4. The two 

conditions proposed by Liu et al (2005) are applied to analyze the applicability of 

various GFM-based algorithms in Section 2.5. Various tests are carried out in Section 

2.6 for further discussion and analysis. A brief summary is presented in Section 2.7. 

2.2 Equation of State (EOS) 

    The 1D conservative equations for inviscid gas, water, solid or bubbly flow can be 

written in a consistent form as 

( ) 0=
∂

∂
+

∂
∂

x
UF

t
U ,        (2.1) 

where and [ ]TEuU ,,ρρ= ( ) ( )[ ]TupEpuuUF ++= ,, 2ρρ . Here ρ is the density, u is 

the velocity, p is the pressure. E  is the total energy and given as , 

where e  is the internal energy per unit mass. For the closure of (2.1), the equations of 

state are required for all mediums (phases). We assume the materials are characterized 

with an equation of state developed by Cochran and Chan (1979) and this EOS can be 

written as the Mie-Gruneisen-type form 

25.0 ueE ρρ +=

( ) ( )ρρρ gpfe += .        (2.2) 

Here, f  and are functions of density or some constants associated with heat 

conductivity. A commonly used EOS called stiffened gas equation of state (Godunov 

g
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et al, 1979) can be seen as a simplification of the Mie-Gruneison type EOS and can be 

expressed as 

1−
+

= ∞

γ
γρ ppe ,         (2.3) 

where γ  and are constant parameters of EOS which are different for each material 

and are discontinuous across the material interface . If 

∞p

0=∞p  , (2.3) recovers to the 

ideal gas medium. Equation (2.3) has been extensively used for modeling of various 

fluid materials (Saurel and Abgrall, 1999a; Abgrall and Karni, 2001; Saurel and 

Lemetayer, 2001; Gavrilyuk and Saurel, 2002; van Brummelen and Koren, 2003). The 

generalization of the stiffened gas EOS to the Mie-Gruneisen-type EOS can be found 

in Massoni et al (1999). In this work, the focuses lie in three types of EOS for gas, 

water and solid, which can be expressed as the form of (2.2). The γ -law for a prefect 

gas with ( )11 −= gf γ  and 0.0=g  can be rewritten as 

1−
=

g

pe
γ

ρ ,        (2.4) 

where gγ  is the ratio of  specific heats for gases and set to be 1.4 in this work except 

for the explosive gases where gγ  is set to be 2.0. The EOS for water employed in this 

work is Tait’s equation (Wardlaw, 1998) and given as 

ABBp
l

l

l +−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

γ

ρ
ρ

0

 or 
l

l

l

p
p

γ

ρ
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

00

.                         (2.5a) 

Here B  and A  are constants and set equal to  and , respectively, 

 and  are the initial pressure and density for water, 

Pa81031.3 × Pa510

Ap =0
3

0 /1000 mkgl =ρ

Bpp += , Bpp += 00 , ABB −= , and lγ  is set to be 7.15. Equation (2.5a) can be 
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rewritten in the form of (2.2) if we set ( )11 −= lf γ  and ( ) ( )1−−= ll ABg γγ . Thus, 

we have 

( )
11 −
−

+
−

=
l

l

l

ABpe
γ

γ
γ

ρ .                                      (2.5b) 

    Several commonly used EOS for solid materials are summarized here: 

(1) Tait’ EOS for solid-EOSS1 (Fedkiw, 1999a) 

    Tait’s EOS can be directly used as the EOS for solid with different parameters when 

compared to (2.5a). Such EOS for solid can be written as follows 

s

s

s

pp
pp

γ

ρ
ρ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

+
+

∞

∞

00

.                                       (2.6a) 

Here sγ  is a constant parameter to be determined by the solid property. It takes on the 

value of 3.7 for steel in the present computation.  and 0p 0sρ  are the initial pressure and 

density of solid. Similar to (2.5b), (2.6a) can be rewritten in the form of (2.3) as 

( )
11 −
−

+
−

=
s

sss

s

ABpe
γ

γ
γ

ρ .                                      (2.6b) 

Here, the values of   and  are determined by the solid properties and different 

from those of (2.5). 

sB sA

B  and A  are set equal to  and , 

respectively. It should be noted that Tait’s EOS is a special example of the stiffened 

gas EOS and the generalization of Tait’s EOS to stiffened gas EOS is straightforward. 

Thus, the stiffened gas EOS is obviously able to be used as the EOS for solid if the 

solids are not under very high-pressure shock wave. Otherwise, the Mie-Gruneisen 

EOS is better used to describe the solid medium.  

Pa101001351.6 × Pa510

(2) Mie-Gruneisen EOS for solid-EOSS2 (Shyue, 2001) 
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    This EOS is a relatively general EOS for flow materials and it can be written as 

( ) ( ) ( )( )φρρφγφρ ,, ∞∞ −+= eepp ,                  (2.7) 

where φ  is a variable to describe the flow composition; ( )φγ  is the Gruneisen 

coefficient decided by ( )( ) ρρργ ∂∂= p1 for each material;  and  are properly 

chosen parameters for each material. For the properties of solid material for the Mie-

Gruneisen EOS, one can refer to Shyue (2001) and Saurel and Abgrall (1999b).  

∞p ∞e

(3) Hydro-elasto-plastic EOS-EOSS3 (Tang and Sotiropoulos, 1999)   

    The Murnagham equation and Hooke’s law are used for the hydrostatic pressure and 

the shear stress, respectively. Thus, the EOS can be written as 

( ) ( ρτρρ ,,
3
4

ssh spp += ) ,                                              (2.8a) 

where ( )ρhp  and ( )ρτρ ,, sss  are the hydrostatic pressure and shear stress, 

respectively. The subscript “ ” refers to an initial state. Hydrostatic pressure s ( )ρhp  is 

written as a form similar to Tait’s EOS 

( ) a
a

h pmp +
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= 1

β

ρ
ρ

β
ρ ,                                     (2.8b) 

and shear stress is described by Hooke’s law,  

( ) .2
,2

,2 Y
Y

Ysign
s

≥
<

⎩
⎨
⎧

=
τ
τ

τ
τ

                                     (2.8c) 

In (2.8b) and (2.8c), , and m Y β  are the bulk modulus, yield stress, and a model 

constant, respectively. Equation (2.8a) can be rewritten as 
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( )
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( ) 1
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h

 ,                               (2.8d) 

where G  is the modulus of rigidity. 1ρ  and 2ρ   are given densities (or defined for) 

pure elastic deformation, elastic and plastic deformation, and pure plastic deformation, 

respectively. It may be noted that the three EOS for solid (Henceforth called EOSS1, 

EOSS2, and EOSS3 for reference) are used under different conditions. In this chapter, 

the EOSS1 for solid is preferred for ease of analysis for the various GFM-based 

algorithms in the next section. With EOSS1, the sound speeds for gas, water and solid 

can be written in the same forms. In this way, the techniques developed for gas can be 

applied directly to water and solid. The EOSS1 is a good approximation to stiffened 

gas EOS and EOSS2. When the flow is under a very strong shock, the EOSS2 is used 

to capture the elastic and plastic deformation of solid. The obvious drawback of 

EOSS1 and EOSS2 is the limited domain of validity. That is, the elastic and plastic 

deformations can not be accurately captured in the context of underwater explosions 

and/or high velocity impacts. Generally, the EOSS1 and EOSS2 may not be accurate if 

the pressure ratio across the interface is very high. Compared to EOSS1 and EOSS2, 

the EOSS3 is deemed more accurate when the solid sustains both elastic deformation 

and plastic deformation under the action of a strong shock-solid interaction. Two 

problems cases posed in Tang and Sotiropoulos (1999) are tested in this chapter by 

using the EOSS3 for solid. 
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2.3 Numerical algorithm for single-medium 

    The numerical method for the region away from the interface employed in this work 

is a high-resolution MUSCL-type TVD scheme with HLL approximate Riemann 

solvers (Harten et al, 1983) employed. The scheme is given briefly in this section. The 

numerical flux in the HLL approximation reads as 

( )
LR

LRRLRLLRhll

SS
UUSSFSFSH

−
−+−

=  .              (2.9a) 

The indexes R and L are related to the right and left sides of a cell boundary. In order 

to determine the numerical fluxes completely in HLL Riemann solver we need to 

provide an algorithm for computing the wave speeds ( )Rl SS , . Various methods are 

available for wave speed estimate (Toro, 1997). We prefer the Roe average 

eigenvalues for the left and right non-linear waves for convenience, that is 

auSL
~~ −=  , auSR

~~ += ,                (2.9b) 

where u~  and a~  are the Roe-averaged velocity and sound speed, respectively. It is now 

necessary to determine the discretization formulas for the conservative equations. To 

obtain these formulas, we develop the algorithm over a time step for 1D Euler 

governing equations. The scheme for 1D conservative system (Equation (2.1)) can be 

written as 

( )n
i

n
i

n
i

n
i HHUU 2/12/1

1
−+

+ −−= λ ,               (2.9c) 

where xt ∆∆= /λ ,  and t∆ x∆  are the time and spatial step-sizes, respectively. 

Numerical fluxes in the HLL approximation ( )n
iH 2/1±  are obtained via (2.9a) as 

( )
n
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n
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                    (2.9d) 

The parameters at the cell boundary as shown for the right hand side of Equation (2.9d) 

are calculated via the MUSCL method employed by Liu (2000) with 2-order accuracy.  

To ensure a stable computation, the stability condition (2.10) in the following should 

be satisfied  

( )ii cu
xCFLt
+

∆
=∆

max
.               (2.10) 

This scheme is stable under standard CFL number (generally from 0.1 to 0.9), based 

on the largest absolute wave speed.  

2.4 GFM-based Algorithms for material interface 

   The level set equation is solved to keep track of the interface location as zero level of 

φ  which is the signed distance function. With interface locations, the GFM defines 

ghost fluids and the computations are then carried out as for a single-medium manner 

via solving two respective single-medium GFM Riemann problems. In this section, 

various existing GFM-based schemes like the original GFM, the new version GFM 

and the MGFM are presented. The MGFM employs an ARPS to predict the interface 

information (pressure and normal velocity) which needs relatively more computations. 

To speed the computation, an explicit characteristic method is proposed to replace the 

ARPS for predicting interface information, resulting in the so-called present GFM. 

2.4.1 The Original GFM with Isobaric Fix  

    The key point of any GFM-based algorithm is defining the ghost fluid properties 

where the real fluid and ghost fluid coexist (Fedkiw et al, 1999b). Generally, the 

pressure and velocity are continuous across the interface and thus the pressure and 

velocity of the ghost fluid are equal to the pressure and velocity of real fluid at ghost 
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cells. Consider two fluids called Fluid1 and Fluid2 are connected by a material 

interface which lies in between node i  and node 1+i  as shown in Fig. 2.1.  In the 

computation of Fluid1, the real fluid and ghost fluid coexist in the domain of Fluid2. 

The pressure and velocity of the ghost cells are copied from the real fluid of Fluid2. 

The entropy is chosen as the third variable to complete the definition of the ghost cells. 

The entropy of the ghost cells at Fluid2 is extrapolated from the node  of Fluid1. 

In this way, the ghost cells are defined and the interface conditions are determined. It 

should be noted that the entropy of node i of Fluid1 is updated by the entropy of node 

in this process to suppress “overheating” phenomenon where numerical results 

provide accepted pressure and velocity but can not predict an acceptable third variable, 

density or temperature. The overall process for the definition of the ghost cells can be 

written as 

1−i

1−i

2
11 ++ = i

G
i pp   , 2

22 ++ = i
G
i pp 2

33 ++ = i
G
i pp

2
11 ++ = i

G
i uu   ,                         (2.11) 2

22 ++ = i
G
i uu 2

33 ++ = i
G
i uu

1
1

1
−= ii ss             , 1

11 −+ = i
G
i ss 1

12 −+ = i
G
i ss 1

13 −+ = i
G
i ss

where the superscript ,  and  express the ghost cell, Fluid1 and Fluid2, 

respectively. If Fluid2 is calculated, similar process as (2.11) can be used for the 

definition of ghost cells at Fluid1. The definition of ghost cells as mentioned above 

shows that the major advantage of the original GFM is its simplicity. 

""G "1" "2"

2.4.2 The New Version GFM with Isobaric Fix  

The original GFM may not work well for some flows with different EOS across the 

interface like the gas-water and gas-solid flows. Such inapplicability is due to the fact 

that the pressure of water or solid is very sensitive to density. For (proper) definition of 
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ghost fluid for the material associated with a stiff equation of state, the material 

properties have to be taken into account because the pressure or velocity may not be 

continuous across the interface in the first several computational steps during a shock 

wave impacting on the interface. Fedkiw et al (2002) developed a new version GFM 

for solid computation in which the velocity of ghost fluid is determined by the fluid 

associated with the stiff EOS (water or solid) and the pressure of ghost fluid is 

determined by the other fluid (gas). In this way, the material property is partly taken 

into account and thus the new version GFM performs better than the original GFM in 

the computation of gas-water and gas-solid flows. Consider a gas-water flow where 

gas (Fluid1) lies in the left side of the interface and water (Fluid2) lies in the right side 

of the interface as Fig 2.2 shows. When defining the ghost fluid status for water, the 

pressure of gas is copied into the ghost cells while the entropy and velocity of water 

are extrapolated into the ghost cells from water side. When defining the ghost fluid 

status for gas, the velocity of water is copied into the ghost cells while the entropy and 

pressure of gas are extrapolated into the ghost cells from the gas side. Figure 2.2a 

shows the process of defining ghost fluid status for Fluid1 (gas). This process can be 

written as 

1
1 i

G
i pp =+   , 1

2 i
G
i pp =+

1
3 i

G
i pp =+

2
11 ++ = i

G
i uu    ,                       (2.12a) 2
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G
i uu 2

33 ++ = i
G
i uu

1
1

1
−= ii ss            . 1

11 −+ = i
G
i ss 1

12 −+ = i
G
i ss 1

13 −+ = i
G
i ss

Figure 2.2b shows that the process of defining ghost fluid status for Fluid2 (water), 

similar equations like (2.12a) can be written as follows 

1
i

G
i pp =   , 1

11 −− = i
G
i pp 1

22 −− = i
G
i pp

2
1+= i

G
i uu    ,                       (2.12b) 2
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12 +− = i
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i uu
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2
2

2
1 ++ = ii ss           .  2

2+= i
G
i ss 2

21 +− = i
G
i ss 2

12 +− = i
G
i ss

It has been found that the new version GFM is not effective as the original GFM for 

some gas-gas flows and gas-water flows (Liu et al, 2005). That is, the employment of 

the original GFM or the new version GFM is very problem-related instead of 

universally effective. To overcome such non-generality, a modified GFM with more 

generality and accuracy is developed by Liu et al (2003b). 

2.4.3 The Modified GFM  

    The modified GFM is developed for a strong shock impacting on a material 

interface where the pressure, velocity and entropy may not be continuous across the 

interface in the initial several steps of computation as a singularity is created at the 

interface (Liu et al, 2003b). That is, the assumption of pressure and velocity continuity 

for the original GFM may not be maintained under such condition. In the presence of a 

strong shock, a correct interface status has to be obtained before a GFM-based 

algorithm can be applied. For this purpose, the characteristic relationship associated 

with the shock-jump conditions is employed to predict the interface status (Liu et al, 

2001a). The material properties and wave interactions with interface are taken into 

account for better prediction of the interface status. The modified GFM is described in 

detail in Liu et al (2003b). A brief summary is given here. 

     The system (2.1) can be rewritten at the interface in the characteristic form, and the 

two nonlinear characteristic equations intersecting with the material interface are 

expressed as 

0=+
dt

duc
dt

dp I
ILIL

I ρ ,    along ILI cu
dt
dx

+=  ,                      (2.13a) 

0=−
dt

du
c

dt
dp I

IRIR
I ρ ,   along IRI cu

dt
dx

−=  ,                      (2.13b) 
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where subscripts “ I ”, “ IL ” and “ IR ” refer to the interface, the left side of the 

interface and the right side of the interface, respectively. ILρ  ( IRρ ) and  ( ) are the 

density and sound speed on the left (right) side of the interface;  and  are the 

velocity and density at the interface, respectively. Discretization of (2.13) via the 

implicit characteristic method leads to the modified GFM in which (2.13) is 

approximated by 

ILc IRc

Iu Ip

( ) 0=−+
−

ILI
IL

ILI uu
W

pp
,              (2.14a) 

( ) 0=−−
−

IRI
IR

IRI uu
W

pp
,              (2.14b) 

where ( ) is the fluid velocity on the left (right) side of interface.  and  are 

related to the interface information and used to approximate 

ILu IRu LW RW

ILILcρ and IRIRcρ . 

Equation (2.14) is solved via iteration to obtain the interface pressure and velocity. The 

detailed solver for (2.14) is presented in Liu et al (2001a, 2003b). Assume Fluid1 on 

the left and Fluid2 on the right are connected by an interface located between nodes i  

and as shown in Fig. 2.3. In the computation of Fluid1, (2.14a, b) are solved for 

prediction of the interface status. The predicted interface pressure and velocity are then 

copied into the ghost cell  and the density of this ghost cell is determined by the 

predicted interface entropy. For the ghost cell

1+i

1+i

2+i , the pressure and velocity can be 

copied from the predicted interface pressure and velocity while the predicted interface 

entropy is copied into ghost cell 2+i  to fix the density. For suppressing the 

“overheating” phenomenon, the entropy of real Fluid1 i  is updated by the predicted 

interface entropy to define a new density at this point. Similar to the Sections 2.4.1 and 

2.4.2, we express this process as follows 
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I
G
i pp =+1  ,  I

G
i pp =+2

I
G
i uu =+1  ,                                      (2.15) I

G
i uu =+2

Ii ss =1              .    I
G
i ss =+1 I

G
i ss =+2

Similar procedures (2.15) for the ghost fluid status can be obtained in the computation 

of Fluid2. The MGFM preserves the simplicity of the original GFM and can be 

universally applicable. As an approximate Riemann problem solver (ARPS) is applied 

to predict the interface status and hence a little more computational cost than the 

original GFM is unavoidable.  For the flows where one medium is a solid and EOSS3 

is used for the solid medium, it may take much more computing time to obtain the 

solution of ARPS when the pressure is not high. To overcome this difficulty, as one of 

the purposes of this work, a simple explicit characteristic method is employed to 

replace the ARPS for predicting the interface status, thereby resulting in the so-called 

present GFM in the following. 

2.4.4 The Present GFM  

    The explicit characteristic method proposed here is another method to discretize 

(2.14) (see also Xie et al, 2005b). If ILILcρ  and IRIRcρ  are assumed as constants and 

thus (2.13) is approximated as 

( ) 0=−+
−

ILI
ILIL

ILI uu
c
pp

ρ
,                         (2.16a) 

( ) 0=−−
−

IRI
IRIR

IRI uu
c
pp

ρ
,                         (2.16b) 

where  ( ) is the pressure on the left (right) side of the interface. With simple 

derivation, the system (2.16) can be solved to obtain the interface pressure and velocity 

as follows: 

ILp IRp
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( )

IRIRILIL

ILILIRIRIRILIRIRILILIRIL
I cc

cpcpccuup
ρρ

ρρρρ
+

++−
= ,          (2.17a) 

IRIRILIL

IRIRIRILILILIRIL
I cc

cucuppu
ρρ

ρρ
+

++−
= .                       (2.17b) 

Assuming the interface lies between nodes andi 1+i , the values of ILILp ρ,  and are 

taken from node  while the values of

ILc

1−i IRIRp ρ,  and  are taken from nodeIRc 2+i ,   

then (2.17) can be rewritten as 

( )
2211

112221221121

++−−

−−+++−++−−+−

+
++−

=
iiii

iiiiiiiiiiii
I cc

cpcpccuup
ρρ

ρρρρ
,         (2.18a) 
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22211121

++−−

+++−−−+−

+
++−

=
iiii

iiiiiiii
I cc

cucuppu
ρρ

ρρ
.                       (2.18b) 

On the explicit characteristic method we have the following conclusions. 

Conclusion 2.1: System (2.16) is an approximation to the exact Riemann solver with 

the initial condition of  and  on left and right sides of the interface. It 

approximates the exact Riemann solver with the accuracy of 

ILU IRU

( )1−ILI ppO  

or ( )1−IRI ppO .  

    Conclusion 2.1 states that (2.14) and (2.16) approximate the exact Riemann problem 

with different level of accuracy. That is, (2.14) approximates the exact Riemann 

problem with accuracy of ( )21−ILI ppO  or ( )21−IRI ppO  while (2.16) 

approximates the exact Riemann with accuracy of ( )1−ILI ppO  or ( )1−IRI ppO . The 

present GFM may not be so accurate if a strong rarefaction wave is propagating in the 

flow especially for gas-gas flows where the assumption of constants for ILILcρ  and 

IRIRcρ  are not quite correct. Therefore, the main application of the present GFM is for 

gas-solid and water-solid flows where high pressure lies in the gas medium for gas-
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solid flows and water medium for water-solid flows. A gas-steel and a water-steel flow 

are presented below to verify the accuracy of the present GFM for predicting the 

interface status where the hydro-elasto-plastic EOS (EOSS3) in Section 2.2 is 

employed for the steel. The main parameters for the steel are shown in Table 2.1. For 

the gas-steel flow, the pressure ratio of gas to steel ranges from 1000 to 10000 and gas 

densities are 0.320, 0.429 and 0.720, respectively. Other initial conditions 

are 05.0=gρ , ; ,0.0=gu 0.1=sp 8.7=sρ , 0.0=su . Here the superscripts “g” and “s” 

refer to gas and steel mediums, respectively. Table 2.2 shows the comparison of the 

expected pressure and velocity at the interface for system (2.16) and the exact 

Riemann problem solver where the high pressure always lies in the gas medium. It is 

found that there is reasonably good concurrence for the predicted interface pressure 

and velocity via (2.16) and the exact Riemann problem solver when applied to the gas-

steel flow. For the water-steel flow, a similar test is carried out to verify the explicit 

characteristic method. The pressure ratios of water to steel ranges from 5000 to 15000 

and water densities are calculated from Tait’s Equation. Other initial conditions 

are ; ,0.0=wu 0.1=sp 8.7=sρ , 0.0=su . Once again, the explicit characteristic 

method provides close interface pressure and velocity to the exact Riemann problem 

solver. Such agreement will be further verified in the Section 2.6 via two further 

examples (Case 2.6.1 and Case 2.6.2). The required iteration steps to solve ARPS is 

also shown in Table 2.4 to investigate the relatively high computational cost of the 

MGFM when compared to the present GFM. 

    Compared to (2.14), the applicability of (2.16) is relatively more limited. This is 

mainly due to the assumption of constants for ILILcρ  and IRIRcρ . In the case of gas-gas 

flows with a large pressure difference or a strong rarefaction wave present, the first-

order accuracy of (2.16) is not sufficiently accurate to ensure a correct predicted 
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interface pressure and velocity. Furthermore, (2.16) may on occasions predict a 

negative interface pressure and thus no subsequent meaningful results can be obtained. 

That is, the breakdown of computation may occur if  in (2.16) become negative, and 

we have 

Ip

IRIR

IR

ILIL

IL
IRIL c

p
c

puu
ρρ

−−≤−  , if 0≤Ip .             (2.19) 

Conclusion 2.2: The present explicit characteristic method is not applicable if the 

inequality (2.19) is satisfied. One necessary condition for application of (2.16) is to 

ensure  is positive.  Ip

Conclusion 2.2 gives a necessary condition for the application of the present explicit 

characteristic method. It should be noted that this condition is not a sufficient condition. 

As mentioned above, the present GFM may meet difficulties when applied to gas-gas 

flows with a large pressure difference or gas-solid flows with a strong rarefaction in 

the gaseous medium. For those cases where the present GFM is inapplicable, the 

MGFM is used instead to replace the present GFM.  

Another important condition for the application of the explicit characteristic method 

is that the pressure is continuous across the interface. That means that the pressures of 

both mediums have to be positive. As we are aware, the pressure on the solid may 

become negative if cavitation occurs in the water near the water-solid interface. In 

such case, a fix has to be developed for the present GFM. (2.17) can be rewritten as  

IRIRILIL

IRIR

IR

ILIL

IL
IRIL

I

cc

c
p

c
p

uu
p

ρρ

ρρ
11

+

++−
= ,                      (2.20a) 
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=

IRIR

ILIL

IRIL
IRIR

ILIL

IRIR

IRIL

I

c
c

uc
c
u

c
pp

u

ρ
ρ

ρ
ρ

ρ
.                                 (2.20b) 

The medium with larger acoustic impedance is assumed to be located on the right side 

of interface (solid) and there is a small pressure and velocity change across the 

interface. When cavitation occurs near the water-solid interface, ILρ  is a very small 

quantity (approximated as vapor density) and  is the acoustic speed of cavitation 

mixture which is of even lower value than the acoustic speed of gas (Qin et al, 1999). 

Therefore, the acoustic impedance on the left side of the interface (i.e.

ILc

ILILcρ ) is much 

smaller than the corresponding value on the right side of the interface (i.e. )IRIRcρ . 

Moreover, there is a small pressure and velocity change across the interface when 

cavitation occurs because the pressure and velocity are continuous across the interface. 

As such, we have ε<− IRIL uu ,  ε<− IRIL pp  and ILILIRIR cc ρρ >> , with ε  being 

much smaller than acoustic impedance. (2.20a, b) are thus simplified as 

( )IRILILILILI uucpp −+≈ ρ ,                                (2.21a) 

IRI uu ≈ .                                                                     (2.21b) 

It should be noted the pressure calculated via (2.21a) is always positive. This is 

because  is positive. Therefore, the potential presence of negative interface 

pressure can be suppressed because the ghost fluids are defined via (2.21a) which is 

positive. 

IRIL uu −

    Compared to the MGFM, the present GFM obtains the interface pressure and 

velocity by algebraic equation which largely reduces computational cost. Although 

Conclusion 2.2 shows the application of the present GFM is limited, it is still able to 
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simulate for numerous gas-solid and water-solid compressible flow problems like 

those in present work. This can be clearly shown based on the analysis carried out in 

Section 2.5 and numerical examples in Section 2.6. 

2.5 Analysis for Various GFM-based Algorithms 

    In the above section, various GFM-based numerical algorithms are briefly 

introduced and an explicit characteristic method for prediction of interface status is 

developed. It has been discussed by Liu et al (2005) that the application range of each 

GFM-based algorithm can be very different. The original GFM, the new version GFM 

and the present GFM have its own limitations when applied to various multi-medium 

flows. To determine and summarize such range of applicability for each GFM-based 

algorithm, mathematical analysis is carried out in this chapter based on the work by 

Liu et al (2005). 

    In the computation of multi-medium Riemann problem (henceforth called original 

Riemann problem for ease of referral), the Riemann waves in the fluid flow have to be 

decomposed correctly. Such Riemann waves consist of a non-linear shock wave, a 

non-linear rarefaction wave and a linear contact discontinuity which generally is 

located between a shock wave and a rarefaction wave. With different initial conditions 

the structure of Riemann waves may be quite different but solutions of the original 

Riemann problem always consist of two non-linear waves and one linear contact 

discontinuity. When the GFM-based algorithm is employed (the original GFM or the 

new version GFM or otherwise), the structures of the Riemann waves (GFM Riemann 

waves) may be different from the original Riemann waves. In the GFM-based 

algorithm, the two single-medium Riemann problems (henceforth called GFM 

Riemann problems for ease of referral) can be constructed to calculate the value at the 
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interface. It has been found especially by Liu et al (2005) that the original GFM or the 

new version GFM may provide inconsistent Riemann waves as compared to the 

original Riemann waves in the respective real fluids, thereby resulting in inaccurate 

numerical results. Therefore, it is suggested that the consistency of GFM Riemann 

waves to the original Riemann waves to the respective real fluid can be taken as a 

criterion to evaluate the applicability or viability of any GFM-based algorithm. An 

original initial-value Riemann problem can be expressed as 

0

0
0 xx

xx
U
U

U
r

l
t >

<

⎩
⎨
⎧

== ,                (2.22) 

where U  is the conservative variable in (2.1) and the subscripts “ l ” and “ r ” indicate 

the flow at the left and right sides of the interface, respectively.  is the initial 

interface location. The solution of system (2.1) with initial condition (2.22) is a shock 

wave-contact discontinuity- rarefaction wave or a shock wave-contact discontinuity-

shock wave or a rarefaction wave-contact discontinuity-rarefaction wave. Physically, 

the pressure and velocity across the interface are continuous but it takes several steps 

for the numerical computation to reach such continuity. In the application of a GFM-

based algorithm, two initial-value GFM Riemann problems are constructed after the 

ghost fluid status is defined, they can be written as 

0x

0

0
0 xx

xx
U
U

U G
r

l
t >

<

⎩
⎨
⎧

== ,  for left flow            (2.23a) 

and  

0

0
0 xx

xx
U
U

U
r

G
l

t >
<

⎩
⎨
⎧

== , for right flow                    (2.23b) 
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where the superscript “ ” indicates the ghost fluid. In general, the pressure and 

velocity will be continuous across the interface after several steps of computation. 

Thus, the applicability of a GFM-based algorithm is determined primarily by the 

computation at the first several steps when an initial singularity exists at the interface. 

To decompose such singularity correctly is the key to obtain the consistent Riemann 

waves and correct pressure and velocity at the interface. This is particularly important 

for the GFM-based algorithm to obtain reasonable numerical results. Unfortunately, 

the original GFM and the new version GFM may not correctly decompose the 

singularity in many cases.  It is found that such difficulty arises mainly because the 

GFM Riemann waves generated by (2.23a) or (2.23b) are not consistent with those by 

(2.22). To ensure consistent GFM Riemann waves during the decomposition of the 

singularity, two conditions proposed by Liu et al (2005) have to be satisfied: 

G

Condition (I): the GFM Riemann wave in the real fluid side for both GFM Riemann 

problems is initially consistent with that for the same side as for the original Riemann 

problem. 

Condition (II): the new Riemann problem formed from the GFM computation 

maintains the same type of solution as that for the original Riemann problem during 

the decomposition of the singularity.  

    The violation of any of these two conditions leads to numerical error at the interface. 

One should note that the satisfaction of Condition (I) does not necessary mean the 

Condition (II) is satisfied automatically. To obtain consistent GFM Riemann waves, 

both conditions have to be satisfied simultaneously. The evaluation of Condition (I) is 

straightforward for the GFM-based algorithms. That is, after the ghost fluid status is 

defined, if the Riemann waves at the real fluid side generated from the GFM Riemann 

problem (2.23) are consistent with the Riemann waves generated from the original 
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Riemann problem (2.22), Condition (I) is satisfied. Otherwise, Condition (I) is violated 

and Condition (II) need not be evaluated because numerical error has appeared at the 

interface due to violation of Condition (I). On the other hand, the evaluation of 

Condition (II) is relatively much more complex. This is because the evaluation of 

Condition (II) involves the numerical scheme and relates to the interface status at the 

first few steps of computation. In Liu et al (2005), the interface pressure and velocity 

provided by the GFM Riemann problems (2.23a) and (2.23b) are employed to evaluate 

the Condition (II). If the interface pressure and velocity obtained from the GFM 

Riemann problem (2.23a) are close to those obtained from the GFM Riemann problem 

(2.23b), Condition (II) is assumed to be satisfied under the prior satisfaction of 

Condition (I). Otherwise, Condition (II) is likely to be violated with the ensuing large 

difference between the interface pressure and velocity predicted by the GFM Riemann 

problem (2.23a) and (2.23b). Such evaluation criterion for Condition (II) has been 

shown to be effective by numerous numerical examples in Liu et al (2005). 

   Conditions (I) and (II) have been applied to analyze the various GFM-based 

algorithms for compressible gas-water flows (Liu et al, 2005). Such analysis can be 

extended to other multi-medium flows like gas-solid and water-solid compressible 

flows. In the following, the analysis on the different GFM-based algorithms for gas-

water, gas-solid and water-solid flows is given. 

2.5.1 Analysis for Gas-Water Compressible Flows 

    For all solution types of gas-water compressible flows, the ranges where the original 

GFM and the new version GFM are unable to provide the correct numerical results 

have been identified by Liu et al (2005). In the same paper, various numerical 

examples, where Condition (I) or Condition (II) is violated by either the original GFM 

or the new version GFM, are constructed to support the analysis for gas-water flows. 
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At the same time, the MGFM is shown to be able to calculate reasonably for the same 

numerical examples.  It is found that the MGFM with a double shock wave solver are 

able to produce reasonable results for comparison to the analytical solutions. 

    The analysis for gas-water flows is not repeated in this section. For details, one can 

refer to the series of papers by Liu et al (2003b, 2005). As mentioned in Section 2.4.4, 

the explicit characteristic method is a first-order approximation to the exact Riemann 

problem solver. Four numerical examples of gas-water flows, which the original GFM 

and the new version GFM are unable to produce reasonable results, are calculated by 

both the MGFM and the present GFM in Section 2.6 (Case 2.6.3-2.6.6) for comparison 

and analysis. Furthermore, Conclusion (2.2) states a necessary condition to assure the 

applicability of the present GFM and thus violation of this necessary condition will 

lead to a breakdown of numerical computation. A numerical example for such 

inapplicability of the present GFM is also given in Section 2.6 (Case 2.6.7). 

2.5.2 Analysis for Gas-Solid Compressible Flows 

    For ease of analysis, the Tait EOS (EOSS1) is used for the solid medium. Obviously, 

the analysis of such gas-solid flows is similar to that of gas-water flows because the 

EOS for water and solid take on the same form. Thus, the analysis for gas-water flows 

in Liu et al (2005) can be applied directly to the analysis for gas-solid flows. In this 

section, we only analyze the gas-solid flows with high pressure in the gaseous medium 

assuming that the gas medium is located on the left side of the interface. Thus we have 

 and only three solution types are possible: a rarefaction wave in gas and a 

shock wave in solid (called R-S); a shock wave in gas and a shock wave in solid 

(called S-S); a rarefaction wave in gas and a rarefaction wave in solid (called R-R). 

The following conclusions can be obtained: 

rl pp >
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Conclusion 2.3 (for the R-S solution type): If the initial status of  and  satisfies lU rU
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then the solution type of Riemann problem (2.22) is a rarefaction wave in gas and a 

shock wave in solid (R-S). Here,  is sound speed of the medium on the left side. lc

Conclusion 2.4 (for the S-S solution type): If the initial status of  and  satisfies lU rU
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then the solution type of Riemann problem (2.22) is a shock wave in gas and a shock 

wave in solid (S-S).  

Conclusion 2.5 (for the R-R solution type): If the initial status of  and  

satisfies 
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then the solution type of Riemann problem (2.22) is a rarefaction wave in gas and a 

rarefaction wave in solid (R-R).  

Here rc  is the sound speed of solid and ( ) ⎥⎦
⎤

⎢⎣
⎡ −=

−

s

s

rcr pBk γ
γ
2

1
1  where Bpp += . It 

should be noted that B  in Tait’s EOS for solid is a magnitude of  ( )1010O  which is 

much larger than B  ( ( )810O ) in Tait’s EOS for water. From Conclusions 2.3, 2.4 and 

2.5 we have the (required) relationship between the interface status and flow status at 

both sides of the interface as follows: 
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1)  and ),max( rlI uuu > lIr ppp <<  for R-S solution. 

2)  and  for S-S solution. lIr uuu << ),max( rlI ppp >

3)  and  for R-R solution. rIl uuu << ),min( rlI ppp <

    These three relationships are very useful to evaluate if a GFM-based algorithm 

satisfies Condition (II). Here, the analysis on various GFM-based algorithms is given 

briefly. 

(1) On the original GFM, we have , ,  and . Using the 

analysis similar as in Liu et al (2005), the range where the original GFM is unable to 

provide the consistent Riemann wave at the respective real fluid (i.e. violation of 

Condition (I)) for gas-solid flows can be defined as 
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2) If the solution type of Riemann problem (2.22) is S-S, this range is defined by 
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where )1/(2 −= gγβ , )1/()1( −+= gg γγτ . 

3) If the solution type of Riemann problem (2.22) is R-R, the original GFM generally 

provides inconsistent Riemann waves in either one of the real flow sides. 

    For a double-rarefaction wave problem, Condition (I) is initially satisfied by the 

original GFM. However, Condition (II) is very difficult to be maintained except the 

initial gas density is far larger than solid which is apparently unrealistic. Difficulties 
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may also arise from the numerical method itself. It has been found by Einfeldt et al 

(1991) that a non-positive preserving scheme such as Roe-type schemes does not work 

well in a double-rarefaction problem especially when the flow condition approaches 

cavitation. To overcome such difficulty, a double rarefaction wave solver has been 

developed by Liu et al (2005).  

(2) On the new version GFM, we have , ,  and . Doing 

so, the pressure of ghost fluid is provided by the gas medium and the velocity of ghost 

fluid is provided by the solid medium. The range where the new version GFM is 

unable to satisfy both Conditions (I) and (II) simultaneously can be defined as 

l
G
r pp = r

G
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G
l pp = r

G
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1) If the solution type of Riemann problem (2.22) is R-S: Condition (I) is violated 

if ; Condition (I) is satisfied if 0>− rl uu 0<− rl uu  but Condition (II) is violated if 

is much different from . 

lu  

ru

2) If the solution type of Riemann problem (2.22) is S-S: Condition (I) is satisfied while 

Condition (II) is violated. This is because the interface velocity obtained from the 

GFM Riemann problem (2.23a) is always less than the interface velocity obtained 

from the GFM Riemann problem (2.23b) while the interface pressure from (2.23a) is 

always larger than the interface pressure from (2.23b). 

3) If the solution of Riemann problem (2.22) is R-R: Condition (I) is always violated 

because we assume . rl pp >

(3) On the MGFM and the present GFM, we have , ,  and 

 where the interface pressure and velocity are solved via an (interface) 

approximate Riemann problem solver (ARPS). This ARPS considers the wave 

interaction and refraction at the interface and thus is able to provide consistent GFM 

I
G
r pp = I

G
r uu = I

G
l pp =

I
G
l uu =
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Riemann waves to the original Riemann waves. Numerical examples show that the 

MGFM is able to produce reasonable numerical results compared to analysis. If the 

pressure and velocity change across the gas-solid interface is small and a low pressure 

region appears next to the gas-solid interface, the ARPS takes more time to obtain the 

density of the solid medium from the pressure quantity. This is especially so if the 

solid medium is governed by hydro-elasto-plastic EOS, resulting in much more 

computational cost for the MGFM. The present GFM is able to greatly reduce the 

computational cost because only an algebraic equation is solved for the interface status 

as shown in (2.16). Case 2.6.1 is a gas-solid (steel) flow where the present GFM 

computes much faster than for the MGFM. 

    Various numerical examples, where at least one of Conditions (I) and (II) is violated, 

are calculated by the four GFM-based algorithms (Case 2.6.8-Case 2.6.10).  

2.5.3 Analysis for Water-Solid Compressible Flows 

Similar to the gas-solid compressible flows as discussed above, the analysis for the 

water-solid compressible flows is based on Tait’s EOS (EOSS1) used for the solid 

medium. If EOSS2 or EOSS3 in Section 2.2 is used for the solid medium, similar 

analysis can be carried out but the closed form may not be obtained. This is because 

the relationship between the pressure and density in EOSS2 and EOSS3 is implicit. In 

the computation of water-solid flows, the high pressure invariably lies in the water 

medium and initial water velocity is usually much larger than the solid velocity. Based 

on the assumption that the water is on the left side of the interface and the solid is on 

the right side of the interface we therefore have 

rl pp > , ,                  (2.28) rl uu ≥
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The water-solid flows we consider are a high pressure and high speed water stream 

impacting on the solid where the water pressure and velocity are much larger than 

solid pressure and velocity. In such case, the only possible solution type of interest is 

S-S. Therefore, we have Conclusion 2.6: 

Conclusion 2.6: If the initial status of  and  satisfies lU rU
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then the solution type of Riemann problem (2.22) is a shock wave in water and a shock 

wave in solid (S-S).  

Next, the performance of various GFM-based algorithms is discussed for this 

particular solution type. 

(1) On the original GFM, to satisfy Condition (I), the only acceptable solution type of 

the GFM Riemann problem (2.23a) is S-S. Thus we have 
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On the other hand, the GFM Riemann problem (2.23b) should have a solution of either 

R-S or S-S. If the following inequality (2.31a) is held, 
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then the solution type of (2.23b) is R-S, where  is the density of ghost fluid. 

Otherwise, if inequality (2.31b) is held 
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the solution type of (2.23b) is S-S. Inequality (2.31a) is excluded due to (2.28) and 

(2.29). Therefore, the only acceptable solution type for (2.23b) is S-S. It is clearly 

shown that (2.31b) is always true due to inequality (2.29). But (2.30) may not be true 

in this case. Condition (I) is violated if following inequality (2.32) is held 

l

r

l

r

l
G
r

r
rl p

p
p
ppuu γ

ρ
/1)(110 −−−<−< .                         (2.32) 

It has also been found that Condition (II) is difficult to be maintained because the EOS 

for water and solid are very stiff and the interface pressure and velocity predicted by 

the GFM Riemann problem (2.23a) are not close to those predicted by GFM Riemann 

problem (2.23b). Therefore, the original GFM is generally unable to obtain reasonable 

results for such water-solid flows. 

(2) On the new version GFM, if , Condition (I) can be easily fulfilled. It is 

interesting to find that Condition (II) is always violated in the application of the new 

version GFM for the present water-solid flows. For the GFM Riemann problem (2.23a) 

solved using the new version GFM, the interface velocity is  

rl uu >

  ( )rl
rl

I uuuuu ,max
2

<
+

= .                           (2.33) 

On the other hand, for the GFM Riemann problem (2.23b), the interface velocity 

satisfies the following inequality 

  .                 (2.34) ),max( rlI uuu >

The conflict or inconsistency between (2.33) and (2.34) leads to numerical errors 

incurred at the interface in the application of the new version GFM.  

(3) On the MGFM and the present GFM, similar to gas-solid flows, numerical 

examples show that the MGFM is able to produce reasonable numerical results 
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compared to analytical results when a strong shock makes impact on the water-solid 

interface. Once again, the present GFM achieves the converged solution with much 

less time than the MGFM especially when the hydro-elasto-plastic EOS is employed 

for the solid medium. Case 2.6.2 is a (typical) water-solid (steel) flow where the 

present GFM computes much faster than the MGFM. 

    In next section, three numerical examples (2.6.11 to 2.6.13) will be calculated to 

compare the performance of four GFM-based algorithms for water-solid flows. 

2.6 Numerical Examples 

Various tests are implemented for the GFM-based algorithms as discussed in 

Section 2.4. The Euler equations are solved by MUSCL-type scheme with HLL 

approximate Riemann solver (Harten et al, 1983; Toro, 1997). A detailed discussion 

and analysis on this method can be found in (Toro, 1997). To ensure stable 

computation, the stability condition should satisfy 

( )ii cu
xCFLt
+

∆
=∆

max
,                           (2.35) 

and the CFL number is taken to be between 0 and 1. It may be noted that actual 

numerical accuracy of the GFM-based algorithms may be different if other numerical 

schemes like ENO or WENO or otherwise are employed. Isentropic fix is employed 

for the various GFM-based algorithms. The numerical results may also depend on the 

different fix but it will not be discussed here. Whatsoever, the relative merit of a given 

numerical scheme for the different GFM-based algorithms stays generally true; 

difficulties arise primarily when one tries to compare the accuracy of a particular 

numerical scheme as applied to a given GFM-based algorithm to another numerical 

scheme employed in a different GFM-based algorithm. Below, the CFL number is set 
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to be 0.9 over 201 uniform mesh points in domain [0,1] for all the examples except for 

Cases 2.6.1 and 2.6.2 with CFL=0.8 over 101 uniform mesh points in domain [-5,5]. 

All the initial interface is located at 0.4 unless specially noted otherwise. gγ  is set to 

1.4 while lγ  is set to be 7.15 and sγ  ( β  )is taken to be 3.7 for solid and steel. Other 

parameters for steel are shown in Table 2.1. All the parameters in the computation are 

non-dimensional.  

Cases 2.6.1 and 2.6.2 are provided for validating the present GFM with comparing 

to the MGFM and analysis. The EOS for solid in these two cases is the Hydro-elasto-

plastic EOS (EOSS3). Cases 2.6.3 to 2.6.13, where either Condition (I) or (II) is 

violated by the original GFM or new version GFM, are computed for further validation 

of the present GFM and verification of the analysis carried out on the gas-water flows 

in Section 2.5.1, gas-solid flows in Section 2.5.2 and water-solid flows in Section 2.5.3. 

Case 2.6.1 (Gas-Steel). This case is taken from Tang and Sotiropoulos (1999) where a 

high pressurized air stream impact the stationary steel. The main parameters for the 

steel are shown in Table 2.1. The initial conditions are 0.50=lu , , 0.10000=lp

05.0=lρ ; 0.0=ru , ,0.1=rp 8.7=rρ . Initial interface is located at 0.0. We ran the 

computation to a final time of . Figures 2.4a, 2.4b and 2.4c show that the 

present GFM can obtain reasonable results when compared to the MGFM. This 

supports the analysis in Section 2.4.4 that the present GFM is able to predict the 

interface status even with 1st-order accuracy. For this case, the present GFM provides 

almost the same results as the MGFM. The present GFM also, with much less 

computational cost, produces very comparable results to the approximate Riemann 

solver developed by Tang and Sotiropoulos (1999). 

41004.4 −×
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Case 2.6.2 (Water-Steel). This case is also taken from Tang and Sotiropoulos (1999) 

where a high pressurized water stream impacts on steel at a very high velocity. The 

initial conditions are ,0.30=lu 0.25000=lp ; 0.30−=ru , 0.25=rp , 80006.7=rρ . 

Initial interface is located at 0.0.  We ran the code to a time of . In this case, 

there are two shock waves propagating in the steel, one is an elastic shock wave and 

the other is a plastic shock wave. Another shock wave is observed propagating in the 

water. The EOSS3 can capture both the elastic and plastic shock waves in the solid 

which is apparently different from the EOSS1 where only one wave is captured. It is 

clearly shown in Figs. 2.5a to 2.5c that the present GFM again provides very similar 

results to the MGFM. Once again, the present GFM needs less computation cost to 

achieve sufficient level of accuracy in contrast to the MGFM (Liu et al, 2003) and the 

approximate Riemann solver (Tang and Sotiropoulos, 1999). 

41046.5 −×

Case 2.6.3 (Gas-Water). The solution type of this case is a rarefaction wave in gas 

and a shock wave in water. For this case, Condition (II) is violated by the original 

GFM and Condition (I) is violated by the new version GFM. Therefore, both the 

original GFM and new version GFM are unable to provide reasonable results. The 

initial conditions for this case are 0.10=lu , 0.1800=lp , 2.0=lρ ; 

, ,0.0=ru 0.1=rp 0.1=rρ . We ran the computation to a final time of . The 

results of MGFM and present GFM are provided for comparison to the analytical 

solution; no meaningful result is obtained via original or new version GFM (not 

shown). Figures 2.6a and 2.6b show that the velocity profile provided by the present 

GFM is quite close to the MGFM while there is a little difference at the position of the 

rarefaction wave in gas. Such observation supports the analysis that the present GFM 

is not as accurate as the MGFM if a strong rarefaction wave propagates in the gas 

3100.2 −×
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medium as mentioned in Section 2.4.4. Figure 2.6c and 2.6d provide similar pressure 

profiles for the MGFM and the present GFM.  

Case 2.6.4 (Gas-Water). The solution type of this case is a shock wave in gas and a 

rarefaction wave in water. For this case, Condition (I) is violated by the new version 

GFM. Therefore, the new version GFM can not provide reasonable results The initial 

conditions are , 0 ,0.0=lu .1000=lp 5.0=lρ ; 0.0=ru , 0.2000=rp , 076.1=rρ . 

We ran the computation to a final time of . In this case, the shock wave in gas 

and the rarefaction wave in water are captured well by both the MGFM and the present 

GFM as shown in Figs. 2.7a to 2.7d. Note that the original GFM is able to provide the 

correct GFM Riemann waves and thus reasonable results are also obtained for this case 

due to a large gas density comparable to the water density (Liu et al, 2005).  

3100.2 −×

Case 2.6.5 (Gas-Water). The solution type of this case is a shock wave in gas and a 

shock wave in water. For this case, Condition (I) is violated by the original GFM and 

Condition (II) is violated by the new version GFM. Thus, both methods are unable to 

provide any meaningful results. The initial conditions are 0.50=lu , , 0.1000=lp

5.0=lρ ; , ,0.0=ru 0.1=rp 0.1=rρ . We ran the computation to a final time of 

. Similar pressure and velocity profiles are provided by the MGFM and the 

present GFM as shown in Figs. 2.8a to 2.8d.  

3100.2 −×

Case 2.6.6 (Gas-Water). The solution type of this case is a rarefaction wave in gas 

and a rarefaction wave in water. Condition (I) is satisfied while Condition (II) is 

violated by the original GFM and Condition (II) is violated by the new version GFM. 

The initial conditions for this case are 0.10−=lu , 0.8000=lp , 2.1=lρ ; 

, ,0.0=ru 0.8000=rp 199.1=rρ . We ran the computation to a final time of 

. The original GFM is unable to provide any meaningful results for this case 3100.2 −×
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while pressure oscillations appear in the neighborhood of the rarefaction wave in the 

water when the new version GFM is used. It may be noted that a little pressure 

undershoot produced by the present GFM near the right rarefaction wave if we see 

closely into Fig. 2.9d, while it is still able to capture the rarefaction wave and provide a 

reasonable velocity profile when compared to the analytical solution and the MGFM. 

Case 2.6.7 (Gas-Water). The solution type of this case is the same as Case 2.6.3. 

Condition (I) is violated by the original GFM and Condition (II) is violated by the new 

version GFM. The initial conditions are 0.100−=lu , 0.8000=lp , 2.1=lρ ; 

, ,0.0=ru 0.1=rp 0.1=rρ . The initial interface is located at 0.5. We ran the 

computation to a final time of . This case is difficult for most of the GFM-

based algorithms because a very strong rarefaction wave is propagating in the gas. A 

spurious cavitation is provided by the original GFM and the present GFM while a 

severe numerical inaccuracy is experienced by the new version GFM. The present 

GFM is also unable to provide any meaningful results because (2.19) is held and thus a 

negative interface pressure is produced. As mentioned in Section 2.5.2, such difficulty 

may arise because the numerical algorithm itself is unable to solve for a double 

rarefaction wave problem. It should be noted that such inapplicability may occur if 

solution type of (2.22) comprises a strong rarefaction wave and a wave (shock or 

rarefaction wave) connected by a discontinuity or two relatively strong rarefaction 

waves connected by a discontinuity. For such case, however, the MGFM is still able to 

provide a reasonable pressure and velocity profile as shown in Fig. 2.10a and 2.10b if a 

double rarefaction wave solver is incorporated into the MGFM as found in Liu et al 

(2005). 

3100.2 −×

Case 2.6.8 (Gas-Solid). The solution type of this case is a rarefaction in gas and a 

shock wave in solid. Similar to Case 2.6.3, Condition (I) is violated by the original 
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GFM and Condition (II) is violated by the new version GFM. The initial conditions for 

this case are , 0 ,0.10−=lu .1800=lp 2.0=lρ ; 0.0=ru , 0.1=rp , 8.7=rρ . We ran 

the computation to a final time of . No meaningful result is provided by the 

original GFM while a pressure overshoot is found in Fig. 2.11a provided by the new 

version GFM. On the other hand, Figure 2.11c shows a reasonable pressure profile 

provided by the present GFM when compared to the analytical solution. A more 

accurate result is observed in Fig. 2.11b obtained from the MGFM due to higher order 

approximation to the exact Riemann problem solver than the present GFM when the 

interface singularity is decomposed in the first few steps of computation. 

4100.5 −×

Case 2.6.9 (Gas-Solid). The solution type of this case is a shock wave in gas and a 

shock wave in solid. Condition (I) is violated by the original GFM and Condition (I) is 

satisfied but Condition (II) is violated by the new version GFM. The initial conditions 

for this case are , 00.20=lu .1800=lp , 2.0=lρ ; 0.0=ru , ,0.1=rp 8.7=rρ . The 

computation is allowed to run to a final time of . Once again, the original 

GFM is unable to produce any meaningful results due to large density difference 

across the interface, while the new version GFM provides an inaccurate shock location 

in the solid medium as shown in Fig. 2.12a. Both the MGFM and the present GFM 

compare reasonably with the analytical solution as shown in Fig. 2.12b and 2.12c 

although the MGFM shows better concurrence.  

4100.5 −×

Case 2.6.10 (Gas-Solid). The solution type of this case is a rarefaction wave in gas 

and a rarefaction wave in solid. Condition (I) is satisfied and Condition (II) is violated 

by the original GFM while Condition (II) is violated by the new version GFM. The 

initial conditions for this case are 0.10−=lu , 0.8000=lp , 2.1=lρ ; 

, . The computation is allowed to run to a final time of .  0.0=ru 0.8000=rp 3100.1 −×
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The original GFM is still unable to provide an acceptable pressure profile for this case. 

Also, a severe inaccuracy of the rarefaction wave location produced by the new 

version GFM is observed in Fig. 2.13a. The MGFM with a double rarefaction wave 

solver is able to provide a very reasonable pressure profile. The present GFM, however, 

produces a pressure undershoot near the rarefaction wave in solid even if a double 

rarefaction wave solver is incorporated. 

Case 2.6.11 (Water-Solid). This is a case where a water stream is impacting a 

stationary solid. For such a case, if (2.28) is held, the solution type is always a shock 

wave in water and a shock wave in solid. The initial conditions for this case are 

, 0 ; ,0.10=lu .2000=lp 0.0=ru 0.1=rp , 8.7=rρ . The computation is allowed to 

run to a final time of . Condition (I) is violated by the original GFM due to 

upholding of (2.32) while Condition (II) is violated by the new version GFM. No 

meaningful results are provided by the original GFM due to severe oscillations in the 

computation. Such oscillations in water-solid flows are much more severe than those 

in gas-water or gas-solid flows because the EOS for water and solid are much stiffer 

such that the magnitude of pressure oscillation is very quickly magnified. On the other 

hand, Condition (II) is generally violated by the new version GFM for this case due to 

the incompatibility of (2.33) and (2.34). An unacceptable shock location in solid is 

produced by the new version GFM as shown in Fig. 2.14a while Figs. 2.14b and 2.14c 

show that the MGFM and the present GFM are both able to provide reasonable 

pressure profile when compared to the analytical solution.  

3100.5 −×

Case 2.6.12 (Water-Solid). The solution type is also a shock wave in water and a 

shock wave in solid. The initial conditions for this case are , ; 

, , 

0.10=lu 0.1000=lp

0.0=ru 0.1=rp 8.7=rρ . The computation is allowed to run to a final time of 
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3100.5 −× .  Condition (I) is satisfied and Condition (II) is violated by the original GFM 

while Condition (II) is violated by the new version GFM. Similar to Case 2.6.11, no 

meaningful results are provided by the original GFM due to severe oscillations in the 

computation. Figure 2.15a shows that the shock location in the solid medium provided 

by the new version GFM is always lagging. The present GFM is still able to produce 

reasonable results with a little dissipation at the region of the shock in solid as shown 

in Fig. 2.15c while Fig. 2.15b shows that the MGFM provides the closest pressure 

profile to the analytical solution.  

Case 2.6.13 (Water-Solid). This is a case where both water and solid are impacting 

each other at a very high speed. The solution type is a shock wave in water and a shock 

wave in solid. The initial conditions for this case are 0.50=lu , ; 

,

0.25000=lp

0.5−=ru 0.25=rp , 800088.7=rρ . The computation is allowed to run to a final 

time of .  Condition (I) and Condition (II) are satisfied by the original GFM 

because (2.30) and (2.31b) are upheld simultaneously while Condition (II) is violated 

by the new version GFM. It is found that the interface pressure and velocity calculated 

by (2.23a) and (2.23b) are relatively close to each other. That is why the original GFM 

is able to provide acceptable result as shown in Fig. 2.16a. The new version GFM 

however leads to a lagging shock location in solid as shown in Fig. 2.16b. It is shown 

in Fig. 2.16c that the pressure profile provided by the MGFM is quite comparable to 

the analytical results. Also, the pressure profile produced by the present GFM in Fig. 

2.16b is in substantial agreement with the MGFM and the analytical solutions. 

3100.5 −×

2.7 Summary for Chapter 2 

In this chapter, various GFM-based algorithms are introduced and analyzed briefly 

for gas-water and gas-solid flows. A detailed analysis on water-solid flows is also 
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carried out for application of each GFM-based algorithm. Based on the two conditions 

proposed by Liu et al (2005), it has been found that there is a range of applicability 

where the original GFM and the new version GFM are unable to provide reasonable 

results, while the MGFM with a double shock wave solver is robust for all the 

challenging numerical examples presented in this chapter. The MGFM consists of two 

parts: one is the approximate Riemann problem solver for predicting the interface 

status where the iteration solver is needed and the other is to define the ghost status 

using predicted interface status. To reduce the computational cost, an explicit 

characteristic method (the present GFM) is proposed to replace the MGFM. The 

advantage and limitation of the present GFM are analyzed and then various numerical 

examples are calculated using various GFM-based algorithms for further comparison 

and verification of the present GFM. It is clearly shown that the present GFM is able to 

provide reasonable results for most of problems when compared to the MGFM and 

analytical solutions. It is also found that the present GFM is inapplicable for the 

problems where the solution type comprises two rarefaction wave connected by a 

discontinuity or a strong rarefaction wave and a shock wave connected by a 

discontinuity. Such inapplicability is due to the negative interface pressure predicted 

by the present GFM. It may be noted that both the MGFM and the present GFM can 

successfully simulate the water-solid flows with high pressure on the water side while 

the original GFM and the new version GFM meet severe difficulties for such problems. 
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Fig. 2.2b Ghost fluid status for the new version ghost fluid method (Fluid2). 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.3 Isentropic fix for the modified ghost fluid method (the MGFM). 
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Fig. 2.4a Velocity profile for Case 2.6.1 by the MGFM and the present GFM. 

 
 
 

 
Fig. 2.4b Pressure profile for Case 2.6.1 by the MGFM and the present GFM. 
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Fig. 2.4c Density profile for Case 2.6.1 by the MGFM and the present GFM. 

 
 
 

 
Fig. 2.5a Velocity profile for Case 2.6.2 by the MGFM and the present GFM. 
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Fig. 2.5b Pressure profile for Case 2.6.2 by the MGFM and the present GFM. 

 
 
 

 
Fig. 2.5c Density profile for Case 2.6.2 by the MGFM and the present GFM. 
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Fig. 2.6a Velocity profile for Case 2.6.3 by the MGFM.   

 
 
 

 
Fig. 2.6b Velocity profile for Case 2.6.3 by the present GFM. 
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Fig. 2.6c Pressure profile for Case 2.6.3 by the MGFM. 

 
 
 

 
Fig. 2.6d Pressure profile for Case 2.6.3 by the present GFM. 
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Fig. 2.7a Velocity profile for Case 2.6.4 by the MGFM. 

 
 
 

 
Fig. 2.7b Velocity profile for Case 2.6.4 by the present GFM. 
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Fig. 2.7c Pressure profile for Case 2.6.4 by the MGFM. 

 
 
 

 
Fig. 2.7d Pressure profile for Case 2.6.4 by the present GFM. 
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Fig. 2.8a Velocity profile for Case 2.6.5 by the MGFM. 

 
 
 

 
Fig. 2.8b Velocity profile for Case 2.6.5 by the present GFM. 
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Fig. 2.8c Pressure profile for Case 2.6.5 by the MGFM. 

 
 
 

 
 

Fig. 2.8d Pressure profile for Case 2.6.5 by the present GFM. 
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Fig. 2.9a Velocity profile for Case 2.6.6 by the MGFM. 

 
 
 

 
Fig. 2.9b Velocity profile for Case 2.6.6 by the present GFM. 
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Fig. 2.9c Pressure profile for Case 2.6.6 by the MGFM. 

 
 
 

 
Fig. 2.9d Pressure profile for Case 2.6.6 by the present GFM. 

 
 
 
 
 
 

 69



CHAPTER 2 MATHEMATICAL FORMULATION: NUMERICAL METHODS 

 
 

 
Fig. 2.10a Velocity profile for Case 2.6.7 by the MGFM. 

 
 
 

 
Fig. 2.10b Pressure profile for Case 2.6.7 by the MGFM. 
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Fig. 2.11a Pressure profile for Case 2.6.8 by the new version GFM. 

 
 
 

 
Fig. 2.11b Pressure profile for Case 2.6.8 by the MGFM. 
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Fig. 2.11c Pressure profile for Case 2.6.8 by the present GFM. 

 
 
 

 
Fig. 2.12a Pressure profile for Case 2.6.9 by the new version GFM. 
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Fig. 2.12b Pressure profile for Case 2.6.9 by the MGFM. 

 
 
 

 
Fig. 2.12c Pressure profile for Case 2.6.9 by the present GFM. 
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Fig. 2.13a Pressure profile for Case 2.6.10 by the new version GFM. 

 
 
 

 
Fig. 2.13b Pressure profile for Case 2.6.10 by the MGFM. 
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Fig. 2.13c Pressure profile for Case 2.6.10 by the present GFM. 

 
 
 

 
Fig. 2.14a Pressure profile for Case 2.6.11 by the new version GFM. 
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Fig. 2.14b Pressure profile for Case 2.6.11 by the MGFM. 

 
 
 

 
Fig. 2.14c Pressure profile for Case 2.6.11 by the present GFM. 
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Fig. 2.15a Pressure profile for Case 2.6.12 by the new version GFM. 

 
 
 

 
Fig. 2.15b Pressure profile for Case 2.6.12 by the MGFM. 
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Fig. 2.15c Pressure profile for Case 2.6.12 by the present GFM. 

 
 
 

 
Fig. 2.16a Pressure profile for Case 2.6.13 by the original GFM. 
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Fig. 2.16b Pressure profile for Case 2.6.13 by the new version GFM. 

 
 
 

 
Fig. 2.16c Pressure profile for Case 2.6.13 by the MGFM. 

 
 
 
 
 
 

 79



CHAPTER 2 MATHEMATICAL FORMULATION: NUMERICAL METHODS 

 

 
Fig. 2.16d Pressure profile for Case 2.6.13 by the present GFM. 

 
  

 
Parameter Values Dimension 

ap  1.0 bar  

aρ  7800 3mkg  
β  3.7 Non-dimensional 
m  2.225×1011

ap  (Pascal) 
G  8.53×1010

ap  (Pascal) 

Y  9.79×108
ap  (Pascal) 

 
Table 2.1 Material properties of steel for hydro-elasto-elastic EOS. 

 

Pressure ratio 
sg pp  

Exact interface 
pressure 

Predicted 
interface 
pressure 

Exact interface 
velocity 

Predicted 
interface 
velocity 

1000 998.37 998.37 0.1948 0.1948 

5000 4981.86 4981.80 0.9711 0.9725 

10000 9948.84 9948.61 1.9378 1.9425 

 
Table 2.2 The predicted interface status via the explicit characteristic method and 

accurate Riemann problem solver with various pressure ratios of gas and steel. 
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Pressure ratio 
sw pp  

Exact interface 
pressure 

Predicted 
interface 
pressure 

Exact interface 
velocity 

Predicted 
interface 
velocity 

5000 4760.68 4758.51 0.9283 0.9290 

10000 9386.59 9377.47 1.8283 1.8309 

15000 13914.88 13893.75 2.7073 2.7128 

 
Table 2.3 The predicted interface status via the explicit characteristic method and 
accurate Riemann problem solver with various pressure ratios of water and steel. 

 

Pressure ratio 
sg pp   Iteration steps 

Pressure ratio 
sw pp  Iteration steps 

1000 124 5000 112 

5000 121 10000 119 

10000 119 15000 125 

 
Table 2.4 The required iteration steps for ARPS with various pressure ratios of gas to 

steel and water to steel ( 710−=ε ). 
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Chapter 3 

Mathematical Formulation: Unsteady Cavitation Models 

The numerical methods presented in last chapter are unable to simulate cavitating 

flows without incorporation of a cavitation model. An unsteady cavitation consists of a 

dynamically developing boundary and can evolve to a certain dimension before 

collapsing very violently. The development and collapse of such cavitation is sustained 

mainly by the pressure jump across the cavitation boundary. For simulation of the 

unsteady cavitation, the one-fluid cavitation model is efficient to capture the cavitation 

creation, evolution and collapse. Several one-fluid models have been introduced 

briefly in Chapter 1. For ease of description, henceforth these models are called as the 

Cutoff model (Heister and Chen, 1994), the Vacuum model (Tang and Huang, 1996), 

the Schmidt model (Schmidt et al, 1997) and the Qin model (Qin et al, 1999). In this 

chapter, these models are analyzed and compared from both the mathematical point of 

view and physical point of view, and then a modification is proposed for the Schmidt 

model (henceforth called the modified Schmidt model) and a mathematically more 

consistent one-fluid model (henceforth called the Isentropic model) is presented to 

study the unsteady cavitation. The extensive comparisons of the one-fluid cavitation 

models are also carried out and presented by several water-tube numerical examples. 

This chapter is organized as follows. We firstly present the physics of cavitation 

models and governing equations in Section 3.1. Some conclusions obtained from the 

jump condition across cavitation boundary are presented in Section 3.2 on the 

behaviors of the inviscid one-fluid cavitation models. The Cutoff model, the Schmidt 

model, the modified Schmidt model and the Isentropic model are analyzed and 

compared in Section 3.3. Several 1D cavitating flows occurred in water-tube are 

employed to test the modified Schmidt model and the Isentropic model and compare to 
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other existing one-fluid models in Section 3.4. A brief summary is presented in Section 

3.5. 

3.1 Model Physics  

There is an important assumption that the mixture of liquid and vapor is 

homogenous, barotropic with no heat conductivity. This is the usual and realistic 

assumption for simulating cavitation occurring in cold water and under high pressure 

condition where the thermal effect and viscous loss are usually very much smaller than 

the mechanical (pressure) driving force of our system. The governing equations used in 

the present study are the inviscid Euler equations for compressible flows, thus effects 

of turbulence, surface tension of interfaces are also neglected. The 1D Euler systems 

can be written as 

( ) 0=
∂

∂
+

∂
∂

x
UF

t
U

,        (3.1) 

( )ρpp = ,         (3.2) 

( ) lg ρααρρ −+= 1 .                    (3.3) 

Here and[ ]TEuU ,,ρρ= ( ) ( )[ ]TupEpuuUF ++= ,, 2ρρ . ρ , and u p are the average 

density, average velocity, average pressure, respectively. α  is the void fraction 

determining the mixture ratio of the liquid to vapor, and gρ  and lρ  are the densities of 

pure vapor and pure liquid, respectively. In system (3.1), the total energy equation is 

only required to solve for gases. On the other hand, the EOS (3.2) is used to calculate 

the pressure from the density for liquid, solid and cavitation mixture so that the 

associated energy equation is excluded from the governing equation for liquid, solid 

and cavitation mixture. The averaged density is calculated by (3.3). For pure phase, the 

EOS provided in Chapter 2 is used to close the system (3.1). The sound speeds 
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associated with the EOS for the pure gas, liquid and solid can be written as follows if 

the flow is assumed as isentropic: 
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It should be noted that with the EOS presented in Chapter 2, the system of (3.1) is 

closed only for pure phases (gas, liquid and solid). Therefore, an EOS for mixture has 

to be developed to close the system for cavitating flows which is a major goal of this 

chapter. It should also be noted that the unsteady cavitation is assumed to be created by 

pressure jump across the cavitation boundary in the application of the system (3.1). 

The relationship across the cavitation boundary, like the Rankine-Hugoniot 

relationship, is thus developed (see also Liu et al, 2004a). Some of conclusions 

achieved from that article are summarized below. 

3.2 Relationship across the Cavitation Boundary 

    As mentioned above, the unsteady cavitation investigated is caused by a pressure 

jump across the cavitation boundary which is governed via a local jump relation. Such 

local jump relationship similar to the Rankine-Hugoniot relationship can be written as 

I
m

I
l

I
m

I
l FFUUs −=− )( .                                                    (3.7) 
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Here  and , ,  and ),(lim txUU
Ixx

I
l −→
= ),(lim txUU

Ixx

I
m +→
= )( I

l
I

l UFF = )( I
m

I
m UFF =

dt
dxs I= . Hereafter, the subscripts “l” and “m” indicate the “liquid” and “mixture” 

media, respectively. The superscript “I” stands for “Interface” (cavitation boundary). 

For detailed derivation of (3.7), one can refer to (Liu et al, 2004a). (3.7) can be 

rewritten as 

I
m

I
m

I
l

I
l vv ρρ = ,                                   (3.8a)   

I
m

I
m

I
m

I
l

I
l

I
l pvpv +=+ 22 )()( ρρ ,                                                       (3.8b) 

where  and . Some important conclusions can be deduced from 

(3.7) or (3.8) which are employed to analyze various one-fluid cavitation models. The 

verifications of these conclusions can be found in Liu et al (2004a) and all these 

conclusions are still valid in the normal direction of multi-dimensions. 

suv I
l

I
l −= suv I

m
I
m −=

Conclusion 3.1: The inviscid one-fluid model allows the existence of a steady 

cavitation or cavitation convecting with the local flow velocity. 

For steady cavitation or cavitation convecting with the local fluid velocity, the 

relationship (3.8) degenerates to a relationship of “contact discontinuity”. Conclusion 

3.1 demonstrates the unsteady one-fluid cavitation model can possibly be applied to 

simulate for a steady cavitation like attached/sheet cavitation. 

Conclusion 3.2: With the exception of the Vacuum model, a pure liquid model of 

cavitation leads to the propagation of cavitation boundary with a “shock speed” if 

there is a pressure jump across the cavitation interface. Furthermore, relative to the 

cavitation interface, the local flow velocity is supersonic inside the cavitation, while it 

is subsonic in the liquid during cavitation collapse. 
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In Conclusion 3.2, Tait’s equation is employed for the liquid and the pressure 

(density) inside the cavitation is lower than the neighboring medium. Conclusion 3.2 

shows that the fluid inside the cavity can be assumed as liquid of saturated pressure 

without significant effect on the final results as for the Cutoff model (see Section 

3.3.1). 

Conclusion 3.3: If the sonic speed and density in the cavitation region are lower than 

those in the liquid at the vapor (saturated) pressure, then we have . I
m

I
l MM <

    Here, M ( asuM /|| −= ) is the Mach number relative to the propagating cavitation 

interface. This Conclusion implies that the flow relative to the cavitation motion may 

be transonic or even supersonic in the cavitation region. Therefore, the errors incurred 

inside the cavitation, although not negligible, are well confined during the rapid 

expansion phase of the cavitation. This conclusion is important to support that the 

pressure cut-off as employed in the modified Schmidt model (Section 3.3.3) does not 

affect the surrounding flows significantly. 

Conclusion 3.4: If the vapor pressure is set low enough but still positive 

and I
l

I
l pBM /< , then there does not exist one liquid flow status ( , , ) such 

that  and with the provision of (a)  and (b) 
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    Here and the pressure and density follows Tait’s EOS.  is the 

corresponding liquid density at the given vapor (saturated) pressure ( ). As 

mentioned in Chapter 2, numerical oscillations may occur in the vicinity of cavitation 

interface if the single-medium numerical solvers are directly employed to simulate the 

cavitating flow where the EOS for liquid and cavitation mixture are usually different. 

Furthermore, the ghost fluid status for GFM-based algorithms may not be properly 

suv c
l

c
l −= sat

lρ

sat
lp
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defined to maintain the Rankine-Hugoniot condition if there is a pressure jump across 

the cavitation interface. This means that the GFM-based algorithms as discussed in 

Chapter 2 may not able to capture such unsteady cavitation interface efficiently or 

accurately. 

3.3 Unsteady Cavitation Models 

    The Cutoff model, the Schmidt model, the modified Schmidt model and the 

Isentropic model are introduced and presented below. The analysis and comparison of 

these four models are also carried out in this section. 

3.3.1 Cutoff Model 

The Cutoff model sets the local pressure equal to a given value (saturated vapor 

pressure) when the flow pressure falls down below a critical pressure level. If Tait’s 

equation is employed for the pure water, the EOS for this model can then be described 

as 

⎜⎜
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,
0 .                           (3.9) 

Here, satρ  is the liquid density in association with the given critical pressure . The 

pressure cut-off causes that the EOS to degenerate from a convex type in the pure 

liquid region to a non-convex form in the pressure cut-off region. Furthermore, the 

Cutoff model assumes that the pressure in the cavitation region does not change or the 

density is set to

satp

satρ , resulting in mass loss and thus system non-conservation. To 

maintain the conservative computation using the Cutoff model, a positive sound speed, 

which cannot be consistent with (3.9), has to be defined in the cavitation region. In the 

present computation, there are two ways to define a positive sound speed. The sound 
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speed in the cavitation zone is set equal to the sound speed in water under saturated 

pressure; the sound speed is calculated from the updated density via conservative 

computation under a fixed saturated water pressure. Some nonphysical consequences 

are arisen from these two definitions of sound speed for cavitation mixture as 

mentioned in Liu et al (2004a). Firstly, the numerical sound speed in the cavitation 

region contradicts the assumed EOS (3.9). Secondly, the flow status computed inside 

the cavitation region is not physical. Thirdly, the motion of cavitation boundary is 

forced to propagate with a “shock” speed (Conclusion 3.2). Fourthly, the inconsistency 

of above-mentioned artificial treatment of the sound speed with EOS (3.9) tends to 

exclude an “expansion shock”, thereby resulting in the decomposition of this 

“expansion shock” under such said treatment. Lastly, the result of captured cavitation 

collapse may not be physical and possibly inaccurate.  

    The Cutoff model is easy to be implemented and employed to cavitation 

computation since it is an essentially a pure fluid model. This is why the Cutoff model 

is extensively applied and coupled into the commercial software. Furthermore, the 

numerical error generated from the pressure cut-off does not have significant effect on 

surrounding flow if the flow pressure is sufficiently high like in an underwater 

explosion. Numerical tests in Section 3.4 will also show that the inaccuracy caused by 

the non-physical and inconsistent treatment of the cavitation region does not affect too 

severely the calculated peak pressures. On the other hand, the limitation of the Cutoff 

model becomes very obvious when the surrounding flow pressure is relatively low. As 

such, the nonphysical computation of the flow status in the cavitation region as 

mentioned above will lead to wrong pressure jump across the cavitation boundary and 

cavitation collapse as will be shown in Sections 3.4 and 4.3. 
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3.3.2 Schmidt Model 

This is another unsteady one-fluid compressible cavitation model in literature, 

which was developed and verified for high velocity and high pressure flow in a very 

small nozzle (Schmidt et al, 1999). In this model, the cavitating flow is assumed to be 

a homogeneous and barotropic mixture of gas and liquid, where the sound speed can 

theoretically be given (Brennen, 1995; Wallis, 1969) as 
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To obtain the barotropic EOS for the mixture, Schmidt et al (1999) assumed the sound 

speeds for gas and liquid components as well as their respective densities to be 

constant, and the mixture follows the constitutive relation of because the 

cavitating flow is assumed to be homogeneous. As a result, the pressure can be 

obtained analytically as a function of void fraction or density by integrating 

 using (3.10), giving rise to the EOS,  
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where  is a parameter of the known surrounding fluid properties given as  glp
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= .                         (3.12) 

Equations (3.1) with (3.3) and (3.11) constitute a closed system for the mixture. The 

mixture density can be obtained by solving (3.1) and then the void fraction is 

calculated by using (3.3) to be followed by solving the pressure via (3.11). 
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    The applicability of (3.11) to a large scale unsteady cavitation depends on the value 

of “saturated” pressure . When the void fraction ranges from 0 to 1 and satp′ satp′  in 

(3.11) is set to be the physical saturated pressure  (generally tens to hundreds of Pa 

and thousands of Pa in an underwater explosion). The variation of the pressure with 

the void fraction using the Schmidt model is shown in Fig. 3.1 under  set to the 

physical saturated pressure of 2000Pa. It is found that the pressure in (3.11) can not be 

kept positive when the void fraction is larger than a small quantity of about 

satp

satp′

( )210−Ο  

because the second term on the right side of (3.11) is negative for the void fraction 

ranging from 0 to 1. Therefore, to ensure that the pressure in (3.11) is always positive, 

should be necessarily larger than the magnitude of the second term on the right 

side of (3.11).  If p  and 

satp′

α  in (3.11) are set to 0 and 1, respectively, the minimum 

value of  that ensures no negative pressure in the cavitation region is obtained by satp′
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If , which may be far larger than the physical saturated pressure ( ), the 

pressure obtained from (3.11) is always positive.  

minppsat ′≥′ satp

    Now, we examine the applicability of the Schmidt model. (3.13) can be 

approximately simplified as 
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lg ρρ <<  and 2222 .. llgg aa ρρ << . In (2.13), ( )lg aaln  takes on a value normally ranging 

from -3 to -1. If lg ρρ  takes on a value of ,510 −
minp′ is a quantity of about 5 . kPa

 90



CHAPTER 3 MATHEMAICAL FORMULATION: UNSTEADY CAVITATION MODELS 

One can easily show that  decreases to a physically reasonable value of hundreds 

to thousands of Pascal with the further decrease of

minp′

lg ρρ /  to below . On the 

contrary, a larger ratio of 

510 −

lg ρρ /  can lead minp′ to assume an unreasonable large 

quantity. Table 3.1 shows that minp′  can go beyond 1bar and reach even tens of bar if 

the ratio of lg ρρ /  ranges from  to . 410 − 310 −

If one requires that the Schmidt model is applied to cavitation with a large vapor to 

liquid density ratio without negative pressure,
minpp sat ′≥′  should be satisfied. This may 

result in a large assumed . We want to check the performance of the Schmidt 

model with the requirement of 

satp′

minpp sat ′≥′  when applied to the situations where the 

initial surrounding liquid pressure is not very high. For such flow, the ratio of lg ρρ /  

can range from  to . In the numerical computation, one can use either  or 

 as the criterion of flow starting cavitating. For the liquid flow under initially very 

high pressure and the cavitation dimension is small, 

410 − 310 −
satp

satp′

satp′  can be taken to be quite close 

to  as the ratio of satp lg ρρ /  can go below 10-5. The results then have not much 

difference when using either value as the criterion of cavitation initiation. However, as 

the cavitation evolves to a large dimension or if the initial surrounding flow pressure is 

not very high, one will find (later) that the results obtained are very different in the 

cavitation region between using satp′  or  as the criterion. This is because the value 

of  satisfying the requirement of 

satp

satp′
minpp sat ′≥′  can be quite larger than the physical 

saturated pressure  in such a situation. We call the former numerical 

implementation as Implementation I, while the latter numerical implementation as 

Implementation II. More specifically,  

satp
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Implementation I (Schmidt-I): The liquid flow is assumed to cavitate when the 

pressure is lower than the nonphysical satp′  under the requirement of  or no 

negative pressure is present. Under this implementation, the calculated pressure in the 

cavitation region is always positive and lower than

minpp sat ′≥′

satp′ . Moreover, the computed 

pressure in the surrounding flow will never be lower than satp′ . Schmidt implemented 

the Schmidt model in this way or manner. 

Implementation II (Schmidt-II): The liquid flow is assumed to cavitate when the 

pressure is lower than the physical  under the requirement of  or no 

negative pressure is present.  

satp
minpp sat ′≥′

Under Implementation II, the calculated pressure in the cavitation region is 

positive and lower than  but may be higher than , while the computed pressure 

in the surrounding flow will never be lower than . If the initial surrounding flow 

pressure is sufficiently high or the density jump across cavitation boundary is large 

enough to ensure a vapor to liquid density ratio of about  or smaller, the Schmidt 

model can work properly or consistently under Implementation II. This is also the 

reason why the Schmidt model works rather effectively on small scale nozzle 

cavitating flows. With the cavitation evolution, however, the flow pressure in the 

neighborhood of the cavitation interface reduces rapidly to a very low value which 

then becomes much lower than 

satp′ satp

satp

510−

satp′  or even close to  while the calculated pressure 

in the cavitation region by equation (3.11) may be larger than . As a result, 

nonphysical pressure oscillations occur in the vicinity of the cavitation interface.  

satp

satp

Qin et al (1999) presented a modification of the Schmidt model by multiplying a 

parameter (β) ranging from O (10-3) to O  (10-5) to the second term of (3.11) 

accordingly. Doing so, the “saturated” pressure satp′  can be adjusted to the 
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physical . Such a modification also essentially makes the model takes on the 

characteristic of a pressure cut-off. This is because the product of β and the second 

non-constant term in (3.11) is negligibly small. On the other hand, such a modification 

makes the resultant EOS apparently to be inconsistent with (3.10) and parameter (β) 

should be unity based on strict mathematical derivation (see Appendix A).  

satp

There are mathematical inconsistencies between (3.10) and (3.11). In fact, the 

limitation of the Schmidt model arises from these inconsistencies. In the derivation of 

(3.10), both the gas and liquid components are assumed compressible; the sound 

speeds and densities of both components are functions of pressure. Thus, the 

assumption of constant component densities and sonic speeds utilized in obtaining 

(3.11) contradicts the premises of (3.10). Because the sound speed formulation used 

for the Schmidt model is mathematically sound and verified experimentally, it is the 

inconsistent way of deriving EOS (3.11) that leads to a very large  obtained, which 

results in inherent limitation when applied to large-size cavitation. This shortcoming 

causes very stringent CFL used especially for the low-pressure surrounding flow or 

large size cavitation, as will be shown in Section 3.4. To overcome these difficulties 

and extend the application of the Schmidt model to large scale unsteady cavitation, 

some modifications are proposed leading to a new model as described in the following. 

satp′

Remark: In this thesis, the Schmidt Model stands for the Schmidt-I except noted 

otherwise. 

3.3.3. The Modified Schmidt Model 

It is important to declare that cavitation only occurs when the pressure falls below 

the physical saturated pressure. As such, we propose the following modification for the 

Schmidt model and the resulting EOS is 

 93



CHAPTER 3 MATHEMAICAL FORMULATION: UNSTEADY CAVITATION MODELS 

( )( )
( )( )

⎜
⎜
⎜
⎜
⎜

⎝

⎛

≤

<<
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−

−+
+

≥

=

.,

,,
.....

...
ln.

,,'

222

2

εε

ερραρρ
ρραρρ

ppp

ppp
aaa

a
pp

ppEOSsTait

p sat
llggggl

lglgg
glsat

sat

      (3.15) 

Here is a given small positive value close to zero (about ),  is the physical 

saturated pressure. The intention of 

εp 910 −
satp

εpp ≤  is to prevent the cavitation pressure from 

assuming a negative quantity. This model is based on the same assumption and derived 

by integrating (3.10) and as for the Schmidt model. Therefore, this model 

can be applied to model small scale cavitation which occurs in high-speed nozzles. The 

major differences between the Schmidt model and the modified Schmidt model are 

clearly shown in Table 3.2 and can be summarized as follows: 

2/ addp =ρ

1) The physical saturated pressure   is used in (3.15) and the flow is assumed to 

cavitate at  for the modified Schmidt model, while a large pressure 

satp

satp satp ′ is 

employed in (3.11) for the Schmidt model. Also the modified Schmidt model has no 

restraint on the vapor to liquid density ratio. It is apparent that the modified Schmidt 

model is able to capture the pressure jump across the cavitation boundary for more 

extensive vapor to liquid density ratio. The Schmidt model, however, is not applicable 

when vapor to liquid density ratio is larger than about . 510−

2) The cavitation pressure as calculated by the modified Schmidt model (3.15) is 

always less than the physical saturated pressure, while the surrounding flow pressure is 

always larger than the physical saturated pressure. Therefore, the cavitation pressure 

can be physically kept below the surrounding pressure. 

This is unlike the Schmidt model under Implementation II, in which the calculated 

cavitation pressure may become larger than the surrounding flow pressure near the 

cavitation interface, resulting in the numerical oscillation near the cavitation interface. 
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The modified Schmidt model removes such nonphysical phenomenon and makes the 

cavitation pressure always below the surrounding flow pressure. Therefore, the 

modified Schmidt model is able to remove the numerical oscillation which occurs in 

the application of the Schmidt model. 

    It should be noted that the modified Schmidt model allows for possible negative 

pressure inside the cavitation region due to employment of the physical saturated 

pressure. To remove such negative pressure, if any, a small is used in conjunction 

with the pressure cut-off when the calculated cavitation pressure is below . Such 

pressure cut-off leads to the nonphysical treatment in the central region of cavitation. 

Numerical tests, however, have shown that such treatment does not significantly affect 

the subsequent peak pressure caused by cavitation collapse. This is probably because 

the flow pressure and density in the central region of cavitation are so low that the flow 

motion relative to the cavitation interface (boundary) is supersonic as mentioned by 

Conclusion 3.3 (Section 3.2). As a result, the errors incurred inside the cavitation are 

confined largely to the central region of cavitation during the rapid expansion phase of 

the cavitation. In the phase of cavitation collapse, the cavitation interface moves 

rapidly across the centre of the cavitation region, where the flow pressure is not 

accurate due to the employment of pressure cutoff. Thus the motion of cavitation 

interface can be affected and suffered from some inaccuracies when moving across the 

cut-off region. This is why the predicted period of cavitation collapse by the modified 

Schmidt model is affected and found to have but still a well-confined discrepancy 

when compared to Liu et al’s model (2004) (see Fig. 4.8 in Chapter 4). However, such 

effect is not overwhelming especially in the evaluation of the pressure surge caused by 

cavitation collapse. This is possibly so because the flow pressure in the cut-off region 

is physically very low already. 

εp

εp
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    It is apparent that the modified Schmidt model has a wider application than the 

Schmidt model. However, the mathematical and physical inconsistency still exists in 

this model. In fact, besides the Schmidt EOS (3.11) and the modified Schmidt EOS 

(3.15), there are some other barotropic relations developed and discussed in Brennen 

(1995) by either assuming the density and sonic speed of the liquid component are 

constant or neglecting the density of the gas component or the volume of liquid 

component. Those barotropic relations did provide satisfactory results in the respective 

applicable ranges. However, the mathematical inconsistencies between the barotropic 

relations and the sound speed (3.10) invariably exist. We argue that these 

inconsistencies are removable for barotropic mixture. The Isentropic model below is 

able to remove such inconsistencies. 

3.3.4 Isentropic Model 

    The inapplicability of the Schmidt model and modified Schmidt model arise from 

the inconsistency between these two models and sound speed equation (3.10). (3.10) 

has been verified to be mathematically sound and accurate via comparing to 

experimental results as shown in Wallis (1969) and Brennen (1995) under the 

assumptions of the homogenous and thermal equilibrium mixture with the neglect of 

the influence of mass transfer on the sound speed. Based on the same assumptions, the 

barotropic relation for the mixture is defined by Liu et al (2004a) without any 

contradiction with respect to (3.10). By taking the derivative of (3.3) with respect to 

pressure, the void fraction can only be a function of pressure alone as 

dp
d

dp
d

dp
d

dp
d lg

gl
ρρ

α
ρ

αρρα
−−+=− )1()( .                                     (3.16) 

Here the compressibility of the mixture comes from the gas and liquid components as 

well as void fraction. Since (3.3) is always held, (3.16) is true and should be 
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maintained consistently with (3.10). By assuming both the gas and liquid components 

and the mixture follow the constitutive relation of  and using (3.10), 

expression (3.16) can then be reduced to the form, 

2/ addp =ρ

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= 22

11)1(
ggll aadp

d
ρρ

ααα .                                         (3.17) 

If the gas and liquid components are assumed isentropic, with (3.17) and (3.10), we 

have 
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where )1/( 00 αα −=k .  and  are the associated gas and liquid density at the 

cavitation pressure , respectively, and 

cav
gρ

cav
lρ

cavp 0α  is the known void fraction of the 

mixture density at . Sometimes it may not be easy to obtain cavp 0α  experimentally or 

otherwise for certain problems due to the flow cavitating pressure being strongly 

related to the surrounding environment. A simple method ((Liu et al, 2004a) is used to 

define the initial void fraction ( 0α ) where  or cavk 0α  can be obtained 

via cav
gl

l
cav
l

cavk
ρρ
ρρ

−
−

=
∞

∞ , ( ∞lρ , , ) is the flow status before cavitation occurs at the 

flow cavitating location. Using (3.4) and (3.5), (3.17) can be rewritten as 

∞lu ∞lp

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−=

ppdp
d

gl γγ
ααα 11)1( .                                                            (3.20) 
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or 

)(ln)(ln))1(ln()(ln /1/1 gl pdpddd γγαα −=−− .                            (3.21) 

From (3.21), it can be deduced that α  is not allowed to be equal to 0 or 1. Physically 

a void fraction jump exists across the cavitation interface. Assuming that the pressure 

drops to  ( ) and the void fraction takes on the value of cavp satcav pp ≤ 0α  

simultaneously across the cavitation interface, (3.18) is obtained by integrating (3.21) 

from . Substituting of α from (3.18) into (3.3), EOS (3.19) is obtained and which is 

consistent with (3.10) regardless of k or 

cavp

0α .  

    In cold water or under normal atmospheric condition, water is usually assumed to be 

isothermal and the sound speed for the surrounding flow is taken as a constant. The 

EOS for water becomes  instead of Tait’s EOS, where )( 0
2

0 lllapp ρρ −=− 0lρ  is the 

water density at pressure . Therefore, we have 0p

g
cav

cav
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BpBp

k γα
α

/1)/(
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1
′+′+

=
−

,                                                        (3.22) 
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where, . (3.22) and (3.23) will be employed to calculate water-hammer 

problem in Chapter 4 where the flow is assumed isothermal. 

0
2

0 paB ll −=′ ρ

    Newton’s iteration method can provide a viable way to obtain the pressure from 

(3.19) given a good starting value which is defined as  
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g

cav
l

cav
g

cav k
kpp γ

ρρρ
ρ )(

−+
= .                                                          (3.24) 

(3.24) is obtained directly from (3.22) since l
cavpp γ/1)/( −  is very close to 1. This is due 

to the very low pressure inside the cavitation and the very large B. Numerical tests 

showed that a few iteration steps could generate satisfactory results using (3.24) to 

provide the starting value. Furthermore, (3.24) is also a very good approximation to 

(3.19). One, instead, can also use it directly to obtain the pressure.  

Based on the derivation and analysis as done above, the major characteristics of the 

Isentropic one-fluid model can be summarized as 

1)  is a one-to-one monotonous function of ρ and there is a unique positive p for 

each

p

0>ρ . 

2) The mixture density approaches zero as the pressure goes to zero.  

3) The void faction approaches 1 when the pressure goes to zero.  

4) The sound speed approaches zero when the pressure goes to zero.  

5) A void fraction jump must occur across the cavitation boundary.  

6) The whole system (3.1) is hyperbolic and conservative. 

3.3.5 Some Observations on the One-fluid Models 

Barometric relationships are shown in Fig. 3.1 for the comparison among the 

Schmidt model, the modified Schmidt model, the Cut-off model and the Isentropic 

model. The difference among these models has been shown clearly in this figure. The 

Cut-off model can only provide a constant pressure of magnitude  , which is taken 

to be 2000Pa—the amount usually assumed in underwater explosions, with respect to 

void fraction in the cavitation region. The Schmidt model with the restraint of 

 (noted with “Schmidt with large saturated pressure” in Fig. 3.1) provides 

satp

minpp sat ′≥′
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pressure quite higher than the physical saturated pressure , while it provides 

negative pressure beyond α>0.01 if 

satp

satp ′  is set to be equal to  (noted with 

“Schmidt with physical saturated pressure” in Fig. 3.1). The Isentropic model always 

provides positive pressure in the cavitation region, which is also physically lower 

than . Compared to the Isentropic model, theoretically, there are mathematical 

inconsistencies for the modified Schmidt model, which mainly come from the pressure 

cut-off carried out to the negative pressure and the inconsistency with expression 

(3.10) as well; to obtain expression (3.10), both the vapor and liquid components are 

assumed compressible, while their density and sound speeds are assumed constant in 

the Schmidt model and the modified Schmidt model. However, it is interesting to 

observe from Fig. 3.1 that the behavior of the modified Schmidt model looks quite 

similar to that of the Isentropic model in the vicinity of the cavitation interface. This is 

why the modified Schmidt model can provide results compared very reasonably to 

those obtained using the Isentropic model, although the modified Schmidt model is not 

strictly mathematically consistent as the latter. It is also found that the region of 

pressure cut-off will become larger with the increase of the vapor to liquid density 

ratio because the calculated cavitation pressure by equation (3.15) is more likely to be 

negative. Thus, the region of having pressure cut-off treatment becomes large. As 

such, the discrepancy between the modified Schmidt model and the Isentropic model 

becomes observable, as the ratio of

satp

satp

lg ρρ /  is close to about . However, it is found 

that the discrepancy is well-limited and has well-confined effect on the final pressure 

surge caused by cavitation collapse. 

310−

More specifically, some observations on the four one-fluid models can be 

summarized as: 
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1). There are mathematical and physical inconsistencies in the Cutoff model, the 

Schmidt model and the modified Schmidt model which are not consistent with the 

sound speed equation (3.10). The Isentropic model is, however, developed based on 

the same assumptions as (3.10) and thus mathematical and physical consistent. 

2). The Cutoff model is able to predict correct the peak pressure of cavitation collapse 

for most cases while fails to predict accurate periods of cavitation collapse; the 

Schmidt model is sufficiently accurate if the void fraction is below ; the modified 

Schmidt model can be applied to higher vapor to liquid density ratios, say ; there is 

no limitation on the ratio of

510 −

410 −

lg ρρ /  when one employs the Isentropic model.  

3). There are no undetermined model parameters for the Cutoff model, the Schmidt 

model and the modified Schmidt model and the pressure is obtained algebraically from 

the density. In the application of the Isentropic model, iteration is required to find the 

pressure and a model parameter k has to be determined beforehand. Therefore, the 

Isentropic model needs more computational effort than the other three models. 

 4). One can (theoretically) apply the one-fluid models to simulate attached/sheet 

cavitation where usually the influence of turbulence must be taken into consideration 

by employing the (compressible) N-S equations instead of the Euler equations given in 

(3.1); this is attributed to the presence of the wake part for attached/sheet cavitation 

and the flow is usually turbulent. However, the discussion on the applicability and 

efficiency of the proposed one-fluid models as applied to the N-S equations is beyond 

the scope of the present work and will be pursued in future.  

3.4 Numerical Examples for Testing Various Cavitation Model 

    Besides the difficulties arising from physically modeling cavitation flow, which is 

the focus of the present work, there are difficulties from the numerical aspect in 
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computing the cavitating flow. Because the coupled system of incompressible flow 

(the pure liquid phase) with compressible flow (the mixture) is very stiff in the vicinity 

of cavitation interface (boundary) during the simulation of attached/sheet cavitation, 

(severe) numerical instability and/or convergence problem can occur. Thus, additional 

numerical techniques are usually required to overcome such difficulties (Kunz, 2000; 

Senocak, 2002). In the present study, both the surrounding medium (liquid) and the 

mixture are considered as compressible, the resultant system is therefore 

mathematically well-posed. When a high-resolution numerical scheme developed for 

the compressible single phase flow is directly applied to multi-phase flow and the 

present cavitating flow, the numerical oscillations may occur because of the 

employment of different EOS across the interface.  However, such difficulties may not 

be so severe and overwhelming since the jumps across the cavitation interface are 

relatively small, and a high-resolution numerical scheme developed for compressible 

single phase flow with well-designed limiter (Schmidt et al, 1999) can still give 

satisfactory results. The numerical experiments to be carried out in this section will 

also show that a well-developed high-resolution numerical scheme can prevent or 

greatly suppress these oscillations but may not be able to remove them completely.  It 

is found that there is no numerical oscillation encountered using the Isentropic model 

with full CFL number in the present study. 

    For purpose of testing the validity of the four one-fluid models as discussed in 

Section 3.3, the results obtained via the Vacuum model and the Multiphase model will 

also be presented. The comparisons between the Schmidt model and the modified 

Schmidt model are also carried out to investigate the performance of the modified 

Schmidt model under various ratios of vapor to liquid density. It should be noted that 

the Cutoff model and the Vacuum model are pure phase models. The usual full CFL 
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number at, say, 0.8 to 0.9 can be used without incurring numerical oscillations. The 

Vacuum model developed in (Tang and Huang, 1996) has been shown to be reasonable 

both mathematically and physically except for the difficulties in extending to multi-

dimensions. Wherever possible, the 1D analytical solutions based on the Vacuum 

model will be employed to verify the numerical results of various one-fluid models.   

    The numerical scheme selected and used to solve system (3.1) is the well-developed 

MUSCL scheme with HLL approximate Riemann solver as mentioned in Chapter 2 

with CFL=0.8 and 401 uniform mesh points in domain [0,1]. All the parameters are 

dimensional unless otherwise noted and all the results in figures are dimensional in the 

international standard units (i.e. pressure is in  , density is inPascal 3mkg and velocity is 

in sm ) except for those with their own units. In this section, various cavitation models 

will be tested and verified by either comparing to the analytical solution, experiments 

or numerical results. As 0α  is unknown for each problem to be discussed in the tests, 

we use the procedure developed in Section 3.3.4 to determine 0α  and adjustment made 

to k accordingly. In the present computation,  is set to 62.5Pa and the local 

cavitation number σ is set to 0.1σ

satp

max in the computation of the initial k for the 

Isentropic model unless otherwise noted.  

Case 3.4.1. This is a Riemann problem of two highly-pressurized water streams 

moving with the same magnitude of velocity in the opposite direction away from the 

centre of a tube. The initial pressure of the two water streams is set to 108. The two 

water streams initially meet at x=0.5. If the magnitude of the initial two-water stream 

velocity is not sufficiently high, two opposite centered rarefaction waves are generated 

and expand from the centre without cavitation. In such a situation, exact solution can 

be obtained by solving a Riemann problem of double rarefaction waves. Our cavitation 

models associated codes can automatically treat the flow as single phase. Figures 3.2a, 
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b show the velocity and pressure results obtained by our codes for a velocity 

magnitude of two streams initially set to 50m/s and compare well to the analytical 

solution at 0.2ms.  

Case 3.4.2. This case is similar to Case 3.4.1 except the velocity magnitude of two 

streams is set to 100m/s. Thus, cavitation immediately starts at the centre. The exact 

solution can also be obtained by solving a Riemann problem of double rarefaction 

waves connected to a vacuum at the centre (Tang and Huang, 1996) (i.e. the exact 

solution based on the Vacuum model for this problem). Due to  set to be 

negligibly small physically at least relative to the initial very high surrounding 

pressure, the results provided by the Isentropic model can be directly compared to the 

exact solution of the Vacuum model. Figures 3.3a, b shows the velocity profiles and 

pressure profiles obtained by the Cutoff model and the modified Schmidt model and 

the Isentropic model at time t=0.2ms. It is observed from Fig. 3.3 that the three models 

provide the same results in the region beyond the cavitation. In particular, the Cut-off 

model provides a result with a larger cavitation dimension, while the Isentropic model 

and the modified Schmidt model provide results very close to the analytical solution at 

this very earlier stage.  

satp

Case 3.4.3. This is a Riemann problem where two water streams have different 

pressures and velocities. This case is used to test the performance of the different 

models for the water streams with different strength. The initial conditions 

are ,  ; , . For this case, a strong rarefaction wave 

propagates to the right and a relatively weaker rarefaction wave propagates to left. 

Figure 3.4a at t=0.1ms shows that there is a region (0.5-0.68) where the velocity is 

approximately constant due to the fully developed cavitation. The pressure 

distributions are given in Fig. 3.4b. The velocity and pressure profiles obtained by the 

10−=lu 610=lp 100=ru 810=rp
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Isentropic and the modified Schmidt model are very comparable to the analytical 

results while the Cutoff model provides relatively less accurate results.  

Case 3.4.4. This case is used to test the performance of the different models for the 

water streams with low flow speed and thus small Mach number. The computation of 

low Mach number compressible flows is always challenging (Guillard and Viozat, 

1999). The initial conditions are 0.1−=lu ,  ;610=lp 0.1=ru , . The 

computation is allowed to run to a final time of 0.2ms. Figures 3.5a and b show that 

the present numerical algorithm is able to simulate such low Mach number 

compressible flow very well. It is also found that the Isentropic model and the 

modified Schmidt model provide slightly yet perceptibly a little more accurate results 

than the Cutoff model. 

610=rp

Case 3.4.5. This case is also similar to Case 3.4.1 except that the pressure and velocity 

magnitude of both water streams are much higher. Such case is calculated here to test 

the performance of the different models in the computation of high-pressured and 

high-velocity compressible flows. The initial conditions are ,  

; , . We ran the computation to a final time of 0.1ms. It has been 

shown in Fig. 3.6a that two very strong rarefaction waves propagate into the water 

streams at a very high velocity. The pressure distributions are provided in Fig. 3.6b. 

The cavitation very quickly evolved into a large dimension and rarefaction waves 

appear from the center of the cavitation region. Once again, the Isentropic model and 

the modified Schmidt model provide close results to analytical solution while the 

Cutoff model is a little different from analytical solution at the cavitation region. 

0.1000−=lu 910=lp

0.1000=ru 910=rp

Case 3.4.6. This case is presented in detail to compare various cavitation models and 

to show the limitation of the Schmidt model when applied to large scale cavitation. 

This case was previously investigated by Saurel and Abgrall (1999b) using a 
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multiphase model comprising seven governing equations.  The initial conditions 

are ,  ;0.100−=lu 510=lp 0.100=ru , . Figure 3.7 shows the comparison of 

the results obtained respectively by the Isentropic model, the modified Schmidt model 

and the Cutoff model at 0.2ms. The results between the Isentropic model and the 

modified Schmidt model look very similar, while obvious discrepancies in the density 

and velocity profiles can be observed for the Cutoff model. An almost twice cavitation 

size is provided by the latter in contrast to that provided by the former two models (see 

density profile in Fig. 3.7c). The lowest density obtained by the latter is also doubly 

higher than those provided by the former two models. Figure 3.8 shows the 

comparison of pressures obtained by the Isentropic model, the modified Schmidt 

model, and the Schmidt model under Implementations I and II with as 

denoted by Schmidt-I and Schmidt II, respectively (see Section 3.3.2) (hereafter, 

Schmidt-I and Schmidt-II imply the employment of the Schmidt model under 

implementation I and implementation II, respectively). The results from Schmidt-I and 

Schmidt-II look fairly similar in shape except for the presence of pressure oscillations 

in the vicinity of the cavitation interface for Schmidt-II. This is because Schmidt-I 

assumes that the flow cavitates at the saturated pressure 

510=rp

510: −=lg ρρ

satp′  which thereby ensures the 

cavitation pressure is less than the surrounding flow pressure. Although there is no 

oscillation observed as discussed in Section 3.3.2, the cavitation pressure next to the 

cavitation interface is still unreasonably high relative to the initial pressure of 1 bar 

even when the ratio of lg ρρ  is set to be . Under Schmidt-II, the calculated 

cavitation pressure next to the cavitation interface takes on a more acceptable value but 

is still quite higher than the given physical cavitating pressure of 62.5 Pa. Moreover, 

obvious numerical oscillations are observed across the cavitation interface, which 

supports the analysis as discussed in Section 3.3.2. Such oscillations indeed hamper 

510−
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the possible wider application of this model. On the other hand, a pressure jump across 

the cavitation boundary is well captured by the modified Schmidt model, and the 

cavitation pressure is always below the surrounding flow pressure. It is clearly shown 

in Fig. 3.7 that the result obtained by the modified Schmidt model compares favorably 

with results obtained by the Isentropic model, and the modified Schmidt model 

produces far reasonable results than the Schmidt model. It may be reiterated that this 

case is calculated under the condition of . As analyzed in Section 3.3.2, 

the Schmidt model is inapplicable when . To further verify this analysis, 

the ratio

510: −=lg ρρ

510: −>lg ρρ

lg ρρ :  is set to  and the results obtained by Schmidt-I and Schmidt-II are 

shown in Fig. 3.9 at t=0.2ms. It is found that the cavitation pressures as calculated by 

both models take on a magnitude of tens of thousand of Pa  since a very large 

“saturated” pressure (close to 1ba

410 −

'
satp r ) is employed to keep the cavitation pressure 

positive. Such nonphysical large cavitation pressure results in nonphysical flow 

profiles as shown in Fig. 3.9. The result by Schmidt-II indicates some rather severe 

nonphysical pressure oscillations. The modified Schmidt model, however, provides a 

much lower cavitation pressure which is kept below the physical saturated pressure 

(when the ratio of  lg ρρ :  increases to a value larger than10 , no meaningful result 

whether under Schmidt-I or Schmidt-II is obtained)   

4−

    The present computation is also carried out to t=2.5ms for comparing to the 

numerical results obtained by Multiphase model (Saurel and Abgrall, 1999b). Figure 

3.10 shows the flow profiles at five different instances of 0.5ms, 1.0ms, 1.5ms, 2.0ms 

and 2.5 ms, where the left column and right column indicate the results obtained by 

Multiphase model and the Isentropic model, respectively. The results obtained by the 

Isentropic model are in reasonable agreement with those by Multiphase model. It is 
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also found that the Isentropic model provides lower cavitation density when compared 

to Multiphase model. This is possibly because Multiphase model (Saurel and Abgrall, 

1999b) assumes that the gas and water coexist initially. 

3.5 Summary for Chapter 3 

Four one-fluid cavitation models, called the Cutoff model, the Schmidt model, the 

modified Schmidt model and the Isentropic model, have been analyzed and compared 

in this chapter. The Cutoff model results in some nonphysical consequences in the 

computation of cavitation pressure. The modified Schmidt model, as well as the 

Schmidt model, is inconsistent with the sound speed formulation (3.10). Numerical 

results, however, show that the modified Schmidt model is able to produce reasonable 

results for all 1D cavitating flows in this chapter when compared to the mathematical 

self-consistent Isentropic one-fluid model. This is because the barometric relations for 

the modified Schmidt model and the Isentropic model are close to each other. It is also 

found that the Isentropic model is able to completely remove the mathematical and 

physical inconsistency with a little more computational cost than the other three 

models. The analytical solutions as well as other published numerical data are then 

presented to verify the analysis and comparisons. The further application of these one-

fluid models, where some experimental results are available, will be carried out in next 

chapter.  
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Fig. 3.1 Pressure of mixture with void fraction changes. The densities of gas and liquid 

are 1000kg/m3 and 1kg/m3 while the sonic speeds of gas and liquid are 1538m/s and 
208m/s, respectively. 
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Fig. 3.2a Velocity profile for Case 3.4.1 (without cavitation).  

 
 
 

 
Fig. 3.2b Pressure profile for Case 3.4.1 (without cavitation). 
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Fig. 3.3a Velocity profiles for Case 3.4.2 by the Isentropic model, the modified 

Schmidt model and the Cutoff model (with cavitation). 

 
Fig. 3.3b Pressure profiles for Case 3.4.2 by the Isentropic model, the modified 

Schmidt model and the Cutoff model (with cavitation). 

 
Fig. 3.3c Density profiles for Case 3.4.2 by the Isentropic model, the modified  

Schmidt model and the Cutoff model (with cavitation). 
 

 111



CHAPTER 3 MATHEMAICAL FORMULATION: UNSTEADY CAVITATION MODELS 

 
Fig. 3.4a Velocity profiles for Case 3.4.3 by the Isentropic model, the modified 

Schmidt model and the Cutoff model (with cavitation). 

 
Fig. 3.4b Pressure profiles for Case 3.4.3 by the Isentropic model, the modified 

Schmidt model and the Cutoff model (with cavitation). 

 
Fig. 3.4c Density profiles for Case 3.4.3 by the Isentropic model, the modified  

Schmidt model and the Cutoff model (with cavitation). 
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Fig. 3.5a Velocity profiles for Case 3.4.4 by the Isentropic model, the modified 

Schmidt model and the Cutoff model (with cavitation). 
 
 

 
Fig. 3.5b Pressure profiles for Case 3.4.4 by the Isentropic model, the modified 

Schmidt model and the Cutoff model (with cavitation). 
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Fig. 3.6a Velocity profiles for Case 3.4.5 by the Isentropic model, the modified 

Schmidt model and the Cutoff model (with cavitation). 
 

 

 
Fig. 3.6b Pressure profiles for Case 3.4.5 by the Isentropic model, the modified 

Schmidt model and the Cutoff model (with cavitation). 
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(a) 

 

 
(b) 

 

 
(c) 

Fig. 3.7 Flow profiles for Case 3.4.6 by the isentropic model, the modified Schmidt 
model and the Cutoff model. 
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Fig. 3.8 The close-up view of pressure profiles for Case 3.4.6 by the Isentropic model, 

the modified Schmidt model and the Schmidt model (I & II) with a vapor to liquid 
density ratio of . 510−

 

 
Fig. 3.9 The comparison of closed-up view of pressure profiles for Case 3.4.6 by the 

Schmidt-I to the Schmidt-II with a vapor to liquid density ratio of . 410 −
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Fig. 3.10 Comparison of flow variables for Case 3.4.6 at times 0.5, 1.0, 1.5, 2.0, and 
2.5ms between Saurel’s Multiphase model (left) (Saurel et al, 1999) and the Isentropic 

model (right). 
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lg ρρ :  gρ  

)ln.(ln.2 2
min

l

g

l

g
gg a

a
ap +−≈′

ρ
ρ

ρ  

510 −  0.01 3mkg  0.05bar  

410 −  0.1 3mkg  0.97bar  

310 −  1.0 3mkg  18.3bar  

 
Table 3.1 The variation of the approximate value of minp′  with the vapor to liquid 

density ratio. 
 

The Schmidt model Physical 

status 

The Modified Schmidt 

model 

Physical 

status 

 

satp′  is far higher than  satp

 

nonphysical
satp′  can be set to be not 

larger than  satp

 

physical 

Negative pressure dose not 

appear  

 

physical 

 

Negative Pressure appears  

 

nonphysical

No pressure cut-off is 

needed  

 

physical 

Pressure cut-off is used to 

remove the negative 

pressure  

 

nonphysical

Pressure inside the 

cavitation region can allow 

being far higher than   satp

 

 

nonphysical

pressure inside the 

cavitation region does not 

allow to be higher than 

the surrounding pressure  

 

 

physical 

there is no inconsistency 

between the EOS and the 

formulation of the sound 

speed used under the 

assumption of gas and 

liquid components with 

constant density and sound 

speed 

 

 

 

physical 

 

There are inconsistencies 

between the EOS and the 

formulation of the sound 

speed used. 

 

 

 

 

nonphysical

 
Table 3.2 Comparison of physical status between the Schmidt model and the modified 

Schmidt model. 
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Chapter 4 

Applications: 1D Pipe/Tube Cavitating Flows 

    The numerical methods presented in Chapter 2 and the cavitation models presented 

in Chapter 3 will be applied to simulate several cavitating flows in a tube. The 

cavitation creation, evolution and collapse, occurred in a pipe or tube, will be studied 

in detail to better understand the underlying physics of large dimension unsteady 

cavitations. The cavitation may cause severe damage to a pipe due to the pressure 

surges caused by cavitation collapse. For analysis of such damage, three problems are 

considered here. The first one is a Riemann problem in a closed tube where the 

cavitation phenomenon can be captured and observed clearly and the performances of 

four one-fluid cavitation models as presented in Chapter 3 are clearly shown. The 

second one is a water-hammer problem with wide application in engineering design. 

Under different initial conditions, the cavitation may occur at different locations of the 

pipe and will cause different damages to the pipe. Both experiments and numerical 

results can be found in literature for comparison. The third problem is an initially 

multiphase (gas-water) compressible flow in a closed tube. The cavitation arises from 

the region near the gas-water interface and travels towards the end wall. In this case, 

the interface is tracked by the present GFM developed and the cavitation is simulated 

by various one-fluid cavitation models as presented in Chapter 3. The main purpose of 

this chapter is to study the cavitation physics in a pipe/tube flow and to test the 

proposed numerical methods and cavitation models. 

4.1 Introduction 

    Cavitation plays an important role in practical engineering problems and 

development of modern hydraulic tools and injection systems. Cavitation is a relevant 
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feature in structural failure prediction of pipelines transporting liquids (Freitas Rachid 

and Costa Mattos, 1998a, 1998b) and in the analysis of the response of submerged 

structures excited by transient acoustic waves (Fellipa and Deruntz, 1984). It can also 

form at the surface of a high speed submerged body (supercavitation) and affect the 

motion of the body (Owis and Nayfeh, 2003). Furthermore, the performance of an oil 

nozzle is highly dependent on the cavitation physics (Schmidt et al, 1999). Extensive 

research has been carried out for the cavitation generated from a flow passing through 

a body, like hydrofoil, plate and venturi type duct (Ventikos and Tzabiras, 2000; Ahuja 

et al, 2001 ; Lohrberg et al, 2002; Coutier-Delgosha et al, 2002, 2003). Such 

cavitation, generally a cloud cavitation or a sheet cavitation, is relatively steady with 

relative regular collapse cycles. The simulation of this type of cavitation usually takes 

the N-S equation as governing system and the main fluid flow is assumed to be 

incompressible. On the other hand, in the computation of internal flows through nozzle 

injectors with high flow pressure and velocity (high Mach number) the liquid 

compressibility may be significant and has to be taken into account (Schmidt et al, 

1999). Some work in the nozzle cavitating flow can be found in Soteriou et al (1995). 

The size of such cavitation is relatively small and the ratio of liquid to vapor of the 

flow is more than 10000: 1.  

    Compared to the cavitation mentioned above, the cavitation occurred in a pipe/tube 

may have a large dimension. The motion of such cavitation leads to severe pressure 

transient which may cause pipe failure. For example, a cavitation/vapor bubble is 

created from the surface of the check valve, as the fluid momentum is arrested, over-

compression of the cavitation can produce a reverse flow in the pipe thereby leading 

the check valve to be slammed closed, resulting in a water-hammer transient. The 

water-hammer transient has been studied in detail by Sanada et al (1990) and Chaiko 
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and Brinckman (2002). The cavitation models used to capture these cavitations have 

been reviewed in Chapter 1. The present computation of the pipe cavitating flows and 

water-hammer problems will be shown in Section 4.4. It will be found that our 

simulation can capture the cavitation period and collapse pressure reasonably when 

compared to the experiments and other numerical solutions. 

    The rest of this chapter will be organized as follows. The governing equation with 

source term for the water-hammer problem and the boundary condition used in the 

present computation are presented in Section 4.2. The solution procedures and 

numerical examples are shown in Section 4.3. A brief summary is presented in Section 

4.4. 

4.2 1D Boundary Treatment 

    The usual treatments of complete reflecting boundary, non-reflecting inlet and outlet 

boundaries are necessary for the present one-dimensional and multi-dimensional 

computations. More specially, a reservoir boundary has to be enacted or imposed in the 

computation of water-hammer problem (see Case 4.3.2). For all stationary rigid walls 

(boundaries), the complete reflecting boundary condition is used (see Case 4.3.1). 

When an underwater explosion is simulated, the shock should, physically, travel to the 

region beyond the computational domain. Thus, a non-reflecting boundary is generally 

employed. The application of such boundary condition based on the characteristic 

method has been described in detail by Liu (2000). In the computation of a water-

hammer problem, the following governing system is employed: 

( ) S
x
UF

t
U

=
∂

∂
+

∂
∂ ,       (4.1) 

where [ ] TT DuufSSS ]2/,0[, 21 ρ−== ,  is the Darcy friction factor and D is the 

diameter of the pipe. The ratio of f/D is determined by initial conditions. The source 

f
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term  is used to simulate the pipe friction force. It should be noted that this source 

term is set to be zero for all cases in the present computation except for the water-

hammer problem. The characteristic form of (4.1) can be written as  
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where [ ] ( ) ( )[ TTmm SSauSSau
a

SS 212121 ,
2
1, +−−−+= ] . If we assume the reservoir is 

connected to the left/right end of the pipe and thus the pressure and density at the 

left/right end of the pipe are assumed as constants. (4.2) leads to  
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(4.3a) or (4.3b) is solved to obtain the velocity at the left or right end of the pipe for 

water-hammer problem as in Case 4.3.2. 

4.3 1D Applications to Flows in Pipeline and Multi-medium Tube 

    If we assume the flow variables at are known, the numerical procedures to 

obtain flow variables at the next time step  can be summarized as follows: 

ntt =

1+nt

1. Initialize flow field and level set distance function (if any). 

2. Solve (4.1) to obtain flow variables at the new time step. 

3. Evaluate the value of pressure ( p ) to check if the pressure is less than the physical 

saturated pressure ( ) (cavitation occurs). satp
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4. Obtain the flow pressure. If , pressure can be solved from Tait’s equation 

with known density. Otherwise, the selected cavitation model is employed to obtain 

the cavitation pressure. 

satpp ≥

5. Proceed to 2 and iterate from 2 to 4 until the desired time duration is simulated.  

    The Cutoff model, the modified Schmidt model and the Isentropic model as 

mentioned in Chapter 3 are employed in the numerical examples for comparison and 

analysis. The present GFM (see Chapter 2) is used to calculate the numerical example 

where two phases exist initially (Case 4.3.3). For the cases in which the possible 

oscillation occurs, a relatively small CFL number is used. As a result, a CFL number 

of 0.5 will be used to calculate for the Case 4.3.1.  For Case 4.3.2 (water-hammer 

problem), a CFL number of 0.8 is used and reasonable results are obtained when 

compares with experimental results. Case 4.3.3 is a challenging problem not 

amendable to a large CFL number, and thus a much smaller value at 0.1 is used; this 

prevents the oscillations from dominating the flow physics. Similar to Chapter 3, the 

physical saturated pressure  is set to be  and all the results in figures are 

dimensional in the international standard units (i.e. pressure is in  , density is 

in

satp Pa5.62

Pascal

3mkg and velocity is in sm ) except for those with their own units. 

Case 4.3.1: 1D Cavitating Flow in a Closed Tube. This case is similar to Case 3.4.6 

as mentioned in Chapter 3, except that the two ends of the tube are closed before the 

flow starts. Therefore, a shock created at each end moves towards the center, resulting 

in shock-cavitation interaction and cavitation collapse. The flow initial status and 

computational conditions are kept the same as for Case 3.4.6. The walls at the two 

ends are treated as complete reflecting boundaries. The purpose of this model is to 

study the shock-cavitation interaction and cavitation collapse. In this model, the flow is 

initially pure water and soon changes phase into a vapor-water mixture at the center, 

 123



CHAPTER 4 APPLICATIONS: 1D PIPE/TUBE CAVITATING FLOWS 

and then reverting back into a pure liquid after the cavitation collapse. Figures 4.1 and 

4.2 depict a series of plots for the three one-fluid cavitation models at the time instance 

of 0.3ms and 0.5ms, respectively. The results between the Isentropic model and the 

modified Schmidt model are close to each other during the whole computation for this 

problem except for the differences as observed and discussed in Case 3.4.6 during the 

cavitation expansion. The results provided by the Cutoff model, however, are very 

different from those provided by the former two models. It is observed that the shocks 

created at the ends propagate towards the center and meet the outward propagating 

rarefaction generated at the center. The shock then propagates through the rarefaction 

region with a mitigated strength and then interacts with the expanding cavitation 

interface. As a result, a stronger discontinuity forms at the cavitation interface, where 

larger pressure and velocity jumps occur. This leads to the cavitation interface moving 

like a “genuine shock” in the evolution of cavitation collapse. The plots shown in Figs. 

4.1a to 4.1c are the results just before the cavitation collapse, while the plots in 

Fig.4.2a to 4.2c are the results after cavitation collapse when the flow returns back to 

being a pure liquid. The cavitation collapse generates two shocks which propagate 

outwards with equal strength as that for the shocks generated initially at the two ends. 

The Cutoff model provided a larger dimension of cavitation, resulting in a far later 

cavitation collapse for this problem. Such discrepancy for the Cutoff model, the 

modified Schmidt model, and the Isentropic model are apparently due to the different 

cavitation pressures and dimensions predicted by different models. 

Case 4.3.2: 1D Water Hammer Cavitating Flows.  In cold water or under the normal 

atmospheric condition, water is usually assumed to be isothermal and the sound speed 

for the surrounding flow is taken as a constant. The EOS for water becomes 
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)( 0
2

0 lllapp ρρ −=−  instead of Tait’s EOS, where 0lρ  is the water density at 

pressure . Therefore, we have  where .  0p '2 Bap l += ρ 2
00 ll apB ρ−=′

    Selected cases were previously investigated experimentally in detail by Sanada et al 

(1990) where the flow is assumed as isothermal. It should be noted that a source term 

TDuufS ]2/,0[ ρ−= in the right side of Equation (4.1) is added to account for the 

viscous friction of the pipe. The pipe used in this computation is 200 meters long and 

each end of the pipe is connected to a water tank and equipped with a valve. To 

facilitate a thorough comparison of the present computation and experimental results, 

this problem is divided into three sub-cases: a) upstream cavitating flow; b) midstream 

cavitating flow; c) downstream cavitating flow. The schematic diagrams for there three 

sub-cases are shown in Fig. 4.3 and the possible cavitation located are also shown in 

this figure. The comparison among the Cutoff model, the Schmidt model, the modified 

Schmidt model and the Isentropic model at x=0m is carried out for Case 4.3.2a, and 

then the Isentropic model is used to calculate Case 4.3.2b and Case 4.3.2c. For Case 

4.3.2a and Case 4.3.2c, the pressure at both the upstream and downstream tanks is kept 

constant and one of the valves will be closed suddenly to generate cavitation starting 

from either end of the pipe. In the computation of Case 4.3.2b, both valves are always 

open and pressure in the upstream tank will be decreased rapidly to generate cavitation 

starting away from the pipe ends. For more details, one can refer to the experimental 

setup of Sanada et al (1990). A uniform mesh of 1000 cells is distributed and CFL 

number is set to be 0.8 for all computations. It should be noted that all the 

experimental results (pressure and velocity histories) are reproduced by the present 

computation. However, only a (experimental) pressure history is presented for each 

sub-case. For more experimental results, one can refer to Sanada et al (1990). 
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    The initial flow states of Case 4.3.2a are given as follows: the upstream pressure at 

the water tank is 5.49164bar and the downstream pressure at the reservoir is 

0.98065bar. The water density is 1000kg/m3 and the fluid flow moves at a constant 

speed of 1.5m/s before the valve is closed. From the given conditions, it can be 

deduced that 12 −= mDf  and the constant B′  is -6.723E8 Pa. Reflecting boundary 

condition is used for the left closed valve and the reservoir boundary condition is 

employed to treat the right boundary. The sudden closing of the upstream valve leads 

to the occurrence of cavitation starting from the surface of the valve. Such cavitation 

can evolve to a large dimension as time progresses and then the pressure in the 

cavitation region becomes very low to generate a large pressure jump across the liquid-

cavitation interface. Therefore, the flow will move back from the right water reservoir 

to compress the cavitation and make the cavitation collapse, resulting in a pressure 

surge. This is the process of cavitation creation, evolution and collapse of the water-

hammer problem. To capture this process, the pressure histories at the left end of the 

tube (valve surface) are recorded as shown in Figs. 4.4a to 4.4e. It is found that the 

Cutoff model fails to capture the correct periods of cavitation collapse when compared 

to experimental result (see Fig. 4.4b). The Cutoff model provides an earlier collapse 

time and one more collapse than the experimental result. Figure 4.4.c shows that the 

Schmidt model produces close periods peak pressures of cavitation collapse to 

experiments. However, the apparent pressure oscillation can be observed before the 

first cavitation collapse. Such oscillation, as mentioned in Chapter 3, is caused by 

employed large saturated pressure and possible larger cavitation pressure than 

surrounding flow pressure. Compared to the Schmidt model, the modified Schmidt 

model and the Isentropic model are able to capture the period of cavitation collapse 

and peak pressure accurately as shown in Figs. 4.4d and 4.4e. For both models, the 
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first collapse pressure head at x=0m is 62m which is very close to experimental result 

of 66m. The small discrepancy may be attributed to the employed source term which 

can not completely simulate the viscous friction of the pipe. Another possible reason 

for the discrepancy is the 1D assumption may not be quite accurate due to end effect. 

For further verification of the Isentropic model, the pressure histories at x=40m and 

x=120m are recorded (see Figs. 4.4f and 4.4g) and compared well with the 

experimental results as shown in Sanada et al (1990); it is also found that the velocity 

histories obtained by the Isentropic model at various locations of the pipe (see Figs. 

4.5a-4.5c) are quite comparable to experimental results (see Sanada et al, 1990). 

    The initial upstream and downstream pressures of Case 4.3.2b are the same as those 

of Case 4.3.2a except that the valves at both ends are always open during the 

computation. The upstream pressure at x=0m decreases rapidly from the initial value 

of 5.49164bar to a standard atmosphere pressure and then remains as a constant. Such 

rapid pressure drop generates a rarefaction wave traveling through the pipe and causes 

the flow pressure to decrease. Associated with the effect of friction, the flow pressure 

at some locations of the pipe will become lower than the saturated pressure to generate 

cavitation. The history of such cavitation creation and collapse at x=120m is recorded 

and compared to experimental result as shown in Fig. 4.6a and 4.6b. The first two 

collapse pressure heads of the present computation at x=120m are 25m and 20m, 

respectively (Fig. 4.6b). Meanwhile, the results from the experiments at the same 

location are 22m and 18m, respectively (Fig. 4.6a). Once again, the results obtained by 

the Isentropic model are in substantial agreement with those from experiments for both 

peak pressure and periods. Similar to Case 4.3.2a, the pressure histories at x=0m and 

x=40m (Figs. 4.6c and 4.6d), as well as the velocity histories at x=40m, x=120m and 

x=200m (Figs. 4.7a to 4.7c), are also comparable to experiments in Sanada et al (1990).  
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    In Case 4.3.2c, the initial downstream pressures are set to 0.98065bar. When the 

downstream valve is suddenly closed, a strong shock wave impacts and reflects from 

the valve. This shock wave interacts with the upstream water tank and then a 

rarefaction wave is generated and travels from upstream to downstream. The cavitation 

occurs initially from the downstream valve when this said rarefaction wave interacts 

and reflects from the downstream valve. Figures 4.8a and 4.8b show the pressure 

histories at x=200m by the experiment and the Isentropic model. It is apparent that the 

flow pressure before cavitation occurs for this case is higher than that either of the 

former two cases due to the downstream shock. Therefore, the first collapse pressure 

head of this case are much higher than those of the former two cases. Similar to the 

former two cases, Fig. 4.8b shows that the result obtained by the Isentropic model 

compares well with the experimental result (Fig. 4.8a). The Isentropic model also gives 

similar pressure and velocity histories as the experiments (see Figs. 4.8c-4.9a and 

Sanada et al (1990)). 

Numerical results of pressure profile by the modified Schmidt model are also 

presented for comparison to the results by the Isentropic model for Case 4.3.2a. Figure 

4.10 shows the pressure profiles by the modified Schmidt model and the Isentropic 

model before the cavitation collapse when the flow returns from the right reservoir and 

begins to compress the cavitation. The pressure oscillation at the region of interface is 

due to the different EOS used as pointed out also in Liu et al (2004a). It is found that 

the modified Schmidt model compares rather well with Liu et al’s model even when 

we examine very closely the region of the interface as depicted in the small figure 

embedded within Fig. 4.10. That is because both models use physical saturated 

pressure to evaluate if cavitation occurs and the cavitation pressure has relatively 

trivial effect on the magnitude of surrounding pressure before cavitation collapse.  
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After the cavitation collapses, there is a greater discrepancy of pressure profile 

between the modified Schmidt model and the Isentropic model as shown in Fig. 4.11. 

This difference can be partly attributed to the pressure cut-off as utilized in the 

modified Schmidt model. Such pressure cut-off causes the motion of the cavitation 

boundary captured by the modified Schmidt model to be slower than that by the 

Isentropic model. Therefore, the cavitation collapse as calculated by the Isentropic 

model is generally earlier than that captured by the modified Schmidt model as shown 

in Fig. 4.11.  

Case 4.3.3: 1D Gas-Water Cavitating Flows in a Closed Tube. This case is taken 

from Tang and Huang (1996). In their work, a vacuum model was developed and 

employed to model 1D inviscid cavitating flows. The tube is occupied by a highly 

pressurized gas on the left and low-pressure water on the right, and the length of tube 

occupied by the gas is much smaller than that by the water. The initial conditions are 

, , 3/735.70 mkgg =ρ Papg 3.100692985= 0.0=gu , 0.2=gγ , (x<0.001); 

, , 3/1000 mkgl =ρ Papl 101325= 0.0=lu , 15.7=lγ , (0.001≤x<0.275). A uniform 

mesh of 1100 cells is distributed and the CFL number is set to 0.1, which is nearly the 

maximum workable CFL for the Schmidt model for this problem. The explosive gas-

water interface is treated with the present GFM developed in Chapter 2. One purpose 

of this study is to analyze the shock-cavitation-structure interaction. After the 

diaphragm separating the explosive gas and water is removed, a strong shock is 

generated and propagates in the water and a strong rarefaction wave simultaneously 

propagates towards the left end. As time progresses, the shock impacts the right-end 

wall and reflects from the wall. The reflected shock wave from the right end meets and 

goes through the reflected rarefaction from the left wall with a slightly mitigated 

strength and finally impacts the explosive gas-water interface, resulting in a relatively 
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weak shock transmitted into the explosive gas and a relatively strong rarefaction wave 

back into water, which leads to the creation of a cavitation region next to the gas-liquid 

interface. The cavitation right boundary moves with a speed faster than the local flow 

velocity and rapidly expands towards the right end. Simultaneously, the reflection of 

the transmitted shock wave from the left wall soon propagates through the interface 

and interacts with the left expanding cavitation boundary. Such shock-cavitation 

interaction causes the left cavitation boundary to move towards the right with an 

enhanced pressure jump. As a result, the whole cavitation region moves towards the 

right with an expansion at the right side and compression at the left side. With the left 

cavitation boundary impacting on the right wall, the cavitation finally collapses at the 

right end wall, resulting in a strong shock propagating towards the left. Similar 

cavitation creation and collapse subsequently occur many times. Figures. 4.12b to 

4.12e show the pressure history at the right end obtained with the Cutoff model, the 

Schmidt model, the modified Schmidt model and the Isentropic model. Among the 

four models, the respective pressure history curves looks very similar because the 

pressure of surrounding flow is always much higher than cavitation pressure. The 

result by the Vacuum model is reproduced in Fig. 4.12a for comparison. The 

comparison looks reasonable except for the smaller initial peak pressure as registered 

by the Vacuum model. This is possibly due to less grid points used in Tang and Huang 

(1996). Although the curves of pressure history in Figs. 4.12b to 4.12e indicate no 

significant difference, there are obvious differences among the detailed flow profiles 

during the cavitation collapse. Figures 4.13 and 4.14 show the pressure profiles 

provided by the four models just before and after the first cavitation collapses, 

respectively. The Schmidt model, the modified Schmidt model and the Isentropic 

model provide very similar results, while there is relatively flatter pressure profile 
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provided by the Cutoff model. The magnitude of pressure jump across the cavitation 

interface and the location of cavitation boundary captured among the four models, 

however, are very similar for this problem due to large pressure difference between 

surrounding flow and cavitation region. This is possibly one reason the Cutoff model is 

able to provide reasonable end pressure history for this specific problem.   

4.4 Summary for Chapter 4 

In this chapter, the present GFM and one-fluid cavitation models as mentioned in 

Chapter 2 and Chapter 3 are used to simulate several 1D cavitating flows. The 

numerical results are quite comparable to experimental results and other published 

numerical data.  The water-hammer problem is investigated in detail by the Isentropic 

method. It is clearly shown that the Isentropic model is able to provide reasonable peak 

pressure and periods of collapse for all three sub-cases when compared to experiments. 

Also, the modified Schmidt model produces very similar results to the Isentropic 

model while the Cutoff model fails to capture the periods of collapse and apparent 

oscillations have been observed in the application of the Schmidt model. For the 

multiphase tube cavitating flow, however, the four models obtain very similar peak 

pressure and cavitation periods because the presence of high pressure of surrounding 

flow ensures a large pressure jump across the cavitation boundary. It is obviously 

shown from this problem that the Cutoff model is applicable in some simulation. The 

conclusion we can make from this chapter is that the one-fluid cavitation model is 

relatively simple and easy to implementation. Such simplicity will be further verified 

in the next chapter when one-fluid models are applied to multi-dimensions.  
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Fig. 4.1a The velocity profile for Case 4.3.1 at t=0.3ms just before cavitation collapse. 
 

 
Fig. 4.1b The pressure profile for Case 4.3.1 at t=0.3ms just before cavitation collapse. 
 

 
Fig. 4.1c The density profile for Case 4.3.1 at t=0.3ms just before cavitation collapse. 
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Fig. 4.2a The velocity profile for Case 4.3.1 at t=0.5ms after cavitation collapse. 

 

 
Fig. 4.2b The pressure profile for Case 4.3.1 at t=0.5ms after cavitation collapse. 

 

 
Fig. 4.2c The density profile for Case 4.3.1 at t=0.5ms after cavitation collapse. 
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Fig.4.3 The schematic diagram of water hammer problem for Case 4.3.2 (a) upstream 
type cavitating flow (Case 4.3.2a); (b) midstream type cavitating flow (Case 4.3.2b); (c) 

downstream type cavitating flow (Case 4.3.2c). 
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Fig. 4.4a The experimental pressure history for upstream cavitating flow for Case 4.3.2 

at x=0m duplicated from (Sanada, 1990). 
 

 
Fig. 4.4b The pressure history for upstream cavitating flow for Case 4.3.2 at x=0m by 

the Cutoff model. 
 

 
Fig. 4.4c The pressure history for upstream cavitating flow for Case 4.3.2 at x=0m by 

the Schmidt model. 
 

 
Fig. 4.4d The pressure history for upstream cavitating flow for Case 4.3.2 at x=0m by 

the modified Schmidt model. 
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Fig. 4.4e The pressure history for upstream cavitating flow for Case 4.3.2 at x=0m by 

the Isentropic model. 
 

 
Fig. 4.4f The pressure history for upstream cavitating flow for Case 4.3.2 at x=40m by 

the Isentropic model. 
 

 
Fig. 4.4g The pressure history for upstream cavitating flow for Case 4.3.2 at x=120m 

by the Isentropic model. 
 

 
Fig. 4.5a The velocity history for upstream cavitating flow for Case 4.3.2 at x=40m by 

the Isentropic model. 
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Fig. 4.5b The velocity history for upstream cavitating flow for Case 4.3.2 at x=120m 

by the Isentropic model. 
 

 
Fig. 4.5c The velocity history for upstream cavitating flow for Case 4.3.2 at x=200m 

by the Isentropic model. 
 

 
Fig. 4.6a The experimental pressure history for midstream cavitating flow for Case 

4.3.2 at x=120m duplicated from (Sanada, 1990). 
 

 
Fig. 4.6b The pressure history for midstream cavitating flow for Case 4.3.2 at x=120m 

by the Isentropic model. 
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Fig. 4.6c The pressure history for midstream cavitating flow for Case 4.3.2 at x=0m by 

the Isentropic model. 
 

 
Fig. 4.6d The pressure history for midstream cavitating flow for Case 4.3.2 at x=40m 

by the Isentropic model. 
 

 
Fig. 4.7a The velocity history for midstream cavitating flow for Case 4.3.2 at x=40m 

by the Isentropic model. 
 

 
Fig. 4.7b The velocity history for midstream cavitating flow for Case 4.3.2 at x=120m 

by the Isentropic model. 
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Fig. 4.7c The velocity history for midstream cavitating flow for Case 4.3.2 at x=200m 

by the Isentropic model. 
 

 
Fig. 4.8a The experimental pressure history for downstream cavitating flow for Case 

4.3.2 at x=200m duplicated from (Sanada, 1990). 
 

 
Fig. 4.8b The pressure history for downstream cavitating flow for Case 4.3.2 at 

x=200m by the Isentropic model. 
 

 
Fig. 4.8c The pressure history for downstream cavitating flow for Case 4.3.2 at x=40m 

by the Isentropic model. 
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Fig. 4.8d The pressure history for downstream cavitating flow for Case 4.3.2 at 

x=120m by the Isentropic model. 
 

 
Fig. 4.9a The velocity history for downstream cavitating flow for Case 4.3.2 at x=40m 

by the Isentropic model. 
 

 
Fig. 4.9b The velocity history for downstream cavitating flow for Case 4.3.2 at 

x=120m by the Isentropic model. 
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Fig. 4.10 The comparison of pressure profile for Case 4.3.2 by the modified Schmidt 

model to the Isentropic model before the first cavitation collapse at t=0.185s. 
 
 

 
Fig. 4.11 The comparison of pressure profile for Case 4.3.2 by the modified Schmidt 

model to the Isentropic model after the first cavitation collapse at t=4.07s. 
 

 
 
 
 

 141



CHAPTER 4 APPLICATIONS: 1D PIPE/TUBE CAVITATING FLOWS 

 

(a)

 
Fig. 4.12a Pressure histories at the right end wall for Case 4.3.3 by the Vacuum model 

(Pv =0.). 
 
 

 
Fig. 4.12b Pressure histories at the right end wall for Case 4.3.3 by the Cutoff model. 

 
 

 
Fig. 4.12c Pressure histories at the right end wall for Case 4.3.3 by the Schmidt model. 
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Fig. 4.12d Pressure histories at the right end wall for Case 4.3.3 by the modified 

Schmidt model. 

 
Fig. 4.12e Pressure histories at the right end wall for Case 4.3.3 by the Isentropic 

model. 
 

 
Fig. 4.13 Pressure profile for Case 4.3.3 at t=0.00065s by four models. 
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Fig. 4.14 Pressure profile for Case 4.3.3 at t=0.00090s by four models. 
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 Chapter 5 

Applications: 2D Cavitating Flows 

    In practical engineering application, problems considered are always multi-

dimensions where more than one medium coexists in fluid flows initially. As such, the 

numerical methods and one-fluid cavitation models provided in Chapter 2 and Chapter 

3 are extended for 2D applications in this chapter. A fix for treatment of water-solid 

interface where the negative pressure appears in solid side bordering the interface is 

also proposed. The cavitating flows arisen from underwater explosions are simulated 

and the shock-cavitation-structure interaction is analyzed in this chapter. More 

specially, two underwater explosion problems are considered and calculated here. The 

first one is a cylindrical underwater explosion near a planar wall. The planar wall is 

taken as rigid or flexible for analysis and comparison. In this problem, the impulse and 

net force exerted by the shock and cavitation collapse are also calculated to predict the 

damage effect of an underwater explosion on nearby structures. The other one is a 

spherical underwater explosion in a cylindrical container where the solid wall of the 

container may be rigid or flexible. For this problem, flow profiles are presented at a 

series of time instances to investigate the whole process. Similar to the 1D simulation, 

the various one-fluid cavitation models are used for calculations and comparisons. 

5.1 Introduction 

    A non-contact underwater explosion near a structure consists of shock loading and 

and cavitation reloading (pressure impulse). To simulate faithfully the flow dynamics 

and hence the prediction of these loadings are important considerations in the design of 

submerged structures able to withstand or mitigate the damage effect of an underwater 

explosion. For the shock loading, a lot of numerical studies can be found in literature 
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as mentioned in Chapter 1. Some experimental studies are also carried out (Brett et al, 

2000; Rajendran and Narasimhan, 2001;Ramajeyathilagam and Vendhan, 2004). In 

those works, the response of plate/cylinder subjected to an underwater explosion, in 

both the linear and non-linear regime, was experimentally investigated and analyzed. 

Needless to say, it is found that the deformation of the plate can be significant if the 

shock loading is sufficiently strong. Such shock loading can, obviously, lead to 

structural failure when the deformation is beyond some critical values. For further and 

detailed analysis of shock loading, Houlston et al (1985) and McCoy and Sun (1997) 

carried out numerical analysis of underwater shock on structures via finite element 

method (as employed in commercial software). Such calculations can provide broad 

and overall understanding of shock loading as occurred in underwater explosions. The 

commercial software like ABAQUS and DYNA, however, are not very inaccurate in 

the treatment of wave interactions at the material interface like explosive gas-water 

and water-flexible structure interfaces. 

    In the evaluation of an underwater explosion near structure, it is imperative for one 

to consider the effect of cavitation which is initiated primarily by the pressure drop 

across cavitation interface and the said sudden pressure change may very well be 

comparable to the initial shock loading. The damage effect of cavitation collapse on 

nearby plate was experimentally investigated by Jin et al (1996) with different ratios of 

the distance from the boundary. It had been also shown by Tomita et al (2002) and 

Lindaw and Lauterborn (2003) that boundary shapes significantly affects the growth 

and collapse of cavitation bubbles. For investigation of curved target damage 

generated by underwater explosions, Brett et al (2000) conducted a series of 

experiments to investigate cylinder deformation associated with underwater 

explosions. The reloading of structure arising from the cavitation collapse can be 
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clearly observed in their experiments. Although the peak pressure produced from the 

cavitation collapse is lower than that of shock loading, the duration of pressure pulse 

from the former is well comparable to or even a little longer than that of shock loading. 

As a result, the pressure impulse generated from cavitation collapse is in the same 

magnitude and comparable to the pressure impulse associated with the major shock 

loading. The shock-cavitation-structure interaction is a transient event and invariably 

complex to be adequately studied and analyzed via experiments where usually only 

pressure measurements at a few selected locations are made. A numerical study can 

definitely serve to complement our understanding of the transient shock-cavitation-

structure phenomenon.  The commonly used cavitation model in past multidimensional 

studies is the Cutoff-like model. Mäkine (1998) developed a cavitation model called 

pressure criterion (PC) to simulate planar shock wave-structure interaction. The 

pressure in cavity is assumed as the vapor pressure and the motion of the cavitation is 

driven by the difference between the surrounding flow pressure outside the cavity and 

the vapor pressure inside the cavity. This model is essentially a Cutoff-like model. The 

constant pressure model developed by Galiev (1997) is similar to the PC model. The 

Cutoff-like model is easy to be incorporated into the commercial software due to its 

simplicity (Philemon et al, 2000; Sprague and Geers, 2004). However, this model is 

not so accurate and certainly non-conservative as analyzed in Chapter 3. To overcome 

such difficulties, other one-fluid cavitation models like the modified Schmidt model 

and the Isentropic model have been developed to achieve higher level of accuracy 

while still about maintaining the simplicity of the Cut-off like model. The one-fluid 

models can be applied to simulate the unsteady multiphase compressible cavitating 

flow and is employed in the present study of shock-cavitation-structure interaction 

associated with an underwater explosion.  
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    The rest of this chapter is organized as follows. The numerical methodology for 2D 

Euler system is presented in Section 5.2. The shock loading and cavitation reloading 

on structures are analyzed in Section 5.3. A note on present computation is presented 

in Section 5.4. The solution procedures and two case problems are shown in Section 

5.5, followed by a brief summary in Section 5.6. 

5.2 Methodology for 2D Euler System  

5.2.1. The Present GFM for 2D Applications    

For 2D or 3D axis-symmetric inviscid flow, we have 
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Here ρ is the gas flow density, p is the pressure, u, v are the flow velocities in the r and 

z directions, E is the total energy and given as , where e is the 

internal energy per unit volume as mentioned in Chapter 2. n is a system parameter 

which takes on a value of 1 or 2. If n is set equal to 1, System (5.1) is for planar 2D 

flow; if n is set equal to 2, it is for 2D axis-symmetric flow. Similar to 1D flow as 

mentioned in Chapter 2, as the liquid, solid and cavitation mixture are assumed to be 

barotropic, the total energy equation is not required to be solved directly, and thus the 

ensuing expressions for U, F, G and S valid for liquid, solid and cavitating flow are  

)(5.0 22 vueE ++= ρ
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As such, ρ is the flow density, u and v are the flow velocities in the r and z directions, 

and  is the flow pressure. In this chapter, n  is set equal to 1 for the first problem 

(Case 5.5.1) and 2 for the second problem (Case 5.5.2). Equation (3.2) as presented in 

Chapter 3 is taken as the equation of state for closure of System (5.1). 

p

The 1D characteristic methods developed in Chapter 2 can be directly extended for 

system (5.1) in the normal direction. The unit normal at every grid point, N
r

, is defined 

via level set function ( φφ ∇∇=N
r

) where φ  is the level set function. The 

characteristic equations in the normal direction at the interface for (5.1) are then 

defined as 
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System (5.3) can be discretized at the normal direction of the interface as 

( ) 01 2 =∆
−

+−+− ILILILILIILILILI cut
r

nuucpp ρρ ,                        (5.4a) 

( ) 01 2 =∆
−

+−−− IRIRIRIRIIRIRIRI cut
r

nuucpp ρρ ,                         (5.4b) 

Solve (5.4a) and (5.4b) to get the interface pressure and (normal) velocity as follows 
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where the values of  ( ), ILp IRp ILρ  ( IRρ  ),  ( ) and  ( ) are taken from the 

left (right) side of the interface in the normal direction. The application range of the 

present GFM is investigated in Chapter 2. For multidimensional problems, the velocity 

field in the tangential plane has to be defined. Here a method developed by Fedkiw et 

al (1999b) is adopted and summarized below. Similar to the isobaric fix as mentioned 

in Chapter 2, the tangential velocity is expected to be extrapolated (extended) as a 

constant in the normal direction. A basis free projection method (Fedkiw et al, 1998) is 

employed to define tangential velocity for 2D problem via extrapolation. Firstly, a 

velocity is defined as 

Ilu IRu ILc IRc

>=< wvuV ,,
r

 and then a propagation equation,  

0=∇⋅± VNVt

vr
,       (5.6) 

is solved. Now two velocity fields are obtained for each ghost cell, one is from the real 

fluid and the other one is from the ghost fluid. For each velocity field, the normal 

component of the velocity is NVVN

rr
⋅= ; it can be put into a vector as NVN

r
. Thus the 

tangential component of the velocity can thus be expressed as a vector, say NVV N

rr
− .  

    For multidimensional applications, the definition of ghost fluid status involves more 

grid cells because more than one velocity has to be defined for ghost fluids as 

mentioned above. Similar to Liu et al (2003), an identification matrix , which is 

dependent on level set function, is defined for each medium to determine which 

medium is to be taken by each grid point. We assume that there are 

KS

K mediums in the 

fluid flows. If  the grid ( ) 1,, =kjiS K ( )kji ,,  is occupied by Kth  medium, 

otherwise . The update of   is determined by the new level set 

function.  

( ) 0,, =kjiSK KS

After the interface locations are obtained by the level set method, we define a 

rectangular band [ ] [ ] [ ]212121 ,,, kkjjii ××  in which an interface lies. There are 8-10 grid 
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points in the normal direction for this rectangular band. Assuming that the interface is 

located at , thus the two grid points located atIx ( zyxxx I ∆∆∆ )= ,,min5.1m . For the 

grid point of real fluid bordering the interface, the density is obtained via the predicted 

interface entropy. Such fix is used to suppress the “overheating” phenomenon. For the 

ghost point bordering the interface (ghostp1) and the ghost point next to the ghostp1, 

the pressure and normal velocity are copied from the predicted interface quantities, and 

the density is determined by predicted interface entropy while the tangential velocity is 

calculated by (5.6), say NVV N

rr
− ; this is the tangential component of the velocity field 

from the ghost fluid as mentioned above. For the ghost points not bordering the 

interface but still lying within the band, the pressure and velocity are kept unchanged 

while the density is defined by the isentropic fix as mentioned in Chapter 2.  

   It is clearly shown that the extension of the present GFM to 2Ds is fairly 

straightforward. (5.5) is an algebraic equation, thus no iteration is needed when the 

predicted interface status is calculated. Therefore, the present GFM is able to keep to 

the simplicity and low computational cost as for the original GFM.  

5.2.2. A Fix for Simulation of Water-Solid Interface  

   Note that the application of (5.5) is conditional on the positive pressure predicted 

from (5.5a). It has been found in Chapter 2 that (5.5a) may on occasions predict a 

negative pressure quantity especially when the low pressure region appears near the 

water-solid interface. In the simulation of water-solid compressible flows, both the 

EOS for water and solid are very stiff. That means that a small density change can 

correspondingly lead to a large pressure change. This may be especially severe for the 

solid medium due to the large B  and γ  in the solid EOS. To verify this point, we 

assume a problem where the cavitation in water occurs in the region bordering the 
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water-solid interface. In this problem, the calculated solid density next to the water-

solid interface by the numerical scheme may become a little less than the initial density 

due to propagation of rarefaction waves. Thus, the calculated solid pressure from this 

density may become negative. Unlike the water medium, the solid is able to sustain 

large negative pressure and thus the computation in the solid medium continues on. 

The system (5.5), however, cannot be used to predict the interface pressure and 

velocity under such conditions where negative pressure appears in the solid medium 

because it may result in negative interface pressure. As mentioned in Section 2.4.4, a 

fix can be incorporated to the present GFM into overcome such possible difficulty. 

Based on the same assumptions as in Section 2.4.4, such fix can be extended to 2D 

computations. Similar to 1D analysis, (5.5) can be rewritten as  
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With ε<− IRIL uu ,  ε<− IRIL pp  and ILILIRIR cc ρρ >>  as denoted in Section 2.4.4, 

(5.7a, b) can be rewritten as 

  ( ) ( IRIRILILILILIRILILILILI cucuct )
r

nuucpp +∆
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−−+≈ ρρ 1 ,          (5.8a) 
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+=
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The pressure calculated via (5.8a) is positive because the product of the second term 

minus the third term at the right hand of (5.8a) is always a small positive quantity. 

System (5.8) is thus able to suppress the possible negative interface pressure. The 
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detailed definition of ghost fluids in the application of (5.8) can be found in Section 

2.4.4. 

5.2.3. The One-fluid Cavitation Models for Multi-dimensions    

    The main advantage of a one-fluid cavitation model is that it can be directly applied 

to multidimensional problems without any additional numerical treatment. Obviously, 

all the cavitation models as presented in Chapter 3 are easily implemented for multi-

dimensions. We assume a grid point ( )kji ,,  in a multidimensional computational 

domain, and the application of a one-fluid cavitation model can be simply expressed as 

follows 

  ,              (5.9) ⎜⎜
⎝

⎛
<
>

=
sat

sat

pkjipModelCavitation
pkjipEOSsTait

kjip
),,(
),,('

),,(

where  is the physical saturated pressure and the cavitation model can be one of 

the Cutoff model, the Schmidt model, the modified Schmidt model and the Isentropic 

model in present computation. One may note strictly in (5.9) the pressure criterion is 

solely is employed to determine if a cavitation occurs. As Tait’s EOS is very stiff such 

that the calculated pressure may not be so accurately determined, both the pressure and 

density are therefore employed in the present work to evaluate if a cavitation occurs in 

the flow. In the implementation, it is apparent that the one-fluid cavitation model for 

multi-dimensions is the same as for 1D application without any additional treatment. 

Other cavitation models like the multiphase model (Saurel and Abgrall, 1999) do not 

possess such advantage.  

satp

5.2.4. 2D Boundary Treatment  

    Two main types of boundary conditions are involved in 2D computation. One is the 

complete reflecting boundary and the other is the non-reflecting boundary. It should be 
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noted that the source term in (5.1) has to be incorporated into the boundary 

computation. For all stationary rigid walls (boundaries), the complete reflecting 

boundary condition is employed where a wave impacting a solid wall will reflect with 

a wave of equal strength. Non-reflecting boundary is extensively used in simulation of 

the underwater explosion because the shock wave is physically considered to 

propagate outside of the computational domain without reflection. Here we only 

consider the end boundary associated with the system (5.1) in the r-direction; the end 

boundary in the z-direction can be obtained in a similar way. The characteristic form of 

system (5.1) can be expressed as  
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(5.10d) is obtained from the production of the left eigenvector and
( )
z
UG

∂
∂ , and is 

treated as a source term. The differential operator in (5.10d) is discretized by a second-

order accurate central difference method as 
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where M express the various terms given in (5.10d). Based on system (5.10), we 

denote the following 
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for the outgoing wave. For the incoming wave, 1Π  to 4Π  are set equal to zero. The 

non-reflecting boundary conditions are then written as  
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The system (5.12) then leads to 
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The pressure at the boundary can also be solved from density via EOS for each 

medium. For outgoing waves, the derivative of kΠ  is discretized by a second-order 

one-sided upwind scheme. In doing so, the open boundary at  can be solved 

from the primitive variables at .  

1+= ntt

ntt =
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5.3 The Shock Loading and Cavitation Reloading on Structure  

   In engineering application, the shock loading is always taken as the main or primary 

effect on structure. The cavitation reloading which has been usually or traditionally 

neglected as of secondary importance, however, was found to be comparable to shock 

loading (Brett et al, 2000). To evaluate the effect of an underwater explosion on 

structure, both the shock loading and cavitation reloading have to be considered. 

Generally, the pressure impulse exerted on a salient point of the structural surface 

and/or overall force exerted on the affected structure surface can be calculated to 

evaluate the respective contributions. 

5.3.1. Pressure Impulse on Structure Surface  

    The interaction of an underwater explosion with structure is sometimes illustrated or 

shown as a series of pressure history plots contributed in a large way by how the 

measurements invariably in terms of the pressure transducers mounted on the structure 

are employed for data acquisition; to a lesser extent accelerometers may be employed 

too. This practice in experiments is deemed reasonable since in an underwater 

explosion near a structure, the pressure at a point on the structural wall (normally taken 

to be at the center point of the wall) changes abruptly and therefore serves as a proxy 

to observe the effect of an underwater explosion on structure. Of course, another very 

important consideration is the matured development and well tested pressure 

transducer technology which is coupled to relatively low cost implementation. The 

pressure impulse on the surface can be expressed as  

  ,                            (5.14) ∫=
ET CC dtpI

where  is the pressure impulse at the center point of the solid wall. Here  is the 

associated pressure at this center point and  is the integrated final time. Equation 

CI Cp

ET
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(5.14) is integrated from the arrival of the shock wave to cavitation occurrence. By 

cavitation occurrence, one takes it to be cavitation inception till its collapse and there 

can be a series of cavitation occurrences. As such, the pressure impulse associated 

shock wave can be directly compared to the pressure impulse associated with 

cavitation collapse.  

5.3.2. Overall Force on Structure Surface   

    For ease of analysis, the force acting in the direction perpendicular and towards a 

planar wall is to be postive. The overall force on a structure surface can be expressed 

as  

∫= SS pdSF ,                                       (5.15) 

where  are the overall forces exerted on the surface of a solid wall . By recording 

the overall force on a solid surface, the comparison of shock loading and cavitation 

reloading can be clearly shown. In Section 5.5, it will be presented the overall force on 

the solid surface calculated separately for the rigid wall and flexible wall to observe 

and determine the effect of solid deformation on cavitation physics.  

SF S

5.4 A Note on Present 2D Computation  

    Numerical examples in Section 5.5 will show that the present method performs well 

if the solid wall is taken as rigid where the complete reflecting boundary condition is 

used. It is also found that the present computation is valid for the problem if the solid 

wall is taken as flexible but the wall is thick enough to treat the outer-boundary as 

fixed while the inner boundary of the wall is captured by level set method. The present 

computation, however, may fail to simulate the deformation of a thin flexible wall 

because the outer-boundary and inner-boundary are moving together in such case. 
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Figure 5.1 shows the schematic diagram for an inner explosion in a closed cylinder 

with a thin flexible wall where the upper and bottom boundaries are fixed while the left 

and right boundaries are free to move. Physically, the thin wall will be deformed when 

shock wave impacts the inner-boundary of the solid wall and transmits through the 

solid wall and thus makes the outer-boundary deformed. After that, the fixed top and 

bottom solid boundaries will drag the solid wall back. This means that the top and 

bottom solid boundaries always sustain large force. The present computation, however, 

treats the top and bottom solid boundaries by using complete reflecting conditions and 

fixes the top and bottom solid boundaries by setting the velocity in r-direction equal to 

zero. Therefore, we have 

⎩
⎨
⎧

==
==

0,0
0,0

BBBB

TBTB

vu
vu

,                (5.16) 

where subscripts “TB ” and “ BB ” stand for the top solid boundary and the bottom 

solid boundary, respectively. With (5.16) and (5.1), the pressure and density at solid 

boundaries are constant. This is obviously nonphysical because the force exerted on 

the top and bottom solid boundaries are changing as time progresses. Therefore, the 

present system is unable to model this kind of problems. One possible method to 

overcome such difficulty is to use the different system for liquid and solid. The Navier 

equation can be employed as governing equation for solid and then the fluid is coupled 

to the solid by providing a pressure. This is a potential work in the future and not 

discussed in the present computation. 

5.5 2D Applications to Underwater Explosions 

    If we assume the flow variables at are known, the numerical procedures to 

obtain flow variables at the next time step  can be summarized as follows: 

ntt =

1+nt
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1. Initialize level set functions and identification matrix in Section 5.2.1. KS

2. Initialize the flow field and calculate the initial time step-size. 

3. Obtain the computational domain (band) for the first medium. 

4. Obtain the interface status using (5.5) and (5.6) and define the ghost fluids. 

If negative pressure appears in solid medium, (5.5) is ignored and the ghost 

fluid is defined using (5.7). 

5. Obtain the flow variables using (5.1) for one medium. 

6. Evaluate the value of pressure ( ) to check if the pressure is less than the 

physical saturated pressure ( ) for the water medium. If , 

pressure can be solved from EOS for water with known density. Otherwise, 

the selected one-fluid cavitation model is employed to calculate the 

pressure in the cavitation point/region. 

p

satp satpp ≥

Steps 4 to 6 will be repeated until each medium has been solved. 

7. Update the boundary points using complete reflecting boundary condition 

or non-reflecting boundary condition (5.13). 

8. Obtain the flow field for each medium using identification matrix . KS

9. Update the level set functions and thus identification matrix . KS

10. Calculate new time step-size and go back to step 3 if necessary. 

11. Stop the computation when the expected run time is achieved. 

    In this section, two problems are investigated in detail. The first is a cylindrical 

underwater explosion near a planar wall and the second is a spherical underwater 

explosion in a cylinder. These two problems have much practical engineering 

applications in designing submerged structures.  For the former, the pressure contours 

at various time instances are presented and the pressure histories at the center point of 
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the planar wall are recorded. The pressure impulse and overall force exerted on the 

planar wall are also calculated by (5.14) and (5.15) in the application of various one-

fluid cavitation models for comparisons. The compressibility of the thick solid wall is 

also considered in this problem. The comparisons of pressure histories at the center of 

planar wall which is respectively taken as rigid and flexible are then carried out to 

observe the effect of solid deformation on cavitation physics. Similar to the first 

problem, the solid wall is also taken as rigid and flexible in the second problem and 

then the pressure histories at the center of the side wall are recorded for comparison. 

The pressure contours are presented to observe the wave propagations in the cylinder. 

To better compare various one-fluid cavitation models, the pressure profiles along the 

central direction of wall before and after the cavitation collapse are also presented. 

    The present GFM is employed to treat the material interfaces of gas-water and 

water-solid while the various one-fluid cavitation models are used to simulate the 

evolution and collapse of 2D cavitation if any. For both problems,  is set to 

0.05bar. The CFL number is set to 0.45 and the mesh is uniformly distributed in 

computational domain. The time step-size is calculated using the following stability 

condition: 

satp

  
( )

( )jijiji cvu
yxCFLt

,,,max
,min

++
∆∆

=∆               (5.17) 

Case 5.5.1: 2D Cylindrical Underwater Explosion near a Planar Wall. A 

cylindrical underwater explosion near a flat free surface has previously been studied by 

Liu et al (2003a). Case5.5.1 is to investigate the shock-structure interaction associated 

with possible cavitation near the water-solid interface. For ease of description and 

comparison, this case is divided into two Sub-cases, Case5.5.1a and Case5.5.1b where 

a rigid planar wall is used for Case5.5.1a and a thick flexible wall is used for 
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Case5.5.1b. Figure 5.2 shows the schematic diagram for Case1b where P is the center 

point of the planar wall. If the solid is taken as rigid, the water-solid interface is treated 

as an outer-boundary and hence Fig. 5.2 is also the schematic diagram for Case5.5.1a. 

The initial conditions for Case5.5.1a are given as follows. A high pressure air cylinder 

of unit radius is located at the origin (0.0, 0.0) in water and the initial flow parameters 

inside the air bubble are ,3/1270 mkgg =ρ barpg 8290= , smu g 0.0= , 

smvg 0.0= and 0.2=gγ . The initial flow parameters for water 

are , , 3/1000 mkgl =ρ barpl 1= smul 0.0= , smvl 0.0= and 15.7=lγ . The 

computational domain is a rectangular region with [ ] [ ]mmmmyx 3,66,6 −×−∈×  

and the planar wall is located at the straight line y=3m. A total of 361×271 grid nodes 

are uniformly distributed in the respective x and directions and the CFL number is 

set to 0.45. (This case is calculated based on equation (2.2) with .) For this 

problem, the cylindrical explosion is strong and the explosion center is close to the 

planar wall. The resultant flow pressure, therefore, is so high that the cavitation 

pressure becomes less significant to the overall (fluid) flow field. Numerical results 

demonstrate that the four one-fluid cavitation models produce very similar results. 

Figures 5.3a-5.3f show that the pressure contours at various time instances. Figure 5.3a 

shows that the shock generated by the explosion has been reflected from the planar 

wall at t=1.5ms. Such reflected shock interacts with the air bubble, resulting in a strong 

rarefaction wave moving towards the planar wall at t=2.0ms as shown in Fig. 5.3b. 

After this said rarefaction wave impacts the wall and reflects from the wall at t=3.0ms, 

a low pressure region forms near the planar wall as shown in Fig. 5.3c. With pressure 

continues to decrease, at t=4.0ms, the cavitation appears at this low pressure region as 

shown in Fig. 5.3d. Simultaneously, the main shock is propagating outside of the 

computational domain. The cavitation, as shown in Fig. 5.3e at t=5.5ms, collapses 

y

1=n
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from the center of the cavitation zone, leading to a water-jet near and directed towards 

the planar wall and a relatively strong compression wave propagating towards the 

bubble. The cavitation collapses completely at t=6.5ms as shown in Fig. 5.3f. Pressure 

contours depict the inception, evolution and collapse of the cavitation clearly. Also, the 

shock-cavitation-structure and shock-bubble interaction are well captured by the 

present GFM and cavitation models. 

    Similar to 1D application, the pressure at P is recorded to analyze the effect of the 

underwater explosion on the structure as shown in Fig. 5.4. It is discerned that the 

structural loading consists of shock loading and cavitation collapse reloading where the 

peak pressure of shock is much larger than peak pressure of cavitation collapse while 

the duration of cavitation collapse is substantially longer than that of shock. The 

pressure impulses calculated via (5.14) for shock and cavitation collapse are 

865850   and 196030 , respectively. Obviously, the pressure impulse of 

cavitation collapse is comparable to that of shock. For engineering application, the 

overall force on the structural surface is sometimes calculated to evaluate structural 

loading. Figure 5.5 shows the history of overall force on a quadrate region with area of 

16  around the P. The overall force at the time of cavitation collapse is also in the 

same order of magnitude as that at the time of shock impacting the wall. It should be 

noted that the four models provide close pressure histories and overall force for this 

problem due to much higher flow pressure than cavitation pressure. 

sPa . sPa .

2m

    Replaceing the rigid wall with a flexible wall affects the resultant fluid-structure 

interaction. The flexible wall is deformed to create a low pressure region very near the 

surface of the wall while the shock-bubble interaction creates another low pressure 

lying between the bubble and solid. These two low pressure regions then interact with 

each other and finally create an overall lower pressure cavitation region. To observe 
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the deformation of solid wall on the cavitation, the solid wall in Case5.5.1b is 

considered as flexible and the hydro-elasto-plastic EOS (EOSS3) as presented in 

Chapter 2 is employed for the solid. The initial conditions for such a flexible solid are 

,barps 0.1= 37800 mkgs =ρ , smus 0.0= and smvs 0.0= . Other solid parameters 

are shown in Table 2.1 while the intial conditions for explosive gas and water are kept 

the same as for Case5.5.1a. The computational domain of Case5.5.1b is set as 

, and 361×361 uniform grid points are distributed. 

The non-reflective boundary condition is used for all four boundaries. Figures 5.6a-

5.6e show the pressure contours up to 5.5ms. The shock-solid interactions and wave 

propagations through the water-solid interface can be observed from these pressure 

contours. The physical process of cavitation evolution and collapse is similar to the 

Case5.5.1a except for the occurrence of wave interaction at the water-solid interface. 

Figure 5.6a shows that the shock generated by explosion reflects from and transmits 

through the solid wall at t=1.5ms. It is apparent that the present GFM can track the 

water-solid interface. Close examination of Figs. 5.6b-5.6c reveals the deformation of 

the solid while wave propagating in the solid can also be clearly observed. The 

cavitation appears at t=4.0ms as shown in Fig. 5.6d. This occurs when the rarefaction 

wave generated from the shock-bubble interaction is reflected from the water-solid 

interface. At this time, the calculated pressure on the solid medium becomes negative 

thereby resulting in the breakdown of the explicit characteristic method. As discussed 

in Section 5.2.2, a numerical fix which effectively leads to the new version GFM 

(Fedkiw et al, 2002) is employed to ensure that such negative pressure is well 

suppressed.  Figure 5.6e shows the cavitation collapses completely at t=5.5ms. 

[ ] [ mmmmyx 6,66,6 −×−∈× ]

    Similar to Case 5.1.1a, the pressure histories and overall force histories provided by 

four cavitation models look similar as shown in Figs. 5.7 and 5.8 due to the very high 
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surrounding flow pressure. Figure 5.9 depicts pressure histories at the center of solid 

surface for the rigid wall (Case 5.5.1a) and flexible wall (Case 5.1.1b). Here the 

predicted time instances of cavitation creation and collapse, as well as the predicted 

peak pressure of cavitation collapse, are different for Case 5.1.1a and Case 5.1.1b. As 

we are aware, the strength of shock generated from cavitation is determined by the 

cavitation size as well as the pressure jump across the cavitation boundary. In Case 

5.1.1b, a portion of the flow energy is dissipated via the solid medium, thereby 

resulting in a lower corresponding flow pressure and speed in the water medium. 

Therefore, the rarefaction wave generated from the shock-bubble interaction is weaker 

than that for Case 5.1.1a. This explains that Case 5.1.1b provides for a later time 

instance of cavitation creation and lower peak pressure of cavitation collapse as shown 

in Fig. 5.9. It is also found that Case 5.1.1b gives a faster cavitation collapse than Case 

5.1.1a. The cavitation for Case 5.1.1a is usually incepted when the rarefaction wave is 

reflected from the solid surface while the cavitation for Case 5.1.1b is incepted at the 

middle region between bubble and water-solid interface as mentioned above. This 

causes the surrounding flow to move towards and fill in the cavitation region more 

quickly for Case 5.1.1b, resulting in an earlier time instance of cavitation collapse. 

Figure 5.10 shows the history of overall force as calculated via (5.15) on a quadrate 

region with an area of 16  around the center of the planar wall. Once again, the 

overall force at the time of cavitation collapse is in the same order of magnitude with 

that at the time of shock impacting the wall.  

2m

Case 5.5.2: A Spherical Underwater Explosion in a Cylindrical Container. A 

spherical explosion in a rigid cylindrical container has been previously investigated in 

(see also Liu et al, 2004a; Xie et al, 2005a) where the physics of cavitation inception, 

evolution and collapse is analyzed in detail. In the present computation, a flexible thick 
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wall is employed to replace the rigid solid wall for investigating wave interactions 

between water and solid as well as the effect of solid deformation on cavitation physics. 

Similar to Case 5.5.1, this case is divided into two sub-cases, Case5.5.2a and 

Case5.5.2b. Figure 5.11 shows the schematic diagram for Case 5.5.2 where the center 

locations of the left/right cylinder walls are marked as P1 and P2, respectively. For the 

Case5.5.2a, the computational domain is the inner cylinder as shown in Fig. 5.11 

where the completely reflecting boundary condition is employed for the inner 

boundary. The diameter and height of the cylinder are 0.0889m and 0.2286m, 

respectively. The explosive gas sphere is located at the center of the cylinder full of 

water. The inner diameter of the gas sphere is 0.03m. The initial pressure and density 

inside the gas sphere are respectively 20000  and 1770kg/mbar 3, and gγ  is set to 2.0 

for the explosive gas. There are 71×361 grid-points uniformly distributed on one-half 

of the computational domain since the problem is symmetric. It is interesting to note 

that there is no non-physical oscillation encountered for the Schmidt model for this 

problem. This is because the cylinder size is relatively small and the initial flow is 

under very high pressure condition; the Schmidt model faces no difficulty when 

applied to such a small-size and high pressure situation as verified by Schmidt et al 

(1999). The cylinder walls are treated using completely reflecting boundary condition. 

Case5.5.2 is not exactly the same as but very similar to the problem studied by 

Wardlaw and Luton (2000). The difference lies in the present explosion is initiated by 

a highly-pressurized gas sphere in a rigid cylinder while it was by real explosive in a 

cylinder of flexible wall in Wardlaw and Luton (2000). We are unable to obtain the 

“exact” equivalent of initial pressure and explosive bubble size for Wardlaw and 

Luton’s case from that article. Therefore, we only try to obtain the “broad” equivalent 

of initial total energy inside the bubble with the PETN explosive as employed in 
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Wardlaw and Luton (2000). However, the basic physics of flow studied here is 

essentially the same as that studied by Wardlaw and Luton; the associated flow physics 

has been discussed in some great details by Wardlaw and Luton. In general, all the 

major physics disclosed and analyzed in Wardlaw and Luton (2000) has been 

qualitatively identified and matched to the present computation. Once the explosion is 

initiated, a strong spherical shock is generated and propagates symmetrically outwards 

with an exponentially decaying strength. The reflected shock from the container side 

wall with a decreasing strength impacts the expanding explosion bubble, resulting in a 

rarefaction wave reflected from the gas bubble surface (Liu et al, 2001b). The 

rarefaction wave can be so strong that cavitation may be created next to the bubble 

surface. The rarefaction wave also makes a reflection at the cylinder side wall and then 

cavitation is created next to the wall. The cavitation subsequently collapses due to the 

compression from compressive wave, which is generated by the wave-bubble surface 

interaction (Liu et al, 2001b). Figure 5.12a-5.12d show a series of pressure contours at 

the respective times of 30, 60, 90 and 120µs. At t=30µs, the underwater shock has 

already been reflected from the cylinder wall, and the reflected shock wave has 

interacted with the expanding bubble surface. A rarefaction wave is generated due to 

the shock-bubble interaction and a low pressure region is created next to the bubble 

surface. At t=60µs, a large size cavitation region has been created next to the wall. The 

reflected shock waves from the top/bottom of the cylinder interact with those reflected 

from the side walls, resulting in a complicated shock-shock interaction. The 

transmitted shocks of the reflected shock waves from the side wall inside the gas 

bubble have already made reflection at the gas bubble surface and caused shock 

focusing on two points inside the oval shaped bubble. At t=90µs, with the decrease of 

shock strength, the shock-shock interaction results in two nearly plane shocks 
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propagating towards the bubble from the top and bottom. The cavitation next to the 

side walls is shrinking and on the verge of going into collapse stage. At t=120µs, the 

cavitation has collapsed and the resultant flow field becomes very complicated. For 

this problem, the Cut-off model and the Schmidt model provide fairly similar gross 

features as those obtained by the modified Schmidt model and the Isentropic model.  

    For comparison, the pressure profiles along the line of P1-P2 before and after 

cavitation collapse are also presented in Fig. 5.13 and 5.14, respectively. Before the 

cavitation collapse at t=50µs (Fig. 5.13), the Schmidt model, the modified Schmidt 

model and the Isentropic model provides almost identical results while the Cutoff 

model also compares favorably with the other three models with little discrepancy. 

After the cavitation collapses t=100µs (Fig. 5.14), the results by the first three models 

still look fairly similar but there is a small difference discerned on the left/right wall 

region towards the side wall locally. On the other hand, the pressure profile obtained 

by the Cutoff model shows that the wave has been reflected from the side wall which 

is obviously faster than the results provided by the other three models. This shows that 

the different cavitation pressure has some effects, although limited, on the surrounding 

flow and hence the pressure profiles. It should be reiterated that the cavitation in this 

problem occurs under a very high pressure situation and the cavitation size is relatively 

small. The Schmidt model is found to work fairly well for this problem (Schmidt et al, 

1999). As a result, the modified Schmidt model is quite equivalent to the Schmidt 

model. This also shows that the modified Schmidt model can work consistently from 

small size to large dimension cavitation in either high or low surrounding pressure 

situations, and the simple modification for the Schmidt model effectively removes the 

limitation of the original Schmidt model.  
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    The pressure history at the P2 is recorded for comparison up to 120µs as shown in 

Fig. 5.15, where the results by four models are presented for comparison. It can be 

observed that the pressure histories provided by the respective four models are almost 

the same before the cavitation collapse. The Cut-off model provides a different time 

instance of cavitation collapse and a lower pressure surge, while the Isentropic model, 

the Schmidt model and the modified Schmidt model provides similar results. It takes 

about 25µs for the flow pressure at the surface of the wall changing from peak shock 

pressure to approach the physical cavitation pressure (decay of shock). The cavitation 

appears from the surface of cylinder at about 43µs. The collapse of the first cavitation 

begins around 90µs and the second cavitation appears at about 120µs. As a result, the 

effect of the first cavitation collapse lasts about 30µs (120µs minus 90µs). This 

duration of first cavitation collapse (30µs) is obviously comparable with the decay 

time of the shock wave (23µs). The peak pressure during the cavitation collapse is 

about 4500 bar which is about 60% of that of the shock wave. The pressure impulse 

obtained from (5.14) is 340  for cavitation collapse and 990  for shock wave. 

Similar to Case 5.5.1, the two pressure impulses generated from initial shock and 

cavitation collapse are in the same order of magnitude and thus the effect of the 

cavitation has to be taken into account if the overall damage effect of underwater 

explosion is considered.  

sPa . sPa .

Until now, the underwater explosion in a rigid cylindrical container has been 

investigated in detail. If the solid wall of the container is taken as a thick flexible 

boundary (Case 5.5.2b), the effect of solid deformation on cavitation flow dynamics 

can be further studied in the following. The initial conditions for solid medium 

are ,barps 0.1= 37800 mkgs =ρ , smus 0.0= and smvs 0.0= and other parameters 

of the hydro-elato-plastic EOS for solid can be found in Table 2.1. The initial 
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conditions for gas and water are kept the same as for Case 5.5.2a. The inner diameter 

of the cylinder is 0.0889m while the outer diameter is 0.1143m. All four boundaries 

are treated using the completely reflecting boundary condition. There are 181×361 

grid-points are uniformly distributed in one half of the computational domain. The 

pressure contours at five time instances are shown in Figs. 5.16a-5.16e, respectively. 

At the time instance of 20µs (Fig. 5.16a), the main shock generated by the explosion is 

reflecting from the side walls while it is transmitting through the solid wall. It is 

clearly shown that the present GFM can capture the water-solid interface well. At the 

time instance of 30 µs (Fig. 5.16b), the reflected main shock has interacted with the 

explosive bubble resulting in a strong rarefaction wave travelling through the side wall. 

The obvious deformation of the inner boundary can be observed from Fig. 5.16b due to 

strong shock impacting; At the time instance of 50µs (Fig. 5.16c), the rarefaction 

generated from the shock-bubble interaction has been reflected from the inner 

boundary and thus the cavitation occurs at the surface of the side wall. Such cavitation 

has developed to a relatively large dimension as shown in Fig. 5.16c. In the whole 

domain, the contours lines are concentric which shows that flow symmetry is 

maintained by the present methods. Figure 5.16d shows that the cavitation is 

compressed and shrinks to a small dimension at the time instance of  70 µs. At this 

time, the waves in the domain become very complicated. The present method still can  

maintains a good flow symmetry. The cavitation collapses completely at the time 

instance of 90 µs.  

    For comparison of the four cavitation models, the pressure profiles along the line of 

P1-P2 before and after the cavitation collapse are provided as shown in Figs. 5.17 and 

5.18, respectively. It should be noted that the interface pressure becomes negative 

when the cavitaion occurs near the surface of the solid wall. Thus, the fix as proposed 
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in Section 5.2.2 is used to overcome such difficulty in the implementation of the 

present GFM method. After the cavitation collapses at the time instance of 90 µs (Fig. 

5.18), the pressures differences near the water-solid interface provided by the four 

models are partly attributed to the different calculated cavitation pressure. The pressure 

histories at the P2 are recorded for comparison up to 120µs and shown in Fig. 5.19; the 

results by the four models are presented for comparison. It can be observed that the 

pressure histories provided by the respective four models are almost the same before 

the cavitation collapse. The Cut-off model provides a different time instance of 

cavitation collapse and a lower pressure surge, while the Isentropic model, the Schmidt 

model and the modified Schmidt model provides fairly similar results. This further 

verifies that the Cut-off model tends to provide not very accurate result when 

compared to the other models even for those problems with very high surrounding 

flow pressure. It is also found from Fig. 20 that a later time instance of cavitation 

inception, a faster cavitation collapse and a lower peak pressure of cavitation collapse 

are predicted by Case 5.5.2b in contrast to Case 5.5.2a.  Such observations are 

consistent with Case 5.1.1 where the underlying physics has been analyzed in detail. 

5.6 Summary for Chapter 5 

    The present GFM and one-fluid cavitation models developed in Chapter 2 and 

Chapter 3, respectively, are further extended to simulate 2D underwater shock-

cavitation-structure interaction. In particular, the underwater explosion near a planar 

solid wall and the underwater explosion in a closed cylindrical container have been 

studied. In the study of the cylindrical underwater explosion near a planar solid wall, 

the computation is carried out for a long time to capture the interactions of the 

underwater shock, cavitation, and solid wall. The water-jet-like collapse of cavitation 

and a strong shock generated by the cavitation collapse have been observed. The 
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collapse of cavitation is so violent that the pressure impulse and overall force are fairly 

comparable to those generated from the main shock. When the solid wall is taken as 

flexible, the obvious deformation of solid wall and its effect on the periods and peak 

pressures of the cavitation has also been investigated in this chapter. The deformation 

of solid wall leads to a faster collapse of the cavitation and lower peak pressure of the 

collapse when compared to a rigid wall simulation. 

In the computation of the spherical underwater explosion in a closed cylindrical 

container with rigid solid walls, the present results are compared to the numerical 

results by Wardlaw and Luton (2000) which is based on a commercial code associated 

with the Cutoff model. All the physical phenomena put forth by Wardlaw and Luton 

are exhibited in the present computation. When the wall is taken as a thick flexible 

wall, a fix is required to treat the possible negative (water-solid) interface pressure. 

Such fix is able to suppress the negative interface pressure associated with the use of 

the present GFM. The wave motion in solid is clearly shown in a series of pressure and 

density contours. The spherical shock-cavitation-solid interactions, as well as water-

solid interface, are reasonably captured and simulated.  

 

 

 

 171



CHAPTER 5 APPLICATIONS: 2D CAVITATING FLOWS 

 
Fig. 5.1 Schematic diagram for an inner explosion in a closed cylinder with a thin 

flexible wall. 
 

 

P 

Fig. 5.2 Schematic diagram for a under water explosion near a planar wall (P is center 
point of the planar wall). 
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Fig. 5.3a Pressure contour for Case 5.5.1a at t=1.5ms. 

 
 
 
 

 
Fig. 5.3b Pressure contour for Case 5.5.1a at t=2.0ms. 
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Fig. 5.3c Pressure contour for Case 5.5.1a at t=3.0ms. 

 
 
 
 

 
Fig. 5.3d Pressure contour for Case 5.5.1a at t=4.0ms. 
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Fig. 5.3e Pressure contour for Case 5.5.1a at t=5.0ms. 

 
 

 
 

 
Fig. 5.3f Pressure contour for Case 5.5.1a at t=6.5ms. 

 
 

 175



CHAPTER 5 APPLICATIONS: 2D CAVITATING FLOWS 

 
 

 
Fig. 5.4 Pressure history for Case 5.5.1a at the center location of the planar wall (P). 

 
 
 

 
Fig. 5.5 Overall force history for Case 5.5.1a on a quadrate region at the center of the 

planar wall (P). 
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Fig. 5.6a Pressure contour for Case 5.5.1b with flexible wall at t=1.5ms. 

 
 
 

 
Fig. 5.6b Pressure contour for Case 5.5.1b with flexible wall at t=2.0ms. 

 177



CHAPTER 5 APPLICATIONS: 2D CAVITATING FLOWS 

 
Fig. 5.6c Pressure contour for Case 5.5.1b with flexible wall at t=3.0ms. 

 
 
  

 
Fig. 5.6d Pressure contour for Case 5.5.1b with flexible wall at t=4.0ms. 
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Fig. 5.6e Pressure contour for Case 5.5.1b with flexible wall at t=5.5ms. 

 
 
 

 
Fig. 5.7 Pressure history for Case 5.5.1b at the center location of the flexible planar 

wall (P). 
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Fig. 5.8 Overall force history for Case 5.5.1b at the center location of the flexible 

planar wall (P). 
 
 
 

 
Fig. 5.9 The comparsion of pressure histories for Case 5.5.1 at the center location of 

the rigid and flexible planar wall (P). 
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Fig. 5.10 The comparsion of overall force for Case 5.5.1 exerted on the rigid and 

flexible planar wall. 
 
 

 

P2 P1 

Fig. 5.11 Schematic diagram for an inner explosion in a closed cylinder where P1 and 
P2 are center points of the cylinder wall. 
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Fig. 5.12 Pressure contours for Case 5.5.2a at (a) t=30µs; (b) t=60µs; (c) t=90µs; (d) 

t=120µs. “Cav” indicates the cavitation region. 
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Fig. 5.13 Pressure profiles for Case 5.5.2a by the four cavitation models along the 

left/right wall (P1-P2) before cavitation collapse at t=50µs. 
 
 
 

 
Fig. 5.14 Pressure profiles for Case 5.5.2a by the four cavitation models along the 

left/right wall (P1-P2) after cavitation collapse at t=100µs. 
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Fig. 5.15 Pressure history for Case 5.5.2a at the center location of the right side of 

flexible wall (P2). 
 
 

 
Fig. 5.16a Pressure contour for Case 5.5.2b with flexible wall at t=20µs. 
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Fig. 5.16b Pressure contour for Case 5.5.2b with flexible wall at t=30µs. 

 
 
 

 
Fig. 5.16c Pressure contour for Case 5.5.2b with flexible wall at t=50µs. 
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Fig. 5.16d Pressure contour for Case 5.5.2b with flexible wall at t=70µs. 

 
 
 

 
Fig. 5.16e Pressure contour for Case 5.5.2b with flexible wall at t=90µs. 
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Fig. 5.17 Pressure profiles for Case 5.5.2b by the four cavitation models along the 

left/right wall (P1-P2) before cavitation collapse at t=60µs. 
 
 
 

 
Fig. 5.18 Pressure profiles for Case 5.5.2b by the four cavitation models along the 

left/right wall (P1-P2) after cavitation collapse at t=90µs. 
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Fig. 5.19 Pressure history for Case 5.5.2b at the center location of the right side of 

flexible wall (P2). 
 
 
 

 
Fig. 5.20 The comparsion of pressure histories for Case 5.5.2 at the center location of 

the rigid and flexible cylindrical wall (P2). 
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 Chapter 6 

Conclusions and Recommendations 

6.1 Conclusions 

    Two parts of simulations are involved in the simulation of an underwater explosion 

near a structure. The first one is the treatment and simulation of the material interface 

of multi-medium/multiphase compressible flows. The other one is the simulation and 

modeling of cavitation. For the former, to capture a sharp material interface and 

suppress possible numerical oscillation at the interface are always challenging. For this 

purpose, the analysis is carried out for various multi-medium/multiphase compressible 

flows via the existing GFM-based algorithms like the original GFM and new version 

GFM as developed by Fedkiw et al (1999b, 2002) and the MGFM as developed by Liu 

et al (2003) where an Approximate Riemann problem (ARPS) is solved via iteration to 

obtain the interface status. Based on the analysis, the present GFM associated with an 

explicit characteristic method for predicting the interface information is developed. 

The ARPS in the MGFM is replaced by such explicit characteristic method where only 

an algebraic equation is solved and no iteration is needed.  

For simulation of the cavitation, a few commonly employed one-fluid cavitation 

models, the Cut-off model, the Vacuum model and the Schmidt model, have been 

found to be mathematical inconsistent or complicated. In this work, we present two 

recently developed one-fluid cavitation models, the mathematical self-consistent 

Isentropic model (see also Liu et al, 2004a) and the modified Schmidt model (see also 

Xie et al, 2005a). Extensive analysis and comparisons are carried out to define the 

application ranges of these one-fluid cavitation models. The test cases are listed in 

Table 6.1. 
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Chapters Test cases Purposes 

Chapter 2 

1. Gas-water flows 
 
2. Gas-solid flows 
 
3. Water-solid flows 

1. Compare GFM-based algorithms  
 
2. Support the analysis. 

Chapter 3 Various single-phase 
cavitating flows 

1. Compare one-fluid cavitation 
models. 
 
2. Support the analysis. 

Chapter 4 

1. Single-phase cavitating 
flow in a closed tube 
 
2. Water-hammer problem 
 
3. Gas-water cavitating flow 

1. Observe the cavitation inception, 
evolution and collapse. 
 
2. Compare one-fluid cavitation 
models to experiments. 
 
3. Test the proposed GFM and one-
fluid cavitation models together. 

Chapter 5 
1. UNDEX near a planer wall 
 
2. UNDEX inside a cylinder 

1. 2D applications of the proposed 
methods. 
 
2. UNDEX in an open region like a 
floating ship. 
 
3. UNDEX in a closed region like a 
closed tank. 

 
Table 6.1 The lists and purposes of test cases in each chapter. 

 
For application of the present GFM and one-fluid cavitation models to the test cases 

as shown in Table 6.1, the main findings can be summarized as follows: 

1. The original GFM and new version GFM do not work well when applied to 

simulate compressible multi-medium flows involving strong shock wave or jet 

impact; the iteration needed by the MGFM is found to take quite many steps 

and sometimes may fail to converge especially in the low pressure situation of 

the multi-medium/multi-phase flows involving fluid-structure interaction. The 

present GFM is robust and very cost-effective in such situations. On the other 

hand, the present GFM is not very effective for cases where strong rarefaction 

waves are propagating in fluid mediums. This is because the explicit 
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characteristic method as used in the present GFM approximates exact interface 

Riemann Solver with only first order accuracy. 

2. The one-fluid models as presented in this work can capture different cavitation 

sizes and have different application ranges (i.e. density ratio of liquid to vapor). 

The Isentropic model, as well as the modified Schmidt model, works much 

more consistently than other one-fluid models and are applicable for various 

flow conditions. There is no mathematical and physical inconsistency in the 

Isentropic model. 

3. Four one-fluid models as presented in this work are employed to simulate 

cavitating flows in pipeline systems with accompanying water-hammer 

phenomena. The predicted pressure by the Isentropic model and modified 

Schmidt model histories at various locations of the pipeline are in substantial 

agreement with experiment data by Sanada et al (1990) both for the periods and 

peak pressure while the Cutoff model fails to provide reasonable periods and 

numerical oscillation is observed using the Schmidt-II models (see section 

3.3.2). 

4. Four one-fluid models provide similar pressure histories on time at the surface 

of the right end wall when applied to simulate 1D gas-water cavitating flows in 

a closed tube where the surrounding flow pressure is sufficiently high to 

provide a large pressure jump across the cavitation boundary.  

5. The explicit characteristic method for multidimensional Euler system is derived 

and one-fluid cavitation models are directly applied to 2D axis-symmetric 

problems generated by underwater explosions where there is the presence of 

large surrounding flow pressure. The multidimensional material interface is 
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accurately captured and the inception, evolution, and collapse of cavitation near 

the solid wall are well simulated. 

6. The deformation of solid wall is clearly captured by the present GFM. The 

deformation of the solid wall alters the periods and peak pressure of cavitation 

collapse; a faster cavitation collapse and lower peak pressure relatively to the 

rigid wall counterpoint. The possible negative pressure occurred in the solid 

side bordering the water-solid interface is successfully suppressed via the 

proposed fix as detailed in Section 5.2.3. 

6.2 Recommendations 

The present GFM and proposed one-fluid cavitation models provide reasonable 

results for cavitating flows in pipe/tube and underwater shock-cavitation-structure 

interactions. All these computations are based on the assumption that the cavitation is 

generated by pressure drop. Therefore, the thermal non-equilibrium can not be 

addressed by the present one-fluid cavitation models. It is desirable to develop a one-

fluid model for incorporation of the thermal energy exchange; the present cavitation 

models are only used for simulation of compressible flows. The application of these 

models for incompressible flows based on an N-S solver is also desirable. For this 

purpose, the simulation of flow passing a hydrofoil will be carried out. As mentioned 

in Chapter 5, the present system is inapplicable for the simulation of shock-thin 

flexible wall interaction. The present method to be coupled with a Navier equation can 

be used for modeling such interaction. Thus further work is needed to couple the solid 

equation to the Euler system. Finally, the present computational domains are regular. 

Therefore, it is desirable to simulate the cavitation generated from irregular and coarse 

material surface. For example, an underwater explosion near a structure with a 

complex surface shape will be simulated. 
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APPENDICES 

Appendices 

Appendix A 

    This is the proof for the unity of model constant in Qin’s model. Assuming the flow 

is isentropic we have 
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Thereafter, Equations (A.3), (A.4) and (A.5) can lead to 
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This concludes the proof. 
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