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Summary 
 
 
 
Applying TCP in MANETs is an active research area due to TCP’s wide acceptance 

by the Internets and MANET’s easy deployment.  However, applying TCP directly in 

MANETs would face a lot of problems such as throughput degradation and unfairness.   

The fundamental reason for the throughput degradation is that TCP is designed for 

wired networks and it assumes all the packet losses are due to congestion.  Its 

aggressive congestion window increasing strategy is another important reason.  

Former research works are mostly focused on how to improve the TCP throughput.  

The TCP source distinguishes the packet loss reasons and performs different 

implementations according to corresponding reason.  We take both increasing the 

throughput and decreasing the average packet delay into consideration and propose to 

apply another conservative TCP version, TCP-Vegas in MANETs.   

Applying Vegas in MANETs would face the re-routing problem which will cause very 

low throughput in the mobile scenarios.  Thus, we propose the Vegas Routing 

Interaction Strategy (VRIS) to solve the problem to effectively improve the Vegas 

throughput. 
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The unfairness problem is also widely studied.  Few resolving strategies are proposed.  

These strategies are usually MAC layer or network layer based which are hard to 

implement.   We propose the Adaptively Setting Congestion Window Limit

(ASCWL) strategy, which is TCP-layer based and thus easy to implement, to solve the 

severe unfairness problem.  We only consider the static scenarios because it is hard to 

define the fairness in mobile scenarios.  As the strategies to solve the unfairness 

problem are few, we implement ASCWL with both TCP-Reno and TCP-Vegas. 

With re-routing problem resolved and appropriate congestion window limit setting, 

Vegas performance in MANETs can achieve visible improvement, which makes it 

more suitable for MANETs environment.    
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Chapter 1 
 
Introduction 
 
 
 

1.1 Mobile Ad Hoc Network 

Mobile Ad Hoc Network (MANET) [1] is a complex distributed system.  It is 

composed of a group of mobile nodes without fixed infrastructure or central control 

entities.  The mobile nodes can self-organize freely and dynamically.  Thus, multi-hop 

communication is the basis of MANET.  The nodes play double roles: the 

communication endpoints and the routers between the communication nodes multi-hop 

apart.    

MANET can be easily deployed and thus can be used in a lot of scenarios such as 

military applications and disaster rescues.  Thus it attracts many researchers.  And we 

can summarize the characteristics of MANET as follows: multi-hop wireless 

transmission, frequent topology changes, and limited bandwidth competed among 

neighboring nodes.   
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1.2 Transmission Control Protocol 

Transmission Control Protocol (TCP) is the most famous transportation layer protocol.  

It is connection-oriented and designed to provide reliable end-to-end packet 

transmission over unreliable networks.   TCP uses the cumulative ACK and 

corresponding retransmission mechanisms to ensure the correct delivery of data 

packets.    

TCP uses two strategies for detecting packet loss.  The first one is based on the 

sender’s retransmission timeout (RTO) expiration.  The other mechanism is based on 

the receiver’s packet sequence number.  Because TCP mainly uses cumulative 

acknowledgments, the receiver will generates a duplicate acknowledgment 

(DUPACK), which has the same sequence number as the last received packet, until the 

lost packet is received.   

TCP has well designed congestion control mechanisms to adjust the sending window 

to effectively utilize the network bandwidth.  The congestion control mechanisms 

implementation is closely related with the packet loss detection.   

 

1.3 TCP-Reno over MANET 

TCP achieves a nice performance over the wired networks.  Because of TCP’s success 

over wired networks and taking the interoperability of MANETs and the world wide 

Internet into consideration, applying TCP in MANETs is necessary.  

TCP is designed for wired networks.  The design of TCP’s congestion control 

mechanism is based on the premise that the packet loss is an indication of network 

congestion.  The most popular version is TCP-Reno.  When a packet is detected to be 
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lost, either by timer timeout or triple duplicate ACKs, TCP slows down the sending 

rate by adjusting its congestion window.  In the case of timeout, TCP enters 

the slow start phase and set its congestion window size to 1.  In the case of triple 

duplicate ACKs, TCP enters congestion avoidance by halving its congestion window.   

Since bit error rate is very low and route failures are rare in wired networks, the 

assumption that the packets losses are due to congestion works well.  The 

corresponding congestion window adjusting makes TCP utilize the bandwidth 

effectively.    

However, the premise that packet loss means network congestion does not work any 

more for MANETs.   In MANETs, frequent route change, channel and link errors 

decide that most of the packet losses are NOT due to network congestion.   This is 

contradictory to the TCP premise.  In this case, original TCP-Reno cannot adapt to the 

network dynamics well.  TCP-Reno is quite aggressive in increasing its congestion 

window large.  Thus, the wrongly undifferentiated window reducing action due to 

non-congestion packet losses when applied in MANETs is probably in a large extent.  

This reduction will lead TCP-Reno to achieve very low throughput.    What is more, 

the constant route failures may cause many packets lost and long time may need to 

retransmit the lost packets.  Thus, the aggressive window increasing of TCP-Reno will 

make many packets queued up.  This will lead to large average packet delay and delay 

jitter, which is disadvantageous to real-time applications implementation.   

We can summarize that the TCP-Reno performance in MANETs is sensitive to the 

network dynamics and thus badly degraded.  The basic reason is that TCP-Reno 

cannot differentiate the packet loss due to network congestion with the loss due to 

other reasons.  The aggressive congestion window increasing is another important 

reason, especially for the large average packet delay and delay jitter.      
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1.4 Research Motivation  

1.4.1 Related Works to Improve TCP Performance 

From section 1.3, we know that applying TCP-Reno directly in MANETs will achieve 

an unsatisfactory performance.  Thus, many schemes (TCP-F, TCP-ELFN, TCP-Bus, 

etc, for details please refer to Chapter 2) are proposed to improve the performance.  

These schemes base on TCP-Reno and aim to improve the TCP-Reno throughput.  As 

illustrated in section 1.3, the basic reason for TCP-Reno degraded performance is that 

TCP-Reno incorrectly perform congestion control in case of losses that are not 

induced by network congestion.  The window reducing, halving or decreasing to 1 

according to the congestion control algorithm, would lead to low throughput.  

Consequently, the basic idea for most of the above schemes to improve TCP-Reno 

throughput is to “give” the TCP source the ability to distinguish the congestion loss 

and the losses due to bit error or route failures.  There are also some schemes that are 

aiming to improve the MANETs environment such as reducing route failures or 

improve MAC layer channel spatial reuse so as to improve the TCP throughput.  The 

details will also be presented in Chapter 2.     

 

1.4.2 Reasons to Propose TCP-Vegas: Vegas vs. Reno 

The schemes in section 1.4.1 are all Reno-based. The aggressive window increasing of 

TCP-Reno will lead many packets queue up.  The average packet delay cannot be 

reduced effectively.  Moreover, as the MANETs environment is dynamic, the 

distinguishing information may be lost.   The window size then may be reduced 

despite the strategy.  The large window size of TCP-Reno will probably make this 

threat more detrimental because the window size reducing will be rather large.  Thus, 
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for the dynamic MAMETs, a small window size based TCP version is preferred.  The 

research works on congestion window limit settings (reference details in Chapter 2) 

also show that small window size can achieve better performance for TCP applied in 

MANETs.  Consequently, we propose to apply TCP-Vegas in MANETs. 

TCP-Vegas [2] achieves better performance than Reno in wired networks [3] [4]: 

higher throughput, less retransmission, less packet loss and more stable congestion 

windows.  Vegas adopts a different mechanism to control the congestion window size.  

It uses the fine-grained measurement of RTT to estimate the difference between the 

expected and actual throughput to adjust the congestion window size accordingly.  

Therefore, Vegas can detect the incipient congestion and it is quite conservative when 

increasing its congestion window.  This is contrary to Reno, which always 

aggressively increases its window.  The small window size of Vegas, together with its 

lesser fluctuation, makes it less sensitive to the network dynamics. Moreover, smaller 

queues will build up for Vegas, which leads to less average packet delay and delay 

jitter.  

We aim to reduce the average packet delay and delay jitter as well as improve the TCP 

throughput.  Thus, we propose to apply TCP-Vegas in MANETs in this thesis.  The 

details of the performance comparison of TCP-Reno and TCP-Vegas are presented in 

Chapter 3.  

 

1.4.3 Re-Routing Problem and Vegas Routing Interaction Strategy (VRIS) 

However, applying TCP-Vegas directly to MANETs would face the re-routing 

problem [5].  As shown in Figure 1.1 and Figure 1.2, before the route change, the TCP 

connection use the 3-hop route, Base_RTT = T1. After the route change, the TCP 
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connection use the 5-hop route, Base_RTT should be T2, but still as T1 according to 

Vegas implementation.  That is, Vegas uses the up-to-date minimum RTT as an 

estimation of the Base_RTT, when the route changes to a longer one, Vegas is not able 

to increase the value of Base_RTT.  

 

 

Figure 1.1 Illustration of Re-Routing problem triggered by node movement  
(Before movement) 

 
 

 

Figure 1.2 Illustration of Re-Routing problem triggered by node movement  
(After movement) 
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The wrong estimation of Base_RTT would lead Vegas to incorrectly reduce its sending 

window and cause low throughput. Thus, the re-routing problem should be solved to 

further improve Vegas throughput.  One strategy to solve the re-routing problem is 

that La et al. [6] used any lasting increase in RTT as a sign of re-routing to update 

Base_RTT.  However this strategy is mainly used for wired networks and could not 

adapt to MANETs very well.  Correspondingly, we propose the Vegas-Routing 

Interaction Strategy (VRIS) based on the MANETs characters. We try to trace the 

route hop length information from the underlying routing agent and inform the 

corresponding Vegas agent immediately to direct the Vegas agent to update its sending 

window correctly and timely.  VRIS can work well with both DSR and AODV.  We 

mainly choose DSR for illustration and also give the results with AODV.  The 

simulation results show that using the VRIS, Vegas can achieve throughput 

improvement for about 10% on average and up to 223.01%.  The main content of the 

VRIS is presented in [29]. 

            

1.4.4 Unfairness Problem and ASCWL Strategy 

Although our prime research goal is to improve the TCP throughput as well as reduce 

the average packet delay in the general mobile scenarios, we should also emphasize 

the unfairness problem in the static scenarios.   Here we emphasize the static scenario 

because it is hard to define the unfairness problem in mobile scenarios.  The severe 

unfairness problem exists for both TCP-Reno and TCP-Vegas.  One connection may 

achieve poor throughput even flow starvation.  What is more, most of the related 

research works on the unfairness problem are focused on identifying the factors 

triggering the problem and the solving methods are rare.  The proposed strategies can 

alleviate the problem, but their implementations are complicated.  The details can be 
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found in the Chapter 2.  Thus, we will try to propose a TCP-based strategy to improve 

the TCP fairness and make the strategy easy to implement and work for both Reno and 

Vegas.   

The MAC layer factors such as hidden and exposed terminal problems, binary 

exponential backoff strategy and channel capturing basically trigger the unfairness 

problem.  However, TCP’s inadequate interaction with the MAC layer further 

exacerbates the problem.  The above MAC factors are intrinsic for MANETs.  To get 

rid of them is difficult.  For example, although IEEE 802.11 uses RTS/CTS 

mechanism, the hidden and exposed terminal problems still exist.   Thus, we aim to 

modify the TCP implementation based on the MANETs characters so as to adapt TCP 

to the MANETs environments to improve the TCP fairness.  We find that the negative 

impact of TCP over MAC can be effectively alleviated by dynamically setting the 

Congestion Window Limits (CWLs) based on the optimal CWL.  Thus, we propose 

the Adaptively Setting Congestion Window Limit (ASCWL) strategy which uses the 

hop number to set CWLs for the contending TCP connections as a means of solving 

the unfairness problem.  By simulations, we show that our strategy can improve the 

fairness index by up to 89.21% (see result tables in Chapter 5 for reference). Further 

more, the overall throughput usually increases as well.  The details of the ASCWL 

strategy are in [30].   

 

1.4.5 Research Tasks 

Now, we can summarize our research tasks as follows: 

1) Apply TCP-Vegas in MANETS and prove that Vegas can achieve better 

performance than Reno; 
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2) Propose a strategy (VRIS) to solve the re-routing problem in the general mobile 

scenarios to further improve Vegas throughput; 

3) Propose a strategy (ASCWL) to improve the fairness index of the contenting TCP 

connections in the static scenarios. 

 

1.5 Thesis Organization 

The rest of the thesis is organized as follows: 

In Chapter 2, some related research works on improving TCP throughput in MANATs 

are reviewed.  Some related works on TCP unfairness problem are also presented. 

In Chapter 3, we will compare the performance of TCP-Vegas and TCP-Reno in 

MANETs and prove that Vegas achieves a better performance: higher throughput, less 

average packet delay and delay jitter. 

In Chapter 4, we propose the VRIS to solve the re-routing problem in the mobile 

scenarios.  We implement VRIS with both DSR and AODV.  We mainly use DSR to 

illustration and also present the result with AODV. 

In Chapter 5, we propose the ASCWL to solve the unfairness problem in the static 

scenarios. 
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Chapter 2 

 
Literature Review 
 
 
 
2.1 Introduction  

In this chapter, we will present some related research works on improving TCP 

performance in MANETs.  The first part is the related schemes to improve the TCP 

throughput.  The second part is focused on the unfairness problem.  

 

2.2 Schemes to Improve the TCP Throughput 

As stated in Chapter 1, the main approaches are based on the basic idea to “give” the 

TCP source the ability to distinguish the packet loss due to network congestion and the 

loss due to other reasons so as to avoid the unnecessary window reducing.  These 

approaches are based on TCP-Reno.  According to the different loss conditions, some 

implementations are modified to adapt to the MANETs dynamic environment.  The 

difference between these approaches lies in how notifications are done and how the 

corresponding reactions are performed.  Other approaches are aiming to improve the 

MANETs environments, such as the MAC layer spatial reuse and network work layer 

route availability.  The increase of the lower layer reliability will also bring the TCP 
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throughput improvement. One famous example is the backup routing strategy (see 

2.2.1.6) to offer the backup path in addition to the primary communication route.   

The strategies can be classified into 2 classes according to the implementing method: 

cross layer interaction proposals and one layer implementing proposals.  In the cross 

layer proposals, TCP and its underlying protocol work jointly.  In the layered 

proposals, the problem of TCP is attacked at one layer.  Cross layer proposals usually 

report higher throughput improvement.  Mobility, link breakages and routing failures 

are taken into consideration in most of these proposals. 

 

2.2.1 Cross Layer Strategies 

The Cross layer strategies can be classified into 3 types:  

• TCP and network cross layer,  

• TCP and physical cross layer,  

• Network and physical cross layer.  

The following 4 schemes, TCP-F, TCP-ELFN, TCP-Bus and ATCP belong to the TCP 

and network cross layer strategies.  The next two routing schemes belong to the 

network and physical cross layer strategies.  

 

2.2.1.1 TCP-F 

TCP Feedback [7] is the feedback-based approach to allow the TCP sender to 

distinguish between losses due to route failure and those due to network congestion.  

The details are as follows.  When routing agent detects the route failure, it explicitly 

sends a Route Failure Notification (RFN) packet to the source.  On receiving the RFN, 

the source goes into the “snooze” state in which the TCP sender will stop sending 

packets and freeze the timers and the congestion window.   When the route is re-
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established, a Route Re-establishment Notification (RRN) packet is sent to the source.  

On receiving the RRN, the sender will continue the transmission with the previous 

timer and congestion window values resumed.    

TCP-F is proved to work better than standard TCP.  However, the simulation scenarios 

are quite special and not the general ones in ad hoc networks.   

2.2.1.2 Explicit Link Failure Notification (ELFN)-based Technique 

TCP-ELFN [8] is quite similar to TCP-F.  The reasoning behind ELFN is to inform the 

TCP agent about route failures when they occur.  On receiving the ELFN message, the 

source responds by disabling its retransmission timers and enters a “standby” state.  

During standby state, the sender probes the network to check if the route is restored.  If 

the acknowledgement of the probe packet is received, TCP sender leaves the 

“standby” mode, resumes its retransmission timers, and continues to the normal 

operation.  The values of the parameter RTO and Congestion Window (CW) are 

varied to optimize the ELFN performance. 

TCP-ELFN can effectively improve the TCP throughput. However, the parameter 

values need to be selected accordingly.   

A further ELFN-Based TCP-Freeze scheme [9] is proposed to decouple the link failure 

notification into two phases: the underlying routing protocol route failure detection 

and sender side routing protocol to TCP notification, which makes it an end-to-end 

scheme. 

2.2.1.3 TCP-Bus  

This strategy [10] also uses the network feedback to detect route failure events and 

then to take the corresponding reaction to these events.  In this strategy, the buffering 

capacity of the mobile nodes is proposed and the source-initiated on-demand 
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Associativity-Based Routing (ABR) routing protocol is selected.  The following are 

the detailed implementations. 

Two control Explicit Notification messages are used to notify the source about the 

route failure and the route re-establishment.  On receiving the Explicit Route 

Disconnection Notification (ERDN), the source stops sending.  Similarly, on receiving 

the Explicit Route Successful Notification (ERSN), the source resumes data 

transmission.   

During the route reconstruction phase, packets along the path from the source to the 

Pivoting Node (PN) used to detect route failures are buffered.  And the retransmission 

timer is doubled to avoid the timeout events.  To overcome the late retransmission due 

to the timer doubling, an indication is made to make the source selectively retransmit 

the lost packets in advance. 

In TCP-Bus, reliable retransmission of the control message is implemented to ensure 

the reliability of the ERDN and ERSN.        

TCP-Bus outperforms standard TCP and TCP-F.  However, the evaluation is based 

only on the ABR routing protocol.   

2.2.1.4 ATCP 

Ad hoc TCP [11] inserts a layer called ATCP between the TCP and IP layers of the 

TCP source nodes.  ATCP listens to the network layer feedback via the information 

provided by ECN or ICMP message.  Then according to the information, ATCP puts 

TCP in one of the following states: persist, congestion control, retransmit, and normal.  

In each state, corresponding TCP behaviors are implemented. 
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ATCP can effectively improve the throughput.  But its implementation is based on 

some special scenarios and some assumptions that might be somehow hard to meet 

such as ECN-capable nodes as well as sender node being always reachable. 

2.2.1.5 Preemptive Routing in Ad hoc Networks 

This scheme [12] is designed to reduce the number of routing failures.  It is achieved 

by switching to a new route when a link of the current route is expected to fail in the 

future so as to reduce the number of routing failures.  Specifically, when the signal 

power drops below a given preemptive threshold, the source is notified and proactively 

looks up for a new route.  When the new route is available, the routing agent switches 

to this new route.   

By simulations, this scheme can yield a considerable reduction of the number of route 

failures.  This reduction of route failures can make TCP achieve higher throughput.   

2.2.1.6 Backup Path Routing 

Backup path routing scheme [13] uses only one path at a time but it maintains some 

backup paths and can switch from current path to another alternative path rapidly if 

current path fails.  It is found that maintaining 2 paths is usually optimal for the best 

TCP performance.  Shortest-hop path, shortest-delay path, and maximally disjoint path 

are the paths usually found and cached for the choice of primary path or the backup 

path.  Two schemes of choosing the primary path and the backup path are proposed.  

Scheme 1 is to choose the shortest-hop path as the primary and the shortest-delay path 

as backup.  Correspondingly, scheme 2 chooses shortest-delay path as primary and 

maximally disjoint path as backup.   

As Scheme 2 does not use the shortest-hop path, it achieves worse performance than 

the original TCP.  But Scheme 1 is shown to be able to improve the TCP throughput 

by 23% to 30%. 
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2.2.2 Layered Proposals 

The layered proposals can be classified into the following two categories according to 

in which layer the proposal is implemented. 

• TCP layer proposal, 

• Link layer proposal. 

The following Fixed RTO, CWL setting belong to the TCP layer proposals.  The Link 

RED and Adaptive Pacing belong to the Link Layer proposals.    

 

2.2.2.1 Fixed RTO 

In this scheme [14], a heuristic is introduced to distinguish between route failures and 

congestion.  When two timeouts expire in sequence, the sender concludes that a route 

failure has occurred.  The unacknowledged packet is retransmitted but the 

Retransmission Timeout (RTO) is not doubled a second time.  The RTO remains fixed 

until the route is re-established and the retransmitted packet is acknowledged. 

The throughput can achieve effective enhancement.  However, in case of congestion, 

the supposition that two consecutive timeouts are exclusively the indication of route 

failure needs more consideration.   

 

2.2.2.2 CWL Setting 

This scheme [15] is based on the study of the relationship between the hop number and 

the optimal Congestion Window Limit (CWL) achieving the best throughput.  Given a 

specific network topology and flow patterns, there exists an optimal TCP window size 

limit, on which TCP achieves the best throughput via improving the spatial reuse.  

And usually, this window size is not too large.  It was found that the bandwidth delay 

product (BDP) of multi-hop routes cannot exceed the Round-Trip Hop-Count (RTHC) 
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of the path.  In the case of a multi-hop chain that implements IEEE 802.11 MAC, the 

BDP is bounded by 1/5 of the RTHC.  Based on this bound, they propose to use the 

CWL setting algorithm to adjust TCP’s maximum window size limit according to the 

path hop numbers.  This scheme can improve the TCP throughput by up to 16%. 

 

2.2.2.3 Link RED 

This scheme [16] is to monitor the average number of retries in the packet 

transmission at the link layer.  Then the scheme compares this number with a given 

threshold and drops/marks the packets by the probability calculated according to the 

RED algorithm.  When the marked packets arrive at the destination, the sender will be 

informed to increase the backoff time at the MAC layer.  This scheme can effectively 

reduce the contention on the wireless channel.  The MAC layer optimization can also 

improve the TCP throughput.     

 

2.2.2.4 Adaptive Pacing 

This scheme [16] is to improve channel spatial reuse.  In IEEE 802.11, a node is 

constrained from contending for the channel by a random backoff period, plus a single 

packet transmission time.   However, the implementing of the above action can not 

solve the exposed terminal problem.  Thus, the Adaptive Pacing scheme is proposed.  

This scheme can alleviate the problem by increasing the backoff period by an 

additional packet transmission time.  It works together with LRED.  When the average 

number of retries is less than a threshold, it calculates its backoff time as usual.  When 

the average number is beyond this threshold, adaptive pacing is enabled and the 

backoff period is increased by duration equal to the previous packet transmission time.   
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As the Link RED, the MAC layer optimization can improve the throughput in the 

above TCP layer. 

 

2.3 Related Works on TCP Unfairness Problem 

It is known that substantial unfairness and even flow starvation exist in MANETs.  As 

fairness is an important metric to evaluate the network performance, the severe 

unfairness problem should also be widely studied.   

There are some related research works on this topic.  However, most research on TCP 

unfairness problem is focused on identifying the factors which cause the unfairness 

problem.  Some scheduling strategies can alleviate the unfairness problem, but their 

implementations need the MAC protocols modification.  One effective method to 

solve the problem is the Neighborhood RED (NRED) strategy proposed by K. Xu and 

Gerla et al. [17], which is implemented on the network layer. 

 

2.3.1 Related Works on Identifying the Triggering Factors 

K. Tang and M.Gerla [18] used the static topologies such as chain and grid topology to 

compare the impact of different MAC protocols, namely CSMA, FAMA, MACAW 

and IEEE 802.11.  IEEE 802.11 was found work best.  S. Xu et al. [19] investigated 

the factors for IEEE 802.11 that cause the unfairness problem.  K. Xu et al. found in 

[20] the greedy behavior of TCP and its poor interaction can exacerbate the unfairness 

situation.   
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2.3.2 Neighborhood RED 

In NRED, each node in the network maintains its own distributed queue, called 

neighborhood queue.  The neighborhood queue aggregates the node’s local queue and 

the upstream and downstream queues of its 1-hop neighbors.  Then, the RED 

algorithm is used based on this neighborhood queue to give the disadvantage 

connections less dropping probability and thus more chance to transmit packets.   

NRED can effectively improve the TCP fairness.  However, its implementation is 

somewhat complicated.  Moreover, the fairness evaluation in the mobile scenarios 

needs more consideration. 

    

2.4 Summary 

Now we summarize the research works on improving TCP performance in MANETs. 

Most of the research works on this topic are focused on how to improve the TCP 

throughput.  There are also quite a few works on the severe unfairness problem.  

In the research works to improve the TCP throughput, most of them are focused on 

how to make the TCP source have the ability to distinguish the packet loss due to 

network congestion and the loss due to other reasons.  According to how the 

distinguishing information is gotten, the strategies can be classified into 2 types: cross 

layer strategies and layered strategies.  There are also some related works that are 

aiming to improve the MANETs environment such as reducing route failures or 

improve MAC layer channel spatial reuse so as to improve the TCP throughput.  The 

implementations are focused on the TCP-Reno version. 

In the research works on the unfairness problem, most of the works are focused on 

identifying the intrinsic MAC factors that trigger the unfairness problem.  The 
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proposals to solve this problem are rare. One effective method is the Neighborhood 

RED (NRED) strategy proposed by K. Xu and Gerla et al. [17], which is implemented 

on the network layer. 
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Chapter 3  

 
TCP-Vegas vs. TCP-Reno in MANETs 
 
 
3.1 Introduction 

In this chapter, we apply TCP-Vegas in MANETs.  We will prove that Vegas can 

achieve a better performance than Reno via NS-2 simulation.   First, we will present 

some background information on TCP-Reno and TCP-Vegas implementation.  Then, 

we will compare their performance in MANETs. 

3.2. Background Information on TCP-Reno and TCP-Vegas 

3.2.1 TCP-Reno Congestion Window Control 

TCP-Reno induces packet losses to estimate the available bandwidth in the network.  

The source assumes the packet losses are due to network congestion and the 

corresponding congestion mechanisms are implemented to control the sending window 

size.  The TCP-Reno congestion control mechanisms include two phases: Slow Star 

and Congestion Avoidance. 

Slow Start begins with congestion window size as 1.  The window size will double 

once the sender received the ACK for the former sending packets until the window 
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size reaches the slow start threshold (ssthresh).  Then the congestion control enters the 

Congestion Avoidance phase, during which the congestion window size is increased 

linearly by 1/cwnd each time an ACK is received.  When TCP-Reno experiences a 

packet loss, it will reduce its window size.  If the packet loss is due to triple duplicated 

ACKs, it will halves its congestion window size and enter the Congestion Avoidance 

phase.  If the packet loss is due to the sender timer timeout, it will reduce the window 

size to 1 and enters the Slow Star phase.  

3.2.2 TCP-Vegas Congestion Window Control 

Vegas adopts a timestamp-based mechanism to control the congestion window size.  It 

uses the fine-grained measurement of RTT to estimate the difference between the 

expected and actual throughput to adjust the congestion window size accordingly.  The 

details are as follows: 

        / _Expected cwnd Base RTT=                                                 (3.1) 

where cwnd is the size of the current sending congestion window and Base_RTT is the 

minimum RTT of that connection. 

       /Actual PktsTrans rtt=                                                          (3.2) 

where PktsTrans is the number of packets transmitted during the last RTT,  is the 

average RTT of the segments acknowledged during the last RTT.  In the steady state, 

we can take cwnd as PktsTrans 

rtt
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We can take Diff as the backlog in the router queue.  α and β are constants which can 

be respectively taken as the lower and upper bound of the backlog.  They usually took 

the value of 1 and 3 respectively. 

3.2.3 Difference between Vegas and Reno 

We can summarize the difference between Vegas and Reno as follows: 

• Congestion control implementation 

TCP-Vegas has a fundamentally different congestion avoidance scheme from that 

of TCP-Reno as we can infer from the implementation rules above.   

Reno uses the loss of packets as a signal that there is congestion in the network and 

thus has no way of detecting any incipient congestion before packets losses occur.  

Thus, Reno reacts to congestion rather than attempts to prevent the congestion.  

Correspondingly, what Vegas tries to do is as follows.   As we can see from the 

implementation, if the actual throughput is much smaller than the expected 

throughput, then it suggests that it is likely that the network is congested.  Thus the 

source should reduce the flow rate.  On the other hand, if the actual throughput it 

too close to the expected throughput, then the connection may not be utilizing the 

available flow rate, and hence should increase the flow rate.  Thus, Vegas is 

conservative when increasing its congestion window size and so it can detect 

incipient congestion. 

• Packet delay and jitter 
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As Vegas is quite conservative when increasing its congestion window size, only a 

few packets will queue up in the buffers.  On the other hand, Reno is very 

aggressive when increasing the window size.  Thus, the average packet delay and 

delay jitter of Vegas tend to be much smaller than those of Reno. 

• Retransmission mechanism 

Vegas has better retransmission mechanisms.  For TCP-Reno, a rather coarse 

grained timer is used to estimate the RTT and the variance, which results in a poor 

estimation.  Vegas, on the other hand, uses a fine-grained timer.  Vegas records the 

system clock each time a packet is sent.  When an ACK is received, Vegas 

calculates the RTT and uses this more accurate estimation to decide to retransmit 

the packet in the following two situations: (1) When it receives a duplicate ACK, 

Vegas checks to see if the RTT is larger than timeout.  If it is, then without waiting 

for the third duplicate ACK, it immediately retransmits the packet.  (2) When a 

non-duplicate ACK is received, if it is the first or second ACK after a 

retransmission, Vegas again checks to see if the RTT is greater than timeout.  If it 

is, then Vegas retransmits the packet. 

 

3.3. TCP-Vegas vs. TCP-Reno in MANETs 

Vegas achieves a much better performance than Reno in wired networks: higher 

throughput, less retransmission, less packet loss and more stable congestion windows. 

Now we consider their performance in MANETs. The small window size of Vegas, 

together with its lesser fluctuation, will make it less sensitive to the network dynamics. 

Moreover, smaller queues will build up for Vegas, which will lead to less average 
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packet delay and delay jitter.  Thus we expect that Vegas will also achieve better 

performance in MANETs than Reno.  We will prove this by NS-2 [21] simulations. 

 

3.3.1 Static Scenario    

First, we use a chain topology as shown in Figure 3.1 to study the multi-hop wireless 

transmission in MANETs.   

 

                                                Figure 3.1. Chain Topology                          

 

Table 3.1 Parameter Settings 

Wireless Channel Raw Capacity 2M bps 
Radio Transmission Range  250 meters 
Carrier Sense Range 550 meters 
Adjacent Node Distance  200 meters 
MAC  IEEE 802.11 
Routing Protocol DSR 
Default TCP Packet Size 1000 bytes 
interface queue limit  50 packets 

 

The parameter settings in Table 3.1 decide that only the adjacent nodes can transmit 

packets directly. We set up TCP connections with different route hop numbers.  That 

is, we set node0 the source and node1, node2 … node6 the destination respectively.   

For each TCP connection, the simulation is run for 500s. 

The simulation results are shown in Figure 3.2.  For the 1 and 2 hop(s) situations, 

Reno gets almost the same throughput as Vegas.  But for larger hop numbers, Vegas 

achieves better throughput performance.  As the hop number increases, the throughput 

of both Vegas and Reno decreases exponentially.  Here, by throughput we refer to the 
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goodput, which means the throughput without the header and excluding the 

retransmission.  We follow the same good definition in the following chapters. 

After MAC and TCP layer tracing, we find link failure and TCP sending window 

control strategy are two main factors that contribute to the simulation result in Figure 

3.2.  Since IEEE 802.11 can not totally solve the “hidden and exposed terminal” 

problems, DATA and RTS packets in MAC layer may conflict with ACK or CTS and 

be lost.    When MAC layer retransmits for 7 times and still fails, it will send link 

failure message to the upper layer, which will usually result in TCP retransmission and 

even timer timeouts.   It is well known that Vegas and Reno have different window 

control strategy. Reno always tries to increase its sending window until it gets some 

sending packet lost. Vegas, on the other hand, is more conservative. It uses the fine-

grained measurement of RTTs to control its window size. It always avoids packet loss 

and makes its sending window stable.  Hence, Reno puts more packets into the 

network than Vegas and has more packet loss than Vegas.  The following window 

halving or even reducing to 1 will bring larger performance degradation for Reno.  

 

Figure 3.2 Goodput vs. Hop Number for Reno and Vegas 
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Figure 3.3 Seven Times Retransmission Failure Numbers vs. Hop Number 
For Reno and Vegas 

 

As shown in Figure 3.3: for the 1 or 2 hop cases, as the source node can “hear” the 

destination node, both Vegas and Reno have no link failures; for the larger hop cases, 

Reno gets much more “link failures” than Vegas on average. Tracing the IFQ length, 

we find that Reno uses more queue space than Vegas.   Consequently, Vegas achieves 

higher throughput.  Moreover, Vegas achieves shorter average packet delay and delay 

jitter than Reno.  This is important for applications such as interactive multimedia and 

network games.   We put the 4-hop cases results here.  The average packet delay of the 

4-hop (node0 to node4) connection for TCP-Reno is shown in Figure 3.4, for TCP-

Vegas is shown in Figure 3.5.     
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Figure 3.4 Average Packet Delay of the node0 to node4 connection for TCP-Reno 
 
 

 

            
 

Figure 3.5 Average Packet Delay of the node0 to node4 connection for TCP-Vegas 
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3.3.2 Mobile Scenario 

This part will focus on the “topology change” of MANETs.  We will use the random 

way-point model [22].  In this model, each node is placed randomly in the simulated 

area and remains stationary for a specified pause time.  After the pause time, a node 

randomly selects a destination (x y-coordinates) and moves in the direction of the 

destination point at a speed uniformly chosen between a minimum (usually 0) and 

maximum value.  In our simulation, each of the 7 nodes randomly selects a destination 

point in a 1500*500m rectangle area.  Other parameters are the same in Table 1 expect 

the adjacent node distance. The max node speed is varied as 10, 20 and 30m/s and the 

pause time is chosen as 2s.  The simulation is run for 150s.  Still we try to setup a TCP 

connection between node0 and node 1, node2… node 6 respectively.  In order to be 

consistent with the static scenario and due to the non-correlation of the random seed 

for the different average node speed, we put the one-seed simulation results as follows 

in figure 3.6, figure 3.7 and figure 3.8 for average speed of 10, 20 and 30 m/s 

respectively.  We vary the number of nodes as well as simulation scenarios with 

different seeds and get similar result trend.    
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Figure3.6 Goodput of TCP from Node0 to Different Destination Node (max 
speed=10m/s) 
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Figure3.7 Goodput of TCP from Node0 to Different Destination Node (max 
speed=20m/s) 
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Figure3.8 Goodput of TCP from Node0 to Different Destination Node (max 
speed=30m/s) 

 

Despite the re-routing problem, Vegas outperforms Reno in most cases.  In mobile 

scenarios, the mobile nodes are always moving and so the route to the destination is 

always changing.  Consequently, there are two factors causing route failure: MAC 

collision and node movement.  Reno is more aggressive than Vegas. It always 
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increases its sending window until packet loss happens.  Consequently, Reno tends to 

lose more packets and the following window reducing will yield worse result than 

Vegas.  Moreover, routing traces show that nodes movement may bring shorter new 

routes and thus “re-routing problem” doesn’t exist.    

In mobile scenarios, Vegas also achieves less average packet delay and delay jitter.  

Figure 3.9 and Figure 3.10 are one of the node 0 to node 3 connection scenarios for 

Reno and Vegas respectively. 

 

Figure 3.9 Average Packet Delay of the node0 to node3 connection for TCP-Reno 
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Figure 3.10 Average Packet Delay of the node0 to node3 connection for TCP-Vegas 
 
The vertical lines in Figure 3.10 show that occasionally in the mobile scenario, due to 

the node mobility, some packet may also experience a long delay.   

3.3.3 Summary 

In summary, Vegas achieves a better performance when applied in MANET than Reno.  

In static and most mobile scenarios, Vegas achieves higher throughput than that of 

Reno.  Moreover, Vegas achieves less average packet delay and delay jitter than Reno.  

This is important for the future applications such as interactive multimedia and 

network games. However, the re-routing problem is intrinsic for Vegas applying in 

MANETs. So we need to solve it so as to achieve further throughput improvement for 

Vegas. 
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Chapter 4  
 
Vegas Routing Interaction Strategy (VRIS)  
 

 

4.1 Introduction 

In this chapter, we propose the Vegas Routing Interaction Strategy (VRIS) to solve the 

intrinsic re-routing problem to improve the TCP-Vegas throughput. 

The re-routing problem [5] is rooted in TCP-Vegas implementation.  Vegas uses the 

propagation delay as Base_RTT to adjust its congestion window size.  When 

implementing, the up-to-date minimum round trip time (RTT) is used for the 

estimation of Base_RTT.  Vegas is not able to increase the value of Base_RTT when 

the route changes to a longer one and  the actual propagation delay have also increased, 

because it uses the up-to-date minimum RTT as the estimation.  The wrong 

estimation of Base_RTT would lead Vegas to incorrectly reduce its sending window 

and thus cause very low throughput. 

In MANETs mobile scenarios, as the mobile nodes are always moving and the 

topology is dynamic, there is a high probability of the re-routing problem occurrence. 

The mostly used strategy to solve the re-routing problem is that La et al. [6] use any 
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lasting increase in RTT as a sign of re-routing problem occurrence and thus update 

Base_RTT to a larger value.  For simplicity, we call this strategy Lasting Increase of 

RTT (LIR).   

The details of LIR implementation are as follows: 

(1) LIR uses same mechanisms as the original TCP-Vegas for the first K packets.  

When it receives the ACK for the Kth packet, it computes the difference diff_estimate 

between Base_RTT and RTTK, where RTTK is the round trip delay of the Kth packet.  

This difference provided a rough estimate for the increase in the round trip delay due 

to its own packets queued at the buffers.  An average of several differences could be 

used instead of one value.  For simplicity, only one value is used for diff_estimate in 

LIR. 

(2) After the ACK for the Kth packet is received, the source checks the smallest round 

trip delay of every N packets, which is denoted by BaseRTTestimate.  If the difference 

between the minimum round trip time of N packets and Base_RTT is larger than 

{ }_ min *diff estimate baseRTT ,δ γ+ , where 0 1δ< < and 0γ > are prefixed 

parameters, for L consecutive times, then the source interprets this as a change in 

propagation delay, i.e., change in route, and (a) sets the Base_RTT equal to the 

minimal round trip time of the last N packets, and (b) sets the congestion window size 

cwnd to * 1baseRTTestimatecwnd cwnd
baseRTT

= +  

The basic idea behind this mechanism is as follows.  If the minimum round trip time 

computed for N packets is consistently much higher than the sum of Base_RTT and 

diff_estimate, then it is likely that actual propagation delay is larger than the measured 

Base_RTT, and it makes sense to increase Base_RTT.   Since the increase in delay 
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forces the source to decrease its window size, the round trip delay comes mostly from 

the propagation delay of a new route.  Thus, the minimum round trip delay of the 

previous N packets is a good estimate of the new propagation delay, as is Base_RTT 

for the current route. 

The parameter values used in their scheme implementation are K=100, N=20, δ=0.2, 

L=4, and γ=100 ms.  However, to choose the appropriate values for LIR is still an 

open problem.    

The LIR strategy is mainly design to deal with the re-routing problem in the wired 

networks.  In MANETs, re-routing problems are mainly triggered the node movements 

and the following communication route changes.   Thus LIR cannot adapt to the 

MANETs environment well since it cannot find the route changes timely and correctly.  

Based on the MANETs characters, we propose the Vegas Routing Interaction Strategy 

(VRIS) to resolve the Re-Routing problem. 

In the following sections, we will give a detailed illustration of VRIS.  Firstly, the 

VRIS scheme design is presented.  Secondly, we will describe the VRIS 

implementation with the DSR and AODV.  Thirdly, the Enhanced VRIS (E-VRIS) is 

extended. Then we will present the scheme analysis and explanation.  The simulation 

results are as following.   

 

4.2 Vegas Routing Interaction Strategy (VRIS) 

Based on the MANETs characters of constant node movement and route change, we 

propose our Vegas Routing Interaction Strategy (VRIS).   The basic reasoning behind 

VRIS is that we can trace the route change via the routing agent in the IP layer, and 

inform the corresponding Vegas agent about this routing change timely and correctly.  
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Then Vegas agent will be able to adjust its congestion window size correspondingly 

according to this information.  

4.2.1 Scheme Design 

The basic scheme for VRIS strategy is the CB-Vegas algorithm, i.e. “Change” the 

Vegas parameter “Base_RTT”.   

 

Figure 4.1 CB-Vegas Algorithm Flowchart 

 

CB-Vegas is summarized as in Figure 4.1.  We know node mobility is a very 

important characteristic of MANETs. Thus we can make the underlying routing agent 
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“monitors” the route changes.  We should claim that the “route change” refers to the 

change of the hop number of the communication route.  The reasoning is that hop 

distance is a key factor deciding the RTT and geographic distance in a limited distance 

area as in MAMETs is much less a factor that can be omitted.   If the route hop 

number is increased, we will set Flag=1 and immediately inform the corresponding 

Vegas connection.  Then the TCP Agent can update its Base_RTT as the value of RTT 

gotten right after detecting the route change.   The Flag passing from the DSR agent to 

Vegas agent can be easily fulfilled in NS-2 by two agent-classes communication.  

When implementing, the Flag passing can be added in the SAP function from the 

network layer to the transport layer.    

DSR and AODV are the two mostly used on-demand routing protocols.  Thus we will 

implement our VRIS strategy with both DSR and AODV as the routing protocol.  We 

will mainly use DSR to illustrate the algorithm and for AODV we give the simulation 

results.    

 

4.2.2 VRIS with DSR and AODV 

VRIS can work well with all the routing protocols.  Since DSR and AODV are the 

mostly used on-demand routing protocols in MANETs, we will illustrate the 

implementation of VRIS with DSR and AODV respectively.   

4.2.2.1 DSR (Dynamic Source Routing) Routing Protocol 

DSR is composed of two main mechanisms that work together to allow the discovery 

and maintenance of source routes in MANETs.  The two mechanisms are Route 

Discovery, undertaken when source needs a route to a destination, and Route 

Maintenance, used when link breaks render specified route unusable.  When 
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implementing Route Discovery, the source node flooding the network with a RREQ 

for the specified destination.  And the intermediate nodes will reply to the source with 

a RREP if a path to the destination is stored or it will add itself to the route record and 

broadcast the message toward the destination.  On receiving the RREQ, the destination 

will unicast the RREP to the source with the complete route built by intermediate 

nodes.  When link breakages occur, RERR is sent back to the source and the 

intermediate nodes will adjust cached routes.  If the intermediate nodes or the source 

have one cached route available to the destination, the new routes can be used to 

deliver the packet. Otherwise when the REER reaches the source, the source will 

initiate another Route Request.    

For DSR, the routing information is first found and then put into the header of all the 

data packets.   Thus, to implement VRIS, we can get the route hop number information 

from the packet header.  

 

4.2.2.2 Ad hoc On Demand Distance Vector (AODV) Protocol 

AODV builds routes between nodes only as desired by the source nodes.  It uses route 

request/route reply query cycle.  When a source node desires a route to a destination 

for which it does not already have a route, it broadcasts a route request (RREQ) packet 

across the network.  Nodes receiving this packet update their information for the 

source node and set up backward pointers to the source node in the route tables.  In 

addition to the source node’s IP address, current sequence number, and broadcast ID, 

the RREQ also contains the most recent sequence number for the destination of which 

the source node is aware.  A node receiving the RREQ may send a route reply (RREP) 

if it is either the destination or if it has a route to the destination with corresponding 

sequence number greater or equal to that contained in the RREQ.  If this is the truth, it 
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unicasts a RREP back to the source.  Otherwise, it rebroadcasts the RREQ.  As the 

RREP propagates back to the source, nodes set up the forward pointers to the 

destination.  Once the source nodes receive the RREP, it may begin to forward data 

packets to the destination.       

For AODV, the route hop number information is stored in the routing tables.  Thus, to 

implement VRIS, we can trace the updating of the routing table to get this information. 

 

4.2.3 E-VRIS 

Based on CB-Vegas, we can further extend the FW-Vegas scheme and incorporate 

FW-Vegas with CB-Vegas to propose the Enhanced VRIS.  

FW-Vegas, i.e. “Fix” the Vegas sending “Window”, is quite similar to CB-Vegas.  

The only difference is that the sending window will be fixed for the present RTT apart 

from updating the Base_RTT.    

The key issue of Enhanced VRIS is to selectively use CB-Vegas or FW-Vegas 

according to the real-time network conditions. 

We try to compare RTO new, the Retransmission Timeout (RTO) after the route change, 

and RTO old , the RTO before the route change.    

If (RTO new  <= α*RTO old) 

     CB-Vegas 

Else 

     FW-Vegas 

The parameter α is a constant between 0 and 1 whose value is chosen to consider the 

node speeds factor, where a smaller value for α indicates higher node speeds.  In our 

following implementation, we choose α as 1 for the 10m/s case, 0.95 for the 20m/s 
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case, and 0.925 for the 30m/s case.  The above 3 values may not be the optimal values.  

They are randomly chosen for taking the node speeds factor into consideration. 

E-VRIS is an enhancement over VRIS in the general mobile scenarios.  The core idea 

is still the VRIS.  Thus, we only give the E-VRIS results for the general mobile 

scenarios with DSR routing protocol.  

 

4.2.4 Scheme Analysis and Explanation 

A detailed explanation about the principles behind our scheme design is presented in 

this part. 

As we know, TCP-Vegas updates its sending window according the RTTs it observed.  

The details are as shown in section 3.2.2. 

As shown above, Base_RTT is a very important parameter to update cwnd.  As 

discussed in the former chapters, re-routing can cause inaccuracy of Base_RTT. When 

the route for the TCP-Vegas connection has changed, Base_RTT may also change.  

Vegas is usually not affected if the new route has smaller RTTs, as Base_RTT will 

immediately be updated.  But when the new route has larger RTTs, it will cause 

problem to Vegas.  Vegas cannot tell whether the RTT becoming larger was caused by 

network congestion or route changes.  Therefore it always assumes that the increase of 

RTT was due to the network congestion and consequently it will decrease cwnd.   

However, we can infer from (3.1) (3.2) (3.3) (3.4) that, as Base_RTT becomes larger in 

fact, we should also increase cwnd to make Diff balanced between α and β.  We can 

consider this from another point. When RTTs become larger, as the bandwidth-delay 

product increases, the number of packets that can be held in the network increases.  

Thus cwnd should also be increased so that to satisfy (3.4).  The untimely Base_RTT  
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updating can limit the cwnd increase.   Based on the above arguments, we propose the 

CB-Vegas scheme.  

CB-Vegas can effectively solve the re-routing problem to improve the Vegas 

throughput.  However, it may have some limitations for the following reasons.   

The first is due to the route-cache use after route failures.  In DSR or AODV, when a 

route is broken, some mechanisms are performed to use the salvage route to transfer 

the data packets in flight.  For DSR, if the intermediate nodes or the source has one 

cached route available to the destination, the new routes can be used to deliver the 

packets.  For AODV, the local repair mechanism is used to update the routing table to 

find the salvage route.  The salvage route may be probably much longer and thus we 

update Base_RTT, then Vegas will increase cwnd.  Because the route caches may be 

stale, especially for the aggressive cache use of DSR, the salvage route may probably 

be unable to succeed.  Thus, increasing cwnd may cause more packets lost.   

Another reason is because of the instability of cwnd.  As mentioned above, the salvage 

route may be stale and cannot succeed, if we increase cwnd for the present RTT, we 

may need to decrease cwnd the following RTT, which will make cwnd fluctuate.  

However, the main advantage of TCP-Vegas is to maintain cwnd stable.  This 

advantage will be lost in this case.   

The third reason is that when there are  route changes the MANETs is usually unstable 

at the moment and the packets are easily lost.  If we increase cwnd, more packet losses 

may cause numerous retransmissions and even timeouts.  FW-Vegas can effectively 

alleviate the above negative effects.  Using this scheme, on one hand, we can prevent 

Vegas from oppositely changing cwnd, that is, when the new route is longer, it does 

not decrease cwnd any more.  This will solve the re-routing problem.  On the other 
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hand, we can make cwnd more stable and thus inherit the advantages of TCP-Vegas.  

However, FW-Vegas always keeps Vegas from increasing cwnd, which may prevent 

the full use of the bandwidth.  Thus, we propose the RTO comparison mechanism to 

decide when to use CB-Vegas or FW-Vegas. 

Vegas adapts its behavior to the network by considering the RTT of the packets.  It 

computes a smoothed RTT (SRTT), which is a weighted average of all the past RTT 

values and the current RTT, with more weights allocated to the former.  Thus, we can 

claim that SRTT can be used to indicate the network path conditions. When the SRTT 

updated with the current RTT is larger than the before-updating value, it shows that the 

new path has rather large RTTs and the path quality doesn’t improve.  Thus, it is better 

to use FW-Vegas.  On the contrary, the new path has better quality, we will use CB-

Vegas to better utilize the bandwidth.  In TCP implementation, SRTT is then used to 

determine RTO.  For simplicity, we will compare the RTO calculated with and without 

the current RTT to decide whether CB-Vegas or FW-Vegas will be used.      

4.3 VRIS Simulation Implementation 

We will simulate VRIS with both DSR and AODV.  We will mainly use DSR for 

illustration.  The simulations are performed in steps.  For the general mobile scenarios, 

we will compare the simulation result with VRIS, E-VRIS, LIR and standard TCP-

Vegas.  For AODV, we will give the simulation results with VRIS in the general 

mobile scenarios.   

First, we will discuss the issues of the simulation results statistics in the general mobile 

scenarios.  Then, simulation result and performance evaluations are presented.    
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4.3.1 Simulation Result Statistic: 30 Scenarios Average 

By simulation, we find that TCP throughput is greatly related to the mobile scenarios.  

TCP performance may vary a lot with the same simulation background settings, such 

as the same number of nodes, same max node speed and the same node pause time 

between movements, but different moving steps.  A scenario is corresponding to a 

detailed set of node movements.  The following are some simulation examples.   

The simulation settings are as follows.   We use the random-way point model.  Each of 

the 20 nodes randomly selects a destination point in a 1500*500m rectangle area.  The 

maximum node speed is set as 10m/s and the pause time is chosen as 2s.  We 

randomly create two simulation scenarios with different seeds.  We randomly choose a 

node pair (node 5 as the source, node 15 as the destination) for the TCP-Vegas 

connection.  The simulation is run for 150s for each scenario.  The simulation results 

are as in Figure 4.1.  We can see, for the first scenario, TCP achieves almost no 

throughput.  But for the second one, the throughout is much higher. 
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Figure 4.2 TCP-Vegas Throughput for Different Scenarios 
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We also find that higher max node speed does not mean that the TCP connection will 

achieve worse throughput.  In some scenarios, although the nodes have higher speeds, 

the source destination pair may have better communication routes with less hop 

numbers.  Moreover, with higher speeds, the network may recover quickly from an 

early route failure and a stable route is quickly established.   Thus, we can state that 

there is no direct correlation between throughput and node speed.   

The above two findings adapt to both TCP-Reno and TCP-Vegas. 

Thus, in order to minimize any arbitrary randomness, we use 30 different seeds to 

simulate 30 different random node movement scenarios for one TCP-Vegas 

connection.  The final result is the average of the 30 runs.  Taking 30 scenarios on 

average into consideration, we find that lower speed really means higher throughput. 

For Vegas, Not in every scenario does the re-routing problem exist.  When it does 

exist, VRIS can effectively improve the throughput of the TCP connection.   Thus, it 

should be noted that for the scenario where the re-routing problem is absent, VRIS 

may not be able to show improvements.   The 30 scenario average is based on 30 

general scenarios.  

  

4.3.2 Simulation Result and Performance Evaluation  

4.3.2.1 VRIS with DSR 

We try to simulate our strategy with NS-2 in the following steps. 

The first step is quite simple.  We just use a designed topology to verify the feasibility 

of the VRIS strategy.  The topology change is shown in Figure 4.3. At first the 

topology is as the above. At 70s node 2 leaves its position and goes upwards very 

quickly.  The simulation is run for 150s.  The parameter settings are as in Table 3.1.  
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The communication routes are as shown in the figure.  The simulation result is shown 

in Figure 4.4.  The throughput has improved from 78.5 kbps to 82 kbps with VRIS. 

 

 

 

 

Figure4.3. Simple Topology to Verify the VRIS 
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Figure4.4. Goodput Improvement for the Special Topology 

 

In the second step, we apply VRIS in the more general mobile scenarios, which are the 

major in MANETs.  We still use the random way-point model.   20 nodes move in a 

rectangle area of 1500*500 randomly.  The max speed of the nodes is varied as 10, 20 

and 30m/s and the node pause time between two adjacent movements is chosen as 0.  

Other parameters are the same in Table 3.1 expect the adjacent node distance. We 

randomly choose a source destination node pair to setup a TCP connection.  As stated 

above, in order to minimize any arbitrary randomness, we use 30 different seeds to 

simulate 30 different random node movement scenarios for the connection.  For each 

scenario, the simulation is run for 150s.  The throughput (30 run average) 

improvement is obvious.  We put two of the simulation results below.  Figure 4.5 is for 

node pair (0, 1) and Figure 4.6 is for node pair (5, 15).  We randomly choose other 

node pairs and get similar results.   For these scenarios, we also give the results with 

Enhanced VRIS and LIR.  We can see due to the mechanism to decide the bandwidth 

utilization, Enhanced VRIS synthesize the advantages of both FW-Vegas and CB-

Vegas.  The throughput is further improved.  Contrarily, LIR cannot adapt to the 

mobile scenarios well.  
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                             Figure 4.5 Goodput Improvement for Node Pair (0, 1) 
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    Figure 4.6 Goodput Improvement for Node Pair (5, 15) 
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In the third step, we try to vary the node pause time between the two adjacent random 

movements.  Other parameters are the same as in step 2.  We give the simulation 

results for pause time as 2s and max node speed as 10s and 20s in Figure 4.7 and 

Figure 4.8 respectively. 
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Figure 4.7 Goodput Improvement for the scenario of Max Speed=10m/s,  

Pause Time=2s, node pair (5, 15) 
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Figure 4.8 Goodput Improvement for the scenario of Max Speed=20m/s,  

Pause Time=2s, node pair (5, 15) 
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Summary: 

VRIS works well with the DSR routing protocol.  It can effectively improve the TCP-

Vegas throughput.  It catches hold of the most obvious characteristic of MANET, 

constant route changes, and makes use of the interaction between TCP-Vegas and 

underlying routing protocol. Vegas throughput achieves improvement by 10% on 

average and up to 223.01%.    We can also find that the node pause time factor doesn’t 

impact the VRIS much, it can also work well.     What is more, As VRIS does not 

change the conservative characteristic of Vegas, the average packet delay and delay 

jitter are almost unaffected.     

 

4.3.2.2 VRIS with AODV 

We try to simulate our VRIS with AODV as the routing protocol for the mobile 

scenarios.  The simulation parameters settings are the same with that of DSR. 

First, we use the same simulation settings as in the second step of DSR:  20 nodes 

move in a rectangle area of 1500*500.  We vary the max speed of the nodes as 10, 20 

and 30m/s. The pause time is set as 0.  We randomly choose the source destination 

node pairs.  Node pair (5, 15) is chosen for illustration.  The simulation results are 

based on the average of 30 runs.   Each run is for 150s.  The simulation results are as 

shown in Figure 4.9.   
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Figure 4.9 Goodput Improvements with AODV 

Then, we also try to vary the node pause time between the two adjacent random 

movements. We set the node pause time between two adjacent movements as 2s.  The 

simulation results as shown in Figure 4.10 and Figure 4.11 are for the scenarios of max 

node speed as 10m/s and 20m/s respectively.  The node pair is still chosen as (5, 15). 

For VRIS with AODV, the Vegas throughput can also be effectively improved with 

the average packet delay and delay jitter almost unaffected. 
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Figure 4.10 Goodput Improvement for the scenario of Max Speed=10m/s,  

Pause Time=2s, node pair (5, 15), AODV 
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Figure 4.11 Goodput Improvement for the scenario of Max Speed=20m/s,  

Pause Time=2s, node pair (5, 15), AODV 

 

4.3.2.3 Comparison of DSR and AODV Results 

Then, we try to compare the DSR and AODV results.   

We found that on average, AODV achieves better performance than DSR with the 

original standard TCP-Vegas.  This is probably because that there is a constant 

overhead in DSR packets since in DSR implementation the packets contain the full 

route to the destination in their packet headers which result in a constant byte overhead.  

Moreover, AODV has better route cache management mechanism.  DSR is making 

aggressive use of caching and it lacks any mechanism to expire the stale routes or to 

determine the freshness of routes when multiple choices are available.  On the contrary, 

for AODV, route cache management is done through cache entry timeout.  It ensures 

that only routes that are recently used are maintained in the route cache.  This prevents 

the problem of a stale entry in the route cache.  The above factors decide the AODV 

performs better than DSR.  
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 However, the VRIS works better with DSR than with AODV.  VRIS can improve the 

Vegas throughput by 7% on average with AODV compared with the 10% with DSR.  

The reason lies in that it is more accurate and timely to find the route hop number 

information from the packet header than from the routing table.   

 

4.3.3 Summary 

In summary, VRIS is quite simple but efficient.  It can effectively improve the Vegas 

throughput with both DSR and AODV as routing protocols with the average packet 

delay and delay jitter almost unaffected.   

 

4.4 Conclusion 

We have proposed to apply Vegas in MANETs since we find it achieves better 

performance than Reno in MANETs by simulation. Its conservative window updating 

mechanism adapts to the MANETs better. 

In this chapter we have proposed the Vegas Routing Interaction Strategy to solve the 

intrinsic re-routing problem of Vegas to further improve the Vegas throughput in 

MANETs with the small average packet delay and delay jitter almost unaffected.  

With the re-routing problem solved by VRIS and together with other enhancement 

strategies, Vegas will be a better choice for MANETs. 
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Chapter 5 
 
Adaptively Setting Congestion Window 

Limit (ASCWL) Strategy 

 

5.1 Introduction 

In Chapter 3 and 4, we have proposed to apply TCP-Vegas in MANETs and also 

worked out the VRIS to solve the re-routing problem in the mobile scenarios.  In this 

chapter, we will study the unfairness problem.  We consider the static scenarios 

because it is hard to define fairness in mobile scenarios. 

There is severe unfairness problem or even flow starvation when applying TCP in 

MANETs.  The problem is triggered by the underlying MAC protocol.  In addition, the 

TCP characteristics and its poor interaction with the MAC layer further exacerbate the 

situation.   

Previous works on the unfairness problem have mainly focused on identifying the 

factors that cause the problem [18] [19] [20].  Some proposed MAC layer scheduling 

strategies [23] [24] can alleviate the problem, but their implementation needs the MAC
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protocol modification. One effective method to solve the problem is the Neighborhood 

RED (NRED) strategy proposed by K. Xu and Gerla et al. [17], which is implemented 

on the network layer.  However, the implementation of NRED is complicated.  Each 

node in the network maintains its own distributed queue, called neighborhood queue.  

The neighborhood queue needs to aggregate the node’s local queue and the upstream 

and downstream queues of its 1-hop neighbors.  Hence, we try to propose some 

method that can be implemented more easily.  We propose to solve the TCP unfairness 

problem in the transport layer, without the lower layer modification to ensure its easy 

implementation. The ATP strategy [25], which is reported to solve many TCP 

problems in MANETs, is also transport layer based.   But it is a new protocol that is 

not interoperable with TCP.   

We need to make our strategy TCP-based.  More specifically, we manage to control 

the TCP congestion window limit (CWL) to reduce the negative impact of TCP over 

MAC and improve the fairness.  We get the relationship between the hop number and 

the optimal CWL achieving the best throughput via simulation.  We also find that 

dynamically setting CWLs based on the optimal CWLs can effectively improve the 

fairness.  Consequently, we propose the Adaptively Setting Congestion Window Limit 

(ASCWL) strategy which uses the hop number to set CWLs for the contending TCP 

connections as a means of solving the unfairness problem.  As the solving methods of 

the unfairness problem are rare, the ASCWL strategy will be implemented with both 

Vegas and Reno.  Simulation results (see section 5.5 for reference) show that our 

strategy can improve the fairness index by up to 89.21%. Furthermore, the overall 

throughput usually increases as well. 

In the following sections, we will first give some related works on Congestion 

Window Limit (CWL) setting.  Then by simulation, we offer the Optimal CWL vs. 
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hop number relationship results for both TCP-Reno and TCP-Vegas.  Next, based on 

the optimal CWL values, we will propose the Adaptively Setting Congestion Window 

Limit (ASCWL) strategy and present the simulation results of ASCWL 

implementation.

5.2 Related Works on Congestion Window Limit (CWL) Setting  

There are many reported works on how the CWL can be set to improve TCP 

throughput.  It has been observed that setting TCP-Reno’s CWL large can adversely 

degrade its throughput performance [26] [16].By considering the spatial reuse property 

of 802.11 MAC layer protocol in a chain topology, Li et al. [27] and Fu et al. [16] 

discovered that the optimal value for CWL is 1/4 of the chain length.  Chen et al. [15] 

further proposed the round-trip hop-count (RTHC) and bandwidth-delay product (BDP) 

concepts. Taking the spatial reuse and the collision of the DATA and ACK into 

consideration, they proved that BDP of a chain (IEEE 802.11 MAC) is bounded by k 

times RTHC (1/8<k<1/4).  Chen et al. [15] and Fu et al. [16] use a similar topology as 

Figure 5.1 to illustrate the spatial reuse issue.   

 
Figure 5.1 Illustration of the maximum spatial reuse and the hop number relationship 

for IEEE 802.11 

 

As the transmission range is 250m (the adjacent nodes are 200m apart) and the 

interference range is 550m, we can see only 4 hops away nodes, such as node 1 and 

node 5, can initiate transmission concurrently without interfering each other.  Since 

IEEE 802.11 exhibits a similar feature to the stop-and-wait protocol, the pipe size over 
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each hop is 1 packet and so the best channel utilization is obtained when there are h/4 

packets in flight.   

 

5.3 Optimal CWL vs. Hop Number Relationship for both TCP-
Reno and TCP-Vegas 

We use the 25-node chain topology similar as in Figure 5.1 and the parameter settings 

as in Table 5.1 to find the relationship via ns-2 simulations.   

 

Table 5.1 Parameters Settings 

Wireless Channel Raw Capacity 2M bps 

Radio Transmission Range  250 meters 

Carrier Sense Range 550 meters 

Adjacent Node Distance  200 meters 

MAC  IEEE 802.11 

Routing Protocol DSR 

Default TCP Packet Size 1000 bytes 

interface queue limit  50 packets 

 
 

 

We have managed to find the optimal CWL vs. hop number relationship for both TCP-

Reno and TCP-Vegas (see as in Figure 5.2 and Figure 5.3).   
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Figure 5.2: optimal CWL vs. hop number (Reno) 

 

                     

Figure 5.3: optimal CWL vs. hop number (Vegas) 

 

For TCP-Reno, we find similar optimal CWL results as in [15] and [16].   But when 

we setup 1 or 2 hop TCP connections, as the source can “hear” the destination and the 
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hidden terminal problem doesn’t exist, packet collision is avoided and loss is rare. The 

throughput will increase if we set larger CWL. Hence, we can not find the “so-called” 

optimal CWL. 

Then we use Vegas to perform the simulation.  As the spatial reuse factor is decided 

by the IEEE 802.11 protocol, Vegas shows similar hop number and optimal CWL 

relationship with that of Reno.  But we know that Vegas is different from Reno with 

respect to updating sending window cwnd.  Vegas uses the fine-grained measurement 

of RTTs to control its window size.  It always avoids packet loss and very conservative 

when increasing cwnd.  So Vegas tends to make its cwnd small to use the bandwidth.   

Thus usually if we set CWL larger, Vegas will still achieve the same throughput.  

Consequently, the optimal CWL for Vegas refers to the smallest CWL at which Vegas 

achieves highest throughput.   

We also find that when the hop number is larger, the optimal CWL of Vegas tends to 

converge to the value of 4.  This is because 4 is the least value to fulfill fast 

retransmission and retransmission in time is an important factor for Vegas’ success.      

Correspondingly for Reno, if we set CWL above the optimal value, the throughput will 

first decrease and then flatten out.  This is mainly because Reno is very aggressive 

when increasing its cwnd.  So if we set larger CWL than the optimal value, Reno will 

inject more packets to reach out the network’s capacity.  Consequently, the network 

congestion will cause packet loss and throughput degradation.       
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5.4 ASCWL strategy 

The negative impact of TCP over MAC can be effectively alleviated by dynamically 

setting the CWLs based on the optimal CWL.  Thus, we propose the Adaptively 

Setting Congestion Window Limit (ASCWL) strategy.   We monitor the underlying 

routing agent to get the hop number which is then used to decide the optimal CWLs 

for the respective connections.  If the TCP connection is less than 3 hops, as the source 

can “hear” the destination and the throughput will increase if we set CWL larger, the 

so-called optimal CWL doesn’t exist.  We will set the optimal CWL for Reno as 1 

since a connection greedily increase its congestion window (cwnd) causes unfairness. 

Correspondingly, Vegas is conservative when increasing its cwnd, so the optimal 

CWL is set as 4, the least value for fast retransmission.  Then we try to compare the 

route hop numbers or use the “beacon signals”, which are used to provide connectivity 

information on the network topology, between the nodes to decide border connections 

so that we know if some connections are disadvantaged.  For example, if two TCP 

connections of different lengths are competing for network resources, the larger hop 

number can be used as an indication that the longer connection is disadvantaged.  

Beacon signals can also indicate which are the more disadvantaged inner connections.  

If the border connection is also the longer connection, we consider this connection 

disadvantaged. The fundamental idea of ASCWL is to set larger CWLs for the 

relatively disadvantaged TCP connections.  We illustrate our concept using two 

connections and extend the same rules for the case of multiple connections.   

The algorithm details are as follows. 
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If (one connection is disadvantaged) 

        If (Optimal CWL disadvantaged >Optimal CWL advantaged ) 

                  Set the CWLs to their optimal CWLs respectively 

        Else 

                  If (Optimal CWL >1) 

                        CWL disadvantaged = Optimal CWL 

                        CWL advantaged = Optimal CWL – 1 

                  If (Optimal CWL ==1) 

                        CWL disadvantaged = Optimal CWL + 1 

                        CWL advantaged = Optimal CWL  

Else 

        Set the CWLs to their optimal CWLs respectively 

 

 

As it is extremely challenging to define fairness in mobile scenarios, we implement 

our strategy on static topologies such as the chain topology in [18], the cross topology 

and the grid topology in [17], where NRED is implemented. We use TCP-Reno and 

TCP-Vegas to verify our strategy.  For the grid topology in [17], we also use TCP-

NewReno to compare the results with that of NRED.  We use the fairness index 

defined in [28] for a set of throughputs (x1, x2 … xn),  
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In the following, we show some simulation results by NS-2 simulator. Reno+ stands 

for Reno with ASCWL and Vegas+ stands for Vegas with ASCWL. We run FTP 

applications on the TCP connections with all FTPs starting and ending at the same 

time.  The parameter settings are the same as shown in Table 5.1 unless otherwise 

specified.  

 

5.5 Simulation Results for ASCWL 

5.5.1 Chain Topology 

We use the 25-node chain topology similar as in Figure 5.1.  As chain topology is the 

basis for the complicated topology. We will study it in details.  First, we avoid the 

border effect to take consideration of the factor of hop number.  Then we will consider 

the border effect.  That is, we will classify the unfairness problem into 3 types as 

following.  FTP applications are run on the TCP connections and all FTP applications 

start at 10s and end at 150s. 

 

• Same Hop Length TCP connections without Border Effect 

We set the two TCP connections the same length and make the destination of the 

first TCP connection the source the second one. We vary the length of the TCP 

connection as 2, 4, 6, 8 in our simulation.  The illustration is as in the Figure 5.4. 

 

Figure 5.4 Same Hop Number without Border Effect Illustration 
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The simulation results are listed from Figure5.5 to Figure 5.8.  The fairness 

indexes calculated using (5.1) are summarized in Table 5.2.  For TCP-Reno, as the 

CWL setting can change the aggressive window increasing operation, the average 

packet delay and delay jitter will be evidently reduced.  The packet delay 

distributions for the 4 hop cases of the Reno and Reno+ are as Figure 5.9 and 

Figure 5.10.  We would not put the average packet delay trace for the other 

simulation scenarios as they present the similar trends. 
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Figure 5.5:  TCP Goodputs for connections with same hop length  
                                In the chain topology (hop number = 2)                      
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Figure 5.6:  TCP Goodputs for connections with same hop length  

                                In the chain topology (hop number = 4)                      
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Figure 5.7:  TCP Goodputs for connections with same hop length  

                                In the chain topology (hop number = 6)                      
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Figure 5.8:  TCP Goodputs for connections with same hop length 

In the chain topology (hop number = 8) 
 

 

                Table 5.2: Fairness indexes for TCP connections with same hop length  
In the chain topology 

 

 hop number 2 hop number 4 hop number 6 hop number 8 

Reno 0.5125 0.9690 0.9669 0.9552 

Reno+ 0.8401 0.9999 0.9875 0.9957 

Vegas+ 0.6949 1 0.9992 0.9998 

Vegas 0.6273 0.9516 0.9684 0.9780 
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Figure 5.9 Reno packet delay distribution (4 hops) for connections  
With same hop length in the chain topology 

 

 

 
Figure 5.10 Reno+ packet delay distribution (4 hops) for connections  

With same hop length in the chain topology 
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• Different Hop Lengths TCP connections without Border Effect 

We setup connections that have resource contenting with different hop length in 

the chain topology.  The illustration is as in Figure 5.11. 

 

Figure 5.11 Different Hop Numbers without Border Effect illustration 
 

Case A: two connections 

We setup two connections with different hop length in the chain topology.  We list 

the simulation results of 3 scenarios.  In scenario 1, we set a TCP connection from 

node3 to node10 and another from node1 to node16.  The simulation result is in 

Figure 5.12.  Similarly, Figure 5.13 is for the scenario one TCP from node 3 to 

node7 the other from node1 to node13 and Figure 5.14 is for the scenario that one 

TCP from node1 to node9 the other from node3 to node7.   
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Figure 5.12: TCP Goodputs for connections with TCP1 7 hops,  
           TCP2 15 hops in the chain topology 
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Figure 5.13: TCP Goodputs for connections with TCP1 4 hops,  

           TCP2 12 hops in the chain topology 
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Figure 5.14   TCP Goodputs for connections with TCP1 7 hops,  

           TCP2 15 hops in the chain topology     
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Case B: multiple connections 

We try to study the situation of multiple connections.  A scenario of 3 connections 

is listed here: one TCP is from node1 to node16, another from node2 to node9 and 

the third from node3 to node7.  The simulation result is shown in Figure 5.15.   
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                Figure 5.15 TCP Goodputs for connections with TCP1 15 hops,    
                            TCP2 7 hops, TCP3 4 hops in the chain topology 

The fairness indexes for the above four scenarios are shown as in Table 5.3.  The 

throughput improvement for the disadvantaged connections is in Table 5.4.  

Specifically, the ratio means the throughput improvement ratio for the TCP 

connection(s) that has a disadvantaged position when contending for the bandwidth.  

Table 5.3: Fairness indexes for TCP connections with different hop lengths  
In the chain topology 

 
 hop number 

15, 7 
hop number 

12, 4 
hop number 

8, 4 
hop number  

15, 7, 4 
Reno 0.6651 0.5548 0.6090 0.4562 

Reno+ 0.9629 0.6061 0.7861 0.8136 

Vegas+ 0.9980 0.9401 0.7072 0.6608 

Vegas 0.5275 0.5209 0.5162 0.4630 
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                Table 5.4:  Goodput improvement for the disadvantaged connections for    
TCP connections with different hop lengths in the chain topology 

 
 

   hop number
15, 7 

hop number
12, 4 

hop number 
8, 4 

hop number 
15, 7, 4 
11.3478 

(most-disadvantaged) 
Reno+/ 

Reno 

 

4.1221 

 

3.2363 

 

4.2709 4.2558 (disadvantaged)

2.5042 
(most-disadvantaged) 

Vegas+/ 

Vegas 

 

15.5867 

 

17 

 

11.2183 2.2249 (disadvantaged)

               

• Border Effect 

In the chain topology, the connections from or to the border nodes have about half 

of the collision chances of the inner connections.  So here we can make use of our 

ASCWL strategy to improve the throughput of the inner connections so as to 

improve the TCP fairness. 

In our simulation, we try to set up 5 consecutive 1 hop connections as in Figure 

5.16.  The destination of the former connection is the source of the latter.  

 

Figure 5.16 A 6-node chain topology to illustrate the Border Effect 

 

The simulation result is shown in Figure 5.17 and the fairness indexes are shown in 

Table 5.5.                
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Figure 5.17 TCP Goodputs for connections with border effect 
In the chain topology 

 

 

           Table 5.5: Fairness indexes for the TCP connections with border effect 
 

Reno Reno+ Vegas+ Vegas 

0.6727 0.8988 0.8196 0.6696 

 

 

5.5.2 Cross Topology 

We setup the two TCP connections as shown in Figure 5.18 and run FTP applications 

on them.  The two FTPs start at 10s and end at 150s.  We use the ASCWL to set the 

CWLs for both connections their optimal values.   
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Figure 5.18 Cross Topology 

 

The simulation result is shown in Figure 5.19 and fairness indexes are shown in Table 

5.6. 
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Figure 5.19 TCP Goodputs for connections in the cross topology 
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Table 5.6: Fairness indexes for the TCP connections in the cross topology 
 

Reno Reno+ Vegas+ Vegas 

0.8469 0.9997 0.9477 0.8031 

 

 

5.5.3 Grid Topology 

As in Figure 5.20, we setup 6 TCP connections and run FTP applications on them 

from 10s to 150s.  As we can see that the inner connection need to contend with both 

side connections and so disadvantaged.  By ASCWL, the two inner connections will 

have larger CWLs.   

 

Figure 5.20 Grid Topology 

 

The simulation result is in Figure 5.21 and fairness indexes are in Table 5.7. 
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                    Figure 5.21 TCP Goodputs for connections in the grid topology 

 

 

Table 5.7: Fairness indexes for the TCP connections in the grid topology 

Reno Reno+ Vegas+ Vegas 

0.8565 0.9635 0.9844 0.9149 

 

For this grid topology, we also simulate our strategy with TCP-NewReno and try to 

compare the results with the NRED strategy in [17].  The simulation parameters are 

adjusted according to the setting in [17]: The distance between the adjacent nodes is 

set to 250m and packet size is set to 512 Bytes.  The interface queue size at each node 

is set to 66 packets.   The TCP connections start at 10s and end at 130s. The results are 

listed in Table 5.8. 
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Table 5.8 ASCWL vs. NRED 

 Fairness index Overall throughput increase 

ASCWL     0.9494           +23.6% 

NRED     0.9367            -35.5% 

 

 

5.5.4 Summary 

With ASCWL implemented, the fairness indexes achieve obvious improvement.  

Moreover, the overall throughput is usually also improved.  And the average packet 

delay is decreased.  The main reason for the performance enhancement is that after 

CWL setting with ASCWL strategy, the TCP source would shoot much less packets 

into the network. Thus the disadvantaged TCP connections have more chance to catch 

up.  Moreover, the packets of all the connections can be transmitted more effectively. 

Consequently, the overall throughput will increase and the average packet delay will 

decrease.  As Vegas itself is conservative in increasing congestion window, the 

improvement extent is usually less compared with Reno.  

 

5.6 Conclusion 

Simulation results show that our strategy can effectively improve the fairness index of 

the contending TCP connections (by up to 89.21% and an average of 28.07%).  In 

addition, the disadvantaged connections show dramatic throughput improvement (up 

to 17 times), and the average packet delay has also decreased, especially for Reno. 
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Chapter 6 
 
Conclusions and Future Works 
 
 

In this thesis, we have worked on the topic of improving TCP performance in 

MANETs.  We propose to apply TCP-Vegas in MANETs.  Via simulation, we have 

shown that TCP-Vegas can achieve better performance than TCP-Reno: higher 

throughput, less average packet delay and delay jitter.  To solve the intrinsic re-routing 

problem of applying Vegas in the mobile MANETs environment, we propose the 

Vegas Routing Interaction Strategy (VRIS).  VRIS can effectively improve the Vegas 

throughput with the average packet delay and delay jitter almost unaffected.   We also 

study the unfairness problem in the static MANETs environment and propose the 

Adaptively Setting Congestion Window Limit (ASCWL) strategy.  ASCWL can be 

implemented with both TCP-Vegas and TCP-Reno and with both it can effectively 

improve the fairness index.   

 

6.1 Contributions 

In this thesis, aiming at both improving the TCP throughput and reducing the average 

packet delay and delay jitter, we propose to apply TCP-Vegas in MANETs.  This is 

unique compared with the former related research works.  
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The VRIS is based on the mobile MANETs characters and thus can effectively solve 

the re-routing problem to improve the Vegas throughput.  Together with other 

strategies to differentiate the different packet loss and thus implement different 

operations, we can make Vegas a better choice for the MANETs. 

The ASCWL strategy can effectively improve the fairness index in the static MANETs 

scenarios.  It is TCP-based and easy to implement.  The strategy is executed with both 

Vegas and Reno as the solving methods of the unfairness problem are rare.  Moreover, 

the overall throughput is usually increased.    

 

6.2 Future Work 

VRIS only deals with the re-routing problem.  To further improve the Vegas 

throughput, we may also need to differentiate the packet losses due to congestion and 

the losses due to other reasons so as to implement appropriate operations.   

In our future work, we should also consider the more accurate Base_RTT updating 

condition to avoid the immature update that may happen occasionally if deciding only 

by the route hop length changing. 

The disadvantaged MANETs environment can be improved by new routing algorithm 

or MAC layer optimization as well. 

We will also try to find a more reasonable fairness definition in the mobile scenarios 

so as to implement ASCWL to improve fairness in mobile cases.   
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