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Summary 

With the explosive growth of the web, web retrieval latency has become one of the 

principal concerns to most web users and web content providers. Although many works 

have been done to understand and improve web retrieval performance, there are still 

some open issues in this area. In previous studies, page retrieval latency is not given 

enough attention; most existing studies are based on object level information, which is 

insufficient and sometimes even inaccurate. Also, the details of web retrieval at 

operation and chunk level are not well studied and understood. Furthermore, we still 

lack of a precise model for capturing and studying web retrieval performance. Finally, 

there still lack of effective acceleration mechanisms with special emphasis on improving 

page retrieval latency. 

This thesis tackles the above issues in the area of modeling and acceleration of web 

content delivery. In our studies, we first examined and tried to improve the performance 

of the traditional way of web acceleration, i.e. web caching, by studying the 

effectiveness of cacheability factors in the multi-factor co-occurrence situation and the 

accuracy of the settings for the TTLs of web objects. Then we proposed a fine grained 

Web Retrieval Dependency Model (WRDM) to provide more precise capture of web 

retrieval process. Based on the model, we profoundly studied the factors in web retrieval 

process at various levels, including the detailed operation and chunk level, and page 

level. The results shed light on the details of object retrieval latency and the complicated 

relationship between object latency and page latency. It revealed that the actual object 

fetch latency is often less of a problem for web retrieval than the Definition Times and 

the Waiting Times when page latency is concerned. We also analyzed the possible 

impact of real-time content transformation on web retrieval latency and derive various 



xvii 

upper bounds for web acceleration, which revealed some low-level impacts of real-time 

content transformation and potentials of web acceleration. 

With the guidance of the WRDM model, we systematically analyzed the effect of 

an important acceleration mechanism, namely web compression. The detailed analysis 

revealed some important effects and implication of compression on page retrieval 

latency. Realizing the deficiencies in general-purpose compression algorithms in the 

specific area of web content delivery, we proposed a new compression mechanism, 

named Content-Aware Global Static Compression (CAGSC), to improve the 

performance of compression in web content delivery. 

Based on the findings from the studies using the WRDM model, we proposed 

some new ways to web acceleration. Besides the novel compression mechanism 

mentioned above, we also proposed and studied innovative acceleration mechanisms in 

two aspects: the dependency related mechanisms which are the Server Location 

Propagation mechanism (SLP) and Embedded Object Information Propagation 

mechanism (EOIP), and the parallelism related mechanism Chunk-Level Parallelism 

(CLP). The experimental results show that these mechanisms can achieve considerable 

improvement on web retrieval latency. 
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Chapter 1 Introduction 

1.1 Background and Motivations 

1.1.1 Background 

The World Wide Web (web) is the most popular application of the Internet [1]. 

The scale of the web has been experiencing exponential growth. Nowadays, the 

Internet traffic is dominated by web data transfers [2, 3, 4]. The web provides the most 

convenient way to distribute and access all sorts of information. Not only more and 

more companies and organizations turn to utilize the web to do their businesses, but a 

tremendous amount of users are also attracted to the web for their personal activities 

such as shopping, education, and entertainment etc. 

With the explosive growth of the web, web retrieval latency has become one of 

the principal concerns to most web users and web content providers. Due to the 

immense amount of web traffic, the problems of congested network and heavy-loaded 

web servers become more and more serious. This results in long web retrieval latency, 

and thus the World Wide Web has been bantered as World Wide Wait. There is a 

commonly recognized “eight-second rule”, which indicates that after eight seconds of 

wait time, two thirds of the users of a website will be lost [5]. This rule is for 56k 

modem users. For broadband users, the tolerance level could be much lower. With the 

widespread commercialization of the web, exceeding the “eight-second rule” for 

downloading times would mean a significant loss in revenue. The businesses of web 

content providers depend on the ability to deliver information quickly to end users not 

only because speedy delivery will attract more users, but a faster content delivery also 

allows for more complex content which can provide a more enjoyable user experience. 

Therefore, faster and more efficiently means to access the web are preferred by both 

web users and web content providers. 
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Researchers have been working on how to improve web retrieval performance 

since the early 90’s [6, 7]. There are basically two approaches to the acceleration of 

web retrieval. The first one is hardware approach which tries to accelerate web 

retrieval by improving the hardware capability of network infrastructure and 

bandwidth and the computing power of server and client machines. However, this 

approach has the following shortcomings which make it insufficient in solving the 

problem: 

ü The procedure of upgrading hardware infrastructure is usually very slow. For 

example, despite the great effort in improving network capacity, broad-band is still 

far from the Internet society. Nowadays, a significant percentage of web users still 

connect to the Internet through slow dial-up accounts. 

ü Upgrading of hardware infrastructure is not cost-effective. Improving hardware 

capability often means the purchase of pricey equipments, and it often can not 

solve the problem effectively. For example, upgrading a dial-up link to T1 or T3 

lines may not completely solve the speed problem as the effective rates of the 

connections can be as slow as, or even slower than a dial-up connection when the 

T1 or T3 lines are shared by a lot of users. 

ü The requirement and expectation on web access grows much faster than the 

development of hardware. On one hand, websites have become bloated as content 

providers attempt to provide clients with more information. On the other hand, 

web users continue to expect more and more performance from their existing web 

links. A research indicates that although the Internet backbone capacity increases 

as high as 60% per year, the demand for bandwidth is still likely to outstrip supply 

in the foreseeable future [8]. 

If some other kinds of solutions are not undertaken for the problems caused by its 
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rapidly increasing growth, the web would become too congested and its entire appeal 

would eventually be lost. What comes into help is the second approach, i.e. the 

software approach. This approach is often referred to as web acceleration. It has little 

to do with the hardware. Web acceleration tries to integrate various software 

technologies and methodologies to get content from an origin server to an edge client 

as quickly as possible. Typical examples of web acceleration include web caching, 

prefetching, content optimization, and content delivery networks (CDN) etc. [9, 10, 11, 

12, 13, 14, 15, 16]. 

With the maturity of techniques on web intermediate servers such as web proxies, 

web intermediaries are actively involved in web acceleration. Many researchers are 

looking into acceleration mechanisms that work on web intermediate servers. This 

direction has shown great potential because of its good cost-effectiveness, scalability 

and functionality. 

Web content acceleration is an important method used to address the surge in 

web access, and it is believed to have better potential than hardware approach because 

not only it is more cost-effective, but it can also cater the needs of users from various 

environments. In this thesis, we focus our study on the issues of web acceleration. 

1.1.2 Motivations 

Web retrieval latency has been extensively studied and many acceleration 

mechanisms have been proposed. The most popular mechanisms are those 

caching-based schemes such as caching [9, 10, 11] and prefetching [12, 13, 14]. 

However, the performance of such acceleration mechanisms is limited due to the low 

reuse rate and poor cacheability of web objects [13, 17, 18, 19, 14, 20]. To overcome 

the limitation, researchers are actively looking into mechanisms which accelerate the 

downloading process of web retrieval. Examples of such mechanisms include 
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persistent connection [21, 22], bundling [23, 24, 25], and content transformation [26, 

27, 28] etc. 

Although many research works have shown good potential in web acceleration, 

they still have some deficiencies which motivate us to further look into this area. In 

detail, the motivations for the research work reported in this thesis come from the 

following deficiencies in the current studies: 

ü Lack of a precise model to capture web retrieval process precisely 

ü Lack of study at detailed levels of web data retrieval 

ü Lack of in-depth understanding and studying of page retrieval latency 

ü Lack of effective acceleration mechanisms with special emphasis on page retrieval 

latency 

The current web content is made up of pages which usually consist of multiple web 

objects such as html, image and other types of files [29]. The basic unit of web 

browsing is web page. Therefore, page retrieval latency is more meaningful to web 

users than object retrieval latency. However, most previous works based on object 

retrieval latency to study web retrieval latency [30, 31, 32, 33, 34]. This is insufficient 

and sometimes inaccurate since the unit of web browsing is web page instead of object. 

While page retrieval latency is derived from object retrieval latency, the relationship 

between them is not that direct and simple. When objects are put together to form 

pages, more complex and interacted factors will be involved in determining the final 

page latency. Normally, in a web page, there is a primary object called container object, 

which contains the definitions of other objects (embedded objects) of the page. 

Because of this, the retrieval of the embedded objects highly depends on the retrieval 

process of the container object of the page, and this dependency will introduce 

significant delay to the retrieval process of the embedded objects. Furthermore, current 
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web system employs parallelism for parallel fetching of objects, which makes it 

possible for the retrieval of some objects to virtually have no effect on the total page 

latency. All these factors make the mapping from object latency to page latency very 

complicated, and they are largely ignored in previous object-level studies in web 

content delivery. 

On the other hand, the transfer of web data is typically delivered in a sequence of 

data chunks. The characteristics of chunk sequence transfer have great impact on web 

retrieval latency. A thorough study on the detailed chunk level transfer would be very 

useful in helping user to better understand the root causes of web retrieval latency. 

However, such studies are rarely seen in existing research works. 

To well understand and study the complex factors affecting web retrieval latency, 

especially page retrieval latency, we will need a more precise model. In this thesis, we 

address these issues by proposing a detailed operation level and chunk level model to 

provide precise capture of web retrieval process. Based on the model, we conduct 

comprehensive, in-depth studies on both detailed levels of web data transfer and whole 

page retrieval latency. We also propose new web acceleration mechanisms to improve 

web retrieval performance, especially whole page retrieval latency. 

1.2 Thesis Aims 

The focus of this thesis is to address some issues in web acceleration. Due to the 

performance limitation of caching-based mechanisms, we do not make it the heart of 

our study. Instead, we spend much of our effort on the studies which aim to accelerate 

the downloading process of web retrieval, with specific emphasis on whole page 

retrieval latency. The detailed aims of this thesis are originated from the motivations 

stated in the previous section, and they are described as follows. 

Firstly, we propose a fine grained model to address the issue of lack of precise 
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model for studies in web retrieval. The model shall provide precise capture of web 

retrieval process at very detailed level so that it can be used for better understanding 

and study of web retrieval. 

Next, we acquire better understanding of web retrieval latency for both objects 

and pages based on the model proposed. We expect to reveal the impact of detailed 

level operations and chunk transfers on object retrieval latency and the complex factors 

determining page retrieval latency. We also want to further demonstrate the deficiency 

of previous object-level studies by analyzing existing acceleration mechanisms. We 

would also like to derive upper bounds on the performance improvement for 

acceleration mechanisms to help us to understand the potentials of web acceleration. 

Lastly, we propose new acceleration mechanisms with specific emphasis on 

improving page retrieval latency. The new acceleration mechanisms are originated 

from the findings from the studies based on our model, and we conduct comprehensive 

experiments to study the effectiveness of them. 

1.3 Thesis Organization 

The overall structure of this thesis is shown in Figure 1.1. After the introduction in 

Chapter 1, Chapter 2 reviews the related work in the web acceleration area; both 

research work and real acceleration systems are discussed. As web caching based 

mechanisms are still the important solutions to web acceleration, we include a study on 

it in this thesis, and it is presented in Chapter 3. We dig into the relationship among the 

co-occurrent factors to reveal the effectiveness of them in the co-occurrence situation, 

and investigate the accuracy of the settings for the TTLs of objects to reveal its impact 

on web caching. 

Move on to the main part of the thesis, we first propose a fine grained Web 

Retrieval Dependency Model (WRDM) in Chapter 4, and conduct detailed study and 
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analysis on web retrieval latency based on this model in Chapter 6. Chapter 5 describes 

the tools, traces, environments and methodologies used for the studies in this thesis. 

To further demonstrate the usefulness and effectiveness of our WRDM model, we 

analyze an important acceleration mechanism, namely web compression, in Chapter 7. 

The results reveal some important effect and implication of compression on page 

retrieval latency. Also in this chapter, we propose a new compression mechanism 

named content-aware global static compression to improve the performance of 

compression in web content delivery. 

Based on the studies using our WRDM model, we propose some new 

mechanisms for web acceleration. Besides the novel compression mechanism proposed 

in the later part of Chapter 7, we also proposed and studied innovative acceleration 

mechanisms related to dependencies and parallelism in web retrieval in Chapter 8 and 

Chapter 9, respectively. Detailed descriptions and results are reported in these chapters. 

Finally, the thesis concludes in Chapter 10. It briefly summarizes the work 

presented in the thesis and lists the main contributions of my work. Some future works 

for making further contributions to this area are also discussed in this final chapter. 
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Below are the papers I have finished during my study. The papers cover my 

research work from processor cache system to web caching system, and then 

non-caching based web acceleration studies. I was the main contributor for most of the 

papers, especially those published since 2002. 

ü Multi-factor Effect of Cacheability Factors (with Chi-Hung Chi), (Submitted) 

ü Content-Aware Global Static Compression for Web Content Delivery (with 

Chi-Hung Chi), The IEEE Tenth International Workshop on Web Content Caching 

and Distribution (WCW 2005), Sophia Antipolis, French Riviera, France, 

September 12-13, 2005. 

ü Exploiting Fine Grained Parallelism for Acceleration of Web Retrieval (with 

Chi-Hung Chi and Qibin Sun), The Third International Human.Society@Internet 

Conference (HSI'05), Tokyo, Japan, July 27-29, 2005. (The conference proceeding 

was published by Springer Verlag in Lecture Notes in Computer Science series, July 

2005.) 

ü A More Precise Model for Web Retrieval (with Chi-Hung Chi and Qibin Sun), The 

Fourteenth International World Wide Web Conference (WWW 2005), Chiba, Japan, 

10-14 May 2005. 

ü Understanding the Impact of Compression on Web Retrieval Performance (with 

Xiang Li and Chi-Hung Chi), The Eleventh Australasian World Wide Web 

Conference (AusWeb'05), Gold Coast, Queensland, Australia, 2-6 July 2005. 

ü Modeling Retrieval Parallelism in Web Content Delivery (with Chi-Hung Chi and 

Qibin Sun), The 2005 International Symposium on Web Services and Applications 

(ISWS'05), Las Vegas, Nevada, USA, June 27-30, 2005. 

ü Unveiling the Performance Impact of Lossless Compression to Web Page Content 

Delivery (with Chi-Hung Chi), The Ninth International Workshop on Web Content 
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Caching and Distribution (WCW 2004), Beijing, China, 18-20 October 2004. (The 

conference proceeding was published by Springer Verlag in Lecture Notes in 

Computer Science series, Volume 3293/2004.) 

ü Web Caching Performance: How Much Is Lost Unwarily? (with Chi-Hung Chi), 

The Second International Human.Society@Internet Conference (HSI'03), Seoul, 

Korea, June 18 - 20. (The conference proceeding was published by Springer Verlag 

in Lecture Notes in Computer Science series, Volume 2713/2003.) 

ü Runtime Association of Software Prefetch Control to Memory Access Instructions 

(with Chi-Hung Chi), The Eighth International Euro-Par Conference (Euro-Par 

2002), Paderborn, Germany, August 27-30, 2002. (The conference proceeding was 

published by Springer Verlag in Lecture Notes in Computer Science series, Volume 

2400/2002.) 

ü Load-balancing Data Prefetching Techniques (with Chi-Hung Chi), Journal of 

Future Generation Computer Systems (FGCS), 17(6):733-744, 2001. (Invited paper) 

ü Load-Balancing Branch Target Cache and Prefetch Buffer (with Chi-Hung Chi), 

The 1999 IEEE International Conference on Computer Design (ICCD 1999), Austin, 

Texas, USA, October 10-13, 1999. 

ü Sequential Unification and Aggressive Lookahead Mechanisms for Data Memory 

Accesses (with Chi-Hung Chi), The Fifth International Conference on Parallel 

Computing Technologies (PaCT-99), St. Petersburg, Russia, September 6-10, 1999. 

(The Conference Proceedings were published by Springer Verlag in Lecture Notes 

in Computer Science series, Volume 1662/1999.) 

ü Design Considerations of High Performance Data Cache with Prefetching (with 

Chi-Hung Chi), The Fifth International Euro-Par Conference (Euro-Par 1999), 

Toulouse, France, 31 August - 3 September 1999. (The conference proceeding was 



11 

published by Springer Verlag in Lecture Notes in Computer Science series, Volume 

1685/1999.) 

ü Cyclic Dependence Based Data Reference Prediction (with Chi-Hung Chi and 

Chin-Ming Cheung), The Thirteenth International Conference on Supercomputing, 

Rhodes, Greece, June 20-25, 1999. 
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Chapter 2 Related Work 
 
2.1 Introduction 

The World Wide Web (web) was initially introduced to the public in 1991 [6, 7]. 

The web system is built on a number of protocols and languages. Among them, the 

most important ones are the HyperText Markup Language (HTML) and the HyperText 

Transfer Protocol (HTTP) [35, 36, 37]. HTML is the basic tool to specify the 

semantics and structure of web information. It is commonly used to describe the 

content and presentation of web objects and pages. HTML files are in simple textual 

format. The most popular version of HTML is 4.0 series in current web system. The 

HTTP protocol is layered over a reliable bidirectional byte stream, normally TCP [38]. 

Each HTTP interaction consists of a request sent from the client to the server, followed 

by a response sent from the server to the client. Requests and responses are expressed 

in a simple ASCII format. There are mainly two versions of HTTP in current web 

system, i.e. HTTP/1.0 and HTTP/1.1. While the 1.1 version is getting its popularity, 

the 1.0 version of HTTP is still used widely in current web system. 

With the evolution of the web, there emerge a number of new languages and 

protocols. Typical languages are represented by the Extensible Markup Language 

(XML) [39, 40], Wireless Markup Language (WML) [41, 42], Edge Side Includes (ESI) 

[43, 44], and Web Service Description Language (WSDL) [45] etc. Protocols examples 

include the Internet Cache Protocol (ICP) [46, 47], the Hyper Text Caching Protocol 

(HTCP) [48], the Internet Content Adaptation Protocol (I-CAP) [49, 50], the Open 

Pluggable Edge Services (OPES) [51, 52, 53, 54], the Simple Object Access Protocol 

(SOAP) [55, 56], Web Intermediaries (WEBI) [57, 58, 59], Web Replication and 

Caching (WREC) [60, 61], Middlebox Communication (MIDCOM) [62, 63], and 

Reliable Server Pooling (RSERPOOL) [64, 65, 66, 67, 68, 69] etc. 
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All of the new languages and protocols aim to improve the application or 

performance of the web in one way or another. But up to now, the majority of them 

still have not got their popularity yet. The web traffic nowadays is still dominated by 

HTTP and HTML. So, in this thesis, we will focus our study on HTTP and HTML. 

However, most of our works will be applicable to other languages and protocols as 

well. 

Web content is usually made up of various types of objects such as html, image 

and other types of files. Many of the web objects exist before they are requested. Such 

objects are referred to as static objects. In recent years, another type of objects, namely 

dynamic objects become prevalent. Dynamic objects mainly refer to those objects 

which are generated in real-time when they are requested. Typical examples of 

dynamic objects include those generated by cgi, asp, or jsp programs. 

While web object is the basic unit of web content, it is not the basic unit of web 

browsing. In current web system, the basic unit of web browsing is web page. A web 

page is often made of multiple objects. Among the objects in a page, there is one 

primary object corresponding to the URL (Uniform Resource Locator) of the page. 

This object is called Container Object (CO) and is generally described in HTML 

language. The other objects in the page are called Embedded Objects (EO) which have 

their definitions (usually URLs) found in the body of the container object. When a web 

page is requested, the CO of the page will be first returned to client. Then, client will 

see the definitions of the EOs and subsequently send requests from them. The content 

of both the CO and EOs are interpreted and displayed together to render the full view 

of the web page. 

The web system is running in a client-server model. There are numerous web 

servers and clients connected in the Internet. Clients run web browsers like MS-IE and 
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Netscape [70, 71] which initiate web retrieval by sending requests to web servers. Web 

servers are typically represented by Apache, MS-IIS and Netscape web server etc. [72, 

70, 71]. They manage web content and process requests from clients. On receiving a 

request from a client, the server will find or generate the content corresponding to the 

request and send it back to the client. 

Besides the servers and clients, there are also intermediate servers widely 

deployed in the web system. These intermediate servers are commonly known as proxy 

servers or middle-boxes. They are introduced to improve various issues of web system, 

such as performance, security, and scalability etc. Examples of such intermediaries 

include Squid [73, 74] and W3C httpd [75] etc. 

All web retrievals undergo certain latencies. Some of the latency comes from the 

physical limitation of the machines and network such as the computing power, the 

network bandwidth and the propagation speed limit of electronic signal. Some other 

parts of the latency come from the operations and mechanisms of the retrieval process 

such as the establishment of network connection and the parallelism in web retrieval 

etc. 

As the web continues its exponential growth, the problems of congested network 

traffic and long web retrieval latency become one of the principal concerns to most 

web users and web content providers. Hence, the acceleration of web retrieval has 

become a primary focus of the Internet research and development community. 

The studies on web acceleration in the literature are extensive. Most early studies 

focused on web caching and prefetching related area such as cache replacement 

algorithms [76, 17, 30, 77], cacheability of objects [78, 79, 80, 20], cache consistency 

issues [81, 82, 83], and prefetching algorithms [84, 85, 86, 87, 88, 89] etc. The 

mechanisms in this direction are actually based on caching to accelerate web retrieval. 
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However, recent studies show that the performance of such mechanisms is limited 

because of the low reuse rate and poor cacheability of web objects [13, 14, 17, 18, 19, 

20]. To overcome the limitation, researchers are actively looking into a new direction 

which tries to accelerate the downloading process of web retrieval. Example 

mechanisms in this direction include persistent connection [22, 37], bundling [23, 24, 

25], content transformation [26, 27, 28] etc. The studies in this direction have shown 

promising potential of improvement in web retrieval latency. However, most of them 

only focus on object latency. As page is the basic unit of web browsing, it would be 

more important and meaningful to study page latency instead of just object latency. 

Nevertheless, the modeling and acceleration of page retrieval is still a missing link in 

current studies. 

As the application and population of the web grow explosively, the traffic on the 

web grows much faster than the growth of underlying network hardware and 

machine’s computing power. Moreover, the growth of users’ expectation on the 

performance of web retrieval seems to always outstrip the growth of the Internet 

backbone capacity. All these make the need of web acceleration become even more 

urgent. What is more, with the growth of mobile devices and wireless networking, the 

demand for good performance for pervasive Internet access arises. This gives even 

tougher challenges to web content delivery as the computing power and bandwidth in 

these environments are quite different from the traditional web system. Thus, great 

efforts are still needed to solve the problems. 

In this chapter, we would like to review the related work in the area of web 

acceleration. 
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2.2 Related Work in Caching-based Acceleration Mechanisms 

2.2.1 Basics of Caching 

Web caching is the first major technique that attempted to improve performance, 

reduce latency, and save network bandwidth. However, the idea of caching is nothing 

new. It originates from the long-standing use of caching in memory architectures, 

where this principle is used to speed up memory access by storing data in a small 

amount of high speed memory close to CPU [90, 91, 92, 93]. Due to the two locality 

characteristics of requests, i.e. temporal locality and spatial locality, the data brought 

into the cache by previous requests can often be used to serve future requests. The 

“caching” in the context of web system performs similar function. It tries to improve 

the performance of web retrieval by storing copies of objects in local storage and using 

them to serve future requests. Because the objects are served locally, so the retrieval 

latency can be reduced and external network traffic can be saved. 

Web caching can be used in a number of places throughout the web system. First 

of all, web browsers may implement their own caches on disk and/or in memory. 

However, the performance of such web caches is not good because of the low reuse 

rate of web objects since such caches are used by single or few users. A better place for 

web cache is a network point shared by multiple users. This is typically the gateway 

point or the ISP of an organization. The web caching function performed here is often 

incorporated with proxy function, and together they are called web proxy server. The 

web caching in the proxy server can produce better performance because it serves 

multiple users so that the reuse rate of web objects could be much higher than those for 

single users. In some cases, web caching function is also performed right in front of 

web servers to improve the performance of them. Again, it is also often combined with 

proxy function. Such proxy servers are often referred to as reverse proxy servers. In 
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contrast, those proxy servers close to end users within an organization are referred to 

as forward proxy servers. 

Web caching has become a significant part of the infrastructure of the web. It 

even led to the creation of a new industry: Content Delivery Networks (CDNs). CDNs 

rely on web caching and load-balancing technologies to efficiently deliver large 

amounts of data over the web. The market value of CDN grows at a fantastic rate, 

which expects to be over three billion US dollars in sales and services by 2006 [94]. 

This reflects the importance of caching in the web system. 

Ordinary caching reduces latency only for repeated requests. Prefetching is a 

supplementary technique to caching. It aims to predict future user requests and 

prefetch the objects into the cache in advance so that more requests, including those 

first time requests and repeated requests, can be satisfied. The concept of prefetching is 

not new either. Many advanced computer systems use this principle to improve the 

performance of the memory architectures [95, 96, 97, 98, 99, 100, 101]. Although the 

idea is similar, the prefetching in the context of web system is more difficult than that 

in computer memory system. The challenge lies in that the user requests are not so 

predictable as the memory accesses in computer memory system. It is difficult to 

achieve high prediction accuracy in web prefetching. 

There are many issues in the web caching area, and they have been extensively 

studied in the current literature. Below, we examine the major works in this area. 

2.2.2 Locality of Web Requests and Cacheability of Web Objects 

The locality of web requests reflects the reuse rate of objects, and the 

cacheability of web objects refers to the availability and duration that web objects can 

be kept in a web cache. These two factors are very fundamental to caching-based 

acceleration mechanisms because caching is only effective when there is fair reuse rate 
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and good cacheability of objects. 

Cao [102], Breslau [103] and Dykes [104] et al studied the Zipf-like distribution 

of web requests, which states that the request frequency for a web object is inversely 

proportional to the object’s popularity ranking. Abdulla et al pointed out that web 

traffic has a significant daily and weekly cyclic component, and claimed that the 

temporal and spatial locality of reference within examined user communities is high, 

so caching can be an effective tool [105, 106, 107]. Cao and Irani [30] found a large 

number of repeat requests in their studies. [18, 13, 9, 108] and [109] etc reported fair 

object reuse rate, ranging from 24% to 45%. [110] further pointed out that embedded 

images in web pages are often reused, even the pages change frequently. Zhang [111] 

found that between 15% and 40% of web objects in their traces can not be cached, and 

Dykes, Robbins, and Jeffery [78, 79, 80] reported that 28% of the successful GET 

requests are for non-cacheable documents. Many of the caching mechanism in the web 

depend on HTTP header fields that carry absolute timestamp values to determine the 

cacheability of objects. Wills [112] and Mogul [113] examined the effect of those 

timestamp-based cacheability-controlling HTTP headers and showed that many objects 

are not cacheable due to inaccurate and nonexistent directives. If such errors can be 

corrected, more objects will be turned to be cacheable. 

2.2.3 Cache Replacement Algorithms 

Cache replacement algorithms govern the eviction of old objects from the cache 

when there is not enough space to store new objects. Different replacement algorithms 

may yield different hit rates and byte hit rates. So, replacement algorithm is one of the 

key aspects that ensure the effectiveness of web caching. 

The traditional replacement algorithms like Least Recently Used (LRU) and 

Least Frequently Used (LFU) widely used in computer memory architectures are also 
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imported into web caching systems. Williams et al gave an extended algorithm based 

on LRU: Pitkow/Recker [76]. In this algorithm, objects are evicted in LRU order 

except for those objects accessed within the same day, where the largest object will be 

evicted. The rationale behind this algorithm is that they found that a caching algorithm 

based upon the recency rates of prior document access could reliably handle future 

document requests. 

Some other replacement algorithms specially developed for web caching are 

based on some key properties of objects such as size. The algorithm SIZE evicts the 

largest objects [76]. LRU-MIN and LRU-Threshold have a certain threshold size to 

guide the eviction of objects [17]. 

Another category of replacement algorithms for web caching typically takes into 

consideration the timing or latency factors. A cost function is derived from those 

factors to govern the eviction of objects. Cao et al proposed the GreedyDual-Size 

(GDS) algorithm [30, 77]. It associates a cost with each object and evicts object with 

the lowest cost/size ratio. Because it incorporates the latency and size concerns, this 

algorithm yields better performance in terms of latency reduction and network cost 

reduction. There is a number of works trying to further improve the performance of 

GreedyDual-Size algorithm. Cherkasova proposed the Greedy-Dual-Size-Frequency 

(GDSF) and the Greedy-Dual-Frequency (GDF) algorithms, which incorporated 

different characterizations of objects such as size, access frequency and recentness etc 

[114]. Jin and Bestavros first proposed the Popularity-Aware GreedyDual-Size 

algorithm [115], which makes use of popularity profile of web objects. They later 

proposed the GreedyDual* algorithm, which is said to be a generalization of 

GreedyDual-Size [116]. The GreedyDual* algorithm capitalizes on and adapts to the 

relative strengths of both long-term popularity and short-term temporal correlation. 
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There are still a number of other replacement algorithms such as Hyper-G [76], 

Lowest Latency First [32], Hybrid [32], Lowest Relative Value (LRV) [117, 118], 

LNC-W3 [119] etc. However, the performance of replacement algorithms depends 

highly on traffic characteristics of web accesses. No known algorithm can outperform 

others for all web accesses patterns. Therefore, many current web caching systems still 

widely use the traditional replacement algorithms like LRU [120]. 

2.2.4 Cache Coherence and Validation of Objects 

Cache coherence is concerned with ensuring that the cached objects do not reflect 

stale or defunct data. Web cache relies on some timestamp-based HTTP headers like 

Data, Last-Modified and Expires etc. to determine the freshness of objects [121]. There 

must be some mechanisms to assure the validity of cached objects when their master 

copies on the web servers change. This is typically the validation/invalidation process 

in web caching systems. 

The validation process is normally initiated by web caches. A web cache sends an 

If-Modified-Since message to the server to verify the validity of an object. The server 

either returns a “Not-Modified” message to assure the validity, or returns a new copy 

of the object if it has been changed [37, 81, 82]. This process can be performed either 

for each access, or periodically only when an object is suspected to be stale [83]. The 

latter improves access latency, but may not be able to maintain strong coherence. 

Instead of having web caches to check for the validity, web servers can also send 

invalidation messages to all clients upon detecting changes of objects [121]. This 

approach requires a server to keep track of the web caches that are caching its objects 

and contact them when objects change. When the number of web caches contacting a 

server is big, this task can become unmanageable for the server. 

A number of works also have been done to improve the effectiveness of 
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validation and invalidation processes. First, the Adaptive TTL policy is proposed to 

adjust the time-to-live of objects and it is shown to be able to keep the probability of 

stale objects within reasonable bounds (< 5%) [122, 123, 124]. Another direction is to 

piggyback the validation or invalidation message to an existing communication 

between the server and cache. The ideas, Piggyback Cache Validation (PCV) and 

Piggyback Server Invalidation (PSI), are explored by Krishnamurthy and Wills [125, 

126]. Their studies show that PCV and PSI minimize access latency and bandwidth 

usage while maintain a close-to-strong coherence. Mikhailov and Wills also proposed 

an alternative approach to strong cache consistency called MONARCH. They showed 

that MONARCH does not require servers to maintain per-client state and it generates 

little more request traffic than an optimal cache coherency policy [127]. 

2.2.5 Prefetching 

The performance of ordinary web caching is limited due to the relatively low 

reuse rate of objects, typically ranging from 24% to 45% as reported in many studies 

[18, 13, 9, 108, 109]. Prefetching is an important method to help further increase cache 

hit ratio. By predicting future user requests and prefetch the objects into the cache in 

advance, it can satisfy more user requests. 

The prefetching in the context of web system has a significant difficulty which is 

the accuracy of prediction. Because web users’ requests are not so predictable as the 

memory accesses in computer memory system, it is often difficult to achieve high 

prediction accuracy in web prefetching. While a few works try to prefetch only inline 

objects of pages where the accuracy is not an issue [128], most other studies on web 

prefetching focus on improving the accuracy of prediction algorithms. 

A naïve method for doing web prefetching is to have proxy cache to fetch all the 

pages that are pointed to by the hyperlinks in current page. So, no matter which page 
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the user goes next, there will be always a cache hit. [129] proposed a prefetching 

scheme of this type and reported significant improvement in cache hit ratio. However, 

this method imposes too heavy load on the web system. 

More advanced prefetching algorithms employ the knowledge of data mining or 

mathematics to do the prediction, and the information used for prediction may come 

from client side or server side. Maltzahn et al applied machine learning techniques to 

automatically develop prefetch strategies and showed that the results are promising [84, 

85]. Palpanas and Mendelzon investigated the use of partial match prediction, a 

technique taken from the data compression literature, for prefetching in the web [86]. 

Their results suggest that a high fraction of the predictions are accurate, e.g., predicts 

18-23% of the requests with 80-90% accuracy. 

Sarukkai sought to apply Markov chains to predicting web requests and claimed 

a lot of promise [87]. Deshpande and Karypis also studied Markov models for 

predicting web page accesses [88]. They studied different techniques for intelligently 

selecting parts of different order Markov models to reduce the state complexity of the 

model and to improve prediction accuracy. Their results indicate that the performance 

of their model is consistently superior to that obtained by higher-order Markov models. 

Markatos and Chronaki proposed a top 10 approach to prefetching which 

combines the servers' active knowledge of their most popular documents (their top 10) 

with client access profiles [89]. According to these profiles, clients request and servers 

forward to them their most popular documents. Their results suggest that the top 10 

approach can anticipate more than 40% of a client’s requests while increasing network 

traffic by no more than 10% in most cases. 

There are numerous other studies trying to work on web prefetching algorithms 

[14, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143]. Also, there 
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are some works studied the effects of prefetching on network and server, and the 

potential and limits of prefetching [144, 145, 146, 147, 148]. Among the studies, 

Davison argued that the current support for prefetching in HTTP/1.1 is insufficient 

because prefetching with GET is not good [145]. Pandey et al conducted a comparative 

study of some prefetching models and found that the model based on higher order page 

interaction is more robust and gives competitive performance in a variety of situations 

[149]. 

2.2.6 Others Aspects of Caching 

There are many studies addressing other miscellaneous aspects of web caching. 

Cache hierarchy related issues and standards are discussed in [46, 47, 150, 151, 152, 

153, 154, 155, 156, 157, 158, 159, 160] etc. 

Kelly, Mogul, Bahn, Lee et al studied the aliasing/replica problem that affects the 

performance of web caching [161, 162, 163, 164]. Their studies revealed a significant 

percentage of web objects encounter the aliasing problem, which considerably lower 

the performance of web caching systems because they generally treat the replicas as 

different objects since they have different URLs. Different schemes are proposed to 

remove the redundant objects from web cache so as to improve caching performance. 

As dynamic and secured data become more and more popular in the web, 

researchers are actively looking into way to cache such data. Many dynamic caching 

and active caching mechanisms have been proposed in an attempt to address this issue 

[165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177]. The studies indicate 

a lot of promise in this direction. 

Content Distribution Networks (CDNs) are managed networks of caching and 

networking systems, and rely on web caching (as well as load-balancing) to efficiently 

deliver large amounts of data over the web. There are also a number of works trying to 
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address the issues with CDNs such as consistency management, request redirection, 

and object replication strategies etc. [178, 179, 180, 181, 182, 183, 184, 185]. With 

these issues being addressed properly, the performance of CDNs will reach even a 

higher level. 

An important movement about CDN is that the technology has been exploited for 

more than web caching and multimedia content delivery recently. The largest 

traditional application for CDNs is the acceleration of web content delivery, along with 

streaming audio and video. But as more and more companies move their corporate 

applications onto the web, the CDN technology has been exploited for distributed 

computing and application acceleration, which is being shown to be a much bigger 

opportunity for CDNs than just helping on web site access [15, 16]. 

There are also some studies examining the effect of special activities on web 

caching, such as web robots, connection aborts and cookies etc [186, 187]. Results 

show that such details can affect the performance of web caching considerably. 

2.3 Related Work in Other Acceleration Mechanisms 

The performance of web caching is limited due to the low reuse rate and poor 

cacheability of web objects [9, 18, 13, 108, 109]. The ever-growing dynamic content in 

the web system further worsens this situation. To overcome the limitation, researchers 

are actively looking into a new direction which tries to accelerate the downloading 

process of web retrieval. This direction has huge potentials because it covers all pages 

and objects, independent of objects’ reuse rate and cacheability [188, 189]. The 

mechanisms from this direction mainly fall into two categories: the first category aims 

to reduce network connectivity related latency; the other one endeavors to reduce the 

latency come from the actual transfer process. In this section, we review the major 

works in this direction. 
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2.3.1 Connectivity Related Mechanisms 

Web retrieval usually involves some network connectivity related operations such 

as DNS resolution and connection establishment. Many studies revealed that such 

connectivity related operations contribute a significant portion to web retrieval latency 

[24, 33, 190, 191, 192, 193]. 

The contribution of DNS lookup costs to web retrieval is studied and addressed 

by [193, 194, 195, 33, 196] etc. Typical mechanisms proposed include stored address 

binding [194], pre-performing DNS lookups [195], proactive caching of DNS records 

[196] and so on. Considerable improvement is reported from this aspect. 

To address inefficiencies associated with multiple concurrent connections, 

persistent-connection is first proposed [22, 24, 37, 197, 198, 192, 199, 200]. By 

keeping a connection alive and reusing it for pipelining a set of requests and objects 

transfers, persistent-connection can greatly reduce the response time, server overheads, 

and network overheads of web retrieval. Connection caching is further proposed to 

handle the connection management problem [192, 198, 200]. 

Pre-connection is another way to directly address the connectivity issue. This 

mechanism tries to pre-setup connections prior to the issuance of HTTP request. 

Results showed moderate (about 6%) performance improvement with pre-connection 

[195]. 

Another quite different approach to addressing the connectivity problem is 

bundling techniques such as GETLIST [24], MGET [23] and N-to-1 Bundle [22, 25, 

201, 202]. By packaging a set of associated embedded objects into a single bundle for 

retrieval, bundling reduces the need for multiple requests and the load on the network. 

Thus network connections can be utilized more efficiently and web servers can have 

better control over the number and duration of connections they support. 
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2.3.2 Transfer Related Mechanisms 

The mechanisms in this category aim to reduce the latency come from the actual 

transfer process. The basic idea is to reduce the amount of data being transferred in 

web retrieval. Examples include encoding, transcoding and content optimization etc. 

Some of the techniques mainly apply on textual objects, while some others are mainly 

for image objects. 

The most popular encoding mechanisms include delta encoding and compression. 

The ESI (Edge Side Includes) can also be regarded as a special kind of encoding. Delta 

encoding and ESI enable web caches to retrieve only the difference (or delta) between 

the old instance and the new instance of an object instead of the entire new instance, 

and apply the delta to the cached copy of the old instance to construct the new version. 

Studies show that the reduction in response size and delay is significant [26, 27, 28, 44, 

203, 204, 205]. 

Compression mainly refers to applying lossless compression algorithm on textual 

web objects. The support for such compression has been included in protocols and web 

servers and browsers [36, 37, 206, 207, 208]. In current web system, the supported 

compression applications/algorithms are gzip, compress, and deflate etc. [37, 209], 

which are mainly LZW or LZ77 based algorithms [209, 210, 211, 212, 213].  

Nielsen et al reports on the benefits of compression in HTTP [191]. They 

observed over 60% gains in downloading time in low-bandwidth environment by using 

the zlib compression library [214] to pre-compress HTML files. Mogul et al [27] 

studied the potential benefits of delta encoding and data compression for HTTP. They 

reported about 35% reduction in transferred size and about 20% reduction in retrieval 

time when gzip compression is used. They also studied modem-based compression and 

pointed out that high-level compression seems almost always performing better than 
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modem compression. Other studies reported that compression could achieve up to 

above 90% reduction in file size and above 60% reduction in downloading time [203, 

206, 215, 216, 217]. 

Transcoding mainly applies on image objects, often by using lossy-compression 

on images. The challenge lies in finding good compression algorithm which can make 

file sizes as small as possible while retaining the visual integrity of the images. The 

effect of transcoding on web retrieval has been studied in a number of works and good 

results were reported [218, 219, 220, 218, 221, 219, 222, 223]. 

Content optimization typically performs on HTML files. When HTML files are 

created (mostly by dedicated editors), they are usually not optimized for transfer over 

the web because they often contain non-renderable data which takes much space. The 

advent of active server pages and XML etc has increased the web page size even more 

enormously. Examples of such unnecessary non-renderable data include HTML 

comments, notes from publishing tools, superfluous tags, carriage returns, and extra 

white spaces etc, and they can account for as much as 15% of the information in web 

retrieval [224]. The simple way to optimize web content is to remove unnecessary data 

that are not needed to properly render the page. A more comprehensive way is content 

selection. In this mechanism, some parts of web information can be selected for 

processing and others can be suppressed according to different environments and 

requirements. Studies as well as industrial practice have shown promising results in 

this direction [225, 226, 227, 228]. 

2.3.3 Others Mechanisms 

There are still some other works trying to reduce the actual transfer latency. 

Parallel fetching of multiple objects can be used to reduce both the connectivity related 

and transfer related latencies by hiding the latencies among the requests. Most 
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common web browsers like Microsoft IE and Netscape already employed this parallel 

fetching for retrieving the objects in the same page. Rodriguez et al proposed 

paraloading [229, 230, 231], which suggested parallel segmented download of an 

object using parallel connections to multiple mirrors. While the use of parallel fetching 

can reduce user-perceived retrieval latency in many cases, it incurs additional 

overheads and puts higher workload on the network and the servers. 

Pushing is a counterpart mechanism of prefetching. In contrast to prefetching 

which is usually done by clients, pushing is initiated by servers. In pushing, servers 

select the objects and timings to send data to clients without additional client requests. 

Because servers have better knowledge of the access patterns to its objects and its 

workload, pushing can potentially perform better than prefetching. When performed 

properly, pushing speed-up latency as high as 3.35 compared to the normal retrieval 

process [194, 232]. 

There are also some more aggressive approaches to web acceleration, which 

include the development of new data formats and new protocols. An example of the 

new data formats is the progressive image format such as Progressive JPEG and JPEG 

2000 [233, 234, 235, 236]. Progressive image formats improve user-perceived retrieval 

latency by allowing web users to see an approximated image in its whole without the 

need to wait for the complete set of the data to be received. 

Current web system is built on the HTTP protocol which is over TCP [38]. There 

are many performance issues against this combination. Due to the significant setup 

costs of TCP connection, HTTP is known to be inefficient for transfers of small objects. 

Furthermore, TCP is strictly ordered in the way it delivers packets, which could 

introduce considerable delay when packet loss occurs. Also, many acceleration 

mechanisms like caching and prefetching are not well supported by current protocols. 
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A number of attempts have been made to develop better protocols for web retrieval. 

Examples include WebMUX, Internet Cache Protocol, Hyper Text Caching Protocol, 

and Hypertext Streaming Transport Protocol etc. [46, 47, 48, 237, 238, 239, 240, 241, 

242]. 

Finally, some works are also done on peer-to-peer web system. This is a 

relatively new way to improve web performance. This direction tries to exploit 

peer-to-peer techniques to improve the availability, scalability, latency etc. for web 

service. Some studies already show improvements in latency and reliability in such 

systems [243, 244, 245]. 

2.4 Existing Web Acceleration Systems 

In this section, we take a look at a number of existing web acceleration systems. 

The list here is not exhaustive and it serves only as a brief introduction of some typical 

systems used in the web society. 

2.4.1 Caching and Prefetching Systems 

The first caching system worth of mentioning is Squid [73, 74]. Squid is one of 

the most popular web caching softwares in use today. It is a free, open-source, 

full-featured and high-performance web proxy cache designed to run on a variety of 

platforms including Linux, FreeBSD, and Microsoft Windows. Squid improves 

network performance by reducing the amount of bandwidth used when surfing the web. 

It makes web pages load faster, and can also be used as reverse proxy server to reduce 

the load on web servers. By caching and reusing popular web content, Squid allows 

web users to get by with smaller network connections. 

Unlike traditional caching software, Squid handles all requests in a single, 

non-blocking, I/O-driven process. It keeps meta data and especially hot objects cached 

in RAM, caches DNS lookups, supports non-blocking DNS lookups, and implements 
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negative caching for failed requests. All these reduce the amount of time required for 

caching processing. Squid supports many protocols like HTTP, FTP, gopher, SSL, ICP, 

HTCP, CARP, WCCP, etc. It can be configured to support transparent caching. A group 

of Squid caches can also be arranged in a hierarchy or mesh for additional bandwidth 

savings. 

Another existing caching system is ProxySG from the Blue Coat Systems, which 

is formerly known as CacheFlow [246]. Blue Coat’s ProxySG proxy appliance is a 

powerful, full featured solution for both forward and reverse proxy applications. Its 

unique Web Knowledge Framework enables it to handle all web protocols, including 

HTTP, HTTPS, FTP, Microsoft streaming (MMS and HTTP streaming), Real 

streaming (RTSP and HTTP streaming), QuickTime streaming (over RTSP), MP3, 

Flash, and many other web object types. Unlike traditional proxy caches, Blue Coat 

Systems has incorporated enhanced security features in its products as the security 

issues in current web system become more and more important The ProxySG 

appliance integrates advanced proxy functionality with optional security services such 

as content filtering, instant messaging (IM) control, Peer to Peer (P2P) control, and 

web virus scanning. Its special Policy Process Engine provides the power to define a 

comprehensive set of rules for protection, control and acceleration. The ProxySG 

proxy cache can be configured for controlling and securing user communications and 

applications over the web. It can manage user requests for content delivery effectively. 

The NetCache from Network Appliance is a versatile proxy cache system which 

accelerates web access while minimizing bandwidth needs [247]. It supports many 

protocols like HTTP and FTP, and streaming media content as well. NetCache offers 

unique cacheability controls to maximize business application delivery performance 

and bandwidth savings. Many applications include a significant amount of dynamic, or 
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non-cacheable, content, which could be cached without disrupting the application. 

NetCache’s unique controls enable the user to fine-tune the way NetCache handles 

such dynamic content for further improvement in web retrieval performance. 

Some other available academic and commercial caching systems include CERN 

Proxy, Cisco Cache Engine, Novell Internet Caching System, InfoLibria DynaCache, 

etc. They all provide web caching function which help to accelerate content delivery in 

the web [75, 248, 249, 250]. 

Unlike caching products which are quite abundant in the market, products with 

prefetching capability are rarely seen. This is mainly due to the reason that prefetching 

technology is not mature yet. Currently, there is no prefetching mechanism which is 

obviously superior to others in terms of accuracy of prediction and extra network 

traffic incurred. SkyCache once provided a prefetching system, in which a large scale 

of web caches at Internet Service Providers (ISPs) are maintained and the most popular 

and up-to-date web content is continually broadcast to them over satellite link [251]. 

The popularity information is collected from the access statistics of each ISP cache. By 

using dedicated satellite links for broadcast the information for prefetching, it avoids 

network congestion points and relieves traditional links from high bandwidth prefetch 

traffic. Some of CacheFlow’s (now known as Blue Coat) products also implemented a 

conservative prefetching, where only cached popular web objects are checked and 

prefetched (i.e. updated) [252]. The product uses access history information to 

determine the popularity of objects, and then it checks the popular objects and 

prefetches new copies of them when they become stale. 

2.4.2 Content Delivery Network Systems (CDNs) 

Content Delivery Network Systems (CDNs) rely on web caching and 

load-balancing technologies to efficiently deliver large amounts of data over the web. 
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The most famous CDN service provider is Akamai [253]. Akamai initially garnered 

much success with its FreeFlow static content delivery service. But as dynamic content 

becomes more and more popular in the web, it now focuses more on serving enterprise 

customers’ dynamic content delivery needs with its EdgeSuite service. The core of 

Akamai’s technologies is distributed web architecture. By placing thousands of servers 

at the edge of the network and caching content close to the users, optimal web content 

delivery performance can be achieved. Today, Akamai’s edge platform for content, 

streaming media, and application delivery comprises more than 13,500 servers in more 

than 1,000 networks in 66 countries. This ensures high performance, reliability and 

scalability of web content delivery. 

SAVVIS Communications also provides content delivery network services, 

which is the second largest CDN in the market today according to InStat MDR [254, 

255]. The SAVVIS CDN service features a full range of flexible, easy-to-implement 

services including content delivery, streaming media production and delivery, traffic 

management and global load balancing. It also has a unique feature which enables true 

end-to-end delivery of all the necessary applications related to the creation, 

management and distribution of digital content. SAVVIS' CDN services enable 

enterprises to deliver digital content assets to end-users rapidly, reliably and 

cost-effectively. 

There are other companies also providing CDN services such as Digital Island 

(merged with Sandpiper Networks and later Cable & Wireless), Inktomi (bought by 

Yahoo) and Maven Networks etc [256]. A number of vendors like Cisco, F5 Networks, 

Nortel and Volera offer CDN products, which include caching devices, web switches, 

and appliances for directing and scheduling content distribution throughout a 

corporation [248, 257]. 
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2.4.3 Other Acceleration Systems 

The support for persistent connection has been built into most today’s web 

systems. But because HTTP/1.0, which does not support persistent connection, is still 

widely used in current web system, the advantage of persistent connection has not been 

fully utilized yet. 

Some products try to improve connectivity related latency by managing TCP/IP 

connections. NetScaler provides products with advanced TCP optimization feature 

[258]. Their TCP offload technology optimizes server-side resources to achieve higher 

throughput. By managing and accelerating the fundamental TCP/IP connections, 

NetScaler system can multiplex the basic TCP/IP connections, which leads to 

significant improvement in the efficiency of web retrieval. Redline Networks’ also 

provides products which can multiplexing each set of requests onto one connection 

[259]. This enables them to take the advantage of the inherent architecture of TCP, 

which is designed to transfer data in larger bytes over one channel, rather than several 

little channels. Their acceleration tests showed that user access to both dynamic and 

static content can be boosted up to a factor of four. 

Compression feature can be found in many web systems today. Most web 

browsers such as Microsoft IE and Netscape have also equipped support for web 

compression since 1998 [206]. Web servers like Microsoft IIS 5.0 [207] and Apache 

[208] have also incorporated compression capability. NetScaler’s AppCompress 

provides real-time compression for both encrypted and unencrypted application data. 

This reduces last mile transmission times and dramatically improves user-perceived 

latency [258]. Products from Packeteer [215], Redlinenetworks [259] and BPVN 

Technologies [260] all have similar compression feature. 

Transcoding is the technology used to accelerate web access especially for 
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pervasive Internet access environment by transforming image objects or multimedia 

objects etc from higher quality version to lower quality version to best suit the 

capability of users’ devices. IBM’s Image Transcoding Proxy is a prototype system to 

show the potentials of adaptive web content delivery [261, 262]. The main focus of the 

system is on the image transcoding. It can convert the quality of images to different 

levels based on the image purpose, network bandwidth availability and client’s 

characteristics and preference. Mowser [220, 223] is a transcoding proxy that allows a 

mobile user to specify his viewing preferences, and performs transcoding of HTTP 

streams accordingly. When requested by end users, it can reduce the size or color for 

image objects, or select and transmit representative frames of video objects to the user. 

Other example transcoding systems include Pythia, TranSend [219], InfoPyramid [263, 

264], Transcoding Publisher [265], and AppCelera ICX [215] etc. 

Redline Networks’s Real-Time Acceleration Appliance employs content 

optimization technology which cuts out non-renderable data from HTML files to 

decrease their retrieval latency [224]. A number of other systems from FileNET, Web 

Site Optimization, WebTrimmer, HypnoText etc also provide similar feature [266, 267, 

268, 269]. 

As to peer-to-peer web system, such techniques are mainly exploited for web 

hosting system currently. IBM runs an experimental peer-to-peer web hosting system 

named YouServ [243, 244]. YouServ makes web serving more effective to wide web 

community by improving the availability, scalability, latency etc. for web services. 

Another example is the BadBlue’s web server, which is also a full-blown web server 

based on P2P file-sharing techniques [270]. 

2.5 Summary 

In this chapter, we reviewed the protocols and languages related to web content 
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delivery and the major research works in the area of web acceleration. Web caching is 

the first major technique used to tackle the performance problem of web retrieval. 

Various aspects of caching have been extensively studied, and it has been shown that 

caching is an effective mechanism in improving web retrieval latency, although its 

performance is limited by some factors. The effectiveness of caching spawns other 

caching-based mechanisms such as CDNs and prefetching. Most works on prefetching 

focus on finding good prediction algorithms which generate high accuracy of 

prediction and little extra network traffic. But as the prediction of web users’ requests 

is a very tough task, there is no outstanding and convincing algorithm being found yet. 

As the limitation of caching-based mechanisms being realized, researchers are looking 

into a new direction which tries to accelerate the downloading process of web retrieval. 

We also surveyed the major works in this direction which include 

persistent-connection, pre-connection, bundling, encoding, transcoding, content 

optimization and selection, parallel fetching and peer-to-peer web system etc. We also 

examined some typical academic and commercial web acceleration systems available 

today. 

Although the studies in web acceleration are extensive, there are still some open 

issues. Firstly, page retrieval latency is not given enough attention. Most existing 

studies are based on object level information, which is insufficient and sometimes 

inaccurate. Secondly, operation and chunk level details are not well studied. Thirdly, 

we still lack of a good model to capture web retrieval process accurately. Although 

there are quite a number models proposed such as those in [271, 78, 272, 273, 106, 274, 

275] etc., they are either too coarse or not appropriate for capturing page retrieval. 

Finally, it is still preferable to look for effective acceleration mechanisms which have 

special emphasis on reducing page retrieval latency. We will study these aspects of 
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web content delivery in the rest parts of this thesis. 



37 

Chapter 3 Cacheability of Web Objects 

3.1 Introduction 

World Wide Web has been the major service on the Internet [1]. As the scale of 

web and the number of its users continue their exponential growth, the problem of 

congested network become more and more serious and users often experience long 

latency when surfing the web. To alleviate the problem, web caching was introduced 

and has been widely used in the current web system [10]. 

A web cache is a server which usually lies in front of a local area network (LAN) 

and connects users in the LAN to web servers on the Internet. The primary function of 

web cache is to retrieve web objects on behalf of the users and serve users with the 

objects that they requested. As web cache also keep copies of retrieved objects in its 

local storage, subsequent requests may be served locally if the requested objects can be 

found in the local storage. Therefore, user-perceived latency can be reduced 

significantly as the latency for fetching of the object from remote servers is eliminated. 

 
 

Figure 3.1 Two situations of cache hit 
 

Obviously, the reduction of latency can only be achieved when a request is hit in 

web cache. In reality, the reduction could vary greatly due to the complex situation in 

real systems. Because objects stored in web cache have their times to live (i.e. TTL), 

they may not be able to be reused directly. Taking this into consideration, the 

Cache-Hit of a request can be classified into two categories (see Figure 3.1): 
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a. Hit-Fresh: The cached object is still in its TTL and is considered the same as the 

one on the origin server. In this case, web cache can serve user requests with this 

copy without validation with the origin server. 

b. Hit-Stale: The cached object has expired beyond its TTL. Web cache must 

communicate with the origin server (or an up-stream web cache) to find out 

whether the object has changed before it can use the local copy to server a new 

request. The response from the origin server will be either a “Not-Modified” 

message in the case that the object is not changed, or a new copy of the object in 

the case that the object has been modified. 

Between these two Cache-Hit categories, Hit-Fresh can surely reduce network latency 

because no transmission of the data between web cache and origin server needs to be 

performed. However, for Hit-Stale, web cache will have to communicate with the 

origin server. Regardless whether the server’s reply is a new copy of the object (when 

the object has been modified) or a “Not-Modified” message (when the object is not 

changed), the network latency incurred is often comparable to that of a cache miss. 

This is because the “Not-Modified” message will incur at least one chunk of data being 

transferred from server to web cache. We conducted experiments to study the ratio of 

first chunk latency vs. whole object latency. The result is shown in Figure 3.2. The 

graph shows that for the majority of objects, the first chunk latency occupies more than 

90% of the whole object latency. On average, the ratio is about 78%, which is very 

significant. The reason for this high ratio is mainly because web retrieval time consists 

of some components independent of content size, such as the server location resolution 

time and connection establishment time etc. This result indicates that validation 

requests are almost as costly as normal retrieval requests. So, although Hit-Stale is also 

cache hit, it often incurs latency comparable to that of cache miss. In order to get the 
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best benefits from web caching, it is important to not only make as many as possible 

web objects to be cacheable, but also make the TTL of cached objects as long as 

situation permits to minimize the necessity of doing validations. 

 
Figure 3.2 Distribution of first chunk latency vs. whole object latency 

 
The cacheability of web objects, which is the availability and duration that web 

objects can be kept in a web cache, is controlled by some factors (mainly HTTP 

headers) which come along in the responses of objects from web servers. To decide 

whether an object is cacheable or not, web caches typically examine certain factors in a 

pre-defined order and make the decision based on the first satisfied factor. In reality, 

the response of an object often contains multiple factors. Therefore, to simply improve 

one factor may not result in improvement in cacheability because web caches may then 

meet other factors which also appear in the response and make decision based on them. 

The duration that an object can be kept in web cache and still considered fresh, i.e. the 

TTL of an object, is also controlled by some HTTP headers which are provided by web 

servers. The values of these headers are supposed to be set in accordance with the 

properties of web objects. However, we found in our study that these essential headers 

are often assigned inappropriate values by web servers. This results in considerable 

performance loss in web caching. 

Previous studies on web caching mainly focus on algorithms of caching and 
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prefetching [30, 114, 115, 76, 195, 129, 137, 89, 86, 141]. The works on cacheability 

controls are very limited. Some relevant works studied errors in timestamp-based 

HTTP header values [113], cacheable reasons [111], and freshness controls [81] and 

the age penalty in hierarchical cache system [153], etc. These works lack of studies on 

the effect of multiple-factor co-occurrence and the accuracy of current settings for 

TTLs of objects. In this chapter, we would like to dig into the relationship among the 

co-occurrent factors to reveal the effectiveness of them in the co-occurrence situation, 

and investigate the accuracy of the settings for the TTLs of objects to reveal its impact 

on web caching. The results revealed in this study would help in improving web 

caching performance and bandwidth utilization by making more objects to be 

cacheable and cached longer. 

In this chapter, the TTL refers to the time period used by web caches to decide 

whether an object is fresh, while lifetime of an object refers to the time difference 

between two consecutive changes of the object content. 

The rest of this chapter is organized as follows. In Section 3.2, we reveal the 

factors and algorithms for determining cacheability of objects by studying HTTP 

protocol and a real web caching system Squid. Section 3.3 and 3.4 discuss our 

methodology and results of this study. Section 3.5 concludes this chapter. 

3.2 Study of Cacheability Algorithms 

In essence, the availability and the TTL of web objects for caching are mainly 

controlled by certain HTTP header directives found in the responses from web servers. 

We studied in detail the HTTP protocols to understand how these header directives are 

used to decide the cacheability of web objects. We also systematically examined a real 

web caching system, namely Squid [73], to get a better idea about how these header 

directives are used in real web caching systems. The version of Squid that we used in 
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our study is 2.4.STABLE3, which was the latest version as at the time of our study. 

In this section, we study the algorithms and factors for determining the 

cacheability of web objects in two aspects. First, how a web object is determined to be 

cacheable is examined. Then we studied the algorithm for determining the TTL of web 

objects. 

3.2.1 Algorithm and Factors for Cacheable and Non-cacheable 

In general, whether a web object is cacheable is determined by the presence or 

absence of certain HTTP headers and the different status codes of HTTP responses. 

Table 3.1 lists the main HTTP response headers that are related to caching. These 

headers are selected based on the specification of HTTP/1.0 and HTTP/1.1 and the 

implementation of Squid. 

Table 3.1 HTTP headers that related to cacheability of web objects 
Header Name Usage 

Age Specify the age of response entity since the time the response was generated 
by the origin server 

Authorization Pass user’s authentication credentials to origin server 
Cache-Control Control various aspects of caching 
Content-Length Specify length of entity object in bytes 
Content-Type Specify media type of the object 

Date Indicate date and time at which the message was generated 
Expires Specify expiration date and time of object 

Last-Modified Specify creation or last modification time of object on origin server 
Pragma This header is being phased out in favor of the Cache-Control header 

Vary Lists request headers on which document content may vary 
 

The HTTP response status codes can be classified into 4 classes for deciding 

cacheability of objects. Table 3.2 gives these classified status codes of HTTP responses. 

If the response of an object contains status code belonging to Class 4, it is deemed as 

non-cacheable. If the response’s status code belongs to Class 3, the object can be 

negatively cached for some time. For this type of objects, the responses from servers 

are actually error messages. If a web cache receives new request for such objects in the 

near future, it will assume the same error will happen and it will simply reply the 

request with the negatively cached object. For objects with status code belonging to 
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Class 1 and 2, they are possibly cacheable. The final decision whether it is cacheable 

or not is further determined by if it can be validated. Web cache will not cache an 

object which can not be validated at a later time. Whether an object can be validated is 

also determined by some HTTP headers such as “Expires”, “Last-Modified” and 

“Content-Length” etc. If there is no such headers in presence or their values are 

inappropriate, then the objects will be considered as non-cacheable. (Note here that the 

“Content-Length” header is used in a reverse manner. If the value of this header is zero, 

then the object will be considered as non-cacheable because there is no use to cache a 

zero-byte object.) 

Table 3.2 Classified status codes of response 
Class Status Codes 

Class 1 200(OK) 203(Non-Authoritative Information) 300(Multiple Choices) 
301(Moved Permanently) 410(Gone)  

Class 2 302(Moved Temporarily) 

Class 3 

204(No Content) 305(Use Proxy) 400(Bad Request) 403(Forbidden) 
404(Not Found) 405(Method Not Allowed) 414(Request-URI Too Long) 
500(Internal Server Error) 501(Not Implemented) 502(Bad Gateway) 
503(Service Unavailable) 504(Gateway Timeout) 

Class 4 
206(Partial Content) 303(See Other) 304(Not Modified) 
401(Unauthorized) 407(Proxy Authentication Required) Other codes and 
Invalid codes 

 
We categorize the conditions for determining cacheability of objects into two sets 

of factors. The first set of factors contains 12 factors which will rule that an object is 

non-cacheable. The second set of factors is for making cacheable decision and there 

are 4 factors in this set. 

The 12 factors for non-cacheable are listed in Table 3.3. These factors are usually 

checked in the order as shown in the table. When one factor is found satisfied, the rest 

of the factors will not be checked, even if there are still more factors in the HTTP 

response. Note that the response of an object may contain more than one factor, but it 

will not have all the factors. 

If an object passes the check of the factors listed in Table 3.3 and no factor is 
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found satisfied, then it is possibly cacheable. The final decision whether it is cacheable 

is further decided by some other factors which are listed in Table 3.4. These factors are 

also often checked in the order as shown in the table. Again, the response of an object 

may contain more than one factor, but when a factor is found to be satisfied, the rest of 

the factors will not be checked. 

Table 3.3 Factors for non-cacheable 
Factors Description 

fn1 There exists the header “Cache-Control: private” 
fn2 There exists the header “Cache-Control: no-cache” 
fn3 There exists the header “Cache-Control: no-store” 
fn4 There exists the header “Vary” 
fn5 There exists the header “Pragma: no-cache” 
fn6 There exists the header “Content-Type: multipart/x-mixed-replace” 
fn7 Status code belongs to Class 4 
fn8 Status code belongs to Class 1, and server specified “must-revalidate” 
fn9 Status code belongs to Class 1, and the object cannot be revalidated because 

there is no “Last-Modified” header 
fn10 Status code belongs to Class 1, and the object cannot be revalidated because 

“Content-Length” is 0 
fn11 Status code belongs to Class 1 and the object is fresh in 60 seconds or it can be 

revalidated, but there are no “Date”, “Last-Modified” and “Expires” headers 
fn12 Status code belongs to Class 2, and there is no “Expires” header 

 
Table 3.4 Factors for cacheable 
Factors Description 

fc1 Status code belongs to Class 1, and there exits “Date” header 
fc2 Status code belongs to Class 1, and there exits “Last-Modified” header 
fc3 Status code belongs to Class 1, and there exits “Expires” header 
fc4 Status code belongs to Class 2, and there exits “Expires” header 

 
3.2.2 Algorithm for TTL 

The factors discussed in the previous subsection are used to determine whether a 

newly retrieved web object is eligible to be kept in cache. For the web objects already 

in cache, there is an issue of checking their freshness when they are requested again. A 

web object is considered fresh only when its associated TTL has not expired. Only 

fresh objects can be used to serve a new request directly. Otherwise, a validation 

process between web cache and origin server has to be carried out. 

As it was mentioned, the TTL of a web object is often deduced from some HTTP 

response headers. Based on the HTTP protocol and the implementation of Squid, the 
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algorithm for deciding the TTL of objects can be outlined as follows: 

1) Check the directive of “Cache-Control” header  

If a cached web object has a header of “Cache-Control: proxy-revalidate | 

must-revalidate”, it can not be used to serve a new request without validating its 

freshness with origin server. 

2) Check the value of “Expires” header 

If the cached object has an “Expires” header and its value shows that the object is 

still valid at the time when the checking performed, the cached copy will be 

considered as fresh and no validation with origin server is needed. Otherwise, the 

local copy must be validated with origin server before it can be used again. 

3) Local heuristics based on object age 

Every web object in cache has an age value associated with it. This age may be 

calculated based on the headers like “Date” or “Cache-Control: max-age”. If this 

age is greater than a predefined maximum age (e.g. three days), the local copy of 

the object will be considered as stale and it must be validated with origin server 

before being used again. 

4) “Last-Modified” factor algorithm 

If the cached object has a “Last-Modified” header, a “stale age” is calculated based 

on it. The value of “stale age” is a fraction of the time difference between the time 

at which the object is stored in cache and the time specified by the “Last-Modified” 

header. If the age of the cached object is smaller than this “stale age”, the local 

copy will be considered as fresh and no validation is needed. Otherwise, it must be 

validated before being reused. 

5) Local heuristics based on object age 

If the age of the cached object is smaller than a predefined minimum age, the local 
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copy will be considered as fresh and there is no need to do validation. Otherwise, 

validation is needed. However, the predefined minimum age is often set to zero, so 

the object will always be determined as stale when the decision control reaches 

here. 

From the above study, we can see that the headers “Cache-Control”, “Vary”, “Pragma”, 

“Expires”, “Last-Modified”, “Date”, and “Content-Length” etc are very important in 

determining the cacheability of web objects. The presences of these headers and proper 

values for them have great impact on the cacheability of web objects. We conducted 

trace-driven simulations to study the effectiveness of the factors and the accuracy of 

the TTL settings. Our results reveal which factors are the most important factors in 

determining the cacheability of objects and how TTL settings can be improved to 

further improve the web retrieval performance. 

3.3 Methodology and Test Set 

We did trace-driven simulations to investigate the effectiveness of the 

cacheability factors and the accuracy of the TTL settings in current web system. The 

trace we used for our experiments was from the National Laboratory for Applied 

Network Research (NLANR) [276]. NLANR’s hierarchical proxy system adopts Squid 

proxy caching software, which is the same software as we used to study the algorithms. 

NLANR publishes about nine traces on their server daily. One trace dated 12th March 

2002 is randomly chosen for our experiments. The trace contains about 1.36 million 

requests. 

Our experiments rely much on the header information of HTTP responses, but 

raw NLANR traces do not have this information. In order to get such information, we 

implemented utilities to get HTTP response headers for all the URLs logged in the raw 

trace. We performed this gathering of header information only a few days after the log 
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date, so the header information we obtained should be very close to the actual values 

that would have been obtained at the time when the original trace was logged. 

After HTTP header information for the trace has been got, it was fed into our 

simulators together with the original trace. We implemented simplified Squid-like 

caching and cacheability-checking algorithms in our simulators. 

3.4 Results and Analysis 

We first obtain some statistics about the trace. Out of more than 1.36 million 

requests in the trace, about 0.63 million requests are duplicated ones. This results in a 

maximum cache hit ratio of about 46.2%. This cache hit ratio depicts the benefit of 

adopting web caching. 

3.4.1 Cacheability Factors 

In previous section, we examined the factors for non-cacheable and cacheable as 

shown in Table 3.3 and Table 3.4. In this section, we would like to investigate the 

correlation-ship among the factors and how it affects the effectiveness of the factors. 

The results give us hints on which are the most important factors to improve. 

3.4.1.1 Study of Factors for Non-Cacheable 

Factors for non-cacheable refer to those which are used in web cache to rule that 

an object is non-cacheable. To improve such factors means to remove them from 

occurring. 

In the trace, there were about 0.7 million unique objects. Our simulation finds 

that about 38.4% of them are non-cacheable. Figure 3.3 plots the occurring frequencies 

of non-cacheable factors. From this graph, we see that factors fn7, fn9 and fn12 all 

occur about 25% and above, while factors fn1, fn2 and fn5 also have considerable 

contributions. 
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Figure 3.3 Frequencies of non-cacheable factors 

 
We noticed that the factors for non-cacheable often does not occur alone in 

responses of objects. In our trace, we found that more than 40.1% of the non-cacheable 

responses contain multiple factors. Table 3.5 gives the top 30 factor combinations 

according to their occurring frequencies. We see that many of them contain more than 

one factor. In other words, a factor often goes with other factors in HTTP responses. 

When investigating the effectiveness of the factors, we should take into 

consideration the effect of this kind of multi-factor co-occurrence. This is because: in 

the situation of multi-factor co-occurrence, the performance of web caching will not be 

improved by improving just one factor since other factors will then come into effect, 

which would still result in non-cacheable decision for objects. 

Table 3.5 Top 30 non-cacheable factor occurrences 
Frequency Factors Frequency Factors Frequency Factors 
116322 fn7 3371 fn1 fn12 1279 fn5 fn7 
77037 fn12 3311 fn2 fn9 1015 fn5 
65857 fn9 3028 fn1 fn2 944 fn1 fn2 fn9 
17122 fn2 fn5 2866 fn1 fn2 fn12 910 fn2 fn5 fn8 
15456 fn1 fn9 2446 fn1 625 fn10 
7601 fn2 fn5 fn9 2183 fn1 fn5 fn9 526 fn1 fn2 fn5 fn9 
5344 fn9 fn11 1748 fn2 fn5 fn12 450 fn2 fn4 fn9 
5072 fn2 1590 fn4 fn9 440 fn2 fn3 fn5 fn7 
3789 fn4 1317 fn1 fn7 396 fn1 fn5 
3716 fn5 fn9 1309 fn2 fn12 382 fn1 fn2 fn5 fn12 

 
Figure 3.4 plots the effectiveness of non-cacheable factors against their respective 

occurring frequencies. The effectiveness is got by taking the multi-factor 

co-occurrence effect into consideration. From this graph, we see that factors’ 
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effectiveness is generally different from their respective frequencies. This indicates 

that the effectiveness of the factors is indeed affected by the co-occurrence relationship 

among them. In other words, the multi-factor co-occurrence relationship changes the 

curve of the graph. (Note: In Figure 3.4, the “effectiveness” is often lower than the 

“frequency”. Here is a point to help you understand the reason: The “frequency” of 

every factor can be as high as 100%, while 100% is the sum of the “effectiveness” of 

all factors.) 

 
Figure 3.4 Frequencies and effectiveness of non-cacheable factors 

 
In general, the absolute value of the effectiveness of a factor is lower than its 

frequency. This is because factors often occur in groups. If all factors always occur 

alone in HTTP responses, then their effectiveness would be the same as their 

respective frequencies. However, if a factor fnx often occurs together with other factors, 

its effectiveness will be lowered. This is because: other factors in the factor 

combination will still make the object non-cacheable when the factor fnx is removed. 

So, to occur in multiple-factor groups would lower the effectiveness of a factor. 

In Figure 3.4, we see that the effectiveness of some non-cacheable factors is lower 

than their respective frequencies more significantly than others. Further study reveals 

the reason being that different factors occur in different number and different size of 

factor combinations. If a factor occurs more often in groups or occurs in larger factor 

groups, then its effectiveness will be lowered more significantly. 
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Figure 3.5 plots the relative distribution of “occur alone” and “occur in group” for 

each factor. We see that the majority of the occurrences of factors fn1, fn2 and fn5 are 

occurring in groups. This significantly lowers their effectiveness. As a contrast, the 

majority of the occurrences of factors fn7, fn9 and fn12 are occurring alone. So their 

effectiveness is not lowered that much by the multi-factor co-occurrence relationship. 

However, since these three factors do have some co-occurrence situations, their 

effectiveness is also lowered a little. But when compared with other factors which are 

affected by the multi-factor co-occurrence relationship heavily, the relative importance 

of these three factors even increases. So, when we put all factors together and compare 

their effectiveness and occurring frequencies, we see that the effectiveness of factors 

fn7, fn9 and fn12 is getting more significant than their frequencies do. 

 
Figure 3.5 Relative distribution of “occur alone” and “occur in pair” of each factor 

 
On the other hand, the size of the factors group (i.e. the number of factors in the 

group) that a factor occurs in also has impact on the factor’s effectiveness. The bigger 

the size of the group is, the lower the effectiveness of each factor in the group will be. 

Figure 3.6 plots the relative distribution of occurrence in different sizes of groups 

for each factor. For factors fn1, fn2 and fn5, we see that a large percentage of their 

occurrences are in groups with 2, 3 and 4 factors. This results in significant reduction 

in their effectiveness. As to factors fn3, fn8 and fn11, although a large percentage of 

their occurrences are in even bigger groups (up to 5-factor group in our experiments), 
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the impact on their effectiveness is not obvious because their relative value is too 

small. 

 
 

Figure 3.6 Distribution of occurrence in different sizes of groups of each factor 
 

From the above analysis, we see that fn7, fn9 and fn12 are the most important 

factors for non-cacheable, and their effectiveness is more significant than their 

respective frequencies. Simply from the occurrence frequencies, these three factors 

seem to occupy about 86.7% of all HTTP responses. But when we take the multi-factor 

co-occurrence relationship into consideration, we find that these three factors actually 

contribute about 80.7% to all non-cacheable decisions. While the situation for fn1, fn2 

and fn5 is that they seem to occupy about 37.5% of all HTTP responses, yet they only 

contribute about 16.4% to all non-cacheable decisions. By taking the multi-factor 

co-occurrence relationship into consideration, we see that the importance of fn7, fn9 

and fn12 becomes more significant. 

Refer back to Table 3.3, we see that fn7 stands for those responses which have 

status codes belong to Class 4, which is mainly for partial content, validation requests, 

redirection and authentication etc. To improve this factor may require protocol support 

to provide mechanisms to cache such responses. For the factor fn9, the non-cacheable 

decision is mainly caused by the absence of “Last-Modified” header. This can be 
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improved by content providers to properly configure their servers to let them provide 

this essential header. As to fn12, it is for “Temporarily Moved” objects. Content 

providers can improve this situation by quickly completing the moving of the objects 

and provide latest valid URLs for them. 

For factors fn1, fn2, fn3, fn5 and fn8, they play similar function which is to 

explicitly state that the object should not be cached. Normally, these factors exhibit the 

purposeful behavior of content providers and they should be respected. To improve 

these factors, content providers are advised to examine their content carefully and use 

these explicit non-cacheable directives conservatively. According to our study (see the 

next section), many of non-cacheable objects do not change within a quite long time 

period. This suggests that the usage rate of these explicit non-cacheable directives can 

actually be reduced. Doing so will improve the performance of web caching without 

sacrificing the correctness of web content. 

For the non-cacheable decision caused by factors fn4 and fn6, the responsibility 

mainly lies on web caching systems rather than content providers. This is because web 

caching systems like Squid currently do not support these factors well and they just do 

not cache objects with such factors. Improvement on this situation would require 

developing better caching systems to handle these factors properly. But as objects fall 

into this category is very few, less than 2% according to Figure 3.3, so the necessity of 

doing so is not high. 

The factor fn10 represents the situation where the non-cacheable decision is 

caused by zero content-length. This situation is mostly caused by mistakes of content 

providers since a web request should not cause an object with zero length to be 

returned. Web content providers can improve this situation by carefully monitoring 

their content and configuring their servers. On the other hand, the occurrence of this 
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factor is very rare. So the negative impact it imposes on web caching is trivial. 

The occurrence frequency of factor fn11 is also very low, only about 1.52% in 

our study. However, this factor reflects a serious situation in web caching where the 

essential headers “Date”, “Last-Modified” and “Expires” are all missing at the same 

time. Content providers should play their role in improving this situation by properly 

configuring their servers to provide these important headers for the responses 

generated from them. 

3.4.1.2 Study of Factors for Cacheable 

Factors for cacheable usually take effect after objects pass the check of 

non-cacheable factors. Objects will be considered cacheable if any factors for 

cacheable is found satisfied. As we see in Section 3.2, there are only 4 factors for 

cacheable. So the multi-factor co-occurrence relationship among those factors is 

relatively simple. 

Figure 3.7 plots the occurrence frequencies and the effectiveness of cacheable 

factors. We see that the curve of effectiveness is very similar to the curve of frequency. 

This is because that the majority of the factors have similar opportunity to occur in 

groups, so their effectiveness is affected by similar weights. 

 
 

Figure 3.7 Frequencies and effectiveness of cacheable factors 
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their occurrence frequencies. From this table, we can see that the majority of the 

occurrences of the factors are in groups, only 0.09% of the occurrences have a single 

factor (i.e. the last two rows). Since the majority of the factors have similar opportunity 

to occur in groups, the impact of multi-factor co-occurrence on the effectiveness of 

factors is distributed quite evenly. So the relative distribution of the effectiveness of 

cacheable factors is quite close to the relative distribution of their respective 

frequencies. 

Table 3.6 Cacheable factor occurrences 
Frequency Factors 

88.52% fc1 fc2 
10.92% fc1 fc2 fc3 
0.46% fc1  fc3 
0.08% fc4 
0.01% fc2 

 
Because the number of factors for cacheable is small and the co-occurrence 

situation of them is simple, so the relative distribution of the effectiveness of cacheable 

factors is quite close to the relative distribution of their respective frequencies. But for 

cacheable objects, there is another important issue to study, which is the accuracy of 

the TTLs of them. 

3.4.2 TTL Control 

Cached web objects may be used to serve new user requests. This is how web 

cache improves retrieval latency and reduces external network bandwidth consumption. 

But every cached object has its TTL (i.e. time to live) in the cache. An object can be 

used directly only when its TTL is not expired. Otherwise, a validation communication 

with the origin server has to be carried out and this will cause the performance of web 

caching lose considerably since the latency incurred by the validation process is often 

comparable to those of retrieving a new object from web server. 

An object’s TTL is deduced based on some HTTP response headers and some 

heuristic algorithms. It is conceptually different from its lifetime which refers to the 



54 

time difference between two consecutive changes of the object content. The lifetime of 

an object is independent of TTL. It is only determined by the content of the object. In 

ideal situation, TTLs of objects should be set as close to lifetimes as possible so that 

the performance of web caching can be maximized. In other words, the TTL and 

lifetime of objects better to expire at the same time as much as possible. 

In this subsection, we would like to investigate the discrepancy between objects’ 

lifetimes and TTLs under today’s web system settings. 

In order to investigate the difference between TTL and lifetime of objects, we 

implement utilities to request objects and verify their TTL and content change 

automatically. For every newly requested object which is cacheable, we verify its 

content change before, at and after its TTL to see if the TTL and lifetime of objects 

expire at the same time. About the saying “at the same time”, it might be too strict to 

require the lifetime and TTL of an object to expire exactly at the same point of time. In 

our experiments, we loose this restriction by using a small range of time instead of a 

single point of time: If the lifetime of an object expires at time ti, where TTL – δ ≤ ti ≤ 

TTL + δ, then we would regard that the lifetime and TTL of the object expire at the 

same time. In other words, the setting of the TTL would be considered to be accurate 

when this situation happens. As for the value of δ , we set it to be 5% of the TTL for 

TTLs longer than or equal to 1 minute. For objects with TTLs shorter than 1 minute, 

we exclude them from our experiments because such objects are often not cached by 

web caches [73]. 

To study the accuracy of TTL of objects, we verify if object content changes 

before TTL – δ, between TTL – δ and TTL + δ, and after TTL + δ, as shown in Figure 

3.8. For the after TTL + δ case, we conduct the verification up to 3 × TTL away if the 

object content is not changed. We did not do it further because of time limitation since 
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the TTLs of some objects can be quite long. 

 
 

Figure 3.8 Verifying difference between TTL and lifetime 
 

The results of the accuracy of TTLs are shown in Table 3.7. The percentage 

values shown in the table all refer to the whole object set used in our experiment. From 

this table, we see that very few (about 1.32%) objects change right within the small 

time range around the TTL. The majority of content change happens at times after TTL 

+ δ. Furthermore, a rather high percentage (76.4%) of objects are unchanged even after 

3 × TTL. This indicates that the TTL settings for most objects in current web system 

are often too conservative. This situation not only results in performance loss in web 

caching because many objects can not be reused even if their content is not changed, 

but also it imposes excessive load on the network and web servers by triggering 

unnecessary requests for revalidation and retrieval. 

Table 3.7 Accuracy of TTL 
Time Objects changed Objects NOT changed 

t < TTL – δ 0.73% 99.27% 
TTL – δ ≤ t ≤ TTL + δ 1.32% 97.95% 
TTL + δ < t ≤ 3 × TTL 21.55% 76.4% 

 
We also noticed that there are some objects which have their content changed 

before the specified TTL time. In this situation, the TTL settings are set too aggressive. 

Although the percentage of such objects is diminutive, this situation is highly 

undesirable because it may result in stale and incorrect object content to be delivered 

to web users. 
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From the above results, we see that the performance of web cache can be 

improved greatly by configuring web servers properly to make them provide TTL 

headers with proper values. According to the algorithm shown in Section 3.2, the TTL 

of web objects is first defined by a few explicit TTL headers such as “Expires”, 

“Cache-Control: max-age”. Then, if these headers are absent, a heuristic algorithm will 

be used to calculate the TTL. Such heuristic algorithm usually does the calculation 

based on “Last-Modified” header and the result of it is not authoritative. Therefore, a 

good web server should avoid relying on the non-authoritative TTL headers like 

“Last-Modified”. Instead, it should use the explicit TTL headers (such as “Expires”) 

and provide proper values for them. According to Figure 3.7, the “Expires” header can 

be found in only about 11.38% of the cacheable objects. So, there is much room for 

improvement in this aspect. 

 
Figure 3.9 Cumulative distribution of intervals of repeated requests 

 
Therefore, the next systematic issue to be tackled is what value would be 

appropriate for TTL headers. Previous results show that a great percentage of objects 

actually do not change at the specified TTL and even after 3 × TTL. This encourages 

web servers to set longer TTL for their objects. To find the proper value for TTL 

headers, we studied the distribution of interval of user requests for the same object and 

found that about 50% of cache-hit requests arrive within 6 hours’ time and about 75% 

arrive within 12 hours’ time (see Figure 3.9). This means, validation process for as much 

as 50% and 75% of cache-hit requests can be avoided if the TTL of web objects are set 
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to 6 hours and 12 hours respectively. Note that these TTLs are not only meant for 

HTML pages, they are also for embedded objects of web pages such as images. While 

these values may be too big for some dynamic content, they are moderate for most of 

embedded objects. For static-content elements, even much longer TTL values can be 

given. 

Finally, we would like to complete this study by also investigating the accuracy 

of TTL settings for non-cacheable objects. There are two categories of non-cacheable 

objects. The first category is the objects that are set to be non-cacheable by explicit 

HTTP headers such as “Cache-Control: no-cache”. We consider this situation to be 

purposeful behavior of content providers, so that the explicit non-cacheable settings 

should be respected. The second category is the objects without explicit HTTP headers 

for non-cacheable but determined to be non-cacheable by web caches because of the 

absence or improper values of certain headers. From another point of view, we may 

regard the TTLs of the objects in this category to be less than or equal to zero, as they 

expire immediately when they enter web caches. Here we would like to investigate if 

the lifetime of the objects in the second category goes along with their TTLs. 

We monitor the objects at some time intervals to see if the content has been 

changed. Figure 3.10 plots the result we observed. Surprisingly, we see that a lot of 

non-cacheable objects actually do not change in a fairly long time period. For example, 

after 8 hours from the first access, about 83% of the non-cacheable objects are still 

identical to their old versions. This suggests that the non-cacheable decision for these 

objects is inappropriate. The lifetime of most of these objects is actually much bigger 

than zero, while their TTLs are deemed to be less than or equal to zero in web caches. 

The causes of this situation are mainly due to the ill-configuration of web servers. If 

content providers can configure their servers properly to improve this discrepancy 
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between lifetime and TTLs of objects, significant gains in the performance of web 

caching can be expected. Section 3.4.1.1 has discussed the measures on how to 

improve the situation in this aspect. 

 
Figure 3.10 Cumulative distribution of changed objects 

 
3.5 Conclusion 

In this chapter, we systematically studied the factors affecting the cacheability of 

web objects. We dig into the relationship among co-occurrent factors and reveal the 

effectiveness of the factors in the multi-factor co-occurrence situation. The accuracy of 

the settings for the TTLs of objects is also investigated and our results show that TTLs 

for most objects are set too conservative, which results in considerable performance 

loss for web caching. Our study revealed the effective factors and proper settings for 

TTL. By improving them, considerable improvement on the performance of web 

caching can be expected. 
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Chapter 4 Web Retrieval Dependency Model 

4.1 Introduction 

Web retrieval latency is one of the most important issues in web content delivery. 

A lot of works have been done in order to improve web retrieval latency. In current 

web system, the basic unit of web browsing is web page, which is often made up of 

multiple web objects. Since web page is the basic unit of browsing, page retrieval 

latency would be more meaningful than object retrieval latency. However, most 

researchers study web retrieval latency based on object retrieval latency [30, 31, 32, 

77]. We would like to point out that this method would result in inaccurate results 

about web retrieval latency because there is actually complex relationship between the 

retrieval processes of objects in a page, which prevents object retrieval latency from 

being translated directly into page retrieval latency. For example, the triggering of the 

requests for the inline images of a page is dependent on the retrieval of the HTML file 

of the page. When the triggering of the requests would happen will not be able to be 

accurately identified unless we go into more detailed level than the object level. 

Besides, most common web browsers often fetch multiple objects in parallel. All these 

complicate the mapping of object retrieval latency into page retrieval latency. Page 

retrieval latency can not be computed as the simple sum-up of objects’ retrieval latency. 

To well understand and study the complex inter-relationship affecting web retrieval 

latency, we will need a more precise model at more detailed level. In this chapter, we 

propose a detailed operation-level Web Retrieval Dependency Model (WRDM) to 

study web retrieval latency. We show that our model reveals/captures some properties 

of web retrieval which can not be seen at object level. 

Before we give the description of our model, it is necessary to have some basic 

understanding on the details of retrieval processes for web pages and objects. 
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In current web system, a web page is often made up of multiple objects. Among 

the objects in a page, there is one primary object corresponding to the URL of the page. 

This object is generally an HTML file (or script files like .asp files) which contains a 

number of URLs specifying some other objects needed by the web page. We call this 

primary object Container Object (CO) in our study. For those objects whose URLs are 

defined in the CO, they are referred to as Embedded Objects (EO) of the page. The 

most commonly seen EOs are inlined images. The content of CO and the EOs are 

interpreted and displayed together to render the full view of a web page. 

Generally, the retrieval process for a web page starts with the submission of a 

request which comprises information about request method, URL address and some 

request headers. This URL address identifies the CO of the web page only. Following 

the submission of a request, the location of the web server is resolved and a network 

connection between client and the server is established. Then the request message is 

transferred to the server. Upon receiving a request, a web server will reply the request 

with HTTP response headers and the data of the requested object. The reply message is 

streamed to the client through the same network connection in a sequence of network 

packets, which are seen and referred to as data chunks in the HTTP-level web system. 

When a chunk of data reaches the client, the content of the chunk will be interpreted by 

user’s web browser. The results of this interpretation of a data chunk typically include 

caching action, displaying the content in user’s web browser window, as well as 

triggering further retrieval processes for EOs if there are URLs defining them in the 

data chunk. For all the subsequent requests for EOs, the replies are also delivered and 

interpreted in a chunk-by-chunk way. When all the objects belonging to a page are 

retrieved, resources such as network connection occupied by the requests are released. 

In some cases, a retrieval process may be prematurely interrupted at any stage. When 
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such interruption occurs, the resources occupied by the requests will also be released. 

In a web page, there usually exist a number of hyperlinks which are actually 

URLs for new web pages. If such a hyperlink is clicked by a user, the retrieval process 

for a new web page corresponding to the clicked hyperlink will be initiated and the 

above procedure will repeat. 

4.2 Web Retrieval Dependency Model (WRDM) 

The retrieval process for objects and pages involves a sequence of operations 

such as location resolution, establishment of network connection, and data chunks 

transfer etc. We propose a Web Retrieval Dependency Model to capture the retrieval 

process at detailed operation level. The idea of our model is to map the relations 

among all operations of the retrieval process into a directed graph. We symbolize each 

operation in a retrieval process by a vertex of a graph. Then since the relationship 

between two operations can be regarded as a precedence requirement, it can be 

represented by a directed arc connecting the two vertices associated with the 

operations involved. The resulting graph is called Web Retrieval Dependency Graph 

(WRDG). 

In a WRDG,  

• A vertex represents the completion state of an operation in the retrieval process of 

an object (either CO or EO). Some operations represented by vertices may have 

certain information associated with them. 

• An arc connecting two vertices represents the precedence relationship between the 

two operations represented by them. This precedence relationship is often referred 

to as dependency between operations. 

• Each arc carries a weight which represents the time spent in completing the 

operation represented by the target vertex. The time is measured from the 
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completion point of the operation represented by the source vertex to the 

completion point of the operation represented by the target vertex. 

Below we give the precise definitions of the key terms used in the WRDM model. 

WRDM model can capture the characteristics of web retrieval process at various levels. 

In our study, we consider three levels of web retrieval process: 

1) Page-level (or inter-page level) 

This level captures the retrieval process among pages; 

2) Object-level (or intra-page level, inter-object level) 

This level captures the retrieval process among objects in the same page; 

3) Chunk-level (or intra-object level) 

This level captures the operations on data chunks and other resources in the 

retrieval process of a single object. Because the basic unit of data size streaming 

from web server to client at the HTTP level is chunk, so we use it to refer to the 

operation details at HTTP level. 

We introduce three indices, k , i and j to index the entities encountered in each of the 

three levels respectively. 

Definition 4.1: Page Index k  

In WRDM, page index k is a natural number used to index pages among a set of 

pages that are visited by clients. The range of page index k is defined to be from 0 to p , 

where p ≥ 0 .  

A page in the set of pages is represented by Page(k), where 0 ≤ k ≤ p . 

A web page is usually made up of multiple objects (refer to the Container Object 

and Embedded Object concepts in previous section). We use an index, i , to index the 

objects in a page. 

Definition 4.2: Object Index i  



63 

In WRDM, object index i is a natural number used to index objects that belong to 

the same page Page(k) . The range of i is relevant to the page. For a given page 

Page(k) , the range of i is defined to be from 0 to f(k) , where f(k) is the number of 

embedded objects belonging to Page(k) . In the rest part of this thesis, wherever is 

appropriate, we may use o to refer to this f(k) , i.e.: 

o = f(k) 
 

Because object index i is related to page index k, an object belonging to a page 

Page(k) is represented by Obj(k,i) , where 0 ≤ k ≤ p and 0 ≤ i ≤ o . When it is 

not misleading in a particular context, we may omit the page index k and just use Obj(i) 

to refer to Obj(k,i) . 

In terms of objects, the retrieval process of Page(k) can be represented by the 

retrieval of a sequence of objects: 

Page(k) =〈Obj(k,0) , Obj(k,1) , …, Obj(k,i) , …, Obj(k,o)〉,  where o = f(k) 
 

Among the objects in page Page(k) , Obj(k,0) is the Container Object of the page. 

Other objects, Obj(k,i) where 1 ≤ i ≤ o , are Embedded Objects. 

When a web object is retrieved from a web server to a client, the transfer of the 

object is often made up of a sequence of chunks of data. We introduce an index, j , to 

index the chunks in the chunk sequence. 

Definition 4.3: Chunk Index  j  

In WRDM, chunk index j is a natural number used to index chunks 

corresponding to the transfer of an object from a server to a client. The range of j is 

relevant to the object. For a given object Obj(i) , the range of j is defined to be from 0 

to g(i) , where the g(i) is the number of chunks that are returned from a web server to a 

client for the transfer of Obj(i) minus one. In the rest part of this thesis, wherever is 

appropriate, we will use c to refer to this g(i) , i.e.: 
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c = g(i) 
 

As chunk index j is related to object index i and object index i is in turn related to 

page index k, a chunk of an object Obj(k,i) is represented by Chk(k,i,j) , where 0 ≤ k 

≤ p , 0 ≤ i ≤ o and 0 ≤ j ≤ c . When it is not misleading in a particular 

context, we may omit the page index k and the object index i and just use Chk(j) to 

stand for Chk(k,i,j) . 

For a given object Obj(i) , the value of c is not fixed. It depends on the status of 

the network and the workload on the web server and the client. In terms of chunks, the 

transfer of an object Obj(k,i) can be represented by a sequence of chunks: 

Obj(k,i) =〈Chk(k,i,0) , Chk(k,i,1) , …, Chk(k,i,j) , …, Chk(k,i,c)〉,  where c = g(i)  
 

Among the chunks belonging to an object Obj(k,i) , Chk(k,i,0) usually contains 

the response headers information of the object, and perhaps some data of the object 

body as well. For other chunks, Chk(k,i,j) where 1 ≤ j ≤ c , they usually contain 

only the data of the object body. 

Definition 4.4: Object Request 

An object request is a message packet sent from a client to a server, which 

specifies a single object to be requested from the server. A request message packet 

consists of a request method, URL address of an object, protocol version number, and 

some headers information. 

For a given object Obj(k,i), the corresponding object request is symbolized as 

Req(Obj(k,i)) . Note that an object request is for a single object, regardless of whether 

the object is a container object or an embedded object. 

Definition 4.5: Page Request 

Given a page Page(k), its corresponding page request, symbolized as 

Req(Page(k)) , is made up of a sequence of Object Requests: 
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Req(Page(k)) = 〈Req(Obj(k,0)), Req(Obj(k,1)), …, Req(Obj(k,i)), …, Req(Obj(k,o))〉 
 
where 0 ≤ i ≤ o . Req(Obj(k,0)) is the initial request submitted for the page Page(k) 

by a user and this request actually requests for the container object of the Page(k). 

Other object requests, Req(Obj(k,i)) where 1 ≤  i ≤  o , are the requests for 

embedded objects of Page(k) and they are triggered by the interpretation of the content 

of the container object of Page(k) . 

Note that Req(Page(k)) ≠ Req(Obj(k,0)) . 

In some situations, an embedded object of a page could be also a container object 

which has its own embedded objects. For simplicity reason, we do not include such 

situations in our study, although our WRDM model can be extended to cover such 

situations. 

Definition 4.6: Web Retrieval Dependency Graph (WRDG) 

A WRDG is a weighted directed graph G = (V, E), where V and E have the 

following members respectively: 

• V = 
pk ..0=


oi ..0=

{ { υr(k,i) , υl(k,i) , υc(k,i) , υs(k,i) , υe(k,i) }   { 
cj ..0=

{ υd(k,i,j) }} } 

• E = { 
pk ..0=


oi ..0=

{ {〈υr(k,i) , υl(k,i)〉,〈υl(k,i) , υc(k,i)〉,〈υr(k,i) , υc(k,i)〉, 

〈υc(k,i) , υs(k,i)〉,〈υs(k,i) , υd(k,i,0)〉,〈υd(k,i,g(i)) , υe(k,i)〉} 

  { 
cj ..1=

{〈υd(k,i,j-1) , υd(k,i,j)〉}} } } 

  { 
pk ..0=


oi ..1=


cj ..0=

{〈υd(k,0,j) , υr(k,i)〉} } 

  { 
yx

pyx
≠
= ..0,

{〈υe(x,0) , υr(y,0)〉} } 

In addition, any member of the following E’ can also be the member of E : 



66 

E’ = { 
pk ..0=


oi ..0=

{〈υr(k,i) , υe(k,i)〉,〈υl(k,i) , υe(k,i)〉,〈υc(k,i) , υe(k,i)〉, 

〈υs(k,i) , υe(k,i,0)〉} }     { 
pk ..0=


oi ..0=


1..0 −= cj

{〈υd(k,i,j) , υe(k,i)〉} } 

• Here p, o and c are not fixed, and p ≥ 0, o ≥ 0, c ≥ 0. 

• For every member of E, there is a real number w associated with it. This number 

w is greater than or equal to zero and is called the weight of the arc. 

The types of vertices found in WRDG are defined as follows. 

Definition 4.7: Request Initiation Vertex 

A vertex in a WRDG is said to be a request initiation vertex υr(k,i) if it represents 

the submission of a web object request Req(Obj(k,i)) , where k refers to a web page 

and 0 ≤ k ≤ p , i refers to an object of the page k and 0 ≤ i ≤ o . This vertex 

has some associated information such as the request method, the URL address of the 

requested object, as well as some other request header information. 

For each object, there is exactly one request initiation vertex υr(k,i) for the 

retrieval process of it. 

Definition 4.8: Location Resolution Vertex 

A vertex in a WRDG is said to be a location resolution vertex υl(k,i) if it represents 

the location resolution for the URL address from an object request Req(Obj(k,i)) , 

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page k and 

0 ≤ i ≤ o . This vertex has some associated information such as the IP address of 

the web server where the requested object resides. 

In most cases, the URL in a request is in domain-name format. The location 

resolution for such URL is typically a DNS process and the result of such location 

resolution is usually the server’s IP address which is the location of the server in the 

Internet. The location resolution vertex υl(k,i) donates the completion state of this DNS 
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process. For each object request, there is one location resolution vertex υl(k,i) . However, 

this vertex may be bypassed in some situations. We will explain this further later. 

Definition 4.9: Network Connection Vertex 

A vertex in a WRDG is said to be a network connection vertex υc(k,i) if it 

represents the operation of establishing network connection between a client and a web 

server for an object request Req(Obj(k,i)) , where k refers to a web page and 0 ≤ k 

≤ p , i refers to an object of the page k and 0 ≤ i ≤ o . There is resource 

associated with this vertex, that is: network connection. 

Assuming no “persistent-connection” or “pre-connection” mechanism is used, 

there will be one network connection vertex υc for each object request. In the presence 

of “persistent-connection” or “pre-connection” mechanism, we may still keep this 

vertex in the graph, only that the weight of the arc connecting to this vertex may 

become much smaller, up to zero. 

Definition 4.10: Request Sending Vertex 

A vertex in a WRDG is said to be a request sending vertex υs(k,i) if it represents 

the operation which sends out the request message of an object request Req(Obj(k,i)) to 

a web server through the network connection that has been established by the network 

connection vertex υc(k,i) , where k refers to a web page and 0 ≤ k ≤ p , i refers to an 

object of the page k and 0 ≤ i ≤ o . 

For every object retrieval process, there will be exactly one request sending 

vertex υs(k,i) . This vertex cannot be bypassed in any way. 

Definition 4.11: Data Chunk Vertex 

A vertex in a WRDG is said to be a data chunk vertex υd(k,i,j) if it represents the 

transfer of a chunk of data for a requested object Obj(k,i) from a web server to a client, 

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page k and 
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0 ≤ i ≤ o , j refers to one data chunk in the data chunk sequence that corresponds 

to the transfer of the Obj(k,i) and 0 ≤ j ≤ c . This vertex has some associated 

information such as the response data. 

The first data chunk in an object’s transfer, denoted by the vertex υd(k,i,0) , 

contains the response headers information of the object, and perhaps some data of the 

object body as well. For the subsequent data chunks, denoted by the vertices υd(k,i,j) , 

where 1 ≤ j ≤ c, they usually only contain the data of the object body. 

When a data chunk reaches a client, its content will be interpreted by the client’s 

web browser. The results of the interpretation include caching action, rendering of the 

content in the browser window, and, in the case of container object, triggering new 

object requests for embedded object. 

There is a special characteristic about the data chunk sequence: The order of data 

chunks being interpreted must be in a strict successive sequence order, while the order 

of them being transferred may be in any order. 

Definition 4.12: Ending Vertex 

A vertex in a WRDG is said to be a ending vertex υe(k,i) if it represents the 

operation of releasing resources (such as network connection) for an object request 

Obj(k,i) , where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the 

page k and 0 ≤ i ≤ o . 

When the transfer of data chunks is finished or the retrieval process is interrupted, 

resources that have been occupied by the request will be released. Usually, this is the 

operation which releases the memory space and network connection. The released 

network connection may be either closed or handed over to a pool to keep alive for 

future use (when “persistent-connection” is used). 

Very often, when the retrieval of objects for a page has completed or interrupted, 
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a user may initiate a new page request by either clicking on a hyperlink in the current 

page or keying in a new page URL address in the address bar of his/her web browser. 

In such cases, the ending vertex υe will also imply the initiation of the new request. 

In any case, there is exactly one ending vertex υe(k,i) for the retrieval process of an 

object. When this vertex is reached, the retrieval process for the object is considered 

finished. 

In this study, we only define the above six types of vertices in our WRDM model 

representing six operations in web retrieval. However, it is worth mentioning that our 

model can actually be altered to include more or less types of vertices/operations to 

cater for the needs in different situations. For example, a new type of vertex 

representing the operation of “access control” can be included in the graph when 

needed. But for the studies in this thesis, the above six types of vertices is sufficient. 

So we just use the above definitions. 

There is precedence relationship between the operations of the retrieval process 

for pages and objects. Such relationship is referred to as dependency in our study. 

Based on the cause of the relationship, the dependencies in web retrieval can be 

classified into two categories: (1) Information Dependency, and (2) Happened-before 

Dependency. If an operation depends on some information produced by its previous 

operation, then the dependency between them is called Information Dependency. 

Otherwise, the dependency would be treated as Happened-before Dependency. One 

example of Happened-before Dependency is the dependency between “network 

connection establishment” operation and “request sending operation”, i.e., the network 

connection has to be established before a request can be sent out. 

These dependencies among operations of a retrieval process can be captured by 

the directed edges (which are called arcs) of WRDG. In a WRDG graph, each vertex 
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represents an operation in its completion state. An arc connecting two vertices 

represents the dependency between the two operations represented by the two vertices. 

Before giving the definitions of the types of arcs that a WRDG may have, we 

first give the definition of the weight of an arc so that we can describe the meaning of 

the weight for each arc when we give the definition of the arcs. 

Definition 4.13: Weight of an Arc 

In a WRDG, the weight of an arc 〈υx , υy〉 stand for the time spent in completing 

the operation symbolized by the vertex υy , the timing starts from the completion state 

of the operation represented by the vertex υx , where υx and υy are two different vertices 

defined above. 

Now we are ready to move on to the definitions of arcs. A WRDG graph can 

have the following types of arcs. 

Definition 4.14: Location Resolution Arc 

An arc in a WRDG is said to be a location resolution arc al(k,i) if it connects a 

request initiation vertex υr(k,i) to a location resolution vertex υl(k,i) : 

al(k,i) = 〈υr(k,i) , υl(k,i)〉 
 
where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0 

≤ i ≤ o . The weight of this arc denotes the time spend in resolving the location for 

the web server appeared in the URL address of the object request Req(Obj(k,i)) . In 

most cases, this is the time for DNS process and the resolved location is usually IP 

address. 

In some cases, the address of the web server appeared in a URL is already in the 

form of numeric IP address, eg. http://137.132.12.124/index.htm. For such URLs, the 

location resolution operation for them will finish immediately upon identifying the 

numeric IP address. In these cases, the weight of the location resolution arc will 
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become much smaller compared to the normal DNS process. 

Definition 4.15: Network Connection Arc 

An arc in a WRDG is said to be a network connection arc ac(k,i) if it connects a 

location resolution vertex υl(k,i) to a network connection vertex υc(k,i) : 

ac(k,i) = 〈υl(k,i) , υc(k,i)〉 
 
where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0 

≤ i ≤ o . The weight of this arc denotes the time spend in establishing the network 

connection between a client and a web server for the object request Req(Obj(k,i)) after 

the location of the server has been resolved. 

In the cases that “persistent-connection” or “pre-connection” is used, the weight 

of the network connection arc may become much smaller, up to zero. 

Definition 4.16: Request Sending Arc 

An arc in a WRDG is said to be a request sending arc as(k,i) if it connects a 

network connection vertex υc(k,i) to a request sending vertex υs(k,i) : 

as(k,i) = 〈υc(k,i) , υs(k,i)〉 
 
where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0 

≤ i ≤ o . The weight of this arc denotes the time spend in sending out the request 

message of the object request Req(Obj(k,i)) to a web server through a 

already-established network connection. 

This arc is a critical arc in a WRDG. Its importance is like a “bridge” in a 

connected graph. This arc can never be removed from a WRDG by any means of 

transformation. Neither can its weight be reduced to zero. 

Definition 4.17: Reply Arc 

An arc in a WRDG is said to be a reply arc ar(k,i) if it connects a request sending 

vertex υs(k,i) to the first data chunk vertex υd(k,i,0) : 
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ar(k,i) = 〈υs(k,i) , υd(k,i,0)〉 
 
where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0 

≤ i ≤ o . The weight of this arc denotes the time spend by a client in waiting for the 

first response data chunk being returned from the server after the request message has 

been sent out. Note that this first returned data chunk mainly contains response headers 

information of the requested object Obj(k,i) , although it may also contain some data of 

the object body as well. 

As there is always at least one chunk of data returning from the web server to the 

client for every request, this arc always exists. This arc is also a critical arc in WRDG. 

Its importance is like a “bridge” in a connected graph. This arc can never be removed 

from a WRDG by any means of transformation. Neither can its weight be reduced to 

zero. 

Definition 4.18: Data Chunk Arc 

An arc in a WRDG is said to be a data chunk arc ad(k,i,j) if it connects two 

successive data chunk vertices υd(k,i,j-1) and υd(k,i,j) : 

ad(k,i,j) = 〈υd(k,i,j-1) , υd(k,i,j)〉 
 
where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0 

≤ i ≤ o , j refers to a data chunk in the data chunk sequence that belongs to the 

object Obj(k,i) and 1 ≤ j ≤ c . The weight of this arc denotes the time spend in 

transferring a successive data chunk from a web server to a client for the requested 

object Obj(k,i) . Note that these successive data chunks usually contain only the body 

data of the requested object. 

There are usually multiple data chunks in the transfer of one object. The content 

of these data chunks will be interpreted by the client’s browser. The order of the 

interpretation of these data chunks must be in a strict successive sequence order. This 
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order is represented by the data chunk arcs, i.e. the data chunk represented by the 

source vertex of a data chunk arcs ad(k,i,j) should always be interpreted prior to the data 

chunk represented by the target vertex. However, the order of the delivery of these data 

chunks may be in any order. 

Definition 4.19: Ending Arc 

An arc in a WRDG is said to be an ending arc ae(k,i) if it connects the last data 

chunk vertex υd(k,i,c) to an ending vertex υe(k,i) : 

ae(k,i) = 〈υd(k,i,c) , υe(k,i)〉 
 
where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0 

≤ i ≤ o , c refers to the last data chunk in the data chunks sequence belonging to the 

object Obj(k,i) . The weight of this arc denotes the time spend in releasing the 

resources that are occupied by the retrieval process for the object Obj(k,i) . Such 

resources include network connection, CPU, memory space and so on. For the network 

connection, the released connection is often closed, or handed over to a pool to keep 

alive for future use (when “persistent-connection” mechanism is adopted). 

Definition 4.20: Interruption Arc 

An arc in a WRDG is said to be an interruption arc ai(k,i) if it connects from any 

vertex υ other than the last data chunk vertex υd(k,i,c) to the ending vertex υe(k,i) : 

ai(k,i) = 〈υ , υe(k,i)〉 
 
where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0 

≤ i ≤ o , c refers to the last data chunk in the data chunks sequence belonging to the 

object Obj(k,i) . The weight of this arc denotes the time spend in releasing resources in 

the case of a premature finishing of the retrieval process for the object request 

Req(Obj(k,i)) . 

Definition 4.21: Object Deriving Arc 
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An arc in a WRDG is said to be an object deriving arc ao(k,i) if it connects a data 

chunk vertex υd(k,0,j) of the container object of a page Page(k) to a request initiation 

vertex υr(k,i) of an embedded object of the same page: 

ao(k,i) = 〈υd(k,0,j) , υr(k,i)〉 
 
where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of Page(k) and 1 

≤ i ≤ o , j refers to a data chunks sequence that belongs to the object Obj(k,i) and 0 

≤ j ≤ c . The weight of this arc denotes the time spent by the request for object 

Obj(k,i) in waiting for its turn to get processed. 

The URLs of embedded objects of a page are defined in the container object of 

the page. As the data chunks of the container object being transferred from web server 

to client, the content of the data chunks will be interpreted by user’s web browser. If 

there are URLs of embedded objects found in the data chunk being interpreted, new 

requests for the embedded objects will then be triggered. In other words, the retrieval 

processes for embedded objects depends on the retrieval and interpretation of the 

container object. This dependency is captured by the object deriving arcs in a WRDG 

graph. 

Due to certain resource constraints, e.g. limited parallelism width for concurrent 

fetching of objects, the new request for an embedded object may need to wait for some 

time before it can get processed. This latency is captured by the weight of the object 

deriving arc in a WRDG graph. 

Definition 4.22: Page Deriving Arc 

An arc in a WRDG is said to be a page deriving arc ap(y) if it connects the ending 

vertex υe(x,0) of the container object of a page Page(x) to the request initiation vertex 

υr(y,0) of the container object of a page Page(y) : 

ae(y) = 〈υe(x,0) , υr(y,0)〉 
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where x and y refer to two different web pages and 0 ≤ x ≠ y ≤ p . 

The weight of this arc denotes the time interval from the completion of retrieval 

of page Page(x) to the starting of request of page Page(y). This time may include the 

user’s view time on Page(x) , the idle time between the two page visits, and the time 

spent by the request for page Page(y) in waiting for its turn to be processed. This 

waiting time exists mainly due to certain resource limitation, such as CPU time and 

network connection etc. 

In the container object of a page, there are usually hyperlinks pointing to other 

web pages. When a hyperlink is clicked by a user, the request for the new page will be 

initiated. In this case, the retrieval process of the next page depends on the retrieval of 

the current page. This dependency is captured by page deriving arcs in a WRDG graph. 

There are also cases that the retrieval of the next page is triggered by user’s 

entering a new URL address in the address bar of his/her web browser. When the 

retrieval of the new page starts, the retrieval process for the current should be will be 

either completed already or interrupted prematurely. Here the relationship between the 

retrieval of the two pages may not be so strong (but there may still be some 

dependency, for example, the new URL address entered by a user may be hinted by 

some content of the current page). However, there is still an ordering or precedence 

relationship between the two pages. The page deriving arc is still used in such 

situations to capture this ordering or precedence relationship. Here, the page deriving 

arc may be referred to as Weak Page Deriving Arc. In contrast, the page deriving arc 

which represents the dependency described in the above paragraph is referred to as 

Strong Page Deriving Arc. 

Definition 4.23: In-Degree of a Vertex in WRDG 

The in-degree of a vertex υ in a WRDG graph represents the number operations 
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that should finish prior to the operation represented by the vertex υ. The operation 

represented by the vertex υ can start execution when any of its precedent operations 

completes. 

Definition 4.24: Out-Degree of a Vertex in WRDG 

The out-degree of a vertex υ in a WRDG graph represents the number of 

operations that are dependent on the operation represented by the vertex υ . The 

completion of the operation represented by the vertex υ will cause some or all of its 

dependant operations to take place. 

Definition 4.25: Critical Region of WRDG 

The critical region of a WRDG is a sub-graph of it : Gcr = (Vcr, Ecr), where Vcr 

and Ecr have the following members respectively: 

• Vcr = 
cj ..0=

{ υd(k,0,j) } 

• Ecr = 
cj ..1=

{〈υd(k,0,j-1) , υd(k,0,j)〉} 

Here j refers to a data chunk in the data chunk sequence of an object. 

The critical region of a WRDG has the following properties: 

• Number of vertices and arcs in this region is not fixed. 

• This region contains all the source vertices of object deriving arcs. The number 

of vertices that have object deriving arcs is not fixed. The number of object 

deriving arcs that a vertex in this region can have is also not fixed (it can be 

zero). 

• The order of the interpretation of the data chunks represented by the vertices in 

this region is strictly in a successive sequence order. However, the order of these 

data chunks being transferred may be in any order. 



77 

4.3 Three Levels of WRDG 

With the understanding of the definitions of the vertices and arcs in WRDM, the 

WRDG graph can be constructed by carefully monitoring the timing and triggering 

action of the operations in the retrieval processes for web pages and objects. WRDG 

graphs can be applied to capture three levels of the web retrieval. These levels are: 

1) Intra-Object level WRDG graph 

2) Object-level WRDG graph 

3) Page-level WRDG graph 

Note that WRDG graphs at all levels are to capture the dynamic retrieval processes of 

web objects and pages, not the static relationship among them. Below we will give the 

detailed definition and examples of the WRDG graphs at the three levels. 

4.3.1 Intra-object level WRDG graph 

The WRDG graph at intra-object level is used to capture the retrieval operations 

sequence of a single object. Therefore, this level may also be referred to as 

operation-level. The principle of the construction of an intra-object level WRDG graph 

is straightforward: timing all the operations represented by the vertices in WRDM 

during the retrieval processes of an object; put an arc between every two successive 

operations and mark the weight of the arc as the time spent in completing the second 

operation. 

Figure 4.1 gives two examples of intra-object level WRDG graphs. Figure 4.1 (a) 

shows the retrieval process of an object. In the graph, the vertices represents six 

operations involved in the retrieval process: initiation of the object request, location 

resolution for URL in the request, setting up network connection, sending request 

message to web server, transfer of four data chunks from server to client, and finally, 

release of the occupied resources such as network connection and memory space etc. 
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The weights on the arcs are the times required for finishing the operations represented 

by the vertices to which the arcs are connected. Figure 4.1 (b) shows a similar process 

of another object’s retrieval. But in this graph, the retrieval process is interrupted 

prematurely after the second data chunk returned from the server. Thus the process 

goes directly to the ending operation which releases the resources occupied by the 

request. 

 
(a)                                                      (b) 

 
Figure 4.1 Intra-Object level WRDG graph 

 
Note that the intra-object level WRDG graphs can actually include more or less 

operations than those defined in the previous section. For example, the operation of 

“access control” can be included in the graph. On the other hand, all the data chunks 

vertices may be merged into one and treated as the operation of “transfer of object”. 

This change is very flexible and users of WRDM may make their decision based on 

their needs. For our studies in this thesis, we will stick to the operations represented by 
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the six types of vertices defined in the previous section. 

4.3.2 Object-level WRDG graph 

The WRDG graph at object-level is used to capture the retrieval processes of all 

objects belonging to a page. So, the object-level is also referred to as Inter-Object level 

or Intra-Page level sometimes.  The construction of an object-level WRDG graph can 

be achieved by constructing an intra-object level graph for every unique object in the 

page and then connecting them together using object deriving arcs. The starting points 

of the object deriving arcs can be identified by carefully monitoring the triggering 

actions between the requests for EOs and the data chunks of the CO. The weight of an 

object deriving arc is the latency between the time when the data chunk containing the 

URL of an EO is returned in the CO’s retrieval process and the time when the request 

for the EO is sent out. This latency is the time spent by the request for the EO in 

waiting for its turn to get processed. 

 
Figure 4.2 A sample web page with three embedded objects 

 
Note that only unique EOs in a web page would appear in the object-level 

WRDG graph, and each of them should appear only once. The reason for this rule is 

because that any unique EO in a web page will be retrieved only once even if it is used 

for multiple times in the page, as the subsequent uses of it will not create any new 

request since the object will be already made available locally by the first use of it. 

Container Object 

Embedded Object 1 

Embedded Object 2 

Embedded Object 3 
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Figure 4.3 Object-level WRDG graph for the retrieval of the page in Figure 4.2 
 
 

To give an example, suppose we retrieve a web page with three EOs, as depicted 

in Figure 4.2. The retrieval process for this page may be mapped into the object-level 
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WRDG graph shown in Figure 4.3. Here we assume the definitions of the three EOs 

appear in three different data chunk in the retrieval process of the CO. 

In the situation when the operation-level details are not important, we may 

simplify the graph in Figure 4.3 by removing all the details encircled by the rounded 

rectangle. This would transform the object-level WRDG graph to a simpler graph, as 

shown in Figure 4.4. 

 
 

Figure 4.4 Simplified Object-level WRDG graph for the page in Figure 4.2 
 

In the simplified object-level WRDG graph as shown in Figure 4.4, each rounded 

rectangle represents an object, and it will be referred to as Object Vertex in the rest part 

of this thesis. The arcs connecting these object vertices are the object deriving arcs. 

Note that every object vertex actually contains a complete intra-object level WRDG 

graph which corresponds to the retrieval process of an object. 

Theorem 4.1: Single value of in-degree of object vertices 

Given an object vertex in a simplified object-level WRDG graph, there is exactly 

one incoming arc to the vertex. There is one exception which is the object vertex 

corresponding to the CO, where the in-degree is zero. 

Proof: This theorem is based on HTTP protocol and web browsers’ behavior on 

HTML web pages. The retrieval of a web page always starts with the CO of the page. 

When the content of the CO reaches the web browser, it will be parsed and further 

requests for the EOs defined in it will be triggered. Once a request for an EO is sent 
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out, all subsequent accesses to that object within the same page will be served locally. 

There will not be duplicate transfer between web server and client for the same EO 

within the same page.  

Due to the single value of in-degree of object vertices, a simplified object-level 

WRDG graph is always a two-level directed tree with the object vertex corresponding 

to the CO as the root. 

4.3.3 Page-level WRDG graph 

The Page-level is also referred to as Inter-Page level sometimes. The WRDG 

graph at this level is used to capture the retrieval processes of multiple pages which are 

accessed within a given period of time. A page-level WRDG graph is made up of 

multiple object-level WRDG graphs. So, the construction of a page-level WRDG 

graph can be attained by constructing an object-level graph for every page and then 

connecting them together using page deriving arcs according to the access orders on 

them. The weight of a page deriving arc represents the time elapsed between two page 

visits. This time may include the user’s view time on the previous page, some possible 

idle time between the two page visits, and the time spent by the request for the next 

page in waiting for its turn to be processed. This waiting time exists mainly due to 

certain resource limitation, such as CPU time and network connection etc. 

Note that every unique page should appear only once in the page-level WRDG 

graph. In the case where a page is visited multiple times within the given period, the 

number of page deriving arcs pointing to the page will be greater than one. 

As we stated earlier, WRDG graphs represent the dynamic retrieval processes of 

web pages and objects, not the static relationship among them. So, the page deriving 

arcs may not follow the hyperlinks between pages. For example, there could be cases 

where two pages are connected by a page deriving arc, but there is no hyperlink in a 
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page pointing to the other. The situations like this have been discussed in Section 4.2 

where we introduced strong page deriving arcs and week page deriving arcs to 

characterize them. 

An example of page-level WRDG graph is given in Figure 4.5. In the example, we 

assume that there are three successively retrieved pages. Due to the space limitation, 

we used object vertices in the graph. 

Similar to the simplified object-level WRDG graph, page-level WRDG graphs 

also have simplified version. When situation permits the details to be ignored, 

page-level WRDG graphs can be simplified by substituting each page with a rectangle 

and discarding all the object-level and operation-level details. Figure 4.6 shows the 

simplified version of the page-level WRDG graph shown in Figure 4.5. 

In simplified page-level WRDG graphs, each rectangle represents a web page 

and is referred to as Page Vertex. The arcs connecting these page vertices are the page 

deriving arcs.  

Note that there is no “single value of in-degree” for page vertices. Because a 

page may be visited for multiple times within a given period, so it may have more than 

one page deriving arc pointing to it. Due to this property, the page-level WRDG graphs 

may not be trees. 
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Figure 4.5 Page-level WRDG graph for three successively retrieved pages 
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Figure 4.6 Simplified page-level WRDG graph for the graph in Figure 4.5 
 
4.4 Transformation on WRDG graphs 

WRDG graphs represent the retrieval process of web objects and pages. Certain 

transformation can be performed on the standard WRDG graphs. Since WRDG graphs 

capture the relationship among operations and among objects and reflect the retrieval 

latency of objects and pages, different transformations on the WRDG graphs will 

denote different changes to the relationship and the latency of the retrieval processes. 

The rule of thumb for transformation on WRDG graphs is that the valid web retrieval 

semantics should be maintained after transformation. 

Basically, we can perform the following transformations on WRDG graphs: 

Within an Object 

1) Changing the weights of arcs 

The weight of an arc stand for the time spent in completing the operation 

represented by the target vertex. A change to the weight of an arc could mean the 

completion time of the operation represented by the target vertex is affected by 

certain mechanism. For example, when DNS caching is used, the weight of the 

Location Resolution Arc will become smaller. The weights of other arcs may also 

be changed, which could reflect the impact of some mechanisms like web caching, 
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prefetching, CDN, persistent connection etc. 

2) Removing arcs and vertices 

The removal of arcs and vertices always happens in pair, i.e. the removal of an arc 

would mean the removal of an corresponding vertex at the same time, and vice 

versa. 

When the weight of an arc is reduced to zero, the arc can actually be removed from 

the graph. Since the weight represents the time for finishing the target operation, it 

would mean that the target operation takes zero time to finish in this case. 

Therefore, the vertex representing the target operation should also be removed 

from the graph. For example, in the case of ideal persistent connection, the weight 

of the Network Connection Arc may be reduced to zero. In this case, both the 

Network Connection Arc and the Network Connection Vertex can be removed from 

the graph. 

On the other hand, when a vertex is removed, the arc pointing to it should be 

removed also. Here is one example for this situation: suppose an encoding 

mechanism is employed and the number of data chunks in an object transfer is 

reduced by half, then half of the Data Chunk Vertices will be removed from the 

object WRDG graph. Consequently, those Data Chunk Arcs connecting to those 

removed vertices should be removed, too. 

When a vertex υ (as well as the arcs connecting to it) is removed, the arcs which 

are outgoing from υ should be put to connect from the precedent vertex of the 

vertex υ. Note that within an object WRDG graph, the vertices υr and υe can not be 

removed. 

3) Splitting one object graph into multiple sub-object graphs 

With the support of partial object, an object retrieval may be carried out as multiple 
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partial requests, each requesting part of the object. Each of such partial requests is 

a full-fledged HTTP request, only that the number of data chunks of such requests 

is smaller than the original request. In WRDG graphs, we can capture this situation 

by splitting the object graph into multiple sub-object graphs, with each of the 

sub-object graph containing smaller number of data chunks (i.e. smaller Critical 

Regions). Among the sub-object graphs, there is one called primary sub-object 

graph, from which other sub-object graphs are derived. So, the vertex υr of other 

sub-object graphs should be connected to a vertex υ of the primary sub-object 

graph. Based on when and where those other sub-object graphs are derived, this 

vertex υ may vary. But in general, this υ is usually the first Data Chunk Vertex of 

the primary sub-object graph because that vertex usually contains important HTTP 

headers (such as “Content-Length”) which are essential for carrying out this partial 

object retrieval. 

Between Objects 

1) Changing the weights of object deriving arcs 

The weight of the object deriving arc denotes the time spent by the derived object 

request in waiting for its turn to get processed. This time is mainly affected by the 

parallelism width for concurrent fetching of objects. So, a change to this weight 

would generally mean that the parallelism width is changed. 

2) Changing the origin points of object deriving arcs 

The origin point of an object deriving arc denotes the place where the object is 

defined and the request is triggered. Shifting the origin point of an object deriving 

arc would mean that the definition place of the object has been changed. For 

example, suppose we have a special mechanism which makes all the embedded 

objects of a page defined in the first data chunk of the container object, then the 
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origin points of the object deriving arcs would all be shifted to the first Data Chunk 

Vertex. 

3) Merging multiple object graphs into one 

There are some mechanisms which merges the retrieval processes of multiple 

objects into one process. Existing examples of such mechanisms include pipelining 

and bundling etc. To capture this situation, the multiple object graphs 

corresponding to the merged objects can be merged into one graph. In the merged 

graph, there can be multiple υr vertices or only one υr vertex depending on the 

scenario of the mechanisms. But for the vertex υe , there is usually only one of it. 

By applying different transformation on WRDG graphs, we can map most acceleration 

mechanisms into WRDG graphs. Because web retrieval latency can be reflected by the 

weights of the arcs in WRDG graphs, so we can better understand and study the effect 

of existing and new acceleration mechanisms by investigating their transformation on 

the graphs. 

4.5 Conclusion 

In this chapter, we have proposed an operation-level web retrieval dependence 

model to capture the complex relationship affecting web retrieval latency. This model 

helps us to understand and study how the retrieval latency of individual objects in a 

web page contributes to the final page retrieval latency. By constructing WRDG graphs, 

we clearly see the retrieval dependency between EOs and the data chunks of CO. By 

taking this into consideration, we would be able to compute more precise page 

latencies than those object-level based studies. Also, the effects of different web 

retrieval mechanisms can be illustrated by different transformation on WRDG graphs. 

It is worth mentioning that our model is different from two research works which 

also proposed graph models for web study. One work is from IBM [277] which 
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proposed a simple object dependency graph to describe web page structure. However, 

its objective is to describe the dynamic nature of web data and is mainly used for the 

synchronization of database objects, not for the study of web page retrieval latency. 

Another work also proposed graph for the study of web [278, 279, 280, 281, 282, 283]. 

However, the graphs in these studies capture the static structure of web page, with web 

pages represented by nodes and hyperlinks represented by directed edges. Such graphs 

are used for algorithms such as ranking pages and finding natural communities of 

pages etc. Our WRDG graphs capture the retrieval process of web pages, which are 

used for the study of web retrieval latency. Furthermore, our WRDM also works at 

operation and chunk level, which is not achieved in other studies. 
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Chapter 5 Experimental Environment and Tools 
Our studies on web content delivery are based on comprehensive detailed trace-driven 

simulation experiments and real system testing. In this chapter, we would like to 

describe the experimental environment and tools used in our studies. 

5.1 Web Access Model 

In our studies, we always assume the use of a proxy server as an intermediary 

between the client and the web server. That is, we assume the following web access 

model shown in Figure 5.1. 

 
Figure 5.1 Web access model 

 
There are two reasons why we always use a proxy in the system. Firstly, it is 

because this configuration is very common in the web today [13]. Secondly, we use 

proxy to perform two important tasks: 

1) Recording logs for web retrieval 

Because a proxy server can monitor every detail of web retrieval processes, so we 

make it to record very detailed information about them. The information recorded 

includes timing measurements of object retrieval at fine-granularity level, header 

information of HTTP requests and responses, cacheability information, chunk-level 

information about the retrieval, and many others. 

When situation permits, we assume the information logged by the proxy is the 

information seen by the clients, e.g. the timing measurements. It is equal to say that 
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the whole dashed-line circle in Figure 5.1 is treated as one client in some situations. 

This assumption is reasonable because the proxy server is in the same LAN where 

the clients exist. In fact, the clients and the proxy are connected by direct physical 

network connections. So, the latency between proxy and clients is negligible 

compared with the latency between proxy and remote web servers. We expect this 

assumption does not affect the correctness of our results. 

2) Implementing and testing our proposed new mechanisms. 

A proxy server has full control on the web requests passing through it. With this 

capability, we will be able to instrument the proxy to implement our new 

mechanisms, for example, issuing requests at earlier stage based on certain 

knowledge. It would be very difficult (if not impossible) to carry out such work on 

most common web clients like MS-IE and Netscape. 

Some experiments may require detailed retrieval information on servers, or, some 

mechanisms need to be implemented on servers (such as compression). In these 

situations, we will put a reverse proxy in front of the server and make the proxy to 

perform the tasks for the server. Here, we will treat the union of reverse proxy and 

server as a whole web server. Figure 5.2 illustrates this situation. (in contrast, the proxy 

used in front of clients is called forward proxy.) 

 
Figure 5.2 Web access with reverse proxy 

 
In Figure 5.2, the union of the reverse proxy and the server should be physically 

far away from the clients in order for the experimental results to reflect the effect of 
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real web system. However, to physically place a machine considerably far away is not 

often achievable. So we use another way to emulate this situation. The idea is to 

employ a remote proxy server. Figure 5.3 shows the structure of this system. 

 
Figure 5.3 Web access with remote proxy 

 
In the above system, both the client and the server can be placed physically in the 

same location. But the traffic between them will be directed to a remote proxy in the 

Internet. For the remote proxy, we purposely chose those ones physically located in 

other continents, e.g. those in Europe and America1. Therefore, the experimental 

results such as retrieval latencies would be comparable to the results got from real web 

systems. 

5.2 Experimental Tools 

Our experiments involve both real software tools of web client, proxy, and server 

etc. and simulators. To facilitate system implementation, most of the software tools we 

used are open source systems. Below we give a brief description of the tools used in 

our study. 

The web client programs we used are Wget [284], Pavuk [285], MS-IE [70], 

Netscape [71], and some simple client programs written by ourselves. Wget and Pavuk 

are free utilities for non-interactive retrieval of files from the web. Because they are 

non-interactive command-line tools, so it is easy to call them from scripts. Therefore, 

                                                        
1 Examples of the remote proxies we used: cache.bt.net:3128, webcache.bt.net:8080, 80.49.22.130:8080, 
80.18.158.154:8080 
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they are ideal for running large scale experiments since the whole process can be 

controlled by scripts automatically. For the experiments which require small number of 

runs, the interactive clients MS-IE and Netscape may be used. In some cases, we also 

write our own client programs for special purposes, for example, the client that 

retrieves only HTTP headers for given URLs. The versions of the client programs we 

used are as follows: Wget 1.4.5, Pavuk 0.9p128, MS-IE 5.5, Netscape 4.7 . 

Proxy server is generally used to retrieve web objects on behalf of clients and 

collect statistics about the traffic on the network. We choose to use Squid [73] as the 

proxy server in our experimental environment because not only it is the most popular 

web proxy server in use today, but also it is a free, open-source software which enables 

us to instrument it to collect special information that we need, and to implement and 

test our new mechanisms based on it. The version we used is Squid 2.4.STABLE3, 

which was the latest version as at the time of our study. For the reverse proxy, we also 

used Squid and the version is the same. 

The web server program we choose is also a free, open-source software, which is 

Apache, version 2.0.39. Apache has been the most widely used web server on the 

Internet since 1996 [72]. By using it as the web server in our experimental 

environment, we would expect that the results we have got would be realistic and 

applicable to most real web servers on the Internet. 

For those experiments which retrieve web pages directly from the Internet, the 

web servers of real websites on the Internet are involved. These would include all 

kinds of web servers found in the current web system, such as Apache, MS-IIS, NCSA 

HTTPd etc. 

Besides the above software tools from public domain, we also wrote our own 

simulators for our experiments. While many results in our study are obtained from real 
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system experiments using the above software tools, there are situations where it is 

difficult (or even impossible) to get results from real systems experiments, for example, 

varying the parallelism width for retrieval. For those situations, we write simulators 

and run trace-driven simulations to get the results. Because the traces are got from real 

web systems, so we expect the results from such simulations can reflect the real 

situations quite accurately. 

5.3 Software/Hardware Platform and Network Environment 

The operating system we used is Red Hat Linux release 7.2 (Enigma), Kernel 

2.4.7-10 on an i686. The compiler used to compile the software tools is gcc version 

2.96. For scripts written in shellscript or perl, the interpreters are GNU bash version 

2.05.8(1)-release (i386-redhat-linux-gnu) and perl v5.6.0 built for i386-linux. 

The typical configuration of the machines we used is as follows: 

Processor Intel(R) Pentium(R) 4 CPU 2.00GHz 
Memory 512Mbytes (with 1GB swap space) 
Network Adaptor 3Com Corporation 3c905C-TX (Fast Etherlink) (rev 120) 
Hard Disk 20GB--40GB 

 
The connection between client and forward proxy is direct physical connection. 

The same situation applies to the connection between server and reverse proxy (when 

reverse proxy is used). For the Internet connection, our environment is the Singapore 

Advanced Research Network in the National University of Singapore, which has 45 

Mbits link to the U.S.. The Internet traffic in our environment is quite heavy and 

diverse. So we expect that the results we got in such an environment would well 

represent the situations encountered by typical broad-band Internet users. 

5.4 Obtaining Logs 

Web logs are valuable data often used by researchers for experiments and 

comparison for their studies on web content delivery. There are mainly two types of 

logs, namely proxy logs and server logs. Proxy logs are recorded by proxy servers, and 
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the data in such logs are often used to represent the measurements seen at client side. 

Web servers often record the requests they served into server logs. To study the 

characteristics of the traffic or web pages and objects on a web server, we would need 

to use the server log. In our study, both proxy logs and server logs are used. 

Note that logs are also frequently referred to as traces. In this thesis, I will use 

these two terms interchangeably without differentiating them. 

We obtained proxy logs from two sources. One is the traces from the National 

Laboratory for Applied Network Research (NLANR) [276]. The other source is the 

logs generated and collected by our own systems. 

1) From NLANR 

NLANR traces are the most popular, up-to-date, real proxy traces available to 

researchers. NLANR’s hierarchical proxy system adopts Squid proxy caching software, 

which is the same software as we used in our study. Their proxy system consists of 

about ten proxy servers. The traces of all the proxy servers are published on their web 

site daily. Three NLANR traces have been randomly chosen for our experiments. They 

are the traces on 12th March 2002, 8th January 2003 and 5th August 2003. Note that we 

only used one of the ten proxy logs they published on each of the three days. Each of 

the traces we used contains about 1.2 – 1.4 million requests. 

2) From our own system 

Some of our experiments require special information about web retrieval which 

is not available in NLANR traces. For example, the HTTP headers and chunk 

information are essential to our experiments but they are not provided in NLANR 

traces. In order to get such information, we built systems to collect it. 

We first obtained URL addresses of web objects or pages from NLANR traces. 

Then we fed them into systems similar to those shown in Figure 5.1 and Figure 5.3 to 
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replay real retrieval for those URLs and gather logs during the process. We have 

instrumented the proxy servers to make it record very detailed, chunk-level 

information for every object retrieval at both client side and server side. Special client 

programs are also built for the collection of special information, for example, the 

position of embedded objects in the body of container object of web page. 

The collection of special log was performed near the date of the original NLANR 

traces from which the URL addresses were sampled. This assures that the information 

we obtained should be very close to the actual values that would have been obtained at 

the time when the original NLANR traces were logged. 

We have logged information for a large number of web objects and pages, which 

is big enough for generating representative statistics results from them. 

The availability of server logs is much smaller than proxy logs. We only 

managed to get a server log from the website of School of Computing (SoC), National 

University of Singapore (NUS). The log is dated on 30th October 2000 and contains 

about 85,000 entries. 

Logs often need to be pre-processed before then can be fed into simulators for 

doing experiments. The pre-process usually carries out the following tasks. First, 

because logs generally contain a wide range of information and much of the 

information may not be necessary to the simulations, so we need to extract the useful 

information. Second, the original format of the logs may not suitable to the 

requirement of simulators. So we need to convert the format of them. Last, some 

information may be recorded into multiple log files. It is often necessary to consolidate 

the information into one file. 

5.5 Getting Results 

The results presented in our studies are obtained either from trace-driven 
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simulations or real system testing. We built a wide range of simulators for carrying out 

comprehensive experiments. Pre-processed logs were fed into the simulators to 

generate the results. 

When situation permits, we also built real systems to do our experiments. For 

example, the experiments of compression were conducted on real systems. The 

systems are built based on the tools described in Section 5.2, and the structures of the 

testing systems are similar to those shown in Figure 5.1 and Figure 5.3. The network 

environment is stated in Section 5.3. 

5.6 Summary 

In this chapter, we described the experimental environment and tools used in our 

studies. By adopting open-source systems, we are able to record very detailed logs and 

implement our new mechanisms in real systems. The experiments in our studies are 

carried out based on trace-driven simulations as well as real system testing. The logs 

we got are huge and comprehensive. They are big enough for generating representative 

results. The environment of our study is typical in the Internet, so the results we got 

shall have good representativeness of the situations encountered by most other web 

users. 
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Chapter 6 Analysis of Web Retrieval Latency 
Using WRDM Model 

6.1 Introduction 

Web retrieval latency has been the focus of study due to the exponential growth 

of the web. The current web system is made up of pages containing html, image and 

other types of objects. Many previous studies focus on the retrieval latency of objects. 

However, this is insufficient and sometimes inaccurate because the unit of web 

browsing is web page instead of object. To web users, page retrieval latency is more 

meaningful. While page retrieval latency is derived from object retrieval latency, the 

mapping between them is not that direct and simple. In order to well understand web 

retrieval latency, especially page retrieval latency, we shall go into more detailed level 

of web retrieval. 

The transfer of an individual web object is typically delivered in a sequence of 

data chunks, and the characteristics of chunk sequence transfer have great impact on 

object retrieval latency. When objects are put together to form pages, the interaction 

among the objects become very complicated. In a web page, there is a primary object 

called container object, which contains the definitions of other objects (embedded 

objects) of the page. Because of this, the retrieval of the embedded objects highly 

depends on the retrieval process of the container object of the page, and this 

dependency will incur significant delay to retrieval latency for the embedded objects. 

Furthermore, current web system employs parallelism for parallel fetching of objects, 

which makes it possible for the retrieval of some objects to virtually have no effect on 

the total page latency. All these factors make the mapping from object latency to page 

latency very complicated, and they are largely ignored in previous object-level studies 

on web retrieval latency. In this chapter, we would like to research on the web retrieval 

latency from operation and chunk level based on our WRDM model. By detailed 
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investigation on the interaction between operations and between objects, it gives us an 

insight view on the root-cause of web retrieval latency and how those factors are 

greatly interacted in determining page retrieval latency. 

With the exponential growth of web usage and the development of pervasive web 

content delivery, web content transformation emerges as an important technology to 

satisfy the different expectation of web users. While there are many studies on web 

content transformation, their major focuses are on the functionalities and real-time 

features. There is little study on the possible impacts of content transformation 

approaches on web retrieval latency. In this chapter, we would like to analyze the 

performance impacts of content transformation using our WRDM model. 

We also derive upper bounds on the performance improvement for acceleration 

mechanisms in this chapter. While many mechanisms have been proposed and shown 

promising potential of acceleration, it remains to be seen the quantitative upper bound 

of them. Based on the understanding, analysis and results of object and page retrieval 

latency revealed under our model, we derive two upper bounds for acceleration 

mechanisms, which help us to understand the potentials of web acceleration. 

In order to obtain enough information for studying chunk level characteristics 

and factors affecting page latency, we have re-run about a million requests and 

recorded very detailed logs, including timing information of operations, chunk data 

information, content of each page, and the structure of each page, etc. The traces, tools 

and environment for running these experiments are described in Chapter 5. Some 

results presented in this chapter are obtained directly from the experiment logs, some 

others are obtained from simulations based on the detailed logs. 

6.2 Analysis of Object Fetch Latency 

First of all, we would like to investigate the retrieval latency for objects. We 
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study is at operation-level and chunk-level, which can give us in-sight view of object 

latency. 

6.2.1 Latency Components of Object Latency 

Before we proceed to the detailed analysis of object fetch latency using WRDM, 

we first give precise definition of the retrieval latency for web objects to clarify 

possible ambiguity. 

Definition 6.1: Object Fetch Latency 

The retrieval latency of an object is defined as the time from the initiation of the 

request for the object, successful transfer of data chunks, until the release of resources 

that are occupied by the request. 

We define the release of resources (like network connection) to be the ending 

point of object retrieval. This is because that if the resources that are occupied by an 

object request are not released, the retrieval process for that object would be 

considered still under processing. A visual evidence of this uncompleted processing to 

user may be that the progress bar in his/her web browser is still on the move. So user 

will perceive that the retrieval process is still ongoing. Therefore, the “real completion” 

of the retrieval of an object should be considered reached only when the occupied 

resources are released. 

The release of occupied resources can occur in two situations. One situation is 

the natural ending process following the arrival of the last data chunk of the requested 

object. In this case, all the content of the requested object has been transferred from 

server to client, and the release of resources follows naturally. The other situation is 

that the retrieval process for an object is interrupted prematurely. When such situation 

happens, all the resources that are occupied by the request will be released 

immediately and the process for the request is considered finished. Among these two 
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situations, we will use the first one as the default situation in our study, unless 

otherwise stated. Why we make this choice is because that: in most cases, the full 

presentation of an object cannot be achieved until all its data has returned from the 

server. Although this restriction may not be so obvious for progressive objects like 

JPEG2000 images where the presentation of such objects can be carried out in an 

accumulative way as their data are made available chunk by chunk, we argue that: (1) 

progressive objects have not got its popularity on the web yet, the majority of web 

objects are not progressive objects; (2) even for a progressive object, its presentation 

cannot be considered as fully completed unless all of its data chunks have returned 

from server because otherwise a partial content or lower resolution image/file will be 

experienced by user. So, it is reasonable for us to set the default situation as the one 

which requires all data chunks of an object to be returned from server and the retrieval 

process ends naturally. 

Put the above two points together: By default, we measure the retrieval latency of 

an object as the time from the initiation of the request, counting in the transfer time for 

all the data chunks corresponding to the whole object, till the release of resources that 

are occupied by the request. The situation of premature interruption of retrieval process 

will not be taken into consideration unless otherwise stated. 

Mapping the definition of object fetch latency into an intra-object WRDG graph, 

the object fetch latency for an object Obj(i) is represented by the distance of the path 

from the request initiation vertex υr(i) to the ending vertex υe(i) . In the rest parts of this 

thesis, we may refer to this path as Object Retrieval Cost Path. 

Note that the “distance” of a path refers to the sum of the weights of the arcs 

along the path. In contrast, the “length” of a path refers to the number of the arcs along 

the path. We will use these two terms distinctively in our work. 
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With the understanding about the details of retrieval processes described in 

WRDM model (see Chapter 5), the retrieval latency for an object can be divided into 

five components: (1) location resolution time, (2) connection time, (3) request sending 

time, (4) chunk sequence time, and (5) ending time. Below we give the precise 

definitions of these five components of object fetch latency. 

Definition 6.2: Location Resolution Time (LRT) 

Given an object request Req(Obj(i)), the location resolution time of the object 

Obj(i) is defined as the time from the time when the request is initiated to the time 

when the location where the request should be forwarded to is resolved. 

In the intra-object level WRDG graph representing the retrieval process for the 

requested object Obj(i), the location resolution time of the object is given by the 

weight of the location resolution arc al(i) connecting the request initiation vertex υr(i) to 

the location resolution vertex υl(i) , where 0 ≤ i ≤ o . 

Definition 6.3: Connection Time (CT) 

Given an object request Req(Obj(i)), the connection time of the object Obj(i) is 

defined as the time from the time when the location of the destination server is made 

known to the time when a network connection between the client and the destination 

server has been established. 

In the intra-object level WRDG graph, the connection time of an object Obj(i) is 

given either by the weight of the network connection arc ac(i) , where 0 ≤ i ≤ o . 

Definition 6.4: Request Sending Time (RST) 

Given an object request Req(Obj(i)), the request sending time of the object Obj(i) 

is defined as the time from the time when a network connection between the client and 

the destination server has been established to the time when the request message has 

been delivered from the client to the server through the connection. 
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In the intra-object level WRDG graph representing the retrieval process for the 

requested object Obj(i), the request sending time of the object is given by the weight of 

the request sending arc as(i) connecting the network connection vertex υc(i) to the 

request sending vertex υs(i) , where 0 ≤ i ≤ o . 

Definition 6.5: Chunk Sequence Time (CST) 

Given an object request Req(Obj(i)), the chunk sequence time of the object Obj(i) 

is defined as the latency time from the receiving of the first data chunk Chk(i,0) of the 

object to the receiving of the last data chunk Chk(i,c) of the object, where 0 ≤ i ≤ o 

and c = g(i) . 

In the intra-object level WRDG graph representing the retrieval process for the 

requested object Obj(i), the chunk sequence time of the object Obj(i) in the page is 

given by the distance of the path from the request sending vertex υs(i) to the last data 

chunk vertex υd(i,c) corresponding to the transfer of the object. 

Definition 6.6: Ending Time (ET) 

Given an object request Req(Obj(i)), the ending time of the object Obj(i) is 

defined as the latency time from the receiving of the last data chunk Chk(i,c) of the 

object to the release of the resources occupied by the object request, where 0 ≤ i ≤ 

o . 

In the intra-object level WRDG graph representing the retrieval process for the 

requested object Obj(i), the ending time of the object Obj(i) is given by the weight of 

the ending arc ae(i) connecting the last data chunk vertex υd(i,c) to the ending vertex υe(i) 

of the object. 

Figure 6.1 gives an example intra-object level WRDG graph which illustrates the 

five latency components defined above. 
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Figure 6.1 Latency components of object fetch latency 

 
The chunk sequence time CST usually consists of the transfer time of multiple 

data chunks. When we need to refer to the transfer time of a specific data chunk Chk(j), 

we will use this symbol CST(Chk(j)) , e.g. CST(Chk(0)) stands for the transfer time of 

the first chunk Chk(0) , CST(Chk(3)) stands for the transfer time of the chunk Chk(3) , 

so on and so forth. 

Among the latency components, the request sending time RST and the first 

chunk time CST(Chk(0)) are difficult to record in reality because they requires to 

record timing information at both client side and server side. To deal with this problem, 

we adopt two compromise ways in our study: 

1) Use HTTP-RTT time instead of RST time 

While it is difficult to record individual RST time and CST(Chk(0)) time, it is easy 

to record “RST + CST(Chk(0))” at client side. The time of “RST + CST(Chk(0))” is 
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time when the first data chunk Chk(0) returns from server. This time span is like the 

round trip time (RTT) in TCP transaction. We refer to this time as the HTTP-RTT 

time in our study. In the situation where knowing individual RST time and 

CST(Chk(0)) time is not particularly important, we may use this HTTP-RTT time 

for our study. For example, in the case when we focus our study on the latency 

component LRT, to further distinguish other latency components may not be useful, 

then we can just use HTTP-RTT or even a more coarse timing measurement.  

Figure 6.2 plots HTTP-RTT time in the object fetch latency. 

2) Approximate RST and CST(Chk(0)) 

In the cases where individual RST time and CST(Chk(0)) time are required, we 

would use the following way to approximate them: 

First, we use CST(Chk(1)) to approximate CST(Chk(0)), i.e. we consider 

CST(Chk(0)) to be the same as CST(Chk(1)). This is reasonable because the times 

of the first two data chunks should be very close. Because CST(Chk(1)) is easy to 

record, so we can get CST(Chk(0)) easily. In the case where the object transfer 

consists of only one chunk (i.e. there is no Chk(1)), we can use the statistical value 

of CST(Chk(1)) from other objects’ transfer for the approximation. 

Second, for RST, we will approximated it as “HTTP-RTT – CST(Chk(1))”. As 

stated above, HTTP-RTT is easy to measure and it is made up of RST and 

CST(Chk(0)), so naturally we can use “HTTP-RTT – CST(Chk(1))” to approximate 

RST. 

Lastly, we would like to point out that we can actually include more latency 

components in our definitions or divide object latency into more detailed components. 

For example, the time for performing access control can be included in the definition. 

On the other hand, the CST(Chk(0)) time can be further divided into two (or even more) 



106 

sub-components2: one is the time spent by server for reading the object from disk into 

its main memory, the other is the time for the actual transfer of the first data chunk 

Chk(0). Our model and definitions can be easily extended to cover such situations. 

However, for our study in this thesis, we would stick to the five latency components 

defined above for object fetch latency. 

 
 

Figure 6.2 HTTP-RTT time in the object fetch latency 
 
6.2.2 Experimental Study and Analysis 

Firstly, let us review some statistics about object retrieval at object level, as done 

in many other works. Figure 6.3 plots the distribution of objects with respect to object 

sizes. From this graph, we see that the majority of web objects are quite small in size, 

with an average size of about 5.71 KBytes. 

Figure 6.4 shows the distribution of average object fetch latency with respect to 

object sizes. We see that when objects size is small, e.g. less than 8 Kbytes, the 
                                                        
2 Because of this reason, the above approximation of RST and CST(Chk(0)) may not be so accurate. For 
studies that require high accuracy of RST and CST(Chk(0)), we do not recommend this approximation. 
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retrieval latency for smaller objects is often comparable to that of bigger objects. For 

example, the retrieval latency for a 1 KByte object is similar to that of a 4 KBytes 

object. This could be due to the relatively large time required for setting up network 

connection. For small objects, their actual transfer time is relatively small compared 

with the network connection setup time. So, the increase in object size will not affect 

the whole object latency much. However, for big objects with size larger than 16 

KBytes, their retrieval latency does increase with the increase in object size. This is 

because the network connection setup time becomes relatively small and the actual 

transfer time becomes the dominating factor of whole object latency for big objects. 

With bigger size, objects would need longer transfer time. So the retrieval latency 

would increase with the increase in object size. 

 
Figure 6.3 Distribution of objects w.r.t. object size 

 

 
Figure 6.4 Distribution of object latency w.r.t. object size 
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relative distribution of those latency components against the size of the objects. Note 

that in this graph we used approximated RST and CST(Chk(0)) because they are 

difficult to record in our experiments. Instead, we recorded the HTTP-RTT time and 

compute approximated RST and CST(Chk(0)) based on it, as described earlier on. This 

approximation will have little impact on the correctness of the overall distribution of 

those latency components. 

 
Figure 6.5 Relative distribution of latency components w.r.t. object size 

 
From Figure 6.5, we see that the connection time CT and chunk sequence time 

CST are the two major latency components in object retrieval. They together take up 

over 85% of the whole object fetch latency for objects with all sizes. 

The connection time CT is generally more significant than CST for objects with 

smaller sizes. For objects with size less than 4 KBytes, CT time occupies more than 

50% of the whole object latency. Considering that the majority of objects have sizes 

less than 4 KBytes (see Figure 6.3), we expect that CT time plays an important role in 

object fetch latency. This re-confirms the importance and effectiveness of 

connectivity-based acceleration mechanisms such as persistent connection, 

pre-connection, etc. Bundling [23, 24, 25] also helps in reducing CT times by bundling 

multiple objects into one and using only one network connection for it, which removes 
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the need of setting up multiple connections for each of the objects. 

The relatively large distribution of CT time also explains why the retrieval 

latency for smaller objects is often comparable to bigger objects for objects under 4 

KBytes, as we observed in Figure 6.4. For this group of objects, their retrieval latency is 

dominated by CT time. The increase in object size only affects the CST time, which is 

relatively small for objects with sizes smaller than 4 KBytes. So, the retrieval latency 

for smaller objects is similar to that of bigger objects for this group of objects. 

As object size increases, the relative percentage of CT time becomes smaller 

while CST time gains its significance. For objects with sizes greater than 8 KBytes, the 

CST time starts to occupy more than 50%, up to about 95% of the whole object latency. 

This is understandable as large objects generally require longer time for the actual 

transfer of their content. As there is also a considerably large percentage (about 30%) 

of objects belonging to this group, this indicates that the acceleration mechanisms 

which aim to reduce the actual transfer latency would be also effective. Some existing 

examples of such mechanism include encoding (like compression), transcoding and 

content selection etc. For very large objects, intra-object parallelism may be used to 

improve the transfer latency. 

Other three latency components, namely LRT, RST and ET, are relatively small. 

However, they are still not negligible, especially for small objects which define the 

majority of web objects. The location resolution time LRT comes from the DNS 

process in current web system. Figure 6.5 shows that LRT time contributes from less 

than 1% to more than 6% of the whole object latency. This suggests that there is still 

some room for improvement on top of the current DNS system. 

For RST and ET, they are relatively smaller and it is often difficult to reduce 

them. Because any web request would at least involve the transfer of a request message 
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from client to server and the release of resources occupied by the request, so these two 

latency components would always be there and they are mainly determined by 

hardware infrastructures such as network bandwidth and computing power. Besides 

upgrading the hardware, some software approaches which may help in reducing these 

two components include parallel fetching and bundling. While parallel fetching tries to 

hide RST and ET times by overlapping them with each other, bundling tries to share 

one RST and ET time among multiple requests so that the average RST and ET time 

for each single request becomes smaller. 

Note that the above observation is valid for individual single object retrieval only. 

When objects are put together to form pages, some of the observation may not hold 

any more. For example, when page retrieval latency is mentioned, CT and CST times 

may not be the largest latency components any more. We will discuss this further 

shortly later. 

Below, we present some chunk-level studies about single object retrieval. 

The transfer of an object from server to client typically involves a series of data 

chunks. Figure 6.6 plots the distribution of objects with respect to the number of chunks 

in the transfer. From the graph, we see that while more than 40% of objects contain 

only one data chunk in their transfer, the majority of other objects consist of multiple 

data chunks. On average, an object has about 6.5 data chunks in its transfer. 

 
Figure 6.6 Distribution of objects w.r.t. number of chunks 
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Next, we would like to study some properties about data chunks. Figure 6.7 and 

Figure 6.8 show the distribution of chunks sizes and latencies respectively. Figure 6.7 

plots the distribution of chunks with respect to chunk size. It shows that the majority 

(65%) of chunks have typical sizes between 1 KBytes and 2 KBytes. However, there 

are chunks with much bigger sizes, and that puts the average chunk size at 5.3 KBytes. 

We also note that there are a high percentage of chunks with sizes larger than 10 

KBytes. 

 
Figure 6.7 Distribution of chunks w.r.t. chunk size 

 

 
Figure 6.8 Average latencies for delivering chunks with different sizes 

 
Since chunk transfer time contributes towards object fetch latency, we would like 

to investigate the transfer time for chunks with different sizes. Figure 6.8 plots the 

transfer time of chunks with respect to their sizes. In our experiments, all chunks were 

sent out from the same server and delivered over the same distance to the same client, 

so the latencies of different chunks are comparable. 
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From Figure 6.8, we see that the distribution of the latencies for chunks with 

different sizes is quite random. Chunk size does not seem to have much influence on 

chunk latency. The latency for smaller chunks is often comparable to that of much 

bigger chunks. This could be due to the random nature of network and server workload. 

This observation is important because it indicates that mechanisms which reduce 

chunk size may not help much in reducing object fetch latency. 

There are two extreme phenomena in Figure 6.8 worth of mentioning. One is that 

the latency for very big chunks (those with size greater than 30k) is indeed much 

bigger than that of smaller chunks. The other phenomenon is that, the latency for the 

“<=1k” group is even bigger than that of “<=2k” to “<=4k” groups. Further study 

reveals that this could be due to the TCP slow-start effect as “<=1k” chunks tend to be 

the first a few chunks in the chunk transfer sequence. 

 
Figure 6.9 Distribution of data rate w.r.t. chunk sequence number 

 
Figure 6.9 tries to explain the TCP slow-start effect by plotting chunk data rate 

with respect to the chunk sequence number. From this graph, we see that the data rate 

for the first chunk is significantly much lower than that of later chunks. This indicates 

that the first a few chunks on a TCP connection are relatively more expensive than the 

rest, which reflects the TCP slow-start effect in delivering web objects. This 

characteristic gives further explanation on why the latency for smaller objects is often 

comparable to larger objects (see Figure 6.4). 
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Although chunk data rate is generally on the rising for later chunks, it becomes 

relatively stable from the 4th chunk onwards. So, when the number of chunks in an 

object transfer is big, TCP slow-start effect would become less significant as it would 

be amortized with the transfer of large number of chunks. 

From the above analysis, we see that the number of chunks is more important in 

determining object latency than the size of chunks. 

6.3 Page Retrieval Latency 

Generally, the unit of web browsing is page. So, the page retrieval latency is most 

meaningful to web users. When we work on web acceleration mechanisms, we should 

always study their effects on page latency rather than object latency only. This would 

give us more meaningful results. In this section, we would like to investigate the 

relationship between object latency and page latency, and the factors that affect page 

latency. 

6.3.1 From Object Latency to Page Latency 

A web page usually consists of a container object (CO) and a number of 

embedded objects (EO). The page retrieval latency is determined by the interaction of 

the retrieval processes of both CO and EOs. Before we proceed to the detailed analysis 

of page retrieval latency using WRDM, we first give precise definition of the retrieval 

latency of web pages to clarify possible ambiguity. 

Definition 6.7: Page Retrieval Latency 

The retrieval latency of a web page is defined as the time from the initiation of 

the request for the container object of the page, interpreting the returned data and 

triggering derived requests for all the embedded objects of the page, till all object data 

have returned from server and all resources occupied by the requests for both the 

container object and the embedded objects have been released. 
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Just like the argument given previously for object fetch latency, we will consider 

page retrieval latency as the time for successfully retrieved web pages, i.e. all the 

objects included in a web page must be retrieved successfully. Premature interruption 

of any objects in a page is not considered in our study (see previous section for 

reasons). 

Mapping the above definition to an object-level WRDG graph, the page retrieval 

latency for a page Page(k) is represented by the “longest distance” path in the graph, 

where the starting point of the path is the request initiation vertex υr(k,0) of the container 

object Obj(k,0) of the page and the ending point of the path is the latest ending vertex 

υe(k,i) of an object Obj(k,i) in the page where 0 ≤ i ≤ o . In the rest parts of this 

thesis, we may refer to this path as Page Retrieval Cost Path. 

Figure 6.10 gives an example object-level WRDG graph showing the longest 

distance path for the page retrieval latency for a web page with three EOs. Note that 

the distance of a path is the total weight of the path, not the number of arcs in the path. 

The longest distance path may not be the path which has the largest number of arcs. 

A web page usually consists of a container object (CO) and a number of 

embedded objects (EO). From Figure 6.10, we see that page retrieval latency is actually 

derived from object fetch latency of CO and EOs. However, the mapping from object 

fetch latency to page retrieval latency is not so direct and straightforward. There is 

complex relationship between object fetch latency and page retrieval latency. 
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Figure 6.10 Page retrieval latency represented by the longest distance path 
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First of all, because the URLs of EOs are defined in the CO of the page, so the 

retrieval processes for EOs highly depends on the retrieval process of CO. The 

retrieval of an EO can not be started until the CO’s data chunk containing the 

definition of the EO has been transferred from server to the client. This delayed notice 

of EOs can prolong the retrieval latency for them significantly. 

Currently, most common web browsers utilize parallelism for simultaneous 

fetching of objects in a page. This further complicates the mapping from object fetch 

latency to page retrieval latency because the overlapping of object latency makes it 

possible for the fetching of one or more objects to virtually have no effect on the whole 

page latency. On the other hand, the parallelism width employed in most web browsers 

is limited, e.g. Microsoft IE and Netscape use a parallelism width of four for the 

retrieval of objects in a page. With this limited parallelism width, some requests for 

EOs may be held in waiting state due to the unavailability of parallelism. This waiting 

time would contribute towards the retrieval latency for the EOs, as well as for the 

whole page latency. 

From the above analysis, we see that object retrieval latency would have at least 

two more components (in addition to those defined in the previous section) when a 

group of objects are put together to form a page. The first new latency component is 

related to the definition of EOs in CO, and we refer to this component as Definition 

Time of EOs. The second latency component is to reflect the time spent by a request in 

waiting for available parallelism for retrieval. We call this component Waiting Time of 

a request. Below we give the definitions of these two new latency components. 

Definition 6.8: Definition Time (DT) 

Given a page request Req(Page(k)), the definition time of an embedded object 

Obj(k,i)) in the page is defined as the time from the initiation of the request for the 
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container object Req(Obj(k,0)) to the receiving of the data chunk Chk(k,0,j) that 

contains the definition of the embedded object, where 1 ≤ i ≤ o and 0 ≤ j ≤ c . 

In the object-level WRDG graph representing the retrieval process for the 

requested page Page(k), the definition time of an embedded object Obj(k,i)) is given by 

the distance of the path from the request initiation vertex υr(k,0) of the container object 

Obj(k,0) to a data chunk vertex υd(k,0,j) of the container object, where the data chunk 

vertex υd(k,0,j) has an object deriving arc ao(k,i) connecting to the request initiation vertex 

υr(k,i) of the embedded object Obj(k,i) . 

Note the following two points about the DT times of objects: 

First, DT time does not apply to the CO of a page. Or, we can consider the DT time of 

the CO is always zero. 

Second, the measurement of the DT time of an EO starts from the point where the 

request for the page is initiated. This is because users perceive page retrieval latency 

from the point when they initiate the request for a page. So the DT time of an EO 

should be considered as part of the whole EO’s latency although the actual retrieval of 

the EO starts only when the DT time has elapsed. 

Definition 6.9: Waiting Time (WT) 

Given a page request Req(Page(k)), the waiting time of an object Obj(k,i) in the 

page is defined as the time from the time when the existence of Obj(k,i)) is made 

known to a client and a request for this object Req(Obj(k,i)) is initiated, to the time 

when the request Req(Obj(k,i)) gets its turn to get processed by the client system, 

where 1 ≤ i ≤ o . 

In the object-level WRDG graph representing the retrieval process for a 

requested page Page(k), the waiting time for an object Obj(k,i) is given by the weight 

of the object deriving arc ao(k,i) connecting the data chunk vertex υd(k,0,j) that defines 
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Obj(k,i) to the request initiation vertex υr(k,i) for the object Obj(k,i) , where 1 ≤ i ≤ 

o and 0 ≤ j ≤ c . 

For the container object Obj(k,0) of a page Page(k), its waiting time is 

represented by the weight of the page deriving arc ap(k) in a Inter-Page WRDG graph, 

where the page deriving arc ap(k) connects the ending vertex υe(k-1,0) of the container 

object Obj(k-1,0) of in the previous page Page(k-1) to the request initiation vertex υr(k,0) 

of the container object Obj(k,0) of the page Page(k) . 

This WT time exists mainly due to the limited parallelism width for object 

retrieval. When the number of objects contained in a web page is larger than the 

parallelism width, the phenomenon of object request being held in waiting would 

likely occur. Note that the WT time does not apply to the CO of a page either. Or, we 

can also consider the WT time of the CO is always zero. 

The complex relationship between the retrieval processes of objects in a page can 

be captured by WRDG graphs. Figure 6.11 gives an example object-level WRDG graph 

showing the retrieval process of a page with five EOs. From the graph, we can clearly 

see the latency components of the objects and the complex relationship between the 

objects due to dependency and parallelism. The retrieval processes of the EOs can be 

started only when their definition is made known to client. Since Obj(5) is defined in 

the seventh data chunk of Obj(0), its request can not be triggered until that chunk has 

been returned from server to client. On the other hand, the availability of parallelism 

also affects the retrieval process of EOs. For example, when the request for Obj(5) is 

ready for triggering, all the retrieval channels are occupied by other requests. Therefore, 

the request for Obj(5) has be to be held in waiting state until a retrieval channel 

become available. This waiting time WT of Obj(5) definitely prolongs its retrieval 

latency. 
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Figure 6.11 Retrieval process for a page with five EOs 
 
Note: Due to space limitation, we simplified the drawings of this graph. 
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For convenience purpose, here we would like to define two terms to refer to the 

object latency for individual single objects and for objects in a page. For an individual 

single object, its latency is made up of the five latency components defined in Section 

6.2, i.e. LRT+CT+RST+CST+ET. We will refer to this latency as Object Fetch Latency 

(OFL) from this point onwards in this thesis. In this section, we know that the latency 

for an object would include two more latency components, namely DT time and WT 

time, when the object is put into a page. We will refer to the latency which includes DT, 

WT and OFL of an object as Object Retrieval Latency (ORL) in the rest part of this 

thesis. 

In Figure 6.11, the OFL latency of Obj(5) is marked by “Other Latency 

Components of Obj(5)”, and the ORL latency of Obj(5) would include “DT of Obj(5)” 

and “WT of Obj(5)” on top of OFL latency. Later, when we need to differentiate these 

two types of latencies of objects, we would call them by different terms, as defined 

here. 

6.3.2 Experimental Study and Analysis 

6.3.2.1 General Study 

Since web pages are made of objects and page latency is derived from the latency 

of the objects in the page, we would like to look at the number of objects comprised in 

pages. Figure 6.12 plots the distribution of pages against the number of EOs per page. 

We see that while about 9% of pages do not contain any EOs, the majority of pages are 

made of multiple EOs. A prominent distribution is that nearly 25% web pages contain 

more than 20 EOs. On average, a page contains about 13.5 EOs. 

Next, we would like to look at page latency again page size and compare it with 

single object latency with similar size. Figure 6.13 plots the distribution of page latency 

with respect to total page size. By comparing it with the distribution of object latency 
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shown in Figure 6.4, we have two interesting findings: 

1) For sizes below 128 KBytes, page latency is bigger than object latency with the 

same size. This indicates that there are some factors preventing pages to be 

retrieved as fast as the objects with the same size. Further study shows that the 

main reason is the CT time of objects. For pages with sizes smaller than 128 KB, 

the size of each object in the page should be much smaller than 128 KB (since a 

page is usually made of multiple objects). According to the results in the previous 

section, CT time occupies a significant part of object latency when object size is 

small. So, the overall page latency is prolonged and it becomes even bigger than 

the latency for objects with sizes below 128 KB. 

 
Figure 6.12 Distribution of pages w.r.t. number of EOs per page 

 

 
Figure 6.13 Distribution of page latency w.r.t. page size 
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fetching of objects in a page. When page size is big, it is likely to contain many 

objects. Current web browsers would fetch multiple objects in parallel. So, the 

latency of the objects in the page is overlapped, which results in smaller total 

retrieval latency for page. 

The above two findings showed us the complicated relationship between object latency 

and page latency. Figure 6.14 further confirms this complicated relationship by plotting 

the distribution of page latency with respect to the number of objects (including CO) in 

a page. From this graph, we see that page latency is randomly distributed against the 

number of EOs in a page. The increase in the number of EOs may not result in the 

increase in total page latency. For example, the page latency for pages with 10 EOs is 

even smaller than the latency for pages with 7 EOs. This is most likely due to the 

parallel fetching of objects, which makes the retrieval of some EOs to have no effects 

on total page latency. On the other hand, page latency is generally on the rise with the 

increase in the number of EOs in a page. This could be because of the increased DT 

times of EOs and the shortage of parallelism when number of EOs is big. 

 
Figure 6.14 Distribution of page latency w.r.t. number of objects in a page 
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Such important factors can not be ignored when studying page latency. In the later part 

of this section, we will present our study on those special factors particularly found in 

page retrievals. 

As we know from previous section, object retrieval latency would have two new 

components when objects are put together to form pages i.e. the DT time and WT time 

of objects in a page. The above discussion indicates there is complex interaction 

between these two new components and page latency. Now, we would like to 

investigate the impact of the new components on page latency. 

Our experiments recorded detailed information about the latency components of 

page retrieval. Figure 6.15 plots the relative distribution of the DT time, WT time and 

the OFL latency of objects against the number of EOs in a page. For a given group of 

pages (e.g. the pages with 8–11 EOs) in the graph, the relative distribution of these 

components is calculated using the following formulas: 
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The most surprising finding from the graph might be that a great percentage of 

retrieval latency of objects in pages comes from DT rather than OFL latency which is 

often thought of as the dominating factors of page retrieval latency. In all situations, 

DT time is the largest component among all the latency components. It often takes up 
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more than 50% of the object retrieval latency. This indicates that DT is a more 

important latency component than others. This finding gives a hint on a new direction 

of acceleration of web retrieval latency by reducing the DT times of objects in pages. 

As we can see from the WRDG graph in Figure 6.11, DT times of EOs exist because the 

definitions of EOs are found in the data chunks of CO’s transfer. The later chunk 

contains the definitions, the larger the DT times would be. If the definitions of EOs can 

be made known to client earlier through some special mechanism, the DT time would 

be reduced, which would in turn effectively reduce the whole page latency. In Chapter 

8, we propose a new mechanism to address this issue. 

 
Figure 6.15 Relative distribution of latency components w.r.t. number of EOs per page 
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absolute DT times generally become bigger. This could be because that more EOs tend 
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quickly to as high as 29% of the overall retrieval latency as the number of EOs per 

page increases. On average, WT time occupies about 15% of the whole retrieval 

latency of EOs. 

The WT time exists because of the limited parallelism width available for object 

retrieval. In the current web system, most common web client programs such as 

Microsoft IE and Netscape use a default parallelism width of 4 for parallel fetching. 

When a page consists of less than 4 EOs, object requests do not need to wait as there is 

always enough parallelism for every object request upon its triggering. So the WT for 

such web pages is zero. However, when the number of EOs increases, the WT will 

increase quickly as the default parallelism width becomes insufficient to handle all the 

object requests simultaneously. Many object requests would have to wait long for 

fetching channels to be released by other requests before they can get their turned to be 

processed. When the number of EOs in a page is greater than 16, the WT time even 

becomes bigger than the actual object fetch latency OFL. This finding is also very 

important because it suggests that providing sufficient parallelism width for web 

retrieval would be an effective way to improve web retrieval latency. 

The actual object fetch latency OFL (which consists of LRT, CT, RST, CST, and 

ET) is often much smaller compared with DT times. As the number of EOs in a page 

increases, the contribution of OFL to the ORL latency drops dramatically from about 

50% to only 14%, even smaller than the WT portion. As a large percentage of web 

pages contain more than 20 EOs and the average number of EOs in a page is about 

13.5 (see Figure 6.12), we expect OFL to be less of a problem for web retrieval than DT 

and WT for the majority of web pages. 

From the above discussion, we are further confirmed about the complicated 

mapping relationship between object latency and page latency. The object fetch latency 
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OFL consists of five components and they are the actual latency for fetching an object. 

However, when the OFL is put into the context of pages, it becomes insignificant. 

Instead, two other latency components particularly found in pages, i.e. DT and WT, 

become the dominating factors. In the following subsections, we will study on these 

factors in detail to further understand their impact on page latency. 

6.3.2.2 Studies on DT 

Since DT time exists because EOs are defined in CO, we would like to first 

investigate some distributions of COs. 

 
Figure 6.16 Distribution of the size of COs 

 

 
Figure 6.17 Distribution of CO w.r.t. number of chunks 
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shows the distribution of COs against the number of chunks in their transfer. By 

comparing it with Figure 6.6, we do see that more COs have larger number of chunks 

than that for all objects shown in Figure 6.6. While about 12% of COs have only one 

chunk in their transfer, the majority of COs are made up of multiple chunks. On 

average, a CO has about 6.7 chunks in its transfer. Because COs usually have multiple 

chunks in their transfer, the chances for EOs to be defined in chunks with large chunk 

sequence number would be very high, and that would result in large DT times for EOs. 

Figure 6.18 through Figure 6.20 plots the distribution of definition points of EOs 

from three different aspects. Note that the definition points of EOs are actually the 

starting points of object-deriving arcs in WRDG graphs. 

Figure 6.18 shows the average number of EOs defined in each part of CO in terms 

of the percentage of CO's body size. From this graph, we see that the definitions of 

EOs are quite evenly distributed throughout CO’s body. In other words, every part of 

CO’s body would have EOs defined in it. Thus, some EOs are made known to client 

quite late until the bottom parts of CO being transferred to client. 

 

 
Figure 6.18 Average number of EOs w.r.t. percentage of CO’s body retrieved 
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significant in the retrieval latency of EOs. 

Figure 6.20 shows the definition points of EOs in terms of percentage of CO’s 

retrieval latency. It is surprising to see that a great many of EOs are defined at the very 

late parts of CO’s retrieval latency. Detailed analysis reveals the following reason: 

CO’s transfer latency is made up of many components (see Chapter 4 and previous 

sections of this chapter). Most of the latency components such as CT time etc take 

place before the actual transfer of data starts. So, when the actual transfer of data 

chunks of CO starts, there is already much time elapsed. That is why we see many EOs 

are defined at the very late parts of CO’s retrieval latency. 

 

 
Figure 6.19 Average number of EOs w.r.t. chunk sequence number in CO transfer 

 

 
Figure 6.20 Average number of EOs w.r.t. percentage of CO’s transfer latency 
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question, we need to look into whether page latency is determined by EO or CO. Figure 

6.21 plots the distribution of EOs according to whether the retrieval processes of them 

finish before or after CO’s retrieval process. According to the graph, we see that most 

EOs have their retrieval processes finished after CO’s retrieval process. On average, 

about 64% of EOs in a page finish after the CO of the page. In other words, the final 

retrieval latency of web pages is determined by 64% of the EOs in the page. This 

indicates that reducing DT times of EOs will have positive impact on whole page 

latency. 

 
Figure 6.21 Distribution of EOs that finish before and after CO finishes 
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page, the definition points for all EOs in that page will be delayed to as late as the 

time of the last data chunk of the CO in actual fact. 

2) DT time = Normal 

This situation is the normal situation where the definitions of EOs are distributed 

across the CO’s body as they actually are. 

3) DT time = The time of the fist chunk of CO 

In this situation, we assume that all the EOs of a page are defined in the first data 

chunk of the CO. This situation may be rarely seen in current real web systems. 

However, it is achievable through certain special mechanisms. So, we include it 

here as a reference. 

4) DT time = 0 

In this situation, we assume that the definitions of all the EOs of a page are already 

known to client when the client triggers the request for that page. Again, this is not 

real in current web systems, but we use it as a reference here. 

Figure 6.22 shows the relative page latency under different DT with respect to the 

number of EOs in a page. From the graph, we see that different DT times do have 

significant impact on total page latency. In general, pushing the definition points of 

EOs to the last chunk of CO would cause the page latency to increase about 10.7%, 

while promoting definition points of EOs to earlier location would result in reduction 

in page latency for 3.5–10.6%, as compared against the normal situation. 

At first, we speculate that reducing DT time may bring in much greater 

improvement for pages with more EOs since such pages have more EOs to enjoy the 

reduced DT time. However, we note from Figure 6.22 that the improvement does not 

seem to grow constantly as the number of EOs in a page increases. Further study 

reveals that the limited parallelism for parallel fetching of objects could be the reason. 
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After DT time of EOs has been reduced, parallelism width will become a performance 

bottleneck. This is because that smaller DT time puts a higher demand on parallelism 

since EOs are made known for retrieval earlier. Therefore, parallelism becomes 

insufficient even for pages with smaller number of EOs. 

 
Figure 6.22 Relative page latency under different DT w.r.t. number of EOs in a page 

 
6.3.2.3 Studies on Parallelism and WT 

In this subsection, we would like to study the effect of parallelism on total page 

latency. 

In our WRDM model, the WT time of EOs reflects the effect of parallelism on 

page latency. When the default parallelism width is insufficient for object requests, 

some requests will be held in waiting state. The time spent by a request in waiting state 

is captured by the latency component WT time in our model. 

According to Figure 6.12, web pages contain about 13.5 EOs on average. Some 

25% web pages even contain more than 20 EOs. However, most current web browsers 

like Microsoft IE and Netscape employ a default parallelism width of four only. As a 

result, the WT time of EOs is often seen in current web retrieval. 

Now, let us first investigate the distribution of EOs being held in waiting state 

under the most common parallelism width of four. From the aspect of waiting state, 

EOs can be classified into the following three classes: 
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Class 1) EOs that are not held in waiting state 

For EOs in this group, the contribution of their retrieval latency to page 

latency will not be affect by an increase in parallelism width. However, a 

decrease in parallelism width may affect their contribution because decreased 

parallelism may turn them into waiting EOs. 

Class 2) EOs that are held in waiting state, but their retrieval processes finish before 

the retrieval process for CO finishes 

For EOs in this group, their retrieval latency will not contribute to page 

latency since their retrieval finishes before CO’s retrieval process. 

Therefore, an increase in parallelism width would not affect their contribution 

to page latency. But a decrease in parallelism width may change this 

situation. 

Class 3) EOs that are held in waiting state, and their retrieval processes finish after the 

retrieval processes for CO finishes 

For EOs in this group, an increase or a decrease in parallelism width would 

all affect their contribution to page latency. 

Figure 6.23 plots the distribution of EOs belonging to the three classes under the 

parallelism of four. From the graph, we see that a considerable percentage of EOs are 

held in waiting state due to the lack of parallelism. Especially, the percentage of EOs 

belonging to class 3 grows dramatically to over 60% as the number of EOs in a page 

increases. This indicates that parallelism would have important effect on page latency. 

The increase in parallelism width could bring down WT times of EOs, and this 

reduction in WT times for EOs belonging to class 3 would have positive effect on 

whole page latency. 
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Figure 6.23 Distribution of EOs in waiting state (parallelism = 4) 

 
Figure 6.24 shows the effect of different parallelism width on the distribution of 

EOs belonging to class 3. As we can see, the percentage of such EOs drops rapidly as 

the parallelism width increases. When parallelism width grows to 32, the percentage of 

EOs belonging to class 3 drops to nearly zero percent. Considering that web pages 

contain about 13.5 EOs on average (see Figure 6.12), it is understandable why almost no 

EOs are held in waiting state when parallelism width is 32, which is bigger than the 

number of EOs in most pages. 

 

 
Figure 6.24 Effect of different parallelism width on the distribution 

of EOs belonging to class 3 
 

Recall in Figure 6.21, the final page retrieval latency is largely determined by the 

EOs in the page. So we can deduce that improving parallelism width would also have 

positive impact on whole page latency since wider parallelism can effectively reduce 

the WT times of EOs. Figure 6.25 shows the effect of different parallelism width on 
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whole page latency. In the graph, we also include a situation of “parallelism=infinite”. 

When parallelism is infinite, the WT time of objects will be zero. This is the upper 

bound of the effect that parallelism can bring in on page latency. We use this situation 

as a reference to compare others against with. 

 
Figure 6.25 Relative page latency under different parallelism 

w.r.t. number of EOs in a page 
 

This graph confirms the importance of parallelism’s effect on page latency. From 

it, we see that the increased parallelism width would reduce page latency considerably, 

and this effect becomes stronger when the number of EOs in a page increases. This is 

understandable because most web pages contain quite many objects (see Figure 6.12). 

However, when parallelism width grows bigger than 16, the improvement becomes 

insignificant. This is because the web pages in our test set contain about 13.5 EOs on 

average (see Figure 6.12). When parallelism width grows bigger than that number, there 

will be fewer web pages which can take the advantage of the wider parallelism. So the 

improvement becomes small. 

6.3.3 Discussion on the Relationship among DT, WT and Parallelism 

From the above analysis, we see there is complex relationship among DT, WT 

and parallelism, which greatly complicates the mapping of object latency to page 

latency. 
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The DT time of EOs exists because the retrieval processes of EOs depend on the 

retrieval process of CO. Because the definitions of EOs exist in CO, so the triggering 

times of requests for EOs are highly dependent on when the data chunks of the CO 

containing the definitions have reached client. Due to the fact that most web pages 

contain multiple objects and most COs consists of multiple data chunks in their 

transfer, the DT time of EOs are often considerably large, which contributes 

significantly towards whole page latency. 

The WT time of EOs is caused by insufficient parallelism width for parallel 

fetching of objects. The parallelism width used in current web client programs is 

limited, e.g. four for Microsoft IE and Netscape. When the number of objects known 

for retrieval exceeds the parallelism width, some objects would have to wait until there 

is free parallel channel for use. 

In general, reducing DT time of EOs will put higher demand on parallelism width. 

When the DT times of EOs are made smaller, more objects will be made known for 

retrieval at a faster speed. This will require a wider parallelism width. Otherwise, we 

would only see that more EOs are held in waiting state when their DT times are 

reduced. 

On the other hand, wider parallelism width can only be well utilized when the 

DT times of objects are small. When parallelism width is increased, it will need more 

concurrent requests to use up the parallelism. More concurrent requests require more 

objects to be made known for retrieval earlier, which means smaller DT time of objects. 

If parallelism width is increased but there are not enough concurrent object requests to 

take the advantage of it, many parallel channels will just stay in idle, and the resource 

is wasted. 

Furthermore, both DT time and parallelism have something to do with the 
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number of EOs per page. 

Generally, when parallelism width is increased, not only it will require smaller 

DT of EOs, but also it will require more EOs to be defined in the page so that there 

may be more concurrent requests to make use of it. But if there is too large number of 

EOs included in the page, many of the objects may suffer from long WT times due to 

the relative insufficiency of parallelism. For example, the studies in previous sections 

show that the default parallelism of four in current web system seems insufficient since 

current web pages consist of 13.5 EOs on average. Given the trend that web pages tend 

to have more objects, a wider parallelism should be considered. 

Conversely, while larger number of EOs in a page is good to wider parallelism, it 

may mean bigger DT times for EOs because the CO of the page also tends to be big in 

this situation. Unless special mechanism is taken to reduce the DT time, otherwise, the 

increase in the number of EOs per page will prolong page retrieval latency. 

In brief, DT or parallelism will become performance bottleneck when the other 

one is improved, and they have contrary requirement on the number of EOs in a page. 

Because the interaction among the factors is so complex and all the factors are very 

critical in determining page retrieval latency, so it requires prudent consideration of all 

the factors in order to achieve optimal web retrieval performance. Simply adjust any 

one of them will not bring in the best improvement because other factors will soon 

become performance bottleneck if only one is improved. 

6.4 Impact of Real-time Content Transformation on Web Retrieval 
Latency 

6.4.1 Real-time Transformation of Web Content 

With the exponential growth of web usage, web has become the most important 

and popular communication media in the world. Everyday, millions of people access 

the web from every corner of the world using different types of devices such as PCs, 
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cellular phones and PDAs etc. Due to different preference of users and different 

environment such as network bandwidth and capability of users’ devices, different 

group of users may have different expectation on the presentation of the content they 

surf. For example, some web users may expect the content to be in their native 

language, while some others may expect to download the key content to their mobile 

devices fast and ignore some trivial content like unimportant images. To cater for the 

different needs, there emerges a technology called content transformation. This 

technology tries to transform web content to best satisfy the different expectation of 

users, since this is very important to both web users and web content providers. 

Web content transformation is often done on web intermediary servers like 

proxies. This is because such solution has many advantages. First, this solution is 

cost-effective as it uses dedicated hardware design for content transformation and 

delivery and it has the one-to-many nature. Second, the management is centralized in 

such solution so it is easy to manage the system. Third, this solution is easy to deploy 

because there is no need for collaboration from web servers and clients. Finally, there 

are some types of content transformations which should be done more appropriately in 

the intermediary servers. Examples of such transformation include advertisement 

localization and content personalization etc. 

Content transformation on web intermediary servers is often carried out in 

real-time because the intermediary servers usually do not have all the content to apply 

offline transformation on it. When doing real-time content transformation, web 

intermediary servers basically have the following three ways to perform the task: 

1) Chunk-streaming approach 

As we know, web content is transferred in a sequence of data chunks from server to 

client. In this approach, web intermediary server will apply content transformation 
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on each data chunk it receives and then forward it to client. This way, 

transformation is done on the fly, without delaying the transfer of each chunk. 

2) Partial-object buffering approach 

In this approach, web intermediary server will buffer certain number of data chunks 

before it apply content transformation on them. This is important for some 

transformations which require some previous or/and future data to perform the 

transformation. After transformation, some data chunks are forwarded to clients 

while some may be kept for the transformation on the following data. 

3) Full-object buffering approach 

This approach buffers the whole object at web intermediary server and then 

perform the necessary transformation on the whole object. After that, the object will 

be forward to clients, still in a chunk-by-chunk way. 

While many studies focus on the real-time feature and the restrictions on the kind 

of transformation that can take place etc. for the above three approaches of content 

transformation, there is little study on the possible impacts of these different content 

transformation approaches on web retrieval latency. In this section, we would like to 

use our WRDM model to analyze the performance impacts of content transformation, 

with special emphasis on page retrieval latency. 

6.4.2 Impact of Content Transformation on Web Retrieval Latency 

In order to study the performance impacts of content transformation using our 

WRDM model, we first need to extend our WRDG graphs to capture web retrieval 

process when intermediary servers are in presence. Figure 6.26 gives a WRDG graph for 

the retrieval process of a page with 2 EOs. In the intermediary server, every data chunk 

would have two associated operations: receiving from web server and forwarding to 

client. So we use two vertices to represent one data chunk for the retrieval process in 
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intermediary server: the vertex υi r represents the receiving of the data chunk Chk(i) 

from server, and the vertex υi f represents the forwarding of the data chunk Chk(i) to 

client. For simplicity reason, we do not show the retrieval process of EOs in the graph. 

Instead, we just show the definition points of the EOs. 

 

 
 
Figure 6.26 WRDG graph for retrieval process in the presence of intermediary server 

 
When chunk-streaming approach of content transformation is carried out on 

intermediary server, there will be some transformation processing time between the 

receiving and forwarding of every data chunk. We use a vertex υt to represent this 

transformation operation. Figure 6.27 demonstrates the retrieval process for a page with 

two EOs when intermediary server applies chunk-streaming transformation on the 

content. Because intermediary servers often have special dedicated hardware design 

for content transformation, so the latency incurred by the transformation for a data 

chunk is often negligible to client. So, we can generally assume that the user perceived 

latency in Figure 6.27 is the same as the one in Figure 6.26. 
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Figure 6.27 Retrieval process for chunk-streaming transformation 
 

When the intermediary server employs the partial-object buffering approach to 

do content transformation, it may affect the definition time (DT) of EOs. Figure 6.28 

gives an illustration of the retrieval process for a page when intermediary server uses 

partial-object buffering transformation approach. Here we assume the intermediary 

server always buffers two chunks for content transformation. Comparing this graph 

with Figure 6.27, we can see that the definition points of both EO1 and EO2 have been 

postponed to later points. We call this effect as push-back effect of content 

transformation.  

Pushing the definition points of EOs to later points means that the DT times of 

EOs will become larger. As we learnt in previous sections, DT times of EOs play very 

important role in whole page latency. Enlarging DT time could result in increase in 

whole page latency. 
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Figure 6.28 Retrieval process for partial-object buffering transformation 
 

Figure 6.29 shows the retrieval process for a page when full-object buffering 

transformation is used. From this graph, we see that the push-back effect becomes even 

more serious. Because the intermediary server buffers the whole object before it 

applies content transformation, so the forwarding of every data chunk has been 

postponed to the bottom severely. This could dramatically increase the DT times of 

EOs, which would in turn increase whole page latency. 

6.4.3 Experimental Study 

We conduct simulation experiments to find out the impacts of real-time content 

transformation on web retrieval latency. The approaches we examined are the 

partial-object buffering transformation and the full-object buffering transformation. 

For the partial-object buffering transformation, we assume the intermediary server 

always buffers two chunks of data for content transformation. As for the 

chunk-streaming transformation, we assume its impact is negligible and treat its 
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performance is the same as the normal situation, i.e. web retrieval through 

intermediary servers with no content transformation. The normal situation is included 

in our study to be used as a reference base for comparing the performance of different 

transformation approaches. 

 
 

Figure 6.29 Retrieval process for full-object buffering transformation 
 

Figure 6.30 shows the impact of real-time content transformation on DT times of 

EOs. From it, we can see that content transformation have significant impact on the 

DT times of EOs. The impact of full-object buffering transformation is much higher 

than that of partial-object buffering transformation. On average, DT times of EOs have 

been increased about 63.5% and 18.8% by full-object buffering transformation and 

partial-object buffering transformation, respectively. With this significant impact, we 

expect that there would be substantial increase in whole page latency when full-object 

buffering transformation or partial-object buffering transformation is conducted on 

intermediary servers. 
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Figure 6.30 Impact of real-time content transformation on DT times of EOs 

 

 
Figure 6.31 Impact of real-time content transformation on page retrieval latency 

 
Figure 6.31 shows the impact of real-time content transformation on page retrieval 

latency. As expected, we see that they indeed result in substantial increase in whole 

page latency. When full-object buffering transformation or partial-object buffering 

transformation is conducted on intermediary servers, page retrieval latency would be 

increased by 10.6% and 4.9% respectively. We also note that the impact of real-time 

content transformation on page retrieval latency is not as significant as it does on the 

DT times of EOs. This could be mainly due to the parallelism in web retrieval, which 

prevents object latencies from being mapped into page latency directly. 

From the above study, we see that full-object buffering real-time content 

transformation has the most severe impact on web retrieval latency. So we would like 

to suggest not using it in web systems. The chunk-streaming transformation has the 
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least impact on web retrieval latency and such impact is often negligible. So it may be 

considered when implementing real-time content transformation. However, for certain 

types of transformation which requires seeing more data than just one chunk of data, 

we would better use the partial-object buffering approach. As we see from the above 

results, the partial-object buffering approach does have some negative effect on page 

retrieval latency, but the effect is moderate. So, it should be highly preferred rather 

than the full-object buffering approach when more data need to be seen for content 

transformation. 

6.5 Upper Bounds of Improvement on Web Retrieval Latency 

Many acceleration mechanisms have been proposed to tackle the problem of long 

web retrieval latency. The reuse-based mechanisms (e.g. web caching and prefetching) 

are the first category mechanisms being proposed. Many studies have examined the 

upper bound for the performance of such mechanisms and showed that their 

improvement is limited [13, 14, 17, 18, 19, 20, 108, 109]. To overcome the limitation, 

another new direction which aims to accelerate the actual retrieval process of web 

pages is getting more attention. The new direction is believed to have better potential 

because they do not suffer from the cacheability related issues such as the low reuse 

ratio of web objects and the ever-increasing amounts of dynamic web content. 

Examples of such techniques include compression, content selection and persistent 

connection, etc. While the new direction of acceleration has shown some promising 

potential ([22, 23, 24, 25, 26, 27, 28, 37] etc.), it remains to be seen the quantitative 

upper bound of the techniques in this direction. Below, we would like to investigate the 

upper bounds for the performance improvements for the acceleration mechanisms in 

this direction. The results would help us to get some idea about the potentials of this 

direction of acceleration. 
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In deriving the quantitative upper bounds, we make some best-cases assumptions 

about the latency components in web retrieval to base our simulations on. The 

performance of these best-cases will be the upper bounds for web retrieval under 

different situations.  

6.5.1 Upper Bounds for Location Resolution Related Acceleration 

Web retrieval process typically starts with the resolution of the location of a 

server. In current web system, such location resolution processes are DNS lookups. 

The latency caused by this process is referred to as LRT in our WRDM model. Many 

mechanisms have been proposed to reduce the LRT time in web retrieval, such as 

stored address binding [194], pre-performing DNS lookups [195], proactive caching of 

DNS records [196] and so on. 

We can derive the upper bound for location resolution related mechanisms by 

assuming the best-case situation for this process. Since this process is typically DNS 

lookup in current web system, so the best-case situation would be that 100% DNS 

lookups result in hits in local DNS cache. Figure 6.32 illustrates this best-case situation 

using a WRDG graph for a page with one EO. 

By assuming the smallest LRT time for every request, we can derive the 

performance upper bound for location resolution related acceleration mechanisms. 

Figure 6.33 plots our simulation results of the performance of the best-case situation. 

From Figure 6.33, we see that the performance of the best-case situation is better 

than the normal situation, but the difference is not very significant. On average, the 

best-case situation improves the performance by about 5.07%. This shows that the 

room for improvement in this direction is rather limited. This is because the location 

resolution related acceleration mechanisms only reduce the LRT time which occupies 

just a small portion of the whole object latency. Refer back to Figure 6.5, LRT time 
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contributes about 1~6% of the whole object latency. This indicates that the 

performance of mechanisms in this direction will not be significant, although there is 

still some room for improvement. 

 
 

Figure 6.32 Best-case assumptions for location resolution related mechanisms 
 
 

 
Figure 6.33 Upper bounds for location resolution related mechanisms 

 
 
6.5.2 Upper Bounds for Connectivity Related Acceleration 

The establishment of network connection plays a very important role in web 

retrieval. The latency incurred by network connection establishment, i.e. the CT time, 

r 

l 

c 

s 

e 

d0

d2

Normal Situation Best-case Situation 

d1

d3

r 

l 

c 

s 

e 

d0

d1

r 

l 

c 

s 

e 

d0

d2

d1

d3

r 

l 

c 

s 

e 

d0

d1

DNS lookups may 
result in local DNS 
cache misses, so the 
LRT time could be 
long. 

DNS lookups always 
result in local DNS 
cache hits, so the LRT 
time is always the 
smallest. 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs per Page

R
el

at
iv

e 
Pa

ge
 L

at
en

cy

Normal Best-case DNS



147 

is one of the most significant components in object retrieval latency. From Figure 6.5, 

we already see that CT time can sometimes occupy more than 50% of the whole object 

latency. 

Typical connectivity related acceleration mechanisms include 

persistent-connection, pre-connection and bundling etc. [21, 22, 24, 192, 195, 197, 198, 

199, 200], MGET [22, 23, 25, 201, 202]. All these mechanisms try to accelerate web 

retrieval by reducing the CT time for every request. 

 

 
 

Figure 6.34 Best-case assumptions for connectivity related mechanisms 
 

To derive the upper bound for connectivity related mechanisms, the best-case 

situation needs to be assumed. In our study, we assume perfect persistent-connection in 

web retrieval. By perfect persistent-connection, we mean that every request enjoys 

persistent-connection, so the time spent on network connection establishment will be 

the minimum. Figure 6.34 demonstrates how this best-case assumption affects page 

retrieval latency. Using this assumption, we get an upper bound for the mechanisms in 

this direction, which is shown in Figure 6.35. 
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Figure 6.35 Upper bounds for connectivity related mechanisms 

 
From Figure 6.35, we see that the performance gain by the best-case situation is 

significant, with an average of about 27.64%. This result shows that the room for 

improvement in this direction is substantial. It also reemphasizes the importance of CT 

time and the effectiveness of those connectivity related mechanisms. 

6.5.3 Upper Bounds for Transfer Related Acceleration 

The latency incurred by the actual transfer process is the CST time in web 

retrieval. As we learnt from Figure 6.5, CST time often makes up more than 50% of the 

whole object latency. For big objects, it can reach as high as 95% of the object latency. 

There are quite a number of mechanisms aiming to reduce this significant latency 

component. Typical examples include delta encoding, compression, transcoding and 

content optimization etc. [220, 218, 221, 224, 219, 222, 223, 26, 218, 219, 203, 203, 

217, 27, 225, 227, 226, 28, 228, 204]. All these mechanisms try to reduce the amount 

of data being transferred during the retrieval of an object. 
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Figure 6.36 Best-case assumptions for transfer related mechanisms 
 

Again, we need to assume the best-case situation in order to derive the upper 

bound for transfer related acceleration. In our study, we use this situation as the 

best-case situation: there is only one chunk of data being transferred during the transfer 

process of any objects. We believe this shall be a reasonable best-case situation as 

every object request would result in at least one chunk of data being returned from the 

server. Figure 6.36 gives a simple illustration of this assumption using WRDG graphs. 

Based on this best-case assumption, we are able to derive the upper bound for the 

mechanisms in this direction, as shown in Figure 6.37. 

From this graph, we see that the performance of the best-case of transfer related 

acceleration is also significantly better than the normal situation. The average 

difference between them is about 15.11%. We notice that the difference in performance 

in Figure 6.37 is generally smaller than that in Figure 6.35. At first, we feel this is 

somewhat surprising because we know that CST time is equal or even more important 

to web retrieval latency than CT time. But further study reveals the reason for this 
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result: For the best-case situation in this study, we assume there is only one chunk of 

data in the transfer of any objects. With reference to Figure 6.8 and Figure 6.9, we see 

that the latency for transferring one data chunk is actually quite large. This may 

explain why the overall improvement is not as significant as the one shown in Figure 

6.35. 

 
Figure 6.37 Upper bounds for transfer related acceleration 
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ü Assumption on DT time of EOs 

For this parameter, we have two different assumptions: 

(1) We assume the DT time of all EOs equal to the time of the first data chunk of 

the CO of the page. This is equal to say that we assume all the EOs of a page 

are defined in the first data chunk of the CO. This shall be the best practical 

case for current web pages; 

(2) We assume the DT times of all EOs are equal to zero. This will be theoretically 

the best case that DT time can be. 

ü Assumption on LRT time 

We assume the LRT time for all requests is always the smallest. Because the LRT 

time comes from DNS process in current web system, this assumption means that 

all DNS processes are treated as local-cache-hit. According to our experimental 

result, a local-cache-hit DNS lookup typically takes about 0.003 seconds to finish. 

ü Assumption on CT time 

CT time comes from the establishment of network connection. Here we assume 

“perfect persistent connection” for our simulation. By “perfect persistent 

connection”, we mean that all requests would enjoy persistent connection, which is 

even more than the best case that current techniques can deliver. With this 

assumption, CT time will always be the smallest. 

ü Assumption on CST time 

CST time is the actual transfer time of data chunks and we assume it is related to 

the size of objects. For all objects, we try to use the smallest possible sizes for them. 

In detail, we assume there is only 1 chunk of data transfer for text objects like COs, 

and for other types of objects like images, video and audio files etc., we assume 1/2 

of the original size is used. We believe this shall be reasonably the best sizes that 
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any encoding, transcoding, or content selection algorithms may give. 

There are two other latency components, i.e. RST and ET. For them, no best-case 

values are assumed and we just use the normal values. This is because they can hardly 

be reduced in current web system, and their impact on page latency is significantly 

much smaller compared with other latency components. 

The combination of the above assumptions gives four best case situations for 

deriving the upper bounds. The assumptions for each best case are briefly listed in 

Table 6.1 and illustrated by the WRDG graphs in Figure 6.38 and Figure 6.39. 

 
Table 6.1 Assumptions for the best cases 

 Best Case 1 Best Case 2 Best Case 3 Best Case 4 
Assumption on 

parallelism Parallelism = 4 Parallelism = Infinite  (i.e. WT = 0) 

Assumption on 
DT DT = 1st chunk time DT = 0 DT = 1st chunk time DT = 0 

Assumption on 
LRT LRT = Local-cache-hit DNS lookup time (about 0.003 seconds) 

Assumption on 
CT Perfect persistent connection (0.031749 seconds) 

Assumption on 
CST 

Text objects: Assume its transfer contains only 1 chunk of data 
Other types of objects: 1/2 of the original size is assumed 

 
We used the traces and tools described in Chapter 5 to conduct simulations in 

order to derive the quantitative upper bounds. The results we got are plotted in Figure 

6.40. The normal situation, i.e. normal DT time and parallelism equal to four, is used as 

a reference against the upper bounds. 

From Figure 6.40, we see that all best-cases give much better performance than the 

normal situation. This indicates that the room for improvement is significant. On 

average, the best-case situations can improve the performance from about 70% to 

about 75%. These high percentage improvements of the upper bounds suggest that the 

acceleration which aims to accelerate the actual retrieval process of web objects and 

pages is a very promising research direction. 

Besides the great potential given by the upper bounds, we also have an 
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interesting observation from Figure 6.40. We see that the performance of 

“Parallelism=Infinite” (i.e. Best Case 3 and 4) is better than the performance of 

“Parallelism=4” (i.e. Best Case 1 and 2), and the difference between them becomes 

larger when the number of EOs in a page increases. 

 
 

Figure 6.38 Assumptions for the Best Case 1 and Best Case 3 
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Figure 6.39 Assumptions for the Best Case 2 and Best Case 4 

 

 
Figure 6.40 Upper bounds of improvement on page retrieval latency 
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become a bottleneck of web retrieval performance. When parallelism is increased to 

unlimited, such bottleneck is removed. So the performance improvement for infinite 

parallelism width is better than those under parallelism of 4. 

When the number of EOs in a page is big, wider parallelism width will be more 

effective. This is because: in such situations, more EOs will be held in waiting state if 

parallelism is limited. In other words, the demand on parallelism is higher in such 

situation. Increasing parallelism width would right meet the demand. So, wider 

parallelism width becomes more effective when the number of EOs in a page is big. 

That is why we see that the performance difference between “Parallelism=Infinite” and 

“Parallelism=4” becomes bigger when the number of EOs in a page increases. 

6.6 Conclusion 

This chapter presented our detailed study and analysis on both object retrieval 

latency and page retrieval latency based on our WRDM model. The results shed light 

on the complicated interaction among the factors affecting web retrieval latency, which 

is largely ignored in previous object-level study in this area. For individual single 

object retrieval, we see that the CT time and CST time are the two major latency 

components, and most objects consist of multiple data chunks in their transfer. When 

objects are put together to form a page, the CT time and CST time are no longer the 

dominating latency components. Due to the dependency among the objects in a page 

and limited parallelism width used in web retrieval, the DT time and WT time 

contribute even more to page retrieval latency than actual object fetch latency does. 

Our detailed study based on WRDM model reveals the complicated relationship 

among DT, WT, parallelism and page retrieval latency, and shows that to achieve 

optimal web retrieval performance would require prudent consideration of all the 

factors. Simply adjust any one of them will not help much because the performance 
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will soon be bottlenecked by other factors. Based on the understanding of web retrieval 

latency using WRDM model, we also analyzed the possible impact of real-time content 

transformation on web retrieval latency and derived various upper bounds for web 

acceleration. The abundant and comprehensive results obtained in this study also show 

that the WRDM model is a very useful and effective tool for studying web retrieval 

latency. 
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Chapter 7 Study of Compression in Web Content Delivery 

7.1 Introduction 

User's perceived latency for web content retrieval is always a big concern to web 

users and content delivery and distribution network service providers. People want to 

access information faster for a given network bandwidth. To improve the performance 

of web content retrieval, caching [9, 10, 11] and prefetching [12, 13, 14] have been 

introduced. However, the performance of these caching-based mechanisms is limited 

due to the characteristics of web traffic and the cacheability of web objects [13, 14, 17, 

18, 19, 20]. To overcome the limitation, researchers are actively looking into 

mechanisms which accelerate the downloading process of retrieval objects and pages. 

Examples of such mechanisms include persistent connection [21, 22], pre-connection 

[195], parallel fetching [229, 230, 231], bundling [23, 24, 25], delta encoding [26, 27, 

28], and compression [28, 206]. These mechanisms are believed to have good potential 

because they cover a wider range of objects and pages. 

In this chapter, we would like to investigate the effect and implication of 

compression in web content delivery from the detailed chunk level. Here the term 

“compression” means a mechanism which applies a lossless compression algorithm on 

textual web objects. The support for such compression has been included in both 

protocols and web browsers. Protocols have included support for web compression 

since HTTP/1.0 [36]. HTTP/1.1 further enhanced this support by including more 

compression algorithms such as gzip, deflate and compress [37]. Most common web 

browsers such as Microsoft IE and Netscape have also equipped support for web 

compression since 1998 [206]. So, in current web system, it is possible for web data to 

be compressed and decompressed with no user interaction at the end point. These 

actions can even be performed in real-time. 
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Compression is reported to have good potential in increasing virtual network 

bandwidth, reducing network traffic and workload on web servers, and reducing 

download time of web pages [206, 215, 216]. While it is instinctive to understand that 

it is always going to be faster to transfer a smaller file than a larger one, there are some 

issues regarding page retrieval latency worth of studying. 

Typically, a web page is made up of multiple objects, among which one is called 

page Container Object (CO) and others called Embedded Objects (EO). CO usually is 

in the form of an HTML file while EOs are mostly images. An HTML file consists of 

only ASCII text so it is highly compressible. But images used in web pages are usually 

pre-compressed and it is difficult to compress them further. So, the CO is often the 

only object in a page that is suitable for compression. Since CO only occupies part of 

the total page size, how effective would it be to just apply compression on the CO? 

Figure 7.1 shows the distribution of pages with respect to the ratio of CO size vs. 

total page size. From the graph, we see that for more than 60% of web pages, COs 

occupy less than 50% of total page size. On average, CO occupies only about 44% of 

total page size. Therefore, no matter how compressible COs are, the data left for 

transfer would still be more than half of total page size. Considering that there are 

other latency components such as location resolution time and connection time which 

can not be improved by compression, we would expect that the performance 

improvement that compression can bring in would be much smaller than 50%. So, 

although COs might be compressed up to many times smaller, the improvement on 

page latency would not be that significant. 

Note that Figure 7.1 also shows that there are about 13.7% of web pages whose 

COs’ size is equal to the whole page size. This is because that these pages consist of 

only one object which is the CO. 
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Figure 7.1 Distribution of pages w.r.t. the ratio of “CO size vs. whole page size” 
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important to study the relationship between them. 
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compression mechanisms, their performance on whole page latency is not well studied. 

A detailed study on the difference of the performance of these two compression 

mechanisms could be useful in helping people to have insight view of them. 

The above issues about compression in web content delivery have not been well 

studied. Little literature regarding these issues can be found. Most of existing studies 

on compression, e.g. [27, 206, 216] and [191], did not investigate real-time 

compression, and, none of them studied compression’s effect on whole page latency. In 

this chapter, we report our studies on these issues at the detailed chunk level. By 

employing fine-grained model and logs, we are able to reveal the complicated 

relationship between the factors and compression’s impact on them. Results show that 

compression gives lower improvement on whole page latency than it does on single 

object latency; parallelism width does not affect the effectiveness of compression, in 

fact, compression is slightly more effective when parallelism width is greater than one; 

in terms of object latency and page latency, pre-compression always outperforms 

real-time compression. 

In this chapter, we also propose a novel compression mechanism specifically 

designed for HTML objects to achieve better performance in web content delivery. 

The remainder of this chapter is organized as follows. Section 7.2 describes some 

concepts and background knowledge relative to web compression. Section 7.3 presents 

our detailed chunk-level study of web compression mechanisms to help us get in-depth 

understanding on the behavior and performance of them. In Section 7.4, we propose a 

novel compression algorithm specifically for web content to achieve better 

performance. Finally, the chapter concludes in Section 7.5. 

7.2 Concepts Related to Compression in Web Content Delivery 

As we learned in Chapter 4 and Chapter 6, a web page usually is made up of one 
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Container Object (CO) and multiple Embedded Objects (EO), and the CO is often a 

basic HTML file and EOs are mostly inlined images. The CO of a page is always the 

first object returned from the server when the page is requested by client. Both CO and 

EOs are transferred through network connection from server to client in a streaming 

way, chunk by chunk. 

The latency components for CO and EO are a little different. The retrieval 

latency for CO is relatively simple. It mainly comes from the retrieval process. But for 

EOs, the retrieval latency is more complicated due to the dependency between CO and 

EOs and the limited parallelism width employed by most web browsers for 

simultaneous fetching of objects. So, in addition to the latency coming from the 

retrieval process, EOs also have Definition Time (DT) and Waiting Time (WT) in their 

total retrieval latency (refer to Chapter 6 details). These two latency components play 

an important role in total page latency. However, they are unnoticed in previous studies 

on compression. 

Web compression is usually achieved by applying a lossless compression 

algorithm on textual web objects (which usually are the COs). There are basically two 

ways to apply compression on web objects. The first way is to compress objects 

beforehand and store the compressed copies on web server to serve future requests. 

This mechanism is often called Pre-compression. The other way of compression is to 

compress each chunk of object data on the fly during the actual transmission of the 

data chunk sequence of the object. This mechanism is referred to as Real-time 

compression in our study. Considering the streaming nature of web content delivery 

and dependency between CO and EOs, these two compression mechanisms could have 

different effect on object latency and whole page latency. In this chapter, we present 

our detailed chunk-level study on these factors to reveal the effect of these 
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compression mechanisms on web content delivery. We also propose a new 

compression mechanism specifically for web content compression to achieve better 

performance. 

7.3 Understanding Compression in Web Content Delivery 

7.3.1 Methodology 

In our study, we performed retrieval for a large number of web pages in real web 

environment and obtained detailed chunk-level logs for all compression mechanisms, 

including the normal situation “No Compression” which is used as a reference in our 

study. 

We first get page URLs from a NLANR trace [276] dated 5th August 2003. Then 

we replicate those pages content (including EOs) on our web server. We make a 

pre-compressed version of each page and put it in the same directory as the original 

page. For real-time compression, we use a reverse proxy to perform the task. We use 

the zlib compression library [214] to build real-time compression capability into a 

Squid system [73, 11] version 2.4.STABLE3 to be used as the reverse proxy. Page 

requests are generated automatically by a web client program pavuk [285]. All requests 

are forced to pass through a remote proxy in Europe to emulate the real web 

environment. Detailed chunk-level logs are recorded by the instrumented web client 

program and forward and reverse proxies. The information about other environment 

configurations such as software/hardware platform and network environment is 

described in Chapter 5. 

Due to time and space limitation, we stopped the collection of logs when the total 

log size reached around 17 GBytes. The logs contain a little more than 72,000 web 

pages, which consists of about 1,010,220 objects. The logs are processed and fed into 

our simulators to get results for this study. 
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In the following three subsections, we present the results of our study at 

chunk-level for insight view of web compression. 

7.3.2 General Studies 

First of all, we would like to look at some characteristics of web objects and 

properties of web data transfer that are related to compression. 

7.3.2.1 Some Properties about Web Object Transfer 

First, let us review some chunk-level results revealed in Chapter 6, which are 

applicable and important to compressible objects. 

Figure 6.16 shows that a large percentage of COs have sizes between 8 KBytes to 

128 KBytes, with an average size of 35.5 KBytes. Since those objects are the 

candidates for compression, this considerably large-sized distribution gives a good 

potential for applying compression on them as we know that compression is usually 

more effective for bigger files. 

Figure 6.17 shows that the majority of COs are made up of multiple chunks, and 

Figure 6.7 shows that the majority (65%) of chunks have sizes between 1 KBytes and 2 

KBytes. However, it is worth mentioning that there are also a high percentage of 

chunks with much bigger sizes above 10 KBytes. 

Compression could have influence on both chunk sizes and the number of chunks 

in an object transfer. Pre-compression reduces object size before the object is requested, 

so the object data could be delivered by a smaller number of chunks. As for real-time 

compression, it performs compression in real-time by compressing every chunk in the 

object transfer. Thus, we would expect that real-time compression would reduce the 

size of every chunk instead of the number of chunks in the chunk transfer sequence. 

Since the transfer time of every chunk contributes towards the object retrieval latency, 

compression would affect object retrieval latency through the influence on chunks. 
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Since chunk size would be affected by compression, the transfer time for chunks 

with different sizes would be important to our study. From Figure 6.8, we know that the 

distribution of the latencies for chunks with different sizes is quite random. The latency 

for smaller chunks is often comparable to that of much bigger chunks. This 

observation is important because it indicates that reducing chunk size might not help 

much in reducing object retrieval latency. We could further deduce that “reducing the 

number of chunks” might be more effective than “reducing the size of chunks” in 

terms of reducing object retrieval latency. 

Here, we would also like to emphasize the two extreme phenomena revealed in 

Figure 6.8. One is that the latency for very large chunks is indeed much bigger than 

that of smaller chunks. This suggests that reducing size for these chunks may still be 

helpful in reducing their latency. The other phenomenon is that the latency for the 

“<=1k” group is even bigger than that of “<=2k” to “<=4k” groups. This is mainly due 

to the TCP slow-start, which indicates that the first a few chunks on a TCP connection 

are relatively more expensive than the rest. Based on this observation, we would 

expect that compression might not help much in reducing object latency for small 

objects. For larger objects with more than 4 chunks in its transfer sequence, the TCP 

slow-start effect would become less significant as it would be amortized with the 

transfer of large number of chunks. 
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Figure 7.2 Impact of two compression mechanisms on page retrieval latency 
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Because compression is mainly applied on COs and there is dependency between 

CO and EOs, so EOs’ latency will also be affect by compression, which would in turn 

affect whole page latency. Figure 7.2 demonstrates the possible impact of the two 

different compression mechanisms on page retrieval latency. From it, we suspect that 

real-time compression may not be as effective as pre-compression in reducing whole 

page latency. 

7.3.2.2 Chunk Level Study on the Effect of Compression on Single Object 

In this section, we would like to study the effect of compression on object latency 

at chunk level. 

Figure 7.3 shows relative object latencies with respect to object size for different 

compression mechanisms. Here, the normal situation “No Compression” is used as the 

reference. From this graph, we see that both pre-compression and real-time 

compression have improvements on object latency and the improvement is 

considerably big. For pre-compression, the improvement ranges from 16.4% to 88.1%, 

with an average of 57.2%. For real-time compression, the performance gain is from 

8.1% to 51.1% and the average gain is 32.3%. The result shows that pre-compression 

always gives higher improvement than real-time compression does. This could be due 

to the reason we deduced earlier that pre-compression reduces the number of chunks of 

an object transfer which is more effective than reducing the size of chunks attained by 

real-time compression. We will further look into this reason in the later part of this 

section. 

It is a little surprising to see that real-time compression also has big improvement 

on object latency since it tends to reduce the size of every chunk instead of reducing 

the number of chunks. Further study shows that real-time compression also reduces the 

number of chunks in some situation. This is due to a special phenomenon found in 
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real-time compression. We call this special phenomenon “delay-and-merge” effect and 

we will discuss it further in the later part of this section. 

 
Figure 7.3 Effect of different compression mechanisms on object latency 
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KBytes by real-time compression. However, this shifting is ineffective as the latency 

for 1-KByte chunks is similar to or even higher than that for bigger chunks according 

to Figure 6.8. On the other hand, we note that real-time compression shifts the 10k+ 

chunks to smaller chunks. The percentage of chunks belonging to 10k+ group under 

real-time compression is significantly lower than that of other mechanisms. As we 

learnt in Figure 6.8, the latency for very large chunks (30k+) is much bigger than that of 

smaller chunks. So, to compress such chunks would be helpful in reducing the chunk 

latency. 

 
Figure 7.4 Distribution of chunks w.r.t. chunk sizes sent out from server 

 
For pre-compression, the curve is also shifted to the left a little. The reason could 

be that, after being pre-compressed, more objects become smaller objects and they 

could be delivered by smaller number of chunks. 

Figure 7.5 plots the number of chunks with respect to object size for different 

compression mechanisms. We see the number of chunks for pre-compression is smaller 

than normal situation and the difference between pre-compression and normal situation 

becomes bigger as object size increases. This is actually instinctive to understand 

because pre-compressed objects are smaller than the original ones so they could be 

delivered by lesser number of chunks, and, the compression ratio is usually higher for 

bigger objects, so the difference between pre-compression and normal situation 
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becomes bigger. With much smaller number of chunks to transfer, it is easy to 

understand why pre-compression could improve object latency so significantly (see 

Figure 7.3). 

 
Figure 7.5 Number of chunks w.r.t. object size under different compression mechanisms 
 

It is surprising to see that real-time compression also reduces the number of 

chunks in some situation since real-time compression is believed to reduce the size of 

every chunk instead of reducing the number of chunks. Further study revealed a 

special phenomenon behind. In our experimental system, the real-time compression is 

performed by a reverse proxy. The reverse proxy receives chunks from the web server 

next to it and compresses each chunk before sending them out. During the time when 

the reverse proxy is busy compressing current chunk, the rest of chunks would 

continuously arrive. Since the reverse proxy is busy, those incoming chunks would be 

buffered in its buffer and merged into one. Therefore, the size of the following chunk 

becomes bigger. We name this phenomenon the “delay-and-merge” effect. When 

object size is big and it has a large number of chunks in its transfer, this effect would 

accumulate, which would make chunks become bigger and bigger. 

Figure 7.6 tries to show this effect by plotting chunk sizes with respect to the 

chunk sequence number. We see that chunk sizes in real-time compression is generally 

bigger than that of no compression and pre-compression, and the difference between 
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them usually gets bigger for chunks with bigger chunk sequence number. 

We also note that chunk size becomes bigger for all mechanisms as chunk 

number increases. This could be also due to the TCP slow-start effect. With successful 

transmission of more chunks, the transfer rate gets higher (see Figure 6.9) so that a 

bigger amount of data could be transferred in one chunk. 

 
Figure 7.6 Average size of chunks w.r.t. chunk sequence number 

under different compression mechanisms 
 

The “delay-and-merge” effect has a “warming-up” stage and a “mature” stage. 

During the “warming-up” stage, chunk size would become bigger and bigger as 

reverse proxy takes more and more time to compress each growing-bigger chunks. 

However, because the buffer size in reverse proxy is fixed (64 KBytes in our 

experimental system), this effect will “mature” when the chunk size grows close the 

buffer size. In “mature” stage, chunk size would stop growing no matter how many 

more chunks are still in the transfer sequence. 

As chunks would grow bigger due to the “delay-and-merge” effect in real-time 

compression, the number of chunks for a given object would become smaller than the 

normal situation. This could explain the result of real-time compression in Figure 7.5. 

For small objects, real-time compression does not seem to reduce the number of 

chunks. This is because the number of chunks is too small for the “delay-and-merge” 

to “warm-up”. As object size increases, the “delay-and-merge” effect starts to 
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“warm-up” so the number of chunks becomes smaller. However, this trend stops when 

object size is big enough. This is because the “delay-and-merge” effect has matured. 

With the above knowledge, we could give explanation on the performance of 

real-time compression shown in Figure 7.3. Because real-time compression also reduces 

the number of chunks for an object due to the “delay-and-merge” effect, it is 

understandable why it also improves object latency. As object size grows from 1 

KBytes to 4 KBytes, the performance of real-time compression gets better. This could 

be because that the “delay-and-merge” effect is in the “warming-up” stage. For objects 

with sizes between 4 KBytes to 128 KBytes, the “delay-and-merge” effect would get 

mature so that we see that the performance of real-time compression stops getting 

better. However, for very big objects with size greater than 128 KBytes, the 

performance of real-time compression becomes better again. Further study reveals the 

following reason: for the objects in this group, the chunk size could be very big due to 

the “delay-and-merge” effect, and very big chunks could be effectively compressed to 

smaller chunks by real-time compression (see Figure 7.4). With refer to Figure 6.8, the 

latency for very large chunks (those with size greater than 30k) is much bigger than 

that of smaller chunks. So, reducing the size of very big chunks would result in 

reduction in transfer time. Therefore, the performance of real-time compression for this 

group gets better again. 

Considering that most COs consist of 6.7 chunks (see Figure 6.17) and most 

chunks have sizes between 1 KBytes and 2 KBytes (see Figure 6.7), it would be more 

effective to reduce the number of chunks than to reduce the size of chunks. This 

explains why pre-compression always gives higher improvement on object latency 

than real-time compression does. 

In addition, the compression ratio of pre-compression is also slightly better than 
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real-time compression. Figure 7.7 shows the compression ratio of different compression 

mechanisms. We see that pre-compression yields compression ratio about 5.2% better 

than real-time compression does on average. This could be because pre-compression 

can see the whole object data while real-time compression can only see one chunk of 

the data. Generally, a compression program which can see the entire input file could 

compress the file more effectively than the program which sees only part of the input 

file does. 

 
Figure 7.7 Distribution of compression ratio of objects 

 
We also note that the compression ratio of pre-compression becomes higher as 

object size increases. This is because compression is more effective for big files. While 

it is easy to understand this, it is not so straightforward to understand the case for 

real-time compression since it often does not see the entire input file. The reason why 

real-time compression also generates higher compression ratio with the increasing 

object size is a little “tricky”: When object size is large, the chunks in its transfer 

sequence tends to be large due to the “delay-and-merge” effect, compression on a 

single chunk would also be effective when chunk size is large. 

Overall, the compression ratio of both of the compression mechanisms is very 

high. On average, object size can be reduced 87.6% by pre-compression and 82.4% by 

real-time compression. This further explains the high improvement on object latency 
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by these two compression mechanisms in Figure 7.3. 

7.3.2.3 Effect of Compression on Whole Page Latency 

Because the basic unit of browsing is page in current web system, whole page 

latency is more meaningful to clients than object latency. In this section, we would like 

to investigate the effect of compression on whole page latency. 

As explained earlier, page latency is determined by more complicated factors. So, 

the improvement on single object retrieval latency achieved by compression may not 

be translated into the improvement on page retrieval latency directly. Figure 7.8 plots 

relative page retrieval latency with respect to page sizes. Comparing it with Figure 7.3, 

we see that the improvement on whole page latency achieved by compression is 

significantly much lower than it does on object latency. The average performance gain 

on whole page latency is about 12.2% by pre-compression and 7.4% by real-time 

compression, as compared to the 57.2% and 32.3% gain on object latency by 

pre-compression and real-time compression respectively. 

 
Figure 7.8 Compression’s effect on whole page latency (Parallelism = 4) 

 
Although the fact that compressible objects in a page (mainly COs) only occupy 

part of the total page size could be partially the reason, the big difference between 

compression’s performance on object latency and page latency may also indicate that 

the two factors, i.e. (1) dependency among CO and EOs of pages and (2) parallelism 

width for simultaneous object fetching, play an important role in determining page 
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latency. In the following sections, we would study these factors in detail to get in-depth 

understanding about compression’s effect on whole page latency. 

7.3.3 Compression and Dependency 

7.3.3.1 Dependency and Definition Time of EOs 

We already know that there is dependency between EOs and CO, and such 

dependency is very importance in determining whole page latency. Here, we first 

review some of the studies regarding the definitions of EOs in COs. 

From the studies in Chapter 6 (Figure 6.12, Figure 6.18, Figure 6.19, Figure 6.20), we 

see that a considerably large percentage of EOs are defined in the late parts of CO’s 

transfer sequence, and appearing in the chunks with large sequence number. If those 

definitions could be shift to earlier chunks with smaller sequence number, EOs would 

be made known to client for fetching significantly earlier. But an observation from 

Figure 6.20 also indicates that there is limitation on shifting definition points of EOs to 

earlier parts of CO’s transfer sequence because CO undergoes some latency 

components such as CT time before the actual transfer of data chunks starts. 

From Figure 6.19, we see that many EOs are defined in the chunks with large 

sequence number. If those definitions could be shift to chunks with smaller sequence 

number, EOs would be made known to client for fetching significantly earlier. 

The dependency between EOs and COs causes the extra latency component, i.e. 

the Definition Time (DT) in the retrieval of EOs. Figure 6.15 confirms that DT is a very 

important latency component for EOs. So, reducing DT could be an effective way in 

reducing the retrieval latency for EOs, which could in turn reduce the whole page 

latency. 

7.3.3.2 Compression's Effect on DT of EOs 

Since the retrieval of EOs is dependent on CO and compression has significant 
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influence on CO (see Section 7.3.2.2), the DT times of EOs could be affected by 

compression. In this section, we present our study of compression’s effect on the DT 

times of EOs at the chunk level. 

Figure 7.9 shows the relative DT times of EOs under different compression 

mechanisms. We see that compression can reduce DT times of EOs considerably. The 

reduction achieved by pre-compression is higher than real-time compression. This 

could be due to the reasons studied in Section 7.3.2.2. On average, the DT time can be 

reduced by 43.6% in pre-compression and 10.7% in real-time compression. 

 
Figure 7.9 Relative DT times under different compression mechanisms 

 
We notice that for the “23+” group in Figure 7.9, the DT time under real-time 

compression is very close to that of “No Compression”. We speculate the reason could 

be the following: For pages with “23+” EOs, their COs tends to be big in size. When 

CO’s size is big, the “delay-and-merge” effect in real-time compression is more 

obvious. This effect will make the later chunks bigger and bigger. While the chunks get 

bigger, they could possibly contain more EOs in them. In other words, more and more 

EOs are “delayed” to later chunks due to the “delay-and-merge” effect. So, the DT 

time for the “23+” group gets close to that of “No Compression”. 

Besides the reasons described in previous sections, Figure 7.10 also shows another 

reason for why compression reduces DT times of EOs. This graph plots the number of 
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EOs defined in each chunk for different compression mechanisms. We see that 

pre-compression shifts the curve to the left significantly. In other words, 

pre-compression makes more EOs known to client in earlier chunks, which would 

mean smaller DT for EOs. Real-time compression also shifts the curve to the left, but 

not that significantly. 

 
Figure 7.10 Average number of EOs w.r.t. chunk sequence number in CO transfer  

under different compression mechanisms 
 

 
Figure 7.11 Relative values of “DT vs. EO latency” under pre-compression 

 
From Figure 6.9 and Figure 6.20, we learnt that there would be limitation on 

shifting definition points of EOs to earlier places. Here we would study the upper 

bound of compression’s effect on DT times of EOs. We compute the upper bound by 

assuming ideal DT for all EOs, i.e. assuming all EOs are defined in the first chunk of 

CO’s transfer. Figure 7.11 and Figure 7.12 show the upper bounds for pre-compression 

and real-time compression respectively. From them, we see that pre-compression has 
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reduced the DT times very close to their respective upper bounds, while there is still 

noteworthy difference between the normal case and ideal case for real-time 

compression. This indicates that real-time compression is less effective in reducing DT 

times of EOs. 

 
Figure 7.12 Relative values of “DT vs. EO latency” under real-time compression 

 
7.3.3.3 DT and Page Latency 

Based on the previous studies, we see that compression could reduce page 

latency in two aspects. First, compression reduces the size of the CO so that it could be 

delivered faster (see Figure 7.3). Second, compression would also reduce DT times of 

EOs since they are dependent on CO’s retrieval (see Figure 7.9) (Note that compression 

would not reduce other latency components for EOs other than the DT time). When the 

number of EOs in a page is small, the improvement would mainly come from the first 

effect. But the reduction in DT times of EOs would contribute to the improvement 

when there are more EOs in the page. 

Figure 7.13 shows relative page latency under different compression mechanisms 

with respect to the number of EOs in a page. We see that the improvement of 

compression is generally higher when the number of EOs in a page is small. This is 

because the improvement mainly comes from the reduction in CO’s retrieval latency in 

these cases. For pages with few EOs, the retrieval latency of the CO would be the 

dominating factor of the whole page latency. Since compression have significant 
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improvement on CO’s retrieval latency (see Figure 7.3), it would also improve page 

latency considerably for such pages. 

 
Figure 7.13 Whole page latency w.r.t. number of EOs in a page under different 

compression mechanisms (Parallelism = 4) 
 

When the number of EOs in a page is big, the improvement achieved by 

compression is much smaller. This could be due to the following two reasons: 

First, when the number of EOs in a page is big, the page latency would be 

dominated by the of EOs’ latency. For EOs’ latency components, compression could 

only reduce the DT times, and the reduction in DT time is not as big as the reduction in 

CO’s retrieval latency (see Figure 7.9 and Figure 7.3). 

Second, page latency is also affected by parallelism. When parallel fetching of 

objects is used, it would be possible for the fetching of one or more objects to virtually 

have no effect on the whole page latency. In Figure 7.13, we used a parallelism width of 

four as it is the default value in most current web browsers. This wide parallelism 

width could dilute the effect of reduced DT times of EOs. 

Overall, page latency can be reduced by 12.2% in pre-compression and 7.4% in 

real-time compression. Compared with the reduction in object latency (see Figure 7.3) 

and reduction in DT times of EOs (see Figure 7.9), the reduction in whole page latency 

is much smaller. This could be due to the use of four way parallelism which prevents 

the reduction in CO’s retrieval latency and DT times of EOs from being translated into 
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reduction in whole page latency directly. 

Figure 7.14 and Figure 7.15 further study the upper bound of dependency’s effect on 

whole page latency for pre-compression and real-time compress respectively. The 

upper bounds are computed by assuming ideal DT for all EOs, i.e., assuming all EOs 

are defined in the first chunk of CO’s transfer. 

 
Figure 7.14 Upper bound of dependency’s effect on whole page latency 

for pre-compression 
 

 
Figure 7.15 Upper bound of dependency's effect on whole page latency 

for real-time compression 
 

By comparing the situations of “No Compression, Normal DT” and “No 

Compression, Ideal DT”, we see that DT times of EOs do have influence on page 

latency. This confirms the effectiveness of compression since compression could 

reduce the DT times of EOs. 

It is noteworthy that the performance of “Pre-Compression, Normal DT” is even 

better than “No Compression, Ideal DT”. This could be explained by the following 
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reasons. Firstly, the difference in DT times between these two situations is very small 

since pre-compression has reduced DT times significantly (see Figure 7.11). Secondly, 

pre-compression would also reduce the retrieval latency of COs. Putting these two 

factors together, it would be understandable that the performance of “Pre-Compression, 

Normal DT” is even better than “No Compression, Ideal DT”. 

But for real-time compression, the performance of “Real-time Compression, 

Normal DT” is sometimes worse than “No Compression, Ideal DT”. This is because 

real-time compression is not so effective as pre-compression in reducing the DT times 

of EOs and retrieval latency of CO. 

Nevertheless, the performance of both pre-compression and real-time 

compression is very close to their respective upper bounds. This could also be due to 

the use of parallelism which dilutes the differences of different compressions. 

7.3.4 Compression and Parallelism 

As parallelism may affect the effectiveness of compression, we would like to 

further study the performance of compression mechanisms under different parallelism 

widths in this section. 

Current web system utilizes parallelism for simultaneous fetching of objects in a 

page. Currently, most common web browsers such as Microsoft IE and Netscape use a 

parallelism width of four for all web page retrievals. However, the effective parallelism 

width may vary in different environment. For example, in a low-bandwidth 

environment, the effective parallelism width that clients can enjoy could be as low as 

one. 

Figure 7.16 shows the performance of different compression mechanisms under 

different parallelism width. While increasing parallelism width would reduce whole 

page latency for all compression mechanisms, we see that pre-compression constantly 
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gives the optimal performance in all situations. Also, the performance of real-time 

compression is always a little better than normal situation. These results are in 

accordance with the result shown in Figure 7.13. This indicates that a variation in 

parallelism width does not affect the relative effectiveness of compression. 

 
Figure 7.16 Performance of different compression mechanisms 

under different parallelism width 
 

 
Figure 7.17 Relative performance of different compression mechanisms 

under different parallelism width 
 

In addition, we also note that the relative improvement of pre-compression 

actually gets slightly higher as parallelism width increases. This may be observed more 

obviously in Figure 7.17 which shows the relative performance improvement of 

different compression mechanisms under different parallelism width. We see that when 

parallelism width increases from 1 to 32 or greater, the relative improvement of 

pre-compression increases from 9% to 15%. 

The relative higher improvement of pre-compression may indicate that 

compression is more efficient when parallelism width is big. This could be due to the 
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higher demand and usage rate that pre-compression imposes on parallelism. Refer back 

to Figure 7.10, we see that pre-compression shifts significantly large number of 

definitions of EOs to the earlier chunks of a CO transfer, so more EOs will be made 

known to client faster and earlier (also refer to Figure 7.9). Thus the demand on 

parallelism width is higher. This higher demand on parallelism width would result in 

more EOs being held in waiting state for a given parallelism width. Figure 7.18 shows 

the percentage of EOs that are held in waiting state under different situations. As 

expected, pre-compression gives the highest percentage when parallelism width is 

greater than one (when parallelism width is one, all EOs will virtually have to wait). 

 
Figure 7.18 Percentage of EOs that are held in waiting state 

under different parallelism width 
 

On the whole, compression (especially pre-compression) would make a greater 

number of EOs known for retrieval fast and early and a higher percentage of EOs be 

held in waiting state for a given parallelism width. In such situation, increasing 

parallelism width would right meet the higher demand. So, compression becomes more 

effective when parallelism width increases. 

Lastly, we see in Figure 7.16 and Figure 7.17 that the relative improvement of all 

compression mechanisms becomes insignificant when parallelism width exceeds 8. 

This could be due to the moderate number of EOs in pages. As shown in Figure 6.12, 

the web pages in our trace have 13.5 EOs per page on average. When parallelism width 

grows bigger than 8, there would be very few EOs being held in waiting state. Thus, to 
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further increase parallelism width would only have trivial effect. 

7.4 Content-Aware Global Static Compression for Web Content 
Delivery 

7.4.1 Specific Compression for Web Content 

From previous sections, we understand that compression is an effective way in 

improving web retrieval latency, although the improvement it achieves on page 

retrieval latency is not as significant as it does on single object latency. 

Currently, the compression algorithms employed in web system are 

general-purpose compression algorithms such as Huffman coding (used by compact), 

LZW (used by compress) and LZ77-variants like deflate (used by zlib and gzip) etc. 

[286, 211, 287, 212]. In those general-purpose compression algorithms, the content of 

web objects is treated as a blind byte stream. Those algorithms generally do not 

provide specific analysis on web-specific content like HTML tags or script language 

key words. For all the characters and strings, those algorithms just treat them equally 

and evenly. This method usually works well on common files. But in web content, 

there may be still room for improvement since there are abundant special strings which 

may be compressed more effectively if compression algorithms are aware of them and 

perform special compression on them. 

In web objects3 such as HTML files, certain string tokens like HTML tags are 

used very frequently. Each of such tokens represents certain special fixed combination 

of characters. In other words, some characters always go with some others in web 

content. However, general-purpose compression algorithms do not specially take the 

advantage of these special fixed combinations of characters. Instead, they just 

dynamically discover any arbitrary string of characters without considering the special 

relationship among them. This often results in shorter repeated strings, especially at the 
                                                        
3 Without explicit emphasis, the term “web object” or “object” in this chapter would refer to “textual 
web objects”. This is because we are talking about lossless compression on textual objects. 
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beginning phase of compression. 

On the other hand, from the global point of view, the special strings in web 

content occur frequently and repeatedly. However, in a single object, the occurrence of 

those special strings may not be so frequent and repetitive. So, working on single web 

objects is generally not as effective as taking the advantage of the globally high 

frequencies and repetitiveness of the special strings. 

Furthermore, the characteristics of the special strings in web content are very 

stable. For example, they seldom change in terms of spelling, number of strings and 

global occurrence distribution etc. This allows us to employ global static token-string 

tables to compress those strings in all web objects, which would be more effective than 

generating a token-string table for every object and storing the table in each 

compressed object since the global static tables can be distributed with the 

compression programs prior to the use of such compression. 

From the above discussion, we can see that general-purpose compression 

algorithms have some effectiveness loss in the specific domain of web content delivery. 

There still exists some room for improvement. 

In this section, we propose a new content-aware global static compression 

mechanism for web content delivery. This mechanism is specifically designed for web 

content to take the advantage of the frequently occurred fixed combinations of 

characters in web content. It can be used as a complementary mechanism on top of 

existing general-purpose compression algorithms to improve their effectiveness in the 

specific area of web content delivery. 

Note that we are still talking about lossless compression mechanism applied on 

textual web objects. We assume such textual web objects to be the HTML files in our 

study, although it may also include other types of files like css, php and asp files etc. 
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Also, we assume the codes contained in such textual web objects are printable ASCII 

codes4, including the carriage return character (0x0D) and the line feed character 

(0x0A). In terms of ASCII code values, we assume textual web objects only contain 

ASCII codes between 0 and 127. 

7.4.2 Content-Aware Global Static Compression (CAGSC) for Web Content 
Delivery 

7.4.2.1 Introduction 

Our basic idea is to compress web objects by replacing the special fixed 

combination of characters (e.g. HTML tags) found in web object with special short 

single tokens. We select suitable special strings in web content and pre-generate 

token-string tables for them, and then we use the token-string tables to compress and 

decompress the special strings in web objects. This idea is inspired by the algorithms 

of Huffman and LZW and the frequently occurred special strings in web content. We 

introduce some new ideas in our mechanism to make it especially effective for the 

compression on web content.  

Firstly, unlike many general-purpose compression algorithms which may encode 

single characters or arbitrary combination of characters, our mechanism is aware of the 

special fixed combination of characters in web content. It will look for and treat such 

combination of characters as inseparable units. In other words, our mechanism is a 

content-aware compression mechanism specifically for web content. 

Secondly, in our mechanism, we pre-acquire a selection of strings for 

compression based on their global occurrence frequencies. In other words, we select 

cross-object frequently occurred strings as candidates for compression. The 

frequencies are pre-computed globally based on a wide-range collection of web objects. 

Further statistics such as weighted frequencies and potential gains are calculated based 
                                                        
4 CAGSC compression can also be extended to work on objects containing non-printable ASCII codes 
by employing techniques like byte-stuffing or using special coding schemes for CAGSC coding. 
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on the global frequencies of strings for selecting suitable strings for compression. 

Thirdly, our mechanism is able to compress multiple types of strings. In web 

content, there are usually different types of special strings such as HTML tags and 

JavaScript strings etc. There could even emerge other special strings in web content in 

the future. Our mechanism can be extended easily to work with arbitrary types of 

special strings. 

Fourthly, the token-string tables for compression are used in a static way. For 

each type of strings, a token-string table will be generated based on the selected string 

candidates from that type of strings prior to the actual compression and decompression 

taking place. Because the characteristics of the strings (e.g. the frequencies and 

spellings of strings etc.) based on which tables are generated are very stable in web 

content, so the tables can be treated in a rather static way. Therefore, the essential 

token-string tables for compression and decompression does not need to be stored and 

transferred along with every compressed object. This would further improve 

compression ratio and transfer speed. 

Finally, our mechanism recognizes different regions in objects and uses 

corresponding token-string tables to compress each region. We perform this task 

dynamically and with a single pass scan of object body. Decompression is carried out 

in a similar manner, i.e. different token-string tables will be used to decompress 

different regions of a compressed object. 

On the whole, our mechanism works on special strings in web content and 

compresses them by replacing them with special short single tokens. Because we rely 

on global cross-object frequencies and employ static token-string tables in our 

mechanism, so we refer our mechanism as Content-Aware Global Static Compression 

(CAGSC). Consequently, we refer to the tokens which are used to replace strings in 
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CAGSC compression as CAGSC tokens. 

The CAGSC compression is proposed to only compress web specific strings like 

HTML tags and JavaScript strings etc.; other parts of the object content will not be 

compressed by CAGSC. To achieve better compression performance, it is suggested 

that CAGSC be put to work together with other general-purpose compression 

algorithms. From another point of view, the CAGSC compression should be regarded 

as a complementary mechanism to general-purpose compression algorithms in the 

specific area of web content delivery. 

In the situation where CAGSC compression works together with another 

general-purpose compression algorithm, a web object will first be compressed using 

CAGSC compression, and then it will be handed over to the general-purpose 

compression algorithm to do further compression. 

Figure 7.19 shows the model of the application of CAGSC compression in web 

content delivery, and Figure 7.20 gives a simple example of CAGSC compression on an 

object. 

 
 

Figure 7.19 Model of application of CAGSC compression in web content delivery 
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Figure 7.20 Example of CAGSC compression 
 

In the following subsections, we give detailed description of various aspects of 

CAGSC compression. We first discuss how token-string tables for CAGSC 

compression are generated (Section 7.4.2.2), then we explain how to apply CAGSC 

compression in web content delivery (Section 7.4.2.3). 

7.4.2.2 Generating Token-String Tables for CAGSC Compression 

From the previous section, we see that token-string tables play a key role in 

CAGSC compression. So we would like to first give the details on how token-string 

tables are generated. 

In brief, the process of generating token-string tables is shown in Figure 7.21. First, 

a wide-range of web objects are collected. From there, we can get multiple special 

string sets and the global frequencies of each string in the sets. Then we calculate 

weighted frequencies and potential gains for the strings and sets (see the following 

subsection for details). The weighted frequencies and potential gains will be used to 

decide the coding lengths and what strings to be included in the final token-string 

tables. Finally, the token-string tables are generated based on the selected strings and 

coding lengths. These tables will be used for CAGSC compression. , and they are 

distributed with CAGSC packages to parties prior to the use of CAGSC compression. 

 

<HTML> 
<BODY> 
…… 
…… 
</BODY> 
</HTML> 

1-byte token string 
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…… 
 

 
…… 
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Figure 7.21 Process of generating token-string tables 
 

Below, we describe some details regarding the generation of token-string tables 

in CAGSC compression. 

7.4.2.2.1 Special Strings in Web Content 

CAGSC compression works on special strings such as HTML tags in web 

content. So we would like to first study some properties of such strings. 

The following properties of such strings are of interest to CAGSC compression: 

ü Different types of strings, i.e. Multiple string sets 

The special strings in web content may be of different types, or we can say, there 

are multiple different types of string sets in web content. For example, these string sets 

are popular in web content nowadays: HTML tags, JavaScript strings, XML tags etc. 
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We denote the total number of the different string sets in web content as Nt5. 

Then all the special strings can be represented as the superset Ss of all the different 

string sets: 

Ss = { Si | Si is a string set of a particular type, 1 ≤ i ≤ Nt } 

A web object may contain strings from multiple string sets, but the strings from a 

particular set Si usually only form a subset of Si . There may be some strings appearing 

in multiple string sets, e.g. both HTML and JavaScript have the string “height”. 

However, the semantic meanings of such strings are different in each set. So, the 

multiple string sets are considered mutually exclusive in terms of semantic meanings. 

In CAGSC compression, we compress strings by replacing them with short single 

tokens. So for every string in a string set Si, we will need to sign a token to it. The 

mapping relationship between strings and tokens will be represented as token-string 

tables in CAGSC compression. The tokens for all the strings in a string set make a 

token-string table for that string set. 

To ensure the efficiency of CAGSC compression, it is preferable to include 

multiple different string sets in the mechanism. There are basically two ways to 

incorporate multiple string sets in CAGSC. The first method is to merge the multiple 

string sets Si into one and treat it as one set, i.e. the superset This method has some 

deficiencies: firstly, the number of strings in the superset Ss can be very big, which 

would result in long coding length for CAGSC tokens, and that may not be effective in 

doing compression; secondly, to merge multiple sets into one superset makes the 

management of string sets difficult. Whenever the properties of a string set change or 

there emerges a new string set, the whole superset Ss will be affected. 

                                                        
5 Nt actually means “Number of Tables”. Since each string set will have a corresponding token-string 
table in our mechanism, so the number of string sets will be the same as the number of token-string 
tables. Therefore, we use Nt to stand for the number of token-string tables as well as the number of 
string sets. 
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The other method of including multiple different string sets in CAGSC 

compression is to keep the string sets separate and generate a token-string table for 

each of them to be used in CAGSC compression. While the second method needs to 

maintain multiple tables, it provides the flexibility and effectiveness of handling the 

changes of multiple tables. Also, it allows the reuse of CAGSC tokens among different 

tables. In our study, we use the second method to handle the problem of multiple string 

sets. 

ü Number of strings in a string set 

In web content, each string set Si contains limited number of strings. We denote 

the total number of the strings in a particular string set Si as Nsi : 

Nsi = | Si |  ( where Si is a string set of a particular type, 1 ≤ i ≤ Nt ) 

If we use sj to stand for a string in a string set Si, then Si can be represented as: 

Si = { sj | sj is a string, 1 ≤ j ≤ Nsi } 

As we stated earlier, each string set Si will have a corresponding token-string table in 

our CAGSC compression mechanism. Note that the number of entries of the 

token-string table corresponding to the string set Si may not be equal to Nsi . This is 

because, for the strings in a string set Si , we use certain criteria (which will be 

discussed in the next subsection) to select some strings from Si for generating 

token-string table; it is possible that there are some strings being left out; therefore, the 

number of entries of the token-string table corresponding to Si may not be equal to Nsi . 

ü Frequencies of strings 

The occurrence frequencies of strings may vary from string to string. It is 

instinctive that to work on strings with high occurrence frequencies would yield good 

performance. 

Given a particular string, it may appear rarely in one object but frequently in 
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other objects, or vice versa. If we only look at one or a few objects, we may get biased 

occurrence frequencies of strings, which would result in biased performance 

distribution. Our CAGSC compression aims to achieve good balanced global 

performance. So we need to obtain the occurrence frequencies of strings that are 

applicable globally. To achieve this goal, we collect a wide range of web objects, and 

do an analysis of the cross-object accumulative statistics of strings to obtain their 

global occurrence frequencies. Works based on such global occurrence frequencies 

would lead to good balanced global results since such frequencies are independent 

from any particular objects and therefore applicable globally. 

In our study, we denote the global occurrence frequency of a string sj as fsj . 

ü Lengths of strings 

Each string is of certain length, i.e. number of characters (bytes) contained in the 

string. String length is also an important factor that we need to take into consideration 

when we do CAGSC compression. For example, if the length of string is even shorter 

than the CAGSC tokens, then there would be no gain (in fact, there is a loss) to replace 

that string with a CAGSC token. 

In our study, we denote the length of a string sj as lsj . 

7.4.2.2.2 CAGSC Coding for Strings 

CAGSC compression compresses the special strings in web content by replacing 

them with short CAGSC tokens. Now, let us look at some issues regarding CAGSC 

coding. 

ü Fixed-length coding vs. variable-length coding 

There are basically two coding schemes for generating CAGSC tokens. The first 

type is fixed-length code like the one used in LZW compression algorithm. The other 

type is variable-length code such as Huffman coding [288]. In our CAGSC 
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compression, we choose to use the fixed-length code because of the following reason: 

As we stated earlier, CAGSC is a complementary mechanism to other 

general-purpose compression algorithms and should often be put to work together with 

them to achieve better overall compression performance. After an object is first 

compressed by CAGSC algorithm, it will be handed over to the general-purpose 

compression algorithm to do further compression. 

Most general-purpose compression mechanisms rely on discovering repeated 

byte sequence patterns in data to achieve the goal of compression. Examples include 

those LZ77-based compression mechanisms such as zlib, gzip, zip and pkzip etc. Such 

compression mechanisms compress data by keeping track of the last N bytes of byte 

sequence and replacing repeated pattern of byte sequence with a pair of values 

corresponding to the position of the pattern in the previous data and the length of the 

pattern. 

Because the lengths of variable-length codes may not be of integer times of 

byte-length, i.e. variable-length codes may not end at byte boundary, so we will need 

special mechanism (like Huffman coding) to keep track of the boundary of 

variable-length codes. This would often incur considerable overhead. On the other 

hand, even if there is such a special mechanism to determine the boundary of 

variable-length codes, other general-purpose compression mechanisms will not know it. 

Instead, they will just treat the CAGSC-compressed object as normal byte-sequence 

data and still cut off the data at normal byte boundary. Because of this, we have found 

that the use of variable-length codes to first compress certain strings in the data would 

greatly destroy the repeated byte sequence patterns in the data for 

byte-boundary-cutting-off compression mechanisms. This significantly reduces the 

effectiveness of the general-purpose compression algorithm that comes after CAGSC 
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compression. 

However, if we use fixed multi-byte-length-bounded code in CAGSC 

compression, the repeated byte sequence patterns in the data will be preserved after the 

data have been first compressed by CAGSC compression. Therefore, when another 

general-purpose compression mechanism is later applied on the data, it could still 

achieve its effectiveness in compressing the data. 

So, in our CAGSC compression, we employ the fixed multi-byte-length-bounded 

code, and we make the length of the codes to be of integer times of byte-length, e.g. 

1-byte or 2-byte etc. 

ü Coding scheme: coding length & coding space 

As we just stated above, in CAGSC compression, we make the length of the 

codes to be of integer times of byte-length, e.g. 1-byte or 2-byte etc. Different coding 

lengths have different coding space, i.e. the number of tokens that a certain coding 

length can give. Here we study the issues regarding coding length in CAGSC 

compression. 

An object compressed by CAGSC compression will contain a mixture of 

CAGSC tokens and other codes of uncompressed data. We need a mechanism to 

differentiate the CAGSC tokens from other codes.  

Because we assume textual web objects contain ASCII codes between 0 and 127 

(see Section 7.4.1), so for 1-byte CAGSC tokens, they can only use the values from 

128 to 255. That is, the space of 1-byte CAGSC coding is 128 tokens. 

Now let us look at the situation of n-byte coding, where n ≥ 1. Given a coding 

length n, we will always be able to differentiate a CAGSC token from normal ASCII 

codes as long as we can differentiate the first byte of the CAGSC token. This is 

because, once we differentiate the first byte of a CAGSC token from normal ASCII 
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codes, then we can just read the following n-1 bytes and put them together with the 

first byte to form the CAGSC token. This indicates that we do not need to differentiate 

the following n-1 bytes of a CAGSC token from normal ASCII codes. Therefore, each 

byte in the following n-1 bytes can use values from 0 to 255. Figure 7.22 illustrates this 

situation. 

 
Figure 7.22 n-byte coding scheme for CAGSC compression 

 
From the above description, we can deduce that the coding space of n-byte coding for 

CAGSC compression is given by the following formula: 

CS(n) = 128 × 256(n-1) = 256n/2    ( where n ≥ 1 )    (F7.1) 

In the rest part of this chapter, we denote the coding length of a particular CAGSC 

coding scheme as lc. So the coding space for lc would be: 

CS(lc) =  256lc/2    ( where lc ≥ 1 )       (F7.2) 

From formula F7.2, we see that coding space, i.e. the number of tokens that CAGSC 

coding scheme can give, is determined by the length of coding, and the relationship is 

exponential. Therefore, we expect to see that coding space would grow very quickly as 

the coding length increases. Table 7.1 lists the number of tokens for a few coding 

lengths. 
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In CAGSC compression, we use one coding length for one string set. That is, all 

the strings within the same string set will be assigned CAGSC tokens of the same 

coding length. If the coding space of that particular coding length is not enough to 

cover all the strings in the string set, then we need either to increase coding length or to 

remove some strings from the set. To increase coding length is simple and it would 

always be able to solve the problem. However, it may affect the performance of 

CAGSC compression since the tokens used to replace strings are longer. As to 

removing some strings from a string set, there are complicated factors affecting the 

selection of strings. In the next subsection, we are going to study this issue. 

Table 7.1 Coding space for some coding lengths 
Coding Length Coding Space 

1-byte 128 
2-byte 32,768 
3-byte 8,388,608 
… … 

lc-byte 256lc/2 
 
7.4.2.2.3 Weighted Frequencies and Potential Gains of Strings 

There are situations in which we want to select only part of the strings from a 

string set (i.e. a subset of the whole string set) to be included in CAGSC compression. 

Such situations include that we want to use a coding space which is smaller than the 

number of strings in the string set, or we want to keep token-string tables small so that 

they can be transferred dynamically and quickly, and so on. 

Given a string set Si , the total number of strings it contains is Nsi . Suppose we 

have a number Nsi', where 1 ≤ Nsi' ≤ Nsi , there is a issue about how to select Nsi' 

strings from Si so that the resulting performance of CAGSC compression on Si is the 

best. This question involves the factors of string frequencies, string lengths and coding 

lengths etc. Below we introduce two parameters to help answer this question. 

ü Weighted frequencies of strings 

An instinctive way of selecting a good subset of strings from a string set is to 
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select those strings which have high occurrence frequencies. However, because strings 

are of variable lengths and the CAGSC tokens used for encoding a string set is of fixed 

length, so it could happen that the lengths of some strings are longer than the token 

length while some others may be shorter. Of course it is only meaningful to replace a 

string whose length is longer than the token length. Taking this factor into 

consideration, we introduce a parameter named weight frequency of a string to help in 

the selection of good strings. 

For a given string sj and coding length lc, the weighted frequency for sj , denoted 

by fwsj , is defined by the following formula: 

fwsj = fsj × (lsj – lc)    ( where lc ≥ 1 )     (F7.3) 

The actual meaning of the weighted frequency of a string is the potential gain 

from including that particular string in CAGSC compression under certain coding 

length. 

The weighted frequencies of strings can be used for selecting strings to be 

included in CAGSC compression so as to achieve the best performance for the given 

coding length lc and the given number of strings Nsi' to be selected. Essentially, this 

can be done by sorting strings according to descendent order of their weighted 

frequencies, and then select the top Nsi' strings. When selecting, only those strings 

whose weighted frequencies fwsj , are greater than zero should be selected. This is 

because, to include strings with weighted frequencies equal to or less than zero would 

not give you any performance gain; in fact, it could even cause performance loss. 

Note that there is a limitation in this rule: The given number of strings Nsi' must 

be smaller than or equal to the coding space of lc , i.e. Nsi' ≤ CS(lc) . This is because 

that weighted frequencies are related to coding length. If Nsi' ≥ CS(lc) so that lc has to 

be increased, then the weighted frequencies for all strings would change also, which 
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would affect the final decision. To handle the situation where lc may be changed (as 

well as Nsi'), we introduce another parameter named potential gain of a subset of 

strings to solve the problem. 

ü Potential gain of a subset of strings 

There is a tie between the number of strings Nsi' to be selected from a string set Si 

and the coding length lc used for encoding the strings. When Nsi' ≥ CS(lc) , lc has to be 

increased so that the new CS(lc') ≥ Nsi' . On the other hand, if Nsi' very small such that 

it can be covered by the coding space of a smaller lc , then we can reduce lc to a smaller 

value. 

When there is a change on Nsi' or lc , we need to re-select strings to ensure the 

best performance of CAGSC compression for the new Nsi' or lc . We introduce the 

potential gain parameter of a subset of strings to help with such evaluation process. 

For a given a string set Si , Si' is a subset of Si , then the potential gain of Si' , 

denoted by PG(Si') , is defined by the following formula: 

∑
=

−×=
'

1

)()'(
siN

j
csjsji llfSPG  (where sj ∈ Si', Nsi' = |Si'|, lc ≥ 1 , Nsi' ≤ CS(lc))  (F7.4) 

The actual meaning of PG(Si') is the overall potential gain from including the all the 

strings in the subset Si' in CAGSC compression. 

The potential gains of subsets and the weighted frequencies of strings together can be 

used to determined the appropriate Nsi' and lc for a given string set Si and select the 

appropriate Nsi' strings that would result in the best performance of CAGSC 

compression. This is usually carried out in the following way: 

If Nsi' and lc are fixed, then we use the above described method to select the 

appropriate strings, i.e. we sort strings according to descendent order of the calculated 

weighted frequencies, and then select the top Nsi' strings. 
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If Nsi' and lc are not fixed, we set lc = 1..n, Nsi' = min( CS(lc), Nsi ). For each pair of Nsi' 

and lc , we use the above method to select the top Nsi' strings, and then we calculate the 

potential gains each pair of lc and Nsi' , i.e. PG(Si') . Among all the PG(Si') , we select 

the highest one. Then the pair of Nsi' and lc corresponding to the highest the PG(Si') 

would be the final decision. 

Note that, besides the above parameters, there are other considerations which 

may affect the number of strings (i.e. Nsi') to be selected from string set Si . For 

example, in the situation where tables need to be transferred dynamically and the 

network bandwidth is narrow, smaller sized tables may be preferred so that the transfer 

latency can be minimized. 

For each string set in web content, we use the above methods to select the strings 

from each set and determine the coding length for each set. Then we generate 

token-string tables to be used in CAGSC compression. Below we discuss the format 

and other issues regarding token-string tables. 

7.4.2.2.4 Token-String Tables in CAGSC Compression 

ü Multiple token-string tables & Scalability of CAGSC compression 

There are multiple different types of string sets in web content. As we stated 

earlier, it is preferable to include multiple string sets in CAGSC compression, and we 

generate and maintain a separate token-string table for each string set. The token-string 

table corresponding to the string set Si is referred to as Ti . The total number of 

different token-string tables is represented as Nt . 

It is possible that new string sets may be introduced into web content in the 

future, or an existing string set has got some changes. It is highly desired that CAGSC 

compression can be scalable to any new string sets. 

To enable CAGSC compression to be scalable to new string sets, as well as to 
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distinguish different multiple token-string tables, we assign a unique ID to each table. 

The ID’s can be of any types of values as long as each one is unique; but in this study, 

we define such IDs to be unique integer numbers. We use IDi to denote the unique ID 

assigned to table Ti . 

When the tokens from a particular token-string table Ti is used, its ID IDi will be 

used together with the tokens (see next subsection for details on this), so we can 

distinguish which table the tokens belong to. This also allows us to reuse the same 

tokens among different tables. Furthermore, whenever a new string set is introduced 

into web content, we can include it into CAGSC compression by generating a 

token-string table for it and assigning a new unique ID to the table. This way, CAGSC 

compression would be able to be extended to any new string sets in the future. 

ü Size of token-string table for a string set 

The size (i.e. the number of entries) of a token-string table for a string set Si is 

determined by the number of strings Nsi' selected from Si to be used in CAGSC 

compression. In the previous subsections, we have studied various aspects and 

introduced parameters to help with the selection of strings from a string set. When the 

selection is done, the number of the strings becomes fixed; accordingly, the size of the 

token-string table for the selected strings will be known. 

ü Format of token-string tables 

Given a string set Si , once the selection of strings from Si is finished and a 

coding length is determined, a token-string table will be generated for the selection of 

strings. 

The format of token-string tables is given in Figure 7.23. All token-string tables 

are made of two parts: description part and coding part. In the description part, the 

unique ID assigned to the table and the coding length used by the table are presented, 



201 

followed by an <end tag> (e.g. we may reserve the code “128” to be used as the <end 

tag>). The coding part contains the “token, string” pairs. Every string in the selection 

of strings has a corresponding “token, string” pair, and each “token, string” pair is 

ended with an <end tag>. The token for each string is unique, and all the tokens 

appeared in the same table are of the same coding length. As to the details on the 

tokens, please refer to the “coding scheme” part in Section 7.4.2.2.2. 

 
 

Figure 7.23 Format of token-string tables 
 

Note that every token-string table in CAGSC compression has a unique ID. The 

ID of a table will be used together with the tokens in the table (see next subsection for 

details on this). This mechanism would enable us to distinguish tokens from different 

tables, to reuse the same tokens among different tables, as well as to include new tables 

into CAGSC compression. 

ü Using token-string tables 

The token-string tables in CAGSC compression are generated for special string 

sets such as HTML tags and JavaScript strings etc. The characteristics of such string 

sets in web content are very stable. For example, they seldom change in terms of 

spelling, number of strings in a set and global occurrence frequencies etc. As we 

described in the previous subsection, our CAGSC compression selects strings based on 

analysis of a wide-range collection of objects. Because of these reasons, the 

pre-generated token-string tables based on the selections of strings are applicable 

globally to all objects, and they can be treated rather statically. They do not need to be 

<ID><coding length><end tag> 
<token1><string1><end tag> 
<token2><string2><end tag> 
<token3><string3><end tag> 
…… 
…… 
…… 
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stored in and dynamically transferred with every compressed object. Instead, we can 

distribute them together with the CAGSC compression and decompression packages 

prior to the use of CAGSC compression. 

On the other hand, dynamic download of those tables is also supported in 

CAGSC compression. This is to handle the rare situations when the tables are updated 

or a client happens to lack of certain tables. When a client encounters such situations 

when it decompresses an object, it will request and download relative tables 

dynamically from the content provider and then go on with the decompression. 

7.4.2.3 Applying CAGSC Compression in Web Content Delivery 

7.4.2.3.1 Compression Process 

Basically, our CAGSC compression compress web objects by scanning object 

body and replacing the special strings with CAGSC tokens. 

To differentiate the CAGSC tokens from the normal ASCII codes, as well as to 

differentiate the CAGSC tokens from different token-string tables, we introduce two 

new tags to specify the working areas of CAGSC compression and the ID’s of the 

token-string tables used in each working area. The tags and their formats are as 

follows: 

Starting tag :  <CAGSC Table=ID>  

Ending tag :  </CAGSC>  

The starting tag is used to mark the starting point of a working area of CAGSC 

compression in the body of an object, while the ending tag is used to mark the ending 

point of a CAGSC compressed area. The starting tag and ending tag must appear in 

pair when applying CAGSC compression. Between these two tags, only normal ASCII 

codes and the tokens from the token-string table with the specified ID can appear. 

Figure 7.24 illustrates the compression process of CAGSC compression. The 



203 

CAGSC compression program scans the body of an object, when it recognizes a 

special string belonging to a particular token-string table Ti , it will insert a starting tag 

“<CAGSC Table=IDi>”, and then replace the string with a CAGSC token from table 

Ti . Following that, if it keeps meeting other strings that belong to the same table Ti 6, 

it will just replace them with tokens without inserting new starting tags. If the CAGSC 

compression program recognizes a special string that belongs to another table Tj , it 

will end the working area for table Ti by inserting an ending tag “</CAGSC>”, then it 

starts a new working area for table Tj . This process repeats until the end of the object 

body. In Figure 7.24, we suppose the strings strix belong to table Ti and strings strjx 

belong to table Tj . We see that CAGSC finishes the working area for table Ti and 

starting the working area for table Tj when it meets the string strj1 . 

 
 

Figure 7.24 Compression process of CAGSC Compression 
 
                                                        
6 In web content, this is often the case. For example, we usually meet plenty of JavaScript elements at 
the beginning part of an object, and many HTML tags at the rest parts. 

…stri1…str i2…str i3……, …str j1…str j2…str j3…… 

CAGSC 

Token-string table ID1 

    …
 

Scan the whole object 

…<CAGSC Table=IDi>tokeni1…tokeni2…tokeni3……,…</CAGSC> 
<CAGSC Table=IDj>tokenj1…tokenj2…tokenj3……</CAGSC> 

Token-string table IDi 

    …
 

Token-string table IDj 

    …
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When the above process finishes, we will get a resulting file which is compressed 

by CAGSC compression. Normally, this file would contain multiple “<CAGSC 

Table=IDi>” and “</CAGSC>” tag pairs. These pairs split the object body into 

multiple regions; each region is compressed by certain token-string table, and the 

tables for each region are independent of each other. The CAGSC tokens can be reused 

among different regions (in fact, they are reused among different token-string tables). 

Figure 7.25 gives an example of CAGSC compression with two tables. It shows how 

object body is compressed into multiple regions and how the CAGSC tokens are 

reused among the regions. 

After an object has been compressed by CAGSC compression program, it may be 

passed to other compression mechanisms to compress further. 

 
 

Figure 7.25 Example of CAGSC compression with two tables 
 
7.4.2.3.2 Decompression Process 

The decompression process of CAGSC is quite simple. It is just the reverse 

process of the compression process. Figure 7.26 illustrates the decompression process of 

CAGSC compression. 

<HTML> 
<HEAD> 
<TITLE>...</TITLE> 
...... 
<SCRIPT LANGUAGE="JavaScript"> 
...... 
...... 
</SCRIPT> 
</HEAD> 
<BODY> 
...... 
...... 
</BODY> 
</HTML> 

1(ID)  1(Coding length)  2(ID)  1(Coding length) 
token string  token string 
‘C1’ HTML  ‘C1’ SCRIPT 
‘C2’ HEAD  ‘C2’ LANGUAGE 
‘C3’ TITLE  ‘C3’ JavaScript 
‘C4’ BODY  …… 
……  …… 
…… 
 

 …… 
 

 

CAGSC 

<<CAGSC Table=1>‘C1’> 
<‘C2’> 
<‘C3’>...</‘C3’> 
...... 
<</CAGSC><CAGSC Table=2>‘C1’ ‘C2’=‘C3’> 
...... 
...... 
</‘C1’> 
</</CAGSC><CAGSC Table=1>‘C2’> 
<‘C4’> 
...... 
...... 
</‘C4’> 
</‘C1’></CAGSC> 

token-string tables 
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The CAGSC decompression program scans the body of a CAGSC-compressed 

object, when it meets a starting tag “<CAGSC Table=IDi>”, it will use the strings from 

the token-string table Ti to replace the following met CAGSC tokens. This replacement 

stops taking place when it meets an ending tag “</CAGSC>”. When a new starting tag 

is met, the program will switch to the corresponding token-string table and start to 

replace CAGSC tokens with strings. The above process continues until the end of the 

object body. 

 
 

Figure 7.26 Decompression process of CAGSC Compression 
 

From the above process, we see that the starting tag “<CAGSC Table=IDi>” will 

guide the decompression program to select the correct token-string table. Even if the 

CAGSC tokens in different regions are the same, the program will still be able to 

decompress the tokens to strings correctly. Therefore, we can reuse tokens among 

different tables and regions without any problem. 
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    …
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Token-string table IDi 

    …
 

Token-string table IDj 

    …
 

Input 

Output 

Original 
Object 

CAGSC 
Compressed 

Object 

From other 
compression 
mechanism 



206 

7.4.3 Case Study: CAGSC Compression on HTML and JavaScript Strings 

In this section, we would like to use HTML tags and JavaScript strings to study 

the performance of CAGSC compression in web content delivery. 

Ideally, CAGSC compression can be applied on any type of special string sets 

appeared in web content, such as HTML tags, JavaScript strings, css keywords and 

HTTP headers etc. Here we work on only HTML tags and JavaScript strings because 

they are the most frequently used special string sets in web content, and they often 

occupy considerable percentages of object body. 
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Figure 7.27 Distribution of objects w.r.t. the ratio of “tags size/whole object size” 

 
Figure 7.27 plots the distribution of objects with respect to the ratio of the size of 

HTML tags and JavaScript strings vs. the size of whole object. From the graph, we see 

that for the majority of objects, the HTML tags and JavaScript strings all occupy about 

5~35% of the whole object size. On average, HTML tags count for about 17.65% of 

total object size while JavaScript strings occupy about 14.59% of object size. Together, 

they take up about 32.24% of whole object size. These percentages are quite 

significant. It gives good potential on performing CAGSC compression on HTML tags 

and JavaScript strings. 

From this graph, we also observe that the curve of JavaScript strings is a little to 
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the left of the curve of HTML tags. This shows that JavaScript strings occupy 

relatively smaller portion of objects’ body than HTML tags do. This indicates that 

CAGSC compression may be more effective on HTML tags than JavaScript strings. 

As we stated earlier, CAGSC compression should be put to work together with 

another general-purpose compression algorithm to achieve better overall performance. 

In our study, we choose to use deflate as the general-purpose compression 

algorithm to work with CAGSC compression. deflate is an LZ77 variant and it is a 

widely used efficient lossless general-purpose compression algorithm. There are a 

number of programs using deflate as the core algorithm, such as gzip and zlib [214] 

etc. The actual general-purpose compression program we use in this study is zlib. This 

is mainly because zlib is a free open source package which can be incorporated into 

our system easily. 

When CAGSC compression is working together with zlib, we will use CAGSC 

compression to first compress an object, and then we pass the CAGSC-compressed 

object to zlib to do further compression. 

7.4.3.1 Selecting Strings for CAGSC Compression 

There are about 210 HTML tags and more than 410 JavaScript strings defined in 

web specifications [35, 289]. 

In our study, we collect and analyze HTML tags and JavaScript strings by doing 

analysis on about 34,000 web pages. In total, we get 195 strings in the HTML set and 

410 strings in the JavaScript set. To decide the number of strings, what strings and the 

coding length to be used for each of these two string sets, we compute the weighted 

frequencies for the strings and the potential gains for certain selections (i.e. subsets) of 

strings using formulas F7.3 and F7.4. 

Table 7.2 and Table 7.3 furnish the potential gains of different selections of 
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HTML tags and JavaScript strings respectively. From them, we see that the selections 

of top 128 strings under 1-byte coding give the highest potential gains among all the 

choices. It is surprising to observe that the selections under 2-byte coding give smaller 

potential gains although 2-byte coding provides much larger coding space which 

enables more strings to be selected. Further study reveals the following reasons: 

Table 7.2 Potential gains of different selections of HTML tags 
Coding Length  

1-byte 2-byte 
Coding 
Space 128 32,768 32,768 32,768 

Number 
of strings 
selected 

(Remarks) 

128 
(Only 128 strings are selected 
due to the limitation of 
coding space. These 128 
strings are those with top 
weighted frequencies which 
are greater than zero.) 

195 
(The full string set of 
HTML tags. Note that the 
weighted frequencies of 
some strings may be less 
than or equal to zero.) 

168 
(All the strings whose 
weighted frequencies 
are greater than zero 
are selected.) 

128 
(Only the top 128 
strings from the 168 
strings in the left 
column are selected.) 

PG of the 
selection 
of strings 

99,149,960 62,764,840 68,808,825 68,783,845 

 
 
Table 7.3 Potential gains of different selections of JavaScript strings 

Coding Length  
1-byte 2-byte 

Coding 
Space 128 32,768 32,768 32,768 

Number of 
strings 

selected 
(Remarks) 

128 
(Only 128 strings are selected 
due to the limitation of coding 
space. These 128 strings are 
those with top weighted 
frequencies which are greater 
than zero.) 

410 
(The full string set of 
JavaScript strings. Note 
that the weighted 
frequencies of some 
strings may be less than 
or equal to zero.) 

404 
(All the strings 
whose weighted 
frequencies are 
greater than zero are 
selected.) 

128 
(Only the top 128 
strings from the 404 
strings in the left 
column are selected.) 

PG of the 
selection 
of strings 

111,544,694 86,477,018 86,553,835 85,847,930 

 
(1) Under 2-byte coding scheme, the weighted frequency of a string will be smaller 

than that under 1-byte coding scheme because a larger coding length is used in the 

calculation of weighted frequency (see F7.3). 

(2) The occurrences of HTML tags and JavaScript strings concentrate on a small 

subset of the whole string sets. Figure 7.28 plots the CDF of occurrence frequencies 

of strings with respect to the sizes of string subsets. We see that small subsets 
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which contain the top 32 or 64 strings already cover the majority of the global 

occurrence frequencies of all strings. When the subset contains 128 strings, it 

covers 99.84% of all strings’ occurrences in HTML tags and 99.19% in JavaScript 

strings. This indicates that the 1-byte-coding’s 128 coding space provides very 

good coverage of strings’ occurrences of HTML tags and JavaScript strings, which 

is very comparable to that of 2-byte-coding. So, although 2-byte coding is able to 

enclose more strings than 1-byte coding, its coverage of occurrence frequencies of 

strings is extremely similar that of 1-byte coding. 

Since 1-byte coding provides good coverage of string occurrences in HTML tags and 

JavaScript strings and the weighted frequencies of strings are bigger under 1-byte 

coding, it is understandable why the potential gains on HTML tags and JavaScript 

strings under 1-byte coding are bigger than that under 2-byte coding. 
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Figure 7.28 Cumulative distribution of strings w.r.t. subset sizes 

 
Based on the above studies of the potential gains, we decide to adopt the 1-byte 

coding scheme and select the top 128 strings for this case study of CAGSC 

compression on HTML tags and JavaScript strings in web content delivery. 

Table 7.4 lists the top 30 strings among the 128 strings selected from each string 

set of HTML tags and JavaScript strings. 

To look at the average lengths of the selected strings could also help us to 
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estimate the potential of CAGSC compression. 

Table 7.4 Top 30 strings of the selected 128 strings under 1-byte coding 
Top 30 HTML tags Top 30 JavaScript strings 

ADDRESS JAVASCRIPT 
WIDTH DOMAIN 
HEIGHT LOCATION 

FONT CONFIRM 
HREF WIDTH 
HTML WINDOW 

BORDER HEIGHT 
TD BORDER 

CLASS IMAGES 
CENTER OPEN 
ALIGN FOR 

FOR CLASS 
CELLSPACING THIS 
CELLPADDING BGCOLOR 

TABLE IF 
BGCOLOR INDEX 

VALIGN OPTION 
IMG TARGET 
TR VALUE 

OPTION DOCUMENT 
SRC SCRIPT 
SIZE ONMOUSEOVER 

COLOR NAME 
FACE TOP 

TARGET ONMOUSEOUT 
STYLE SEARCH 

BR LANGUAGE 
VALUE TITLE 

DIV RETURN 
SPAN LINK 

 
Taking the frequencies of the strings into consideration, we get the average string 

lengths and average gain per string for the two string sets. The results are shown in 

Table 7.5. We see that the average gain per string for both HTML tags and JavaScript 

strings is substantial. 

Table 7.5 Average string lengths and gains under 1-byte coding 
 HTML tags JavaScript strings 

Average length of the 128 selected original strings 4.3 bytes 5.3 bytes 
Length after CAGSC compression 1 byte 1 byte 

Average gain per string 76.74% 81.13% 
 

Also from Table 7.5, we notice that the average length of JavaScript strings is 

bigger than that of HTML tags. Therefore, the average gain per string for JavaScript 
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strings is higher than that for HTML tags. However, according to Figure 7.27, 

JavaScript strings occupies smaller portion of object data than HTML tags do. So, it 

remains unknown that CAGSC compression is more effective on which string set: 

HTML tags or JavaScript strings. We will answer this question in the following 

experimental study. 

7.4.3.2 Generating Token-String Tables 

After strings have been selected, token-string tables will be generated for them. 

That is, each string in the selection will be given a token. All the tokens for the strings 

of one selection (i.e. subset) form a token-string table. Each string table is given a 

unique ID to distinguish the tokens among tables. The format of token-string tables is 

as described in subsection 7.4.2.2.4. 

In this case study of CAGSC compression on HTML tags and JavaScript strings, 

we have two string sets. From each set, we select 128 strings. So we have two 

token-string tables. For simplicity reason, we represent table ID’s using integer 

numbers. For the token-string table for HTML tags, we assign “1” to be its ID; and for 

JavaScript strings, we assign “2” as the table’s ID. We use 1-byte coding scheme in 

this study, as we discussed earlier. Table 7.6 gives the excerpts of the two token-string 

tables used in this study. 

7.4.3.3 Performance Study 

After the token-string tables have been generated, they will be pre-distributed to 

parties with CAGSC packages. Then we will be able to use CAGSC compression in 

web content delivery. 

Below, we report our experimental study on the performance of CAGSC 

compression using the token-string tables described in the previous subsection. 

To study the performance of CAGSC compression in web content delivery, we 
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first look at compression ratios that various CAGSC compression mechanisms can 

achieve. Here we include four mechanisms in our study. They are shown in Table 7.7. 

Table 7.6 Excerpts of token-string tables for selected-strings subsets 
For selected HTML tags For selected JavaScript strings 

1 (Table ID) 1 (Coding length) 2 (Table ID) 1 (Coding length) 
(Token) (String) (Token) (String) 
10000001 ADDRESS 10000001 JAVASCRIPT 
10000010 WIDTH 10000010 DOMAIN 
10000011 HEIGHT 10000011 LOCATION 
10000100 FONT 10000100 CONFIRM 
10000101 HREF 10000101 WIDTH 
10000110 HTML 10000110 WINDOW 
10000111 BORDER 10000111 HEIGHT 
10001000 TD 10001000 BORDER 
10001001 CLASS 10001001 IMAGES 
10001010 CENTER 10001010 OPEN 
10001011 ALIGN 10001011 FOR 
10001100 FOR 10001100 CLASS 
10001101 CELLSPACING 10001101 THIS 
10001110 CELLPADDING 10001110 BGCOLOR 
10001111 TABLE 10001111 IF 
10010000 BGCOLOR 10010000 INDEX 
10010001 VALIGN 10010001 OPTION 
10010010 IMG 10010010 TARGET 
10010011 TR 10010011 VALUE 
10010100 OPTION 10010100 DOCUMENT 
10010101 SRC 10010101 SCRIPT 
10010110 SIZE 10010110 ONMOUSEOVER 
10010111 COLOR 10010111 NAME 
10011000 FACE 10011000 TOP 
10011001 TARGET 10011001 ONMOUSEOUT 
10011010 STYLE 10011010 SEARCH 
10011011 BR 10011011 LANGUAGE 
10011100 VALUE 10011100 TITLE 
10011101 DIV 10011101 RETURN 
10011110 SPAN 10011110 LINK 
…… 
(total 128 entries) 

…… 
(total 128 entries) 

…… 
(total 128 entries) 

…… 
(total 128 entries) 

 
Table 7.7 Four mechanisms for studying compression ratio of CAGSC compression 

Abbreviation Remarks 
Normal No compression 

CAGSCh CAGSC compression on HTML tags only 
CAGSCj CAGSC compression on JavaScript strings only 
CAGSChj CAGSC compression on both HTML tags and JavaScript strings 

 
Figure 7.29 plots the improvement that various CAGSC compression mechanisms 

achieve on size reduction. We see that CAGSC compression can effectively reduce 

object size by considerable percentage by just compressing HTML tags and JavaScript 
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strings. The average compression ratios of CAGSCh, CAGSCj and CAGSChj are 

85.14%, 86.96% and 78.86%, respectively. 

The results in this graph show that CAGSCh have better compression ratio than 

CAGSCj. In other words, CAGSC compression is more effective on HTML tags than 

JavaScript strings. The outperforming percentage is 1.2~7.9%. The reason for this 

phenomenon could be due to the fact that HTML tags occupy bigger portion of object 

body than JavaScript strings do (refer to Figure 7.27). 

When CAGSC compression works on both HTML tags and JavaScript strings 

(i.e. the CAGSChj mechanism), it produces much better compression ratio than the 

ones working on one string set only. However, we notice that the size reduction that 

CAGSChj achieves does not equal to the addition of the size reduction from CAGSCh 

and CAGSCj. The reason for this is because that there is overlap between the two 

string sets. When these two strings sets are put together to work for CAGSC 

compression, the strings that they have in common will be compressed only once. 

Therefore, the overall improvement is smaller than the total sum of the improvements 

achieved by working on each single string sets. 

Another interesting observation is that the effectiveness of CAGSC compression 

with different string sets varies for different object sizes. We see that the effectiveness 

of CAGSCh decreases as object size increases, while this trend is much less obvious 

with CAGSCj. The reason for this phenomenon may be because that the proportion of 

different string sets in object body changes in different-sized objects. As object size 

increases, HTML tags become to occupy relatively smaller portion of object body; so 

CAGSCh becomes less effective. As for JavaScript strings, its proportion in objects 

may be quite constant across different-sized objects. Consequently, the effectiveness of 

CAGSCj is relatively stable. But for very large objects, i.e. those bigger than 128 
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KBytes, we also see that CAGSCj drops a little in effectiveness. This indicates that the 

proportion of JavaScript strings in object body also becomes smaller for very large 

objects. Because the effectiveness of CAGSC compression on HTML tags decreases, 

so the effectiveness of the compounded CAGSChj compression also decreases, as we 

can see in Figure 7.29. 
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Figure 7.29 Compression ratio of CAGSC compression 

 
Figure 7.29 shows that CAGSC compression can reduce object size by up to 25%. 

However, there exist some general-purpose compression algorithms such as zlib which 

work quite well on web content also. Refer back to Figure 7.7, we see that the 

compression ratio that those algorithms achieve is even higher than CAGSC 

compression. With this in presence, is it still necessary or beneficial to adopt CAGSC 

compression in web content delivery? Our answer to this question is positive. This is 

because: our CAGSC compression is not exclusive to existing general-purpose 

compression algorithms. In fact, CAGSC compression can be used together with them 

to further improve the performance of compression in web content delivery. Here we 

would like to study the effectiveness of CAGSC compression in the presence of 

another compression algorithm. 

As we stated earlier, we use zlib as the general-purpose compression algorithm in 

our study (please refer to Section 7.4.3 for the reasons). To study the effectiveness of 

CAGSC compression in working with zlib, we first compress objects using CAGSC 
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compression, and then apply zlib on the resulting data. In all, we have four 

compression mechanisms to compare with. They are listed in Table 7.8. 

Table 7.8 Four mechanisms for comparison of zlib and CAGSC compression 
Abbreviation Remarks 

zlib zlib compression 
CAGSCh+zlib zlib compression after CAGSCh 
CAGSCj+zlib zlib compression after CAGSCh 
CAGSChj+zlib zlib compression after CAGSChj 

 
Figure 7.30 shows the relative performance of the four compression mechanisms. 

From the graph, we see that CAGSC compression still achieves considerable 

improvement when zlib is in presence. Compared against zlib, the relative size ratios 

of CAGSCh+zlib, CAGSCj+zlib and CAGSChj+zlib are 89.35%, 90.49% and 86.44%, 

respectively. This can be considered substantial because it is generally agreed that to 

further improve compression ratio for algorithms like zlib (i.e. deflate) is very 

difficult. 
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Figure 7.30 Compression ratio of zlib and CAGSC with zlib 
 

An interesting observation is that the CAGSChj+zlib (or CAGSCh+zlib, or 

CAGSCj+zlib) compression yields the best performance for objects with sizes between 

2 KBytes and 8 KBytes. This could be because: (1) For small objects (around 1 KByte), 

zlib is not very effective in compressing them, so the performance of CAGSChj+zlib is 

not the best; (2) For big objects (bigger than 8 KBytes), the contribution to size 

reduction from zlib becomes rather stable, since the contribution from CAGSChj is 
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getting smaller and smaller as object size increases (refer to Figure 7.29), so the overall 

performance of CAGSChj+zlib worsens a little. 

As we know from the previous sections of Chapter 7, compression can improve 

object latency and page latency. Below we study the improvement that CAGSC 

compression can bring in on object latency and page latency. The results presented 

here are obtained through simulations. The details of experimental environment and 

test sets are as described in Chapter 5 and Section 7.3.1. 

Figure 7.31 and Figure 7.32 plot the improvement of CAGSC compression on 

object latency against the normal no-compression situation and zlib situation, 

respectively. In Figure 7.31, we see that the CAGSC compression mechanisms can 

produce about 4~20% improvement on object retrieval latency. Compared with the 

improvements that the existing zlib compression has achieved (see Figure 7.3), this 

improvement is not so significant. However, as we pointed out earlier, CAGSC 

compression can be used together with zlib as a complementary mechanism to further 

improve the performance of compression. Figure 7.32 plots the performance of such 

“CAGSC+zlib” compression mechanisms again zlib. We see that when working with 

zlib, CAGSC compression does further improve the overall performance on object 

latency by 4~12%. This is quite substantial since it is generally agreed that to further 

improve the performance of compression algorithms like zlib is very difficult. 

Figure 7.33 plots the improvement of CAGSC compression on page latency 

against the normal no-compression situation. From this graph, we see that the CAGSC 

compression mechanisms achieve about 1.5~14.6% improvement on whole page 

retrieval latency. 

We see that the improvement on page latency that CAGSC compression achieves 

is smaller than that on object latency. In Section 7.3, we have studied this phenomenon 
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and revealed that (1) the fact that compressible objects in a page (mainly COs) only 

occupy part of the total page size, (2) dependency among CO and EOs of pages, and (3) 

limited parallelism width for simultaneous object fetching are the main reasons that 

prevent compression’s performance on object retrieval latency from being translated 

into page retrieval latency directly. 
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Figure 7.31 Effect of CAGSC compression against normal situation on object latency 
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Figure 7.32 Effect of “CAGSC+zlib” against zlib situation on object latency 

 
Because of the above reasons and that CAGSC compression is less effective 

when working with zlib than being used alone (see Figure 7.31 and Figure 7.32), it is 

expected that CAGSC compression mechanisms may achieve even smaller 

improvement on whole page latency when zlib is in presence. Our simulation results 

show that the “CAGSC+zlib” compression mechanisms can only bring in about 

0.8~4.4% improvement on page latency as against zlib compression. 
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Nevertheless, this is still a non-negligible performance gain, especially when it is 

obtained on top of an efficient general-purpose compression algorithm since it is rather 

difficult to further improve the performance of those algorithms. 

Furthermore, remember that in this study, our CAGSC compression only works 

on HTML tags and JavaScript strings. If we include more string sets such as VBScript, 

css, XML and ESI etc. in CAGSC compression, we would expect that higher 

performance of CAGSC compression could be seen. 
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Figure 7.33 Effect of CAGSC compression against normal situation on page latency 

 
7.5 Conclusion 

Web compression is an important web acceleration mechanism. This chapter 

presented our detailed chunk-level study on two major web compression mechanisms, 

namely pre-compression and real-time compression. The results revealed in our study 

helps us to have in-depth understanding on the behavior and performance of 

compression and its effect on page latency. We also propose a novel compression 

mechanism, named Content-Aware Global Static Compression (CAGSC), to improve 

the performance of compression in the specific area of web content delivery. 

Experimental results show that CAGSC can achieve up to 20% and 14.6% 

improvement on object retrieval latency and page retrieval latency respectively. 
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Chapter 8 Accelerating Web Page Retrieval through  
Manipulation of Dependency 

8.1 Introduction 

Web retrieval latency is always an important issue to web content providers and 

users. To reduce the latency, two traditional ways are to upgrade the infrastructure of 

network and servers, and to adopt caching-based acceleration mechanisms such as web 

caching and prefetching. However, upgrading of infrastructure of network and servers 

are usually very costly so they are not often used. The caching-based acceleration 

mechanisms have their limitations and are found not very effective. Therefore, another 

category of software approaches which aims to accelerate the actual process of web 

retrieval is getting more and more attention nowadays. Examples in this category 

include encoding, pipelining and bundling etc. In Chapter 6, we already see that there 

is good potential of accelerating web retrieval in this direction. In this chapter, we 

propose innovative acceleration mechanisms which also belong to this category. Our 

mechanisms try to reduce web retrieval latency by manipulating the dependencies in 

web retrieval process. 

Recall in chapter 4 and 6, web retrieval process consists of a series of objects and 

operations, and retrieval latency is divided into seven components under WRDM 

model. While some of the latency components are inherited from operations’ execution 

time and propagation delay of data transmission through network, some others are 

caused by dependencies between objects and between operations of web retrieval 

processes. Among the objects or operations in web retrieval processes, there exist some 

dependencies. For example, the retrieval of EOs relies on the retrieval of the CO of 

same page. This is because EOs are defined in the body of CO. Dependency would 

generally introduce latency to retrieval process. The retrieval of an EO can not start 

until the data chunk containing the definition of the EO has returned to client, this 
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delay definitely contributes towards the retrieval latency of EOs. As we see, such 

dependencies are caused by unavailability of information. If such information can be 

made known to client earlier, the dependency will be shifted to an earlier stage and 

retrieval latency can be reduced. 

In this work, we propose Information Propagation mechanisms to manipulate 

information dependency. These mechanisms could eliminate dependencies or shift 

dependencies to earlier stages by propagating critical information backward to earlier 

locations such as previous pages. By doing so, critical information could be made 

known to client earlier, which would result in improvement in retrieval latency because 

the dependent operation can now be started much earlier. 

The outline of this chapter is as follows. We first discuss the dependency and 

dependency-introduced latency in web retrieval, and show how the dependency can be 

manipulated and the relevant latency be reduced. Then we propose two information 

propagation mechanisms to manipulate two different information dependencies in web 

retrieval. Following that is the detailed study on the performance of these mechanisms. 

Then the chapter is concluded. 

8.2 Dependency in Web Retrieval and Its Manipulation 

8.2.1 Dependency in Web Retrieval 

The retrieval processes of web page generally comprise a series of operations. In 

Chapter 4 and 6, we map such retrieval processes to WRDG graphs under WRDM 

model. The arcs of WRDG graph represent the relationship between operations. In 

WRDG graphs, most of those relations are dependency relations since an operation 

usually depends on the result of its precedent operation in the retrieval process. For 

example, the network connection arc ac(k,i) denotes the dependency between “server 

location resolution” operation and “network connection establishment” operation, i.e., 
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the establishment of network connection can not be started unless the location of the 

server has been resolved. 

The dependency in web retrieval can be between the retrieval processes of two 

objects, as well as between two operations in the retrieval process of an individual 

object. The dependency between objects mainly refers to the relationship between CO 

and EOs as EOs are defined in CO. This dependency denotes that the requests for EOs 

cannot be initiated unless the definitions of EOs are made know to client. The 

dependency between operations appears in the retrieval process of an individual object. 

In general, every operation would be dependent on the result of its precedent operation 

in the retrieval process. 

Based on the cause of the relationship, we classify the dependencies in web 

retrieval into two types: (1) Information Dependency, and (2) Happened-before 

Dependency. If an operation depends purely on some information produced by its 

previous operation, then the dependency between them is called Information 

Dependency. Otherwise, the dependency would be treated as Happened-before 

Dependency. Figure 8.1 gives a classification of the dependencies in WRDG graph. 

The dependencies in the retrieval process generally introduce latencies to web 

retrieval and sometimes such dependency-introduced latency can be significant. We 

learnt from chapter 6 that web retrieval latency is made up of seven latency 

components. Those latency components are generally incurred by an operation waiting 

for the result of its precedent operation, i.e. the dependency between the two 

operations. For example, the “connection establishment operation” would have to wait 

for the IP address of the web server being resolved from the “location resolution 

operation”, and the waiting time is the latency component LRT. From Figure 6.5 and 

Figure 6.15, we see that some dependencies-introduced latency components are quite 
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large. For example, the DT time, which is caused by the dependency between CO and 

EOs, often takes up more than 50% of the object retrieval latency. 

 
 

Figure 8.1 Classification of the dependencies in web retrieval 
 

The fact that dependencies have significant influence on web retrieval latency 

suggests a good direction to improve web retrieval performance by manipulating 
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dependencies in web retrieval. In this chapter, we try to propose some mechanisms to 

achieve this goal. 

8.2.2 Manipulating Information Dependency in Web Retrieval through 
Information Propagation 

Among the two types of dependencies in web retrieval, the Happened-before 

Dependency is usually determined by the nature of the operations sequence in web 

retrieval. For the Information Dependency, it is caused because of the untimely 

unavailability of information. Because the required information is not made available 

in time, the starting of the operation which is dependent on that information has to be 

postponed until the information is ready. If such information can be made available in 

advance through some mechanism, the dependent operation would be able to start 

earlier, resulting in faster retrieval process. This prompts us to find a way to make the 

information required by an operation available earlier, prior to its actual usage. 

Since the “entity” that causes Information Dependency is information, which is 

some type of data, we could try to find some mechanisms to provide such information 

earlier than it is actually required. The particular mechanism we are going to propose 

in this chapter is called the Information Propagation mechanism. The basic idea of this 

mechanism is to propagate the critical information which causes dependency to an 

earlier location/stage in the web retrieval process, and keep it for use when there is 

need arising. This way, the dependency is shifted to the earlier location/stage. With 

required information being made ready for use in advance, dependent operations could 

start executing without any delay, resulting in faster retrieval process. 

We would like to also point it out that besides being used to reduce 

dependency-introduced latency, the propagated information can also be used to 

enhance the performance of other acceleration mechanisms. For example, 

pre-connection, persistent connection, bundling, and parallelism schemes etc. all can 
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make use of the propagated information to further improve their effectiveness. 

From Figure 8.1, we see that there are two Information Dependencies in web 

retrieval based on our WRDM model, i.e. the dependency between the “location 

resolution operation” and the “connection establishment operation” and the 

dependency between CO and EOs. The former dependency is between two operations 

in the retrieval process of an individual object, while the latter one is between the 

retrieval processes of two objects. We will propose different information propagation 

mechanisms to manipulate these two dependencies from next section. Results show 

that our information propagation mechanisms are effective in reducing the latencies 

incurred by those information dependencies. 

8.3 Manipulating the Dependency on Server Location Resolution 

In this section, we propose and study a mechanism to reduce the latency 

introduced by the dependency on location resolution operation. The basic idea is to 

propagate the location information of servers into web pages and associate it with 

URLs. Later on, when a client generates a request for an URL, it can use the 

propagated location information so that the location resolution operation can be 

eliminated, resulting in faster process for web retrieval. 

8.3.1 Dependency on Server Location Resolution 

Domain names are widely used in current web systems. The hyperlinks and the 

definitions of EOs in web pages are generally described in domain-name format. So, 

the URLs in web requests are also in the format of domain names in most cases. 

However, to establish network connection with a server, the actual location (i.e. IP 

address) of the server is required. Thus, the location (IP address) of the server specified 

in a URL must be resolved prior to the establishment of network connection. The 

resolution of a server’s location is typically a DNS process in current web system, and 
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it is represented by the location resolution vertex υl in WRDG graphs. The operation of 

establishing network connection highly depends on the result of the location resolution 

operation, i.e. the IP address of the server. This dependency is a kind of Information 

Dependency, as we can see it in Figure 8.1. 

Location resolution has been the most frequently used process in the Internet, and 

many technologies such as DNS caching have been developed to improve the 

performance of this process. Despite the high efficiency of current DNS system, long 

location resolution time is still often encountered in the web system. Typically, a DNS 

query which hits in local DNS cache yields very small latency, which appears to be 

less of a problem for overall web retrieval. However, if a DNS query results in a miss 

in local DNS cache, the time it takes to get the answer from remote authoritative DNS 

server will be much bigger, which is no longer negligible to web retrieval. Therefore, it 

would be preferable if we can have some mechanism to further help in this situation. 

The URLs in web requests are originated from different places for COs and EOs. 

For COs, the URLs are usually originated from hyperlinks in the previous page as web 

users generally follow the hyperlinks to browse web pages. The URLs in hyperlinks 

typically have the following format: 

<A HREF="http://www.nus.edu.sg/"> NUS </A> 

The URLs for EOs are usually originated from the definitions of EOs within the body 

of the CO of the same page. There are different types of EOs and the actual format of 

the definitions for them differs a little. But they generally have similar format as the 

following one, which is for image EOs: 

<IMG SRC="http://images.xyz.net/images/1.gif"> 

For the URLs in these two different places, if we can pre-resolve the server locations 

for them and propagate the information to proper location, then the location resolution 
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operation in web retrieval may be no long needed, so the location resolution vertex υl 

(and the associated location resolution arc al) can be removed from WRDG graphs. As 

a result, the dependency between the location resolution operation and the network 

connection establishment operation can be eliminated, which could accelerate the 

retrieval process as the latency incurred by the location resolution operation has been 

eliminated. 

8.3.2 Server Location Propagation Mechanism (SLP) 

In this section, we propose a mechanism to eliminate the dependency incurred by 

the location resolution operation by propagating the information of server location to 

eliminate the dependency on the location resolution operation. 

The mechanism we proposed to eliminate the dependency on location resolution 

operation is called Server Location Propagation (SLP) Mechanism. The basic idea of 

the SLP mechanism is to have web servers to pre-resolve the server addresses for 

external URLs in the hyperlinks and definitions of EOs in web pages hosted on them. 

By “external URLs”, we refer to the URLs which specify objects on another server. 

For external URLs, location resolution operations are usually needed in web retrieval 

process in order to get the server address for establishing network connection. The 

pre-resolved server addresses will be propagated into pages and sent to clients so that 

clients can use them directly for the establishment of network connection without any 

delay, eliminating the dependency on the location resolution operation. 

The SLP mechanism is a server side mechanism. The task of pre-resolving server 

addresses will be carried out offline by servers during off-peak hours when the servers 

are relatively idle. After a server pre-resolved the server addresses for the external 

URLs, it will keep the information in a table named Server Address Table (SAT). The 

entry of the SAT table typically contains server domain name, server address (IP 
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address), and the expiry time of the entry. Figure 8.2 shows the structure of the SAT 

table. 

 
Figure 8.2 Structure of Server Address Table 

 
Note that a server domain name could have multiple corresponding addresses. 

This is usually for load-balancing on the servers. In this case, the second field of the 

entry would have multiple addresses. 

When the server serves a page, it will look into the page for external URLs and 

lookup for the corresponding address information in the SAT table. If there is a 

matching entry, the server will propagate the corresponding address information to the 

page dynamically. We introduce an optional new tag ADDR to HTML for this server 

address propagation. As described before, the URLs are usually found in two places, 

i.e. hyperlinks and definitions of EOs. The URLs in these two places before and after 

the propagation have the formats shown in Figure 8.3. 

If the corresponding address for an external URL can not be found in the SAT 

table, the server will not propagate information for this URL. But the server will record 

this URL for pre-resolving later on. 

In the case where a server domain name has multiple corresponding addresses, 

the server may base on certain load-balancing algorithm to choose one of the addresses 

to do the propagation. 

At client side, when a user clicks on a hyperlink to go to next page, the browser 

can directly use the propagated server address associated with the hyperlink (see 

“Figure 8.3 a)” ) to establish network connection, removing the need for server location 
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resolution. When the CO of a page arrives at client, the browser may further trigger the 

retrieval of the EOs in the page by parsing the CO’s body and looking for the 

definitions of EOs. Since the definitions of EOs (with external URLs) also have 

associated server address information (see “Figure 8.3 b)” ), the browser would also be 

able to establish network connection immediately without doing the location resolution 

operation. On the other hand, if the client browser does not understand the ADDR tag, 

or it choose to ignore this tag, or there is no such ADDR tag at all, it can just proceed as 

usual with the normal URL to do the retrieval. 

 
 

Figure 8.3 Propagation of server address 
 

The above process is demonstrated in Figure 8.4. 

In the presence of web caching, the above mechanism will not help for those 

objects which are found in the local cache and still fresh. Because these objects will be 

served locally, there is no need to contact remote server, so the above mechanism will 

not be able to help. However, for objects that are not in the cache, or those in the cache 

but are stale, our SLP mechanism could effectively eliminate the latency component 

caused by the location resolution operation. 

 

a) URL in hyperlink 

ü Original: 

<A HREF="http://www.nus.edu.sg/"> NUS </A> 

ü After propagation: 

<A HREF="http://www.nus.edu.sg/" ADDR=”137.132.1.10”> NUS </A> 

b) URL in definitions of EO (use image EOs as an example) 

ü Original: 

<IMG SRC="http://images.xyz.net/images/1.gif"> 

ü After propagation: 

<IMG SRC="http://images.xyz.net/images/1.gif" ADDR=”137.132.15.10”> 
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Figure 8.4 Eliminating dependency on server location resolution operation 
 

The SLP mechanism is used to reduce the location resolution latency in web 

retrieval. It will not affect the correctness of the page content in any means. In the 
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cases where pages do not have the propagated ADDR tag, or the user’s browser does 

not support this tag, then normal retrieval procedure will be carried out, i.e. resolving 

the server location, followed by establishment of network connection etc. In any case, 

the correctness of the web page semantics will not be affected. 

8.3.3 Experimental Study 

In this section, we report our experimental results on the SLP mechanism. The 

traces and the simulation systems are described in Chapter 5. In our experimental 

environment, the local DNS caches exist at the school level (School of Computing) 

and university level (National University of Singapore). The network traffic in our 

environment is heavy and diverse. So, the DNS latencies observed in our experiments 

shall well reflect the experiences of most web users. 

First, we would like to investigate the contribution of server location resolution 

towards object retrieval latency. The server location resolution is typically the DNS 

process in web system, and the latency for it is the LRT time as discussed in previous 

chapters. In Chapter 6, we learnt that LRT time usually makes up about 1~6% of object 

retrieval latency (refer to Figure 6.5). That gives the potential of improvement by 

reducing this latency component on top of the current DNS system. Although this a 

few percents contribution is not very significant, it is large enough for being not 

negligible. 

In web system, the result of server location resolution generally falls into the 

following situations: 

1) DNS Local Hit 

These DNS lookups result in hits in local DNS cache, so the server locations can be 

returned immediately. 

2) DNS Local Miss 
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These DNS lookups result in misses in local DNS cache. They have to contact 

remote DNS servers to get authoritative answers for the server locations. 

3) Numeric 

The server location part is already given in numeric IP address form in the URLs. 

So, there no need to do DNS lookups for such URLs. 

4) No IP Available 

These DNS lookups cannot find the corresponding server locations in local and 

remote DNS caches. 

5) DNS Negative Hit 

These DNS lookups result in hits in local DNS cache, but the results are not server 

locations, instead, they are messages describing that errors encountered when 

resolving those server locations in the recent times. 

Table 8.1 shows the results of the above five situations. According to the results, about 

87% of all DNS lookups resulted in hit in the local DNS caches. When DNS lookups 

hit in local cache, the DNS latency only contributes less than 1% to the whole object 

retrieval latency. This confirms the high effectiveness of current DNS system. 

However, despite of that, we still see about 12% of DNS lookups resulting in misses in 

the local DNS caches, and the impact of those DNS misses is quite significant: the 

average latency incurred by them is nearly 2 seconds, which counts for about 20% of 

the whole object retrieval latency. 

There are some URLs in which the server’s location part is given in numeric IP 

address form instead of a domain name. For such URLs, no DNS process is needed. 

Therefore the LRT time is almost zero. Our SLP mechanism aims to achieve this effect 

by propagating pre-resolved locations (i.e. IP addresses) in to URLs, so that the 

requests for those URLs can enjoy minimum LRT time. 
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There are cases where the DNS processes are unable to resolve the given server 

domain and return the “No IP Available” result. Such cases usually prolong object 

retrieval latency very significantly because the DNS system takes long time to contact 

multiple remote DNS servers to get the final result. In our experiment, this situation 

usually takes nearly 23 seconds to finish, which is a considerably long time. Luckily, 

the percentage of requests fall in this category is very small, only about 0.12% in our 

study. 

In our experimental system, the error DNS results such as “No IP Available” will 

also be cached by the DNS system. If such domain names are submitted for resolving 

again in the near future, the system could return the result quickly without contacting 

remote DNS servers. This situation is referred to as “DNS Negative Hit” in our study. 

From Table 8.1, we can see that the latency for this situation is very small. 

Table 8.1 Statistics about server location resolution 
 Percentage 

of requests 
Average DNS 

latency (second) 
Average contribution of DNS 

latency to object retrieval latency 
DNS Local Hit 86.88% 0.002295 0.86% 

DNS Local Miss 11.89% 1.964311 20.21% 
Numeric 1.00% 0.000084 0.02% 

No IP Available 0.12% 22.773561 70.50% 
DNS Negative Hit 0.11% 0.007979 67.10% 

 
Some hyperlinks and EOs contained in a page may specify objects on the same 

server where the current page locates. For the domain names in such hyperlinks and 

the definitions of the EOs, there is no need to resolve the location since it is the same 

as current page. For hyperlinks and definitions of the EOs in which the URLs specify 

different server domain names, location resolution is needed. In our study, we refer to 

such URLs (in hyperlinks and definitions of EOs) as external URLs. The acceleration 

of location resolution process is only necessary for external URLs. Therefore, we 

would like to look into the distribution of such external URLs in web pages. 

Figure 8.5 plots the percentage distribution of external URLs in web pages. This 
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graph reads as follows: Take the category “0~10%” on the X-axis as an example, it 

shows that for about 44.3% web pages, up to 10% of the hyperlinks in them contain 

external URLs; and, for about 66.8% web pages, 0~10% of the definition of the EOs 

contain external URLs. If we put the hyperlinks and the definitions of EOs together, 

we see that for about 49% web pages, up to 10% of URLs appeared in them are 

external URLs. 

From this graph, we see that there are considerable percentage of URLs appeared 

in web pages are external URLs. And, the URLs defined in hyperlinks generally have 

more external URLs than the URLs defined in the definitions of EOs. On average, 

about 27.9% hyperlinks contain external URLs while about 20.4% definitions of EOs 

are external URLs. Overall, about 23.9% of all the URLs appeared in a page are 

external. With this high percentage of external URLs, we would expect that the 

acceleration mechanisms for location resolution could be effective. 

 
Figure 8.5 Distribution of external domains in web pages 

 
Figure 8.6 shows the distribution of the absolute number of external URLs in web 

pages. From it, we see that while about 33% of web pages do not contain any external 

URLs, the majority of web pages do have external URLs defined in them. Moreover, 

nearly 20% of web pages even contain more than 20 external URLs in them. On 
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average, there are about 17.6 external URLs in a web page. This big absolute number 

of external URLs in web pages would also ensure the effectiveness of the acceleration 

mechanisms for location resolution. 

 
Figure 8.6 Distribution of external domains in web pages 

 

 
Figure 8.7 Performance of SLP mechanism without caching effect (Parallelism = 4) 
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about 4.22%. Although this improvement is not very big, it is significant enough for 

not to be ignored. Furthermore, we note that the improvement is unevenly distributed 

among pages. If only entry pages are considered, the performance of SLP would be 

much better because entry pages tend to have more new external URLs and thus they 

usually spend more time on location resolutions. Our experimental result shows that 

SLP can achieve about 13.27% improvement on whole page latency for entry pages. 

This shall be considered as very substantial. 

When web caching is taken into consideration, the performance of SLP could be 

lower since some objects may be found in the local web cache, thus there is no need to 

resolve server location for them. Figure 8.8 shows the performance of SLP mechanism 

with considering caching effect. We use three different cache sizes to investigate 

caching effect on SLP mechanism: (a) 10% of total unique objects size in the trace, (b) 

20% of total unique objects size, and (c) Infinite cache size. For the caching 

replacement algorithm, we use the LRU algorithm, as it is the most popular one used in 

web caches [73]. 

 
Figure 8.8 Performance of SLP mechanism with caching effect (Parallelism = 4) 

 
Surprisingly, we see that web caching only has marginal influence on the 
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without considering web caching, SLP still achieves average improvements of 4.203%, 

4.20% and 4.12% when cache size is 10%, 20% of total unique objects size and 

infinite, respectively. Further study reveals the following reason for this phenomenon: 

Web caching will affect the performance of SLP only for those requests which both hit 

in the web cache and served by SLP. Since the reuse rate of web objects in web cache 

is low and the percentage of objects served by SLP is also low (recall that only about 

12% of object requests result in DNS misses), the overlapping of these two classes of 

objects will be very small. So, web caching has little influence on the performance of 

SLP mechanism. 

SLP mechanism may bring some overhead to web retrieval. The main overhead 

concerned in web retrieval performance is the size incensement to the COs of pages. 

When SLP propagate address to COs, the size of the CO will be increased. Hence, the 

retrieval latency of the CO may be affected. However, we find that this overhead is 

negligible to most pages. Because a web page contains about 17.6 external URLs on 

average, so it takes only about 380 bytes to propagate the address information for them. 

According to the study in Chapter 6, adding extra 380 bytes to an object has almost no 

or very marginal impact on the object retrieval latency. Furthermore, the 380 bytes are 

for 17.6 external URLs. Among these external URLs, there are maybe duplicate ones. 

SLP only needs to propagate address information for unique external URLs. When we 

take this into consideration, the size required for propagating address information will 

be much smaller since the number of unique external URLs should be smaller than 

17.6. 

From the above study, we can see that the SLP can effectively reduce the latency 

incurred by the dependency on server location resolution. In general, it can achieve 

more than 4% improvement on page retrieval latency. Considering this performance 
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gain is on page retrieval latency instead of object retrieval latency, this improvement 

shall be considered quite significant. At the same time, SLP retains very marginal 

overhead to web retrieval performance. 

8.4 Manipulating the Dependency between CO and EOs 

8.4.1 Dependency between CO and EOs 

As we know from previous chapters, a web page is often made up of multiple 

objects in current web system. Among the objects of a page, one is called the Container 

Object (CO) and others are called Embedded Objects (EO). The container object of a 

page is usually an HTML file which contains some content of the page and definitions 

of the EOs of the page. Embedded objects are usually images, video and audio files etc. 

The content of both the CO and the EOs must be retrieved and displayed together in 

order to render the full view of a web page. 

There is dependency between CO and EOs in web retrieval process. When a 

request is created for a page, the URL specified in the request only identifies the CO of 

the web page. Only when the body of the CO has returned and parsed, will the client 

know what are the EOs to retrieve. Only after that, will the retrieval processes of EOs 

be able to be initiated. This indicates that the retrieval of EOs highly depend on the 

retrieval of the CO. This dependency is captured by the object deriving arcs in WRDG 

graphs, as we can see in Figure 4.3 and Figure 4.5 etc. 

The dependency between CO and EOs introduces an important latency 

component, Definition Time (DT), to the retrieval latency of EOs. The studies in 

previous chapters have shown that DT times of EOs often occupy big percentage of 

object latency, and they contribute significantly towards final page retrieval latency. To 

reduce this latency component could effectively reduce whole page latency. 

The dependency between CO and EOs exists because the EOs are defined in the 
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body of the CO of the same page. In other words, the cause of the dependency is the 

definitions of EOs. Such definition is usually a line of HTML code, and typically has 

the following format (for image type of EOs): 

<IMG SRC="http://images.xyz.net/images/1.gif"> 

Since the definitions EOs are some kind of information data, so this dependency 

is also a kind of Information Dependency. From Figure 8.1, we can see that this 

dependency has been classified as information dependency. Because the cause of the 

dependency is information, we may again use our information propagation mechanism 

to manipulate this dependency. From next section, we propose an information 

propagation mechanism to manipulate this dependency by propagating the definitions 

of EOs to earlier stage/location of web retrieval process. This way, the dependency is 

shifted to earlier stage, resulting in significant reduction in the DT times of EOs. 

Consequently, significant improvement on EOs’ latency and whole page latency can be 

achieved. 

8.4.2 Embedded Object Information Propagation Mechanism (EOIP) 

In this section, we propose the Embedded Object Information Propagation 

Mechanism (EOIP) to manipulate the dependency between CO and EOs by 

propagating the definitions of EOs to earlier stage/location of web retrieval process. 

We show that our EOIP mechanism could effectively reduce the latency incurred by 

this dependency, i.e. the DT times of EOs, which in turn significantly improves whole 

page latency. 

The EOIP mechanism is also a server side mechanism. The web server will run a 

background process during off-peak hour to collect and propagate the information of 

the EOs for each page. To make it easier to explain the EOIP mechanism, we would 

like to use an example to describe it. Let us assume we have two pages Page(a) and 
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Page(b) on a web server, and Page(a) contains a hyperlink pointing to Page(b), i.e. 

Page(a) contains a line of HTML code similar to the following: 

<A HREF="http://www.nus.edu.sg/index.html"> NUS </A> 

When the server runs the background process to do the propagation, it will follow the 

hyperlink to find the Page(b) (For simplicity reason, we assume this process only looks 

for pages on the same server. But this process can be extended to include pages on 

other servers as well). Then the process will parse the CO of Page(b) to find the 

information of the EOs in it. Let us again assume that Page(b) contains two EOs, i.e. 

the CO of Page(b) contains two definitions of EOs, like the following: 

<IMG SRC="http://images.xyz.net/images/1.gif"> 

<IMG SRC="http://images.xyz.net/images/2.gif"> 

After the server has got the information about the EOs in Page(b), it will propagate 

such information to Page(a) by appending an optional Embedded Object Declaration 

Section to the end of the CO of Page(a). Here we introduce an optional new tag EOD 

(“EOD” stands for “Embedded Object Declaration”) to HTML for this optional 

Embedded Object Declaration Section. For the above assumptions, the Embedded 

Object Declaration Section appended to Page(a) will have the following format and 

content: 

<EOD> 

http://www.nus.edu.sg/index.html 

<IMG SRC="http://images.xyz.net/images/1.gif"> 

<IMG SRC="http://images.xyz.net/images/2.gif"> 

</EOD> 

The first line in the body of EOD section is the URL of a page (here is Page(b)), which 

comes from the hyperlink in Page(a). The rest lines of EOD section give the definition 
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of the EOs contained in the page specified by the URL in the first line. The EOD 

section conveys the information of which EOs are dependent on which CO. 

For each distinct hyperlink in Page(a), the server may collect and propagate the 

EOs information associated with the hyperlink and append a separate EOD section to 

the CO of Page(a). So, a page may contain multiple EOD sections after the 

propagation. Each of the EOD section conveys the dependency information between 

CO and EOs for one distinct page pointed to by a hyperlink. On the other hand, the 

server will also need to run some processes periodically to check and update the EOD 

sections to ensure that the information propagated there is valid. 

When a client retrieves Page(a), the optional EOD section will be transferred to 

the client after the original content of Page(a) has been transferred. There are generally 

idle times between page visits (due to user’s viewing a page, or the post-processing of 

a page such as compiling Java programs). These idle times can be used to transfer the 

optional EOD sections, so the extra transfer latency would be hidden and thus not 

perceivable to web users. (In other words, the EOD section is like a section of 

piggyback data which is sent along with the page after the original page content 

finishes.) 

The propagated information will be used by client to reduce the latency incurred 

by the dependency between CO and EOs. Web users frequently follow hyperlinks to 

browse web pages. When a user clicks on the hyperlink in Page(a) to go to Page(b), the 

web browser will get the URL from the hyperlink to create a request for Page(b). At 

the same time, it would also look up in the EOD sections to see if there is any one 

containing this URL. If there is a match, the browser will get the definition of the EOs 

contained in Page(b) from the EOD section and start to retrieve them without waiting 

for the CO of Page(b) to be returned from the server. In other words, the requests for 
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the EOs can be triggered as early as the request for the CO of the same page. 

The process of EOIP mechanism is illustrated in Figure 8.9. From this graph, we 

can see clearly that the dependency between the CO and the EOs of a page has been 

shifted to a much earlier location/stage in web retrieval, i.e. the EOD sections in the 

previous page, and the latency caused by this dependency, i.e. the DT times of EOs, 

has been effectively eliminated. As a consequence, whole page retrieval latency can be 

improved significantly. 

If web caching is adopted, the above EOIP mechanism may not help much for 

those pages whose COs are found in the local cache and still fresh. For such pages, 

their COs can be server rapidly from the local cache, so it takes little time for the 

browser to get their content and discover the EOs defined in them. In this situation, our 

EOIP mechanism will not help much. However, for pages whose COs are not in the 

cache, or they are in the cache but stale, our EOIP mechanism would be very effective 

in reducing the latency caused by the dependency between CO and EOs. 

Note that the EOIP mechanism is only intended to manipulate the dependency 

between CO and EOs to reduce the relative latency. The EOD section is only an 

optional section in HTML files. In the case where pages do not have such propagated 

EOD section, or there is no enough time between page visits for transferring this 

section, or the user’s browser does not support this section, then the browser can just 

ignore it and the normal retrieval procedure will be carried out. In all the cases, the 

correctness of the web page semantics will not be affected in any way. 
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Figure 8.9 Eliminating dependency between CO and EOs 
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8.4.3 Experimental Study 

We have conducted trace-driven simulations to study the performance of our 

EOIP mechanism. Our experiments rely on very detailed information about web 

retrieval, such as the number and times of data chunks, definition points of EOs etc. 

Such information is not available in existing traces. In order to obtain the information, 

we conducted real retrieval for a large number of web pages and recorded detailed 

operation and chunk level logs. The tools and environment are described in Chapter 5. 

EOIP aims to reduce the latency caused by the dependency between CO and EOs, 

i.e. the DT times of EOs. In Chapter 6, we already showed that the majority of pages 

contain multiple EOs (on average, a page contains about 13.5 EOs), and the DT time 

of EOs often occupies more than 50% of their retrieval latency (refer to Figure 6.12 and 

Figure 6.15 etc.). This indicates a high potential on latency reduction by reducing DT 

times of EOs. 

Figure 8.10 plots the performance of EOIP mechanism without considering web 

caching effect. From it, we can see that EOIP can improve page retrieval latency 

considerably. On average, EOIP can achieve about 10.66% improvement on whole 

page retrieval latency. 

Here we have an interesting observation. At first, we speculated that EOIP may 

perform better for web pages with more EOs. However, we noticed in Figure 8.10 that 

the improvement of EOIP does not seem to increase as the number of EOs in a page 

increases. Further study reveals that this could be due to the following reasons: 

1) The absolute improvement of EOIP does increases with the increasing number of 

EOs in a page. However, for pages with more EOs, their whole page latency often 

increases, too, and even more significantly. Therefore, the relative improvement of 

EOIP does not increase. 
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2) Parallelism width limits the improvement of EOIP. EOIP reduces the DT times of 

EOs, which means that EOs will be made known for retrieval very early and 

simultaneously. For pages with many EOs, the default parallelism width of 4 will 

become insufficient for retrieving all the EOs, so many of the EOs’ requests will be 

held in waiting state. In other words, limited parallelism has bottlenecked the 

performance of EOIP. 

 
Figure 8.10 Performance of EOIP without caching effect (Parallelism = 4) 

 

 
Figure 8.11 Performance of EOIP with caching effect (Parallelism = 4) 

 
Web caching could have some impacts on the performance of EOIP. Figure 8.11 

shows the performance of EOIP mechanism with the presence of web caching. Again, 

three different cache sizes are used in our study, i.e. (a) 10% of total unique objects 

size in the trace, (b) 20% of total unique objects size, and (c) Infinite cache size. 
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From the graphs, we see that EOIP seems to perform even better when web 

caching is taken into consideration. Compared with the average 10.66% improvement 

without considering web caching, EOIP achieves average improvements of 11.72%, 

11.76% and 11.8% for the three cache sizes. This is surprising as we thought web 

caching could lower the effectiveness of EOIP. After some further study, we find the 

following reasons for this phenomenon:  

§ Cache hit ratio is low. So the impact of web caching on the performance of EOIP 

is limited. 

§ Parallel fetching is employed in web retrieval, which makes it possible for the 

retrieval of an object to virtually have no effect on the whole page latency. So, for 

some objects that are hit in web cache, they may not have much impact on whole 

page latency. 

§ As EOIP makes EOs ready for retrieval early and simultaneously, it puts high 

demand on parallelism. When web caching is in presence and some EOs are hit in 

the cache, the number of objects being held in waiting state could be reduced. This 

could have positive effect on whole page latency. To give an evidence of this 

reason, let us look at the first data row in Table 8.2. This table gives the detailed 

data used for plotting Figure 8.11. The result in this row shows the performance of 

EOIP on pages with 0~3 EOs. For such pages, the default parallelism width of 4 is 

sufficient. We see that for this situation, the performance of “with caching” is 

actually worse than that of “without caching”. This contrary example shows that 

our above analysis could be correct. 

As we mentioned earlier, parallelism width could limit the performance of EOIP. Next, 

we would like to investigate the effect of parallelism width on EOIP. Since we are to 

investigate the effect of different parallelism, we fix the cache size to infinite in this 
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study. This way, the effect of different cache sizes would be eliminated from the 

results. 

Table 8.2 Performance of EOIP without/with caching effect (Parallelism = 4) 
Performance (with caching) Number of EOs 

in a page 
Performance 

(without caching) Cache Size: 10% Cache Size: 20% Cache Size: Infinite 

0-3 88.97% 89.37% 89.40% 89.59% 
4-7 88.73% 88.01% 88.03% 88.06% 
8-11 87.65% 86.01% 86.02% 85.98% 

12-15 89.40% 88.54% 88.40% 88.36% 
16-19 88.54% 87.24% 87.17% 87.13% 
20-23 88.96% 88.28% 88.14% 87.89% 
23+ 90.62% 88.62% 88.55% 88.37% 

 

 
( Cache Size = Infinite ) 

Figure 8.12 Performance of EOIP under different parallelism width 
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EOIP’s can improve page retrieval latency by 8.87%, 11.24%, 11.78% and 11.85 on 

average when parallelism width is 8, 16, 32 and infinite respectively. The impact of 

parallelism width on the performance of EOIP is generally bigger for the pages with 

more EOs. This is understandable because there will be more objects to make use of 

the wider parallelism in such cases, so EOIP becomes more effective. 

In terms of web retrieval performance, the major overhead that EOIP introduces 

is transferring the extra EOD section to clients. Here we would like to study the impact 

of such overhead on web retrieval performance. 

From Chapter 6, we know that the average chunk size is 5.3 KBytes (see Figure 

6.7). Normally, this size could be enough for the propagation of information for about 

one hundred EOs. If we propagate information of hundreds of EOs into a page, they 

may only bring in a small number of extra chunks. From Figure 6.8, we know that the 

time for transferring one chunk is only about 0.01~0.02 seconds. So, the time for 

transferring the extra chunks should not be significant. Moreover, the propagated 

information composes an optional section of CO’s body and such optional section is 

supposed to be transferred during the idle times between pages. If the idle time is big 

enough, then the transfer time for those extra chunks would be hidden by the idle time 

and thus not perceivable to web users. 

Figure 8.13 plots the distribution of idle times between page accesses. From this 

graph, we see that the majority of intervals between page accesses are between 1 to 64 

seconds. On average, the idle time between pages is about 92.6 seconds, which should 

be considered as more than sufficient for transferring the optional EOD section for most 

web pages. In other words, the latency incurred by transferring the extra chunks (which 

are used for the propagated information) can easily be hidden by the idle times 

between page accesses. Therefore, the overhead introduced by EOIP can largely be 
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ignored in reality. 

 
Figure 8.13 Idle times between page accesses 

 

 
Figure 8.14 Performance of SLP+EOIP without caching effect (Parallelism = 4) 
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caching effect and under the default parallelism of 4. We see that the integrated 

SLP+EOIP mechanism can achieve about 15.63% improvement on average, which is 

much better than the individual SLP and EOIP mechanism. This indicates that these 

two mechanisms actually reinforce each other when they work together. 

 
Figure 8.15 Performance of SLP+EOIP with caching effect (Parallelism = 4) 

 

 
Figure 8.16 Performance of SLP+EOIP under different parallelism width 
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can achieve about 16.53%, 16.54% and 16.75% improvement when cache size is 10% 

and 20% of total unique objects size in the trace and infinite respectively. When 

parallelism width is increased from 4 to 8, 16, 32 and infinite, the integrated 

SLP+EOIP mechanism yields performance gain of about 9.49%, 12.07%, 12.64% and 

12.8% respectively, 

Overall, the performance of the integrated SLP+EOIP mechanisms is better than 

the individual SLP and EOIP mechanism. This is expected as these two mechanisms 

address two different dependencies in web retrieval. Their effects are quite 

independent from each other. So, when they are put together, they would reinforce 

each other. This leads to even better performance gain than the individual mechanism. 

8.6 Conclusion 

In this chapter, we analyzed and studied the dependencies in web retrieval and 

the latencies introduced by them. We showed how such dependency-introduced 

latencies can be reduced through manipulation of the dependencies. We proposed two 

innovative information propagation mechanisms, namely SLP and EOIP, to manipulate 

two different latencies in web retrieval. We conducted simulations to study the 

performance of SLP and EOIP. Our results show that these two mechanisms can reduce 

about 4.22% and 10.66% of whole page retrieval latency. The integrated SLP+EOIP 

mechanism can achieve about 15.63% improvement on page retrieval latency. This 

shows that information propagation can be an effective method to improve web 

retrieval latency. 
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Chapter 9 Exploiting Fine-Grained Parallelisms for 
Acceleration of Web Retrieval 

9.1 Introduction 

With the advent of cheaper and faster processing power and storage, there has 

been a wide-spread proliferation of digital documentation, multimedia materials and 

web-based applications in the Internet. More and more web pages tends to comprise 

such digital materials like image files, pdf files, flash animation files, video and audio 

files, application executables and so on. As these digital files are usually considerably 

big in size, this trend has unfortunately meant that web surfers are increasingly being 

overwhelmed by large objects. Large web objects normally take long to transfer and 

they are often the dominating performance bottleneck of retrieval latency for web 

pages containing them. With the increasing number of large objects being used in web 

pages, the need to reduce the retrieval latency of web pages becomes even more 

imperative. 

When a web page contains large web objects, the latency component CST will 

clearly become the main dominating factor to page latency. Figure 9.1 gives an 

illustration WRDG graph for the retrieval process of a page with large objects. For 

such pages, accelerating the retrieval process of the large objects would effectively 

reduce the whole page latency. To cope with the long CST latency, the increase of 

network bandwidth and content encoding schemes are often proposed. However, 

increasing network bandwidth is very costly and has its limitations; content encoding 

schemes are generally not possible or effective to digital documentation and digital 

multimedia materials. This situation prompts us to study a new mechanism to solve the 

problem, which is fine-grained parallelism for parallel fetching of multiple sub-ranges 

of a large object. 
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Figure 9.1 Retrieval process of a page with large object 
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objects. Since the intra-object level is mainly characterized by data chunks transfer, we 

hence call our mechanism the Chunk-Level Parallelism (CLP) for the acceleration of 

web retrieval. 

A large object is typically transferred in a series of large number of chunks of 

data. If we can divide this large series of chunks into multiple smaller sub-series and 

retrieve them in parallel, the retrieval latency of large objects could be reduced 

considerably, which would finally result in improvement on whole page latency. The 

idea has been made feasible and practical with the evolution of HTTP protocol. In 

HTTP/1.1, it introduces the concept and support for “partial object”. It allows a client 

to request only a partial body of a web object by using the “Range” header. Objects can 

be broken down into multiple sub-ranges according to various structural units 

(currently, the only range unit defined by HTTP/1.1 is "bytes") [37]. 

There is very little related work in this direction in current literature. This 

situation motivates us to conduct detailed study on this problem. In this chapter, we 

exploit and perform comprehensive study and analysis on the effect of CLP on web 

retrieval latency. Our study reveals some complicated issues regarding chunk-level 

parallelism, which shows that the application of this mechanism is not so easy and 

straight-forward as people might have thought. We conduct simulation experiments as 

well as real system testing to study the performance of CLP. Our results show that CLP 

can achieve significant improvement on object retrieval latency and whole page 

latency when large objects are in presence. 

The rest of this chapter is structured as follows. We first analyze the demand for 

chunk-level parallelism in web system. Then we describe the mechanism of 

chunk-level parallelism and study the issues related to it. Next we study the 

performance of chunk-level parallelism to illustrate its effectiveness. Following that, 
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some discussion on the system implementation considerations is given. Then the final 

section concludes this chapter. 

9.2 Exploiting Chunk-Level Parallelism 

9.2.1 Demand for Chunk-Level Parallelism 

Large web objects often have dominating effects on whole page retrieval latency. 

When a web page contains large web objects, the retrieval latency of those objects is 

often the dominant factor to the whole page latency. So, we would like to first 

investigate the presence of large objects in web pages. Figure 9.2 plots the distribution 

of web pages with respect to the largest object size they contain. 

 

 
Figure 9.2 Distribution of pages w.r.t. size of the largest object in the page 

 
From this graph, we see that the majority of web pages have objects not bigger 

than 64 KBytes. However, there are about 10.54% of web pages contain objects bigger 

than 128 KBytes, which could prolong page retrieval latency significantly. As digital 

documentation, multimedia materials and web-based applications etc. are increasingly 

distributed over the web, we expect to see the percentage of web pages containing 
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accelerate the retrieval process of them. 

Figure 9.3 depicts the distribution of types of large objects, and Table 9.1 gives 

more detailed information for those “xxxx” types shown in the graph. Besides the 

traditional object types such as image, text and multimedia files, we also see that there 

is a type “application”, which occupies a large percentage of the distribution. This type 

includes some subtypes like pdf, shockwave-flash and executables. As the digital 

documents and web-based applications become more and more popular, we expect to 

see the amount of objects of this type to grow considerably in the future. 

 

 
Figure 9.3 Distribution of types of large objects 

 
Table 9.1 Detailed object types 
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about 5.3 KBytes. With this limited chunk size, large objects would have lengthy data 

chunk sequences in their transfer. Figure 9.4 and Table 9.2 show the average number of 

chunks in the chunk transfer sequence with respect to object size. 

 

 
Figure 9.4 Average number of chunks w.r.t. object size 

 
Table 9.2 Average number of chunks in object transfer w.r.t. object size 

Object size range Average number of chunks in object transfer 
<=1KB 1.06 
<=2KB 2.04 
<=4KB 3.60 
<=8KB 6.66 
<=16KB 12.58 
<=32KB 24.42 
<=64KB 47.03 
<=128KB 89.45 
<=256KB 179.30 
<=512KB 357.80 
<=1MB 715.87 
<=2MB 1469.68 
<=4MB 2846.48 
<=8MB 5520.78 
8MB+ 16561.22 

 
From Figure 9.4 and Table 9.2, we see that the number of chunks for large objects 

is significantly bigger than that of small objects. It grows almost exponentially as the 

object size increases. When an object is larger than can fit into a small number of 

chunks, long Chunk Sequence Time (CST) for transferring the lengthy chunk sequence 
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latency compared with other latency components, as we can see from Figure 6.5. For 

example, Figure 6.5 shows that for objects with size larger than 128 KBytes, the CST 

time occupies about 95.58% of the whole object retrieval latency on the average. 

When a web page contains big objects, the retrieval latency of the big objects 

would become the performance bottleneck of whole page latency. To reduce the 

retrieval latency for large objects could effectively improve whole page latency for 

such pages. This is especially important as more and more significant influence is 

imposed on page retrieval latency by the increasing number large web objects. The 

concept of parallelism can be extended to chunk transfer sequence level to help with 

the problem. If we divide the lengthy chunk transfer sequence into multiple smaller 

sub-sequences and transfer them in parallel, the retrieval latency of the large object 

could be significantly reduced, which in turn would effectively reduce the whole page 

latency. 

In the following sections, we propose and study the chunk-level parallelism for 

web retrieval. 

9.2.2 Chunk-Level Parallelism (CLP) 

The basic idea of Chunk-Level Parallelism (CLP) is to divide the body of a large 

object into multiple portions and retrieves them in parallel. This requires the ability to 

retrieve partial content of an object in the web system. The support for partial object 

from HTTP/1.1 makes this idea feasible. 

HTTP/1.1 introduces a new HTTP header “Range:”, which allows clients to 

specify and retrieve any part of an object’s content. This feature is intended to reduce 

unnecessary network usage by allowing partially-retrieved data to be completed 

without transferring data already held by the client. It is useful in resuming broken data 

transfers and retrieving specific parts of objects, e.g. the descriptor fields of 
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multimedia files, the first a few pages of a document, and so on. 

The “Range:” HTTP header specifies desired portions of objects using byte 

ranges. Because most of the data in the web is represented as a byte stream in practice, 

so they can be addressed with a byte range. The client requests a byte range via the 

“Range:” HTTP header. Byte range request is made like any other HTTP request, with 

the addition of the “Range:” HTTP request header. The parameter name “bytes” comes 

after this header, followed by an equal sign and the byte range specification. Below is 

an example web request with such “Range:” header7: 

GET /Protocols/rfc2616.html HTTP/1.1 
Host: www.w3.org 
Range: bytes=8760-10536 
Connection: close 
Accept: */* 

 
Each byte range of the object content is considered as a “partial object” of the original 

object. This partial object concept is only supported by HTTP/1.1. In the case where it 

is not supported, the byte range in the request will be ignored and whole object will be 

returned. Since HTTP/1.1 is getting its popularity, we expect to see that most web 

systems would already have this support. 

With the support of range requests, we can implement CLP in web retrieval. 

Basically, the idea is to use multiple range requests to retrieve different parts of an 

object in parallel. The detailed process is described as follows. 

When a client retrieves a web object, it first issues a normal request to the server. 

We refer to this request as Master Request in our CLP study, and the process associated 

with this request is referred to as Master Retrieval Thread. When the server serves the 

request and sends back the data, the first data chunk returned generally contains the 

HTTP headers for that object. On receiving the HTTP headers, the client will examine 
                                                        
7 For details of byte range requests, please refer to RFC 2616 – Hypertext Transfer Protocol – 
HTTP/1.1. 
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if the following conditions are satisfied: 

ü The server support HTTP/1.1 (i.e. it supports range request) 

ü There is a “Content-Length” header and the value of this header exceeds certain 

threshold 

If the above conditions are satisfied, CLP will take place. The client will divide the 

object size into k parts based on some factors such as the “Content-Length” of the 

object and the bandwidth of the network etc. Then, it will trigger k-1 new requests and 

assign each one of them to fetch about 1/k of the object body (actually, the size 

assigned to each of these k-1 new requests is smaller than 1/k of the object size, we 

will discuss this further later). In contrast to the Master Request, these k-1 new 

requests are referred to as Slave Requests, and the process associated with each of them 

is referred to as Slave Retrieval Thread. After the k-1 Slave Requests have been 

successfully issued, the Master Retrieval Thread will be stopped after it receives about 

1/k of the object body (in fact, the size will be larger than that). When all the parts are 

retrieved, they will be assembled together and the original object is got. Because the k 

retrieval processes, 1 master retrieval thread plus k-1 slave retrieval threads, are carried 

out in parallel, so the retrieval speed would be much faster than one single retrieval 

process which fetches the whole body of the object. 

The above process of CLP is depicted in Figure 9.5. We see that by dividing a 

large object into multiple smaller parts and retrieving them in parallel, the overall cost 

distance of the WRDG graph can be reduced significantly. 

Note that CLP is only used to accelerate the retrieval processes of large web 

objects; it will not affect the correctness of web content. In the situation where partial 

object is not supported, the slave requests will be ignored and the master request will 

continue to retrieve the whole body of the object as usual without being stopped at 1/k 
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of the object body. 

 
 

Figure 9.5 Retrieval process of chunk-level parallelism 
 
9.2.3 Prerequisites for Chunk-Level Parallelism 

There are two important questions regarding CLP to answer: 

ü Under what situation, should CLP be used? 

ü What is the threshold size for CLP to happen? How many parts should an object 

be divided into when it is chosen for CLP? 

Many factors are involved in answering the above questions, such as object size, 

network bandwidth, number of connections, and connection time etc. Below we will 

discuss these factors and answer the above questions. 
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As stated earlier, CLP is proposed for the retrieval of large web objects. CLP can 
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time. For example, if the connection setup time is long, the threshold size for triggering 

CLP has to be big. Otherwise, there may not be any benefit for doing CLP since the 

Master Retrieval Thread could have already retrieved the whole object body before the 

Slave Retrieval Threads have yet finishing setting up the connections. 

Because CLP requires dealing with partial content of objects, so it only works 

with HTTP/1.1-compatible web systems since the partial object concept is mainly 

supported by HTTP/1.1 currently. In the situation where partial object is not supported, 

CLP should not be considered. 

Since CLP tries to divide a large object into multiple parts and retrieve them in 

parallel, it will increase the number of concurrent network connections used in a web 

system. This requirement may be difficult to satisfy for extremely busy web servers. 

However, we would like to point out that: 

1) Most web servers are not extremely busy in most of the time. So, CLP should have 

very little problem to work with them. 

2) For those extremely busy web servers, the problem can be alleviated with the help 

of CDN. If a busy server subscribe to CDN service, the requests to it will be 

re-directed to different servers transparently. In this situation, the multiple 

concurrent network connections established by CLP will be distributed to different 

servers, and each server will get only a small portion of the connections. Therefore, 

the demand on concurrent network connection on a server will not be high. Since 

extremely busy web servers tend to have already subscribed to CDN service 

(otherwise, they should think of doing so since they are extremely busy), so we 

expect CLP would also work well with such servers. 

Network bandwidth also has influence on CLP. Because CLP actually tries to 

accelerate the retrieval process of large web objects by utilizing spare network 



262 

bandwidth for multiple concurrent web requests, so, it will perform better if there is 

more spare network bandwidth to use. For the environments with very limited network 

bandwidth, CLP may not be a good choice for web acceleration. 

Next, we move on to answer the second question: What is the proper threshold size for 

CLP to happen? How many parts should an object be divided into when it is chosen for 

CLP? 

First, let us decide the number of parts that an object should be divided into for 

CLP. The number of parts is tied to the size of each part for a given object. Basically, 

the more parts an object is divided into, the smaller each part would be, and the shorter 

the retrieval latency of each part would be. However, to divide an object into too small 

parts for CLP may not help much in reducing whole page latency because of two 

reasons: 

1) If we divide an object into too small parts in CLP, the size of each part could 

become smaller than other objects in the page. In that case, the page retrieval 

latency would be dominated by other objects. This suggests that it may not be 

helpful to divide an object into parts smaller than other objects in the page. 

2) Web retrieval process typically undergoes long connection setup time and TCP 

slow-start effect, which make the retrieval latency for smaller objects often 

comparable to that of bigger objects (refer to Chapter 6 for details). This suggests 

that to divide an object into too small parts is not cost-effective in terms of retrieval 

latency and resources used. 

Taking into consideration the above factors, we would recommend that a large object 

should be divided into k parts so that the size of each part is around the average size of 

most commonly seen web objects. From Chapter 6, we know that the average size of 

objects is about 5.71 KBytes. We would suggest using this size as the size of partial 



263 

objects for CLP mechanism, especially in our environment. 

On the other hand, dividing a large object into many small parts and retrieving 

them in parallel would impose extra demand on concurrent network connections and 

server load. When an object is very big, the number of the parts could be quite large. 

Then the burden on network connection and server load could be excessive, which 

could have negative effects on the performance of web retrieval. To refrain this from 

happening, we set a cap value N for k (which is the number of parts that an object is 

divided into), i.e.: 

k ≤ N 

In our study, we vary the value of N and investigate the effect of it on the performance 

of CLP. The values of N we used in our study is: 2, 4, 8, 16 and 32. 

In summary, we use the following method to decide the number of parts that an 

object should be divided into for CLP. First, we assign the size of each partial object to 

be the average web object size (5.71 KBytes), and we calculate the initial k by using 

this size to divide the object size. If k is not greater than N, then we will use this k and 

this partial object size to do CLP for that object. If k is greater than N, we will set k to 

N and use this k to calculate the size of each partial object. Then we use these values of 

k and partial object size for CLP. In any case, k will not be greater than N, and the size 

of each partial object will always be greater than or equal to the average web object 

size. This way, we have avoided imposing excessive demand on network connection 

and server load, while still attained the effectiveness of CLP. 

Now let us deduce the threshold size for CLP. As we showed in Chapter 4 and 

Chapter 6, every web request would have 5 latency components, i.e. LRT, CT, RST, 

CST and ET. In CLP, the slave requests would also have these latency components 

except the LRT component because slave requests can directly get the server address 
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from the master request. So, the slave requests would undergo the latency components 

CT and RST while the master retrieval thread is receiving object data, this put certain 

constraints on the proper object size for CLP. 

Figure 9.6 shows the relationship between latency components and size ranges in 

CLP. In the graph, time runs down the page. The vertices that represent the operations 

in the retrieval processes are omitted. Instead, we put the names of the latency 

components beside the retrieval process lines to depict the existence of those 

operations. Those large braces indicate some relations of the timings and sizes. 

 

 
 

Figure 9.6 Relationship between latency components and size ranges 
in chunk-level parallelism 
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components CT+RST+CST(0) only. It is obvious that the object size must be 

considerably bigger than smin if we want to do CLP. So, we must take factors like this 

into consideration when deciding the proper object size for doing CLP. Below we will 

try to deduce the formula for calculating the proper threshold size. 

Because many characteristics about web retrieval vary greatly, e.g. the latency 

components and chunk size fluctuate considerably due to the status of network and 

workload on server etc, so it is rather difficult to produce an accurate formula for CLP. 

But we can develop a rough model for the relationship among the factors based on the 

following assumptions: 

1) No persistent connection is used in CLP, and the connection time is constant for all 

retrieval processes 

This is to assume that every slave request in CLP will undergo the latency 

component CT and this component is constant for all of them. This assumption is 

somewhat reasonable because persistent connect is not well supported even in 

today’s web system. On the other hand, our formula/deduction can be extended to 

handle persistent connection as well. To make the deduction uniform and simple, 

here we just assume there is no persistent connection in CLP and the connection 

time is constant. 

2) All slave retrieval threads have the same CT+RST+CST(0) 

We use t1 to represent this latency, i.e. 

t1 = CT+RST+CST(0)  

3) The first chunk contains only HTTP headers 

In our experiments, we found that this statement is true for most cases. 

Nevertheless, even if the first chunk also contains object body data, the amount of 

the data is often negligible compared with the whole object body. Moreover, our 
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formula/deduction can also be extended to handle the situations where the first 

chunk also contains object data, or HTTP headers are found in more than one 

chunk. 

4) The size of all chunks are the same 

In reality, chunk size varies considerably. For simplicity reason, here we use the 

statistical average of the chunk size as the size for every chunk. According to our 

study in Chapter 6, the average chunk size in web retrieval is about 5.3 Kbytes. We 

use schk to denote the size of one chunk. So we have: 

schk = 5.3 Kbytes  

5) The latency for every chunk is the same 

We assume that the transfer latency for every chunk is the same, and we use CST(i) 

to denote the transfer time for Chk(i). Because it is difficult to obtain the latency of 

the first chunk Chk(0) and we assume Chk(0) contains only HTTP headers, so we 

use the latency of the second chunk CST(1) as the unit latency for transferring one 

data chunk. We denote this unit latency of one chunk as tchk . From Figure 9.6, we 

have: 

tchk = CST(1) = t2  

6) All slave retrieval threads are started simultaneously, i.e., the starting time of all 

slave requests are the same. 

7) The partial object size sp assigned to each slave request is the same, and we use the 

average size of web objects (5.71 KBytes) as the minimum size for each partial 

object, i.e., we have: 

sp ≥ 5.71 KBytes (F9.1) 

Based on the above assumption and Figure 9.6, we see that the object size satisfies the 
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following equation: 

sobject = smin +  k × sp  ( k ≥ 2 ) (F9.2) 

For CLP to happen, k must be greater than or equal to 2. Substituting k with the 

minimum value of 2 in the equation (F9.2) will give the minimum object size required 

for CLP, i.e. the threshold size sthreshold : 

sthreshold = s min + 2 × sp (F9.3) 

For smin , we have the following equation (see Figure 9.6): 

smin = i × schk (F9.4) 

From Figure 9.6, we know that t1 = ( i – 1 ) × tchk . So, 

i = 11
+

chkt
t  (F9.5) 

Integrate the equation F9.5, F9.4 and F9.1 into F9.3, we will get: 

sthreshold = 





 +11

chkt
t  × schk + 2 × sp 

sthreshold ≥ ×
chkt
t1  5.3 + 16.72  KBytes (F9.6) 

In equation F9.6, both t1 and tchk can be obtained by real-time monitoring the retrieval 

process (note that we assume tchk = CST(1) = t2 ). Therefore, sthreshold will be able to be 

obtained during the retrieval process. 

With the above knowledge, we are now able to give a more detailed description 

of our CLP mechanism. Figure 9.7 gives the process flow of this mechanism. By 

monitoring the retrieval process, web client will be able to record the t1 and tchk , and 

calculate sthreshold in real-time for each large object request. Note that we use the latency 

of the second chunk, i.e. CST(1), as tchk . So, all slave requests are triggered after the 

second chunk in the master retrieval process has been returned from the server. 
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Figure 9.7 Process flow of chunk-level parallelism 
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After slave requests have been successfully triggered, the master retrieval process 

should be stopped prematurely when the size of the data it receives has reached the 

value assigned to it. 

9.3 Performance Study 

To study the performance of CLP, we conducted both simulation experiments and 

real system tests. For the simulations, we used our detailed chunk-level traces 

described in Chapter 5. For the real system, we have implemented a working system 

based on Squid 2.4.STABLE3 to perform the CLP task. The system will monitor the 

conditions (see previous section) and do CLP for those object requests which satisfy 

the conditions. Other aspects of the testing environment are as described in Chapter 5. 

Below we report our results from these simulations and real system tests on CLP. 

From the formula F9.6 we can see that the time t1 and tchk play important roles in 

CLP. So we would like to have some study on them first. Our CLP system bases on the 

ratio of t1/tchk to calculate the suitable threshold size sthreshold for triggering CLP. Figure 

9.8 plots the distribution of the ratio of t1/tchk .  

 

 
Figure 9.8 Distribution of the ratio of t1/tchk 
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than 85%) of the distribution of t1/tchk . However, there exists much bigger values for 

the ratio of t1/tchk , from 50 to up to more than 10,000. Those big values contribute 

nearly 4% to the overall distribution of t1/tchk . This put the average value of t1/tchk to be 

at about 26.3. In other words, t1 is about 26.3 times bigger than tchk on the average. 

This result shows that t1 is surprisingly big as compared with tchk . The reason for this 

is because t1 contains the connection time CT, which is very big in web retrieval. 

Recall in Chapter 6, our study showed that CT is one of the most significant latency 

components in object retrieval. It takes up from 3.7% to 77% of the object retrieval 

latency (refer to Figure 6.5). 

The above observation is very important because it implies that CLP is not 

suitable for medium-sized objects as every retrieval thread will undergo at least t1 , 

which already equals to the transfer time of many chunks. Using formula F9.6, we can 

get the threshold size for CLP: 

sthreshold ≥ 156.11 KBytes 

This result indicates that on average, an object should be larger than 156 KBytes to be 

suitable for CLP to take place. This size shall be considered quite big in current web 

system. In our trace, we only observed about 3.31% web pages have objects larger than 

156 KBytes. Although the percentage is not very big, we believe it could go higher in 

the future as large digital material objects are getting more and more popular on the 

web. Nevertheless, 3.31% is still significant enough for us to look into effective 

mechanisms to accelerate the retrieval process of them. 

Figure 9.9 studies the performance of CLP on retrieval latency of individual 

objects. Here we set N to be 8 (N is the cap value for k, which is the number of parts 

that an object is divided into). 

From this graph, we see that the effect of CLP on object retrieval latency is 
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substantial. It can reduce the retrieval latency of large objects dramatically. The 

simulation results show that the improvement ranges from 77% to 87%, with an 

average of 83.86%, while the real system testing achieves 68% to 86% improvement, 

with an average of 80.6%. In general, the improvement gets better as the object size 

increases. This is expected as larger objects have lengthier chunk sequences, which can 

be effectively improved by CLP. 

 
Figure 9.9 Effect of chunk-level parallelism on retrieval latency of individual objects 
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this reduction will inevitably be reflected on whole page latency. 

 
Figure 9.10 Effect of chunk-level parallelism on page retrieval latency 
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retrieval latency. Here N is the cap value of k, which is the number of parts that an 

object can be divided into. 

 
Figure 9.11 Effect of N on the performance of chunk-level parallelism 
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from being fully reflected on whole page latency. But for pages with very large objects, 

this phenomenon will not be seen since the very large objects would always dominate 

whole page latency even after they have been divided into smaller parts. 
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Because CLP divides large objects into multiple smaller parts and retrieve them 

in parallel, it will impose extra demand on concurrent network connections and server 

load. If such extra demand is too excessive, it could have negative effects on the 

overall performance of web system. 

However, in our study, we found only about 3.31% web pages satisfying the 

conditions for doing CLP. The number of the large objects (i.e. larger than 156 KBytes) 

contained in those pages only count for about 0.2% of the total objects in all pages. So 

the extra requests and connections created by CLP on these large objects would only 

be (N−1)×0.2%. When N is 8, there will be only 1.4% extra requests and connections 

introduced by CLP. This extra demand shall be considered as very small. Therefore, we 

expect the overhead that CLP introduces to be marginal in current web system. 

9.4 System Implementation Considerations 

To examine the performance of CLP in real environment, we have implemented a 

working CLP system based on Squid 2.4.STABLE3. The system works as a proxy 

between clients and servers. While serving requests, our CLP proxy system will 

monitor the conditions (see previous section) for CLP. Once the system finds a request 

satisfying the conditions, it will do CLP for that request. We choose to implement CLP 

on a proxy system rather than a web client program because of two reasons: Firstly, to 

implement a real CLP system, we need to work on the source code of the system. 

Many web client programs like MS-IE and Netscape do not give access to their source 

codes. So we choose to work on the open source system Squid. Secondly, if we 

implement the CLP capability into a proxy system, it can later be used for all types of 

web client programs such as MS-IE, Netscape and wget [284] etc. to enable them to 

take the benefit of CLP as well. Moreover, implementing CLP in a proxy cache system 

would also enable web accesses to take the advantage of web caching. 
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Unlike simulation experiments which are easy to implement, real system with 

CLP capability is rather difficult to implement because there are a number of 

complicated factors to be taken into consideration. Below we discuss some design 

issues we addressed during the implementation of our CLP system. 

Recording the times 

Timing plays an important role in CLP. In formula F9.6, we see that CLP rely on 

t1 and tchk to calculate the threshold size sthreshold for CLP. Because t1 consists of the 

latency components CT, RST and CST(0), so we should start recording the time for t1 

from the point when the system is trying to setup the network connection. In Squid, 

this can be done in the function fwdConnectStart(). The timing for t1 ends after 

the first chunk has returned. This happens in the function httpReadReply(). As 

for tchk, it shall also be recorded in the function httpReadReply() since all the 

replies from servers are handled by this function. 

The t1 and tchk for different requests could vary greatly as the requests may go to 

different servers at different locations. So the recorded times should be kept with each 

request. This can be achieved by adding new fields in the data structure 

clientHttpRequest or request_t and storing the timings in them. This way, 

the timings would be always ready for use for each request. 

Checking the conditions for CLP 

As we know in Section 9.3, CLP would take place only when certain conditions 

are satisfied. Most of the conditions are related to HTTP response headers. In Squid, 

HTTP replies (both the HTTP headers and the object body data) are handled by the 

function httpReadReply(). We modified this function to let it check: (1) if the 

server supports partial content retrieval, i.e. if it supports HTTP/1.1; (2) if the status 

code of the reply is OK; and (3) if the “Content-Length” header exists. By examining 
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the status line of the headers, the system would know the status code and whether the 

server is HTTP/1.1 compliant. If the system finds a request satisfying these three 

conditions, it will get tchk (recall that we use the latency of the second chunk as tchk) to 

calculate the threshold size sthreshold for this request. If the value of the 

“Content-Length” header is greater than this sthreshold, the system will try to do CLP for 

it by calling new functions added by us to spawn slave requests. 

Note that t1 and tchk can sometimes fluctuate greatly due to the variation in 

network status and server load, this could make the calculated threshold size sthreshold 

unrealistic, i.e. extremely small or large. To adjust this deviation, we also set a global 

minimum threshold size (e.g. 128 KBytes). If the calculated threshold size is 

unrealistic, we will use this global minimum threshold size to compare with the 

“Content-Length”. 

There is also another important point we need to be paid attention to. In the case 

where the first chunk also contains object body data besides the HTTP headers, the 

amount of the object body data in this first chunk should be counted in the size 

assigned to the master retrieval thread, if CLP happens for this request. 

Spawning slave requests 

The new functions for spawning slave requests will first compute the size ranges 

to be assigned to each slave request. Then they will create the request messages and 

network connections for all the slave requests. Typically, the request messages for the 

slave requests should have the same headers as the original master request, except that 

they also have the “Range:” header. For setting up network connections, the functions 

will first check if there are persistent connections available in the system. If there is, 

the CLP system will make use of them. Otherwise, it will open new connections for the 

slave requests as Squid usually does for normal requests, i.e. by calling the function 
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commConnectStart() to do it. When connections setup is done, request messages 

for those slave requests will be sent out through them. 

There is certain management data associated with each slave request, e.g. the size 

range assigned to it, the size of received data, and the received data etc. Each set of 

such data should go with each specific slave request. To do this, we add new fields to 

the data structure FwdState and create one such structure for every slave request. 

Note that each slave request has its own memory buffer for storing the received data. 

Receiving the partial data 

The master retrieval thread receives object data in the function 

httpReadReply() as usually, only that it should be forced to stop when it finishes 

the size assigned to it. 

Because the data the master retrieval thread receives belongs to the first part of 

the object body, so it can be sent it to client immediately. However, for slave retrieval 

threads, the data they receive may not be able to be sent to client immediately because 

the order of the received ranges of data may be out of sequence. But whenever a slave 

retrieval thread receives a chunk of data, we will have it to check whether the data can 

be sent to client, i.e. whether the data range before this chunk has already been sent to 

client. As long as the system finds that the current chunk of data is in order with those 

which have been sent to client, it will send the data from slave retrieval threads to 

client immediately, without waiting for the whole threads to finish. At the same time, 

the data will be merged to the master retrieval thread to recover the whole object for 

caching. 

Finishing CLP requests 

When all the master and slave retrieval threads finish receiving data, the 

resources occupied by them will be released. Such resources include memory buffers, 
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data structures, file descriptors, and network connections, etc. For the network 

connections, they can be put in the persistent connection pool for future use, or freed 

immediately. In our system, this is configurable in the configuration file 

squid.conf. 

Note that the whole object data retrieved by master and slave retrieval threads are 

already sent to client prior to the release of the resources taking place. The whole 

object will also be submitted for caching when the CLP finishes. Since all the partial 

portions have been assembled together to recover the whole object before it is 

submitted for caching, so we do not have the issue of caching of partial content in our 

CLP system. 

Avoiding Resource contention 

Our CLP system is implemented on a web proxy system. As web proxy can be 

very busy sometimes, the system may run short of resources in some extreme 

situations. When such situation happens, we should give normal web requests higher 

priority over the slave requests spawned by CLP in using the resources. Our CLP 

system will monitor the usage status of the resources (such as the number of 

connections). If it detects that the usage of certain resources reaches a threshold point, 

it will suppress CLP to certain degree, up to zero. By doing so, our CLP system could 

assure the quality of service for normal web requests while still take the benefit of CLP 

when situation permits.  

9.5 Conclusion 

In this chapter, we exploited fine-grained parallelism for the acceleration of web 

retrieval. By extending the concept of parallelism to intra-object level, we proposed the 

Chunk-Level Parallelism (CLP) mechanism to improve web retrieval performance for 

large objects. Our comprehensive study on CLP revealed some important relations 
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regarding chunk-level parallelism such as the proper threshold size for CLP to take 

place. By selecting proper parameters for CLP based on the relations, we have attained 

high effectiveness of CLP while avoided imposing excessive demand on network 

connection and server load. We conducted simulation experiments as well as real 

system tests to study the performance of CLP. Our results show that CLP can achieve 

about 83.86% and 68.6% improvement on object retrieval latency and whole page 

latency respectively when large objects are in presence. As more and more large digital 

documents, multimedia materials and web-based applications etc. are increasingly 

distributed over the web, the CLP mechanism could become more effective and 

preferable in the future. 
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Chapter 10 Conclusions 

10.1 Summary 

This thesis addressed the issues in the area of modeling and acceleration of web 

content delivery. In the thesis, I first examined the traditional way of web acceleration, 

i.e. caching-based mechanisms. By investigate the factors affecting the cacheability of 

objects and their utilization in current web system, I found that the cacheability of 

objects is not well utilized due to the absence or improper value of critical HTTP 

headers from web servers. If current web servers can be configured more properly to 

provide directives for better cacheability, considerable improvement can still be 

brought to the performance of caching-based mechanisms. 

I proposed a fine grained Web Retrieval Dependency Model (WRDM) in this 

thesis to address the issue of lack of precise model for studying web retrieval latency. 

Our detailed study on web retrieval based on WRDM model shed light on the details of 

web retrieval latency. It revealed that the relationship between object latency and page 

latency is very complicated and the actual object fetch latency is often less of a 

problem for web retrieval than Definition Time and Waiting Time when page latency is 

concerned. Using the WRDM model, I also analyzed the possible impact of real-time 

content transformation on web retrieval latency and derived various upper bounds for 

web acceleration, which revealed low-level impacts of real-time content 

transformation and potentials of web acceleration. 

With the guidance of the WRDM model, I analyzed the effect of an important 

acceleration mechanism, namely web compression, through low level studies. The 

detailed analysis brought us insights of some important effect and implication of 

compression on page retrieval latency.  

Realizing the deficiency of general-purpose compression algorithms in the 
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specific area of web content delivery, I proposed a new compression mechanism, 

named Content-Aware Global Static Compression (CAGSC), to improve the 

performance of compression in web content delivery. 

Based on the findings from the studies using our WRDM model, I proposed new 

ways to web acceleration. Besides the novel compression mechanism mentioned above, 

I also proposed and studied innovative acceleration mechanisms in two aspects, i.e. 

dependency related mechanisms which are the Server Location Propagation 

mechanism (SLP) and Embedded Object Information Propagation mechanism (EOIP), 

and parallelism related mechanism Chunk-Level Parallelism (CLP). Experimental 

results showed that these mechanisms can produce considerable improvement on web 

retrieval latency. 

10.2 Contributions 

This thesis mainly focuses on the area of acceleration of web content delivery. I 

introduced an innovative fine grained model and proposed new ways to web 

acceleration. The main contributions of this thesis are listed as follows: 

ü Systematic study on the cacheability of objects in current web system 

I studied the performance of web caching by systematically investigating how web 

caching mechanism works from the internal of a real caching system, and how well 

those essential cacheability-controlling HTTP headers are presented in current web 

system. I dug into the relationship among the co-occurrent factors and revealed the 

effectiveness of the factors in the multi-factor co-occurrent situation. The study 

revealed the effective factors and proper settings for TTL. By improving them, the 

performance of web caching can still be improved considerably. 

ü Proposed a new precise model for studying web retrieval latency 

Most existing studies on web retrieval are based on object level information. 
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Knowing its limitation, I proposed a detailed operation and chunk level Web 

Retrieval Dependency Model (WRDM) to provide more precise capture of web 

retrieval. This model helps us to understand the root causes of the latencies for both 

individual objects and whole pages. It can also act as an effective tool in developing 

and analyzing web acceleration mechanisms. 

ü Chunk level study on object retrieval latency 

I conducted detailed study at operation and chunk level on object retrieval latency. 

While the results re-confirmed the large contribution of CT and CST to object 

latency, I also made some other important findings. I found that the retrieval latency 

for smaller objects is often comparable to that of bigger objects for the group of 

objects with size smaller than 4 KBytes. Another important finding is that the 

latencies for chunks with different sizes are quite randomly distributed, which 

indicates that mechanisms which aim to reduce chunk size may not help much in 

reducing object retrieval latency. 

ü In-depth understanding and study of the factors affecting page retrieval latency 

Our detailed study based on the WRDM model revealed complex factors affecting 

page retrieval latency, which confirms our argument that the mapping from object 

retrieval latency to page retrieval latency is very complicated. When objects are put 

together to form pages, their actual fetching latency become less significant in 

determining page retrieval latency. Instead, two new latency components 

particularly found in pages, i.e. DT time and WT time, become the dominating 

factors. I thoroughly studied the relationship among the number of objects in a page, 

DT and the dependency between objects in a page, WT and the parallelism in web 

retrieval. Our results revealed the effect of these factors on page retrieval latency 

and the complex inter-relationship among them. In order to achieve high 
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performance of page retrieval, we need to take all the factors into consideration 

simultaneously. Simply considering one of them will not yield the best 

improvement because other factors will soon become the performance bottleneck if 

only one is improved. 

ü Revealed the impacts of real-time content transformation on web retrieval latency 

Web content transformation has been an important technology to satisfy the 

different expectation of web users. There are many studies focusing on the real-time 

feature and the restrictions on the kind of transformation that can take place etc. But 

there is little study on the possible impacts of different content transformation 

approaches on web retrieval latency. Using our WRDM model, I analyzed the 

performance impacts of content transformation. Our results suggest that the 

partial-object buffering content transformation should be the preferred approach 

since it has little restrictions on the kind of transformation that can take place while 

it imposes moderate negative effect on page retrieval latency. 

ü Derived upper bounds for the performance of acceleration mechanisms 

I also derived various upper bounds on the performance improvement for 

acceleration mechanisms in this thesis. While many mechanisms have been 

proposed and shown promising potential of acceleration, it remains to be seen the 

quantitative upper bound of them. Based on the understanding of object retrieval, 

page retrieval and the relationship between them revealed under our WRDM model, 

I derived upper bounds for acceleration mechanisms, which help us to understand 

the potentials of web acceleration. 

ü In-depth analysis of web compression at chunk level 

I analyzed an important web acceleration mechanism, namely web compression. 

The detailed chunk level study based on our WRDM model revealed that reducing 
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the number of chunks is more effective in improving retrieval latency than reducing 

the size of every chunk. So, pre-compression almost always outperforms real-time 

compression since it reduces the number of chunks while the latter tends to reduce 

the size of every chunk. Our study also investigated the impact of compression on 

the DT times of EOs in a page and the demand on parallelism. The results revealed 

some special effect and implication of compression on page retrieval latency. 

ü Proposed a new compression algorithm 

I also proposed a novel compression algorithm, namely Content-Aware Global 

Static Compression (CAGSC). The algorithm is specifically designed for web 

content to improve the effectiveness of compression in web content delivery. 

Results showed that improvements of up to 20% on object retrieval latency and 

14.6% on page retrieval latency can be achieved by the new algorithm. 

ü Proposed new mechanisms to address the dependency introduced latency 

The analysis on web retrieval based on our WRDM model revealed that there are 

dependencies between objects and between operations in retrieval process; and such 

dependencies introduce significant latency to web retrieval. I proposed innovative 

ways to web acceleration by manipulating such dependencies through information 

backward propagation. Two actual mechanisms are studied. One is the Server 

Location Propagation (SLP) mechanism for reducing the latency incurred by the 

dependency on server location resolution. The other mechanism is the Embedded 

Object Information Propagation (EOIP) mechanism, which aims to reduce the 

latency introduced by the dependency between CO and EOs. Our experimental 

results showed that these two mechanisms could improve whole page retrieval 

latency by about 4.22% and 10.66% repectively. 

ü Proposed new mechanism to exploit fine-grained parallelism for web acceleration 
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I also proposed the Chunk-Level Parallelism (CLP) mechanism by extending the 

concept of parallelism to chunk transfer sequence level to accelerate the retrieval 

process for web pages containing large objects. Both simulation experiments and 

real system tests showed that CLP can achieve substantial improvement of over 

60% on whole page retrieval latency when large objects are in presence. This 

mechanism could become more effective and preferable in the future as more and 

more large digital documents, multimedia materials and web-based applications etc. 

are increasingly distributed over the web. 

10.3 Future Work 

The continued exponential growth of the World Wide Web not only makes it the 

prevailing media platform, but it also puts new challenges and higher requirement on 

the speed of delivery of information to users. As environment evolves with the rapid 

growth of the web, new directions and mechanisms need to be researched in order to 

provide high-quality web content delivery performance. Below we list some possible 

directions and works that can be performed to make further contributions to this area. 

ü Enhancement to web caching 

Although web caching has its limitations, it remains to be an important and 

effective solution to web acceleration. Most current web caching systems work on 

static whole objects. However, the characteristics of web content have changed 

remarkably in recent times, which makes it inadequate to just handle static whole 

objects. Nowadays, more and more web content is generated dynamically. Current 

web caching systems lack the capability of handling such dynamic web content 

properly. Moreover, partial objects are also seen in current web requests, which are 

not well handled by current web caching systems either. So, to enhance web 

caching systems to make them to appropriately handle dynamic objects and partial 
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objects becomes an important direction in improving web retrieval performance. 

ü More studies focused on page latency, not object latency 

As we showed in this thesis, page retrieval latency is more meaningful to web users 

than object retrieval latency, and the mapping relationship between object latency 

and page latency is very complex. Being aware of this, it would be valuable to 

further study issues on page retrieval latency. Further investigation on the existing 

acceleration mechanisms with special emphasis on page latency would be also 

beneficial in understanding and improving web retrieval latency. 

ü Protocol and language support for information propagation 

In this thesis, we demonstrated that the information dependency in web retrieval 

introduces significant latency, and showed that information backward propagation 

can effectively manipulate such dependencies and reduce the relevant latency. 

However, current web protocols and languages do not support information 

propagation. It is necessary to further study all aspects of information propagation 

and to push for proper support for it from web protocols and languages. 

ü Developing better protocols for web content delivery 

The current web systems run on HTTP over TCP. Although these two protocols 

have been working well, there are many performance issues against them. Initially, 

HTTP opens a separate network connection for each and every object in a page, 

which is proven to be very inefficient. While this situation is somewhat improved in 

HTTP/1.1, there still remains many problems. TCP typically has a “slow-start” 

phase with each new connection, which reduces throughput at the beginning of 

each connection. TCP’s congestion avoidance mechanism makes the effect even 

worse. Furthermore, TCP is strictly ordered in the way it delivers packets, which 

could introduce considerable delay when packet loss occurs. If we could develop 
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better protocols for web content delivery, faster delivery speed may be expected. 

While there are already a few attempts in this direction such as SCTP, BEEP, and 

HSTP etc. [241, 242, 238], we expect more work to be done in the future. 

ü Application acceleration 

In recent times, web-browse-based distributed computing is getting more and more 

interests, and enterprises start to decentralize and move their key corporate 

applications onto the web. As applications are increasingly distributed over the web 

and more complex forms of information exchanged, there emerges a persistent 

problem: web applications are bandwidth and CPU hogs. Today, the problem is 

typically handled by installing more application servers. However, this approach is 

not cost-effective and its management will become extremely difficult when the 

number of application servers is big. A better answer to this question might be 

application acceleration. Although there are difficulties in doing application 

acceleration currently, this direction already shows promising potential in easing 

the heavy loads on servers and increasing the speed at which the information can be 

served. The benefit of application acceleration could be even higher than normal 

web acceleration in the future. 

ü Acceleration in the pervasive networking environment 

With the explosive growth of the web, its application penetrates into more and more 

parts of people’s life. Nowadays, Internet users are surfing the web from a wide 

different environments with different devices and preferences. For example, some 

people may use hand-held mobile device to surf the web, and some users may 

prefer to quickly browse through a compilation of news in simple textual format 

without spending long times to download the large images. This large variety of 

different requirements introduces new challenges to the acceleration of web content 
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delivery. It would be interesting to work along this direction as it can achieve the 

goal of acceleration in new environments. 

ü Peer-to-peer web system 

To exploit peer-to-peer techniques for web content delivery is a promising direction 

in terms of improving the latency, availability, and scalability etc. for web service. 

More works and good results may be expected from this direction in the future, 

especially for multimedia related content delivery. 
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