

MODELING AND ACCELERATION OF CONTENT

DELIVERY IN WORLD WIDE WEB

YUAN JUNLI

NATIONAL UNIVERSITY OF SINGAPORE

2005

MODELING AND ACCELERATION OF CONTENT

DELIVERY IN WORLD WIDE WEB

YUAN JUNLI
(M.Eng. USTC, B.Eng. JUT, PRC)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2005

i

Acknowledgements

First of all, I would like to take this opportunity to express my heartfelt thanks to

my supervisor, Prof. Chi Chi-Hung, for his invaluable advice, assistance and

encouragement throughout the course of my study. I benefited tremendously from his

guidance and insights in this field. He also spent a lot of time and effort coaching me on

thesis writing. Besides his help on my research work, he is also an invaluable mentor of

my life. His spirit will inspire and benefit me in the rest of my life. I could not thank him

enough and I hope I will have chance to continue working with him.

I am indebted to Dr. Sun Qibin for his kind and generous help on my thesis writing.

Without his help, this work would not be finished smoothly.

In the course of my study, many other people have helped me in one way or

another. I would like to thank Mr. Jerry Hoe, Dr. Feng Huaming, Dr. Li Xiang, Dr. Zhao

Yunlong, Dr. Ding Chen and Dr. Lin Weidong for their discussions, suggestions and

encouragements. I also very much enjoyed working with the talented fellow students in

MMI lab where I did my Ph.D. study: Deng Jing, Lim Ser Nam, Lu Sifei, Wang

Hongguang, Henry Novianus Palit, William Ku, Chua Choon Keng, Su Mu, Ting Meng

Yean, Zhang Shutao and Zhang Luwei etc. Besides their helpful discussion and

cooperation on my research, their friendship and support also made my work and life

very enjoyable over the years.

I would also like to thank the National University of Singapore for providing me

the research scholarship. I am also grateful to the School of Computing for providing an

excellent environment for study and research.

Last but not least, many thanks go to my parents, my wife and all other family

members for their understanding and support during the long course of my studies.

Without their constant loving support, this work would not exist.

ii

Table of Contents

Acknowledgements .. i

Table of Contents .. ii

List of Figures .. viii

List of Tables .. xiv

Table of Abbreviations ..xv

Summary .. xvi

Chapter 1 Introduction ...1

1.1 Background and Motivations ...1

1.1.1 Background..1

1.1.2 Motivations ..3

1.2 Thesis Aims..5

1.3 Thesis Organization ...6

Chapter 2 Related Work ...12

2.1 Introduction..12

2.2 Related Work in Caching-based Acceleration Mechanisms16

2.2.1 Basics of Caching ..16

2.2.2 Locality of Web Requests and Cacheability of Web Objects17

2.2.3 Cache Replacement Algorithms...18

2.2.4 Cache Coherence and Validation of Objects..20

2.2.5 Prefetching ...21

2.2.6 Others Aspects of Caching...23

2.3 Related Work in Other Acceleration Mechanisms ...24

2.3.1 Connectivity Related Mechanisms ..25

2.3.2 Transfer Related Mechanisms..26

iii

2.3.3 Others Mechanisms..27

2.4 Existing Web Acceleration Systems...29

2.4.1 Caching and Prefetching Systems..29

2.4.2 Content Delivery Network Systems (CDNs)...31

2.4.3 Other Acceleration Systems...33

2.5 Summary ..34

Chapter 3 Cacheability of Web Objects ..37

3.1 Introduction..37

3.2 Study of Cacheability Algorithms..40

3.2.1 Algorithm and Factors for Cacheable and Non-cacheable41

3.2.2 Algorithm for TTL ...43

3.3 Methodology and Test Set..45

3.4 Results and Analysis ..46

3.4.1 Cacheability Factors ..46

3.4.1.1 Study of Factors for Non-Cacheable ...46

3.4.1.2 Study of Factors for Cacheable ...52

3.4.2 TTL Control ...53

3.5 Conclusion ...58

Chapter 4 Web Retrieval Dependency Model...59

4.1 Introduction..59

4.2 Web Retrieval Dependency Model (WRDM)..61

4.3 Three Levels of WRDG ...77

4.3.1 Intra-object level WRDG graph...77

4.3.2 Object-level WRDG graph ..79

4.3.3 Page-level WRDG graph ...82

iv

4.4 Transformation on WRDG graphs ...85

4.5 Conclusion ...88

Chapter 5 Experimental Environment and Tools...90

5.1 Web Access Model ...90

5.2 Experimental Tools ..92

5.3 Software/Hardware Platform and Network Environment....................................94

5.4 Obtaining Logs...94

5.5 Getting Results...96

5.6 Summary ..97

Chapter 6 Analysis of Web Retrieval Latency Using WRDM Model98

6.1 Introduction..98

6.2 Analysis of Object Fetch Latency ..99

6.2.1 Latency Components of Object Latency ...100

6.2.2 Experimental Study and Analysis ..106

6.3 Page Retrieval Latency ..113

6.3.1 From Object Latency to Page Latency ..113

6.3.2 Experimental Study and Analysis ..120

6.3.2.1 General Study ..120

6.3.2.2 Studies on DT ..126

6.3.2.3 Studies on Parallelism and WT..131

6.3.3 Discussion on the Relationship among DT, WT and Parallelism..............134

6.4 Impact of Real-time Content Transformation on Web Retrieval Latency136

6.4.1 Real-time Transformation of Web Content..136

6.4.2 Impact of Content Transformation on Web Retrieval Latency..................138

6.4.3 Experimental Study..141

v

6.5 Upper Bounds of Improvement on Web Retrieval Latency...............................144

6.5.1 Upper Bounds for Location Resolution Related Acceleration...................145

6.5.2 Upper Bounds for Connectivity Related Acceleration146

6.5.3 Upper Bounds for Transfer Related Acceleration......................................148

6.5.4 Integrated Upper Bounds for Web Acceleration..150

6.6 Conclusion ...155

Chapter 7 Study of Compression in Web Content Delivery157

7.1 Introduction..157

7.2 Concepts Related to Compression in Web Content Delivery160

7.3 Understanding Compression in Web Content Delivery162

7.3.1 Methodology..162

7.3.2 General Studies ..163

7.3.2.1 Some Properties about Web Object Transfer.....................................163

7.3.2.2 Chunk Level Study on the Effect of Compression on Single Object 166

7.3.2.3 Effect of Compression on Whole Page Latency................................173

7.3.3 Compression and Dependency...174

7.3.3.1 Dependency and Definition Time of EOs..174

7.3.3.2 Compression's Effect on DT of EOs..174

7.3.3.3 DT and Page Latency ..177

7.3.4 Compression and Parallelism...180

7.4 Content-Aware Global Static Compression for Web Content Delivery.............183

7.4.1 Specific Compression for Web Content...183

7.4.2 Content-Aware Global Static Compression (CAGSC) for Web Content

Delivery ..185

7.4.2.1 Introduction ...185

vi

7.4.2.2 Generating Token-String Tables for CAGSC Compression188

7.4.2.2.1 Special Strings in Web Content ...189

7.4.2.2.2 CAGSC Coding for Strings ...192

7.4.2.2.3 Weighted Frequencies and Potential Gains of Strings...............196

7.4.2.2.4 Token-String Tables in CAGSC Compression199

7.4.2.3 Applying CAGSC Compression in Web Content Delivery...............202

7.4.2.3.1 Compression Process...202

7.4.2.3.2 Decompression Process...204

7.4.3 Case Study: CAGSC Compression on HTML and JavaScript Strings206

7.4.3.1 Selecting Strings for CAGSC Compression......................................207

7.4.3.2 Generating Token-String Tables ..211

7.4.3.3 Performance Study ..211

7.5 Conclusion ...218

Chapter 8 Accelerating Web Page Retrieval through Manipulation of

Dependency ..219

8.1 Introduction..219

8.2 Dependency in Web Retrieval and Its Manipulation ...220

8.2.1 Dependency in Web Retrieval ...220

8.2.2 Manipulating Information Dependency in Web Retrieval through

Information Propagation ...223

8.3 Manipulating the Dependency on Server Location Resolution224

8.3.1 Dependency on Server Location Resolution ...224

8.3.2 Server Location Propagation Mechanism (SLP)226

8.3.3 Experimental Study..230

8.4 Manipulating the Dependency between CO and EOs..237

vii

8.4.1 Dependency between CO and EOs..237

8.4.2 Embedded Object Information Propagation Mechanism (EOIP)238

8.4.3 Experimental Study..243

8.5 Effect of Integrated SLP and EOIP Mechanism ..248

8.6 Conclusion ...250

Chapter 9 Exploiting Fine-Grained Parallelisms for Acceleration of Web Retrieval

...251

9.1 Introduction..251

9.2 Exploiting Chunk-Level Parallelism..254

9.2.1 Demand for Chunk-Level Parallelism ...254

9.2.2 Chunk-Level Parallelism (CLP) ..257

9.2.3 Prerequisites for Chunk-Level Parallelism..260

9.3 Performance Study...269

9.4 System Implementation Considerations...274

9.5 Conclusion ...278

Chapter 10 Conclusions ..280

10.1 Summary ..280

10.2 Contributions..281

10.3 Future Work ...285

Reference ..289

viii

List of Figures

Figure 1.1 Structure of the thesis...8

Figure 3.1 Two situations of cache hit...37

Figure 3.2 Distribution of first chunk latency vs. whole object latency........................39

Figure 3.3 Frequencies of non-cacheable factors ..47

Figure 3.4 Frequencies and effectiveness of non-cacheable factors48

Figure 3.5 Relative distribution of “occur alone” and “occur in pair” of each factor ...49

Figure 3.6 Distribution of occurrence in different sizes of groups of each factor.........50

Figure 3.7 Frequencies and effectiveness of cacheable factors.....................................52

Figure 3.8 Verifying difference between TTL and lifetime...55

Figure 3.9 Cumulative distribution of intervals of repeated requests............................56

Figure 3.10 Cumulative distribution of changed objects...58

Figure 4.1 Intra-Object level WRDG graph ..78

Figure 4.2 A sample web page with three embedded objects..79

Figure 4.3 Object-level WRDG graph for the retrieval of the page in Figure 4.280

Figure 4.4 Simplified Object-level WRDG graph for the page in Figure 4.281

Figure 4.5 Page-level WRDG graph for three successively retrieved pages.................84

Figure 4.6 Simplified page-level WRDG graph for the graph in Figure 4.5.................85

Figure 5.1 Web access model ..90

Figure 5.2 Web access with reverse proxy ..91

Figure 5.3 Web access with remote proxy...92

Figure 6.1 Latency components of object fetch latency..104

Figure 6.2 HTTP-RTT time in the object fetch latency...106

Figure 6.3 Distribution of objects w.r.t. object size...107

Figure 6.4 Distribution of object latency w.r.t. object size..107

ix

Figure 6.5 Relative distribution of latency components w.r.t. object size...................108

Figure 6.6 Distribution of objects w.r.t. number of chunks ...110

Figure 6.7 Distribution of chunks w.r.t. chunk size...111

Figure 6.8 Average latencies for delivering chunks with different sizes111

Figure 6.9 Distribution of data rate w.r.t. chunk sequence number.............................112

Figure 6.10 Page retrieval latency represented by the longest distance path115

Figure 6.11 Retrieval process for a page with five EOs ..119

Figure 6.12 Distribution of pages w.r.t. number of EOs per page121

Figure 6.13 Distribution of page latency w.r.t. page size ..121

Figure 6.14 Distribution of page latency w.r.t. number of objects in a page...............122

Figure 6.15 Relative distribution of latency components w.r.t. number of EOs per page

...124

Figure 6.16 Distribution of the size of COs ..126

Figure 6.17 Distribution of CO w.r.t. number of chunks...126

Figure 6.18 Average number of EOs w.r.t. percentage of CO’s body retrieved127

Figure 6.19 Average number of EOs w.r.t. chunk sequence number in CO transfer...128

Figure 6.20 Average number of EOs w.r.t. percentage of CO’s transfer latency.........128

Figure 6.21 Distribution of EOs that finish before and after CO finishes...................129

Figure 6.22 Relative page latency under different DT w.r.t. number of EOs in a page

...131

Figure 6.23 Distribution of EOs in waiting state (parallelism = 4)133

Figure 6.24 Effect of different parallelism width on the distribution of EOs belonging to

class 3 ..133

Figure 6.25 Relative page latency under different parallelism w.r.t. number of EOs in a

page..134

x

Figure 6.26 WRDG graph for retrieval process in the presence of intermediary server

...139

Figure 6.27 Retrieval process for chunk-streaming transformation140

Figure 6.28 Retrieval process for partial-object buffering transformation..................141

Figure 6.29 Retrieval process for full-object buffering transformation142

Figure 6.30 Impact of real-time content transformation on DT times of EOs143

Figure 6.31 Impact of real-time content transformation on page retrieval latency143

Figure 6.32 Best-case assumptions for location resolution related mechanisms146

Figure 6.33 Upper bounds for location resolution related mechanisms146

Figure 6.34 Best-case assumptions for connectivity related mechanisms...................147

Figure 6.35 Upper bounds for connectivity related mechanisms148

Figure 6.36 Best-case assumptions for transfer related mechanisms149

Figure 6.37 Upper bounds for transfer related acceleration ..150

Figure 6.38 Assumptions for the Best Case 1 and Best Case 3153

Figure 6.39 Assumptions for the Best Case 2 and Best Case 4154

Figure 6.40 Upper bounds of improvement on page retrieval latency154

Figure 7.1 Distribution of pages w.r.t. the ratio of “CO size vs. whole page size”159

Figure 7.2 Impact of two compression mechanisms on page retrieval latency...........165

Figure 7.3 Effect of different compression mechanisms on object latency.................167

Figure 7.4 Distribution of chunks w.r.t. chunk sizes sent out from server168

Figure 7.5 Number of chunks w.r.t. object size under different compression mechanisms

...169

Figure 7.6 Average size of chunks w.r.t. chunk sequence number under different

compression mechanisms ..170

Figure 7.7 Distribution of compression ratio of objects..172

xi

Figure 7.8 Compression’s effect on whole page latency (Parallelism = 4)173

Figure 7.9 Relative DT times under different compression mechanisms....................175

Figure 7.10 Average number of EOs w.r.t. chunk sequence number in CO transfer

under different compression mechanisms ...176

Figure 7.11 Relative values of “DT vs. EO latency” under pre-compression176

Figure 7.12 Relative values of “DT vs. EO latency” under real-time compression....177

Figure 7.13 Whole page latency w.r.t. number of EOs in a page under different

compression mechanisms (Parallelism = 4) ..178

Figure 7.14 Upper bound of dependency’s effect on whole page latency for

pre-compression ..179

Figure 7.15 Upper bound of dependency's effect on whole page latency for real-time

compression ...179

Figure 7.16 Performance of different compression mechanisms under different

parallelism width ...181

Figure 7.17 Relative performance of different compression mechanisms under different

parallelism width ...181

Figure 7.18 Percentage of EOs that are held in waiting state under different parallelism

width ..182

Figure 7.19 Model of application of CAGSC compression in web content delivery..187

Figure 7.20 Example of CAGSC compression..188

Figure 7.21 Process of generating token-string tables...189

Figure 7.22 n-byte coding scheme for CAGSC compression195

Figure 7.23 Format of token-string tables ...201

Figure 7.24 Compression process of CAGSC Compression.......................................203

Figure 7.25 Example of CAGSC compression with two tables204

xii

Figure 7.26 Decompression process of CAGSC Compression205

Figure 7.27 Distribution of objects w.r.t. the ratio of “tags size/whole object size” ...206

Figure 7.28 Cumulative distribution of strings w.r.t. subset sizes209

Figure 7.29 Compression ratio of CAGSC compression ..214

Figure 7.30 Compression ratio of zlib and CAGSC with zlib.....................................215

Figure 7.31 Effect of CAGSC compression against normal situation on object latency

...217

Figure 7.32 Effect of “CAGSC+zlib” against zlib situation on object latency217

Figure 7.33 Effect of CAGSC compression against normal situation on page latency

...218

Figure 8.1 Classification of the dependencies in web retrieval222

Figure 8.2 Structure of Server Address Table..227

Figure 8.3 Propagation of server address ..228

Figure 8.4 Eliminating dependency on server location resolution operation229

Figure 8.5 Distribution of external domains in web pages..233

Figure 8.6 Distribution of external domains in web pages..234

Figure 8.7 Performance of SLP mechanism without caching effect (Parallelism = 4)234

Figure 8.8 Performance of SLP mechanism with caching effect (Parallelism = 4)235

Figure 8.9 Eliminating dependency between CO and EOs ...242

Figure 8.10 Performance of EOIP without caching effect (Parallelism = 4)...............244

Figure 8.11 Performance of EOIP with caching effect (Parallelism = 4)....................244

Figure 8.12 Performance of EOIP under different parallelism width..........................246

Figure 8.13 Idle times between page accesses ..248

Figure 8.14 Performance of SLP+EOIP without caching effect (Parallelism = 4)248

Figure 8.15 Performance of SLP+EOIP with caching effect (Parallelism = 4)...........249

xiii

Figure 8.16 Performance of SLP+EOIP under different parallelism width249

Figure 9.1 Retrieval process of a page with large object...252

Figure 9.2 Distribution of pages w.r.t. size of the largest object in the page...............254

Figure 9.3 Distribution of types of large objects ...255

Figure 9.4 Average number of chunks w.r.t. object size..256

Figure 9.5 Retrieval process of chunk-level parallelism ...260

Figure 9.6 Relationship between latency components and size ranges in chunk-level

parallelism ...264

Figure 9.7 Process flow of chunk-level parallelism ..268

Figure 9.8 Distribution of the ratio of t1/tchk ..269

Figure 9.9 Effect of chunk-level parallelism on retrieval latency of individual objects

...271

Figure 9.10 Effect of chunk-level parallelism on page retrieval latency.....................272

Figure 9.11 Effect of N on the performance of chunk-level parallelism.....................273

xiv

List of Tables

Table 3.1 HTTP headers that related to cacheability of web objects.............................41

Table 3.2 Classified status codes of response..42

Table 3.3 Factors for non-cacheable..43

Table 3.4 Factors for cacheable ...43

Table 3.5 Top 30 non-cacheable factor occurrences..47

Table 3.6 Cacheable factor occurrences ..53

Table 3.7 Accuracy of TTL..55

Table 6.1 Assumptions for the best cases ..152

Table 7.1 Coding space for some coding lengths ..196

Table 7.2 Potential gains of different selections of HTML tags208

Table 7.3 Potential gains of different selections of JavaScript strings208

Table 7.4 Top 30 strings of the selected 128 strings under 1-byte coding...................210

Table 7.5 Average string lengths and gains under 1-byte coding210

Table 7.6 Excerpts of token-string tables for selected-strings subsets212

Table 7.7 Four mechanisms for studying compression ratio of CAGSC compression

...212

Table 7.8 Four mechanisms for comparison of zlib and CAGSC compression215

Table 8.1 Statistics about server location resolution ...232

Table 8.2 Performance of EOIP without/with caching effect (Parallelism = 4)246

Table 9.1 Detailed object types..255

Table 9.2 Average number of chunks in object transfer w.r.t. object size256

xv

Table of Abbreviations

Abbreviation Description

CAGSC Content-Aware Global Static Compression

CLP Chunk Level Parallelism

CO Container Object

CST Chunk Sequence Time

CT Connection Time

DT Definition Time

EO Embedded Object

EOD Embedded Object Declaration

EOIP Embedded Object Information Propagation

ET Ending Time

LRT Location Resolution Time

NLANR National Laboratory for Applied Network Research

OFL Object Fetch Latency

ORL Object Retrieval Latency

RST Request Sending Time

RTT Round Trip Time

SLP Server Location Propagation

TTL Time To Live

URI Uniform Resource Identifiers

URL Uniform Resource Locators

WRDG Web Retrieval Dependency Graph

WRDM Web Retrieval Dependency Model

WT Waiting Time

xvi

Summary

With the explosive growth of the web, web retrieval latency has become one of the

principal concerns to most web users and web content providers. Although many works

have been done to understand and improve web retrieval performance, there are still

some open issues in this area. In previous studies, page retrieval latency is not given

enough attention; most existing studies are based on object level information, which is

insufficient and sometimes even inaccurate. Also, the details of web retrieval at

operation and chunk level are not well studied and understood. Furthermore, we still

lack of a precise model for capturing and studying web retrieval performance. Finally,

there still lack of effective acceleration mechanisms with special emphasis on improving

page retrieval latency.

This thesis tackles the above issues in the area of modeling and acceleration of web

content delivery. In our studies, we first examined and tried to improve the performance

of the traditional way of web acceleration, i.e. web caching, by studying the

effectiveness of cacheability factors in the multi-factor co-occurrence situation and the

accuracy of the settings for the TTLs of web objects. Then we proposed a fine grained

Web Retrieval Dependency Model (WRDM) to provide more precise capture of web

retrieval process. Based on the model, we profoundly studied the factors in web retrieval

process at various levels, including the detailed operation and chunk level, and page

level. The results shed light on the details of object retrieval latency and the complicated

relationship between object latency and page latency. It revealed that the actual object

fetch latency is often less of a problem for web retrieval than the Definition Times and

the Waiting Times when page latency is concerned. We also analyzed the possible

impact of real-time content transformation on web retrieval latency and derive various

xvii

upper bounds for web acceleration, which revealed some low-level impacts of real-time

content transformation and potentials of web acceleration.

With the guidance of the WRDM model, we systematically analyzed the effect of

an important acceleration mechanism, namely web compression. The detailed analysis

revealed some important effects and implication of compression on page retrieval

latency. Realizing the deficiencies in general-purpose compression algorithms in the

specific area of web content delivery, we proposed a new compression mechanism,

named Content-Aware Global Static Compression (CAGSC), to improve the

performance of compression in web content delivery.

Based on the findings from the studies using the WRDM model, we proposed

some new ways to web acceleration. Besides the novel compression mechanism

mentioned above, we also proposed and studied innovative acceleration mechanisms in

two aspects: the dependency related mechanisms which are the Server Location

Propagation mechanism (SLP) and Embedded Object Information Propagation

mechanism (EOIP), and the parallelism related mechanism Chunk-Level Parallelism

(CLP). The experimental results show that these mechanisms can achieve considerable

improvement on web retrieval latency.

1

Chapter 1 Introduction

1.1 Background and Motivations

1.1.1 Background

The World Wide Web (web) is the most popular application of the Internet [1].

The scale of the web has been experiencing exponential growth. Nowadays, the

Internet traffic is dominated by web data transfers [2, 3, 4]. The web provides the most

convenient way to distribute and access all sorts of information. Not only more and

more companies and organizations turn to utilize the web to do their businesses, but a

tremendous amount of users are also attracted to the web for their personal activities

such as shopping, education, and entertainment etc.

With the explosive growth of the web, web retrieval latency has become one of

the principal concerns to most web users and web content providers. Due to the

immense amount of web traffic, the problems of congested network and heavy-loaded

web servers become more and more serious. This results in long web retrieval latency,

and thus the World Wide Web has been bantered as World Wide Wait. There is a

commonly recognized “eight-second rule”, which indicates that after eight seconds of

wait time, two thirds of the users of a website will be lost [5]. This rule is for 56k

modem users. For broadband users, the tolerance level could be much lower. With the

widespread commercialization of the web, exceeding the “eight-second rule” for

downloading times would mean a significant loss in revenue. The businesses of web

content providers depend on the ability to deliver information quickly to end users not

only because speedy delivery will attract more users, but a faster content delivery also

allows for more complex content which can provide a more enjoyable user experience.

Therefore, faster and more efficiently means to access the web are preferred by both

web users and web content providers.

2

Researchers have been working on how to improve web retrieval performance

since the early 90’s [6, 7]. There are basically two approaches to the acceleration of

web retrieval. The first one is hardware approach which tries to accelerate web

retrieval by improving the hardware capability of network infrastructure and

bandwidth and the computing power of server and client machines. However, this

approach has the following shortcomings which make it insufficient in solving the

problem:

ü The procedure of upgrading hardware infrastructure is usually very slow. For

example, despite the great effort in improving network capacity, broad-band is still

far from the Internet society. Nowadays, a significant percentage of web users still

connect to the Internet through slow dial-up accounts.

ü Upgrading of hardware infrastructure is not cost-effective. Improving hardware

capability often means the purchase of pricey equipments, and it often can not

solve the problem effectively. For example, upgrading a dial-up link to T1 or T3

lines may not completely solve the speed problem as the effective rates of the

connections can be as slow as, or even slower than a dial-up connection when the

T1 or T3 lines are shared by a lot of users.

ü The requirement and expectation on web access grows much faster than the

development of hardware. On one hand, websites have become bloated as content

providers attempt to provide clients with more information. On the other hand,

web users continue to expect more and more performance from their existing web

links. A research indicates that although the Internet backbone capacity increases

as high as 60% per year, the demand for bandwidth is still likely to outstrip supply

in the foreseeable future [8].

If some other kinds of solutions are not undertaken for the problems caused by its

3

rapidly increasing growth, the web would become too congested and its entire appeal

would eventually be lost. What comes into help is the second approach, i.e. the

software approach. This approach is often referred to as web acceleration. It has little

to do with the hardware. Web acceleration tries to integrate various software

technologies and methodologies to get content from an origin server to an edge client

as quickly as possible. Typical examples of web acceleration include web caching,

prefetching, content optimization, and content delivery networks (CDN) etc. [9, 10, 11,

12, 13, 14, 15, 16].

With the maturity of techniques on web intermediate servers such as web proxies,

web intermediaries are actively involved in web acceleration. Many researchers are

looking into acceleration mechanisms that work on web intermediate servers. This

direction has shown great potential because of its good cost-effectiveness, scalability

and functionality.

Web content acceleration is an important method used to address the surge in

web access, and it is believed to have better potential than hardware approach because

not only it is more cost-effective, but it can also cater the needs of users from various

environments. In this thesis, we focus our study on the issues of web acceleration.

1.1.2 Motivations

Web retrieval latency has been extensively studied and many acceleration

mechanisms have been proposed. The most popular mechanisms are those

caching-based schemes such as caching [9, 10, 11] and prefetching [12, 13, 14].

However, the performance of such acceleration mechanisms is limited due to the low

reuse rate and poor cacheability of web objects [13, 17, 18, 19, 14, 20]. To overcome

the limitation, researchers are actively looking into mechanisms which accelerate the

downloading process of web retrieval. Examples of such mechanisms include

4

persistent connection [21, 22], bundling [23, 24, 25], and content transformation [26,

27, 28] etc.

Although many research works have shown good potential in web acceleration,

they still have some deficiencies which motivate us to further look into this area. In

detail, the motivations for the research work reported in this thesis come from the

following deficiencies in the current studies:

ü Lack of a precise model to capture web retrieval process precisely

ü Lack of study at detailed levels of web data retrieval

ü Lack of in-depth understanding and studying of page retrieval latency

ü Lack of effective acceleration mechanisms with special emphasis on page retrieval

latency

The current web content is made up of pages which usually consist of multiple web

objects such as html, image and other types of files [29]. The basic unit of web

browsing is web page. Therefore, page retrieval latency is more meaningful to web

users than object retrieval latency. However, most previous works based on object

retrieval latency to study web retrieval latency [30, 31, 32, 33, 34]. This is insufficient

and sometimes inaccurate since the unit of web browsing is web page instead of object.

While page retrieval latency is derived from object retrieval latency, the relationship

between them is not that direct and simple. When objects are put together to form

pages, more complex and interacted factors will be involved in determining the final

page latency. Normally, in a web page, there is a primary object called container object,

which contains the definitions of other objects (embedded objects) of the page.

Because of this, the retrieval of the embedded objects highly depends on the retrieval

process of the container object of the page, and this dependency will introduce

significant delay to the retrieval process of the embedded objects. Furthermore, current

5

web system employs parallelism for parallel fetching of objects, which makes it

possible for the retrieval of some objects to virtually have no effect on the total page

latency. All these factors make the mapping from object latency to page latency very

complicated, and they are largely ignored in previous object-level studies in web

content delivery.

On the other hand, the transfer of web data is typically delivered in a sequence of

data chunks. The characteristics of chunk sequence transfer have great impact on web

retrieval latency. A thorough study on the detailed chunk level transfer would be very

useful in helping user to better understand the root causes of web retrieval latency.

However, such studies are rarely seen in existing research works.

To well understand and study the complex factors affecting web retrieval latency,

especially page retrieval latency, we will need a more precise model. In this thesis, we

address these issues by proposing a detailed operation level and chunk level model to

provide precise capture of web retrieval process. Based on the model, we conduct

comprehensive, in-depth studies on both detailed levels of web data transfer and whole

page retrieval latency. We also propose new web acceleration mechanisms to improve

web retrieval performance, especially whole page retrieval latency.

1.2 Thesis Aims

The focus of this thesis is to address some issues in web acceleration. Due to the

performance limitation of caching-based mechanisms, we do not make it the heart of

our study. Instead, we spend much of our effort on the studies which aim to accelerate

the downloading process of web retrieval, with specific emphasis on whole page

retrieval latency. The detailed aims of this thesis are originated from the motivations

stated in the previous section, and they are described as follows.

Firstly, we propose a fine grained model to address the issue of lack of precise

6

model for studies in web retrieval. The model shall provide precise capture of web

retrieval process at very detailed level so that it can be used for better understanding

and study of web retrieval.

Next, we acquire better understanding of web retrieval latency for both objects

and pages based on the model proposed. We expect to reveal the impact of detailed

level operations and chunk transfers on object retrieval latency and the complex factors

determining page retrieval latency. We also want to further demonstrate the deficiency

of previous object-level studies by analyzing existing acceleration mechanisms. We

would also like to derive upper bounds on the performance improvement for

acceleration mechanisms to help us to understand the potentials of web acceleration.

Lastly, we propose new acceleration mechanisms with specific emphasis on

improving page retrieval latency. The new acceleration mechanisms are originated

from the findings from the studies based on our model, and we conduct comprehensive

experiments to study the effectiveness of them.

1.3 Thesis Organization

The overall structure of this thesis is shown in Figure 1.1. After the introduction in

Chapter 1, Chapter 2 reviews the related work in the web acceleration area; both

research work and real acceleration systems are discussed. As web caching based

mechanisms are still the important solutions to web acceleration, we include a study on

it in this thesis, and it is presented in Chapter 3. We dig into the relationship among the

co-occurrent factors to reveal the effectiveness of them in the co-occurrence situation,

and investigate the accuracy of the settings for the TTLs of objects to reveal its impact

on web caching.

Move on to the main part of the thesis, we first propose a fine grained Web

Retrieval Dependency Model (WRDM) in Chapter 4, and conduct detailed study and

7

analysis on web retrieval latency based on this model in Chapter 6. Chapter 5 describes

the tools, traces, environments and methodologies used for the studies in this thesis.

To further demonstrate the usefulness and effectiveness of our WRDM model, we

analyze an important acceleration mechanism, namely web compression, in Chapter 7.

The results reveal some important effect and implication of compression on page

retrieval latency. Also in this chapter, we propose a new compression mechanism

named content-aware global static compression to improve the performance of

compression in web content delivery.

Based on the studies using our WRDM model, we propose some new

mechanisms for web acceleration. Besides the novel compression mechanism proposed

in the later part of Chapter 7, we also proposed and studied innovative acceleration

mechanisms related to dependencies and parallelism in web retrieval in Chapter 8 and

Chapter 9, respectively. Detailed descriptions and results are reported in these chapters.

Finally, the thesis concludes in Chapter 10. It briefly summarizes the work

presented in the thesis and lists the main contributions of my work. Some future works

for making further contributions to this area are also discussed in this final chapter.

8

Figure 1.1 Structure of the thesis

Chapter 6
Analysis of Web
Retrieval Latency

ü Object
ü Page
ü Impact of content

transformation
ü Upper bound

Chapter 8
Acceleration:
Dependency

ü SLP

ü EOIP

Chapter 9
Acceleration:
Parallelism

ü CLP

Chapter 10
Conclusions

Chapter 5
Experimental
Environment and
Tools

Chapter 4
WRDM Model

Chapter 3
Cacheability
(multi-factor
study)

Chapter 1
Introduction

Chapter 2
Related Work

Chapter 7
Compression
 ü C

A
G

SC
 com

pression
 ü U

nderstanding

Analysis
&

New
Mechanisms

New
Model

Studies in
New

Direction

Conclusion

Analysis New Mechanisms

guiding analysis and new mechanisms

Studies in
Traditional
Direction

Background

9

Below are the papers I have finished during my study. The papers cover my

research work from processor cache system to web caching system, and then

non-caching based web acceleration studies. I was the main contributor for most of the

papers, especially those published since 2002.

ü Multi-factor Effect of Cacheability Factors (with Chi-Hung Chi), (Submitted)

ü Content-Aware Global Static Compression for Web Content Delivery (with

Chi-Hung Chi), The IEEE Tenth International Workshop on Web Content Caching

and Distribution (WCW 2005), Sophia Antipolis, French Riviera, France,

September 12-13, 2005.

ü Exploiting Fine Grained Parallelism for Acceleration of Web Retrieval (with

Chi-Hung Chi and Qibin Sun), The Third International Human.Society@Internet

Conference (HSI'05), Tokyo, Japan, July 27-29, 2005. (The conference proceeding

was published by Springer Verlag in Lecture Notes in Computer Science series, July

2005.)

ü A More Precise Model for Web Retrieval (with Chi-Hung Chi and Qibin Sun), The

Fourteenth International World Wide Web Conference (WWW 2005), Chiba, Japan,

10-14 May 2005.

ü Understanding the Impact of Compression on Web Retrieval Performance (with

Xiang Li and Chi-Hung Chi), The Eleventh Australasian World Wide Web

Conference (AusWeb'05), Gold Coast, Queensland, Australia, 2-6 July 2005.

ü Modeling Retrieval Parallelism in Web Content Delivery (with Chi-Hung Chi and

Qibin Sun), The 2005 International Symposium on Web Services and Applications

(ISWS'05), Las Vegas, Nevada, USA, June 27-30, 2005.

ü Unveiling the Performance Impact of Lossless Compression to Web Page Content

Delivery (with Chi-Hung Chi), The Ninth International Workshop on Web Content

10

Caching and Distribution (WCW 2004), Beijing, China, 18-20 October 2004. (The

conference proceeding was published by Springer Verlag in Lecture Notes in

Computer Science series, Volume 3293/2004.)

ü Web Caching Performance: How Much Is Lost Unwarily? (with Chi-Hung Chi),

The Second International Human.Society@Internet Conference (HSI'03), Seoul,

Korea, June 18 - 20. (The conference proceeding was published by Springer Verlag

in Lecture Notes in Computer Science series, Volume 2713/2003.)

ü Runtime Association of Software Prefetch Control to Memory Access Instructions

(with Chi-Hung Chi), The Eighth International Euro-Par Conference (Euro-Par

2002), Paderborn, Germany, August 27-30, 2002. (The conference proceeding was

published by Springer Verlag in Lecture Notes in Computer Science series, Volume

2400/2002.)

ü Load-balancing Data Prefetching Techniques (with Chi-Hung Chi), Journal of

Future Generation Computer Systems (FGCS), 17(6):733-744, 2001. (Invited paper)

ü Load-Balancing Branch Target Cache and Prefetch Buffer (with Chi-Hung Chi),

The 1999 IEEE International Conference on Computer Design (ICCD 1999), Austin,

Texas, USA, October 10-13, 1999.

ü Sequential Unification and Aggressive Lookahead Mechanisms for Data Memory

Accesses (with Chi-Hung Chi), The Fifth International Conference on Parallel

Computing Technologies (PaCT-99), St. Petersburg, Russia, September 6-10, 1999.

(The Conference Proceedings were published by Springer Verlag in Lecture Notes

in Computer Science series, Volume 1662/1999.)

ü Design Considerations of High Performance Data Cache with Prefetching (with

Chi-Hung Chi), The Fifth International Euro-Par Conference (Euro-Par 1999),

Toulouse, France, 31 August - 3 September 1999. (The conference proceeding was

11

published by Springer Verlag in Lecture Notes in Computer Science series, Volume

1685/1999.)

ü Cyclic Dependence Based Data Reference Prediction (with Chi-Hung Chi and

Chin-Ming Cheung), The Thirteenth International Conference on Supercomputing,

Rhodes, Greece, June 20-25, 1999.

12

Chapter 2 Related Work

2.1 Introduction

The World Wide Web (web) was initially introduced to the public in 1991 [6, 7].

The web system is built on a number of protocols and languages. Among them, the

most important ones are the HyperText Markup Language (HTML) and the HyperText

Transfer Protocol (HTTP) [35, 36, 37]. HTML is the basic tool to specify the

semantics and structure of web information. It is commonly used to describe the

content and presentation of web objects and pages. HTML files are in simple textual

format. The most popular version of HTML is 4.0 series in current web system. The

HTTP protocol is layered over a reliable bidirectional byte stream, normally TCP [38].

Each HTTP interaction consists of a request sent from the client to the server, followed

by a response sent from the server to the client. Requests and responses are expressed

in a simple ASCII format. There are mainly two versions of HTTP in current web

system, i.e. HTTP/1.0 and HTTP/1.1. While the 1.1 version is getting its popularity,

the 1.0 version of HTTP is still used widely in current web system.

With the evolution of the web, there emerge a number of new languages and

protocols. Typical languages are represented by the Extensible Markup Language

(XML) [39, 40], Wireless Markup Language (WML) [41, 42], Edge Side Includes (ESI)

[43, 44], and Web Service Description Language (WSDL) [45] etc. Protocols examples

include the Internet Cache Protocol (ICP) [46, 47], the Hyper Text Caching Protocol

(HTCP) [48], the Internet Content Adaptation Protocol (I-CAP) [49, 50], the Open

Pluggable Edge Services (OPES) [51, 52, 53, 54], the Simple Object Access Protocol

(SOAP) [55, 56], Web Intermediaries (WEBI) [57, 58, 59], Web Replication and

Caching (WREC) [60, 61], Middlebox Communication (MIDCOM) [62, 63], and

Reliable Server Pooling (RSERPOOL) [64, 65, 66, 67, 68, 69] etc.

13

All of the new languages and protocols aim to improve the application or

performance of the web in one way or another. But up to now, the majority of them

still have not got their popularity yet. The web traffic nowadays is still dominated by

HTTP and HTML. So, in this thesis, we will focus our study on HTTP and HTML.

However, most of our works will be applicable to other languages and protocols as

well.

Web content is usually made up of various types of objects such as html, image

and other types of files. Many of the web objects exist before they are requested. Such

objects are referred to as static objects. In recent years, another type of objects, namely

dynamic objects become prevalent. Dynamic objects mainly refer to those objects

which are generated in real-time when they are requested. Typical examples of

dynamic objects include those generated by cgi, asp, or jsp programs.

While web object is the basic unit of web content, it is not the basic unit of web

browsing. In current web system, the basic unit of web browsing is web page. A web

page is often made of multiple objects. Among the objects in a page, there is one

primary object corresponding to the URL (Uniform Resource Locator) of the page.

This object is called Container Object (CO) and is generally described in HTML

language. The other objects in the page are called Embedded Objects (EO) which have

their definitions (usually URLs) found in the body of the container object. When a web

page is requested, the CO of the page will be first returned to client. Then, client will

see the definitions of the EOs and subsequently send requests from them. The content

of both the CO and EOs are interpreted and displayed together to render the full view

of the web page.

The web system is running in a client-server model. There are numerous web

servers and clients connected in the Internet. Clients run web browsers like MS-IE and

14

Netscape [70, 71] which initiate web retrieval by sending requests to web servers. Web

servers are typically represented by Apache, MS-IIS and Netscape web server etc. [72,

70, 71]. They manage web content and process requests from clients. On receiving a

request from a client, the server will find or generate the content corresponding to the

request and send it back to the client.

Besides the servers and clients, there are also intermediate servers widely

deployed in the web system. These intermediate servers are commonly known as proxy

servers or middle-boxes. They are introduced to improve various issues of web system,

such as performance, security, and scalability etc. Examples of such intermediaries

include Squid [73, 74] and W3C httpd [75] etc.

All web retrievals undergo certain latencies. Some of the latency comes from the

physical limitation of the machines and network such as the computing power, the

network bandwidth and the propagation speed limit of electronic signal. Some other

parts of the latency come from the operations and mechanisms of the retrieval process

such as the establishment of network connection and the parallelism in web retrieval

etc.

As the web continues its exponential growth, the problems of congested network

traffic and long web retrieval latency become one of the principal concerns to most

web users and web content providers. Hence, the acceleration of web retrieval has

become a primary focus of the Internet research and development community.

The studies on web acceleration in the literature are extensive. Most early studies

focused on web caching and prefetching related area such as cache replacement

algorithms [76, 17, 30, 77], cacheability of objects [78, 79, 80, 20], cache consistency

issues [81, 82, 83], and prefetching algorithms [84, 85, 86, 87, 88, 89] etc. The

mechanisms in this direction are actually based on caching to accelerate web retrieval.

15

However, recent studies show that the performance of such mechanisms is limited

because of the low reuse rate and poor cacheability of web objects [13, 14, 17, 18, 19,

20]. To overcome the limitation, researchers are actively looking into a new direction

which tries to accelerate the downloading process of web retrieval. Example

mechanisms in this direction include persistent connection [22, 37], bundling [23, 24,

25], content transformation [26, 27, 28] etc. The studies in this direction have shown

promising potential of improvement in web retrieval latency. However, most of them

only focus on object latency. As page is the basic unit of web browsing, it would be

more important and meaningful to study page latency instead of just object latency.

Nevertheless, the modeling and acceleration of page retrieval is still a missing link in

current studies.

As the application and population of the web grow explosively, the traffic on the

web grows much faster than the growth of underlying network hardware and

machine’s computing power. Moreover, the growth of users’ expectation on the

performance of web retrieval seems to always outstrip the growth of the Internet

backbone capacity. All these make the need of web acceleration become even more

urgent. What is more, with the growth of mobile devices and wireless networking, the

demand for good performance for pervasive Internet access arises. This gives even

tougher challenges to web content delivery as the computing power and bandwidth in

these environments are quite different from the traditional web system. Thus, great

efforts are still needed to solve the problems.

In this chapter, we would like to review the related work in the area of web

acceleration.

16

2.2 Related Work in Caching-based Acceleration Mechanisms

2.2.1 Basics of Caching

Web caching is the first major technique that attempted to improve performance,

reduce latency, and save network bandwidth. However, the idea of caching is nothing

new. It originates from the long-standing use of caching in memory architectures,

where this principle is used to speed up memory access by storing data in a small

amount of high speed memory close to CPU [90, 91, 92, 93]. Due to the two locality

characteristics of requests, i.e. temporal locality and spatial locality, the data brought

into the cache by previous requests can often be used to serve future requests. The

“caching” in the context of web system performs similar function. It tries to improve

the performance of web retrieval by storing copies of objects in local storage and using

them to serve future requests. Because the objects are served locally, so the retrieval

latency can be reduced and external network traffic can be saved.

Web caching can be used in a number of places throughout the web system. First

of all, web browsers may implement their own caches on disk and/or in memory.

However, the performance of such web caches is not good because of the low reuse

rate of web objects since such caches are used by single or few users. A better place for

web cache is a network point shared by multiple users. This is typically the gateway

point or the ISP of an organization. The web caching function performed here is often

incorporated with proxy function, and together they are called web proxy server. The

web caching in the proxy server can produce better performance because it serves

multiple users so that the reuse rate of web objects could be much higher than those for

single users. In some cases, web caching function is also performed right in front of

web servers to improve the performance of them. Again, it is also often combined with

proxy function. Such proxy servers are often referred to as reverse proxy servers. In

17

contrast, those proxy servers close to end users within an organization are referred to

as forward proxy servers.

Web caching has become a significant part of the infrastructure of the web. It

even led to the creation of a new industry: Content Delivery Networks (CDNs). CDNs

rely on web caching and load-balancing technologies to efficiently deliver large

amounts of data over the web. The market value of CDN grows at a fantastic rate,

which expects to be over three billion US dollars in sales and services by 2006 [94].

This reflects the importance of caching in the web system.

Ordinary caching reduces latency only for repeated requests. Prefetching is a

supplementary technique to caching. It aims to predict future user requests and

prefetch the objects into the cache in advance so that more requests, including those

first time requests and repeated requests, can be satisfied. The concept of prefetching is

not new either. Many advanced computer systems use this principle to improve the

performance of the memory architectures [95, 96, 97, 98, 99, 100, 101]. Although the

idea is similar, the prefetching in the context of web system is more difficult than that

in computer memory system. The challenge lies in that the user requests are not so

predictable as the memory accesses in computer memory system. It is difficult to

achieve high prediction accuracy in web prefetching.

There are many issues in the web caching area, and they have been extensively

studied in the current literature. Below, we examine the major works in this area.

2.2.2 Locality of Web Requests and Cacheability of Web Objects

The locality of web requests reflects the reuse rate of objects, and the

cacheability of web objects refers to the availability and duration that web objects can

be kept in a web cache. These two factors are very fundamental to caching-based

acceleration mechanisms because caching is only effective when there is fair reuse rate

18

and good cacheability of objects.

Cao [102], Breslau [103] and Dykes [104] et al studied the Zipf-like distribution

of web requests, which states that the request frequency for a web object is inversely

proportional to the object’s popularity ranking. Abdulla et al pointed out that web

traffic has a significant daily and weekly cyclic component, and claimed that the

temporal and spatial locality of reference within examined user communities is high,

so caching can be an effective tool [105, 106, 107]. Cao and Irani [30] found a large

number of repeat requests in their studies. [18, 13, 9, 108] and [109] etc reported fair

object reuse rate, ranging from 24% to 45%. [110] further pointed out that embedded

images in web pages are often reused, even the pages change frequently. Zhang [111]

found that between 15% and 40% of web objects in their traces can not be cached, and

Dykes, Robbins, and Jeffery [78, 79, 80] reported that 28% of the successful GET

requests are for non-cacheable documents. Many of the caching mechanism in the web

depend on HTTP header fields that carry absolute timestamp values to determine the

cacheability of objects. Wills [112] and Mogul [113] examined the effect of those

timestamp-based cacheability-controlling HTTP headers and showed that many objects

are not cacheable due to inaccurate and nonexistent directives. If such errors can be

corrected, more objects will be turned to be cacheable.

2.2.3 Cache Replacement Algorithms

Cache replacement algorithms govern the eviction of old objects from the cache

when there is not enough space to store new objects. Different replacement algorithms

may yield different hit rates and byte hit rates. So, replacement algorithm is one of the

key aspects that ensure the effectiveness of web caching.

The traditional replacement algorithms like Least Recently Used (LRU) and

Least Frequently Used (LFU) widely used in computer memory architectures are also

19

imported into web caching systems. Williams et al gave an extended algorithm based

on LRU: Pitkow/Recker [76]. In this algorithm, objects are evicted in LRU order

except for those objects accessed within the same day, where the largest object will be

evicted. The rationale behind this algorithm is that they found that a caching algorithm

based upon the recency rates of prior document access could reliably handle future

document requests.

Some other replacement algorithms specially developed for web caching are

based on some key properties of objects such as size. The algorithm SIZE evicts the

largest objects [76]. LRU-MIN and LRU-Threshold have a certain threshold size to

guide the eviction of objects [17].

Another category of replacement algorithms for web caching typically takes into

consideration the timing or latency factors. A cost function is derived from those

factors to govern the eviction of objects. Cao et al proposed the GreedyDual-Size

(GDS) algorithm [30, 77]. It associates a cost with each object and evicts object with

the lowest cost/size ratio. Because it incorporates the latency and size concerns, this

algorithm yields better performance in terms of latency reduction and network cost

reduction. There is a number of works trying to further improve the performance of

GreedyDual-Size algorithm. Cherkasova proposed the Greedy-Dual-Size-Frequency

(GDSF) and the Greedy-Dual-Frequency (GDF) algorithms, which incorporated

different characterizations of objects such as size, access frequency and recentness etc

[114]. Jin and Bestavros first proposed the Popularity-Aware GreedyDual-Size

algorithm [115], which makes use of popularity profile of web objects. They later

proposed the GreedyDual* algorithm, which is said to be a generalization of

GreedyDual-Size [116]. The GreedyDual* algorithm capitalizes on and adapts to the

relative strengths of both long-term popularity and short-term temporal correlation.

20

There are still a number of other replacement algorithms such as Hyper-G [76],

Lowest Latency First [32], Hybrid [32], Lowest Relative Value (LRV) [117, 118],

LNC-W3 [119] etc. However, the performance of replacement algorithms depends

highly on traffic characteristics of web accesses. No known algorithm can outperform

others for all web accesses patterns. Therefore, many current web caching systems still

widely use the traditional replacement algorithms like LRU [120].

2.2.4 Cache Coherence and Validation of Objects

Cache coherence is concerned with ensuring that the cached objects do not reflect

stale or defunct data. Web cache relies on some timestamp-based HTTP headers like

Data, Last-Modified and Expires etc. to determine the freshness of objects [121]. There

must be some mechanisms to assure the validity of cached objects when their master

copies on the web servers change. This is typically the validation/invalidation process

in web caching systems.

The validation process is normally initiated by web caches. A web cache sends an

If-Modified-Since message to the server to verify the validity of an object. The server

either returns a “Not-Modified” message to assure the validity, or returns a new copy

of the object if it has been changed [37, 81, 82]. This process can be performed either

for each access, or periodically only when an object is suspected to be stale [83]. The

latter improves access latency, but may not be able to maintain strong coherence.

Instead of having web caches to check for the validity, web servers can also send

invalidation messages to all clients upon detecting changes of objects [121]. This

approach requires a server to keep track of the web caches that are caching its objects

and contact them when objects change. When the number of web caches contacting a

server is big, this task can become unmanageable for the server.

A number of works also have been done to improve the effectiveness of

21

validation and invalidation processes. First, the Adaptive TTL policy is proposed to

adjust the time-to-live of objects and it is shown to be able to keep the probability of

stale objects within reasonable bounds (< 5%) [122, 123, 124]. Another direction is to

piggyback the validation or invalidation message to an existing communication

between the server and cache. The ideas, Piggyback Cache Validation (PCV) and

Piggyback Server Invalidation (PSI), are explored by Krishnamurthy and Wills [125,

126]. Their studies show that PCV and PSI minimize access latency and bandwidth

usage while maintain a close-to-strong coherence. Mikhailov and Wills also proposed

an alternative approach to strong cache consistency called MONARCH. They showed

that MONARCH does not require servers to maintain per-client state and it generates

little more request traffic than an optimal cache coherency policy [127].

2.2.5 Prefetching

The performance of ordinary web caching is limited due to the relatively low

reuse rate of objects, typically ranging from 24% to 45% as reported in many studies

[18, 13, 9, 108, 109]. Prefetching is an important method to help further increase cache

hit ratio. By predicting future user requests and prefetch the objects into the cache in

advance, it can satisfy more user requests.

The prefetching in the context of web system has a significant difficulty which is

the accuracy of prediction. Because web users’ requests are not so predictable as the

memory accesses in computer memory system, it is often difficult to achieve high

prediction accuracy in web prefetching. While a few works try to prefetch only inline

objects of pages where the accuracy is not an issue [128], most other studies on web

prefetching focus on improving the accuracy of prediction algorithms.

A naïve method for doing web prefetching is to have proxy cache to fetch all the

pages that are pointed to by the hyperlinks in current page. So, no matter which page

22

the user goes next, there will be always a cache hit. [129] proposed a prefetching

scheme of this type and reported significant improvement in cache hit ratio. However,

this method imposes too heavy load on the web system.

More advanced prefetching algorithms employ the knowledge of data mining or

mathematics to do the prediction, and the information used for prediction may come

from client side or server side. Maltzahn et al applied machine learning techniques to

automatically develop prefetch strategies and showed that the results are promising [84,

85]. Palpanas and Mendelzon investigated the use of partial match prediction, a

technique taken from the data compression literature, for prefetching in the web [86].

Their results suggest that a high fraction of the predictions are accurate, e.g., predicts

18-23% of the requests with 80-90% accuracy.

Sarukkai sought to apply Markov chains to predicting web requests and claimed

a lot of promise [87]. Deshpande and Karypis also studied Markov models for

predicting web page accesses [88]. They studied different techniques for intelligently

selecting parts of different order Markov models to reduce the state complexity of the

model and to improve prediction accuracy. Their results indicate that the performance

of their model is consistently superior to that obtained by higher-order Markov models.

Markatos and Chronaki proposed a top 10 approach to prefetching which

combines the servers' active knowledge of their most popular documents (their top 10)

with client access profiles [89]. According to these profiles, clients request and servers

forward to them their most popular documents. Their results suggest that the top 10

approach can anticipate more than 40% of a client’s requests while increasing network

traffic by no more than 10% in most cases.

There are numerous other studies trying to work on web prefetching algorithms

[14, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143]. Also, there

23

are some works studied the effects of prefetching on network and server, and the

potential and limits of prefetching [144, 145, 146, 147, 148]. Among the studies,

Davison argued that the current support for prefetching in HTTP/1.1 is insufficient

because prefetching with GET is not good [145]. Pandey et al conducted a comparative

study of some prefetching models and found that the model based on higher order page

interaction is more robust and gives competitive performance in a variety of situations

[149].

2.2.6 Others Aspects of Caching

There are many studies addressing other miscellaneous aspects of web caching.

Cache hierarchy related issues and standards are discussed in [46, 47, 150, 151, 152,

153, 154, 155, 156, 157, 158, 159, 160] etc.

Kelly, Mogul, Bahn, Lee et al studied the aliasing/replica problem that affects the

performance of web caching [161, 162, 163, 164]. Their studies revealed a significant

percentage of web objects encounter the aliasing problem, which considerably lower

the performance of web caching systems because they generally treat the replicas as

different objects since they have different URLs. Different schemes are proposed to

remove the redundant objects from web cache so as to improve caching performance.

As dynamic and secured data become more and more popular in the web,

researchers are actively looking into way to cache such data. Many dynamic caching

and active caching mechanisms have been proposed in an attempt to address this issue

[165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177]. The studies indicate

a lot of promise in this direction.

Content Distribution Networks (CDNs) are managed networks of caching and

networking systems, and rely on web caching (as well as load-balancing) to efficiently

deliver large amounts of data over the web. There are also a number of works trying to

24

address the issues with CDNs such as consistency management, request redirection,

and object replication strategies etc. [178, 179, 180, 181, 182, 183, 184, 185]. With

these issues being addressed properly, the performance of CDNs will reach even a

higher level.

An important movement about CDN is that the technology has been exploited for

more than web caching and multimedia content delivery recently. The largest

traditional application for CDNs is the acceleration of web content delivery, along with

streaming audio and video. But as more and more companies move their corporate

applications onto the web, the CDN technology has been exploited for distributed

computing and application acceleration, which is being shown to be a much bigger

opportunity for CDNs than just helping on web site access [15, 16].

There are also some studies examining the effect of special activities on web

caching, such as web robots, connection aborts and cookies etc [186, 187]. Results

show that such details can affect the performance of web caching considerably.

2.3 Related Work in Other Acceleration Mechanisms

The performance of web caching is limited due to the low reuse rate and poor

cacheability of web objects [9, 18, 13, 108, 109]. The ever-growing dynamic content in

the web system further worsens this situation. To overcome the limitation, researchers

are actively looking into a new direction which tries to accelerate the downloading

process of web retrieval. This direction has huge potentials because it covers all pages

and objects, independent of objects’ reuse rate and cacheability [188, 189]. The

mechanisms from this direction mainly fall into two categories: the first category aims

to reduce network connectivity related latency; the other one endeavors to reduce the

latency come from the actual transfer process. In this section, we review the major

works in this direction.

25

2.3.1 Connectivity Related Mechanisms

Web retrieval usually involves some network connectivity related operations such

as DNS resolution and connection establishment. Many studies revealed that such

connectivity related operations contribute a significant portion to web retrieval latency

[24, 33, 190, 191, 192, 193].

The contribution of DNS lookup costs to web retrieval is studied and addressed

by [193, 194, 195, 33, 196] etc. Typical mechanisms proposed include stored address

binding [194], pre-performing DNS lookups [195], proactive caching of DNS records

[196] and so on. Considerable improvement is reported from this aspect.

To address inefficiencies associated with multiple concurrent connections,

persistent-connection is first proposed [22, 24, 37, 197, 198, 192, 199, 200]. By

keeping a connection alive and reusing it for pipelining a set of requests and objects

transfers, persistent-connection can greatly reduce the response time, server overheads,

and network overheads of web retrieval. Connection caching is further proposed to

handle the connection management problem [192, 198, 200].

Pre-connection is another way to directly address the connectivity issue. This

mechanism tries to pre-setup connections prior to the issuance of HTTP request.

Results showed moderate (about 6%) performance improvement with pre-connection

[195].

Another quite different approach to addressing the connectivity problem is

bundling techniques such as GETLIST [24], MGET [23] and N-to-1 Bundle [22, 25,

201, 202]. By packaging a set of associated embedded objects into a single bundle for

retrieval, bundling reduces the need for multiple requests and the load on the network.

Thus network connections can be utilized more efficiently and web servers can have

better control over the number and duration of connections they support.

26

2.3.2 Transfer Related Mechanisms

The mechanisms in this category aim to reduce the latency come from the actual

transfer process. The basic idea is to reduce the amount of data being transferred in

web retrieval. Examples include encoding, transcoding and content optimization etc.

Some of the techniques mainly apply on textual objects, while some others are mainly

for image objects.

The most popular encoding mechanisms include delta encoding and compression.

The ESI (Edge Side Includes) can also be regarded as a special kind of encoding. Delta

encoding and ESI enable web caches to retrieve only the difference (or delta) between

the old instance and the new instance of an object instead of the entire new instance,

and apply the delta to the cached copy of the old instance to construct the new version.

Studies show that the reduction in response size and delay is significant [26, 27, 28, 44,

203, 204, 205].

Compression mainly refers to applying lossless compression algorithm on textual

web objects. The support for such compression has been included in protocols and web

servers and browsers [36, 37, 206, 207, 208]. In current web system, the supported

compression applications/algorithms are gzip, compress, and deflate etc. [37, 209],

which are mainly LZW or LZ77 based algorithms [209, 210, 211, 212, 213].

Nielsen et al reports on the benefits of compression in HTTP [191]. They

observed over 60% gains in downloading time in low-bandwidth environment by using

the zlib compression library [214] to pre-compress HTML files. Mogul et al [27]

studied the potential benefits of delta encoding and data compression for HTTP. They

reported about 35% reduction in transferred size and about 20% reduction in retrieval

time when gzip compression is used. They also studied modem-based compression and

pointed out that high-level compression seems almost always performing better than

27

modem compression. Other studies reported that compression could achieve up to

above 90% reduction in file size and above 60% reduction in downloading time [203,

206, 215, 216, 217].

Transcoding mainly applies on image objects, often by using lossy-compression

on images. The challenge lies in finding good compression algorithm which can make

file sizes as small as possible while retaining the visual integrity of the images. The

effect of transcoding on web retrieval has been studied in a number of works and good

results were reported [218, 219, 220, 218, 221, 219, 222, 223].

Content optimization typically performs on HTML files. When HTML files are

created (mostly by dedicated editors), they are usually not optimized for transfer over

the web because they often contain non-renderable data which takes much space. The

advent of active server pages and XML etc has increased the web page size even more

enormously. Examples of such unnecessary non-renderable data include HTML

comments, notes from publishing tools, superfluous tags, carriage returns, and extra

white spaces etc, and they can account for as much as 15% of the information in web

retrieval [224]. The simple way to optimize web content is to remove unnecessary data

that are not needed to properly render the page. A more comprehensive way is content

selection. In this mechanism, some parts of web information can be selected for

processing and others can be suppressed according to different environments and

requirements. Studies as well as industrial practice have shown promising results in

this direction [225, 226, 227, 228].

2.3.3 Others Mechanisms

There are still some other works trying to reduce the actual transfer latency.

Parallel fetching of multiple objects can be used to reduce both the connectivity related

and transfer related latencies by hiding the latencies among the requests. Most

28

common web browsers like Microsoft IE and Netscape already employed this parallel

fetching for retrieving the objects in the same page. Rodriguez et al proposed

paraloading [229, 230, 231], which suggested parallel segmented download of an

object using parallel connections to multiple mirrors. While the use of parallel fetching

can reduce user-perceived retrieval latency in many cases, it incurs additional

overheads and puts higher workload on the network and the servers.

Pushing is a counterpart mechanism of prefetching. In contrast to prefetching

which is usually done by clients, pushing is initiated by servers. In pushing, servers

select the objects and timings to send data to clients without additional client requests.

Because servers have better knowledge of the access patterns to its objects and its

workload, pushing can potentially perform better than prefetching. When performed

properly, pushing speed-up latency as high as 3.35 compared to the normal retrieval

process [194, 232].

There are also some more aggressive approaches to web acceleration, which

include the development of new data formats and new protocols. An example of the

new data formats is the progressive image format such as Progressive JPEG and JPEG

2000 [233, 234, 235, 236]. Progressive image formats improve user-perceived retrieval

latency by allowing web users to see an approximated image in its whole without the

need to wait for the complete set of the data to be received.

Current web system is built on the HTTP protocol which is over TCP [38]. There

are many performance issues against this combination. Due to the significant setup

costs of TCP connection, HTTP is known to be inefficient for transfers of small objects.

Furthermore, TCP is strictly ordered in the way it delivers packets, which could

introduce considerable delay when packet loss occurs. Also, many acceleration

mechanisms like caching and prefetching are not well supported by current protocols.

29

A number of attempts have been made to develop better protocols for web retrieval.

Examples include WebMUX, Internet Cache Protocol, Hyper Text Caching Protocol,

and Hypertext Streaming Transport Protocol etc. [46, 47, 48, 237, 238, 239, 240, 241,

242].

Finally, some works are also done on peer-to-peer web system. This is a

relatively new way to improve web performance. This direction tries to exploit

peer-to-peer techniques to improve the availability, scalability, latency etc. for web

service. Some studies already show improvements in latency and reliability in such

systems [243, 244, 245].

2.4 Existing Web Acceleration Systems

In this section, we take a look at a number of existing web acceleration systems.

The list here is not exhaustive and it serves only as a brief introduction of some typical

systems used in the web society.

2.4.1 Caching and Prefetching Systems

The first caching system worth of mentioning is Squid [73, 74]. Squid is one of

the most popular web caching softwares in use today. It is a free, open-source,

full-featured and high-performance web proxy cache designed to run on a variety of

platforms including Linux, FreeBSD, and Microsoft Windows. Squid improves

network performance by reducing the amount of bandwidth used when surfing the web.

It makes web pages load faster, and can also be used as reverse proxy server to reduce

the load on web servers. By caching and reusing popular web content, Squid allows

web users to get by with smaller network connections.

Unlike traditional caching software, Squid handles all requests in a single,

non-blocking, I/O-driven process. It keeps meta data and especially hot objects cached

in RAM, caches DNS lookups, supports non-blocking DNS lookups, and implements

30

negative caching for failed requests. All these reduce the amount of time required for

caching processing. Squid supports many protocols like HTTP, FTP, gopher, SSL, ICP,

HTCP, CARP, WCCP, etc. It can be configured to support transparent caching. A group

of Squid caches can also be arranged in a hierarchy or mesh for additional bandwidth

savings.

Another existing caching system is ProxySG from the Blue Coat Systems, which

is formerly known as CacheFlow [246]. Blue Coat’s ProxySG proxy appliance is a

powerful, full featured solution for both forward and reverse proxy applications. Its

unique Web Knowledge Framework enables it to handle all web protocols, including

HTTP, HTTPS, FTP, Microsoft streaming (MMS and HTTP streaming), Real

streaming (RTSP and HTTP streaming), QuickTime streaming (over RTSP), MP3,

Flash, and many other web object types. Unlike traditional proxy caches, Blue Coat

Systems has incorporated enhanced security features in its products as the security

issues in current web system become more and more important The ProxySG

appliance integrates advanced proxy functionality with optional security services such

as content filtering, instant messaging (IM) control, Peer to Peer (P2P) control, and

web virus scanning. Its special Policy Process Engine provides the power to define a

comprehensive set of rules for protection, control and acceleration. The ProxySG

proxy cache can be configured for controlling and securing user communications and

applications over the web. It can manage user requests for content delivery effectively.

The NetCache from Network Appliance is a versatile proxy cache system which

accelerates web access while minimizing bandwidth needs [247]. It supports many

protocols like HTTP and FTP, and streaming media content as well. NetCache offers

unique cacheability controls to maximize business application delivery performance

and bandwidth savings. Many applications include a significant amount of dynamic, or

31

non-cacheable, content, which could be cached without disrupting the application.

NetCache’s unique controls enable the user to fine-tune the way NetCache handles

such dynamic content for further improvement in web retrieval performance.

Some other available academic and commercial caching systems include CERN

Proxy, Cisco Cache Engine, Novell Internet Caching System, InfoLibria DynaCache,

etc. They all provide web caching function which help to accelerate content delivery in

the web [75, 248, 249, 250].

Unlike caching products which are quite abundant in the market, products with

prefetching capability are rarely seen. This is mainly due to the reason that prefetching

technology is not mature yet. Currently, there is no prefetching mechanism which is

obviously superior to others in terms of accuracy of prediction and extra network

traffic incurred. SkyCache once provided a prefetching system, in which a large scale

of web caches at Internet Service Providers (ISPs) are maintained and the most popular

and up-to-date web content is continually broadcast to them over satellite link [251].

The popularity information is collected from the access statistics of each ISP cache. By

using dedicated satellite links for broadcast the information for prefetching, it avoids

network congestion points and relieves traditional links from high bandwidth prefetch

traffic. Some of CacheFlow’s (now known as Blue Coat) products also implemented a

conservative prefetching, where only cached popular web objects are checked and

prefetched (i.e. updated) [252]. The product uses access history information to

determine the popularity of objects, and then it checks the popular objects and

prefetches new copies of them when they become stale.

2.4.2 Content Delivery Network Systems (CDNs)

Content Delivery Network Systems (CDNs) rely on web caching and

load-balancing technologies to efficiently deliver large amounts of data over the web.

32

The most famous CDN service provider is Akamai [253]. Akamai initially garnered

much success with its FreeFlow static content delivery service. But as dynamic content

becomes more and more popular in the web, it now focuses more on serving enterprise

customers’ dynamic content delivery needs with its EdgeSuite service. The core of

Akamai’s technologies is distributed web architecture. By placing thousands of servers

at the edge of the network and caching content close to the users, optimal web content

delivery performance can be achieved. Today, Akamai’s edge platform for content,

streaming media, and application delivery comprises more than 13,500 servers in more

than 1,000 networks in 66 countries. This ensures high performance, reliability and

scalability of web content delivery.

SAVVIS Communications also provides content delivery network services,

which is the second largest CDN in the market today according to InStat MDR [254,

255]. The SAVVIS CDN service features a full range of flexible, easy-to-implement

services including content delivery, streaming media production and delivery, traffic

management and global load balancing. It also has a unique feature which enables true

end-to-end delivery of all the necessary applications related to the creation,

management and distribution of digital content. SAVVIS' CDN services enable

enterprises to deliver digital content assets to end-users rapidly, reliably and

cost-effectively.

There are other companies also providing CDN services such as Digital Island

(merged with Sandpiper Networks and later Cable & Wireless), Inktomi (bought by

Yahoo) and Maven Networks etc [256]. A number of vendors like Cisco, F5 Networks,

Nortel and Volera offer CDN products, which include caching devices, web switches,

and appliances for directing and scheduling content distribution throughout a

corporation [248, 257].

33

2.4.3 Other Acceleration Systems

The support for persistent connection has been built into most today’s web

systems. But because HTTP/1.0, which does not support persistent connection, is still

widely used in current web system, the advantage of persistent connection has not been

fully utilized yet.

Some products try to improve connectivity related latency by managing TCP/IP

connections. NetScaler provides products with advanced TCP optimization feature

[258]. Their TCP offload technology optimizes server-side resources to achieve higher

throughput. By managing and accelerating the fundamental TCP/IP connections,

NetScaler system can multiplex the basic TCP/IP connections, which leads to

significant improvement in the efficiency of web retrieval. Redline Networks’ also

provides products which can multiplexing each set of requests onto one connection

[259]. This enables them to take the advantage of the inherent architecture of TCP,

which is designed to transfer data in larger bytes over one channel, rather than several

little channels. Their acceleration tests showed that user access to both dynamic and

static content can be boosted up to a factor of four.

Compression feature can be found in many web systems today. Most web

browsers such as Microsoft IE and Netscape have also equipped support for web

compression since 1998 [206]. Web servers like Microsoft IIS 5.0 [207] and Apache

[208] have also incorporated compression capability. NetScaler’s AppCompress

provides real-time compression for both encrypted and unencrypted application data.

This reduces last mile transmission times and dramatically improves user-perceived

latency [258]. Products from Packeteer [215], Redlinenetworks [259] and BPVN

Technologies [260] all have similar compression feature.

Transcoding is the technology used to accelerate web access especially for

34

pervasive Internet access environment by transforming image objects or multimedia

objects etc from higher quality version to lower quality version to best suit the

capability of users’ devices. IBM’s Image Transcoding Proxy is a prototype system to

show the potentials of adaptive web content delivery [261, 262]. The main focus of the

system is on the image transcoding. It can convert the quality of images to different

levels based on the image purpose, network bandwidth availability and client’s

characteristics and preference. Mowser [220, 223] is a transcoding proxy that allows a

mobile user to specify his viewing preferences, and performs transcoding of HTTP

streams accordingly. When requested by end users, it can reduce the size or color for

image objects, or select and transmit representative frames of video objects to the user.

Other example transcoding systems include Pythia, TranSend [219], InfoPyramid [263,

264], Transcoding Publisher [265], and AppCelera ICX [215] etc.

Redline Networks’s Real-Time Acceleration Appliance employs content

optimization technology which cuts out non-renderable data from HTML files to

decrease their retrieval latency [224]. A number of other systems from FileNET, Web

Site Optimization, WebTrimmer, HypnoText etc also provide similar feature [266, 267,

268, 269].

As to peer-to-peer web system, such techniques are mainly exploited for web

hosting system currently. IBM runs an experimental peer-to-peer web hosting system

named YouServ [243, 244]. YouServ makes web serving more effective to wide web

community by improving the availability, scalability, latency etc. for web services.

Another example is the BadBlue’s web server, which is also a full-blown web server

based on P2P file-sharing techniques [270].

2.5 Summary

In this chapter, we reviewed the protocols and languages related to web content

35

delivery and the major research works in the area of web acceleration. Web caching is

the first major technique used to tackle the performance problem of web retrieval.

Various aspects of caching have been extensively studied, and it has been shown that

caching is an effective mechanism in improving web retrieval latency, although its

performance is limited by some factors. The effectiveness of caching spawns other

caching-based mechanisms such as CDNs and prefetching. Most works on prefetching

focus on finding good prediction algorithms which generate high accuracy of

prediction and little extra network traffic. But as the prediction of web users’ requests

is a very tough task, there is no outstanding and convincing algorithm being found yet.

As the limitation of caching-based mechanisms being realized, researchers are looking

into a new direction which tries to accelerate the downloading process of web retrieval.

We also surveyed the major works in this direction which include

persistent-connection, pre-connection, bundling, encoding, transcoding, content

optimization and selection, parallel fetching and peer-to-peer web system etc. We also

examined some typical academic and commercial web acceleration systems available

today.

Although the studies in web acceleration are extensive, there are still some open

issues. Firstly, page retrieval latency is not given enough attention. Most existing

studies are based on object level information, which is insufficient and sometimes

inaccurate. Secondly, operation and chunk level details are not well studied. Thirdly,

we still lack of a good model to capture web retrieval process accurately. Although

there are quite a number models proposed such as those in [271, 78, 272, 273, 106, 274,

275] etc., they are either too coarse or not appropriate for capturing page retrieval.

Finally, it is still preferable to look for effective acceleration mechanisms which have

special emphasis on reducing page retrieval latency. We will study these aspects of

36

web content delivery in the rest parts of this thesis.

37

Chapter 3 Cacheability of Web Objects

3.1 Introduction

World Wide Web has been the major service on the Internet [1]. As the scale of

web and the number of its users continue their exponential growth, the problem of

congested network become more and more serious and users often experience long

latency when surfing the web. To alleviate the problem, web caching was introduced

and has been widely used in the current web system [10].

A web cache is a server which usually lies in front of a local area network (LAN)

and connects users in the LAN to web servers on the Internet. The primary function of

web cache is to retrieve web objects on behalf of the users and serve users with the

objects that they requested. As web cache also keep copies of retrieved objects in its

local storage, subsequent requests may be served locally if the requested objects can be

found in the local storage. Therefore, user-perceived latency can be reduced

significantly as the latency for fetching of the object from remote servers is eliminated.

Figure 3.1 Two situations of cache hit

Obviously, the reduction of latency can only be achieved when a request is hit in

web cache. In reality, the reduction could vary greatly due to the complex situation in

real systems. Because objects stored in web cache have their times to live (i.e. TTL),

they may not be able to be reused directly. Taking this into consideration, the

Cache-Hit of a request can be classified into two categories (see Figure 3.1):

User

No Validation Request / Response

Web Cache Server

(a) Hit-Fresh

User

Validation Request / Response

Web Cache Server

(b) Hit-Stale

38

a. Hit-Fresh: The cached object is still in its TTL and is considered the same as the

one on the origin server. In this case, web cache can serve user requests with this

copy without validation with the origin server.

b. Hit-Stale: The cached object has expired beyond its TTL. Web cache must

communicate with the origin server (or an up-stream web cache) to find out

whether the object has changed before it can use the local copy to server a new

request. The response from the origin server will be either a “Not-Modified”

message in the case that the object is not changed, or a new copy of the object in

the case that the object has been modified.

Between these two Cache-Hit categories, Hit-Fresh can surely reduce network latency

because no transmission of the data between web cache and origin server needs to be

performed. However, for Hit-Stale, web cache will have to communicate with the

origin server. Regardless whether the server’s reply is a new copy of the object (when

the object has been modified) or a “Not-Modified” message (when the object is not

changed), the network latency incurred is often comparable to that of a cache miss.

This is because the “Not-Modified” message will incur at least one chunk of data being

transferred from server to web cache. We conducted experiments to study the ratio of

first chunk latency vs. whole object latency. The result is shown in Figure 3.2. The

graph shows that for the majority of objects, the first chunk latency occupies more than

90% of the whole object latency. On average, the ratio is about 78%, which is very

significant. The reason for this high ratio is mainly because web retrieval time consists

of some components independent of content size, such as the server location resolution

time and connection establishment time etc. This result indicates that validation

requests are almost as costly as normal retrieval requests. So, although Hit-Stale is also

cache hit, it often incurs latency comparable to that of cache miss. In order to get the

39

best benefits from web caching, it is important to not only make as many as possible

web objects to be cacheable, but also make the TTL of cached objects as long as

situation permits to minimize the necessity of doing validations.

Figure 3.2 Distribution of first chunk latency vs. whole object latency

The cacheability of web objects, which is the availability and duration that web

objects can be kept in a web cache, is controlled by some factors (mainly HTTP

headers) which come along in the responses of objects from web servers. To decide

whether an object is cacheable or not, web caches typically examine certain factors in a

pre-defined order and make the decision based on the first satisfied factor. In reality,

the response of an object often contains multiple factors. Therefore, to simply improve

one factor may not result in improvement in cacheability because web caches may then

meet other factors which also appear in the response and make decision based on them.

The duration that an object can be kept in web cache and still considered fresh, i.e. the

TTL of an object, is also controlled by some HTTP headers which are provided by web

servers. The values of these headers are supposed to be set in accordance with the

properties of web objects. However, we found in our study that these essential headers

are often assigned inappropriate values by web servers. This results in considerable

performance loss in web caching.

Previous studies on web caching mainly focus on algorithms of caching and

0%
10%
20%
30%
40%
50%
60%
70%

0~
10

%

10
~2

0%

20
~3

0%

30
~4

0%

40
~5

0%

50
~6

0%

60
~7

0%

70
~8

0%

80
~9

0%

90
~1

00
%

Ratio of first chunk latency vs. whole object latency

Pe
rc

en
ta

ge
 o

f o
bj

ec
ts

40

prefetching [30, 114, 115, 76, 195, 129, 137, 89, 86, 141]. The works on cacheability

controls are very limited. Some relevant works studied errors in timestamp-based

HTTP header values [113], cacheable reasons [111], and freshness controls [81] and

the age penalty in hierarchical cache system [153], etc. These works lack of studies on

the effect of multiple-factor co-occurrence and the accuracy of current settings for

TTLs of objects. In this chapter, we would like to dig into the relationship among the

co-occurrent factors to reveal the effectiveness of them in the co-occurrence situation,

and investigate the accuracy of the settings for the TTLs of objects to reveal its impact

on web caching. The results revealed in this study would help in improving web

caching performance and bandwidth utilization by making more objects to be

cacheable and cached longer.

In this chapter, the TTL refers to the time period used by web caches to decide

whether an object is fresh, while lifetime of an object refers to the time difference

between two consecutive changes of the object content.

The rest of this chapter is organized as follows. In Section 3.2, we reveal the

factors and algorithms for determining cacheability of objects by studying HTTP

protocol and a real web caching system Squid. Section 3.3 and 3.4 discuss our

methodology and results of this study. Section 3.5 concludes this chapter.

3.2 Study of Cacheability Algorithms

In essence, the availability and the TTL of web objects for caching are mainly

controlled by certain HTTP header directives found in the responses from web servers.

We studied in detail the HTTP protocols to understand how these header directives are

used to decide the cacheability of web objects. We also systematically examined a real

web caching system, namely Squid [73], to get a better idea about how these header

directives are used in real web caching systems. The version of Squid that we used in

41

our study is 2.4.STABLE3, which was the latest version as at the time of our study.

In this section, we study the algorithms and factors for determining the

cacheability of web objects in two aspects. First, how a web object is determined to be

cacheable is examined. Then we studied the algorithm for determining the TTL of web

objects.

3.2.1 Algorithm and Factors for Cacheable and Non-cacheable

In general, whether a web object is cacheable is determined by the presence or

absence of certain HTTP headers and the different status codes of HTTP responses.

Table 3.1 lists the main HTTP response headers that are related to caching. These

headers are selected based on the specification of HTTP/1.0 and HTTP/1.1 and the

implementation of Squid.

Table 3.1 HTTP headers that related to cacheability of web objects
Header Name Usage

Age Specify the age of response entity since the time the response was generated
by the origin server

Authorization Pass user’s authentication credentials to origin server
Cache-Control Control various aspects of caching
Content-Length Specify length of entity object in bytes
Content-Type Specify media type of the object

Date Indicate date and time at which the message was generated
Expires Specify expiration date and time of object

Last-Modified Specify creation or last modification time of object on origin server
Pragma This header is being phased out in favor of the Cache-Control header

Vary Lists request headers on which document content may vary

The HTTP response status codes can be classified into 4 classes for deciding

cacheability of objects. Table 3.2 gives these classified status codes of HTTP responses.

If the response of an object contains status code belonging to Class 4, it is deemed as

non-cacheable. If the response’s status code belongs to Class 3, the object can be

negatively cached for some time. For this type of objects, the responses from servers

are actually error messages. If a web cache receives new request for such objects in the

near future, it will assume the same error will happen and it will simply reply the

request with the negatively cached object. For objects with status code belonging to

42

Class 1 and 2, they are possibly cacheable. The final decision whether it is cacheable

or not is further determined by if it can be validated. Web cache will not cache an

object which can not be validated at a later time. Whether an object can be validated is

also determined by some HTTP headers such as “Expires”, “Last-Modified” and

“Content-Length” etc. If there is no such headers in presence or their values are

inappropriate, then the objects will be considered as non-cacheable. (Note here that the

“Content-Length” header is used in a reverse manner. If the value of this header is zero,

then the object will be considered as non-cacheable because there is no use to cache a

zero-byte object.)

Table 3.2 Classified status codes of response
Class Status Codes

Class 1 200(OK) 203(Non-Authoritative Information) 300(Multiple Choices)
301(Moved Permanently) 410(Gone)

Class 2 302(Moved Temporarily)

Class 3

204(No Content) 305(Use Proxy) 400(Bad Request) 403(Forbidden)
404(Not Found) 405(Method Not Allowed) 414(Request-URI Too Long)
500(Internal Server Error) 501(Not Implemented) 502(Bad Gateway)
503(Service Unavailable) 504(Gateway Timeout)

Class 4
206(Partial Content) 303(See Other) 304(Not Modified)
401(Unauthorized) 407(Proxy Authentication Required) Other codes and
Invalid codes

We categorize the conditions for determining cacheability of objects into two sets

of factors. The first set of factors contains 12 factors which will rule that an object is

non-cacheable. The second set of factors is for making cacheable decision and there

are 4 factors in this set.

The 12 factors for non-cacheable are listed in Table 3.3. These factors are usually

checked in the order as shown in the table. When one factor is found satisfied, the rest

of the factors will not be checked, even if there are still more factors in the HTTP

response. Note that the response of an object may contain more than one factor, but it

will not have all the factors.

If an object passes the check of the factors listed in Table 3.3 and no factor is

43

found satisfied, then it is possibly cacheable. The final decision whether it is cacheable

is further decided by some other factors which are listed in Table 3.4. These factors are

also often checked in the order as shown in the table. Again, the response of an object

may contain more than one factor, but when a factor is found to be satisfied, the rest of

the factors will not be checked.

Table 3.3 Factors for non-cacheable
Factors Description

fn1 There exists the header “Cache-Control: private”
fn2 There exists the header “Cache-Control: no-cache”
fn3 There exists the header “Cache-Control: no-store”
fn4 There exists the header “Vary”
fn5 There exists the header “Pragma: no-cache”
fn6 There exists the header “Content-Type: multipart/x-mixed-replace”
fn7 Status code belongs to Class 4
fn8 Status code belongs to Class 1, and server specified “must-revalidate”
fn9 Status code belongs to Class 1, and the object cannot be revalidated because

there is no “Last-Modified” header
fn10 Status code belongs to Class 1, and the object cannot be revalidated because

“Content-Length” is 0
fn11 Status code belongs to Class 1 and the object is fresh in 60 seconds or it can be

revalidated, but there are no “Date”, “Last-Modified” and “Expires” headers
fn12 Status code belongs to Class 2, and there is no “Expires” header

Table 3.4 Factors for cacheable
Factors Description

fc1 Status code belongs to Class 1, and there exits “Date” header
fc2 Status code belongs to Class 1, and there exits “Last-Modified” header
fc3 Status code belongs to Class 1, and there exits “Expires” header
fc4 Status code belongs to Class 2, and there exits “Expires” header

3.2.2 Algorithm for TTL

The factors discussed in the previous subsection are used to determine whether a

newly retrieved web object is eligible to be kept in cache. For the web objects already

in cache, there is an issue of checking their freshness when they are requested again. A

web object is considered fresh only when its associated TTL has not expired. Only

fresh objects can be used to serve a new request directly. Otherwise, a validation

process between web cache and origin server has to be carried out.

As it was mentioned, the TTL of a web object is often deduced from some HTTP

response headers. Based on the HTTP protocol and the implementation of Squid, the

44

algorithm for deciding the TTL of objects can be outlined as follows:

1) Check the directive of “Cache-Control” header

If a cached web object has a header of “Cache-Control: proxy-revalidate |

must-revalidate”, it can not be used to serve a new request without validating its

freshness with origin server.

2) Check the value of “Expires” header

If the cached object has an “Expires” header and its value shows that the object is

still valid at the time when the checking performed, the cached copy will be

considered as fresh and no validation with origin server is needed. Otherwise, the

local copy must be validated with origin server before it can be used again.

3) Local heuristics based on object age

Every web object in cache has an age value associated with it. This age may be

calculated based on the headers like “Date” or “Cache-Control: max-age”. If this

age is greater than a predefined maximum age (e.g. three days), the local copy of

the object will be considered as stale and it must be validated with origin server

before being used again.

4) “Last-Modified” factor algorithm

If the cached object has a “Last-Modified” header, a “stale age” is calculated based

on it. The value of “stale age” is a fraction of the time difference between the time

at which the object is stored in cache and the time specified by the “Last-Modified”

header. If the age of the cached object is smaller than this “stale age”, the local

copy will be considered as fresh and no validation is needed. Otherwise, it must be

validated before being reused.

5) Local heuristics based on object age

If the age of the cached object is smaller than a predefined minimum age, the local

45

copy will be considered as fresh and there is no need to do validation. Otherwise,

validation is needed. However, the predefined minimum age is often set to zero, so

the object will always be determined as stale when the decision control reaches

here.

From the above study, we can see that the headers “Cache-Control”, “Vary”, “Pragma”,

“Expires”, “Last-Modified”, “Date”, and “Content-Length” etc are very important in

determining the cacheability of web objects. The presences of these headers and proper

values for them have great impact on the cacheability of web objects. We conducted

trace-driven simulations to study the effectiveness of the factors and the accuracy of

the TTL settings. Our results reveal which factors are the most important factors in

determining the cacheability of objects and how TTL settings can be improved to

further improve the web retrieval performance.

3.3 Methodology and Test Set

We did trace-driven simulations to investigate the effectiveness of the

cacheability factors and the accuracy of the TTL settings in current web system. The

trace we used for our experiments was from the National Laboratory for Applied

Network Research (NLANR) [276]. NLANR’s hierarchical proxy system adopts Squid

proxy caching software, which is the same software as we used to study the algorithms.

NLANR publishes about nine traces on their server daily. One trace dated 12th March

2002 is randomly chosen for our experiments. The trace contains about 1.36 million

requests.

Our experiments rely much on the header information of HTTP responses, but

raw NLANR traces do not have this information. In order to get such information, we

implemented utilities to get HTTP response headers for all the URLs logged in the raw

trace. We performed this gathering of header information only a few days after the log

46

date, so the header information we obtained should be very close to the actual values

that would have been obtained at the time when the original trace was logged.

After HTTP header information for the trace has been got, it was fed into our

simulators together with the original trace. We implemented simplified Squid-like

caching and cacheability-checking algorithms in our simulators.

3.4 Results and Analysis

We first obtain some statistics about the trace. Out of more than 1.36 million

requests in the trace, about 0.63 million requests are duplicated ones. This results in a

maximum cache hit ratio of about 46.2%. This cache hit ratio depicts the benefit of

adopting web caching.

3.4.1 Cacheability Factors

In previous section, we examined the factors for non-cacheable and cacheable as

shown in Table 3.3 and Table 3.4. In this section, we would like to investigate the

correlation-ship among the factors and how it affects the effectiveness of the factors.

The results give us hints on which are the most important factors to improve.

3.4.1.1 Study of Factors for Non-Cacheable

Factors for non-cacheable refer to those which are used in web cache to rule that

an object is non-cacheable. To improve such factors means to remove them from

occurring.

In the trace, there were about 0.7 million unique objects. Our simulation finds

that about 38.4% of them are non-cacheable. Figure 3.3 plots the occurring frequencies

of non-cacheable factors. From this graph, we see that factors fn7, fn9 and fn12 all

occur about 25% and above, while factors fn1, fn2 and fn5 also have considerable

contributions.

47

Figure 3.3 Frequencies of non-cacheable factors

We noticed that the factors for non-cacheable often does not occur alone in

responses of objects. In our trace, we found that more than 40.1% of the non-cacheable

responses contain multiple factors. Table 3.5 gives the top 30 factor combinations

according to their occurring frequencies. We see that many of them contain more than

one factor. In other words, a factor often goes with other factors in HTTP responses.

When investigating the effectiveness of the factors, we should take into

consideration the effect of this kind of multi-factor co-occurrence. This is because: in

the situation of multi-factor co-occurrence, the performance of web caching will not be

improved by improving just one factor since other factors will then come into effect,

which would still result in non-cacheable decision for objects.

Table 3.5 Top 30 non-cacheable factor occurrences
Frequency Factors Frequency Factors Frequency Factors
116322 fn7 3371 fn1 fn12 1279 fn5 fn7
77037 fn12 3311 fn2 fn9 1015 fn5
65857 fn9 3028 fn1 fn2 944 fn1 fn2 fn9
17122 fn2 fn5 2866 fn1 fn2 fn12 910 fn2 fn5 fn8
15456 fn1 fn9 2446 fn1 625 fn10
7601 fn2 fn5 fn9 2183 fn1 fn5 fn9 526 fn1 fn2 fn5 fn9
5344 fn9 fn11 1748 fn2 fn5 fn12 450 fn2 fn4 fn9
5072 fn2 1590 fn4 fn9 440 fn2 fn3 fn5 fn7
3789 fn4 1317 fn1 fn7 396 fn1 fn5
3716 fn5 fn9 1309 fn2 fn12 382 fn1 fn2 fn5 fn12

Figure 3.4 plots the effectiveness of non-cacheable factors against their respective

occurring frequencies. The effectiveness is got by taking the multi-factor

co-occurrence effect into consideration. From this graph, we see that factors’

11.15%
15.09%

0.57%1.90%

11.27%

0.0023%

34.16%

0.63%

27.70%

0.28%1.52%

24.83%

0%
5%

10%
15%
20%
25%
30%
35%
40%

fn1 fn2 fn3 fn4 fn5 fn6 fn7 fn8 fn9 fn10 fn11 fn12
Factors

Fr
eq

ue
nc

y

48

effectiveness is generally different from their respective frequencies. This indicates

that the effectiveness of the factors is indeed affected by the co-occurrence relationship

among them. In other words, the multi-factor co-occurrence relationship changes the

curve of the graph. (Note: In Figure 3.4, the “effectiveness” is often lower than the

“frequency”. Here is a point to help you understand the reason: The “frequency” of

every factor can be as high as 100%, while 100% is the sum of the “effectiveness” of

all factors.)

Figure 3.4 Frequencies and effectiveness of non-cacheable factors

In general, the absolute value of the effectiveness of a factor is lower than its

frequency. This is because factors often occur in groups. If all factors always occur

alone in HTTP responses, then their effectiveness would be the same as their

respective frequencies. However, if a factor fnx often occurs together with other factors,

its effectiveness will be lowered. This is because: other factors in the factor

combination will still make the object non-cacheable when the factor fnx is removed.

So, to occur in multiple-factor groups would lower the effectiveness of a factor.

In Figure 3.4, we see that the effectiveness of some non-cacheable factors is lower

than their respective frequencies more significantly than others. Further study reveals

the reason being that different factors occur in different number and different size of

factor combinations. If a factor occurs more often in groups or occurs in larger factor

groups, then its effectiveness will be lowered more significantly.

0%
5%

10%
15%
20%
25%
30%
35%

fn1 fn2 fn3 fn4 fn5 fn6 fn7 fn8 fn9 fn10 fn11 fn12
Factors

Pe
rc

en
ta

ge

Frequency Effectiveness

49

Figure 3.5 plots the relative distribution of “occur alone” and “occur in group” for

each factor. We see that the majority of the occurrences of factors fn1, fn2 and fn5 are

occurring in groups. This significantly lowers their effectiveness. As a contrast, the

majority of the occurrences of factors fn7, fn9 and fn12 are occurring alone. So their

effectiveness is not lowered that much by the multi-factor co-occurrence relationship.

However, since these three factors do have some co-occurrence situations, their

effectiveness is also lowered a little. But when compared with other factors which are

affected by the multi-factor co-occurrence relationship heavily, the relative importance

of these three factors even increases. So, when we put all factors together and compare

their effectiveness and occurring frequencies, we see that the effectiveness of factors

fn7, fn9 and fn12 is getting more significant than their frequencies do.

Figure 3.5 Relative distribution of “occur alone” and “occur in pair” of each factor

On the other hand, the size of the factors group (i.e. the number of factors in the

group) that a factor occurs in also has impact on the factor’s effectiveness. The bigger

the size of the group is, the lower the effectiveness of each factor in the group will be.

Figure 3.6 plots the relative distribution of occurrence in different sizes of groups

for each factor. For factors fn1, fn2 and fn5, we see that a large percentage of their

occurrences are in groups with 2, 3 and 4 factors. This results in significant reduction

in their effectiveness. As to factors fn3, fn8 and fn11, although a large percentage of

their occurrences are in even bigger groups (up to 5-factor group in our experiments),

0%
5%

10%
15%
20%
25%
30%
35%
40%

fn1 fn2 fn3 fn4 fn5 fn6 fn7 fn8 fn9 fn10 fn11 fn12
Factors

Fr
eq

ue
nc

y

Occur alone Occur in group

50

the impact on their effectiveness is not obvious because their relative value is too

small.

Figure 3.6 Distribution of occurrence in different sizes of groups of each factor

From the above analysis, we see that fn7, fn9 and fn12 are the most important

factors for non-cacheable, and their effectiveness is more significant than their

respective frequencies. Simply from the occurrence frequencies, these three factors

seem to occupy about 86.7% of all HTTP responses. But when we take the multi-factor

co-occurrence relationship into consideration, we find that these three factors actually

contribute about 80.7% to all non-cacheable decisions. While the situation for fn1, fn2

and fn5 is that they seem to occupy about 37.5% of all HTTP responses, yet they only

contribute about 16.4% to all non-cacheable decisions. By taking the multi-factor

co-occurrence relationship into consideration, we see that the importance of fn7, fn9

and fn12 becomes more significant.

Refer back to Table 3.3, we see that fn7 stands for those responses which have

status codes belong to Class 4, which is mainly for partial content, validation requests,

redirection and authentication etc. To improve this factor may require protocol support

to provide mechanisms to cache such responses. For the factor fn9, the non-cacheable

decision is mainly caused by the absence of “Last-Modified” header. This can be

0%

20%

40%

60%

80%

100%

fn1 fn2 fn3 fn4 fn5 fn6 fn7 fn8 fn9 fn10 fn11 fn12
Factors

Pe
rc

en
ta

ge
 o

f O
cc

ur
re

nc
e

Occur alone Occur in 2-factor group Occur in 3-factor group
Occur in 4-factor group Occur in 5-factor group

51

improved by content providers to properly configure their servers to let them provide

this essential header. As to fn12, it is for “Temporarily Moved” objects. Content

providers can improve this situation by quickly completing the moving of the objects

and provide latest valid URLs for them.

For factors fn1, fn2, fn3, fn5 and fn8, they play similar function which is to

explicitly state that the object should not be cached. Normally, these factors exhibit the

purposeful behavior of content providers and they should be respected. To improve

these factors, content providers are advised to examine their content carefully and use

these explicit non-cacheable directives conservatively. According to our study (see the

next section), many of non-cacheable objects do not change within a quite long time

period. This suggests that the usage rate of these explicit non-cacheable directives can

actually be reduced. Doing so will improve the performance of web caching without

sacrificing the correctness of web content.

For the non-cacheable decision caused by factors fn4 and fn6, the responsibility

mainly lies on web caching systems rather than content providers. This is because web

caching systems like Squid currently do not support these factors well and they just do

not cache objects with such factors. Improvement on this situation would require

developing better caching systems to handle these factors properly. But as objects fall

into this category is very few, less than 2% according to Figure 3.3, so the necessity of

doing so is not high.

The factor fn10 represents the situation where the non-cacheable decision is

caused by zero content-length. This situation is mostly caused by mistakes of content

providers since a web request should not cause an object with zero length to be

returned. Web content providers can improve this situation by carefully monitoring

their content and configuring their servers. On the other hand, the occurrence of this

52

factor is very rare. So the negative impact it imposes on web caching is trivial.

The occurrence frequency of factor fn11 is also very low, only about 1.52% in

our study. However, this factor reflects a serious situation in web caching where the

essential headers “Date”, “Last-Modified” and “Expires” are all missing at the same

time. Content providers should play their role in improving this situation by properly

configuring their servers to provide these important headers for the responses

generated from them.

3.4.1.2 Study of Factors for Cacheable

Factors for cacheable usually take effect after objects pass the check of

non-cacheable factors. Objects will be considered cacheable if any factors for

cacheable is found satisfied. As we see in Section 3.2, there are only 4 factors for

cacheable. So the multi-factor co-occurrence relationship among those factors is

relatively simple.

Figure 3.7 plots the occurrence frequencies and the effectiveness of cacheable

factors. We see that the curve of effectiveness is very similar to the curve of frequency.

This is because that the majority of the factors have similar opportunity to occur in

groups, so their effectiveness is affected by similar weights.

Figure 3.7 Frequencies and effectiveness of cacheable factors

Table 3.6 gives all the occurrence combinations of cacheable factors according to

99.46%99.90%

11.38%
0.08%

47.91%48.13%

3.87% 0.08%
0%

20%

40%

60%

80%

100%

fc1 fc2 fc3 fc4
Factors

Pe
rc

en
ta

ge

Frequency Effectiveness

53

their occurrence frequencies. From this table, we can see that the majority of the

occurrences of the factors are in groups, only 0.09% of the occurrences have a single

factor (i.e. the last two rows). Since the majority of the factors have similar opportunity

to occur in groups, the impact of multi-factor co-occurrence on the effectiveness of

factors is distributed quite evenly. So the relative distribution of the effectiveness of

cacheable factors is quite close to the relative distribution of their respective

frequencies.

Table 3.6 Cacheable factor occurrences
Frequency Factors

88.52% fc1 fc2
10.92% fc1 fc2 fc3
0.46% fc1 fc3
0.08% fc4
0.01% fc2

Because the number of factors for cacheable is small and the co-occurrence

situation of them is simple, so the relative distribution of the effectiveness of cacheable

factors is quite close to the relative distribution of their respective frequencies. But for

cacheable objects, there is another important issue to study, which is the accuracy of

the TTLs of them.

3.4.2 TTL Control

Cached web objects may be used to serve new user requests. This is how web

cache improves retrieval latency and reduces external network bandwidth consumption.

But every cached object has its TTL (i.e. time to live) in the cache. An object can be

used directly only when its TTL is not expired. Otherwise, a validation communication

with the origin server has to be carried out and this will cause the performance of web

caching lose considerably since the latency incurred by the validation process is often

comparable to those of retrieving a new object from web server.

An object’s TTL is deduced based on some HTTP response headers and some

heuristic algorithms. It is conceptually different from its lifetime which refers to the

54

time difference between two consecutive changes of the object content. The lifetime of

an object is independent of TTL. It is only determined by the content of the object. In

ideal situation, TTLs of objects should be set as close to lifetimes as possible so that

the performance of web caching can be maximized. In other words, the TTL and

lifetime of objects better to expire at the same time as much as possible.

In this subsection, we would like to investigate the discrepancy between objects’

lifetimes and TTLs under today’s web system settings.

In order to investigate the difference between TTL and lifetime of objects, we

implement utilities to request objects and verify their TTL and content change

automatically. For every newly requested object which is cacheable, we verify its

content change before, at and after its TTL to see if the TTL and lifetime of objects

expire at the same time. About the saying “at the same time”, it might be too strict to

require the lifetime and TTL of an object to expire exactly at the same point of time. In

our experiments, we loose this restriction by using a small range of time instead of a

single point of time: If the lifetime of an object expires at time ti, where TTL – δ ≤ ti ≤

TTL + δ, then we would regard that the lifetime and TTL of the object expire at the

same time. In other words, the setting of the TTL would be considered to be accurate

when this situation happens. As for the value of δ , we set it to be 5% of the TTL for

TTLs longer than or equal to 1 minute. For objects with TTLs shorter than 1 minute,

we exclude them from our experiments because such objects are often not cached by

web caches [73].

To study the accuracy of TTL of objects, we verify if object content changes

before TTL – δ, between TTL – δ and TTL + δ, and after TTL + δ, as shown in Figure

3.8. For the after TTL + δ case, we conduct the verification up to 3 × TTL away if the

object content is not changed. We did not do it further because of time limitation since

55

the TTLs of some objects can be quite long.

Figure 3.8 Verifying difference between TTL and lifetime

The results of the accuracy of TTLs are shown in Table 3.7. The percentage

values shown in the table all refer to the whole object set used in our experiment. From

this table, we see that very few (about 1.32%) objects change right within the small

time range around the TTL. The majority of content change happens at times after TTL

+ δ. Furthermore, a rather high percentage (76.4%) of objects are unchanged even after

3 × TTL. This indicates that the TTL settings for most objects in current web system

are often too conservative. This situation not only results in performance loss in web

caching because many objects can not be reused even if their content is not changed,

but also it imposes excessive load on the network and web servers by triggering

unnecessary requests for revalidation and retrieval.

Table 3.7 Accuracy of TTL
Time Objects changed Objects NOT changed

t < TTL – δ 0.73% 99.27%
TTL – δ ≤ t ≤ TTL + δ 1.32% 97.95%
TTL + δ < t ≤ 3 × TTL 21.55% 76.4%

We also noticed that there are some objects which have their content changed

before the specified TTL time. In this situation, the TTL settings are set too aggressive.

Although the percentage of such objects is diminutive, this situation is highly

undesirable because it may result in stale and incorrect object content to be delivered

to web users.

TTL – δ

request

TTL

verify verify verify verify

Time

TTL + δ

verify

56

From the above results, we see that the performance of web cache can be

improved greatly by configuring web servers properly to make them provide TTL

headers with proper values. According to the algorithm shown in Section 3.2, the TTL

of web objects is first defined by a few explicit TTL headers such as “Expires”,

“Cache-Control: max-age”. Then, if these headers are absent, a heuristic algorithm will

be used to calculate the TTL. Such heuristic algorithm usually does the calculation

based on “Last-Modified” header and the result of it is not authoritative. Therefore, a

good web server should avoid relying on the non-authoritative TTL headers like

“Last-Modified”. Instead, it should use the explicit TTL headers (such as “Expires”)

and provide proper values for them. According to Figure 3.7, the “Expires” header can

be found in only about 11.38% of the cacheable objects. So, there is much room for

improvement in this aspect.

Figure 3.9 Cumulative distribution of intervals of repeated requests

Therefore, the next systematic issue to be tackled is what value would be

appropriate for TTL headers. Previous results show that a great percentage of objects

actually do not change at the specified TTL and even after 3 × TTL. This encourages

web servers to set longer TTL for their objects. To find the proper value for TTL

headers, we studied the distribution of interval of user requests for the same object and

found that about 50% of cache-hit requests arrive within 6 hours’ time and about 75%

arrive within 12 hours’ time (see Figure 3.9). This means, validation process for as much

as 50% and 75% of cache-hit requests can be avoided if the TTL of web objects are set

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 Time (Hour)

C
D

F
of

 re
qu

es
ts

57

to 6 hours and 12 hours respectively. Note that these TTLs are not only meant for

HTML pages, they are also for embedded objects of web pages such as images. While

these values may be too big for some dynamic content, they are moderate for most of

embedded objects. For static-content elements, even much longer TTL values can be

given.

Finally, we would like to complete this study by also investigating the accuracy

of TTL settings for non-cacheable objects. There are two categories of non-cacheable

objects. The first category is the objects that are set to be non-cacheable by explicit

HTTP headers such as “Cache-Control: no-cache”. We consider this situation to be

purposeful behavior of content providers, so that the explicit non-cacheable settings

should be respected. The second category is the objects without explicit HTTP headers

for non-cacheable but determined to be non-cacheable by web caches because of the

absence or improper values of certain headers. From another point of view, we may

regard the TTLs of the objects in this category to be less than or equal to zero, as they

expire immediately when they enter web caches. Here we would like to investigate if

the lifetime of the objects in the second category goes along with their TTLs.

We monitor the objects at some time intervals to see if the content has been

changed. Figure 3.10 plots the result we observed. Surprisingly, we see that a lot of

non-cacheable objects actually do not change in a fairly long time period. For example,

after 8 hours from the first access, about 83% of the non-cacheable objects are still

identical to their old versions. This suggests that the non-cacheable decision for these

objects is inappropriate. The lifetime of most of these objects is actually much bigger

than zero, while their TTLs are deemed to be less than or equal to zero in web caches.

The causes of this situation are mainly due to the ill-configuration of web servers. If

content providers can configure their servers properly to improve this discrepancy

58

between lifetime and TTLs of objects, significant gains in the performance of web

caching can be expected. Section 3.4.1.1 has discussed the measures on how to

improve the situation in this aspect.

Figure 3.10 Cumulative distribution of changed objects

3.5 Conclusion

In this chapter, we systematically studied the factors affecting the cacheability of

web objects. We dig into the relationship among co-occurrent factors and reveal the

effectiveness of the factors in the multi-factor co-occurrence situation. The accuracy of

the settings for the TTLs of objects is also investigated and our results show that TTLs

for most objects are set too conservative, which results in considerable performance

loss for web caching. Our study revealed the effective factors and proper settings for

TTL. By improving them, considerable improvement on the performance of web

caching can be expected.

m = minute h = hour

0%

5%

10%

15%

20%

25%

1m 2m 4m 8m 16m 32m 1h 2h 4h 8h 16h 32h

Time

C
D

F
of

 o
bj

ec
ts

 c
ha

ng
ed

59

Chapter 4 Web Retrieval Dependency Model

4.1 Introduction

Web retrieval latency is one of the most important issues in web content delivery.

A lot of works have been done in order to improve web retrieval latency. In current

web system, the basic unit of web browsing is web page, which is often made up of

multiple web objects. Since web page is the basic unit of browsing, page retrieval

latency would be more meaningful than object retrieval latency. However, most

researchers study web retrieval latency based on object retrieval latency [30, 31, 32,

77]. We would like to point out that this method would result in inaccurate results

about web retrieval latency because there is actually complex relationship between the

retrieval processes of objects in a page, which prevents object retrieval latency from

being translated directly into page retrieval latency. For example, the triggering of the

requests for the inline images of a page is dependent on the retrieval of the HTML file

of the page. When the triggering of the requests would happen will not be able to be

accurately identified unless we go into more detailed level than the object level.

Besides, most common web browsers often fetch multiple objects in parallel. All these

complicate the mapping of object retrieval latency into page retrieval latency. Page

retrieval latency can not be computed as the simple sum-up of objects’ retrieval latency.

To well understand and study the complex inter-relationship affecting web retrieval

latency, we will need a more precise model at more detailed level. In this chapter, we

propose a detailed operation-level Web Retrieval Dependency Model (WRDM) to

study web retrieval latency. We show that our model reveals/captures some properties

of web retrieval which can not be seen at object level.

Before we give the description of our model, it is necessary to have some basic

understanding on the details of retrieval processes for web pages and objects.

60

In current web system, a web page is often made up of multiple objects. Among

the objects in a page, there is one primary object corresponding to the URL of the page.

This object is generally an HTML file (or script files like .asp files) which contains a

number of URLs specifying some other objects needed by the web page. We call this

primary object Container Object (CO) in our study. For those objects whose URLs are

defined in the CO, they are referred to as Embedded Objects (EO) of the page. The

most commonly seen EOs are inlined images. The content of CO and the EOs are

interpreted and displayed together to render the full view of a web page.

Generally, the retrieval process for a web page starts with the submission of a

request which comprises information about request method, URL address and some

request headers. This URL address identifies the CO of the web page only. Following

the submission of a request, the location of the web server is resolved and a network

connection between client and the server is established. Then the request message is

transferred to the server. Upon receiving a request, a web server will reply the request

with HTTP response headers and the data of the requested object. The reply message is

streamed to the client through the same network connection in a sequence of network

packets, which are seen and referred to as data chunks in the HTTP-level web system.

When a chunk of data reaches the client, the content of the chunk will be interpreted by

user’s web browser. The results of this interpretation of a data chunk typically include

caching action, displaying the content in user’s web browser window, as well as

triggering further retrieval processes for EOs if there are URLs defining them in the

data chunk. For all the subsequent requests for EOs, the replies are also delivered and

interpreted in a chunk-by-chunk way. When all the objects belonging to a page are

retrieved, resources such as network connection occupied by the requests are released.

In some cases, a retrieval process may be prematurely interrupted at any stage. When

61

such interruption occurs, the resources occupied by the requests will also be released.

In a web page, there usually exist a number of hyperlinks which are actually

URLs for new web pages. If such a hyperlink is clicked by a user, the retrieval process

for a new web page corresponding to the clicked hyperlink will be initiated and the

above procedure will repeat.

4.2 Web Retrieval Dependency Model (WRDM)

The retrieval process for objects and pages involves a sequence of operations

such as location resolution, establishment of network connection, and data chunks

transfer etc. We propose a Web Retrieval Dependency Model to capture the retrieval

process at detailed operation level. The idea of our model is to map the relations

among all operations of the retrieval process into a directed graph. We symbolize each

operation in a retrieval process by a vertex of a graph. Then since the relationship

between two operations can be regarded as a precedence requirement, it can be

represented by a directed arc connecting the two vertices associated with the

operations involved. The resulting graph is called Web Retrieval Dependency Graph

(WRDG).

In a WRDG,

• A vertex represents the completion state of an operation in the retrieval process of

an object (either CO or EO). Some operations represented by vertices may have

certain information associated with them.

• An arc connecting two vertices represents the precedence relationship between the

two operations represented by them. This precedence relationship is often referred

to as dependency between operations.

• Each arc carries a weight which represents the time spent in completing the

operation represented by the target vertex. The time is measured from the

62

completion point of the operation represented by the source vertex to the

completion point of the operation represented by the target vertex.

Below we give the precise definitions of the key terms used in the WRDM model.

WRDM model can capture the characteristics of web retrieval process at various levels.

In our study, we consider three levels of web retrieval process:

1) Page-level (or inter-page level)

This level captures the retrieval process among pages;

2) Object-level (or intra-page level, inter-object level)

This level captures the retrieval process among objects in the same page;

3) Chunk-level (or intra-object level)

This level captures the operations on data chunks and other resources in the

retrieval process of a single object. Because the basic unit of data size streaming

from web server to client at the HTTP level is chunk, so we use it to refer to the

operation details at HTTP level.

We introduce three indices, k , i and j to index the entities encountered in each of the

three levels respectively.

Definition 4.1: Page Index k

In WRDM, page index k is a natural number used to index pages among a set of

pages that are visited by clients. The range of page index k is defined to be from 0 to p ,

where p ≥ 0 .

A page in the set of pages is represented by Page(k), where 0 ≤ k ≤ p .

A web page is usually made up of multiple objects (refer to the Container Object

and Embedded Object concepts in previous section). We use an index, i , to index the

objects in a page.

Definition 4.2: Object Index i

63

In WRDM, object index i is a natural number used to index objects that belong to

the same page Page(k) . The range of i is relevant to the page. For a given page

Page(k) , the range of i is defined to be from 0 to f(k) , where f(k) is the number of

embedded objects belonging to Page(k) . In the rest part of this thesis, wherever is

appropriate, we may use o to refer to this f(k) , i.e.:

o = f(k)

Because object index i is related to page index k, an object belonging to a page

Page(k) is represented by Obj(k,i) , where 0 ≤ k ≤ p and 0 ≤ i ≤ o . When it is

not misleading in a particular context, we may omit the page index k and just use Obj(i)

to refer to Obj(k,i) .

In terms of objects, the retrieval process of Page(k) can be represented by the

retrieval of a sequence of objects:

Page(k) =〈Obj(k,0) , Obj(k,1) , …, Obj(k,i) , …, Obj(k,o)〉, where o = f(k)

Among the objects in page Page(k) , Obj(k,0) is the Container Object of the page.

Other objects, Obj(k,i) where 1 ≤ i ≤ o , are Embedded Objects.

When a web object is retrieved from a web server to a client, the transfer of the

object is often made up of a sequence of chunks of data. We introduce an index, j , to

index the chunks in the chunk sequence.

Definition 4.3: Chunk Index j

In WRDM, chunk index j is a natural number used to index chunks

corresponding to the transfer of an object from a server to a client. The range of j is

relevant to the object. For a given object Obj(i) , the range of j is defined to be from 0

to g(i) , where the g(i) is the number of chunks that are returned from a web server to a

client for the transfer of Obj(i) minus one. In the rest part of this thesis, wherever is

appropriate, we will use c to refer to this g(i) , i.e.:

64

c = g(i)

As chunk index j is related to object index i and object index i is in turn related to

page index k, a chunk of an object Obj(k,i) is represented by Chk(k,i,j) , where 0 ≤ k

≤ p , 0 ≤ i ≤ o and 0 ≤ j ≤ c . When it is not misleading in a particular

context, we may omit the page index k and the object index i and just use Chk(j) to

stand for Chk(k,i,j) .

For a given object Obj(i) , the value of c is not fixed. It depends on the status of

the network and the workload on the web server and the client. In terms of chunks, the

transfer of an object Obj(k,i) can be represented by a sequence of chunks:

Obj(k,i) =〈Chk(k,i,0) , Chk(k,i,1) , …, Chk(k,i,j) , …, Chk(k,i,c)〉, where c = g(i)

Among the chunks belonging to an object Obj(k,i) , Chk(k,i,0) usually contains

the response headers information of the object, and perhaps some data of the object

body as well. For other chunks, Chk(k,i,j) where 1 ≤ j ≤ c , they usually contain

only the data of the object body.

Definition 4.4: Object Request

An object request is a message packet sent from a client to a server, which

specifies a single object to be requested from the server. A request message packet

consists of a request method, URL address of an object, protocol version number, and

some headers information.

For a given object Obj(k,i), the corresponding object request is symbolized as

Req(Obj(k,i)) . Note that an object request is for a single object, regardless of whether

the object is a container object or an embedded object.

Definition 4.5: Page Request

Given a page Page(k), its corresponding page request, symbolized as

Req(Page(k)) , is made up of a sequence of Object Requests:

65

Req(Page(k)) = 〈Req(Obj(k,0)), Req(Obj(k,1)), …, Req(Obj(k,i)), …, Req(Obj(k,o))〉

where 0 ≤ i ≤ o . Req(Obj(k,0)) is the initial request submitted for the page Page(k)

by a user and this request actually requests for the container object of the Page(k).

Other object requests, Req(Obj(k,i)) where 1 ≤ i ≤ o , are the requests for

embedded objects of Page(k) and they are triggered by the interpretation of the content

of the container object of Page(k) .

Note that Req(Page(k)) ≠ Req(Obj(k,0)) .

In some situations, an embedded object of a page could be also a container object

which has its own embedded objects. For simplicity reason, we do not include such

situations in our study, although our WRDM model can be extended to cover such

situations.

Definition 4.6: Web Retrieval Dependency Graph (WRDG)

A WRDG is a weighted directed graph G = (V, E), where V and E have the

following members respectively:

• V =
pk ..0=

oi ..0=

{ { υr(k,i) , υl(k,i) , υc(k,i) , υs(k,i) , υe(k,i) } {
cj ..0=

{ υd(k,i,j) }} }

• E = {
pk ..0=

oi ..0=

{ {〈υr(k,i) , υl(k,i)〉,〈υl(k,i) , υc(k,i)〉,〈υr(k,i) , υc(k,i)〉,

〈υc(k,i) , υs(k,i)〉,〈υs(k,i) , υd(k,i,0)〉,〈υd(k,i,g(i)) , υe(k,i)〉}

 {
cj ..1=

{〈υd(k,i,j-1) , υd(k,i,j)〉}} } }

 {
pk ..0=

oi ..1=

cj ..0=

{〈υd(k,0,j) , υr(k,i)〉} }

 {
yx

pyx
≠
= ..0,

{〈υe(x,0) , υr(y,0)〉} }

In addition, any member of the following E’ can also be the member of E :

66

E’ = {
pk ..0=

oi ..0=

{〈υr(k,i) , υe(k,i)〉,〈υl(k,i) , υe(k,i)〉,〈υc(k,i) , υe(k,i)〉,

〈υs(k,i) , υe(k,i,0)〉} } {
pk ..0=

oi ..0=

1..0 −= cj

{〈υd(k,i,j) , υe(k,i)〉} }

• Here p, o and c are not fixed, and p ≥ 0, o ≥ 0, c ≥ 0.

• For every member of E, there is a real number w associated with it. This number

w is greater than or equal to zero and is called the weight of the arc.

The types of vertices found in WRDG are defined as follows.

Definition 4.7: Request Initiation Vertex

A vertex in a WRDG is said to be a request initiation vertex υr(k,i) if it represents

the submission of a web object request Req(Obj(k,i)) , where k refers to a web page

and 0 ≤ k ≤ p , i refers to an object of the page k and 0 ≤ i ≤ o . This vertex

has some associated information such as the request method, the URL address of the

requested object, as well as some other request header information.

For each object, there is exactly one request initiation vertex υr(k,i) for the

retrieval process of it.

Definition 4.8: Location Resolution Vertex

A vertex in a WRDG is said to be a location resolution vertex υl(k,i) if it represents

the location resolution for the URL address from an object request Req(Obj(k,i)) ,

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page k and

0 ≤ i ≤ o . This vertex has some associated information such as the IP address of

the web server where the requested object resides.

In most cases, the URL in a request is in domain-name format. The location

resolution for such URL is typically a DNS process and the result of such location

resolution is usually the server’s IP address which is the location of the server in the

Internet. The location resolution vertex υl(k,i) donates the completion state of this DNS

67

process. For each object request, there is one location resolution vertex υl(k,i) . However,

this vertex may be bypassed in some situations. We will explain this further later.

Definition 4.9: Network Connection Vertex

A vertex in a WRDG is said to be a network connection vertex υc(k,i) if it

represents the operation of establishing network connection between a client and a web

server for an object request Req(Obj(k,i)) , where k refers to a web page and 0 ≤ k

≤ p , i refers to an object of the page k and 0 ≤ i ≤ o . There is resource

associated with this vertex, that is: network connection.

Assuming no “persistent-connection” or “pre-connection” mechanism is used,

there will be one network connection vertex υc for each object request. In the presence

of “persistent-connection” or “pre-connection” mechanism, we may still keep this

vertex in the graph, only that the weight of the arc connecting to this vertex may

become much smaller, up to zero.

Definition 4.10: Request Sending Vertex

A vertex in a WRDG is said to be a request sending vertex υs(k,i) if it represents

the operation which sends out the request message of an object request Req(Obj(k,i)) to

a web server through the network connection that has been established by the network

connection vertex υc(k,i) , where k refers to a web page and 0 ≤ k ≤ p , i refers to an

object of the page k and 0 ≤ i ≤ o .

For every object retrieval process, there will be exactly one request sending

vertex υs(k,i) . This vertex cannot be bypassed in any way.

Definition 4.11: Data Chunk Vertex

A vertex in a WRDG is said to be a data chunk vertex υd(k,i,j) if it represents the

transfer of a chunk of data for a requested object Obj(k,i) from a web server to a client,

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page k and

68

0 ≤ i ≤ o , j refers to one data chunk in the data chunk sequence that corresponds

to the transfer of the Obj(k,i) and 0 ≤ j ≤ c . This vertex has some associated

information such as the response data.

The first data chunk in an object’s transfer, denoted by the vertex υd(k,i,0) ,

contains the response headers information of the object, and perhaps some data of the

object body as well. For the subsequent data chunks, denoted by the vertices υd(k,i,j) ,

where 1 ≤ j ≤ c, they usually only contain the data of the object body.

When a data chunk reaches a client, its content will be interpreted by the client’s

web browser. The results of the interpretation include caching action, rendering of the

content in the browser window, and, in the case of container object, triggering new

object requests for embedded object.

There is a special characteristic about the data chunk sequence: The order of data

chunks being interpreted must be in a strict successive sequence order, while the order

of them being transferred may be in any order.

Definition 4.12: Ending Vertex

A vertex in a WRDG is said to be a ending vertex υe(k,i) if it represents the

operation of releasing resources (such as network connection) for an object request

Obj(k,i) , where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the

page k and 0 ≤ i ≤ o .

When the transfer of data chunks is finished or the retrieval process is interrupted,

resources that have been occupied by the request will be released. Usually, this is the

operation which releases the memory space and network connection. The released

network connection may be either closed or handed over to a pool to keep alive for

future use (when “persistent-connection” is used).

Very often, when the retrieval of objects for a page has completed or interrupted,

69

a user may initiate a new page request by either clicking on a hyperlink in the current

page or keying in a new page URL address in the address bar of his/her web browser.

In such cases, the ending vertex υe will also imply the initiation of the new request.

In any case, there is exactly one ending vertex υe(k,i) for the retrieval process of an

object. When this vertex is reached, the retrieval process for the object is considered

finished.

In this study, we only define the above six types of vertices in our WRDM model

representing six operations in web retrieval. However, it is worth mentioning that our

model can actually be altered to include more or less types of vertices/operations to

cater for the needs in different situations. For example, a new type of vertex

representing the operation of “access control” can be included in the graph when

needed. But for the studies in this thesis, the above six types of vertices is sufficient.

So we just use the above definitions.

There is precedence relationship between the operations of the retrieval process

for pages and objects. Such relationship is referred to as dependency in our study.

Based on the cause of the relationship, the dependencies in web retrieval can be

classified into two categories: (1) Information Dependency, and (2) Happened-before

Dependency. If an operation depends on some information produced by its previous

operation, then the dependency between them is called Information Dependency.

Otherwise, the dependency would be treated as Happened-before Dependency. One

example of Happened-before Dependency is the dependency between “network

connection establishment” operation and “request sending operation”, i.e., the network

connection has to be established before a request can be sent out.

These dependencies among operations of a retrieval process can be captured by

the directed edges (which are called arcs) of WRDG. In a WRDG graph, each vertex

70

represents an operation in its completion state. An arc connecting two vertices

represents the dependency between the two operations represented by the two vertices.

Before giving the definitions of the types of arcs that a WRDG may have, we

first give the definition of the weight of an arc so that we can describe the meaning of

the weight for each arc when we give the definition of the arcs.

Definition 4.13: Weight of an Arc

In a WRDG, the weight of an arc 〈υx , υy〉 stand for the time spent in completing

the operation symbolized by the vertex υy , the timing starts from the completion state

of the operation represented by the vertex υx , where υx and υy are two different vertices

defined above.

Now we are ready to move on to the definitions of arcs. A WRDG graph can

have the following types of arcs.

Definition 4.14: Location Resolution Arc

An arc in a WRDG is said to be a location resolution arc al(k,i) if it connects a

request initiation vertex υr(k,i) to a location resolution vertex υl(k,i) :

al(k,i) = 〈υr(k,i) , υl(k,i)〉

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0

≤ i ≤ o . The weight of this arc denotes the time spend in resolving the location for

the web server appeared in the URL address of the object request Req(Obj(k,i)) . In

most cases, this is the time for DNS process and the resolved location is usually IP

address.

In some cases, the address of the web server appeared in a URL is already in the

form of numeric IP address, eg. http://137.132.12.124/index.htm. For such URLs, the

location resolution operation for them will finish immediately upon identifying the

numeric IP address. In these cases, the weight of the location resolution arc will

71

become much smaller compared to the normal DNS process.

Definition 4.15: Network Connection Arc

An arc in a WRDG is said to be a network connection arc ac(k,i) if it connects a

location resolution vertex υl(k,i) to a network connection vertex υc(k,i) :

ac(k,i) = 〈υl(k,i) , υc(k,i)〉

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0

≤ i ≤ o . The weight of this arc denotes the time spend in establishing the network

connection between a client and a web server for the object request Req(Obj(k,i)) after

the location of the server has been resolved.

In the cases that “persistent-connection” or “pre-connection” is used, the weight

of the network connection arc may become much smaller, up to zero.

Definition 4.16: Request Sending Arc

An arc in a WRDG is said to be a request sending arc as(k,i) if it connects a

network connection vertex υc(k,i) to a request sending vertex υs(k,i) :

as(k,i) = 〈υc(k,i) , υs(k,i)〉

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0

≤ i ≤ o . The weight of this arc denotes the time spend in sending out the request

message of the object request Req(Obj(k,i)) to a web server through a

already-established network connection.

This arc is a critical arc in a WRDG. Its importance is like a “bridge” in a

connected graph. This arc can never be removed from a WRDG by any means of

transformation. Neither can its weight be reduced to zero.

Definition 4.17: Reply Arc

An arc in a WRDG is said to be a reply arc ar(k,i) if it connects a request sending

vertex υs(k,i) to the first data chunk vertex υd(k,i,0) :

72

ar(k,i) = 〈υs(k,i) , υd(k,i,0)〉

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0

≤ i ≤ o . The weight of this arc denotes the time spend by a client in waiting for the

first response data chunk being returned from the server after the request message has

been sent out. Note that this first returned data chunk mainly contains response headers

information of the requested object Obj(k,i) , although it may also contain some data of

the object body as well.

As there is always at least one chunk of data returning from the web server to the

client for every request, this arc always exists. This arc is also a critical arc in WRDG.

Its importance is like a “bridge” in a connected graph. This arc can never be removed

from a WRDG by any means of transformation. Neither can its weight be reduced to

zero.

Definition 4.18: Data Chunk Arc

An arc in a WRDG is said to be a data chunk arc ad(k,i,j) if it connects two

successive data chunk vertices υd(k,i,j-1) and υd(k,i,j) :

ad(k,i,j) = 〈υd(k,i,j-1) , υd(k,i,j)〉

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0

≤ i ≤ o , j refers to a data chunk in the data chunk sequence that belongs to the

object Obj(k,i) and 1 ≤ j ≤ c . The weight of this arc denotes the time spend in

transferring a successive data chunk from a web server to a client for the requested

object Obj(k,i) . Note that these successive data chunks usually contain only the body

data of the requested object.

There are usually multiple data chunks in the transfer of one object. The content

of these data chunks will be interpreted by the client’s browser. The order of the

interpretation of these data chunks must be in a strict successive sequence order. This

73

order is represented by the data chunk arcs, i.e. the data chunk represented by the

source vertex of a data chunk arcs ad(k,i,j) should always be interpreted prior to the data

chunk represented by the target vertex. However, the order of the delivery of these data

chunks may be in any order.

Definition 4.19: Ending Arc

An arc in a WRDG is said to be an ending arc ae(k,i) if it connects the last data

chunk vertex υd(k,i,c) to an ending vertex υe(k,i) :

ae(k,i) = 〈υd(k,i,c) , υe(k,i)〉

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0

≤ i ≤ o , c refers to the last data chunk in the data chunks sequence belonging to the

object Obj(k,i) . The weight of this arc denotes the time spend in releasing the

resources that are occupied by the retrieval process for the object Obj(k,i) . Such

resources include network connection, CPU, memory space and so on. For the network

connection, the released connection is often closed, or handed over to a pool to keep

alive for future use (when “persistent-connection” mechanism is adopted).

Definition 4.20: Interruption Arc

An arc in a WRDG is said to be an interruption arc ai(k,i) if it connects from any

vertex υ other than the last data chunk vertex υd(k,i,c) to the ending vertex υe(k,i) :

ai(k,i) = 〈υ , υe(k,i)〉

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of the page and 0

≤ i ≤ o , c refers to the last data chunk in the data chunks sequence belonging to the

object Obj(k,i) . The weight of this arc denotes the time spend in releasing resources in

the case of a premature finishing of the retrieval process for the object request

Req(Obj(k,i)) .

Definition 4.21: Object Deriving Arc

74

An arc in a WRDG is said to be an object deriving arc ao(k,i) if it connects a data

chunk vertex υd(k,0,j) of the container object of a page Page(k) to a request initiation

vertex υr(k,i) of an embedded object of the same page:

ao(k,i) = 〈υd(k,0,j) , υr(k,i)〉

where k refers to a web page and 0 ≤ k ≤ p , i refers to an object of Page(k) and 1

≤ i ≤ o , j refers to a data chunks sequence that belongs to the object Obj(k,i) and 0

≤ j ≤ c . The weight of this arc denotes the time spent by the request for object

Obj(k,i) in waiting for its turn to get processed.

The URLs of embedded objects of a page are defined in the container object of

the page. As the data chunks of the container object being transferred from web server

to client, the content of the data chunks will be interpreted by user’s web browser. If

there are URLs of embedded objects found in the data chunk being interpreted, new

requests for the embedded objects will then be triggered. In other words, the retrieval

processes for embedded objects depends on the retrieval and interpretation of the

container object. This dependency is captured by the object deriving arcs in a WRDG

graph.

Due to certain resource constraints, e.g. limited parallelism width for concurrent

fetching of objects, the new request for an embedded object may need to wait for some

time before it can get processed. This latency is captured by the weight of the object

deriving arc in a WRDG graph.

Definition 4.22: Page Deriving Arc

An arc in a WRDG is said to be a page deriving arc ap(y) if it connects the ending

vertex υe(x,0) of the container object of a page Page(x) to the request initiation vertex

υr(y,0) of the container object of a page Page(y) :

ae(y) = 〈υe(x,0) , υr(y,0)〉

75

where x and y refer to two different web pages and 0 ≤ x ≠ y ≤ p .

The weight of this arc denotes the time interval from the completion of retrieval

of page Page(x) to the starting of request of page Page(y). This time may include the

user’s view time on Page(x) , the idle time between the two page visits, and the time

spent by the request for page Page(y) in waiting for its turn to be processed. This

waiting time exists mainly due to certain resource limitation, such as CPU time and

network connection etc.

In the container object of a page, there are usually hyperlinks pointing to other

web pages. When a hyperlink is clicked by a user, the request for the new page will be

initiated. In this case, the retrieval process of the next page depends on the retrieval of

the current page. This dependency is captured by page deriving arcs in a WRDG graph.

There are also cases that the retrieval of the next page is triggered by user’s

entering a new URL address in the address bar of his/her web browser. When the

retrieval of the new page starts, the retrieval process for the current should be will be

either completed already or interrupted prematurely. Here the relationship between the

retrieval of the two pages may not be so strong (but there may still be some

dependency, for example, the new URL address entered by a user may be hinted by

some content of the current page). However, there is still an ordering or precedence

relationship between the two pages. The page deriving arc is still used in such

situations to capture this ordering or precedence relationship. Here, the page deriving

arc may be referred to as Weak Page Deriving Arc. In contrast, the page deriving arc

which represents the dependency described in the above paragraph is referred to as

Strong Page Deriving Arc.

Definition 4.23: In-Degree of a Vertex in WRDG

The in-degree of a vertex υ in a WRDG graph represents the number operations

76

that should finish prior to the operation represented by the vertex υ. The operation

represented by the vertex υ can start execution when any of its precedent operations

completes.

Definition 4.24: Out-Degree of a Vertex in WRDG

The out-degree of a vertex υ in a WRDG graph represents the number of

operations that are dependent on the operation represented by the vertex υ . The

completion of the operation represented by the vertex υ will cause some or all of its

dependant operations to take place.

Definition 4.25: Critical Region of WRDG

The critical region of a WRDG is a sub-graph of it : Gcr = (Vcr, Ecr), where Vcr

and Ecr have the following members respectively:

• Vcr =
cj ..0=

{ υd(k,0,j) }

• Ecr =
cj ..1=

{〈υd(k,0,j-1) , υd(k,0,j)〉}

Here j refers to a data chunk in the data chunk sequence of an object.

The critical region of a WRDG has the following properties:

• Number of vertices and arcs in this region is not fixed.

• This region contains all the source vertices of object deriving arcs. The number

of vertices that have object deriving arcs is not fixed. The number of object

deriving arcs that a vertex in this region can have is also not fixed (it can be

zero).

• The order of the interpretation of the data chunks represented by the vertices in

this region is strictly in a successive sequence order. However, the order of these

data chunks being transferred may be in any order.

77

4.3 Three Levels of WRDG

With the understanding of the definitions of the vertices and arcs in WRDM, the

WRDG graph can be constructed by carefully monitoring the timing and triggering

action of the operations in the retrieval processes for web pages and objects. WRDG

graphs can be applied to capture three levels of the web retrieval. These levels are:

1) Intra-Object level WRDG graph

2) Object-level WRDG graph

3) Page-level WRDG graph

Note that WRDG graphs at all levels are to capture the dynamic retrieval processes of

web objects and pages, not the static relationship among them. Below we will give the

detailed definition and examples of the WRDG graphs at the three levels.

4.3.1 Intra-object level WRDG graph

The WRDG graph at intra-object level is used to capture the retrieval operations

sequence of a single object. Therefore, this level may also be referred to as

operation-level. The principle of the construction of an intra-object level WRDG graph

is straightforward: timing all the operations represented by the vertices in WRDM

during the retrieval processes of an object; put an arc between every two successive

operations and mark the weight of the arc as the time spent in completing the second

operation.

Figure 4.1 gives two examples of intra-object level WRDG graphs. Figure 4.1 (a)

shows the retrieval process of an object. In the graph, the vertices represents six

operations involved in the retrieval process: initiation of the object request, location

resolution for URL in the request, setting up network connection, sending request

message to web server, transfer of four data chunks from server to client, and finally,

release of the occupied resources such as network connection and memory space etc.

78

The weights on the arcs are the times required for finishing the operations represented

by the vertices to which the arcs are connected. Figure 4.1 (b) shows a similar process

of another object’s retrieval. But in this graph, the retrieval process is interrupted

prematurely after the second data chunk returned from the server. Thus the process

goes directly to the ending operation which releases the resources occupied by the

request.

(a) (b)

Figure 4.1 Intra-Object level WRDG graph

Note that the intra-object level WRDG graphs can actually include more or less

operations than those defined in the previous section. For example, the operation of

“access control” can be included in the graph. On the other hand, all the data chunks

vertices may be merged into one and treated as the operation of “transfer of object”.

This change is very flexible and users of WRDM may make their decision based on

their needs. For our studies in this thesis, we will stick to the operations represented by

r

l

s

d1

d3

e

d2

Critical
Region

c

d0

wl

wc

ws

wr

wd1

wd2

wd3

we

r

l

s

d1

d3

e

d2

c

d0

wl

wc

ws

wr

wd1

wi

79

the six types of vertices defined in the previous section.

4.3.2 Object-level WRDG graph

The WRDG graph at object-level is used to capture the retrieval processes of all

objects belonging to a page. So, the object-level is also referred to as Inter-Object level

or Intra-Page level sometimes. The construction of an object-level WRDG graph can

be achieved by constructing an intra-object level graph for every unique object in the

page and then connecting them together using object deriving arcs. The starting points

of the object deriving arcs can be identified by carefully monitoring the triggering

actions between the requests for EOs and the data chunks of the CO. The weight of an

object deriving arc is the latency between the time when the data chunk containing the

URL of an EO is returned in the CO’s retrieval process and the time when the request

for the EO is sent out. This latency is the time spent by the request for the EO in

waiting for its turn to get processed.

Figure 4.2 A sample web page with three embedded objects

Note that only unique EOs in a web page would appear in the object-level

WRDG graph, and each of them should appear only once. The reason for this rule is

because that any unique EO in a web page will be retrieved only once even if it is used

for multiple times in the page, as the subsequent uses of it will not create any new

request since the object will be already made available locally by the first use of it.

Container Object

Embedded Object 1

Embedded Object 2

Embedded Object 3

80

Figure 4.3 Object-level WRDG graph for the retrieval of the page in Figure 4.2

To give an example, suppose we retrieve a web page with three EOs, as depicted

in Figure 4.2. The retrieval process for this page may be mapped into the object-level

Obj(0)

r(0)

l(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

d(0,3)

r(1)

l(1)

c(1)

s(1)

d(1,0)

e(1)

d(1,1)

d(1,2)

d(1,3)

Obj(1)

r(2)

l(2)

c(2)

s(2)

d(2,0)

e(2)

d(2,1)

d(2,2)

r(3)

l(3)

c(3)

s(3)

d(3,0)

e(3)

d(3,1)

d(3,2)

Obj(2)

Obj(3)

wl

wc

ws

wr

wd1

wd2

wd3

we

wo3
wl

wc

ws

wr

wd1

wd2

wd3

we

wl

wc

ws

wr

wd1

wd2

we

wl

wc

ws

wr

wd1

wd2

we

wo2

wo1

81

WRDG graph shown in Figure 4.3. Here we assume the definitions of the three EOs

appear in three different data chunk in the retrieval process of the CO.

In the situation when the operation-level details are not important, we may

simplify the graph in Figure 4.3 by removing all the details encircled by the rounded

rectangle. This would transform the object-level WRDG graph to a simpler graph, as

shown in Figure 4.4.

Figure 4.4 Simplified Object-level WRDG graph for the page in Figure 4.2

In the simplified object-level WRDG graph as shown in Figure 4.4, each rounded

rectangle represents an object, and it will be referred to as Object Vertex in the rest part

of this thesis. The arcs connecting these object vertices are the object deriving arcs.

Note that every object vertex actually contains a complete intra-object level WRDG

graph which corresponds to the retrieval process of an object.

Theorem 4.1: Single value of in-degree of object vertices

Given an object vertex in a simplified object-level WRDG graph, there is exactly

one incoming arc to the vertex. There is one exception which is the object vertex

corresponding to the CO, where the in-degree is zero.

Proof: This theorem is based on HTTP protocol and web browsers’ behavior on

HTML web pages. The retrieval of a web page always starts with the CO of the page.

When the content of the CO reaches the web browser, it will be parsed and further

requests for the EOs defined in it will be triggered. Once a request for an EO is sent

Obj(0)

Obj(1) Obj(2) Obj(3)

wo2 wo1 wo3

82

out, all subsequent accesses to that object within the same page will be served locally.

There will not be duplicate transfer between web server and client for the same EO

within the same page.

Due to the single value of in-degree of object vertices, a simplified object-level

WRDG graph is always a two-level directed tree with the object vertex corresponding

to the CO as the root.

4.3.3 Page-level WRDG graph

The Page-level is also referred to as Inter-Page level sometimes. The WRDG

graph at this level is used to capture the retrieval processes of multiple pages which are

accessed within a given period of time. A page-level WRDG graph is made up of

multiple object-level WRDG graphs. So, the construction of a page-level WRDG

graph can be attained by constructing an object-level graph for every page and then

connecting them together using page deriving arcs according to the access orders on

them. The weight of a page deriving arc represents the time elapsed between two page

visits. This time may include the user’s view time on the previous page, some possible

idle time between the two page visits, and the time spent by the request for the next

page in waiting for its turn to be processed. This waiting time exists mainly due to

certain resource limitation, such as CPU time and network connection etc.

Note that every unique page should appear only once in the page-level WRDG

graph. In the case where a page is visited multiple times within the given period, the

number of page deriving arcs pointing to the page will be greater than one.

As we stated earlier, WRDG graphs represent the dynamic retrieval processes of

web pages and objects, not the static relationship among them. So, the page deriving

arcs may not follow the hyperlinks between pages. For example, there could be cases

where two pages are connected by a page deriving arc, but there is no hyperlink in a

83

page pointing to the other. The situations like this have been discussed in Section 4.2

where we introduced strong page deriving arcs and week page deriving arcs to

characterize them.

An example of page-level WRDG graph is given in Figure 4.5. In the example, we

assume that there are three successively retrieved pages. Due to the space limitation,

we used object vertices in the graph.

Similar to the simplified object-level WRDG graph, page-level WRDG graphs

also have simplified version. When situation permits the details to be ignored,

page-level WRDG graphs can be simplified by substituting each page with a rectangle

and discarding all the object-level and operation-level details. Figure 4.6 shows the

simplified version of the page-level WRDG graph shown in Figure 4.5.

In simplified page-level WRDG graphs, each rectangle represents a web page

and is referred to as Page Vertex. The arcs connecting these page vertices are the page

deriving arcs.

Note that there is no “single value of in-degree” for page vertices. Because a

page may be visited for multiple times within a given period, so it may have more than

one page deriving arc pointing to it. Due to this property, the page-level WRDG graphs

may not be trees.

84

Figure 4.5 Page-level WRDG graph for three successively retrieved pages

Obj(0)

r(0)

l(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

d(0,3)

wl

wc

ws

wr

wd1

wd2

wd3

we

wo1

Obj(1)

wo1

Obj(1)

wo2

Obj(2)

Obj(0)

wo2

Obj(2)

wo3

Obj(3)

Obj(0)

wo1

Obj(1)

wp1

wp2

Page(0)

Page(1)

Page(2)

85

Figure 4.6 Simplified page-level WRDG graph for the graph in Figure 4.5

4.4 Transformation on WRDG graphs

WRDG graphs represent the retrieval process of web objects and pages. Certain

transformation can be performed on the standard WRDG graphs. Since WRDG graphs

capture the relationship among operations and among objects and reflect the retrieval

latency of objects and pages, different transformations on the WRDG graphs will

denote different changes to the relationship and the latency of the retrieval processes.

The rule of thumb for transformation on WRDG graphs is that the valid web retrieval

semantics should be maintained after transformation.

Basically, we can perform the following transformations on WRDG graphs:

Within an Object

1) Changing the weights of arcs

The weight of an arc stand for the time spent in completing the operation

represented by the target vertex. A change to the weight of an arc could mean the

completion time of the operation represented by the target vertex is affected by

certain mechanism. For example, when DNS caching is used, the weight of the

Location Resolution Arc will become smaller. The weights of other arcs may also

be changed, which could reflect the impact of some mechanisms like web caching,

wp1

wp2

Page(0)

Page(1)

Page(2)

86

prefetching, CDN, persistent connection etc.

2) Removing arcs and vertices

The removal of arcs and vertices always happens in pair, i.e. the removal of an arc

would mean the removal of an corresponding vertex at the same time, and vice

versa.

When the weight of an arc is reduced to zero, the arc can actually be removed from

the graph. Since the weight represents the time for finishing the target operation, it

would mean that the target operation takes zero time to finish in this case.

Therefore, the vertex representing the target operation should also be removed

from the graph. For example, in the case of ideal persistent connection, the weight

of the Network Connection Arc may be reduced to zero. In this case, both the

Network Connection Arc and the Network Connection Vertex can be removed from

the graph.

On the other hand, when a vertex is removed, the arc pointing to it should be

removed also. Here is one example for this situation: suppose an encoding

mechanism is employed and the number of data chunks in an object transfer is

reduced by half, then half of the Data Chunk Vertices will be removed from the

object WRDG graph. Consequently, those Data Chunk Arcs connecting to those

removed vertices should be removed, too.

When a vertex υ (as well as the arcs connecting to it) is removed, the arcs which

are outgoing from υ should be put to connect from the precedent vertex of the

vertex υ. Note that within an object WRDG graph, the vertices υr and υe can not be

removed.

3) Splitting one object graph into multiple sub-object graphs

With the support of partial object, an object retrieval may be carried out as multiple

87

partial requests, each requesting part of the object. Each of such partial requests is

a full-fledged HTTP request, only that the number of data chunks of such requests

is smaller than the original request. In WRDG graphs, we can capture this situation

by splitting the object graph into multiple sub-object graphs, with each of the

sub-object graph containing smaller number of data chunks (i.e. smaller Critical

Regions). Among the sub-object graphs, there is one called primary sub-object

graph, from which other sub-object graphs are derived. So, the vertex υr of other

sub-object graphs should be connected to a vertex υ of the primary sub-object

graph. Based on when and where those other sub-object graphs are derived, this

vertex υ may vary. But in general, this υ is usually the first Data Chunk Vertex of

the primary sub-object graph because that vertex usually contains important HTTP

headers (such as “Content-Length”) which are essential for carrying out this partial

object retrieval.

Between Objects

1) Changing the weights of object deriving arcs

The weight of the object deriving arc denotes the time spent by the derived object

request in waiting for its turn to get processed. This time is mainly affected by the

parallelism width for concurrent fetching of objects. So, a change to this weight

would generally mean that the parallelism width is changed.

2) Changing the origin points of object deriving arcs

The origin point of an object deriving arc denotes the place where the object is

defined and the request is triggered. Shifting the origin point of an object deriving

arc would mean that the definition place of the object has been changed. For

example, suppose we have a special mechanism which makes all the embedded

objects of a page defined in the first data chunk of the container object, then the

88

origin points of the object deriving arcs would all be shifted to the first Data Chunk

Vertex.

3) Merging multiple object graphs into one

There are some mechanisms which merges the retrieval processes of multiple

objects into one process. Existing examples of such mechanisms include pipelining

and bundling etc. To capture this situation, the multiple object graphs

corresponding to the merged objects can be merged into one graph. In the merged

graph, there can be multiple υr vertices or only one υr vertex depending on the

scenario of the mechanisms. But for the vertex υe , there is usually only one of it.

By applying different transformation on WRDG graphs, we can map most acceleration

mechanisms into WRDG graphs. Because web retrieval latency can be reflected by the

weights of the arcs in WRDG graphs, so we can better understand and study the effect

of existing and new acceleration mechanisms by investigating their transformation on

the graphs.

4.5 Conclusion

In this chapter, we have proposed an operation-level web retrieval dependence

model to capture the complex relationship affecting web retrieval latency. This model

helps us to understand and study how the retrieval latency of individual objects in a

web page contributes to the final page retrieval latency. By constructing WRDG graphs,

we clearly see the retrieval dependency between EOs and the data chunks of CO. By

taking this into consideration, we would be able to compute more precise page

latencies than those object-level based studies. Also, the effects of different web

retrieval mechanisms can be illustrated by different transformation on WRDG graphs.

It is worth mentioning that our model is different from two research works which

also proposed graph models for web study. One work is from IBM [277] which

89

proposed a simple object dependency graph to describe web page structure. However,

its objective is to describe the dynamic nature of web data and is mainly used for the

synchronization of database objects, not for the study of web page retrieval latency.

Another work also proposed graph for the study of web [278, 279, 280, 281, 282, 283].

However, the graphs in these studies capture the static structure of web page, with web

pages represented by nodes and hyperlinks represented by directed edges. Such graphs

are used for algorithms such as ranking pages and finding natural communities of

pages etc. Our WRDG graphs capture the retrieval process of web pages, which are

used for the study of web retrieval latency. Furthermore, our WRDM also works at

operation and chunk level, which is not achieved in other studies.

90

Chapter 5 Experimental Environment and Tools
Our studies on web content delivery are based on comprehensive detailed trace-driven

simulation experiments and real system testing. In this chapter, we would like to

describe the experimental environment and tools used in our studies.

5.1 Web Access Model

In our studies, we always assume the use of a proxy server as an intermediary

between the client and the web server. That is, we assume the following web access

model shown in Figure 5.1.

Figure 5.1 Web access model

There are two reasons why we always use a proxy in the system. Firstly, it is

because this configuration is very common in the web today [13]. Secondly, we use

proxy to perform two important tasks:

1) Recording logs for web retrieval

Because a proxy server can monitor every detail of web retrieval processes, so we

make it to record very detailed information about them. The information recorded

includes timing measurements of object retrieval at fine-granularity level, header

information of HTTP requests and responses, cacheability information, chunk-level

information about the retrieval, and many others.

When situation permits, we assume the information logged by the proxy is the

information seen by the clients, e.g. the timing measurements. It is equal to say that

Internet

Proxy

Client
Client

Client

Client

Server

Server

Server

Local Network

91

the whole dashed-line circle in Figure 5.1 is treated as one client in some situations.

This assumption is reasonable because the proxy server is in the same LAN where

the clients exist. In fact, the clients and the proxy are connected by direct physical

network connections. So, the latency between proxy and clients is negligible

compared with the latency between proxy and remote web servers. We expect this

assumption does not affect the correctness of our results.

2) Implementing and testing our proposed new mechanisms.

A proxy server has full control on the web requests passing through it. With this

capability, we will be able to instrument the proxy to implement our new

mechanisms, for example, issuing requests at earlier stage based on certain

knowledge. It would be very difficult (if not impossible) to carry out such work on

most common web clients like MS-IE and Netscape.

Some experiments may require detailed retrieval information on servers, or, some

mechanisms need to be implemented on servers (such as compression). In these

situations, we will put a reverse proxy in front of the server and make the proxy to

perform the tasks for the server. Here, we will treat the union of reverse proxy and

server as a whole web server. Figure 5.2 illustrates this situation. (in contrast, the proxy

used in front of clients is called forward proxy.)

Figure 5.2 Web access with reverse proxy

In Figure 5.2, the union of the reverse proxy and the server should be physically

far away from the clients in order for the experimental results to reflect the effect of

Internet

Proxy

Client
Client

Client

Client
Server

Local Network

Reverse
Proxy

92

real web system. However, to physically place a machine considerably far away is not

often achievable. So we use another way to emulate this situation. The idea is to

employ a remote proxy server. Figure 5.3 shows the structure of this system.

Figure 5.3 Web access with remote proxy

In the above system, both the client and the server can be placed physically in the

same location. But the traffic between them will be directed to a remote proxy in the

Internet. For the remote proxy, we purposely chose those ones physically located in

other continents, e.g. those in Europe and America1. Therefore, the experimental

results such as retrieval latencies would be comparable to the results got from real web

systems.

5.2 Experimental Tools

Our experiments involve both real software tools of web client, proxy, and server

etc. and simulators. To facilitate system implementation, most of the software tools we

used are open source systems. Below we give a brief description of the tools used in

our study.

The web client programs we used are Wget [284], Pavuk [285], MS-IE [70],

Netscape [71], and some simple client programs written by ourselves. Wget and Pavuk

are free utilities for non-interactive retrieval of files from the web. Because they are

non-interactive command-line tools, so it is easy to call them from scripts. Therefore,

1 Examples of the remote proxies we used: cache.bt.net:3128, webcache.bt.net:8080, 80.49.22.130:8080,
80.18.158.154:8080

Proxy Client

Same
Physical
Location

Internet

Remote
Proxy

Server Reverse
Proxy Internet

93

they are ideal for running large scale experiments since the whole process can be

controlled by scripts automatically. For the experiments which require small number of

runs, the interactive clients MS-IE and Netscape may be used. In some cases, we also

write our own client programs for special purposes, for example, the client that

retrieves only HTTP headers for given URLs. The versions of the client programs we

used are as follows: Wget 1.4.5, Pavuk 0.9p128, MS-IE 5.5, Netscape 4.7 .

Proxy server is generally used to retrieve web objects on behalf of clients and

collect statistics about the traffic on the network. We choose to use Squid [73] as the

proxy server in our experimental environment because not only it is the most popular

web proxy server in use today, but also it is a free, open-source software which enables

us to instrument it to collect special information that we need, and to implement and

test our new mechanisms based on it. The version we used is Squid 2.4.STABLE3,

which was the latest version as at the time of our study. For the reverse proxy, we also

used Squid and the version is the same.

The web server program we choose is also a free, open-source software, which is

Apache, version 2.0.39. Apache has been the most widely used web server on the

Internet since 1996 [72]. By using it as the web server in our experimental

environment, we would expect that the results we have got would be realistic and

applicable to most real web servers on the Internet.

For those experiments which retrieve web pages directly from the Internet, the

web servers of real websites on the Internet are involved. These would include all

kinds of web servers found in the current web system, such as Apache, MS-IIS, NCSA

HTTPd etc.

Besides the above software tools from public domain, we also wrote our own

simulators for our experiments. While many results in our study are obtained from real

94

system experiments using the above software tools, there are situations where it is

difficult (or even impossible) to get results from real systems experiments, for example,

varying the parallelism width for retrieval. For those situations, we write simulators

and run trace-driven simulations to get the results. Because the traces are got from real

web systems, so we expect the results from such simulations can reflect the real

situations quite accurately.

5.3 Software/Hardware Platform and Network Environment

The operating system we used is Red Hat Linux release 7.2 (Enigma), Kernel

2.4.7-10 on an i686. The compiler used to compile the software tools is gcc version

2.96. For scripts written in shellscript or perl, the interpreters are GNU bash version

2.05.8(1)-release (i386-redhat-linux-gnu) and perl v5.6.0 built for i386-linux.

The typical configuration of the machines we used is as follows:

Processor Intel(R) Pentium(R) 4 CPU 2.00GHz
Memory 512Mbytes (with 1GB swap space)
Network Adaptor 3Com Corporation 3c905C-TX (Fast Etherlink) (rev 120)
Hard Disk 20GB--40GB

The connection between client and forward proxy is direct physical connection.

The same situation applies to the connection between server and reverse proxy (when

reverse proxy is used). For the Internet connection, our environment is the Singapore

Advanced Research Network in the National University of Singapore, which has 45

Mbits link to the U.S.. The Internet traffic in our environment is quite heavy and

diverse. So we expect that the results we got in such an environment would well

represent the situations encountered by typical broad-band Internet users.

5.4 Obtaining Logs

Web logs are valuable data often used by researchers for experiments and

comparison for their studies on web content delivery. There are mainly two types of

logs, namely proxy logs and server logs. Proxy logs are recorded by proxy servers, and

95

the data in such logs are often used to represent the measurements seen at client side.

Web servers often record the requests they served into server logs. To study the

characteristics of the traffic or web pages and objects on a web server, we would need

to use the server log. In our study, both proxy logs and server logs are used.

Note that logs are also frequently referred to as traces. In this thesis, I will use

these two terms interchangeably without differentiating them.

We obtained proxy logs from two sources. One is the traces from the National

Laboratory for Applied Network Research (NLANR) [276]. The other source is the

logs generated and collected by our own systems.

1) From NLANR

NLANR traces are the most popular, up-to-date, real proxy traces available to

researchers. NLANR’s hierarchical proxy system adopts Squid proxy caching software,

which is the same software as we used in our study. Their proxy system consists of

about ten proxy servers. The traces of all the proxy servers are published on their web

site daily. Three NLANR traces have been randomly chosen for our experiments. They

are the traces on 12th March 2002, 8th January 2003 and 5th August 2003. Note that we

only used one of the ten proxy logs they published on each of the three days. Each of

the traces we used contains about 1.2 – 1.4 million requests.

2) From our own system

Some of our experiments require special information about web retrieval which

is not available in NLANR traces. For example, the HTTP headers and chunk

information are essential to our experiments but they are not provided in NLANR

traces. In order to get such information, we built systems to collect it.

We first obtained URL addresses of web objects or pages from NLANR traces.

Then we fed them into systems similar to those shown in Figure 5.1 and Figure 5.3 to

96

replay real retrieval for those URLs and gather logs during the process. We have

instrumented the proxy servers to make it record very detailed, chunk-level

information for every object retrieval at both client side and server side. Special client

programs are also built for the collection of special information, for example, the

position of embedded objects in the body of container object of web page.

The collection of special log was performed near the date of the original NLANR

traces from which the URL addresses were sampled. This assures that the information

we obtained should be very close to the actual values that would have been obtained at

the time when the original NLANR traces were logged.

We have logged information for a large number of web objects and pages, which

is big enough for generating representative statistics results from them.

The availability of server logs is much smaller than proxy logs. We only

managed to get a server log from the website of School of Computing (SoC), National

University of Singapore (NUS). The log is dated on 30th October 2000 and contains

about 85,000 entries.

Logs often need to be pre-processed before then can be fed into simulators for

doing experiments. The pre-process usually carries out the following tasks. First,

because logs generally contain a wide range of information and much of the

information may not be necessary to the simulations, so we need to extract the useful

information. Second, the original format of the logs may not suitable to the

requirement of simulators. So we need to convert the format of them. Last, some

information may be recorded into multiple log files. It is often necessary to consolidate

the information into one file.

5.5 Getting Results

The results presented in our studies are obtained either from trace-driven

97

simulations or real system testing. We built a wide range of simulators for carrying out

comprehensive experiments. Pre-processed logs were fed into the simulators to

generate the results.

When situation permits, we also built real systems to do our experiments. For

example, the experiments of compression were conducted on real systems. The

systems are built based on the tools described in Section 5.2, and the structures of the

testing systems are similar to those shown in Figure 5.1 and Figure 5.3. The network

environment is stated in Section 5.3.

5.6 Summary

In this chapter, we described the experimental environment and tools used in our

studies. By adopting open-source systems, we are able to record very detailed logs and

implement our new mechanisms in real systems. The experiments in our studies are

carried out based on trace-driven simulations as well as real system testing. The logs

we got are huge and comprehensive. They are big enough for generating representative

results. The environment of our study is typical in the Internet, so the results we got

shall have good representativeness of the situations encountered by most other web

users.

98

Chapter 6 Analysis of Web Retrieval Latency
Using WRDM Model

6.1 Introduction

Web retrieval latency has been the focus of study due to the exponential growth

of the web. The current web system is made up of pages containing html, image and

other types of objects. Many previous studies focus on the retrieval latency of objects.

However, this is insufficient and sometimes inaccurate because the unit of web

browsing is web page instead of object. To web users, page retrieval latency is more

meaningful. While page retrieval latency is derived from object retrieval latency, the

mapping between them is not that direct and simple. In order to well understand web

retrieval latency, especially page retrieval latency, we shall go into more detailed level

of web retrieval.

The transfer of an individual web object is typically delivered in a sequence of

data chunks, and the characteristics of chunk sequence transfer have great impact on

object retrieval latency. When objects are put together to form pages, the interaction

among the objects become very complicated. In a web page, there is a primary object

called container object, which contains the definitions of other objects (embedded

objects) of the page. Because of this, the retrieval of the embedded objects highly

depends on the retrieval process of the container object of the page, and this

dependency will incur significant delay to retrieval latency for the embedded objects.

Furthermore, current web system employs parallelism for parallel fetching of objects,

which makes it possible for the retrieval of some objects to virtually have no effect on

the total page latency. All these factors make the mapping from object latency to page

latency very complicated, and they are largely ignored in previous object-level studies

on web retrieval latency. In this chapter, we would like to research on the web retrieval

latency from operation and chunk level based on our WRDM model. By detailed

99

investigation on the interaction between operations and between objects, it gives us an

insight view on the root-cause of web retrieval latency and how those factors are

greatly interacted in determining page retrieval latency.

With the exponential growth of web usage and the development of pervasive web

content delivery, web content transformation emerges as an important technology to

satisfy the different expectation of web users. While there are many studies on web

content transformation, their major focuses are on the functionalities and real-time

features. There is little study on the possible impacts of content transformation

approaches on web retrieval latency. In this chapter, we would like to analyze the

performance impacts of content transformation using our WRDM model.

We also derive upper bounds on the performance improvement for acceleration

mechanisms in this chapter. While many mechanisms have been proposed and shown

promising potential of acceleration, it remains to be seen the quantitative upper bound

of them. Based on the understanding, analysis and results of object and page retrieval

latency revealed under our model, we derive two upper bounds for acceleration

mechanisms, which help us to understand the potentials of web acceleration.

In order to obtain enough information for studying chunk level characteristics

and factors affecting page latency, we have re-run about a million requests and

recorded very detailed logs, including timing information of operations, chunk data

information, content of each page, and the structure of each page, etc. The traces, tools

and environment for running these experiments are described in Chapter 5. Some

results presented in this chapter are obtained directly from the experiment logs, some

others are obtained from simulations based on the detailed logs.

6.2 Analysis of Object Fetch Latency

First of all, we would like to investigate the retrieval latency for objects. We

100

study is at operation-level and chunk-level, which can give us in-sight view of object

latency.

6.2.1 Latency Components of Object Latency

Before we proceed to the detailed analysis of object fetch latency using WRDM,

we first give precise definition of the retrieval latency for web objects to clarify

possible ambiguity.

Definition 6.1: Object Fetch Latency

The retrieval latency of an object is defined as the time from the initiation of the

request for the object, successful transfer of data chunks, until the release of resources

that are occupied by the request.

We define the release of resources (like network connection) to be the ending

point of object retrieval. This is because that if the resources that are occupied by an

object request are not released, the retrieval process for that object would be

considered still under processing. A visual evidence of this uncompleted processing to

user may be that the progress bar in his/her web browser is still on the move. So user

will perceive that the retrieval process is still ongoing. Therefore, the “real completion”

of the retrieval of an object should be considered reached only when the occupied

resources are released.

The release of occupied resources can occur in two situations. One situation is

the natural ending process following the arrival of the last data chunk of the requested

object. In this case, all the content of the requested object has been transferred from

server to client, and the release of resources follows naturally. The other situation is

that the retrieval process for an object is interrupted prematurely. When such situation

happens, all the resources that are occupied by the request will be released

immediately and the process for the request is considered finished. Among these two

101

situations, we will use the first one as the default situation in our study, unless

otherwise stated. Why we make this choice is because that: in most cases, the full

presentation of an object cannot be achieved until all its data has returned from the

server. Although this restriction may not be so obvious for progressive objects like

JPEG2000 images where the presentation of such objects can be carried out in an

accumulative way as their data are made available chunk by chunk, we argue that: (1)

progressive objects have not got its popularity on the web yet, the majority of web

objects are not progressive objects; (2) even for a progressive object, its presentation

cannot be considered as fully completed unless all of its data chunks have returned

from server because otherwise a partial content or lower resolution image/file will be

experienced by user. So, it is reasonable for us to set the default situation as the one

which requires all data chunks of an object to be returned from server and the retrieval

process ends naturally.

Put the above two points together: By default, we measure the retrieval latency of

an object as the time from the initiation of the request, counting in the transfer time for

all the data chunks corresponding to the whole object, till the release of resources that

are occupied by the request. The situation of premature interruption of retrieval process

will not be taken into consideration unless otherwise stated.

Mapping the definition of object fetch latency into an intra-object WRDG graph,

the object fetch latency for an object Obj(i) is represented by the distance of the path

from the request initiation vertex υr(i) to the ending vertex υe(i) . In the rest parts of this

thesis, we may refer to this path as Object Retrieval Cost Path.

Note that the “distance” of a path refers to the sum of the weights of the arcs

along the path. In contrast, the “length” of a path refers to the number of the arcs along

the path. We will use these two terms distinctively in our work.

102

With the understanding about the details of retrieval processes described in

WRDM model (see Chapter 5), the retrieval latency for an object can be divided into

five components: (1) location resolution time, (2) connection time, (3) request sending

time, (4) chunk sequence time, and (5) ending time. Below we give the precise

definitions of these five components of object fetch latency.

Definition 6.2: Location Resolution Time (LRT)

Given an object request Req(Obj(i)), the location resolution time of the object

Obj(i) is defined as the time from the time when the request is initiated to the time

when the location where the request should be forwarded to is resolved.

In the intra-object level WRDG graph representing the retrieval process for the

requested object Obj(i), the location resolution time of the object is given by the

weight of the location resolution arc al(i) connecting the request initiation vertex υr(i) to

the location resolution vertex υl(i) , where 0 ≤ i ≤ o .

Definition 6.3: Connection Time (CT)

Given an object request Req(Obj(i)), the connection time of the object Obj(i) is

defined as the time from the time when the location of the destination server is made

known to the time when a network connection between the client and the destination

server has been established.

In the intra-object level WRDG graph, the connection time of an object Obj(i) is

given either by the weight of the network connection arc ac(i) , where 0 ≤ i ≤ o .

Definition 6.4: Request Sending Time (RST)

Given an object request Req(Obj(i)), the request sending time of the object Obj(i)

is defined as the time from the time when a network connection between the client and

the destination server has been established to the time when the request message has

been delivered from the client to the server through the connection.

103

In the intra-object level WRDG graph representing the retrieval process for the

requested object Obj(i), the request sending time of the object is given by the weight of

the request sending arc as(i) connecting the network connection vertex υc(i) to the

request sending vertex υs(i) , where 0 ≤ i ≤ o .

Definition 6.5: Chunk Sequence Time (CST)

Given an object request Req(Obj(i)), the chunk sequence time of the object Obj(i)

is defined as the latency time from the receiving of the first data chunk Chk(i,0) of the

object to the receiving of the last data chunk Chk(i,c) of the object, where 0 ≤ i ≤ o

and c = g(i) .

In the intra-object level WRDG graph representing the retrieval process for the

requested object Obj(i), the chunk sequence time of the object Obj(i) in the page is

given by the distance of the path from the request sending vertex υs(i) to the last data

chunk vertex υd(i,c) corresponding to the transfer of the object.

Definition 6.6: Ending Time (ET)

Given an object request Req(Obj(i)), the ending time of the object Obj(i) is

defined as the latency time from the receiving of the last data chunk Chk(i,c) of the

object to the release of the resources occupied by the object request, where 0 ≤ i ≤

o .

In the intra-object level WRDG graph representing the retrieval process for the

requested object Obj(i), the ending time of the object Obj(i) is given by the weight of

the ending arc ae(i) connecting the last data chunk vertex υd(i,c) to the ending vertex υe(i)

of the object.

Figure 6.1 gives an example intra-object level WRDG graph which illustrates the

five latency components defined above.

104

Figure 6.1 Latency components of object fetch latency

The chunk sequence time CST usually consists of the transfer time of multiple

data chunks. When we need to refer to the transfer time of a specific data chunk Chk(j),

we will use this symbol CST(Chk(j)) , e.g. CST(Chk(0)) stands for the transfer time of

the first chunk Chk(0) , CST(Chk(3)) stands for the transfer time of the chunk Chk(3) ,

so on and so forth.

Among the latency components, the request sending time RST and the first

chunk time CST(Chk(0)) are difficult to record in reality because they requires to

record timing information at both client side and server side. To deal with this problem,

we adopt two compromise ways in our study:

1) Use HTTP-RTT time instead of RST time

While it is difficult to record individual RST time and CST(Chk(0)) time, it is easy

to record “RST + CST(Chk(0))” at client side. The time of “RST + CST(Chk(0))” is

actually the time span from the time when the client starts to send out request to the

r

l

s

d1

d3

e

d2

c

d0

wl

wc

ws

wr

wd1

wd2

wd3

we

LRT

CT

RST

CST

ET

Object
Fetch

Latency

105

time when the first data chunk Chk(0) returns from server. This time span is like the

round trip time (RTT) in TCP transaction. We refer to this time as the HTTP-RTT

time in our study. In the situation where knowing individual RST time and

CST(Chk(0)) time is not particularly important, we may use this HTTP-RTT time

for our study. For example, in the case when we focus our study on the latency

component LRT, to further distinguish other latency components may not be useful,

then we can just use HTTP-RTT or even a more coarse timing measurement.

Figure 6.2 plots HTTP-RTT time in the object fetch latency.

2) Approximate RST and CST(Chk(0))

In the cases where individual RST time and CST(Chk(0)) time are required, we

would use the following way to approximate them:

First, we use CST(Chk(1)) to approximate CST(Chk(0)), i.e. we consider

CST(Chk(0)) to be the same as CST(Chk(1)). This is reasonable because the times

of the first two data chunks should be very close. Because CST(Chk(1)) is easy to

record, so we can get CST(Chk(0)) easily. In the case where the object transfer

consists of only one chunk (i.e. there is no Chk(1)), we can use the statistical value

of CST(Chk(1)) from other objects’ transfer for the approximation.

Second, for RST, we will approximated it as “HTTP-RTT – CST(Chk(1))”. As

stated above, HTTP-RTT is easy to measure and it is made up of RST and

CST(Chk(0)), so naturally we can use “HTTP-RTT – CST(Chk(1))” to approximate

RST.

Lastly, we would like to point out that we can actually include more latency

components in our definitions or divide object latency into more detailed components.

For example, the time for performing access control can be included in the definition.

On the other hand, the CST(Chk(0)) time can be further divided into two (or even more)

106

sub-components2: one is the time spent by server for reading the object from disk into

its main memory, the other is the time for the actual transfer of the first data chunk

Chk(0). Our model and definitions can be easily extended to cover such situations.

However, for our study in this thesis, we would stick to the five latency components

defined above for object fetch latency.

Figure 6.2 HTTP-RTT time in the object fetch latency

6.2.2 Experimental Study and Analysis

Firstly, let us review some statistics about object retrieval at object level, as done

in many other works. Figure 6.3 plots the distribution of objects with respect to object

sizes. From this graph, we see that the majority of web objects are quite small in size,

with an average size of about 5.71 KBytes.

Figure 6.4 shows the distribution of average object fetch latency with respect to

object sizes. We see that when objects size is small, e.g. less than 8 Kbytes, the

2 Because of this reason, the above approximation of RST and CST(Chk(0)) may not be so accurate. For
studies that require high accuracy of RST and CST(Chk(0)), we do not recommend this approximation.

r

l

s

d1

d3

e

d2

c

d0

wl

wc

ws

wr

wd1

wd2

wd3

we

LRT

CT

HTTP-RTT

CST’

ET

Object
Fetch

Latency

107

retrieval latency for smaller objects is often comparable to that of bigger objects. For

example, the retrieval latency for a 1 KByte object is similar to that of a 4 KBytes

object. This could be due to the relatively large time required for setting up network

connection. For small objects, their actual transfer time is relatively small compared

with the network connection setup time. So, the increase in object size will not affect

the whole object latency much. However, for big objects with size larger than 16

KBytes, their retrieval latency does increase with the increase in object size. This is

because the network connection setup time becomes relatively small and the actual

transfer time becomes the dominating factor of whole object latency for big objects.

With bigger size, objects would need longer transfer time. So the retrieval latency

would increase with the increase in object size.

Figure 6.3 Distribution of objects w.r.t. object size

Figure 6.4 Distribution of object latency w.r.t. object size

Next, we would like to investigate the relative distribution of the five latency

components in object retrieval, as defined in the previous section. Figure 6.5 plots the

0%

10%

20%

30%

40%

50%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k Other
Object size range

Pe
rc

en
ta

ge
 o

f o
bj

ec
ts

0

10

20

30

40

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k Other
Object size range

A
ve

ra
ge

 o
bj

ec
t l

at
en

cy
(s

ec
)

108

relative distribution of those latency components against the size of the objects. Note

that in this graph we used approximated RST and CST(Chk(0)) because they are

difficult to record in our experiments. Instead, we recorded the HTTP-RTT time and

compute approximated RST and CST(Chk(0)) based on it, as described earlier on. This

approximation will have little impact on the correctness of the overall distribution of

those latency components.

Figure 6.5 Relative distribution of latency components w.r.t. object size

From Figure 6.5, we see that the connection time CT and chunk sequence time

CST are the two major latency components in object retrieval. They together take up

over 85% of the whole object fetch latency for objects with all sizes.

The connection time CT is generally more significant than CST for objects with

smaller sizes. For objects with size less than 4 KBytes, CT time occupies more than

50% of the whole object latency. Considering that the majority of objects have sizes

less than 4 KBytes (see Figure 6.3), we expect that CT time plays an important role in

object fetch latency. This re-confirms the importance and effectiveness of

connectivity-based acceleration mechanisms such as persistent connection,

pre-connection, etc. Bundling [23, 24, 25] also helps in reducing CT times by bundling

multiple objects into one and using only one network connection for it, which removes

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k<=128kOther
Object size

R
el

at
iv

e
pe

rc
en

ta
ge

 o
f l

at
en

cy
co

m
po

ne
nt

s

ET
CST
RST
CT
LRT

109

the need of setting up multiple connections for each of the objects.

The relatively large distribution of CT time also explains why the retrieval

latency for smaller objects is often comparable to bigger objects for objects under 4

KBytes, as we observed in Figure 6.4. For this group of objects, their retrieval latency is

dominated by CT time. The increase in object size only affects the CST time, which is

relatively small for objects with sizes smaller than 4 KBytes. So, the retrieval latency

for smaller objects is similar to that of bigger objects for this group of objects.

As object size increases, the relative percentage of CT time becomes smaller

while CST time gains its significance. For objects with sizes greater than 8 KBytes, the

CST time starts to occupy more than 50%, up to about 95% of the whole object latency.

This is understandable as large objects generally require longer time for the actual

transfer of their content. As there is also a considerably large percentage (about 30%)

of objects belonging to this group, this indicates that the acceleration mechanisms

which aim to reduce the actual transfer latency would be also effective. Some existing

examples of such mechanism include encoding (like compression), transcoding and

content selection etc. For very large objects, intra-object parallelism may be used to

improve the transfer latency.

Other three latency components, namely LRT, RST and ET, are relatively small.

However, they are still not negligible, especially for small objects which define the

majority of web objects. The location resolution time LRT comes from the DNS

process in current web system. Figure 6.5 shows that LRT time contributes from less

than 1% to more than 6% of the whole object latency. This suggests that there is still

some room for improvement on top of the current DNS system.

For RST and ET, they are relatively smaller and it is often difficult to reduce

them. Because any web request would at least involve the transfer of a request message

110

from client to server and the release of resources occupied by the request, so these two

latency components would always be there and they are mainly determined by

hardware infrastructures such as network bandwidth and computing power. Besides

upgrading the hardware, some software approaches which may help in reducing these

two components include parallel fetching and bundling. While parallel fetching tries to

hide RST and ET times by overlapping them with each other, bundling tries to share

one RST and ET time among multiple requests so that the average RST and ET time

for each single request becomes smaller.

Note that the above observation is valid for individual single object retrieval only.

When objects are put together to form pages, some of the observation may not hold

any more. For example, when page retrieval latency is mentioned, CT and CST times

may not be the largest latency components any more. We will discuss this further

shortly later.

Below, we present some chunk-level studies about single object retrieval.

The transfer of an object from server to client typically involves a series of data

chunks. Figure 6.6 plots the distribution of objects with respect to the number of chunks

in the transfer. From the graph, we see that while more than 40% of objects contain

only one data chunk in their transfer, the majority of other objects consist of multiple

data chunks. On average, an object has about 6.5 data chunks in its transfer.

Figure 6.6 Distribution of objects w.r.t. number of chunks

0%

10%

20%

30%

40%

50%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2020+

Number of chunks in object transfer

Pe
rc

en
ta

ge
 o

f o
bj

ec
ts

111

Next, we would like to study some properties about data chunks. Figure 6.7 and

Figure 6.8 show the distribution of chunks sizes and latencies respectively. Figure 6.7

plots the distribution of chunks with respect to chunk size. It shows that the majority

(65%) of chunks have typical sizes between 1 KBytes and 2 KBytes. However, there

are chunks with much bigger sizes, and that puts the average chunk size at 5.3 KBytes.

We also note that there are a high percentage of chunks with sizes larger than 10

KBytes.

Figure 6.7 Distribution of chunks w.r.t. chunk size

Figure 6.8 Average latencies for delivering chunks with different sizes

Since chunk transfer time contributes towards object fetch latency, we would like

to investigate the transfer time for chunks with different sizes. Figure 6.8 plots the

transfer time of chunks with respect to their sizes. In our experiments, all chunks were

sent out from the same server and delivered over the same distance to the same client,

so the latencies of different chunks are comparable.

0

0.01

0.02

0.03

0.04

0.05

<=
1k

<=
3k

<=
5k

<=
7k

<=
9k

<=
11

k

<=
13

k

<=
15

k

<=
17

k

<=
19

k

<=
21

k

<=
23

k

<=
25

k

<=
27

k

<=
29

k

30
k+

Chunk size range

C
hu

nk
 la

te
nc

y
(s

ec
on

ds
)

0%
10%
20%
30%
40%
50%
60%
70%

<=1k <=3k <=5k <=7k <=9k 10k+
Chunk size

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

112

From Figure 6.8, we see that the distribution of the latencies for chunks with

different sizes is quite random. Chunk size does not seem to have much influence on

chunk latency. The latency for smaller chunks is often comparable to that of much

bigger chunks. This could be due to the random nature of network and server workload.

This observation is important because it indicates that mechanisms which reduce

chunk size may not help much in reducing object fetch latency.

There are two extreme phenomena in Figure 6.8 worth of mentioning. One is that

the latency for very big chunks (those with size greater than 30k) is indeed much

bigger than that of smaller chunks. The other phenomenon is that, the latency for the

“<=1k” group is even bigger than that of “<=2k” to “<=4k” groups. Further study

reveals that this could be due to the TCP slow-start effect as “<=1k” chunks tend to be

the first a few chunks in the chunk transfer sequence.

Figure 6.9 Distribution of data rate w.r.t. chunk sequence number

Figure 6.9 tries to explain the TCP slow-start effect by plotting chunk data rate

with respect to the chunk sequence number. From this graph, we see that the data rate

for the first chunk is significantly much lower than that of later chunks. This indicates

that the first a few chunks on a TCP connection are relatively more expensive than the

rest, which reflects the TCP slow-start effect in delivering web objects. This

characteristic gives further explanation on why the latency for smaller objects is often

comparable to larger objects (see Figure 6.4).

0

500

1000

1500

2000

2500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20+
Chunk sequence No.

D
at

a
ra

te
 (k

by
te

/s
ec

)

113

Although chunk data rate is generally on the rising for later chunks, it becomes

relatively stable from the 4th chunk onwards. So, when the number of chunks in an

object transfer is big, TCP slow-start effect would become less significant as it would

be amortized with the transfer of large number of chunks.

From the above analysis, we see that the number of chunks is more important in

determining object latency than the size of chunks.

6.3 Page Retrieval Latency

Generally, the unit of web browsing is page. So, the page retrieval latency is most

meaningful to web users. When we work on web acceleration mechanisms, we should

always study their effects on page latency rather than object latency only. This would

give us more meaningful results. In this section, we would like to investigate the

relationship between object latency and page latency, and the factors that affect page

latency.

6.3.1 From Object Latency to Page Latency

A web page usually consists of a container object (CO) and a number of

embedded objects (EO). The page retrieval latency is determined by the interaction of

the retrieval processes of both CO and EOs. Before we proceed to the detailed analysis

of page retrieval latency using WRDM, we first give precise definition of the retrieval

latency of web pages to clarify possible ambiguity.

Definition 6.7: Page Retrieval Latency

The retrieval latency of a web page is defined as the time from the initiation of

the request for the container object of the page, interpreting the returned data and

triggering derived requests for all the embedded objects of the page, till all object data

have returned from server and all resources occupied by the requests for both the

container object and the embedded objects have been released.

114

Just like the argument given previously for object fetch latency, we will consider

page retrieval latency as the time for successfully retrieved web pages, i.e. all the

objects included in a web page must be retrieved successfully. Premature interruption

of any objects in a page is not considered in our study (see previous section for

reasons).

Mapping the above definition to an object-level WRDG graph, the page retrieval

latency for a page Page(k) is represented by the “longest distance” path in the graph,

where the starting point of the path is the request initiation vertex υr(k,0) of the container

object Obj(k,0) of the page and the ending point of the path is the latest ending vertex

υe(k,i) of an object Obj(k,i) in the page where 0 ≤ i ≤ o . In the rest parts of this

thesis, we may refer to this path as Page Retrieval Cost Path.

Figure 6.10 gives an example object-level WRDG graph showing the longest

distance path for the page retrieval latency for a web page with three EOs. Note that

the distance of a path is the total weight of the path, not the number of arcs in the path.

The longest distance path may not be the path which has the largest number of arcs.

A web page usually consists of a container object (CO) and a number of

embedded objects (EO). From Figure 6.10, we see that page retrieval latency is actually

derived from object fetch latency of CO and EOs. However, the mapping from object

fetch latency to page retrieval latency is not so direct and straightforward. There is

complex relationship between object fetch latency and page retrieval latency.

115

Figure 6.10 Page retrieval latency represented by the longest distance path

Obj(0)

r(0)

l(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

d(0,3)

r(1)

l(1)

c(1)

s(1)

d(1,0)

e(1)

d(1,1)

d(1,2)

d(1,3)

Obj(1)

r(2)

l(2)

c(2)

s(2)

d(2,0)

e(2)

d(2,1)

d(2,2)

r(3)

l(3)

c(3)

s(3)

d(3,0)

e(3)

d(3,1)

d(3,2)

Obj(2)

Obj(3)

wl

wc

ws

wr

wd1

wd2

wd3

we

wo3
wl

wc

ws

wr

wd1

wd2

wd3

we

wl

wc

ws

wr

wd1

wd2

we

wl

wc

ws

wr

wd1

wd2

we

wo2

wo1

Arc on the longest
distance path

116

First of all, because the URLs of EOs are defined in the CO of the page, so the

retrieval processes for EOs highly depends on the retrieval process of CO. The

retrieval of an EO can not be started until the CO’s data chunk containing the

definition of the EO has been transferred from server to the client. This delayed notice

of EOs can prolong the retrieval latency for them significantly.

Currently, most common web browsers utilize parallelism for simultaneous

fetching of objects in a page. This further complicates the mapping from object fetch

latency to page retrieval latency because the overlapping of object latency makes it

possible for the fetching of one or more objects to virtually have no effect on the whole

page latency. On the other hand, the parallelism width employed in most web browsers

is limited, e.g. Microsoft IE and Netscape use a parallelism width of four for the

retrieval of objects in a page. With this limited parallelism width, some requests for

EOs may be held in waiting state due to the unavailability of parallelism. This waiting

time would contribute towards the retrieval latency for the EOs, as well as for the

whole page latency.

From the above analysis, we see that object retrieval latency would have at least

two more components (in addition to those defined in the previous section) when a

group of objects are put together to form a page. The first new latency component is

related to the definition of EOs in CO, and we refer to this component as Definition

Time of EOs. The second latency component is to reflect the time spent by a request in

waiting for available parallelism for retrieval. We call this component Waiting Time of

a request. Below we give the definitions of these two new latency components.

Definition 6.8: Definition Time (DT)

Given a page request Req(Page(k)), the definition time of an embedded object

Obj(k,i)) in the page is defined as the time from the initiation of the request for the

117

container object Req(Obj(k,0)) to the receiving of the data chunk Chk(k,0,j) that

contains the definition of the embedded object, where 1 ≤ i ≤ o and 0 ≤ j ≤ c .

In the object-level WRDG graph representing the retrieval process for the

requested page Page(k), the definition time of an embedded object Obj(k,i)) is given by

the distance of the path from the request initiation vertex υr(k,0) of the container object

Obj(k,0) to a data chunk vertex υd(k,0,j) of the container object, where the data chunk

vertex υd(k,0,j) has an object deriving arc ao(k,i) connecting to the request initiation vertex

υr(k,i) of the embedded object Obj(k,i) .

Note the following two points about the DT times of objects:

First, DT time does not apply to the CO of a page. Or, we can consider the DT time of

the CO is always zero.

Second, the measurement of the DT time of an EO starts from the point where the

request for the page is initiated. This is because users perceive page retrieval latency

from the point when they initiate the request for a page. So the DT time of an EO

should be considered as part of the whole EO’s latency although the actual retrieval of

the EO starts only when the DT time has elapsed.

Definition 6.9: Waiting Time (WT)

Given a page request Req(Page(k)), the waiting time of an object Obj(k,i) in the

page is defined as the time from the time when the existence of Obj(k,i)) is made

known to a client and a request for this object Req(Obj(k,i)) is initiated, to the time

when the request Req(Obj(k,i)) gets its turn to get processed by the client system,

where 1 ≤ i ≤ o .

In the object-level WRDG graph representing the retrieval process for a

requested page Page(k), the waiting time for an object Obj(k,i) is given by the weight

of the object deriving arc ao(k,i) connecting the data chunk vertex υd(k,0,j) that defines

118

Obj(k,i) to the request initiation vertex υr(k,i) for the object Obj(k,i) , where 1 ≤ i ≤

o and 0 ≤ j ≤ c .

For the container object Obj(k,0) of a page Page(k), its waiting time is

represented by the weight of the page deriving arc ap(k) in a Inter-Page WRDG graph,

where the page deriving arc ap(k) connects the ending vertex υe(k-1,0) of the container

object Obj(k-1,0) of in the previous page Page(k-1) to the request initiation vertex υr(k,0)

of the container object Obj(k,0) of the page Page(k) .

This WT time exists mainly due to the limited parallelism width for object

retrieval. When the number of objects contained in a web page is larger than the

parallelism width, the phenomenon of object request being held in waiting would

likely occur. Note that the WT time does not apply to the CO of a page either. Or, we

can also consider the WT time of the CO is always zero.

The complex relationship between the retrieval processes of objects in a page can

be captured by WRDG graphs. Figure 6.11 gives an example object-level WRDG graph

showing the retrieval process of a page with five EOs. From the graph, we can clearly

see the latency components of the objects and the complex relationship between the

objects due to dependency and parallelism. The retrieval processes of the EOs can be

started only when their definition is made known to client. Since Obj(5) is defined in

the seventh data chunk of Obj(0), its request can not be triggered until that chunk has

been returned from server to client. On the other hand, the availability of parallelism

also affects the retrieval process of EOs. For example, when the request for Obj(5) is

ready for triggering, all the retrieval channels are occupied by other requests. Therefore,

the request for Obj(5) has be to be held in waiting state until a retrieval channel

become available. This waiting time WT of Obj(5) definitely prolongs its retrieval

latency.

119

Figure 6.11 Retrieval process for a page with five EOs

Note: Due to space limitation, we simplified the drawings of this graph.

Obj(0)

r(0)

l(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

d(0,3)

Obj(1)

Obj(2)

wo5

wo4

 d(0,4)

 d(0,5)

 d(0,6)

 d(0,7)

Obj(3)

Obj(5)

Obj(4)

DT
of

Obj(5)

WT
of

Obj(5)

Parallelism = 4

Page
Retrieval
Latency

Other
Latency

Components
of

Obj(5)

120

For convenience purpose, here we would like to define two terms to refer to the

object latency for individual single objects and for objects in a page. For an individual

single object, its latency is made up of the five latency components defined in Section

6.2, i.e. LRT+CT+RST+CST+ET. We will refer to this latency as Object Fetch Latency

(OFL) from this point onwards in this thesis. In this section, we know that the latency

for an object would include two more latency components, namely DT time and WT

time, when the object is put into a page. We will refer to the latency which includes DT,

WT and OFL of an object as Object Retrieval Latency (ORL) in the rest part of this

thesis.

In Figure 6.11, the OFL latency of Obj(5) is marked by “Other Latency

Components of Obj(5)”, and the ORL latency of Obj(5) would include “DT of Obj(5)”

and “WT of Obj(5)” on top of OFL latency. Later, when we need to differentiate these

two types of latencies of objects, we would call them by different terms, as defined

here.

6.3.2 Experimental Study and Analysis

6.3.2.1 General Study

Since web pages are made of objects and page latency is derived from the latency

of the objects in the page, we would like to look at the number of objects comprised in

pages. Figure 6.12 plots the distribution of pages against the number of EOs per page.

We see that while about 9% of pages do not contain any EOs, the majority of pages are

made of multiple EOs. A prominent distribution is that nearly 25% web pages contain

more than 20 EOs. On average, a page contains about 13.5 EOs.

Next, we would like to look at page latency again page size and compare it with

single object latency with similar size. Figure 6.13 plots the distribution of page latency

with respect to total page size. By comparing it with the distribution of object latency

121

shown in Figure 6.4, we have two interesting findings:

1) For sizes below 128 KBytes, page latency is bigger than object latency with the

same size. This indicates that there are some factors preventing pages to be

retrieved as fast as the objects with the same size. Further study shows that the

main reason is the CT time of objects. For pages with sizes smaller than 128 KB,

the size of each object in the page should be much smaller than 128 KB (since a

page is usually made of multiple objects). According to the results in the previous

section, CT time occupies a significant part of object latency when object size is

small. So, the overall page latency is prolonged and it becomes even bigger than

the latency for objects with sizes below 128 KB.

Figure 6.12 Distribution of pages w.r.t. number of EOs per page

Figure 6.13 Distribution of page latency w.r.t. page size

2) For sizes above 128K, page latency becomes even smaller than object latency with

the same size. This shows that the same amount of data can be retrieved faster for

pages than objects. Further study indicates that this could be due to the parallel

0
5

10
15
20
25
30

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k Other
Total page size

A
ve

ra
ge

 p
ag

e
la

te
nc

y
(s

ec
)

0%

5%

10%

15%

20%

25%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2020+

Number of EOs in a page

Pe
rc

en
ta

ge
 o

f p
ag

es

122

fetching of objects in a page. When page size is big, it is likely to contain many

objects. Current web browsers would fetch multiple objects in parallel. So, the

latency of the objects in the page is overlapped, which results in smaller total

retrieval latency for page.

The above two findings showed us the complicated relationship between object latency

and page latency. Figure 6.14 further confirms this complicated relationship by plotting

the distribution of page latency with respect to the number of objects (including CO) in

a page. From this graph, we see that page latency is randomly distributed against the

number of EOs in a page. The increase in the number of EOs may not result in the

increase in total page latency. For example, the page latency for pages with 10 EOs is

even smaller than the latency for pages with 7 EOs. This is most likely due to the

parallel fetching of objects, which makes the retrieval of some EOs to have no effects

on total page latency. On the other hand, page latency is generally on the rise with the

increase in the number of EOs in a page. This could be because of the increased DT

times of EOs and the shortage of parallelism when number of EOs is big.

Figure 6.14 Distribution of page latency w.r.t. number of objects in a page

We already see that page latency is determined by complicated factors among

objects in the page. According to Figure 6.12, a page contains about 13.5 EOs on

average. With so many EOs contained in a page, we may deduce that the impact of the

relationship between CO and EOs on whole page latency could be very significant.

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20+

Number of objects in a page

A
ve

ra
ge

 p
ag

e
la

te
nc

y

123

Such important factors can not be ignored when studying page latency. In the later part

of this section, we will present our study on those special factors particularly found in

page retrievals.

As we know from previous section, object retrieval latency would have two new

components when objects are put together to form pages i.e. the DT time and WT time

of objects in a page. The above discussion indicates there is complex interaction

between these two new components and page latency. Now, we would like to

investigate the impact of the new components on page latency.

Our experiments recorded detailed information about the latency components of

page retrieval. Figure 6.15 plots the relative distribution of the DT time, WT time and

the OFL latency of objects against the number of EOs in a page. For a given group of

pages (e.g. the pages with 8–11 EOs) in the graph, the relative distribution of these

components is calculated using the following formulas:

grouptheinpagesofNum
kPageinobjofNum

iObjofORL
iObjofDT

grouptheinpagesofNum1k

kPageinobjofNum1i

)(____

)(
)(

 DT ofon Distributi Relative _____..

)(____..∑
∑

=

=

=

grouptheinpagesofNum
kPageinobjofNum

iObjofORL
iObjofWT

grouptheinpagesofNum1k

kPageinobjofNum1i

)(____

)(
)(

 WTofon Distributi Relative _____..

)(____..∑
∑

=

=

=

grouptheinpagesofNum
kPageinobjofNum

iObjofORL
iObjofOFL

grouptheinpagesofNum1k

kPageinobjofNum1i

)(____

)(
)(

 OFL ofon Distributi Relative _____..

)(____..∑
∑

=

=

=

The most surprising finding from the graph might be that a great percentage of

retrieval latency of objects in pages comes from DT rather than OFL latency which is

often thought of as the dominating factors of page retrieval latency. In all situations,

DT time is the largest component among all the latency components. It often takes up

124

more than 50% of the object retrieval latency. This indicates that DT is a more

important latency component than others. This finding gives a hint on a new direction

of acceleration of web retrieval latency by reducing the DT times of objects in pages.

As we can see from the WRDG graph in Figure 6.11, DT times of EOs exist because the

definitions of EOs are found in the data chunks of CO’s transfer. The later chunk

contains the definitions, the larger the DT times would be. If the definitions of EOs can

be made known to client earlier through some special mechanism, the DT time would

be reduced, which would in turn effectively reduce the whole page latency. In Chapter

8, we propose a new mechanism to address this issue.

Figure 6.15 Relative distribution of latency components w.r.t. number of EOs per page

Note that in Figure 6.15, although the relative percentage of DT seems dropping

with the increase in the number of EOs in a page, its absolute value is actually on the

rise. The dropping happens because other components such as WT become bigger, thus

it makes DT become relatively smaller. As the number of EOs in a page increases, the

absolute DT times generally become bigger. This could be because that more EOs tend

to be defined at the middle and bottom part of the CO when there are more EOs in a

page.

Another notable finding is that the WT is also a major latency component when

the number of EOs in a page is greater than 3, and the relative percentage of WT grows

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in a page

R
el

at
iv

e
pe

rc
en

ta
ge

 o
f l

at
en

cy
co

m
po

ne
nt

s

DT WT OFL

125

quickly to as high as 29% of the overall retrieval latency as the number of EOs per

page increases. On average, WT time occupies about 15% of the whole retrieval

latency of EOs.

The WT time exists because of the limited parallelism width available for object

retrieval. In the current web system, most common web client programs such as

Microsoft IE and Netscape use a default parallelism width of 4 for parallel fetching.

When a page consists of less than 4 EOs, object requests do not need to wait as there is

always enough parallelism for every object request upon its triggering. So the WT for

such web pages is zero. However, when the number of EOs increases, the WT will

increase quickly as the default parallelism width becomes insufficient to handle all the

object requests simultaneously. Many object requests would have to wait long for

fetching channels to be released by other requests before they can get their turned to be

processed. When the number of EOs in a page is greater than 16, the WT time even

becomes bigger than the actual object fetch latency OFL. This finding is also very

important because it suggests that providing sufficient parallelism width for web

retrieval would be an effective way to improve web retrieval latency.

The actual object fetch latency OFL (which consists of LRT, CT, RST, CST, and

ET) is often much smaller compared with DT times. As the number of EOs in a page

increases, the contribution of OFL to the ORL latency drops dramatically from about

50% to only 14%, even smaller than the WT portion. As a large percentage of web

pages contain more than 20 EOs and the average number of EOs in a page is about

13.5 (see Figure 6.12), we expect OFL to be less of a problem for web retrieval than DT

and WT for the majority of web pages.

From the above discussion, we are further confirmed about the complicated

mapping relationship between object latency and page latency. The object fetch latency

126

OFL consists of five components and they are the actual latency for fetching an object.

However, when the OFL is put into the context of pages, it becomes insignificant.

Instead, two other latency components particularly found in pages, i.e. DT and WT,

become the dominating factors. In the following subsections, we will study on these

factors in detail to further understand their impact on page latency.

6.3.2.2 Studies on DT

Since DT time exists because EOs are defined in CO, we would like to first

investigate some distributions of COs.

Figure 6.16 Distribution of the size of COs

Figure 6.17 Distribution of CO w.r.t. number of chunks

Figure 6.16 plots the distribution of COs with respect to their size. Different from

the size distribution of all web objects shown in Figure 6.3 where the majority of objects

have sizes less than 8 KBytes, we see that a large percentage of COs have bigger sizes

between 8 KBytes to 128 KBytes, with an average size of 35.5 KBytes. For these

relatively larger sizes, it may require more data chunks for the transfer. Figure 6.17

0%

5%

10%

15%

20%

25%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20+
Number of chunks in CO's transfer sequence

Pe
rc

en
ta

ge
 o

f C
O

s

0%
3%
6%
9%

12%
15%
18%
21%

<=1k <=2k <=4k <=8k <=16k<=32k<=64k<=128kOther
Size range

Pe
rc

en
ta

ge
 o

f C
O

s

127

shows the distribution of COs against the number of chunks in their transfer. By

comparing it with Figure 6.6, we do see that more COs have larger number of chunks

than that for all objects shown in Figure 6.6. While about 12% of COs have only one

chunk in their transfer, the majority of COs are made up of multiple chunks. On

average, a CO has about 6.7 chunks in its transfer. Because COs usually have multiple

chunks in their transfer, the chances for EOs to be defined in chunks with large chunk

sequence number would be very high, and that would result in large DT times for EOs.

Figure 6.18 through Figure 6.20 plots the distribution of definition points of EOs

from three different aspects. Note that the definition points of EOs are actually the

starting points of object-deriving arcs in WRDG graphs.

Figure 6.18 shows the average number of EOs defined in each part of CO in terms

of the percentage of CO's body size. From this graph, we see that the definitions of

EOs are quite evenly distributed throughout CO’s body. In other words, every part of

CO’s body would have EOs defined in it. Thus, some EOs are made known to client

quite late until the bottom parts of CO being transferred to client.

Figure 6.18 Average number of EOs w.r.t. percentage of CO’s body retrieved

Figure 6.19 shows the definition points of EOs in terms of chunk sequence number

in the CO's transfer sequence. We see that many EOs are defined in the chunks with

large sequence number. As the chunks with large sequence number are usually

transferred to client at late times, it gives one explanation on why DT times are so

0.0
0.5
1.0
1.5
2.0
2.5

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of CO's body

A
ve

ra
ge

 n
um

be
r o

f
EO

s

128

significant in the retrieval latency of EOs.

Figure 6.20 shows the definition points of EOs in terms of percentage of CO’s

retrieval latency. It is surprising to see that a great many of EOs are defined at the very

late parts of CO’s retrieval latency. Detailed analysis reveals the following reason:

CO’s transfer latency is made up of many components (see Chapter 4 and previous

sections of this chapter). Most of the latency components such as CT time etc take

place before the actual transfer of data starts. So, when the actual transfer of data

chunks of CO starts, there is already much time elapsed. That is why we see many EOs

are defined at the very late parts of CO’s retrieval latency.

Figure 6.19 Average number of EOs w.r.t. chunk sequence number in CO transfer

Figure 6.20 Average number of EOs w.r.t. percentage of CO’s transfer latency

The above graphs show that a considerable percentage of EOs are defined in the

rather later part of COs, which causes large DT times. If the DT times of the EOs are

reduced by some mechanism (e.g. shifting the definition of those EOs to earlier

locations), will this reduce the effect of DT on whole page latency? To answer this

0
1
2
3
4
5

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of CO's transfer latency

A
ve

ra
ge

 n
um

be
r o

f
EO

s

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20+
Chunk sequence No.

A
ve

ra
ge

 n
um

be
r o

f E
O

s

129

question, we need to look into whether page latency is determined by EO or CO. Figure

6.21 plots the distribution of EOs according to whether the retrieval processes of them

finish before or after CO’s retrieval process. According to the graph, we see that most

EOs have their retrieval processes finished after CO’s retrieval process. On average,

about 64% of EOs in a page finish after the CO of the page. In other words, the final

retrieval latency of web pages is determined by 64% of the EOs in the page. This

indicates that reducing DT times of EOs will have positive impact on whole page

latency.

Figure 6.21 Distribution of EOs that finish before and after CO finishes

From the above discussion, we understand why DT time occupies a major

portion of the retrieval latency of EOs. Because of this, DT time plays an important

role in determining total page latency. Figure 6.22 tries to help us to further understand

the impact of DT time on total page latency by showing the effect of four different DT

times on total page latency. The four different DT times are defined as follows:

1) DT time = The time of the last chunk of CO

In this situation, we assume that all the EOs of a page are defined in the last data

chunk of the CO. While this situation is less likely to exactly happen in reality, the

effect of this situation can be seen in some active web systems. For example, some

content transformation systems may require objects to be buffered in the middle of

the network for transformation. In the case where the buffered object is the CO of a

0%
10%
20%
30%
40%
50%
60%
70%
80%

0-3 4-7 8-11 12-15 16-19 20-23 23+

Number of EOs in a Page

Pe
rc

en
ta

ge
 o

f E
O

s

EOs finished before CO EOs finished after CO

130

page, the definition points for all EOs in that page will be delayed to as late as the

time of the last data chunk of the CO in actual fact.

2) DT time = Normal

This situation is the normal situation where the definitions of EOs are distributed

across the CO’s body as they actually are.

3) DT time = The time of the fist chunk of CO

In this situation, we assume that all the EOs of a page are defined in the first data

chunk of the CO. This situation may be rarely seen in current real web systems.

However, it is achievable through certain special mechanisms. So, we include it

here as a reference.

4) DT time = 0

In this situation, we assume that the definitions of all the EOs of a page are already

known to client when the client triggers the request for that page. Again, this is not

real in current web systems, but we use it as a reference here.

Figure 6.22 shows the relative page latency under different DT with respect to the

number of EOs in a page. From the graph, we see that different DT times do have

significant impact on total page latency. In general, pushing the definition points of

EOs to the last chunk of CO would cause the page latency to increase about 10.7%,

while promoting definition points of EOs to earlier location would result in reduction

in page latency for 3.5–10.6%, as compared against the normal situation.

At first, we speculate that reducing DT time may bring in much greater

improvement for pages with more EOs since such pages have more EOs to enjoy the

reduced DT time. However, we note from Figure 6.22 that the improvement does not

seem to grow constantly as the number of EOs in a page increases. Further study

reveals that the limited parallelism for parallel fetching of objects could be the reason.

131

After DT time of EOs has been reduced, parallelism width will become a performance

bottleneck. This is because that smaller DT time puts a higher demand on parallelism

since EOs are made known for retrieval earlier. Therefore, parallelism becomes

insufficient even for pages with smaller number of EOs.

Figure 6.22 Relative page latency under different DT w.r.t. number of EOs in a page

6.3.2.3 Studies on Parallelism and WT

In this subsection, we would like to study the effect of parallelism on total page

latency.

In our WRDM model, the WT time of EOs reflects the effect of parallelism on

page latency. When the default parallelism width is insufficient for object requests,

some requests will be held in waiting state. The time spent by a request in waiting state

is captured by the latency component WT time in our model.

According to Figure 6.12, web pages contain about 13.5 EOs on average. Some

25% web pages even contain more than 20 EOs. However, most current web browsers

like Microsoft IE and Netscape employ a default parallelism width of four only. As a

result, the WT time of EOs is often seen in current web retrieval.

Now, let us first investigate the distribution of EOs being held in waiting state

under the most common parallelism width of four. From the aspect of waiting state,

EOs can be classified into the following three classes:

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in a page

R
el

at
iv

e
pa

ge
 la

te
nc

y

DT = Last Chunk of CO DT = Normal
DT = First Chunk of CO DT = 0

132

Class 1) EOs that are not held in waiting state

For EOs in this group, the contribution of their retrieval latency to page

latency will not be affect by an increase in parallelism width. However, a

decrease in parallelism width may affect their contribution because decreased

parallelism may turn them into waiting EOs.

Class 2) EOs that are held in waiting state, but their retrieval processes finish before

the retrieval process for CO finishes

For EOs in this group, their retrieval latency will not contribute to page

latency since their retrieval finishes before CO’s retrieval process.

Therefore, an increase in parallelism width would not affect their contribution

to page latency. But a decrease in parallelism width may change this

situation.

Class 3) EOs that are held in waiting state, and their retrieval processes finish after the

retrieval processes for CO finishes

For EOs in this group, an increase or a decrease in parallelism width would

all affect their contribution to page latency.

Figure 6.23 plots the distribution of EOs belonging to the three classes under the

parallelism of four. From the graph, we see that a considerable percentage of EOs are

held in waiting state due to the lack of parallelism. Especially, the percentage of EOs

belonging to class 3 grows dramatically to over 60% as the number of EOs in a page

increases. This indicates that parallelism would have important effect on page latency.

The increase in parallelism width could bring down WT times of EOs, and this

reduction in WT times for EOs belonging to class 3 would have positive effect on

whole page latency.

133

Figure 6.23 Distribution of EOs in waiting state (parallelism = 4)

Figure 6.24 shows the effect of different parallelism width on the distribution of

EOs belonging to class 3. As we can see, the percentage of such EOs drops rapidly as

the parallelism width increases. When parallelism width grows to 32, the percentage of

EOs belonging to class 3 drops to nearly zero percent. Considering that web pages

contain about 13.5 EOs on average (see Figure 6.12), it is understandable why almost no

EOs are held in waiting state when parallelism width is 32, which is bigger than the

number of EOs in most pages.

Figure 6.24 Effect of different parallelism width on the distribution

of EOs belonging to class 3

Recall in Figure 6.21, the final page retrieval latency is largely determined by the

EOs in the page. So we can deduce that improving parallelism width would also have

positive impact on whole page latency since wider parallelism can effectively reduce

the WT times of EOs. Figure 6.25 shows the effect of different parallelism width on

0%

20%

40%

60%

80%

100%

1 2 4 8 16 32

Parallelism width

Pe
rc

en
ta

ge
 o

f E
O

s

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+

Number of EOs in a page

R
el

at
iv

e
pe

rc
en

ta
ge

 o
f E

O
s

EOs belong to Class 1 EOs belong to Class 2 EOs belong to Class 3

134

whole page latency. In the graph, we also include a situation of “parallelism=infinite”.

When parallelism is infinite, the WT time of objects will be zero. This is the upper

bound of the effect that parallelism can bring in on page latency. We use this situation

as a reference to compare others against with.

Figure 6.25 Relative page latency under different parallelism

w.r.t. number of EOs in a page

This graph confirms the importance of parallelism’s effect on page latency. From

it, we see that the increased parallelism width would reduce page latency considerably,

and this effect becomes stronger when the number of EOs in a page increases. This is

understandable because most web pages contain quite many objects (see Figure 6.12).

However, when parallelism width grows bigger than 16, the improvement becomes

insignificant. This is because the web pages in our test set contain about 13.5 EOs on

average (see Figure 6.12). When parallelism width grows bigger than that number, there

will be fewer web pages which can take the advantage of the wider parallelism. So the

improvement becomes small.

6.3.3 Discussion on the Relationship among DT, WT and Parallelism

From the above analysis, we see there is complex relationship among DT, WT

and parallelism, which greatly complicates the mapping of object latency to page

latency.

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+

Number of EOs in a page

R
el

at
iv

e
pa

ge
 re

tri
ev

al
 la

te
nc

y

Parallelism=1 Parallelism=2 Parallelism=4 Parallelism=8
Parallelism=16 Parallelism=32 Parallelism=Infinite

135

The DT time of EOs exists because the retrieval processes of EOs depend on the

retrieval process of CO. Because the definitions of EOs exist in CO, so the triggering

times of requests for EOs are highly dependent on when the data chunks of the CO

containing the definitions have reached client. Due to the fact that most web pages

contain multiple objects and most COs consists of multiple data chunks in their

transfer, the DT time of EOs are often considerably large, which contributes

significantly towards whole page latency.

The WT time of EOs is caused by insufficient parallelism width for parallel

fetching of objects. The parallelism width used in current web client programs is

limited, e.g. four for Microsoft IE and Netscape. When the number of objects known

for retrieval exceeds the parallelism width, some objects would have to wait until there

is free parallel channel for use.

In general, reducing DT time of EOs will put higher demand on parallelism width.

When the DT times of EOs are made smaller, more objects will be made known for

retrieval at a faster speed. This will require a wider parallelism width. Otherwise, we

would only see that more EOs are held in waiting state when their DT times are

reduced.

On the other hand, wider parallelism width can only be well utilized when the

DT times of objects are small. When parallelism width is increased, it will need more

concurrent requests to use up the parallelism. More concurrent requests require more

objects to be made known for retrieval earlier, which means smaller DT time of objects.

If parallelism width is increased but there are not enough concurrent object requests to

take the advantage of it, many parallel channels will just stay in idle, and the resource

is wasted.

Furthermore, both DT time and parallelism have something to do with the

136

number of EOs per page.

Generally, when parallelism width is increased, not only it will require smaller

DT of EOs, but also it will require more EOs to be defined in the page so that there

may be more concurrent requests to make use of it. But if there is too large number of

EOs included in the page, many of the objects may suffer from long WT times due to

the relative insufficiency of parallelism. For example, the studies in previous sections

show that the default parallelism of four in current web system seems insufficient since

current web pages consist of 13.5 EOs on average. Given the trend that web pages tend

to have more objects, a wider parallelism should be considered.

Conversely, while larger number of EOs in a page is good to wider parallelism, it

may mean bigger DT times for EOs because the CO of the page also tends to be big in

this situation. Unless special mechanism is taken to reduce the DT time, otherwise, the

increase in the number of EOs per page will prolong page retrieval latency.

In brief, DT or parallelism will become performance bottleneck when the other

one is improved, and they have contrary requirement on the number of EOs in a page.

Because the interaction among the factors is so complex and all the factors are very

critical in determining page retrieval latency, so it requires prudent consideration of all

the factors in order to achieve optimal web retrieval performance. Simply adjust any

one of them will not bring in the best improvement because other factors will soon

become performance bottleneck if only one is improved.

6.4 Impact of Real-time Content Transformation on Web Retrieval
Latency

6.4.1 Real-time Transformation of Web Content

With the exponential growth of web usage, web has become the most important

and popular communication media in the world. Everyday, millions of people access

the web from every corner of the world using different types of devices such as PCs,

137

cellular phones and PDAs etc. Due to different preference of users and different

environment such as network bandwidth and capability of users’ devices, different

group of users may have different expectation on the presentation of the content they

surf. For example, some web users may expect the content to be in their native

language, while some others may expect to download the key content to their mobile

devices fast and ignore some trivial content like unimportant images. To cater for the

different needs, there emerges a technology called content transformation. This

technology tries to transform web content to best satisfy the different expectation of

users, since this is very important to both web users and web content providers.

Web content transformation is often done on web intermediary servers like

proxies. This is because such solution has many advantages. First, this solution is

cost-effective as it uses dedicated hardware design for content transformation and

delivery and it has the one-to-many nature. Second, the management is centralized in

such solution so it is easy to manage the system. Third, this solution is easy to deploy

because there is no need for collaboration from web servers and clients. Finally, there

are some types of content transformations which should be done more appropriately in

the intermediary servers. Examples of such transformation include advertisement

localization and content personalization etc.

Content transformation on web intermediary servers is often carried out in

real-time because the intermediary servers usually do not have all the content to apply

offline transformation on it. When doing real-time content transformation, web

intermediary servers basically have the following three ways to perform the task:

1) Chunk-streaming approach

As we know, web content is transferred in a sequence of data chunks from server to

client. In this approach, web intermediary server will apply content transformation

138

on each data chunk it receives and then forward it to client. This way,

transformation is done on the fly, without delaying the transfer of each chunk.

2) Partial-object buffering approach

In this approach, web intermediary server will buffer certain number of data chunks

before it apply content transformation on them. This is important for some

transformations which require some previous or/and future data to perform the

transformation. After transformation, some data chunks are forwarded to clients

while some may be kept for the transformation on the following data.

3) Full-object buffering approach

This approach buffers the whole object at web intermediary server and then

perform the necessary transformation on the whole object. After that, the object will

be forward to clients, still in a chunk-by-chunk way.

While many studies focus on the real-time feature and the restrictions on the kind

of transformation that can take place etc. for the above three approaches of content

transformation, there is little study on the possible impacts of these different content

transformation approaches on web retrieval latency. In this section, we would like to

use our WRDM model to analyze the performance impacts of content transformation,

with special emphasis on page retrieval latency.

6.4.2 Impact of Content Transformation on Web Retrieval Latency

In order to study the performance impacts of content transformation using our

WRDM model, we first need to extend our WRDG graphs to capture web retrieval

process when intermediary servers are in presence. Figure 6.26 gives a WRDG graph for

the retrieval process of a page with 2 EOs. In the intermediary server, every data chunk

would have two associated operations: receiving from web server and forwarding to

client. So we use two vertices to represent one data chunk for the retrieval process in

139

intermediary server: the vertex υi r represents the receiving of the data chunk Chk(i)

from server, and the vertex υi f represents the forwarding of the data chunk Chk(i) to

client. For simplicity reason, we do not show the retrieval process of EOs in the graph.

Instead, we just show the definition points of the EOs.

Figure 6.26 WRDG graph for retrieval process in the presence of intermediary server

When chunk-streaming approach of content transformation is carried out on

intermediary server, there will be some transformation processing time between the

receiving and forwarding of every data chunk. We use a vertex υt to represent this

transformation operation. Figure 6.27 demonstrates the retrieval process for a page with

two EOs when intermediary server applies chunk-streaming transformation on the

content. Because intermediary servers often have special dedicated hardware design

for content transformation, so the latency incurred by the transformation for a data

chunk is often negligible to client. So, we can generally assume that the user perceived

latency in Figure 6.27 is the same as the one in Figure 6.26.

r

l

c

s

e

 d0 r

 d0 f

 d1 f

r

l

c

s

e

d0

d2

EO1
•
•
•

EO2
•
•
•

Client Intermediary Server

 d1 r

 d2 r

 d2 f

 d3 f

 d3 r

d1

d3

140

Figure 6.27 Retrieval process for chunk-streaming transformation

When the intermediary server employs the partial-object buffering approach to

do content transformation, it may affect the definition time (DT) of EOs. Figure 6.28

gives an illustration of the retrieval process for a page when intermediary server uses

partial-object buffering transformation approach. Here we assume the intermediary

server always buffers two chunks for content transformation. Comparing this graph

with Figure 6.27, we can see that the definition points of both EO1 and EO2 have been

postponed to later points. We call this effect as push-back effect of content

transformation.

Pushing the definition points of EOs to later points means that the DT times of

EOs will become larger. As we learnt in previous sections, DT times of EOs play very

important role in whole page latency. Enlarging DT time could result in increase in

whole page latency.

r

l

c

s

e

 d0 r

 d0 f

 d1 f

r

l

c

s

e

d0

d2

EO1
•
•
•

EO2
•
•
•

Client Intermediary Server

t

t
 d1 r

 d2 r

 d2 f

 d3 f

t

t
 d3 r

d1

d3

141

Figure 6.28 Retrieval process for partial-object buffering transformation

Figure 6.29 shows the retrieval process for a page when full-object buffering

transformation is used. From this graph, we see that the push-back effect becomes even

more serious. Because the intermediary server buffers the whole object before it

applies content transformation, so the forwarding of every data chunk has been

postponed to the bottom severely. This could dramatically increase the DT times of

EOs, which would in turn increase whole page latency.

6.4.3 Experimental Study

We conduct simulation experiments to find out the impacts of real-time content

transformation on web retrieval latency. The approaches we examined are the

partial-object buffering transformation and the full-object buffering transformation.

For the partial-object buffering transformation, we assume the intermediary server

always buffers two chunks of data for content transformation. As for the

chunk-streaming transformation, we assume its impact is negligible and treat its

r

l

c

s

e

 d0 r

 d0 f

 d1 f

r

l

c

s

e

d0

d2

EO1
•
•
•

EO2
•
•
•

Client Intermediary Server

t

 d1 r

 d2 r

 d2 f

 d3 f

t

 d3 r

d1

d3

142

performance is the same as the normal situation, i.e. web retrieval through

intermediary servers with no content transformation. The normal situation is included

in our study to be used as a reference base for comparing the performance of different

transformation approaches.

Figure 6.29 Retrieval process for full-object buffering transformation

Figure 6.30 shows the impact of real-time content transformation on DT times of

EOs. From it, we can see that content transformation have significant impact on the

DT times of EOs. The impact of full-object buffering transformation is much higher

than that of partial-object buffering transformation. On average, DT times of EOs have

been increased about 63.5% and 18.8% by full-object buffering transformation and

partial-object buffering transformation, respectively. With this significant impact, we

expect that there would be substantial increase in whole page latency when full-object

buffering transformation or partial-object buffering transformation is conducted on

intermediary servers.

r

l

c

s

e

 d0 r

 d0 f

 d1 f

r

l

c

s

e

d0

d2

EO1
•
•
•

EO2
•
•
•

Client Intermediary Server

 d1 r

 d2 r

 d2 f

 d3 f

t

 d3 r

d1

d3

143

Figure 6.30 Impact of real-time content transformation on DT times of EOs

Figure 6.31 Impact of real-time content transformation on page retrieval latency

Figure 6.31 shows the impact of real-time content transformation on page retrieval

latency. As expected, we see that they indeed result in substantial increase in whole

page latency. When full-object buffering transformation or partial-object buffering

transformation is conducted on intermediary servers, page retrieval latency would be

increased by 10.6% and 4.9% respectively. We also note that the impact of real-time

content transformation on page retrieval latency is not as significant as it does on the

DT times of EOs. This could be mainly due to the parallelism in web retrieval, which

prevents object latencies from being mapped into page latency directly.

From the above study, we see that full-object buffering real-time content

transformation has the most severe impact on web retrieval latency. So we would like

to suggest not using it in web systems. The chunk-streaming transformation has the

0%

30%

60%

90%

120%

150%

180%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs per Page

R
el

at
iv

e
D

T
Ti

m
e

Normal Partial-Object Buffering Whole-Object Buffering

0%

20%

40%

60%

80%

100%

120%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs per Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy

Normal Partial-Object Buffering Whole-Object Buffering

144

least impact on web retrieval latency and such impact is often negligible. So it may be

considered when implementing real-time content transformation. However, for certain

types of transformation which requires seeing more data than just one chunk of data,

we would better use the partial-object buffering approach. As we see from the above

results, the partial-object buffering approach does have some negative effect on page

retrieval latency, but the effect is moderate. So, it should be highly preferred rather

than the full-object buffering approach when more data need to be seen for content

transformation.

6.5 Upper Bounds of Improvement on Web Retrieval Latency

Many acceleration mechanisms have been proposed to tackle the problem of long

web retrieval latency. The reuse-based mechanisms (e.g. web caching and prefetching)

are the first category mechanisms being proposed. Many studies have examined the

upper bound for the performance of such mechanisms and showed that their

improvement is limited [13, 14, 17, 18, 19, 20, 108, 109]. To overcome the limitation,

another new direction which aims to accelerate the actual retrieval process of web

pages is getting more attention. The new direction is believed to have better potential

because they do not suffer from the cacheability related issues such as the low reuse

ratio of web objects and the ever-increasing amounts of dynamic web content.

Examples of such techniques include compression, content selection and persistent

connection, etc. While the new direction of acceleration has shown some promising

potential ([22, 23, 24, 25, 26, 27, 28, 37] etc.), it remains to be seen the quantitative

upper bound of the techniques in this direction. Below, we would like to investigate the

upper bounds for the performance improvements for the acceleration mechanisms in

this direction. The results would help us to get some idea about the potentials of this

direction of acceleration.

145

In deriving the quantitative upper bounds, we make some best-cases assumptions

about the latency components in web retrieval to base our simulations on. The

performance of these best-cases will be the upper bounds for web retrieval under

different situations.

6.5.1 Upper Bounds for Location Resolution Related Acceleration

Web retrieval process typically starts with the resolution of the location of a

server. In current web system, such location resolution processes are DNS lookups.

The latency caused by this process is referred to as LRT in our WRDM model. Many

mechanisms have been proposed to reduce the LRT time in web retrieval, such as

stored address binding [194], pre-performing DNS lookups [195], proactive caching of

DNS records [196] and so on.

We can derive the upper bound for location resolution related mechanisms by

assuming the best-case situation for this process. Since this process is typically DNS

lookup in current web system, so the best-case situation would be that 100% DNS

lookups result in hits in local DNS cache. Figure 6.32 illustrates this best-case situation

using a WRDG graph for a page with one EO.

By assuming the smallest LRT time for every request, we can derive the

performance upper bound for location resolution related acceleration mechanisms.

Figure 6.33 plots our simulation results of the performance of the best-case situation.

From Figure 6.33, we see that the performance of the best-case situation is better

than the normal situation, but the difference is not very significant. On average, the

best-case situation improves the performance by about 5.07%. This shows that the

room for improvement in this direction is rather limited. This is because the location

resolution related acceleration mechanisms only reduce the LRT time which occupies

just a small portion of the whole object latency. Refer back to Figure 6.5, LRT time

146

contributes about 1~6% of the whole object latency. This indicates that the

performance of mechanisms in this direction will not be significant, although there is

still some room for improvement.

Figure 6.32 Best-case assumptions for location resolution related mechanisms

Figure 6.33 Upper bounds for location resolution related mechanisms

6.5.2 Upper Bounds for Connectivity Related Acceleration

The establishment of network connection plays a very important role in web

retrieval. The latency incurred by network connection establishment, i.e. the CT time,

r

l

c

s

e

d0

d2

Normal Situation Best-case Situation

d1

d3

r

l

c

s

e

d0

d1

r

l

c

s

e

d0

d2

d1

d3

r

l

c

s

e

d0

d1

DNS lookups may
result in local DNS
cache misses, so the
LRT time could be
long.

DNS lookups always
result in local DNS
cache hits, so the LRT
time is always the
smallest.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs per Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy

Normal Best-case DNS

147

is one of the most significant components in object retrieval latency. From Figure 6.5,

we already see that CT time can sometimes occupy more than 50% of the whole object

latency.

Typical connectivity related acceleration mechanisms include

persistent-connection, pre-connection and bundling etc. [21, 22, 24, 192, 195, 197, 198,

199, 200], MGET [22, 23, 25, 201, 202]. All these mechanisms try to accelerate web

retrieval by reducing the CT time for every request.

Figure 6.34 Best-case assumptions for connectivity related mechanisms

To derive the upper bound for connectivity related mechanisms, the best-case

situation needs to be assumed. In our study, we assume perfect persistent-connection in

web retrieval. By perfect persistent-connection, we mean that every request enjoys

persistent-connection, so the time spent on network connection establishment will be

the minimum. Figure 6.34 demonstrates how this best-case assumption affects page

retrieval latency. Using this assumption, we get an upper bound for the mechanisms in

this direction, which is shown in Figure 6.35.

r

l

c

s

e

d0

d2

Normal Situation Best-case Situation

d1

d3

r

l

c

s

e

d0

d1

r

l
c

s

e

d0

d2

d1

d3

r

l

s

e

d0

d1

Connection setup time
is usually quite large in
web retrieval

By assuming perfect
persistent-connection,
the CT time is reduced
to almost zero for
every request

c

148

Figure 6.35 Upper bounds for connectivity related mechanisms

From Figure 6.35, we see that the performance gain by the best-case situation is

significant, with an average of about 27.64%. This result shows that the room for

improvement in this direction is substantial. It also reemphasizes the importance of CT

time and the effectiveness of those connectivity related mechanisms.

6.5.3 Upper Bounds for Transfer Related Acceleration

The latency incurred by the actual transfer process is the CST time in web

retrieval. As we learnt from Figure 6.5, CST time often makes up more than 50% of the

whole object latency. For big objects, it can reach as high as 95% of the object latency.

There are quite a number of mechanisms aiming to reduce this significant latency

component. Typical examples include delta encoding, compression, transcoding and

content optimization etc. [220, 218, 221, 224, 219, 222, 223, 26, 218, 219, 203, 203,

217, 27, 225, 227, 226, 28, 228, 204]. All these mechanisms try to reduce the amount

of data being transferred during the retrieval of an object.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs per Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy

Normal Best-case Situation

149

Figure 6.36 Best-case assumptions for transfer related mechanisms

Again, we need to assume the best-case situation in order to derive the upper

bound for transfer related acceleration. In our study, we use this situation as the

best-case situation: there is only one chunk of data being transferred during the transfer

process of any objects. We believe this shall be a reasonable best-case situation as

every object request would result in at least one chunk of data being returned from the

server. Figure 6.36 gives a simple illustration of this assumption using WRDG graphs.

Based on this best-case assumption, we are able to derive the upper bound for the

mechanisms in this direction, as shown in Figure 6.37.

From this graph, we see that the performance of the best-case of transfer related

acceleration is also significantly better than the normal situation. The average

difference between them is about 15.11%. We notice that the difference in performance

in Figure 6.37 is generally smaller than that in Figure 6.35. At first, we feel this is

somewhat surprising because we know that CST time is equal or even more important

to web retrieval latency than CT time. But further study reveals the reason for this

r

l

c

s

e

d0

d2

Normal Situation Best-case Situation

d1

d3
r

l

c

s

e

d0

d1

There are usually
multiple data chunks
in an object transfer

r

l

c

s

e

d0

r

l

c

s

e

d0

For the best-case
situation, we assume
every object transfer has
only one data chunk

150

result: For the best-case situation in this study, we assume there is only one chunk of

data in the transfer of any objects. With reference to Figure 6.8 and Figure 6.9, we see

that the latency for transferring one data chunk is actually quite large. This may

explain why the overall improvement is not as significant as the one shown in Figure

6.35.

Figure 6.37 Upper bounds for transfer related acceleration

6.5.4 Integrated Upper Bounds for Web Acceleration

Finally, we would like to investigate the integrated upper bounds for web

acceleration when the best-case situation is assumed for every possible step in web

retrieval. For this study, we include four best cases in our study and derive four upper

bounds based on them. The assumptions for these best cases are listed below. Note that

the assumptions for the four upper bounds only differ on the parallelism width and the

DT times of EOs.

ü Assumption on parallelism width (i.e. WT time of EOs)

We assume two parallelism widths for deriving the upper bounds.

(1) The first parallelism width is four, i.e. the normal situation.

(2) For the other situation, we assume infinite parallelism width is used. Under this

assumption, the WT time of all objects will be zero, which is undoubtedly the

best case for WT times.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs per Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy

Normal Best-case Situation

151

ü Assumption on DT time of EOs

For this parameter, we have two different assumptions:

(1) We assume the DT time of all EOs equal to the time of the first data chunk of

the CO of the page. This is equal to say that we assume all the EOs of a page

are defined in the first data chunk of the CO. This shall be the best practical

case for current web pages;

(2) We assume the DT times of all EOs are equal to zero. This will be theoretically

the best case that DT time can be.

ü Assumption on LRT time

We assume the LRT time for all requests is always the smallest. Because the LRT

time comes from DNS process in current web system, this assumption means that

all DNS processes are treated as local-cache-hit. According to our experimental

result, a local-cache-hit DNS lookup typically takes about 0.003 seconds to finish.

ü Assumption on CT time

CT time comes from the establishment of network connection. Here we assume

“perfect persistent connection” for our simulation. By “perfect persistent

connection”, we mean that all requests would enjoy persistent connection, which is

even more than the best case that current techniques can deliver. With this

assumption, CT time will always be the smallest.

ü Assumption on CST time

CST time is the actual transfer time of data chunks and we assume it is related to

the size of objects. For all objects, we try to use the smallest possible sizes for them.

In detail, we assume there is only 1 chunk of data transfer for text objects like COs,

and for other types of objects like images, video and audio files etc., we assume 1/2

of the original size is used. We believe this shall be reasonably the best sizes that

152

any encoding, transcoding, or content selection algorithms may give.

There are two other latency components, i.e. RST and ET. For them, no best-case

values are assumed and we just use the normal values. This is because they can hardly

be reduced in current web system, and their impact on page latency is significantly

much smaller compared with other latency components.

The combination of the above assumptions gives four best case situations for

deriving the upper bounds. The assumptions for each best case are briefly listed in

Table 6.1 and illustrated by the WRDG graphs in Figure 6.38 and Figure 6.39.

Table 6.1 Assumptions for the best cases

 Best Case 1 Best Case 2 Best Case 3 Best Case 4
Assumption on

parallelism Parallelism = 4 Parallelism = Infinite (i.e. WT = 0)

Assumption on
DT DT = 1st chunk time DT = 0 DT = 1st chunk time DT = 0

Assumption on
LRT LRT = Local-cache-hit DNS lookup time (about 0.003 seconds)

Assumption on
CT Perfect persistent connection (0.031749 seconds)

Assumption on
CST

Text objects: Assume its transfer contains only 1 chunk of data
Other types of objects: 1/2 of the original size is assumed

We used the traces and tools described in Chapter 5 to conduct simulations in

order to derive the quantitative upper bounds. The results we got are plotted in Figure

6.40. The normal situation, i.e. normal DT time and parallelism equal to four, is used as

a reference against the upper bounds.

From Figure 6.40, we see that all best-cases give much better performance than the

normal situation. This indicates that the room for improvement is significant. On

average, the best-case situations can improve the performance from about 70% to

about 75%. These high percentage improvements of the upper bounds suggest that the

acceleration which aims to accelerate the actual retrieval process of web objects and

pages is a very promising research direction.

Besides the great potential given by the upper bounds, we also have an

153

interesting observation from Figure 6.40. We see that the performance of

“Parallelism=Infinite” (i.e. Best Case 3 and 4) is better than the performance of

“Parallelism=4” (i.e. Best Case 1 and 2), and the difference between them becomes

larger when the number of EOs in a page increases.

Figure 6.38 Assumptions for the Best Case 1 and Best Case 3

Obj(0)

l(0)

r(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

d(0,3)

Assume all DNS lookups
are local cache hit

…………

Assume perfect persistent
connection

For textual object:
Assume its transfer
only has 1 chunk
in

*

*

Obj(1)

l(0)

r(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

d(0,3)

For other types of objects:
Assume 1/2 original size
is used

Other assumptions
also apply to EOs

Obj(n)

l(0)

r(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

Assume all EOs are
defined in the 1st
chunk of the CO

…………

* These components
 can not be reduced

Parallelism = 4, or
Parallelism = unlimited

154

Figure 6.39 Assumptions for the Best Case 2 and Best Case 4

Figure 6.40 Upper bounds of improvement on page retrieval latency

This is not surprising because: Since we assume either all EOs are defined in the

first data chunk of CO or the DT times of EOs are zero, so EOs are made known for

retrieval very early and they all happen at the same time in a burst mode. When the

number of objects in a page is greater than retrieval parallelism, parallelism will

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+

Number of EOs in a page

R
el

at
iv

e
pa

ge
 re

tri
ev

al
la

te
nc

y

Normal Best Case 1 Best Case 2 Best Case 3 Best Case 4

Obj(0)

l(0)

r(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

d(0,3)

………… Obj(1)

l(0)

r(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

d(0,3)

All other assumptions are the same as Best Case 1, 3

Obj(n)

l(0)

r(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

Assume the DT times of
all EOs are equal to 0

Parallelism = 4, or
Parallelism = unlimited

155

become a bottleneck of web retrieval performance. When parallelism is increased to

unlimited, such bottleneck is removed. So the performance improvement for infinite

parallelism width is better than those under parallelism of 4.

When the number of EOs in a page is big, wider parallelism width will be more

effective. This is because: in such situations, more EOs will be held in waiting state if

parallelism is limited. In other words, the demand on parallelism is higher in such

situation. Increasing parallelism width would right meet the demand. So, wider

parallelism width becomes more effective when the number of EOs in a page is big.

That is why we see that the performance difference between “Parallelism=Infinite” and

“Parallelism=4” becomes bigger when the number of EOs in a page increases.

6.6 Conclusion

This chapter presented our detailed study and analysis on both object retrieval

latency and page retrieval latency based on our WRDM model. The results shed light

on the complicated interaction among the factors affecting web retrieval latency, which

is largely ignored in previous object-level study in this area. For individual single

object retrieval, we see that the CT time and CST time are the two major latency

components, and most objects consist of multiple data chunks in their transfer. When

objects are put together to form a page, the CT time and CST time are no longer the

dominating latency components. Due to the dependency among the objects in a page

and limited parallelism width used in web retrieval, the DT time and WT time

contribute even more to page retrieval latency than actual object fetch latency does.

Our detailed study based on WRDM model reveals the complicated relationship

among DT, WT, parallelism and page retrieval latency, and shows that to achieve

optimal web retrieval performance would require prudent consideration of all the

factors. Simply adjust any one of them will not help much because the performance

156

will soon be bottlenecked by other factors. Based on the understanding of web retrieval

latency using WRDM model, we also analyzed the possible impact of real-time content

transformation on web retrieval latency and derived various upper bounds for web

acceleration. The abundant and comprehensive results obtained in this study also show

that the WRDM model is a very useful and effective tool for studying web retrieval

latency.

157

Chapter 7 Study of Compression in Web Content Delivery

7.1 Introduction

User's perceived latency for web content retrieval is always a big concern to web

users and content delivery and distribution network service providers. People want to

access information faster for a given network bandwidth. To improve the performance

of web content retrieval, caching [9, 10, 11] and prefetching [12, 13, 14] have been

introduced. However, the performance of these caching-based mechanisms is limited

due to the characteristics of web traffic and the cacheability of web objects [13, 14, 17,

18, 19, 20]. To overcome the limitation, researchers are actively looking into

mechanisms which accelerate the downloading process of retrieval objects and pages.

Examples of such mechanisms include persistent connection [21, 22], pre-connection

[195], parallel fetching [229, 230, 231], bundling [23, 24, 25], delta encoding [26, 27,

28], and compression [28, 206]. These mechanisms are believed to have good potential

because they cover a wider range of objects and pages.

In this chapter, we would like to investigate the effect and implication of

compression in web content delivery from the detailed chunk level. Here the term

“compression” means a mechanism which applies a lossless compression algorithm on

textual web objects. The support for such compression has been included in both

protocols and web browsers. Protocols have included support for web compression

since HTTP/1.0 [36]. HTTP/1.1 further enhanced this support by including more

compression algorithms such as gzip, deflate and compress [37]. Most common web

browsers such as Microsoft IE and Netscape have also equipped support for web

compression since 1998 [206]. So, in current web system, it is possible for web data to

be compressed and decompressed with no user interaction at the end point. These

actions can even be performed in real-time.

158

Compression is reported to have good potential in increasing virtual network

bandwidth, reducing network traffic and workload on web servers, and reducing

download time of web pages [206, 215, 216]. While it is instinctive to understand that

it is always going to be faster to transfer a smaller file than a larger one, there are some

issues regarding page retrieval latency worth of studying.

Typically, a web page is made up of multiple objects, among which one is called

page Container Object (CO) and others called Embedded Objects (EO). CO usually is

in the form of an HTML file while EOs are mostly images. An HTML file consists of

only ASCII text so it is highly compressible. But images used in web pages are usually

pre-compressed and it is difficult to compress them further. So, the CO is often the

only object in a page that is suitable for compression. Since CO only occupies part of

the total page size, how effective would it be to just apply compression on the CO?

Figure 7.1 shows the distribution of pages with respect to the ratio of CO size vs.

total page size. From the graph, we see that for more than 60% of web pages, COs

occupy less than 50% of total page size. On average, CO occupies only about 44% of

total page size. Therefore, no matter how compressible COs are, the data left for

transfer would still be more than half of total page size. Considering that there are

other latency components such as location resolution time and connection time which

can not be improved by compression, we would expect that the performance

improvement that compression can bring in would be much smaller than 50%. So,

although COs might be compressed up to many times smaller, the improvement on

page latency would not be that significant.

Note that Figure 7.1 also shows that there are about 13.7% of web pages whose

COs’ size is equal to the whole page size. This is because that these pages consist of

only one object which is the CO.

159

Figure 7.1 Distribution of pages w.r.t. the ratio of “CO size vs. whole page size”

When talking about whole page latency, two critical factors must be taken into

consideration: (1) Dependency between CO and EOs of a page, and (2) Parallelism

width for simultaneous object fetching. Because EOs are defined in CO, so the

retrieval processes of EOs would depend on the retrieval process of CO. When

compression is applied to CO and thus affects CO’s latency, EOs’ retrieval latency

would be affected as well and this would in turn affect whole page latency. Parallel

fetching of objects in a page is commonly used in most current web browsers. This

complicates the relationship between object latency and whole page latency as the

overlapping of object latency makes it possible for the fetching of one or more objects

to virtually have no effect on the whole page latency. Taking this into consideration, it

would be doubtful if compression is still effective when parallel fetching of objects is

employed. As compression could have influence on both of the factors, it would be

important to study the relationship between them.

There are basically two compression mechanisms in current web system, namely

Pre-compression and Real-time compression. Pre-compression compresses objects

before they are requested and stores the compressed copies on the server, while

real-time compression compresses data on the fly during the actual transmission of the

data itself. While people mostly concentrate on the complexity of file management, the

real-time feature, and the coverage of static and dynamic objects of these two

0%
2%
4%
6%
8%

10%
12%
14%
16%

<=10% <=30% <=50% <=70% <=90%
Ratio of CO size vs. whole page size

Pe
rc

en
ta

ge
 o

f p
ag

es

160

compression mechanisms, their performance on whole page latency is not well studied.

A detailed study on the difference of the performance of these two compression

mechanisms could be useful in helping people to have insight view of them.

The above issues about compression in web content delivery have not been well

studied. Little literature regarding these issues can be found. Most of existing studies

on compression, e.g. [27, 206, 216] and [191], did not investigate real-time

compression, and, none of them studied compression’s effect on whole page latency. In

this chapter, we report our studies on these issues at the detailed chunk level. By

employing fine-grained model and logs, we are able to reveal the complicated

relationship between the factors and compression’s impact on them. Results show that

compression gives lower improvement on whole page latency than it does on single

object latency; parallelism width does not affect the effectiveness of compression, in

fact, compression is slightly more effective when parallelism width is greater than one;

in terms of object latency and page latency, pre-compression always outperforms

real-time compression.

In this chapter, we also propose a novel compression mechanism specifically

designed for HTML objects to achieve better performance in web content delivery.

The remainder of this chapter is organized as follows. Section 7.2 describes some

concepts and background knowledge relative to web compression. Section 7.3 presents

our detailed chunk-level study of web compression mechanisms to help us get in-depth

understanding on the behavior and performance of them. In Section 7.4, we propose a

novel compression algorithm specifically for web content to achieve better

performance. Finally, the chapter concludes in Section 7.5.

7.2 Concepts Related to Compression in Web Content Delivery

As we learned in Chapter 4 and Chapter 6, a web page usually is made up of one

161

Container Object (CO) and multiple Embedded Objects (EO), and the CO is often a

basic HTML file and EOs are mostly inlined images. The CO of a page is always the

first object returned from the server when the page is requested by client. Both CO and

EOs are transferred through network connection from server to client in a streaming

way, chunk by chunk.

The latency components for CO and EO are a little different. The retrieval

latency for CO is relatively simple. It mainly comes from the retrieval process. But for

EOs, the retrieval latency is more complicated due to the dependency between CO and

EOs and the limited parallelism width employed by most web browsers for

simultaneous fetching of objects. So, in addition to the latency coming from the

retrieval process, EOs also have Definition Time (DT) and Waiting Time (WT) in their

total retrieval latency (refer to Chapter 6 details). These two latency components play

an important role in total page latency. However, they are unnoticed in previous studies

on compression.

Web compression is usually achieved by applying a lossless compression

algorithm on textual web objects (which usually are the COs). There are basically two

ways to apply compression on web objects. The first way is to compress objects

beforehand and store the compressed copies on web server to serve future requests.

This mechanism is often called Pre-compression. The other way of compression is to

compress each chunk of object data on the fly during the actual transmission of the

data chunk sequence of the object. This mechanism is referred to as Real-time

compression in our study. Considering the streaming nature of web content delivery

and dependency between CO and EOs, these two compression mechanisms could have

different effect on object latency and whole page latency. In this chapter, we present

our detailed chunk-level study on these factors to reveal the effect of these

162

compression mechanisms on web content delivery. We also propose a new

compression mechanism specifically for web content compression to achieve better

performance.

7.3 Understanding Compression in Web Content Delivery

7.3.1 Methodology

In our study, we performed retrieval for a large number of web pages in real web

environment and obtained detailed chunk-level logs for all compression mechanisms,

including the normal situation “No Compression” which is used as a reference in our

study.

We first get page URLs from a NLANR trace [276] dated 5th August 2003. Then

we replicate those pages content (including EOs) on our web server. We make a

pre-compressed version of each page and put it in the same directory as the original

page. For real-time compression, we use a reverse proxy to perform the task. We use

the zlib compression library [214] to build real-time compression capability into a

Squid system [73, 11] version 2.4.STABLE3 to be used as the reverse proxy. Page

requests are generated automatically by a web client program pavuk [285]. All requests

are forced to pass through a remote proxy in Europe to emulate the real web

environment. Detailed chunk-level logs are recorded by the instrumented web client

program and forward and reverse proxies. The information about other environment

configurations such as software/hardware platform and network environment is

described in Chapter 5.

Due to time and space limitation, we stopped the collection of logs when the total

log size reached around 17 GBytes. The logs contain a little more than 72,000 web

pages, which consists of about 1,010,220 objects. The logs are processed and fed into

our simulators to get results for this study.

163

In the following three subsections, we present the results of our study at

chunk-level for insight view of web compression.

7.3.2 General Studies

First of all, we would like to look at some characteristics of web objects and

properties of web data transfer that are related to compression.

7.3.2.1 Some Properties about Web Object Transfer

First, let us review some chunk-level results revealed in Chapter 6, which are

applicable and important to compressible objects.

Figure 6.16 shows that a large percentage of COs have sizes between 8 KBytes to

128 KBytes, with an average size of 35.5 KBytes. Since those objects are the

candidates for compression, this considerably large-sized distribution gives a good

potential for applying compression on them as we know that compression is usually

more effective for bigger files.

Figure 6.17 shows that the majority of COs are made up of multiple chunks, and

Figure 6.7 shows that the majority (65%) of chunks have sizes between 1 KBytes and 2

KBytes. However, it is worth mentioning that there are also a high percentage of

chunks with much bigger sizes above 10 KBytes.

Compression could have influence on both chunk sizes and the number of chunks

in an object transfer. Pre-compression reduces object size before the object is requested,

so the object data could be delivered by a smaller number of chunks. As for real-time

compression, it performs compression in real-time by compressing every chunk in the

object transfer. Thus, we would expect that real-time compression would reduce the

size of every chunk instead of the number of chunks in the chunk transfer sequence.

Since the transfer time of every chunk contributes towards the object retrieval latency,

compression would affect object retrieval latency through the influence on chunks.

164

Since chunk size would be affected by compression, the transfer time for chunks

with different sizes would be important to our study. From Figure 6.8, we know that the

distribution of the latencies for chunks with different sizes is quite random. The latency

for smaller chunks is often comparable to that of much bigger chunks. This

observation is important because it indicates that reducing chunk size might not help

much in reducing object retrieval latency. We could further deduce that “reducing the

number of chunks” might be more effective than “reducing the size of chunks” in

terms of reducing object retrieval latency.

Here, we would also like to emphasize the two extreme phenomena revealed in

Figure 6.8. One is that the latency for very large chunks is indeed much bigger than

that of smaller chunks. This suggests that reducing size for these chunks may still be

helpful in reducing their latency. The other phenomenon is that the latency for the

“<=1k” group is even bigger than that of “<=2k” to “<=4k” groups. This is mainly due

to the TCP slow-start, which indicates that the first a few chunks on a TCP connection

are relatively more expensive than the rest. Based on this observation, we would

expect that compression might not help much in reducing object latency for small

objects. For larger objects with more than 4 chunks in its transfer sequence, the TCP

slow-start effect would become less significant as it would be amortized with the

transfer of large number of chunks.

165

Figure 7.2 Impact of two compression mechanisms on page retrieval latency

4 chunks may still be 4 chunks
after real-time compression,

only that the size of each chunk
becomes smaller

r

l

s

e

c

d0

r

l

s

d1

e

c

d0

r

l

s

d1

d3

e

d2

c

d0

r

l

s

e

c

d0

Page
Latency r

l

s

e

c

d0

r

l

s

d1

e

c

d0

r

l

s

d1

d3

e

d2

c

d0

r

l

s

e

c

d0

Page
Latency

(a) Pre-compression

(b) Real-time compression

4 chunks may become 2 chunks
after pre-compression

r

l

s

e

c

d0

r

l

s

d1

e

c

d0

r

l

s

d1

d3

e

d2

c

d0

r

l

s

e

c

d0

r

l

s

e

c

d0

r

l

s

d1

e

c

d0

r

l

s

d1

e

c

d0

r

l

s

e

c

d0

Page
Latency

Page
Latency

166

Because compression is mainly applied on COs and there is dependency between

CO and EOs, so EOs’ latency will also be affect by compression, which would in turn

affect whole page latency. Figure 7.2 demonstrates the possible impact of the two

different compression mechanisms on page retrieval latency. From it, we suspect that

real-time compression may not be as effective as pre-compression in reducing whole

page latency.

7.3.2.2 Chunk Level Study on the Effect of Compression on Single Object

In this section, we would like to study the effect of compression on object latency

at chunk level.

Figure 7.3 shows relative object latencies with respect to object size for different

compression mechanisms. Here, the normal situation “No Compression” is used as the

reference. From this graph, we see that both pre-compression and real-time

compression have improvements on object latency and the improvement is

considerably big. For pre-compression, the improvement ranges from 16.4% to 88.1%,

with an average of 57.2%. For real-time compression, the performance gain is from

8.1% to 51.1% and the average gain is 32.3%. The result shows that pre-compression

always gives higher improvement than real-time compression does. This could be due

to the reason we deduced earlier that pre-compression reduces the number of chunks of

an object transfer which is more effective than reducing the size of chunks attained by

real-time compression. We will further look into this reason in the later part of this

section.

It is a little surprising to see that real-time compression also has big improvement

on object latency since it tends to reduce the size of every chunk instead of reducing

the number of chunks. Further study shows that real-time compression also reduces the

number of chunks in some situation. This is due to a special phenomenon found in

167

real-time compression. We call this special phenomenon “delay-and-merge” effect and

we will discuss it further in the later part of this section.

Figure 7.3 Effect of different compression mechanisms on object latency

As object size increases, the performance of pre-compression generally gets

better. This could be because of these two reason: first, the compression ratio is

normally higher for bigger files; second, when object is small, other latency

components (such as connection time) and the TCP slow-start effect are relatively

more significant, which makes the effect of compression marginal.

The situation for real-time compression is more complicated. As object size

increases, the performance of real-time compression first gets better and then lower,

and for the last object size range “Other” (i.e. >128 KBytes), it gets better again. The

reasons are related to the “delay-and-merge” effect and we also put the explanations at

the later part of this section.

Now, we investigate the reason for compression’s effect on object latency at

chunk-level by examining how different compression mechanisms affect chunk sizes

and the number of chunks in an object transfer.

Figure 7.4 shows the distribution of chunk sizes under different compression

mechanisms. As expected, we see that real-time compression shifts the curve to the left

significantly. As many as 78% of chunks are compressed to sizes smaller than 1

0%

20%

40%

60%

80%

100%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k Other
Object size range

R
el

at
iv

e
ob

je
ct

 la
te

nc
y

No Compression Pre-Compression Real-time Compression

168

KBytes by real-time compression. However, this shifting is ineffective as the latency

for 1-KByte chunks is similar to or even higher than that for bigger chunks according

to Figure 6.8. On the other hand, we note that real-time compression shifts the 10k+

chunks to smaller chunks. The percentage of chunks belonging to 10k+ group under

real-time compression is significantly lower than that of other mechanisms. As we

learnt in Figure 6.8, the latency for very large chunks (30k+) is much bigger than that of

smaller chunks. So, to compress such chunks would be helpful in reducing the chunk

latency.

Figure 7.4 Distribution of chunks w.r.t. chunk sizes sent out from server

For pre-compression, the curve is also shifted to the left a little. The reason could

be that, after being pre-compressed, more objects become smaller objects and they

could be delivered by smaller number of chunks.

Figure 7.5 plots the number of chunks with respect to object size for different

compression mechanisms. We see the number of chunks for pre-compression is smaller

than normal situation and the difference between pre-compression and normal situation

becomes bigger as object size increases. This is actually instinctive to understand

because pre-compressed objects are smaller than the original ones so they could be

delivered by lesser number of chunks, and, the compression ratio is usually higher for

bigger objects, so the difference between pre-compression and normal situation

0%
10%
20%
30%
40%
50%
60%
70%
80%

<=1k <=2k <=3k <=4k <=5k <=6k <=7k <=8k <=9k <=10k 10k+
Chunk size

Pe
rc

en
ta

ge
 o

f c
hu

nk
s

No compression Pre-compression Real-time compression

169

becomes bigger. With much smaller number of chunks to transfer, it is easy to

understand why pre-compression could improve object latency so significantly (see

Figure 7.3).

Figure 7.5 Number of chunks w.r.t. object size under different compression mechanisms

It is surprising to see that real-time compression also reduces the number of

chunks in some situation since real-time compression is believed to reduce the size of

every chunk instead of reducing the number of chunks. Further study revealed a

special phenomenon behind. In our experimental system, the real-time compression is

performed by a reverse proxy. The reverse proxy receives chunks from the web server

next to it and compresses each chunk before sending them out. During the time when

the reverse proxy is busy compressing current chunk, the rest of chunks would

continuously arrive. Since the reverse proxy is busy, those incoming chunks would be

buffered in its buffer and merged into one. Therefore, the size of the following chunk

becomes bigger. We name this phenomenon the “delay-and-merge” effect. When

object size is big and it has a large number of chunks in its transfer, this effect would

accumulate, which would make chunks become bigger and bigger.

Figure 7.6 tries to show this effect by plotting chunk sizes with respect to the

chunk sequence number. We see that chunk sizes in real-time compression is generally

bigger than that of no compression and pre-compression, and the difference between

0%

20%

40%

60%

80%

100%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k Other
Object size range

R
el

at
iv

e
nu

m
be

r o
f c

hu
nk

s
No compression Pre-compression Real-time compression

170

them usually gets bigger for chunks with bigger chunk sequence number.

We also note that chunk size becomes bigger for all mechanisms as chunk

number increases. This could be also due to the TCP slow-start effect. With successful

transmission of more chunks, the transfer rate gets higher (see Figure 6.9) so that a

bigger amount of data could be transferred in one chunk.

Figure 7.6 Average size of chunks w.r.t. chunk sequence number

under different compression mechanisms

The “delay-and-merge” effect has a “warming-up” stage and a “mature” stage.

During the “warming-up” stage, chunk size would become bigger and bigger as

reverse proxy takes more and more time to compress each growing-bigger chunks.

However, because the buffer size in reverse proxy is fixed (64 KBytes in our

experimental system), this effect will “mature” when the chunk size grows close the

buffer size. In “mature” stage, chunk size would stop growing no matter how many

more chunks are still in the transfer sequence.

As chunks would grow bigger due to the “delay-and-merge” effect in real-time

compression, the number of chunks for a given object would become smaller than the

normal situation. This could explain the result of real-time compression in Figure 7.5.

For small objects, real-time compression does not seem to reduce the number of

chunks. This is because the number of chunks is too small for the “delay-and-merge”

to “warm-up”. As object size increases, the “delay-and-merge” effect starts to

0

5000

10000

15000

20000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2020+
Chunk sequence No.

A
ve

ra
ge

 c
hu

nk
 si

ze
 (b

yt
e) No Compression Pre-Compression Real-time Compression

171

“warm-up” so the number of chunks becomes smaller. However, this trend stops when

object size is big enough. This is because the “delay-and-merge” effect has matured.

With the above knowledge, we could give explanation on the performance of

real-time compression shown in Figure 7.3. Because real-time compression also reduces

the number of chunks for an object due to the “delay-and-merge” effect, it is

understandable why it also improves object latency. As object size grows from 1

KBytes to 4 KBytes, the performance of real-time compression gets better. This could

be because that the “delay-and-merge” effect is in the “warming-up” stage. For objects

with sizes between 4 KBytes to 128 KBytes, the “delay-and-merge” effect would get

mature so that we see that the performance of real-time compression stops getting

better. However, for very big objects with size greater than 128 KBytes, the

performance of real-time compression becomes better again. Further study reveals the

following reason: for the objects in this group, the chunk size could be very big due to

the “delay-and-merge” effect, and very big chunks could be effectively compressed to

smaller chunks by real-time compression (see Figure 7.4). With refer to Figure 6.8, the

latency for very large chunks (those with size greater than 30k) is much bigger than

that of smaller chunks. So, reducing the size of very big chunks would result in

reduction in transfer time. Therefore, the performance of real-time compression for this

group gets better again.

Considering that most COs consist of 6.7 chunks (see Figure 6.17) and most

chunks have sizes between 1 KBytes and 2 KBytes (see Figure 6.7), it would be more

effective to reduce the number of chunks than to reduce the size of chunks. This

explains why pre-compression always gives higher improvement on object latency

than real-time compression does.

In addition, the compression ratio of pre-compression is also slightly better than

172

real-time compression. Figure 7.7 shows the compression ratio of different compression

mechanisms. We see that pre-compression yields compression ratio about 5.2% better

than real-time compression does on average. This could be because pre-compression

can see the whole object data while real-time compression can only see one chunk of

the data. Generally, a compression program which can see the entire input file could

compress the file more effectively than the program which sees only part of the input

file does.

Figure 7.7 Distribution of compression ratio of objects

We also note that the compression ratio of pre-compression becomes higher as

object size increases. This is because compression is more effective for big files. While

it is easy to understand this, it is not so straightforward to understand the case for

real-time compression since it often does not see the entire input file. The reason why

real-time compression also generates higher compression ratio with the increasing

object size is a little “tricky”: When object size is large, the chunks in its transfer

sequence tends to be large due to the “delay-and-merge” effect, compression on a

single chunk would also be effective when chunk size is large.

Overall, the compression ratio of both of the compression mechanisms is very

high. On average, object size can be reduced 87.6% by pre-compression and 82.4% by

real-time compression. This further explains the high improvement on object latency

0%

20%

40%

60%

80%

100%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k Other
Object size range

R
el

at
iv

e
si

ze
 ra

tio

No compression Pre-compression Real-time compression

173

by these two compression mechanisms in Figure 7.3.

7.3.2.3 Effect of Compression on Whole Page Latency

Because the basic unit of browsing is page in current web system, whole page

latency is more meaningful to clients than object latency. In this section, we would like

to investigate the effect of compression on whole page latency.

As explained earlier, page latency is determined by more complicated factors. So,

the improvement on single object retrieval latency achieved by compression may not

be translated into the improvement on page retrieval latency directly. Figure 7.8 plots

relative page retrieval latency with respect to page sizes. Comparing it with Figure 7.3,

we see that the improvement on whole page latency achieved by compression is

significantly much lower than it does on object latency. The average performance gain

on whole page latency is about 12.2% by pre-compression and 7.4% by real-time

compression, as compared to the 57.2% and 32.3% gain on object latency by

pre-compression and real-time compression respectively.

Figure 7.8 Compression’s effect on whole page latency (Parallelism = 4)

Although the fact that compressible objects in a page (mainly COs) only occupy

part of the total page size could be partially the reason, the big difference between

compression’s performance on object latency and page latency may also indicate that

the two factors, i.e. (1) dependency among CO and EOs of pages and (2) parallelism

width for simultaneous object fetching, play an important role in determining page

0%

20%

40%

60%

80%

100%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k Other
Page size

R
el

at
iv

e
pa

ge
 la

te
nc

y

No compression Pre-compression Real-time compression

174

latency. In the following sections, we would study these factors in detail to get in-depth

understanding about compression’s effect on whole page latency.

7.3.3 Compression and Dependency

7.3.3.1 Dependency and Definition Time of EOs

We already know that there is dependency between EOs and CO, and such

dependency is very importance in determining whole page latency. Here, we first

review some of the studies regarding the definitions of EOs in COs.

From the studies in Chapter 6 (Figure 6.12, Figure 6.18, Figure 6.19, Figure 6.20), we

see that a considerably large percentage of EOs are defined in the late parts of CO’s

transfer sequence, and appearing in the chunks with large sequence number. If those

definitions could be shift to earlier chunks with smaller sequence number, EOs would

be made known to client for fetching significantly earlier. But an observation from

Figure 6.20 also indicates that there is limitation on shifting definition points of EOs to

earlier parts of CO’s transfer sequence because CO undergoes some latency

components such as CT time before the actual transfer of data chunks starts.

From Figure 6.19, we see that many EOs are defined in the chunks with large

sequence number. If those definitions could be shift to chunks with smaller sequence

number, EOs would be made known to client for fetching significantly earlier.

The dependency between EOs and COs causes the extra latency component, i.e.

the Definition Time (DT) in the retrieval of EOs. Figure 6.15 confirms that DT is a very

important latency component for EOs. So, reducing DT could be an effective way in

reducing the retrieval latency for EOs, which could in turn reduce the whole page

latency.

7.3.3.2 Compression's Effect on DT of EOs

Since the retrieval of EOs is dependent on CO and compression has significant

175

influence on CO (see Section 7.3.2.2), the DT times of EOs could be affected by

compression. In this section, we present our study of compression’s effect on the DT

times of EOs at the chunk level.

Figure 7.9 shows the relative DT times of EOs under different compression

mechanisms. We see that compression can reduce DT times of EOs considerably. The

reduction achieved by pre-compression is higher than real-time compression. This

could be due to the reasons studied in Section 7.3.2.2. On average, the DT time can be

reduced by 43.6% in pre-compression and 10.7% in real-time compression.

Figure 7.9 Relative DT times under different compression mechanisms

We notice that for the “23+” group in Figure 7.9, the DT time under real-time

compression is very close to that of “No Compression”. We speculate the reason could

be the following: For pages with “23+” EOs, their COs tends to be big in size. When

CO’s size is big, the “delay-and-merge” effect in real-time compression is more

obvious. This effect will make the later chunks bigger and bigger. While the chunks get

bigger, they could possibly contain more EOs in them. In other words, more and more

EOs are “delayed” to later chunks due to the “delay-and-merge” effect. So, the DT

time for the “23+” group gets close to that of “No Compression”.

Besides the reasons described in previous sections, Figure 7.10 also shows another

reason for why compression reduces DT times of EOs. This graph plots the number of

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in page

D
T

/ (
D

T
+

Re
tri

ev
al

 L
at

en
cy

)

No compression Pre-compression Real-time compression

176

EOs defined in each chunk for different compression mechanisms. We see that

pre-compression shifts the curve to the left significantly. In other words,

pre-compression makes more EOs known to client in earlier chunks, which would

mean smaller DT for EOs. Real-time compression also shifts the curve to the left, but

not that significantly.

Figure 7.10 Average number of EOs w.r.t. chunk sequence number in CO transfer

under different compression mechanisms

Figure 7.11 Relative values of “DT vs. EO latency” under pre-compression

From Figure 6.9 and Figure 6.20, we learnt that there would be limitation on

shifting definition points of EOs to earlier places. Here we would study the upper

bound of compression’s effect on DT times of EOs. We compute the upper bound by

assuming ideal DT for all EOs, i.e. assuming all EOs are defined in the first chunk of

CO’s transfer. Figure 7.11 and Figure 7.12 show the upper bounds for pre-compression

and real-time compression respectively. From them, we see that pre-compression has

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in page

D
T

/ (
D

T
+

R
et

rie
va

l
La

te
nc

y)

Normal DT Ideal DT

0
2
4
6
8

10
12
14
16
18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20+

Chunk sequence No.

A
ve

ra
ge

 n
um

be
r o

f E
O

s

No Compression Pre-Compression Real-time Compression

177

reduced the DT times very close to their respective upper bounds, while there is still

noteworthy difference between the normal case and ideal case for real-time

compression. This indicates that real-time compression is less effective in reducing DT

times of EOs.

Figure 7.12 Relative values of “DT vs. EO latency” under real-time compression

7.3.3.3 DT and Page Latency

Based on the previous studies, we see that compression could reduce page

latency in two aspects. First, compression reduces the size of the CO so that it could be

delivered faster (see Figure 7.3). Second, compression would also reduce DT times of

EOs since they are dependent on CO’s retrieval (see Figure 7.9) (Note that compression

would not reduce other latency components for EOs other than the DT time). When the

number of EOs in a page is small, the improvement would mainly come from the first

effect. But the reduction in DT times of EOs would contribute to the improvement

when there are more EOs in the page.

Figure 7.13 shows relative page latency under different compression mechanisms

with respect to the number of EOs in a page. We see that the improvement of

compression is generally higher when the number of EOs in a page is small. This is

because the improvement mainly comes from the reduction in CO’s retrieval latency in

these cases. For pages with few EOs, the retrieval latency of the CO would be the

dominating factor of the whole page latency. Since compression have significant

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in page

D
T

/ (
D

T
+

R
et

rie
va

l
La

te
nc

y)
Normal DT Ideal DT

178

improvement on CO’s retrieval latency (see Figure 7.3), it would also improve page

latency considerably for such pages.

Figure 7.13 Whole page latency w.r.t. number of EOs in a page under different

compression mechanisms (Parallelism = 4)

When the number of EOs in a page is big, the improvement achieved by

compression is much smaller. This could be due to the following two reasons:

First, when the number of EOs in a page is big, the page latency would be

dominated by the of EOs’ latency. For EOs’ latency components, compression could

only reduce the DT times, and the reduction in DT time is not as big as the reduction in

CO’s retrieval latency (see Figure 7.9 and Figure 7.3).

Second, page latency is also affected by parallelism. When parallel fetching of

objects is used, it would be possible for the fetching of one or more objects to virtually

have no effect on the whole page latency. In Figure 7.13, we used a parallelism width of

four as it is the default value in most current web browsers. This wide parallelism

width could dilute the effect of reduced DT times of EOs.

Overall, page latency can be reduced by 12.2% in pre-compression and 7.4% in

real-time compression. Compared with the reduction in object latency (see Figure 7.3)

and reduction in DT times of EOs (see Figure 7.9), the reduction in whole page latency

is much smaller. This could be due to the use of four way parallelism which prevents

the reduction in CO’s retrieval latency and DT times of EOs from being translated into

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+

Number of EOs in page

R
el

at
iv

e
pa

ge
 la

te
nc

y

No Compression Pre-Compression Real-time Compression

179

reduction in whole page latency directly.

Figure 7.14 and Figure 7.15 further study the upper bound of dependency’s effect on

whole page latency for pre-compression and real-time compress respectively. The

upper bounds are computed by assuming ideal DT for all EOs, i.e., assuming all EOs

are defined in the first chunk of CO’s transfer.

Figure 7.14 Upper bound of dependency’s effect on whole page latency

for pre-compression

Figure 7.15 Upper bound of dependency's effect on whole page latency

for real-time compression

By comparing the situations of “No Compression, Normal DT” and “No

Compression, Ideal DT”, we see that DT times of EOs do have influence on page

latency. This confirms the effectiveness of compression since compression could

reduce the DT times of EOs.

It is noteworthy that the performance of “Pre-Compression, Normal DT” is even

better than “No Compression, Ideal DT”. This could be explained by the following

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in page

R
el

at
iv

e
pa

ge
 la

te
nc

y

No Compression, Normal DT No Compression, Ideal DT
Real-time Compression, Normal DT Real-time Compression, Ideal DT

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in page

R
el

at
iv

e
pa

ge
 la

te
nc

y

No Compression, Normal DT No Compression, Ideal DT
Pre-Compression, Normal DT Pre-Compression, Ideal DT

180

reasons. Firstly, the difference in DT times between these two situations is very small

since pre-compression has reduced DT times significantly (see Figure 7.11). Secondly,

pre-compression would also reduce the retrieval latency of COs. Putting these two

factors together, it would be understandable that the performance of “Pre-Compression,

Normal DT” is even better than “No Compression, Ideal DT”.

But for real-time compression, the performance of “Real-time Compression,

Normal DT” is sometimes worse than “No Compression, Ideal DT”. This is because

real-time compression is not so effective as pre-compression in reducing the DT times

of EOs and retrieval latency of CO.

Nevertheless, the performance of both pre-compression and real-time

compression is very close to their respective upper bounds. This could also be due to

the use of parallelism which dilutes the differences of different compressions.

7.3.4 Compression and Parallelism

As parallelism may affect the effectiveness of compression, we would like to

further study the performance of compression mechanisms under different parallelism

widths in this section.

Current web system utilizes parallelism for simultaneous fetching of objects in a

page. Currently, most common web browsers such as Microsoft IE and Netscape use a

parallelism width of four for all web page retrievals. However, the effective parallelism

width may vary in different environment. For example, in a low-bandwidth

environment, the effective parallelism width that clients can enjoy could be as low as

one.

Figure 7.16 shows the performance of different compression mechanisms under

different parallelism width. While increasing parallelism width would reduce whole

page latency for all compression mechanisms, we see that pre-compression constantly

181

gives the optimal performance in all situations. Also, the performance of real-time

compression is always a little better than normal situation. These results are in

accordance with the result shown in Figure 7.13. This indicates that a variation in

parallelism width does not affect the relative effectiveness of compression.

Figure 7.16 Performance of different compression mechanisms

under different parallelism width

Figure 7.17 Relative performance of different compression mechanisms

under different parallelism width

In addition, we also note that the relative improvement of pre-compression

actually gets slightly higher as parallelism width increases. This may be observed more

obviously in Figure 7.17 which shows the relative performance improvement of

different compression mechanisms under different parallelism width. We see that when

parallelism width increases from 1 to 32 or greater, the relative improvement of

pre-compression increases from 9% to 15%.

The relative higher improvement of pre-compression may indicate that

compression is more efficient when parallelism width is big. This could be due to the

50%

60%

70%
80%

90%

100%

1 2 4 8 16 32 Infinite
Parallelism width

R
el

at
iv

e
pa

ge
 la

te
nc

y

No Compression Pre-Compression Real-time Compression

0.00
0.10
0.20
0.30
0.40
0.50
0.60

1 2 4 8 16 32 Infinite
Parallelism width

A
ve

ra
ge

 p
ag

e
la

te
nc

y
(s

ec
)

No Compression Pre-Compression Real-time Compression

182

higher demand and usage rate that pre-compression imposes on parallelism. Refer back

to Figure 7.10, we see that pre-compression shifts significantly large number of

definitions of EOs to the earlier chunks of a CO transfer, so more EOs will be made

known to client faster and earlier (also refer to Figure 7.9). Thus the demand on

parallelism width is higher. This higher demand on parallelism width would result in

more EOs being held in waiting state for a given parallelism width. Figure 7.18 shows

the percentage of EOs that are held in waiting state under different situations. As

expected, pre-compression gives the highest percentage when parallelism width is

greater than one (when parallelism width is one, all EOs will virtually have to wait).

Figure 7.18 Percentage of EOs that are held in waiting state

under different parallelism width

On the whole, compression (especially pre-compression) would make a greater

number of EOs known for retrieval fast and early and a higher percentage of EOs be

held in waiting state for a given parallelism width. In such situation, increasing

parallelism width would right meet the higher demand. So, compression becomes more

effective when parallelism width increases.

Lastly, we see in Figure 7.16 and Figure 7.17 that the relative improvement of all

compression mechanisms becomes insignificant when parallelism width exceeds 8.

This could be due to the moderate number of EOs in pages. As shown in Figure 6.12,

the web pages in our trace have 13.5 EOs per page on average. When parallelism width

grows bigger than 8, there would be very few EOs being held in waiting state. Thus, to

0%
20%
40%
60%
80%

100%

1 2 4 8 16 32
Parallelism width

Pe
rc

en
ta

ge
 o

f E
O

s i
n

w
ai

tin
g

st
at

e

No Compression Pre-Compression Real-time Compression

183

further increase parallelism width would only have trivial effect.

7.4 Content-Aware Global Static Compression for Web Content
Delivery

7.4.1 Specific Compression for Web Content

From previous sections, we understand that compression is an effective way in

improving web retrieval latency, although the improvement it achieves on page

retrieval latency is not as significant as it does on single object latency.

Currently, the compression algorithms employed in web system are

general-purpose compression algorithms such as Huffman coding (used by compact),

LZW (used by compress) and LZ77-variants like deflate (used by zlib and gzip) etc.

[286, 211, 287, 212]. In those general-purpose compression algorithms, the content of

web objects is treated as a blind byte stream. Those algorithms generally do not

provide specific analysis on web-specific content like HTML tags or script language

key words. For all the characters and strings, those algorithms just treat them equally

and evenly. This method usually works well on common files. But in web content,

there may be still room for improvement since there are abundant special strings which

may be compressed more effectively if compression algorithms are aware of them and

perform special compression on them.

In web objects3 such as HTML files, certain string tokens like HTML tags are

used very frequently. Each of such tokens represents certain special fixed combination

of characters. In other words, some characters always go with some others in web

content. However, general-purpose compression algorithms do not specially take the

advantage of these special fixed combinations of characters. Instead, they just

dynamically discover any arbitrary string of characters without considering the special

relationship among them. This often results in shorter repeated strings, especially at the

3 Without explicit emphasis, the term “web object” or “object” in this chapter would refer to “textual
web objects”. This is because we are talking about lossless compression on textual objects.

184

beginning phase of compression.

On the other hand, from the global point of view, the special strings in web

content occur frequently and repeatedly. However, in a single object, the occurrence of

those special strings may not be so frequent and repetitive. So, working on single web

objects is generally not as effective as taking the advantage of the globally high

frequencies and repetitiveness of the special strings.

Furthermore, the characteristics of the special strings in web content are very

stable. For example, they seldom change in terms of spelling, number of strings and

global occurrence distribution etc. This allows us to employ global static token-string

tables to compress those strings in all web objects, which would be more effective than

generating a token-string table for every object and storing the table in each

compressed object since the global static tables can be distributed with the

compression programs prior to the use of such compression.

From the above discussion, we can see that general-purpose compression

algorithms have some effectiveness loss in the specific domain of web content delivery.

There still exists some room for improvement.

In this section, we propose a new content-aware global static compression

mechanism for web content delivery. This mechanism is specifically designed for web

content to take the advantage of the frequently occurred fixed combinations of

characters in web content. It can be used as a complementary mechanism on top of

existing general-purpose compression algorithms to improve their effectiveness in the

specific area of web content delivery.

Note that we are still talking about lossless compression mechanism applied on

textual web objects. We assume such textual web objects to be the HTML files in our

study, although it may also include other types of files like css, php and asp files etc.

185

Also, we assume the codes contained in such textual web objects are printable ASCII

codes4, including the carriage return character (0x0D) and the line feed character

(0x0A). In terms of ASCII code values, we assume textual web objects only contain

ASCII codes between 0 and 127.

7.4.2 Content-Aware Global Static Compression (CAGSC) for Web Content
Delivery

7.4.2.1 Introduction

Our basic idea is to compress web objects by replacing the special fixed

combination of characters (e.g. HTML tags) found in web object with special short

single tokens. We select suitable special strings in web content and pre-generate

token-string tables for them, and then we use the token-string tables to compress and

decompress the special strings in web objects. This idea is inspired by the algorithms

of Huffman and LZW and the frequently occurred special strings in web content. We

introduce some new ideas in our mechanism to make it especially effective for the

compression on web content.

Firstly, unlike many general-purpose compression algorithms which may encode

single characters or arbitrary combination of characters, our mechanism is aware of the

special fixed combination of characters in web content. It will look for and treat such

combination of characters as inseparable units. In other words, our mechanism is a

content-aware compression mechanism specifically for web content.

Secondly, in our mechanism, we pre-acquire a selection of strings for

compression based on their global occurrence frequencies. In other words, we select

cross-object frequently occurred strings as candidates for compression. The

frequencies are pre-computed globally based on a wide-range collection of web objects.

Further statistics such as weighted frequencies and potential gains are calculated based

4 CAGSC compression can also be extended to work on objects containing non-printable ASCII codes
by employing techniques like byte-stuffing or using special coding schemes for CAGSC coding.

186

on the global frequencies of strings for selecting suitable strings for compression.

Thirdly, our mechanism is able to compress multiple types of strings. In web

content, there are usually different types of special strings such as HTML tags and

JavaScript strings etc. There could even emerge other special strings in web content in

the future. Our mechanism can be extended easily to work with arbitrary types of

special strings.

Fourthly, the token-string tables for compression are used in a static way. For

each type of strings, a token-string table will be generated based on the selected string

candidates from that type of strings prior to the actual compression and decompression

taking place. Because the characteristics of the strings (e.g. the frequencies and

spellings of strings etc.) based on which tables are generated are very stable in web

content, so the tables can be treated in a rather static way. Therefore, the essential

token-string tables for compression and decompression does not need to be stored and

transferred along with every compressed object. This would further improve

compression ratio and transfer speed.

Finally, our mechanism recognizes different regions in objects and uses

corresponding token-string tables to compress each region. We perform this task

dynamically and with a single pass scan of object body. Decompression is carried out

in a similar manner, i.e. different token-string tables will be used to decompress

different regions of a compressed object.

On the whole, our mechanism works on special strings in web content and

compresses them by replacing them with special short single tokens. Because we rely

on global cross-object frequencies and employ static token-string tables in our

mechanism, so we refer our mechanism as Content-Aware Global Static Compression

(CAGSC). Consequently, we refer to the tokens which are used to replace strings in

187

CAGSC compression as CAGSC tokens.

The CAGSC compression is proposed to only compress web specific strings like

HTML tags and JavaScript strings etc.; other parts of the object content will not be

compressed by CAGSC. To achieve better compression performance, it is suggested

that CAGSC be put to work together with other general-purpose compression

algorithms. From another point of view, the CAGSC compression should be regarded

as a complementary mechanism to general-purpose compression algorithms in the

specific area of web content delivery.

In the situation where CAGSC compression works together with another

general-purpose compression algorithm, a web object will first be compressed using

CAGSC compression, and then it will be handed over to the general-purpose

compression algorithm to do further compression.

Figure 7.19 shows the model of the application of CAGSC compression in web

content delivery, and Figure 7.20 gives a simple example of CAGSC compression on an

object.

Figure 7.19 Model of application of CAGSC compression in web content delivery

token-string
tables

OBJ

CAGSC
X

compression

OBJ' OBJ"

token-string
tables

OBJ"

CAGSC

OBJ' OBJ
Retrieve

Distribute or
download in

advance

Client

Client

Content Provider

X
compression

188

Figure 7.20 Example of CAGSC compression

In the following subsections, we give detailed description of various aspects of

CAGSC compression. We first discuss how token-string tables for CAGSC

compression are generated (Section 7.4.2.2), then we explain how to apply CAGSC

compression in web content delivery (Section 7.4.2.3).

7.4.2.2 Generating Token-String Tables for CAGSC Compression

From the previous section, we see that token-string tables play a key role in

CAGSC compression. So we would like to first give the details on how token-string

tables are generated.

In brief, the process of generating token-string tables is shown in Figure 7.21. First,

a wide-range of web objects are collected. From there, we can get multiple special

string sets and the global frequencies of each string in the sets. Then we calculate

weighted frequencies and potential gains for the strings and sets (see the following

subsection for details). The weighted frequencies and potential gains will be used to

decide the coding lengths and what strings to be included in the final token-string

tables. Finally, the token-string tables are generated based on the selected strings and

coding lengths. These tables will be used for CAGSC compression. , and they are

distributed with CAGSC packages to parties prior to the use of CAGSC compression.

<HTML>
<BODY>
……
……
</BODY>
</HTML>

1-byte token string
10000000 HTML
10000001 BODY

……

……

CAGSC
<“1-byte-token(10000000)”>
<“1-byte-token(10000001)”>
……
……
</“1-byte-token(10000001)”>
</“1-byte-token(10000000)”>

token-string table

189

Figure 7.21 Process of generating token-string tables

Below, we describe some details regarding the generation of token-string tables

in CAGSC compression.

7.4.2.2.1 Special Strings in Web Content

CAGSC compression works on special strings such as HTML tags in web

content. So we would like to first study some properties of such strings.

The following properties of such strings are of interest to CAGSC compression:

ü Different types of strings, i.e. Multiple string sets

The special strings in web content may be of different types, or we can say, there

are multiple different types of string sets in web content. For example, these string sets

are popular in web content nowadays: HTML tags, JavaScript strings, XML tags etc.

Selected strings &
determined coding

length based on
weighted

frequencies and
potential gains

token-string
table 1

These tables are used for CAGSC compression. They are distributed
with CAGSC packages to parties prior to the use of CAGSC.

a wide-range collection of objects

……

Selected strings &
determined coding

length based on
weighted

frequencies and
potential gains

token-string
table 2

Selected strings &
determined coding

length based on
weighted

frequencies and
potential gains

token-string
table Nt

Calculate weighted
frequencies and
potential gains

Calculate weighted
frequencies and
potential gains

Calculate weighted
frequencies and
potential gains

Encoding Encoding Encoding

String set 1 &
global frequencies

of strings

String set 2 &
global frequencies

of strings

String set Nt &
global frequencies

of strings

190

We denote the total number of the different string sets in web content as Nt5.

Then all the special strings can be represented as the superset Ss of all the different

string sets:

Ss = { Si | Si is a string set of a particular type, 1 ≤ i ≤ Nt }

A web object may contain strings from multiple string sets, but the strings from a

particular set Si usually only form a subset of Si . There may be some strings appearing

in multiple string sets, e.g. both HTML and JavaScript have the string “height”.

However, the semantic meanings of such strings are different in each set. So, the

multiple string sets are considered mutually exclusive in terms of semantic meanings.

In CAGSC compression, we compress strings by replacing them with short single

tokens. So for every string in a string set Si, we will need to sign a token to it. The

mapping relationship between strings and tokens will be represented as token-string

tables in CAGSC compression. The tokens for all the strings in a string set make a

token-string table for that string set.

To ensure the efficiency of CAGSC compression, it is preferable to include

multiple different string sets in the mechanism. There are basically two ways to

incorporate multiple string sets in CAGSC. The first method is to merge the multiple

string sets Si into one and treat it as one set, i.e. the superset This method has some

deficiencies: firstly, the number of strings in the superset Ss can be very big, which

would result in long coding length for CAGSC tokens, and that may not be effective in

doing compression; secondly, to merge multiple sets into one superset makes the

management of string sets difficult. Whenever the properties of a string set change or

there emerges a new string set, the whole superset Ss will be affected.

5 Nt actually means “Number of Tables”. Since each string set will have a corresponding token-string
table in our mechanism, so the number of string sets will be the same as the number of token-string
tables. Therefore, we use Nt to stand for the number of token-string tables as well as the number of
string sets.

191

The other method of including multiple different string sets in CAGSC

compression is to keep the string sets separate and generate a token-string table for

each of them to be used in CAGSC compression. While the second method needs to

maintain multiple tables, it provides the flexibility and effectiveness of handling the

changes of multiple tables. Also, it allows the reuse of CAGSC tokens among different

tables. In our study, we use the second method to handle the problem of multiple string

sets.

ü Number of strings in a string set

In web content, each string set Si contains limited number of strings. We denote

the total number of the strings in a particular string set Si as Nsi :

Nsi = | Si | (where Si is a string set of a particular type, 1 ≤ i ≤ Nt)

If we use sj to stand for a string in a string set Si, then Si can be represented as:

Si = { sj | sj is a string, 1 ≤ j ≤ Nsi }

As we stated earlier, each string set Si will have a corresponding token-string table in

our CAGSC compression mechanism. Note that the number of entries of the

token-string table corresponding to the string set Si may not be equal to Nsi . This is

because, for the strings in a string set Si , we use certain criteria (which will be

discussed in the next subsection) to select some strings from Si for generating

token-string table; it is possible that there are some strings being left out; therefore, the

number of entries of the token-string table corresponding to Si may not be equal to Nsi .

ü Frequencies of strings

The occurrence frequencies of strings may vary from string to string. It is

instinctive that to work on strings with high occurrence frequencies would yield good

performance.

Given a particular string, it may appear rarely in one object but frequently in

192

other objects, or vice versa. If we only look at one or a few objects, we may get biased

occurrence frequencies of strings, which would result in biased performance

distribution. Our CAGSC compression aims to achieve good balanced global

performance. So we need to obtain the occurrence frequencies of strings that are

applicable globally. To achieve this goal, we collect a wide range of web objects, and

do an analysis of the cross-object accumulative statistics of strings to obtain their

global occurrence frequencies. Works based on such global occurrence frequencies

would lead to good balanced global results since such frequencies are independent

from any particular objects and therefore applicable globally.

In our study, we denote the global occurrence frequency of a string sj as fsj .

ü Lengths of strings

Each string is of certain length, i.e. number of characters (bytes) contained in the

string. String length is also an important factor that we need to take into consideration

when we do CAGSC compression. For example, if the length of string is even shorter

than the CAGSC tokens, then there would be no gain (in fact, there is a loss) to replace

that string with a CAGSC token.

In our study, we denote the length of a string sj as lsj .

7.4.2.2.2 CAGSC Coding for Strings

CAGSC compression compresses the special strings in web content by replacing

them with short CAGSC tokens. Now, let us look at some issues regarding CAGSC

coding.

ü Fixed-length coding vs. variable-length coding

There are basically two coding schemes for generating CAGSC tokens. The first

type is fixed-length code like the one used in LZW compression algorithm. The other

type is variable-length code such as Huffman coding [288]. In our CAGSC

193

compression, we choose to use the fixed-length code because of the following reason:

As we stated earlier, CAGSC is a complementary mechanism to other

general-purpose compression algorithms and should often be put to work together with

them to achieve better overall compression performance. After an object is first

compressed by CAGSC algorithm, it will be handed over to the general-purpose

compression algorithm to do further compression.

Most general-purpose compression mechanisms rely on discovering repeated

byte sequence patterns in data to achieve the goal of compression. Examples include

those LZ77-based compression mechanisms such as zlib, gzip, zip and pkzip etc. Such

compression mechanisms compress data by keeping track of the last N bytes of byte

sequence and replacing repeated pattern of byte sequence with a pair of values

corresponding to the position of the pattern in the previous data and the length of the

pattern.

Because the lengths of variable-length codes may not be of integer times of

byte-length, i.e. variable-length codes may not end at byte boundary, so we will need

special mechanism (like Huffman coding) to keep track of the boundary of

variable-length codes. This would often incur considerable overhead. On the other

hand, even if there is such a special mechanism to determine the boundary of

variable-length codes, other general-purpose compression mechanisms will not know it.

Instead, they will just treat the CAGSC-compressed object as normal byte-sequence

data and still cut off the data at normal byte boundary. Because of this, we have found

that the use of variable-length codes to first compress certain strings in the data would

greatly destroy the repeated byte sequence patterns in the data for

byte-boundary-cutting-off compression mechanisms. This significantly reduces the

effectiveness of the general-purpose compression algorithm that comes after CAGSC

194

compression.

However, if we use fixed multi-byte-length-bounded code in CAGSC

compression, the repeated byte sequence patterns in the data will be preserved after the

data have been first compressed by CAGSC compression. Therefore, when another

general-purpose compression mechanism is later applied on the data, it could still

achieve its effectiveness in compressing the data.

So, in our CAGSC compression, we employ the fixed multi-byte-length-bounded

code, and we make the length of the codes to be of integer times of byte-length, e.g.

1-byte or 2-byte etc.

ü Coding scheme: coding length & coding space

As we just stated above, in CAGSC compression, we make the length of the

codes to be of integer times of byte-length, e.g. 1-byte or 2-byte etc. Different coding

lengths have different coding space, i.e. the number of tokens that a certain coding

length can give. Here we study the issues regarding coding length in CAGSC

compression.

An object compressed by CAGSC compression will contain a mixture of

CAGSC tokens and other codes of uncompressed data. We need a mechanism to

differentiate the CAGSC tokens from other codes.

Because we assume textual web objects contain ASCII codes between 0 and 127

(see Section 7.4.1), so for 1-byte CAGSC tokens, they can only use the values from

128 to 255. That is, the space of 1-byte CAGSC coding is 128 tokens.

Now let us look at the situation of n-byte coding, where n ≥ 1. Given a coding

length n, we will always be able to differentiate a CAGSC token from normal ASCII

codes as long as we can differentiate the first byte of the CAGSC token. This is

because, once we differentiate the first byte of a CAGSC token from normal ASCII

195

codes, then we can just read the following n-1 bytes and put them together with the

first byte to form the CAGSC token. This indicates that we do not need to differentiate

the following n-1 bytes of a CAGSC token from normal ASCII codes. Therefore, each

byte in the following n-1 bytes can use values from 0 to 255. Figure 7.22 illustrates this

situation.

Figure 7.22 n-byte coding scheme for CAGSC compression

From the above description, we can deduce that the coding space of n-byte coding for

CAGSC compression is given by the following formula:

CS(n) = 128 × 256(n-1) = 256n/2 (where n ≥ 1) (F7.1)

In the rest part of this chapter, we denote the coding length of a particular CAGSC

coding scheme as lc. So the coding space for lc would be:

CS(lc) = 256lc/2 (where lc ≥ 1) (F7.2)

From formula F7.2, we see that coding space, i.e. the number of tokens that CAGSC

coding scheme can give, is determined by the length of coding, and the relationship is

exponential. Therefore, we expect to see that coding space would grow very quickly as

the coding length increases. Table 7.1 lists the number of tokens for a few coding

lengths.

1 byte only Byte 1 Byte 2 …… Byte n

Normal ASCII code
1-byte

CAGSC token
n-byte

0~127 Must be
128~255

Can be 0~255

“Byte 1” is used to differentiate
CAGSC tokens from normal
ASCII codes

“n” is used to get the following
n-1 bytes of CAGSC tokens

CAGSC-compressed object contains a mixture of normal ASCII codes
and CAGSC tokens. How to differentiate these two types of codes
when a such object is interpreted as byte stream?

196

In CAGSC compression, we use one coding length for one string set. That is, all

the strings within the same string set will be assigned CAGSC tokens of the same

coding length. If the coding space of that particular coding length is not enough to

cover all the strings in the string set, then we need either to increase coding length or to

remove some strings from the set. To increase coding length is simple and it would

always be able to solve the problem. However, it may affect the performance of

CAGSC compression since the tokens used to replace strings are longer. As to

removing some strings from a string set, there are complicated factors affecting the

selection of strings. In the next subsection, we are going to study this issue.

Table 7.1 Coding space for some coding lengths
Coding Length Coding Space

1-byte 128
2-byte 32,768
3-byte 8,388,608
… …

lc-byte 256lc/2

7.4.2.2.3 Weighted Frequencies and Potential Gains of Strings

There are situations in which we want to select only part of the strings from a

string set (i.e. a subset of the whole string set) to be included in CAGSC compression.

Such situations include that we want to use a coding space which is smaller than the

number of strings in the string set, or we want to keep token-string tables small so that

they can be transferred dynamically and quickly, and so on.

Given a string set Si , the total number of strings it contains is Nsi . Suppose we

have a number Nsi', where 1 ≤ Nsi' ≤ Nsi , there is a issue about how to select Nsi'

strings from Si so that the resulting performance of CAGSC compression on Si is the

best. This question involves the factors of string frequencies, string lengths and coding

lengths etc. Below we introduce two parameters to help answer this question.

ü Weighted frequencies of strings

An instinctive way of selecting a good subset of strings from a string set is to

197

select those strings which have high occurrence frequencies. However, because strings

are of variable lengths and the CAGSC tokens used for encoding a string set is of fixed

length, so it could happen that the lengths of some strings are longer than the token

length while some others may be shorter. Of course it is only meaningful to replace a

string whose length is longer than the token length. Taking this factor into

consideration, we introduce a parameter named weight frequency of a string to help in

the selection of good strings.

For a given string sj and coding length lc, the weighted frequency for sj , denoted

by fwsj , is defined by the following formula:

fwsj = fsj × (lsj – lc) (where lc ≥ 1) (F7.3)

The actual meaning of the weighted frequency of a string is the potential gain

from including that particular string in CAGSC compression under certain coding

length.

The weighted frequencies of strings can be used for selecting strings to be

included in CAGSC compression so as to achieve the best performance for the given

coding length lc and the given number of strings Nsi' to be selected. Essentially, this

can be done by sorting strings according to descendent order of their weighted

frequencies, and then select the top Nsi' strings. When selecting, only those strings

whose weighted frequencies fwsj , are greater than zero should be selected. This is

because, to include strings with weighted frequencies equal to or less than zero would

not give you any performance gain; in fact, it could even cause performance loss.

Note that there is a limitation in this rule: The given number of strings Nsi' must

be smaller than or equal to the coding space of lc , i.e. Nsi' ≤ CS(lc) . This is because

that weighted frequencies are related to coding length. If Nsi' ≥ CS(lc) so that lc has to

be increased, then the weighted frequencies for all strings would change also, which

198

would affect the final decision. To handle the situation where lc may be changed (as

well as Nsi'), we introduce another parameter named potential gain of a subset of

strings to solve the problem.

ü Potential gain of a subset of strings

There is a tie between the number of strings Nsi' to be selected from a string set Si

and the coding length lc used for encoding the strings. When Nsi' ≥ CS(lc) , lc has to be

increased so that the new CS(lc') ≥ Nsi' . On the other hand, if Nsi' very small such that

it can be covered by the coding space of a smaller lc , then we can reduce lc to a smaller

value.

When there is a change on Nsi' or lc , we need to re-select strings to ensure the

best performance of CAGSC compression for the new Nsi' or lc . We introduce the

potential gain parameter of a subset of strings to help with such evaluation process.

For a given a string set Si , Si' is a subset of Si , then the potential gain of Si' ,

denoted by PG(Si') , is defined by the following formula:

∑
=

−×=
'

1

)()'(
siN

j
csjsji llfSPG (where sj ∈ Si', Nsi' = |Si'|, lc ≥ 1 , Nsi' ≤ CS(lc)) (F7.4)

The actual meaning of PG(Si') is the overall potential gain from including the all the

strings in the subset Si' in CAGSC compression.

The potential gains of subsets and the weighted frequencies of strings together can be

used to determined the appropriate Nsi' and lc for a given string set Si and select the

appropriate Nsi' strings that would result in the best performance of CAGSC

compression. This is usually carried out in the following way:

If Nsi' and lc are fixed, then we use the above described method to select the

appropriate strings, i.e. we sort strings according to descendent order of the calculated

weighted frequencies, and then select the top Nsi' strings.

199

If Nsi' and lc are not fixed, we set lc = 1..n, Nsi' = min(CS(lc), Nsi). For each pair of Nsi'

and lc , we use the above method to select the top Nsi' strings, and then we calculate the

potential gains each pair of lc and Nsi' , i.e. PG(Si') . Among all the PG(Si') , we select

the highest one. Then the pair of Nsi' and lc corresponding to the highest the PG(Si')

would be the final decision.

Note that, besides the above parameters, there are other considerations which

may affect the number of strings (i.e. Nsi') to be selected from string set Si . For

example, in the situation where tables need to be transferred dynamically and the

network bandwidth is narrow, smaller sized tables may be preferred so that the transfer

latency can be minimized.

For each string set in web content, we use the above methods to select the strings

from each set and determine the coding length for each set. Then we generate

token-string tables to be used in CAGSC compression. Below we discuss the format

and other issues regarding token-string tables.

7.4.2.2.4 Token-String Tables in CAGSC Compression

ü Multiple token-string tables & Scalability of CAGSC compression

There are multiple different types of string sets in web content. As we stated

earlier, it is preferable to include multiple string sets in CAGSC compression, and we

generate and maintain a separate token-string table for each string set. The token-string

table corresponding to the string set Si is referred to as Ti . The total number of

different token-string tables is represented as Nt .

It is possible that new string sets may be introduced into web content in the

future, or an existing string set has got some changes. It is highly desired that CAGSC

compression can be scalable to any new string sets.

To enable CAGSC compression to be scalable to new string sets, as well as to

200

distinguish different multiple token-string tables, we assign a unique ID to each table.

The ID’s can be of any types of values as long as each one is unique; but in this study,

we define such IDs to be unique integer numbers. We use IDi to denote the unique ID

assigned to table Ti .

When the tokens from a particular token-string table Ti is used, its ID IDi will be

used together with the tokens (see next subsection for details on this), so we can

distinguish which table the tokens belong to. This also allows us to reuse the same

tokens among different tables. Furthermore, whenever a new string set is introduced

into web content, we can include it into CAGSC compression by generating a

token-string table for it and assigning a new unique ID to the table. This way, CAGSC

compression would be able to be extended to any new string sets in the future.

ü Size of token-string table for a string set

The size (i.e. the number of entries) of a token-string table for a string set Si is

determined by the number of strings Nsi' selected from Si to be used in CAGSC

compression. In the previous subsections, we have studied various aspects and

introduced parameters to help with the selection of strings from a string set. When the

selection is done, the number of the strings becomes fixed; accordingly, the size of the

token-string table for the selected strings will be known.

ü Format of token-string tables

Given a string set Si , once the selection of strings from Si is finished and a

coding length is determined, a token-string table will be generated for the selection of

strings.

The format of token-string tables is given in Figure 7.23. All token-string tables

are made of two parts: description part and coding part. In the description part, the

unique ID assigned to the table and the coding length used by the table are presented,

201

followed by an <end tag> (e.g. we may reserve the code “128” to be used as the <end

tag>). The coding part contains the “token, string” pairs. Every string in the selection

of strings has a corresponding “token, string” pair, and each “token, string” pair is

ended with an <end tag>. The token for each string is unique, and all the tokens

appeared in the same table are of the same coding length. As to the details on the

tokens, please refer to the “coding scheme” part in Section 7.4.2.2.2.

Figure 7.23 Format of token-string tables

Note that every token-string table in CAGSC compression has a unique ID. The

ID of a table will be used together with the tokens in the table (see next subsection for

details on this). This mechanism would enable us to distinguish tokens from different

tables, to reuse the same tokens among different tables, as well as to include new tables

into CAGSC compression.

ü Using token-string tables

The token-string tables in CAGSC compression are generated for special string

sets such as HTML tags and JavaScript strings etc. The characteristics of such string

sets in web content are very stable. For example, they seldom change in terms of

spelling, number of strings in a set and global occurrence frequencies etc. As we

described in the previous subsection, our CAGSC compression selects strings based on

analysis of a wide-range collection of objects. Because of these reasons, the

pre-generated token-string tables based on the selections of strings are applicable

globally to all objects, and they can be treated rather statically. They do not need to be

<ID><coding length><end tag>
<token1><string1><end tag>
<token2><string2><end tag>
<token3><string3><end tag>
……
……
……

202

stored in and dynamically transferred with every compressed object. Instead, we can

distribute them together with the CAGSC compression and decompression packages

prior to the use of CAGSC compression.

On the other hand, dynamic download of those tables is also supported in

CAGSC compression. This is to handle the rare situations when the tables are updated

or a client happens to lack of certain tables. When a client encounters such situations

when it decompresses an object, it will request and download relative tables

dynamically from the content provider and then go on with the decompression.

7.4.2.3 Applying CAGSC Compression in Web Content Delivery

7.4.2.3.1 Compression Process

Basically, our CAGSC compression compress web objects by scanning object

body and replacing the special strings with CAGSC tokens.

To differentiate the CAGSC tokens from the normal ASCII codes, as well as to

differentiate the CAGSC tokens from different token-string tables, we introduce two

new tags to specify the working areas of CAGSC compression and the ID’s of the

token-string tables used in each working area. The tags and their formats are as

follows:

Starting tag : <CAGSC Table=ID>

Ending tag : </CAGSC>

The starting tag is used to mark the starting point of a working area of CAGSC

compression in the body of an object, while the ending tag is used to mark the ending

point of a CAGSC compressed area. The starting tag and ending tag must appear in

pair when applying CAGSC compression. Between these two tags, only normal ASCII

codes and the tokens from the token-string table with the specified ID can appear.

Figure 7.24 illustrates the compression process of CAGSC compression. The

203

CAGSC compression program scans the body of an object, when it recognizes a

special string belonging to a particular token-string table Ti , it will insert a starting tag

“<CAGSC Table=IDi>”, and then replace the string with a CAGSC token from table

Ti . Following that, if it keeps meeting other strings that belong to the same table Ti 6,

it will just replace them with tokens without inserting new starting tags. If the CAGSC

compression program recognizes a special string that belongs to another table Tj , it

will end the working area for table Ti by inserting an ending tag “</CAGSC>”, then it

starts a new working area for table Tj . This process repeats until the end of the object

body. In Figure 7.24, we suppose the strings strix belong to table Ti and strings strjx

belong to table Tj . We see that CAGSC finishes the working area for table Ti and

starting the working area for table Tj when it meets the string strj1 .

Figure 7.24 Compression process of CAGSC Compression

6 In web content, this is often the case. For example, we usually meet plenty of JavaScript elements at
the beginning part of an object, and many HTML tags at the rest parts.

…stri1…str i2…str i3……, …str j1…str j2…str j3……

CAGSC

Token-string table ID1

 …

Scan the whole object

…<CAGSC Table=IDi>tokeni1…tokeni2…tokeni3……,…</CAGSC>
<CAGSC Table=IDj>tokenj1…tokenj2…tokenj3……</CAGSC>

Token-string table IDi

 …

Token-string table IDj

 …

Input

Output

Original
Object

CAGSC
Compressed

Object

To other
compression
mechanism

204

When the above process finishes, we will get a resulting file which is compressed

by CAGSC compression. Normally, this file would contain multiple “<CAGSC

Table=IDi>” and “</CAGSC>” tag pairs. These pairs split the object body into

multiple regions; each region is compressed by certain token-string table, and the

tables for each region are independent of each other. The CAGSC tokens can be reused

among different regions (in fact, they are reused among different token-string tables).

Figure 7.25 gives an example of CAGSC compression with two tables. It shows how

object body is compressed into multiple regions and how the CAGSC tokens are

reused among the regions.

After an object has been compressed by CAGSC compression program, it may be

passed to other compression mechanisms to compress further.

Figure 7.25 Example of CAGSC compression with two tables

7.4.2.3.2 Decompression Process

The decompression process of CAGSC is quite simple. It is just the reverse

process of the compression process. Figure 7.26 illustrates the decompression process of

CAGSC compression.

<HTML>
<HEAD>
<TITLE>...</TITLE>
......
<SCRIPT LANGUAGE="JavaScript">
......
......
</SCRIPT>
</HEAD>
<BODY>
......
......
</BODY>
</HTML>

1(ID) 1(Coding length) 2(ID) 1(Coding length)
token string token string
‘C1’ HTML ‘C1’ SCRIPT
‘C2’ HEAD ‘C2’ LANGUAGE
‘C3’ TITLE ‘C3’ JavaScript
‘C4’ BODY ……
…… ……
……

 ……

CAGSC

<<CAGSC Table=1>‘C1’>
<‘C2’>
<‘C3’>...</‘C3’>
......
<</CAGSC><CAGSC Table=2>‘C1’ ‘C2’=‘C3’>
......
......
</‘C1’>
</</CAGSC><CAGSC Table=1>‘C2’>
<‘C4’>
......
......
</‘C4’>
</‘C1’></CAGSC>

token-string tables

205

The CAGSC decompression program scans the body of a CAGSC-compressed

object, when it meets a starting tag “<CAGSC Table=IDi>”, it will use the strings from

the token-string table Ti to replace the following met CAGSC tokens. This replacement

stops taking place when it meets an ending tag “</CAGSC>”. When a new starting tag

is met, the program will switch to the corresponding token-string table and start to

replace CAGSC tokens with strings. The above process continues until the end of the

object body.

Figure 7.26 Decompression process of CAGSC Compression

From the above process, we see that the starting tag “<CAGSC Table=IDi>” will

guide the decompression program to select the correct token-string table. Even if the

CAGSC tokens in different regions are the same, the program will still be able to

decompress the tokens to strings correctly. Therefore, we can reuse tokens among

different tables and regions without any problem.

…stri1…str i2…str i3……, …str j1…str j2…str j3……

CAGSC

Token-string table ID1

 …

Scan the whole object

…<CAGSC Table=IDi>tokeni1…tokeni2…tokeni3……,…</CAGSC>
<CAGSC Table=IDj>tokenj1…tokenj2…tokenj3……</CAGSC>

Token-string table IDi

 …

Token-string table IDj

 …

Input

Output

Original
Object

CAGSC
Compressed

Object

From other
compression
mechanism

206

7.4.3 Case Study: CAGSC Compression on HTML and JavaScript Strings

In this section, we would like to use HTML tags and JavaScript strings to study

the performance of CAGSC compression in web content delivery.

Ideally, CAGSC compression can be applied on any type of special string sets

appeared in web content, such as HTML tags, JavaScript strings, css keywords and

HTTP headers etc. Here we work on only HTML tags and JavaScript strings because

they are the most frequently used special string sets in web content, and they often

occupy considerable percentages of object body.

0%
5%

10%

15%
20%
25%
30%

35%
40%
45%

<=
5%

<=
1 0

%

<=
15

%

< =
20

%

<=
25

%

<=
30

%

<=
3 5

%

<=
4 0

%

< =
45

%

<=
50

%

<=
55

%

<=
6 0

%

<=
6 5

%

< =
70

%

<=
75

%

<=
80

%

<=
8 5

%

<=
9 0

%

<=
95

%

< =
10

0 %

Ratio of "Tags_Size / Object_Size"

Pe
rc

en
ta

ge
 o

f O
bj

ec
ts

HTML JavaScript HTML+JavaScript

Figure 7.27 Distribution of objects w.r.t. the ratio of “tags size/whole object size”

Figure 7.27 plots the distribution of objects with respect to the ratio of the size of

HTML tags and JavaScript strings vs. the size of whole object. From the graph, we see

that for the majority of objects, the HTML tags and JavaScript strings all occupy about

5~35% of the whole object size. On average, HTML tags count for about 17.65% of

total object size while JavaScript strings occupy about 14.59% of object size. Together,

they take up about 32.24% of whole object size. These percentages are quite

significant. It gives good potential on performing CAGSC compression on HTML tags

and JavaScript strings.

From this graph, we also observe that the curve of JavaScript strings is a little to

207

the left of the curve of HTML tags. This shows that JavaScript strings occupy

relatively smaller portion of objects’ body than HTML tags do. This indicates that

CAGSC compression may be more effective on HTML tags than JavaScript strings.

As we stated earlier, CAGSC compression should be put to work together with

another general-purpose compression algorithm to achieve better overall performance.

In our study, we choose to use deflate as the general-purpose compression

algorithm to work with CAGSC compression. deflate is an LZ77 variant and it is a

widely used efficient lossless general-purpose compression algorithm. There are a

number of programs using deflate as the core algorithm, such as gzip and zlib [214]

etc. The actual general-purpose compression program we use in this study is zlib. This

is mainly because zlib is a free open source package which can be incorporated into

our system easily.

When CAGSC compression is working together with zlib, we will use CAGSC

compression to first compress an object, and then we pass the CAGSC-compressed

object to zlib to do further compression.

7.4.3.1 Selecting Strings for CAGSC Compression

There are about 210 HTML tags and more than 410 JavaScript strings defined in

web specifications [35, 289].

In our study, we collect and analyze HTML tags and JavaScript strings by doing

analysis on about 34,000 web pages. In total, we get 195 strings in the HTML set and

410 strings in the JavaScript set. To decide the number of strings, what strings and the

coding length to be used for each of these two string sets, we compute the weighted

frequencies for the strings and the potential gains for certain selections (i.e. subsets) of

strings using formulas F7.3 and F7.4.

Table 7.2 and Table 7.3 furnish the potential gains of different selections of

208

HTML tags and JavaScript strings respectively. From them, we see that the selections

of top 128 strings under 1-byte coding give the highest potential gains among all the

choices. It is surprising to observe that the selections under 2-byte coding give smaller

potential gains although 2-byte coding provides much larger coding space which

enables more strings to be selected. Further study reveals the following reasons:

Table 7.2 Potential gains of different selections of HTML tags
Coding Length

1-byte 2-byte
Coding
Space 128 32,768 32,768 32,768

Number
of strings
selected

(Remarks)

128
(Only 128 strings are selected
due to the limitation of
coding space. These 128
strings are those with top
weighted frequencies which
are greater than zero.)

195
(The full string set of
HTML tags. Note that the
weighted frequencies of
some strings may be less
than or equal to zero.)

168
(All the strings whose
weighted frequencies
are greater than zero
are selected.)

128
(Only the top 128
strings from the 168
strings in the left
column are selected.)

PG of the
selection
of strings

99,149,960 62,764,840 68,808,825 68,783,845

Table 7.3 Potential gains of different selections of JavaScript strings

Coding Length
1-byte 2-byte

Coding
Space 128 32,768 32,768 32,768

Number of
strings

selected
(Remarks)

128
(Only 128 strings are selected
due to the limitation of coding
space. These 128 strings are
those with top weighted
frequencies which are greater
than zero.)

410
(The full string set of
JavaScript strings. Note
that the weighted
frequencies of some
strings may be less than
or equal to zero.)

404
(All the strings
whose weighted
frequencies are
greater than zero are
selected.)

128
(Only the top 128
strings from the 404
strings in the left
column are selected.)

PG of the
selection
of strings

111,544,694 86,477,018 86,553,835 85,847,930

(1) Under 2-byte coding scheme, the weighted frequency of a string will be smaller

than that under 1-byte coding scheme because a larger coding length is used in the

calculation of weighted frequency (see F7.3).

(2) The occurrences of HTML tags and JavaScript strings concentrate on a small

subset of the whole string sets. Figure 7.28 plots the CDF of occurrence frequencies

of strings with respect to the sizes of string subsets. We see that small subsets

209

which contain the top 32 or 64 strings already cover the majority of the global

occurrence frequencies of all strings. When the subset contains 128 strings, it

covers 99.84% of all strings’ occurrences in HTML tags and 99.19% in JavaScript

strings. This indicates that the 1-byte-coding’s 128 coding space provides very

good coverage of strings’ occurrences of HTML tags and JavaScript strings, which

is very comparable to that of 2-byte-coding. So, although 2-byte coding is able to

enclose more strings than 1-byte coding, its coverage of occurrence frequencies of

strings is extremely similar that of 1-byte coding.

Since 1-byte coding provides good coverage of string occurrences in HTML tags and

JavaScript strings and the weighted frequencies of strings are bigger under 1-byte

coding, it is understandable why the potential gains on HTML tags and JavaScript

strings under 1-byte coding are bigger than that under 2-byte coding.

0%

20%

40%

60%

80%

100%

Top 8 Top 16 Top 32 Top 64 Top 128 Full
Number of strings included

C
D

F
of

 o
cc

ur
re

nc
e

fre
qu

en
ci

es

HTML JavaScript

Figure 7.28 Cumulative distribution of strings w.r.t. subset sizes

Based on the above studies of the potential gains, we decide to adopt the 1-byte

coding scheme and select the top 128 strings for this case study of CAGSC

compression on HTML tags and JavaScript strings in web content delivery.

Table 7.4 lists the top 30 strings among the 128 strings selected from each string

set of HTML tags and JavaScript strings.

To look at the average lengths of the selected strings could also help us to

210

estimate the potential of CAGSC compression.

Table 7.4 Top 30 strings of the selected 128 strings under 1-byte coding
Top 30 HTML tags Top 30 JavaScript strings

ADDRESS JAVASCRIPT
WIDTH DOMAIN
HEIGHT LOCATION

FONT CONFIRM
HREF WIDTH
HTML WINDOW

BORDER HEIGHT
TD BORDER

CLASS IMAGES
CENTER OPEN
ALIGN FOR

FOR CLASS
CELLSPACING THIS
CELLPADDING BGCOLOR

TABLE IF
BGCOLOR INDEX

VALIGN OPTION
IMG TARGET
TR VALUE

OPTION DOCUMENT
SRC SCRIPT
SIZE ONMOUSEOVER

COLOR NAME
FACE TOP

TARGET ONMOUSEOUT
STYLE SEARCH

BR LANGUAGE
VALUE TITLE

DIV RETURN
SPAN LINK

Taking the frequencies of the strings into consideration, we get the average string

lengths and average gain per string for the two string sets. The results are shown in

Table 7.5. We see that the average gain per string for both HTML tags and JavaScript

strings is substantial.

Table 7.5 Average string lengths and gains under 1-byte coding
 HTML tags JavaScript strings

Average length of the 128 selected original strings 4.3 bytes 5.3 bytes
Length after CAGSC compression 1 byte 1 byte

Average gain per string 76.74% 81.13%

Also from Table 7.5, we notice that the average length of JavaScript strings is

bigger than that of HTML tags. Therefore, the average gain per string for JavaScript

211

strings is higher than that for HTML tags. However, according to Figure 7.27,

JavaScript strings occupies smaller portion of object data than HTML tags do. So, it

remains unknown that CAGSC compression is more effective on which string set:

HTML tags or JavaScript strings. We will answer this question in the following

experimental study.

7.4.3.2 Generating Token-String Tables

After strings have been selected, token-string tables will be generated for them.

That is, each string in the selection will be given a token. All the tokens for the strings

of one selection (i.e. subset) form a token-string table. Each string table is given a

unique ID to distinguish the tokens among tables. The format of token-string tables is

as described in subsection 7.4.2.2.4.

In this case study of CAGSC compression on HTML tags and JavaScript strings,

we have two string sets. From each set, we select 128 strings. So we have two

token-string tables. For simplicity reason, we represent table ID’s using integer

numbers. For the token-string table for HTML tags, we assign “1” to be its ID; and for

JavaScript strings, we assign “2” as the table’s ID. We use 1-byte coding scheme in

this study, as we discussed earlier. Table 7.6 gives the excerpts of the two token-string

tables used in this study.

7.4.3.3 Performance Study

After the token-string tables have been generated, they will be pre-distributed to

parties with CAGSC packages. Then we will be able to use CAGSC compression in

web content delivery.

Below, we report our experimental study on the performance of CAGSC

compression using the token-string tables described in the previous subsection.

To study the performance of CAGSC compression in web content delivery, we

212

first look at compression ratios that various CAGSC compression mechanisms can

achieve. Here we include four mechanisms in our study. They are shown in Table 7.7.

Table 7.6 Excerpts of token-string tables for selected-strings subsets
For selected HTML tags For selected JavaScript strings

1 (Table ID) 1 (Coding length) 2 (Table ID) 1 (Coding length)
(Token) (String) (Token) (String)
10000001 ADDRESS 10000001 JAVASCRIPT
10000010 WIDTH 10000010 DOMAIN
10000011 HEIGHT 10000011 LOCATION
10000100 FONT 10000100 CONFIRM
10000101 HREF 10000101 WIDTH
10000110 HTML 10000110 WINDOW
10000111 BORDER 10000111 HEIGHT
10001000 TD 10001000 BORDER
10001001 CLASS 10001001 IMAGES
10001010 CENTER 10001010 OPEN
10001011 ALIGN 10001011 FOR
10001100 FOR 10001100 CLASS
10001101 CELLSPACING 10001101 THIS
10001110 CELLPADDING 10001110 BGCOLOR
10001111 TABLE 10001111 IF
10010000 BGCOLOR 10010000 INDEX
10010001 VALIGN 10010001 OPTION
10010010 IMG 10010010 TARGET
10010011 TR 10010011 VALUE
10010100 OPTION 10010100 DOCUMENT
10010101 SRC 10010101 SCRIPT
10010110 SIZE 10010110 ONMOUSEOVER
10010111 COLOR 10010111 NAME
10011000 FACE 10011000 TOP
10011001 TARGET 10011001 ONMOUSEOUT
10011010 STYLE 10011010 SEARCH
10011011 BR 10011011 LANGUAGE
10011100 VALUE 10011100 TITLE
10011101 DIV 10011101 RETURN
10011110 SPAN 10011110 LINK
……
(total 128 entries)

……
(total 128 entries)

……
(total 128 entries)

……
(total 128 entries)

Table 7.7 Four mechanisms for studying compression ratio of CAGSC compression

Abbreviation Remarks
Normal No compression

CAGSCh CAGSC compression on HTML tags only
CAGSCj CAGSC compression on JavaScript strings only
CAGSChj CAGSC compression on both HTML tags and JavaScript strings

Figure 7.29 plots the improvement that various CAGSC compression mechanisms

achieve on size reduction. We see that CAGSC compression can effectively reduce

object size by considerable percentage by just compressing HTML tags and JavaScript

213

strings. The average compression ratios of CAGSCh, CAGSCj and CAGSChj are

85.14%, 86.96% and 78.86%, respectively.

The results in this graph show that CAGSCh have better compression ratio than

CAGSCj. In other words, CAGSC compression is more effective on HTML tags than

JavaScript strings. The outperforming percentage is 1.2~7.9%. The reason for this

phenomenon could be due to the fact that HTML tags occupy bigger portion of object

body than JavaScript strings do (refer to Figure 7.27).

When CAGSC compression works on both HTML tags and JavaScript strings

(i.e. the CAGSChj mechanism), it produces much better compression ratio than the

ones working on one string set only. However, we notice that the size reduction that

CAGSChj achieves does not equal to the addition of the size reduction from CAGSCh

and CAGSCj. The reason for this is because that there is overlap between the two

string sets. When these two strings sets are put together to work for CAGSC

compression, the strings that they have in common will be compressed only once.

Therefore, the overall improvement is smaller than the total sum of the improvements

achieved by working on each single string sets.

Another interesting observation is that the effectiveness of CAGSC compression

with different string sets varies for different object sizes. We see that the effectiveness

of CAGSCh decreases as object size increases, while this trend is much less obvious

with CAGSCj. The reason for this phenomenon may be because that the proportion of

different string sets in object body changes in different-sized objects. As object size

increases, HTML tags become to occupy relatively smaller portion of object body; so

CAGSCh becomes less effective. As for JavaScript strings, its proportion in objects

may be quite constant across different-sized objects. Consequently, the effectiveness of

CAGSCj is relatively stable. But for very large objects, i.e. those bigger than 128

214

KBytes, we also see that CAGSCj drops a little in effectiveness. This indicates that the

proportion of JavaScript strings in object body also becomes smaller for very large

objects. Because the effectiveness of CAGSC compression on HTML tags decreases,

so the effectiveness of the compounded CAGSChj compression also decreases, as we

can see in Figure 7.29.

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k<=128k Other

Object Size

R
el

at
iv

e
Si

ze
 R

at
io Normal

GSCh
GSCj
GSChj

Figure 7.29 Compression ratio of CAGSC compression

Figure 7.29 shows that CAGSC compression can reduce object size by up to 25%.

However, there exist some general-purpose compression algorithms such as zlib which

work quite well on web content also. Refer back to Figure 7.7, we see that the

compression ratio that those algorithms achieve is even higher than CAGSC

compression. With this in presence, is it still necessary or beneficial to adopt CAGSC

compression in web content delivery? Our answer to this question is positive. This is

because: our CAGSC compression is not exclusive to existing general-purpose

compression algorithms. In fact, CAGSC compression can be used together with them

to further improve the performance of compression in web content delivery. Here we

would like to study the effectiveness of CAGSC compression in the presence of

another compression algorithm.

As we stated earlier, we use zlib as the general-purpose compression algorithm in

our study (please refer to Section 7.4.3 for the reasons). To study the effectiveness of

CAGSC compression in working with zlib, we first compress objects using CAGSC

215

compression, and then apply zlib on the resulting data. In all, we have four

compression mechanisms to compare with. They are listed in Table 7.8.

Table 7.8 Four mechanisms for comparison of zlib and CAGSC compression
Abbreviation Remarks

zlib zlib compression
CAGSCh+zlib zlib compression after CAGSCh
CAGSCj+zlib zlib compression after CAGSCh
CAGSChj+zlib zlib compression after CAGSChj

Figure 7.30 shows the relative performance of the four compression mechanisms.

From the graph, we see that CAGSC compression still achieves considerable

improvement when zlib is in presence. Compared against zlib, the relative size ratios

of CAGSCh+zlib, CAGSCj+zlib and CAGSChj+zlib are 89.35%, 90.49% and 86.44%,

respectively. This can be considered substantial because it is generally agreed that to

further improve compression ratio for algorithms like zlib (i.e. deflate) is very

difficult.

50%
55%
60%
65%
70%
75%
80%
85%
90%
95%

100%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k Other

Object Size

R
el

at
iv

e
C

om
pr

es
si

on
 R

at
io

zlib
GSCh+zlib
GSCj+zlib
GSChj+zlib

Figure 7.30 Compression ratio of zlib and CAGSC with zlib

An interesting observation is that the CAGSChj+zlib (or CAGSCh+zlib, or

CAGSCj+zlib) compression yields the best performance for objects with sizes between

2 KBytes and 8 KBytes. This could be because: (1) For small objects (around 1 KByte),

zlib is not very effective in compressing them, so the performance of CAGSChj+zlib is

not the best; (2) For big objects (bigger than 8 KBytes), the contribution to size

reduction from zlib becomes rather stable, since the contribution from CAGSChj is

216

getting smaller and smaller as object size increases (refer to Figure 7.29), so the overall

performance of CAGSChj+zlib worsens a little.

As we know from the previous sections of Chapter 7, compression can improve

object latency and page latency. Below we study the improvement that CAGSC

compression can bring in on object latency and page latency. The results presented

here are obtained through simulations. The details of experimental environment and

test sets are as described in Chapter 5 and Section 7.3.1.

Figure 7.31 and Figure 7.32 plot the improvement of CAGSC compression on

object latency against the normal no-compression situation and zlib situation,

respectively. In Figure 7.31, we see that the CAGSC compression mechanisms can

produce about 4~20% improvement on object retrieval latency. Compared with the

improvements that the existing zlib compression has achieved (see Figure 7.3), this

improvement is not so significant. However, as we pointed out earlier, CAGSC

compression can be used together with zlib as a complementary mechanism to further

improve the performance of compression. Figure 7.32 plots the performance of such

“CAGSC+zlib” compression mechanisms again zlib. We see that when working with

zlib, CAGSC compression does further improve the overall performance on object

latency by 4~12%. This is quite substantial since it is generally agreed that to further

improve the performance of compression algorithms like zlib is very difficult.

Figure 7.33 plots the improvement of CAGSC compression on page latency

against the normal no-compression situation. From this graph, we see that the CAGSC

compression mechanisms achieve about 1.5~14.6% improvement on whole page

retrieval latency.

We see that the improvement on page latency that CAGSC compression achieves

is smaller than that on object latency. In Section 7.3, we have studied this phenomenon

217

and revealed that (1) the fact that compressible objects in a page (mainly COs) only

occupy part of the total page size, (2) dependency among CO and EOs of pages, and (3)

limited parallelism width for simultaneous object fetching are the main reasons that

prevent compression’s performance on object retrieval latency from being translated

into page retrieval latency directly.

0%

20%

40%

60%

80%

100%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k Other

Object size

R
el

at
iv

e
ob

je
ct

 la
te

nc
y Normal

GSCh
GSCj
GSChj

Figure 7.31 Effect of CAGSC compression against normal situation on object latency

0%

20%

40%

60%

80%

100%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k Other

Object size

R
el

at
iv

e
ob

je
ct

 la
te

nc
y zlib

GSCh+zlib
GSCj+zlib
GSChj+zlib

Figure 7.32 Effect of “CAGSC+zlib” against zlib situation on object latency

Because of the above reasons and that CAGSC compression is less effective

when working with zlib than being used alone (see Figure 7.31 and Figure 7.32), it is

expected that CAGSC compression mechanisms may achieve even smaller

improvement on whole page latency when zlib is in presence. Our simulation results

show that the “CAGSC+zlib” compression mechanisms can only bring in about

0.8~4.4% improvement on page latency as against zlib compression.

218

Nevertheless, this is still a non-negligible performance gain, especially when it is

obtained on top of an efficient general-purpose compression algorithm since it is rather

difficult to further improve the performance of those algorithms.

Furthermore, remember that in this study, our CAGSC compression only works

on HTML tags and JavaScript strings. If we include more string sets such as VBScript,

css, XML and ESI etc. in CAGSC compression, we would expect that higher

performance of CAGSC compression could be seen.

0%

20%

40%

60%

80%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+

Number of EOs per Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy Normal
GSCh
GSCj
GSChj

Figure 7.33 Effect of CAGSC compression against normal situation on page latency

7.5 Conclusion

Web compression is an important web acceleration mechanism. This chapter

presented our detailed chunk-level study on two major web compression mechanisms,

namely pre-compression and real-time compression. The results revealed in our study

helps us to have in-depth understanding on the behavior and performance of

compression and its effect on page latency. We also propose a novel compression

mechanism, named Content-Aware Global Static Compression (CAGSC), to improve

the performance of compression in the specific area of web content delivery.

Experimental results show that CAGSC can achieve up to 20% and 14.6%

improvement on object retrieval latency and page retrieval latency respectively.

219

Chapter 8 Accelerating Web Page Retrieval through
Manipulation of Dependency

8.1 Introduction

Web retrieval latency is always an important issue to web content providers and

users. To reduce the latency, two traditional ways are to upgrade the infrastructure of

network and servers, and to adopt caching-based acceleration mechanisms such as web

caching and prefetching. However, upgrading of infrastructure of network and servers

are usually very costly so they are not often used. The caching-based acceleration

mechanisms have their limitations and are found not very effective. Therefore, another

category of software approaches which aims to accelerate the actual process of web

retrieval is getting more and more attention nowadays. Examples in this category

include encoding, pipelining and bundling etc. In Chapter 6, we already see that there

is good potential of accelerating web retrieval in this direction. In this chapter, we

propose innovative acceleration mechanisms which also belong to this category. Our

mechanisms try to reduce web retrieval latency by manipulating the dependencies in

web retrieval process.

Recall in chapter 4 and 6, web retrieval process consists of a series of objects and

operations, and retrieval latency is divided into seven components under WRDM

model. While some of the latency components are inherited from operations’ execution

time and propagation delay of data transmission through network, some others are

caused by dependencies between objects and between operations of web retrieval

processes. Among the objects or operations in web retrieval processes, there exist some

dependencies. For example, the retrieval of EOs relies on the retrieval of the CO of

same page. This is because EOs are defined in the body of CO. Dependency would

generally introduce latency to retrieval process. The retrieval of an EO can not start

until the data chunk containing the definition of the EO has returned to client, this

220

delay definitely contributes towards the retrieval latency of EOs. As we see, such

dependencies are caused by unavailability of information. If such information can be

made known to client earlier, the dependency will be shifted to an earlier stage and

retrieval latency can be reduced.

In this work, we propose Information Propagation mechanisms to manipulate

information dependency. These mechanisms could eliminate dependencies or shift

dependencies to earlier stages by propagating critical information backward to earlier

locations such as previous pages. By doing so, critical information could be made

known to client earlier, which would result in improvement in retrieval latency because

the dependent operation can now be started much earlier.

The outline of this chapter is as follows. We first discuss the dependency and

dependency-introduced latency in web retrieval, and show how the dependency can be

manipulated and the relevant latency be reduced. Then we propose two information

propagation mechanisms to manipulate two different information dependencies in web

retrieval. Following that is the detailed study on the performance of these mechanisms.

Then the chapter is concluded.

8.2 Dependency in Web Retrieval and Its Manipulation

8.2.1 Dependency in Web Retrieval

The retrieval processes of web page generally comprise a series of operations. In

Chapter 4 and 6, we map such retrieval processes to WRDG graphs under WRDM

model. The arcs of WRDG graph represent the relationship between operations. In

WRDG graphs, most of those relations are dependency relations since an operation

usually depends on the result of its precedent operation in the retrieval process. For

example, the network connection arc ac(k,i) denotes the dependency between “server

location resolution” operation and “network connection establishment” operation, i.e.,

221

the establishment of network connection can not be started unless the location of the

server has been resolved.

The dependency in web retrieval can be between the retrieval processes of two

objects, as well as between two operations in the retrieval process of an individual

object. The dependency between objects mainly refers to the relationship between CO

and EOs as EOs are defined in CO. This dependency denotes that the requests for EOs

cannot be initiated unless the definitions of EOs are made know to client. The

dependency between operations appears in the retrieval process of an individual object.

In general, every operation would be dependent on the result of its precedent operation

in the retrieval process.

Based on the cause of the relationship, we classify the dependencies in web

retrieval into two types: (1) Information Dependency, and (2) Happened-before

Dependency. If an operation depends purely on some information produced by its

previous operation, then the dependency between them is called Information

Dependency. Otherwise, the dependency would be treated as Happened-before

Dependency. Figure 8.1 gives a classification of the dependencies in WRDG graph.

The dependencies in the retrieval process generally introduce latencies to web

retrieval and sometimes such dependency-introduced latency can be significant. We

learnt from chapter 6 that web retrieval latency is made up of seven latency

components. Those latency components are generally incurred by an operation waiting

for the result of its precedent operation, i.e. the dependency between the two

operations. For example, the “connection establishment operation” would have to wait

for the IP address of the web server being resolved from the “location resolution

operation”, and the waiting time is the latency component LRT. From Figure 6.5 and

Figure 6.15, we see that some dependencies-introduced latency components are quite

222

large. For example, the DT time, which is caused by the dependency between CO and

EOs, often takes up more than 50% of the object retrieval latency.

Figure 8.1 Classification of the dependencies in web retrieval

The fact that dependencies have significant influence on web retrieval latency

suggests a good direction to improve web retrieval performance by manipulating

r(0)

l(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,2)

d(0,3)

r(1)

l(1)

c(1)

s(1)

d(1,0)

e(1)

d(1,1)

d(1,2)

d(1,3)

r(2)

l(2)

c(2)

s(2)

d(2,0)

e(2)

d(2,1)

(2)

(1)

(2)

(2)

(2)

(2)

(2)

(2)

(1)

(1) (2)

(1)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(1)

(2)

(2)

(2)

(2)

Types of dependency:

(1) Information Dependency

(2) Happened-before Dependency

223

dependencies in web retrieval. In this chapter, we try to propose some mechanisms to

achieve this goal.

8.2.2 Manipulating Information Dependency in Web Retrieval through
Information Propagation

Among the two types of dependencies in web retrieval, the Happened-before

Dependency is usually determined by the nature of the operations sequence in web

retrieval. For the Information Dependency, it is caused because of the untimely

unavailability of information. Because the required information is not made available

in time, the starting of the operation which is dependent on that information has to be

postponed until the information is ready. If such information can be made available in

advance through some mechanism, the dependent operation would be able to start

earlier, resulting in faster retrieval process. This prompts us to find a way to make the

information required by an operation available earlier, prior to its actual usage.

Since the “entity” that causes Information Dependency is information, which is

some type of data, we could try to find some mechanisms to provide such information

earlier than it is actually required. The particular mechanism we are going to propose

in this chapter is called the Information Propagation mechanism. The basic idea of this

mechanism is to propagate the critical information which causes dependency to an

earlier location/stage in the web retrieval process, and keep it for use when there is

need arising. This way, the dependency is shifted to the earlier location/stage. With

required information being made ready for use in advance, dependent operations could

start executing without any delay, resulting in faster retrieval process.

We would like to also point it out that besides being used to reduce

dependency-introduced latency, the propagated information can also be used to

enhance the performance of other acceleration mechanisms. For example,

pre-connection, persistent connection, bundling, and parallelism schemes etc. all can

224

make use of the propagated information to further improve their effectiveness.

From Figure 8.1, we see that there are two Information Dependencies in web

retrieval based on our WRDM model, i.e. the dependency between the “location

resolution operation” and the “connection establishment operation” and the

dependency between CO and EOs. The former dependency is between two operations

in the retrieval process of an individual object, while the latter one is between the

retrieval processes of two objects. We will propose different information propagation

mechanisms to manipulate these two dependencies from next section. Results show

that our information propagation mechanisms are effective in reducing the latencies

incurred by those information dependencies.

8.3 Manipulating the Dependency on Server Location Resolution

In this section, we propose and study a mechanism to reduce the latency

introduced by the dependency on location resolution operation. The basic idea is to

propagate the location information of servers into web pages and associate it with

URLs. Later on, when a client generates a request for an URL, it can use the

propagated location information so that the location resolution operation can be

eliminated, resulting in faster process for web retrieval.

8.3.1 Dependency on Server Location Resolution

Domain names are widely used in current web systems. The hyperlinks and the

definitions of EOs in web pages are generally described in domain-name format. So,

the URLs in web requests are also in the format of domain names in most cases.

However, to establish network connection with a server, the actual location (i.e. IP

address) of the server is required. Thus, the location (IP address) of the server specified

in a URL must be resolved prior to the establishment of network connection. The

resolution of a server’s location is typically a DNS process in current web system, and

225

it is represented by the location resolution vertex υl in WRDG graphs. The operation of

establishing network connection highly depends on the result of the location resolution

operation, i.e. the IP address of the server. This dependency is a kind of Information

Dependency, as we can see it in Figure 8.1.

Location resolution has been the most frequently used process in the Internet, and

many technologies such as DNS caching have been developed to improve the

performance of this process. Despite the high efficiency of current DNS system, long

location resolution time is still often encountered in the web system. Typically, a DNS

query which hits in local DNS cache yields very small latency, which appears to be

less of a problem for overall web retrieval. However, if a DNS query results in a miss

in local DNS cache, the time it takes to get the answer from remote authoritative DNS

server will be much bigger, which is no longer negligible to web retrieval. Therefore, it

would be preferable if we can have some mechanism to further help in this situation.

The URLs in web requests are originated from different places for COs and EOs.

For COs, the URLs are usually originated from hyperlinks in the previous page as web

users generally follow the hyperlinks to browse web pages. The URLs in hyperlinks

typically have the following format:

 NUS

The URLs for EOs are usually originated from the definitions of EOs within the body

of the CO of the same page. There are different types of EOs and the actual format of

the definitions for them differs a little. But they generally have similar format as the

following one, which is for image EOs:

For the URLs in these two different places, if we can pre-resolve the server locations

for them and propagate the information to proper location, then the location resolution

226

operation in web retrieval may be no long needed, so the location resolution vertex υl

(and the associated location resolution arc al) can be removed from WRDG graphs. As

a result, the dependency between the location resolution operation and the network

connection establishment operation can be eliminated, which could accelerate the

retrieval process as the latency incurred by the location resolution operation has been

eliminated.

8.3.2 Server Location Propagation Mechanism (SLP)

In this section, we propose a mechanism to eliminate the dependency incurred by

the location resolution operation by propagating the information of server location to

eliminate the dependency on the location resolution operation.

The mechanism we proposed to eliminate the dependency on location resolution

operation is called Server Location Propagation (SLP) Mechanism. The basic idea of

the SLP mechanism is to have web servers to pre-resolve the server addresses for

external URLs in the hyperlinks and definitions of EOs in web pages hosted on them.

By “external URLs”, we refer to the URLs which specify objects on another server.

For external URLs, location resolution operations are usually needed in web retrieval

process in order to get the server address for establishing network connection. The

pre-resolved server addresses will be propagated into pages and sent to clients so that

clients can use them directly for the establishment of network connection without any

delay, eliminating the dependency on the location resolution operation.

The SLP mechanism is a server side mechanism. The task of pre-resolving server

addresses will be carried out offline by servers during off-peak hours when the servers

are relatively idle. After a server pre-resolved the server addresses for the external

URLs, it will keep the information in a table named Server Address Table (SAT). The

entry of the SAT table typically contains server domain name, server address (IP

227

address), and the expiry time of the entry. Figure 8.2 shows the structure of the SAT

table.

Figure 8.2 Structure of Server Address Table

Note that a server domain name could have multiple corresponding addresses.

This is usually for load-balancing on the servers. In this case, the second field of the

entry would have multiple addresses.

When the server serves a page, it will look into the page for external URLs and

lookup for the corresponding address information in the SAT table. If there is a

matching entry, the server will propagate the corresponding address information to the

page dynamically. We introduce an optional new tag ADDR to HTML for this server

address propagation. As described before, the URLs are usually found in two places,

i.e. hyperlinks and definitions of EOs. The URLs in these two places before and after

the propagation have the formats shown in Figure 8.3.

If the corresponding address for an external URL can not be found in the SAT

table, the server will not propagate information for this URL. But the server will record

this URL for pre-resolving later on.

In the case where a server domain name has multiple corresponding addresses,

the server may base on certain load-balancing algorithm to choose one of the addresses

to do the propagation.

At client side, when a user clicks on a hyperlink to go to next page, the browser

can directly use the propagated server address associated with the hyperlink (see

“Figure 8.3 a)”) to establish network connection, removing the need for server location

Server Domain Name 1 Address Expiry Time
Server Domain Name 2 Address1, Address2, …, AddressN Expiry Time

•
•
•

228

resolution. When the CO of a page arrives at client, the browser may further trigger the

retrieval of the EOs in the page by parsing the CO’s body and looking for the

definitions of EOs. Since the definitions of EOs (with external URLs) also have

associated server address information (see “Figure 8.3 b)”), the browser would also be

able to establish network connection immediately without doing the location resolution

operation. On the other hand, if the client browser does not understand the ADDR tag,

or it choose to ignore this tag, or there is no such ADDR tag at all, it can just proceed as

usual with the normal URL to do the retrieval.

Figure 8.3 Propagation of server address

The above process is demonstrated in Figure 8.4.

In the presence of web caching, the above mechanism will not help for those

objects which are found in the local cache and still fresh. Because these objects will be

served locally, there is no need to contact remote server, so the above mechanism will

not be able to help. However, for objects that are not in the cache, or those in the cache

but are stale, our SLP mechanism could effectively eliminate the latency component

caused by the location resolution operation.

a) URL in hyperlink

ü Original:

 NUS

ü After propagation:

 NUS

b) URL in definitions of EO (use image EOs as an example)

ü Original:

ü After propagation:

229

Figure 8.4 Eliminating dependency on server location resolution operation

The SLP mechanism is used to reduce the location resolution latency in web

retrieval. It will not affect the correctness of the page content in any means. In the

r(0)

 l(0)

c(0)

s(0)

d(0,0)

e(0)

d(0,1)

d(0,3)

r(1)

c(1)

s(1)

d(1,0)

e(1)

d(1,1)

Current Page

(With propagated information)

(With propagated information)

Location resolution is no more needed

 l(1) Location resolution is no more needed

Previous Page

230

cases where pages do not have the propagated ADDR tag, or the user’s browser does

not support this tag, then normal retrieval procedure will be carried out, i.e. resolving

the server location, followed by establishment of network connection etc. In any case,

the correctness of the web page semantics will not be affected.

8.3.3 Experimental Study

In this section, we report our experimental results on the SLP mechanism. The

traces and the simulation systems are described in Chapter 5. In our experimental

environment, the local DNS caches exist at the school level (School of Computing)

and university level (National University of Singapore). The network traffic in our

environment is heavy and diverse. So, the DNS latencies observed in our experiments

shall well reflect the experiences of most web users.

First, we would like to investigate the contribution of server location resolution

towards object retrieval latency. The server location resolution is typically the DNS

process in web system, and the latency for it is the LRT time as discussed in previous

chapters. In Chapter 6, we learnt that LRT time usually makes up about 1~6% of object

retrieval latency (refer to Figure 6.5). That gives the potential of improvement by

reducing this latency component on top of the current DNS system. Although this a

few percents contribution is not very significant, it is large enough for being not

negligible.

In web system, the result of server location resolution generally falls into the

following situations:

1) DNS Local Hit

These DNS lookups result in hits in local DNS cache, so the server locations can be

returned immediately.

2) DNS Local Miss

231

These DNS lookups result in misses in local DNS cache. They have to contact

remote DNS servers to get authoritative answers for the server locations.

3) Numeric

The server location part is already given in numeric IP address form in the URLs.

So, there no need to do DNS lookups for such URLs.

4) No IP Available

These DNS lookups cannot find the corresponding server locations in local and

remote DNS caches.

5) DNS Negative Hit

These DNS lookups result in hits in local DNS cache, but the results are not server

locations, instead, they are messages describing that errors encountered when

resolving those server locations in the recent times.

Table 8.1 shows the results of the above five situations. According to the results, about

87% of all DNS lookups resulted in hit in the local DNS caches. When DNS lookups

hit in local cache, the DNS latency only contributes less than 1% to the whole object

retrieval latency. This confirms the high effectiveness of current DNS system.

However, despite of that, we still see about 12% of DNS lookups resulting in misses in

the local DNS caches, and the impact of those DNS misses is quite significant: the

average latency incurred by them is nearly 2 seconds, which counts for about 20% of

the whole object retrieval latency.

There are some URLs in which the server’s location part is given in numeric IP

address form instead of a domain name. For such URLs, no DNS process is needed.

Therefore the LRT time is almost zero. Our SLP mechanism aims to achieve this effect

by propagating pre-resolved locations (i.e. IP addresses) in to URLs, so that the

requests for those URLs can enjoy minimum LRT time.

232

There are cases where the DNS processes are unable to resolve the given server

domain and return the “No IP Available” result. Such cases usually prolong object

retrieval latency very significantly because the DNS system takes long time to contact

multiple remote DNS servers to get the final result. In our experiment, this situation

usually takes nearly 23 seconds to finish, which is a considerably long time. Luckily,

the percentage of requests fall in this category is very small, only about 0.12% in our

study.

In our experimental system, the error DNS results such as “No IP Available” will

also be cached by the DNS system. If such domain names are submitted for resolving

again in the near future, the system could return the result quickly without contacting

remote DNS servers. This situation is referred to as “DNS Negative Hit” in our study.

From Table 8.1, we can see that the latency for this situation is very small.

Table 8.1 Statistics about server location resolution
 Percentage

of requests
Average DNS

latency (second)
Average contribution of DNS

latency to object retrieval latency
DNS Local Hit 86.88% 0.002295 0.86%

DNS Local Miss 11.89% 1.964311 20.21%
Numeric 1.00% 0.000084 0.02%

No IP Available 0.12% 22.773561 70.50%
DNS Negative Hit 0.11% 0.007979 67.10%

Some hyperlinks and EOs contained in a page may specify objects on the same

server where the current page locates. For the domain names in such hyperlinks and

the definitions of the EOs, there is no need to resolve the location since it is the same

as current page. For hyperlinks and definitions of the EOs in which the URLs specify

different server domain names, location resolution is needed. In our study, we refer to

such URLs (in hyperlinks and definitions of EOs) as external URLs. The acceleration

of location resolution process is only necessary for external URLs. Therefore, we

would like to look into the distribution of such external URLs in web pages.

Figure 8.5 plots the percentage distribution of external URLs in web pages. This

233

graph reads as follows: Take the category “0~10%” on the X-axis as an example, it

shows that for about 44.3% web pages, up to 10% of the hyperlinks in them contain

external URLs; and, for about 66.8% web pages, 0~10% of the definition of the EOs

contain external URLs. If we put the hyperlinks and the definitions of EOs together,

we see that for about 49% web pages, up to 10% of URLs appeared in them are

external URLs.

From this graph, we see that there are considerable percentage of URLs appeared

in web pages are external URLs. And, the URLs defined in hyperlinks generally have

more external URLs than the URLs defined in the definitions of EOs. On average,

about 27.9% hyperlinks contain external URLs while about 20.4% definitions of EOs

are external URLs. Overall, about 23.9% of all the URLs appeared in a page are

external. With this high percentage of external URLs, we would expect that the

acceleration mechanisms for location resolution could be effective.

Figure 8.5 Distribution of external domains in web pages

Figure 8.6 shows the distribution of the absolute number of external URLs in web

pages. From it, we see that while about 33% of web pages do not contain any external

URLs, the majority of web pages do have external URLs defined in them. Moreover,

nearly 20% of web pages even contain more than 20 external URLs in them. On

0%

10%

20%

30%

40%

50%

60%

70%

0~10% 10~20% 20~30% 30~40% 40~50% 50~60% 60~70% 70~80% 80~90%90~100%
Percentage of Domains in Page

Pe
rc

en
ta

ge
 o

f P
ag

es

External Hyperlinks External EOs External "Hyperlinks + EOs"

234

average, there are about 17.6 external URLs in a web page. This big absolute number

of external URLs in web pages would also ensure the effectiveness of the acceleration

mechanisms for location resolution.

Figure 8.6 Distribution of external domains in web pages

Figure 8.7 Performance of SLP mechanism without caching effect (Parallelism = 4)

Our SLP mechanism tries to reduce the LRT time (i.e. the latency caused by the

dependency on server location resolution) by propagating pre-resolved results to URLs

in web pages. Figure 8.7 plots the improvement on whole page retrieval latency that

SLP mechanism achieves without considering caching effect. From it, we see that SLP

can reduce up to 10% whole page latency for about 78% web pages. For other pages, it

can achieve even higher improvement. On average, SLP can improve page latency by

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 20+

Number of External Domains in Page

Pe
rc

en
ta

ge
 o

f P
ag

es

External Hyperlinks External EOs External "Hyperlinks + EOs"

77.99%

11.37%
4.56% 2.51% 1.29% 0.82% 0.52% 0.35% 0.31% 0.27%

0%

20%

40%

60%

80%

100%

0~
10

%

10
~2

0%

20
~3

0%

30
~4

0%

40
~5

0%

50
~6

0%

60
~7

0%

70
~8

0%

80
~9

0%

90
~1

00
%

Improvement on Page Latency

Pe
rc

en
ta

ge
 o

f P
ag

es

235

about 4.22%. Although this improvement is not very big, it is significant enough for

not to be ignored. Furthermore, we note that the improvement is unevenly distributed

among pages. If only entry pages are considered, the performance of SLP would be

much better because entry pages tend to have more new external URLs and thus they

usually spend more time on location resolutions. Our experimental result shows that

SLP can achieve about 13.27% improvement on whole page latency for entry pages.

This shall be considered as very substantial.

When web caching is taken into consideration, the performance of SLP could be

lower since some objects may be found in the local web cache, thus there is no need to

resolve server location for them. Figure 8.8 shows the performance of SLP mechanism

with considering caching effect. We use three different cache sizes to investigate

caching effect on SLP mechanism: (a) 10% of total unique objects size in the trace, (b)

20% of total unique objects size, and (c) Infinite cache size. For the caching

replacement algorithm, we use the LRU algorithm, as it is the most popular one used in

web caches [73].

Figure 8.8 Performance of SLP mechanism with caching effect (Parallelism = 4)

Surprisingly, we see that web caching only has marginal influence on the

performance of SLP mechanism. Compared with the average 4.22% improvement

0%

20%

40%

60%

80%

100%

0~
10

%

20
~3

0%

40
~5

0%

60
~7

0%

80
~9

0%

Improvement on Page Latency

Pe
rc

en
ta

ge
 o

f P
ag

es

0~
10

%

20
~3

0%

40
~5

0%

60
~7

0%

80
~9

0%

Improvement on Page Latency

0~
10

%

20
~3

0%

40
~5

0%

60
~7

0%

80
~9

0%

Improvement on Page Latency

(a) Cache Size: 10% (b) Cache Size: 20% (c) Cache Size: Infinite

236

without considering web caching, SLP still achieves average improvements of 4.203%,

4.20% and 4.12% when cache size is 10%, 20% of total unique objects size and

infinite, respectively. Further study reveals the following reason for this phenomenon:

Web caching will affect the performance of SLP only for those requests which both hit

in the web cache and served by SLP. Since the reuse rate of web objects in web cache

is low and the percentage of objects served by SLP is also low (recall that only about

12% of object requests result in DNS misses), the overlapping of these two classes of

objects will be very small. So, web caching has little influence on the performance of

SLP mechanism.

SLP mechanism may bring some overhead to web retrieval. The main overhead

concerned in web retrieval performance is the size incensement to the COs of pages.

When SLP propagate address to COs, the size of the CO will be increased. Hence, the

retrieval latency of the CO may be affected. However, we find that this overhead is

negligible to most pages. Because a web page contains about 17.6 external URLs on

average, so it takes only about 380 bytes to propagate the address information for them.

According to the study in Chapter 6, adding extra 380 bytes to an object has almost no

or very marginal impact on the object retrieval latency. Furthermore, the 380 bytes are

for 17.6 external URLs. Among these external URLs, there are maybe duplicate ones.

SLP only needs to propagate address information for unique external URLs. When we

take this into consideration, the size required for propagating address information will

be much smaller since the number of unique external URLs should be smaller than

17.6.

From the above study, we can see that the SLP can effectively reduce the latency

incurred by the dependency on server location resolution. In general, it can achieve

more than 4% improvement on page retrieval latency. Considering this performance

237

gain is on page retrieval latency instead of object retrieval latency, this improvement

shall be considered quite significant. At the same time, SLP retains very marginal

overhead to web retrieval performance.

8.4 Manipulating the Dependency between CO and EOs

8.4.1 Dependency between CO and EOs

As we know from previous chapters, a web page is often made up of multiple

objects in current web system. Among the objects of a page, one is called the Container

Object (CO) and others are called Embedded Objects (EO). The container object of a

page is usually an HTML file which contains some content of the page and definitions

of the EOs of the page. Embedded objects are usually images, video and audio files etc.

The content of both the CO and the EOs must be retrieved and displayed together in

order to render the full view of a web page.

There is dependency between CO and EOs in web retrieval process. When a

request is created for a page, the URL specified in the request only identifies the CO of

the web page. Only when the body of the CO has returned and parsed, will the client

know what are the EOs to retrieve. Only after that, will the retrieval processes of EOs

be able to be initiated. This indicates that the retrieval of EOs highly depend on the

retrieval of the CO. This dependency is captured by the object deriving arcs in WRDG

graphs, as we can see in Figure 4.3 and Figure 4.5 etc.

The dependency between CO and EOs introduces an important latency

component, Definition Time (DT), to the retrieval latency of EOs. The studies in

previous chapters have shown that DT times of EOs often occupy big percentage of

object latency, and they contribute significantly towards final page retrieval latency. To

reduce this latency component could effectively reduce whole page latency.

The dependency between CO and EOs exists because the EOs are defined in the

238

body of the CO of the same page. In other words, the cause of the dependency is the

definitions of EOs. Such definition is usually a line of HTML code, and typically has

the following format (for image type of EOs):

Since the definitions EOs are some kind of information data, so this dependency

is also a kind of Information Dependency. From Figure 8.1, we can see that this

dependency has been classified as information dependency. Because the cause of the

dependency is information, we may again use our information propagation mechanism

to manipulate this dependency. From next section, we propose an information

propagation mechanism to manipulate this dependency by propagating the definitions

of EOs to earlier stage/location of web retrieval process. This way, the dependency is

shifted to earlier stage, resulting in significant reduction in the DT times of EOs.

Consequently, significant improvement on EOs’ latency and whole page latency can be

achieved.

8.4.2 Embedded Object Information Propagation Mechanism (EOIP)

In this section, we propose the Embedded Object Information Propagation

Mechanism (EOIP) to manipulate the dependency between CO and EOs by

propagating the definitions of EOs to earlier stage/location of web retrieval process.

We show that our EOIP mechanism could effectively reduce the latency incurred by

this dependency, i.e. the DT times of EOs, which in turn significantly improves whole

page latency.

The EOIP mechanism is also a server side mechanism. The web server will run a

background process during off-peak hour to collect and propagate the information of

the EOs for each page. To make it easier to explain the EOIP mechanism, we would

like to use an example to describe it. Let us assume we have two pages Page(a) and

239

Page(b) on a web server, and Page(a) contains a hyperlink pointing to Page(b), i.e.

Page(a) contains a line of HTML code similar to the following:

 NUS

When the server runs the background process to do the propagation, it will follow the

hyperlink to find the Page(b) (For simplicity reason, we assume this process only looks

for pages on the same server. But this process can be extended to include pages on

other servers as well). Then the process will parse the CO of Page(b) to find the

information of the EOs in it. Let us again assume that Page(b) contains two EOs, i.e.

the CO of Page(b) contains two definitions of EOs, like the following:

After the server has got the information about the EOs in Page(b), it will propagate

such information to Page(a) by appending an optional Embedded Object Declaration

Section to the end of the CO of Page(a). Here we introduce an optional new tag EOD

(“EOD” stands for “Embedded Object Declaration”) to HTML for this optional

Embedded Object Declaration Section. For the above assumptions, the Embedded

Object Declaration Section appended to Page(a) will have the following format and

content:

<EOD>

http://www.nus.edu.sg/index.html

</EOD>

The first line in the body of EOD section is the URL of a page (here is Page(b)), which

comes from the hyperlink in Page(a). The rest lines of EOD section give the definition

240

of the EOs contained in the page specified by the URL in the first line. The EOD

section conveys the information of which EOs are dependent on which CO.

For each distinct hyperlink in Page(a), the server may collect and propagate the

EOs information associated with the hyperlink and append a separate EOD section to

the CO of Page(a). So, a page may contain multiple EOD sections after the

propagation. Each of the EOD section conveys the dependency information between

CO and EOs for one distinct page pointed to by a hyperlink. On the other hand, the

server will also need to run some processes periodically to check and update the EOD

sections to ensure that the information propagated there is valid.

When a client retrieves Page(a), the optional EOD section will be transferred to

the client after the original content of Page(a) has been transferred. There are generally

idle times between page visits (due to user’s viewing a page, or the post-processing of

a page such as compiling Java programs). These idle times can be used to transfer the

optional EOD sections, so the extra transfer latency would be hidden and thus not

perceivable to web users. (In other words, the EOD section is like a section of

piggyback data which is sent along with the page after the original page content

finishes.)

The propagated information will be used by client to reduce the latency incurred

by the dependency between CO and EOs. Web users frequently follow hyperlinks to

browse web pages. When a user clicks on the hyperlink in Page(a) to go to Page(b), the

web browser will get the URL from the hyperlink to create a request for Page(b). At

the same time, it would also look up in the EOD sections to see if there is any one

containing this URL. If there is a match, the browser will get the definition of the EOs

contained in Page(b) from the EOD section and start to retrieve them without waiting

for the CO of Page(b) to be returned from the server. In other words, the requests for

241

the EOs can be triggered as early as the request for the CO of the same page.

The process of EOIP mechanism is illustrated in Figure 8.9. From this graph, we

can see clearly that the dependency between the CO and the EOs of a page has been

shifted to a much earlier location/stage in web retrieval, i.e. the EOD sections in the

previous page, and the latency caused by this dependency, i.e. the DT times of EOs,

has been effectively eliminated. As a consequence, whole page retrieval latency can be

improved significantly.

If web caching is adopted, the above EOIP mechanism may not help much for

those pages whose COs are found in the local cache and still fresh. For such pages,

their COs can be server rapidly from the local cache, so it takes little time for the

browser to get their content and discover the EOs defined in them. In this situation, our

EOIP mechanism will not help much. However, for pages whose COs are not in the

cache, or they are in the cache but stale, our EOIP mechanism would be very effective

in reducing the latency caused by the dependency between CO and EOs.

Note that the EOIP mechanism is only intended to manipulate the dependency

between CO and EOs to reduce the relative latency. The EOD section is only an

optional section in HTML files. In the case where pages do not have such propagated

EOD section, or there is no enough time between page visits for transferring this

section, or the user’s browser does not support this section, then the browser can just

ignore it and the normal retrieval procedure will be carried out. In all the cases, the

correctness of the web page semantics will not be affected in any way.

242

Figure 8.9 Eliminating dependency between CO and EOs

Hyperlink
to Page(b)

Page(a)

Definition
of Obj(1)

Obj(2)

Obj(1) Definition
of Obj(2)

DT(2) DT(1)

Page
Latency

Page(b)

Page(a)

Server to collect the
information of EOs
and propagate it to

parent pages as
optional declaration

section

Page(a)

Obj(2) Obj(1)

Page
Latency

Page(b)

Original retrieval process Information Propagation New retrieval process

243

8.4.3 Experimental Study

We have conducted trace-driven simulations to study the performance of our

EOIP mechanism. Our experiments rely on very detailed information about web

retrieval, such as the number and times of data chunks, definition points of EOs etc.

Such information is not available in existing traces. In order to obtain the information,

we conducted real retrieval for a large number of web pages and recorded detailed

operation and chunk level logs. The tools and environment are described in Chapter 5.

EOIP aims to reduce the latency caused by the dependency between CO and EOs,

i.e. the DT times of EOs. In Chapter 6, we already showed that the majority of pages

contain multiple EOs (on average, a page contains about 13.5 EOs), and the DT time

of EOs often occupies more than 50% of their retrieval latency (refer to Figure 6.12 and

Figure 6.15 etc.). This indicates a high potential on latency reduction by reducing DT

times of EOs.

Figure 8.10 plots the performance of EOIP mechanism without considering web

caching effect. From it, we can see that EOIP can improve page retrieval latency

considerably. On average, EOIP can achieve about 10.66% improvement on whole

page retrieval latency.

Here we have an interesting observation. At first, we speculated that EOIP may

perform better for web pages with more EOs. However, we noticed in Figure 8.10 that

the improvement of EOIP does not seem to increase as the number of EOs in a page

increases. Further study reveals that this could be due to the following reasons:

1) The absolute improvement of EOIP does increases with the increasing number of

EOs in a page. However, for pages with more EOs, their whole page latency often

increases, too, and even more significantly. Therefore, the relative improvement of

EOIP does not increase.

244

2) Parallelism width limits the improvement of EOIP. EOIP reduces the DT times of

EOs, which means that EOs will be made known for retrieval very early and

simultaneously. For pages with many EOs, the default parallelism width of 4 will

become insufficient for retrieving all the EOs, so many of the EOs’ requests will be

held in waiting state. In other words, limited parallelism has bottlenecked the

performance of EOIP.

Figure 8.10 Performance of EOIP without caching effect (Parallelism = 4)

Figure 8.11 Performance of EOIP with caching effect (Parallelism = 4)

Web caching could have some impacts on the performance of EOIP. Figure 8.11

shows the performance of EOIP mechanism with the presence of web caching. Again,

three different cache sizes are used in our study, i.e. (a) 10% of total unique objects

size in the trace, (b) 20% of total unique objects size, and (c) Infinite cache size.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-
3

4-
7

8-
11

12
-1

5

16
-1

9

20
-2

3

23
+

Number of EOs in a Page

Re
la

tiv
e

Pa
ge

 L
at

en
cy

Normal EOIP

(a) Cache Size: 10% (b) Cache Size: 20% (c) Cache Size: Infinite

0-
3

4-
7

8-
11

12
-1

5

16
-1

9

20
-2

3

23
+

Number of EOs in a Page

Normal EOIP

0-
3

4-
7

8-
11

12
-1

5

16
-1

9

20
-2

3

23
+

Number of EOs in a Page

Normal EOIP

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in a Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy

Normal EOIP

245

From the graphs, we see that EOIP seems to perform even better when web

caching is taken into consideration. Compared with the average 10.66% improvement

without considering web caching, EOIP achieves average improvements of 11.72%,

11.76% and 11.8% for the three cache sizes. This is surprising as we thought web

caching could lower the effectiveness of EOIP. After some further study, we find the

following reasons for this phenomenon:

§ Cache hit ratio is low. So the impact of web caching on the performance of EOIP

is limited.

§ Parallel fetching is employed in web retrieval, which makes it possible for the

retrieval of an object to virtually have no effect on the whole page latency. So, for

some objects that are hit in web cache, they may not have much impact on whole

page latency.

§ As EOIP makes EOs ready for retrieval early and simultaneously, it puts high

demand on parallelism. When web caching is in presence and some EOs are hit in

the cache, the number of objects being held in waiting state could be reduced. This

could have positive effect on whole page latency. To give an evidence of this

reason, let us look at the first data row in Table 8.2. This table gives the detailed

data used for plotting Figure 8.11. The result in this row shows the performance of

EOIP on pages with 0~3 EOs. For such pages, the default parallelism width of 4 is

sufficient. We see that for this situation, the performance of “with caching” is

actually worse than that of “without caching”. This contrary example shows that

our above analysis could be correct.

As we mentioned earlier, parallelism width could limit the performance of EOIP. Next,

we would like to investigate the effect of parallelism width on EOIP. Since we are to

investigate the effect of different parallelism, we fix the cache size to infinite in this

246

study. This way, the effect of different cache sizes would be eliminated from the

results.

Table 8.2 Performance of EOIP without/with caching effect (Parallelism = 4)
Performance (with caching) Number of EOs

in a page
Performance

(without caching) Cache Size: 10% Cache Size: 20% Cache Size: Infinite

0-3 88.97% 89.37% 89.40% 89.59%
4-7 88.73% 88.01% 88.03% 88.06%
8-11 87.65% 86.01% 86.02% 85.98%

12-15 89.40% 88.54% 88.40% 88.36%
16-19 88.54% 87.24% 87.17% 87.13%
20-23 88.96% 88.28% 88.14% 87.89%
23+ 90.62% 88.62% 88.55% 88.37%

(Cache Size = Infinite)

Figure 8.12 Performance of EOIP under different parallelism width

Since EOIP makes EOs ready for retrieval early and simultaneously, it will put

high demand on parallelism width. So, a wider parallelism could possibly make EOIP

more effective in reducing page retrieval latency.

Figure 8.12 gives the performance of EOIP under different parallelism width. Here

we only investigate parallelisms wider than 4 since the parallelism width in most

current web browser is 4.

As expected, we see that EOIP performs better under wider parallelism width.

Compared with the performance under the commonly used parallelism width of 4,

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in a Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy

Parallelism=4 Parallelism=8 Parallelism=16 Parallelism=32 Parallelism=Infinite

247

EOIP’s can improve page retrieval latency by 8.87%, 11.24%, 11.78% and 11.85 on

average when parallelism width is 8, 16, 32 and infinite respectively. The impact of

parallelism width on the performance of EOIP is generally bigger for the pages with

more EOs. This is understandable because there will be more objects to make use of

the wider parallelism in such cases, so EOIP becomes more effective.

In terms of web retrieval performance, the major overhead that EOIP introduces

is transferring the extra EOD section to clients. Here we would like to study the impact

of such overhead on web retrieval performance.

From Chapter 6, we know that the average chunk size is 5.3 KBytes (see Figure

6.7). Normally, this size could be enough for the propagation of information for about

one hundred EOs. If we propagate information of hundreds of EOs into a page, they

may only bring in a small number of extra chunks. From Figure 6.8, we know that the

time for transferring one chunk is only about 0.01~0.02 seconds. So, the time for

transferring the extra chunks should not be significant. Moreover, the propagated

information composes an optional section of CO’s body and such optional section is

supposed to be transferred during the idle times between pages. If the idle time is big

enough, then the transfer time for those extra chunks would be hidden by the idle time

and thus not perceivable to web users.

Figure 8.13 plots the distribution of idle times between page accesses. From this

graph, we see that the majority of intervals between page accesses are between 1 to 64

seconds. On average, the idle time between pages is about 92.6 seconds, which should

be considered as more than sufficient for transferring the optional EOD section for most

web pages. In other words, the latency incurred by transferring the extra chunks (which

are used for the propagated information) can easily be hidden by the idle times

between page accesses. Therefore, the overhead introduced by EOIP can largely be

248

ignored in reality.

Figure 8.13 Idle times between page accesses

Figure 8.14 Performance of SLP+EOIP without caching effect (Parallelism = 4)

8.5 Effect of Integrated SLP and EOIP Mechanism

In the last two sections, we propose and study two mechanisms for manipulating

the dependencies in web retrieval, i.e. the SLP and EOIP mechanism. Our results show

that these two mechanisms are effective in improving web retrieval latency. Because

SLP and EOIP are independent from each other, so they can be used together. In this

section, we would like to complete this study by studying the performance of the

integrated SLP+EOIP mechanism.

Figure 8.14 gives the overall performance of SLP+EOIP without considering

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in a Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy

Normal SLP+EOIP

0%
2%
4%
6%
8%

10%
12%
14%
16%
18%

0~
0.

12
5

0.
12

5~
0.

25

0.
25

~0
.5

0.
5~

1

1~
2

2~
4

4~
8

8~
16

16
~3

2

32
~6

4

64
~1

28

12
8~

25
6

25
6~

51
2

51
2~

10
24

10
24

+

Idle time between pages (second)

Pe
rc

en
ta

ge
 o

f o
cc

ur
re

nc
es

249

caching effect and under the default parallelism of 4. We see that the integrated

SLP+EOIP mechanism can achieve about 15.63% improvement on average, which is

much better than the individual SLP and EOIP mechanism. This indicates that these

two mechanisms actually reinforce each other when they work together.

Figure 8.15 Performance of SLP+EOIP with caching effect (Parallelism = 4)

Figure 8.16 Performance of SLP+EOIP under different parallelism width

When web caching is taken into consideration and the parallelism width varies,

the integrated SLP+EOIP mechanism still continuously outperforms the individual

SLP and EOIP mechanism in all situations. Figure 8.15 plots the performance of

SLP+EOIP with considering caching effect, and Figure 8.16 shows the performance of it

under different parallelism width. We see that the integrated SLP+EOIP mechanism

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-3 4-7 8-11 12-15 16-19 20-23 23+
Number of EOs in a Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy

Parallelism=4 Parallelism=8 Parallelism=16 Parallelism=32 Parallelism=Infinite

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0-
3

4-
7

8-
11

12
-1

5

16
-1

9

20
-2

3

23
+

Number of EOs in a Page

Re
la

tiv
e

Pa
ge

 L
at

en
cy

Normal SLP+EOIP

(a) Cache Size: 10% (b) Cache Size: 20% (c) Cache Size: Infinite

0-
3

4-
7

8-
11

12
-1

5

16
-1

9

20
-2

3

23
+

Number of EOs in a Page

Normal SLP+EOIP

0-
3

4-
7

8-
11

12
-1

5

16
-1

9

20
-2

3

23
+

Number of EOs in a Page

Normal SLP+EOIP

250

can achieve about 16.53%, 16.54% and 16.75% improvement when cache size is 10%

and 20% of total unique objects size in the trace and infinite respectively. When

parallelism width is increased from 4 to 8, 16, 32 and infinite, the integrated

SLP+EOIP mechanism yields performance gain of about 9.49%, 12.07%, 12.64% and

12.8% respectively,

Overall, the performance of the integrated SLP+EOIP mechanisms is better than

the individual SLP and EOIP mechanism. This is expected as these two mechanisms

address two different dependencies in web retrieval. Their effects are quite

independent from each other. So, when they are put together, they would reinforce

each other. This leads to even better performance gain than the individual mechanism.

8.6 Conclusion

In this chapter, we analyzed and studied the dependencies in web retrieval and

the latencies introduced by them. We showed how such dependency-introduced

latencies can be reduced through manipulation of the dependencies. We proposed two

innovative information propagation mechanisms, namely SLP and EOIP, to manipulate

two different latencies in web retrieval. We conducted simulations to study the

performance of SLP and EOIP. Our results show that these two mechanisms can reduce

about 4.22% and 10.66% of whole page retrieval latency. The integrated SLP+EOIP

mechanism can achieve about 15.63% improvement on page retrieval latency. This

shows that information propagation can be an effective method to improve web

retrieval latency.

251

Chapter 9 Exploiting Fine-Grained Parallelisms for
Acceleration of Web Retrieval

9.1 Introduction

With the advent of cheaper and faster processing power and storage, there has

been a wide-spread proliferation of digital documentation, multimedia materials and

web-based applications in the Internet. More and more web pages tends to comprise

such digital materials like image files, pdf files, flash animation files, video and audio

files, application executables and so on. As these digital files are usually considerably

big in size, this trend has unfortunately meant that web surfers are increasingly being

overwhelmed by large objects. Large web objects normally take long to transfer and

they are often the dominating performance bottleneck of retrieval latency for web

pages containing them. With the increasing number of large objects being used in web

pages, the need to reduce the retrieval latency of web pages becomes even more

imperative.

When a web page contains large web objects, the latency component CST will

clearly become the main dominating factor to page latency. Figure 9.1 gives an

illustration WRDG graph for the retrieval process of a page with large objects. For

such pages, accelerating the retrieval process of the large objects would effectively

reduce the whole page latency. To cope with the long CST latency, the increase of

network bandwidth and content encoding schemes are often proposed. However,

increasing network bandwidth is very costly and has its limitations; content encoding

schemes are generally not possible or effective to digital documentation and digital

multimedia materials. This situation prompts us to study a new mechanism to solve the

problem, which is fine-grained parallelism for parallel fetching of multiple sub-ranges

of a large object.

252

Figure 9.1 Retrieval process of a page with large object

Parallelism is not new in web retrieval. Most common web browsers already

employ parallelism for concurrent retrieval of objects. For example, both MS IE and

Netscape use parallelism of four to retrieve multiple objects in a page [290]. In Chapter

6, our studies already show that parallel fetching of objects can significantly reduce

page latency since most web pages contain multiple objects. But that parallelism is at

object-level, i.e. the parallelism only exists among the retrieval of objects. In this

chapter, we extend the concept of parallelism to a very fine-grained level in web

retrieval, i.e. the intra-object level, to accelerate the retrieval process for large web

253

objects. Since the intra-object level is mainly characterized by data chunks transfer, we

hence call our mechanism the Chunk-Level Parallelism (CLP) for the acceleration of

web retrieval.

A large object is typically transferred in a series of large number of chunks of

data. If we can divide this large series of chunks into multiple smaller sub-series and

retrieve them in parallel, the retrieval latency of large objects could be reduced

considerably, which would finally result in improvement on whole page latency. The

idea has been made feasible and practical with the evolution of HTTP protocol. In

HTTP/1.1, it introduces the concept and support for “partial object”. It allows a client

to request only a partial body of a web object by using the “Range” header. Objects can

be broken down into multiple sub-ranges according to various structural units

(currently, the only range unit defined by HTTP/1.1 is "bytes") [37].

There is very little related work in this direction in current literature. This

situation motivates us to conduct detailed study on this problem. In this chapter, we

exploit and perform comprehensive study and analysis on the effect of CLP on web

retrieval latency. Our study reveals some complicated issues regarding chunk-level

parallelism, which shows that the application of this mechanism is not so easy and

straight-forward as people might have thought. We conduct simulation experiments as

well as real system testing to study the performance of CLP. Our results show that CLP

can achieve significant improvement on object retrieval latency and whole page

latency when large objects are in presence.

The rest of this chapter is structured as follows. We first analyze the demand for

chunk-level parallelism in web system. Then we describe the mechanism of

chunk-level parallelism and study the issues related to it. Next we study the

performance of chunk-level parallelism to illustrate its effectiveness. Following that,

254

some discussion on the system implementation considerations is given. Then the final

section concludes this chapter.

9.2 Exploiting Chunk-Level Parallelism

9.2.1 Demand for Chunk-Level Parallelism

Large web objects often have dominating effects on whole page retrieval latency.

When a web page contains large web objects, the retrieval latency of those objects is

often the dominant factor to the whole page latency. So, we would like to first

investigate the presence of large objects in web pages. Figure 9.2 plots the distribution

of web pages with respect to the largest object size they contain.

Figure 9.2 Distribution of pages w.r.t. size of the largest object in the page

From this graph, we see that the majority of web pages have objects not bigger

than 64 KBytes. However, there are about 10.54% of web pages contain objects bigger

than 128 KBytes, which could prolong page retrieval latency significantly. As digital

documentation, multimedia materials and web-based applications etc. are increasingly

distributed over the web, we expect to see the percentage of web pages containing

large objects to continuously increase in the future. Nevertheless, the percentage of

10.54% is already significant enough for us to look into effective mechanisms to

0%

5%

10%

15%

20%

25%

30%

35%

<=1k <=2k <=4k <=8k <=16k <=32k <=64k <=128k<=256k 256k+
Largest Object in Page

Pe
rc

en
ta

ge
 o

f P
ag

es

255

accelerate the retrieval process of them.

Figure 9.3 depicts the distribution of types of large objects, and Table 9.1 gives

more detailed information for those “xxxx” types shown in the graph. Besides the

traditional object types such as image, text and multimedia files, we also see that there

is a type “application”, which occupies a large percentage of the distribution. This type

includes some subtypes like pdf, shockwave-flash and executables. As the digital

documents and web-based applications become more and more popular, we expect to

see the amount of objects of this type to grow considerably in the future.

Figure 9.3 Distribution of types of large objects

Table 9.1 Detailed object types
image/other text/xxxx application/xxxxxx video/xxxxxx audio/xxxxxx
image/bmp
image/x-ms-bmp
image/png

text/html
text/plain

application/octet-stream
application/cache-digest
application/pdf
application/postscript
application/vnd.ms-asf
application/x-ipix
application/x-director
application/x-shockwave-flash

video/mpeg
video/quicktime
video/x-ms-asf
video/x-ms-wmv
www/unknown

audio/midi
audio/mpeg
audio/wav
audio/x-ms-wma
audio/x-pn-realaudio
audio/x-realaudio
audio/x-wav

As we know, object data are transferred in a sequence of data chunks, and the

chunks often have limited size. In Figure 6.7, we learnt that the majority (65%) of

chunks have sizes between 1 KBytes and 2 KBytes, and the average chunk size is

21.2%

15.9%

1.6%

28.7%

26.8%

4.2%

1.8%

image/jpeg
image/gif
image/other
text/xxxx
application/xxxx
video/xxxx
audio/xxxx

256

about 5.3 KBytes. With this limited chunk size, large objects would have lengthy data

chunk sequences in their transfer. Figure 9.4 and Table 9.2 show the average number of

chunks in the chunk transfer sequence with respect to object size.

Figure 9.4 Average number of chunks w.r.t. object size

Table 9.2 Average number of chunks in object transfer w.r.t. object size

Object size range Average number of chunks in object transfer
<=1KB 1.06
<=2KB 2.04
<=4KB 3.60
<=8KB 6.66
<=16KB 12.58
<=32KB 24.42
<=64KB 47.03
<=128KB 89.45
<=256KB 179.30
<=512KB 357.80
<=1MB 715.87
<=2MB 1469.68
<=4MB 2846.48
<=8MB 5520.78
8MB+ 16561.22

From Figure 9.4 and Table 9.2, we see that the number of chunks for large objects

is significantly bigger than that of small objects. It grows almost exponentially as the

object size increases. When an object is larger than can fit into a small number of

chunks, long Chunk Sequence Time (CST) for transferring the lengthy chunk sequence

will be encountered. This long CST time will become the dominating factor for object

0

1000

2000

3000

4000

5000

6000

<=
1K

B

<=
2K

B

<=
4K

B

<=
8K

B

<=
16

K
B

<=
32

K
B

<=
64

K
B

<=
12

8K
B

<=
25

6K
B

<=
51

2K
B

<=
1M

B

<=
2M

B

<=
4M

B

<=
8M

B

8M
B

+

Object Size

A
ve

ra
ge

 N
um

be
r o

f C
hu

nk
s

257

latency compared with other latency components, as we can see from Figure 6.5. For

example, Figure 6.5 shows that for objects with size larger than 128 KBytes, the CST

time occupies about 95.58% of the whole object retrieval latency on the average.

When a web page contains big objects, the retrieval latency of the big objects

would become the performance bottleneck of whole page latency. To reduce the

retrieval latency for large objects could effectively improve whole page latency for

such pages. This is especially important as more and more significant influence is

imposed on page retrieval latency by the increasing number large web objects. The

concept of parallelism can be extended to chunk transfer sequence level to help with

the problem. If we divide the lengthy chunk transfer sequence into multiple smaller

sub-sequences and transfer them in parallel, the retrieval latency of the large object

could be significantly reduced, which in turn would effectively reduce the whole page

latency.

In the following sections, we propose and study the chunk-level parallelism for

web retrieval.

9.2.2 Chunk-Level Parallelism (CLP)

The basic idea of Chunk-Level Parallelism (CLP) is to divide the body of a large

object into multiple portions and retrieves them in parallel. This requires the ability to

retrieve partial content of an object in the web system. The support for partial object

from HTTP/1.1 makes this idea feasible.

HTTP/1.1 introduces a new HTTP header “Range:”, which allows clients to

specify and retrieve any part of an object’s content. This feature is intended to reduce

unnecessary network usage by allowing partially-retrieved data to be completed

without transferring data already held by the client. It is useful in resuming broken data

transfers and retrieving specific parts of objects, e.g. the descriptor fields of

258

multimedia files, the first a few pages of a document, and so on.

The “Range:” HTTP header specifies desired portions of objects using byte

ranges. Because most of the data in the web is represented as a byte stream in practice,

so they can be addressed with a byte range. The client requests a byte range via the

“Range:” HTTP header. Byte range request is made like any other HTTP request, with

the addition of the “Range:” HTTP request header. The parameter name “bytes” comes

after this header, followed by an equal sign and the byte range specification. Below is

an example web request with such “Range:” header7:

GET /Protocols/rfc2616.html HTTP/1.1
Host: www.w3.org
Range: bytes=8760-10536
Connection: close
Accept: */*

Each byte range of the object content is considered as a “partial object” of the original

object. This partial object concept is only supported by HTTP/1.1. In the case where it

is not supported, the byte range in the request will be ignored and whole object will be

returned. Since HTTP/1.1 is getting its popularity, we expect to see that most web

systems would already have this support.

With the support of range requests, we can implement CLP in web retrieval.

Basically, the idea is to use multiple range requests to retrieve different parts of an

object in parallel. The detailed process is described as follows.

When a client retrieves a web object, it first issues a normal request to the server.

We refer to this request as Master Request in our CLP study, and the process associated

with this request is referred to as Master Retrieval Thread. When the server serves the

request and sends back the data, the first data chunk returned generally contains the

HTTP headers for that object. On receiving the HTTP headers, the client will examine

7 For details of byte range requests, please refer to RFC 2616 – Hypertext Transfer Protocol –
HTTP/1.1.

259

if the following conditions are satisfied:

ü The server support HTTP/1.1 (i.e. it supports range request)

ü There is a “Content-Length” header and the value of this header exceeds certain

threshold

If the above conditions are satisfied, CLP will take place. The client will divide the

object size into k parts based on some factors such as the “Content-Length” of the

object and the bandwidth of the network etc. Then, it will trigger k-1 new requests and

assign each one of them to fetch about 1/k of the object body (actually, the size

assigned to each of these k-1 new requests is smaller than 1/k of the object size, we

will discuss this further later). In contrast to the Master Request, these k-1 new

requests are referred to as Slave Requests, and the process associated with each of them

is referred to as Slave Retrieval Thread. After the k-1 Slave Requests have been

successfully issued, the Master Retrieval Thread will be stopped after it receives about

1/k of the object body (in fact, the size will be larger than that). When all the parts are

retrieved, they will be assembled together and the original object is got. Because the k

retrieval processes, 1 master retrieval thread plus k-1 slave retrieval threads, are carried

out in parallel, so the retrieval speed would be much faster than one single retrieval

process which fetches the whole body of the object.

The above process of CLP is depicted in Figure 9.5. We see that by dividing a

large object into multiple smaller parts and retrieving them in parallel, the overall cost

distance of the WRDG graph can be reduced significantly.

Note that CLP is only used to accelerate the retrieval processes of large web

objects; it will not affect the correctness of web content. In the situation where partial

object is not supported, the slave requests will be ignored and the master request will

continue to retrieve the whole body of the object as usual without being stopped at 1/k

260

of the object body.

Figure 9.5 Retrieval process of chunk-level parallelism

9.2.3 Prerequisites for Chunk-Level Parallelism

There are two important questions regarding CLP to answer:

ü Under what situation, should CLP be used?

ü What is the threshold size for CLP to happen? How many parts should an object

be divided into when it is chosen for CLP?

Many factors are involved in answering the above questions, such as object size,

network bandwidth, number of connections, and connection time etc. Below we will

discuss these factors and answer the above questions.

First, let us look at the first question: Under what situation, should CLP be used?

As stated earlier, CLP is proposed for the retrieval of large web objects. CLP can

only take place when the size of the object is available and it is greater than a threshold

size. The threshold size is determined by multiple factors such as the connection setup

Initiation
Location resolution

Setup connection
Send request

Headers returned

t

……

Master
Retrieval
Thread

(1) k-1

If "Content-Length” header exists
and its value is big enough, spawn
k-1 Slave Retrieval Threads

(2)

Data chunks
Total size is bigger

than 1/k of the
object size

Initiation
Setup connection
Send request
Headers returned

Data chunks
Total size is smaller
than 1/k of the object
size

Assembly k parts together to get
the original object content

r

c

s

d

e

d

d

r

c

s

d

e

d

d

r

c

s

d

e

d

d

r

l

c

s

e

d

d

d

d

d

261

time. For example, if the connection setup time is long, the threshold size for triggering

CLP has to be big. Otherwise, there may not be any benefit for doing CLP since the

Master Retrieval Thread could have already retrieved the whole object body before the

Slave Retrieval Threads have yet finishing setting up the connections.

Because CLP requires dealing with partial content of objects, so it only works

with HTTP/1.1-compatible web systems since the partial object concept is mainly

supported by HTTP/1.1 currently. In the situation where partial object is not supported,

CLP should not be considered.

Since CLP tries to divide a large object into multiple parts and retrieve them in

parallel, it will increase the number of concurrent network connections used in a web

system. This requirement may be difficult to satisfy for extremely busy web servers.

However, we would like to point out that:

1) Most web servers are not extremely busy in most of the time. So, CLP should have

very little problem to work with them.

2) For those extremely busy web servers, the problem can be alleviated with the help

of CDN. If a busy server subscribe to CDN service, the requests to it will be

re-directed to different servers transparently. In this situation, the multiple

concurrent network connections established by CLP will be distributed to different

servers, and each server will get only a small portion of the connections. Therefore,

the demand on concurrent network connection on a server will not be high. Since

extremely busy web servers tend to have already subscribed to CDN service

(otherwise, they should think of doing so since they are extremely busy), so we

expect CLP would also work well with such servers.

Network bandwidth also has influence on CLP. Because CLP actually tries to

accelerate the retrieval process of large web objects by utilizing spare network

262

bandwidth for multiple concurrent web requests, so, it will perform better if there is

more spare network bandwidth to use. For the environments with very limited network

bandwidth, CLP may not be a good choice for web acceleration.

Next, we move on to answer the second question: What is the proper threshold size for

CLP to happen? How many parts should an object be divided into when it is chosen for

CLP?

First, let us decide the number of parts that an object should be divided into for

CLP. The number of parts is tied to the size of each part for a given object. Basically,

the more parts an object is divided into, the smaller each part would be, and the shorter

the retrieval latency of each part would be. However, to divide an object into too small

parts for CLP may not help much in reducing whole page latency because of two

reasons:

1) If we divide an object into too small parts in CLP, the size of each part could

become smaller than other objects in the page. In that case, the page retrieval

latency would be dominated by other objects. This suggests that it may not be

helpful to divide an object into parts smaller than other objects in the page.

2) Web retrieval process typically undergoes long connection setup time and TCP

slow-start effect, which make the retrieval latency for smaller objects often

comparable to that of bigger objects (refer to Chapter 6 for details). This suggests

that to divide an object into too small parts is not cost-effective in terms of retrieval

latency and resources used.

Taking into consideration the above factors, we would recommend that a large object

should be divided into k parts so that the size of each part is around the average size of

most commonly seen web objects. From Chapter 6, we know that the average size of

objects is about 5.71 KBytes. We would suggest using this size as the size of partial

263

objects for CLP mechanism, especially in our environment.

On the other hand, dividing a large object into many small parts and retrieving

them in parallel would impose extra demand on concurrent network connections and

server load. When an object is very big, the number of the parts could be quite large.

Then the burden on network connection and server load could be excessive, which

could have negative effects on the performance of web retrieval. To refrain this from

happening, we set a cap value N for k (which is the number of parts that an object is

divided into), i.e.:

k ≤ N

In our study, we vary the value of N and investigate the effect of it on the performance

of CLP. The values of N we used in our study is: 2, 4, 8, 16 and 32.

In summary, we use the following method to decide the number of parts that an

object should be divided into for CLP. First, we assign the size of each partial object to

be the average web object size (5.71 KBytes), and we calculate the initial k by using

this size to divide the object size. If k is not greater than N, then we will use this k and

this partial object size to do CLP for that object. If k is greater than N, we will set k to

N and use this k to calculate the size of each partial object. Then we use these values of

k and partial object size for CLP. In any case, k will not be greater than N, and the size

of each partial object will always be greater than or equal to the average web object

size. This way, we have avoided imposing excessive demand on network connection

and server load, while still attained the effectiveness of CLP.

Now let us deduce the threshold size for CLP. As we showed in Chapter 4 and

Chapter 6, every web request would have 5 latency components, i.e. LRT, CT, RST,

CST and ET. In CLP, the slave requests would also have these latency components

except the LRT component because slave requests can directly get the server address

264

from the master request. So, the slave requests would undergo the latency components

CT and RST while the master retrieval thread is receiving object data, this put certain

constraints on the proper object size for CLP.

Figure 9.6 shows the relationship between latency components and size ranges in

CLP. In the graph, time runs down the page. The vertices that represent the operations

in the retrieval processes are omitted. Instead, we put the names of the latency

components beside the retrieval process lines to depict the existence of those

operations. Those large braces indicate some relations of the timings and sizes.

Figure 9.6 Relationship between latency components and size ranges
in chunk-level parallelism

From Figure 9.6, we can see clearly that the master retrieval thread would have

already received smin bytes of the object data when the slave requests finish the latency

CT

RST

CST(0)

CST(1)

t1

t2

t1

CST(2)

CST(m)

ET

t

CST(i)

CT

RST

CST(0)

CST(1)

CST(n)

ET

CT

RST

CST(0)

CST(1)

CST(n)

ET

CT

RST

CST(0)

CST(1)

CST(n)

ET

CT

RST

CST(0)

CST(1)

CST(n)

ET

smin

Master

Slave (1) Slave (2) Slave (3) Slave (k-1)

LRT

sp

sthreshold

265

components CT+RST+CST(0) only. It is obvious that the object size must be

considerably bigger than smin if we want to do CLP. So, we must take factors like this

into consideration when deciding the proper object size for doing CLP. Below we will

try to deduce the formula for calculating the proper threshold size.

Because many characteristics about web retrieval vary greatly, e.g. the latency

components and chunk size fluctuate considerably due to the status of network and

workload on server etc, so it is rather difficult to produce an accurate formula for CLP.

But we can develop a rough model for the relationship among the factors based on the

following assumptions:

1) No persistent connection is used in CLP, and the connection time is constant for all

retrieval processes

This is to assume that every slave request in CLP will undergo the latency

component CT and this component is constant for all of them. This assumption is

somewhat reasonable because persistent connect is not well supported even in

today’s web system. On the other hand, our formula/deduction can be extended to

handle persistent connection as well. To make the deduction uniform and simple,

here we just assume there is no persistent connection in CLP and the connection

time is constant.

2) All slave retrieval threads have the same CT+RST+CST(0)

We use t1 to represent this latency, i.e.

t1 = CT+RST+CST(0)

3) The first chunk contains only HTTP headers

In our experiments, we found that this statement is true for most cases.

Nevertheless, even if the first chunk also contains object body data, the amount of

the data is often negligible compared with the whole object body. Moreover, our

266

formula/deduction can also be extended to handle the situations where the first

chunk also contains object data, or HTTP headers are found in more than one

chunk.

4) The size of all chunks are the same

In reality, chunk size varies considerably. For simplicity reason, here we use the

statistical average of the chunk size as the size for every chunk. According to our

study in Chapter 6, the average chunk size in web retrieval is about 5.3 Kbytes. We

use schk to denote the size of one chunk. So we have:

schk = 5.3 Kbytes

5) The latency for every chunk is the same

We assume that the transfer latency for every chunk is the same, and we use CST(i)

to denote the transfer time for Chk(i). Because it is difficult to obtain the latency of

the first chunk Chk(0) and we assume Chk(0) contains only HTTP headers, so we

use the latency of the second chunk CST(1) as the unit latency for transferring one

data chunk. We denote this unit latency of one chunk as tchk . From Figure 9.6, we

have:

tchk = CST(1) = t2

6) All slave retrieval threads are started simultaneously, i.e., the starting time of all

slave requests are the same.

7) The partial object size sp assigned to each slave request is the same, and we use the

average size of web objects (5.71 KBytes) as the minimum size for each partial

object, i.e., we have:

sp ≥ 5.71 KBytes (F9.1)

Based on the above assumption and Figure 9.6, we see that the object size satisfies the

267

following equation:

sobject = smin + k × sp (k ≥ 2) (F9.2)

For CLP to happen, k must be greater than or equal to 2. Substituting k with the

minimum value of 2 in the equation (F9.2) will give the minimum object size required

for CLP, i.e. the threshold size sthreshold :

sthreshold = s min + 2 × sp (F9.3)

For smin , we have the following equation (see Figure 9.6):

smin = i × schk (F9.4)

From Figure 9.6, we know that t1 = (i – 1) × tchk . So,

i = 11
+

chkt
t (F9.5)

Integrate the equation F9.5, F9.4 and F9.1 into F9.3, we will get:

sthreshold =

 +11

chkt
t × schk + 2 × sp

sthreshold ≥ ×
chkt
t1 5.3 + 16.72 KBytes (F9.6)

In equation F9.6, both t1 and tchk can be obtained by real-time monitoring the retrieval

process (note that we assume tchk = CST(1) = t2). Therefore, sthreshold will be able to be

obtained during the retrieval process.

With the above knowledge, we are now able to give a more detailed description

of our CLP mechanism. Figure 9.7 gives the process flow of this mechanism. By

monitoring the retrieval process, web client will be able to record the t1 and tchk , and

calculate sthreshold in real-time for each large object request. Note that we use the latency

of the second chunk, i.e. CST(1), as tchk . So, all slave requests are triggered after the

second chunk in the master retrieval process has been returned from the server.

268

Figure 9.7 Process flow of chunk-level parallelism

Request Initiate

Setup Connection

Send Request

Chk(0) Returns
(i.e. headers chunk)

t1 is got here

Chk(1) Returns

Yes No
No

tchk is got here
tchk = CST(1)

Calculate sthreshold
using formula x.5

Content-Length
 ≥

sthreshold?

Calculate number of slave requests
sp = Average object size

k = (Content-Length – smin) / sp

Yes

k > N?

§ Spawn k-1 Slave Threads, each
fetches the range of sp bytes
§ The Master Thread stops at

(Content-Length – k × sp)

Done

Assemble all portions

Process
as usual

k = N
sp = (Content-Length – smin) / k

No
No

Yes No
No

Location Resolution

Content-Length header
 exits? & Support HTTP/1.1?

269

After slave requests have been successfully triggered, the master retrieval process

should be stopped prematurely when the size of the data it receives has reached the

value assigned to it.

9.3 Performance Study

To study the performance of CLP, we conducted both simulation experiments and

real system tests. For the simulations, we used our detailed chunk-level traces

described in Chapter 5. For the real system, we have implemented a working system

based on Squid 2.4.STABLE3 to perform the CLP task. The system will monitor the

conditions (see previous section) and do CLP for those object requests which satisfy

the conditions. Other aspects of the testing environment are as described in Chapter 5.

Below we report our results from these simulations and real system tests on CLP.

From the formula F9.6 we can see that the time t1 and tchk play important roles in

CLP. So we would like to have some study on them first. Our CLP system bases on the

ratio of t1/tchk to calculate the suitable threshold size sthreshold for triggering CLP. Figure

9.8 plots the distribution of the ratio of t1/tchk .

Figure 9.8 Distribution of the ratio of t1/tchk

From the graph, we see that the values below 15 take up the major portion (more

0%

2%
4%

6%

8%
10%

12%

14%
16%

18%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 50
+

t 1 / t chk

Pe
rc

en
ta

ge
 o

f O
bj

ec
ts

270

than 85%) of the distribution of t1/tchk . However, there exists much bigger values for

the ratio of t1/tchk , from 50 to up to more than 10,000. Those big values contribute

nearly 4% to the overall distribution of t1/tchk . This put the average value of t1/tchk to be

at about 26.3. In other words, t1 is about 26.3 times bigger than tchk on the average.

This result shows that t1 is surprisingly big as compared with tchk . The reason for this

is because t1 contains the connection time CT, which is very big in web retrieval.

Recall in Chapter 6, our study showed that CT is one of the most significant latency

components in object retrieval. It takes up from 3.7% to 77% of the object retrieval

latency (refer to Figure 6.5).

The above observation is very important because it implies that CLP is not

suitable for medium-sized objects as every retrieval thread will undergo at least t1 ,

which already equals to the transfer time of many chunks. Using formula F9.6, we can

get the threshold size for CLP:

sthreshold ≥ 156.11 KBytes

This result indicates that on average, an object should be larger than 156 KBytes to be

suitable for CLP to take place. This size shall be considered quite big in current web

system. In our trace, we only observed about 3.31% web pages have objects larger than

156 KBytes. Although the percentage is not very big, we believe it could go higher in

the future as large digital material objects are getting more and more popular on the

web. Nevertheless, 3.31% is still significant enough for us to look into effective

mechanisms to accelerate the retrieval process of them.

Figure 9.9 studies the performance of CLP on retrieval latency of individual

objects. Here we set N to be 8 (N is the cap value for k, which is the number of parts

that an object is divided into).

From this graph, we see that the effect of CLP on object retrieval latency is

271

substantial. It can reduce the retrieval latency of large objects dramatically. The

simulation results show that the improvement ranges from 77% to 87%, with an

average of 83.86%, while the real system testing achieves 68% to 86% improvement,

with an average of 80.6%. In general, the improvement gets better as the object size

increases. This is expected as larger objects have lengthier chunk sequences, which can

be effectively improved by CLP.

Figure 9.9 Effect of chunk-level parallelism on retrieval latency of individual objects

Note that the performance of real system is often lower than the simulation

results. This could be due to the fluctuation of network and server status, which are

largely ignored in simulations.

Figure 9.10 plots the effect of CLP on retrieval latency of pages containing large

objects. In simulations, CLP improves page retrieval latency from 38% to 85%, with

an average of 68.6%. In real system tests, the improvement ranges from 27% to 84%,

with an average of 64.5%. Again, we see that the effect of CLP on page retrieval

latency is also very significant, and the improvement generally gets better as the size of

the largest object in the page increases. This is actually understandable because: For

pages containing large objects, the whole page latency will be dominated by those

large objects; since CLP can effectively reduce the retrieval latency of large objects,

0%

20%

40%

60%

80%

100%

156KB--
256KB

256KB--
512KB

512KB--
1MB

1MB--
2MB

2MB--
4MB

4MB--
8MB

8MB+

Object Size

R
el

at
iv

e
O

bj
ec

t L
at

en
cy

Normal situation
Chunk-level parallelism (Simulation)
Chunk-level parallelism (Real system)

272

this reduction will inevitably be reflected on whole page latency.

Figure 9.10 Effect of chunk-level parallelism on page retrieval latency

We noticed that the improvement that CLP achieves on page latency is generally

lower than that on individual object latency. This could be due to the following reason:

When large objects in a page are divided into smaller parts by CLP, the retrieval

latencies of other objects in the page may become more dominating to whole page

latency. In other words, there are some other latency contributors that prevent CLP’s

improvement on individual object latency from being fully reflected on whole page

latency.

However, when the objects that CLP works on are extremely large (e.g. bigger

than 8 MBytes), the improvement on page latency would be close to the improvement

on individual object latency. This is because: when page contains object with

extremely big objects, the retrieval latency of other objects become very negligible and

the page latency is almost solely determined by the extremely big objects even after

they have been divided into smaller parts. So, in this situation, the improvement on the

extremely big objects will be almost fully mapped into the improvement on whole

page latency.

Figure 9.11 studies the effect of N on the performance of CLP in terms of page

0%

20%

40%

60%

80%

100%

156KB--
256KB

256KB--
512KB

512KB--
1MB

1MB--
2MB

2MB--
4MB

4MB--
8MB

8MB+

Largest Objects in Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy

Normal situation
Chunk-level parallelism (Simulation)
Chunk-level parallelism (Real system)

273

retrieval latency. Here N is the cap value of k, which is the number of parts that an

object can be divided into.

Figure 9.11 Effect of N on the performance of chunk-level parallelism

From the graph, we can see that the performance of CLP generally increases as N

increases. However, the relative increase for different N becomes less significant for

big values of N. This is more obvious for moderate large objects such as those between

156 to 256 KBytes. This suggests that different values of N should be considered for

different sizes in order to achieve the best cost-effectiveness. For moderate large

objects, 4 or 8 may be suitable values for N. But for very large objects, much wider

parallelism width (e.g. 32) should be considered.

We also noticed that the performance gain is far from being directly proportional

to the increase in N for pages with relatively smaller objects (e.g. 156 to 256 KBytes

objects), while it nearly has the directly proportional relationship for pages with very

large objects. This could be due to the same reason stated earlier on: For pages with

relatively smaller objects, other objects in the same page could prevent CLP’s effect

from being fully reflected on whole page latency. But for pages with very large objects,

this phenomenon will not be seen since the very large objects would always dominate

whole page latency even after they have been divided into smaller parts.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

156KB--
256KB

256KB--
512KB

512KB--
1MB

1MB--
2MB

2MB--
4MB

4MB--
8MB

8MB+

Largest Object in Page

R
el

at
iv

e
Pa

ge
 L

at
en

cy
Normal 2 4 8 16 32

274

Because CLP divides large objects into multiple smaller parts and retrieve them

in parallel, it will impose extra demand on concurrent network connections and server

load. If such extra demand is too excessive, it could have negative effects on the

overall performance of web system.

However, in our study, we found only about 3.31% web pages satisfying the

conditions for doing CLP. The number of the large objects (i.e. larger than 156 KBytes)

contained in those pages only count for about 0.2% of the total objects in all pages. So

the extra requests and connections created by CLP on these large objects would only

be (N−1)×0.2%. When N is 8, there will be only 1.4% extra requests and connections

introduced by CLP. This extra demand shall be considered as very small. Therefore, we

expect the overhead that CLP introduces to be marginal in current web system.

9.4 System Implementation Considerations

To examine the performance of CLP in real environment, we have implemented a

working CLP system based on Squid 2.4.STABLE3. The system works as a proxy

between clients and servers. While serving requests, our CLP proxy system will

monitor the conditions (see previous section) for CLP. Once the system finds a request

satisfying the conditions, it will do CLP for that request. We choose to implement CLP

on a proxy system rather than a web client program because of two reasons: Firstly, to

implement a real CLP system, we need to work on the source code of the system.

Many web client programs like MS-IE and Netscape do not give access to their source

codes. So we choose to work on the open source system Squid. Secondly, if we

implement the CLP capability into a proxy system, it can later be used for all types of

web client programs such as MS-IE, Netscape and wget [284] etc. to enable them to

take the benefit of CLP as well. Moreover, implementing CLP in a proxy cache system

would also enable web accesses to take the advantage of web caching.

275

Unlike simulation experiments which are easy to implement, real system with

CLP capability is rather difficult to implement because there are a number of

complicated factors to be taken into consideration. Below we discuss some design

issues we addressed during the implementation of our CLP system.

Recording the times

Timing plays an important role in CLP. In formula F9.6, we see that CLP rely on

t1 and tchk to calculate the threshold size sthreshold for CLP. Because t1 consists of the

latency components CT, RST and CST(0), so we should start recording the time for t1

from the point when the system is trying to setup the network connection. In Squid,

this can be done in the function fwdConnectStart(). The timing for t1 ends after

the first chunk has returned. This happens in the function httpReadReply(). As

for tchk, it shall also be recorded in the function httpReadReply() since all the

replies from servers are handled by this function.

The t1 and tchk for different requests could vary greatly as the requests may go to

different servers at different locations. So the recorded times should be kept with each

request. This can be achieved by adding new fields in the data structure

clientHttpRequest or request_t and storing the timings in them. This way,

the timings would be always ready for use for each request.

Checking the conditions for CLP

As we know in Section 9.3, CLP would take place only when certain conditions

are satisfied. Most of the conditions are related to HTTP response headers. In Squid,

HTTP replies (both the HTTP headers and the object body data) are handled by the

function httpReadReply(). We modified this function to let it check: (1) if the

server supports partial content retrieval, i.e. if it supports HTTP/1.1; (2) if the status

code of the reply is OK; and (3) if the “Content-Length” header exists. By examining

276

the status line of the headers, the system would know the status code and whether the

server is HTTP/1.1 compliant. If the system finds a request satisfying these three

conditions, it will get tchk (recall that we use the latency of the second chunk as tchk) to

calculate the threshold size sthreshold for this request. If the value of the

“Content-Length” header is greater than this sthreshold, the system will try to do CLP for

it by calling new functions added by us to spawn slave requests.

Note that t1 and tchk can sometimes fluctuate greatly due to the variation in

network status and server load, this could make the calculated threshold size sthreshold

unrealistic, i.e. extremely small or large. To adjust this deviation, we also set a global

minimum threshold size (e.g. 128 KBytes). If the calculated threshold size is

unrealistic, we will use this global minimum threshold size to compare with the

“Content-Length”.

There is also another important point we need to be paid attention to. In the case

where the first chunk also contains object body data besides the HTTP headers, the

amount of the object body data in this first chunk should be counted in the size

assigned to the master retrieval thread, if CLP happens for this request.

Spawning slave requests

The new functions for spawning slave requests will first compute the size ranges

to be assigned to each slave request. Then they will create the request messages and

network connections for all the slave requests. Typically, the request messages for the

slave requests should have the same headers as the original master request, except that

they also have the “Range:” header. For setting up network connections, the functions

will first check if there are persistent connections available in the system. If there is,

the CLP system will make use of them. Otherwise, it will open new connections for the

slave requests as Squid usually does for normal requests, i.e. by calling the function

277

commConnectStart() to do it. When connections setup is done, request messages

for those slave requests will be sent out through them.

There is certain management data associated with each slave request, e.g. the size

range assigned to it, the size of received data, and the received data etc. Each set of

such data should go with each specific slave request. To do this, we add new fields to

the data structure FwdState and create one such structure for every slave request.

Note that each slave request has its own memory buffer for storing the received data.

Receiving the partial data

The master retrieval thread receives object data in the function

httpReadReply() as usually, only that it should be forced to stop when it finishes

the size assigned to it.

Because the data the master retrieval thread receives belongs to the first part of

the object body, so it can be sent it to client immediately. However, for slave retrieval

threads, the data they receive may not be able to be sent to client immediately because

the order of the received ranges of data may be out of sequence. But whenever a slave

retrieval thread receives a chunk of data, we will have it to check whether the data can

be sent to client, i.e. whether the data range before this chunk has already been sent to

client. As long as the system finds that the current chunk of data is in order with those

which have been sent to client, it will send the data from slave retrieval threads to

client immediately, without waiting for the whole threads to finish. At the same time,

the data will be merged to the master retrieval thread to recover the whole object for

caching.

Finishing CLP requests

When all the master and slave retrieval threads finish receiving data, the

resources occupied by them will be released. Such resources include memory buffers,

278

data structures, file descriptors, and network connections, etc. For the network

connections, they can be put in the persistent connection pool for future use, or freed

immediately. In our system, this is configurable in the configuration file

squid.conf.

Note that the whole object data retrieved by master and slave retrieval threads are

already sent to client prior to the release of the resources taking place. The whole

object will also be submitted for caching when the CLP finishes. Since all the partial

portions have been assembled together to recover the whole object before it is

submitted for caching, so we do not have the issue of caching of partial content in our

CLP system.

Avoiding Resource contention

Our CLP system is implemented on a web proxy system. As web proxy can be

very busy sometimes, the system may run short of resources in some extreme

situations. When such situation happens, we should give normal web requests higher

priority over the slave requests spawned by CLP in using the resources. Our CLP

system will monitor the usage status of the resources (such as the number of

connections). If it detects that the usage of certain resources reaches a threshold point,

it will suppress CLP to certain degree, up to zero. By doing so, our CLP system could

assure the quality of service for normal web requests while still take the benefit of CLP

when situation permits.

9.5 Conclusion

In this chapter, we exploited fine-grained parallelism for the acceleration of web

retrieval. By extending the concept of parallelism to intra-object level, we proposed the

Chunk-Level Parallelism (CLP) mechanism to improve web retrieval performance for

large objects. Our comprehensive study on CLP revealed some important relations

279

regarding chunk-level parallelism such as the proper threshold size for CLP to take

place. By selecting proper parameters for CLP based on the relations, we have attained

high effectiveness of CLP while avoided imposing excessive demand on network

connection and server load. We conducted simulation experiments as well as real

system tests to study the performance of CLP. Our results show that CLP can achieve

about 83.86% and 68.6% improvement on object retrieval latency and whole page

latency respectively when large objects are in presence. As more and more large digital

documents, multimedia materials and web-based applications etc. are increasingly

distributed over the web, the CLP mechanism could become more effective and

preferable in the future.

280

Chapter 10 Conclusions

10.1 Summary

This thesis addressed the issues in the area of modeling and acceleration of web

content delivery. In the thesis, I first examined the traditional way of web acceleration,

i.e. caching-based mechanisms. By investigate the factors affecting the cacheability of

objects and their utilization in current web system, I found that the cacheability of

objects is not well utilized due to the absence or improper value of critical HTTP

headers from web servers. If current web servers can be configured more properly to

provide directives for better cacheability, considerable improvement can still be

brought to the performance of caching-based mechanisms.

I proposed a fine grained Web Retrieval Dependency Model (WRDM) in this

thesis to address the issue of lack of precise model for studying web retrieval latency.

Our detailed study on web retrieval based on WRDM model shed light on the details of

web retrieval latency. It revealed that the relationship between object latency and page

latency is very complicated and the actual object fetch latency is often less of a

problem for web retrieval than Definition Time and Waiting Time when page latency is

concerned. Using the WRDM model, I also analyzed the possible impact of real-time

content transformation on web retrieval latency and derived various upper bounds for

web acceleration, which revealed low-level impacts of real-time content

transformation and potentials of web acceleration.

With the guidance of the WRDM model, I analyzed the effect of an important

acceleration mechanism, namely web compression, through low level studies. The

detailed analysis brought us insights of some important effect and implication of

compression on page retrieval latency.

Realizing the deficiency of general-purpose compression algorithms in the

281

specific area of web content delivery, I proposed a new compression mechanism,

named Content-Aware Global Static Compression (CAGSC), to improve the

performance of compression in web content delivery.

Based on the findings from the studies using our WRDM model, I proposed new

ways to web acceleration. Besides the novel compression mechanism mentioned above,

I also proposed and studied innovative acceleration mechanisms in two aspects, i.e.

dependency related mechanisms which are the Server Location Propagation

mechanism (SLP) and Embedded Object Information Propagation mechanism (EOIP),

and parallelism related mechanism Chunk-Level Parallelism (CLP). Experimental

results showed that these mechanisms can produce considerable improvement on web

retrieval latency.

10.2 Contributions

This thesis mainly focuses on the area of acceleration of web content delivery. I

introduced an innovative fine grained model and proposed new ways to web

acceleration. The main contributions of this thesis are listed as follows:

ü Systematic study on the cacheability of objects in current web system

I studied the performance of web caching by systematically investigating how web

caching mechanism works from the internal of a real caching system, and how well

those essential cacheability-controlling HTTP headers are presented in current web

system. I dug into the relationship among the co-occurrent factors and revealed the

effectiveness of the factors in the multi-factor co-occurrent situation. The study

revealed the effective factors and proper settings for TTL. By improving them, the

performance of web caching can still be improved considerably.

ü Proposed a new precise model for studying web retrieval latency

Most existing studies on web retrieval are based on object level information.

282

Knowing its limitation, I proposed a detailed operation and chunk level Web

Retrieval Dependency Model (WRDM) to provide more precise capture of web

retrieval. This model helps us to understand the root causes of the latencies for both

individual objects and whole pages. It can also act as an effective tool in developing

and analyzing web acceleration mechanisms.

ü Chunk level study on object retrieval latency

I conducted detailed study at operation and chunk level on object retrieval latency.

While the results re-confirmed the large contribution of CT and CST to object

latency, I also made some other important findings. I found that the retrieval latency

for smaller objects is often comparable to that of bigger objects for the group of

objects with size smaller than 4 KBytes. Another important finding is that the

latencies for chunks with different sizes are quite randomly distributed, which

indicates that mechanisms which aim to reduce chunk size may not help much in

reducing object retrieval latency.

ü In-depth understanding and study of the factors affecting page retrieval latency

Our detailed study based on the WRDM model revealed complex factors affecting

page retrieval latency, which confirms our argument that the mapping from object

retrieval latency to page retrieval latency is very complicated. When objects are put

together to form pages, their actual fetching latency become less significant in

determining page retrieval latency. Instead, two new latency components

particularly found in pages, i.e. DT time and WT time, become the dominating

factors. I thoroughly studied the relationship among the number of objects in a page,

DT and the dependency between objects in a page, WT and the parallelism in web

retrieval. Our results revealed the effect of these factors on page retrieval latency

and the complex inter-relationship among them. In order to achieve high

283

performance of page retrieval, we need to take all the factors into consideration

simultaneously. Simply considering one of them will not yield the best

improvement because other factors will soon become the performance bottleneck if

only one is improved.

ü Revealed the impacts of real-time content transformation on web retrieval latency

Web content transformation has been an important technology to satisfy the

different expectation of web users. There are many studies focusing on the real-time

feature and the restrictions on the kind of transformation that can take place etc. But

there is little study on the possible impacts of different content transformation

approaches on web retrieval latency. Using our WRDM model, I analyzed the

performance impacts of content transformation. Our results suggest that the

partial-object buffering content transformation should be the preferred approach

since it has little restrictions on the kind of transformation that can take place while

it imposes moderate negative effect on page retrieval latency.

ü Derived upper bounds for the performance of acceleration mechanisms

I also derived various upper bounds on the performance improvement for

acceleration mechanisms in this thesis. While many mechanisms have been

proposed and shown promising potential of acceleration, it remains to be seen the

quantitative upper bound of them. Based on the understanding of object retrieval,

page retrieval and the relationship between them revealed under our WRDM model,

I derived upper bounds for acceleration mechanisms, which help us to understand

the potentials of web acceleration.

ü In-depth analysis of web compression at chunk level

I analyzed an important web acceleration mechanism, namely web compression.

The detailed chunk level study based on our WRDM model revealed that reducing

284

the number of chunks is more effective in improving retrieval latency than reducing

the size of every chunk. So, pre-compression almost always outperforms real-time

compression since it reduces the number of chunks while the latter tends to reduce

the size of every chunk. Our study also investigated the impact of compression on

the DT times of EOs in a page and the demand on parallelism. The results revealed

some special effect and implication of compression on page retrieval latency.

ü Proposed a new compression algorithm

I also proposed a novel compression algorithm, namely Content-Aware Global

Static Compression (CAGSC). The algorithm is specifically designed for web

content to improve the effectiveness of compression in web content delivery.

Results showed that improvements of up to 20% on object retrieval latency and

14.6% on page retrieval latency can be achieved by the new algorithm.

ü Proposed new mechanisms to address the dependency introduced latency

The analysis on web retrieval based on our WRDM model revealed that there are

dependencies between objects and between operations in retrieval process; and such

dependencies introduce significant latency to web retrieval. I proposed innovative

ways to web acceleration by manipulating such dependencies through information

backward propagation. Two actual mechanisms are studied. One is the Server

Location Propagation (SLP) mechanism for reducing the latency incurred by the

dependency on server location resolution. The other mechanism is the Embedded

Object Information Propagation (EOIP) mechanism, which aims to reduce the

latency introduced by the dependency between CO and EOs. Our experimental

results showed that these two mechanisms could improve whole page retrieval

latency by about 4.22% and 10.66% repectively.

ü Proposed new mechanism to exploit fine-grained parallelism for web acceleration

285

I also proposed the Chunk-Level Parallelism (CLP) mechanism by extending the

concept of parallelism to chunk transfer sequence level to accelerate the retrieval

process for web pages containing large objects. Both simulation experiments and

real system tests showed that CLP can achieve substantial improvement of over

60% on whole page retrieval latency when large objects are in presence. This

mechanism could become more effective and preferable in the future as more and

more large digital documents, multimedia materials and web-based applications etc.

are increasingly distributed over the web.

10.3 Future Work

The continued exponential growth of the World Wide Web not only makes it the

prevailing media platform, but it also puts new challenges and higher requirement on

the speed of delivery of information to users. As environment evolves with the rapid

growth of the web, new directions and mechanisms need to be researched in order to

provide high-quality web content delivery performance. Below we list some possible

directions and works that can be performed to make further contributions to this area.

ü Enhancement to web caching

Although web caching has its limitations, it remains to be an important and

effective solution to web acceleration. Most current web caching systems work on

static whole objects. However, the characteristics of web content have changed

remarkably in recent times, which makes it inadequate to just handle static whole

objects. Nowadays, more and more web content is generated dynamically. Current

web caching systems lack the capability of handling such dynamic web content

properly. Moreover, partial objects are also seen in current web requests, which are

not well handled by current web caching systems either. So, to enhance web

caching systems to make them to appropriately handle dynamic objects and partial

286

objects becomes an important direction in improving web retrieval performance.

ü More studies focused on page latency, not object latency

As we showed in this thesis, page retrieval latency is more meaningful to web users

than object retrieval latency, and the mapping relationship between object latency

and page latency is very complex. Being aware of this, it would be valuable to

further study issues on page retrieval latency. Further investigation on the existing

acceleration mechanisms with special emphasis on page latency would be also

beneficial in understanding and improving web retrieval latency.

ü Protocol and language support for information propagation

In this thesis, we demonstrated that the information dependency in web retrieval

introduces significant latency, and showed that information backward propagation

can effectively manipulate such dependencies and reduce the relevant latency.

However, current web protocols and languages do not support information

propagation. It is necessary to further study all aspects of information propagation

and to push for proper support for it from web protocols and languages.

ü Developing better protocols for web content delivery

The current web systems run on HTTP over TCP. Although these two protocols

have been working well, there are many performance issues against them. Initially,

HTTP opens a separate network connection for each and every object in a page,

which is proven to be very inefficient. While this situation is somewhat improved in

HTTP/1.1, there still remains many problems. TCP typically has a “slow-start”

phase with each new connection, which reduces throughput at the beginning of

each connection. TCP’s congestion avoidance mechanism makes the effect even

worse. Furthermore, TCP is strictly ordered in the way it delivers packets, which

could introduce considerable delay when packet loss occurs. If we could develop

287

better protocols for web content delivery, faster delivery speed may be expected.

While there are already a few attempts in this direction such as SCTP, BEEP, and

HSTP etc. [241, 242, 238], we expect more work to be done in the future.

ü Application acceleration

In recent times, web-browse-based distributed computing is getting more and more

interests, and enterprises start to decentralize and move their key corporate

applications onto the web. As applications are increasingly distributed over the web

and more complex forms of information exchanged, there emerges a persistent

problem: web applications are bandwidth and CPU hogs. Today, the problem is

typically handled by installing more application servers. However, this approach is

not cost-effective and its management will become extremely difficult when the

number of application servers is big. A better answer to this question might be

application acceleration. Although there are difficulties in doing application

acceleration currently, this direction already shows promising potential in easing

the heavy loads on servers and increasing the speed at which the information can be

served. The benefit of application acceleration could be even higher than normal

web acceleration in the future.

ü Acceleration in the pervasive networking environment

With the explosive growth of the web, its application penetrates into more and more

parts of people’s life. Nowadays, Internet users are surfing the web from a wide

different environments with different devices and preferences. For example, some

people may use hand-held mobile device to surf the web, and some users may

prefer to quickly browse through a compilation of news in simple textual format

without spending long times to download the large images. This large variety of

different requirements introduces new challenges to the acceleration of web content

288

delivery. It would be interesting to work along this direction as it can achieve the

goal of acceleration in new environments.

ü Peer-to-peer web system

To exploit peer-to-peer techniques for web content delivery is a promising direction

in terms of improving the latency, availability, and scalability etc. for web service.

More works and good results may be expected from this direction in the future,

especially for multimedia related content delivery.

289

Reference

[1] K. Thompson, G. Miller, and R. Wilder, Wide-area Internet traffic patterns and

characteristics, Proceedings of Third International Conference on Web Caching,

1998.

[2] J. Hoe, Improving the Start-up Behavior of a Congestion Control Scheme for

TCP, Proc. SIGCOMM '96, Aug. 1996.

[3] http://www.msnbc.com

[4] V. Paxson, Measurements and Analysis of End-to-End Internet Dynamics, PhD

thesis, U.C. Berkeley, May 1996.

[5] The Need for Speed by Zona Research, July1999.

[6] http://www.w3.org/Protocols/HTTP/AsImplemented.html

[7] http://www.hitmill.com/Internet/web_history.asp

[8] Jia Wang, A survey of Web caching schemes for the Internet, ACM Computer

Communication Review, 25(9):36-46, October 1999. The full version of the

paper is published as Technical Report TR99-1747, Department of Computer

Science, Cornell University, May 13, 1999.

[9] Bradley M. Duska, David Marwood, and Michael J. Feely, The Measured

Access Characteristics of World-Wide-Web Client Proxy Caches, In

Proceedings of the USENIX Symposium on Internet Technologies and Systems

(USITS '97), December 1997.

[10] Duane Wessels, Web Caching, O'Reilly Publishing, 2001.

[11] Duane Wessels and K. Claffy, ICP and the Squid Web Cache, IEEE Journal on

Selected Areas in Communication, 16(3):345-357, April 1998.

[12] Duchamp, D., Prefetching Hyperlinks, Proceedings of USENIX Symposium on

Internet Technologies and Systems, October 1999.

[13] T.M. Kroeger, D.D.E. Long, and J.C. Mogul, Exploring the bounds of Web

latency reduction from caching and prefetching, Proceedings of the 1997 Usenix

Symposium on Internet Technologies and Systems, Monterey, CA, Dec. 1997.

290

[14] Venkata N. Padmanabhan and Jeffrey C. Mogul, Using predictive prefetching to

improve world wide web latency, Computer Communication Review,

26(3):22--36, July 1996.

[15] Content delivery market set to soar,

http://www.nwfusion.com/news/2003/0106caching.html

[16] Web Applications Missing Link: Acceleration,

http://www.atnewyork.com/news/article.php/1560491

[17] M. Abrams, C.R. Standridge, G. Abdulla, S. Williams, and E.A. Fox, Caching

proxies: limitations and potentials, Proceedings of the 4th International WWW

Conference, Boston, MA, Dec. 1995.

[18] Fred Douglis, Anja Feldmann, Balachander Krishnamurthy, and Jeffrey C.

Mogul, Rate of Change and other Metrics: a Live Study of the World Wide Web,

In Proceedings of the USENIX Symposium on Internet Technologies and

Systems (USITS'97), December 1997. An extended version is available as

AT&T Labs - Research Technical Report 97.24.2.

[19] Themistoklis Palpanas, Balachander Krishnamurthy, Reducing Retrieval

Latencies in the Web: the Past, the Present, and the Future, Technical Report

CSRG-378, Department of Computer Science, University of Toronto, January

1999.

[20] Jun-Li Yuan and Chi-Hung Chi, Web Caching Performance: How Much Is Lost

Unwarily?, LNCS Volume 2713/2003, pp. 23 - 33. Proceedings of the Second

International Human.Society@Internet Conference, p.23-33, June 18 - 20, 2003,

Seoul, Korea.

[21] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.

Berners-Lee, Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616, UC Irvine,

Compaq/W3C, Compaq, W3C/MIT, Xerox, and Microsoft, June 1999

[22] Krishnamurthy, B., Rexford, J., Web Protocols and Practice, ISBN

0-201-71088-9, Addison-Wesley, 2001.

[23] Franks, J., Proposal for an HTTP MGET Method,

http://ftp.ics.uci.edu/pub/ietf/http/hypermail/ 1994q4/0260.html, 1994.

291

[24] Venkata N. Padmanabhan and Jeffrey C. Mogul, Improving HTTP Latency, In

Proceedings of the Second International World Wide Web Conference: Mosaic

and the Web, pages 995--1005, Chicago, IL, October 1994. Also in Computer

Networks and ISDN Systems,28:25-35, 1995.

[25] Craig E. Wills, Mikhail Mikhailov, and Hao Shang, N for the price of 1:

Bundling web objects for more efficient content delivery, In Proceedings of the

Tenth International World Wide Web Conference, Hong Kong, May 2001

[26] Gaurav Banga, Fred Douglis, and Michael Rabinovich, Optimistic Deltas for

WWW Latency Reduction, In Proceedings of the USENIX Annual Technical

Conference, USENIX Association, January 1997, pp. 289--304.

[27] Jeffrey Mogul, Fred Douglis, Anja Feldmann, and Balachander Krishnamurthy,

Potential Benefits of Delta-encoding and Data Compression for HTTP, In

Proceedings of ACM SIGCOMM, pages 181--194, September 1997. An

extended and corrected version appears as Research Report 97/4a, Digital

Equipment Corporation Western Research Laboratory, December, 1997.

[28] Anubhav Savant and Torsten Suel, Server-Friendly Delta Compression for

Efficient Web Access, In Proceedings of the 8th International Workshop on Web

Content Caching and Distribution, IBM T.J. Watson Research Center,

Hawthorne, NY USA, 29 September - 1 October 2003. http://2003.iwcw.org/

[29] Mikhail Mikhailov and Craig E. Wills, Embedded objects in web pages,

Technical Report WPI-CS-TR-00-05, Computer Science Department, Worcester

Polytechnic Institute, March 2000.

[30] Pei Cao and Sandy Irani, Cost-Aware WWW Proxy Caching Algorithms, In

Proceedings of the USENIX Symposium on Internet Technoloy and Systems,

pages 193--206, December 1997.

[31] Binzhang Liu, Characterizing Web Response Time, Master Thesis, Computer

Science, Virginia Polytechnic Institute and State University, April 22, 1998.

[32] Roland P. Wooster and Marc Abrams, Proxy caching that estimates page load

delays, In Proceedings of the Sixth International World Wide Web Conference,

pages 325-334, Santa Clara, CA, April 1997.

292

[33] Ahsan Habib, Marc Abrams, Analysis of Sources of Latency in Downloading

Web Pages, In Proc. of WebNet Conference on the WWW and Internet (WebNet

'00) San Antonio USA, Nov 2000

[34] Ruddle, A., Allison, C., Lindsay, P., Analysing the latency of WWW

applications, Proceedings of the IEEE ICCCN, Phoenix, AZ, Oct., 2001.

[35] HyperText Markup Language (HTML) Home Page,

http://www.w3.org/MarkUp/

[36] Hypertext Transfer Protocol -- HTTP/1.0, RFC 1945,

http://www.faqs.org/rfcs/rfc1945.html

[37] Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616,

http://www.faqs.org/rfcs/rfc2616.html

[38] Transmission Control Protocol, RFC 793, http://www.faqs.org/rfcs/rfc793.html

[39] Extensible Markup Language (XML) 1.0,

http://www.w3.org/TR/1998/REC-xml-19980210

[40] Extensible Markup Language (XML) 1.0 (Second Edition),

http://www.w3.org/TR/REC-xml

[41] Robin Cover, WAP Wireless Markup Language Specification (WML), August

2001, http://www.oasis-open.org/cover/wap-wml.html

[42] Wireless Markup Language 2.0,

http://www1.wapforum.org/tech/documents/WAP-238-WML-20010626-p.pdf

[43] Nottingham, M., Liu, X., Edge Architecture Specification, W3C Note 04,

August 2001, http://www.w3.org/TR/edge-arch

[44] ESI¡§CAccelerating E-Business Applications, http://www.edge-delivery.org

[45] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S., Web Service

Definition Language (WSDL), W3C Note 15, March 2001,

http://www.w3.org/TR/wsdl

[46] D. Wessels, K. Claffy, Internet Cache Protocol(ICP), version 2, Network

Working Group, RFC: 2186, 1997.

[47] D. Wessels, K. Claffy, Application of Internet Cache Protocol(ICP), version 2,

Network Working Group, RFC: 2187, 1997.

293

[48] P. Vixie, D. Wessels, Hyper Text Caching Protocol(HTCP/0.0), Network

Working Group, RFC: 2756, Jan. 2000.

[49] Internet Content Adaptation Protocol (I-CAP), http://www.i-cap.org

[50] ICAP press releases, http://www.i-cap.org/icap/press.cfm

[51] Tomlinson, G., Orman, H., Condry, M., Kempf, J., Farber, D., Extensible Proxy

Services Framework, IETF-OPES Internet drafts, July 2000,

http://www.ietf-opes.org/documents/draft-tomlinson-epsfw-00.txt

[52] Yang, L., Hofmann, M., OPES Architecture fro Rule Processing and Service

Execution, IETF-OPES Internet drafts, 2000,

http://www.ietf-opes.org/documents/draft-yang-opes-rule-processing-service-e

xecution-00.txt

[53] Tomlinson, G., Chen, R., Hofmann, M., A Model for Open Pluggable Edge

Services, IETF 51, London , July 2001

[54] McHenry, S., Condry, M., Tomlinson, G., Orman, H., Hoffman, M., Open

Pluggable Edge Services Use Cases and Deployment Scenarios, IETF 51,

London, July 2001

[55] Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen,

H.F., Thatte, S., Winer, D., Simple Object Access Protocol (SOAP) 1.1, W3C

Note 08, May 2000, http://www.w3.org/TR/SOAP

[56] Mark Nottingham, SOAP Optimisation Modules: Response Caching, W3C

Archives, 2001,

http://lists.w3.org/Archives/Public/www-ws/2001Aug/att-0000/01-ResponseCa

che.html

[57] Web Intermediaries (webi) Charter, IETF Internet drafts,

http://www.ietf.org/html.charters/webi-charter.html

[58] McManus, P., Nottingham, M., Requirements for Intermediary Discovery and

Description, IETF Internet drafts, February 2001,

http://www.ietf.org/Internet-drafts/draft-ietf-webi-idd-reqs-00.txt

[59] Hamilton, M., Cooper, I., Li, D., Requirements for a Resource Update Protocol,

IETF Internet drafts, July 2001,

http://www.ietf.org/Internet-drafts/draft-ietf-webi-rup-reqs-01.txt

294

[60] Web Replication and Caching (WREC), IETF Internet drafts,

http://www.ietf.org/html.characters/wrec-charter.html

[61] Cooper, I., Melve, I., Tomlinson, G., Internet Web Replication and Caching

Taxonomy, IETF Internet drafts, January 2001,

http://www.ieft.org/rfc/rfc3040.txt

[62] Middlebox Communication (midcom) Charter, IETF Internet drafts,

http://www.ietf.org/html.charters/midcom-charter.html

[63] Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., Rayhan, A., Middlebox

Communication Architecture and framework, IETF Internet drafts, July 2001,

http://www.ietf.org/Internet-drafts/draft-ietf-midcom-framework-03.txt

[64] Reliable Server Pooling (rserpool) Charter, IETF Internet drafts,

http://www.ietf.org/html.charters/rserpool-charter.html

[65] Tuexen, M., Xie, Q., Stewart, R., Shore, M., Ong, L., Loughney, J., Stillman, M.,

Requirements for Reliable Server Pooling, IETF Internet drafts, May 2001,

http://www.ietf.org/rfc/rfc3237.txt

[66] Tuexen, M., Xie, Q., Stewart, R., Shore, M., Ong, L., Loughney, J., Stillman, M.,

Architecture for Reliable Server Pooling, IETF Internet drafts, April 2002,

http://www.ietf.org/Internet-drafts/draft-ietf-rserpool-arch-02.txt

[67] Loughney, J., Stillman, M., Tuexen, M., Xie, Q., Stewart, R., Ong, L.,

Comparison of Protocols for Reliable Server Pooling, IETF Internet drafts,

March 2002, http://www.ietf.org/Internet-drafts/draft-ietf-rserpool-comp-03.txt

[68] Stewart, S., Xie, Q., Aggregate Server Access Protocol (ASAP), IETF Internet

drafts, March 2002,

http://www.ietf.org/Internet-drafts/draft-ietf-rserpool-asap-03.txt

[69] Q. Xie, R. Stewart, Endpoint Name Resolution Protocol, IETF Internet drafts,

May 2002, http://www.ietf.org/proceedings/01dec/slides/rserpool-2/

[70] Microsoft Corporation, http://www.microsoft.com

[71] Netscape, http://www.netscape.com

[72] Apache Group, Apache HTTP server documentation, http://www.apache.org/

[73] Squid Web Proxy Cache, http://www.squid-cache.org/

295

[74] Duane Wessels, Squid: The Definitive Guide, January 2004, O'Reilly and

Associates, ISBN 0-596-00162-2.

[75] Httpd, http://www.w3.org/Daemon/User/Proxies/Proxies.html

[76] Stephen Williams, Marc Abrams, Charles R. Standridge, Ghaleb Abdulla, and

Edward A. Fox, Removal Policies in Network Caches for World-Wide Web

Documents, In Proceedings of ACM SIGCOMM, pages 293-305, Stanford, CA,

1996. Revised March 1997.

[77] Pei Cao and Sandy Irani, GreedyDual-Size: A Cost-Aware WWW Proxy

Caching Algorithm, 2nd Web Caching Workshop, Boulder, Colorado, June

1997.

[78] S. G. Dykes, Cooperative Web Caching: A Viability Study and Design Analysis,

Ph.D. Dissertation, University of Texas at San Antonio, Aug. 2000.

[79] S. G. Dykes, Cooperative Web Caching: A Viability Study and Design Analysis,

Talk slides from the dissertation defense, University of Texas at San Antonio,

Aug. 2000.

[80] S. G. Dykes, K. A. Robbins, and C. L. Jeffery, Uncacheable documents and cold

starts in Web proxy cache simulations: How two wrongs appear right, Technical

Report CS-2001-01, University of Texas at San Antonio, Division of Computer

Science, San Antonio, TX 78249-0664, Jan. 2001.

[81] Mark Nottingham, Optimizing Object Freshness Controls in Web Caches, In 4th

International Web Caching Workshop (WCW'99), San Diego, CA, March 31 -

April 2 1999.

[82] E. Cohen and H. Kaplan, Refreshment policies for Web content caches, In

Proceedings of the IEEE INFOCOM'01 Conference. 2001.

[83] Yin J., Alvisi L., et al., Volume Leases for Consistency in Large-Scale Systems,

IEEE Transactions on Knowledge Data Engineering, July 1999, Vol. 11, No. 4,

pp. 563-576.

[84] Carlos Maltzahn, Kathy J. Richardson, Dirk Grunwald and James H. Martin, On

Bandwidth Smoothing, In Proceedings of the 4th International Web Caching

Workshop, San Diego, CA, Mar. 1999.

296

[85] Carlos Maltzahn, Kathy J. Richardson, Dirk Grunwald, and James Martin, A

Feasibility Study of Bandwidth Smoothing on the World-Wide Web Using

Machine Learning, Technical report #CU-CS-879-99, Dept. of Computer

Science, University of Colorado at Boulder, January, 1999.

[86] T. Palpanas and A. Mendelzon, Web Prefetching Using Partial Match Prediction,

Proceedings 4th Web Caching Workshop, San Diego, CA, March 1999.

[87] Ramesh R. Sarukkai, Link prediction and path analysis using markov chains, In

Proceedings of 9th International World Wide Web Conference, 2000.

[88] Mukund Deshpande and George Karypis, Selective Markov Models for

Predicting Web-Page Accesses, 1st SIAM Data Mining Conference, 2001

[89] Evangelos P. Markatos and Catherine E. Chronaki, A top-10 approach for

prefetching the web, In Proceedings of the Eighth Annual Conference of the

Internet Society (INET'98), Geneva, Switzerland, July 1998. Also available as

ICS-FORTH Technical Report 173.

[90] A. J. Smith, Cache memories, ACM Computing Surveys, vol. 14, pp. 473-530,

Sept. 1982.

[91] Fredrick J. Hill and Gerald R. Peterson, Digital Systems: Hardware Organization

and Design, John Wiley & Sons, New York, 1987. Third Edition.

[92] M. Morris Mano, Computer System Architecture, Prentice-Hall, Englewood

Cliffs, NJ, 1982. Second Edition.

[93] Miles J. Murdocca and Vincent P. Heuring, Principles of Computer Architecture,

Addison Wesley Longman, To appear, 1999.

[94] Edith Cohen and Haim Kaplan, Caching documents with varying sizes and

fetching costs: an LP-based approach, Algorithmica , 32(3):459-466, 2002.

[95] G.Z. Chrysos, J.S. Emer, Memory dependence prediction using store sets,

Proceedings of the 25th Annual International Symposium on Computer

Architecture, ACM, New York, 1998, pp. 142?¡ìC153.

[96] Chi-Hung Chi and Jun-Li Yuan, Load-Balancing Branch Target Cache and

Prefetch Buffer, Proceedings of the 1999 IEEE International Conference on

Computer Design (ICCD 1999), p. 436-441, Austin, Texas, October 10-13,

1999.

297

[97] Chi-Hung Chi and Jun-Li Yuan, Sequential Unification and Aggressive

Lookahead Mechanisms for Data Memory Accesses, Proceedings of the 5th

International Conference on Parallel Computing Technologies (PaCT-99),

p.28-41, St. Petersburg, Russia, September 6-10, 1999.

[98] Chi-Hung Chi and Jun-Li Yuan, Design Considerations of High Performance

Data Cache with Prefetching, Euro-Par 1999: 1243-1250, September 1999,

LNCS 1685.

[99] Chi-Hung Chi , Jun-Li Yuan and Chin-Ming Cheung, Cyclic dependence based

data reference prediction, Proceedings of the 13th International Conference on

Supercomputing, p.127-134, June 20-25, 1999, Rhodes, Greece.

[100] Chi-Hung Chi and Jun-Li Yuan, Runtime Association of Software Prefetch

Control to Memory Access Instructions, Euro-Par 2002: 486-489.

[101] Chi-Hung Chi and Jun-Li Yuan, Load-balancing data prefetching techniques,

Invited paper in Journal of Future Generation Computer Systems, April 2001,

Volume 17 Issue 6 p.733-44.

[102] Pei Cao, Characterization of Web Proxy Traffic and Wisconsin Proxy

Benchmark 2.0, In World Wide Web Consortium Workshop on Web

Characterization, Cambridge, MA, November 1998. Position paper.

[103] Lee Breslau, Pei Cao, Li Fan, Graham Phillips and Scott Shenker, Web Caching

and Zipf-like Distributions: Evidence and Implications, In Proceedings of the

IEEE Infocom '99 Conference, New York, NY, March 1999. 148.

[104] S. G. Dykes and K. A. Robbins, Correcting the application of Zipf's Law to Web

proxy caching, SIGCOMM 2000 poster presentation

[105] Ghaleb Abdulla, Edward A. Fox, Marc Abrams, and Stephen Williams, WWW

Proxy Traffic Characterization with Application to Caching, Technical Report

TR-97-03, Computer Science Dept., Virginia Tech, Mar. 1997.

[106] Ghaleb Abdulla, A. H. Nayfeh, and Edward A. Fox, A Realistic Model of

Request Arrival Rate to Caching Proxies, Submitted for publication, 1997.

http://vtopus.cs.vt.edu/~chitra/docs/abdulla-nayfeh-fox/paper.pdf

[107] Ghaleb Abdulla, Analysis and Modeling of World Wide Web Traffic, PhD

Dissertation, Virginia Polytechnic Institute and State University, 1998.

298

[108] Arthur Goldberg, Ilya Pevzner, and Robert Buff, Caching Characteristics of

Internet and Intranet Web Proxy Traces, Published in the Computer

Measurement Group Conference, CMG98, December 1998

[109] Terence Kelly, Thin-client Web access patterns: Measurements from a

cache-busting proxy, In Web Caching and Content Delivery: Proceedings of the

Sixth International Web Content Caching and Distribution Workshop

(WCW'01), Boston, MA, June 2001.

[110] Craig E. Wills and Mikhail Mikhailov, Towards a better understanding of web

resources and server responses for improved caching, In Proceedings of the 8th

International World Wide Web Conference,Toronto, Canada, pages 153--165,

May 1999.

[111] Xiaohui Zhang, Cachability of Web Objects, Technical Report 2000-019,

Computer Science Department, Boston University, August 8, 2000.

[112] Craig E. Wills and Mikhail Mikhailov, Examining the cacheability of

user-requested web resources, In Proceedings of the 4th International Web

Caching Workshop, pages 78-87, San Diego, CA, March/April 1999.

[113] Jeffrey C. Mogul, Errors in timestamp-based HTTP header values, Technical

Research Report 99/3, Compaq Western Research Lab, December 1999.

[114] Ludmila Cherkasova, Improving WWW Proxies Performance with

Greedy-Dual-Size-Frequency Caching Policy, Hewlett-Packard Company

Report, Computer Systems Laboratory, HPL-98-69 (R.1), November, 1998

[115] S. Jin and A. Bestavros, Popularity-aware greedy-dual-size web proxy caching

algorithms, In Proceedings of ICDCS'2000: The IEEE International Conference

on Distributed Computing Systems, Taiwan, May 2000.

[116] Shudong Jin and Azer Bestavros, GreedyDual* Web Caching Algorithm:

Exploiting the Two Sources of Temporal Locality in Web Request Streams,

International Journal on Computer Communications, 24(2):174-183, February

2001.

[117] Luigi Rizzo and Lorenzo Vicisano, Replacement policies for a proxy cache,

IEEE/ACM Transactions on Networking, 8(2):158--170, 2000. (The same as

RV98)

299

[118] Luigi Rizzo and Lorenzo Vicisano, Replacement policies for a proxy cache,

Research Note RN/98/13, Department of Computer Science, University College

London, 1998. (The same as RV00)

[119] Peter Scheuermann, Junho Shim, and Radek Vingralek, A case for

delay-conscious caching of Web documents, In Proceedings of the Sixth

International World Wide Web Conference, Santa Clara, CA, April 1997.

[120] J. Dilley, M. Arlitt and S. Perret, Enhancement and Validation of the Squid's

Cache Replacement Policy, Proceeding of the Fourth Web Caching Workshop,

San Diego, March 1999. Also available as HP Labs Technical Reports,

HPL-1999-69, 990527, at

http://www.hpl.hp.com/techreports/1999/HPL-1999-69.html

[121] Chengjie Liu and Pei Cao, Maintaining strong cache consistency in the

world-wide web, In Proceedings of ICDCS'97, pages 12--21, May 1997, URL:

http://www.cs.wisc.edu/~cao/papers/icache.html.

[122] James Gwertzman and Margo Seltzer, World-Wide Web Cache Consistency, In

Proceedings of the USENIX Technical Conference, San Diego, CA, January

1996.

[123] V. Cate, Alex--- A global filesystem, In Proceedings of the USENIX File System

Workshop, pages 1--12, Ann Arbor, MI, May 1992.

[124] J. Gwetzman and M. Seltzer, The case for geographical pushing-caching, HotOS

Conference, 1994.

[125] Balachander Krishnamurthy and Craig E. Wills, Study of piggyback cache

validation for proxy caches in the world wide web, In Symposium on Internet

Technologies and Systems. USENIX Association, December 1997.

[126] Balachander Krishnamurthy and Craig E. Wills, Piggyback server invalidation

for proxy cache coherency, In Proceedings of the Seventh International World

Wide Web Conference, pages 185-193, Brisbane, Australia, April 1998.

[127] Mikhail Mikhailov and Craig E. Wills, Evaluating a new approach to strong web

cache consistency with snapshots of collected content, In Proceedings of the

Twelfth International World Wide Web Conference, Budapest, Hungary, May

2003.

300

[128] Ronald Dodge and Daniel A. Menasce, Prefetching Inlines To Improve Web

Server Latency, In the Proceedings of the 1998 Computer Measurement Group

Conference, Anaheim, CA, Dec. 6-11, 1998.

[129] Ken-ichi Chinen and Suguru Yamaguchi, An interactive prefetching proxy

server for improvement of WWW latency, In Proceedings of the Seventh Annual

Conference of the Internet Society (INET'97), Kuala Lumpur, June 1997.

[130] Azer Bestavros, Using Speculation to Reduce Server Load and Service Time on

the WWW, In Proceedings of CIKM'95: The Fourth ACM International

Conference on Information and Knowledge Management, Baltimore, MD,

November 1995. Also available as Technical Report TR-95-006, Computer

Science Department, Boston University.

[131] Zhimei Jiang and Leonard Keinrock, Prefetching Links on the WWW, In ICC'97,

pages 483--489, Montreal, Canada, June 1997.

[132] Tong Sau Loon and Vaduvur Bharghavan, Alleviating the latency and

bandwidth problems in www browsing, In Proceedings of the 1997 USENIX

Symposium on Internet Technology and Systems, Monterey, CA, December

1997.

[133] Craig E. Wills and Joel Sommers, Prefetching on the web through merger of

client and server profiles, June 1997.

[134] Stuart Schechter, Murali Krishnan, and Michael D. Smith, Using Path Profiles to

predict http requests, In 7th International World Wide Web Conference, pages

457--467, Brisbane, Qld., Australia, April 1998.

[135] E. Cohen, B. Krishnamurthy, and J. Rexford, Efficient algorithms for predicting

requests to web servers, In Proceedings of IEEE INFOCOM, March 1999.

[136] B. D. Davison, Topical Locality in the Web: Experiments and Observations,

Technical Report DCS-TR-414, Department of Computer Science, Rutgers

University.

[137] Sajid Hussain, Intelligent Prefetching, Graduate Students Conference,

GRADCON'99, Winnipeg, MB, Canada; October 1, 1999.

[138] Suyoung Yoon, Eunsook Jin, Jungmin Seo and Ju-Won Song, Prefetching

Brand-new Documents for Improving the Web Performance, In Proceedings of

301

the 9th Annual Conference of the Internet Society, INET'99, San Jose, US, June

1999.

[139] A. Eden, B. Joh, T. Mudge, Web Latency Reduction via Client-Side Prefetching,

In Proceedings of 2000 IEEE Int. Symp. on Perfor-mance Analysis of Systems &

Software (ISPASS-2000), Austin, TX, pp. 193-200

[140] Zhong Su, Qiang Yang, Ye Lu and Hong Jiang Zhang, WhatNext: A Prediction

System for Web Requests using N-gram Sequence Models, In First International

Conference on Web Information Systems and Engineering Conference. Hong

Kong, June 2000.

[141] Michael Zhen Zhang and Qiang Yang, Model-based Predictive Prefetching, In

Proceedings of the 2nd International Workshop on Management of Information

on the Web -- Web Data and Text Mining (MIW'01). September 2001. Munich,

Germany; 3-7 September, 2001.

[142] B. D. Davison, Predicting Web Actions from HTML Content, In Proceedings of

the The Thirteenth ACM Conference on Hypertext and Hypermedia (HT'02),

College Park, MD, June 11-15, pages 159-168.

[143] Darin Fisher, Gagan Saksena, Link Prefetching in Mozilla: A Server-Driven

Approach, SYNOPSIS, In Proceedings of the 8th International Workshop on

Web Content Caching and Distribution, IBM T.J. Watson Research Center,

Hawthorne, NY USA, 29 September - 1 October 2003. http://2003.iwcw.org/

[144] Mark Crovella and Paul Barford, The Network Effects of Prefetching, In

Proceedings of IEEE Infocom '98, San Francisco, CA, 1998. More detailed

version available as Boston University Computer Science Department Technical

Report, TR-97-002, February 1997.

[145] B. D. Davison, Assertion: Prefetching With GET Is Not Good, In A. Bestavros

and M. Rabinovich (eds), Web Caching and Content Delivery: Proceedings of

the Sixth International Web Content Caching and Content Distribution

Workshop (WCW'01), Boston, June 20-22, 2001, pages 203-215, Elsevier.

[146] Arun Venkataramani, Praveen Yalagandula, Ravindranath Kokku, Sadia Sharif,

and Mike Dahlin, Potential costs and benefits of long-term prefetching for

content-distribution, Computer Communications Journal, 25(4):367--375, 2002.

302

[147] Li Fan, Quinn Jacobson, and Pei Cao, Potential and limits of web prefetching

between low-bandwidth clients and proxies, In Proceedings of the ACM

Sigmetrics Conference on Measurement and Modeling of Computer Systems,

1999.

[148] Yingyin Jiang, Min-You Wu, Wei Shu, JPEG2000 offers new opportunities to

enrich image content and applications flexibility, 7th International Workshop on

Web Content Caching and Distribution (WCW) Boulder, Colorado, August

14-16, 2002.

[149] Ajay B Pandey, Ranga R Vatsavai, Xiaobin Ma, Jaideep Srivastava, Shashi

Shekhar, A Comparative Study of Web Prefetching Algorithms, Submitted to

the special issue of the IEEE Journal on Selected Areas in Communications on

Internet Proxy Services (May 1, 2001).

[150] Radhika Malpani, Jacob Lorch and David Berger, Making World Wide Web

Caching Servers Cooperate, In Proceedings of the 4th International World Wide

Web Conference, Boston, Dec 1995.

[151] A. Chankhunthod, P.B. Danzig, C. Neerdaels, M.F. Schwartz, and K.J. Worrel,

A hierarchical Internet object cache, Usenix'96, January 1996.

[152] E. Cohen, E. Halperin, and H. Kaplan, Performance aspects of distributed caches

using TTL-based consistency, In Proceedings of the ICALP'01 conference,

Springer-Verlag, LNCS. 2001.

[153] E. Cohen and H. Kaplan, The age penalty and its effect on cache performance, In

Proceedings of the 3rd USENIX Symposium on Internet Technologies and

Systems (USITS). 2001.

[154] E. Cohen and H. Kaplan, Aging through cascaded caches: performance issues in

the distribution of Web content, In Proceedings of the ACM SIGCOMM'01

Conference . 2001.

[155] Sandra G. Dykes, Clinton L. Jeffery and Samir Das, Taxonomy and Design

Analysis for Distributed Web Caching, In the Proceedings of the Hawaii

International Conference on System Sciences, January 5-8, 1999, Maui, Hawaii.

[156] S. G. Dykes and K. A. Robbins, A Viability analysis of coopertive proxy caching,

IEEE Infocom 2001, Vol. 3, Apr. 2001, pp.1205-1214

303

[157] S. G. Dykes and K. A. Robbins, Limitations and benefits of cooperative proxy

caching, IEEE Journal on Selected Areas in Communications (J-SAC) to appear

(2001?)

[158] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder, Summary Cache: A

Scalable Wide-Area Web Cache Sharing Protocol, In Proceedings of ACM

SIGCOMM, September 1998.

[159] Li Fan, Pei Cao, Wei Lin and Quinn Jocobson, Web Prefetching Between

Low-Bandwidth Clients and Proxies: Potential and Performance, In Proceedings

of the Joint International Conference on Measurement and Modeling of

Computer Systems (SIGMETRICS '99), Atlanta, GA, May 1999.

[160] Michal Kurcewicz, Wojtek Sylwestrzak, and Adam Wierzbicki, A filtering

algorithm for proxy caches, In Third International WWW Caching Workshop,

Manchester, England, June 1998.

[161] Hyokyung Bahn, Hyunsook Lee, Sam H. Noh, Sang Lyul Min, and Kern Koh

School, Replica-aware caching for Web proxies, Computer Communications,

25(3):183--188, Feb. 2002.

[162] Terence Kelly and Jeff Mogul, Aliasing on the World Wide Web: Prevalence

and Performance Implications, In Proceedings of The Eleventh International

World Wide Web Conference, Honolulu, Hawaii, 7-11 May 2002.

[163] Jeffrey C. Mogul, A trace-based analysis of duplicate suppression in HTTP,

Research Report 99/2, COMPAQ, Western Research Laboratory, Nov. 1999.

[164] Jeffrey C. Mogul, Squeezing More Bits Out of HTTP Caches, IEEE Network

14(3):6-14, May/June, 2000.

[165] Hua Chen, Marc Abrams, Tommy Johnson, Anup Mathur, Ibraz Anwar, and

John Stevenson, Wormhole Caching with HTTP PUSH Method for a

SatelliteBased Web Content Multicast and Replication Syste, In Proceedings of

4th International WWW Caching Workshop, San Diego, California, March 31 -

April 2 1999. http://www.ircache.net/Cache/Workshop99/Papers/chen-html/

[166] T. Loukopoulos, P. Kalnis, I. Ahmad and D. Papadias, Active Caching of On

Line Analytical Processing Queries in WWW Proxies, In Proc. of the Int.

304

Conference on Parallel Processing (ICPP), Valencia, Spain, 419-426, 2001.

(Best Paper Award)

[167] Evangelos P. Markatos, On Caching Search Engine Query Results, Technical

Report 241, Institute of Computer Science, Foundation for Research &

Technology, Greece, 1999.

[168] Evangelos P. Markatos, On Caching Search Engine Query Results, In

Proceedings of the 5th International Web Caching and Content Delivery

Workshop, May 2000

[169] Mor Naaman, Hector Garcia-Molina, Andreas Paepcke, Evaluation of ESI and

Class-Based Delta Encoding, In Proceedings of the 8th International Workshop

on Web Content Caching and Distribution, IBM T.J. Watson Research Center,

Hawthorne, NY USA, 29 September - 1 October 2003. http://2003.iwcw.org/

[170] P. Cao, J. Zhang, and K. Beach, Active cache: caching dynamic contents on the

Web, Proceedings of IFIP International Conference on Distributed Systems

Platforms and Open Distributed Processing (Middleware'98), pp. 373-388.

[171] Songqing Chen and Xiaodong Zhang, Detective Browsers: A Software

Technique to Improve Web Access Performance and Security, 7th International

Workshop on Web Content Caching and Distribution (WCW), Boulder,

Colorado, August 14-16, 2002

[172] Chi Hung Chi and HongGuang Wang, A Generalized Model for Characterizing

Content Modification Dynamics of Web Objects, SYNOPSIS, In Proceedings of

the 8th International Workshop on Web Content Caching and Distribution, IBM

T.J. Watson Research Center, Hawthorne, NY USA, 29 September - 1 October

2003. http://2003.iwcw.org/

[173] Mikhail Mikhailov and Craig E. Wills, Change and Relationship-Driven Content

Caching, Distribution and Assembly, Technical Report (WPI-CS-TR-01-03),

WORCESTER POLYTECHNIC INSTITUTE, Computer Science Department,

March 2001.

[174] Chun Yuan, Zhigang Hua and Zheng Zhang, Proxy+: Simple Proxy

Augmentation for Dynamic Content Processing, In Proceedings of the 8th

International Workshop on Web Content Caching and Distribution, IBM T.J.

305

Watson Research Center, Hawthorne, NY USA, 29 September - 1 October 2003.

http://2003.iwcw.org/

[175] Huican Zhu and Tao Yang, Class-Based Cache Management for Dynamic Web

Content, In Proceedings of the IEEE Infocom 2001 Conference, Anchorage,

Alaska USA, April 2001.

[176] Arthur Goldberg, Robert Buff, and Andrew Schmitt, A Comparison of HTTP

and HTTPS Performance, Published in the Computer Measurement Group,

CMG98, December 1998.

[177] Arthur Goldberg, Robert Buff, and Andrew Schmitt, Secure Web Server

Performance Dramatically Improved By Caching SSL Session Keys, Published

in the Workshop on Internet Server Performance, held in conjunction with

SIGMETRICS'98, June 23, 1998

[178] Jussi Kangasharju, James W. Roberts, and Keith W. Ross, Object Replication

Strategies in Content Distribution Networks, Computer Communications,

Volume 25, Number 4, March 2002. pp. 367-383, 2002.

[179] Sven Buchholz and Thomas Buchholz, Replica Placement in Adaptive Content

Distribution Networks, In ACM Symposium on Applied Computing (SAC'04),

Nicosia, Cyprus, March 2004.

[180] Zongming Fei, A Novel Approach to Managing Consistency in Content

Distribution Networks, In Proceedings of Web Caching and Content

Distribution Workshop (WCW'01), Boston, MA, June 2001.

[181] Kirk Johnson, John Carr, Mark Day, and Frans Kaashoek, The Measured

Performance of Content Distribution Networks, In Fifth International Web

Caching and Content Delivery Workshop, Lisbon, Portugal, May 2000.

[182] Jussi Kangasharju, Keith W. Ross, and Jim W. Roberts, Performance Evaluation

of Redirection Schemes in Content Distribution Networks, In Fifth International

Web Caching and Content Delivery Workshop, Lisbon, Portugal, May 2000.

[183] Balachander Krishnamurthy, Craig Wills and Yin Zhang, On the Use and

Performance of Content Distribution Networks, In Proceedings of ACM

SIGCOMM Internet Measurement Workshop (IMW'2001), November 2001.

306

[184] Jacobus Van der Merwe, Paul Gausman, Chuck Cranor, Rustam Akhmarov,

Design, Implementation and Operation of a large Enterprise Content

Distribution Network, SYNOPSIS, In Proceedings of the 8th International

Workshop on Web Content Caching and Distribution, IBM T.J. Watson

Research Center, Hawthorne, NY USA, 29 September - 1 October 2003.

http://2003.iwcw.org/

[185] Sampath Rangarajan, Pablo Rodriguez, Sarit Mukherjee, User Specific Request

Redirection in a Content Delivery Network, SYNOPSIS, In Proceedings of the

8th International Workshop on Web Content Caching and Distribution, IBM T.J.

Watson Research Center, Hawthorne, NY USA, 29 September - 1 October 2003.

http://2003.iwcw.org/

[186] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and M. Rabinovich, Web proxy

caching: the devil is in the details, ACM Performance Evaluation Review, 26(3):

pp. 11-15, December 1998.

[187] Virglio Almeida, Daniel Menasc¡§|, Rudolf Riedi, Fl¡§¡évia Peligrinelli,

Rodrigo Fonseca, Wagner Meira, Jr., Analyzing Web Robots and their Impact

on Caching, Proc. Sixth Workshop on Web Caching and Content Distribution,

June, 2001, pp. 299--310.

[188] Balachander Krishnamurthy and Craig E. Wills, Analyzing factors that influence

end-to-end web performance, Worcester Polytechnic Insitute, Computer Science,

Technical Report, WPI-CS-TR-99-35, Nov. 1999.

[189] Balachander Krishnamurthy and Craig E. Wills, Analyzing factors that influence

end-to-end web performance, In Proceedings of the Ninth International World

Wide Web Conference, Amsterdam, Netherlands, May 2000.

[190] Binzhang Liu and Edward A. Fox, Web Traffic Latency: Characteristics and

Implications, Journal of Universal Computer Science, vol. 4, no. 9 (1998),

763-778.

[191] Henrik Frystyk Nielsen, Jim Gettys, Anselm Baird-Smith, Eric Prud'hommeaux,

Hakon Wium Lie, and Chris Lilley, Network Performance Effects of HTTP/1.1,

CSS1, and PNG, In Proc. SIGCOMM'97. Cannes, France, September, 1997.

307

[192] E. Cohen, H. Kaplan, and U. Zwick, Connection Caching, In Proceedings of the

31 st Annual ACM Symposium on Theory of Computing, Atlanta, Georgia, May

1999, pp. 612-621.

[193] Craig E. Wills and Hao Shang, The contribution of DNS lookup costs to web

object retrieval, Technical Report WPI-CS-TR-00-12, Computer Science

Department, Worcester Polytechnic Institute, July 2000.

[194] Girish Chandranmenon, Reducing web latencies using precomputed hints, Tech.

Rep. PhD Thesis. Technical report WUCS-99-18, Dept of Computer Science,

Washington University in St. Louis, August 1999.

[195] E. Cohen and H. Kaplan, Prefetching the means for document transfer: A new

approach for reducing web latency, In Proceedings of IEEE INFOCOM, Tel

Aviv, Israel, March 2000.

[196] E. Cohen and H. Kaplan, Proactive caching of DNS records: Addressing a

performance bottleneck, In Proceedings of The 2001 Symposium on

Applications and the Internet (SAINT-2001), IEEE, San Diego, January 2001.

[197] Jeffrey C. Mogul, The Case for Persistent-Connection HTTP, In Proceedings of

the ACM SIGCOMM '95 Conference on Applications, Technologies,

Architectures and Protocols for Computer Communication, pages 299-313,

1995.

[198] Susanne Albers, Generalized Connection Caching, SPAA 2000, Bar Harbor,

Maine USA, Copyright ACM 2000 1-58113-185-2/00/07

[199] E. Cohen, H. Kaplan, and J. D. Oldham, Managing TCP Connections under

Persistent HTTP, Computer Networks. 31:1709--1723, 1999.

[200] E. Cohen, H. Kaplan, and U. Zwick, Connection caching under various models

of communication, In Proc. 12th Annual ACM Symposium on Parallel

Algorithms and Architectures. ACM, 2000.

[201] Craig E. Wills, Gregory Trott, and Mikhail Mikhailov, Using bundles for web

content delivery, Computer Networks, 42(6):797-817, August 2003.

[202] Chi Hung Chi, HongGuang Wang and William Ku, Proxy-Cache Aware Object

Bundling for Web Access Acceleration, In Proceedings of the 8th International

Workshop on Web Content Caching and Distribution, IBM T.J. Watson

308

Research Center, Hawthorne, NY USA, 29 September - 1 October 2003.

http://2003.iwcw.org/

[203] Mihut D. Ionescu, xProxy: A transparent caching and delta transfer system for

web objects, May 2000. UC Berkeley class project: CS262B/CS268.

http://www.cs.pdx.edu/~delco/xproxy.ps.gz

[204] Zan Ouyang, Nasir Memon, Torsten Suel, and Dimitre Trendafilov,

Cluster-based delta compression of a collection of files, In Third Int. Conf. on

Web Information Systems Engineering, December 2002.

[205] Jun-Li Yuan and Chi-Hung Chi, Unveiling the Performance Impact of Lossless

Compression to Web Page Content Delivery, LNCS Volume 3293/2004, pp. 249

- 260. Proceedings of the Ninth International Workshop on Web Content

Caching and Distribution (WCW 2004), Beijing, China, 18-20 October 2004.

[206] HTTP Compression Speeds up the Web,

http://www.webreference.com/Internet/software/servers/http/compression/

[207] Using HTTP Compression On Your IIS 5.0 Web Site,

http://www.microsoft.com/technet/treeview/default.asp?url=/TechNet/prodtech

nol/iis/maintain/featusability/httpcomp.asp

[208] Apache Gzip Module from Mozilla,

http://www.mozilla.org/projects/apache/gzip/

[209] DEFLATE Compressed Data Format Specification, RFC 1951,

http://www.faqs.org/rfcs/rfc1951.html

[210] gzip home page, http://www.gzip.org

[211] J. Ziv and A. Lempel, A Universal Algorithm for Sequential Data Compression,

IEEE Transactions on Information Theory, May 1977.

[212] Terry Welch, A Technique for High-Performance Data Compression, Computer,

June 1984.

[213] GZIP file format specification, RFC 1952,

http://www.faqs.org/rfcs/rfc1952.html

[214] zlib home page, http://www.gzip.org/zlib/

309

[215] Packeteer?¡¥s PacketShaper Xpress,

http://www.packeteer.com/prod-sol/products/xpress.cfm

[216] The Effect of HTML Compression on a LAN and a PPP Modem Line,

http://www.R27/Protocols/HTTP/Performance/Compression/LAN.html ,

http://www.R27/Protocols/HTTP/Performance/Compression/PPP.html

[217] Ronny Krashinsky, Efficient web browsing for mobile clients using HTTP

compression, Distributed Operating Systems term project, Massachusetts

Institute of Technology, December 2000.

[218] Surendar Chandra and Carla Schlatter Ellis, JPEG compression metric as a

quality-aware image transcoding, In Proc. USENIX 2nd Symposium on Internet

Technology and Systems, pages 81-92, Boulder, CO, Oct. 1999.

[219] Armando Fox, Eric A Brewer, Reducing WWW Latency and Bandwidth

Requirements by Real-Time Distillation, Proceedings of Fifth International

World Wide Web Conference, 1996.

[220] H. Bharadvaj, A. Joshi and S. Auephanwiriyakul, An active transcoding proxy to

support mobileWeb access, Proceedings of 17th IEEE Symposiumon Reliable

Distributed Systems, October 1998.

[221] S. Chandra, C. S. Ellis and A. Vahdat, Differentiated multimedia Web services

usingquality aware transcoding, Proceedings of INFOCOM 2000 - Nineteenth

Annual JointConference of the IEEE Computer AndCommunications Societies,

2000.

[222] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, Adapting to

Network and Client Variation Using Infrastructural Proxies: Lessons and

Perspectives, Proceedings of ASPLOS-VII, 1996.

[223] A. Joshi, On proxy agents, mobility, and Web access, In ACM/Baltzer Journal of

MobileNetworks and Nomadic Applications(MONET), December, 2000.

[224] Free Web Site Acceleration,

http://siliconvalley.Internet.com/news/article.php/484971

[225] Platform for Internet Content Selection (PICS), http://www.w3.org/PICS/

[226] http://monitor.optiview.com/POV/task,ov4optimizationworks/parse.html

310

[227] http://www.pipeboost.com/home.html

[228] Content Selection for Device Independence (DISelect) 1.0, W3C Working Draft

11 June 2004, http://www.w3.org/TR/2004/WD-cselection-20040611/,

http://www.w3.org/TR/cselection/

[229] Rodriguez, P., Kirpal, A., Biersack, E.W., Parallel-Access for Mirror Sites in the

Internet, Proceedings of IEEE INFOCOM 2000 Conference, March 2000.

[230] Miu, A., Shih, E., Performance Analysis of a Dynamic Parallel Downloading

Scheme from Mirror Sites Throughout the Internet, Term Paper, LCS MIT,

December 1999.

[231] Rodriguez, P., Biersack, E.W., Dynamic Parallel-Access to Replicated Content

in the Internet, IEEE/ACM Transactions on Networking, August 2002.

[232] B. D. Davison and V. Liberatore, Pushing Politely: Improving Web

Responsiveness One Packet at a Time, In Performance Evaluation Review,

Volume 28, Number 2, September 2000, pages 43-49. Presented at the

Performance and Architecture of Web Servers (PAWS) Workshop, held in

conjunction with ACM SIGMETRICS 2000: International Conference on

Measurement and Modeling of Computer Systems, Santa Clara, CA, June 17-18.

[233] C. Christopoulos, A. Skodras, and T. Ebrahimi, The JPEG2000 still image

coding system: an overview, IEEE Transactions on Consumer Electronics, Vol

46, No. 4, pp. 1103-1127, November 2000.

[234] D. S. Cruz and T. Ebrahimi, An analytical study of JPEG2000 Functionalities,

Proceedings of IEEE International Conference on Image Processing. September

2000.

[235] The JPEG group?¡¥s official homepage, http://www.jpeg.org

[236] JPEG 2000 White Paper prepared by Digital Imaging Group, JPEG2000 offers

new opportunities to enrich image content and applications flexibility,

http://www.ecs.soton.ac.uk/~km/docs/jpeg2000.doc

[237] Gettys, J., Nielsen, H.F., The WebMUX protocol, Internet Draft, August 1998.

http://www.w3.org/Protocols/MUX/WDmux- 980722.html

[238] The Hypertext Streaming Transport Protocol,

http://netlab.cis.temple.edu/bxxp/hstp.html

311

[239] J. Franks, P. Hallan-Baker et el, An Extension to HTTP: Digest Access

Authentication, Network Working Group, RFC: 2069, Jan. 1997.

[240] Wenting Tang, Ludmila Cherkasova et el, Modular TCP Handoff Design in

STREAMS-Based TCP/IP Implementation, IEEE 2001 International

Conference on Networking (ICN'01), July 9-13, 2001.

[241] Stream Control Transmission Protocol (SCTP), http://www.sctp.org/

[242] The Blocks Extensible Exchange Protocol Core,

http://xml.resource.org/public/rfc/html/rfc3080.html, http://www.beepcore.org/

[243] R. J. Bayardo Jr., A. Somani, D. Gruhl, and R. Agrawal, YouServ: A Web

Hosting and Content Sharing Tool for the Masses, In Proc. of the 11th Int'l

World Wide Web Conference (WWW-2002), 2002.

http://www.almaden.ibm.com/cs/people/bayardo/userv/userv.html

[244] R. J. Bayardo Jr., A. Costea, and R. Agrawal, Peer-to-Peer Sharing of Web

Applications, IBM Research Report RJ 10268, Nov. 2002. Poster version

appears in Proc. of the 12th Int'l World Wide Web Conference (WWW-2003),

Budapest, Hungary, May 2003.

http://www.almaden.ibm.com/cs/people/bayardo/userv/plugins/plugin.html

[245] BadBlue P2P web server adds Gnutella support,

http://www.infoanarchy.org/?op=displaystory&sid=2002/2/17/141113/123

[246] Blue Coat Systems, http://www.bluecoat.com

[247] http://www.netapp.com/products/netcache/netcache_family.html

[248] Cisco Systems, Inc., Cisco cache engine, Available at

http://www.cisco.com/warp/public/751/cache/, 1998.

[249] G. Tomlinson, D. Major, and R. Lee, High-capacity Internet middleware:

Internet caching system architectural overview, Second Workshop on Internet

Server Performance, 1999.

[250] InfoLibria. Dynacache whitepaper, http://www.infolibria.com

[251] SkyCache, http://www.skycache.com/

[252] CacheFlow, http://www.cacheflow.com/

[253] Akamai Technologies, http://www.akamai.com

312

[254] http://www.savvis.net/

[255] http://www.wamnet.com/news/read_news.phtml?newsid=686

[256] Maven Networks, http://www.maven.net/

[257] Volera, http://www.novell.com

[258] NetScaler, Inc., http://www.netscaler.com/

[259] Redline Networks, http://www.redlinenetworks.com/

[260] BPVN Technologies Corp., http://www.bpvn.com/

[261] IBM Transcoding Solution and Services, White paper,

http://www.research.ibm.com/networked_data_systems/transcoding/transcodef.

pdf

[262] Han, R., Bhagwat, P., LaMaire, R., Mummert, T., Perret, V., Rubas, J., Dynamic

Adaptation In an Image Transcoding Proxy For Mobile Web Browsing, IEEE

Personal Communications, December 1998, pp. 8-17.

http://www.cs.colorado.edu/~rhan/Seminar120898.PDF

[263] R. Mohan, J. R. Smith and C. S. Li., Adapting multimedia Internet content for

universal access, IEEE Transactions on Multimedia, 1(1):104--114, March

1999.

[264] J. R. Smith, R. Mohan and C. S. Li, Transcoding Internet content for

heterogeneous client devices, Proceedings of IEEE International Conference on

Circuits and System. May, 1998.

[265] Web Sphere: Transcoding publisher,

http://www-3.ibm.com/software/webservers/transcoding/

[266] http://www.filenet.com/

[267] http://www.WebSiteOptimization.com/

[268] http://www.glostart.com/webtrimmer/webtrimmer.html

[269] http://www.hypnotext.com/

[270] http://www.badblue.com/

[271] Ian Marshall and Chris Roadknight, Linking cache performance to user

behaviour, In proceedings of 3W3Cache Workshop, Manchester, June 1998.

313

[272] F. Bonchi, R. Fenu, F. Giannotti, C. Gozzi, G. Manco, M. Nanni, D. Pedreschi, C.

Renso, S. Ruggieri, L. Sannais, Adaptive Web Caching Using Decision Trees,

SIAM workshop on Web Mining, Chicago, 2001

[273] Robert Buff, Arthur Goldberg, and Ilya Pevzner, Rapid, Trace-Driven

Simulation of the Performance of Web Caching Proxies, Submitted to the

Workshop on Internet Server Performance, 03/9/98

[274] C. Lindemann, A. Reuys, and M. Reiser, Modeling Web Proxy Cache

Architectures, Proc. of 10th GI/ITG Special Interest Conference MMB'99, Trier,

September 1999.

[275] Vakali A., An evolutionary scheme for Web Replication and Caching, 4th

International Web Caching Workshop, San Diego, USA, March 31-April 2,

1999.

[276] National Lab of Applied Network Research (NLANR) sanitized access log,

ftp://ircache.nlanr.net/Traces/

[277] Iyengar A., Challenger, J., Data Update Propagation: A Method for Determining

How Changes to Underlying Data Affect Cached Objects on the Web, IBM

Research Report RC 21093(94368), February 1998.

[278] J. Kleinberg, S.R. Kumar, P. Raghavan, S. Rajagopalan, A. Tomkins, The Web

as a graph: Measurements, models and methods, Invited survey at the

International Conference on Combinatorics and Computing, 1999.

[279] Colin Cooper and Alan Frieze, A general model of web graphs, Proceedings of

ESA, pages 500--511, 2001.

[280] Colin Cooper and Alan Frieze, Crawling on web graphs, Proceedings of the 34th

Annual ACM Symposiuim on Theory of Computing, 419-427, (2002).

[281] Paolo Boldi and Sebastiano Vigna, The WebGraph framework I: Compression

techniques, Technical Report 293-03, Universit di Milano, Dipartimento di

Scienze dell'Informazione, 2003.

[282] Paolo Boldi and Sebastiano Vigna, The WebGraph Framework II: Codes For

The World-Wide Web, 2003

314

[283] Sriram Raghavan and Hector Garcia-Molina, Representing web graphs, In

Proceedings of the IEEE International Conference on Data Engineering

(ICDE03), March 2003.

[284] GNU wget, http://www.gnu.org/software/wget/wget.html

[285] pavuk, http://www.idata.sk/~ondrej/pavuk/index.html

[286] LZ77, http://www.stanford.edu/~udara/SOCO/lossless/lz77/

[287] LZW, http://www.dogma.net/markn/articles/lzw/lzw.htm

[288] Huffman Compression Algorithm,

http://www.stanford.edu/~udara/SOCO/lossless/huffman/index.htm,

http://www.howtodothings.com/showarticle.asp?article=313

[289] JavaScript Guide, http://wp.netscape.com/eng/mozilla/3.0/handbook/javascript/

[290] Chi-Hung Chi, Xiang Li and K-Y. Lam, Understanding the Object Retrieval

Dependence of Web Page Access, In Proceedings of the International

Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems (MASCOTS'01), Fort Worth, Texas USA ,

October 2002. IEEE.

