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SUMMARY 

 

Liver cirrhosis involves progressive fibrosis and severe distortion of the normal lobular 

architecture of the liver. Because to date, little is still known about the function of CD38 

in this deadly disease, so our current study aimed to investigate the possible role of CD38 

in thioacetamide-induced rat liver cirrhosis. CD38 is a type II transmembrane 

glycoprotein, which is widely distributed in many tissues including the liver. CD38 

exhibits ADP-ribosyl cyclase and cyclic ADP-ribose (cADPR) hydrolase activities that 

catalyzes the synthesis and hydrolysis of cADPR, respectively. cADPR is a potent 

intracellular calcium releaser and is thought to be involved in the regulation of cell 

division, apoptosis and gene expression. In this study, the gene and protein expressions of 

CD38 were investigated in a thioacetamide-induced rat model of cirrhosis.  

CD38 mRNA content was first characterized using real-time RT-PCR. The CD38 

mRNA expression levels of control and TAA-treated rat samples were compared to 

assess the effect of thioacetamide-induced cirrhosis on CD38 expression. There was 

enhanced CD38 mRNA expression in liver obtained from TAA-treated rats as compared 

with the controls and it was an approximate 2.5-fold increase in accordance with the RT-

PCR ratiometric analysis.   

CD38 protein expression was next characterized in the rat livers using 

immunohistochemistry and immunoblotting. Similarly, CD38 protein expression was 

significantly elevated in the cirrhotic liver compared to that in the control and this 

enzymatically active protein is found localized at the plasma membrane of rat 

hepatocytes. Western blot analysis of isolated microsomal fraction showed a ~45 kDa 

 ix



protein band, which is a characteristic of CD38. In this immunoblot analysis, CD38 

expression was significantly increased (about 1-fold) in the microsomes of cirrhotic liver 

compared to the normal liver. The increase in CD38 expression was supported by the 

detection of higher level of ADP-ribosyl cyclase activity in the cirrhotic liver compared 

to that in the control, which revealed an approximate 1-fold higher in the CD38 specific 

activity. 

Next the cADPR and NAD+ contents in the control and TAA-treated rat livers 

were measured using cycling assay. The fluorescence produced was calibrated using 

cADPR and NAD+ standards, respectively. cADPR level was modestly but significantly 

augmented (22.3%) in cirrhotic liver and in contrast, there was a significant decrease (4-

fold lower) in the endogenous NAD+ in cirrhotic liver compared to that in the control 

liver. In conclusion, these results raised the possibility that altered CD38 expression and a 

concomitant elevation of the ADP-ribosyl cyclase activity as well as the cADPR may 

play an important role in the pathogenesis of liver cirrhosis.  
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CHAPTER 1 

 

1. INTRODUCTION 

1.1 GENERAL FEATURES OF THE LIVER 

The liver is the largest visceral organ. The adult liver weighs between 1400 and 1600 g 

and makes up 2.5 % of the body weight. It is relatively larger in infants and children than 

in adults. The normal liver extends from the right fifth interspace in the mid-clavicular 

line down to the right costal margin. There are two main anatomical lobes. The right is 

separated from the left by a reflected surface of peritoneum, the falciform ligament 

(Figure 1.1). The right lobe is larger, and the caudate lobe (lying posteriorly along the 

inferior vena kava in front of the hepatic porta) and quadrate lobe (lying anteriorly 

between the gallbladder and round ligament) are attached to its posterior-inferior surface. 

Surgically, the point of division between the right and left hepatic lobes is at the porta 

hepatis where the hepatic artery and portal vein divide into right and left branches, rather 

than at the falciform ligament. Together the surgical right and left lobes can be further 

divided into eight segments that guide the line of surgical resection in typical 

hepatectomies (Figure 1.2; Bismuth, 1982). 

The diaphragmatic surface of the liver, which faces forwards and upwards, lies 

between the arch of the diaphragm and the anterior abdominal wall. This diaphragmatic 

surface is differentiated into the pars libera (covered with peritoneum) and the pars affixa. 

The visceral surface inclines both backwards and downwards. The superior and inferior 

surfaces form together the sharp liver margin (ventral border). The inferior surface may 

show impressions caused by adjacent organs (gaster, colon, kidney, duodenum, 
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gallbladder) and the posterior surface shows a fissure for the ligamentum venosum 

(Figure 1.1).  

 

Figure 1.1  Views of the liver: anterior, posterior, inferior.  
(LL = left lobe, RL = right lobe, D = diaphragm, GB = gallbladder, FLV = fissure for 
ligamentum venosum, RL = round ligament (= lig. teres), IVC = inferior vena cava, FL = 
falciform ligament) (Reproduced from Kuntz, E. and Kuntz, H.D., 2002)  
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                  Figure 1.2  The segments of the liver.  
                  A: Superior view; B: Inferior view (Adapted from Bismuth et al., 1982) 
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The hepatic lobule is the basic histological unit of the liver. It consists of an 

approximately hexagonal unit around the radicles of the hepatic veins, with cords of 

hepatocytes and sinusoids radiating outward in a ‘bicycle spoke’ arrangement. The vein 

is therefore central (centrilobular). Four to five portal tracts that contain bile canaliculi, 

portal venules, hepatic arterioles, lymphatics and nerves define the periphery of the 

lobule. The blood supply to the liver is from the hepatic artery and portal vein 

(Richardson and Withrington, 1981a; Lautt and Greenway, 1987). These blood vessels 

enter the liver at the porta hepatis. The hepatic veins drain posteriorly into the inferior 

vena cava (IVC). The liver is supplied by sympathetic nerve fibres from T7 to T10, that 

synapse in the celiac plexus along with the right and left vagus nerves and the right 

phrenic nerve (Bioulac-Sage et al., 1990). Nerve fibres accompany the hepatic artery and 

bile ducts into the liver parenchyma and innervate Glisson’s capsule, the investing 

membrane of the organ. Lymphatic vessels draining the liver merge at the porta hepatis 

and most lympatics accompany the IVC into the mediastinum. 

The hepatocytes are the main functional units of the liver. Each hepatocyte is 

polyhedral in shape and has three different surfaces: canculicular, comprising the 

canalicular wall; lateral, abutting tightly to adjacent hepatocytes; and sinusoidal, facing 

the sinusoids which are distensible vascular channels that transport blood from branches 

of the portal vein and hepatic artery between the hepatic cells. Apart from the hepatocytes, 

the liver parenchyma also comprises other cell types including the endothelial cells, 

Kupffer cells, stellate cells, Pit cells, and bile duct cells. The composition of subcellular 

organelles in the liver and the hepatocyte of humans and rats are shown in Table 1.1. 
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        Table 1.1  Volumetric composition of hepatic ultrastructure.  
        (Adapted from Miyai, 1991) 
 
 

The liver serves as a guardian located between the digestive tract and the rest of 

the body. It performs many other functions than making bile. It collects almost all of the 

blood circulated through the intestines and processes many of the chemicals picked up 

there (such as alcohol, which the liver detoxifies). Waste products from protein 

metabolism are processed into the less-toxic form of urea, which will be removed in the 

kidneys. Old red blood cells are broken down, with important things like the iron 

recycled; the liver is also a major staging site for white blood cells of the immune system. 

Temporary storage of sugar occurs in the liver: in response to insulin hormone from the 

pancreas, sugar in the blood is absorbed and stored as the simple starch glycogen; another 

pancreas hormone, glucagon, causes conversion of glycogen back to sugar and its release 

into the blood as needed. That's a partial list of liver functions. Tucked into a recess 

underneath is the gall bladder, where a secretion called bile, also produced in the liver, is 

stored. Bile is a salty fluid (if too concentrated, crystals can form - gallstones) used in the 
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small intestine to emulsify fat, physically making tiny, digestible blobs out of big, 

separated-out globs of fatty material. There are several ducts in the region - a duct 

connects the liver to the small intestine, with a branch to the gall bladder and a branch to 

the pancreas. Liver diseases may impair the liver functions as well as affect other organ 

systems.  

 

1.2 LIVER CIRRHOSIS 

Despite the availability of current treatments, liver cirrhosis remains one of the top 

leading causes of deaths in many countries. Liver cirrhosis is a gradually developing, 

chronic disease of the liver which always involves the organ as a whole. However, the 

most concise and probably the best definition of cirrhosis is ‘a diffuse process 

characterized by fibrosis and a conversion of normal architecture into structurally 

abnormal nodules’ (Anthony et al., 1977; Anthony et al., 1978). Cirrhosis is the 

irreversible consequence and may be caused by chronic alcoholism, infections, drugs and 

toxins, inherited diseases, and many other causes. The variations of this disease range 

from symptom-free conditions, non-characteristic complaints and different laboratory 

findings through to life-threatening complications. Cirrhosis is most satisfactorily 

classified by its etiology and the etiology conditions are listed in Table 1.2. Apart from 

impairing the liver functions, cirrhosis also affects the functions of the digestive, 

hormonal, and circulatory systems. In addition, it has been shown that liver cirrhosis is 

associated with the development of hepatocellular carcinoma in humans (Kew and 

Popper, 1984).  
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 Liver cirrhosis is characterized by five criteria: (1) pronounced, insufficiently 

repaired necroses of the parenchyma (with or without inflammatory processes), (2) 

diffuse connective tissue proliferation, (3) varying degrees of nodular parenchymal 

regeneration, (4) loss and transformation of the lobular structure within the liver as a 

whole, and (5) impaired intrahepatic and intra-acinar vascular supply.  

 

 

 

                                Table 1.2  Etiology of cirrhosis. 
                                (Adapted from Millward-Sadler, 1994) 
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It is important to comprehend the pathogenesis of liver cirrhosis to explore 

alternative treatment for this deadly disease. There are three major pathological 

mechanisms that involved in the development of cirrhosis. The process is usually 

initiated by chronic hepatocyte necrosis, leading to the collapse of the delicate reticulin 

support network in the space of Disse between the sinusoidal endothelial cells and 

hepatocytes. It is then followed by extensive deposition of collagen types I and III that 

results in fibrosis. Aberrant collagen deposition also causes the distortion of vascular 

beds and generates abnormal nodules after parenchymal regeneration. In response to liver 

damage, stellate cells are also activated and transformed into myofibroblast-like cells that 

start to synthesize collagen type I under the influences of cytokines like transforming 

growth factor beta (Figure 1.3). 
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Figure 1.3   Key events in the evolution of cirrhosis.  
(a) The normal microanatomy of the liver is depicted, showing especially the 
channels for flow of portal venous blood through the sinusoids of the parenchyma, 
and normal sinusoidal architecture.  
(b) With evolution to cirrhosis, the following key events occur. Abnormal 
arteriovenous shunts and vascular shunts from portal to hepatic veins develop. Portal 
tract fibroblasts proliferate and become myofibroblasts. Perisinusoidal stellate cells 
lose their fat stores, proliferate and develop a myofibroblast phenotype. Both 
populations of cells deposit extracellular matrix, expanding portal tracts and the space 
of Disse, respectively. Hepatocyte regeneration, leading to ‘twinning’ of hepatocyte 
plates, also is shown. (Adapted from Crawford, 2002)  
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As the cirrhotic process continues, blood flow through the liver becomes blocked; 

portal hypertension may occur (high blood pressure in the veins connecting the liver with 

the intestines and spleen); glucose and vitamin absorption decrease; the manufacturing of 

hormones and stomach and bowel function are affected; and noticeable facial veins may 

appear. Common symptoms of cirrhosis include nausea or indigestion and vomiting, loss 

of appetite, weight loss, constipation or diarrhea, flatulence, ascites (the accumulation of 

serous fluids in the peritoneal cavity), edema (fluid retention in the legs), light-colored 

stools, weakness or chronic dyspepsia, dull abdominal aching, varicosities, nosebleeds, 

bleeding gums or other internal and external bleeding, easy bruising, extreme skin 

dryness, intense skin itching, and spider angiomas (a central, raised, red dot about the size 

of a pin head from which small blood vessels radiate). Excessive bile product deposits 

cause intense skin itching, often accompanied by jaundice (yellowed skin). Other 

symptoms are testicular atrophy, gynecomastia (enlargement of the male breast), and loss 

of chest and armpit hair. Psychotic mental changes such as extreme paranoia can also 

occur in cases of advanced cirrhosis. 

 

1.3 DRUG-INDUCED CIRRHOSIS 

Individuals are exposed to a wide range of lipophilic chemicals including drugs, certain 

vitamins, carcinogens, pesticides, and other environmental pollutants. In addition, many 

endogenous substances of physiological importance, such as fatty acids, prostaglandins 

and sex hormones, are themselves quite hydrophobic. Most drugs and xenobiotics are 

lipophilic, enabling them to cross the membranes of intestinal cells. Drugs are rendered 

more hydrophilic by biochemical processes in the hepatocyte, yielding water-soluble 

 10



products that are excreted in urine or bile (Weinshilboum, 2003). This hepatic 

biotransformation involves oxidative pathways, primarily by way of the cytochrome P-

450 enzyme system (Guengerich, 2001). After further metabolic steps, which usually 

include conjugation to a glucuronide or a sulfate or glutathione, the hydrophilic product is 

exported into plasma or bile by transport proteins located on the hepatocyte membrane, 

and it is subsequently excreted by the kidney or the gastrointestinal tract. Compounds 

which produce liver injury can be classified into those that are chemically stable (direct 

hepatotoxins) and those whose metabolism forms chemically-reactive species (indirect 

hepatotoxins). Most currently-used agents that can cause drug-induced liver injury are 

indirect hepatotoxins. Their hepatic metabolism gives rise to electrophilic drug 

metabolites, free radicals, and reactive oxygen species (ROS).  

 At least six mechanisms that primarily involve the hepatocyte produce liver injury, 

and the manner in which various intracellular organelles are affected defines the pattern 

of disease (Figure 1.4). Injury to liver cells occurs in patterns specific to the intracellular 

organelles affected. The normal hepatocyte shown in the center of the figure may be 

affected in at least six ways, labeled A through F. Disruption of intracellular calcium 

homeostasis leads to the disassembly of actin fibrils at the surface of the hepatocyte, 

resulting in blebbing of the cell membrane, rupture, and cell lysis (Yun et al., 1993; 

Beaune et al., 1987). In cholestatic diseases, disruption of actin filaments (B) may occur 

next to the canaliculus, the specialized portion of the cell responsible for bile excretion 

(Trauner et al., 1998).  Loss of villous processes and the interruption of transport pumps 

such as multidrug-resistance–associated protein 3 (MRP3) prevent the excretion of 

bilirubin and other organic compounds. Many hepatocellular reactions involve the heme-
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containing cytochrome P-450 system (C), generating high-energy reactions that can lead 

to the covalent binding of drug to enzyme, thus creating new, nonfunctioning adducts. 

These enzyme–drug adducts migrate to the cell surface (D) in vesicles to serve as target 

immunogens for cytolytic attack by T cells, stimulating a multifaceted immune response 

involving both cytolytic T cells and cytokines (Robin et al., 1997). Activation of 

apoptotic pathways by tumor necrosis factor α (TNF-α) receptor or Fas may trigger the 

cascade of intercellular caspases (E), which results in programmed cell death with loss of 

nuclear chromatin (Reed, 2001). Certain drugs inhibit mitochondrial function by a dual 

effect on both β-oxidation (affecting energy production by inhibition of the synthesis of 

nicotinamide adenine dinucleotide and flavin adenine dinucleotide, resulting in decreased 

ATP production) and the respiratory-chain enzymes (F). Free fatty acids cannot be 

metabolized, and the lack of aerobic respiration results in the accumulation of lactate and 

reactive oxygen species. The presence of reactive oxygen species may further disrupt 

mitochondrial DNA. This pattern of injury is characteristic of a variety of agents, 

including nucleoside reverse-transcriptase inhibitors, which bind directly to 

mitochondrial DNA, as well as valproic acid, tetracycline, and aspirin (Pessayre et al., 

2001).  

 Among the various hepatotoxins used to induce liver cirrhosis in laboratory 

animals, thioacetamide is the most potent because of its rapid elimination and cumulative 

injury when it is given intermittently (Dashti et al., 1997; Dashti et al., 1987). Further, 

thioacetamide is very effective in producing liver cirrhosis in laboratory rodents 

(Fitzhugh and Nielson, 1948; Gupta, 1955; Gupta, 1956b). Various investigators have 

used different methods of thioacetamide administration in experimental animals for 
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producing fibrosis and cirrhosis, such as intraperitoneal or subcutaneous administration 

(Dashti et al., 1987; Gallagher et al., 1956), mixing the toxin with the diet (Gupta, 1956a), 

or in drinking water (Dashti et al., 1997). Thioacetamide is hepatotoxic owing to effects 

on DNA, RNA, protein synthesis and gamma-glutamyl transferase (GGT) activity, 

through which it induces cirrhosis and hepatocarcinoma (Yang et al., 1998). In addition, 

it is well established that thioacetamide modifies various liver functions including the 

synthesis of various metal-binding proteins, and some of the plasma and tissue trace 

element alteration observed in thioacetamide-induced cirrhotic rats may be secondary to 

the effects of this drug on the liver (Al-Bader et al., 2000). Thioacetamide (TAA), a 

hepatotoxicant,  is taken by liver then is metabolized into TAA-sulfoxide by cytochrome 

P450 mixed-function oxidase and further transformed into the intermediates and other 

polar molecules, which irreversibly combine with intrahepatic biomacromolecules to 

cause hepatic necrosis (Han, 2002).   
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                  Figure 1.4   Six mechanisms of liver injury.  
                  (Adapted from Lee, 2003)  
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1.4 GENERAL INTRODUCTION TO CD38 

CD38 was originally defined by Reinherz et al. (1980) in their pioneering work on 

thymocyte and T lymphocyte differentiation antigens. The gene encoding the human 

CD38 antigen has been cloned from T-cell lines and normal lymphocytes (Jackson and 

Bell, 1990) and is located on chromosome 4 (Katz et al., 1983). Although initial studies 

concentrated on the immunological aspects of CD38, this molecule subsequently 

attracted the interest of many scientists from distant areas of research. Since its humble 

beginnings, the various fields in cellular, molecular, plant and marine biology have 

subsequently intertwined with that of immunology, biochemistry and crystallography in 

the paradigmatic quest to solve the riddle of the CD38 story.  

 The story began when CD38 was discovered to possess a unique distribution 

pattern, being predominantly expressed by progenitors and early hematopoietic cells, then 

lost during maturation and only to be expressed again upon cell activation (refer to 

review by Mehta et al., 1996). Due to the curious nature of its expression, CD38 was 

initially used primarily as a phenotypic marker of differentiation in normal and leukemic 

blood cells. Interest in CD38 beyond its use as a marker of cellular differentiation has 

grown since the discovery that human CD38 has significant amino acid sequence 

similarity to a 29 kDa cytosolic ADP-ribosyl cyclase enzyme (States et al., 1992) 

previously isolated from the sea mollusc known as Aplysia californica (Hellmich and 

Strumwasser, 1991; Lee and Aarhus, 1991). 

 Aplysia cyclase has previously been shown to catalyze the synthesis of cyclic 

ADP-ribose (cADPR) from NAD+ and this cyclic nucleotide subsequently proved to have 

potent calcium mobilizing properties (Lee and Aarhus, 1991; Lee et al., 1994a). As 
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predicted by its homology with the Aplysia cyclase, human CD38 was shown to have the 

ability to catalyze the conversion of NAD+ into cADPR as well. CD38 also possesses the 

ability to hydrolyze the cyclic nucleotide to ADP-ribose (ADPR), an ability that the 

Aplysia cyclase does not have (Howard et al., 1993; Zocchi et al., 1993). Another 

intriguing observation was that agonistic monoclonal antibodies against CD38 could 

trigger a myriad of responses including that of cell proliferation (Funaro et al., 1990), 

apoptosis (Zupo et al., 1994), cytokine release (Ausiello et al., 1995) and tyrosine 

phosphorylation (Kirkham et al., 1994) in a variety of cell types. 

  CD38 proteins were detected in humans, mice, and rats (Reinherz et al., 1980; 

Howard et al., 1993; Koguma et al., 1994). This family also includes the human, murine, 

and rat bone marrow stromal cell surface molecule BP3/BST-1 (Hirata et al., 1994; Itoh 

et al., 1994; Furuya et al., 1995); the rat T cell differentiation marker RT6 and its murine 

and human homologs; Yac-1 and Yac-2 ADP-ribosyl transferases (Okazaki and Moss, 

1996); ADP-ribosyl cyclase from sea molluscs (Tohgo et al., 1994); and other ADP-

ribosyl transferases.   

 

1.5  FUNCTIONAL STRUCTURE OF CD38 

Human CD38 protein is a 45 kDa transmembrane glycoprotein with a short N-terminal 

cytoplasmic part (21 amino acids) and a long extracellular domain (Jackson and Bell, 

1990). The gene encoding human CD38 protein is located on chromosome 4p15 

(Nakagawara et al., 1995). CD38 has the hallmarks of a type II integral membrane 

protein, i.e. amino-terminus in, carboxy-terminus out, with an architecture consisting of 

three regions: intracellular (20 amino acids), transmembrane (23 amino acids) and 
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extracellular (257 amino acids) (Jackson and Bell, 1990). The cloning of the murine, rat 

and human CD38 cDNA sequences has revealed that the rat and murine CD38 cDNA 

sequences share ~75% homology with human CD38 cDNA sequence (Harada et al., 

1993).  

 An important clue to the three-dimensional structure of the extracellular portion 

of CD38 came from the determination of the crystal structure of its relative, the Aplysia 

californica cyclase (Prasad et al., 1996). The most interesting feature of the molecule is 

that, in three different crystal forms, it is crystallized as a dimmer in a head to head 

fashion as shown in Figure 1.5 (Prasad et al., 1996). Three (α1, α4 and α10) of the ten 

helices are involved in the formation of the dimer. The dimeric structure is likely to be 

highly stable since the sequences of the interacting helices suggest the involvement of 

hydrogen bonding, salt bridges and hydrophobic interaction (Prasad et al., 1996). The 

central cavity of the dimer has a dimension comparable to a molecule of cADPR. Lys129 

(red) is shown by mutagenesis studies to be the binding site for cADPR and ATP (Tohgo 

et al., 1997). It is thus highly suggestive that the central cavity is the active site of CD38. 

A molecule of cADPR is superimposed on the model of CD38 and positioned at the 

central cavity. The central cavity represents the structural feature that may account for the 

active transport property of CD38 (Franco et al., 1998).  

 The carboxy-terminal domain has significant structural homology with various 

nucleotide-binding proteins such as flavodoxin, orotate phosphoribosyltransferase and 

factor G whereas the amino-terminal domain has a completely unique fold (Prasad et al., 

1996). Due to highly conserved sequence homology of the Aplysia cyclase to CD38, it is 

possible to correlate this model to that of CD38 whereby the CD38 molecule can be 
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imagined to possess two domains connected by a hinge region with a large cleft 

separating the domains (Figure 1.6). Although there are small gaps in the amino acid 

alignment of human CD38 and Aplysia cyclase, the differences correspond to loop 

regions in the tertiary structure (Prasad et al., 1996). One relevant difference between the 

two molecules is that CD38 has six instead of the aplysian five disulphide bonds (Prasad 

et al., 1996). The residues in question, Cys 119 and Cys 201, may be important for cross-

linking to other molecules and their reduction may render the hinge region less flexible 

(Prasad et al., 1996). 
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Figure 1.5  Structures of ADP-ribosyl cyclase and CD38.  
A: Secondary structures of the cyclase. β-Sheets are shown in green, α-helixes in red and 
disulphide bonds in yellow. The three helixes involved in forming the dimeric structure 
are labeled α1, α4 and α10. The carboxy-termini are labeled C. B: Structure of the central 
cavity of the cyclase dimer. The cavity is lined with hydrophilic residues. Nitrogen atoms 
in basic residues such as arginine, are shown in cyan. Oxygen as present in acidic 
residues such as glutamate is shown in red and hydrogen in white. C: A model of the 
membrane bound CD38. The membrane is shown in light brown, lysine129 is in red, the 
conserved sequence in green and disulphide bonds in yellow. The extra pair of 
disulphides that is in CD38 but not in the cyclase is shown in cyan. A molecule of 
cADPR is superimposed and positioned in the central cavity. The amino- and carboxy-
termini are labeled N and C, respectively. The cyclase structure is displayed by the 
program MOLMOL (Koradi et al., 1996) and CD38 by RasMol (Sayle, 1996). (Adapted 
from Lee, 2000) 
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Figure 1.6  Models of CD38 monomers and aggregates.  
The two domains of the membrane monomer are indicated. Filled circles represent the 
hinge region connecting the two domains. The gray shaded boxes represent the 
transmembrane region and the open boxes represent the cytoplasmic portion of CD38. 
Cleavage of the membrane form gives rise to p39 (soluble CD38); its dimer is p78 while 
p190 represents a tetramer of the membrane form. CD157 is shown on the right, the 
shaded oval represents the GPI anchor. (Adapted from Ferrero and Malavasi, 1999) 
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The short cytoplasmic domain of CD38 contains no known motifs (Src homology 

domain 2 or 3 [SH2 or SH3], antigen receptor activation [ARAM], or pleckstrin 

homology [PH]) that could mediate interactions with other signaling proteins and seems 

to have no enzymatic activity. It was shown recently that replacement of the cytoplasmic 

tail and the transmembrane domains of CD38 did not impair CD38 signaling, coreceptor 

activity, or enzyme activity (Lund et al., 1999). The intracellular part of CD38 contains 

two conserved serine residues within consensus sites recognized by cyclic guanosine 

monophosphate (cGMP)-dependent protein kinases (Figure 1.7). cGMP-dependent 

serine/threonine kinases in sea urchin eggs modulate the activity of ADP-ribosyl cyclase, 

an enzyme that displays a functional homology to CD38 protein (Lund et al., 1996). The 

cytoplasmic tail of CD38 might therefore serve as a regulatory subunit of the CD38 

ectoenzyme rather than as a tool for transduction of signals into the cell interior. Analysis 

of the extracellular part of CD38 indicates that it may function in attachment to the 

extracellular matrix (Nishina et al., 1994). Thus, human CD38 proteins contain three 

putative hyaluronate-binding motifs (HA motifs). Two of these HA motifs are localized 

in the extracellular domain of CD38 (amino acid positions 121-129 and 268-276), and 

one in the cytoplasmic part of the molecule. In addition, four asparagine residues in the 

extracellular region of CD38 serve as potential N-glycosylation sites.  

 The human CD38 molecule contains 12 conserved cysteines, 11 of which are 

located in the extracellular domain. Purified human CD38 undergoes stable homo-

oligomerization induced by thiol-reactive agents (Guida et al., 1995). It is tempting to 

speculate that thiol-dependent interactions underlie the association of the extracellular 

portion of CD38 with other receptors that may be vital for the signaling function of CD38. 
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Four cysteines (Cys-119, Cys-160, Cys-173, and Cys-201) play an essential role in the 

cADP-ribose synthetic and cADP-ribose hydrolytic activity of CD38 (Tohgo et al., 1994). 

The C-terminal part of CD38, including amino acid sequence 273-285 and particularly 

Cys-275, also contributes to the NAD glycohydrolytic activity of CD38 (Hoshino et al., 

1997). Reducing agents such as dithiothreitol, 2-mercaptoethanol, or reduced glutathione 

inhibit the enzymatic activity of CD38, suggesting that the disulphide bonds are 

important for the catalytic activity of the CD38 proteins (Tohgo et al., 1994; Zocchi et al., 

1995). The amino acid sequence within the catalytic domain and patterns of secondary 

structure motifs predicted for different CD38-related NAD hydrolases were similar to 

those predicted for bacterial mono-ADP-ribosyl transferases (Koch-Nolte et al., 1996). In 

particular, the conserved pair of amino acids Glu-146-Asp-147 seems to endow ADP-

ribosyl transferase activity to the CD38 protein (Grimaldi et al., 1995; Okazaki and Moss, 

1996). 

 A number of leucines within the transmembrane and extracellular regions have 

the potential to form leucine zipper motifs that can provide association of CD38 with 

other proteins (Figure 1.7). Two dileucine (LL) motifs are located in the middle of human 

CD38 proteins. One of these motifs (Leu-149-Leu-150) is conserved for human, murine 

and rat CD38. Intracellular targeting and internalization of different transmembrane 

proteins require the LL motif within the C terminus of the cytoplasmic domains (Aiken et 

al., 1994). The LL motif located within the extracellular region is not accessible to 

intracellular targeting. However, high-molecular-weight oligomers of CD38 (Figure 1.7) 

might contain monomeric subunit(s) within the cell interior, rendering the LL motif 

accessible for intracellular targeting (Umar et al., 1996). 
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Figure 1.7  Functional structure of the human CD38 molecule.  
(Adapted from Shubinsky and Schlesinger, 1997) 
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1.6 DISTRIBUTION OF CD38 

In view of its immunological background, CD38 was studied in great detail in 

hematopoietic cells where its expression has been most appropriately termed 

‘discontinuous’ (Jackson and Bell, 1990). In fact, CD38 is repeatedly switched on and off 

as bone marrow precursors develop into mature elements of the various lineages, making 

it an ideal marker for identifying populations at specific developmental stages. For 

example, the passage from primitive or uncommitted (CD34+/CD38-) to committed 

precursor (CD34+/CD38+) is marked by surface CD38 expression (Terstappen et al., 

1991). CD38 also marks T lymphocyte ontogenesis and it has been shown that more than 

80% of medullary thymocytes are CD38+, peripheral blood T cells are mostly CD38-, 

whereas activated T cells are strongly CD38+ (Malavasi et al., 1992). In B lymphocyte 

ontogenesis, more than 90% bone marrow B cell progenitors are CD38+ (Kumagal et al., 

1995), circulating B cells are CD38-, whereas plasma cells are strong expressors 

(Malavasi et al., 1992). CD38 is easily detected on erythrocytes, platelets, natural killer 

cells, as well as in most circulating monocytes whereas neutrophils and endothelial cells 

are negative for CD38 (Drach et al., 1994; Fernandez et al., 1998; Zocchi et al., 1993; 

Ramaschi et al., 1996).  

 In the gut, where a large percentage of cells of the immune system are found, the 

lamina propria cells are CD38+ while intraepithelial lymphocytes are CD38- (Fernandez 

et al., 1998). Increasing evidence points out to the fact that the expression of CD38 

outside the hematopoietic system is uncharacteristically widespread for a molecule 

initially defined as a leukocyte antigen (Koguma et al., 1994). CD38 has been detected 

on the sarcolemma in skeletal and heart muscle by immunohistochemistry and in the 
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kidney, proximal convoluted tubules are strongly CD38+, whereas weak expression is 

detected in distal and collecting tubules (Fernandez et al., 1998). Intra-parenchymatous 

fibrous septa in the thyroid are also positive for CD38 (Fernandez et al., 1998). The 

report of CD38 reactivity in neural cells (Mizuguchi et al., 1995) is reinforced by the 

finding of CD38 mRNA in the brain (Takasawa et al., 1993a). Evidence suggested that 

CD38 is down-modulated during differentiation into immature human monocyte-derived 

dendritic cells and expressed again upon maturation (Fedele et al., 2004). Further 

investigation reported that CD38 is localized to the sinusoidal domain in the plasma 

membrane and the inner nuclear envelope of the rat hepatocyte (Khoo and Chang, 2000; 

Khoo et al., 2000). In addition, the cDNA for murine (Harada et al., 1993) and rat 

(Koguma et al., 1994; Li et al., 1994) CD38 homologues have been isolated, and overall, 

the mammalian CD38 molecules show high similarity and identity of nucleotide and 

amino acid sequence.  

 

1.7 ENZYMATIC ACTIVITY OF CD38 

CD38 has been shown to be able to catalyze the synthesis of cADPR and NAADP, two 

structurally distinct calcium-mobilizing molecules (refer to reviews by Lee et al., 1994a; 

1997). CD38 is able to cyclize NAD+ to produce cADPR by linking the N1 of the 

adenine with the anomeric carbon of the terminal ribose (Lee and Aarhus, 1991; Howard 

et al., 1993; Lee et al., 1993) as shown clearly in Figure 1.8. Subsequently, it is shown 

that CD38 cyclizes nicotinamide guanosine dinucleotide (NGD+), an analog of NAD with 

guanine substituting for the adenine group, to produce cyclic GDP-ribose (cGDPR), a 

fluorescent analogue of cADPR and the site of cyclization is N7 of the guanine ring 
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instead of N1 of the adenine, as in cADPR (Graeff  et al., 1994; Graeff et al., 1996). The 

cyclase can efficiently use NADP as substrate and, in the presence of nicotinic acid, 

catalyze the exchange of the nicotinamide group of NADP with nicotinic acid, producing 

NAADP (Aarhus et al., 1995). The exchange reaction predominates at acidic conditions 

while, at neutral and alkaline pH, the enzyme mainly catalyzes cyclization (Aarhus et al., 

1995). 

  

 

Figure 1.8  Enzymatic pathways involved in the metabolism of cyclic ADP-ribose. 
CD38 is a lymphocyte antigen that is also a bifunctional enzyme, catalyzing both the 
synthesis and the hydrolysis of cyclic ADP-ribose. (Adapted from Lee et al., 1994a) 
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CD38 not only catalyzes the reactions described previously, it can also catalyze 

the hydrolysis of cADPR to ADP-ribose (ADPR) and NAD to ADPR (reviewed in Lee et 

al., 1997a). Indeed, the main enzymatic product when CD38 is incubated with NAD is 

ADPR and not cADPR, the latter of which amounts to only a few percent of the products 

(Zocchi et al., 1993; Howard et al., 1993; Lee et al., 1993; Takasawa et al., 1993a; Kim 

et al., 1993a). This property makes it very difficult to distinguish CD38-like enzymes 

from other unrelated NADases such as the NAD glycohydrolase in Neurospora, which 

neither produces cADPR nor hydrolyzes it (Lee et al., 1995a). However, since neither 

NGD nor GDP-ribose is fluorescent, the use of NGD provides a continuous assay of 

cyclization and a simple diagnostic test for distinguishing CD38-like enzymes from the 

classical NADases as well.  

 In contrast to the minimal production of cADPR, CD38 catalyzes a highly 

efficient hydrolysis of cADPR to ADPR. CD38 is thus more appropriately considered as 

a specific hydrolytic rather than synthetic enzyme for cADPR. In fact, CD38 is the only 

known enzyme that specifically hydrolyzes the glycosidic linkage between the N1 of the 

adenine ring and the anomeric carbon of the terminal ribose of cADPR to produce ADPR. 

Many other common hydrolytic enzymes, including alkaline phosphatase, NADase and 

phosphodiesterase, cannot degrade cADPR (Takahashi et al., 1995; Graeff et al., 1997). 

Figure 1.9 lists a series of reactions catalyzed by the cyclase.  
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           Figure 1.9  Enzymatic reactions catalyzed by the cyclase family. 
(Reproduced from Lee, 2000) 

 

1.8 REGULATION OF CD38 

Zocchi et al. (1993) reported that the cyclase activity was found to be markedly 

stimulated by Cu2+ and Zn2+, which subsequently led to the use of immobilized Cu2+ in a 

column chromatography step as an efficient method for the purification of CD38. Later, it 

was reported that Zn2+ could stimulate the ADP-ribosyl activity of recombinant human 

CD38 fused with a maltose binding protein (MBP-CD38) and also of the native 

membrane-bound CD38 of HL-60 cells induced by the addition of retinoic acid 

(Kukimoto et al., 1996). However, such stimulation of the cyclase is in contrast to the 

inhibition of the apparent NAD+-glycohydrolase activity of both MBP-CD38 and native 

CD38 by Zn2+. This was interpreted as a negative regulation of Zn2+ on the accessibility 

of a water molecule to the ADP-ribosyl-enzyme complex (Kukimoto et al., 1996), and 

thus was accordingly ascribed to the inhibition of the hydrolase activity rather than to the 

stimulation of its ADP-ribosyl cyclase activity.  
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 Another example of the selective regulation of the enzymatic activities is from the 

reported inhibition of the cADPR hydrolase activity by ATP (Takasawa et al., 1993a). 

This finding is especially interesting when one considers the fact that ATP is a candidate 

for correlating glucose as a stimulus for insulin secretion in islet cells and that cADPR in 

turn, is generated by pancreatic islets as a result of glucose stimulation (Takasawa et al., 

1993b).   Furthermore, it has been shown that Lys-129 of CD38 participates in cADPR 

binding and that ATP competes with cADPR for the binding site, resulting in the 

inhibition of the cADPR hydrolase activity of CD38 (Tohgo et al., 1997).  

 The study by Genazzani et al. (1996) gives further credence to the fact that the 

cADPR hydrolase activity is a selective target for inhibitory mechanisms, which will 

result in the increase of cADPR concentrations. In that study, it was shown that ADPR 

was able to decrease cADPR degradation in sea urchin eggs and to potentiate the 

synthesis of cADPR from NAD+. This finding is closely reminiscent of the report by 

Meszaros et al. (1995) whereby they found that in heart muscle homogenates, the 

accumulation of cADPR was preceded by the generation of ADPR from NAD+.  

 

1.9 CD38 AND ITS INVOLVEMENT IN CA2+-SIGNALING 

Release of calcium from intracellular stores, endoplasmic/sarcoplasmic reticulum 

(ER/SR), is one of the key signal transduction mechanisms that play a pivotal role in the 

regulation of numerous cellular functions (Berridge, 1997). There are two major systems 

for Ca2+ release from intracellular stores (Mackrill, 1999).  

1) Calcium mobilization mediated through inositol triphosphate (IP3). The binding of 

certain external ligands to surface receptors can activate phospholipase C, which 
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will then in turn, cleave the head group of phosphatidylinositol biphosphate and 

produce IP3. IP3 in turn, will mobilize Ca2+ from intracellular stores upon binding 

to its specific receptor. 

2) Calcium mobilization mediated through Ca2+-induced-Ca2+ release (CICR). This 

kind of mechanism has been well characterized in cardiac myocytes whereby the 

influx of Ca2+ can itself activate further Ca2+ release from intracellular stores and 

is believed to be mediated through the ryanodine receptor. 

Recently two different pyridine dinucleotides have been shown to be effective activators 

of intracellular Ca2+ stores (Clapper et al., 1987). Cyclic ADP-ribose (cADPR) is a cyclic 

nucleotide derived from NAD+ (Lee et al., 1989) and evidence suggests that it is an 

endogenous modulator of the CICR mechanism in cells (Galione et al., 1991; Lee, 1993). 

cADPR requires calmodulin (Tanaka and Tashjian, 1995) to activate calcium 

mobilization and calcium itself can act as a co-agonist (Lee, 1993; Lee et al., 1995b). 

Nicotinic acid adenine dinucleotide phosphate (NAADP), a metabolite of NADP+, is also 

a potent calcium-mobilizing agent of intracellular Ca2+-stores (Clapper et al., 1987; Lee 

and Aarhus, 1995). The Ca2+-release mechanism activated by NAADP is 

pharmacologically different from that activated by either cADPR or IP3 (Clapper et al., 

1987; Lee and Aarhus, 1995; Chini and Dousa, 1996) and the Ca2+-stores NAADP acts 

on are separable by gradient fractionation from those sensitive to cADPR and IP3 

(Clapper et al., 1987; Lee and Aarhus, 1995), indicating a hitherto unknown Ca2+-

signaling mechanism.  

 As mentioned previously, CD38 is able to catalyze the production of cADPR 

from NAD+ as well as catalyzing the exchange of the nicotinamide group of NADP+ with 
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nicotinic acid to produce NAADP (Lee and Aarhus, 1991; Howard et al., 1993; Aarhus et 

al., 1995). The fact that a single enzyme can produce two signaling molecules is 

reminiscent of phospholipase C, which is able to catalyze the synthesis of both IP3 and 

diacylglycerol. The chemical structures of cADPR and NAADP are shown in Figure 1.10. 

 

 

 

Figure 1.10  Structure of cADPR, NAADP and their caged analogs.  
The structure of cADPR is based on X-ray crystallography (Lee et al., 1994b). The 
caging group is attached to either of the phosphates. The structure of NAADP was based 
on measurements published previously (Lee and Aarhus, 1995) and the caging group is 
attached to the 2’-phosphate. (Adapted from Lee et al., 1999)  
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The cyclic structure of cADPR is formed as a result of linking the adenine ring of 

NAD+ to the terminal ribose and displacing the nicotinamide group (Lee et al., 1989). X-

ray crystallography results have confirmed the cyclic nature of the molecule and showed 

that the site of cyclization is at N1 of the adenine ring (Lee et al., 1994b). Both of the 

ribosyl linkages to the adenine are in the β-configuration and C6 is double bonded to N6. 

This cyclic linkage can be hydrolyzed chemically by heat (Lee and Aarhus, 1993) as well 

as through the CD38 enzymatic action (Howard et al., 1993; Lee et al., 1993) to produce 

ADPR.  

 The other Ca2+-mobilizing metabolite synthesized by CD38 is NAADP, which is 

a derivative of NADP+ in which the nicotinamide group is replaced by nicotinic acid (Lee 

and Aarhus, 1995). It can be formed from NADP+ chemically by an alkaline treatment 

(Lee and Aarhus, 1995) or enzymatically through CD38 via a base exchange reaction 

with NA (Aarhus et al., 1995). NAADP can be readily degraded by either alkaline 

phosphatase, which cleaves the 2’-phosphate, or through the nucleotide pyrophosphatase 

enzyme, which cleaves the pyrophosphate linkage (Lee et al., 1997b). It can be seen then 

that natural synthesis and degradation pathways exist for both metabolites, which further 

enhance the evidence that both are signaling molecules.  

 

1.10 CD38 AND THE IMMUNE SYSTEM 

CD38 and CD31 

A correlation between CD38 expression and migratory behavior was found in T 

cell subpopulations, consisting in a greater tendency of resting/naïve T cells 

(CD4+/CD45RA+/CD38+) to emigrate from blood to lymph nodes than activated/memory 
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T cells (CD4+/CD45RO+/CD38-) (Dianzani et al., 1994). These findings led to a large 

collaborative effort investigating the possible role of CD38 in adhesion. Anti-CD38 

mAbs were found to inhibit T and B lymphocyte binding to endothelial cells (EC) using 

an assay optimized to reveal non-integrin-mediated cell adhesion (Deaglio et al., 1998). 

This inhibition was operative on the lymphocyte side because vascular and lymphatic EC 

do not express CD38 (Fernandez et al., 1998). Using the same assay with a panel of anti-

EC mAbs, a counter-receptor on EC cells was identified to be CD31 (PECAM-1), a 

member of the immunoglobulin superfamily (Deaglio et al., 1998). Biochemical support 

for the CD38/CD31 interaction came from the finding that purified soluble CD38 bound 

to a 130-kDa protein from U937 cells and that binding could be inhibited by several anti-

CD31 mAbs (Horenstein et al., 1998). This interaction also plays a role in cytotoxicity, 

an independent observation that emerged while studying the effects of the tumoricidal 

potential of the T-ALL 104 human cell line (Cesano et al., 1998).  

A clue to assessing the physiological relevance of the CD38/CD31 interaction has 

come from a disease model. It is suggested that the engagement of CD38 by CD31 plays 

a role in the retinoic acid syndrome (RAS), a life-threatening complication of ATRA 

therapy in acute myeloid leukemia. A significant proportion of patients given ATRA for 

acute promyelocytic or myeloblastic leukemia develop acute respiratory distress caused 

by massive pulmonary infiltration with newly differentiated granulocytes (Mehta et al., 

1996). Normal granulocytes or dimethyl sulfoxide-treated leukemic cells are CD38- but a 

single dose of ATRA induces strong CD38 expression in the leukemic cells (Drach et al., 

1994), leading to the speculation that their interaction with CD31 on lung endothelium 

represents an important pathogenetic factor.  
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Transmembrane signaling in T-cells 

The first hint that CD38 might be playing an important role in signaling came from the 

observation that ligation of CD38 on peripheral blood mononuclear cells and T-cell lines 

with certain anti-CD38 monoclonal antibodies induced activation and proliferation 

signals (Funaro et al., 1990). Subsequent experiments revealed that this ligation is also 

able to induce the transcription of various cytokines including that of interleukin-1 (IL-1), 

tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor at 

levels similar to that obtained after triggering the T cell receptor CD3. However, the 

cytokines triggered in response to CD38 are qualitatively distinct from those induced via 

CD3 (Ausiello et al., 1995). 

 CD38-mediated cytokine induction did not require either T-cell proliferation or 

the addition of antigen-presenting cells. Furthermore, it was also observed that signaling 

via CD38 in a T-cell acute lymphoblastic leukemia (Jurkat) cell line led to calcium 

mobilization kinetics that were distinct from those induced via the T-cell receptor CD3 

(Deaglio et al., 1996). This raises the possibility that certain signaling pathways mediated 

by CD38 are distinct from that activated by CD3. Incubation of peripheral blood T-cells 

or Jurkat cells with the agonistic anti-CD38 mAb, IB4, has been shown to be able to 

trigger signaling pathways that lead to activation and proliferation (Funaro et al., 1990), 

increase intracellular calcium levels, down-modulation of the TCR/CD3 complex, up-

regulation of CD5, CD28, CD69 and CD95 as well as cell death by apoptosis (Morra et 

al., 1998). CD38 ligation is also able to induce tyrosine phosphorylation of a variety of 

cellular substrates including that of phospholipase C-γ1, c-cbl, ζ-associated protein 

(ZAP)-70, Shc, extracellular signal-regulated protein-kinase-2 (Erk-2), and CD3-ζ. In 
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comparison, the phosphorylation induced by anti–CD3 was both qualitatively and 

quantitatively different (Zubiaur et al., 1997). 

 

Transmembrane signaling in B-cells 

The B-cell receptor (BCR) is also necessary for CD38-mediated signaling in B 

lymphocytes, at least in mouse (Lund et al., 1996) although the same mechanism has yet 

to be proven conclusively in human cells. Proliferation has been shown to be activated in 

splenic B-cells in response to IB4 mAb (Funaro et al., 1997). Addition of anti-CD38 

mAbs (either IB4 or T16) to normal bone marrow B cells (>90% CD38+) co-cultured on 

stromal layers (mostly CD38- but CD157+) drastically reduces the number of cells 

recovered after a 7-day culture period (Kumagal et al., 1995). However, this effect does 

not occur with circulating or tonsillar B cells (Kumagal et al., 1995).  

 The interesting thing is that the result of CD38 ligation in mature B-cells is 

markedly different. It has been shown that tonsillar germinal center B-cells (CD38+/sIgG+) 

incubated with IB4 mAb have prolonged cell survival rates due to the inhibition of 

apoptosis and up-regulation of bcl-2 has also been observed (Zupo et al., 1994). The 

pathway activated via CD38 in these cells is neither addictive nor synergistic with the 

CD40-CD40L pathway (Zupo et al., 1994). The signal transduction events triggered by 

T16 mAb in immature B-cells include phosphorylation of c-cbl, PLC-γ1, 

phosphatidylinositol 3-kinase (PI3-K) p85 subunit, and protein kinase syk (Silvennoinen 

et al., 1996). A further effect of CD38 ligation is phosphorylation of CD19 and induction 

of its association with lyn and PI3-K (Kitanaka et al., 1997). Indeed, both CD38- and 

CD19-mediated signaling pathways would seem to overlap as they induce similar 
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patterns of protein tyrosine phosphorylation. CD38 engagement leads to down-regulation 

of CD19 (Kitanaka et al., 1997). 

 

Transmembrane signaling in myeloid and natural killer cells 

CD38 ligation on retinoic acid-induced differentiated HL-60 cells resulted in an increase 

of superoxide generation by G protein-coupled receptors (Tsujimoto et al., 1997) as well 

as causing the tyrosine phosphorylation of c-cbl, syk, HS1 and FcγRII (Inoue et al., 1997). 

Another process which CD38 might be involved is the proliferation of T lymphocytes in 

response to super-antigen whereby the engagement of CD38 on monocytes inhibits the T 

cell proliferation induced by Staphylococcus enterotoxin A or toxic shock syndrome 

toxin-1 (refer to review by Ferrero and Malavasi, 1999). The cytotoxic activity of 

peripheral blood natural killer cells mediated by granule exocytosis can be triggered by 

anti-CD38 upon activation with IL-2 (refer to review by Ferrero and Malavasi, 1999).   

 

1.11 CD38 AND THE DISEASE MODEL 

In view of the fact that CD38 seems to be involved in a myriad of immune-regulatory 

functions in a multitude of hematopoietic cell populations, it is no surprise to know that 

there was a spate of recent discoveries regarding the association of CD38 with certain 

human diseases. More than a decade ago, it was observed that in AIDS patients, CD8+ T-

cells have an increased expression of CD38 (Salazar-Gonzales et al., 1985). It was 

subsequently shown that the expansion of these cells preceded the decline in CD4+ T-

cells and the development of AIDS (Bofill et al., 1996). This observation was further 

expanded by some researchers who used CD38 as a useful and reliable prognostic marker 
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for the pathological development of AIDS (Liu et al., 1998). However, CD38 may also 

be more directly involved in AIDS pathogenesis as there is a report postulating an 

inhibitory role of CD38 in HIV binding to CD4 (Savarino et al., 1996). 

  Zupo et al. (1996) reported that B-chronic lymphocytic leukemia (B-CLL) 

patients can be subdivided into two different groups depending on the presence or 

absence of CD38 on the malignant cells. In vitro exposure of these malignant cells with 

high CD38 expression to anti-µ antibodies (antibodies raised against the mu heavy chains 

of IgM) resulted in calcium mobilization followed by apoptosis, while neither of these 

phenomena was observed in the CD38-negative cells. These data suggest that CD38 

expression can be utilized as a marker for B-cells that have a propensity for apoptosis. 

The fact that normal germinal center B-cells (Zupo et al., 1994) and the malignant cells 

of Burkitt’s lymphomas (Cutrona et al., 1995), both of which express abundant CD38, 

are prone to apoptosis.  

 Bruton’s disease or X-linked agammaglobulinemia (XLA) is characterized by a 

reduced concentration of serum Ig secondary to a dramatic decrease of circulating B-cells 

(refer to review by Conley, 1992). The gene responsible for XLA is Bruton’s tyrosine 

kinase (Btk), which encodes a protein sharing similar features with the src tyrosine kinase 

family. The precise function of Btk is currently unknown but is thought to be involved in 

mediating signal transduction after cell activation (refer to review by Bolen, 1993). 

Results derived from X chromosome-linked immunodeficient mice (Xid, the homologue 

of human XLA) indicate a close relationship between Btk and CD38. Purified splenic B-

cells from Xid mice were totally unresponsive to stimulation via CD38 in the presence of 

accessory stimuli, even though the expression and catalytic functions of CD38 on these 
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cells were comparable to wild-type B-cells (Santos-Argumedo et al., 1995). It was also 

reported that B-cells from Xid mice did not respond to signaling via CD38, which was 

coupled in turn, to the complete absence of tyrosine phosphorylation of Btk (Kikuchi et 

al., 1995). It is thus believed that CD38 plays an important role in the life of B-cells, 

although a direct physical association between Btk and CD38 has not been observed 

(Santos-Argumedo et al., 1995).     

 CD38 has been shown to play an important regulatory role in the murine model 

with regards to insulin secretion via calcium mobilization of cADPR-sensitive stores 

(Kato et al., 1995). The studies on the causal relationship between CD38 and insulin 

release has been extrapolated to man where it was shown that autoantibodies to CD38 

might be playing a key role in impaired glucose-induced insulin secretion (Ikehata et al., 

1998). Then, it was shown that the Arg140Trp mutation on CD38 might be responsible 

for the development of Type II diabetes mellitus via the impairment of glucose-induced 

insulin secretion (Yagui et al., 1998). Recently, experiments using CD38 knockout mice 

corroborated the growing evidence that CD38 is essential in intracellular Ca2+-

mobilization via cADPR for the secretion of insulin (Kato et al., 1999).  

 The considerably poor prognosis of myeloma has prompted the use of radical 

treatments involving immunotoxins and hormonotoxins. However, the use of antibodies 

or hormones conjugated with modified toxins, which targets surface molecules on 

myeloma cells is hampered by the inherent lack of specificity. An interesting alternative 

method used the increased expression of CD38 in these myeloma cells as a target for the 

in vivo and in vitro depletion of tumor cells (Ellis et al., 1995). It is shown that 

recombinant anti-CD38 mAb with a murine anti-CD38 variable region mounted on a 
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human IgG Fc sequence cross-linked to a modified ricin molecule (Stevenson et al., 

1991). Another approach entailed the use of bispecific antibodies for the delivery of other 

toxins in human acute T-cell lymphoblastic leukemia via CD7 and CD38 as target 

molecules (Flavell et al., 1992). CD22 and CD38 as target molecules for bispecific 

antibodies in the immuno-treatment of lymphoma have also been used (French et al., 

1995). A similar approach was tested for the treatment of B-cell lymphoma using anti-

CD19 and anti-CD38-saponin immunotoxins (Flavell et al., 1995). 

 The results obtained from these studies suggest that anti-CD38-toxin 

immunoconjugates might prove to be useful therapeutic tools in the treatment of 

myeloma, leukemia and lymphoma. In each and every case, it has been proven that the 

toxic potential on tumor cells with higher expression of CD38 was significant, whereas 

effects on normal peripheral blood cells or hematopoietic progenitor cells were negligible 

(refer to review by Mehta et al., 1996).   

 

1.12 OBJECTIVES OF THE STUDY 

To date, the function of CD38 in liver cirrhosis is still unknown. Therefore, the objective 

of this study is to characterize the role of CD38 in liver cirrhosis. To investigate this, 

thioacetamide-induced rat model of liver cirrhosis was generated. Control and cirrhotic 

rat livers were isolated for the determination of CD38 transcript (mRNA) and protein 

level. This was done by using a variety of methods: 

1) Real time reverse transcriptase – polymerase chain reaction (RT-PCR) 

2) Immunohistochemistry method in conjuction with confocal microscopy technique 
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3) Biochemical and immunological characterization via the use of enzymatic assays 

and immunoblotting 

We went on further to investigate the cADPR and NAD+ levels by using cycling assay. 

The data gathered, in conjunction with previous studies on CD38, are expected to provide 

special insight into the physiological, cellular and functional role of CD38 in liver 

cirrhosis and hopefully shed more light into the currently unresolved questions facing 

researchers in the CD38 field.   
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CHAPTER 2 

MATERIALS AND METHOD 

 

2.1 Materials 

2.1.1 Chemicals and Reagents 

Standard analytical grade laboratory chemicals for the preparation of general reagents 

were obtained from BDH, Poole, England; Merck, Darmstadt, Germany; Sigma 

Chemicals Co., St. Louis, MO, USA and J.T. Baker, Phillipsburg, NJ, USA. Special 

reagents were obtained from: 

 Bio-Rad, Hercules, CA, USA. 
 Bio-Rad Protein Assay Kit 
 Nitrocellulose membrane (0.2 µm) 
 Polyacrylamide gel reagents 
 Bio-Safe Coomassie Blue G250 
 Precision Plus ProteinTM Standards All Blue (protein marker) for SDS-PAGE 
 
 
 Sigma, St. Louis, MO, USA. 
 Thioacetamide 

Leupeptin 

 Phenylmethylsulfonyl fluoride 
 Soybean trypsin inhibitor 
 BSA 
 DEPC 
 NADase 
 cADPR 
 ADP-ribosyl cyclase 
 NAD+ 
 NGD+ 

 Nicotinamide 
 Alcohol dehydrogenase 
 Resazurin 
 Diaphorase 
 FMN 
 β-mercaptoethanol  
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 Amersham Biosciences, Buckinghamshire, England. 
 Blue Sepharose CL-6B 
 Concanavalin (Con) A-Sepharose 

ECLTM Western blotting detection reagents 
 
 
 Applied Biosystems, Cheshire, UK. 
 SYBR Green PCR master mix 
 Real-time PCR supplied materials 
 
 
 Invitrogen, Carlsbad, CA, USA. 
 TRIzol 
 Superscript II RNase H- Reverse Transcriptase 
 
 
 Roche, Penzberg, Germany. 
 RNase-free DNase 1  
 
 
 Promega, Madison, WI, USA. 
 PCR reagents 

100 bp DNA marker 
 
 
Spectrum Chemical, Gardena, CA, USA. 
Perchloric acid 

 
 

2.1.2 Commercial Antibodies 

Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA. 
Goat polyclonal anti-rat CD38 (M-19) 
 
 
Sigma, St. Louis, MO, USA. 
Horseradish peroxidase-conjugated rabbit anti-goat IgG 
FITC-conjugated rabbit anti-goat polyclonal  
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2.1.3 Instruments and General Apparatus 

1. Beckman AvantiTM J-20 XP Centrifuge (Beckman Instruments Inc., Palo Alto, 

CA, USA) 

2. Beckman DU® 640B Spectrophotometer (Beckman Instruments Inc., Palo Alto, 

CA, USA) 

3. Beckman Ultracentrifuge XL-100 (Beckman Instruments Inc., Palo Alto, CA, 

USA) 

4. BellyDancer®/Hybridization Water Bath (Stovall Life Sciences Inc., 

Greensboro, NC, USA) 

5. Biometra Thermocycler (Biometra, Goettingen, Germany) 

6. Mini-Sub® Cell GT Cell (Bio-Rad, Hercules, CA, USA) 

7. ABI Prism 7000 Sequence Detection System (Real-Time PCR Machine) 

(Applied Biosystems, Cheshire, UK) 

8. Eppendorf Centrifuge 5415 R (Eppendorf-Netheler-Hinz GmbH, Hamburg, 

Germany) 

9. Constant Voltage Power Supply Model 200/2.0 (Bio-Rad, Hercules, CA, USA) 

10. Mini-PROTEAN® II Cell (Bio-Rad, Hercules, CA, USA) 

11. Mini Trans-Blot® Cell (Bio-Rad, Hercules, CA, USA) 

12. FluoView 300 Laser Scanning Microscope (Olympus, Melville, NY, USA) 

13. Histostat Microtome (American Opticals, USA) 

14. SpectraMax Gemini Fluorescence Reader (Molecular Devices, Sunnyvale, CA, 

USA) 

15. Centricon-3 Filters (Millipore, Bedford, MA, USA) 
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16. Centriprep 30 (Millipore, Bedford, MA, USA) 

17. Ultra-Turrax T25 Tissue Homogenizer (Janke and Kunkel, Staufen, Germany) 

18. PRO 200 Homogenizer (PRO Scientific, Oxford, CT, USA) 

19. LS 50B Luminescence Spectrophotometer (Perkin Elmer, Foster, USA) 

 

2.2 Animals 

Male Wistar rats weighing 250-280 g were obtained and kept in the animal holding 

facilities. All animals were housed under controlled conditions of temperature, humidity, 

light cycle (12-h cycle), and fed with standard laboratory chow and water ad libitum. The 

animals used in the present study were divided into 2 groups: control (20 rats) and 

thioacetamide (TAA)-treated (25 rats). The treated group was injected intraperitoneally 

(i.p.) with thioacetamide freshly dissolved in sterile water at a dose of 300 mg/kg body 

weight, twice a week for 10 weeks. Control group received the similar volume of sterile 

water. Thioacetamide was prepared at the concentration of 0.1 g/ml and was stored in a 

bottle wrapped with aluminium foil due to light sensitivity. The animals were allowed to 

rest for one week before being sacrificed for the subsequent experiments. Animals were 

treated following the standard procedures indicated in the “Responsible Care and Use of 

Laboratory Animals” published by National University of Singapore.  

 

2.3 Perfusion of Rats 

The rats were perfused with a periodate-lysine-paraformaldehyde (PLP) fixative 

according to the method of McLean and Nakane (1974). Briefly, the fixative was made 

by initially mixing 10.96 g of L-lysine to 300 ml of distilled water. This was followed by 
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the addition of 0.1 M di-sodium hydrogen orthophosphate 2-hydrate (Na2HPO4 . 2H2O) 

until the pH of the solution reached 7.4 (approximately 100 ml was added). Subsequently, 

200 ml of phosphate buffer (pH 7.4) was added to the solution. Finally, 

paraformaldehyde (2% final concentration) and 1.712 g of sodium-m-periodate were 

added to make up a final 800 ml of fixative solution.  

 For the perfusion of an adult rat, the animal was sacrificed after anesthesia with 

7% sodium chloral hydrate. The animal was laid on its back and the thorax opened 

carefully to avoid excessive bleeding. The rib cage was cut through carefully and the 

diaphragm was removed for easy access to the heart. A phosphate-buffered saline (PBS)-

filled syringe with an attached 23-G needle was carefully inserted into the left ventricle 

and at the same time, the right ventricle was cut for drainage allowing the PBS to be 

slowly but constantly perfused into the heart (Figure 2.1). After most of the blood has 

been flushed out, the syringe was removed and the syringe filled with the fixative was 

inserted into the same puncture of the left ventricle. The animal was then slowly perfused 

with the fixative. Following perfusion, the liver was dissected out and transferred into 

labeled glass vials filled with the same fixative and further post-fixed for one hour before 

infiltrated with 15% sucrose in PBS pH 7.4 overnight at 4°C. The rat liver tissues were 

then frozen at -45°C using isopentane cooled by liquid nitrogen and embedded in Tissue 

Tek (Miles, Elkhart, IN). Cryostat sections of 10 µm were cut from the frozen tissues 

using a Histostat Microtome (American Opticals, USA) and placed on gelatin-coated 

slides. The sections were dried in the air and kept frozen at -80°C until all slides were 

ready for processing.  
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2.4 Liver Histopathology 

Histopathology of the livers from both control and TAA-treated rats was investigated 

according to a previously described procedure (section 2.3). Briefly, pieces of hepatic 

tissues from control and TAA-treated rats were fixed in 2% paraformaldehyde in 

phosphate-buffered saline and were processed for cryostat sectioning. Sections of about 

10-µm thickness were stained with haematoxylin and eosin (H & E) to study the general 

structure of the liver.    

2.4.1 Haematoxylin and Eosin (H & E) staining 

The fixed slides were immersed in 10% formalin for overnight. Following day, the slides 

were left in each solution for approximately 10 seconds (with agitation) using the 

following order; deionised water (2 changes), 50% alcohol, 70% alcohol, 90% alcohol, 

absolute alcohol II, absolute alcohol I, equal parts of xylene and absolute alcohol, xylene 

II and xylene I. Next, the slides were left in Haematoxylin stain which had been filtered, 

for 15 minutes. The slides were washed in deionised water and differentiated in 

differentiating fluid (70% alcohol with a few drops of HCl) for a few to 30 seconds, 

depending on the tissue. The slides were rinsed in deionised water and differentiation was 

checked under the microscope. The slides were immersed in the differentiating fluid 

again if under differentiated or washed thoroughly in water, then re-stain if over 

differentiated. Then, sections were blued in tap water for 15 minutes and rinsed with 

deionised water. It was followed by Eosin staining (1-3% Eosin dissolved in water) for 

10 minutes. The slides were dehydrated quickly in 90% alcohol, 3 changes of absolute 

alcohol, equal parts of absolute alcohol and xylene, and 3 changes of xylene. The sides of 

the slides were wiped and were mounted with an addition of a drop of Permount and a 
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coverslip was placed over the section. The slides were then viewed under a light 

microscope at low magnification to compare the liver structure of control with that of 

TAA-treated rats. 

 

 

Figure 2.1  Perfusion of a rat.  
This diagram illustrates the chambers of the heart and the correct positioning of the 
syringe in the left ventricle for perfusion. (Adapted from Khoo, 1999) 
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2.5 Detection of CD38 mRNA Expression 

CD38 expression at transcript level of both control and TAA-treated rats was investigated 

using a conventional two-step RT-PCR and the changes in CD38 expression between the 

control and TAA-treated rats were then confirmed in real-time quantitative RT-PCR. 

Ribosomal RNA (rRNA) was used as endogenous/internal control due to its relatively 

invariant during the course of the experimental manipulation.  

2.5.1 Total RNA extraction from rat liver 

Liver tissues from control and TAA-treated rats were frozen in liquid nitrogen and 

weighed prior to total RNA extraction using TRIzol (Invitrogen, Carlsbad, CA, USA) as 

per manufacturer’s protocol. Briefly, 1 ml of TRIzol reagent was used for extraction of 

every 50 mg of liver tissues. The tissues were homogenised on ice using an Ultra-Turrax 

T25 homogenizer (Janke and Kunkel, Germany). The homogenate was incubated at room 

temperature for 5 minutes to permit the complete dissociation of nucleoprotein 

complexes, following which 200 µl of chloroform was added per ml TRIzol reagent used 

for the extraction. The mixture was then shaken vigorously for 15 seconds and incubated 

for another 3 minutes at room temperature before being subjected to centrifugation at no 

more than 12,000 X g for 15 minutes at 4°C. The solution was separated into a lower red, 

phenol-chloroform phase (organic phase), an interphase, and a colorless upper aqueous 

phase, in which RNA resides. This aqueous layer was carefully transferred into a clean 

eppendorf tube and incubated at 37°C for 15-20 minutes with 3 µl RNase-free DNase 1 

(Roche, Penzberg, Germany) and 30 µl of 1 M magnesium chloride. Following removal 

of contaminating DNA, 500 µl of isopropyl alcohol (isopropanol) per ml TRIzol reagent 

used for the initial homogenization was added to precipitate RNA and also to remove 
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DNase 1. The mixture was then incubated at room temperature for 10 minutes and 

subsequently subjected to centrifugation at no more than 12,000 X g for 10 minutes at 

4°C. The supernatant was later discarded and 1 ml of ice-cold 75% ethanol was added to 

wash the pellet by vortexing and followed by centrifuging at no more than 7,500 X g for 

5 minutes at 4°C. Upon removal of the ethanol, the RNA pellet was air-dried for 10 

minutes prior to dissolving in 50 µl of DEPC-treated water (RNase-free water). Each 

RNA sample was stored at –80°C in small aliquots in DEPC-treated water. To prepare 

RNase-free water (DEPC-treated water), MilliQ water was drawn into RNase-free glass 

bottle. 0.1% diethylpyrocarbonate (DEPC) was added to the water which will inactivate 

any ribonucleases (RNases) that are present by covalent modification. Then, it was 

allowed to stand overnight and was autoclaved on the following day to inactivate the 

DEPC.  

2.5.2 RNA quantitation 

5 µl of RNA extract was diluted with 495 µl (1:100) DEPC-treated water and the 

absorbance was measured at 260 nm using a DU640B Spectrophotometer (Beckman, 

USA). Given, 1 OD260nm = 40 µg RNA/ml. The RNA concentration was calculated as 

follows; [RNA] = OD260nm x 100 (dilution factor) x 40 µg RNA/ml. The ratio of 

OD260nm/OD280nm was also analysed to assess the purity of the RNA extract. Typically, a 

ratio of 1.8 - 2.0 is deemed pure.  

2.5.3 RNA gel electrophoresis  

The RNA integrity and purity were analyzed by RNA gel electrophoresis. 0.5 g agarose 

was boiled in 43.5 ml DEPC-treated water and subsequently allowed to cool down to 

about 60°C prior to the addition of 5 ml of 10X MOPS buffer (0.4 M MOPS, pH 7; 0.1 M 
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sodium acetate, 0.01 M EDTA), 0.8 ml of 37% formaldehyde, and 1 µl of 10mg/ml 

ethidium bromide. Sample preparation was carried out by mixing 5 µg of RNA samples 

with 3 µl of 10X MOPS buffer, 3 µl of 37% formaldehyde, 10 µl of deionised formamide 

and RNA loading buffer (Sigma, St. Louis, MO, USA), used in a ratio of 1:2 with respect 

to the volume of RNA sample added. The mixture was heated at 65°C for 10 minutes 

before loaded into the wells. The samples were allowed to separate on the gel that was 

run at 80 volts using 1X MOPS as running buffer (1 – 2 hours). 

2.5.4 Two-step reverse transcriptase – polymerase chain reaction (RT-PCR) 

Residual genomic DNA was removed by incubating the RNA samples with RNase-free 

DNase I (Roche, Penzberg, Germany) prior to RNA precipitation by isopropanol 

according to the method described in section 2.5.1. Isolated total RNA was quantified 

using Beckman DU® 640B Spectrophotometer (Beckman Instruments Inc., Palo Alto, 

CA, USA) and equal amounts (5 µg) from control and TAA-treated animals were used 

for RT-PCR.  

Total RNA was reverse transcribed using random hexamers and oligo (dT) primers to 

synthesize first strand cDNA from the mRNA using Superscript II RNase H- Reverse 

Transcriptase (Invitrogen) following the manufacturer’s directions. Briefly, a 20-µl 

reaction volume was prepared by mixing total RNA with oligo (dT)/random hexamers, 

dNTP mix, 5 X first-strand buffer, DTT, Superscript II and nuclease-free water. Reverse 

transcription reaction was carried out at 42°C for 50 minutes and the first-strand cDNA 

synthesized was subjected to PCR. The PCR primers were as follows:  

CD38 forward primer, 5’ CTCAGTGAGCCATTTTAC 3’;  

CD38 reverse primer, 5’ TCACACATTAAGTCTACATG 3’;  
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28S rRNA forward primer, 5’ GGCCAAGCGTTCATAGCGAC 3’;  

28S rRNA reverse primer, 5’ GAGGCGTTCAGTCATAATCC 3’.  

PCR was performed in a final volume of 50 µl in a Biometra thermocycler (Goettingen, 

Germany) under the following conditions: 94°C for 5 minutes denaturing, 30 cycles of 

94°C for 30 seconds, 53°C for 30 seconds (CD38 primers) or 62°C for 30 seconds (28S 

rRNA primers), 72°C for 30 seconds, and a final extension at 72°C for 2 minutes. 

Samples without reverse transcriptase were used as negative controls and rat 28S rRNA 

was used as internal control. The amplification products were separated on ethidium 

bromide stained 1% agarose gels at 100V for 45 minutes. The product size was then 

determined by concurrently separating a 100-bp DNA ladder on the gel and visualized 

under UV transillumination. The intensity of the bands was quantified by densitometry 

using Analytical Imaging Station (Ontario, Canada) and the results were expressed as the 

ratio of intensity of PCR products of CD38 to that of 28S rRNA in samples from control 

and TAA-treated rats.   

2.5.5 Real-Time Quantitative PCR 

Real-time Polymerase Chain Reaction (PCR) offers researchers a powerful tool for the 

quantitation of target nucleic acids and has the ability to monitor the progress of the PCR 

as it occurs (i.e., in real time). Data is therefore collected throughout the PCR process, 

rather than at the end of the PCR. This completely revolutionizes the way one approaches 

PCR-based quantitation of DNA and RNA. In real-time PCR, reactions are characterized 

by the point in time during cycling when amplification of a target is first detected rather 

than the amount of target accumulated after a fixed number of cycles. The higher the 

starting copy number of the nucleic acid target, the sooner a significant increase in 
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fluorescence is observed. In contrast, an endpoint assay (also called a “plate read assay”) 

measures the amount of accumulated PCR product at the end of the PCR cycle. 

In the present study, quantitative real-time PCR was performed using SYBR 

Green PCR master mix (Applied Biosystems, Cheshire, UK), which uses SYBR Green I 

dye, a highly specific double-stranded DNA binding dye, to detect PCR product as it 

accumulates during PCR cycles. Total RNA from control and TAA-treated rat livers was 

converted to first strand cDNA by reverse transcription. PCR was then carried out in a 

total volume of 25 µl consisting of SYBR Green mix, first strand cDNA, forward and 

reverse primers, and sterile water. The CD38 and 18S rRNA (internal control) primers 

were used:  

CD38 forward primer, 5’ GAAAGGGAAGCCTACCACGAA 3’;  

CD38 reverse primer, 5’ GCCGGAGGATTTGAGTATAGATCA 3’;  

18S rRNA forward primer, 5’ ATGGCCGTTCTTAGTTGGTGGAGTG 3’;  

18S rRNA reverse primer 5’ GTGTGTACAAAGGGCAGGGACGTA 3’.  

The primers were designed based on the sequence data obtained from the NCBI database 

(http://www.ncbi.nlm.nih.gov/), using Primer Express® Software v2.0 (Applied 

Biosystems). All the samples were run using ABI Prism 7000 (Applied Biosystems) in 

triplicates under the following conditions: 50°C for 2 minutes, 95°C for 10 minutes, 40 

cycles of 95°C for 15 seconds, 60°C for 1 minute, and a final extension at 60°C for 2 

minutes. The readings were normalized on the basis of its 18S rRNA content and the 

relative quantitation was performed using a calculation method known as comparative Ct 

method. Results of the real-time PCR were expressed as 2-∆∆Ct
, and the expression level 

of CD38 was indicated by the number of cycles required to achieve the threshold level of 

 52

http://www.ncbi.nlm.nih.gov/


amplification. The 2-∆∆Ct value from control rats was compared with that of TAA-treated 

rats.   

 

2.6 Immunohistochemistry 

Immunohistochemical localization of cellular molecules is based on the ability of 

antibodies to bind specific antigens (usually proteins) with high affinity. The techniques 

may be used to localize antigens to subcellular compartments or individual cells within 

tissues, which is indeed our aim with regards to CD38 in this study. 

2.6.1 Immunohistochemical localization of CD38 in rat liver 

For immunofluorescence studies involving control and TAA-treated rats, liver tissues 

were fixed in PLP and processed for cryostat sectioning as described previously. The 

frozen slides were immediately thawed in phosphate buffered solution (PBS) and washed 

with PBS for three times. The sections were then incubated with PBS buffer containing 

10% bovine serum albumin (BSA) for 2 hours at room temperature as a blocking agent to 

minimize non-specific binding. Next, the sections were incubated overnight at 4°C with 

goat polyclonal antibodies against rat CD38 at a dilution of 1:100 in 10% BSA, rinsed 

four times with PBS buffer and incubated for 2 hours with the corresponding secondary 

FITC-conjugated anti-goat polyclonal antibody diluted at 1:100 in 10% BSA. After final 

wash with PBS buffer for four times, the slides were mounted with Vectashield Mounting 

Medium (Vector Lab, Burlingame, USA) and viewed under confocal microscope. 

The optimal incubation time and dilution of antibodies, defined as the highest dilution 

producing maximal staining and minimal background were determined for all batches of 

antibodies and conjugates. All experiments were repeated at least twice and slides were 
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made in duplicate. Negative controls with the omission of primary antibody were carried 

out.  

 

2.7 Confocal Microscopy 

Confocal microscopy was performed using a FluoView 300 laser scanning microscope 

(Olympus, Melville, NY) at low (20 x Fluar objective) and high (60 x Fluar objective, oil 

immersion) magnifications. Excitation of the FITC fluorescent dye was performed at 488 

nm and the emission signal was collected with BP 510-550 emission filter. The 

quantification of fluorescent dye for both control and TAA-treated rat liver tissues was 

done using Image-Pro Plus Version 4.5 (Media Cybernetics, North Reading, MA). 

 

2.8 Isolation of Microsomal Fraction 

Microsomal fractions were isolated (at 0-4°C) from control and TAA-treated rat liver 

tissues according to a modified method described by Kim et al. (1993). Rat livers were 

minced with scissors and homogenized using Ultra-turrax T25 tissue homogenizer (Janke 

and Kunkel, Staufen, Germany) in 4 volumes of homogenization buffer containing 20 

mM Hepes (pH 7.2), 1 mM MgCl, 0.1 mM phenylmethylsulfonyl fluoride, leupeptin (10 

µg/ml), aprotinin (10 µg/ml), and soybean trypsin inhibitor (50 µg/ml). The homogenate 

was centrifuged at 8000 X g for 15 minutes at 4°C. The supernatant was saved and the 

pellet was resuspended in 2 volumes of homogenization buffer. The resulting suspension 

was then centrifuged as above. The first and second supernatants were pooled and further 

centrifuged at 100,000 X g for 45 minutes at 4°C. The pellet containing the microsomal 

fraction was resuspended in 2 volumes of homogenization buffer by 15 passes of Dounce 
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glass homogenizer with a loose-fitting pestle followed by another 15 passes of tight-

fitting pestle. The suspension was solubilized by adding 2 volumes of homogenization 

buffer containing 4% Triton X-100 and allowed to stand for 1 hour (with occasional 

agitation). After centrifuging the suspension at 100,000 X g for 45 minutes, the 

supernatant was collected and the protein content was determined in duplicates using the 

Bio-Rad protein assay kit (Bio-Rad, Hercules, CA, USA), with bovine serum albumin 

(BSA) as the standard. In another set of experiment, the solubilized microsomal fraction 

was subjected to purification (section 2.9) via affinity chromatography to obtain positive 

control for subsequent experiments. 

  

2.9 Purification of CD38  

The purification and analysis of proteins are integral to designing oligonucleotide probes 

for gene cloning, confirming DNA sequence data and synthesizing peptides for eliciting 

anti-peptide antibodies. The principle methods that were used in this study have its basis 

in bioproperties or affinity of the protein in question. This powerful method for 

separating the protein of interest from others depends on the uniqueness of particular or 

specific biological properties of the protein to be studied. Most desired proteins have a 

specific ligand and immobilization of the ligand to which the protein binds or of an 

antibody to the protein enable selective adsorption of the desired protein to the technique 

known as affinity chromatography.  

 CD38 was purified for the preparation of positive control from microsomes of rat 

liver tissues that were isolated according to the method described in section 2.8. The 

resulted supernatant, which consists of the solubilized microsomal fraction, was subjected 
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to a series of column chromatography, in the order of Blue Sepharose CL 6B, copper-

iminodiacetic acid-agarose (Cu2+-IDA), and concanavalin (Con) A-sepharose. These 

various affinity columns have previously been shown to be highly selective for the 

purification of CD38 (Kim et al., 1993a; Zocchi et al., 1993).  

 Blue Sepharose CL-6B is Cibacron Blue 3G-A covalently attached to Sepharose 

CL-6B by the triazine coupling method. The structure of the blue dye in Blue Sepharose 

mimics that of NAD+ and thus it binds to enzymes that require adenyl-containing 

cofactors including CD38, which uses NAD+ as a substrate for both its ADP-ribosyl 

cyclase and NADase enzymatic activities.  

The discovery of the cyclase activity of CD38 being stimulated by Cu2+ has led to 

the use of Cu2+ immobilized in a column for the purification of CD38 (Zocchi et al., 

1993).  

Concanavalin A (Con A) is a lectin which binds reversibly to molecules which 

contain α-D-mannopyranosyl, α-D-glucopyranosyl and sterically related residues. 

Therefore, it is useful for separation and purification of glycoproteins, polysaccharides 

and glycolipids. Con A has also been used in the purification of enzyme-antibody 

conjugates, purification of IgM, isolation of cell surface glycoproteins from detergent-

solubilized membranes, separation of membrane vesicles, and the study of changes in 

composition of carbohydrate-containing substances. 

2.9.1 Purification of CD38 from the rat liver 

The solubilized microsomal fraction was applied to 60 ml of blue Sepharose CL-6B that 

has been equilibrated with 3 volumes of equilibration buffer [20 mM HEPES (pH 7.2), 

0.1% Triton X-100 and 0.2 M NaCl]. The column was then washed with 3 volumes of 
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washing buffer [20 mM HEPES (pH 7.2), 0.1% Triton X-100 and 0.5 M NaCl] and 

eluted with 3 volumes of elution buffer [20 mM HEPES (pH 7.2), 0.1% Triton X-100 and 

0.5 M KSCN]. 

The eluate was subjected to 15 ml of Cu2+-IDA column after equilibrating with 3 

volumes of equilibration buffer [50 mM sodium phosphate (pH 7.2), 0.1% Triton X-100 

and 0.5 M NaCl]. The column was washed with 3 volumes of washing buffer [50 mM 

sodium phosphate (pH 7.2), 0.1% Triton X-100 and 0.5 M NaCl] and bound proteins 

were then eluted with elution buffer [50 mM sodium phosphate (pH 7.2), 0.1% Triton X-

100 and 0.5 M NaCl and 0.2 M imidazole]. The eluate was dialyzed overnight in 20 mM 

Tris-HCl (pH 7.2) containing 0.1% Triton X-100 and 0.9% NaCl.  

The dialyzed eluate was loaded into the 50 ml Falcon tube containing 2 ml of Con 

A-Sepharose equilibrated with 3 volumes of equilibration buffer [20 mM HEPES (pH 

7.2), 0.1% Triton X-100 and 0.1 M NaCl] and rotated for 2 hours. After centrifuging at 

200 X g using Beckman JA-20 rotor (Palo Alto, CA) for 5 minutes, the breakthrough 

containing the unbound proteins was collected. The remaining content was sequentially 

washed with 3 volumes of washing buffer A [20 mM HEPES (pH 7.2), 0.1% Triton X-

100 and 0.1 M NaCl] and 3 volumes of washing buffer B [20 mM HEPES (pH 7.2), 0.1% 

Triton X-100, 0.1 M NaCl and 0.2 M glucose]. Then 3 volumes of elution buffer [20 mM 

HEPES (pH 7.2), 0.1% Triton X-100, 0.1 M NaCl and 0.5 M methyl α-D-

glucopyranoside] was added to the tube and rotated overnight. The content in the tube 

was centrifuged at 200 X g for 5 minutes (Beckman JA-20 rotor, Palo Alto, CA) and the 

eluate was collected and kept. Next, 1 volume of the elution buffer was loaded to the tube 
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and rotated for 1 hour. The eluate was collected, pooled and concentrated using 

Centriprep 30 (Millipore, Bedford, MA, USA).       

 

2.10 Protein Concentration Assay 

Protein estimation is of paramount importance in every investigation in biochemistry. For 

example, laboratory practice in protein purification often requires a rapid and sensitive 

method for the quantitation of protein. Presently, a variety of methods are available for 

the determination of protein content of a given sample. The methods employ different 

principles, and may be sensitive to interferences by certain salts, buffer components, and 

some solvents. Each method therefore has certain unique and useful characteristics as 

well as certain limitations. In the biochemical laboratory, the most widely used methods 

often employ photometric and/or colorimetric analyses as these methods are simple, rapid 

and have the required sensitivities.    

2.10.1 Bio-Rad protein assay 

The Bio-Rad Protein Assay Kit (Bio-Rad, Hercules, CA, USA), based on the method of 

Bradford (1976), is a simple and accurate procedure for determining concentration of 

solubilized protein. It basically involves the addition of an acidic dye to a protein solution 

and the subsequent measurement at 595 nm with a spectrophotometer. The comparison to 

a standard curve, which uses bovine serum albumin (Sigma, St. Louis, MO, USA) as a 

standard, provides a relative measurement of protein concentration.  

 Five different dilutions of bovine serum albumin (BSA) between the range of 1.2 

to 10.0 µg/ml using water as diluent were prepared. 800 µl of each standard and unknown 

sample solution were pipetted into clean, dry tubes. For the blank, 800 µl of water was 
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pipetted into the tube instead. 200 µl of dye reagent was added and vortexed. The 

respective mixtures were then incubated at room temperature for 5 minutes and 

absorbance at 595 nm was measured. Protein solutions were measured in duplicates. A 

standard calibration curve of absorbance against BSA was then plotted.     

 

2.11 Fluorometric Detection of ADP-ribosyl Cyclase Activity 

2.11.1 Fluorometric detection of cyclic GDP-ribose 

The enzymatic activity of ADP-ribosyl cyclase was determined as described (Graeff et al., 

1994). This assay is based on the fluorescent properties of cyclic GDP-ribose (cGDPR), 

which is produced from the non-fluorescent substrate, NGD+. Unlike cADPR, cyclic 

GDP-ribose is a poor substrate for the hydrolase activity of CD38 and furthermore, the 

end product GDP-ribose is not fluorescent, thus making the fluorometric detection of 

cGDPR production from NGD+ a suitable assay for the determination of cyclase activity. 

 Briefly, microsomal fractions from both control and TAA-treated rats (50 µg 

protein) were incubated at 37°C for 15 minutes with 100 µM NGD+ in 20mM Tris-HCL 

(pH 7.2) containing 0.1% Triton X-100. The product cGDPR was measured as an 

increase in fluorescence intensity at an excitation and emission wavelength of 300 and 

410 nm, respectively, using LS 50B luminescence spectrophotometer (Perkin-Elmer, 

Foster, USA). The enzymatic activity was calculated from the initial linear slope; change 

in fluorescence (∆) was calibrated from standard curves construed with known 

concentrations of cGDPR.  
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2.12 Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis 

In sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) separations, 

the migration of proteins is not determined by the intrinsic electrical charge of the 

proteins in question but rather by the molecular mass (Shapiro et al., 1967). There are 

two SDS systems currently in use today. The Weber and Osborn system (1969) is a 

continuous SDS system while the Laemmli system (1970) is a discontinuous SDS system. 

The discontinuous system of Laemmli (1970) provides for excellent resolution of 

proteins and is probably the most widely used electrophoretic system today. In our 

present study, the Laemmli system was the method of choice. 

2.12.1 Solutions for SDS-PAGE 

Buffer C: stack buffer 
1 M Tris-HCl      121.14 g 
H2O to 1 liter, pH with HCl to 6.8 
 
 
Buffer D: resolving buffer 
1.5 M Tris-HCl     181.71 g 
H2O to 1 liter, pH with HCl to 8.8 
 
 
SDS 
10% SDS      100 g 
H2O to 1 liter 
 
 
Ammonium persulphate (APS) 
10% APS       
Fresh on the day of use 
 
 
H6X 
60 mM Tris-HCl     6 ml 1 M pH 6.8 
SDS       12 g 
Sucrose      45 g 
H2O to 100 ml 
Warm to dissolve SDS 
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Reducing sample buffer 
H6X       400 µl 
β-mercaptoethanol       25 µl 
2% bromophenol blue         5 µl 
(0.2 g / 10 ml ethanol) 
 
2.12.2 Preparation of SDS-polyacrylamide gel 
 
10% resolving gel      10 ml 
Resolving buffer (buffer D)    2.5 ml 
H2O          4 ml 
30% Acrylamide/Bis     3.3 ml 
10% SDS      0.1 ml 
10% APS      0.1 ml 
TEMED (N,N,N’,N’-tetramethyl-ethylenediamine    4 µl 
 
 
4% stacking gel        3 ml 
Stacking buffer (buffer C)             0.38 ml 
H2O       2.3 ml 
30% Acrylamide/Bis     0.4 ml 
10% SDS       30 µl 
10% APS       30 µl  
TEMED (N,N,N’,N’-tetramethyl-ethylenediamine    3 µl 
 
 

For the preparation of 10% SDS-PAGE gel (1.5 mm thick) in the mini-

PROTEAN® II electrophoresis system (Bio-Rad), 10 ml of the resolving gel solution and 

3 ml of the stacking gel solution were prepared. After setting the resolving gel, the 

stacking gel was layered on top of the resolving gel and the appropriate gel comb was 

inserted.  

2.12.3 Addition of sample buffer to protein samples 

Four parts of the respective protein samples were mixed with one part of the sample 

buffer (reducing buffer). The mixtures were put in a boiling water bath for 5 minutes and 

then on ice until ready to be used.  
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2.12.4 Loading the samples and running the gel 

The comb was slowly removed from the stacking gel. The upper and lower buffer 

chambers were filled with tank buffer containing 0.025 M Tris-HCl (pH 8.3), 0.192 M 

glycine and 0.1% SDS. Boiled samples, microsomal proteins (300 µg) from control and 

TAA-treated rats, were loaded into each well. Model 200/2.0 Power Supply from Bio-

Rad was turned on, and adjusted to 100 V. After the samples entered the separating gel, 

the voltage was increased to 150 V. When the dye reached the bottom of the gel, the 

power supply was turned off. For the determination of molecular mass, pre-stained SDS-

PAGE standard protein marker, Precision Plus ProteinTM Standards, (Bio-Rad, Hercules, 

CA, USA) was used.  

 

2.13 Western Blotting 

Microsomal proteins (200 µg) and purified CD38 (20 µg), which serves as a positive 

control, were subjected to 10% (w/v) SDS-PAGE according to Laemmli (1970). 

Immunoblotting was performed following the method of Towbin et al. (1979). Briefly, 

the proteins resolved in the gel were electrophoretically transferred to a 0.2-µm 

nitrocellulose membrane (Bio-Rad) using tank transfer system Mini Trans-Blot® Cell 

(Bio-Rad) at 100 V for 1 hour. The transfer buffer contained 25.6 mM Tris-base, 192 mM 

glycine and 20% methanol. The 20% methanol decreased the rate of elution from the gel 

but increased the efficiency of protein binding to the nitrocellulose. The transferred 

membrane was then blocked in TBS (20 mM Tris-HCl, 137 mM NaCl, pH 7.5) 

containing 5% (w/v) skim milk and 0.1% Tween 20 for 1 hour. The membrane was then 

incubated overnight at 4°C with polyclonal goat anti-rat CD38 antibody (1:100). This 
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was followed by washing (3 times) and incubation for 2 hours at room temperature with a 

horseradish peroxidase-conjugated rabbit anti-goat IgG (1:2500). In a separate set of 

experiment, the primary anti-CD38 antibody was incubated with 10X excess amount of 

the CD38 blocking peptide (Santa Cruz) for 1 hour at room temperature before 

subsequent addition of the mixture to the membrane. After washing for 3 times with 

washing buffer (TBS-T), the membrane was subjected to the same secondary antibody 

staining as described previously. The membrane was then developed using the ECLTM 

system (Amersham Biosciences, Buckinghamshire, England).  

The ECLTM Western blotting assay system was used according to the 

manufacturer’s instruction. Briefly, an equal volume of ECLTM detection solution 1 was 

mixed with detection solution 2 (both solutions are provided in the ECLTM Western 

blotting kit). This mixture was directly added to the blot, which was subsequently 

incubated for 1 minute at room temperature and immediately wrapped in Saran Wrap. 

The signals on the blot were visualized by exposing to CL-X PosureTM film (PIERCE, 

Rockford, IL, USA) for 1 minute (subjective). A standard protein marker (Bio-Rad) was 

electrophoresed simultaneously for comparing the molecular weights of the visualized 

proteins in the membrane. Same blot was subjected to Coomassie Blue (Bio-Rad) 

staining according to the method described below, section 2.12.1, to detect total protein 

in the samples and was used for loading control. The X-ray films were scanned and the 

intensity of the bands was quantified by densitometry (Analytical Imaging Station, 

Ontario, Canada).  
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2.13.1 Coomassie Blue staining of membrane 

The membrane that was used in Western Blot was then stained with Bio-Safe Coomassie 

Blue G250 (Bio-Rad) according to the manufacturer’s protocol to detect total protein in 

the samples and was used for loading control. Briefly, the membrane was washed 3 times 

for 5 minutes each in 200 ml of ddH2O per membrane. Water was removed from the 

staining container and then 50 ml (or enough to completely cover the membrane) of Bio-

Safe Coomassie Stain (Bio-Rad) was added. The membrane was gently shaken for 1 hour 

and protein bands were visible within 20 minutes. Next, the membrane was rinsed in 200 

ml of ddH2O for at least 30 minutes (change water during washing) and stored in water. 

Rinsing the membrane extensively in water after staining will remove background and 

allow proper visualization of the protein bands.    

 

2.14 Extraction of cADPR From Rat Liver Tissues  

Control and TAA-treated rat livers were frozen in liquid nitrogen and endogenous 

cADPR was extracted as described by da Silva et al. (1998), with some modifications. 

Briefly, the tissues were weighed and 1 ml of perchloric acid was used for extraction for 

every 100 - 200 mg of tissue prior to extraction. Rat tissues were homogenized using 

PRO 200 Homogenizer (PRO Scientific, Oxford, CT, USA) in 0.9 ml of MilliQ water 

(Millipore, Bedford, MA) and homogenization was performed for 3 times, each for 30 

seconds at the maximum speed, with a 30 seconds pause in between. An aliquot (10 µl) 

was removed for protein determination and the remaining sample was de-proteinized by 

addition of 0.1 ml of 6 M perchloric acid, HClO4. The HClO4 extract was immediately 

vortex-mixed and kept at -20°C for 20 minutes. Then, precipitated protein was removed 
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by centrifugation at 15,000 X g for 10 minutes (4°C). The supernatant was collected and 

titrated to pH 7-8 by addition of 1 M KOH to remove the perchloric acid. After standing 

for 30 minutes on ice, the samples were again centrifuged at 15,000 X g for 10 minutes 

(4°C) to remove the KClO4 precipitate. A mixture containing 0.0625 unit/ml Neurospora 

crassa NADase, 2.5 mM MgCl2 and 20 mM sodium phosphate (pH 8.0) was added to the 

samples for removal of contaminating nucleotides (NAD+) except cADPR, which is 

resistant to NADase. The incubation proceeded overnight at 37°C. Enzyme was removed 

by filtration with Centricon-3 filters (Millipore) and samples were recovered in the 

filtrate after centrifugation at 4°C and 3000 X g for 30 minutes using a Beckman JA-20 

rotor (Palo Alto, CA). 

 

2.15 Cycling Assay for cADPR 

The cycling assay was first described by Graeff and Lee (2002) and provides an efficient 

one-step method of quantifying cellular cADPR and NAD+, with an exceptionally high 

sensitivity within the nanomolar range. It captures the unique ability of ADP-ribosyl 

cyclase to catalyse the reverse of cADPR synthesis from NAD+. In the presence of high 

concentrations of nicotinamide, NAD+ can be produced from cADPR stoichiometrically. 

The NAD+ formed can then be coupled to a cycling assay involving alcohol 

dehydrogenase and diaphorase. Each time NAD+ cycles through these coupled reactions, 

a molecule of highly fluorescent resorufin is generated. (Scheme 2.1) 

In this study, cADPR was measured by the cycling enzymatic assay according to 

the method described by Graeff and Lee (2002), the sensitivity of which is in the 

nanomolar range. Briefly, reactions were conducted in black opaque 96-well plates. 50 µl 

 65



of the tissue samples that contain extracted cADPR from control and TAA-treated rat 

livers (section 2.14), was added to each well and topped up to a final volume of 0.1 ml 

with 20 mM sodium phosphate, pH 8. To 0.1 ml of cADPR samples, 50 µl of reagent was 

added containing 1 µg/ml ADP-ribosyl cyclase (Sigma), 30 mM nicotinamide (Sigma) 

and 100 mM sodium phosphate, pH 8. This initiated the conversion of cADPR in the 

samples to NAD+. The conversion was allowed to proceed for 15 minutes at room 

temperature (≈ 25°C). The cycling reagent (0.1 ml) was then added, which contained 2% 

ethanol, 100 µg/ml alcohol dehydrogenase, 20 µM resazurin, 10 µg/ml diaphorase, 10 µM 

FMN, 10 mM nicotinamide, 0.1 mg/ml BSA and 100 mM sodium phosphate, pH 8. The 

cycling reaction was allowed to proceed for 4 hours and the increase in the resorufin 

fluorescence (with excitation at 544 nm and emission at 590 nm) was measured 

periodically (30-minute intervals) using SpectraMax Gemini Fluorescence Reader 

(Molecular Devices, Sunnyvale, CA, USA). The cycling assay was performed in the 

presence and absence of ADP-ribosyl cyclase to allow quantification of the background 

contribution by residual NAD+ and other interfering nucleotides. The difference in the 

resorufin signal in the presence and absence of the cyclase was calibrated using cADPR 

standards. Standard solutions of cADPR (ranging from 0-10 nM) were prepared in 20 

mM sodium phosphate, pH 8, and taken through the same steps as the samples. The assay 

was done in triplicates.  
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Scheme 2.1  The cycling assay for cADPR.  
AD, alcohol dehydrogenase; hv, fluorescence light. (Adapted from Graeff and Lee, 2002) 

 

2.16 Extraction and Cycling Assay of NAD+ From Rat Liver Tissues 

Endogenous NAD+ in perchloric acid extracts of rat liver tissues can also be measured. 

The extraction method was performed as described previously in section 2.14, for 

cADPR extraction without the addition of the NADase enzyme. The acid extract was 

diluted 400-fold in 100 mM sodium phosphate buffer (pH 8), adjusted to pH 8, and 

assayed by the complete cycling assay as described for cADPR without the conversion of 

cADPR to NAD+ step (section 2.15). Briefly, 1 µl and 10 µl of diluted aqueous tissue 

samples from control and TAA-treated rat livers, respectively, were added to each well 

and topped up to a final volume of 0.1 ml with deionised water. To each well, 0.1 ml of 

cycling reagent was added, which contained 2% ethanol, 100 µg/ml alcohol 

dehydrogenase, 20 µM resazurin, 10 µg/ml diaphorase, 10 µM FMN, 10 mM 
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nicotinamide, 0.1 mg/ml BSA and 100 mM sodium phosphate, pH 8, and deionised 

water. The reaction was allowed to proceed for 2 hours during which, the increase in 

resorufin fluorescence (with excitation at 544 nm and emission at 590 nm) was measured 

periodically at 15-minute intervals using a fluorescence microplate reader (SpectraMax 

GeminiXS, Molecular Devices, USA).  

As can be seen in the scheme of the cycling assay (Scheme 2.1), endogenous NAD+ 

levels can be measured by conversion into NADH. Tissue extracts were incubated with 

and without alcohol dehydrogenase, and the difference in NADH fluorescence produced 

was calibrated with NAD+ standards. Standard solutions of NAD+ (ranging from 0-10 

nM) were prepared using deionised water. The assay was carried out in triplicates.  

 

2.17 Statistical Analysis 

Data were assessed with a Student t-test for unpaired samples, and significance was set at 

P < 0.05. Values are presented as mean ± SEM, and n refers to the number of 

determinations.  
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CHAPTER 3 

RESULTS 

 

4.1 Development of Liver Cirrhosis in Thioacetamide-Administered Rats 

Liver cirrhosis was successfully induced in male Wistar rats through intraperitoneal 

injection of the hepatotoxin (thioacetamide) at a dosage of 300 mg/kg, twice a week for 

10 weeks. Control group received the similar volume of sterile water. In the control group, 

animals showed a normal gain in body weight. In the TAA-treated groups, the body 

weight decreased and is in accordance with previous observation (Al-Bader et al., 2000). 

The development of liver cirrhosis in the TAA-treated rats was further judged by the 

gross examination of the liver (Figure 3.1). Numerous macronodular nodules can be seen 

on the surface of the cirrhotic liver.  

 Histopathological analysis using H & E-stained cryostat sections as described 

previously in section 2.4.1, Chapter 2, showed that the livers of the control animals 

revealed a normal histology. However, all animals on thioacetamide treatment developed 

liver cirrhosis by the end of the experimental period. Figure 3.2 shows histopathological 

changes typical of liver cirrhosis, including focal necrotizing cholangitis, coarse fibrous 

septa, bile duct proliferation and hepatocyte nodules with diffuse steatosis. 
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(A) (B) 

Figure 3.1  Macroscopic view of the livers.  
(A) Control rat. (B) TAA-treated rat. Numerous macronodular nodules can be seen on the 
surface of the cirrhotic rat liver.  
 

 

 
(A) (B) 

               

Figure 3.2  Haematoxylin and eosin stained hepatic section of control (A) and 
cirrhotic rats (B). 
Liver sections from cirrhotic rats show fibrous bridges (arrow) and other factors typical 
of established cirrhosis such as bile duct proliferation (arrowhead). Scale bar, 60 µm. 
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3.2 Analysis of CD38 Expression by RT-PCR and Real-Time Quantitative PCR 

Total RNA isolated from rat livers was reverse transcribed to cDNA and further 

amplified by PCR using primers specific for rat CD38 as described in section 2.5.1 

and 2.5.4, respectively. The intensity of the bands (267 bp) in control and TAA-

treated rat samples was compared to assess the effect of thioacetamide-induced 

cirrhosis on CD38 expression. As can be seen from Figure 3.3, there was enhanced 

CD38 mRNA expression in livers obtained from TAA-treated rats as compared with 

the controls. Ratiometric analysis of the intensity of the bands using Analytical 

Imaging Station (Ontario, Canada) showed an approximately 2.5-fold (P < 0.05) 

increase in CD38 transcript level in liver samples from TAA-treated rats. The 

differences in the density of the individual bands demonstrate the variability of 

response of the rats to TAA treatment. 28S rRNA PCR products (~270 bp) show a 

uniform expression (Figure 3.3) indicating that the endogenous control expression 

level is similar in all samples in the study. The endogenous control (28S rRNA) was 

used in the ratiometric analysis to normalize differences in the amount of cDNA that 

was loaded into PCR reaction wells. Therefore, it is critical to determine if the study 

treatment or intervention is affecting the expression level of the candidate 

endogenous control gene.  
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(A) 

CD38

(B) 

 

 

Figure 3.3  RT-PCR of CD38 mRNA and 28S rRNA in rat liver.  
(A) Lanes 1 to 3 and lanes 4 to 6 represent PCR products using rat CD38 primers 
control and TAA-treated rats, respectively. Lane 7 represents 100-bp DNA ladder.  
(B) Lane 1 represents 100-bp DNA ladder. Lanes 2 to 4 and lanes 5 to 7 represent 
products using rat 28SrRNA primers (~270 bp) from control and TAA-treated 
respectively. Lanes 8 to 10 and lanes 11 to 13 represent negative controls (wi
reverse transcriptase) from control and TAA-treated rats, respectively. Data repres
independent experiments.   
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Real-time RT-PCR of RNA extracted from livers of control and TAA-treated rats 

was performed according to the method described in section 2.5.5, Chapter 2, using the 

ABI PRISM 7000 sequence detection system (Applied Biosystems) with the DNA 

binding SYBR Green 1 dye for the detection of PCR products. Results confirmed that 

there was an increased expression of CD38 in TAA-treated rat liver. Emitted 

fluorescence for each reaction was measured during the annealing-extension phase, and 

amplification plots were analyzed by using the ABI PRISM 7000 sequence detection 

system (Figure 3.4). Product specificity was determined by melting curve analysis with 

the ABI PRISM dissociation curve software (Figure 3.5). A relative quantitation assay 

(∆∆Ct method) was used to analyze changes in CD38 expression in the livers of TAA-

treated rats relative to the control rats by measuring the Ct (threshold cycle) values. The 

Ct is defined as the cycle number at which the fluorescence generated within a reaction 

crosses the threshold line. To take into account the variability in the initial concentration 

and quality of the total RNA introduced into the reaction, transcripts of 18S rRNA were 

quantified as an endogenous RNA control, and each sample was normalized to 18S rRNA.  

The mean Ct values for control and TAA-treated samples were 26.27 and 25.16, 

respectively, and these values were used to calculate the fold-differences in CD38 

between the control and TAA-treated samples (2-∆∆Ct). The ∆Ct value was calculated by 

subtracting of the average 18S rRNA Ct value from the average CD38 Ct value of the 

control/TAA-treated samples. Then, ∆∆Ct was obtained by subtracting the ∆Ct of the 

control/TAA-treated samples from the ∆Ct of the control (calibrator sample). A calibrator 

sample is a sample used as the basis for comparative expression results. From the 

calculations, there was an approximate 2.5-fold increase of CD38 in the livers of TAA-
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treated rats relative to that of the control rats (Figure 3.6) and this is in accordance with 

the RT-PCR ratiometric analysis.  

 
 
 
 
 
 
 
 

 
18S rRNA CD38 Threshold 

bar  

 

 

 

 

 

 

Figure 3.4 Representative amplification plot (fluorescence generated versus cycle 
number) for both amplified CD38 and 18S rRNA PCR products.  
The Ct value of CD38 replicates is higher than the Ct value of 18S rRNA replicates. (n = 
6) 
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Figure 3.5 Representative dissociation curves that display dissociation data from 
the amplicons of quantitative PCR runs.  
Change in fluorescence (due to SYBR Green 1 dye interacting with double stranded 
DNA) was plotted against temperature. The dissociation curves above show specific 
amplification without primer-dimer formation. The specific product is shown with a 
melting temperature (Tm) of 81°C. (n = 6) 
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Figure 3.6  CD38 mRNA expression level (2-∆∆Ct) in control and TAA-treated 
determined by quantitative real-time RT-PCR.  
Values are mean ± SEM of 6 independent experiments performed in triplicate (n = 6). 
*Significantly different from control (P< 0.05).  
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4.3 Immunohistochemical detection of CD38 

Immunohistochemical methods in conjunction with confocal microscopy techniques were 

performed to localize the distribution of CD38 in the control and cirrhotic rat liver tissues. 

The periodate-lysine-paraformaldehyde (PLP) fixative was used according to the method 

of McLean and Nakane (1974) to fix the liver tissues in order to obtain an optimal 

balance between ideal morphology and yet not too harsh a fixative to prevent drastic 

modification of the CD38 antigen. The fixed cryostat liver sections were immunolabeled 

with anti-CD38 antibodies and observed at low (20 x Fluar objective) and high (60 x 

Fluar objective with oil immersion) magnifications using confocal microscopy as 

described in sections 2.6.1 and 2.7, respectively. There was no fluorescent signal for 

negative controls (data not shown). The level of CD38 protein expression in control rats 

was relatively low and in contrast, CD38 was significantly increased in TAA-treated rats 

(Figure 3.7, low magnification). As can be seen from Figure 3.8 (high magnification), the 

staining was observed almost exclusively to the hepatocyte plasma membrane domain 

and again, it was observed that there was an increased CD38 expression in TAA-treated 

liver tissue section. The quantification of fluorescent dye using Image-Pro Plus Version 

4.5 (Media Cybernetics, North Reading, MA) revealed an approximate 1-fold (P < 0.05) 

increase in CD38 expression in liver tissues of TAA-treated rats compared with that of 

control rats.  
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(A) 

(B) 

Figure 3.7     Localization of CD38 in rat hepatocytes (low magnification, 20x). 
Fixed liver sections were immunostained with anti-CD38 antibodies (green signal). (A) 
Control rat liver section and (B) TAA-treated rat liver section, with fluorescent (left) and 
combined fluorescent and transmitted light (right) images in a single photomicrograph. A 
higher level of CD38 immunoreactivity was detectable in TAA-treated rats by 
immunohistochemistry. Arrows indicate the fibrous septa (fibrosis). Results are 
representative of 3 experiments performed in duplicate. Scale bar, 100 µm. 
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(A) 

(B) 

Figure 3.8     Localization of CD38 in rat hepatocytes (high magnification, 60x with 
oil immersion).  
Fixed liver sections were immunostained with anti-CD38 antibodies (green signal). (A) 
Control rat liver section and (B) TAA-treated rat liver section, with fluorescent (left) and 
combined fluorescent and transmitted light (right) images in a single photomicrograph. A 
higher level of CD38 immunoreactivity was detectable in TAA-treated rats by 
immunohistochemistry. Results are representative of 3 experiments performed in 
duplicate. Scale bar, 20 µm. 
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3.4 ADP-Ribosyl Cyclase in Rat Liver Microsomes 

The microsomal fractions were isolated from the homogenized livers of control and 

TAA-treated rats according to the method described in section 2.8. After solubilization 

with 4% Triton X-100, the supernatants were collected and assayed for GDP-ribosyl 

cyclase activity (section 2.11.1). Incubation of solubilized microsomal extracts from the 

livers of control and TAA-treated rats with NGD+ resulted in time-dependent conversion 

to cGDPR. It was observed that all samples possessed GDP-ribosyl cyclase activity. The 

enzymatic activity was calculated from the initial linear slope; change in fluorescence (∆) 

was calibrated from standard curves construed with known concentrations of cGDPR. 

Microsomes obtained from TAA-treated rats exhibited increased rates of conversion of 

NGD+ to cGDPR (Figure 3.9A) and significantly higher specific activity (Figure 3.9B; 

133.52 ± 12.95 and 234.73 ± 29.88 nmoles mg-1 min-1 in control and TAA-treated groups, 

respectively; P < 0.05).  
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Figure 3.9  ADP-ribosyl cyclase activity in solubilized microsomal extracts 
obtained from control and TAA-treated rats.  
(A) Representative tracing of ADP-ribosyl cyclase activity (expressed in fluorescence 
intensity in arbitrary units) versus time (in seconds) in the presence of 100 µM NGD+ and 
50 µg of microsomal proteins. (B) Specific activity of ADP-ribosyl cyclase (nmoles min-1 
mg-1) in liver microsomes obtained from control and TAA-treated rats (n = 6). Values are 
mean ± SEM. *Significantly different from control (P < 0.05).   
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3.5 Western Blot Detection of CD38 in Microsomes 

Microsomal proteins were fractionated by SDS-PAGE and the separated proteins were 

transferred to a nitrocellulose membrane according to section 2.13, Chapter 2. From 

Figure 3.10, it can be seen that there was a consistent detection of CD38 in the 

microsomal fraction with a polyclonal goat anti-rat CD38 antibody under reducing 

condition. We also observed that CD38 expression was significantly greater in 

microsomes from TAA-treated rats than those from controls (Figure 3.10). Densitometric 

analysis of the bands in the Western blots using Analytical Imaging Station (Ontario, 

Canada) revealed an approximately 1-fold (P < 0.05) increase in CD38 expression in 

microsomes from TAA-treated rats as compared with those from the controls. This result 

correlates well with the elevation of GDP-ribosyl cyclase activity and the increased 

immunofluorescence (immunohistochemistry) in the livers of TAA-treated rats. However, 

the protein band of CD38 (45 kDa) disappeared in the experiment when blocking peptide 

was added together with the polyclonal goat anti-rat CD38 antibody (primary antibody) 

prior to application on the membrane for the Western blot studies (Figure 3.11). This 

demonstrates that the polyclonal goat anti-rat CD38 antibody is specific for rat CD38 

which is at the molecular weight of 45 kDa. There are also other non-specific bands 

(other than 45 kDa) detected on the Western blot that cannot be removed by the blocking 

peptide. This non-specificity is due to the polyclonal antibody’s properties which could 

recognize other epitopes from other antigens.   
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Figure 3.10  Representative Western blot showing increased CD38 expression in 
liver microsomes from TAA-treated rats compared with controls.  
Lanes 1 and 2 are liver microsomes from 2 different control rats, and lanes 3 and 4 are 
liver microsomes from 2 different TAA-treated rats. Lane 5 is purified CD38 that serves 
as positive control. Arrow indicates the CD38 band at a molecular weight of ~45 kDa. 
Lower panel shows the total protein detection (same blot used for CD38 detection) which 
was stained with Bio-Safe Coomassie Blue (Bio-Rad) that was used as loading control. 
Data represent 6 separate determinations.  
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Lanes            1                      2                                      1                     2 
 

Figure 3.11 Detection of CD38 with Western blotting.  
Lane 1 represents purified CD38 (positive control) and lane 2 represents microsomal 
fraction from rat liver. Both were probed with anti-CD38 polyclonal antibody without the 
addition of Santa Cruz blocking peptide  (A). Both of these bands disappeared when 
the anti-CD38 polyclonal antibody was incubated with the Santa Cruz blocking peptide 
for 1 hour prior to probing and visualized using the ECLTM system (B). Arrow indicates 
the position of the molecular weight of CD38. Total protein loaded for lane 1 was 20 µg 
and lane 2 was 200µg. Certain minor protein bands were due to nonspecific 
immunoreactivity.   
 

 

 

 

 

 84



 

3.6 cADPR Levels in Rat Liver Tissues 

ADP-ribosyl cyclase normally catalyses the synthesis of cADPR from NAD+, but the 

reaction can be reversed in the presence of high concentrations of nicotinamide, 

producing NAD+ from cADPR stoichiometrically. The resultant NAD+ was then coupled 

to cycling assay involving alcohol dehydrogenase and diaphorase. Each time NAD+ 

cycles through these coupled reactions, a molecule of highly fluorescent resorufin is 

generated. As expected from the design of the assay, resorufin produced from cADPR 

absolutely required the presence of the cyclase, which is in contrast to NAD+.  

 cADPR was extracted from rat liver tissues of both control and TAA-treated rats 

according to the method described by da Silva et al. (1998) with some modifications. Rat 

tissue extracts were first treated with Neurospora crassa NADase to remove endogenous 

NAD+. The cycling assay was then performed in triplicates and repeated twice, in the 

presence and absence of Aplysia ADP-ribosyl cyclase. The latter condition provided a 

convenient means to distinguish between contributions of authentic signals from that of 

the background, such as contaminating NAD+. The difference in the resorufin signal in 

the presence and absence of the cyclase was calibrated using cADPR standards. Figure 

3.12A shows that both the amounts of resorufin fluorescence and the linearity of the 

assay were very similar to those seen with NAD+ standards, indicating that the 

conversion of cADPR into NAD+ was stoichiometric.  The cycling assay exhibited a 

linear relationship between the rate of resorufin fluorescence increase and starting 

cADPR concentrations (Figure 3.12B). The linear relation held for all concentrations of 

cADPR standard tested (0 – 10 nM).  
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Figure 3.13A shows the linear relationship between the resorufin fluorescence and 

time. The rates of fluorescence were obtained from the linear regressions of both control 

and TAA-treated rats. Figure 3.13B illustrates the cellular cADPR level in control and 

TAA-treated rat liver tissues. Interestingly, cADPR content was only slightly augmented 

(22.3% higher) in TAA-treated rats compared to that in the control group. The average of 

cADPR levels in both control and TAA-treated were 1.04 ± 0.15 and 1.28 ± 0.03 

pmoles/mg protein (P < 0.05), respectively.  
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Figure 3.12 The cycling assay for cADPR standard.  
(A) Various concentrations of cADPR standard were incubated in triplicates with the 
complete mixture of the cycling assay, including the ADP-ribosyl cyclase (+ cyclase), as 
described in the section 2.15. The   resultant continuous increase in resorufin 
fluorescence was measured periodically using a multiwell plate reader. (B) The rates of 
resorufin fluorescence increase were obtained by linear regression analyses of 
fluorescence time courses and plotted against cADPR standard concentrations. In the 
absence of the cyclase, no increase in resorufin fluorescence was observed. The inset 
contrasts the cycling assay for cADPR and NAD+. For cADPR, the assay was completely 
dependent on the presence of the cyclase, whereas, in the case of NAD+, it was totally 
independent of the cyclase.  
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Figure 3.13  cADPR levels in control and TAA-treated rats.  
(A) Representative results show that the rates of resorufin fluorescence increase were 
obtained from the slopes of the linear regression lines, and they were perfectly linear (R2 
> 0.99) with respect to cADPR concentrations. The rate of fluorescence produced in 
TAA-treated rats was higher than that in the control rats. (B) cADPR levels in livers of 
control and TAA-treated rats. cADPR levels in the livers of the TAA-treated rats were 
significantly higher than in the group of control rats. The values are expressed in 
pmoles/mg protein and are mean ± SEM (n = 6). *Significantly different from control (P 
< 0.05). 
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3.7 NAD+ Levels in Rat Liver Tissues 

According to Scheme 2.1, cellular NAD+ levels may also be determined via the cycling 

assay by bypassing the ADP-ribosyl cyclase step. NAD+ was fed into the coupled-

enzyme cycling reaction, consisting of alcohol dehydrogenase and diaphorase. The 

former reduced NAD+ to NADH, while the latter cycled NADH back to NAD+ with the 

production of a highly fluorescent resorufin molecule from the non-fluorescent substrate, 

resazurin.  

 We first verified the cycling reactions with nanomolar concentrations of NAD+. 

Figure 3.14A shows the amplification of NAD+ resulted in a linear increase in resorufin 

fluorescence for up to 2 hours. The linear relation held for all concentrations of NAD+ 

tested (0 – 10 nM). The rates of increase of resorufin fluorescence were obtained from the 

slopes of the linear regression lines, and they were extremely linear (R2 = 0.9855) with 

respect to NAD+ concentration (Figure 3.14B). Similar results were reproduced upon 

repetition of this experimental setup. The linearity of the assay was quite remarkable 

considering that two different enzyme reactions were coupled. The assay is thus clearly 

sensitive enough to detect as low as 1 – 2 nM NAD+. This cycling reaction can be 

monitored conveniently in a fluorescence multiwell plate reader, which can be set to 

measure the increase in resorufin fluorescence periodically. It is therefore a one-step 

assay, not requiring any further separation or manipulation of the samples, making it 

highly convenient and reproducible.    
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Figure 3.14 The cycling assay for NAD+ (standard assay).  
(A) Various concentrations of NAD+ were incubated in triplicates with the cycling assay 
reagent mix, including alcohol dehydrogenase (AD), as described in the section 2.16, 
Chapter 2. Resorufin fluorescence was observed to increase linearly with time and this 
linearity held for all concentrations of NAD+ tested (0 – 10 nM). (B) The rates of 
resorufin fluorescence increase were obtained by linear regression analyses of 
fluorescence time courses and plotted against NAD+ standard concentrations. In the 
absence of the alcohol dehydrogenase (ADH), no increase in resorufin fluorescence was 
observed. 
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Figure 3.15 illustrates the endogenous NAD+ levels in control and TAA-treated 

rat liver tissues. We observed that the NAD+ levels were drastically decreased in TAA-

treated rats compared to that in the control group. The average of NAD+ levels in both 

control and TAA-treated rats were 5.68 ± 0.75 and 1.44 ± 0.51 nmoles/mg protein (P < 

0.05), respectively.  
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Figure 3.15 NAD+ levels in livers of control and TAA-treated rats.  
NAD+ levels in the livers of the TAA-treated rats were significantly lower than in the 
group of control rats. The values are expressed in nmoles/mg protein and are mean ± 
SEM (n = 6). *Significantly different from control (P < 0.05). 
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CHAPTER 4 

DISCUSSION 

 

CD38 is a 42-45 kDa type II transmembrane glycoprotein (Jackson and Bell, 1990) and 

was first defined by monoclonal antibody typing more than 20 years ago as a lymphocyte 

surface antigen (Reinherz et al., 1980). It is now known that CD38 is expressed not only 

in many other hematopoietic cells (Zocchi et al., 1993; Ramaschi et al., 1996), but is also 

widely distributed among nonhematopoietic tissues (Koguma et al., 1994). The question 

of what function of CD38 is in the liver cirrhosis has yet to be answered conclusively. A 

large body of evidence supported the view that Ca2+ homeostasis is altered in liver 

cirrhosis. It has been reported that hepatic intracellular Ca2+ was elevated while the 

endoplasmic reticulum sequestered Ca2+ was decreased in thioacetamide-administered 

rats (Diez-Fernandez et al., 1996). Further, there was differential regulation and 

expression of three isoforms of IP3 receptors in liver cirrhosis (Dufour et al., 1999). The 

expressions of types 1 and 3 isoforms were increased while the expression of type 2 

isoform was decreased in bile duct-ligated rats. The localizations of type 2 isoform to the 

apical domain of hepatocytes and type 3 isoform to the intrahepatic bile duct epithelial 

cells suggest that Ca2+ homeostasis is altered in these cells.  

Together, these data raise a question of whether CD38 could be involved in 

altering the Ca2+ homeostasis through cADPR formation that activates ryanodine 

receptors and then lead to CICR. In this study, a possible answer(s) to this matter was 

provided by performing a study to investigate the biochemical and immunohistochemical 

characteristics of CD38 as well as the cADPR and NAD+ levels in thioacetamide-induced 
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rat liver cirrhosis. The reason why thioacetamide-induced rats was used was that it is a 

reliable model as thioacetamide (TAA) induces prominent regenerative nodules and liver 

fibrosis, and the histology of the TAA-induced model is more similar to human cirrhosis 

(Zimmermann et al., 1987). It was demonstrated here that there was a significant increase 

in CD38 mRNA level in the cirrhotic liver. Similarly, CD38 protein expression was 

elevated in the cirrhotic liver compared to the control liver and it was found to be 

localized at the plasma membrane of rat hepatocytes in immunohistochemistry. The 

increased enzymatically active CD38 expression is reflected by significantly enhanced 

ADP-ribosyl cyclase activity in liver microsomes. In addition, analysis of cADPR levels 

in liver from TAA-treated rats revealed a 22.3% increase (P < 0.05) compared to that 

from control rats.  

Calcium (Ca2+) is an important second messenger and the mobilization of Ca2+ 

from intracellular stores is a fundamental mechanism of signaling that not only mediates 

muscle contraction but also triggers and regulates many cellular processes, including the 

progression through G1/S and mitosis (Berridge, 1990; Lu and Means, 1993). Sustained 

elevations of intracellular calcium activate cytotoxic mechanisms, contributing to cell 

injury and death induced by hepatotoxic agents (DiMonte et al., 1984; Moore et al., 

1985). The alteration of Ca2+ homeostasis in liver cirrhosis may be involved in cell 

necrosis and in the acute mitogen response during the abnormal regeneration of the 

nodules. Diez-Fernandez et al. (1996) reported that hepatic intracellular Ca2+ was 

elevated while the endoplasmic reticulum sequestered Ca2+ was decreased which 

indicated that the effect of thioacetamide on calcium mobilization from its intracellular 

stores, was followed by a chronological sequence of events which could be related to cell 
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death and regeneration. The increased CD38 expression at both transcript and protein 

levels as well as cADPR in TAA-treated rats in this study suggests that CD38 might be 

involved in altering Ca2+ homeostasis through ADP-ribosyl cyclase-catalyzed formation 

of cADPR that plays a role in the activation of ryanodine receptors via Ca2+-induced Ca2+ 

release. 

cADPR has been most extensively studied and shown to function as a calcium-

mobilizing second messenger in a number of cell types isolated from a variety of 

organisms (Lee, 2001). CD38 as an ectoenzyme on the plasma membrane, possesses 

ADP-ribosyl cyclase activity which is able to catalyze the synthesis cADPR and 

nicotinamide from β-NAD+, and cADPR hydrolase activity, which degrades cADPR to 

ADPR (Zocchi et al., 1993; Inageda et al., 1995). Later, Cakir-Keifer et al. (2000) 

reported that under normal physiologic pH conditions (pH 7), CD38 first catalyzes the 

release of nicotinamide from NAD+ and then mediates the formation of an oxocarbenium 

intermediate. This intermediate is either cyclized to form cADPR (cyclase reaction) or is 

hydrolyzed to form ADPR (glycohydrolase reaction).  

Since the active site of CD38 is extracellular, the substrate for CD38 is likely to 

be found outside the cell. NAD+, the substrate for CD38, is normally localized inside the 

cells and is not found in high concentrations in the extracellular milieu of serum or 

exudate (Kim et al., 1993b). Despite the ectoenzyme nature of CD38 and the intracellular 

localized NAD+, a significant increase of intracellular cADPR levels has been observed 

in TAA-treated rat liver in the present study. It is hypothesized that high local 

concentrations of extracellular NAD+ would be present at sites of cell necrosis and tissue 

damage (Adriouch et al., 2001; Liu et al., 2001). Therefore, it is now thought that under 
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normal homeostatic conditions, minimal substrate is available for ecto-CD38, thus 

limiting its enzyme activity. However, near sites of inflammation or cell necrosis as a 

consequence of cirrhosis, extracelllular NAD+ is likely to be present in concentrations 

sufficient to be utilized efficiently by CD38. cADPR thus formed may then be 

transported back via oligomeric CD38 to act intracellularly on ryanodine receptors 

(Franco et al., 1998) and led to the increase of cADPR level in cirrhotic rat liver. It has 

been shown that cADPR could enter the cells through a channel generated by two or four 

CD38 monomers as suggested by the presence of catalytic active monomers, homodimers 

and homotetramers in CD38-transfected HeLa cells (Bruzzone et al., 1998).  

Previously, Zocchi et al. (1996) has shown that there was a corresponding 

increase in cADPR levels in CD38 internalized cells. Based on this observation, they 

concluded that intravesicular localization of internalized CD38 did not cause the 

unavailability of cytosolic NAD+ to the catalytically active site (Lund et al., 1995), 

possibly because of permeation of NAD+ across the endocytotic CD38-containing 

vesicles. It has also been postulated that internalization might represent an alternative 

mechanism of intracellular signaling which is unrelated to its enzymatic properties and 

the calcium-releasing properties of cADPR. Indeed, this postulation has been given 

credence through the studies performed by Funaro et al. (1998) whereby they have shown 

that the internalization step could be a negative feedback control mechanism which 

interrupts signal transduction processes mediated by the surface membrane CD38. 

Despite the various models that were proposed thus far for the mechanism of CD38 

mediated cADPR-calcium mobilizing activities in the cell, the ecto-location of CD38 and 

the means to transport its product, cADPR, into the intracellular environment where it 
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can exert its calcium release activity (De Flora et al., 1997) remains an unresolved issue 

with researchers in the CD38 field. 

CD38, unlike the Aplysia enzyme, is a very inefficient cyclase, with cADPR 

representing only 1-3% of the final product and ADPR accounting for the rest (Howard et 

al., 1993). Although the present study revealed a marginal increase (22.3%) of cADPR 

content in TAA-treated rat liver (section 3.6), it has been shown that this relative paucity 

of cADPR produced by CD38 is biologically relevant (Howard et al., 1993). The 

production of cADPR by CD38 is of particular interest to biologists, as cADPR has been 

shown to induce intracellular calcium release from ryanodine receptor (RyR)-gated stores 

in a number of different mammalian cell types including smooth muscle and neuronal 

cells (Guse et al., 1999). Interestingly, the cADPR-triggered, RyR-gated intracellular 

calcium stores in these cell types are spatially, functionally and pharmacologically 

distinct from the calcium stores controlled by inositol trisphosphate (IP3), indicating that 

cADPR mobilizes intracellular calcium in an IP3-independent fashion (Lee, 2001). 

Recently, more experiments have begun to focus on identifying the signal transduction 

cascades that utilize cADPR. Experiments using competitive antagonists of cADPR have 

demonstrated that signaling through a number of receptors such as muscarinic acid 

receptor and acetylcholine receptor expressed by a variety of mammalian cell types is 

dependent on cADPR-induced calcium release (Guse, 1999). All of these data suggest 

that CD38 could potentially regulate calcium signaling through production of cADPR. 

Further, present study also showed that the endogenous NAD+ levels (section 3.7) 

in the liver of TAA-treated rats were about 4-fold lower than that in the control rats (P < 

0.05). In addition to that, other studies have also shown that there was a decreased hepatic 
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NAD+ levels in stressed liver (Cuomo et al., 1994; 1995). It is believed that free radicals 

play a major role in the development of liver cirrhosis and was suggested that the 

mechanisms by which various toxic chemicals induced their effect in the body involved 

the release of free radicals (Di Luzio, 1963). Okamoto and Takasawa (2002) reported that 

the accumulation of these free radicals would result DNA strand breaks (DNA damage) 

and activation of poly (ADP-ribose) synthetase/polymerase (PARP). This PARP then acts 

to repair the DNA breaks, consuming NAD+ as a substrate. Consequently, there would be 

a sharp drop in the intracellular levels of NAD+ (Okamoto and Takasawa, 2002), which 

was what observed in the present study. Paradoxically, despite its beneficial effect, PARP 

can induce necrotic cell death through NAD+ depletion (Takasawa and Okamoto, 2002; 

Germain et al., 2000). Based on their work, Okamoto and his colleagues found that the 

cellular NAD+ reduction would severely impair such cellular functions as insulin 

synthesis and secretion and cause lethal injury to the β-cells. According to the Okamoto 

model, the decreases in the NAD+ level cause decreases in cADPR in β-cells. Thus, they 

proposed that insulin secretion by glucose occurs via cADPR-mediated Ca2+ mobilization 

of an intracellular Ca2+ pool, the endoplasmic reticulum. In this model, ATP inhibits the 

cADPR hydrolase activity of CD38, which results in the accumulation of cADPR. This 

metabolite then acts as a second messenger for Ca2+-mobilization from intracellular 

stores resulting in insulin secretion (Takasawa et al., 1993a; Takasawa et al., 1993b; 

Okamoto et al., 1995; Kato et al., 1995). Collectively, these data strongly suggest that the 

possibility of utilization of extracellular NAD+ by CD38, which is localized to the plasma 

membrane, and transportation of cADPR produced into the cell which subsequently 

induces intracellular calcium release via the ryanodine receptor as well as cell signaling.  
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The presence of a ryanodine-sensitive Ca2+-induced Ca2+ release pool in the 

hepatocyte cells has been shown in the study by Osada et al. (1994). Later, Martinez-

Merlos et al. (1997) reported that the rat livers contain the highest level of ryanodine 

receptor when compared to other rodent species. These data provide evidence for a 

possible model where the increase in cyclase activity in cirrhotic liver causes the increase 

in cADPR levels that would mobilize Ca2+ from internal stores, contributing to the 

elevation of intracellular Ca2+. However, there have been conflicting reports on the nature 

of the ryanodine receptors in the liver. Giannini et al. (1995) showed that the messenger 

RNAs encoding the three known RyR forms are absent in liver extracts. The first 

corollary to account for such observation is that RyR could exist as a novel isoform in the 

liver. This novel isoform might be identified by Lee et al. (2002) as a modified RyR1 that 

is localized in the liver. The second corollary is that cADPR may mobilize internal 

calcium stores in a novel mechanism. Another possibility that could explain the 

observation above is that the low densities of RyR in non-excitable mammalian cells that 

suggest that the levels of RyR could be below the limits of current detection method 

(Bennett et al., 1996). 

Apart from Ca2+ signaling, CD38 might also participate in liver cirrhosis in other 

manners. A role for CD38 in cell activation and proliferation pathways has been 

suggested by the agonistic features of selected anti-CD38 monoclonal antibodies (mAbs). 

Funaro et al. (1990) have demonstrated that the CD38 mAbs A10 and IB4 elicit 

activation and proliferation of human T cells, thymocytes, and NK cells, suggesting that 

CD38 transduces activation signals upon target binding. The agonistic mAbs are 

characterized by the ability to activate cells, mobilize Ca2+ from internal stores and 
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induce cytokine synthesis and release (Malavasi and Ferrero, 1997). Results in the 

present study show that the expression of CD38 on hepatocytes thus might be involved in 

cytokine production, which could be one of the sources that stimulates the synthesis and 

deposition of collagen. Experiments that have been done to date suggest that antibodies to 

CD38 do not suppress or activate the enzyme activity of CD38 (Howard et al., 1993; 

Lund et al., 1999), and that anti-CD38-induced signaling can proceed even when enzyme 

activity has been blocked (Lund et al., 1999). Thus, it is likely that anti-CD38-mediated 

signaling in at least some cell types occurs independently of cADPR, ADPR and NAADP 

production.  

The immunohistochemical results (section 3.3) show that CD38 is localized to the 

plasma membrane. Khoo and Chang (2000) reported that the localization of CD38 on the 

plasma membrane is domain specific manner in rat hepatocytes, in which it contradicts to 

the present results. Instead, it was shown that CD38 is widely distributed on the plasma 

membrane without any specific domain. This could be due to the different fixation 

methods and different batch of antibodies that were used. The hepatocyte is a highly 

polarized cell with at least two major domains: the sinusoidal/lateral domain and the bile 

canalicular domain (Evans, 1980). The sinusoidal domain participates principally in the 

exchange processes with the blood including the secretion of serum proteins, uptake of 

various molecules and communication with the surrounding environment through its 

receptors that bind growth factors, hormones and other biologically important ligands 

(Rosario et al., 1988; Arias and Forgac, 1984; LeBouton, 1993) while the bile 

canalicular/apical domain is specialized for the excretion of bile components (Inoue et al., 

1983). Various cells (e.g. endothelial cells) of the immune response are known to express 
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CD31, a putative ligand for CD38 (refer to review by Mehta et al., 1996). It is an 

interesting possibility that the localization of CD38 to the plasma membrane indicates a 

possible interaction between the hepatocytes and cells of the immune system that may be 

responsible for mediating immune responses.  

Humoral response is increased in liver cirrhosis and this is shown by Yuka et al. 

(1996). Early plasma cells were significantly increased in the peripheral blood from 

patients diagnosed with liver cirrhosis with hypergammaglobulinaemia. The increase in 

CD38 in the early plasma cells suggests that elevated CD38 expression augments the 

secretion of immunoglobulin from plasma cells (Yuka et al., 1996), which states another 

possible role of CD38. In addition, serum hyaluronate was significantly elevated in 

patients with liver cirrhosis (Satoh et al., 2000). Hyaluronate is a glucosaminoglycan 

synthesized by the mesenchymal cells and degraded by hepatic sinusoidal endothelial 

cells by a specific receptor-mediated process. The two hyaluronate-binding motifs 

present in the extracellular domain of CD38 may function in attachment to the 

extracellular matrix (cell-matrix interaction), hinting that hyaluronic acid can act as a 

CD38 ligand (Nishina et al., 1994). Further, it has been shown that hepatocytes bind 

proteoglycans and this binding can be saturated, implying a receptor-mediated interaction 

(Kirch et al., 1987; Laurent et al., 1986). According to these findings, it is likely that 

some components of the extracellular matrix in the liver such as hyaluronate could 

interact with CD38 leading to changes in the properties of CD38 and its involvement in 

the cell signaling cascades.  

Besides the widespread application of the molecule as an ancillary tool in the 

classification of hematological disorders and attribution of cell lineage, CD38 is finding a 
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novel role in the study of different pathologies. The present study has provided new 

insights in the involvement of CD38 in liver cirrhosis. CD38 could play a vital role in the 

pathogenesis of cirrhosis. However, many questions remain to be resolved. More studies 

will be necessary to clarify the speculations and whether the increase in CD38 expression 

is caused by inflammatory responses or profibrogenic responses. As known, hepatic 

stellate cells (HSC) play a major role in hepatic fibrosis and regeneration when activated 

as a response to liver injury (Baba et al., 2004). Future work that involves the 

characterization of CD38 in hepatic stellate cells and studies that focus on the correlation 

between the altered CD38 expression and the activation of stellate cells would conclude 

whether CD38 plays a part of the pathogenesis of liver fibrosis. It would also be 

interesting to characterize CD38 at different developmental stages of liver cirrhosis 

(time-frame) to assess whether CD38 could act as a prognostic marker of liver cirrhosis. 

Since CD38 might play important roles in immune responses, apoptotic cell killing and 

liver regeneration, additional studies using other models of liver injury (i.e., LPS- and 

Fas-induced liver injuries) and liver regeneration after partial hepatectomy will also 

provide us better understandings.  

 

 

 

 

 

 

 101



CHAPTER 5 

CONCLUSION 

 

It is nearly twenty five years since the first papers on CD38 appeared in the scientific 

community (Reinherz et al., 1980; Terhorst et al., 1981). Through the initial pioneering 

work of various immunology laboratories, there are numerous evidence to conclude that 

CD38 is an important surface immunoregulatory molecule; its myriad of possible 

functions include the induction of B and T cells proliferation (Funaro et al., 1990), 

regulation of the humoral immune response (Cockayne et al., 1998), apoptosis (Zupo et 

al., 1994), tyrosine phosphorylation of various proteins (Kirkham et al., 1994), activation 

of certain kinases (Kitanaka et al., 1996) and cytokine release (Ausiello et al., 1995). In 

addition, CD38 also displays adhesion properties and might possibly mediate a selectin-

type adhesion between different blood populations and human vascular endothelial cells 

via its putative ligand, CD31 (Deaglio et al., 1996). 

 Our lab has shown that CD38 is expressed in a variety of non-hematopoietic cells 

including organs as diverse as the lung (Khoo and Chang, 1998), eye (Khoo and Chang, 

1999), cerebellum (Yamada et al., 1997) and liver (Khoo and Chang, 2000) but the 

precise function(s) of CD38 in these organs is still vague. Future work needs to be done 

to ascertain the function(s) of CD38 in these cells. Despite the multitude of studies done 

on CD38 and its role in cellular signaling, there is still no discovery of an encompassing 

“physio-functional role” correlated with CD38. This perplexing enigma has been partially 

solved through the work of Hiroshi Okamoto’s lab where the studies were performed not 

on hematopoietic cells but rather on Islet cells. It was shown that CD38 mediates a cyclic 
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ADP-ribose dependent signaling pathway involved in insulin secretion. It is a well-

known fact that glucose induces an increase in the intracellular Ca2+ concentration in 

pancreatic β-cells of the islets of Langerhans, which then results in the secretion of 

insulin. The accepted hypothesis is that the ATP produced in the process of glucose 

metabolism, inhibits the potassium channel and thus inducing membrane depolarization 

and the opening of the voltage-dependent Ca2+-channels (Ashcroft and Ashcroft, 1992). 

 Nevertheless, based on the work of Okamoto and his colleagues, they proposed an 

alternative model of insulin secretion by glucose via cADPR-mediated Ca2+-mobilization 

from an intracellular Ca2+ pool. In this particular model, ATP inhibits the cADPR 

hydrolase activity of CD38, which causes the accumulation of cADPR. This metabolite 

then acts as a second messenger for Ca2+-mobilization from intracellular stores resulting 

in insulin secretion (Okamoto, 2002). Subsequently, they went on to show that the 

presence of anti-CD38 autoantibodies in non-insulin-dependent diabetes mellitus 

(NIDDM) patients might possibly be the one of the major causes of impaired glucose-

induced insulin secretion in NIDDM (Ikehata et al., 1998). Further investigative studies 

by Okamoto’s group led to the observation that the Arg140Trp mutation on CD38 could 

contribute to the development of Type II diabetes mellitus via the impairment of glucose-

induced insulin secretion (Yagui et al., 1998).  

 However, despite the studies of Okamoto’s group, they have failed to shed any 

light on how an ectoenzyme like CD38 with its catalytic site in the extracellular 

environment is able to transport its produced metabolite, cADPR, into the intracellular 

medium in order for it to play an intracellular calcium mobilizing role leading to insulin 

secretion. De Flora’s group managed to propose a model that involves the transmembrane 
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juxtaposition of two or four CD38 monomers which can generate a catalytically active 

channel for selective formation and influx of cADPR to reach cADPR-responsive 

intracellular calcium stores (Franco et al., 1998). On the other hand, da Silva et al. (1998) 

showed that there was no direct involvement of ectocellular synthesis of cADPR on the 

regulation of the cADPR-mediated intracellular calcium signaling in T-lymphocytes. In 

that study, they also observed that there was no increase of intracellular cADPR when the 

intact cells were incubated with NAD+. Therefore, this model is still debated and further 

work needs to be done to clarify the paradoxical results observed thus far. 

 Despite the studies that were done on various diseases in search for a possible 

physiological relevance of CD38, the role of CD38 in liver cirrhosis has yet to be 

determined. The results described in the current study may provide a possible resolution 

of this issue. Here it was shown that there was a significant increase in CD38 mRNA 

level in the cirrhotic liver. Similarly, CD38 protein expression was elevated in the 

cirrhotic liver and it was localized at the plasma membrane of rat hepatocytes. Then, it 

was further demonstrated that the immunoblot analysis revealed an increase in CD38 

expression in the microsomes of cirrhotic liver compared to the normal liver. The 

increase in CD38 expression was supported by the detection of higher level of ADP-

ribosyl cyclase activity in the cirrhotic liver compared to that in the control. In addition to 

CD38, the cADPR level was demonstrated to be modestly but significantly augmented in 

cirrhotic liver and in contrast, there was a significant decrease in the endogenous NAD+ 

in cirrhotic liver. Together, these results raised the possibility that altered CD38 

expression and a concomitant elevation of the ADP-ribosyl cyclase activity as well as 

cADPR may play an important role in the pathogenesis of liver cirrhosis. 
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 This study has provided new insights in the involvement of CD38 in liver 

cirrhosis. However, many questions remain to be resolved. More studies will be 

necessary to clarify the speculations and whether the increase in CD38 expression is a 

cause or consequence in liver cirrhosis. It is essential that we determine the intracellular 

calcium level in the control and TAA-treated rat livers. It also remains to be elucidated 

whether the calcium release from intracellular stores is mediated by cADPR that activates 

the ryanodine receptor. There is ample evidence that alteration of calcium concentrations 

can affect cellular events that are totally controlled endogenously, such as cell division 

(Poenie et al., 1985; Steinhardt and Alderton, 1988; Twigg et al., 1988), which is 

controlled by the mitotic clock and does not require an external stimulus.  

It is interesting to characterize CD38 at different developmental stages of liver 

cirrhosis to assess whether CD38 could act as a prognostic marker of liver cirrhosis. It 

was reported that CD38 as a relevant marker in HIV infection (Salazar-Gonzalez et al., 

1985). High CD38+/CD8+ ratios were reported as closely correlating with the HIV 

infection, becoming a dependable marker of poor prognosis and disease progression 

(Giorgi et al., 1993; Ho et al., 1993; Liu et al., 1998). Its persistence during progression 

of the disease suggested that CD38 expression may exert a protective function (Savarino 

et al., 1996). It is also essential to carry out additional experiments using CD38-deficient 

mice to define the active role(s) of CD38 in liver cirrhosis. 

Other areas of research not directly involving the calcium mobilizing properties 

associated with the metabolites of CD38, which should also be addressed, includes the 

crystallization of CD38 in order to solve its molecular structure and thus, to provide clues 

for identifying the correlation between the receptorial-enzymatic-regulatory properties of 
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this molecule. Over the years, CD38 has been labeled, among other thing, eclectic, 

paradoxical and an enigma to those who study this fascinating molecule. Its diverse 

unusual properties still leave many questions unanswered. Indeed, the very nature of its 

“peculiarity” in a scientific context, especially with regards to its apparent redundancy in 

terms of intrinsic functions dictate the need for a multidisciplinary approach to address 

the unresolved questions being asked of this molecule.  

In conclusion, our study has provided new insights in the involvement of CD38 in 

liver cirrhosis. In this study, our results raised the possibility that increased CD38 

expression and the ADP-ribosyl cyclase activity as well as a concomitant elevation of 

cADPR level may play an important role in the pathogenesis of liver cirrhosis.  
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