

STRATEGIES TO IMPROVE THE PERFORMANCE OF TCP

IN MOBILE AD HOC NETWORKS

LI JIANFENG

(B.Eng, Beijing Information Technology Institute, China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF ENGINEERING

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628579?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 i

Acknowledgement

I greatly appreciate the help of my supervisor, Dr. Yin Qinghe. I want to express

many thanks to him for his instruction and valuable suggestions. When I met

difficulties or frustrations, he always encouraged and supported me.

I will also express my appreciation to the coworkers in Institute for Infocomm

Research (I2R). They give me many good tips to solve the problems met in the course

of research work.

To work and live in the I2R building is great. Please permit me to present my

appreciations to I2R and NUS for the excellent equipment and facilities offered to

fulfill the research work.

 ii

Contents

Acknowledgement i

Contents ii

List of Figures v

List of Tables viii

Abbreviations ix

Summary x

Chapter 1. Introduction 1

 1.1 Mobile Ad Hoc Network …………………………………………………………1

 1.2 Transmission Control Protocol …………………………………………………...2

 1.3 TCP-Reno over MANET …………………………………………………………2

 1.4 Research Motivation ………………………………………………………….......4

 1.4.1 Related Works to Improve TCP Performance …………………………….....4

 1.4.2 Reasons to Propose TCP-Vegas: Vegas vs. Reno ……………………...……4

 1.4.3 Re-Routing Problem and Vegas Routing Interaction Strategy (VRIS) ……...5

 1.4.4 Unfairness Problem and ASCWL Strategy…………………………………..7

 1.4.5 Research Tasks …...………………………………………………………….8

 1.5 Thesis Organization ………………………………………………………………9

 Contents iii

Chapter 2. Literature Review 10

 2.1 Introduction ……………………………………………………………………..10

 2.2 Schemes to Improve the TCP Throughput ……………………………………...10

 2.2.1 Cross Layer Strategies ……………………………………………………...11

 2.2.2 Layered Proposals ………………………………………………………….15

 2.3 Related Works on TCP Unfairness Problem ……………………………………17

 2.3.1 Related Works on Identifying the Triggering Factors ……………………..17

 2.3.2 Neighborhood RED ………………………………………………………..18

 2.4 Summary ………………………………………………………………………..18

Chapter 3. TCP-Vegas vs. TCP-Reno in MANETs 20

 3.1 Introduction ……………………………………………………………………..20

 3.2. Background Information on TCP-Reno and TCP-Vegas ……………………...20

 3.2.1 TCP-Reno Congestion Window Control ………………………………….20

 3.2.2 TCP-Vegas congestion window control …………………………………...21

 3.2.3 Difference between Vegas and Reno ……………………………………...22

 3.3. TCP-Vegas vs. TCP-Reno in MANETs ……………………………………….23

 3.3.1 Static Scenario ……………………………………………………………..24

 3.3.2 Mobile Scenario ……………………………………………………………28

 3.3.3 Summary …………………………………………………………………...31

Chapter 4. Vegas Routing Interaction Strategy 32

 4.1 Introduction ……………………………………………………………………..32

 4.2 Vegas Routing Interaction Strategy (VRIS) ……………………………………34

 4.2.1 Scheme Design ……………………………………………………………..35

 4.2.2 VRIS with DSR and AODV ……………………………………………….36

 4.2.3 E-VRIS …………………………………………………………………….38

Contents iv

 4.2.4 Scheme Analysis and Explanation …………………………………………39

 4.3 VRIS Simulation Implementation ………………………………………………41

 4.3.1 Simulation Result Statistic: 30 Scenarios Average ………………………...42

 4.3.2 Simulation Result and Performance Evaluation …………………………...43

 4.3.2.1 VRIS with DSR ………………………………………………………..43

 4.3.2.2 VRIS with AODV ……………………………………………………..48

 4.3.2.3 Comparison of DSR and AODV Results ……………………………...50

 4.3.3 Summary …………………………………………………………………...51

 4.4 Conclusion ……………………………………………………………………...51

Chapter 5. Adaptively Setting Congestion Window Limit (ASCWL) 52

 5.1 Introduction ……………………………………………………………………..52

 5.2 Related Works on Congestion Window Limit (CWL) Setting …………………54

 5.3 Optimal CWL vs. Hop Number for both TCP-Reno and TCP-Vegas ………….55

 5.4 ASCWL Strategy ………………………………………………………………..58

 5.5 Simulation Results for ASCWL ………………………………………………...60

 5.5.1 Chain Topology …………………………………………………………….60

 5.5.2 Cross Topology …………………………………………………………….69

 5.5.3 Grid Topology ……………………………………………………………...71

 5.5.4 Summary …………………………………………………………………...73

 5.6 Conclusion ……………………………………………………………………...73

Chapter 6. Conclusions and Future Works 74

 6.1 Contributions ……………………………………………………………………74

 6.2 Future Work …………………………………………………………………….75

Bibliography 76

 v

List of Figures

1.1 Illustration of Re-Routing Problem triggered by node movement (before

 movement)…………………………………………………………………………6

1.2 Illustration of Re-Routing Problem triggered by node movement (after

 movement)…………………………………………………………………………6

3.1. Chain Topology………………………………………………………………... 24

3.2 Goodput vs. Hop Number for Reno and Vegas…………………………………. 25

3.3 Seven Times Retransmission Failure Numbers vs. Hop Number………………..26

3.4 Average Packet Delay of the node0 to node4 connection for TCP-Reno………..27

3.5 Average Packet Delay of the node0 to node4 connection for TCP-Vegas………27

3.6 Goodput of TCP from Node0 to Different Destination Node (max speed=10m/s)

………………………………………………………………………………………. 28

3.7 Goodput of TCP from Node0 to Different Destination Node (max speed=20m/s)

………………………………………………………………………………………. 29

3.8 Goodput of TCP from Node0 to Different Destination Node (max speed=30m/s)

……………………………………………………………………………………… 29

3.9 Average Packet Delay of the node0 to node3 connection for TCP-Reno………..30

3.10 Average Packet Delay of the node0 to node3 connection for TCP-Vegas……..31

List of Figures vi

4.1 CB-Vegas Algorithm Flowchart…………………………………………………35

4.2 TCP-Vegas Throughput for Different Scenarios…………………………………42

4.3 Simple Topology to Verify the VRIS…………………………………………….44

4.4 Goodput Improvement for the Special Topology………………………………...45

4.5 Goodput Improvement for Node Pair (0, 1)……………………………………...46

4.6 Goodput Improvement for Node Pair (5, 15)…………………………………….46

4.7 Goodput Improvement for the scenario of Max Speed=10m/s, Pause Time=2s,

 node pair (5, 15)………………………………………………………………….47

4.8 Goodput Improvement for the scenario of Max Speed=20m/s, Pause Time=2s,

 node pair (5, 15)………………………………………………………………….47

4.9 Goodput Improvements with AODV…………………………………………….49

4.10 Goodput Improvement for the scenario of Max Speed=10m/s, Pause Time=2s,

 node pair (5, 15), AODV………………………………………………………. 49

4.11 Goodput Improvement for the scenario of Max Speed=20m/s, Pause Time=2s,

 node pair (5, 15), AODV………………………………………………………..50

5.1 Illustration of the Maximum spatial reuse and the hop number relationship for

 IEEE 802.11 ……………………………………………………………………..54

5.2 Optimal CWL vs. hop number (Reno)…………………………………………...56

5.3 Optimal CWL vs. hop number (Vegas)………………………………………….56

5.4 Same Hop Number without Border Effect Illustration…………………………..60

5.5 TCP Goodputs for connections with same hop length in the chain topology (hop

 number = 2)………………………………………………………………………61

5.6 TCP Goodputs for connections with same hop length in the chain topology (hop

 number = 4)……………………………………………………………………...62

5.7 TCP Goodputs for connections with same hop length in the chain topology (hop

List of Figures vii

 number = 6)………………………………………………………………………62

5.8 TCP Goodputs for connections with same hop length in the chain topology (hop

 number = 8)………………………………………………………………………63

5.9 Reno packet delay distribution (4 hops) for connections with same hop length in

 the chain topology………………………………………………………………. 64

5.10 Reno+ packet delay distribution (4 hops) for connections with same hop length

 in the chain topology……………………………………………………………..64

5.11 Different Hop Numbers without Border Effect illustration…………………….65

5.12 TCP Goodputs for connections with TCP1 7 hops, TCP2 15 hops in the chain

 topology……………………………………………………………………….. 65

5.13 TCP Goodputs for connections with TCP1 4 hops, TCP2 12 hops in the chain

 topology………………………………………………………………………...66

5.14 TCP Goodputs for connections with TCP1 7 hops, TCP2 15 hops in the chain

 topology……………………………………………………………………….. 66

5.15 TCP Goodputs for connections with TCP1 15 hops, TCP2 7 hops, TCP3 4 hops

 in the chain topology…………………………………………………………...67

5.16 A 6-node chain to illustrate the Border Effect………………………………….68

5.17 TCP Goodputs for connections with border effect in the chain topology………69

5.18 Cross Topology…………………………………………………………………70

5.19 TCP Goodputs for connections in the cross topology…………………………..70

5.20 Grid Topology…………………………………………………………………..71

5.21 TCP Goodputs for connections in the grid topology……………………………72

 viii

List of Tables

3.1 Parameter Settings………………………………………………………………..24

5.1 Parameter Settings………………………………………………………………..55

5.2 Fairness indexes for TCP connections with same hop length in the chain topology

 ……………………………………………………………………………………63

5.3 Fairness indexes for TCP connections with different hop lengths in the chain

 topology…………………………………………………………………………..67

5.4 Goodput improvement for the disadvantaged connections for TCP connections

 with different hop lengths in the chain topology………………………………... 68

5.5 Fairness indexes for the TCP connections with border effect……………………69

5.6 Fairness indexes for the TCP connections in the cross topology………………...71

5.7 Fairness indexes for the TCP connections in the grid topology………………….72

5.8 ASCWL vs. NRED……………………………………………………………….73

 ix

Abbreviations

MANET: Mobile Ad Hoc Networks

TCP: Transmission Control Protocol

CWND: Congestion Window

RTT: Round Trip Time

RTO: Retransmission TimeOut

DUPACK: Duplicated ACK

VRIS: Vegas Routing Interaction Strategy

CWL: Congestion Window Limits

ASCWL: Adaptively Setting Congestion Window Limit

MAC: Media Access Control

RTS: Ready to Send

CTS: Clear to send

DSR: Dynamic Source Routing

AODV: Ad-hoc On-Demand Distance Vector

RREQ: Route Request

RREP: Route Reply

RERR: Route Error

RED: Random Early Detection

 x

Summary

Applying TCP in MANETs is an active research area due to TCP’s wide acceptance

by the Internets and MANET’s easy deployment. However, applying TCP directly in

MANETs would face a lot of problems such as throughput degradation and unfairness.

The fundamental reason for the throughput degradation is that TCP is designed for

wired networks and it assumes all the packet losses are due to congestion. Its

aggressive congestion window increasing strategy is another important reason.

Former research works are mostly focused on how to improve the TCP throughput.

The TCP source distinguishes the packet loss reasons and performs different

implementations according to corresponding reason. We take both increasing the

throughput and decreasing the average packet delay into consideration and propose to

apply another conservative TCP version, TCP-Vegas in MANETs.

Applying Vegas in MANETs would face the re-routing problem which will cause very

low throughput in the mobile scenarios. Thus, we propose the Vegas Routing

Interaction Strategy (VRIS) to solve the problem to effectively improve the Vegas

throughput.

Summary xi

The unfairness problem is also widely studied. Few resolving strategies are proposed.

These strategies are usually MAC layer or network layer based which are hard to

implement. We propose the Adaptively Setting Congestion Window Limit

(ASCWL) strategy, which is TCP-layer based and thus easy to implement, to solve the

severe unfairness problem. We only consider the static scenarios because it is hard to

define the fairness in mobile scenarios. As the strategies to solve the unfairness

problem are few, we implement ASCWL with both TCP-Reno and TCP-Vegas.

With re-routing problem resolved and appropriate congestion window limit setting,

Vegas performance in MANETs can achieve visible improvement, which makes it

more suitable for MANETs environment.

1

Chapter 1

Introduction

1.1 Mobile Ad Hoc Network

Mobile Ad Hoc Network (MANET) [1] is a complex distributed system. It is

composed of a group of mobile nodes without fixed infrastructure or central control

entities. The mobile nodes can self-organize freely and dynamically. Thus, multi-hop

communication is the basis of MANET. The nodes play double roles: the

communication endpoints and the routers between the communication nodes multi-hop

apart.

MANET can be easily deployed and thus can be used in a lot of scenarios such as

military applications and disaster rescues. Thus it attracts many researchers. And we

can summarize the characteristics of MANET as follows: multi-hop wireless

transmission, frequent topology changes, and limited bandwidth competed among

neighboring nodes.

1.2 Transmission Control Protocol 2

1.2 Transmission Control Protocol

Transmission Control Protocol (TCP) is the most famous transportation layer protocol.

It is connection-oriented and designed to provide reliable end-to-end packet

transmission over unreliable networks. TCP uses the cumulative ACK and

corresponding retransmission mechanisms to ensure the correct delivery of data

packets.

TCP uses two strategies for detecting packet loss. The first one is based on the

sender’s retransmission timeout (RTO) expiration. The other mechanism is based on

the receiver’s packet sequence number. Because TCP mainly uses cumulative

acknowledgments, the receiver will generates a duplicate acknowledgment

(DUPACK), which has the same sequence number as the last received packet, until the

lost packet is received.

TCP has well designed congestion control mechanisms to adjust the sending window

to effectively utilize the network bandwidth. The congestion control mechanisms

implementation is closely related with the packet loss detection.

1.3 TCP-Reno over MANET

TCP achieves a nice performance over the wired networks. Because of TCP’s success

over wired networks and taking the interoperability of MANETs and the world wide

Internet into consideration, applying TCP in MANETs is necessary.

TCP is designed for wired networks. The design of TCP’s congestion control

mechanism is based on the premise that the packet loss is an indication of network

congestion. The most popular version is TCP-Reno. When a packet is detected to be

1.2 Transmission Control Protocol 3

lost, either by timer timeout or triple duplicate ACKs, TCP slows down the sending

rate by adjusting its congestion window. In the case of timeout, TCP enters

the slow start phase and set its congestion window size to 1. In the case of triple

duplicate ACKs, TCP enters congestion avoidance by halving its congestion window.

Since bit error rate is very low and route failures are rare in wired networks, the

assumption that the packets losses are due to congestion works well. The

corresponding congestion window adjusting makes TCP utilize the bandwidth

effectively.

However, the premise that packet loss means network congestion does not work any

more for MANETs. In MANETs, frequent route change, channel and link errors

decide that most of the packet losses are NOT due to network congestion. This is

contradictory to the TCP premise. In this case, original TCP-Reno cannot adapt to the

network dynamics well. TCP-Reno is quite aggressive in increasing its congestion

window large. Thus, the wrongly undifferentiated window reducing action due to

non-congestion packet losses when applied in MANETs is probably in a large extent.

This reduction will lead TCP-Reno to achieve very low throughput. What is more,

the constant route failures may cause many packets lost and long time may need to

retransmit the lost packets. Thus, the aggressive window increasing of TCP-Reno will

make many packets queued up. This will lead to large average packet delay and delay

jitter, which is disadvantageous to real-time applications implementation.

We can summarize that the TCP-Reno performance in MANETs is sensitive to the

network dynamics and thus badly degraded. The basic reason is that TCP-Reno

cannot differentiate the packet loss due to network congestion with the loss due to

other reasons. The aggressive congestion window increasing is another important

reason, especially for the large average packet delay and delay jitter.

1.4 Research Motivation 4

1.4 Research Motivation

1.4.1 Related Works to Improve TCP Performance

From section 1.3, we know that applying TCP-Reno directly in MANETs will achieve

an unsatisfactory performance. Thus, many schemes (TCP-F, TCP-ELFN, TCP-Bus,

etc, for details please refer to Chapter 2) are proposed to improve the performance.

These schemes base on TCP-Reno and aim to improve the TCP-Reno throughput. As

illustrated in section 1.3, the basic reason for TCP-Reno degraded performance is that

TCP-Reno incorrectly perform congestion control in case of losses that are not

induced by network congestion. The window reducing, halving or decreasing to 1

according to the congestion control algorithm, would lead to low throughput.

Consequently, the basic idea for most of the above schemes to improve TCP-Reno

throughput is to “give” the TCP source the ability to distinguish the congestion loss

and the losses due to bit error or route failures. There are also some schemes that are

aiming to improve the MANETs environment such as reducing route failures or

improve MAC layer channel spatial reuse so as to improve the TCP throughput. The

details will also be presented in Chapter 2.

1.4.2 Reasons to Propose TCP-Vegas: Vegas vs. Reno

The schemes in section 1.4.1 are all Reno-based. The aggressive window increasing of

TCP-Reno will lead many packets queue up. The average packet delay cannot be

reduced effectively. Moreover, as the MANETs environment is dynamic, the

distinguishing information may be lost. The window size then may be reduced

despite the strategy. The large window size of TCP-Reno will probably make this

threat more detrimental because the window size reducing will be rather large. Thus,

1.4 Research Motivation 5

for the dynamic MAMETs, a small window size based TCP version is preferred. The

research works on congestion window limit settings (reference details in Chapter 2)

also show that small window size can achieve better performance for TCP applied in

MANETs. Consequently, we propose to apply TCP-Vegas in MANETs.

TCP-Vegas [2] achieves better performance than Reno in wired networks [3] [4]:

higher throughput, less retransmission, less packet loss and more stable congestion

windows. Vegas adopts a different mechanism to control the congestion window size.

It uses the fine-grained measurement of RTT to estimate the difference between the

expected and actual throughput to adjust the congestion window size accordingly.

Therefore, Vegas can detect the incipient congestion and it is quite conservative when

increasing its congestion window. This is contrary to Reno, which always

aggressively increases its window. The small window size of Vegas, together with its

lesser fluctuation, makes it less sensitive to the network dynamics. Moreover, smaller

queues will build up for Vegas, which leads to less average packet delay and delay

jitter.

We aim to reduce the average packet delay and delay jitter as well as improve the TCP

throughput. Thus, we propose to apply TCP-Vegas in MANETs in this thesis. The

details of the performance comparison of TCP-Reno and TCP-Vegas are presented in

Chapter 3.

1.4.3 Re-Routing Problem and Vegas Routing Interaction Strategy (VRIS)

However, applying TCP-Vegas directly to MANETs would face the re-routing

problem [5]. As shown in Figure 1.1 and Figure 1.2, before the route change, the TCP

connection use the 3-hop route, Base_RTT = T1. After the route change, the TCP

1.4 Research Motivation 6

connection use the 5-hop route, Base_RTT should be T2, but still as T1 according to

Vegas implementation. That is, Vegas uses the up-to-date minimum RTT as an

estimation of the Base_RTT, when the route changes to a longer one, Vegas is not able

to increase the value of Base_RTT.

Figure 1.1 Illustration of Re-Routing problem triggered by node movement
(Before movement)

Figure 1.2 Illustration of Re-Routing problem triggered by node movement
(After movement)

1.4 Research Motivation 7

The wrong estimation of Base_RTT would lead Vegas to incorrectly reduce its sending

window and cause low throughput. Thus, the re-routing problem should be solved to

further improve Vegas throughput. One strategy to solve the re-routing problem is

that La et al. [6] used any lasting increase in RTT as a sign of re-routing to update

Base_RTT. However this strategy is mainly used for wired networks and could not

adapt to MANETs very well. Correspondingly, we propose the Vegas-Routing

Interaction Strategy (VRIS) based on the MANETs characters. We try to trace the

route hop length information from the underlying routing agent and inform the

corresponding Vegas agent immediately to direct the Vegas agent to update its sending

window correctly and timely. VRIS can work well with both DSR and AODV. We

mainly choose DSR for illustration and also give the results with AODV. The

simulation results show that using the VRIS, Vegas can achieve throughput

improvement for about 10% on average and up to 223.01%. The main content of the

VRIS is presented in [29].

1.4.4 Unfairness Problem and ASCWL Strategy

Although our prime research goal is to improve the TCP throughput as well as reduce

the average packet delay in the general mobile scenarios, we should also emphasize

the unfairness problem in the static scenarios. Here we emphasize the static scenario

because it is hard to define the unfairness problem in mobile scenarios. The severe

unfairness problem exists for both TCP-Reno and TCP-Vegas. One connection may

achieve poor throughput even flow starvation. What is more, most of the related

research works on the unfairness problem are focused on identifying the factors

triggering the problem and the solving methods are rare. The proposed strategies can

alleviate the problem, but their implementations are complicated. The details can be

1.4 Research Motivation 8

found in the Chapter 2. Thus, we will try to propose a TCP-based strategy to improve

the TCP fairness and make the strategy easy to implement and work for both Reno and

Vegas.

The MAC layer factors such as hidden and exposed terminal problems, binary

exponential backoff strategy and channel capturing basically trigger the unfairness

problem. However, TCP’s inadequate interaction with the MAC layer further

exacerbates the problem. The above MAC factors are intrinsic for MANETs. To get

rid of them is difficult. For example, although IEEE 802.11 uses RTS/CTS

mechanism, the hidden and exposed terminal problems still exist. Thus, we aim to

modify the TCP implementation based on the MANETs characters so as to adapt TCP

to the MANETs environments to improve the TCP fairness. We find that the negative

impact of TCP over MAC can be effectively alleviated by dynamically setting the

Congestion Window Limits (CWLs) based on the optimal CWL. Thus, we propose

the Adaptively Setting Congestion Window Limit (ASCWL) strategy which uses the

hop number to set CWLs for the contending TCP connections as a means of solving

the unfairness problem. By simulations, we show that our strategy can improve the

fairness index by up to 89.21% (see result tables in Chapter 5 for reference). Further

more, the overall throughput usually increases as well. The details of the ASCWL

strategy are in [30].

1.4.5 Research Tasks

Now, we can summarize our research tasks as follows:

1) Apply TCP-Vegas in MANETS and prove that Vegas can achieve better

performance than Reno;

1.5 Thesis Organization 9

2) Propose a strategy (VRIS) to solve the re-routing problem in the general mobile

scenarios to further improve Vegas throughput;

3) Propose a strategy (ASCWL) to improve the fairness index of the contenting TCP

connections in the static scenarios.

1.5 Thesis Organization

The rest of the thesis is organized as follows:

In Chapter 2, some related research works on improving TCP throughput in MANATs

are reviewed. Some related works on TCP unfairness problem are also presented.

In Chapter 3, we will compare the performance of TCP-Vegas and TCP-Reno in

MANETs and prove that Vegas achieves a better performance: higher throughput, less

average packet delay and delay jitter.

In Chapter 4, we propose the VRIS to solve the re-routing problem in the mobile

scenarios. We implement VRIS with both DSR and AODV. We mainly use DSR to

illustration and also present the result with AODV.

In Chapter 5, we propose the ASCWL to solve the unfairness problem in the static

scenarios.

 10

Chapter 2

Literature Review

2.1 Introduction

In this chapter, we will present some related research works on improving TCP

performance in MANETs. The first part is the related schemes to improve the TCP

throughput. The second part is focused on the unfairness problem.

2.2 Schemes to Improve the TCP Throughput

As stated in Chapter 1, the main approaches are based on the basic idea to “give” the

TCP source the ability to distinguish the packet loss due to network congestion and the

loss due to other reasons so as to avoid the unnecessary window reducing. These

approaches are based on TCP-Reno. According to the different loss conditions, some

implementations are modified to adapt to the MANETs dynamic environment. The

difference between these approaches lies in how notifications are done and how the

corresponding reactions are performed. Other approaches are aiming to improve the

MANETs environments, such as the MAC layer spatial reuse and network work layer

route availability. The increase of the lower layer reliability will also bring the TCP

2.2 Schemes to improve TCP throughput 11

throughput improvement. One famous example is the backup routing strategy (see

2.2.1.6) to offer the backup path in addition to the primary communication route.

The strategies can be classified into 2 classes according to the implementing method:

cross layer interaction proposals and one layer implementing proposals. In the cross

layer proposals, TCP and its underlying protocol work jointly. In the layered

proposals, the problem of TCP is attacked at one layer. Cross layer proposals usually

report higher throughput improvement. Mobility, link breakages and routing failures

are taken into consideration in most of these proposals.

2.2.1 Cross Layer Strategies

The Cross layer strategies can be classified into 3 types:

• TCP and network cross layer,

• TCP and physical cross layer,

• Network and physical cross layer.

The following 4 schemes, TCP-F, TCP-ELFN, TCP-Bus and ATCP belong to the TCP

and network cross layer strategies. The next two routing schemes belong to the

network and physical cross layer strategies.

2.2.1.1 TCP-F

TCP Feedback [7] is the feedback-based approach to allow the TCP sender to

distinguish between losses due to route failure and those due to network congestion.

The details are as follows. When routing agent detects the route failure, it explicitly

sends a Route Failure Notification (RFN) packet to the source. On receiving the RFN,

the source goes into the “snooze” state in which the TCP sender will stop sending

packets and freeze the timers and the congestion window. When the route is re-

2.2 Schemes to improve TCP throughput 12

established, a Route Re-establishment Notification (RRN) packet is sent to the source.

On receiving the RRN, the sender will continue the transmission with the previous

timer and congestion window values resumed.

TCP-F is proved to work better than standard TCP. However, the simulation scenarios

are quite special and not the general ones in ad hoc networks.

2.2.1.2 Explicit Link Failure Notification (ELFN)-based Technique

TCP-ELFN [8] is quite similar to TCP-F. The reasoning behind ELFN is to inform the

TCP agent about route failures when they occur. On receiving the ELFN message, the

source responds by disabling its retransmission timers and enters a “standby” state.

During standby state, the sender probes the network to check if the route is restored. If

the acknowledgement of the probe packet is received, TCP sender leaves the

“standby” mode, resumes its retransmission timers, and continues to the normal

operation. The values of the parameter RTO and Congestion Window (CW) are

varied to optimize the ELFN performance.

TCP-ELFN can effectively improve the TCP throughput. However, the parameter

values need to be selected accordingly.

A further ELFN-Based TCP-Freeze scheme [9] is proposed to decouple the link failure

notification into two phases: the underlying routing protocol route failure detection

and sender side routing protocol to TCP notification, which makes it an end-to-end

scheme.

2.2.1.3 TCP-Bus

This strategy [10] also uses the network feedback to detect route failure events and

then to take the corresponding reaction to these events. In this strategy, the buffering

capacity of the mobile nodes is proposed and the source-initiated on-demand

2.2 Schemes to improve TCP throughput 13

Associativity-Based Routing (ABR) routing protocol is selected. The following are

the detailed implementations.

Two control Explicit Notification messages are used to notify the source about the

route failure and the route re-establishment. On receiving the Explicit Route

Disconnection Notification (ERDN), the source stops sending. Similarly, on receiving

the Explicit Route Successful Notification (ERSN), the source resumes data

transmission.

During the route reconstruction phase, packets along the path from the source to the

Pivoting Node (PN) used to detect route failures are buffered. And the retransmission

timer is doubled to avoid the timeout events. To overcome the late retransmission due

to the timer doubling, an indication is made to make the source selectively retransmit

the lost packets in advance.

In TCP-Bus, reliable retransmission of the control message is implemented to ensure

the reliability of the ERDN and ERSN.

TCP-Bus outperforms standard TCP and TCP-F. However, the evaluation is based

only on the ABR routing protocol.

2.2.1.4 ATCP

Ad hoc TCP [11] inserts a layer called ATCP between the TCP and IP layers of the

TCP source nodes. ATCP listens to the network layer feedback via the information

provided by ECN or ICMP message. Then according to the information, ATCP puts

TCP in one of the following states: persist, congestion control, retransmit, and normal.

In each state, corresponding TCP behaviors are implemented.

2.2 Schemes to improve TCP throughput 14

ATCP can effectively improve the throughput. But its implementation is based on

some special scenarios and some assumptions that might be somehow hard to meet

such as ECN-capable nodes as well as sender node being always reachable.

2.2.1.5 Preemptive Routing in Ad hoc Networks

This scheme [12] is designed to reduce the number of routing failures. It is achieved

by switching to a new route when a link of the current route is expected to fail in the

future so as to reduce the number of routing failures. Specifically, when the signal

power drops below a given preemptive threshold, the source is notified and proactively

looks up for a new route. When the new route is available, the routing agent switches

to this new route.

By simulations, this scheme can yield a considerable reduction of the number of route

failures. This reduction of route failures can make TCP achieve higher throughput.

2.2.1.6 Backup Path Routing

Backup path routing scheme [13] uses only one path at a time but it maintains some

backup paths and can switch from current path to another alternative path rapidly if

current path fails. It is found that maintaining 2 paths is usually optimal for the best

TCP performance. Shortest-hop path, shortest-delay path, and maximally disjoint path

are the paths usually found and cached for the choice of primary path or the backup

path. Two schemes of choosing the primary path and the backup path are proposed.

Scheme 1 is to choose the shortest-hop path as the primary and the shortest-delay path

as backup. Correspondingly, scheme 2 chooses shortest-delay path as primary and

maximally disjoint path as backup.

As Scheme 2 does not use the shortest-hop path, it achieves worse performance than

the original TCP. But Scheme 1 is shown to be able to improve the TCP throughput

by 23% to 30%.

2.2 Schemes to improve TCP throughput 15

2.2.2 Layered Proposals

The layered proposals can be classified into the following two categories according to

in which layer the proposal is implemented.

• TCP layer proposal,

• Link layer proposal.

The following Fixed RTO, CWL setting belong to the TCP layer proposals. The Link

RED and Adaptive Pacing belong to the Link Layer proposals.

2.2.2.1 Fixed RTO

In this scheme [14], a heuristic is introduced to distinguish between route failures and

congestion. When two timeouts expire in sequence, the sender concludes that a route

failure has occurred. The unacknowledged packet is retransmitted but the

Retransmission Timeout (RTO) is not doubled a second time. The RTO remains fixed

until the route is re-established and the retransmitted packet is acknowledged.

The throughput can achieve effective enhancement. However, in case of congestion,

the supposition that two consecutive timeouts are exclusively the indication of route

failure needs more consideration.

2.2.2.2 CWL Setting

This scheme [15] is based on the study of the relationship between the hop number and

the optimal Congestion Window Limit (CWL) achieving the best throughput. Given a

specific network topology and flow patterns, there exists an optimal TCP window size

limit, on which TCP achieves the best throughput via improving the spatial reuse.

And usually, this window size is not too large. It was found that the bandwidth delay

product (BDP) of multi-hop routes cannot exceed the Round-Trip Hop-Count (RTHC)

2.2 Schemes to improve TCP throughput 16

of the path. In the case of a multi-hop chain that implements IEEE 802.11 MAC, the

BDP is bounded by 1/5 of the RTHC. Based on this bound, they propose to use the

CWL setting algorithm to adjust TCP’s maximum window size limit according to the

path hop numbers. This scheme can improve the TCP throughput by up to 16%.

2.2.2.3 Link RED

This scheme [16] is to monitor the average number of retries in the packet

transmission at the link layer. Then the scheme compares this number with a given

threshold and drops/marks the packets by the probability calculated according to the

RED algorithm. When the marked packets arrive at the destination, the sender will be

informed to increase the backoff time at the MAC layer. This scheme can effectively

reduce the contention on the wireless channel. The MAC layer optimization can also

improve the TCP throughput.

2.2.2.4 Adaptive Pacing

This scheme [16] is to improve channel spatial reuse. In IEEE 802.11, a node is

constrained from contending for the channel by a random backoff period, plus a single

packet transmission time. However, the implementing of the above action can not

solve the exposed terminal problem. Thus, the Adaptive Pacing scheme is proposed.

This scheme can alleviate the problem by increasing the backoff period by an

additional packet transmission time. It works together with LRED. When the average

number of retries is less than a threshold, it calculates its backoff time as usual. When

the average number is beyond this threshold, adaptive pacing is enabled and the

backoff period is increased by duration equal to the previous packet transmission time.

2.3 Related works on TCP unfairness problem 17

As the Link RED, the MAC layer optimization can improve the throughput in the

above TCP layer.

2.3 Related Works on TCP Unfairness Problem

It is known that substantial unfairness and even flow starvation exist in MANETs. As

fairness is an important metric to evaluate the network performance, the severe

unfairness problem should also be widely studied.

There are some related research works on this topic. However, most research on TCP

unfairness problem is focused on identifying the factors which cause the unfairness

problem. Some scheduling strategies can alleviate the unfairness problem, but their

implementations need the MAC protocols modification. One effective method to

solve the problem is the Neighborhood RED (NRED) strategy proposed by K. Xu and

Gerla et al. [17], which is implemented on the network layer.

2.3.1 Related Works on Identifying the Triggering Factors

K. Tang and M.Gerla [18] used the static topologies such as chain and grid topology to

compare the impact of different MAC protocols, namely CSMA, FAMA, MACAW

and IEEE 802.11. IEEE 802.11 was found work best. S. Xu et al. [19] investigated

the factors for IEEE 802.11 that cause the unfairness problem. K. Xu et al. found in

[20] the greedy behavior of TCP and its poor interaction can exacerbate the unfairness

situation.

2.3 Related works on TCP unfairness problem 18

2.3.2 Neighborhood RED

In NRED, each node in the network maintains its own distributed queue, called

neighborhood queue. The neighborhood queue aggregates the node’s local queue and

the upstream and downstream queues of its 1-hop neighbors. Then, the RED

algorithm is used based on this neighborhood queue to give the disadvantage

connections less dropping probability and thus more chance to transmit packets.

NRED can effectively improve the TCP fairness. However, its implementation is

somewhat complicated. Moreover, the fairness evaluation in the mobile scenarios

needs more consideration.

2.4 Summary

Now we summarize the research works on improving TCP performance in MANETs.

Most of the research works on this topic are focused on how to improve the TCP

throughput. There are also quite a few works on the severe unfairness problem.

In the research works to improve the TCP throughput, most of them are focused on

how to make the TCP source have the ability to distinguish the packet loss due to

network congestion and the loss due to other reasons. According to how the

distinguishing information is gotten, the strategies can be classified into 2 types: cross

layer strategies and layered strategies. There are also some related works that are

aiming to improve the MANETs environment such as reducing route failures or

improve MAC layer channel spatial reuse so as to improve the TCP throughput. The

implementations are focused on the TCP-Reno version.

In the research works on the unfairness problem, most of the works are focused on

identifying the intrinsic MAC factors that trigger the unfairness problem. The

2.4 Summary 19

proposals to solve this problem are rare. One effective method is the Neighborhood

RED (NRED) strategy proposed by K. Xu and Gerla et al. [17], which is implemented

on the network layer.

 20

Chapter 3

TCP-Vegas vs. TCP-Reno in MANETs

3.1 Introduction

In this chapter, we apply TCP-Vegas in MANETs. We will prove that Vegas can

achieve a better performance than Reno via NS-2 simulation. First, we will present

some background information on TCP-Reno and TCP-Vegas implementation. Then,

we will compare their performance in MANETs.

3.2. Background Information on TCP-Reno and TCP-Vegas

3.2.1 TCP-Reno Congestion Window Control

TCP-Reno induces packet losses to estimate the available bandwidth in the network.

The source assumes the packet losses are due to network congestion and the

corresponding congestion mechanisms are implemented to control the sending window

size. The TCP-Reno congestion control mechanisms include two phases: Slow Star

and Congestion Avoidance.

Slow Start begins with congestion window size as 1. The window size will double

once the sender received the ACK for the former sending packets until the window

3.2 Background Information on TCP-Reno and TCP-Vegas 21

size reaches the slow start threshold (ssthresh). Then the congestion control enters the

Congestion Avoidance phase, during which the congestion window size is increased

linearly by 1/cwnd each time an ACK is received. When TCP-Reno experiences a

packet loss, it will reduce its window size. If the packet loss is due to triple duplicated

ACKs, it will halves its congestion window size and enter the Congestion Avoidance

phase. If the packet loss is due to the sender timer timeout, it will reduce the window

size to 1 and enters the Slow Star phase.

3.2.2 TCP-Vegas Congestion Window Control

Vegas adopts a timestamp-based mechanism to control the congestion window size. It

uses the fine-grained measurement of RTT to estimate the difference between the

expected and actual throughput to adjust the congestion window size accordingly. The

details are as follows:

 / _Expected cwnd Base RTT= (3.1)

where cwnd is the size of the current sending congestion window and Base_RTT is the

minimum RTT of that connection.

 /Actual PktsTrans rtt= (3.2)

where PktsTrans is the number of packets transmitted during the last RTT, is the

average RTT of the segments acknowledged during the last RTT. In the steady state,

we can take cwnd as PktsTrans

rtt

() *

 () * _
_

_ * (1)

_D iff Expected Actual Base RTT
cw nd cw nd Base RTT

Base RTT rtt
Base RTTcw nd

rtt

= −

= −

= −
 (3.3)

3.2 Background Information on TCP-Reno and TCP-Vegas 22

 (3.4)

1, if <
, if

1, if >

cwnd Diff
cwnd cwnd Diff

cwnd Diff

α
α β

β

+
= ≤
 −

≤

We can take Diff as the backlog in the router queue. α and β are constants which can

be respectively taken as the lower and upper bound of the backlog. They usually took

the value of 1 and 3 respectively.

3.2.3 Difference between Vegas and Reno

We can summarize the difference between Vegas and Reno as follows:

• Congestion control implementation

TCP-Vegas has a fundamentally different congestion avoidance scheme from that

of TCP-Reno as we can infer from the implementation rules above.

Reno uses the loss of packets as a signal that there is congestion in the network and

thus has no way of detecting any incipient congestion before packets losses occur.

Thus, Reno reacts to congestion rather than attempts to prevent the congestion.

Correspondingly, what Vegas tries to do is as follows. As we can see from the

implementation, if the actual throughput is much smaller than the expected

throughput, then it suggests that it is likely that the network is congested. Thus the

source should reduce the flow rate. On the other hand, if the actual throughput it

too close to the expected throughput, then the connection may not be utilizing the

available flow rate, and hence should increase the flow rate. Thus, Vegas is

conservative when increasing its congestion window size and so it can detect

incipient congestion.

• Packet delay and jitter

3.2 Background Information on TCP-Reno and TCP-Vegas 23

As Vegas is quite conservative when increasing its congestion window size, only a

few packets will queue up in the buffers. On the other hand, Reno is very

aggressive when increasing the window size. Thus, the average packet delay and

delay jitter of Vegas tend to be much smaller than those of Reno.

• Retransmission mechanism

Vegas has better retransmission mechanisms. For TCP-Reno, a rather coarse

grained timer is used to estimate the RTT and the variance, which results in a poor

estimation. Vegas, on the other hand, uses a fine-grained timer. Vegas records the

system clock each time a packet is sent. When an ACK is received, Vegas

calculates the RTT and uses this more accurate estimation to decide to retransmit

the packet in the following two situations: (1) When it receives a duplicate ACK,

Vegas checks to see if the RTT is larger than timeout. If it is, then without waiting

for the third duplicate ACK, it immediately retransmits the packet. (2) When a

non-duplicate ACK is received, if it is the first or second ACK after a

retransmission, Vegas again checks to see if the RTT is greater than timeout. If it

is, then Vegas retransmits the packet.

3.3. TCP-Vegas vs. TCP-Reno in MANETs

Vegas achieves a much better performance than Reno in wired networks: higher

throughput, less retransmission, less packet loss and more stable congestion windows.

Now we consider their performance in MANETs. The small window size of Vegas,

together with its lesser fluctuation, will make it less sensitive to the network dynamics.

Moreover, smaller queues will build up for Vegas, which will lead to less average

3.3 TCP-Vegas vs. TCP-Reno in MANETs 24

packet delay and delay jitter. Thus we expect that Vegas will also achieve better

performance in MANETs than Reno. We will prove this by NS-2 [21] simulations.

3.3.1 Static Scenario

First, we use a chain topology as shown in Figure 3.1 to study the multi-hop wireless

transmission in MANETs.

 Figure 3.1. Chain Topology

Table 3.1 Parameter Settings

Wireless Channel Raw Capacity 2M bps
Radio Transmission Range 250 meters
Carrier Sense Range 550 meters
Adjacent Node Distance 200 meters
MAC IEEE 802.11
Routing Protocol DSR
Default TCP Packet Size 1000 bytes
interface queue limit 50 packets

The parameter settings in Table 3.1 decide that only the adjacent nodes can transmit

packets directly. We set up TCP connections with different route hop numbers. That

is, we set node0 the source and node1, node2 … node6 the destination respectively.

For each TCP connection, the simulation is run for 500s.

The simulation results are shown in Figure 3.2. For the 1 and 2 hop(s) situations,

Reno gets almost the same throughput as Vegas. But for larger hop numbers, Vegas

achieves better throughput performance. As the hop number increases, the throughput

of both Vegas and Reno decreases exponentially. Here, by throughput we refer to the

3.3 TCP-Vegas vs. TCP-Reno in MANETs 25

goodput, which means the throughput without the header and excluding the

retransmission. We follow the same good definition in the following chapters.

After MAC and TCP layer tracing, we find link failure and TCP sending window

control strategy are two main factors that contribute to the simulation result in Figure

3.2. Since IEEE 802.11 can not totally solve the “hidden and exposed terminal”

problems, DATA and RTS packets in MAC layer may conflict with ACK or CTS and

be lost. When MAC layer retransmits for 7 times and still fails, it will send link

failure message to the upper layer, which will usually result in TCP retransmission and

even timer timeouts. It is well known that Vegas and Reno have different window

control strategy. Reno always tries to increase its sending window until it gets some

sending packet lost. Vegas, on the other hand, is more conservative. It uses the fine-

grained measurement of RTTs to control its window size. It always avoids packet loss

and makes its sending window stable. Hence, Reno puts more packets into the

network than Vegas and has more packet loss than Vegas. The following window

halving or even reducing to 1 will bring larger performance degradation for Reno.

Figure 3.2 Goodput vs. Hop Number for Reno and Vegas

3.3 TCP-Vegas vs. TCP-Reno in MANETs 26

Figure 3.3 Seven Times Retransmission Failure Numbers vs. Hop Number
For Reno and Vegas

As shown in Figure 3.3: for the 1 or 2 hop cases, as the source node can “hear” the

destination node, both Vegas and Reno have no link failures; for the larger hop cases,

Reno gets much more “link failures” than Vegas on average. Tracing the IFQ length,

we find that Reno uses more queue space than Vegas. Consequently, Vegas achieves

higher throughput. Moreover, Vegas achieves shorter average packet delay and delay

jitter than Reno. This is important for applications such as interactive multimedia and

network games. We put the 4-hop cases results here. The average packet delay of the

4-hop (node0 to node4) connection for TCP-Reno is shown in Figure 3.4, for TCP-

Vegas is shown in Figure 3.5.

3.3 TCP-Vegas vs. TCP-Reno in MANETs 27

Figure 3.4 Average Packet Delay of the node0 to node4 connection for TCP-Reno

Figure 3.5 Average Packet Delay of the node0 to node4 connection for TCP-Vegas

3.3 TCP-Vegas vs. TCP-Reno in MANETs 28

3.3.2 Mobile Scenario

This part will focus on the “topology change” of MANETs. We will use the random

way-point model [22]. In this model, each node is placed randomly in the simulated

area and remains stationary for a specified pause time. After the pause time, a node

randomly selects a destination (x y-coordinates) and moves in the direction of the

destination point at a speed uniformly chosen between a minimum (usually 0) and

maximum value. In our simulation, each of the 7 nodes randomly selects a destination

point in a 1500*500m rectangle area. Other parameters are the same in Table 1 expect

the adjacent node distance. The max node speed is varied as 10, 20 and 30m/s and the

pause time is chosen as 2s. The simulation is run for 150s. Still we try to setup a TCP

connection between node0 and node 1, node2… node 6 respectively. In order to be

consistent with the static scenario and due to the non-correlation of the random seed

for the different average node speed, we put the one-seed simulation results as follows

in figure 3.6, figure 3.7 and figure 3.8 for average speed of 10, 20 and 30 m/s

respectively. We vary the number of nodes as well as simulation scenarios with

different seeds and get similar result trend.

0
50

100
150
200
250
300
350
400
450
500

G
oo

dp
ut

(k
bp

s)

1 2 3 4 5 6

Destination Node

TCP-Vegas

TCP-Reno

Figure3.6 Goodput of TCP from Node0 to Different Destination Node (max
speed=10m/s)

3.3 TCP-Vegas vs. TCP-Reno in MANETs 29

0

50

100

150

200

250

300

350

400

G
oo

dp
ut

(k
bp

s)

1 2 3 4 5 6

Destination Node

TCP-Vegas

TCP-Reno

Figure3.7 Goodput of TCP from Node0 to Different Destination Node (max
speed=20m/s)

0

50

100

150

200

250

300

350

400

G
oo

dp
ut

(k
bp

s)

1 2 3 4 5 6

Destination Node

TCP-Vegas
TCP-Reno

Figure3.8 Goodput of TCP from Node0 to Different Destination Node (max
speed=30m/s)

Despite the re-routing problem, Vegas outperforms Reno in most cases. In mobile

scenarios, the mobile nodes are always moving and so the route to the destination is

always changing. Consequently, there are two factors causing route failure: MAC

collision and node movement. Reno is more aggressive than Vegas. It always

3.3 TCP-Vegas vs. TCP-Reno in MANETs 30

increases its sending window until packet loss happens. Consequently, Reno tends to

lose more packets and the following window reducing will yield worse result than

Vegas. Moreover, routing traces show that nodes movement may bring shorter new

routes and thus “re-routing problem” doesn’t exist.

In mobile scenarios, Vegas also achieves less average packet delay and delay jitter.

Figure 3.9 and Figure 3.10 are one of the node 0 to node 3 connection scenarios for

Reno and Vegas respectively.

Figure 3.9 Average Packet Delay of the node0 to node3 connection for TCP-Reno

3.3 TCP-Vegas vs. TCP-Reno in MANETs 31

Figure 3.10 Average Packet Delay of the node0 to node3 connection for TCP-Vegas

The vertical lines in Figure 3.10 show that occasionally in the mobile scenario, due to

the node mobility, some packet may also experience a long delay.

3.3.3 Summary

In summary, Vegas achieves a better performance when applied in MANET than Reno.

In static and most mobile scenarios, Vegas achieves higher throughput than that of

Reno. Moreover, Vegas achieves less average packet delay and delay jitter than Reno.

This is important for the future applications such as interactive multimedia and

network games. However, the re-routing problem is intrinsic for Vegas applying in

MANETs. So we need to solve it so as to achieve further throughput improvement for

Vegas.

 32

Chapter 4

Vegas Routing Interaction Strategy (VRIS)

4.1 Introduction

In this chapter, we propose the Vegas Routing Interaction Strategy (VRIS) to solve the

intrinsic re-routing problem to improve the TCP-Vegas throughput.

The re-routing problem [5] is rooted in TCP-Vegas implementation. Vegas uses the

propagation delay as Base_RTT to adjust its congestion window size. When

implementing, the up-to-date minimum round trip time (RTT) is used for the

estimation of Base_RTT. Vegas is not able to increase the value of Base_RTT when

the route changes to a longer one and the actual propagation delay have also increased,

because it uses the up-to-date minimum RTT as the estimation. The wrong

estimation of Base_RTT would lead Vegas to incorrectly reduce its sending window

and thus cause very low throughput.

In MANETs mobile scenarios, as the mobile nodes are always moving and the

topology is dynamic, there is a high probability of the re-routing problem occurrence.

The mostly used strategy to solve the re-routing problem is that La et al. [6] use any

4.1 Introduction 33

lasting increase in RTT as a sign of re-routing problem occurrence and thus update

Base_RTT to a larger value. For simplicity, we call this strategy Lasting Increase of

RTT (LIR).

The details of LIR implementation are as follows:

(1) LIR uses same mechanisms as the original TCP-Vegas for the first K packets.

When it receives the ACK for the Kth packet, it computes the difference diff_estimate

between Base_RTT and RTTK, where RTTK is the round trip delay of the Kth packet.

This difference provided a rough estimate for the increase in the round trip delay due

to its own packets queued at the buffers. An average of several differences could be

used instead of one value. For simplicity, only one value is used for diff_estimate in

LIR.

(2) After the ACK for the Kth packet is received, the source checks the smallest round

trip delay of every N packets, which is denoted by BaseRTTestimate. If the difference

between the minimum round trip time of N packets and Base_RTT is larger than

{ }_ min *diff estimate baseRTT ,δ γ+ , where 0 1δ< < and 0γ > are prefixed

parameters, for L consecutive times, then the source interprets this as a change in

propagation delay, i.e., change in route, and (a) sets the Base_RTT equal to the

minimal round trip time of the last N packets, and (b) sets the congestion window size

cwnd to * 1baseRTTestimatecwnd cwnd
baseRTT

= +

The basic idea behind this mechanism is as follows. If the minimum round trip time

computed for N packets is consistently much higher than the sum of Base_RTT and

diff_estimate, then it is likely that actual propagation delay is larger than the measured

Base_RTT, and it makes sense to increase Base_RTT. Since the increase in delay

4.1 Introduction 34

forces the source to decrease its window size, the round trip delay comes mostly from

the propagation delay of a new route. Thus, the minimum round trip delay of the

previous N packets is a good estimate of the new propagation delay, as is Base_RTT

for the current route.

The parameter values used in their scheme implementation are K=100, N=20, δ=0.2,

L=4, and γ=100 ms. However, to choose the appropriate values for LIR is still an

open problem.

The LIR strategy is mainly design to deal with the re-routing problem in the wired

networks. In MANETs, re-routing problems are mainly triggered the node movements

and the following communication route changes. Thus LIR cannot adapt to the

MANETs environment well since it cannot find the route changes timely and correctly.

Based on the MANETs characters, we propose the Vegas Routing Interaction Strategy

(VRIS) to resolve the Re-Routing problem.

In the following sections, we will give a detailed illustration of VRIS. Firstly, the

VRIS scheme design is presented. Secondly, we will describe the VRIS

implementation with the DSR and AODV. Thirdly, the Enhanced VRIS (E-VRIS) is

extended. Then we will present the scheme analysis and explanation. The simulation

results are as following.

4.2 Vegas Routing Interaction Strategy (VRIS)

Based on the MANETs characters of constant node movement and route change, we

propose our Vegas Routing Interaction Strategy (VRIS). The basic reasoning behind

VRIS is that we can trace the route change via the routing agent in the IP layer, and

inform the corresponding Vegas agent about this routing change timely and correctly.

4.2 Vegas Routing Interaction Strategy 35

Then Vegas agent will be able to adjust its congestion window size correspondingly

according to this information.

4.2.1 Scheme Design

The basic scheme for VRIS strategy is the CB-Vegas algorithm, i.e. “Change” the

Vegas parameter “Base_RTT”.

Figure 4.1 CB-Vegas Algorithm Flowchart

CB-Vegas is summarized as in Figure 4.1. We know node mobility is a very

important characteristic of MANETs. Thus we can make the underlying routing agent

4.2 Vegas Routing Interaction Strategy 36

“monitors” the route changes. We should claim that the “route change” refers to the

change of the hop number of the communication route. The reasoning is that hop

distance is a key factor deciding the RTT and geographic distance in a limited distance

area as in MAMETs is much less a factor that can be omitted. If the route hop

number is increased, we will set Flag=1 and immediately inform the corresponding

Vegas connection. Then the TCP Agent can update its Base_RTT as the value of RTT

gotten right after detecting the route change. The Flag passing from the DSR agent to

Vegas agent can be easily fulfilled in NS-2 by two agent-classes communication.

When implementing, the Flag passing can be added in the SAP function from the

network layer to the transport layer.

DSR and AODV are the two mostly used on-demand routing protocols. Thus we will

implement our VRIS strategy with both DSR and AODV as the routing protocol. We

will mainly use DSR to illustrate the algorithm and for AODV we give the simulation

results.

4.2.2 VRIS with DSR and AODV

VRIS can work well with all the routing protocols. Since DSR and AODV are the

mostly used on-demand routing protocols in MANETs, we will illustrate the

implementation of VRIS with DSR and AODV respectively.

4.2.2.1 DSR (Dynamic Source Routing) Routing Protocol

DSR is composed of two main mechanisms that work together to allow the discovery

and maintenance of source routes in MANETs. The two mechanisms are Route

Discovery, undertaken when source needs a route to a destination, and Route

Maintenance, used when link breaks render specified route unusable. When

4.2 Vegas Routing Interaction Strategy 37

implementing Route Discovery, the source node flooding the network with a RREQ

for the specified destination. And the intermediate nodes will reply to the source with

a RREP if a path to the destination is stored or it will add itself to the route record and

broadcast the message toward the destination. On receiving the RREQ, the destination

will unicast the RREP to the source with the complete route built by intermediate

nodes. When link breakages occur, RERR is sent back to the source and the

intermediate nodes will adjust cached routes. If the intermediate nodes or the source

have one cached route available to the destination, the new routes can be used to

deliver the packet. Otherwise when the REER reaches the source, the source will

initiate another Route Request.

For DSR, the routing information is first found and then put into the header of all the

data packets. Thus, to implement VRIS, we can get the route hop number information

from the packet header.

4.2.2.2 Ad hoc On Demand Distance Vector (AODV) Protocol

AODV builds routes between nodes only as desired by the source nodes. It uses route

request/route reply query cycle. When a source node desires a route to a destination

for which it does not already have a route, it broadcasts a route request (RREQ) packet

across the network. Nodes receiving this packet update their information for the

source node and set up backward pointers to the source node in the route tables. In

addition to the source node’s IP address, current sequence number, and broadcast ID,

the RREQ also contains the most recent sequence number for the destination of which

the source node is aware. A node receiving the RREQ may send a route reply (RREP)

if it is either the destination or if it has a route to the destination with corresponding

sequence number greater or equal to that contained in the RREQ. If this is the truth, it

4.2 Vegas Routing Interaction Strategy 38

unicasts a RREP back to the source. Otherwise, it rebroadcasts the RREQ. As the

RREP propagates back to the source, nodes set up the forward pointers to the

destination. Once the source nodes receive the RREP, it may begin to forward data

packets to the destination.

For AODV, the route hop number information is stored in the routing tables. Thus, to

implement VRIS, we can trace the updating of the routing table to get this information.

4.2.3 E-VRIS

Based on CB-Vegas, we can further extend the FW-Vegas scheme and incorporate

FW-Vegas with CB-Vegas to propose the Enhanced VRIS.

FW-Vegas, i.e. “Fix” the Vegas sending “Window”, is quite similar to CB-Vegas.

The only difference is that the sending window will be fixed for the present RTT apart

from updating the Base_RTT.

The key issue of Enhanced VRIS is to selectively use CB-Vegas or FW-Vegas

according to the real-time network conditions.

We try to compare RTO new, the Retransmission Timeout (RTO) after the route change,

and RTO old , the RTO before the route change.

If (RTO new <= α*RTO old)

 CB-Vegas

Else

 FW-Vegas

The parameter α is a constant between 0 and 1 whose value is chosen to consider the

node speeds factor, where a smaller value for α indicates higher node speeds. In our

following implementation, we choose α as 1 for the 10m/s case, 0.95 for the 20m/s

4.2 Vegas Routing Interaction Strategy 39

case, and 0.925 for the 30m/s case. The above 3 values may not be the optimal values.

They are randomly chosen for taking the node speeds factor into consideration.

E-VRIS is an enhancement over VRIS in the general mobile scenarios. The core idea

is still the VRIS. Thus, we only give the E-VRIS results for the general mobile

scenarios with DSR routing protocol.

4.2.4 Scheme Analysis and Explanation

A detailed explanation about the principles behind our scheme design is presented in

this part.

As we know, TCP-Vegas updates its sending window according the RTTs it observed.

The details are as shown in section 3.2.2.

As shown above, Base_RTT is a very important parameter to update cwnd. As

discussed in the former chapters, re-routing can cause inaccuracy of Base_RTT. When

the route for the TCP-Vegas connection has changed, Base_RTT may also change.

Vegas is usually not affected if the new route has smaller RTTs, as Base_RTT will

immediately be updated. But when the new route has larger RTTs, it will cause

problem to Vegas. Vegas cannot tell whether the RTT becoming larger was caused by

network congestion or route changes. Therefore it always assumes that the increase of

RTT was due to the network congestion and consequently it will decrease cwnd.

However, we can infer from (3.1) (3.2) (3.3) (3.4) that, as Base_RTT becomes larger in

fact, we should also increase cwnd to make Diff balanced between α and β. We can

consider this from another point. When RTTs become larger, as the bandwidth-delay

product increases, the number of packets that can be held in the network increases.

Thus cwnd should also be increased so that to satisfy (3.4). The untimely Base_RTT

4.2 Vegas Routing Interaction Strategy 40

updating can limit the cwnd increase. Based on the above arguments, we propose the

CB-Vegas scheme.

CB-Vegas can effectively solve the re-routing problem to improve the Vegas

throughput. However, it may have some limitations for the following reasons.

The first is due to the route-cache use after route failures. In DSR or AODV, when a

route is broken, some mechanisms are performed to use the salvage route to transfer

the data packets in flight. For DSR, if the intermediate nodes or the source has one

cached route available to the destination, the new routes can be used to deliver the

packets. For AODV, the local repair mechanism is used to update the routing table to

find the salvage route. The salvage route may be probably much longer and thus we

update Base_RTT, then Vegas will increase cwnd. Because the route caches may be

stale, especially for the aggressive cache use of DSR, the salvage route may probably

be unable to succeed. Thus, increasing cwnd may cause more packets lost.

Another reason is because of the instability of cwnd. As mentioned above, the salvage

route may be stale and cannot succeed, if we increase cwnd for the present RTT, we

may need to decrease cwnd the following RTT, which will make cwnd fluctuate.

However, the main advantage of TCP-Vegas is to maintain cwnd stable. This

advantage will be lost in this case.

The third reason is that when there are route changes the MANETs is usually unstable

at the moment and the packets are easily lost. If we increase cwnd, more packet losses

may cause numerous retransmissions and even timeouts. FW-Vegas can effectively

alleviate the above negative effects. Using this scheme, on one hand, we can prevent

Vegas from oppositely changing cwnd, that is, when the new route is longer, it does

not decrease cwnd any more. This will solve the re-routing problem. On the other

4.3 VRIS simulation implementation 41

hand, we can make cwnd more stable and thus inherit the advantages of TCP-Vegas.

However, FW-Vegas always keeps Vegas from increasing cwnd, which may prevent

the full use of the bandwidth. Thus, we propose the RTO comparison mechanism to

decide when to use CB-Vegas or FW-Vegas.

Vegas adapts its behavior to the network by considering the RTT of the packets. It

computes a smoothed RTT (SRTT), which is a weighted average of all the past RTT

values and the current RTT, with more weights allocated to the former. Thus, we can

claim that SRTT can be used to indicate the network path conditions. When the SRTT

updated with the current RTT is larger than the before-updating value, it shows that the

new path has rather large RTTs and the path quality doesn’t improve. Thus, it is better

to use FW-Vegas. On the contrary, the new path has better quality, we will use CB-

Vegas to better utilize the bandwidth. In TCP implementation, SRTT is then used to

determine RTO. For simplicity, we will compare the RTO calculated with and without

the current RTT to decide whether CB-Vegas or FW-Vegas will be used.

4.3 VRIS Simulation Implementation

We will simulate VRIS with both DSR and AODV. We will mainly use DSR for

illustration. The simulations are performed in steps. For the general mobile scenarios,

we will compare the simulation result with VRIS, E-VRIS, LIR and standard TCP-

Vegas. For AODV, we will give the simulation results with VRIS in the general

mobile scenarios.

First, we will discuss the issues of the simulation results statistics in the general mobile

scenarios. Then, simulation result and performance evaluations are presented.

4.3 VRIS simulation implementation 42

4.3.1 Simulation Result Statistic: 30 Scenarios Average

By simulation, we find that TCP throughput is greatly related to the mobile scenarios.

TCP performance may vary a lot with the same simulation background settings, such

as the same number of nodes, same max node speed and the same node pause time

between movements, but different moving steps. A scenario is corresponding to a

detailed set of node movements. The following are some simulation examples.

The simulation settings are as follows. We use the random-way point model. Each of

the 20 nodes randomly selects a destination point in a 1500*500m rectangle area. The

maximum node speed is set as 10m/s and the pause time is chosen as 2s. We

randomly create two simulation scenarios with different seeds. We randomly choose a

node pair (node 5 as the source, node 15 as the destination) for the TCP-Vegas

connection. The simulation is run for 150s for each scenario. The simulation results

are as in Figure 4.1. We can see, for the first scenario, TCP achieves almost no

throughput. But for the second one, the throughout is much higher.

0

2000

4000

6000

8000

10000

12000

Pa
ck

et
 S

eq
ue

nc
e

N
um

be
r

1 2

Scenario Series Number

Max Node Speed=10m/s, pause time=2s

FTP

Figure 4.2 TCP-Vegas Throughput for Different Scenarios

4.3 VRIS simulation implementation 43

We also find that higher max node speed does not mean that the TCP connection will

achieve worse throughput. In some scenarios, although the nodes have higher speeds,

the source destination pair may have better communication routes with less hop

numbers. Moreover, with higher speeds, the network may recover quickly from an

early route failure and a stable route is quickly established. Thus, we can state that

there is no direct correlation between throughput and node speed.

The above two findings adapt to both TCP-Reno and TCP-Vegas.

Thus, in order to minimize any arbitrary randomness, we use 30 different seeds to

simulate 30 different random node movement scenarios for one TCP-Vegas

connection. The final result is the average of the 30 runs. Taking 30 scenarios on

average into consideration, we find that lower speed really means higher throughput.

For Vegas, Not in every scenario does the re-routing problem exist. When it does

exist, VRIS can effectively improve the throughput of the TCP connection. Thus, it

should be noted that for the scenario where the re-routing problem is absent, VRIS

may not be able to show improvements. The 30 scenario average is based on 30

general scenarios.

4.3.2 Simulation Result and Performance Evaluation

4.3.2.1 VRIS with DSR

We try to simulate our strategy with NS-2 in the following steps.

The first step is quite simple. We just use a designed topology to verify the feasibility

of the VRIS strategy. The topology change is shown in Figure 4.3. At first the

topology is as the above. At 70s node 2 leaves its position and goes upwards very

quickly. The simulation is run for 150s. The parameter settings are as in Table 3.1.

4.3 VRIS simulation implementation 44

The communication routes are as shown in the figure. The simulation result is shown

in Figure 4.4. The throughput has improved from 78.5 kbps to 82 kbps with VRIS.

Figure4.3. Simple Topology to Verify the VRIS

4.3 VRIS simulation implementation 45

77

78

79

80

81

82

83

G
oo

dp
ut

 (k
bp

s)
Vegas CB-Vegas

FTP

Figure4.4. Goodput Improvement for the Special Topology

In the second step, we apply VRIS in the more general mobile scenarios, which are the

major in MANETs. We still use the random way-point model. 20 nodes move in a

rectangle area of 1500*500 randomly. The max speed of the nodes is varied as 10, 20

and 30m/s and the node pause time between two adjacent movements is chosen as 0.

Other parameters are the same in Table 3.1 expect the adjacent node distance. We

randomly choose a source destination node pair to setup a TCP connection. As stated

above, in order to minimize any arbitrary randomness, we use 30 different seeds to

simulate 30 different random node movement scenarios for the connection. For each

scenario, the simulation is run for 150s. The throughput (30 run average)

improvement is obvious. We put two of the simulation results below. Figure 4.5 is for

node pair (0, 1) and Figure 4.6 is for node pair (5, 15). We randomly choose other

node pairs and get similar results. For these scenarios, we also give the results with

Enhanced VRIS and LIR. We can see due to the mechanism to decide the bandwidth

utilization, Enhanced VRIS synthesize the advantages of both FW-Vegas and CB-

Vegas. The throughput is further improved. Contrarily, LIR cannot adapt to the

mobile scenarios well.

4.3 VRIS simulation implementation 46

0

50

100

150

200

250

300

10 20 30

Max Node Speed (m/s)

G
oo

dp
ut

 (k
bp

s)

Vegas
E-VRIS
VRIS
LIR

 Figure 4.5 Goodput Improvement for Node Pair (0, 1)

0

50

100

150

200

250

300

350

10 20 30

Max Node Speed (m/s)

G
oo

dp
ut

(k
bp

s)

Vegas
E-VRIS
VRIS
LIR

 Figure 4.6 Goodput Improvement for Node Pair (5, 15)

4.3 VRIS simulation implementation 47

In the third step, we try to vary the node pause time between the two adjacent random

movements. Other parameters are the same as in step 2. We give the simulation

results for pause time as 2s and max node speed as 10s and 20s in Figure 4.7 and

Figure 4.8 respectively.

5000

5100

5200

5300

5400

5500

P
ac

ke
t S

eq
ue

nc
e

N
um

be
r

Vegas CB-Vegas

Max Node Speed=10m/s, Pause Time=2s

FTP

Figure 4.7 Goodput Improvement for the scenario of Max Speed=10m/s,

Pause Time=2s, node pair (5, 15)

3300
3400
3500
3600
3700
3800
3900
4000
4100

Pa
ck

et
 S

eq
ue

nc
e

N
um

be
r

Vegas CB-Vegas

Max Node Speed=20m/s, Pause Time=2s

FTP

Figure 4.8 Goodput Improvement for the scenario of Max Speed=20m/s,

Pause Time=2s, node pair (5, 15)

4.3 VRIS simulation implementation 48

Summary:

VRIS works well with the DSR routing protocol. It can effectively improve the TCP-

Vegas throughput. It catches hold of the most obvious characteristic of MANET,

constant route changes, and makes use of the interaction between TCP-Vegas and

underlying routing protocol. Vegas throughput achieves improvement by 10% on

average and up to 223.01%. We can also find that the node pause time factor doesn’t

impact the VRIS much, it can also work well. What is more, As VRIS does not

change the conservative characteristic of Vegas, the average packet delay and delay

jitter are almost unaffected.

4.3.2.2 VRIS with AODV

We try to simulate our VRIS with AODV as the routing protocol for the mobile

scenarios. The simulation parameters settings are the same with that of DSR.

First, we use the same simulation settings as in the second step of DSR: 20 nodes

move in a rectangle area of 1500*500. We vary the max speed of the nodes as 10, 20

and 30m/s. The pause time is set as 0. We randomly choose the source destination

node pairs. Node pair (5, 15) is chosen for illustration. The simulation results are

based on the average of 30 runs. Each run is for 150s. The simulation results are as

shown in Figure 4.9.

4.3 VRIS simulation implementation 49

0

1000

2000

3000

4000

5000

6000

P
ac

ke
t S

eq
ue

nc
e

N
um

be
r

10 20 30

Max Node Speed (m/s)

Throughput Improvement with AODV

Vegas
CB-Vegas

Figure 4.9 Goodput Improvements with AODV

Then, we also try to vary the node pause time between the two adjacent random

movements. We set the node pause time between two adjacent movements as 2s. The

simulation results as shown in Figure 4.10 and Figure 4.11 are for the scenarios of max

node speed as 10m/s and 20m/s respectively. The node pair is still chosen as (5, 15).

For VRIS with AODV, the Vegas throughput can also be effectively improved with

the average packet delay and delay jitter almost unaffected.

5500

5550

5600

5650

5700

5750

5800

P
ac

ke
t S

eq
ue

nc
e

N
um

be
r

Vegas CB-Vegas

Max Node Speed=10m/s, Pause Time=2s (AODV)

FTP

Figure 4.10 Goodput Improvement for the scenario of Max Speed=10m/s,

Pause Time=2s, node pair (5, 15), AODV

4.3 VRIS simulation implementation 50

4040
4060
4080
4100
4120
4140
4160
4180
4200
4220
4240

P
ac

ke
t S

eq
ue

nc
e

N
um

be
r

Vegas CB-Vegas

Max Node Speed=20m/s, Pause Time=2s (AODV)

FTP

Figure 4.11 Goodput Improvement for the scenario of Max Speed=20m/s,

Pause Time=2s, node pair (5, 15), AODV

4.3.2.3 Comparison of DSR and AODV Results

Then, we try to compare the DSR and AODV results.

We found that on average, AODV achieves better performance than DSR with the

original standard TCP-Vegas. This is probably because that there is a constant

overhead in DSR packets since in DSR implementation the packets contain the full

route to the destination in their packet headers which result in a constant byte overhead.

Moreover, AODV has better route cache management mechanism. DSR is making

aggressive use of caching and it lacks any mechanism to expire the stale routes or to

determine the freshness of routes when multiple choices are available. On the contrary,

for AODV, route cache management is done through cache entry timeout. It ensures

that only routes that are recently used are maintained in the route cache. This prevents

the problem of a stale entry in the route cache. The above factors decide the AODV

performs better than DSR.

4.4 Conclusion 51

 However, the VRIS works better with DSR than with AODV. VRIS can improve the

Vegas throughput by 7% on average with AODV compared with the 10% with DSR.

The reason lies in that it is more accurate and timely to find the route hop number

information from the packet header than from the routing table.

4.3.3 Summary

In summary, VRIS is quite simple but efficient. It can effectively improve the Vegas

throughput with both DSR and AODV as routing protocols with the average packet

delay and delay jitter almost unaffected.

4.4 Conclusion

We have proposed to apply Vegas in MANETs since we find it achieves better

performance than Reno in MANETs by simulation. Its conservative window updating

mechanism adapts to the MANETs better.

In this chapter we have proposed the Vegas Routing Interaction Strategy to solve the

intrinsic re-routing problem of Vegas to further improve the Vegas throughput in

MANETs with the small average packet delay and delay jitter almost unaffected.

With the re-routing problem solved by VRIS and together with other enhancement

strategies, Vegas will be a better choice for MANETs.

 52

Chapter 5

Adaptively Setting Congestion Window

Limit (ASCWL) Strategy

5.1 Introduction

In Chapter 3 and 4, we have proposed to apply TCP-Vegas in MANETs and also

worked out the VRIS to solve the re-routing problem in the mobile scenarios. In this

chapter, we will study the unfairness problem. We consider the static scenarios

because it is hard to define fairness in mobile scenarios.

There is severe unfairness problem or even flow starvation when applying TCP in

MANETs. The problem is triggered by the underlying MAC protocol. In addition, the

TCP characteristics and its poor interaction with the MAC layer further exacerbate the

situation.

Previous works on the unfairness problem have mainly focused on identifying the

factors that cause the problem [18] [19] [20]. Some proposed MAC layer scheduling

strategies [23] [24] can alleviate the problem, but their implementation needs the MAC

5.1 Introduction 53

protocol modification. One effective method to solve the problem is the Neighborhood

RED (NRED) strategy proposed by K. Xu and Gerla et al. [17], which is implemented

on the network layer. However, the implementation of NRED is complicated. Each

node in the network maintains its own distributed queue, called neighborhood queue.

The neighborhood queue needs to aggregate the node’s local queue and the upstream

and downstream queues of its 1-hop neighbors. Hence, we try to propose some

method that can be implemented more easily. We propose to solve the TCP unfairness

problem in the transport layer, without the lower layer modification to ensure its easy

implementation. The ATP strategy [25], which is reported to solve many TCP

problems in MANETs, is also transport layer based. But it is a new protocol that is

not interoperable with TCP.

We need to make our strategy TCP-based. More specifically, we manage to control

the TCP congestion window limit (CWL) to reduce the negative impact of TCP over

MAC and improve the fairness. We get the relationship between the hop number and

the optimal CWL achieving the best throughput via simulation. We also find that

dynamically setting CWLs based on the optimal CWLs can effectively improve the

fairness. Consequently, we propose the Adaptively Setting Congestion Window Limit

(ASCWL) strategy which uses the hop number to set CWLs for the contending TCP

connections as a means of solving the unfairness problem. As the solving methods of

the unfairness problem are rare, the ASCWL strategy will be implemented with both

Vegas and Reno. Simulation results (see section 5.5 for reference) show that our

strategy can improve the fairness index by up to 89.21%. Furthermore, the overall

throughput usually increases as well.

In the following sections, we will first give some related works on Congestion

Window Limit (CWL) setting. Then by simulation, we offer the Optimal CWL vs.

5.2 Related works on CWL setting 54

hop number relationship results for both TCP-Reno and TCP-Vegas. Next, based on

the optimal CWL values, we will propose the Adaptively Setting Congestion Window

Limit (ASCWL) strategy and present the simulation results of ASCWL

implementation.

5.2 Related Works on Congestion Window Limit (CWL) Setting

There are many reported works on how the CWL can be set to improve TCP

throughput. It has been observed that setting TCP-Reno’s CWL large can adversely

degrade its throughput performance [26] [16].By considering the spatial reuse property

of 802.11 MAC layer protocol in a chain topology, Li et al. [27] and Fu et al. [16]

discovered that the optimal value for CWL is 1/4 of the chain length. Chen et al. [15]

further proposed the round-trip hop-count (RTHC) and bandwidth-delay product (BDP)

concepts. Taking the spatial reuse and the collision of the DATA and ACK into

consideration, they proved that BDP of a chain (IEEE 802.11 MAC) is bounded by k

times RTHC (1/8<k<1/4). Chen et al. [15] and Fu et al. [16] use a similar topology as

Figure 5.1 to illustrate the spatial reuse issue.

Figure 5.1 Illustration of the maximum spatial reuse and the hop number relationship

for IEEE 802.11

As the transmission range is 250m (the adjacent nodes are 200m apart) and the

interference range is 550m, we can see only 4 hops away nodes, such as node 1 and

node 5, can initiate transmission concurrently without interfering each other. Since

IEEE 802.11 exhibits a similar feature to the stop-and-wait protocol, the pipe size over

5.3 Optimal CWL vs. Hop Number 55

each hop is 1 packet and so the best channel utilization is obtained when there are h/4

packets in flight.

5.3 Optimal CWL vs. Hop Number Relationship for both TCP-
Reno and TCP-Vegas

We use the 25-node chain topology similar as in Figure 5.1 and the parameter settings

as in Table 5.1 to find the relationship via ns-2 simulations.

Table 5.1 Parameters Settings

Wireless Channel Raw Capacity 2M bps

Radio Transmission Range 250 meters

Carrier Sense Range 550 meters

Adjacent Node Distance 200 meters

MAC IEEE 802.11

Routing Protocol DSR

Default TCP Packet Size 1000 bytes

interface queue limit 50 packets

We have managed to find the optimal CWL vs. hop number relationship for both TCP-

Reno and TCP-Vegas (see as in Figure 5.2 and Figure 5.3).

5.3 Optimal CWL vs. Hop Number 56

Figure 5.2: optimal CWL vs. hop number (Reno)

Figure 5.3: optimal CWL vs. hop number (Vegas)

For TCP-Reno, we find similar optimal CWL results as in [15] and [16]. But when

we setup 1 or 2 hop TCP connections, as the source can “hear” the destination and the

5.3 Optimal CWL vs. Hop Number 57

hidden terminal problem doesn’t exist, packet collision is avoided and loss is rare. The

throughput will increase if we set larger CWL. Hence, we can not find the “so-called”

optimal CWL.

Then we use Vegas to perform the simulation. As the spatial reuse factor is decided

by the IEEE 802.11 protocol, Vegas shows similar hop number and optimal CWL

relationship with that of Reno. But we know that Vegas is different from Reno with

respect to updating sending window cwnd. Vegas uses the fine-grained measurement

of RTTs to control its window size. It always avoids packet loss and very conservative

when increasing cwnd. So Vegas tends to make its cwnd small to use the bandwidth.

Thus usually if we set CWL larger, Vegas will still achieve the same throughput.

Consequently, the optimal CWL for Vegas refers to the smallest CWL at which Vegas

achieves highest throughput.

We also find that when the hop number is larger, the optimal CWL of Vegas tends to

converge to the value of 4. This is because 4 is the least value to fulfill fast

retransmission and retransmission in time is an important factor for Vegas’ success.

Correspondingly for Reno, if we set CWL above the optimal value, the throughput will

first decrease and then flatten out. This is mainly because Reno is very aggressive

when increasing its cwnd. So if we set larger CWL than the optimal value, Reno will

inject more packets to reach out the network’s capacity. Consequently, the network

congestion will cause packet loss and throughput degradation.

5.4 ASCWL strategy 58

5.4 ASCWL strategy

The negative impact of TCP over MAC can be effectively alleviated by dynamically

setting the CWLs based on the optimal CWL. Thus, we propose the Adaptively

Setting Congestion Window Limit (ASCWL) strategy. We monitor the underlying

routing agent to get the hop number which is then used to decide the optimal CWLs

for the respective connections. If the TCP connection is less than 3 hops, as the source

can “hear” the destination and the throughput will increase if we set CWL larger, the

so-called optimal CWL doesn’t exist. We will set the optimal CWL for Reno as 1

since a connection greedily increase its congestion window (cwnd) causes unfairness.

Correspondingly, Vegas is conservative when increasing its cwnd, so the optimal

CWL is set as 4, the least value for fast retransmission. Then we try to compare the

route hop numbers or use the “beacon signals”, which are used to provide connectivity

information on the network topology, between the nodes to decide border connections

so that we know if some connections are disadvantaged. For example, if two TCP

connections of different lengths are competing for network resources, the larger hop

number can be used as an indication that the longer connection is disadvantaged.

Beacon signals can also indicate which are the more disadvantaged inner connections.

If the border connection is also the longer connection, we consider this connection

disadvantaged. The fundamental idea of ASCWL is to set larger CWLs for the

relatively disadvantaged TCP connections. We illustrate our concept using two

connections and extend the same rules for the case of multiple connections.

The algorithm details are as follows.

5.4 ASCWL strategy 59

If (one connection is disadvantaged)

 If (Optimal CWL disadvantaged >Optimal CWL advantaged)

 Set the CWLs to their optimal CWLs respectively

 Else

 If (Optimal CWL >1)

 CWL disadvantaged = Optimal CWL

 CWL advantaged = Optimal CWL – 1

 If (Optimal CWL ==1)

 CWL disadvantaged = Optimal CWL + 1

 CWL advantaged = Optimal CWL

Else

 Set the CWLs to their optimal CWLs respectively

As it is extremely challenging to define fairness in mobile scenarios, we implement

our strategy on static topologies such as the chain topology in [18], the cross topology

and the grid topology in [17], where NRED is implemented. We use TCP-Reno and

TCP-Vegas to verify our strategy. For the grid topology in [17], we also use TCP-

NewReno to compare the results with that of NRED. We use the fairness index

defined in [28] for a set of throughputs (x1, x2 … xn),

2

1
1 2

2

1

()
(, , ...,)

n

i
i

n n

i
i

x
f x x x

n x

=

=

=
∑

∑
 (5.1)

5.5 Simulation Results 60

In the following, we show some simulation results by NS-2 simulator. Reno+ stands

for Reno with ASCWL and Vegas+ stands for Vegas with ASCWL. We run FTP

applications on the TCP connections with all FTPs starting and ending at the same

time. The parameter settings are the same as shown in Table 5.1 unless otherwise

specified.

5.5 Simulation Results for ASCWL

5.5.1 Chain Topology

We use the 25-node chain topology similar as in Figure 5.1. As chain topology is the

basis for the complicated topology. We will study it in details. First, we avoid the

border effect to take consideration of the factor of hop number. Then we will consider

the border effect. That is, we will classify the unfairness problem into 3 types as

following. FTP applications are run on the TCP connections and all FTP applications

start at 10s and end at 150s.

• Same Hop Length TCP connections without Border Effect

We set the two TCP connections the same length and make the destination of the

first TCP connection the source the second one. We vary the length of the TCP

connection as 2, 4, 6, 8 in our simulation. The illustration is as in the Figure 5.4.

Figure 5.4 Same Hop Number without Border Effect Illustration

5.5 Simulation Results 61

The simulation results are listed from Figure5.5 to Figure 5.8. The fairness

indexes calculated using (5.1) are summarized in Table 5.2. For TCP-Reno, as the

CWL setting can change the aggressive window increasing operation, the average

packet delay and delay jitter will be evidently reduced. The packet delay

distributions for the 4 hop cases of the Reno and Reno+ are as Figure 5.9 and

Figure 5.10. We would not put the average packet delay trace for the other

simulation scenarios as they present the similar trends.

0

50

100

150

200

250

300

350

G
oo

dp
ut

(K
bp

s)

Reno+ Reno Vegas Vegas+

FTP1
FTP2
SUM

Figure 5.5: TCP Goodputs for connections with same hop length
 In the chain topology (hop number = 2)

5.5 Simulation Results 62

0

50

100

150

200

250

300

350

G
oo

dp
ut

(K
bp

s)

Reno+ Reno Vegas Vegas+

FTP1

FTP2

SUM

Figure 5.6: TCP Goodputs for connections with same hop length

 In the chain topology (hop number = 4)

0

50

100

150

200

250

G
oo

dp
ut

(K
bp

s)

Reno+ Reno Vegas Vegas+

FTP1
FTP2
SUM

Figure 5.7: TCP Goodputs for connections with same hop length

 In the chain topology (hop number = 6)

5.5 Simulation Results 63

0

50

100

150

200

250

G
oo

dp
ut

(K
bp

s)

Reno+ Reno Vegas Vegas+

FTP1
FTP2
SUM

Figure 5.8: TCP Goodputs for connections with same hop length

In the chain topology (hop number = 8)

 Table 5.2: Fairness indexes for TCP connections with same hop length
In the chain topology

 hop number 2 hop number 4 hop number 6 hop number 8

Reno 0.5125 0.9690 0.9669 0.9552

Reno+ 0.8401 0.9999 0.9875 0.9957

Vegas+ 0.6949 1 0.9992 0.9998

Vegas 0.6273 0.9516 0.9684 0.9780

5.5 Simulation Results 64

Figure 5.9 Reno packet delay distribution (4 hops) for connections
With same hop length in the chain topology

Figure 5.10 Reno+ packet delay distribution (4 hops) for connections

With same hop length in the chain topology

5.5 Simulation Results 65

• Different Hop Lengths TCP connections without Border Effect

We setup connections that have resource contenting with different hop length in

the chain topology. The illustration is as in Figure 5.11.

Figure 5.11 Different Hop Numbers without Border Effect illustration

Case A: two connections

We setup two connections with different hop length in the chain topology. We list

the simulation results of 3 scenarios. In scenario 1, we set a TCP connection from

node3 to node10 and another from node1 to node16. The simulation result is in

Figure 5.12. Similarly, Figure 5.13 is for the scenario one TCP from node 3 to

node7 the other from node1 to node13 and Figure 5.14 is for the scenario that one

TCP from node1 to node9 the other from node3 to node7.

0

20

40

60

80

100

120

G
oo

dp
ut

(K
bp

s)

reno reno+ vegas+ vegas

FTP1
FTP2

Figure 5.12: TCP Goodputs for connections with TCP1 7 hops,
 TCP2 15 hops in the chain topology

5.5 Simulation Results 66

0

20

40

60

80

100

120

140

160

G
oo

dp
ut

(K
bp

s)

reno reno+ vegas+ vegas

FTP1
FTP2

Figure 5.13: TCP Goodputs for connections with TCP1 4 hops,

 TCP2 12 hops in the chain topology

0

20

40

60

80

100

120

140

160

G
oo

dp
ut

(K
bp

s)

reno reno+ vegas+ vegas

FTP1
FTP2

Figure 5.14 TCP Goodputs for connections with TCP1 7 hops,

 TCP2 15 hops in the chain topology

5.5 Simulation Results 67

Case B: multiple connections

We try to study the situation of multiple connections. A scenario of 3 connections

is listed here: one TCP is from node1 to node16, another from node2 to node9 and

the third from node3 to node7. The simulation result is shown in Figure 5.15.

0

20

40

60

80

100

120

G
oo

dp
ut

(K
bp

s)

reno+ reno vegas vegas+

FTP1
FTP2
FTP3

 Figure 5.15 TCP Goodputs for connections with TCP1 15 hops,
 TCP2 7 hops, TCP3 4 hops in the chain topology

The fairness indexes for the above four scenarios are shown as in Table 5.3. The

throughput improvement for the disadvantaged connections is in Table 5.4.

Specifically, the ratio means the throughput improvement ratio for the TCP

connection(s) that has a disadvantaged position when contending for the bandwidth.

Table 5.3: Fairness indexes for TCP connections with different hop lengths
In the chain topology

 hop number

15, 7
hop number

12, 4
hop number

8, 4
hop number

15, 7, 4
Reno 0.6651 0.5548 0.6090 0.4562

Reno+ 0.9629 0.6061 0.7861 0.8136

Vegas+ 0.9980 0.9401 0.7072 0.6608

Vegas 0.5275 0.5209 0.5162 0.4630

5.5 Simulation Results 68

 Table 5.4: Goodput improvement for the disadvantaged connections for
TCP connections with different hop lengths in the chain topology

 hop number
15, 7

hop number
12, 4

hop number
8, 4

hop number
15, 7, 4
11.3478

(most-disadvantaged)
Reno+/

Reno

4.1221

3.2363

4.2709 4.2558 (disadvantaged)

2.5042
(most-disadvantaged)

Vegas+/

Vegas

15.5867

17

11.2183 2.2249 (disadvantaged)

• Border Effect

In the chain topology, the connections from or to the border nodes have about half

of the collision chances of the inner connections. So here we can make use of our

ASCWL strategy to improve the throughput of the inner connections so as to

improve the TCP fairness.

In our simulation, we try to set up 5 consecutive 1 hop connections as in Figure

5.16. The destination of the former connection is the source of the latter.

Figure 5.16 A 6-node chain topology to illustrate the Border Effect

The simulation result is shown in Figure 5.17 and the fairness indexes are shown in

Table 5.5.

5.5 Simulation Results 69

0

50

100

150

200

250

300

350

400

G
oo

dp
ut

(k
bp

s)

reno+ reno vegas vegas+

FTP1
FTP2
FTP3
FTP4
FTP5

Figure 5.17 TCP Goodputs for connections with border effect
In the chain topology

 Table 5.5: Fairness indexes for the TCP connections with border effect

Reno Reno+ Vegas+ Vegas

0.6727 0.8988 0.8196 0.6696

5.5.2 Cross Topology

We setup the two TCP connections as shown in Figure 5.18 and run FTP applications

on them. The two FTPs start at 10s and end at 150s. We use the ASCWL to set the

CWLs for both connections their optimal values.

5.5 Simulation Results 70

Figure 5.18 Cross Topology

The simulation result is shown in Figure 5.19 and fairness indexes are shown in Table

5.6.

0

20

40

60

80

100

120

140

G
oo

dp
ut

(K
bp

s)

reno reno+ vegas+ vegas

FTP1
FTP2
SUM

Figure 5.19 TCP Goodputs for connections in the cross topology

5.5 Simulation Results 71

Table 5.6: Fairness indexes for the TCP connections in the cross topology

Reno Reno+ Vegas+ Vegas

0.8469 0.9997 0.9477 0.8031

5.5.3 Grid Topology

As in Figure 5.20, we setup 6 TCP connections and run FTP applications on them

from 10s to 150s. As we can see that the inner connection need to contend with both

side connections and so disadvantaged. By ASCWL, the two inner connections will

have larger CWLs.

Figure 5.20 Grid Topology

The simulation result is in Figure 5.21 and fairness indexes are in Table 5.7.

5.5 Simulation Results 72

0

5

10

15

20

25

30

35

40

45

G
oo

dp
ut

(K
bp

s)

reno+ reno vegas vegas+

FTP1
FTP2
FTP3
FTP4
FTP5
TCP6

 Figure 5.21 TCP Goodputs for connections in the grid topology

Table 5.7: Fairness indexes for the TCP connections in the grid topology

Reno Reno+ Vegas+ Vegas

0.8565 0.9635 0.9844 0.9149

For this grid topology, we also simulate our strategy with TCP-NewReno and try to

compare the results with the NRED strategy in [17]. The simulation parameters are

adjusted according to the setting in [17]: The distance between the adjacent nodes is

set to 250m and packet size is set to 512 Bytes. The interface queue size at each node

is set to 66 packets. The TCP connections start at 10s and end at 130s. The results are

listed in Table 5.8.

5.6 Conclusion 73

Table 5.8 ASCWL vs. NRED

 Fairness index Overall throughput increase

ASCWL 0.9494 +23.6%

NRED 0.9367 -35.5%

5.5.4 Summary

With ASCWL implemented, the fairness indexes achieve obvious improvement.

Moreover, the overall throughput is usually also improved. And the average packet

delay is decreased. The main reason for the performance enhancement is that after

CWL setting with ASCWL strategy, the TCP source would shoot much less packets

into the network. Thus the disadvantaged TCP connections have more chance to catch

up. Moreover, the packets of all the connections can be transmitted more effectively.

Consequently, the overall throughput will increase and the average packet delay will

decrease. As Vegas itself is conservative in increasing congestion window, the

improvement extent is usually less compared with Reno.

5.6 Conclusion

Simulation results show that our strategy can effectively improve the fairness index of

the contending TCP connections (by up to 89.21% and an average of 28.07%). In

addition, the disadvantaged connections show dramatic throughput improvement (up

to 17 times), and the average packet delay has also decreased, especially for Reno.

74

Chapter 6

Conclusions and Future Works

In this thesis, we have worked on the topic of improving TCP performance in

MANETs. We propose to apply TCP-Vegas in MANETs. Via simulation, we have

shown that TCP-Vegas can achieve better performance than TCP-Reno: higher

throughput, less average packet delay and delay jitter. To solve the intrinsic re-routing

problem of applying Vegas in the mobile MANETs environment, we propose the

Vegas Routing Interaction Strategy (VRIS). VRIS can effectively improve the Vegas

throughput with the average packet delay and delay jitter almost unaffected. We also

study the unfairness problem in the static MANETs environment and propose the

Adaptively Setting Congestion Window Limit (ASCWL) strategy. ASCWL can be

implemented with both TCP-Vegas and TCP-Reno and with both it can effectively

improve the fairness index.

6.1 Contributions

In this thesis, aiming at both improving the TCP throughput and reducing the average

packet delay and delay jitter, we propose to apply TCP-Vegas in MANETs. This is

unique compared with the former related research works.

6. Conclusion and Future Works 75

The VRIS is based on the mobile MANETs characters and thus can effectively solve

the re-routing problem to improve the Vegas throughput. Together with other

strategies to differentiate the different packet loss and thus implement different

operations, we can make Vegas a better choice for the MANETs.

The ASCWL strategy can effectively improve the fairness index in the static MANETs

scenarios. It is TCP-based and easy to implement. The strategy is executed with both

Vegas and Reno as the solving methods of the unfairness problem are rare. Moreover,

the overall throughput is usually increased.

6.2 Future Work

VRIS only deals with the re-routing problem. To further improve the Vegas

throughput, we may also need to differentiate the packet losses due to congestion and

the losses due to other reasons so as to implement appropriate operations.

In our future work, we should also consider the more accurate Base_RTT updating

condition to avoid the immature update that may happen occasionally if deciding only

by the route hop length changing.

The disadvantaged MANETs environment can be improved by new routing algorithm

or MAC layer optimization as well.

We will also try to find a more reasonable fairness definition in the mobile scenarios

so as to implement ASCWL to improve fairness in mobile cases.

 76

Bibliography

[1] M. S. Corson, J. Macker and G. H. Cirincione, “Internet-based mobile ad hoc

networking,” IEEE Internet Computing 3 (4) (1999), pp 63-70

[2] L. S. Brakmo, S. W. O’Malley and L. L .Peterson, “TCP Vegas: New techniques

for congestion detection and avoidance,” Proceedings. of ACM SIGCOMM’94, pp 24-

35, October 1994

[3] U. Hengartner, J. Bolliger and Th. Gross, “TCP Vegas Revisited,” Proceedings of

IEEE INFOCOM’00, pp.1546-1555, March 2000

[4] J. Mo, R. J. La, V. Anantharam and J. Walrand, “Analysis and Comparison of

TCP Reno and Vegas,” Proceedings of IEEE INFOCOM’ 99, pp 1556-1563, March

1999

[5] K. N. Srijith, L. Jacob and A.L. Ananda, “TCP Vegas-A: Solving the Fairness and

Rerouting Issues of TCP Vegas,” IEEE IPCCC 2003, pp 309-316, April 2003

[6] R. J. La, J. Walrand and V. Anantharam, “Issues in TCP Vegas,” available at

http://www.eecs.berkeley.edu/~ananth/1999-2001/Richard/IssuesInTCPVegas.pdf,

July 1998

[7] K.Chandran, S.Raghunathan, S.Venkatesan, and R.Prakash, “A feedback based

scheme for improving TCP performance in Ad-Hoc wireless networks,” in Proc. of the

http://www.eecs.berkeley.edu/~ananth/ 1999-2001/Richard/IssuesInTCPVegas.pdf

Bibliography 77

International Conference on Distributed Computing Systems (ICDCS’98), Amsterdam,

Netherlands, May 1998

[8] G. Holland and N. Vaidya, “Analysis of TCP performance over mobile ad hoc

networks,” ACM Wireless Networks, vol. 8, no. 2, pp. 275-288, Mar. 2002

[9] B. Zhang, M.N. Shirazi and B. Komiyama, “An ELFN-Based TCP-Freeze Scheme

Using the Route Information of Sender Node for Ad Hoc Networks,” IEEE 10th Asia-

Pacific Conference on Communication and 5th International Symposium on Muliti-

Dimensional Mobile Communications, vol. 1, pp. 457-461, Aug. 2004

[10] D.Kim, C.Toh, and Y. Choi, “TCP-Bus: Improving TCP performance in wireless

ad hoc networks,” Journal of Communications and Networks, vol.3, no.2, pp. 175-186,

Jun. 2001

[11] J. Liu and S. Singh, “ATCP: TCP for mobile ad hoc networks,” IEEE journal on

Selected Areas in Communications, vol.19, no.7, pp.1300-1315, Jul. 2001.

[12] T. Goff, N. Abu-Ghazaleh, D.Phatak, and R.Kahvecioglu, “Preemptive routing in

ad hoc networks,” in proc. of ACM Mobicom, Rome, Italy, 2001, pp.43-52

[13] Haejung Lim, Kaixin Xu, and Mario Gerla, “TCP Performance over Multipath

Routing in Mobile Ad Hoc Networks,” in IEEE ICC 2003, USA, May

[14] T.Dyer and R. Boppana, “A comparison of TCP performance over three routing

protocols for mobile ad hoc netoworks,” in Proc of ACM Mobihoc, USA, 2001, pp.56-

66

[15] K.Chen, Y.Xue, and K.Nahrstedt, “On setting TCP’s congestion window limit in

mobile Ad Hoc networks,” in proc. of IEEE ICC, USA, May 2003

[16] Z. Fu, P. Zerfos, H. Luo, S. Lu, L.Zhang, and M. Gerla, “ The impact of multihop

wireless channel on TCP throughput and loss,” in Proc. of IEEE INFOCOM, USA,

April 2003

Bibliography 78

[17] K. Xu, M. Gerla, L. Qi and Y. Shu, “Enhancing TCP Fairness in Ad Hoc Wireless

Networks Using Neighborhood RED,” IEEE Mobicom’03, September 2003

[18] K. Tang and M. Gerla, “Fair Sharing of MAC under TCP in Wireless Ad Hoc

Networks,” Proceeding of IEEE MMT’99, October 1999

[19] S. Xu and T. Saadawi, “Dose the IEEE 802.11 MAC protocol work well in

multihop wireless ad hoc networks?” IEEE Communications Magazine, 39(6), Jun.

2001

[20] K. Xu, S. Bae, S. Lee and M.Gerla, “TCP behavior across multihop wireless

networks and the wired internet,” Proceedings of ACM WoWMoM’02, Sep. 2002

[21] Network Simulator. http://www.isi.edu/nsnam/ns

[22] D. Johnson and D. Maltz, “Dynamic source routing in ad hoc wireless networks,”

Mobile Computing, T. Imelinsky and H. Korth, eds, Kluwer Academic Publishers, pp

153-181, 1996

[23] V. Kanodia, A. Sabharwal, B. Sadeghi and E. Knightly, “Ordered packet

scheduling in wireless ad hoc networks: mechanisms and performance analysis,”

Proceedings of the 3rd ACM international symposium on Mobile ad hoc networking &

computing, June 2002

[24] Zuyuan Fang, Brahim Bensaou, Yu Wang, “Performance evaluation of a fair

backoff algorithm for IEEE 802.11 DFWMAC,” Proceedings of the 3rd ACM

international symposium on Mobile ad hoc networking & computing, June 2002

[25] Karthikeyan Sundaresan, Vaidyanathan Anantharaman, Hung-Yun Hsieh,

Raghupathy Sivakumar, “ATP: a reliable transport protocol for ad-hoc networks,”

Proceedings of the 4th ACM international symposium on Mobile ad hoc networking &

computing, June 2003

http://www.isi.edu/nsnam/ns

Bibliography 79

[26] M. Gerla, K. Tang, and R.Bagrodia, “TCP performance in wireless multihop

networks,” Proceeding IEEE International Workshop on Mobile Computing System

and Applications (WMCSA’99), February 1999

[27] J. Li, C. Blake, D.S.J. DeCouto, H.Lee, and R. Morris, “Capacity of ad hoc

network wireless networks,” Proceeding of ACM/IEEE MobiCom, July 2001

[28] R. Jain, “The Art of Computer System Performance Analysis,” New York, April

1991

[29] J. Li and Q. Yin, “Applying TCP-Vegas in MANETs and Using Cross-Layer

Interaction Strategy to Solve the Re-Routing Problem to Improve Vegas Throughput,”

Submitted for publication

[30] J. Li and Q. Yin, “Improving TCP Fairness in MANET by Adaptively Setting

Congestion Window Limit,” Submitted for publication

