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CHAPTER 1

INTRODUCTION

1.1 Pattern Analysis: the Concept

Pattern, originally as patron in Middle English and Old French, has been a popular

word ever since sometime before 1010 [Mor88]. Among its various definitions listed

in the very early Webster’s Revised Unabridged Dictionary (1913), there are

• Anything proposed for imitation; an archetype; an exemplar; that which is to

be, or is worthy to be, copied or imitated; as, a pattern of a machine.

• A part showing the figure or quality of the whole; a specimen; a sample; an

example; an instance.

• Figure or style of decoration; design; as, wall paper of a beautiful pattern.



Introduction 2

• Something made after a model; a copy.

• Anything cut or formed to serve as a guide to cutting or forming objects; as,

a dressmaker’s pattern.

Whereas more recently, the Cambridge Advanced Learner’s Dictionary defines pat-

tern as something which is used as an example, especially to copy, as well as a

recognizable way in which something is done, organized, or happens. These defin-

itions cover both individual entities (e.g. an apple, an alphabetic character, etc.)

and descriptive concepts (e.g. how an apple looks like, how to spell the name

“John”, etc.).

Intuitively, Pattern analysis refers to the study of observing, discovering, orga-

nizing, discerning, perceiving and visualizing patterns of interests from the problem

domain as well as making sound and reasonable decisions about the patterns. The

analysis of patterns can be either spatial (e.g. What is the density of the elk

in Asia?), temporal (e.g. When the population of the ibex in Tibet reached its

peak?) as well as both spatial and temporal (e.g. What was the impact of the

greenhouse effect to the world-wide geographical distribution of the wild swans in

the past century?). Sharing the common points of a variety of scientific, social

and economical researchers, the Nobel prize winner Herbert A. Simon emphasized

the importance of “a larger vocabulary of recognizable patterns” in the experts’

empirical researches for decision making and problem solving [Sim86].

Machine Learning Methods for Pattern Analysis ... Ji He
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1.2 Pattern Analysis in the Computer Science Domain

The advancement of computer science, which enables faster processing of huge

data, has facilitated the use of elaborate and diverse methods in highly compu-

tationally demanding systems. At the same time, demands on automatic pattern

analysis systems are rising enormously due to the availability of large databases

and stringent performance requirements (speed, accuracy and cost) [JDM00]. In

the past fifty years, numerous algorithms have been invented to handle certain

types of pattern analysis tasks. Many computer programs have been developed to

exhibit effective pattern analyzing capability. Significant commercial software has

begun to emerge.

Watanabe [Wat85] refers a pattern in the computer science domain as

Definition: A pattern is an opposite of a chaos; an entity, vaguely

defined, that could be given a name.

In practice, instances of a pattern can be any representations of entities that can

be processed and recognized by a computer, such as a fingerprint image, a text

document, a gene expression array, a speech signal, as well as their derivatives, such

as a biometrical identification, a semantic topic, and a gene functional specification,

etc.

In the literature, pattern analysis is frequently mentioned together with pattern

recognition, but the scope of pattern analysis greatly extends the limitation of the

latter. As a comparison, the online Pattern Recognition Files [Dui04] refer the

sub-disciplines of pattern recognition as follows:

Machine Learning Methods for Pattern Analysis ... Ji He
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Discriminant analysis, feature extraction, error estimation, cluster analy-

sis (together sometimes called statistical pattern recognition), gram-

matical inference and parsing (sometimes called syntactical pattern

recognition).

whereas the journal Pattern Analysis and Machine Intelligence gives examples on

the scope of pattern analysis studies as follows:

Statistical and structural pattern recognition; image analysis; com-

putational models of vision; computer vision systems; enhancement,

restoration, segmentation, feature extraction, shape and texture analy-

sis; applications of pattern analysis in medicine, industry, government,

and the arts and sciences; artificial intelligence, knowledge representa-

tion, logical and probabilistic inference, learning, speech recognition,

character and text recognition, syntactic and semantic processing, un-

derstanding natural language, expert systems, and specialized archi-

tectures for such processing.

The interests in the pattern analysis study keep renewing. The application do-

mains of pattern analysis in the computer science literature include, but not limited

to, computer vision and image processing, speech analysis, robotics, multimedia,

document analysis, character recognition, knowledge engineering for pattern recog-

nition, fractal analysis and intelligent control. Table 1.1 provides some examples

of pattern analysis applications in various problem domains.

Machine Learning Methods for Pattern Analysis ... Ji He
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Problem Domain Application Input Instances Patterns Being Analyzed

Image document analysis Optical character recognition Scanned documents in image

format

Characters and words

Bioinformatics Sequence matching DNA sequences Known genes/patterns

Text document analysis Associate the online news with pre-

defined topics

Online news Semantic categories/topics

Data mining Investigating the purchasing habits

of super market customers

Super market transactions Well separated and homo-

geneous clusters / extracted

rules

Speech recognition Commanding the computer using

human voice

Voice waveform Voice commands

Temporal analysis Predicting the trend of stock market Stock quote data The hidden function that the

change of the stock price fol-

lows
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1.3 Machine Learning for Pattern Analysis

The best pattern analyzer in the human’s civilization, besides the almighty God,

most likely is the human himself. In the age of two, a baby is able to name nearly

all the toys and dolls scattered on the floor and pick up his/her favorite Barney.

Recognizing more abstract entities like numbers and alphabets is not a difficult

task for a six-year-old child. Gaining such recognition capability certainly involves

a complicated and continuous learning process (as an example given by Figure 1.1).

Yet ironically, we don’t understand exactly how we analyze patterns and how we

learn to do so.

Having the above limitation, generations of scientists ever since the creation of

the world’s first so-called intelligent machine which could be traced back to the

syllogistic logic system invented by Aristotle in the 5th century B.C [Buc02], are

far from being capable of reproducing a machine that thinks or acts exactly like

a human. Fortunately, a machine is not necessarily to think and act exactly like

a human before it can serve us quite well. As a matter of fact, given a human’s

natural solution to a task, finding alternative and simplified solutions that suite

better to the machine’s repetitive nature reflects the art of numerous inventive

works. A good example in the industry is the washing machine, which substitute

the human’s complicated washing activity with repeated spins. Understanding

this, rather than attempting to exactly replicate the human’s thoughts during

pattern analysis, it is more practical to study in favor of the nature of a machine.

Designing a pattern analysis machine/system essentially involves the following

three aspects [JDM00]:

Machine Learning Methods for Pattern Analysis ... Ji He
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Figure 1.1: A coloring game for children on the PDSKids web site

http://pbskids.org/ boohbah/socks.html. Completing this game requires pattern

analysis knowledge in various aspects like close area identification, pen position

tracking (both being confirmative analysis) as well as optimal color combination

(being exploratory analysis), etc. Gaining these knowledge involves a complicated

and continuous learning process.

Machine Learning Methods for Pattern Analysis ... Ji He
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1. Data acquisition and preprocessing,

2. Data representation, and

3. Decision making.

Through the first two steps, we are able to abstract the patterns from the

problem domain and represent them in a normalized, machine understandable

format for the further use of more general algorithms during decision making.

The patterns are usually represented as vectors of measurements or points in a

multidimensional space. With respect to the decision making process, it has been

shown that algorithms based on machine learning outperform all other approaches

that have been attempted to date [Mit97].

With reference to human’s learning activities, we may say that a machine

“learns” whenever it changes its structure, program or data (based on its inputs

or in response to external information) such that its expected future performance

improves [Nil96]. Tom M. Mitchell [Mit97] formalized this definition as

Definition: A computer program is said to learn from experience E

with respect to some class or tasks T and performance measure P , if its

performance at tasks in T as measured by P improves with experience

E.

Various learning problems for pattern analysis can be formalized in this fashion.

Two examples from Table 1.1 are illustrated as follows:

An optical character recognition learning problem:

Machine Learning Methods for Pattern Analysis ... Ji He
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• Task T : Recognizing optical characters.

• Performance measure P : Percentage of characters correctly recognized by

the computer.

• Experience E: A set of optical characters with corresponding alphanumeric

characters that are correctly recognized by the human.

A data mining learning problem:

• Task T : Finding super market customers that have common purchasing

habits.

• Performance measure P : The similarity among the customers being identified

in the same group and the dissimilarity among the customers being identified

in different groups.

• Experience E: A set of super market transactions.

While a machine is not necessarily to, and is far from being able to learn in the

same way as what a human does, with no doubt, the study of machine learning

algorithms is motivated by the theoretical understanding of human learning, albeit

partial and preliminary. As a matter of fact, there are various similarities between

machine learning and human learning. In turn, the study of machine learning

algorithms might lead to a better understanding of human learning capabilities

and limitations as well.

Machine Learning Methods for Pattern Analysis ... Ji He
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1.4 Supervised and Unsupervised Learning, Classification

and Clustering

Depending on the nature of the data and the availability of appropriate models

for the training source, the analysis of a pattern may be either confirmatory or

exploratory (Figure 1.1).

A typical confirmatory pattern analysis task is the so-called classification prob-

lem. In a classification task, the input pattern is identified as a member of a class,

where the class is predefined by the system designer. The classification task usu-

ally involves a supervised machine learning process, where the class labels of the

training instances are given. The optical character recognition problem Section 1.3

is a typical supervised learning task.

On the other hand, one of the typical exploratory tasks is the clustering prob-

lem. In a clustering task, the input pattern is assigned to a class, which is auto-

matically generated by the system based on the similarity among patterns. The

clustering task usually involves an unsupervised machine learning process, in which

the classes are hitherto unknown when the training instances are given. The data

mining problem in Section 1.3 is a typical unsupervised learning task.

Readers shall note that the term classification (categorization in some cases)

may refer to a broader scope in the literature. For example, Watanabe [Wat85]

posed pattern recognition as a classification task, whereas the two different types

of learning refer to the so-called supervised classification and unsupervised classi-

fication tasks. Similar terminology also appeared in [HKLK97, Rau99] etc.

While supervised and unsupervised learning are based on different models of

Machine Learning Methods for Pattern Analysis ... Ji He
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the training source. Studies have shown that they share a wide range of theoretical

principles. Most significantly, the key element in both supervised and unsupervised

learning is grouping, which in turn greatly involves the measurement of the sim-

ilarity between two patterns. Given an unsupervised learning method proposed

in the literature, one is most likely capable of finding its sibling in the supervised

learning family; and vice versa.

1.5 Contributions of The Thesis

While the studies and applications of machine learning algorithms have been

emerging in the past decades, due to the limited understanding of the human’s

learning behavior, the design of a general purpose machine pattern analyzer re-

mains an elusive goal. In the meantime, the human’s domain knowledge still plays

an important role in designing a pattern analyzer and applying it in a specific

problem.

This thesis mainly deals with unsupervised learning algorithms for cluster

analysis. The application of the research is targeted for text mining and biological

information mining. Data in these two domains are featured with high-dimension,

large scale and high noisiness. More specifically, this thesis mainly attempts to

answer the following two representative questions in cluster analysis:

• How to improve the efficiency of cluster analysis on high dimensional, large

scale data with minimal requirements on the user’s prior knowledge on the

data distribution and system parameter setting, without losing clustering

quality, compared with various slow learning, quality-optimized algorithms?

Machine Learning Methods for Pattern Analysis ... Ji He
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• How to evaluate the clustering results in a fairly quantitative manner, so that

a clustering system can be fine-tuned to produce optimal results?

One of the major contributions of this thesis is the proposed novel artifi-

cial neural network architecture of Adaptive Resonance Theory under Constraint

(ART-C) for cluster analysis. ART-C is an ART-based architecture [CG87b] ca-

pable of satisfying user-defined constraints on its category representation. This

thesis will show that ART-C is more scalable than the conventional ART neural

network on large data collections and is capable of accepting incremental inputs

on the fly without re-scanning the data in the input history.

The capacity and the efficiency of the ART-C neural network will be exam-

ined through several case studies in the text and bioinformatics domains. The

characteristics and the challenges of the studies in these two problem domains

are thoroughly studied. For the benchmark purpose, two sets of clustering eval-

uation measures, namely evaluation measures based on cluster distribution and

evaluation measures based on class conformation, are proposed and extensively

studied. Experiments show the strength of these evaluation measures in various

tasks including discovering the inherent data distribution for suggesting the opti-

mal number of clusters, choosing a suitable pattern proximity measure for a prob-

lem domain and comparing various clustering methods for a better understanding

of their learning characteristics. Experiments also suggest a number of advantages

of these evaluation measures over existing conventional evaluation measures.

Machine Learning Methods for Pattern Analysis ... Ji He
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1.6 Outline of The Thesis

The rest of this thesis is organized as follows.

Chapter 2 reviews the unsupervised learning algorithms for cluster analysis in

the literature through a comprehensive typology study.

Chapter 3 reviews existing neural network architectures and learning rules for

a better understanding of the thesis. This chapter also briefly review two families

of competitive learning neural networks, namely SOM and ART.

Chapter 4 proposes a novel neural network, Adaptive Resonance Theory under

Constraint (ART-C), whose architecture and learning algorithm are described.

Two variations of ART-C which correspond to the existing variations of ART are

studied in more details.

Chapter 5 provides a literature review on the evaluation methodologies for

clustering analysis, studies the difficulties of accessing the efficacy of a clustering

system and proposes a set of evaluation measures for the clustering methods studied

in this thesis.

Chapter 6 reports the application of clustering algorithms for pattern analysis

in gene expression analysis and text mining domains. The characteristics of these

two problem domains are studied. The performance of the clustering algorithms

being studied in the thesis are accessed through statistical comparison work on a

number of real-life problems.

The last chapter, Chapter 7 summarizes the thesis contents and proposes future

work.

Machine Learning Methods for Pattern Analysis ... Ji He
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CHAPTER 2

CLUSTER ANALYSIS: A REVIEW

2.1 Problem Definition

As one of the major research domains of pattern analysis, cluster analysis is the

organization of a collection of patterns into clusters based on similarity. Intuitively,

patterns within a meaningful cluster are more similar to each other than they are

to patterns belonging to a different cluster, in terms of the quantitative similarity

measure adopted by the system. Clustering may be found under different names in

different contexts, such as numerical taxonomy (in biology and ecology), partition

(in graph theory) and typology (in social sciences) [TK99].

Cluster analysis is a useful approach in data mining processes for identifying

hidden patterns and revealing underlying knowledge from large data collections.
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The application areas of clustering, to name a few, include image segmentation,

information retrieval, document classification, associate rule mining, web usage

tracking and transaction analysis [HTTS03]. Some representative application di-

rections of cluster analysis are summarized below [TK99]:

• Data Reduction. Cluster analysis can contribute to compression of in-

formation included in data. In several cases, the amount of available data

is very large and its processing becomes very demanding. Clustering can

be used to partition data set into a number of “interesting” groups. Then,

instead of processing the data set as an entity, the process can obtain the

representatives of the generated clusters for effective data compression.

• Hypothesis Generation and Hypothesis Testing. Cluster analysis can

be used to infer some hypotheses concerning the data. For instance, a cluster-

ing system may find several significant groups of customers in a supermarket

transaction database, based on their races and shopping behaviors. Then the

system may infer some hypotheses for the data, such as “Chinese customers

like pork more than beef ” and “Indian customers buy curry frequently”. One

may further apply cluster analysis to another representative supermarket

transaction database and verify whether the hypotheses are supported by

the analysis results.

• Prediction Based on Groups. Cluster analysis is applied here to the data

set and the resulting clusters are characterized by the features of patterns

that belong to these clusters. Then unknown patterns can be classified into

specified clusters based on their similarity to the clusters’ features. For ex-

ample, cluster analysis can be applied to a group of patients infected by the
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same disease. Useful knowledge concerning “what treatment combination is

better for patients in a specific age and gender group” can be extracted from

the data. Such knowledge can further assist the doctor to find the optimal

treatment for a new patient with considerations on his/her age and gender.

Unlike the other major category of pattern analysis research domain, i.e. classi-

fication or the so-called discriminant analysis in a more general form, which usually

involves supervised learning, cluster analysis typically works in an unsupervised

manner. To formalize the comparison between these two categories of analysis

tasks, we model the problem domain as a mixture probability M(K, W, C, Y ),

where the data points are approximated with K sub-groupings (patterns) Ci, i =

1, · · · , K given by

P (X) =
K
∑

i=1

wi · P (X|Ci, Yi(X)), (2.1)

where X is the input in the problem domain, wi is the mixture weight and Yi(X) ≡

X → Ci is a mapping from the input X to the sub-grouping Ci. Essentially, both

classification and clustering involve the estimation of the model’s parameters. In

a classification task,

• K is pre-defined and fixed.

• Instances of X (marked as x) are given with corresponding mapping labels

y(x).

• Learning of the system involves estimating W and the distribution of C.

• The objective of the learning is to minimize the mismatch in predicting y(x)

for a given x.
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On the other hand, in a clustering task,

• All the parameters of the model, namely K, W , C, and Y , are not known.

• The objectives of the learning are to:

1. Minimize the summed intra-grouping variance (error) of C, and

2. Maximize the summed inter-grouping distance of C.

A common formalization of the above two objectives, but not limited to, is

minimizing E =
∑K

i=1

∫

yi(x)e(x, ci)p(x)dx, and/or

maximizing D =
∑K

i=1

∑K
j=1,j 6=i e(ci, cj)

(2.2)

respectively, where ci is the descriptive pattern (e.g. cluster centroid) of the sub-

grouping Ci , yi(x) is the cluster membership assignment value on Ci, e(x, ci) is the

variance between x and ci. Since a cluster analyzing system commonly deals with

a finite set of training instances, the first objective of Equation 2.2 is practically

implemented through

minimizing E =
K

∑

i=1

N
∑

j=1

yi(xj)e(xj , ci), (2.3)

where N is the number of training instances.

In a clustering task, there is relatively fewer prior information (e.g. statistical

models) available about the data if compared with the classification task. The

decision-maker must take as few assumptions about the data as possible. In this

point of view, clustering always remains a challenging task as the output quality of

a clustering algorithm may vary depending on various factors, such as the features

of the data set and parameter values of the algorithm [HBV01], which are unlikely

available in advance.
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Figure 2.1: A typical sequencing of clustering activity.

2.2 The Prerequisites of Cluster Analysis

A.K. Jain et al. [JD88, JMF99] summarized several steps that a clustering activity

typically involves. They are listed as follows:

1. Pattern representation, optionally including feature extraction and/or selec-

tion.

2. Definition of a pattern proximity measure for the data domain.

3. Clustering or grouping of data points according to the chosen pattern repre-

sentation and the proximity measure.

4. Data abstraction (if needed).

5. Assessment of output (if needed).

The first three steps are depicted in Figure 2.1, which includes a feedback path

where the grouping process output could affect subsequent feature extraction and

similarity computations.

We consider the first two steps as the pre-processing of cluster analysis. The

background knowledge on these two steps are briefly reviewed in the following

sub-sections.
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2.2.1 Pattern Representation, Feature Selection and Fea-

ture Extraction

Pattern representation refers to the paradigm for observation and the abstraction

of the learning problem, including the type, the number and the scale of the fea-

tures, the number of the patterns and the format of the feature representation.

Feature selection, as a pre-processing for pattern representation, is defined as the

task of identifying a set of most representative subset of the natural features (or

transformations of the natural features) to be used by the machine. As another im-

portant step of feature representation, feature extraction refers to the paradigm for

converting the observations of the natural features into a machine understandable

format.

Pattern representation is considered as the basis of machine learning. For

the ease of machine processing, the patterns are usually represented as vectors

of measurements or points in a multidimensional space. It is very common that

such an abstraction will incur discrepancy between the human’s observation and

the machine’s input. In turn, as human accessibility of the patterns is highly

dependent on their representation format, an unsuitable pattern representation

may result in a failure to produce meaningful clusters as the user desires.

Given the synthetic data set in Figure 2.2a, using a cartesian coordinate repre-

sentation, a clustering method would have no problem in identifying the five com-

pact groups of data points (Figure 2.3a). However, when the same representation

is applied to the data set in Figure 2.2b, the four string-shape clusters probably

would not be discovered as they are not easily separable in terms of Euclidean
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distance (Figure 2.4a). Instead, a polar coordinate representation could lead to

better result as the data points in each string-shape cluster are close to each other

in terms of polar angle (Figure 2.4b).

Feature selection and extraction play an important role for abstracting complex

patterns into a machine understandable representation. The selected feature set

used by a clustering system regularizes the area that the system gives attention

to. Referring to the data set in Figure 2.2a, if a coordinate position is selected

as the feature set, many clustering algorithms would be capable of identifying the

five compact clusters (Figure 2.3b). However, if only the color of the data points

is selected as the feature, a clustering system would probably output only two

clusters, containing white points and black points respectively (Figure 2.3b).

The feature set also affects the quality as well as the efficiency of a clustering

system. A large feature set containing numerous irrelevant features does not im-

prove clustering quality but incurs a higher computational cost to the system. On

the other hand, an insufficient feature set may decrease the accuracy of the repre-

sentation and therefore cause potential loss of important patterns in the clustering

output.

2.2.2 Pattern Proximity Measure

Pattern proximity refers to the metric that evaluates the similarity (or in contrast,

the dissimilarity) between two patterns. While a number of clustering methods

(such as [RS98]) disclaim the use of specific “distance” (dissimilarity) measures,

they use alternative pattern proximity measures to evaluate the so-called relation-

Machine Learning Methods for Pattern Analysis ... Ji He



Cluster Analysis: A Review 21

0 0.5 1
0

0.5

1

(a)

0 0.5 1
0

0.5

1

(b)

Figure 2.2: To identify compact clusters in terms of distance, a cartesian coordinate

representation is more suitable for case (a), while a polar coordinate representa-

tion is more suitable for case (b), with reference to the “natural” groupings in

Figure 2.3a and Figure 2.5 respectively.
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Figure 2.3: Two different, while sound clustering results on the data set in Fig-

ure 2.2a, using coordinate position (a) and color (b) as the feature respectively.

Clusters in (a) are separated with dashed lines (not necessarily the decision bound-

aries of the machine). The two clusters in (b) are identified with dashed line and

solid line respectively.
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Figure 2.4: Two different clustering results on the data set in Figure 2.2b, using

cartesian coordinate (a) and polar coordinate (b) for pattern representation re-

spectively. Clusters are separated with dashed lines (not necessarily the decision

boundaries of the machine). Result (b) is closer to the “natural” grouping of the

data set in the user’s view as illustrated in Figure 2.5.
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Figure 2.5: The “natural” grouping of the data in Figure 2.2b in a user’s view.

Data points in the same cluster are identified with the same marker.

ship between two patterns. A pattern proximity measure serves as the basis for

cluster generation as it indicates how two patterns “look alike”.

Since the type, the range and the format of the input features are defined during

the pattern representation stage, a pattern proximity measure should correspond

to the pattern representation. In addition, a good proximity measure should be

capable of utilizing only the key features of the data domain. Referring to Fig-

ure 2.2 again, with a cartesian representation, Euclidean distance is suitable for

identifying the geometric differences among the five clusters in data set (a) but

may not be capable enough of recognizing the clusters in data set (b). Instead,

cosine distance is more suitable for data set (b) as it gives no weight to a vector’s

radius and focuses on the differences of the vectors’ projections on the polar angle

only. Generally, a careful review on the existing correlations among patterns helps

to determine a suitable pattern similarity measure.
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S1

S2

S3

S4

S5

S6

S7

S8

Criteria Clustering Result Interpretation

Geometric

distance

C1 = {S1, S2, S3, S4, S5}

C2 = {S6, S8}

C3 = {S7}

Cameras in each cluster are geometri-

cally closer to each other than to those

in other clusters.

Connectivity C1 = {S1, S2, S3, S4}

C2 = {S5, S6}

C3 = {S7, S8}

Each cluster contains the cameras in

the same road.

Density C1 = {S1, S2, S3, S4, S5}

C2 = {S6, S7, S8}

C1 identifies the zone intensively

equipped with cameras, in contrast to

the rest of the area.

Figure 2.6: Using various pattern proximity measures, the eight speed cameras

on the three roads may be clustered into different cluster groupings, each solution

with an acceptable interpretation.
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Given an existing pattern representation paradigm, a data set may be separable

in various ways. The use of different pattern proximity measures may result in very

different clustering outputs. Figure 2.6 depicts an example that includes eight

speed cameras on three roads as the system’s input. Based on different criteria

that measure the proximity between two cameras, there are different clustering

solutions, each with an acceptable interpretation. In most cases, the clustering

system is desired to output only one (or a few number of) optimal grouping solution

that best matches the user intention on the data set, although that may be partial

and subjective. Hence it is important to identify the pattern proximity measure

that effectively and precisely formulates the user’s intention on the patterns.

2.3 Clustering Algorithms: A Typology Review

A clustering algorithm groups the input data according to a set of predefined crite-

ria. The clustering algorithm used by a system can be either statistical or heuristic.

In essence, the objective of clustering is to maximize the intra-cluster similarity

and minimize the inter-cluster similarity [ZFLW02]. The similarity measure is

chosen subjectively based on the system’s ability to create “interesting” clusters,

as reviewed in Section 2.2.2. A large variety of clustering algorithms have been

extensively studied in the literature. While a comprehensive survey of clustering

algorithms is not the focus of this chapter, we give a bird’s eye review of various

types of available algorithms, with reference to some existing reviews and surveys

[JMF99, SCZ00, SKK00, ZFLW02].

Clustering algorithms can be classified according to:
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• the type of data input to the algorithm,

• the clustering criterion defining the similarity between data points and

• the theory and fundamental concepts on which clustering analysis techniques

are based (e.g. fuzzy theory, statistics).

Readers should note that the pre-processing stages of a clustering activity (i.e.

the pattern representation and pattern approximation stages) are considered as

factors to classify the clustering algorithms. This is due to the inherently close

interactions among every stage of a clustering activity. Given a machine learning

paradigm, it usually can cope with a (or a few number of) specific pattern repre-

sentation and is capable of grouping the input data based on a specific predefined

pattern proximity measure.

There are a large number of categorizations of clustering algorithms, Table 2.1

names a few of them, based on different criteria related to the fundamental con-

cepts.

For a better understanding of this thesis, the last typology study, i.e. the

categorization based on system architecture, deserves an introduction with more

details. A number of state-of-the-art algorithms with different system architectures

are reviewed in the following sections.

2.3.1 Partitioning Algorithms

A partitioning algorithm obtains a single partition of the data points with a set of

so-called decision boundaries [Bol98]. The studies of partitioning algorithms are
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Table 2.1: Various types of clustering methods, based on learning paradigm, code-

book size, cluster assignment and system architecture respectively.

Criteria Categories

Learning paradigm Off-line: Iteratively batch learning on the

whole input set.

On-line: Incremental learning that does not

remember the specific input history.

Codebook size (number of

output clusters)

Static-sizing: The codebook size is fixed.

Dynamic-sizing: The codebook size is adap-

tive to the distribution of input data.

Cluster assignment Hard: Each input is assigned with one class

label.

Fuzzy: Each input is given a degree of mem-

bership with every output cluster.

System architecture Partitioning: The input space is naively sep-

arated into disjoint output clusters.

Hierarchical: The output tree shows the re-

lations among clusters.

Density-based: The input data are grouped

based on density conditions.

Grid-based: The spacial input space is quan-

tized into finite sub-spaces (grids) before

clustering of each sub-space.
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closely related to the Vector Quantization studies [FKKN96, FKN98, HH93]. The

minor difference between these two tasks may be that, a partitioning algorithm in-

volves the identification of the eventual partition inside the multidimensional data

set to be analyzed, whereas a vector quantization method focuses more on repre-

senting the data by a reduced number of elements that approximate the original

data set as closely as possible [Fle97]. Despite the difference outlined here, many

researchers consider these studies practically equivalent.

The partitioning algorithms usually produce clusters by optimizing a criterion

function defined either locally (on a subset of the patterns) or globally (defined over

all of the patterns) [JMF99, SKK00]. It however has been shown that obtaining the

global optimization a predefined criterion function is usually NP-Hard [GJW80].

Normally a partitioning algorithm involves an iterative search for the local-minimal

or local-maximal solution and stops when such local optimization is reached.

In this category, K-Means [TG74, SKK00] probably is the most commonly used

algorithm. The criterion used by the K-Means is the Summed Square Error, which

intuitively reflects the distance of each point from the center of the cluster to which

the point belongs. The summed square error can be formalized as

E =
K
∑

i=1

N
∑

j=1

yi(xj)||xj − ci||
2, (2.4)

where K is the number of clusters (partitions), N is the number of training in-

stances, yi(xj) is a “hard” cluster assignment of the pattern xj to the cluster Ci,

defined as

yi(xj) =

{

1, if xj is assigned to Ci,

0, otherwise.
(2.5)
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ci is the representative vector of cluster Ci, usually its centroid given by

ci =

∑N
j=1 yi(xj)xj

∑N
j=1 yi(xj)

(2.6)

and ||.|| is the Euclidean distance function, defined as

||xj − ci|| =

√

√

√

√

M
∑

k=1

(xjk − cik)2 (2.7)

where M is the dimension of the vectors xj and ci.

Depending on the method used for re-computing the cluster centers, there

are Batch K-Means and Online (incremental) K-Means. Typically both Batch

K-Means and Online K-Means start with a set of K arbitrarily selected train-

ing instances (named seeds in some studies) as the representatives of the clusters

(named cluster prototypes). Each learning iteration of Batch K-Means first as-

signs all training instances of the data set to the correspondingly winner clusters,

each defined as the prototype that is nearest to the training instance. Then the

cluster prototypes are updated with the mean of the training instances associated

with the cluster. On the other hand, Online K-Means updates the winner clus-

ter’s prototype incrementally, i.e., right after each training instance is given. The

identification of the so-called winner cluster is based only on the points processed

so far, without considering the whole cluster or the whole database. In addition,

Online K-Means does not calculate the actual centroid of each cluster, but esti-

mate the prototype of the winner cluster though a learning function. The learning

function normally adjusts the cluster prototype slightly closer to the presented

training instance, such that the error between the training instance and the new

cluster prototype is gradually decreased. A commonly used learning function is
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defined as

ct+1 = α · xj + (1 − α) · ct

= ct + α · (xj − ct),
(2.8)

where α ∈ [0, 1] is the learning rate, ct and the ct+1 are the prototype of cluster

Ci before and after learning.

A problem raised in the above incremental learning process is the concern on

the convergence of the algorithm. Grossberg [Gro82] pointed out that such a learn-

ing activity may result in oscillation if the input data are too densely distributed.

Bottou and Bengio [BB95] however proved its convergence, at least with a de-

creasing learning rate. In addition, the output of both batch K-Means and online

K-Means are sensitive to the seed cluster prototypes. That is, the output solu-

tion is typically locally optimal and is deterministic by the initialization of the

algorithm.

To tackle the above deficiency, a large number of variations and hybrid models

over K-Means have been studied in the literature. Some studies seek for good initial

prototypes so that the output solution tends to reach sub-optimal, i.e. optimal in a

few number of local circumstances [ADR94, And73, BF98, KKZ94, LVV01]; some

adjust the partition through merging and/or splitting existing partitions [BH65,

VR92]; whereas the others combine extra criterion function during searching [DS73,

MJ92, Sym81].

EM (Expectation Maximization) [DLR77] can be considered as the generalized

model of K-Means. Unlike K-Means which assigns the input to one cluster to

maximize the variance in means, EM computes probabilities of cluster member-

ships based on one or more probability distributions. The goal of the clustering
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algorithm is to maximize the overall probability or likelihood of the data, given the

(final) clusters. The links between the inputs and the output clusters are fuzzy,

yielding partially overlapped partitions in the output space. It is then not diffi-

cult to apply a binary threshold in order to obtain a hard partitioning. Further

more, the well-known MRF (Markov Random Fields) modeling [JS96] combines

this probability model with Hidden Markov theory and has been widely applied to

image analysis applications.

Another algorithm of this category is PAM (Partitioning Around Medoids)

[KR87]. PAM determines the most centrally located instance within each cluster

(entitled medoid) to representative that cluster. Similar to K-Means, the algorithm

begins by selecting an object as the medoid of each cluster. Then, each of the

non-selected objects is grouped with the medoid to which it is the most similar.

Different from K-Means learning, PAM swaps medoids with other non-selected

objects until all objects qualify as medoid. It is clear that PAM is a computational

expensive algorithm, as it compares an object with the entire data set [NH94]

to calculate the medoids. To tackle this deficiency, CLARA (Clustering Large

Applications) [KR90] implements PAM in a subset of the inputs. It draws multiple

samples of the data set, applies PAM on samples, and then outputs the best

clustering out of these samples [NH94]. CLARANS (Clustering Large Applications

based on Randomized Search) [NH02] combines the random sampling techniques

with PAM for handling large scale spatial data. The clustering process can be

presented as searching a graph where every node may belongs to the set of K

medoids. CLARANS selects a node and compares it to a user-defined number of

their neighbors searching for a local minimum. If a better neighbor is found (i.e.,

having a lower square error), CLARANS moves to the neighbor’s node and the
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process starts again; otherwise the current clustering is a local optimum. If the

local optimum is found, CLARANS starts with a new randomly selected node in

search for a new local optimum. This algorithm has been shown to have a higher

efficiency over PAM.

2.3.2 Hierarchical Algorithms

Hierarchical algorithms creates a hierarchical decomposition of the inputs [SKK00].

Unlike partitioning algorithms that output a flat partition represented with the

boundaries among the output clusters as well as the cluster centers (if needed),

hierarchical algorithms output a so-called dendrogram [Hor88] that iteratively splits

the input set into smaller subsets until each subset consists of only one object. In

such a hierarchy, each level of the tree represents a clustering of the input. In

addition, the nested relations between the clusters and similarity levels at which

the groupings change are reflected in the hierarchy.

According to the methods that produce clusters, hierarchical clustering algo-

rithms can further be divided into [TK99]:

• Agglomerative algorithms. They produce a sequence of clustering schemes

of decreasing number of clusters at east step. Through each step of the

clustering scheme, two closest clusters are merged.

• Divisive algorithms. These algorithms produce a sequence of clustering schemes

of increasing number of clusters at each step. Contrary to the agglomera-

tive algorithms, through each step, a selected cluster is split into two smaller

clusters.
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In the following, some representative hierarchical clustering algorithms are re-

viewed.

BIRCH [ZRL96] uses a hierarchical data structure called CF-tree for incremen-

tally and dynamically clustering the incoming data points. CF-tree is a height-

balanced tree that stores the clustering parameters. BIRCH can typically find a

good clustering with a single scan of the data and improve the quality further with

a few additional scans [HBV01]. It is also claimed as the first clustering algorithm

to handle noise effectively [ZRL96]. However, the size of each node in the CF-

tree is limited, and hence can hold a limited number of inputs only. The output

of BIRCH does not always correspond to a natural cluster. Moreover, BIRCH is

order-sensitive, which means it will generate different clusters for different orders

of the same input data.

CURE [GRS98] represents each cluster by a certain number of points that are

generated by selecting well scattered points and then shrinking them toward the

cluster centroid by a specified fraction. Since each cluster is represented with more

than one points, the algorithm is capable of identifying clusters with non-spherical

shapes and wide variances in size. It uses a combination of random sampling and

partition clustering to handle large databases. It is also claimed to be capable of

handling noise effectively.

ROCK [GRS99] is a robust clustering algorithm for boolean and categorical

data. Unlike a conventional agglomerative algorithm which merges two clusters

based on their distance, ROCK introduces the links concept to measure the prox-

imity between a pair of data points. Prior study showed that ROCK not only

generates better quality clusters than transitional algorithms, but also exhibits
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good scalability properties.

Generally, in a hierarchical clustering system, the number of output clusters

is not necessarily predefined. The notable disadvantage of hierarchical algorithms

lies in the difficulty in determining the termination condition, that is, at which

point the merging or splitting process stops.

2.3.3 Density-based Algorithms

Based on the fact of clustering essentially being a density estimation problem

[BF98], density based algorithms typically treat clusters as dense regions of objects

in the data space that are separated by regions of low density.

A widely known algorithm of this category is DBSCAN (Density Based Spatial

Clustering of Applications with Noise) [EKSX96]. In DBSCAN, for each point in

a cluster, the neighborhood of a given radius has to contain at least a minimum

number of points. DBSCAN requires only one parameter and supports the user

in determining an appropriate value for it. It is capable of handling noises and

discovering clusters of arbitrary shape. Comparison study has show that DBSCAN

is notably more efficient than CLARANS. Moreover, DBSCAN is used as the basis

for an incremental clustering algorithm proposed in [EKS+98].

Hinneburg and Keim introduced the DENCLUE (DENsity based CLUstEring)

algorithm [HK98] to cluster large multimedia databases. The basic idea of this

approach is to model the overall point density analytically as the sum of influ-

ence functions of the data points. Then clusters can be identified by determining

density-attractors, which are local maximum of the overall density function. Clus-
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ters of arbitrary shape can be easily described by a simple equation based on overall

density function. The main advantages of DENCLUE include its good clustering

properties in data sets with large amounts of noise, its compact mathematical de-

scription of arbitrary shaped clusters, as well as its significantly higher efficiency

over DBSCAN. However, DENCLUE is sensitive to its parameter settings. This

prevents it from producing high quality results without human experiences.

One of the notable characteristics of density based algorithms is that, the out-

put cluster may not include all input data points as data points in the low density

regions are excluded. This ensures their scalability to large data base as well as

their robustness over noises. This however prevents their application in problem

domains where every input data are equally important.

2.3.4 Grid-based Algorithms

Recently a number of clustering algorithms have been presented for spatial data,

known as grid-based algorithms. These algorithms quantize the space into a finite

number of cells and then do all operations on the quantized space.

STING (STatistical INformation Grid-based method) [WYM97] divides the

spatial area into rectangular cells using a hierarchical structure. It scans over the

data set and computes the statistical parameters (such as mean, variance, mini-

mum, maximum and type of distribution) of each numerical feature of the objects

within cells. Then it generates a hierarchical structure of the grid cells so as to

represent the clustering information at different levels. STING obtains the statis-

tical parameters by scanning the data set once only. Hence it is of high efficiency
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in handling spatial data. However, it has been pointed out that STING lowers the

quality and accuracy of clusters, despite the fast processing time [SCZ00].

WaveCluster [SCZ00] is a novel grid-based clustering algorithm that incorpo-

rates a signal processing technique named wavelet transformation. It first summa-

rizes the data by imposing a multidimensional grid structure onto the data space.

Each grid cell summarizes the information of a group of points that map into the

cell. The wavelet transformation then is applied over the original feature space.

The multi-resolution property of wavelet transformation enables human inspection

to identify the dense regions on the converted frequency domain. Arbitrary clus-

ters can be inspected at different degrees of detail. In addition, prior knowledge

about the exact number of clusters is not required in WaveCluster. The drawback

of the algorithm is that it requires human inspection on the transformed domain.

In addition, the wavelet transformation and the human’s incapability in inspect-

ing complex data limits the algorithms’s scalability for handling high dimensional

data.

The main characteristics of grid-based approaches is their high efficiency, as

the processing time is dependent on the number of cells in each dimension in the

quantized space [SCZ00], which is typically much less than the number of data

objects. The difficulty raised in the application of these algorithms is how to

determine the appropriate number of grids. In addition, the scalability of these

algorithms to a high dimensional domain is yet to be further improved.

Despite the numerous clustering algorithms reviewed above, there is no single

method that can cope with all clustering problems. The choice of the clustering

algorithm for a specific task affects the clustering result in a fundamental way. In
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addition, the learning activity of a large number of clustering algorithms is con-

trolled and hence affected by a set of internal parameters. The optimal parameter

set is usually decided through empirical experiments on the specific data set.
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CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

3.1 Introduction

An artificial neural network, usually referred to as neural network, is a machine

that models the way in which the biological brain performs a particular task or

function of interests. Neural networks typically employ a massive interconnection

of simple computing cells referred to as “neurons” or “processing units” [Hay99].

Aleksander and Morton [AM90] offered the following definition of a neural network

viewed as an adaptive machine:
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A neural network is a massive parallel distributed processor made up

of simple processing units, which has a natural propensity for storing

experiential knowledge and making it available for use.

The infrastructure of the neural network commonly resembles the brain in two

respects:

1. Knowledge is acquired by the network from its environment through a learn-

ing process.

2. Interneuron connection strengths, known as synaptic weights, are used to

store the acquired knowledge.

The network is usually implemented by using electronic components or its sim-

ulated in software on a digital computer [Hay99], of which the latter is the focus

of this thesis. When viewed in the software simulation aspect, a neural network

features its capability of learning from examples or interactions, as opposed to

conventional programming tasks.

3.2 Learning in Neural Networks

Following the definition in Section 1.3, a neural network’s learning is closely related

to its activity that improves its performance from the experience with respect to a

task. The objective of a neural network’s learning activity could be self-organizing

information through correlations of the data, minimizing an error metrics or max-

imizing rewards in a trial-and-error system over time [PU99]. Haykin [Hay99]

Machine Learning Methods for Pattern Analysis ... Ji He



Artificial Neural Networks 41

summarizes the learning process in the context of neural networks as the following

sequence of events:

1. The neural network is stimulated by an environment.

2. The neural networks undergoes changes in its free parameters as a result of

this stimulation.

3. The neural network responds in a new way to the environment because of

the changes that have occurred in its internal structure.

An important prerequisite of the neural network’s learning is the appropriate

modeling of the learning environment, only with which the corresponding knowl-

edge generated by a neural network could be meaningful. Such a modeling is

referred to as the learning paradigm in the literature. There are three major learn-

ing paradigms being studied in the neural network context, namely supervised

learning, unsupervised learning and reinforcement learning. As already reviewed

in Section 1.4, supervised learning refers to the scenarios that the training inputs

are provided together with the desired output; whereas for unsupervised learning,

there is no such desired output information given. Reinforcement learning is a

learning environment with interaction, i.e. trial and error. The neural network

first “tries” to make some predictions, then receives the scalar evaluation (reward)

of this predictions and selectively reinforces its learning towards the maximal re-

ceived rewards. Different from supervised learning, in a reinforcement learning

paradigm, not all input-output pairs are given at the same time.

The changing of a neural network’s free parameters includes the adjustment

of the interconnection weights between the neurons and sometimes the network’s
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topology adoption, for instance, the number of layers, the number of neurons and

the pattern of connections. These changes are guided by a set of well-defined

rules, commonly referred to as a learning algorithm. Depending on the problem

domain, there exist a number of basic learning rules in the literature, including

memory-based learning, Hebbian learning, error-correction learning and competi-

tive learning.

In memory-based learning, the neural network’s past experiences are explicitly

stored in a large memory of correctly classified input-output examples. Upon

presentation of a testing instance (unknown data), the neural network responds

by finding the local neighborhood of the testing instance in its memory and makes

decision accordingly. Since the past experiences of the neural network are stored

“as is”, i.e. no new knowledge is generated, this category of learning rules are

sometimes called “lazy learning”. Memory-based learning essentially involves the

studies in the following two aspects:

1. The criteria in locating the local neighborhood of the testing instance.

2. The decision rule applied on the local neighborhood.

The most representative memory-based algorithm in the literature probably is the

k Nearest Neighbor (kNN) classifier [CH67, Das91], including its specialized case

Nearest Neighbor (NN) classifier which corresponds to k = 1.

The Hebbian learning rule realizes the biological learning characteristics, which

states that “when two interconnected neurons fire at the same time, and repeatedly,

the synapse’s strength is increased” [Heb49]. Hebb [Heb49] adopted this observa-

tion as the basis for pattern association. The Hebbian rule determines the change
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in the weight connection between two neurons. If two neurons are both activated,

then the weight of the connection between these two neurons are increased. It

has been proved that if the set of input patterns used in training are mutually

orthogonal, the association can be learned by a two-layer pattern associator using

Hebbian learning. However, if the input patterns are not mutually orthogonal, in-

terference may occur and the network may not be able to learn associations. The

Error-correction, introduced as below, outcomes this limitation.

Error-correction learning is rooted in optimum filtering. During training, an

input is presented to the neural network, which generates a set of values on the

output units. The actual output is compared with the desired one. The mismatch

between the actual output and the desired output then triggers the neural net-

work’s learning. The neuron interconnections are updated in the way that the

mismatch (usually formalized as an error function) decreases. The Least Mean

Square (LMS) rule, also called the Delta rule [WH60], is a widely applied learning

rule in this category. LMS uses summed square error to measure the mismatch

and best fits for neural architectures with no hidden-layer. The generalized LMS

rule [RHW86], as an improvement over LMS, handles learning in multi-layer neural

architectures well.

Like Hebbian learning, competitive learning is also biologically plausible [HKP91].

However, competitive learning distinguishes from the above three learning rules

with the output neurons being activated in a competitive way. That is, at one

time there is maximally only one output neuron being activated, whereas with in

the other three learning rules, multiple output neurons may be activated simulta-

neously. Learning of the competitively activated neuron follows the way that the
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local error decreases. With such feature, competitive learning is highly suitable for

discovering statistically salient features, and hence is widely adopted by various

clustering techniques.

The application domains of the learning algorithms are dominated by the

modeling of learning environment, i.e. learning paradigms. Generally speaking,

memory-based learning rules, albeit simple, may suit in both supervised and un-

supervised learning paradigms; error-correction learning and Hebbian learning are

normally applied for supervised and reinforcement learning paradigms; while com-

petitive learning is widely applied in an unsupervised learning paradigms.

Since the focus of this thesis is on clustering (unsupervised learning), the re-

view on the competitive learning process is extended in the following section. In

addition, two families of competitive learning neural networks are reviewed.

3.3 The Competitive Learning Process

The competitive learning rule is closely related to the family of neural architec-

ture named competitive neural architecture (including self-organizing maps). This

architecture adopts self-excitatory and inter-inhibitory connections inside of the

computational layer (Figure 3.1), which enables the neural network to adaptively

self-organize and build the topology preserving feature maps in respect to the input

[Hay99, PU99].

Rumelhart and Zipser [RZ85] summarized the three major elements of compet-

itive learning, namely
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Figure 3.1: The competitive neural architecture.

1. A number of neurons initially with some randomly distributed interconnec-

tion weights, such that they have different responses to a given input pattern.

2. A limit imposed on the strength of the neurons.

3. A mechanism that permits the neurons to compete for the right to respond

to a given input, such that at a time, only one output neuron (or only one

neuron per group) is active.

Competitive learning algorithms may vary depending on the criteria used for

the evaluation of the competition and the selection of the so-called “winner” of

the competition. Generally, the competitive learning process falls into two steps,

illustrated in Figure 3.2, and summarized as follows.

1. Winner Search: Given an input pattern x presented in the input layer,

which causes a local induction f(j) of each neuron j, where the inductive

function f(.) is predefined. The so-called winner of the competition is defined
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as the neuron that receives either the minimal local induction or the maximal

local induction as per definition. Given the instance of winner selection by

maximization, the output signals yj of the neurons are therefore set by

yj =

{

1 if f(j) > f(k) for all k, j 6= k

0 otherwise.
(3.1)

2. Learning: Let wij denote the interconnection weight from input node i to

neuron j. The competitive learning rule updates the interconnection weights

such that the weight vector w of the winner neuron moves toward the input

pattern x, formalized as

∆wij =

{

η(xi − wij) if neuronj wins the competition

0 otherwise,
(3.2)

where η ∈ [0, 1] is the learning-rate parameter.

With the above learning activity, it is understandable that, when the grouping

of the input patterns is sufficiently distinct, with a proper scaling and upon reaching

a stable state, each interconnection weight of the output neurons will thus reflect

the centroid of a discovered grouping (Figure 3.3). Clustering is thus achieved.

Readers should note the above prerequisite of applying competitive learning for

clustering: there exist distinct natural groupings of the input data. Previous study

by Grossberg [Gro82] already pointed out that competitive learning may result in

oscillation if the input data are too densely distributed, because the network may

not respond to a given input pattern with the same output neuron. Figure 3.4

gives an example on which competitive learning fails to produce a stable output.

A common practice to tackle this deficiency is to use a decreasing learning rate. The

Machine Learning Methods for Pattern Analysis ... Ji He



Artificial Neural Networks 47

 

++++    

++++    

1w

x

2w  

 

(a)

 

++++    

++++    

)(
1
tw

x

2w  

++++    

)1(
1

+tw  

 

(b)

Figure 3.2: The competitive learning process. The dot represents the input point.

The crosses represents the interconnection weights of the two output neurons. (a)

The state of the network before learning. Neuron 1 is selected as the winner

because it is closer to x than 2. (b) The state of the network after learning. The

weights w1 is hence adjusted so that the data point corresponding to wnew
1 moves

towards to x. The weights of neuron 2 remains unchanged.
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Figure 3.3: Competitive learning applied to clustering. The dots represent the

input points. The crosses represent the interconnection weights of the output

neurons. (a) Initial state of the network. (b) Stable state of the network.
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Figure 3.4: A task on which competitive learning will cause oscillation. When the

input points are presented in a clockwise order and the learning rate is fixed, the

weights of the output neurons will perturb but the network won’t reach a stable

state.

convergence of such practice was proved by Bottou and Bengio [BB95]. Figure 3.5

summarizes a few common practices for the learning rate decrease.

Another deficiency of the competitive learning process is its dependency on

the presentation order of the input data, as the learning process is triggered by

individual samples. That is, the output of the network usually falls into one of its

local optima which is deterministic to the input order. Figure 3.6 illustrates this.

It is possible to build a simple, single layer feed forward neural network using

the competitive learning rule. As a matter of fact, such a feed forward neural

architecture is essentially equivalent to online K-Means, which is widely studied

in the machine learning domain and reviewed in Section 2.3.1. Besides online K-

Means, there are numerous algorithms (including neural networks) which adopt the

competitive learning rule. Table 3.1 lists a few examples though a topology review.
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Figure 3.5: Examples of common practices for competitive learning rate decrease:

(a) Linear function, (b) Gaussian function, (c) Linear function with threshold

activator and (d) Linear function with threshold activator. The X-axis is the

progress of the competitive learning, identified with either number of training

samples, number of learning iterations or time stamps. The Y-axis is the learning

rate.
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Figure 3.6: The different input orders that affect the competitive learning process.

The dots represent the input points, represented in consequence as marked by

numbers 1, 2 and 3. Suppose upon presentation of each input point, the winner

neuron is the same one, presented with the cross. (0), (1), (2) and (3) indicate

the data points corresponding to the interconnection weights of the winner neuron

before learning, and after learning of each input. (a) and (b) show that after the

learning of three inputs in different orders, the weights of the output neuron as

indicated with w(3) are different.
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Table 3.1: A topology review of clustering algorithms based on competitive learn-

ing. These algorithms are categorized based on the dimension of the recognition

domain (fixed or varying) and the nature of applying the learning rule (hard learn-

ing or soft learning).

Fixed Dimension Varying Dimension

Hard Learning Lloyd/LBG ([Llo57, LBG80]),

K-Means ([Mac67])

ART ([CG87b]), Cluster

Euclidean ([Moo89]), SART

([BA98])

Soft Learning SOM ([KKL+00]) Neuro Gas ([MS91]), Grow-

ing Cell ([Fri94]), GHSOM

([DMR00])

Based on the dimension of the recognition domain (number of output clusters),

there are methods with a fixed dimension and methods with a varying dimension.

Based on the nature of applying the learning rule, there are hard learning (winner-

take-all) methods and soft learning (winner-take-part) methods. Among them, the

two major families in the neural networks domain, namely the Self-organizing Map

(SOM) and the Adaptive Resonance Theory (ART), are reviewed in the subsequent

section.
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3.4 A Brief Review of Two Families of Competitive Learn-

ing Neural Networks

3.4.1 Self-organizing Map (SOM)

Self-organizing Map (SOM), also known as Kohonen feature map, is originally

proposed to project and visualize high-dimensional data spaces [Koh97]. Subse-

quent studies [Fle97, Fle99] pointed out its close relation with the online K-Means

clustering algorithm, which is discussed above. It has been widely applied for

clustering and data compression purposes.

In a self-organizing map, the output neurons are placed at the nodes of a

multidimensional lattice. The lattice used in most studies is two-dimensional, for

the convenience of graphical illustration and human inspection. In response to the

input sequence, the neurons are selectively tuned in the course of a competitive

learning process. The learning process builds a topological map on the lattice,

essentially understood as a number of codewords in a higher-dimensional input

space. In the topological map, the coordinates (spacial locations) of the neurons

correspond to the particular features of the input patterns, through which the

network achieves data compression and visualization (Figure 3.7).

A typical SOM algorithm using Euclidean distance is briefly summarized below.

1. Initialization: Given a training sequence X = {xi : i = 1, . . . , M}, ran-

domly initialize the interconnection weights of the output neurons {wj : j =

1, . . . , K}. Set the initial neighborhood of each node N
(0)
j to be large.
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Figure 3.7: The feature map and the weight vectors of the output neurons in a

self-organizing map neural architecture.

2. Winner search: Given an input xi, find the winner node J such that ||xi −

cJ || ≤ ||xi − cj || for j = 1, . . . , K and j 6= J .

3. Learning: Update the weights of the winner node and its neighbors, according

to

w
(t+1)
j = w

(t)
j + h(j, J)η(t)(xi − w

(t)
j ) for each j ∈ N

(t)
J , (3.3)

where h(j, J) ∈ [0, 1] is a scalar kernel function that gives a higher weight to

a closer neighbor of the winner node J and η(t) is the learning rate.

4. At the end of each learning iteration, shrink the neighborhood so that N
(t+1)
j ⊂

N
(t)
j for each j and decrease the learning rate so that η(t+1) ≤ η(t). Repeat

from step 2 till convergence.

There are a large number of SOM variations depending on the dimension of

the organization map, the definition of the pattern distance, the definition of the
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neighborhood Ni, the kernel function h() as well as the paradigm that iteratively

re-adjusts Ni and η.

The feature of the SOM learning algorithm, which distinguishes it from the

online K-Means algorithm, is the integral neighborhood function, which is centered

around the neuron that wins the competition upon the presentation of an input.

Tuning the weights of the neurons in the neighborhood helps in generating the

topology in the way that the discovered patterns which are similar to each other

are placed close to each other in the lattice. This feature is significantly useful for

visualization purpose.

Albeit the above useful feature, no proof on the convergence of the network

with non-zero neighborhood is given in the literature [Fle99]. A common practice

to ensure the network’s convergency is, after properly building the typological

ordering of the output weights, to shrink the neighborhood till zero (i.e. the

neighborhood contains the winner neuron only). With such, the self-organizing

map works identically as an online K-Means clustering algorithm to reach a local

optimally stable state. The convergence of online K-Means has been proved by

Bottou and Bengio [BB95].

With such a training process, SOM’s learning can be understood as two major

stages, namely

1. Lattice Construction: The prototype of the output neurons are prelimi-

narily estimated; the ordering of the output neurons on the lattice is built.

2. Convergence: The weights of the output neurons are further fine tuned

such that the network reaches a stable state.
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SOM is not a fast algorithm in this sense, due mainly to the extra computational

cost in maintaining the neighborhood relationship for constructing the lattice and

the decreasing learning rates adopted to reach convergence.

In addition to the above, since SOM adopts the competitive learning rules,

the features of competitive learning are inherited to SOM, which include the de-

pendence on the initialization of the output neurons and the dependence on the

presentation order of the inputs.

3.4.2 Adaptive Resonance Theory (ART)

The Adaptive Resonance Theory (ART) architecture was first introduced by Stephen

Grossberg in 1976 [Gro76a, Gro76b] to satisfy the stability-plasticity dilemma,

which many of the networks at that time failed at. Subsequent work has led to

a large number of ART modules. The representative architectures include ART 1

which handles arbitrary sequences of binary input patterns [CG87b], ART 2 which

extends ART 1’s capability to handle both binary and analog inputs [CG87a], ART

2A which provides an optimized searching paradigm over ART 2 [CGR91b], ART

3 which carries out parallel and hierarchical search [CG90], as well as Fuzzy ART

which follows a similar paradigm of ART 2A and incorporates fuzzy set theory

[CGR91c].

There are also a number of improved ART modules and ART-like architec-

tures in the literature. Examples include Cluster Euclidean which can be un-

derstood as an ART architecture using Euclidean distance [Moo89], AHN which

essentially is an ART 1 architecture with improved efficiency [HL95] and SART
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which is a simplified class of ART that uses bidirectional (symmetric) category

choice and match functions [BA98]. Extended work has also produced numerous

modular ART architectures to handle more complicated tasks, such as Cascade

ART [HLL+96], HART-J and HART-S [BW00] for hierarchical clustering; and

ARTMAP [CGR91a], Cascade ARTMAP [Tan97] and ARAM [Tan95] for super-

vised learning.

A conventional ART architecture consists of three layers depicted in Figure 3.8:

the input layer (F0), the comparison layer (F1) and the recognition layer (F2). The

input layer F0 receives and stores the input patterns. Neurons in the input layer

F0 and comparison layer F1 are one-to-one connected with hard-coded links, which

corresponds to a normalization preprocess to prevent category proliferation. The

comparison layer F1 stores the short term memory for the current input pattern

while the recognition layer F2 stores the prototypes of recognition categories (clus-

ters) as the long term memory. Interactions among these three layers in turn

form two subsystems in the architecture, namely the attentional subsystem, which

reacts with respect to the input, and the orienting subsystem, which guides the

learning activities of the attentional subsystem.

In Carpenter et al’s original prototype [CGR91b], the F2 layer initially contains

a number of so-called uncommitted nodes, which one by one will conditionally get

committed upon input presentation. This however may give a wrong impression

that ART uses “a fixed number of output nodes which limit the number of clusters

that can be produced” [JMF99]. As an alternative interpretation, a number of

subsequent studies (such as [BW00, Tan95]) refer the F2 layer initially as a null

set (i.e. contains no node) which dynamically grows by creating new recognition
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Figure 3.8: The ART Architecture.

categories (committed nodes) using distinct inputs. We follow the later interpre-

tation in the rest of this thesis, as it highlights ART’s capability of expanding the

scale of its recognition field indefinitely.

The ART network follows a winner-take-all competitive learning process. Learn-

ing of the ART 1 and ART 2 networks involves modification of the weighted

bottom-up (feed-forward) and top-down (feed-backward) connections between F1

and the recognition layer F2. These connections are further simplified with the

bottom-up (feed-forward) connections only in subsequent studies, including ART

2A and Fuzzy ART. The interactions between F1 and F2 are controlled by the

orienting subsystem using a vigilance threshold ρ.

Unlike SOM which initializes its fixed-dimensional recognition field using either

random or heuristic criteria, ART initializes its recognition neurons using distinct

inputs in a dynamic way. This initialization mechanism is primarily controlled by

the vigilance parameter ρ. Briefly, when the similarity between the input and the
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winner pattern reaches a certain degree, evaluated by ρ, ART follows the same

learning rule of competitive learning, otherwise, a new recognition pattern will be

created to directly encode the distinct input. The vigilance parameter guarantees

a threshold on the variance of the recognition pattern caused by the learning

function. This hence enables ART to carry out online competitive learning with

relatively high learning speed. In our practise, ART has no difficulty in learning at

an initial rate of 0.2 and above (Fuzzy ART’s initial learning rate can be as high

as 1.0), as compared with those of SOM and K-Means which are usually initialized

below 0.1.

On the other hand, the dynamic initialization of recognition neurons in ART

causes a number of shortages in this infrastructure. These include its dependency

on the global vigilance threshold ρ, as well as its incapability of limiting the dimen-

sion of the recognition domain and hence the possibility in generating excessive

recognition neurons (output clusters). This understanding motivates our explo-

ration of a novel neural network architecture. The novel neural architecture, based

on ART, retains the high efficiency and online initialization characteristics of ART

and complements the above capability.

For a better understanding of the thesis, the characteristics of ART are analyzed

in more details in the subsequent chapter, followed with the analysis of the novel

neural architecture proposed in this thesis.
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CHAPTER 4

ADAPTIVE RESONANCE THEORY UNDER CONSTRAINT

4.1 Introduction: The Motivation

As briefly reviewed in Section 3.4.2, the Adaptive Resonance Theory (ART) [CG87b]

is a family of neural networks that develop stable recognition categories (clusters)

by self-organization in response to arbitrary sequences of input patterns. Through

dynamic creation of recognition categories for encoding distinct input samples, an

ART module is capable of self-adjusting the scale of its recognition field, in terms

of the number of committed nodes, with respect to the complexity of the problem

domain. Its fast commitment mechanism and capability of learning at moderate

speed guarantees a high efficiency.
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While ART has its advantages in its adaptability and high learning efficiency,

it is not recognized as the all-in-one solution to real-life applications. First, given

a problem set, the dimension of ART recognition domain (i.e. the number of

output clusters) depends on a global threshold parameter called vigilance, which

essentially reflects the maximal variance of the data in each recognition neuron.

Therefore, in order to control ART’s recognition representation, the end-user is

required to have prior knowledge in the distribution of the input samples and the

estimation of the pattern similarity (or variance) within each desired cluster. Such

knowledge however is unlikely to be available in the real life. Second, ART is

designed with the capability of expanding its recognition domain indefinitely. If

the vigilance value is not properly set, this in turn may generate excessively large

number of output clusters which is beyond the end-user’s control.

A representative example to the above problems is the online news topic de-

tection task. In such application, the relation between the existing topics and

emerging topics is difficult for the end-user to predict; the coverage of the new top-

ics is unknown; and the total number of machine generated topics is required to be

under control for human inspection. While an experienced user may fine tune the

vigilance parameter of ART in order to obtain a satisfactory clustering result, it

would be more convenient if the user could intuitively set how many topics he/she

wants to generate out of each day’s news articles based on his/her experience. So it

is desirable to have a variance of ART that carries online learning, detects distinct

inputs, while controls the scale of the recognition domain.

This chapter proposes a novel ART-based neural architecture named ART-C

(Adaptive Resonance Theory under Constraint). It contains several improvements
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over its predecessor which is introduced in 2002 [HTT02]. Our aim is to combine

the neuron initialization and the online clustering capabilities of ART with the pre-

dictability in allowing a direct control on the number of the output clusters. This

capability is achieved by a constraint reset mechanism in ART-C that adaptively

adjusts the global vigilance threshold of the system and re-organizes the category

representation in response to an intuitive constraint. Given a specific data set, the

constraint reset mechanism guarantees the scale of the network’s recognition field

within a quantitative limit, and adaptively adjusts the network’s vigilance value

to satisfy the constraint. With such, ART-C complements ART’s capacity in han-

dling problems where the optimal number of clusters is more conceivable to the

end-user than the intra-cluster similarity, or where a hard cap on the number of

output clusters is required for human inspection, regardless of the optimal number

of clusters over the input.

The remainder of this chapter extends the review on ART’s learning paradigm,

analyzes its characteristics, introduce the ART-C architecture in details, and briefly

compares ART-C with ART in terms of the parameter settings, requirements on

the user’s prior knowledge and their common use.

4.2 The ART Learning Algorithm: An Extended Analysis

This section reviews the learning paradigm of ART in more details for a better

understanding of the thesis. Under the common ART architecture as briefed in

Section 3.4.2, there are a number of variations depending on the pattern proximity

measures used by the network. The learning algorithm of the ART 2A variation
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which is based on the inner dot similarity is given below, followed with the Fuzzy

ART variation which is based on fuzzy logic.

4.2.1 The ART 2A Learning Algorithm

The ART 2A network introduced by Carpenter et al. [CGR91b] is a variation of

the ART 2 network [CG87a]. Compared with ART 2, ART 2A adopts a simplified

feed-forward architecture, with an optimized search strategy in identifying the

winner node. The ART 2A learning algorithm uses dot product as the pattern

proximity measure. The algorithm is summarized as below.

Parameters: The ART 2A dynamics are determined by the vigilance parameter

ρ ∈ [0, 1] and the learning rate η ∈ [0, 1].

Network initialization: The category layer F2 is initialized with the null set Ø

(i.e. contains no category).

Input normalization: The non-zero input vector x0 presented to F0 is normalized

according to

x = ℜx0 (4.1)

where the normalization function ℜ is given by

ℜx ≡
x

||x||
=

x
√

∑

i x
2
i

. (4.2)

Category choice: Given an F1 input vector x, for each F2 node j, the choice

function T (x,wj) is defined by

T (x,wj) = x · wj (4.3)
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where wj is the weight vector of node j. The system is said to make a choice when

at most one F2 node can become active. The choice is indexed at J where

T (x,wJ) = max{T (x,wj) : for all F2 node j}. (4.4)

Resonance check: Resonance occurs if on the category selected above, the match

function M(x,wJ) in the orienting subsystem meets the vigilance criteria, i.e.

M(x,wJ) = x ·wJ ≥ ρ, (4.5)

during which learning ensues, as defined below. If the vigilance constraint is vio-

lated, mismatch reset occurs. In a mismatch reset, the above category is excluded

from the search process (as in Equation 4.4) for the duration of the input pre-

sentation and the search process is repeated. In case the network fails to find an

existing category who meets the vigilance criteria, a new category K is created by

copying x as its weight vector

wK = x. (4.6)

Learning: Once the search ends and the resonance is achieved, the attentional

subsystem updates the weight vector wJ according to

wt+1
J = ℜ(ηx + (1 − η)wt

J). (4.7)

Some minor differences between the above review and the original ART 2A

proposed in [CGR91b] are worth extended explanations. In Carpenter et al’s

version, a threshold θ is used to cut off the attribute value of the input vector

such that if xi < θ, xi is reset to be 0. Similar cut-off is applied on the weight

vector as well during learning. This is claimed to “effectively distinguish features
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that are irrelevant in given categories” [CGR91b]. As in the weight vector, once

an attribute value drops below the threshold, the value will remain zero in the

further learning. However, suggesting an appropriate “irrelevance” threshold value

requires prior knowledge and may be quite subjective. In addition, most clustering

system assume there is an effective feature selection preprocess and all features

presented to the system are equally important. Therefore we follow a common

setting of θ = 0 for simplicity of analysis. Carpenter et al. also use a small

constant α such that the so-called uncommitted nodes are forced to have a nominal,

minor “similarity” of α
∑

i xi with the input pattern. This follows that in some

simulations, even when ρ = 0, some uncommitted nodes may be activated and the

system may generate a few number of categories [CGR91b]. Readers should note

this is practically equivalent to the result produced by the paradigm we summarized

above, using a very small ρ value.

Optimizing the ART 2A Learning Algorithm

For formalization purpose as well as the consistency with the Fuzzy ART algorithm

(summarized in the following sub-section), the ART 2A algorithm above is said to

adopt a choice function and a match function. As a reality, since ART 2A adopts

the same, symmetric inner dot function to evaluate the pattern proximity, it is

understandable that both choice and match functions can be consolidated into

one similarity measure.

In addition to the above, during resonance check, if the first selected winner

wJ does not meet the vigilance criteria, it is not necessary to find another winner

as Tj < TJ for all j 6= J . As such, the algorithm can be further optimized in the
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way that, once the first mismatch reset happens in respect to an input, then create

a new category using the input.

4.2.2 The Fuzzy ART Learning Algorithm

The Fuzzy ART network, based on fuzzy logic theory, generally adopts the same

architecture and follows the identical learning process as that of ART 2A. The

major variations lie on the different set of input normalization, choice, match and

learning functions for Fuzzy ART.

Fuzzy ART preprocesses the input vectors by first-level normalization and/or

complement coding to avoid category proliferation. Specifically, Fuzzy ART works

on non-zero input vectors and assumes the attribute values have been appropriately

scaled to be non-negative. It is a common practice to limit the attribute value

between 0 to 1 to present the “fuzzy possibility”, 0 being the lowest possibility

and 1 being the highest. The input vector x0 presented to F0 is normalized to x

according to

xi =
x0

i

max{x0
i }

. (4.8)

Complement coding preserves the input vector’s amplitude information and rep-

resents both the on-response and the off-response to the input vector by doubling

the number of network connections. Given an properly normalized D-dimensional

input x, the complement coded F1 input vector x′ is a 2D-dimensional vector

x′ = (x,xc) ≡ (x1, . . . , xD, xc
1, . . . , x

c
D) (4.9)

where xc
i ≡ 1 − xi.
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Fuzzy ART utilizes a set of fuzzy logic based pattern proximity measures and

learning function, listed as below:

Choice function:

T (x,wj) =
|x ∧wj |

α + |wj|
, (4.10)

where the fuzzy AND operation ∧ is defined by

(p ∧ q)i ≡ min(pi, qi), (4.11)

α is a predefined constant parameter and the norm |.| is defined by

|p| ≡
∑

i

pi (4.12)

for vectors p and q.

Match function:

M(x,wJ) =
|x ∧ wJ |

|x|
. (4.13)

Learning function:

wt+1
J = η(x ∧wt

J) + (1 − η)wt
J . (4.14)

4.2.3 Features of the ART Network

The features of the ART learning algorithm have been extensively studied in the

literature. This section summarizes them as below:

1. Sample-driven neuron initialization: ART distinguishes itself from oth-

ers in the way that it self-adjusts its architecture by creating new recogni-

tion (output) neurons using the distinct input. Compared with SOM, such
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a sample-driven neuron initialization mechanism does not require a pre-scan

of the input set. Hence, ART is more suitable for online clustering of incre-

mentally presented data.

2. High efficiency: The resonance check limits the learning of the network

in a constrained sub-space. Within the sub-space, the network is capable

of learning at a relatively high learning rate. Particularly, upon a distinct

input sample, the network essentially learns at a learning rate of 1.0 for fast

commitment. Such a practice guarantees the high efficiency of the network.

This characteristics of the network is analyzed in the following sub-section

in more details.

3. Outlier sensitivity: As a side effect of the fast commitment of the network,

the network is sensitive to outliers. The ART’s output commonly contains

a number of dead clusters or clusters each containing a few number of input

samples. This deficiency can be tackled by adopting neuron pruning during

learning.

4. Input order dependence: As a deficiency inherited from the competitive

learning rule, ART’s learning is highly affected by the presentation order of

the input. Such a characteristics can be found in SOM as well, as previously

reviewed in this thesis.

4.2.4 Analysis of the ART Learning Characteristics

This sub-section analyzes the characteristics of the ART learning algorithm in

more details, for a better understanding of the thesis. Due to the high correlation

Machine Learning Methods for Pattern Analysis ... Ji He



Adaptive Resonance Theory under Constraint 69

between ART 2A and Fuzzy ART’s learning paradigm, the analysis focuses on

ART 2A only. Here we introduce two definitions for the convenience of our further

discussion.

Definition: (Committed Region) The committed sub-region Sj of

each ART 2A’s recognition category j is defined by the vector sub-space

that satisfies

Sj = {x : M(x,wj) ≥ ρ} (4.15)

where wj is the weight vector of category j, M(x,wj) is the match

function adopted by the ART network. The committed region of ART’s

recognition space refers to the union of all its committed sub-regions.

S = S1 ∪ . . . ∪ SN (4.16)

where N is the number of the recognition categories.

Definition: (Uncommitted Region) The uncommitted region of

ART 2A’s recognition space is defined by the complementary sub-space

of the committed region

S = {x : M(x,wj) < ρ for all j = 1, . . . , N} (4.17)

where N is the number of the recognition categories.

Note that the Euclidean normalization function ℜ in Equation 4.1 and Equa-

tion 4.7 limits ART 2A’s learning on a unit hyper-sphere to avoid category prolif-

eration. Under this condition, the choice function in Equation 4.3 is equivalent to

the cosine similarity between two patterns.

Machine Learning Methods for Pattern Analysis ... Ji He



Adaptive Resonance Theory under Constraint 70

 

++++    
++++    

)(tw

x

)1( +tw  

(a)

 

++++    

++++    

)(tw

x

)1( +t
neww  

 

(b)

Figure 4.1: The effect of the vigilance threshold on ART 2A’s learning. Dashed

circles identify the committed sub-region of the corresponding recognition category.

(a) When the input falls into a committed sub-region, it is incorporated into the

existing category. (b) When the input falls into the uncommitted region, it is used

to create a new recognition category.
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The network’s mismatch reset mechanism brings interesting characteristics to

the ART 2A learning paradigm. The vigilance threshold ρ guards whether an in-

put will be incorporated into its most similar recognition category or will be used

to generate a new category. Specifically, this threshold forms a circular decision

boundary with a radius of
√

2(1 − ρ) around the weight vector of each category, in

terms of the Euclidean distance (or ρ in terms of the arc on the unit hyper-sphere),

as given x · w = ρ and ||x|| = ||w|| = 1, ||x − w|| =
√

(||x||2 + ||w||2 − 2x · w =
√

2(1 − ρ). Upon the presentation of a new input, if it falls into one of the radius

sub-space (committed region), it will be incorporated into an existing category

(Figure 4.1(a)), otherwise the input sample is used to create a new recognition

category (Figure 4.1(b)). It is understandable from the search function (Equa-

tion 4.4) that, when the Euclidean distance between two nearest categories is less

than 2
√

2(1 − ρ), the partitioning boundary between these two categories is given

by their perpendicular bisector on the hyper-sphere. The joint of these decision

boundaries essentially serves as the delimiter between the committed region and

the uncommitted region (Figure 4.2).

As mentioned, mismatch reset of the network occurs if the input pattern falls

into the uncommitted region. Learning of such an input is done by creating a

new category with the input, which turns the sub-region around it given by Equa-

tion 4.15 into a committed sub-region. This fast commitment paradigm guarantees

stable encoding of new distinct inputs. We would highlight that this characteristics

particularly reflects the plasticity of the network.

Network resonance only happens if the input pattern falls into the committed

region. Learning activity of the network in the committed region, is closely related
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Figure 4.2: The decision boundaries (dashed lines), the committed region (gray)

and the uncommitted region (white) of the ART 2A network being viewed on the

unit hyper-sphere. The crosses identify the weights of the recognition categories.

Vector quantization is done by relaxing the decision boundaries with ρ = 0 (dot-

dashed lines) after the network convergence on the input sequence.
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to the naive competitive learning paradigm as reviewed in Section 3.3.

With such a training process, we may understand the learning of ART as two

parallel operations, namely

1. Structure Adaption: The network establishes an overall estimation of

the data distribution by creating a number of recognition categories which

correspond to the set of committed sub-regions that fully cover every input

representations in the vector space.

2. Input Encoding: The weights of the recognition categories are fine tuned

toward a local minimum of encoding error.

Network convergence corresponds to the stable establishment of the categories

as well as a local minimum of encoding error. Upon network convergence, each

input presentation will incur the resonance of the network. Hence the mapping of

the input to the recognition category q = x → w is simplified as the network’s

category choice process, which essentially is a nearest-neighbor mapping. With

such, the weight wj can be used as the representation protocol of each encoding

sub-region. Although the committed region of the network may not cover the whole

input vector space upon network convergence, the simplified mapping essentially

forms a set of relaxed decision boundaries by setting ρ = 0 for the specific input

sequence (Figure 4.2). Clustering is thus done on the whole input space.

The restriction from the boundaries of each committed sub-region also ex-

plains the notably high efficiency of the ART network, compared with a conven-

tional competitive learning paradigm. As mentioned above, network resonance
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which triggers the network’s learning activity is achieved only in an existing com-

mitted sub-region with a restricted coverage. This provides an upper bound for

the variance of the newly learnt cluster prototype w(t+1) from w(t), specifically

||w(t+1) − w(t)|| ≤
√

2(1 − ρ). Therefore the network is capable of learning at

either slow or intermediate speed. As a comparison, a conventional competitive

learning paradigm may cause cluster oscillation if the learning rate is too high,

and hence is capable of learning at a slow speed only. Combination of this fast

learning capability with the fast commitment mechanism ensures ART’s capability

of achieving stable encoding of input sequences with very few number of learning

iterations in practice.

We however note a major deficiency of ART when it is used for clustering:

the vigilance threshold ρ affects the number of ART 2A recognition categories

generated on a specific input sequence in a major way. To explain in more details

with ART 2A as the example, the coverage of a committed sub-region is a circular

area with a maximal radius of
√

2(1 − ρ). The higher the ρ value, the lower is the

coverage of each recognition region and the larger number of recognition categories

required to encode a specific vector space. Specifically, ρ = 1 causes each unique

input to be encoded as one separate category whereas ρ = 0 causes all inputs to

be encoded into the same category.

Figure 4.3 illustrates the number of ART 2A’s recognition categories (output

clusters) with respect to different vigilance thresholds on several real-life data

sets. In order to obtain a specific number of partitions over the input space,

prior knowledge on the distribution of the data set is required to suggest a proper

vigilance threshold. Without such knowledge, a user has to follow a trial-and-error
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Figure 4.3: The number of ART 2A’s output clusters with respect to different

vigilance parameter values on different data sets, namely the Reuters-21578 top 10

category subset (REUTERS), the yeast cell cycle data set (YEAST) and the human

hematopoietic data sets (HL60 and HL60 U937 NB4 Jurkat). Values are shown

with means and standard deviations over ten runs using different input orders.

Suggesting an appropriate vigilance value in order to get the specific number of

output clusters requires prior knowledge on the distribution of the data set.

process to decide the appropriate vigilance threshold.

The deficiency of ART motivates our study of the ART-C learning paradigm,

which removes the network’s dependency on the vigilance parameter in its learning

by incorporating a user-defined constraint on the category representation, in terms

of the number of recognition categories. In the following section, we give details

of the ART-C paradigm.
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4.3 Adaptive Resonance Theory under Constraint

(ART-C)

4.3.1 The ART-C Architecture

The Adaptive Resonance Theory under Constraint neural architecture, proposed in

this PhD work first in 2002 [HTT02] and subsequently improved in 2004 [HTT04],

is an ART-based architecture capable of performing online clustering of arbitrary

input sequences while keeping the size of the recognition category field in a desired

scale. The aim of the study is to combine the neuron initialization and the online

clustering capabilities of ART with the predictability in allowing a direct control

on the number of the output clusters.

The ART-C architecture is illustrated in Figure 4.4. Compared with the stan-

dard ART architecture, there is an additional constraining subsystem in the ART-C

network. During learning, the constraining subsystem interacts with the atten-

tional subsystem and the orienting subsystem. It adaptively estimates the distri-

bution of the input data and self-adjusts the vigilance parameter for the orienting

subsystem, which in turn governs the learning activities in the attentional subsys-

tem.

Unlike a conventional ART network that mainly controls its learning activity

with a vigilance threshold ρ, ART-C’s learning is mainly guided by an intuitive

constraint C on the maximal number of recognition categories in the F2 layer. Such

capability is achieved by introducing the constraint reset mechanism to the ART

network. The constraint reset adaptively estimates the input distribution, and self-

Machine Learning Methods for Pattern Analysis ... Ji He



Adaptive Resonance Theory under Constraint 77

 

F2 

F1 

F0 

…    … 

ρ  

Input 

- 

+ 

Attentional Subsystem 

Orienting 
Subsystem 

C  
+ 

Constraining 
Subsystem 

 

Figure 4.4: The ART-C Architecture.

adjusts the vigilance threshold in response to the constraint C. The dynamically

adjusted vigilance threshold in turn drives the learning activities to satisfy the

user-defined constraint. The ART-C 2A and Fuzzy ART-C learning algorithms

respectively based on ART 2A and Fuzzy ART are introduced below.

4.3.2 The ART-C Learning Algorithm

Parameters: The ART-C dynamics are determined by the constraint C on the

number of recognition categories and the learning rate η ∈ [0, 1]. For Fuzzy ART-

C, there is an additional parameter α being used in the choice function (Equa-

tion 4.10).

Network initialization: The category layer F2 is initialized with the null set Ø.

The vigilance ρ for the orienting subsystem is initialized with a maximal value 1.0

(or a value optionally specified by the user).
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Learning of each input presentation: Learning of each input presentation

follows the ART 2A learning paradigm.

Constraint check: Constraint check is performed after the learning of each input

presentation. The check compares the number of existing recognition categories N

with the predefined constraint C

ζ =
{ 1 if N > C

0 otherwise.
(4.18)

The constraint is said to be satisfied with ζ = 0, upon which the network carries

on to learn the next input representation. Otherwise constraint reset occurs, as

described below.

Constraint reset: Constraint reset re-organizes the recognition categories in the

F2 layer towards the satisfaction of the constraint and adjusts the ρ value based

on the current category distribution. The process is introduced as follows.

1. Search of the nearest category pair: For each category pair (i, j) in the F2

layer, their similarity, noted as H(i, j), is defined by the corresponding ART

module’s choice function of their corresponding weights wi and wj , such that

H(i, j) ≡ T (wi,wj). (4.19)

To further explain, for ART-C 2A that is based on ART 2A,

H(i, j) ≡ T (wi,wj) = wi · wj, (4.20)

whereas for Fuzzy ART-C that is based on Fuzzy ART,

H(i, j) ≡ T (wi,wj) =
|wi ∧ wj|

α + |wj |
. (4.21)
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The nearest neighbor of each category i, indexed as J(i), is the category that

has the maximal similarity with i:

H(i, J(i)) = max{H(i, j) : j = 1, . . . , N, j 6= i}. (4.22)

The nearest neighbor similarity of category i, marked as h̄(i) then refers to

the similarity between category i and its nearest neighbor J(i):

h̄(i) ≡ H(i, J(i)). (4.23)

The nearest category pair, indexed as (I, J), is identified by the category I

that has the maximal nearest neighbor similarity to its nearest neighbor J :

h̄(I) = H(I, J(I)) = max{H(i, J(i)) : i = 1, . . . , N}. (4.24)

2. Adjustment of the vigilance: The vigilance value ρ(new) for subsequent learn-

ing is decreased according to:

ρ(new) = max{h̄(i) : all i whose h̄(i) < ρ(old)}, (4.25)

and thus ρ(new) < ρ(old).

3. Merging of the nearest category pair: Merging of the nearest category pair (I,

J) is done by inserting a new category L, whose weight vector incorporates

the weights of these two categories using the learning function with a learning

rate η = 0.5. That is, for ART-C 2A,

wL = ℜ(0.5wI + 0.5wJ), (4.26)

while for Fuzzy ART-C,

wL = 0.5(wI ∧wJ) + 0.5wJ . (4.27)
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In addition, the categories I and J are deleted from the recognition layer

F2 after the creation of the new category. With such, the patterns of the

categories I and J are estimated with the pattern of the new category L.

Each constraint reset cycle decreases the number of recognition categories in F2

by one. Theoretically the constraint check and constraint reset processes should be

repeated till the network satisfies the constraint (i.e. ζ = 0). However, considering

that the nature of the ART learning is to create at most one new recognition

category for encoding of each input, constraint reset practically occurs only when

N = C + 1. Therefore constraint reset happens at most once on each input

representation, after which the number of recognition categories in the F2 layer is

decreased from C +1 to C. It is also understandable that constraint reset can only

happen right after a mismatch reset, which is the direct cause of the increase of

the number of recognition categories from C to C + 1.

4.3.3 Structure Adaptation of ART-C

We recall the two parallel operations in ART’s learning process, namely structure

adaption and input encoding. During input encoding, ART-C adopts the same

learning rule as ART’s. However ART-C distinguishes itself from ART in its novel

way in structure adaptation.

It is understandable that the constraint C is imposed upon the category es-

tablishment of the network learning. Given the input sequence X = {xi : i =

1, . . . , M}, as long as the constraint is satisfied, i.e. N ≤ C, ART-C follows the

identical learning paradigm as ART’s. If the constraint is found broken, that is,
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when the number of recognition categories reaches C + 1 on a sub-set of input

x̂ = {xi : i = 1, . . . , P}, P ≤ M , the constraint reset is activated to re-estimate

the new parameters of the network without losing the learning history.

We should point out that this online estimation of the data distribution is

a difficult task, as the exact input history is not accessible during incremental

learning. The network has to rely on the C+1 existing recognition patterns instead.

In order to do such, the constraint reset process essentially makes two modifications

on the network. Firstly it locates the most similar recognition categories and

represent their patterns with a new category which encodes the learnt knowledge

with less detail. Secondly it decreases the vigilance threshold so that the future

learning of the network is less sensitive to distinct inputs.

Given a network with C existing recognition categories and a new category

K created by the most recent mismatch reset, there are two possibilities for the

constraint reset operation:

1. K = I or K = J . In this case the learning of the network is practically

equivalent to incorporating the most recent input into the most similar ex-

isting cluster with a compromised resonance criteria (Figure 4.5a) as well as

a fixed learning rate η = 0.5.

2. K 6= I and K 6= J . In this case the constraint reset process essentially moves

one of the recognition category from a high density area (I and J) to the

newly detected low density area (K), and re-represent I and J with a more

general recognition category L, in the sense that committed sub-region of

category L covers a larger area of space than those of I and J (Figure 4.5b).
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It is understandable that in both cases only the patterns of maximal two existing

recognition categories are re-estimated. The patterns of the remaining C − 1

recognition categories are not affected.

The constraint reset mechanism identifies the essential difference between ART-

C and ART. Specifically, to construct the committed recognition region with a full

coverage of the input space, ART only increases the number of the committed sub-

regions, each having a fixed maximal coverage area. In contrast, when the number

of the committed sub-regions has reached a specific scale C, no more committed

sub-region will be added into the ART-C recognition field. Instead, the ART-C

network redistributes the committed sub-regions and expands the area of each

committed sub-region by using a decreased vigilance threshold ρ.

4.3.4 Variations of ART-C

Readers may note that discussions on the ART-C system, until this point, are

based on the initial parameter setting of ρ = 1.0. With the initial vigilance value

set to this highest value 1.0 and a constraint C, each of the first C unique input

samples presented to ART-C will be used to create new recognition neurons. As

long as the total number of unique input samples satisfies M > C, constraint

reset happens for at least once on this input sequence. With constraint reset, the

vigilance value ρ monotonically decreases to satisfy the constraint. This in turn

yields exactly C recognition categories.

However, it is possible that the ART-C may be initialized with a vigilance value

that is less than 1.0. The use of different parameter combinations of ART-C on
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Figure 4.5: Changing of the ART-C 2A recognition categories being viewed on

the unit hyper-sphere. w(0), w(1) and w(2) respectively are the weights of the

network’s recognition categories: (0) before the presentation of the input x, (1)

after mismatch reset upon the recent representation of the input x and (2) after

constraint reset right following the mismatch reset. (a) The network essentially

incorporates the input into its most similar category, with a relaxed vigilance. (b)

The network essentially moves one category from the highest density area to a low

density area.
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different problems thus yields to a number of interesting variations, summarized

as following.

Suppose in a given input sequence, there are M unique input samples. Using a

vigilance value ρ = ρ0, the conventional ART generates C0 recognition categories

on this input sequence. By initializing ART-C with a vigilance value ρ = ρ1 and

setting the constraint to C1, there are four typical possibilities depending on the

parameters:

1. (Case 1) ρ1 ≥ ρ0 and C1 = C0: Similar to the above discussion, constraint

reset happens on ART-C; the vigilance value ρ of ART-C will be adaptively

adjusted to the same level of ρ0; and ART-C generates C1 (i.e. C0) recogni-

tion categories.

2. (Case 2) ρ1 ≥ ρ0 and C1 < C0: Similar to the above discussion, constraint

reset happens on ART-C; the vigilance value ρ of ART-C will be adaptively

adjusted to a value that is less than ρ0; and ART-C generates C1 recognition

categories.

3. (Case 3) ρ1 = ρ0 and C1 > C0: Constraint reset of ART-C will not hap-

pen; ART-C works identically to ART; and the actual recognition categories

generated by ART-C is C0.

4. (Case 4) ρ1 < ρ0 and C1 ≥ C0: This is essentially same as Case 3 but

is explicitly listed for a better understanding. Similarly, constraint reset of

ART-C will not happen; ART-C works identically to ART; and the actual

recognition categories generated by ART-C is less than C1.
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Cases with ρ1 > ρ0 and C1 > C0, as well as ρ1 < ρ0 and C1 < C0 are excluded

from the above analysis as the comparison in these cases do not provide meaningful

results. As shown above, ART-C extends ART’s learning capacity to satisfy the

user’s constraint, while remains the potential of working identically to ART.

4.3.5 Related Work

The idea of controlling the category representation of an ART network using vary-

ing vigilance values has been investigated in the literature. The varying vigilance

plays an essential role in the supervised ARTMAP networks [CGR91a]. Most

closely related to the ART-C learning paradigm may be the HART modular de-

signs (HART-J and HART-S) [BW00]. HART generates hierarchical representa-

tion of the input sequence. Learning activities in various layers of the hierarchy

are guarded with different ρ values and produce category representation of the

same input sequence with varying details, either from fine to coarse representa-

tion (HART-J) or from coarse to fine representation (HART-S). HART however

lacks the capability of producing a predefined number of categories in any layer, as

the modular design presets a vigilance value for each layer and limits the learning

activities in each layer strictly like a conventional ART.

One key idea employed in ART-C is the redistribution of the representation cat-

egories during constraint reset through merging of categories. A number of hierar-

chical agglomerative clustering algorithms (Section 2.3.2) such as UPGMA [MS57]

and neighbor-joining [SN87] apply a similar paradigm. Hierarchical agglomerative

clustering algorithms typically represent M input samples as M reference clusters.

Each clustering cycle identifies the most similar pair of clusters and merges them.
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The process may repeat until there is only one cluster left. While they are able

to generate a predefined number of C clusters over M input samples, they are

notably computational intensive in maintaining the pair-wise similarity matrix as

typically M ≫ C [Fri97, FK99, PR02]. The advantage of ART-C over this class

of algorithms lies in its combination of competitive learning of individual inputs

with the calculation of pair-wise category similarities. While online learning of

individual inputs maintains a high efficiency, merging of the nearest category pair

in ART-C enables a quick redistribution of recognition categories, with a notably

lower computational cost.

4.3.6 Selection of ART and ART-C for a Specific Problem

The unique characteristics of ART is its capability in self-adapting its structure

in response to the arbitrary input sequence through dynamic creation of recogni-

tion categories for encoding distinct input samples. Compared with SOM which

requires a scan of at least a major portion of the input set in order to initialize its

weight vectors, ART does not requires such a process and hence is more capable

of carrying out online learning of incrementally presented inputs. However, the

major deficiency of ART is its dependence on a proper estimated vigilance value.

ART-C’s learning is not dependent to a fixed vigilance parameter. Instead,

the constraint parameter C mainly affects ART-C’s learning. When the constraint

parameter C is set to a very large value, ART-C could learn identically as ART.

On the other hand, when C is set to an appropriate small value, ART-C is capable

of generate exactly C output clusters as desired.
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In a preliminary study previously reported in [HTT02], Fuzzy ART-C and

Fuzzy ART have shown reasonably similar output groupings on the same input

sequence, working under different desired number of categories (Figure 4.6 and

Figure 4.7). The case studies reported in a Chapter 6 will also show that the

performance of ART-C 2A and ART 2A are very close, in terms of the output

cluster validity as well as the efficiency.

These similarities and differences present an interesting consideration: given a

specific clustering problem, which algorithm will be more suitable, ART or ART-C?

Readers may already note that in the machine learning domain, the cluster-

ing problem is ill-posed, as there does not exist “an absolute judgment as to the

relative efficacy of all clustering techniques” [BA02a, BA02b]. As such, in our

consideration, the usability of a clustering algorithm is more of importance than

the efficacy of the algorithm.

From the end-user’s point of view, like many other clustering algorithms, both

ART and ART-C require some degree of prior knowledge in estimating the problem

domain and setting the proper parameters. ART’s learning is most dependent on

the vigilance parameter. Suggesting such a parameter requires prior knowledge on

the relative pattern proximity of the inputs. That is, how the input data are dis-

tributed? How similar would be two data points that falls into a natural cluster?

While for ART-C, its learning is dependent on the constraint parameter. Suggest-

ing such a parameter requires prior estimation on the number of natural groupings

of the inputs. Hence, rather than stating either ART or ART-C “a better solution”

than the other, we should instead consider ART and ART-C as the complementary

solution to each other, depending on the availability of the prior knowledge on the

Machine Learning Methods for Pattern Analysis ... Ji He



Adaptive Resonance Theory under Constraint 88

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Petal Length

P
et

al
 W

id
th

C = 2

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Petal Length

P
et

al
 W

id
th

C = 3

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Petal Length

P
et

al
 W

id
th

C = 5

Figure 4.6: The outputs of Fuzzy ART-C on the Iris data set when we set C = 2,

3, and 5 respectively. The network converged at ρ = 0.5958, 0.7187, and 0.7542

correspondingly. Data points being grouped in the same cluster are identified with

the same markers. The outputs are reasonably similar to those of Fuzzy ART

illustrated in Figure 4.7.
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Figure 4.7: The outputs of Fuzzy ART on the Iris data set when we set ρ =

0.5958, 0.7187, and 0.7542 respectively. The network outputted 2, 3, and 5 clusters

correspondingly. Data points being grouped in the same cluster are identified with

the same markers. The outputs are reasonably similar to those of Fuzzy ART-C

illustrated in Figure 4.6.

input sequence. Table 4.1 summarizes a general guideline on the selection of ART

and ART-C for a specific problem.
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Table 4.1: A general guideline on the selection of ART and ART-C for a specific

problem.

ART ART-C

Learning characteristics: Control the intra-variance

of each cluster. Increase

the number of clusters to

encode distinct input.

Control the number of

clusters. Increase the

intra-variance of each clus-

ter to encode distinct in-

put.

Learning most affected by: Vigilance ρ. Constraint C.

Optimal parameter setting

requires prior knowledge

on:

Local distribution (intra-

variance) of at least one

cluster.

Global estimation of opti-

mal number of clusters.

When lacking of prior

knowledge, typical para-

digm to obtain the optimal

parameter setting:

Trial-and-error on multiple

vigilance values

Trial-and-error on multiple

constraint values
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CHAPTER 5

QUANTITATIVE EVALUATION OF CLUSTER VALIDITY

5.1 Problem Specification

One of the most important problems in cluster analysis is the evaluation of the

clustering results. The major concern on the clustering results is how well the

results fit the natural distribution of the data, i.e. the underlying grouping. This

is the main subject of cluster validity [HBV01].

Due to the nature of the ill-posed clustering problem, a clustering algorithm

may perform drastically differently depending on the following factors:

1. The feature of the input data set, e.g. dimension, scale, distribution, etc.

2. The representation of the pattern features.
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3. The measure used to evaluate pattern proximity.

4. The parameter used by the algorithm.

As such, evaluation of the clustering results provides important guidance to studies

on various studies (Figure 2.2), including selecting the appropriate pattern repre-

sentation method and pattern proximity measure, choosing the optimal parameter

set for an algorithm as well as choosing the optimal clustering algorithm that best

fit the feature of the input data.

In a large number of previous studies, low-dimensional (usually 2D and 3D)

synthetic and real-life data are commonly used as the inputs. This is for the con-

venience of human inspection on the clustering results via graphical visualization.

However, the performance of a clustering algorithm may vary drastically depending

on the feature of the input data. For instance, Grid-based clustering algorithms

(Section 2.3.4) may perform well on 2D data sets but are generally not known as

capable of handling high dimensional inputs. Visualization on 2D or 3D data sets

only thus lacks the capability of inspecting the algorithms’ general performance

on high dimensional data. Moreover, most real-life data sets present a challenge

for visualization due to the large scale. As such, quantitative assessment of the

cluster validity is of great importance for cluster analysis.

Theodoridis and Koutroubas [TK99] summarized three major approaches for

evaluation of clustering results, listed below:

1. External criteria: This assumes there is a known distribution of the input

data that reflects the so-called optimal grouping or natural grouping over the

Machine Learning Methods for Pattern Analysis ... Ji He



Quantitative Evaluation of Cluster Validity 93

input. The clustering results are compared with this external information

and the match between the two sets of results are evaluated.

2. Relative criteria: With the lack of a known input distribution, this

compares the clustering result of an algorithm with those of other clustering

algorithms or those of the same algorithm with different sets of parameters.

3. Internal criteria: With internal criteria, the evaluation is solely based

on the statistics on the output result of a clustering algorithm, such as the

proximity matrix and the output cluster centers etc.

Among the above, the thesis study focuses on the relatively more feasible criteria,

i.e., external and relative criteria.

Since the nature of clustering is to group the input samples such that data

points in the same cluster are more similar to each other than to points in a differ-

ent cluster (Section 2.1), a large number of evaluation paradigms in the literature

evaluate the cluster validity through two intuitive aspects, namely intra-cluster

compactness and inter-cluster separation. Generally speaking, in an optimal clus-

tering solution, the members in each cluster shall be as close as possible, while

the clusters should be clearly separated to each other. Based on these two princi-

ples, the following sections introduce two sets of evaluation measures using internal

criteria and external criteria respectively.
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5.2 Cluster Validity Measures Based on Cluster Distribu-

tion

The set of measures introduced here evaluate the intra cluster compactness and

inter cluster separation using intuitive statistics based on the internal distribution

of the output clusters.

5.2.1 Cluster compactness

Suppose there exists a known distance metric that evaluates the dissimilarity of

patterns, which also corresponds to the pattern proximity measure used by the

clustering algorithm. The cluster compactness measure is based on the generalized

definition of the deviation of a data set X given by

dev(X) ≡

√

√

√

√

1

M

M
∑

i=1

d2(xi,x) (5.1)

where d(xi,xj) is the distance metric between two vectors xi and xj , M is the

number of vectors in X and x = 1
M

∑

i xi is the mean of X. A smaller deviation

indicates a higher homogeneity of the vectors in the data set, in terms of the

distance measure d(). In particular, when X is one-dimensional and d() is the

Euclidean distance, dev(X) becomes the statistical variance of the data set σ(X).

The cluster compactness for the output clusters C = {Ci, i = 1, . . . , K} generated

by a clustering algorithm over the input set X is then defined as

Cmp =
1

K

∑

i

dev(Ci)

dev(X)
(5.2)

where K is the number of clusters generated on the data set X, dev(Ci) is the

variance of the cluster Ci and dev(X) is the variance of the data set X.
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The cluster compactness measure evaluates how well the subsets (output clus-

ters) of the input is redistributed by the clustering system, compared with the

whole input set, in terms of the data homogeneity. When the distance metric

is the Euclidean distance, the cluster compactness measure is equivalent to the

average cluster scattering index used in Halkidi et al.’s study [HVB00]. While a

smaller Cmp value indicates a higher average compactness in the output clusters,

this however does not necessarily mean a “better” clustering solution. Given a

clustering system that encodes each and every unique input data into one separate

cluster, the cluster compactness score of its output has a minimal value of 0. Such

a clustering output is however not desirable. To tackle this, the cluster separation

measure is used to complement the evaluation.

5.2.2 Cluster separation

In the literature, there exist a variety of measures that evaluate the separation of

clusters through difference approaches. These are single linkage which evaluates

through the closest members of different clusters, complete linkage which evaluates

through the most distant members of different clusters and centroid comparison

which evaluates through the centroids of different clusters. In our study, we adopt

the centroid comparison approach due to the relatively low computational cost on

search.

The cluster separation measure used here borrows the idea in [HBV01] and

the cluster evaluation function introduced by [GP00]. The cluster separation of a
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clustering system’s output is defined by

Sep =
1

K(K − 1)

K
∑

i=1

K
∑

j=1,j 6=i

exp(−
d2(ci, cj)

2σ2
) (5.3)

where σ is a Gaussian constant, K is the number of clusters, ci is the centroid

of the cluster Ci and d(ci, cj) is the distance between the centroid of Ci and the

centroid of Cj.

Compared with the method used in [HBV01], the evaluation measure above

adopts Gaussian normalization to limit Sep ∈ (0, 1]. A smaller Sep score indicates

a larger overall dissimilarity among the output clusters. However, given the par-

ticular case that a clustering system output the whole input set into one cluster,

the Sep score reaches an indicative minimal value of 0, which is of no applicable

value.

Noting the limitation of each evaluation measures above, it is necessary to

combine the cluster compactness and cluster separation measures to evaluate the

overall performance of a clustering system. An intuitive combination, named over-

all cluster quality, is defined as

Ocq(β) = β · Cmp + (1 − β) · Sep (5.4)

where β ∈ [0, 1] is the weight that balances cluster compactness and cluster sepa-

ration. For example, Ocq(0.5) gives equal weights to the two measures.

5.3 Cluster Validity Measures Based on Class Conformity

This category of validity measures assumes that there is a desirable distribution

of the data set with which it is possible to perform a direct comparison of the
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clustering output. Following the data distribution, one can assign a class label to

each data point. The target of the clustering system can then be correspondingly

interpreted as to replicate the underlying class structure through unsupervised

learning. In an optimal clustering output, data points with the same class labels

are clustered into the same cluster and data points with different class labels appear

in different clusters.

To evaluate the degree of the conformity of the output clusters with respect to

the predefined classes, we applied the entropy concept. In various science domains,

entropy is widely used to evaluate the disorder or randomness in a closed system.

The two validity measures based on class conformity are summarized below.

5.3.1 Cluster entropy

Boley [Bol98] introduced an information entropy approach to evaluate the quality

of a set of clusters according to the original class labels of the data points . For

each cluster Ci, a cluster entropy Enci is computed by

Enci = −
∑

j

n(lj , ci)

n(ci)
log

n(lj, ci)

n(ci)
(5.5)

where n(lj, ci) is the number of the samples in cluster Ci with a predefined label

lj and n(ci) =
∑

j n(lj , ci) is the number of samples in cluster Ci.

Understandably, if an optimal output cluster contains samples that come from

the same class, the cluster entropy of this cluster has a minimal value of 0. In

addition, since the external criteria, i.e. predefined classes, is assumed to be the

optimal clustering solution, that is, to have optimal intra-class compactness and
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inter-class separation, the cluster entropy measure thus reflects the intra-cluster

compactness of the corresponding cluster.

To obtain an global evaluation of the whole clustering solution, the overall

cluster entropy Enc is given by a weighted sum of individual cluster entropies by

Enc =
1

∑

i n(ci)

∑

i

n(ci)Enci. (5.6)

The cluster entropy reflects the quality of individual clusters in terms of ho-

mogeneity of the data points in a cluster. It however does not measure the com-

pactness of a clustering solution in terms of the number of clusters generated. A

clustering system that generates many clusters would tend to have very low clus-

ter entropies but is not necessarily desirable. To counter this deficiency, we use

another entropy measure below to measure how data points of the same class are

represented by the various clusters created.

5.3.2 Class entropy

For each class Lj , a class entropy Enlj is computed by

Enlj = −
∑

i

n(lj , ci)

n(lj)
log

n(lj, ci)

n(lj)
(5.7)

where n(lj , ci) is the number of samples in cluster Ci with a predefined label lj and

n(lj) =
∑

i n(lj, ci) is the number of the samples with class label lj . The overall

class entropy Enl is then given by a weighted sum of individual class entropies by

Enl =
1

∑

j n(lj)

∑

j

n(lj)Enlj. (5.8)
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Similar to above, it is understandable that if members in a predefined class

are grouped in the same output cluster, the corresponding class entropy reaches

a minimal value of 0. Correspondingly, class entropy reflects the separation of

output clusters. In a particular case that a clustering algorithm generates one

output cluster only, the class entropy has a indicative minimal value of 0, but

is not desirable. Hence, we follow the identical paradigm for the combination of

cluster compactness and cluster separation and define a combined overall entropy

measure to facilitate our comparison:

Ens(β) = β · Enc + (1 − β) · Enl (5.9)

where β ∈ [0, 1] is the weight that balances the two measures.

5.4 Efficacy of the Cluster Validity Measures

To study the efficacy of the cluster validity measures, we carried out a number of

controlled experiments on several synthetic data sets [HTTS03]. Tasks on these

data sets include identifying the optimal number of clusters in the data set and

choosing of a pattern proximity measure suitable for the specific data distribu-

tion. Batch K-Means (Section 2.3.1) is used as the clustering algorithm in the

experiments.

Since the clustering output of K-Means can be affected by the initialization of

cluster prototypes, we adopted the commonly used statistical validation paradigm

in our experiments. Given a clustering task, we repeat the experiments for ten

times. In each experiment, the presenting sequence of the input data is reshuffled

and K-Means is trained to convergence. Based on the observation values from the
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ten runs, the means and the standard deviations are reported. t-test is used to

validate the significance of the comparative observations across the ten runs.

5.4.1 Identification of the Optimal Number of Clusters

Our experiments on the synthetic data set as shown in Figure 5.1 evaluated the

K-Means clustering method using the Euclidean distance. The synthetic data set

contains 334 data points, each is a two-dimensional vector of values between 0

and 1. Our task is to identify the optimal number of clusters on the data set

in an unsupervised way. Here the optimal solution refers to the result that best

reflects the data distribution and matches the user’s post-validation on the data

set, in terms of intra-cluster compactness and inter-cluster separation of the output

clusters.

The paradigm of the experiment is summarized below. We apply the K-Means

method on the data set using K values ranging from 2 to 8. For each K value, we

evaluate the quality of the output using the measures based on cluster compactness

(Cmp) and cluster separation (Sep). This enables us to observe the change of the

score values according to the change of K. Intuitively the most satisfactory quality

score indicates the best partition of the data set, while the corresponding K value

suggests the optimal number of clusters on the data set.

Figure 5.2 depicts the change of cluster compactness, cluster separation as well

as overall cluster quality by varying K from 2 to 8. 2σ2 = 0.25 is used for the

ease of evaluation in Equation 5.3 and β = 0.5 for Ocq() is used to give equal

weights to cluster compactness and cluster separation. On each parameter setting,
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Figure 5.1: A synthetic data set used in the experiments.
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Figure 5.2: Cluster compactness, cluster separation, and overall cluster quality of

K-Means on the synthetic data set in Figure 5.1. The locally minimal value of

overall cluster quality Ocq(0.5) at K = 5 suggests the optimal number of clusters

on the data set.

the experiments are repeated for ten times, each using a different randomization

of initial cluster seeds. To obtain a clear illustration, only the mean values of the

ten observations over each measure are plotted in the figure while the standard

deviations are not reported.

It is noted that, when K increases, the cluster compactness score gradually

decreases and the cluster separation score generally increases. This is due to the

nature that a larger number of partitions on the same data space generally tends

to decrease the size of each partition (which causes higher compactness in each

partition) as well as the distances among the partition centroids (which causes

lower separation of partitions). However, as an notable exception, the cluster
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separation shows a locally minimal value at K = 5, while the decreasing trend

of cluster separation at K = 5 is significantly different from those at different K

values. The overall cluster quality also shows a locally minimal value at K = 5.

This suggests that the optimal number of clusters (in terms of Euclidean similarity)

is five. The result is supported by human inspection of the data in Figure 5.1.

The drawbacks of this experimental paradigm however are notable. First, it is

not easy to suggest a proper range of K values for the iterative testing if the user

lacks a prior estimation of the data distribution. In addition, both the σ value for

the calculation of cluster separation and the weight β for the calculation of overall

cluster quality are subjectively determined. This shows that human interaction

and prior knowledge on the problem domain is still required for the use of these

evaluation measures.

5.4.2 Selection of Pattern Proximity Measure

Our experiments on the synthetic data set as shown in Figure 2.5 utilize the qual-

ity measures based on class conformation to evaluate two variations of ART-C

networks, namely fuzzy ART-C (based on Fuzzy ART) and ART-C 2A (based

on ART-2). While fuzzy ART-C groups input data according to nearest hyper-

rectangles, ART-C 2A groups input data according to nearest neighbors in terms

of cosine similarity. Our comparative experiments attempt to discover which of

these two pattern proximity measures is more capable of identifying the data dis-

tribution on the problem domain and therefore produces clustering output with a

higher match with the user intuition.
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In order to evaluate the clustering quality using cluster entropy, class entropy,

and overall entropy, we pre-assigned each data point with a class label based on our

observation. There are four different class labels assigned to the 250 data points

in the collection, each label corresponding to a string-shaped class in Figure 2.5.

Our experiments compared fuzzy ART-C and ART-C 2A with a preset con-

straint (C) of 4, each using a standard set of parameter values. Table 5.1 sum-

marizes the statistics of the comparison results. While ART-C 2A is capable of

producing a better balanced set of cluster entropy and class entropy scores (which

indicates a better balance of cluster homogeneity and class compactness), the clus-

ter entropy score of fuzzy ART-C is three times higher than that of ART-C 2A in

our experiment. Although the class entropy score of fuzzy ART-C is slightly lower

than that of ART-C 2A, the weighted overall entropy Ens(0.5) of fuzzy ART-C is

significantly higher than that of ART-C 2A due to the high cluster entropy value.

This indicates that the cosine similarity based paradigm is more suitable than the

nearest hyper-rectangle based paradigm on the tested problem domain. This result

is not surprising to us, as prior comparison studies on hyper-rectangle methods also

showed that they perform well only when the data boundaries are roughly parallel

to the coordinates axes [WD95].

These preliminary experiments show that both the cluster distribution and class

conformity based cluster validity measures proposed in this chapter are capable of

detecting the differences between two sets of clustering results. The comparison

results with these evaluation measures are valuable for the studies of various cluster

analysis approaches.
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Table 5.1: Cluster entropy, class entropy, and overall entropy of ART-C 2A and

fuzzy ART-C on the synthetic data set in Figure 2.5. Both methods work on

C = 4. All values are shown with the means and the standard deviations over ten

runs, each using a different randomization of input order.

Method Enc Enl Ens(0.5)

ART-C 2A 0.1483 ± 0.0173 0.1142 ± 0.0225 0.1312 ± 0.0092

fuzzy ART-C 0.5800 ± 0.0037 0.0337 ± 0.0064 0.3068 ± 0.0020
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CHAPTER 6

CASE STUDIES ON REAL-LIFE PROBLEMS

6.1 The Gene Expressions

The gene expression is one of the major research topics in the bioinformatics do-

main. Gene expressions quantify the expression levels of individual genes, reflected

by the amount of mRNA or protein products produced by the cell. Traditional

methods in molecular biology generally work on a “one gene in one experiment”

basis. In the recent years, a new technology named DNA microarray (also termed

biochip, DNA chip and gene array in the literature) raised great interests among

biologists. This technology promises to monitor the whole genome on a single chip

so that researchers can have a better picture of the interactions among thousands

of genes simultaneously.
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An array is an orderly arrangement of samples to minimize the risk of errors

during experiments. DNA microarray are fabricated by high-speed robotics that

allow massively parallel gene expression and gene discovery studies. An experiment

with a single DNA chip can provide researchers information on thousands of genes

simultaneously (Figure 6.1). The primary goal of microarray experiments is to

generate expression information for every gene in the array, under some set of

conditions. Figure 6.2 illustrates the work flow of a typical microarray experiment

[Kel99]. Expression may be studied in

• Different tissues;

• Different developmental stages;

• Different genotypes;

• Different treatments;

• Different times after a treatment.

The main technologies for producing DNA microarrays include the the cDNA

microarray [EB99], Affymatrix GeneChip [LGL99] and SAGE methods [VZVK95].

The first method measures relative levels of mRNA abundance between different

samples, while the last two measure absolute levels [LGG01]. Regardless of the

experimental method, the microarray data obtained in an experiment is a set of

multidimensional vectors (arrays), each vector corresponding to a gene, whereas

each element of the vector corresponding to a different condition.

There are two major application forms for the DNA microarray technology:
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Figure 6.1: The image of a DNA chip as published at http://www.gene-

chips.com/sample1.html. The intensity and color of each spot encode information

on a specific gene from the tested sample. In the original image, the background

is dark and the spots are in different light colors. The image colors are reversed

here for a better print effect on gray-scale printers.
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Figure 6.2: The work flow of a typical microarray experiment.

1. Identification of sequence (gene / gene mutation).

2. Determination of expression level (abundance) of genes.

The principle for sequence identification is base-pairing (i.e., A-T and G-C for

DNA; A-U and G-C for RNA) or hybridization. The microarray provides a medium

for matching known and unknown DNA samples based on base-pairing rules and

automating the process of identifying the unknowns. More studies on the gene

expressions focus on the clustering of genes similarities in terms of their expression

profiles. This is used to determine the proteins that are expressed together under

different cellular conditions [BK00, SEWB00, THE+99]. The knowledge discovered

by the clustering process is of great value for various molecular biological processes,

such as correlating expression patterns as well as mapping expressions data to se-
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quence, structural and biochemical data. The applications of these studies include

disease diagnosis, drug discovery and toxicological research, etc.

The clustering algorithms being applied to analyze gene expression data include

K-Means [MCA+98], hierarchical clustering [ESBB98], graph theory based clus-

tering [BDSY99], naive Bayesian clustering [BF01] and Gaussian mixture model

based clustering [YFRR01]. However, there are rare studies of neural networks

on gene clustering besides a few applications of the self-organizing map (SOM)

[HVD01, TSM+99].

6.1.1 The Rat CNS Data Set

The rat CNS data is generated by Wen et al. [WFM+98] for the study of the

nature of the complex self-organizing processing underlying mammalian central

nervous system (CNS) development. It contains the expressions of 112 rat genes

during CNS development using the RT-PCR protocol [sWMB95]. Each array

contains expressions on nine time points, covering the embryonic development

phase (days 11 through 21, namely E11, E13, E15, E18 and E21), the postnatal

development phase (days 0 through 14, namely P0, P7 and P14) and the adult

phase (P90, or A). Prior study by Wen et al. on the data set using the FITCH

software, which is based on K-Means, summarized five major waves of the gene

expression patterns (Figure 6.3). With the exception of the Constant wave, they

have shown high correlation with the four major functional categories identified

using biological domain knowledge, namely Neuroglial Markers, Neurotransmitter

Receptors, Peptide Signaling and Diverse.
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Figure 6.3: The gene expression patterns of the rat CNS data set discovered by

Wen et al. The x-axis marks the different time points. The y-axis indicates the

gene expression levels.

The objective of our experiments on the rat CNS data set is to evaluate the

clustering efficacy of ART-C algorithm. We applied ART-C 2A to the clustering of

the microarrays and compared the output of ART-C 2A with that of the FITCH

software as reported in Wen’s study. ART-C 2A is adopted due to the cosine

similarity it used for evaluation of pattern proximity. The cosine similarity is most

closely related to the K-Means algorithm adopted by the FITCH software. The

data set on the public domain have been well selected and well normalized and

hence is directly used without any preprocessing. The small size and the relatively

distinct expression patterns of this data set enabled us to validate ART-C 2A’s

clustering results via visual inspection.

We adopted a standard set of parameters for ART-C 2A. The learning rate was
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initialized with 0.05. We applied a simple threshold-linear function for the learning

rate fading such that the learning rate η(t+1) = 0.9η(t) if the network’s recognition

accuracy reached a threshold of 0.8. The algorithm was said to reach convergence

if the cluster assignment for the input samples does not show a relative change

of 0.5%. While Wen et al.’s study discovered five major “waves”, five was not

necessarily considered as the “optimal number of clusters” in the previous study

[WFM+98]. We tried different constraint (C) settings for ART-C 2A, and C = 12

was found to generate the most satisfactory results.

Figure 6.4 depicts the mean expression pattern of each cluster generated by

ART-C 2A. Error bars corresponding to the deviations to the mean expressions are

not plotted for a clearer illustration. The gene expressions grouped in each cluster

are observed to have close similarity to each other. Each pattern has showed a

distinct group of gene expressions, identified by the variances of the expressions

across all time points and the time point corresponding to the peak level. The

ART-C 2A output is observed to have close relevancy with the output of the

FITCH software as reported by Wen et al. The mapping of the clusters generated

by ART-C 2A to the five major waves discovered by FITCH is summarized in

Table 6.1.

To further validate the ART-C 2A clusters, we investigated the correlation of

genes in each cluster (Table 6.2) with the major gene functional categories pre-

viously identified through human inspection (Table 6.3) [WFM+98]. With the

exception of cluster 1, which encodes a max number of genes in Peptide Signaling

and Diverse categories with relatively constant expressions (constant expressions

normally are not of interests to biologists), the majority of the most clusters are
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Figure 6.4: The gene expression patterns of the rat CNS data set generated by

ART-C 2A. The X-axis indicates different time points with different labels. N

indicates the number of genes being clustered in each cluster.
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Table 6.1: Mapping of the gene patterns generated by ART-C 2A to the patterns discovered by FITCH. NA and NF indicate

the number of gene expressions being clustered in ART-C 2A’s and FITCH’s grouping respectively. NC indicates the number

of common gene expressions that appear in both ART-C 2A’s and FITCH’s grouping.

Cluster Pattern

ART-C 2A NA FITCH NF NC Interpretation

Clusters 6 - 10 25 Wave 1 27 19 Peak level during early E phase.

Cluster 2 23 Wave 2 20 14 Ascending levels during E phase and relatively con-

stant levels during P and A phases.

Clusters 3 - 5 22 Wave 3 21 13 Peak level during late E and early P phases.

Clusters 11 - 12 13 Wave 4 17 12 Ascending levels across all time points.

Cluster 1 29 Constant Wave 21 18 Relatively constant levels across all time points.
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dominated by genes of a single functional category. The best result is given by

clusters 2 - 5, which clearly recognize the functional group Neurotransmitter Re-

ceptors. It is noted that, although cluster 6 and cluster 8 show relatively similar

patterns (grouped into Wave 1 in Wen et al’s study), the majority of the genes in

these clusters actually corresponded to two different gene functional groups Pep-

tide Signaling and Neuroglial Markers. This shows that ART-C 2A is capable of

identifying subtle differences between the sets of two patterns.

It is interesting that although clusters 8 and 11 present very different patterns,

they actually corresponded to the same functional group Neuroglial Markers. In

addition, several small clusters, especially clusters 7, 9 and 10 clearly identify a

number of noises who did not follow the correlation between their functions and

expressions in the main stream. This reflected the underlying complexity of the

gene expression data.
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Table 6.2: The list of genes grouped in the clusters generated by ART-C 2A.

Cluster Genes in the cluster

1 GAP43, GAT1, ODC, GRa1, GRb3, BDNF, CNTF, trkB, trkC,

CNTFR, PTN, PDGFa, FGFR, TGFR, Ins2, IGF I, IGFR1, CRAF,

IP3R1, IP3R2, cyclin A, H2AZ, cjun, TCP, actin, DD63.2, SOD, CCO1,

CCO2

2 MAP2, synaptophysin, neno, S100, pre-GAD67, GAD67, ACHE, GRa2,

GRa3, GRa5, GRb1, GRg2, GRg3, mGluR3, mGluR5, mGluR7,

NMDA1, NMDA2B, nAChRa7, mAChR2, 5HT1c, 5HT2, statin

3 L1, NFL, GAD65, NOS, GRa4, mGluR8, NMDA2D, nAChRa3,

nAChRa4, mAChR3, 5HT1b, EGFR, InsR, SC2

4 mGluR4, NMDA2C, nAChRa2, EGF

5 GRb2, mGluR2, mGluR6, 5HT3

6 cellubrevin, nAChRa6, NT3, MK2, GDNF, PDGFR, IGF II, IGFR2,

IP3R3, cyclin B, Brm, SC1

7 nAChRd, PDGFb, SC6

8 nestin, G67I80/86, G67I86, TH, nAChRa5, SC7

9 nAChRe, trk

10 keratin, Ins1

11 NFH, GFAP, MOG, ChAT, GRg1, mAChR4, bFGF, aFGF, cfos

12 NFM, mGluR1, NMDA2A, NGF
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Table 6.3: The correlation between the gene clusters discovered by ART-C 2A

and the functional gene categories identified through human inspection. N is the

number of genes in each cluster. NM , NR, PS and DV are the numbers of

genes in functional category Neuroglial Markers, Neurotransmitter Receptors, Pep-

tide Signaling and Diverse respectively. Boldface numbers identify the dominant

functional category in each cluster.

Cluster N NM NR PS DV

1 29 3 2 12 12

2 23 7 15 0 1

3 14 4 7 2 1

4 4 0 3 1 0

5 4 0 4 0 0

6 12 1 1 6 4

7 3 0 1 1 1

8 6 4 1 0 1

9 2 0 1 1 0

10 2 1 0 1 0

11 9 4 2 2 1

12 4 1 2 1 0

Total 112 25 39 27 21
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6.1.2 The Yeast Cell Cycle Data Set and The Human

Hematopoietic Data Set

To understand the characteristics of different learning algorithms in a quantitative

way, our experiments compared the performance of ART-C 2A, ART, SOM, online

K-Means and batch K-Means on two gene expression data sets, namely the yeast

cell cycle data set and the human hematopoietic differentiation data set. ART-C

2A, ART 2A, SOM and online K-Means are compared side by side as all they

are based on incrementally competitive learning and could generate a single hard

partition of the input space for the quantitative comparison. Batch K-Means is

also considered in the comparable experiments are it is closely related to online

K-Means.

Data Pre-processing

The yeast cell cycle data set (YEAST)1 of Cho et al. [CCW+98] consists of 6,601

genes expressions, each with 17 conditions. The 17 conditions are evenly divided

into two panels, which correspond to two cell cycles, with the 9th condition as the

intermediate condition between the two cell cycles.

The human hematopoietic data set (HL60 U937 NB4 Jurkat)2 of Tamayo et

al. [TSM+99] combines expression data from four different cell lines: HL-60 and

U937, two myeloid cell lines which undergo macrophage differentiation in response

to TPA; NB4, an acute promyelocytic leukemia cell line that undergoes neutrophilic

1The YEAST data set is available via http://sgdlite.princeton.edu/download/yeast datasets/.
2The HL60 U937 NB4 Jurkat data set is available via http://www-genome.wi.mit.edu/cgi-

bin/cancer/datasets.cgi.
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differentiation in response to all-trans retinoic acid (ATRA) and Jurkat, a T-cell

line that acquires many hallmarks of T-cell activation in response to TPA. The

data set contains a total of 17 conditions: 4 time points for HL60 (0, 0.5, 4 and

24 hours), 4 time points for U937 (0, 0.5, 4 and 24 hours), 5 time points for NB4

(0, 5.5, 24, 48 and 72 hours) and 4 time points for Jurkat (0, 0.5, 4 and 24 hours).

There are a total of 6,416 gene expressions in the data set.

Both YEAST and HL60 U937 NB4 Jurkat data sets come in raw format and

hence require appropriate preprocessing before they are used for the clustering

study.

It is a common understanding by the biologists that the gene expressions with

large variance across different conditions are of more study interests than constant

ones. On the other hand, observations with too large variance may be due to exper-

imental error and are not necessarily desirable. As such, the first preprocessing step

of our experiments is to eliminate the relatively constant gene expressions from the

database and regulate the variance of each gene expression. We follow a common

preprocessing procedure [TSM+99] to apply a variance filter on each gene expres-

sions. The variance filter adopts several parameters including min, max, α and

γ. It first regulates the M-dimensional gene expression x = (x1, . . . , xi, . . . , xM)

according to

xnew
i =

{

max if xi ≥ max,

min if xi ≤ min,

xi otherwise.

(6.1)

Then the filter eliminates gene expressions which do not show a relative change of

γ times and an absolute change of α units across all conditions. That is, a gene
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expression will pass the filter only if

max{xi} − min{xi} ≥ α, and

max{xi}/min{xi} ≥ γ.
(6.2)

With the parameter set min = 20, max = 20, 000, α = 150 and γ = 3 as suggested

by Tamayo [TSM+99], 1,109 expressions from the YEAST data set and 1,423

expressions from the from HL60 U937 NB4 Jurkat data set passed the filter.

The second step of the preprocessing is to normalize the gene expressions to

avoid the output clusters being dominated by vectors with significant length. For

this purpose, we follow the practice of [YHR00] and apply the normalization with

standard normal distribution within each observation panel of each gene expression.

That is, for each elements x1, . . . , xi, . . . , xN in an observation panel (corresponding

to each yeast cell’s life circle, or each cell line of the human hematopoietic data),

xnew
i =

xi − x

σ(x)
, (6.3)

where x = 1
N

∑

i xi is the mean and σ(x) =

√

∑

i
(xi−x)2

N−1
is the standard deviation.

For the ease of the normalization, the intermediate 9th condition of the YEAST

data set was excluded. This makes the actual dimension of the being used data to

be 16.

Parameter Settings and Evaluation Methodology

All five clustering algorithms, namely ART-C 2A, ART 2A, SOM, online K-Means

and batch K-Means are implemented in-house with C++ and share a common set

of functions for vector manipulation. K-Means (both online and batch) and SOM

Machine Learning Methods for Pattern Analysis ... Ji He



Case Studies on Real-Life Problems 121

utilized Euclidean distances. Their reference clusters were initialized with random

vectors by slightly perturbing from the mean vector of the input set.

SOM used a two-dimensional square map with corresponding square topologi-

cal neighborhood (resonance domain). Its neighborhood size was initialized with

half the total number of nodes. Gaussian neighborhood function was used. Var-

ious neighborhood shrinking strategies were tried before hand and the Gaussian

shrinking function, which produced slightly better overall performance than oth-

ers, was used. In addition, in each set of experiments dealing with different data

set and different output map size, the Gaussian constants for these functions were

fine-tuned in order to obtain an locally optimal output.

The learning rates of ART-C 2A, ART 2A, online K-Means and SOM were

initialized with 0.05. We applied a simple threshold-linear function for the learning

rate fading such that the learning rate η(t+1) = 0.9η(t) if the network’s recognition

accuracy reached a threshold of 0.8. All the five algorithms were said to reach

convergence if the cluster assignment to the input samples did not show a relative

change of 0.5%.

We utilized the Euclidean distance for the evaluation of cluster compactness

(Cmp) and cluster separation (Sep). 2σ2 = 1.0 as in Equation 5.3 was used to

simplify our evaluation. On each data set, we evaluated the five algorithms on

a varying number of output clusters. To obtain a statistically valid comparison,

a batch of ten experiments using the same parameters for each algorithm were

conducted. Each experiment randomly reshuffled the sequence of the input and

trained the system to converge. The mean and the standard deviation of each eval-

uation measure over the ten experiments are reported. t-test was used to evaluate
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the statistical significance of our comparison observation when appropriate.

Besides the cluster validity, we are particularly interested in the learning ef-

ficiency of each algorithm. To compare their learning efficiency, the number of

learning iterations and the total CPU time cost being used by each algorithm to

reach convergence were benchmarked and reported.

We note that the number of output clusters affects the score of all the evaluation

measures used in our experiments. Strictly, two systems are not comparable if they

work on different number of output clusters. The difficulty in our experiments is

to suggest an appropriate ρ value for ART 2A in order to obtain a fixed C (such as

9 or 25) number of output clusters over a specific input sequence. To simplify our

experiments, we manually tried various ρ values on one random input sequence,

then used the ρ value which produced C output clusters on this input sequence

in all the ten experiments. While on different input sequences the actual number

of ART 2A output clusters may slightly vary from C, we found the variance was

within an acceptable level that does not affect the validity of our comparison.

Evaluation Results

Both the two gene expression data sets are small scale, have a small number of

features, and are densely distributed. Prior studies are capable of identifying a few

number of expression patterns on these data sets only. Therefore on each data set,

we set the target number of the output clusters to be relatively small. Table 6.4

and Table 6.5 report the five algorithms’ cluster validity measures based on cluster

distribution, together with the number of iterations to reach convergence and the
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CPU time costs, when C = 9 and C = 25 (i.e. K = 9 and K = 25 respectively for

K-Means), which correspond to a 3x3 and a 5x5 map in SOM respectively.

In all four batches of experiments, the cluster validity measures produced by

ART-C 2A, in terms of both cluster compactness and cluster separation, were

very close to those of ART 2A. Specifically, t-test did not suggest any significant

difference between our observations on each evaluation measure.

In terms of cluster compactness, the validity measures of these five algorithms

did not show significant differences in one the two data sets with C = 9. However,

with C = 25, both online K-Means and batch K-Means produced significantly lower

scores than the rest trio. In general, across these four batches of observations,

online K-Means and batch K-Means slightly outperforms ART-C 2A and ART

2A in terms of cluster compactness. SOM did not seem to produce outstanding

performance compared to the other four algorithms. In terms of cluster separation,

the validity measures of both ART-C 2A and ART 2A were significantly lower

than those of the other three algorithms. The difference among the latter three

algorithms were not significant in our experiments.

In terms of efficiency, ART-C 2A incurred slightly more computational cost

than ART 2A. With C = 9, the numbers of iterations used by ART-C 2A and

ART 2A were relatively close to those of SOM and Online K-Means, which in turn

were significantly fewer than that of batch K-Means. With C = 25, both ART-

C 2A and ART 2A showed a significantly higher efficiency than online K-Means,

batch K-Means and SOM, in the number of iterations as well as the CPU time

cost. It deserves to point out that, on both data sets, the average CPU time cost

of ART-C 2A on each iteration is nearly linear to the number of output clusters C
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Table 6.4: Experimental results for ART-C 2A, ART 2A, SOM, Online K-Means and Batch K-Means on the YEAST data

set, when the number of clusters C were respectively set to 9 and 25. I, T , Cmp, Sep and Ocq indicate the number of learning

iterations, the cost of training time (in ms), cluster compactness, cluster separation and overall cluster quality respectively.

All values are shown with the mean and the standard deviation over ten runs.

C = 9 Method I T (ms) Cmp Sep Ocq(0.5)

ART-C 2A 7.5 ± 2.3 134 ± 43 0.7562 ± 0.0326 0.1416 ± 0.0063 0.4489 ± 0.0183

ART 2A 6.8 ± 3.1 112 ± 52 0.7595 ± 0.0206 0.1422 ± 0.0071 0.4509 ± 0.0118

SOM 8.9 ± 3.0 169 ± 44 0.7749 ± 0.0324 0.1619 ± 0.0103 0.4684 ± 0.0210

Online K-Means 6.5 ± 1.3 95 ± 18 0.7780 ± 0.0035 0.1512 ± 0.0031 0.4646 ± 0.0006

Batch K-Means 12.3 ± 3.1 144 ± 36 0.7665 ± 0.0073 0.1639 ± 0.0063 0.4652 ± 0.0026

C = 25 Method I T (ms) Cmp Sep Ocq(0.5)

ART-C 2A 7.3 ± 3.5 315 ± 176 0.7059 ± 0.0207 0.1658 ± 0.0045 0.4359 ± 0.0102

ART 2A 6.2 ± 3.1 245 ± 117 0.7240 ± 0.0183 0.1655 ± 0.0050 0.4448 ± 0.0087

SOM 11.1 ± 3.2 597 ± 173 0.6745 ± 0.0218 0.1983 ± 0.0138 0.4364 ± 0.0174

Online K-Means 14.0 ± 1.9 535 ± 74 0.5592 ± 0.0228 0.1834 ± 0.0047 0.3713 ± 0.0122

Batch K-Means 12.8 ± 1.8 387 ± 52 0.6496 ± 0.0198 0.1850 ± 0.0046 0.4173 ± 0.0113
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Table 6.5: Experimental results for ART-C 2A, ART 2A, SOM, Online K-Means and Batch K-Means on the

HL60 U937 NB4 Jurkat data set, when the number of clusters C were respectively set to 9 and 25. I, T , Cmp, Sep

and Ocq indicate the number of learning iterations, the cost of training time (in ms), cluster compactness, cluster separation

and overall cluster quality respectively. All values are shown with the mean and the standard deviation over ten runs.

C = 9 Method I T (ms) Cmp Sep Ocq(0.5)

ART-C 2A 8.4 ± 6.3 178 ± 135 0.7062 ± 0.0311 0.1627 ± 0.0147 0.4345 ± 0.0153

ART 2A 6.8 ± 3.0 132 ± 57 0.7090 ± 0.0314 0.1551 ± 0.0133 0.4321 ± 0.0163

SOM 7.0 ± 2.4 164 ± 37 0.7327 ± 0.0407 0.1917 ± 0.0233 0.4622 ± 0.0320

Online K-Means 7.3 ± 1.9 129 ± 34 0.7188 ± 0.0064 0.1903 ± 0.0133 0.4546 ± 0.0077

Batch K-Means 14.6 ± 5.1 204 ± 72 0.7168 ± 0.0083 0.1897 ± 0.0120 0.4532 ± 0.0079

C = 25 Method I T (ms) Cmp Sep Ocq(0.5)

ART-C 2A 8.3 ± 4.9 430 ± 258 0.6267 ± 0.0189 0.1742 ± 0.0071 0.4004 ± 0.0079

ART 2A 6.6 ± 4.4 302 ± 216 0.6573 ± 0.0303 0.1736 ± 0.0061 0.4154 ± 0.0140

SOM 10.0 ± 4.2 641 ± 213 0.6541 ± 0.0473 0.2299 ± 0.0307 0.4420 ± 0.0384

Online K-Means 14.0 ± 2.9 635 ± 130 0.5370 ± 0.0314 0.2141 ± 0.0075 0.3755 ± 0.0144

Batch K-Means 13.1 ± 2.6 482 ± 93 0.6069 ± 0.0121 0.2238 ± 0.0087 0.4154 ± 0.0083
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Table 6.6: ART-C 2A’s average CPU time cost on each learning iteration over the

YEAST and HL60 U937 NB4 Jurkat data sets. TPI is the CPU time cost per

iteration (in ms). TPI/C calculates the prorated time cost for each cluster. It

shows that on each data set, the TPI/C values for C = 9 and C = 25 are very

close. This indicates the time cost of ART-C 2A is nearly linear to C, which also

suggests that in the controlled experiments, the extra time cost of ART-C 2A’s

constraint reset process is not a dominate portion of the total time cost of ART-C

2A.

C = 9 C = 25

TPI (ms) TPI/C (ms) TPI (ms) TPI/C (ms)

YEAST 17.34 ± 5.13 1.93 ± 0.57 43.26 ± 16.96 1.73 ± 0.68

HL60 U937 NB4 Jurkat 21.65 ± 11.32 2.41 ± 1.26 52.15 ± 19.78 2.09 ± 0.79

(Table 6.6). This in practice shows that the extra time cost of the constraint reset

process is of minor impact to the ART-C 2A’s learning on these real-life data sets.

6.2 The Text Documents

Text documents may be one of the most widely seen data in the everyday life.

While text documents are common and natural to human, they feature in large

scale, large diversity and high ambiguity. This presents a great challenge to ma-

chine processing. Thus the text document domain has been serving as a test bed

for numerous multi-disciplinary research, including natural language processing,
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information extraction, information retrieval, knowledge and information manage-

ment, information visualization and data mining, particularly text mining.

Clustering techniques are of great value for various text analysis studies. Ap-

plications of clustering techniques have been seen in most of the above multi-

disciplinary studies. Our work on the text document domain focuses on the

methodology study. That is, we evaluate the efficacy as well as the efficiency

of the various algorithms on the text clustering problem, based on a common set

of text processing techniques in the literature.

6.2.1 The Reuters-21578 Text Document Collection

The Reuters-21578 (REUTERS) text document collection 3 was originally released

for evaluation of text categorization methods. The whole collection contains 21,578

English newswire articles residing with Reuters Ltd, each with varying document

length. The news articles are stored in ASCII text format and annotated with

SGML tags. The documents are further tagged into 135 categories (classes) based

on the economic content. A portion of the documents are labeled with multiple

categories. For documents in each category, there are further divided into training

and testing sets. Depending on the different splitting criteria (such as ModLewis,

ModApte and ModHayes etc.), there may be varying portion of unused documents

(i.e. neither in training set nor in testing set). The class labels available on

each document enable keyword feature selection and quality evaluation using class

conformity based measures in our experiments.

3The REUTERS corpus is available via http://kdd.ics.uci.edu/databases/reuters21578/
reuters21578.html.
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Data Pre-processing

Our experiments adopt the documents used by the ModApte split, which screens

out 8,676 documents from the collection and makes use of the remaining 12,902

documents. For the ease of our experiments, we adopt a sub-set of the collection

that contains the training and testing documents from the top ten categories,

in terms of the number of documents in a category. Documents with multiple

class labels were duplicated so that each copy was associated with one class label

accordingly.

A pre-requisite of text processing is to extract a suitable feature representa-

tion of the documents. Typically, word stems are suggested as the representation

units by information retrieval research [Cav94, vR79, TWC02]. We adopt the

bag-of-words representation of document features, which projects the document

feature into a discrete keyword space and hence converts the feature of the free

text documents into vector format [ST00].

To select the keyword features, CHI (χ) statistics is adopted as the ranking

metric in our experiments. A prior study on several well-known corpora includ-

ing Reuters-21578 and OHSUMED has showed that CHI statistics generally out-

performs other feature ranking measures, such as term strength (TS), document

frequency (DF), mutual information (MI) and information gain (IG) [YP97].

The CHI statistics that works on the binary category splitting is described as

below. For a word token t, its CHI measure is defined by

CHI(t) =

√

√

√

√

(npt+ + nnt+ + npt− + nnt−)(npt+nnt− − nnt+npt−)2

(npt+ + npt−)(nnt+ + nnt−)(npt+ + nnt+)(npt− + nnt−)
(6.4)
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where npt+ and nnt+ are the number of documents in the positive category and the

negative category respectively in which the token t occurs at least once; and npt−

and nnt− are the number of documents in the positive category and the negative

category respectively in which the token t doesn’t occur. A higher CHI measure

indicates a greater correlation between the word token and the positive/negative

category. A token with higher CHI measure is hence more suitable for presenting

the feature of the documents based on the current category splitting.

The CHI feature selection is carried out on the ten categories individually. For

each category, we treat it as the positive category and the other nine categories as

the negative category. Keywords based on this splitting are then selected through

threshold cut-off. Keywords for all ten category splittings are finally combined and

the duplications are removed. With a preset threshold χ ≥ 15, we obtained 365

keywords as the features.

During feature extraction, the document is first segmented and converted into

a keyword frequency vector (tf1, tf2, . . . , tfD), where tfi is the in-document term

frequency of keyword wi and D is the number of keywords being selected (i.e.

the dimension of the input vector). A term weighting method based on inverse

document frequency (IDF) [SB88] and the Euclidean normalization is then applied

on the frequency vector to produce the keyword feature vector

x1 = ℜ(x0) = ℜ((x0
1, x

0
2, . . . , x

0
D)), (6.5)

where ℜ is defined by Equation 4.2 and x0
i is computed by

x0
i = (1 + log2 tfi) log2

n

ni

, (6.6)

where n is the number of documents in the whole document set and ni is the

number of documents in which the keyword wi occurs at least once. During feature

Machine Learning Methods for Pattern Analysis ... Ji He



Case Studies on Real-Life Problems 130

Table 6.7: The statistics of the top-10-category subset of the Reuters-21578 text

collection.

Category No. of keywords No. of docs (excl. null)

acq 43 2,319

corn 17 237

crude 64 577

earn 21 3,569

grain 35 582

interest 30 477

money-fx 65 715

ship 52 285

trade 79 486

wheat 17 283

Total no. of keywords (excl. dup.) 365

Total no. of docs (excl. null) 9,530

extraction it is also necessary to remove the null vectors (i.e. documents with

tfi = 0 for all i) from the collection as they present no useful information on the

document content.

The final document collection used in our benchmark thus contains 9,530 vec-

tors, each being 365-dimensional. The statistics of the data set is summarized in

Table 6.7.
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Evaluation Results

The five algorithms being studied in our experiments, namely ART-C 2A, ART 2A,

SOM, online K-Means and batch K-Means, adopted the same parameter settings

as those in Section 6.1.2.

To obtain a better understanding of each algorithm’s learning efficiency, we

tested them on ten subsets of the REUTERS data set constructed as follows.

Documents from each class were evenly split into ten folds. The ith subset used

in our experiments contained document folds 1, . . . , i from each category. In this

way, all the ten subsets used in our experiments had nearly identical document

class distribution, while the number of data samples in each subset varied from

957 to 9,530.

The well annotated category (class) labels available on the REUTERS data set

enable the evaluation of cluster validity using class conformity based measures. As

such, the cluster validity measures were evaluated using both cluster distribution

and class conformity. In addition, we benchmark the learning efficiency of each

algorithm based on the number of iterations and CPU time cost used to reach

convergence.

In contrast to the two gene expression data sets, the REUTERS data set is rel-

atively high-dimensional, large-scale, noisy, and sparsely distributed. Therefore we

did not expect a cluster algorithm to replicate the exact ten clusters correspond-

ing to the labeled classes in our experiments. Instead, we tested the algorithms

on each subset with C = 25, C = 49 and C = 81 for ART-C, corresponding to

K = 25, K = 49 and K = 81 for K-Means and a 5x5, 7x7 and 9x9 map in SOM
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respectively. The comparative experiments with different C values showed very

similar results. Experimental results with C = 49 are reported in Figure 6.5.

It is interesting that all the five algorithms produced rather consistent cluster

validity scores in response to the varying number of input samples. This is proba-

bly due to the similar data distribution in each subset used in the experiments. In

terms of cluster compactness (Cmp), batch K-Means produced significantly better

scores than online K-Means and SOM in all the experiments, while the latter two

in turn performed slightly better than ART-C 2A and ART 2A in most experi-

ments. In terms of cluster separation (Sep), all the five algorithms performed quite

similarly in all experiments.

Using the set of validity measures based on class conformity, ART-C 2A and

ART 2A produced significantly higher cluster entropy (Enc) scores than those of

online K-Means, batch K-Means, and SOM, while the performance of the latter

three methods were quite close. As for class entropies (Enl), all algorithms pro-

duced similar scores. Interestingly, these observations generally harmonize with

the comparable results using the cluster distribution based measures.

In terms of efficiency, both ART-C 2A and ART 2A showed a significantly

higher efficiency than online K-Means. The CPU time cost of ART-C 2A and

ART 2A were about half of that of online K-Means. Online K-Means in turn

was significantly faster than batch K-Means and SOM in all experiments. This is

reflected by both the number of iterations and the CPU time cost.
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Figure 6.5: Experimental results for ART-C 2A, ART 2A, SOM, Online K-Means

and Batch K-Means on the Reuters-21578 data set with 49 clusters. I and T

indicate the number of learning iterations and the cost of training time (ms) re-

spectively. Sep, Cmp, and Ocq indicate cluster separation, cluster compactness,

and overall cluster quality respectively. Enc, Enl, and Ens indicate cluster en-

tropy, class entropy, and overall entropy respectively. All values are shown with

the mean and the standard deviation over ten runs.
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6.3 Discussions and Concluding Remarks

In the reported case studies, the ART-C 2A network has been successfully applied

to the clustering of the rat CNS gene expressions. The clustering results shows a

strong correlation between the gene functional groupings and the discovered clus-

ters. The results are reasonably comparable to those of FITCH, which is based

on K-Means, also reviewed in this thesis. This suggests that the appropriate use

of a clustering algorithm could greatly help in discovering the underlying knowl-

edge from real-life problems. Interestingly, the comparison between the ART-C 2A

output and the FITCH output shows different characteristics of these two learn-

ing algorithms. Generally speaking, the nature of ART-C 2A learning paradigm

that generates new recognition categories using distinct input samples tends to be

more capable of discovering differences among the sub-groupings. However, such

a learning habit, compared with FITCH’s, tends to be more sensible to noises and

outliers and may generate a greater number of distinct clusters that contain small

number of samples only. This in turn raises the risk of dead node (cluster that

contains no sample) generation.

The benchmark on the cluster validity of the five clustering algorithms, namely

ART-C 2A, ART 2A, SOM, online K-Means and batch K-Means, led to mixed

results. Generally speaking, the performance of ART-C 2A is quite comparable

to that of ART 2A. Compared with Online K-Means and Batch K-Means, on the

gene expression data sets, ART-C 2A and ART 2A output with comparable intra-

cluster compactness and better inter-cluster separation. While on the REUTERS

data set, ART-C 2A and ART 2A output with worse intra-cluster compactness

and comparable inter-cluster separation, both reflected by the cluster distribution
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based measures and class conformity based measures.

As another large family of self-organizing neural networks, SOM did not show

notably outstanding performance over others, even with the optimized parameter

settings in our controlled experiments. However readers shall note the application

domain of SOM is mainly on topology preserving mapping and visualization, rather

than clustering.

Additionally, we must point out that the observations above reflect the nature

of clustering. As a matter of fact, the ill-posed clustering problem “precludes an

absolute judgement as to the relative efficacy of all clustering techniques” [BA02a,

BA02b].

We are particularly interested in the relatively high efficiency of ART-C 2A and

ART 2A reflected in our controlled experiments. This is due to their capabilities of

dynamically initializing the reference clusters using distinct input samples through

the network’s mismatch reset cycle. Mismatch reset ensures stable encoding of new

samples through one scan. The constraint reset process in ART-C 2A also serves

to move cluster centroids quickly from a high density area to a low density area,

with minor impact to the learning history. In contrast, SOM and K-Means slowly

adjust at least one of their existing recognition patterns towards distinct inputs,

and require typically more than one learning iterations to stably encode there. This

is clearly reflected in our experiments as the numbers of iterations used by SOM

and K-Means are generally larger than those of ART and ART-C. However, when

working with too few number of output clusters, which corresponds to a very low

vigilance threshold, such an advantage is not notable in our experiments, as both

ART-C 2A and ART 2A work rather like the competitive learning in this scenario.
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As a general guideline, the advantages of ART and ART-C will be mostly suitable

for online learning of large scale, incremental input data.

Despite of the advantage above, readers shall note that both ART-C 2A and

ART 2A require a Euclidean normalization on the input and category represen-

tation in order to avoid category proliferation. As such, the input vector length

information is ignored by the networks. This limits the application of ART-C 2A

and ART 2A to the problems where the input vector length information is not of

critical importance.

As our concluding remarks, the ART-C learning paradigm retains the efficient

cluster creation capability of ART, and allows a user to directly control the number

of the output clusters by imposing a constraint on ART category learning. The

constraint reset mechanism of ART-C adaptively adjusts the network’s vigilance

threshold which guides the network’s learning and redistributes the recognition

categories to satisfy the constraint. As such, unlike a conventional ART module

which requires prior knowledge in estimating an appropriate vigilance parameter,

the knowledge in estimating an optimal number of clusters over the data set is

required by an ART-C module. We consider this to be a good alternative to the

conventional ART module and is of great value for various real-life applications

where the knowledge for the global estimation of the optimal number of clusters

is more conceivable than that for the local estimation of intra-cluster variances.
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CHAPTER 7

SUMMARY AND FUTURE WORK

As one of the primary research domains, pattern analysis covers a large vari-

ety of multi-disciplinary studies spanning in numerous application domains. The

focus of this thesis is on the methodology study. Particularly, the purpose of this

thesis is to explore efficient unsupervised learning algorithms for cluster analysis

that require minimal prior knowledge on the problem domain and the system’s

parameter setting, in view of the large scale input data in real-life applications.

In this thesis, a novel neural network architecture based on competitive learn-

ing has been proposed and studied. The proposed network, named ART-C (for

Adaptive Resonance Theory under Constraint), has the following improvements:

• It tackles ART’s dependency on the user’s prior knowledge in estimating

the distribution of the input, thus provides a more intuitive application for

real-life problems.
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• It shows satisfactory performance for clustering of real-life data, including

gene expressions and text documents. Its clustering efficacy is comparable

to that of algorithms in the same family, including ART, SOM and K-Means.

• It shows distinguishably higher efficiency on large scale inputs, compared

with algorithms in the same family.

One challenging task in cluster analysis is the quantitative assessment of the

cluster validity. Previous studies in the literature are mostly focused on tuning the

parameters of one algorithm in controlled experiments. In view of the existing val-

idation measures, this thesis proposes two sets of evaluation measures, respectively

based on cluster distribution and class conformity. Experiments have shown that

these validity measures are capable of systematically indexing subtle differences

between different clustering solutions, which in turn serve as valuable guideline for

various studies in clustering process, including choosing optimal feature represen-

tation and pattern proximity measure, tuning parameters of a clustering algorithm,

and cross-method comparison.

In view of the previous research and the advancement of the pattern analysis

technologies, the following topics are suggested in the future work:

1. Fully automatic clustering: To simplify the problem, most existing clus-

tering algorithms assume some parameters of the problem model (such as the

number of clusters) are known. Designing a fully automatic clustering algo-

rithm that requires no user knowledge still remains a challenge, yet it offers

a great potential in various application domains. Fully automatic clustering

essentially involves a search for optimal clustering solution. Prior studies
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like [PR02] involve the evaluation of the codebook during each learning it-

eration, and determine whether to add elements to some clusters or remove

elements from them. Greedy techniques are usually used to determine the

semi-optimal number of clusters. However since a global search of the op-

timal solution is NP-hard [GJW80], how to design an appropriate heuristic

for the search process is yet a challenging work.

2. Noise-free pattern analysis: Noisy data that contain outliers are very

common in most real-life applications. In some circumstances they are of no

contribution to problem solving; yet in other circumstances they may indicate

emerging patterns and hence are of great value. Identifying these distinct

emerging patterns is as important as identifying the major patterns for analy-

sis purpose. How to exclude the “actual” noise without losing meaningful

distinct patterns thus remains as an interesting topic. A well-designed infor-

mation filtering algorithms in signal processing area could be a great solution

for this purpose. For example, WaveCluster [SCZ00] applies wavelet trans-

formation to preprocess the primary data, filters out the noises and traces

the boundaries of high density data groupings using image-processing-based

method. WaveCluster however is incapable of handling high-dimensional

data due to the computational complexity. How to apply signal processing

methods to high dimensional data yet remains an challenging topic.
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