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Abstract

In the first part of the thesis, a generalized version of the Tomographic Quantum Key Dis-
tribution protocol in which the two users Alice and Bob share a Bell diagonal mixed state
of two qubits will be presented and its security analyzed. In particular, it will be shown
that if an eavesdropper performs a coherent measurement on a number of ancilla states si-
multaneously, classical methods of secure key distillation are less effective than quantum
distillation protocols. Furthermore, certain classes of Bell diagonal states that are resistant

to eavesdropping attacks will be identified.

In the second part of this thesis, the security of the tomographic protocol using a source
which produces entangled photons via an experimental scheme prop&ssdirRev. Lett.,
92, 37903 (2004)will be analyzed. The range of experimental parameters for which the

protocol is secure will be determined.
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Chapter 1

Introduction

The main goal of quantum cryptography, or quantum key distribution (QKD), is the estab-
lishment of a random, secure and perfectly correlated set of key between the two users Alice
and Bob. The laws of quantum mechanics are exploited to achieve this purpose. In essence,
Alice and Bob make use of entanglement and perform suitable measurements to generate
random sets of keys for themselves. In the absence of interference from the environment,
these two sets of keys for Alice and Bob will be perfectly correlated. Moreover, by making
use of theno-cloning theorenfWootters and Zurek, 1982], Alice and Bob can make sure
that any attempt at eavesdropping can be detected so that they can always be certain about
the security of their keys. The first QKD protocol was discovered by Bennett and Bras-
sard in 1984 [Bennett and Brassard, 1984], and since then, a number of others have been
proposed, such as the Ekert91 [Ekert, 1991], the B92 [Bennett, 1992] and in particular, the
Tomographic Quantum Key Distributistheme proposed by Liaret al. [Liang et al.,

2003]. Experimentally, the field of QKD is sufficiently advanced so that there is already the

possibility for commercialization of some of the QKD devices.

1.1 Overview

This thesis will consist of two parts. In the first part, the Tomographic QKD protocol will
be presented and extended to a generalized scheme in which Alice and Bob Biedire a
diagonal mixed statef two qubits. The security of the protocol will be analyzed based

on the Csisar-Korner (CK) theorem which guarantees that a secure key can be established



through classical communication and one-way error-correcting codes if the correlations be-
tween Alice and Bob’s data are stronger than that between the eavesdropper Eve and either

one of them.

Two scenarios will be considered. In the first scenario, Alice and Bob agree on a crypto-
graphic key if the correlations between their data are stronger than that between Eve and
one of them, under the assumption that Eve can only perfoocoherentmeasurements.

The CK theorem then guarantees a way of generating a secure key. In the second scenario,
we consider the situation when Eve'’s correlations are initially stronger than Alice and Bob’s
so that the CK theorem is no longer valid. In this case, Alice and Bob can perform an inter-
mediate step known as distillation to strengthen their correlation with respect to Eve’s, and
in doing so, make the CK theorem applicable once more. Two distillation protocols will be
considered: a classical method knownfalvantage DistillationAD) and a quantum pro-
cedure known ag&ntanglement Distillatio(ED). The security of the Tomographic QKD
protocol under these two distillation procedures will be considered, and in particular it will
be shown that if Eve performs coherent measurements, the classical method of key distil-
lation is less effective than the quantum method. Finally, it will be shown that there exist

certain classes of Bell diagonal states which are resistartytattempt at eavesdropping.

In the second part of the thesis, the security of QKD protocols based on a particular scheme
of generating polarization-entangled photons from a quantum dot single photon source will
be considered. Such a method of producing entangled photons was first proposed by Fattal
et al. [Fattal et al., 2004] and can be incorporated into QKD schemes based on shared
entanglement, such as the Ekert91 and BBM92 [Bennett et al., 1992]. The security of
the Tomographic QKD protocol based on such a source of photons will be analyzed in
particular. The range of experimental parameters for which the protocol is secure against
incoherent attacks will be determined in the analysis and certain observations which could

also be applied to other QKD schemes will be made.

The main results of this thesis appeaPinys. Rev. A71, 012309 (2005andeprint arXiv /
quant-ph /0501051



Chapter 2
Tomographic Quantum Key
Distribution with Bell Diagonal

States

In this chapter, the Tomographic QKD scheme based on Bell diagonal states will be pre-
sented. The protocol will first be described in general, after which we will apply the scheme
to Bell diagonal states. We will then consider the situation where there is there is an eaves-
dropper Eve in the channel. Her optimal eavesdropping strategy in the situation where she
is restricted only to incoherent attacks will be described, and the conditions for the protocol

to be secure will be derived based on the Gwid¢orner theorem.

2.1 Protocol

In the Tomographic QKD proocol [Liang et al., 2003], a central source distributes entangled
qubit pairs to Alice and Bob (Fig. 2.1). For each qubit that they receive, Alice and Bob will
independently and randomly choose one of the three Pauli obseryables,, 0.} to mea-

sure their qubits. These observables have the important property oftoeaographically
completein the sense that the probabilities for finding their eigenvalues as the results of
measurements uniquely specify the statistical operator of the qubit pairs (see Appendix A).
For each measurement they perform, Alice and Bob will separately record down the observ-

ables they have chosen as well as the results obtained.

3
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Figure 2.1: Tomographic QKD setup. A central source distributes entangled qubit pairs
described by density operatprto Alice and Bob. For each qubit that they receive, Alice

and Bob will independently and randomly choose one of the three tomograpically complete
Pauli observable¢o,, o, 0. } to measure their qubits. After each measurement, Alice and
Bob will keep separate records of the observables they have chosen as well as the results
obtained. Here, the three Pauli matrices are expressed inkhsis.

In the ideal situation, Alice and Bob expect to receive the maximally entasgigtet state

|1»_) from the source:

1
) = —(l#z0,21) — |71, %0)) - 2.1
|¥-) \/5(\0 1) — |21, 20)) (2.1)
Here, we have expressed Alice and Bob’s two-qubit state inx theesis. The first ket entry
refers to Alice’s qubit while the second refers to Bob’s qubit. If we express Eq. (2.1) in

the other two bases, we see that the singlet state is invariant (up to a global phase) in those

bases:
— - 1 p—
lp_) = ﬁ(lxo,m) |1, z0))
= %(\ymyﬁ—\yl?yo»' (2.2)

After all the qubits have been transmitted by the source and measured, Alice and Bob will
proceed to the second step of the protocol where they process their data in the following
way: They will first announce, over a public but authenticated channel, the observables
they have measured for each qubit they receive. The results of the measurement are kept
secret however. Based on this announcement, Alice and Bob will then proceed to divide
their respective data into two groups. In the first group would be those results for which
they have chosen the same observable to measure the same qubit pair, while in the second

group would be those results for which they have chosen different observables.



For the first group, Alice and Bob’s results will always fperfectly anticorrelatecas well

asrandom For example, the probabilities for measurements performed in baesis are

(AB)

Potles = TrH$07$1><:I:o,x1\1/)_)<¢_]]:%

(AB) _ }
pl(]\:mc 9

(AB) — (AB)
pOO\xw - p11|xx =0

(2.3)

Herepmnm, denotes the probability of Alice and Bob obtaining outconiésahd ‘I’ re-
spectively, given that they measured the observableando,,, (wherem,m’ = =,y or
z) respectively. The data from this first group of matching bases can thus be used as a valid

cryptographic key.

The second group of results for non-matching bases does not possess any useful correlations

and is not useful for key generation. For example, we have

1
Phatey = Tr 1w yo) (zw, mlv-) (-] = g forallk =01 (2.4)

The results from this group of data are not completely useless however. What Alice and Bob
will do in the next stage of the protocol is to make use of this group of data, together with
some of the data from the first group, to perforrstate tomographgn the source. In this
verification stage, Alice and Bob will exchange their data from the two groups and consider
the frequencies at which various results arise. By doing this, they can in principle recon-
struct any density operator describing the two-qubit state that they share (see Appendix A).
If this reconstructed state is not of the fofth_)(+_ | that they expect from the source, they

will consider the channel insecure; they will discard their data and use another channel that

fulfills their tomography requirement.

The tomographic protocol is summarized in Fig. 2.2.
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Figure 2.2: Tomographic QKD protocol.

Error Correction

2.1.1 Eavesdropping in a Perfect Channel

Suppose we have an eavesdropper Eve in the channel. It will be shown that the protocol
will always be secure in the ideal situation of a noiseless channel, for which Alice and
Bob always receive the singlet stdte_) from the source. To be on the safe side, one
must assume that Eve has full knowledge of the cryptographic protocol (the “Kerckhoff
principle” of cryptology), and that she acquires as much knowledge about Alice and Bob’s
communication as is allowed by the laws of physics. In particular, it will be assumed that

Eve has full control of the qubit distributing source.

In order to obtain as much information as possible about the key generated by Alice and

Bob, Eve entangles their qubits with ancilla stdtgs) in her possession. The most general



state she can prepéfes

[Wape) = |¢+)leon) + [@-)leor) + [¥4)]e10) + [¢-)le1r), (2.5)

where we have represented each of the four Bell states in the following way:

lpx) =

(120, 20) & [21, 21))

Y+) = (20, 21) % [21, 20)) - (2.6)

Sl =Sl

Because Alice and Bob perform state tomography to ensure that their two-qubit state is
always in a singlet state, Eve will also have to make sure that her prepared state appears to
Alice and Bob in that form, that is we require that on tracing out Eve’s degree of freedom

in [YapE) (Y apE|, we recover the pure singlet state ) (y_|:

Trg [[YaBE)(YaBEl] = [V-)(¥—|. (2.7)

Here, Trg [-] denotes taking a partial trace over Eve’s ancilla space. This tomography re-

quirement imposes the following structure on Eve’s ancillas:

(egoleoo) = (eo1leor) = (ewolewn) = 0

<€11|€11> = 1, (28)

so that Eve is effectively restricted to the following preparation:

[YaBe) = [¥-)|en). (2.9)

The only state that Eve can prepareéparableand there is no useful entanglement between
her ancillas and the qubit pairs that can provide her information about Alice and Bob’s
measurements. Eve will not be able to obtain any useful information from her ancillas in

this ideal noiseless scenario and the protocol is secure.

*Since there is no advantage in generating a mixed state, it is sufficient to consider only such pure state
preparations.

fMore generally, one could consider coherent attacks in which Eve prepares entangled multi-qubit pair
states rather than the single qubit pair state of Eq. (2.5). There would then be correlations appearing between
different qubit pairs. We shall take for granted that Alice and Bob protect themselves by also looking for such
correlations when they exchange information during state tomography, thus ruling out such a class of coherent
attack.



2.2 Tomographic QKD with Bell Diagonal States

Although the Tomographic QKD protocol is perfectly secure in the noiseless situation, Al-
ice and Bob cannot expect to obtain the pure singlet $taté(:_| in realistic situations
because either the the source is not ideal, there is interference with the surroundings, or
there is an eavesdropper tampering with the system. Their two-qubit state wilhbesd

statein general.

Suppose now that Alice and Bob’s QKD setup is non-ideal, so that instead of a pure singlet

state, they expect to receive a Bell diagonal mixed state in the; bagis:
1
0 = Z pab|zab> <zab|7 (210)
a,b=0

Following the nomenclature of [Bennett et al., 1996], each of the four Bell states in the

basis has been conveniently written here as

1
1 kb
z = — w2k, 2 , 2.11
|2ab) \/ig |2k 2k+a) (2.11)
wherew = —1 and addition in the indices is performed modulo 2. We note that each Bell

state is uniguely represented by two indices: an amplitudewltich gives the parity of the
two qubits (0 for even parity, 1 for odd) and a phaseblgid for ‘+' phase, 1 for ‘-’ phase).
Comparing with Eq. (2.6), we thus have

2000 = l¢+)
[201) = [¢-)
[z10) = [¢4)
lz11) = |¥-). (2.12)

In Eqg. (2.10),p,s represents the proportion of the Bell statg,) and they sum to 1,
Zi,b:opab = 1. The ideal situation for which Alice and Bob receive the pure singlet
state|z11) corresponds to the case wherg = 1. Furthermore, we require one of the
probabilitiesp,;, to be greater thaé as otherwise the two-qubit state Eq. (2.10) becomes

separable and Alice and Bob will not be able to obtain a secure key from such a state (see



Chapter 3). Without loss of generality, it will be assumed herezhat> % The protocol
for this mixed state scenario then proceeds as before and in the tomography stage of the pro-
tocol, Alice and Bob will accept their measurement data if and only if their reconstructed

state is in the Bell diagonal form.

We note that the statE}Lb:D Dab|zab) (Zap| €AN be obtained from the singlet state ) (11|
by assuming that the travelling qubits undergo random bit and phase flips. The so-called
Werner state (maximally entangled state admixed with white noise) is a special case where

we havepgy = po1 = pio = 1}’,’“. The Bell diagonal state considered here is thus more

general than the one studied in [Liang et al., 2003; Bruf3et al., 2003] where only Werner

states were considered.

Itis convenient to express the state Eq. (2.10) imtlaedy bases as well. This can be done

by noting the transformation rules on the Bell states:
2ab) = (—1)* W™ |Yatbr1 a) = W) Tpa)- (2.13)

We thus have the following equivalent forms in the different bases:

1 1 1

0= Z pab‘zab> <Zab’ = Z Do a+b+1|yab> <yab’ = Z pba|xab> <$ab|' (214)

a,b=0 a,b=0 a,b=0

If we have a Bell diagonal state in one of the bases, it will remain Bell diagonal in the other

two bases.

If we compute the probability of Alice and Bob obtaining anticorrelated results in the event
that they measure in matching bases, we have the following probabilities for each of the

bases:

1

p(anticorrelatiofr basiy = Z Tr [| 2k, 2k+1) (2K, Zk+1]0]
k=0
= piotpu= ng)v
p(anticorrelatiofy basis = pgo + p11 = pgy)7
p(anticorrelationr basiy = po1 + p11 = pgﬂ. (2.15)



On the other hand, the probability of getting correlated results is given by

1

p(correlationz basiy = > Tr[|zk, 2¢) (2, 20l
k=0
= Doo +Ppo1 = péz)7
p(correlationy basis = po1 + pio = p(()y)7
p(correlationz basis = pgo + p1o = p(()””). (2.16)

Sincepy; > % we see that Alice and Bob are more likely to obtain anticorrelated results in
whichever basis they measure; they will thus make use of anticorrelation to generate their

key sequence.

2.2.1 Eavesdropping

Let us now consider the security of the tomographic protocol based on Bell diagonal states.
Unlike the ideal situation, the protocol will in general not always be secure as Eve can
obtain some information about the key that Alice and Bob have established. However, by
determining the values of the,;’'s from state tomography, Alice and Bob can place an
upper bound on the knowledge that Eve has about their key. Thed@#iémer theorem

then guarantees them of a secure key that can be extracted from their raw key as long as
their correlations are stronger than than that between Eve and either one of them. To place
this upper bound on Eve’s knowledge, we shall assume the worst-case scenario in which
Eve has full control of the source and that all imperfections in the channel are due to her

eavesdropping activities.

Ancilla Structure

As before, suppose Eve entangles Alice and Bob’s qubits with ancilla stgiesn the

most general fashion:

1
|YaBe) = Z@|Zab>|€ab>- (2.17)

a,b=0

10



To satisfy the tomography requirement of the protocol, Eve has to prepare the entangled
state in such a way that it appears Bell diagonal to Alice and Bob, ie. if we trace out Eve’s
degree of freedom, we must recover a two-qubit state that is Bell diagonal. This imposes

the following structure on Eve’s ancillas:

<ea/b’|€ab> = 6a’,a5b’,b- (2.18)

Eqg. (2.17) can be written in the following form when expressed in terms of Alice and Bob’s

individual qubits:

1 1
lbaBe) = Z |2k 2k-+a) <Z\/ﬂ kb|€ab>

-

—

1
= —-= Z Yk Yhta) (Zlb\/pba+b+lw )b\eba+b+1>>

ka 0 =0
1

= — Z | Tk, Thota) ( \/mw@*’“)b\eba)), (2.19)
ka 0 b=0

which can be more conveniently expressed as

1 (z
[Wape) = Y ~5 |2k 2l far)
a,k=0
1 ()

p
= Z %‘ykayk—kaﬂfgw

a,k=0
Z \/ rwk,xk+a | £ (2.20)

a,k=0

Here, the various probabilitiqélm) in themth basis {n = x, y, z) are given by Egs. (2.15)
and (2.16), and each ancillg’.) has been characterized using two indices: a parity index

a which gives the parity of the two-qubit state it is attached to, and an ikdgxing the

11



state of Alice’s qubit. These ancillas are relatedktg) in the following way:

1
1
\far) = > VParw™leas)
1 1
fo) = > P Brareriw P leparpia)
p =0
1 1
[far) = Praw ™ eyy).
P b=0

(2.21)

Using Eq. (2.18), it can be shown that these ancillas are normalized and have the following

structure:

z z _ pCLO _pal _ (Z)
a0lJa - = )‘a
Falfn) = ot
Yy Y — pO a+1 _pla = )\(y)
aolfar) D0 a+1 1 Pla “
T T pO(l _pla _ x
(faolfa) = Jo e = A0, (2:22)

while ancilla states with different’s are orthogonal.

Based on this structure, we can divide Eve’s ancilf$) in each basisn into two groups
according to the parity bit. The first group corresponds&o= 0 and refers to the situation
when Alice and Bob obtain correlated results in thth basis. The second group corre-
sponds to the case= 1, for which Alice and Bob obtain anticorrelated results. The 0
group occurs with probability(()m) while thea = 1 group occurs with probabilitygm). The
ancillas in then = 0 group are orthogonal to those in the= 1 group. Within each group
however, the ancillas with differerts are non-orthogonal in general and have mutual in-
ner product( fI}| fi) = AU The structure of the ancillas is summarized graphically in
Fig. 2.3.

2.2.2 General Strategy

Eve’s strategy is as follows. She will wait for Alice and Bob to perform their measurement
and announce their measurement bases as well as the qubits they intend to use for key

generation. By eavesdropping on this classical communication between Alice and Bob,

12



Figure 2.3: Structure of the ancillag’;) in themth basis. Ancillas with different parity bit
a reside in orthogonal subspaces. Within each subspace, ancillas with different vatues of

have inner produckgm) and are in general nonorthogonal.

Eve can identify the qubit pairs as well as the measurement bases in which to perform her
attack. Her ancilla corresponding to each of those contributing pairs will then be a mixture
of four possible states:
Lo (m)
of = Teapl[Yase)Wassll = Y Pl fm AR, (2.23)
a,k=0
wherem = z,y, z is the chosen basis of Alice and Bob dfigy [-] denotes taking partial
trace over Alice and Bob’s degrees of freedom. Formally, this can be viewed as a trans-
mission of information from Alice and Bob to Eve, with the information encoded in the
quantum state’z of Eve’s ancilla. Eve’s optimal eavesdropping strategy is then to maxi-
mize this information transfer by choosing a suitable generalized measurement, known as a
Positive Operator Valued Measu(B@OVM), to perform on her ancilla. A brief discussion

of POVMs and their properties is given in Appendix B.

Another way to understand this transfer of information from Alice and Bob to Eve is as
follows. From Eq. (2.20), the entangled state prepared by Eve imthebasis is of the
form

pi™

1
Yage) = Y. 51k Ma) | fak), (2.24)
a,k=0

13



while Alice and Bob’s two-qubit state is given by

1 (m)
m Da
oip = Trg(|[Yase)(YaBe|] = E 5 Mg, Mpta) (Mar, Mar g0l (2.25)
aJe k=0

When Alice and Bob measure their respective qubits, they will collapse Eve’s ancilla space
into an appropriate state. For those qubit pairs that contribute to key generation, the col-
lapsed state will be one of tH¢”})'s, wherem is the chosen basis. Specifically, if Alice

and Bob measurg andk + a respectively, Eve’s collapsed state will bg?). This oc-

. . (m) . . .
curs with probability(my,, mi1q| 0% g|mk, Mr+a) = P45—. By determining the identity

of this collapsed state, Eve will be able to deduce Alice and Bob’s measurement results.

Overall this is equivalent to saying that Alice and Bob sends the quantum mixed state

(m) . : . .

op = Zi,k:o Pe—|fm)(for| to Eve whose goal is to extract the maximum information
possible from this mixed state to help her determine Alice and Bob’s measurement results.
This maximum amount of information available to Eve is also known in literature as the

accessible informatiofNielsen and Chuang, 2000].

2.2.3 Incoherent Attack

We shall assume that Eve carries outramoherentttack in which she measures her ancillas
one at a time. In contrast, in@herentattack, she would measure some joint observable of
more than one ancilla at a time, or construct Eq. (2.20) so that more than one pair of qubits
are entangled with each ancfllawe shall give an example of how Eve can carry out the

first type of coherent attack later on in Chapter 4.

We can rewrite the statistical operator describing Eve’s state imthebasis in Eq. (2.23)

as follows:

1
oF = > pmoy
a=0

= ™o+ ™ (2.26)

tAs pointed out before, we assume that Alice and Bob protect themselves from this second possibility by
checking for correlations between qubit pairs during state tomography.
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where

1 1
ro = 5lfeor (ool + 5l fon) (il (2.27)

describes Eve’s ancilla in the situation where Alice and Bob obtain correlated results in the

mith basis, which occurs with probabilipt™ , while

1 1
o = U+ S (2.29)

describes her state for anticorrelated results, which occurs with probaﬁi’ﬁ}y Sincep’
and pi* reside in orthogonal subspaces, Eve can discriminate between the two situations

unambiguously.

The POVM measurement that optimizes the information transferred by Alice and Bob to

Eve via the statg’; will now be presented. The proof of optimality is given in Appendix C.

Optimal POVM

In the first step of the measurement, Eve projects her mixture of ancillas into one of the two
orthogonal subspaces corresponding to the parity indekhe subspace that she projects
into depends on the result of Alice and Bob’s measurement. If Alice and Bob obtain corre-
lated results, Eve will project into the= 0 subspace and end up with the mixed sg#te

if they obtain anticorrelated results, she projects intodthe 1 subspace instead and ends

up with pi".

Next, she applies the measurement that maximizes the information she can extract from the
mixed statep]’ obtained in the first step. Now;" is composed of an equiprobable mixture

of pure states. For example,

1 1
Py = §\f(?0><fgof+§’fg1><fg1|a (2.29)

which is an equal mixture of the pure stat¢§,) and|f{;). The optimum measurement
which maximizes the information she can extract from such a mixture is known in literature

and is given by the so-callextjuare-root measuremef@hefles, 2000a; Helstrom, 1976].
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Square-Root Measurement

The square-root measuremefar Eve’s projected mixed stagg = ", _, | /) (f7] is
in fact the one that minimizes Eve’s error in distinguishing between the two nonorthogonal
states f/3) and|f7}). The measurement is given by the set of POYM} ) (Wi} | }r=0,1,

where

1
W — Y (2.30)
| k’> \/W| k:>

Given a statef) in themth basis, the probability of inferring it correctly using the square-

root measurement is then given by

pWhlfm) = Tr[wiNwm| fm (o]
= [(folwm)|® =ni™. (2.31)

The probability of a wrong guess Is— ném).

For the purpose of obtaining the probability in Eq. (2.31), we notefidias the eigenkets
= Joai (Ifa0) + [ fa1)) and[sg") = ﬁ(’fa(ﬁ |fi)), with corre-
2(1 \/2(1

sponding eigenvaluels+ )\((lm) and1 — )\((lm). We can then write out the diagonal form of

1
VPE
1 1 1

= = )|+ ——=Isa") (i (2.32)
VP 14+ A" 1— A

Using the relatior( £ £7,) = A{™ + 6, (1 — AY™), we find that

(e = 1+ A
(farlsiy = (Oko — Ok1)y/1 — A, (2.33)
and thus
1 (m) (m)>
oy = —=(V1I+Xa " +V1=X""). 2.34
() ﬂ(V Y (2.34)

$See also Appendix B.3.
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Figure 2.4: Geometrical interpretation of the square-root measurement.

Using the above result, we arrive at the following expression for Eq. (2.31):

nim = ;<1+\/1—()\£’”))2>. (2.35)

Eq. (2.35) tells us that if Eve’s ancilldg)}) and|f}) are orthogonal)(((zm) = 0), she
can distinguish them without erroryg(”) = 1); if her ancillas are parallel/antiparallel
(A,(lm) = +1), and hence indistinguishable, the best she can do is to resort to random guess-

ing (ngm) = %). These results are what we would expect intuitively.

We note that the square-root measurement has the following geometrical interpretation
which we will find useful later on: Suppose we picture the two ancillf§) and |f.7)

being aligned at an angle obs~! )\((lm). The square-root measurement will then be a pro-
jective measurement whose projected staté®) and|w!;) are orthogonal to each other

(ie. avon Neumann measuremgahd have geometrical relations with the ancilla states as
shown in Fig. 2.4. We can then express the ancilla states in terms of the square-root states

as follows:

|fa) = cosalwyy) + sinajw])

) = sinalwyg) + cos alw]). (2.36)

Furthermore, sincéfm| fm) = AU \we have

1
cosa = 5 <1 +14/1-— ()\((lm))2> . (2.37)
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The probability of inferring a state correctly is then given by the probability of projecting

the state into the correct square-root state, so that we have

™ = cos?a
_ ;<1+ 1—(A£{”))2>, (2.38)
as before.
Probabilities

For the purpose of determining the criteria for security, we summarize the probabilities
of Alice, Bob and Eve getting the various results. Since Alice and Bob generate their
cryptographic key only if their bases match, we shall consider only the situation where

Alice and Bob have matching bases.

The probability of Alice getting result and Bob measuringin the samenth basis is

(m) (m)

(AB) _ b Y2
Piibasism — "9 Ok + 7(1 — Ok)-

(2.39)

The probability of Alice measuring and Eve getting outcome;; for the square-root

measurement (in thexth basis) can be expressed as

(m)

Pa . i
p??ubasiSm = 5 [%,m& ) (1= 8 )(1 =™

(2.40)

The corresponding probability for Bob and Ep%’j , has a similar expression.

I|basism

2.2.4 Security Criterion

Let us now derive the conditions for which our protocol is secure under an incoherent eaves-

dropping attack.

Intuitively, Alice and Bob are able to obtain a secure key if the information that they share
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in terms of their bit correlation is greater than the information that Eve can obtain from
them via her ancillas. A quantitative measure of the information shared between two par-
ties is given by the so-callesiutual informationCover and Thomas, 1991]. The mutual

information between two parties, say Alice and Bob, is given by

(AB)

Tap Zp‘“" log (A)pgm, (2.41)
Wherep‘AB) is the joint probability of Alice and Bob having outcomesind! respectively

while p¥ =Y, p(AB) andp® = >", p(AB) are the respective marginals. The mutual informa-
tion is non-negative. Itis 0 when Alice and Bob’s outcomes are indeperyﬁjﬁhté ppl®

and has a maximum value when Alice and Bob’s outcomes are perfectly correlated. In the
case of binary outcomeg (I = 0, 1), 7, has a maximum value of 1 for perfect correla-
tion. Appendix D gives an intuitive argument as to why the mutual information can be used

to quantify the amount of correlation between two ensembles.

Using the expression for Alice and Bob’s joint probability in Eq. (2.39), we can compute
the mutual information between Alice and Bob’s data established imthebasis. Doing

so, we obtain the following:

70 = 1+ py" logy pi™ + pi™ log, pi™
= 1—HE™). (2.42)

We have expressed the final expression more conveniently in terms bintdoy entropy
defined adi(p) = —plogyp — (1 — p)logy (1 — p). The entropy gives an indication of
how random the events are in a probability distribution [Cover and Thomas, 1991]. In the
case of binary probability distributions, the binary entréfp) has a maximum of 1 when

p= % (all events are equiprobable), and a minimum of 0 when0 or 1 (one of the events

always occurs).

Likewise, the mutual information between Alice and Eve inthih basis computed using

the expression for their joint probability in Eq. (2.40) is given by

0 = 13 pmHmm). (2.43)
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Due to the symmetric nature of the quantum channel, the mutual information between Bob

and Eve,I](B”]?, is the same as that between Alice and Eve.

Csiszar-K orner Theorem

The condition for the tomographic protocol to be secure is given by the &di&xner

(CK) theorem [Csisar and Korner, 1978] which says that Alice and Bob can generate a
secure key from their raw key sequence by means of a suitably chosen error-correcting code
and classical two-way communication if the mutual information between them exceeds that
between Eve and either one of them, i.e. security is assured as long as we are in the following

CK regime

Iap > {Zap,Ipp} (2.44)

Note that due to the symmetric nature of the protocol, we Haye = 7. Furthermore,

the CK yieldis given by
v = max{Zyp —Typ,0} (2.45)

and it defines the rate at which a secure key can be generated in the CK theorem: a secure
key of lengthv L can be obtained from a raw key sequence of ledghly applying the CK

theorem.

Now for each basisn = x,y or z, we can define a corresponding CK yield for the rate at

which a secure key can be generated using the data measured in that basis alone:
U = maX{I(m) —zm 0} (2.46)
m = AB AE VS -

The yield for different bases will in general be different. It will be assumed here that Alice
and Bob make use of data only from those bases that give them positive yield to establish

their key while rejecting the data obtained from the remaining bases that give them zero
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yieldY. Theaverage yieldor Alice and Bob’s key in this case is then given by

1 1 1
| —— g v —+ g]/y + gl/z. (247)

2.2.5 Discussion

A Bell diagonal density matrix is characterized by four probabilii@so, po1, pio, p11}
together with the normalization conditigigy + po1 + p1o + p11 = 1, so that only three of
the probabilities are independent. Let us thus parameterize the probabilitiepusitize

proportion of|z11) in the Bell mixture) and two anglées ¢ in the following way:

poo = (1—pi11)cos®fcos? p
po1 = (1—pi1)sin®fcos® ¢
pio = (1—pi1)sin?¢. (2.48)

By considering the average yietdover different values of1, # and¢, we can determine
those states for which the protocol is secure (the CK regime): these states hadeso
that a secure key can be extracted from them using the CK theorem. In Fig. 2.5, the CK

regime for fixedp,1 is shown over all possible values ®finde.

First, we note that as long ag; = 0.765, all Bell diagonal states will be secure. When

p11 drops below this threshold, insecure states will start to appear. In fact, the first insecure
state that appears is the Werner stél?egdml)(zm + 1‘%1 ® 1. The Werner state

was considered in the protocol of [Liang et al., 2003] and the same threshold of 0.765 was
obtained. A4, decreases further, fewer and fewer states remain secure until finally when
we reachp;; = % the Bell diagonal mixture becomes separable (see Chapter 3) and no

secret bits can be obtained.

YFrom their state tomography, Alice and Bob can determine the parameteasd can thus agree before-
hand on those bases which will give them positive yield.
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Resistant States

From the figures, we can also identify certain states that remain secure against incoherent

attacks as long gs; > % These resistant states are thek 2states, given by

‘00’ resistant state: (1 — p11)|200) (z00| + p11|211)(z11| (for whiché = 0, ¢ = 0);
‘01’ resistant state: (1 — p11)|zo1)(z01| + p11]z11)(z11| (0 = 5,9 = 0);

‘10’ resistant state: (1 — p11)|210><2’10| +p11‘211><211‘ (gf) = g) (249)

For these rank 2 states, it can be shown that there are certain bases for which Eve is not able
to extract any useful information from her ancilla. For example, consider the ‘00’ resistant

state. The ancilla structure in the different bases are:

[(foolfo =1 [{fiolfinl=1
(ool finl =1 [(flolfi)] = 2p1 — 1

[{(foolfor)l =1 [(flolfi)] = 1. (2.50)

Hence for ther andz bases, Eve will not be able to distinguish between the ancilla states
with different k£ values lying in the same subspace. It follows that for the ‘00’ resistant
state, if Alice and Bob only use data from thendz bases to generate the key, Eve cannot
extract any useful information about their key from her antillén this sense, the ‘00’

state provides not just security against incoherent attackgyrtmainditional securityas it
remains secure against any attack that Eve performs. Similarly for the ‘01’ resistant state,
we have unconditional security in theand z bases, while for the ‘10’ resistant state, we

have unconditional security in theandy bases.

IThis is because Eve knows only the parity indegharacterizing Alice and Bob's measurement but she
is not able to determine the indéxcorresponding to Alice’s result — both indices are needed to deduce both
Alice and Bob’s results
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2.2.6 Distillation

Based on the CK theorem, we can determine those Bell diagonal states which would give
Alice and Bob a secure set of key. If there is too much noise in the channel however,
it is possible for Eve to extract enough information from her ancilla so that her mutual
information is higher than that between Alice and Bob. In this case, the CK theorem is not
immediately applicable in obtaining a secure key. However, Alice and Bob may perform
auxiliary steps so as to strengthen the correlation between their keys in order for the CK
theorem to be applicable again. This procedure is knowdistlation and will be the
subject of the next two chapters. In general, Alice and Bob can opt to pediassical
distillation whereby they select a subsequence of their established bit values in a systematic
way, or carry oujuantum distillatiorin which they pre-process their two-qubit state before
measuring. We will apply both methods of distillation to the tomographic protocol and

investigate the conditions for the methods to be successful.
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Chapter 3

Entanglement Distillation

In the quantum method of distillation known as Entanglement Distillation (ED), Alice and
Bob produce a smaller number of more strongly entangled qubit pairs from weakly en-
tangled ones by means of local operations and classical communication [Deutsch et al.,
1996; Alber et al., 2001]. In this chapter, the ED protocol will be described and the condi-
tion for the procedure to be successful in generating a secure key for Alice and Bob will be

obtained.

3.1 ED Protocol

Suppose Alice and Bob initially share a large numbef qubit pairs sent from the source,
each pair being in the same Bell diagonal statso that the total state . The pro-
portion of the singlet state;;) present in each state(ie. thesinglet fractior) is given by
(z11]0|711) = p11. Their aim is to obtain a smaller number of paif§™ (m < n) with a
higher proportion of singlet fractiorz11|0|z11) > p11. To achieve this, Alice and Bob can

carry out the following sequence of steps iteratively on their qubit pairs:

1. They pick two pairs, apply to each of thebh ® U* twirling, ie. random unitary
transformation of the fornt/ @ U*: Alice picks at random a unitary transformation
U, applies it, and communicates to Bob which transformation she chooses; Bob will

then follow up withU* to his qubit. The net effect is transformation freno another
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source pair
@'V \ N\ MA@
Alice XOR XOR Bob
OVN\AINANINNNO
target pair

Figure 3.1: Bilateral quantum XOR operation.

statep’ whose singlet fraction remains unchanged:

o®0— 0 ®(.

. Each party performs unitary XOR on their respective qubits (see Fig. 3.1). The trans-

formation is given by

control target control target
9 XOR 9

26) |2w) = |2k) |zkew) -
The first qubit is called the source qubit and the second one is the target qubit. They

will obtain some complicated stageafter the operation.

. Alice and Bob then perform a local measurement on their respective target qubits in
the{|zo0), |z1)} basis. They communicate the results of their measurement and if they
obtain the same outcome, they will keep the source pair. The final state of the kept
source pair is given by

1

0o = NTTHt [P ®150P @ 14], (3.1)

where the partial trace is perform over the Hilbert spageof the target pair]; is
the identity on the space of the source pair (since it is not measured), ®hie
|20, 20) (20, 20| + |21, 21) (21, 21| acts on the target pair space and corresponds to the
case where Alice and Bob’s results agree. The normalization congtigiven by
Tr [P, ® 1,0P; ® 1,]. On the other hand, if the results of Alice and Bob’s measure-

ment disagree, the source pair is discarded.
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It can be shown [Alber et al., 2001] that as long as the initial two-qubit gtetentangled,

Alice and Bob's distilled stat@ will have a higher singlet fraction than before. They may
then apply the distillation procedure to the surviving distilled states again to obtain states
with higher singlet fraction, and so on. Hence, by applying the protocol repeatedly to every
surviving qubit pair, Alice and Bob can eventually drive the singlet fraction to 1 so that each

of the surviving two-qubit states must individually approach the pure statg 211 .

3.1.1 Peres-Horodecki Criterion

As pointed out earlier, the ED protocol will be successful as long as the initial pair of qubits
are entangled. In the case of qubits, such a condition can also be expressed by the Peres-
Horodecki Partial Transposition criterion [Peres, 1996]: A two-qubit stégeuantum dis-

tillable if and only if it is anon-positive partial transposg@NPPT) state. A stateis NPPT

if oT2 % 0so that it has at least one negative eigenvalue. Héredenotes partial transpo-

sition of p with respect to Bob’s basis only, ig.= Zi,z,m,n:o Pklmn| 2k 21) (Zm, 2Zn] @

Tp _

e zllc,l,m,n:(] Prlmn |2k Zn) (Zm; 21

Taking the partial transpose of each of the Bell states, we have

s 1
|zab) (zan| — §—|Za+1b+1><za+1b+1|- (3.2)

so that partial transposition of Eq. (2.10) gives

1
1
QTB = Z <2 — Pa+1 b+1) ‘Zab> <Zab‘- (33)

a,b=0

The eigenvalues of’® are thus{1 — pab}i »—o- Applying the Peres-Horodecki criterion,

we find that the state Eq. (2.10) is quantum distillable provided that
m > 1 (3.4)
a%xpab 9 . .

As is evident from the nature of the ED protocol, this threshold is independent of the kind

of eavesdropping attack Eve performs on the quantum channel.

The Peres-Horodecki criterion also gives the condition for a quantum state to be separable:
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a state which is non-NPPT is separable. In our caseait,;, p., # % Alice and Bob's

two-qubit statep becomes separable and can be written as a convex sum of product states:
A B
o = > pioM@ol”. (3.5)

Eve can then blend the staiérom product states by sending each product @ﬁﬂé@ QEB)

to Alice and Bob respectively with probabiliy;, and by doing so, ensure that no useful
mutual information between Alice and Bob can be established for them to generate a secure
key. This observation motivates us to require at least one g ftie in Eq. (2.10) to be

more thar% in the protocol.

The ED procedure presented here is rather wasteful in terms of discarded particles — at least
half of the particles (those used as targets) are lost at every iteration. In the next chapter, we
shall look at another distillation method available for Alice and Bob — a classical method
of post-selecting their measured bit values and processing them via two-way communica-
tion to obtain a distilled key sequence with stronger correlations. The classical method of
distillation can be more attractive than ED by nature of its simplicity. There are quite a
number of classical distillation methods, such as the parity-check procedure discussed in
[Kaszlikowski et al., 2004]. We will be considering a protocol knownAalvantage Dis-
tillation in the next chapter. The argument employed there can also be adopted for other

classical distillation protocols.
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Chapter 4

Classical Advantage Distillation

In Classical Advantage Distillation (AD) Alice and Bob process their bit values by means
of classical two-way communication to obtain a distilled key sequence possessing stronger
correlations. In this chapter, the AD protocol will be described, after which the condition

for the protocol to be successful will be derived.

Earlier, we have applied Quantum Entanglement Distillation to the tomographic protocol
and derived conditions for distillation to be successful. An important question that naturally
arises is whether quantum methods of distillation are equivalent to classical ones in the sense
that both offer the same amount of security. It will be shown at the end of this chapter that if

an eavesdropper performs a coherent measurement on many quantum states simultaneously,
classical methods of distillation are less effective than quantum ones. The same conclusion

was obtained in [Kaszlikowski et al., 2003].

4.1 Protocol

We noted in Chapter 2 that in the prefect situatiorpgf = 1, the tomographic protocol
will always give Alice and Bob perfectly anticorrelated sets of keys. In non-ideal situations

however, errors will arise so that their keys will no longer be perfectly anticorrelated.

To strengthen the correlation between their keys, Alice and Bob can perform AD by follow-
ing the series of steps: They first divide their respective keys into blocks of ldngtor

eachL-block, Alice rolls a 2-sided die. She adds (mod2)dhe value obtained to each bit
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entry in her block. After that, she sends the processed block to Bob via a classical channel.
Bob then subtracts (moduf) his correspondingd.-block from Alice’s processed block and

examine the resulting string of bits.

If Bob ends up with a string of identical bits, he will accept that bit value into his distilled
key sequence. He then communicates his decision to Alice so that she also enters the value

she has rolled into her own set of distilled bits. This situation occurs when Alice and Bob

o start off with raw blocks that are perfectly anticorrelated, ie. blocks that differ by a

constant shift, or

e start with identical raw blocks.

However, if any of the bits in Bob’s subtracted sequence is different from the rest, he will
reject that particular block and communicate his decision to Alice; she will likewise reject

the bit value she had rolled for that block.

The protocol is summarized in Fig. 4.1

4.1.1 Probabilities

For those accepted blocks, we can identify two cases:

(I) Alice and Bob end up with different distilled bits. In this case, the raw blocks that they

start out with must have been the perfectly anticorrelated,;

(I Alice and Bob end up with the same distilled bit. In this case, they start out with

identical raw blocks.

Since Alice and Bob aim to establish anticorrelated sets of keys, Case (Il) would give rise

to errors in the distilled key sequence. Let us consider the rate at which the cases occur.

For largeL, the Law of Large Numbers tells us that there will be approxima%db}ts in the
good block that result from Alice and Bobésbasis measurement. For themeasurement,
p§Z> is the probability that Alice and Bob obtain anti-correlated results \AMﬂé is the

probability that they obtain correlated results. Similaé‘yoits will result fromy (z) basis
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Alice 0110 0011 1010 |....
rolls rolls rolls
) 0 | D
1001 0011 0101 ...
Sent to Bob
10010011 [0101]|... ‘REJECTY"
@ 00O0O 00O00O 00O0T1]...
Bob 1001 0011 0100 ...
Bob’s distilled bit: 0 0 | N e
Alice’s distilled bit: 1 0

Figure 4.1: AD protocol fol. = 4. Suppose Alice and Bob start out with the anticorrelated
raw key sequences “0110” and “1001” respectively. Alice rolls the valyeadds it to each

entry in her block and obtains the processed sequence “1001”. She sends this block over
a classical channel to Bob who, after subtracting his block, obtains the distilled sequence
“0000". Since all bits are the same, he will accept ‘0’ into his distilled key sequence and
communicate his decision to accept the nit to Alice. Alice will then keep her rolled value
‘1’. Alice and Bob thus end up with the anticorrelated distilled bits. Similarly if Alice and
Bob start out with the same raw key sequence, they will end up with the same distilled bit.
On the other hand, if any bit in Bob’s subtracted sequence is different from all others, he
will reject that particular block and communicate his decision to Alice; she will likewise
reject that particular block.

measurement, ar‘;aﬁy) (pgw)) is the probability that Alice and Bob obtain anti-correlated

results whilep(()y) (p((f)) is the probability that they obtain correlated results. Thus for an

(pi‘”)p(f’)pﬁz))”?’

accepted block, Case (1) occurs with probability while Case
P M P PS5 L3 (p Y p{) L3
. . (p(z>p(y)p(2))L/3 .
(I1) occurs with probability——-3— "= 1w =5 1heerror rate for Alice and
(po" Py Py )3+ (01" Py py ) /B

Bob refers to the proportion of Case (Il) blocks and is thus given by

B, (" Py o) H? 4.1)
B @ W), (N\L/3 4 (@), ) (2)\L/3’ '
(po Py po )M+ (py Py 1)
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which, forL > 1 andpgm) > p((]m) form = x,y or z (sincepy; > %), can be approximated
by
z P L/3
(e Py
Bap ~ ("G - (4.2)
b1 'P1P1
For largeL we haveE 45 — 0 so that the error rate in Alice’s and Bob’s distilled key de-

creases and their distilled key becomes perfectly anticorrelated as the block length becomes

large.

In the case of Eve, it is possible for her to intercept the processed blocks that Alice sends
to Bob via the classical channel. She can also eavesdrop on their communication to find
out which of the blocks are accepted or rejected. For those accepted blocks, her goal is
to deduce the distilled bit for each block. We shall consider two strategies at her disposal:

incoherent and coherent attacks.

4.2 Incoherent Attack on AD

For each raw block of length, Eve has in her possession ancillas corresponding to each
of Alice and Bob’s measurements that give rise to the block. In an incoherent attack, she
distinguishes those ancillas one by one to deduce Alice and Bob’s bit values for each entry
in the raw block. Like Bob, she will then subtract Alice’s processed block from her own
to obtain the distilled bit Typically, Eve’s block will be inhomogeneous after subtraction

so she decides by majority voting which bit value to assign to a particular block, i.e. she
chooses the value which occurs most frequently in her subtracted block, and if there are
the same number @k asls, she picks one of them at random. To obtain the condition for
AD to be successful under an incoherent attack by Eve, we will compare Eve’s error rate to

Alice and Bob's error raté 4 5 derived earlier.

Consider first the Case (I) blocks. For this case, Alice and Bob start out with anticorre-
lated raw blocks. Eve’s corresponding ancillas will then reside iruthe 1 subspace. To
distinguish the individual ancillas, we assume that Eve performs a square-root measure-

ment on each of them as such a measurement gives her the least probability of error in her

“Eve is able to intercept Alice’s block as it is transmitted over a classical channel.
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state discrimination. Eve thus guesses each entry in a block correctly with the following

probabilities:

o nfﬂ) if Alice and Bob measure in the basis;

o n§y> if they measure in thg basis;

o n§2> if they measure in the-basis,

while she guesses an entry incorrectly with the probabilities

o 1— 77@ if Alice and Bob measure in the basis;

o 1— ng’) if they measure in theg basis;

o 1—7{? if they measure in the-basis.

Since Eve applies majority voting, she will assign the wrong distilled bit whenever she
guesses more than half of the entries in the block wrongly. If the same numbgeantlls
appear in her guesses, she picks one of them at random and makes errors half of the time.

Eve’s error rate is thus given by:

L L
3 T)\ex T)\L_e, 3 ey L_,
By = > (3 )(MM () (3 )(177%”)-(175”)3 v
L

L L
1 3 T)\e )\ L_¢ 3 . L,
T3 2. (3 )<1n§)>z<n§ Ok ( 3 )<1n§y)>y<n§y)>s y

Z'ei:é €x €y
L L
< | * | @—n)Emi)s e, (4.3)
€z

wheree; is the number of errors made in tifé basis. The second summation arises from
the situation when Eve has to assign 0 or 1 at random to the block in the event that the

number of Os and 1s in the block are equal.

For large L, we can approximate the summations in Eq. (4.3) by the main contributing
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terms, so that

I
E;,z;~(

ol ol
ot~ colt~

) (1— ) )5, (4.4)

) ~ 2§, so that we can approximate

ot~y ol

By applying Stirling’s approximation we havé

Eq. (4.4) by

c:\h

EQ) ~ 28 [P 1 — )y — iy - ) (4.5)

Similarly for Case (II) where Alice and Bob start out with correlated raw blocks, the error

rate for Eve is given by:

L
B4 ~ 25 a7 ni? (1= )1 = @ - nf)] " (4.6)
Thetotal error rate for Eve is thus given by
Esp = p(Case)-Egg+p(Caselb-Egé)
(" p pi) 113 0
T z T BE
(o5 pe" P58 + (py7p i) 13
(x), (), (:)\L/3
HPRCON0) §p> o <)z) ORENe (4.7)
(P 'po po )E2 + (01" 0y Py )3

Sincep(Case ) goes to 1 whilep(Case I) goes to O for largel, we can approximate
Eq. (4.7) by the first term only:

L
6

Bpp =~ 2" [ (0 =)@ =)@ = i) (4.8)

By comparing error rates [Maurer, 1993], we can obtain the condition for AD to be success-
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ful under an incoherent attack. This condition is given by

E
lim =28 < 1, (4.9)

L—oo EAE

which reduces to

p( z) p(y) p(Z)

p(ﬂ:) p(y) p(Z)

< PP - - @)1 —n?).  (@10)

For the special case of Werner states, we haye= po1 = pio = - —1, so thatp(’”)

P = pl) pl®) = p = D andn!® = ¥ = 5{?). Eq. (4.10) then reduces to

(2)

o« oy /mPa—ni). (4.11)
(2)
Dy

A similar result was obtained in [Bruf3et al., 2003].

4.3 Coherent Attack on AD

As pointed out before in Chapter 2, the tomography requirement of Alice and Bob ensures
that Eve cannot prepare a state that would give her some additional correlations across
different qubit pairs as such correlations would appear in Alice and Bob’s data and can
be picked up by them. This considerably reduces the number of coherent eavesdropping
strategies Eve can use. In fact, the only possibility of a coherent attack for Eve is to collect
her ancillas and perform some collective measurements on them. We shall consider such
attacks in this section. To illustrate the possible advantages that such coherent attacks have
over incoherent ones, we shall make use of a particularly simple scheme of attack that was
presented in [Kaszlikowski et al., 2003]. Instead of measuring her sktasfcillas one-
by-one as in an incoherent attack, Eve will perform a collective measuremeait the

L ancillas. It will be shown that by further eavesdropping on the communication between
Alice and Bob during the distillation process, Eve will be able to learn much more about

the distilled bit than if she were to measure her ancillas one by one.

Consider first a Case (1) block. As an example, suppose that Alice and Bob start out with

the blocks ‘0110’ and ‘1001’ respectively fdr = 4, and that Alice’s random bit ig.
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After addition (modulo 2), she sends the processed block ‘1001’ to Bob via a classical
channel. Eve is able to intercept this piece of information. Furthermore, she can project
her corresponding block of ancilla states into the approptiggebspace corresponding to
Alice and Bob having a correlated or anticorrelated block. Doing this, she knows that Alice
and Bob start out with anticorrelated raw blocks (i.e. Case (I) blocks). Eve then proceeds to

deduce the following possibilities:

1. If Alice’s random bit is 0’ (and since the intercepted processed block is ‘1001),
Alice and Bob must have started out with raw blocks ‘1001’ and ‘0110’ respectively.
Furthermore, by by eavesdropping on the information exchanged during the basis
reconciliation stage, Eve knows the bases that Alice and Bob used for each entry
in the block. Suppose Alice and Bob had measured in the bhases:, = for the

respective entries in the block. The corresponding ancilla state that she holds in this

case will then befE )| fio) | i) | i)

2. If Alice’s random bit is 1’, Alice and Bob must have started out with raw blocks
‘0110’ and ‘1001’ respectively. If the measurement bases had bggn:, z respec-

tively, the ancilla state that Eve holds will then [¢,)| /i) /&) | f+o) -

The two possible Case (l) ancilla states occur with equal probability, and their mutual inner
product is
A" ) (),

wheren,, is the number of times the basiswas measured. In the above example, this gives
(/\gx))Q)\(ly))\gz). The optimal measurement to distinguish these two equiprobable states is

then given by the square root measurement and the probability of a correct inference given

5 <1 " ¢ 1- [(A&”)ﬂm(AS”)%(AP)%}2) .

In general, for each Case (I) block of lengthEve needs to distinguish just two equiprob-

by

able L-ancilla states with mutual inner prodyct™ )= (A (\{?))m= In contrast for an
incoherent strategy, Eve would ha& possible states to distinguish, which scales expo-

nentially with block length.

Now, for largeL, we haven,, n,,n. = % Eve’s probability of correctly inferring a partic-
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ular Case (I)L-ancilla state is then given by

1 x z E22 1 X z ==
s (11O E) & el e

Her error rate for Case (l) blocks is thus

I 1 T z
Bl ~ L)

2L
3.

(4.13)

For largeL, this error rate goes to 0 because Evie‘ancilla states approach orthogonality
with increasingL. Contrast this with the incoherent case where Eve’s ancillas does not

become easier to distinguish with increasing

For Case (ll) blocks, we can invoke a similar argument and arrive at the corresponding

expression for Eve’s error rate:

2L

1 x 4 =
Byr = {00 S (4.1)

As before, Eve’sotal error rate is given by

Esg = p(Case}~Egé+p(Case Ip-Egé)
I
~ o)
1, (z )\ 2L
~ Z(Ag IAWAP) (4.15)

Finally, we can obtain the condition for AD to be possible by comparing error rates:

. Eap
s <
() (y) (2) 2
= BSRB - (AP (4.16)
p(:z:) (), (2)
1 P17 D

4.4 Discussion

To determine those Bell diagonal sates for which AD can be successfully carried out to give

Alice and Bob a secure set of key, we cangix as before and parameterize the remaining
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probabilities as follows

Poo = (1 — p11) COS2 0 COS2 qb
po1 = (1—pi1)sin®6cos® ¢
Pio = (1 — pll) sin2 ¢ (417)

4.4.1 Coherentvs Incoherent Attack

For an incoherent attack on AD, we can use Eg. (4.10) to verify numerically that AD is

successful as long ag; > % This result was in fact proven in [At et al., 2003].

On the other hand, if Eve carries out a coherent attack, we can see from Fig. 4.2 that certain
states which are secure under an incoherent attack will no longer be so when Eve carries out
coherent eavesdropping. This is because coherent attacks can provide Eve with a lot more
information than an incoherent one, thereby causing certain states which are secure under
incoherent eavesdropping to become insecure under the coherent attack. Coherent attacks

are thus more powerful than incoherent ones.

In addition, we can notice certain states that remain secure under both coherent and inco-
herent attacks (as long as; > %). These are the rank 2 resistant states that were seen
in Chapter 2 to be unconditionally secure (in certain bases) regardless of the kind of attack

carried out by Eve.
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4.4.2 Quantum and Classical Distillation Are Not Equivalent

The criteria for AD and ED to be successful are summarized below

1
ED : p;1 > 5
. 1
AD (incoherent attack) : p1; > 5
@), (¥, (2) 5
AD (coherent attack) : p?x)%p?z) < (A?)A%gz)) (see Fig. 4.2).
pP1 P17 D

(4.18)

If Eve is restricted only to incoherent attacks, we see that ED is equivalent to AD. As long
aspir > % Alice and Bob do not need ED because AD works equally well and does not
require the collective operations on qubits that ED requires and which are difficult to realize

experimentally.

However, if Eve is capable of carrying out a coherent attack, ED will be more powerful than
AD because ED is effective over a larger set of Bell diagonal states than AD. This can be
seen from Fig. 4.2 where more and more states fall into the black regions where AD fails

and only ED is possible, as; approache%.

Although we have considered only two specific protocols to illustrate the inequivalence of
the classical and quantum methods of key distillation, argument along a similar line can be
applied to other distillation protocols (see for example the parity check protocol presented
in [Kaszlikowski et al., 2004]). We thus conclude that classical methods of secure key
distillation are less effective than quantum entanglement distillation protocols if an eaves-
dropper performs a coherent measurement on many quantum ancilla states simultaneously.

The same conclusion was arrived at in [Aet al., 2003].
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Chapter 5
Tomographic Quantum
Cryptography with a Quantum Dot

Single Photon Source

In the final part of this thesis, the practical aspect of QKD will be considered. Experimental
guantum cryptography is a sufficiently advanced field so that there is already the possibility
for commercialization of some of the QKD devices. However, security analysis of such

generic devices is not always straightforward.

Recently, there was a scheme proposed by Fattal. [Fattal et al., 2004] to generate
polarization entangled photons by pulsed laser excitation of a single quantum dot. Such a
method has the advantage of producing entangled photons that are triggered on demand and
is particularly suitable as a source of photons in quantum cryptography schemes based on
shared entanglement such as the Ekert91 and BBM92. In this chapter, we apply this scheme

as a source of photons for our tomographic protocol and analyze its security.

5.1 Setup

The whole idea behind Fattal's scheme lies in generating triggered single photons from
a quantum dot, using a method proposed by Samtoal. [Santori et al., 2001]. Such

a method involves pulsed optical excitation of a single quantum dot followed by spectral
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Figure 5.1: Experimental setup: Single photons produced in pairs separated by 2ns from
a quantum dot microcavity device are sent through a single mode fiber and have their po-
larization rotated taH. They are split by a nonpolarizing beamsplitter (NPBS 1). The
polarization is changed 3 in the longer arm of the Mach-Zehnder configuration. The two
paths of the interferometer merge at a second nonpolarizing beamsplitter (NPBS 2). One
time out of four, the first emitted photon takes the long path while the second photon takes
the short path, in which case their wave functions overlap at NPBS2. The output modes of
NPBS 2 are matched to single mode (SM) fibers for subsequent detection. The detectors
are linked to a time-to-amplitude converter for a record of coincidence counts, effectively
implementing the post-selection.

filtering to remove all but the last emitted photons. The main advantages of this method are
that multiphoton pulses can be suppressed and it allows one to generate consecutively two

photons that are quantum mechanically indistinguishable.

This idea of obtaining triggered single photons can be extended to a scheme for producing
polarization-entangled photons by incorporating it into the setup shown in Fig. 5.1. Suppose

we wish to produce polarization-entangled photons in the singlet state:
|z11) = |20,21) — |21, 20), (5.1)
where the ‘0’ and ‘1’ stand for horizontal and vertical polarization respectively. In the setup,
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triggered photons are generated in pairs from the single-photon source using laser pulses.
The photon pairs are then sent through a Mach-Zehnder type interferometer setup. The idea
is to “collide” these photons with orthogonal polarizations at two conjugated input ports
of a nonpolarizing beam splitter (NPBS). Quantum interference effect ensures that photons
simultaneously detected at different output ports of the NPBS will ideally be entangled in

the form Eq. (5.1).

This method of generating entangled photons has the particular advantage of allowing the
users to generate entangled photons on demand and is particularly suitable as a source of
photons in quantum cryptography schemes based on shared entanglement. Let us apply
this scheme as a source of entangled qubits for our Tomographic QKD protocol. The aim
here is to analyze the security of the protocol based on this scheme of generating entangled
photons, thereby obtaining some useful results that could also be applied to other QKD

schemes based on such a photon source.

Due to imperfections in the experimental setup, the two-photon state produced from the
source is not a pure singlet state in general, but will instead be of the following form in the

say,z basis [Fattal et al., 2004]:

2c
B 1 Pr+P2+2y - P
B — B2 B+ B2 — 2y
2c
where
« 72'9
- R_T
T + B + 4g
R, T
b o= Ltm—2V
2(7 + x) +8¢g
R, T
2(7 + 1) +8y
B-%
T
v o= (5.3)
2(£ + %) +8g

The significance of the experimentally accessible paramé&geis V' andg is as follows:

R (T) denotes the reflectivity (transmittivity) of the beamsplitters in the Mach-Zehnder
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interferometer used in the experiment. The param&telenotes the overlap of the wave
packets of two consecutive photons that give rise to coincidence events in the experiment,
andg is the equal time second-order correlation function, and is related to the probability of
obtaining unwanted coincidence counts due to residual two-photon pulses from the quantum
dot. In the ideal situation, we have = T (perfect beamsplitters)y = 1 andg = 0.
Furthermore, in order for entanglement to exist in the two photon state, we réquirg

from the Peres-Horodecki Partial Transposition criterion (see Chapter 3).

We can also express the density matrix Eq. (5.2) in the Bell Basis,) } 4 5—0,1. As before,
Imap) = o %wkﬂmk mp+q) (Wherew = —1) denotes the Bell state in theth basis

(m = z,y, z). We then have

a
p 8]
o =
Br vy
v P
8]
, . B -y
Ql(Bgl? = Qéeu) = (5-4)
a
- B2

for the z, y andx Bell state representation respectively.

From their state tomography, Alice and Bob can make sure that their two-photon state is
always in the form Eqg. (5.4). Furthermore, they can determine the paran%t@rand

V' that affect the security of their key. From these parameters, they can compute, for each
basis, the maximal strength of correlations between Eve and any one of them. Tte-Csisz
Korner theorem then guarantees that if the correlations between Alice and Bob are stronger
than those between Eve and either of them, a secure key can be established through one-
way error correcting codes, with efficiency given by the CK yield. For each basis, there is

a CK yield for Alice and Bob’s bit data, and they can find out which basis will give them

a positive CK yield. They will then make use of data only from those bases with positive

yield to establish their key, rejecting the bits obtained from the remaining measurements.
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5.2 Eavesdropping

We now consider Eve’s attack on the protocol. As before, we assume the worst-case sce-
nario in which she is in full control of the photon-distributing source, and that all the factors
that contribute to experimental imperfections (paramefer®, g and V') are due to her

eavesdropping activities.

In order to obtain as much information as possible about the key generated by Alice and
Bob, Eve entangles their photons with ancilla sta¢gs) in her possession. She prepares

the following state:

lYape) = Valzoo)leon) + vealzo)leor) + v/Bilzio)leo) + v/B2lz11)lerr),
(5.5)

where

5a,a’5b,b’> if a =0;
<ea/b/|eab> = .
O, (1 — 5b,b’)\/ﬁ +0q,a 0, Ifa=1.

(5.6)

Tracing out Eve’s degree of freedom|inapr) (¥ apE| gives the mixed state Eq. (5.4) that

Alice and Bob expect, and this purification is the most general one as far as eavesdropping
is concerned. As before, we note that because of the tomography requirement of Alice and
Bob, Eve cannot prepare a state that would give her some additional correlations across
different photon pairs emitted by the source as such correlations would appear in Alice and
Bob’s data and can be picked up by them (we assume that they look out for such correlations
in their state tomography). This considerably reduces the number of coherent eavesdropping
strategies Eve can use. The only possibility of a coherent attack for Eve is to collect her
ancillas and perform some collective measurements on them. We shall only consider here
the case where Eve measures her ancillas one by one, although the treatment of a strategy

based on collective measurements can be done using the approach presented in Chapter 4.
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Eve’s purification Eq. (5.5), when expressed in thg andz bases, reads

1
Yage) = Y. \/AE’%, Zkta) | far)

k,a=0
1
= Z /J’S]/g)‘yk7 yk+a>|f3k>
k,a=0
1
= > Ve w735, (5.7)
k,a=0

where the normalization constamg) are given by

z +
“z(zk) = 0a,00 + g1 {(5&0 —01)Y + b 5 B2
T o+ o+
i = n = dao Qﬁl + a1 2@. (5.8)
The ancilla states have the following inner product
Opr, fa=d =0,
Sppr + (1 — ) 2P
(fowfor) = V(Bitfa)2—472
|f a = a/ = 1,
0, ifa#d.
(fon\fa) = (Folfh)
O + (1 — 51{,1@/)37%, ifa=a =0
= 51‘371‘3' + (1 - 51@,]4)31?2, if a =a' = 1;
_%wk-‘rk/ if a 7§ a/.
(0+61)(a+B2) ’
(5.9)

Eve’'s strategy is then as follows. After the basis reconciliation stage, Eve knows which
pairs of photons contribute to the key and the basis that each pair was measured in. Her
ancilla for each of those pairs (measured in thi basis) will then be a mixture of four

possible states:

1
g = > s, (5.10)
a,k=0

As pointed out in Chapter 2, this can be viewed as a transmission of information from Alice
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and Bob to Eve encoded in the quantum state of Eve’s ancilla and the optimal eavesdrop-
ping strategy is one which maximizes this information transfer through a suitable Positive
Operator Valued Measure (POVM) [Davies, 1976]. This maximum information that can be

extracted by Eve is known as the accessible information.

5.3 Optimal POVM

In this section, the optimal POVM that achieves the accessible information will be pre-
sented. Due to the asymmetric nature of the bases, the optimal POVM is different for the
andz/y bases. The optimality of these POVMs was deduced, and confirmed numerically,

using the algorithms presented in [Willeboordse, 2005] and {Rek et al., 2004].

5.3.1 2z Basis

Suppose Eve receives a state in tHeasis:

1
b = > Gl fal, (5.11)
k,a=0
where the kets have the structure given in Eq. (5.9). Ancillas from the correlation subspace
(a = 0) are orthogonal to all other states; those from the anticorrelation subspacé)

are in general non-orthogonal among themselves.

In the first step, Eve sorts the mixture of the ancillas into two sub-ensembles according to
the parity indexa. This is done using a projective measurement. After that, depending on
the outcome of the projectiom (= 0 or a = 1), Eve will have a mixture of two ancilla

states

2 Zl%;:o Mz(;)| 5k> <f§k|

Pa = leg_o M(? (5'12)

If she projects into the = 0 subspace, Eve will possess a mixture of equiprobable orthog-

onal ancilla states

1 1
Pa=0 = §’fozo><fozo| + §’f51><f51|a (5.13)
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which she can distinguish perfectly.

On the other hand, if she projects into thhe= 1 subspace, she will obtain a mixture of

non-orthogonal ancilla states:

o _ (1 Y 2\ / £z 1 Y 2 \/ g2
Pa=1 = <2+2a+ﬁ1+52> f10><f10|+<2 20&+ﬁ1+52> | fr(fial
(5.14)

. .. H z — ﬁl*,@Q
For simplicity, we shall denote the inner prodd¢f,| /) by A = CETE~

Now, if the statesf7,), |ff;) in EQ. (5.14) are equiprobable (which happens i 0, or
R = T), the optimal measurement for Eve would be the square-root measurement (see

Chapter 2). Its POVM is given bfjwio){(wio|, |wi1){wi1|}, where

o) = =g (—valfi) + VI alf)
o) = o (VI alfio) — valfin)

2n

(5.15)

with n = %(1 + v/1 — A\2) being the probability of determining a given state correctly.

In general, the ancilla states will not occur with the same probability, and the optimal mea-
surement for Eve will then not be the square-root measurement. Consider the following

POVM {|(IJ10><(I}10|, |(:}11><L:)11|}, where the states

|010) = cosB|lwig) — sinblwir)

|©11) = sinflwig) + cosblwir) (5.16)

are rotated from the square-root measurement stafeso), |wi1)} by an angled (see

Fig. 5.2). We then have the following conditional probabilities

2
p(@iolffy) = (\/ﬁcosﬁ— 1—nsinf

p(@ilffo) = ( n51n9+\/1—770059)
p(@iolff]) = (\/1 —ncosf — \/7781119)
p(oiilff) = (\/1—7751n9+\/770089)

[

[\

2
(5.17)
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Figure 5.2: Rotated square-root measurement.

where, for instancen(@10| f1;) denotes the probability of getting the result of measurement

|010) (@10] provided the statéefy, ) was sent.

Using the probabilities in Eq. (5.17), we can compute the mutual information between Alice
and Eve as a function ¢f The optimal measurement for Eve then corresponds t6 that
maximizes the mutual information between her and Alice. Due to the symmetric nature of
the protocol, the mutual information between Eve and Bob is the same as that between Eve

and Alice.

5.3.2 z/y Basis

Because the ancilla structure in thendy bases are identical, we shall only consider what

happens when Eve receives ancillas from:theasis.

If Alice measured bit ‘0’ £ = 0, with probability%), Eve will obtain the mixed state

Pri=o = (a+B1)[f50)(fool + (e + B2)| fio) (fiol; (5.18)

and if Alice measured ‘1’ = 1, with probability%), Eve will obtain the state

Pr=1 = (a+B)fo0)(forl + (a+ B2) 1) (fal- (5.19)
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The structure of the ancillas is given by Eq. (5.9):

U = g
hify = S =x
T ey i Ktk — kR 520
{fow | fik) \/(a—i—ﬁl)(a—i—ﬁg)w Hw ( )

Consider thdotal statedescribing Eve’s ancillas:

o+ o+ B o+ (o a+ Bo

0 = T|f§o><fgo|+T‘fgl><fgﬂ‘|’T|f1xo><flzo|+T’ff1><ff1|-
(5.21)
o, has the following eigenkets
1 T €T
l90) = ﬁ(\foo>+|fo1>)
n) = \/ivl(\ffoHlfﬁ))
) = jv s (1F8) — 120 + € (175 — |72
gs) = &3 e (1f8) — 1F20) + e (175 — 1720,
(5.22)

where

ke = Bo—BiEV(B—P1)?+ 492

a+ B
274/ ot B (5.23)

The normalization constants; (k = 0, 1, 2, 3) read

(@)
Il

No = 2(1+ o)

Ny = 2(1 + )\1)

%o = i s (- V)
Moo= [ (B VB PR 62
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If we now adopt{|go), |91), |92), |g3)} as an orthonormal set of basis, the optimal measure-
ment for Eve can be expressed{#Qo)(Qo|, |21) (1], [Q22)(Qa], [23) (23]}, where

b
(1€0), [21), 1€22), [©23)) = (I90), |91), 92), |93)) :

(5.25)

with a, b, c andd being real. By requiring that the measurement operators to sum to unity

22:0 |Qk) (| = 1, we have the following relations between the four real parameters:

a’ + b?

c+d® =

NN -

(5.26)

As before, we can compute the mutual information between Alice and Eve for this basis and
maximize it over the two independent variableandc to obtain the maximum information

that Eve can obtain about Alice’s measurement.

5.4 Discussion

By determining the experimental parametésg and V' from state tomography, Alice

and Bob can determine the maximal mutual information of Eve and compute the yield in
the various bases to find out if the particular two-photon state they are receiving is secure
against incoherent attacks. Table 5.1 shows the values of mutual information for various
values ofg andV'. The ratio% was fixed at 1.1 (the value reported in [Fattal et al., 2004]).

For certain values of andV, the CK yield (denoted as,,, for the mth basis) is zero in

all measurement bases. For such states one cannot extract secure bits from the CK theorem.
More interesting are the cases where the CK yield is zero in one measurement basis and
positive in another. In such cases, Alice and Bob reject the data obtained by measurements
in the basis with zero yield and process only the data from the basis for which the CK vyield
is positive. Finally, in the case where all the CK yields are positive, Alice and Bob use the

data from all the bases. The average CK yield in every case is givenby (v, +v, +v.).
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z basis x/y basis
g |4 Iasn ’ maxZ,p ‘ v, Tupn ‘ maxZ, . ‘ Vey v
0.1 | 0.6 || 0.3478| 0.6070 0 0.1872| 0.4320 0 0
0.02| 0.4 || 0.7598| 0.7550 | 0.0048| 0.1085| 0.1088 0 0.0016
0.1 | 0.84| 0.3478| 0.3528 0 0.3869| 0.3755 | 0.0114| 0.0076
0.1 | 0.9 || 0.3478| 0.2845 | 0.0633| 0.4525| 0.3321 | 0.1204| 0.1014

Table 5.1: Table of yields in the three bases%’o& 1.1, and different values of andV'.
Due to the asymmetric nature of the state in thendz/y bases, the yield is different for
those bases. The yield is the same in:ttendy bases.

5.4.1 Perfect Beamsplitters

Of particular interest is the case when we have perfect beamspliﬁeis (). The state

produced by the source is then in a Bell diagonal form:

a|z00) (zo0| + a|z01) (z01| + B1l|210) (z10| + B2|211) (211]-

The security of such states was analyzed in Chapter 2 and the results can be applied to this

situation.

In Fig. 5.3 the average CK yield is plotted againstind V. We observe that the protocol
is always secure against incoherent attacks as long-as) andV > 0, although fewer
secure bits can be distilled for smallér In fact, the state for which = 0 corresponds to

one of the rank 2 Bell diagonal resistant states that was identified in Section 2.2.5:

B1lz10) (z10] + Be|z11)(211]-

More detailed analysis reveals that for such states, the mutual information between Alice
and Eve is always zero when Alice and Bob perform measurements in ¢ne; basis.

This is due to the fact that Eve’s ancillas corresponding to different outcomes of Alice’s
measurements in the andy bases are the same, i.e. they do not carry any information
whatsoever about Alice’s and Bob’s correlations. Therefore, if Alice and Bob agree on
using only the data from the andy measurements (thereby sacrificing the efficiency), the
protocol becomes secure agaiafit possible attacks by Eve and the protocol guarantees
unconditional security. Fay, V' = 0, the state becomes separable and no secure bits can be

extracted.
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In realistic situations however, the valuegofan be small but not exactly zero (for example,
the value ofy reported in [Santori et al., 2001] was 0.02). In this case, the protocol is secure
over a smaller range df. Even then, it is reasonable to conjecture that the information that
Eve can extract from her ancillas in theor y basis is negligible, and the protocol remains

pretty robust against all possible attacks by her in those bases.
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5.5 Noisy Channel

So far, we have excluded the effects of noise in the channel so that Alice and Bob expect to
receive the state ‘as-is’ from the source. In reality however, this is not the case: Alice and
Bob would expect their quantum channel to be affected by interactions with the environment
so that the state they receive contains some noise. Let us consider what happens when there
is symmetric white noispresent in the channel, i.e. the state that Alice and Bob expect to

receive is of the form:

1-F + B2+ 2 - F
;o= fr+02+2y  f1— P e 27)

2 B — B2 B1+ B2 — 2y 4
2cy

where the parametdr gives the amount of unbiased noise admixed to the original state
from the source. We have< F' < 1, whereF' = 0 corresponds to the absence of hoise in

the quantum channel while = 1 refers to the situation of a completely noisy channel.

Detailed analysis shows that the situation is similar to that for the noiseless case, with the

following substitutions made:
a — (1-Fa+—
b — (1-F)B+—
v — (1—=F)y. (5.28)

Thus, for example, we have the following relations for Eve’s purification of the form given

by Eq. (5.7):

M‘(‘k) = 0a0(1 = F)a+0a1(1 = F) | (0k0 — Ok,1)y + & B = T
p ot a+ F
luz(zk) = MSQ = Jq0(1—F) 251 +8a1(1 = F) 262 +7 (5.29)
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Yield
0.8

Figure 5.4: Average CK yield fo% = 1.1 andg = 0.02 and different amounts of noise

in the channelr’. For a noiseless channdf' (= 0), whenV < 0.394, one can no longer
extract secure bits by means of one-way communication because the CK yield is zero. As
the amount of noise increases, the CK yield drops untilifog, 0.277, where we will not

be able to distill any secure bits at all (because the CK yield is O for all valug$.of

6k,k’; ifa=d = 0,

6k,k’ + (1 — 5k,k’) 51—51:2 - ,
awlfz) = N
ifa=d =1,
0, ifa#d.
< g’k" cfk) = <f3lk/!f3k>
( _ _aP1 i )
6k’k/ T (1 5k’k/)a+ﬁ1+2(1iF) ’ fa=a=0;
/ — / 7Oé—ﬂ2 i = /: N
= S + (1 6k’k)°‘+ﬁ2+ﬁ’ ifa=d =1;
ks WK if a £ dl.

- \/[a—kﬁl-"—ﬁ} [a—i—ﬁg—‘rﬁ
(5.30)

The optimal POVM for Eve is thus of the same form as before, and we can obtain the
condition for security and the CK vyield for various proportions of noise. This is shown
in Fig. 5.4, for fixed values o% = 1.1 andg = 0.02 (values reported in [Fattal et al.,

2004; Santori et al., 2001]). We can distill less secure bits as the amount of noise increases.
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Chapter 6

Conclusion

In this thesis, a generalized tomographic QKD scheme applicable to Bell diagonal states
was presented and its resistance to various eavesdropping attacks was analyzed, both in the
CK regime and when Alice and Bob perform distillation. The inequivalence of advantage
distillation and entanglement distillation in the situation of a coherent attack by an eaves-
dropper was also shown. Furthermore, certain states that offer unconditional security were

identified. These are the rank 2 Bell diagonal states.

The security of the tomographic protocol using a source of entangled photons produced in
the experimental scheme proposed by Fadtadl. [Fattal et al., 2004] was also analyzed
against the most general incoherent attack. From the analysis, the number of secure bits that
can be distilled by means of one-way communication between Alice and Bob can be given
as a function of the experimentally accessible paraméitefs, g andV , and for different
degrees of unbiased noise in the chanfel A number of useful observations from the
analysis, such as the unconditional security of rank 2 Bell diagonal states and the security
of states with small values gf could also be applied to other QKD schemes based on such

a photon source.

The tomographic protocol that was considered here admits noise of a few specific form,
ie. we have considered states of the form Eqgs. (2.10) and (5.27). Experimentally, noise
may be of a more general nature, so that a more detailed analysis than the one presented is
required. Characterization of these actual states in QKD may change the noise bounds for

secure communication in many cases.
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Appendix A
State Tomography

Here, it will be shown that Alice and Bob can determine the exact state of their two-qubit
source by comparing their respective data for the tomographically complete set of measure-

ments{o,,0,,0.}.

The most general two-qubit statds completely characterized by 15 real parameters, and

can be written in the following form:

3 3 3
1 A B Ao B
0 = 3 1®1+;akak®1+l®;bk0k+kzl_:1Tklok®al . (A1)

where the parameteus, b, andT},; (k,! = 1,2, 3) are all real, and we have denoted o,
ando by 01,02 andog respectively. By noting that;o; = d;; + ie;j,0r, We have the

following expressions for the various expectation values

(oY = Tr[of®10] =a
(o) = Tr[1@ol o] =b

<a;4 ® Uf> = Tr [0;-4 ® U}B Q] =T;j. (A.2)

Alice and Bob can thus deduce all the 15 values of the parameters characterizing their state

from the average values of their basis measurements.

*Here thelevi-Cevita symbadt; ;. takes values 1 if the indicesy, k are an even permutation ©f2, 3, -1
if the indices are an odd permutation, and 0 otherwise.
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Appendix B

State Measurements

Here, a few properties about state measurements on quantum systems will be mentioned.

B.1 Generalized Measurements

Consider a quantum system initially prepared in the state whose density operatok is
measurement operation— L(p) is carried out on the system. This measurement has n
distinguishable outcomes, labeledwas k¥ = 0,1,2,...,n — 1, with corresponding final
density operatorg),. Thequantum detection operatol$; corresponding to each resulf

is such that the probability of obtaining, given the initial state is

p(wilp) = Tr [oILy]. (B.)

For a pure statey = [¢) (|, so that this probability is simply

p(wr|t) = ([Tk|i). (B.2)

We demand a few properties Of, :

1. Since the probabilities (B.1) must be non-negative for all statéss implies

(Y[Mk ) = 0, (B.3)
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for all pure state$y)). Hence, all thdI;’s must bepositive(semi-definite):
Iy > 0, (B.4)

fork=0,1,...,n— 1.

A few consequences follow from this property:

(@) Since(y|IIk|v) must be real for all stateg), i.e.

(T |0) = (|TT|h)* = ([TTE]e), (B.5)

eachlIl;, must beHermitian

(b) Since(y|II|y)) > 0 for all |¢), we can takew)) to be one of the (orthonormal)

eigenkets ofl,, so that the eigenvalues of eadh must be non-negative.

2. The probabilities (B.1) must sum tofor all statesp. It follows that thell; form a

resolution of the identity

> I =1. (B.6)

The conditions above are the necessary and sufficient conditions for the realisability of an
experiment whose outcomes have the probability distribytian |p) [Kraus, 1983]. Such

a set of detection operator is commonly known aBoaitive Operator Valued Measure
(POVM).

Construct the followingneasuring operator

My =11,/%, (B.7)

so thatll, = M,IMk. This is always possible from the positivity Of,. Then the density

operator immediately after a measurement with resgiitan be written as

MypM;| _ MypM;|
Te [Mfap|  Plkle)

Pk = (B.8)

The presence of the probability in the denominator serves to normalize the state, so that
Tr [p;,] = 1. If we do not record the result of the measurement, then the final density op-

eratorp’ is given by a distribution of the density operatpgscorresponding to the possible
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outcomes of the operation, weighted by their respective probabitiegp):

n—1 n—1
P =" plwilp)pl =D MypM. (B.9)
k=0 k=0

B.2 Non-Orthogonal States

We show that it is not possible to reliably distinguish between two non-orthogonal states.

Suppose we wish to distinguish with certainty the non-orthogonal statesnd|y.). To

do this, we make use of a set of measuring operdtbfs, }> and require that

m=1"

p(L][41)) = (1 |M] My yr) = 1 (B.10)
P(2][1h)) = (4| M Mo |tpa) = 1 (B.11)
p(1][1ha)) = (| M My p2) = 0 (B.12)
p(2|[y1)) = (w1 |MI Mo|ipr) = 0. (B.13)
(B.12) and (B.13) imply that
Malp1) =0 (B.14)
Mitpa) =0 (B.15)

Since theM,,’s form a valid set of measuring operators, they resolve the identity:
MMy + MMy =1, (B.16)
so that
(1| M M [tha) + (1| M Mo tho) = (31 [tho). (B.17)
Invoking (B.14) and (B.15), we have

(P1lyp2) =0, (B.18)

a contradiction, sincg@)) and|i,) are non-orthogonal. We have thus proven that it is not
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possible to distinguish between non-orthogonal states reliably.

On the other hand, if);) and|,) were orthogonal states, we can distinguish among them
unambiguously; the measuring operators are simply the orthogonal projée¢tors;; | and

|12) (2] Such a measurement is also known as@aNeumann measurement

Note that if we allow the possibility of inconclusive results, we can in fact have error-free

discrimination amongst non-orthogonal states [lvanovic, 1987; Helstrom, 1976].

B.3 Square-Root Measurement

Consider a set of pure stateq|1);)}j—o,1,...n—1 OCcurring with equal a priori probabili-
ties,n; = % These states are alsgmmetricin the sense that it satisfies the following

conditions:

;) = Ulj_1) = U|eo)
UlYn—1) = [¢o), (B.19)

for some unitary operatdy. U transforms each state into its successor, and the final state
back to the original state. The optimum measurement which distinguishes these states with
minimum probability of error can be derived analytically and is known asthere-root

measuremeriChefles, 2000b; Helstrom, 1976].

Define the operator
n—1
= > |yl (B.20)
=0
The optimum detection operators are then of the form
I = |wj){wjl, (B.21)
where

wj) = @73y, (B.22)
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The |w;)’s are in general unnormalized and non-orthogonal. Te defined in this way

form a valid set of POVM’s:

(W) = [{wil¥)]* > 0

for any pure stat@)), i.e. thell;’s are positive operators;

2. n—1 n—1 ) .
ST =S 0 sy (U0 = 0 20 = 1,
j=0 j=0

i.e. thell;’s form a resolution of the identity.

For equally-probable symmetric states, this measurement then attains the minimum error

probability
Perror = 1 — Psuccess
1 n—1 ) 9
= 1-2 3 [lo )| - (B.23)
7=0

Itis because of the presence of the in I1; that this measurement is known as sigiare-

root measurement

Finally, we note that for orthogonal states, the square root measurement reduces to the
orthogonal projectorg);)(1;], so that square root measurement is indeed the most optimal

measurement in this case.
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Appendix C
Proof of Optimality

Here, we show the optimality of the measurement given in Section 2.2.3. Consider the

following quantum communication scenario: Alice sefddgjuantum states; to Eve with

a priori probabilitiesp;, j = 1,..., N. The state which Eve receives from Alice is therefore
given by
N
> pip; (C.1)
j=1

Eve performs a positive-operator valued measurement (POVM) compodedpérators

{11, }£_| such that

=
ES

Vv
[a)

(C.2)

K
I = L (C.3)

k=1

The POVM she chooses is such that the measurement gives her the maximum informa-
tion that can be extracted from The amount of information is quantified by the mutual

information

(EA)

Tar ZP(EA)I og (E) (A)7 (C.4)
D; Py
where

Pl = peTr[Mpk] (C.5)
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is the probability of Alice sending thith state and Eve getting thi¢h outcome;
PP = Zp;if" = Tr [IT;p] (C.6)
is the probability of Eve getting thgh outcome, and
P Z P50 = (C.7)

is the probability of Alice sending statge. We observe that Eq. (C.4) can also be expressed

as
Tap = Y Tr[l;Ry), (C.8)

where

(EA)

Zp’f log (E) (A) (C.9)

Eve’s choice of POVM is such that it maximizes the mutual information of Eq. (C.9). Con-
sider a variation of the POVMI. This variation is subject to the constraint of Eq. (C.3),

so that
> dn, = o (C.10)
The response of Eq. (C.9) to a variation of the POVM is given by

Tpap = Y Tr[R;dL]+ Y Tr[I;iR,]. (C.12)
J J
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The second term vanishes, since

pp® [ P
Z Tr [I0R;] = Z Tv |11 o~ &0 (Eg @
; i Piw APy Py

(E) (EA)
yo Pk
= § Tr[Hij] (éA)5< J(E))
ik Pj

p_]k j
p(!E]:)
= ZP§F>5<;(E)> ,  sinceTr [IT;px] = pf
Ik J
(E)
P;
- (35)
J J
- (C.12)
We thus have
Tpap = Y Tr[R;dl]. (C.13)
j

Now, the positive operatdi; can also be expressed in the form
I = Al4; (C.14)
for some invertible operatot ;. We can then write Eq. (C.13) as
Tap = YT | Ry (0414, + AloA; )] | (C.15)
j
with the variations in4; subject to the constraint of Eq. (C.3):
> oAl +> Alsa; = o (C.16)
J J
The most general form for the variatiofd; is
0A; = Y €nAp,  with e}k = —erj, (C.17)
k

where the:;,'s are arbitrary infinitesimal operators. Eq. (C.15) then becomes

Ty = ZTrKAkRjA}—AkRkA;) ejk}, (C.18)
7,k
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Now, an optimal POVM gives an extremum for Eq. (C.4) so Wat, = 0. Furthermore,

since the:;;'s are arbitrary, the optimal POVM must necessarily be such that
AR AL = ApR AL (C.19)
or equivalently,

LRI, = IR, (C.20)

In the case of the measurement given in Section 2.2.3, we have the following scenario: The
guantum channel between Alice and Eve is such that Alice sends the following equiprobable

states g’ = p{’ = 1) to Eve
1
po = D oI (G
a=0
1
pro= D pmEN S, (C.21)
a=0

wherepy, is the state that Alice sends if she obtainsktieoutcome in her measurement in
themth basis. For the measurement described in Section 2.2.3, its POVM is characterized

by two indicesa, k:

Mo = ’wzrzrllc><wg}c‘v (CZZ)
such that
o 1+ A 1—A\m
(farwlwar) = daw \/ 5 T \/ 5 (0k,0 = Ok,1) (0,0 — Onr.1)
(C.23)

For the measurement, we can obtain

) 2log Ay + (1 — A2)log V12 - if | — g
Ha’k’RakHak = 5a,a’7’w(rzrlbc’><wt%’ X =vi=h
2Xq log Mg, otherwise
= Ha/k’ Ra’k’Haka (024)
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i.e. Eqg. (C.20) is true for this POVM and so the measurement extremizes the information

that Eve can extract from Alice’s states.
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Appendix D

Mutual Information

Here we show intuitively how the mutual information can be used to quantify the amount
of correlation between two ensembles. For ease of discussion, we will belugibgse 2

— the entropy and mutual information is then measurduits

We first define the Shannon entropy of an ensemble.

D.1 Shannon Entropy

Suppose we have a random varialllevith n outcomesey, zo, . . . , z, that we call letters.
Thesen letters together form an alphabet. Th#h letter occurs with probability(k), so

that) ", , p(k) = 1. Define thgShannon) entropgf the random variablé :

Zp )logy p(k (D.1)

We will now show that the entropy is the average number of bits per letter needed to describe

a message drawn from this alphabendétters.

Suppose that we construct a messagd. détters chosen from our alphabet ofletters
{z1,z9,...,z,}, and that the letters in the message are statistically independerit. Bor
1, the law of large numbers tells us that a typical string will contAjfik) xx's. The

collection of all such typical strings form a typical sequence. The number of distinct typical
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strings in this sequence is

. L!
e (Lp(l),Lp(2),...,Lp(n)) ~ (Lp()(Lp(2))! - (Lp(n))!” (D.2)

Using Stirling’s approximatiofog z! ~ x log x — x for x > 1, we obtain

n

logg N ~ LlogyL—L— | (Lp(k)log, Lp(k) — Lp(k))

k=1
= —L> p(k)log, p(k)
k=1
— LH(X). (D.3)

The number of typical strings is thus approximately

N ~ 2LHX), (D.4)

The Shannon enrophi(X) thus quantifies how much information is conveyed, on the av-
erage, by a letter drawn from the ensembfilefor it tells us how many bits are required
asymptotically as. — oo to encode that information: The optimal code will compress
each letter td(X) bits asymptotically. This result is also known &kannon’s noisless

coding theorem

D.2 Mutual Information

The mutual informatiof - quantifies howcorrelatedtwo messages are, that is how much
do we know about a message drawn from the ensefible = X ® X --- ® X when we

have read a message drawn fraifi’.

For example, suppose Alice wishes to send Bob a message. However, the communication
channel is noisy so that the message received by Batight differ from the message sent
by Alice (x). The noisy channel can be characterised by the conditional probability that

is received whemn: is sent,p(y|z). We also suppose thatis sent witha priori probability
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p(z). Given these probabilities, we can then use Bayes’ rule to compute
plyjx)plx
plaly) = 2R 05)
We wish to quantify how much Bob learns abauivhen he receives, that is how much
information does he gain aboutby measuring,?

Now, the entropy (X') quantifies Bob's priori ignorance per letter, before any message is
received: He would requirH(X) bits to completely specify (asymptotically) a particular

message of, letters sent by Alice.

When Bob learns about the valueigthe becomes less ignorant abeuhan before. Given
they’s that Bob receives, Alice can then, using an optimal code, specify a particular string

of L letters taken fronX by sending Bob

H(X|Y) = Zp H(X|Y =y)
= —Zp p(zly) logy p(zy)

= prxylogszy +ZP ) logy p(y

= H(X, Y)— H(Y) (D.6)

bits per letter.H (X|Y) is the conditional entropy oX givenY. We may interpret (X|Y)
as the number addditionalbits per letter needed to specify batlandy oncey is known.

This quantity is non-negative.

Now, the information abouk that Bob gains when he learisis quantified by how much

the number of bits per letter needed to spedifys reducedwhenY is known. This is given

by
Ivy = H(X)— H(X|Y) (D.7)
= H(X)+H(Y)-H(X,Y) (D.8)
= H(Y)- H(Y|X) (D.9)
B — p(z,y)
= Lo )i (010
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T is called themutual informatiorof X andY'. It is symmetric under interchange &f
andY, Zy, = Z, y (we find out as much about by learning}y” as about” by leaning

X) and non-negative (learnirig can never reduce our knowledge ).

SinceZ - quantifies the information gained abaXiton learningY’, we can also interpret
Ty as the amount of correlation between the two ensemblasdY’. For example, ifX

andY are uncorrelated, we hayéz, y) = p(x)p(y) so that using (D.10), so that

we find out nothing abouk’ by learningY” if there is no correlation.

The interpretation aof - as the information gain about on receivingY” is consistent with
the results oShannon’s noisy channel coding theoyamereZ - is also the information

per letter that can be sent over a noisy channel.
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