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SUMMARY 

 

To increase the heat or mass transfer across an interface by increasing the interfacial 

area, gas dispersion through submerged orifices is an efficient and commonly used 

method in a wide range of process equipment. To date, numerous theoretical and 

experimental studies have been reported in the field of bubble formation at a 

submerged orifice and many models have been developed to clarify the effects of 

various factors on bubble formation. However, the effects of the boundaries around the 

bubble formation system were not taken into account in most of these studies. It has 

generally been assumed that the bubble column is very large compared with the orifice 

size and the wall effect could be neglected. In this study, the wall effect on bubble 

formation was investigated experimentally and theoretically. 

Since the flow field around the bubble is assumed to be irrotational and the viscosity of 

the liquid is negligible, a fundamental non-spherical model was developed by means of 

the boundary integral method to predict the bubble formation process. This model was 

validated through the comparison of the theoretical predictions with the experimental 

results from the literature reported.  

To study the wall effect experimentally, three sizes of bubble column with diameters, 

. .I Dφ 30mm×470mm, . .I Dφ 50mm×470mm and . .I Dφ 100mm×470mm, were 

designed. High-speed video images and high sensitive dynamic pressure transducer 

were applied to visualize bubble formation process and record the instantaneous 

pressure fluctuation in the gas chamber respectively. Bubbling frequency was obtained 

from the time-pressure signals via Fast Fourier Transform (FFT). It was observed that 

there are three distinct bubbling regimes, single bubbling, pairing and multiple 



 ix

bubbling, and as the ratio of the column diameter to orifice diameter decreases, the 

bubbling regimes generally transition from single bubbling to pairing and eventually 

multiple bubbling, with a corresponding decrease in bubbling frequency. Pairing and 

multiple bubbling are more likely to occur with large chamber volumes and high gas 

flow rates.   

To study the wall effect theoretically, a specific system of images was introduced into 

the fundamental non-spherical model to satisfy the no-flux boundary condition on the 

impermeable column wall. Comparison of experimental results for bubbling frequency 

with the theoretical predictions shows that the agreement is good, i.e. the model 

successfully predicts the effect of the column wall on bubbling frequency. To 

thoroughly understand the underlying mechanism and take into account the 

bubble-bubble interaction as well as the bubble-wall interaction, a further spherical 

model was developed using potential flow theory. It was observed that this model can 

predict the bubble formation process very well and it also can predict the occurrence of 

pairing and multiple bubbling. 
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NOMENCLATURE 
 

 

Symbol  Description Unit

a bubble radius m

asc radius of spherical-cap bubble m

b thickness of the plate m

co sound speed in the gas m/s

CD drag coefficient -

Cg constant in Eq. (6.2) -

dc diameter of the bubble column  m

do diameter of the orifice m

Eb internal energy within the bubble J

Ec internal energy within the chamber J

Dm maximum horizontal diameter of the bubble m

f bubble frequency s-1

f ′  fanning friction factor -

Fr Froude number -

g acceleration due to gravity m/s2

H height of liquid above the orifice  m

k orifice coefficient in Eqs. (3.69) -

ko orifice coefficient in Eq. (6.2) -

m mass kg
m  added mass kg

n outward normal -

cN  capacitance number, 2 2

4 ( )l g c
c

o g o

g V
N

d c
ρ ρ

π ρ
−

=   -

'
cN  capacitance number, '

2

4 l c
c

o s

gVN
d P
ρ
π

=  -

ReN  Reynold number of detached rising bubble ( 2 / )sc T l la U ρ µ=  -

On Orifice number -

Pa gas pressure inlet to the chamber Pa



 xi

Pb bubble pressure  Pa

Pc chamber pressure Pa

PcDET chamber pressure at bubble detachment Pa

Pl liquid pressure  Pa

lP  average liquid pressure at bubble boundary Pa

Por liquid pressure at the orifice Pa

Pso static pressure at the orifice Pa

Pst hydrostatic pressure at coordinate ( , )r θ  Pa

Pw wake pressure Pa

Pwb wake pressure at the bubble surface Pa

Pwo wake pressure at the orifice Pa

P∞  system pressure above the bulk liquid Pa

q  gas flow rate through the orifice m3/s

Q gas flow rate into the chamber m3/s

Q∆  heat added J/s

r radial coordinate m

rc radius of the bubble column m

ro radius of the orifice m

R1 principal radius of curvature on vertical plane m

R2 principal radius of curvature on horizontal plane m

Rg gas constant J/(mol·K)

Reo  orifice Reynolds number, 
2

Re g o o
o

g

r uρ
µ

=  in Eq. (6.2) -

s tangential direction (in Chapter 3) -

s perpendicular distance between bubble center and orifice (in 
Chapter 6) 

m

bbs  mean distance between rising and growing bubble m

bos  distance between rising bubble and orifice m

t  time s

tf bubble formation time s

tw waiting time s

T time during waiting s

u velocity field of the liquid m/s

ou  instantaneous gas velocity through the orifice in Eq. (6.2) m/s



 xii

U bubble vertical rising velocity  m/s

Ui initial normal of the bubble m/s

UT terminal rising velocity of spherical-cap bubble m/s

Vb bubble volume  m3

Vc chamber volume m3

Vn Volume number  -
W∆  work done externally J/s

We Weber number -

z axial coordinate m
 
 

 
Greek symbols 
 

Symbol Description Unit

γ  adiabatic exponent -

Γ  circulation about the vortex -

θ  angular coordinate rad

cθ  contact angle in Eq. (3.84) rad

θ ′  angle in Eq. (6.11) rad

κ  curvature of the bubble surface m-1

gµ  gas viscosity Kg/(m·s)

lµ  liquid viscosity Kg/(m·s)

ξ  parameter used to defined the bubble surface -

bρ  density of vapor inside bubble kg/m3

gρ  gas density  kg/m3

lρ  liquid density kg/m3

σ  surface tension N/m
τ  dimensionless time -

φ  velocity potential  m2/s

pφ  velocity potential for expanding bubble m2/s

Tφ  velocity potential for translating bubble m2/s
ψ  normal derivative of velocity potential  m/s
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Chapter 1   Introduction 

 

1.1 Background 

Operations involving mass or heat transfer across an interface are very common in the 

chemical industry. To obtain rapid transfer rate in equipment of finite size, a large 

interfacial area per unit volume is preferred in such operations. There are three 

common methods used to satisfy this requirement, which include film method, rupture 

of bulk fluid and gas dispersion through submerged orifices. Among them, gas 

dispersion through submerged orifices, which permits equipment of extremely simple 

design and leads to reasonably large interfacial areas, is the most efficient and most 

commonly used one in process equipment such as distillation columns, absorption 

towers, flotation cells, bubble columns, air-lift vessels, aerated stirred tanks, biological 

wastewater treatment systems and metallurgical smelters. Thus the formation of 

bubbles, the first stage in gas dispersion, becomes an important aspect to study the 

process of dispersion.  

Bubbles are formed by the flow of gas through orifices submerged in a liquid. In the 

design or operation of gas-liquid contacting equipment, it is essential to clarify the 

factors affecting bubble formation and to understand the underlying mechanisms, so 

that the coalescence and breakdown of bubbles are not serious. Although practical 

applications usually involve the simultaneous participation of many bubbles, most 

experimental and theoretical studies of bubble formation have been concerned with a 

single bubble. The reason is that the multiple bubbles studies are very complicated, and 

it has been generally difficult to draw definite conclusions from such studies. Thence 
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bubble formation at a single orifice, the simplest one, is usually studied by most of the 

researchers because it excludes mutual influence of bubbles formed in neighboring 

orifices. Although the effect of adjacent orifices is neglected, the study of bubble 

formation at a single orifice yields statistical information concerning the factors and 

also gives insight into the dynamics of the process. The understanding of the 

underlying mechanisms of this condition will contribute to studies on the mechanism 

with many orifices. 

Over the past decades, numerous theoretical and experimental studies have been 

reported in the field of bubble formation. However, for most of the previous studies, 

there are some assumptions that the size of the bubble column is greatly larger than the 

orifice. Thus, the whole domain for bubble formation under consideration is seen as an 

infinite system and the wall effect of the bubble column could be neglected. This is 

true when the column diameter is very large compared with the orifice diameter. 

However, it is observed that the bubble behavior is modified as the column becomes 

smaller. Although much work has been done up to date on bubble formation, there is 

no comprehensive model which includes the effects of boundary factors, such as 

orifice plate and wall of the bubble column. 

 

1.2 Objective of present study 

The principal objectives of the present study were to:  

1. Develop a fundamental non-spherical model to predict bubble formation at a 

submerged orifice with the boundary integral method. 
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2. Investigate the effect of the bubble column wall on bubble formation 

experimentally and theoretically. Based on the fundamental non-spherical model, 

the wall effect is investigated theoretically with an introduction of a specific image 

system.  

3. Develop a spherical model using potential flow theory, which takes into account 

the bubble-bubble and bubble-wall interactions in bubble formation. 

This study may lead to a better understanding of the underlying mechanisms of bubble 

formation in which the effects of the boundaries are considered. Also the contribution 

of the liquid circulation on the bubble formation is included in this study, which may 

be of practical importance to the design and operation of gas-liquid contacting process 

equipment. 

 

1.3 Organization 

To understand the underlying mechanism of bubble formation, it is necessary to review 

previous works studied by other researchers in this field. In Chapter 2, a detailed 

review of the theoretical and experimental research into bubble formation under 

various conditions will be presented. In addition, previous studies on bubble wake and 

wall effect on bubble formation will be discussed. 

Chapter 3 gives an introduction of the boundary integral method and develops a 

theoretical model for bubble formation at a single orifice with this method. In addition, 

a model for the wall effect on bubble formation is developed using this method with an 

introduction of a specific image system. 
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Experimental work of wall effect on bubble formation will be described in Chapter 4, 

in which the experimental apparatus, measurement techniques, and experimental 

conditions and procedures will be introduced. Results and discussion of modeling of 

bubble formation and wall effect on bubble formation will be described in Chapter 5. 

To obtain a comprehensive understanding about the bubble-bubble interaction as well 

as the bubble-wall interaction in bubble formation, a further spherical model is 

developed using potential flow theory in Chapter 6. The results and the comparison of 

the theoretical predictions and the experimental results will be also addressed. 

Conclusions and recommendations arising from this study are summarized in Chapter 

7.  
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Chapter 2   Literature review 

 

2.1 Introduction 

Bubble formation at a single submerged orifice has been investigated experimentally 

and theoretically in the past decades. Although practical applications may involve 

bubble formation at multiple orifices and a single orifice is rarely used in the gas-liquid 

contacting equipment in industry, an understanding of the fundamental process of 

bubble formation at a single orifice is a necessary prior to the investigation of 

equipment with multiple orifices.  

This chapter first reviews the bubbling regimes at a submerged orifice in Section 2.2. 

Three main bubbling regimes, static, dynamic and jetting, are observed in order of 

increasing gas flow rate.  

The performance of bubble formation is affected by many factors which include 

equipment variables, operating conditions and properties of the gas and liquid phases. 

It is very important to understand the effects of each factor so that devices, such as 

sieve tray columns, could be reliably and efficiently designed and controlled. The 

detailed discussion of these factors will be presented in Section 2.3.  

Many theoretical models have been developed to describe bubble formation. These 

models will be discussed in Section 2.4. Literature pertinent to the bubble wake and 

the wall effect on bubble formation are presented in Sections 2.5 and 2.6 respectively. 

Finally, a brief summary is presented in Section 2.7. 
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2.2 Bubbling regimes 

On the basis of experimental results, most researchers agree that there are three clearly 

defined regimes of bubbling. Beginning with small gas flow rate, these are static, 

dynamic and jetting regimes. The transition between each regime is not precise and 

depends on liquid physical properties, orifice size and chamber volume. 

2.2.1 Static regime 

The static regime occurs under the condition where only bubble buoyancy and surface 

tension play significant roles and there is equality between these two forces throughout 

the bubble formation. The gas flow rate is normally very low (< 1 cm3/s) (Van 

Krevelen and Hoftijzer, 1950) and bubble remains a constant value at the detachment. 

The bubble volume is determined by orifice diameter and surface tension but is 

independent of gas flow rate as follows: 

 2
( )

o
b

l g

rV
g

π σ
ρ ρ

=
−

                                                   (2.1) 

where lρ  and gρ  are the liquid and gas densities respectively, g is the acceleration 

due to gravity, σ  is the surface tension and or  is the orifice radius. This regime is 

also called the “constant volume regime” which occurs when a dimensionless 

Reynolds number ReN  ( Re

4 g

o g

Q
N

d
ρ

π µ
= ) is less than 100, where Q  is the volumetric 

gas flow rate into the gas chamber, od  is the orifice diameter and gµ  is the gas 

viscosity.  

 



Chapter 2                                               Literature review 

 7

2.2.2 Dynamic regime 

The dynamic regime is also called the “slowly increasing volume region” by some 

investigators. In this regime, the gas flow rate is much higher and both bubble volume 

and frequency increase with the increase of gas flow rate ( Re 100N > ).  

A more detailed discussion of bubble patterns in this regime has been reported by 

McCann and Prince (1971). Bubbling patterns were categorized into six modes as 

follows: 

I. Single bubbling: Bubbles grows successively and discretely and there is no 

significant interaction between any two bubbles. It takes place when chamber 

volumes are small and gas flow rates are low.  

II. Pairing: It occurs at low and moderate gas flow rates in the case of very large 

chamber volumes. The detachment of the bubble can cause an intermediate 

formation of an elongated gas tube due to the remaining pressure difference 

between chamber pressure and orifice pressure at the moment of the 

detachment. The gas tube then quickly elongates and joins with the bubble, 

connecting it momentarily with the orifice. After this tube breaks rapidly at the 

orifice, it moves into the preceding bubble. 

III. Double bubbling: It occurs only at high gas flow rate or low chamber volumes. 

The second bubble is sucked into the preceding one due to a wake force caused 

by it and then two bubbles merger together and rise as one. The phenomenon is 

similar with pairing except that the second bubble cannot be regarded as a tube 

since its size is almost the same as the preceding bubble. 



Chapter 2                                               Literature review 

 8

IV. Double pairing: Similar in behavior to double bubbling except that each is a 

pair. 

V. Single bubbling with delayed release: The bubbling pattern is very similar to 

pairing except that there is no clear separation between the first bubble and the 

small gas tube. 

VI. Double bubbling with delayed release: The bubbling behavior is very similar to 

single bubbling with delayed release except that there is also double bubbling 

as a following sequence behind each single delayed release behavior. 

In particular, McCann and Prince (1971) compared the phenomena of pairing and 

double bubbling, as shown in Table 2.1. 

Table 2.1 Comparison between pairing and double bubbling 

Pairing Double bubbling 

Large chamber volumes Small chamber volumes 

Bubbling with a “tail” Two distinct bubbles 

No weeping between the bubble and 
the formation of its “tail” 

Weeping may occur between the two 
bubbles 

 

Fig. 2.1 shows the state diagram of McCann and Prince (1971) for a 4.7 mm orifice in 

an air-water system. The conditions were summarized under which each of these six 

categories was observed to occur. 
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2.2.3 Jetting regime  

With an increase of the gas flow rate, the bubbling regime loses its stability. Bubbling 

is characterized by the onset of rapid sequential formation of bursts. This regime is 

called the “jetting regime”. The phenomenon of jetting normally occurs at higher 

Reynolds number ( Re 2000N > ) (McNallan and King (1982)). 

    

Fig. 2.1 Bubble state diagram of McCann and Prince (1971) for a 4.7 mm orifice 
in an air-water system 

 

2.3 Physical factors affecting bubble formation 

Many factors have been investigated having influence on bubble formation at a single 

submerged orifice. In general, these factors are related to the physical construction of 

the bubbling system as well as the gas and liquid properties. These factors may be 

classified according to Kumar and Kuloor (1970), McCann and Prince (1971), and 

Tsuge and Hibino (1983) as: equipment variables (e.g., orifice diameter, chamber 
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volume, etc.), system variables (e.g., liquid properties, gas properties, etc.), and 

operating variables (e.g., gas flow rate, static system pressure, liquid depth, bulk liquid 

motion, etc.).  

2.3.1 Orifice diameter 

Orifice diameter effects depend on bubbling regimes as well as bubble formation 

conditions. In the static regime, the volume of the bubble is proportional to the orifice 

diameter as expected from Equation (2.1). In the dynamic regime, orifice diameter is 

unimportant for a constant flow condition ( 0→cV ), but at a constant pressure 

condition ( ∞→cV ) and intermediate condition, the flow through the orifice is 

proportional to the cross sectional area, making the orifice diameter a very important 

factor. Additionally, a larger orifice diameter also gives rise to a larger line tension 

force at the gas-liquid-solid interface, increasing resistance to bubble detachment and 

therefore resulting in a larger bubble volume (Mittoni, 1997). In the turbulent regime, 

bubble volume is independent of orifice diameter and depends on the stochastic 

breakup of the gas jet.  

2.3.2 Chamber volume 

Gas chamber volume has a significant effect on bubble formation. In terms of the 

chamber volume, bubble formation can be categorized into constant flow, constant 

pressure, and intermediate conditions. The two limits of chamber volume ( 0→cV  

and ∞→cV ) define the special cases of constant flow and constant pressure 

conditions, respectively. 

Constant flow condition occurs in small gas chamber volume systems, corresponding 
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to large orifice pressure drop due to either high gas flow rate or large orifice resistance. 

The changes in the gas chamber or bubble pressure have a relatively small effect on the 

pressure drop. The gas flow rate tends toward a constant value. 

The occurrence of constant pressure arises for a large chamber volume and fixed 

chamber pressure (Kupferberg and Jameson, 1969; Park et al., 1977). Under such a 

condition, the pressure fluctuation due to the bubble formation and detachment is small. 

Therefore the chamber pressure remains virtually constant. 

A dimensionless capacitance number, cN , first proposed by Hughes et al. (1955), is 

generally applied to describe chamber volume effects as follows:  

2 2

4 ( )l g c
c

o g o

g V
N

d c
ρ ρ

π ρ
−

=                                                  (2.2) 

where Vc is the gas chamber volume and co is the velocity of sound in the gas. Hughes 

et al. postulated that 0.85cN =  is the critical value to describe the gas chamber effect. 

When 0.85cN <  the bubble volume is found to be nearly independent of chamber 

volume. 

Tadaki and Maeda (1963) also proposed a dimensionless capacity number, '
cN , for 

constant volume bubbling as: 

'
2

4 l c
c

o s

gVN
d P
ρ
π

=                                                        (2.3) 

where sP  is the static pressure at the liquid surface. If l gρ ρ  and c sP P= , cN ′  

is equal to is cNγ , where γ  is the specific heat ratio of gas (Tsuge and Hibino, 1983). 
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Tadaki and Maeda (1963) found that bubble volumes were scaled by a factor of cN ′  

for 1.0cN ′ >  to an upper limit where the volumes became constant at 9.0cN ′ = . 

2.3.3 Liquid properties 

Liquid physical properties which affect bubble formation include viscosity, density and 

surface tension.  

It is generally accepted that viscosity affects the bubble volume insignificantly at lower 

gas flow rates and lower liquid viscosities; while at large gas flow rates and high 

viscosities, the viscosity effects on bubble volume become significant due to the high 

drag force retarding upward acceleration of the bubble. Miyahara et al. (1983) 

investigated the effects of liquid viscosities on bubble formation both experimentally 

and numerically. The orifice diameters ranged from 1.0 and 3.0 mm and liquid 

viscosities ranged from 0.001 to 0.147 /kg m s⋅ . The two-stage bubble formation 

model developed in the investigation was in agreement with experimental observations. 

The results illustrated that larger viscosities caused larger bubble volumes because it 

decreased bubble rise velocity and allowed more gas to enter the bubble before 

detachment. Terasaka and Tsuge (1990) improved the non-spherical model proposed 

by Pinczewski (1981) by including a viscosity term in the motion of the bubble and 

modifying the equivalent radius definition. Agreement with experimental data from 

their own study as well as other researchers was close for liquid viscosities between 

0.001 and 1.1 /kg m s⋅  under atmospheric conditions. 

Besides viscosity, liquid density is also a factor affecting bubble formation. In general, 

higher liquid density causes higher bubble buoyancy which forces the bubble to detach 
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with a smaller volume if surface tension remains constant. Davidson and Schüler 

(1960a) concluded that liquid density had insignificant effects on the bubble volume at 

high gas flow rates because the relative increase of the liquid inertia retarded the 

increase of the buoyancy. Meanwhile, a higher liquid density could increase the 

pressure gradient during bubble formation, resulting in increased gas flow rates into 

the bubble. McCann and Prince (1969) also suggested that the pressure at the orifice 

which depended on the liquid density determined the gas flow into the bubble. These 

evidences of the weak dependence on density might be due to the low chamber 

volumes used by many researchers, thereby restricting their studies to constant gas 

flow conditions. 

Surface tension is one of the most important factors determining the bubble size at 

vanishingly small flow rates, however, it assumes much less importance at higher flow 

rates. The significance of surface tension also decreases with the increase of the bubble 

diameter. Al-Hayes and Winterton (1981) described the growth of air bubbles in water, 

water with surfactants, and ethylene glycol on various surfaces exhibiting different 

contact angles. They concluded that for the surface active agents used there was little 

evidence that they produced a skin around the bubble that significantly impeded the 

mass transfer.     

2.3.4 Gas properties 

It is generally accepted that gas density, pressure and heat capacity can influence 

bubble formation. While molecular weight of gas is considered to have a weak 

negative impact on the bubble volume in the gas-liquid contacting system.  

Davidson and Schüler (1960a) found that bubble volume decreased 1.8% when 
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changing the gas from air to carbon dioxide for a gas flow rate of 17 ml/s under 

constant flow condition, owing to the difference of the gas momentum caused by 

different gas densities. 

LaNauze and Harris (1974) showed experimentally that gas density had a significant 

impact on the gas momentum and the capacity of the gas chamber by increasing the 

pressure in the gas phase of carbon dioxide up to 2.0 MPa. The experimental results 

showed to be in good agreement with the mathematical model proposed by LaNauze 

and Harris (1974). 

Tsuge and Hibino (1983) stated that the specific heat ratio of gas, γ , also affected 

bubble volume depending on the dimensionless capacitance number '
cN . When '

cN  

was small, bubble volumes were affected mainly by the specific heat ratio of the gas, 

but when '
cN  was large, they were affected strongly by gas density. 

Wilkinson and Van Dierendonck (1994) found that an increase of gas density for large 

chamber volumes can lead to smaller bubble at formation due to an increase in gas 

momentum, an increase in pressure drop at the orifice and an increased rate of bubble 

necking. 

The viscosity of the gas is generally expected to have insignificant effects on bubble 

formation, but it has an appreciable effect in impeding the gas flow into the bubble. 

Fountain (1988) stated that the weak influence of gas viscosity determined pressure 

drop and supply conditions of the gas delivery system, and the effect was significant 

only when injecting through long thin tuyeres. 
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2.3.5 Gas flow rate 

Gas flow rate has a significant effect on bubble volume as well as bubble frequency. 

There exists a general agreement on the pattern of bubble volume variation when the 

flow rate is increased. In the static regime, as the flow rate is gradually increased from 

zero, the bubble volume which could be obtained with Equation (2.1) remains fairly 

independent of the flow rate, whereas the frequency increases. In the dynamics regime, 

with the increase of the flow rate, at first both the bubble volume and the frequency 

increase, but later on a stage is reached where the frequency remains essentially 

constant whereas the bubble volume continues to increase. Though these regions are 

observed for all the systems studied, the conditions under which one region ends and 

the other begin are not clear. Finally, with the increase of the gas flow rate, the bubble 

formation process loses its stability and is characterized as jetting regime. 

2.3.6 Static system pressure 

LaNauze and Harris (1974) investigated the effect of elevated system pressure on 

submerged gas injection. They found that the bubble size decreased significantly with 

the increase of the system pressure, especially at high gas flow rate. The relationship 

between bubble volume and gas flow rate became non-linear at higher system 

pressures. LaNauze and Harris (1974) also found that higher pressures affected the 

coalescence behavior between successive bubbles for a given gas flow rate. The 

increased gas momentum due to the higher system pressure led to a smaller bubble 

volume and hence reduced the time delay between individual bubbles. 

Wilkinson and Dierendonck (1990) stated that the influence of both pressure and gas 

molecular weight on bubble formation had same cause. The effect of pressure on the 
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bubble size could be explained by the decrease in bubble stability with increasing gas 

density. 

Tsuge et al. (1992) studied the effect of system pressure under the conditions of gas 

chamber volume 12.8 cm3, orifice diameter 1.18 mm, and gas chamber volume 368 

cm3, orifice diameter 1.48 mm, respectively. They found that bubble volume decreased 

with the increase of system pressure both experimentally and theoretically.   

2.3.7 Liquid depth 

Liquid depth is chosen as one of the variables in the studies of bubble formation. It is 

generally agreed that this variable does not influence the bubble volume at the tip. This 

fact has been verified when the liquid depth was greater than approximately two 

bubble diameters (Davidson and Amick, 1956; Hayes et al., 1959).  

However, Khurana and Kumar (1969) indicated that only under constant flow and 

constant pressure conditions, bubble volumes were not significantly influenced by the 

liquid depth. While for the intermediate condition, bubble volumes were observed to 

decrease exponentially with the increase of the liquid depth from 15 cm to 128 cm for 

orifice diameter 3 mm. Iliadis et al. (2000) investigated the influence of the liquid 

depth on bubble formation for various orifice diameter and gas chamber volume in the 

single bubbling region. They found that the bubble size increased with the increase of 

the liquid depth in the range of 10 to 150 cm with the conditions of orifice diameters 

from 1.15 to 4.35 mm and chamber volume from 150 to 7000 cm3.  

2.3.8 Bulk liquid motion 

There are two types of bulk liquid motion, namely erratic liquid oscillation and forced 
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liquid bulk flow. The former is induced by bubble formation and upward rising motion 

and it is very difficult to account for rigorously. The later is evoked by means of 

external force exerted on the liquid body and most of the investigations about the 

effect of liquid flow on bubble formation have been focused on it. 

Bubble formation in co-flowing or counter-flowing liquid under constant gas flow 

conditions has been investigated both experimentally and theoretically (Sada et al., 

1978; Takahashi et al., 1980; Fawkner et al., 1990 and Chen and Tan, 2002). All the 

investigations reported that the bubble volume decreased with increasing superficial 

liquid velocity. 

Bubble formation with cross-flowing liquid is another case usually met in many 

industrial gas-liquid operations. The liquid motion results in a drag force on the 

growing bubble, thereby causing earlier bubble detachment and producing smaller 

bubbles when compared with formation under stagnant or quiescent liquid conditions. 

Another advantage of cross-flowing liquid is that the detached bubbles tend to be 

swept away from the region of the orifice, thereby reducing the likelihood of 

coalescence. Theoretical models for bubble formation with cross-flowing liquid have 

been developed by Tsuge et al. (1981), Wace et al. (1987), Marshall et al. (1993), Kim 

et al. (1994), Tan et al. (2000) and Zhang and Tan (2003).  

2.4 Mathematic modeling 

Most theoretical studies of bubble formation have been concentrated on the single 

bubble formation in a quiescent liquid. The extensive theoretical study on this subject 

gives a fundamental understanding of the bubble formation process, growth and 

detachment size and detachment time throughout a wide range of conditions of gas 
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flow rate, chamber volume, orifice size, gas and liquid properties as well as system 

pressure. Some reviews on this area include the articles by Kumar and Kuloor (1970), 

Tsuge (1986), Tan and Harris (1986), and the monographs by Clift et al. (1978), Sadhal 

et al. (1997).  

In general, the existing models for bubble formation in a quiescent liquid can be 

classified into two broad categories, i.e., spherical models and non-spherical models.   

2.4.1 Spherical models 

Based on the analytical solution of force balance equations or equations of motion, 

many spherical models have been developed (Davidson and Schüler, 1960a, b; 

Khurana and Kumar, 1969; LaNauze and Harris, 1972; and Tsuge and Hibino, 1983). 

According to the definition of the bubble formation stages, these models could be 

classified into one-stage model, two-stage model and three-stage model.  

2.4.1.1 One-stage models 

Davidson and Schüler (1960a, b) proposed a series of one-stage models to describe 

bubble formation in both viscous and inviscid liquids for the two main bubbling 

regimes, i.e., constant flow and constant pressure regimes. The schematic diagram of 

the idealized one-stage model of Davidson and Schüler (1960a) is shown in Figure 2.2. 

It was assumed that the bubble detached when the vertical distance between the center 

of the bubble and the point of gas supply, s , was equivalent to the final bubble radius, 

a . Thus there was no distinction between the expansion and detachment stage. It was 

assumed that the velocity of the bubble center was determined by a force balance 

between the buoyancy force and the viscous drag while neglecting the inertia term. 

Although the predicted results agreed well with the experimental data, the models were 
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limited to be used for very small gas flow rates.  

Swope (1971) applied Newton’s second law to slow bubble formation in viscous 

liquids with pressure fluctuation in the gas chamber. The gas flow rate into the bubble 

was determined by multiplying the average gas flow rate into the chamber with the 

ratio of the bubbling time to the sum of bubbling and non-bubbling times. 

 

s 

 
a 

 

Fig. 2.2 One-stage model in quiescent liquid by Davidson and Schüler (1960a) 

With a modification of Davidson and Schüler’s (1960a, b) model, LaNauze and Harris 

(1972) developed a one-stage model for bubble formation in the constant pressure 

regime. The proposed bubble formation sequence is illustrated in Figure 2.3. Initially, 

the bubble center is at a point source of gas, the center of the upper face of the orifice. 

Its upward motion is determined by a balance between the forces acting on the bubble 

and the inertia of the liquid surrounding it. Later, LaNauze and Harris (1974) extended 

their earlier model to allow for the rate of change of gas momentum issuing through 

the orifice and variable gas chamber pressure. They studied the effects of gas 

momentum on the bubble formation at elevated pressure.  



Chapter 2                                               Literature review 

 20

R0

(a)
Initiation

a

(b)

s

(c)
s=a

(d)
s=a+R0  Detachment

 

Fig. 2.3 One-stage model in quiescent liquid by LaNauze and Harris (1972) 

2.4.1.2 Two-stage models 

Following the development of one-stage models, two-stage models, which took the 

bubble necking into account, were proposed by Ramakrishnan et al. (1969), 

Satyanarayan et al. (1969), Khurana and Kumar (1969), Ruff (1972), and Takahashi 

and Miyahara (1976,1979). The idealized two-stage bubble formation model by 

Ramakrishnan et al. (1969) is shown in Figure 2.4. 

In the model, bubble formation was assumed to consist of two stages: expansion stage 

and detachment stage. During the first stage, expansion stage, the spherical bubble 

expands while its base remains attached to the orifice. This stage is assumed to end 

when all the forces acting on the bubble are just balanced, so that the bubble begins to 

rise. In the second stage, detachment stage, the bubble continues to grow while lifting 

up from the plate, but is still connected to the orifice by a neck. This stage terminates 

when the neck breaks off and the bubble detaches. It is assumed that the bubble 

detaches when the length of the neck reaches an empirical value. This is similar to the 

detachment criterion of Davidson and Schüler (1960a, b). 
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Fig. 2.4 Two-stage model in quiescent liquid by Ramakrishnan et al. (1969) 

The two-stage model for bubble formation at a plate orifice submerged in an inviscid 

liquid at high gas flow rates was proposed by Wraith (1971). In the model, the 

surrounding liquid was assumed to be inviscid and of infinite extent. The gas was 

incompressible and its density was neglected. Surface tension was neglected in the 

model. Figure 2.5 shows the two successive stages schematically during bubble growth. 

At the beginning of bubble expansion from a point source, the gas bubble surface was 

assumed to be a hemisphere, with its radius equal to the orifice radius. The bubble 

became spherical about the center of mass of a hemispherical envelope at the end of 

the first stage. In the second stage, the force balance equation for a spherical bubble 

growing at the orifice was assumed to be given by the Davidson and Schüler’s (1960a, 

b) model, and neglecting the viscous force. 
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Fig. 2.5 Two-stage model in a quiescent liquid by Wraith (1971) 

2.4.1.3 Three-stage models 

Although the results predicted by the previous models agreed reasonably well with 

some experimental observations, there was criticism that the models were only 

applicable in a certain range of experimental conditions. With potential flow theory, 

three-stage models were developed by several authors (Kupferberg and Jameson, 1969; 

McCann and Prince, 1969; Tsuge and Hibino, 1983). 

The idealized three-stage bubble formation model proposed by Kupferberg and 

Jameson (1969) is illustrated in Figure 2.6. The three stages are the growth stage, 

elongation stage and waiting stage. The first two stages were similar to the two-stage 

model of Ramakrishnan et al. (1969). In the waiting stage, it was assumed that there 

was no outflow of gas from the chamber after the detachment of a bubble. Hence the 

pressure in the chamber increased and the next bubble began to form. During a part of 

waiting stage, weeping through the orifice might occur. Potential flow theory was 

employed in the model to calculate bubble and liquid motion. 
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Growth Stage Elongation Stage Waiting Stage 

 

Fig. 2.6 Three-stage model in a quiescent liquid by Kupferberg and Jameson (1969) 

Independently with Kupferberg and Jameson (1969), McCann and Prince (1969) 

derived a potential flow theory to describe the gas flow from the gas chamber into an 

expanding, rising spherical bubble forming at the orifice, by taking into account the 

wake behind preceding bubble. 

Tsuge and Hibino (1983) proposed another three-stage model with modified potential 

flow theory. For the ideal liquid, Kupferberg and Jameson (1969) and McCann and 

Prince (1969) derived the functional form of potential velocity φ  from the potential 

flow theory, but for a real liquid it was difficult to derive theoretically the concrete 

form of potential velocity φ . Hence Tsuge and Hibino (1983) proposed that φ  was 

expressed as the product of the inertial term for the ideal liquid and a factor which was 

a function of dimensionless liquid property.  

2.4.2 Non-spherical models 

The spherical models just described in the Section 2.4.1 have assumed the spherical 

shape of the bubble and have been forced to use an empirical or semi-empirical 

criterion to determine the instant of the detachment. Non-spherical models enable 
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continuous computation of instantaneous shape of the bubble during its formation 

using the equations of motion for the liquid and the thermodynamic relationships for 

the gas in the bubble and the gas chamber, there is no need for the empirical 

detachment criteria because the instant of detachment comes naturally at the time when 

the neck, which develops during formation, attains zero width. In addition, the bubble 

becomes increasingly non-spherical at higher gas flow rates and higher system 

pressures and it is not good to describe the bubble as spherical. To overcome these 

limitations, non-spherical models for bubble formation were developed by a number of 

researchers.  

2.4.2.1 Non-spherical model by Marmur and Rubin 

Marmur and Rubin (1976) proposed a non-spherical model which showed a significant 

forward leap over the previous spherical models. Their model assumed an inviscid 

liquid, with liquid inertia calculated through the “added mass” concept of inviscid flow 

theory. The growing bubble was a volume of revolution around the vertical axis. The 

gas-liquid interface was divided into a number of small elements and the position of 

each element at any time instant was determined by the time-dependent force balance. 

Each element was acted upon by the pressure difference between the gas and the liquid 

and by the surface tension force. For a static interface these forces were in equilibrium, 

but in dynamic formation the resultant of these forces was equal to the rate of change 

in the liquid momentum, assuming that the gas momentum was negligible. In order to 

avoid the extremely complicated solution of the Navier-Stokes equations for the 

motion of the liquid, the momentum of the liquid was determined by using the “added 

mass” concept and the velocity of the interface. The effect of the chamber volume on 

bubble formation was analyzed by applying thermodynamic equations for the gas in 
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the bubble and the chamber below the orifice plate. A finite difference procedure was 

subsequently used to solve the equations of motion for each element. 

In contrast with previous spherical models, this model was able to predict the 

instantaneous shape of the bubble during its formation. The bubble shapes predicted 

agreed well with video images taken by researchers such as Kupferberg and Jameson 

(1969). 

Although the results predicted by this model were in good agreement with 

experimental data, there were several shortcomings. Contributions due to gas 

momentum and liquid circulation around the bubble were neglected in this model. It 

had been shown that gas momentum had a significant effect on bubble growth at high 

system pressures (LaNauze and Harris, 1974). Hence this model was limited to low 

gas flow rates and atmospheric conditions. In addition, an empirical added mass 

coefficient of 0.85 was used to provide a good fit to the data. This was in contrast to 

the widely accepted value of 11/16, which was based on the hydrodynamics of a 

sphere moving perpendicularly to the wall in an inviscid fluid (Milne-Thomson, 1968). 

2.4.2.2 Non-spherical model by Pinczewski 

The model proposed by Pinczewski (1981) extended the description of bubble 

formation by including the effect of gas momentum. The contribution of gas 

momentum was introduced by assuming a pressure distribution due to spherical vortex 

motion of the gas within the bubble. An initial “expansion” stage was described by the 

modified Rayleigh equation of motion for a spherically expanding bubble: 
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where the four terms on the RHS of Equation (2.4) represented the inertia, surface 

tension, viscous forces, and the pressure distribution due to gas motion, respectively. 

The equation was assumed to be equally valid for any point on a non-spherical surface 

where R  became the equivalent radius of the surface as defined in the following 

equation: 

21
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and 1R  and 2R  were the principal radii of curvature. 

A static buoyancy force was used to determine the instant of “lift-off” and the 

commencement of a stage when “expansion” and “vertical translation” occurred 

simultaneously.  

Although this model was able to provide a more general description of bubble 

formation, which would be applicable to a wider range of gas flow rates and system 

pressures, there were several inadequacies. The spherical equation of motion and 

spherical gas stream function were applied to model bubble formation. In addition, the 

two-stage approach to bubble formation used in the model contained fundamental 

theoretical weaknesses. 

Terasaka and Tsuge (1990) adopted Pinczewski’s approach and proposed a modified 

theoretical model for bubble formation in viscous liquids. The schematic diagram of 

the non-spherical model by Terasaka and Tsuge (1990) is shown in Figure 2.7. In their 

model, the equivalent radius R was only used for surface tension, and R2, the distance 

from the bubble’s symmetrical axis to the element i throughout the point O, was used 

for inertial and viscous forces as the characteristic radius. The expansion of the 
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gas-liquid interface was written by the following Rayleigh Equation:  
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Fig. 2.7 Non-spherical model in quiescent liquid by Terasaka and Tsuge (1990) 

By revising Pinczewski’s model, the equation of vertical translation was described by 

inertial, buoyancy, and viscous drag forces and gas momentum rate through an orifice 

as follows: 
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where m  was the added mass, DC  was the drag coefficient, Dm was the maximum 

horizontal diameter of the bubble and q is the gas flow rate through the orifice. 

The bubble surface expanded and the bubble rose according to Equations (2.6) and 

(2.7). A finite difference procedure was used to solve the equations numerically. Their 
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non-spherical model still contained the same inadequacies as presented in the original 

model by Pinczewski. 

Li et al. (2002) developed a non-spherical bubble formation model by revising that of 

Pinczewski (1981), which was used in Newtonian fluids, to take into account the fluid 

rheological properties. In their model, the influence of in-line interactions between 

bubbles due to the fluid memory effects of the viscoelastic characteristics was taken 

into account. Their model was able to compute the instantaneous growing shape of the 

bubble during its formation and determine the final size of detachment as well as the 

frequency of bubble formation. However, their model also contained the same 

disadvantage as presented in the original model by Pinczewski, in that the equivalent 

radius was used in two spherical equations of motion: the radial expansion and vertical 

ascension of the bubble interface. 

 

2.4.2.3 Non-spherical model by Zughbi et al. 

Zughbi et al. (1983) were one of the earliest researchers attempting the modeling of 

bubble formation by the rigorous numerical solution of liquid field around the bubble. 

A fundamental analysis of the motion of the liquid surrounding the bubble and its 

influence on bubble growth were presented. The model was based on a modified 

Marker and Cell method in which the liquid region bounded by the bubble surface, the 

orifice plate, the vessel walls and the free liquid surface was divided into a number of 

cells. The unsteady, incompressible and axisymmetric Navier-Stoke equations 

describing the liquid flow field around the growing bubble were solved for each cell 

using a staggered finite difference method. Massless marker particles, which moved 
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with the local velocity of the liquid, were distributed along the bubble surface. 

The model prediction was in agreement with the experimental data of Kupferberg and 

Jameson (1969). Besides having the obvious advantages associated with non-spherical 

models, the model was able to predict the effects of solid walls and free liquid surface 

on bubble formation. This was an improvement over previous non-spherical models. 

However, one shortcoming of this model was its high degree of numerical complexity. 

In addition, the model did not take into account the effect of gas momentum. Therefore, 

the model was more suitable for low gas flow rates and atmospheric pressure 

conditions. 

2.4.2.4 Non-spherical model by Hooper 

Independently from Zughbi et al. (1983), Hooper (1986) proposed another model 

based on the solution of the liquid flow field around the bubble surface. The boundary 

element method was adopted in the model. The surrounding liquid was assumed to be 

inviscid and the flow was irrotational. Therefore, the velocity potential φ  could be 

introduced and it satisfied Laplace’s Equation, i.e.  

02 =∇ φ                                                           (2.8) 

The derivative of φ  normal to the bubble surface was obtained with the boundary 

element method and the tangential velocity of the bubble surface could be obtained 

with the cubic spline method along the bubble surface. Whence the velocities in the 

radial and axial direction could be calculated and together with thermodynamic 

equations for the gas, the instantaneous shape of the bubble during its formation could 

be predicted. 
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The model presented a comprehensive analysis of the role of the surrounding liquid in 

the detachment process of the bubble and was able to compute the bubble shapes and 

streamline patterns of the liquid at various stages of bubble growth. It was found that 

the expanding and rising bubble caused unsteady stagnation point flow to occur in the 

liquid. Thus an inward flowing region of liquid existed which caused the bubble to 

neck.  

However, in Hooper’s model, the surface tension term was neglected in order to avoid 

numerical instability during bubble formation.  

2.4.2.5 Non-spherical model by Tan and Harris 

An improved non-spherical model for bubble formation was developed by Tan and 

Harris (1986). The model was based on the interfacial element method, which ascribed 

a virtual mass to each surface element of the bubble, and did not require an arbitrary 

detachment criterion, nor did it use a static “lift-off’ criterion to distinguish between 

separate stages of bubble growth. The effect of gas momentum and liquid motion were 

taken into account in their model so that their model was applicable in bubbling 

systems under high system pressure and high gas flow rates. The model predictions 

agreed very well with the experimental data of Kupferberg and Jameson (1969), 

LaNauze and Harris (1972) and Tsuge and Hibino (1978). Several other workers have 

adopted the model proposed by Tan and Harris (1986) to extend its applicability (Liow 

and Gray, 1988; Wilkinson and van Dierendonck, 1994). 

2.5 Bubble wake and rise velocity after detachment 

The term "wake" is applied, in a broad sense, to the entire region of non-zero vorticity 

downstream of a body placed in an otherwise uniform fluid flow (Fan and Tsuchiya, 
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1990). Liquid wake pressure behind a rising bubble plays a significant role in 

determining bubble interaction (Tsuchiya et al., 1996; Chen et al., 1999; Colella et al., 

1999; Li et al., 1999). The effect of a rising bubble on subsequent ones depends on the 

bubble size and the separation distance, as indicated by Marmur and Rubin (1976): 

when the bubble is small and the time interval between consecutive bubbles drops to 

almost zero, the ascending bubble tends to delay the detachment of the forming bubble; 

when the bubble which has been formed is large, it tends to detach the forming bubble 

earlier, due to the rotational motion which is induced by it in the liquid. Compared to 

other factors, bubble wake effects have received relatively less attention.   

2.5.1 Wake pressure  

For gas bubbles formed in low viscosity liquid media (such as water), potential flow 

theory is often employed to analyze the distinct pressure field behind the bubble when 

the liquid flow is assumed as irrotational motion.  

Jameson and Kupferberg (1967) discussed the wake pressure behind a spherical bubble 

and cylindrical bubble accelerating from rest. For a spherical bubble, the expression 

for wake pressure is 

6532 ~
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                                           (2.9) 

where P∆  is the pressure change at the rest point (orifice, 0=s ), namely the wake 

pressure; a  is the bubble radius and the dimensionless distance ass /~ = .   

For a cylindrical bubble, the expression is 
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Equations (2.9) and (2.10) are plotted in Fig. 2.8. It seems that initially the pressure 

behind the bubble is less than the ambient, but after it has moved a short distance, P∆  

becomes positive. This indicates that the point from which the bubble departs (the rest 

point) is acted upon by a short pressure decrement and then by a much longer excess, 

compared with the pressure at a distance from the bubble. The maximum pressure 

excess occurs at 15.2~ =s  for a sphere. The authors pointed out two main sources of 

error for P∆ . Firstly, viscosity begins to be important as U increases so the bubble 

tends to stop accelerating. Secondly, the bubble will deform from the spherical shape, 

so that the assumed form of velocity potential function will be in error.  

 

Fig. 2.8 Pressure at the rest point behind a sphere or cylinder accelerating from rest 
(adapted from Jameson and Kupferberg, 1967) 
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Using potential flow theory, McCann and Prince (1969) analyzed the wake pressure 

behind the rising bubble, which was determined using Bernoulli's expression in 

combination with the velocity potential of a rising expanding bubble. The wake 

pressure expression is: 

2
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−−=                                 (2.11) 

where 

2gTTUss DETDETD ++=  

gTUU DETD 2+=  

The subscript DET  refers to conditions on detachment and the time T has its origin at 

detachment. It was pointed out that this pressure correction to the bubble motion is 

small at low flow rates, where the distance between successive bubbles is large. As the 

flow increases, the spacing between bubbles reduces and the effect becomes more 

marked. Under these circumstances double bubbling is possible. Calculations indicate 

that wP  can cause up to 20 per cent increase in bubble volume (McCann, 1969).  

Wraith and Kakutani (1974) established the pressure field for an idealized growing 

spherical gas bubble rising in an inviscid liquid from a horizontal plate-orifice and 

from a free standing nozzle on the basis of potential flow. The pressure curve is similar 

to that obtained by Jameson and Kupferberg (1967). The authors argued that the 

maximum pressure behind the bubble was responsible for the collapse of the neck 

linking the bubble and the gas source.  



Chapter 2                                               Literature review 

 34

Nilmani (1982) considered liquid viscosity as well as the distortion of the detached 

bubble and came up with an improved approach to predict bubble wake effect. Direct 

solution of the continuity and momentum equations is obtained by the finite difference 

method. He compared his numerical simulation results with Jameson and Kupferberg's 

(1967) potential flow prediction for a two-dimensional bubble (cylindrical bubble) and 

a three-dimensional bubble (spherical bubble).  The results are shown in Fig. 2.9 and 

Fig. 2.10. Although the curve is directly obtained from solution of the transport 

equations, the trend and magnitude is nevertheless similar to the prediction of potential 

flow theory.  

 

 

 Fig. 2.9 Pressure at the orifice left behind by a 2-D air bubble in water accelerating 
from rest (adapted from Nilmani, 1982) 
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 Fig. 2.10 Pressure at the orifice left behind by a 3-D air bubble in water accelerating 
from rest (adapted from Nilmani, 1982) 

 

Due to the inherent inability of potential flow theory to model the vorticity behind 

bubbles as experimentally observed, the above approaches are flawed.  

Fan and Tsuchiya (1990) discussed the pressure distributions around rising bubbles 

based on some experimental findings and presented a simple theoretical description of 

the pressure field for an idealized vortical flow. Fig. 2.11 shows the isobaric 

representation of the pressure field around a bubble of 51=ed  mm ( 41067.2Re ×=e ) 

obtained by Lazarek and Littman (1974) as a cross-plot of the measured pressure-time 

relations along the longitudinal axes at various lateral displacements. 
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Fig. 2.11 Isobaric representation of the pressure field around a circular-cap bubble 
(adapted from Fan and Tsuchiya, 1990) 

After some simplifying assumptions, Fan and Tsuchiya (1990) gave the pressure 

distribution within and around the vortex core as follows:  
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where 1p  and 2p  denote the dynamic pressure inside and outside the vortex core 

respectively, vr  is the radius of the core, Γ  is the circulation about the vortex along 
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the boundary. The wake pressure exhibits a parabola-like profile which has a minimum 

at the vortex center. 

There is clearly a conflict between the wake pressure profile measured experimentally 

and that predicted by potential flow theory, despite its popularity. An alternative 

approach is necessary in order to effectively model the actual wake pressure effects on 

bubble formation at a submerged orifice.  

2.5.2 Rise velocity  

2.5.2.1 Initial acceleration  

The initial motion of a bubble rising from a flat surface is important in the 

determination of wake pressure (Jameson and Kupferberg, 1967). McCann and Prince 

(1969) used gU D 2=  to calculate the wake pressure. Walters and Davidson (1962, 

1963) gave a potential flow analysis of the initial motion of the two-dimensional and 

three-dimensional bubbles. They verified that a two-dimensional bubble had an initial 

acceleration of g, while a three-dimensional bubble had an initial acceleration of 2g. 

However, whether the value of upward acceleration is applicable throughout the entire 

rising process is questionable, since in practice, the terminal rise velocity of the bubble 

is attained shortly after released.  

2.5.2.2 Terminal rise velocity 

In a stationary fluid of infinite extent, a bubble moving freely under the influence of 

gravity exhibits a specific rate of ascent when the terminal condition is attained. Under 

this condition, the contribution of the periodic variation in the instantaneous velocity 

due to bubble oscillation to the terminal velocity, bU , is usually either sufficiently 
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small or nullified by taking the average (Fan and Tsuchiya, 1990). All forces acting on 

the bubble, viz., the drag, gravitational and buoyant forces, are in equilibrium at the 

terminal condition. The drag force can be presented by the drag coefficient DC . When 

the body is a gas bubble of negligible density, DC  is commonly defined based on an 

equivalent projected area, 2 / 4edπ , as given by 24 / 3D e bC d Uπ=  (Harmathy, 1960). 

In view of this definition, the behaviour of the terminal rise of the bubble is often 

described in terms of DC .  

It can be assumed that interfacial tension forces are ignored and flow is considered 

only in the neighbourhood of the nose, where the external fluid is assumed to flow as 

an inviscid fluid over a complete sphere or spherical of which the fluid particle forms 

the cap. The surface pressure distribution in the continuous fluid may then be 

calculated using Bernoulli’s theorem. For a spherical cap, this gives (Clift, el al.,1978): 

2 2(1 cos ) (9 / 8) sins o bP P ga Uρ θ ρ θ− = − −                                (2.14) 

where oP  is the pressure at the nose ( 0θ = ). 

The pressure distribution at the surface in the dispersed phase is assumed to be the 

hydrostatic pressure distribution. This will apply if Re /b g e b gd Uρ µ=  is sufficiently 

large, e.g., of order 100 or greater, so that there is a thin interior boundary layer across 

which the pressure distribution is determined by the slow moving interior fluid. For a 

spherical cap, the pressure distribution is then 

(1 cos )s o gP P gaρ θ− = −                                              (2.15) 

Equating the two expressions for ( s oP P− ) and solving for the terminal velocity gives 
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=                                              (2.16) 

This equation cannot be satisfied over the entire spherical-cap surface, but if it is 

satisfied for 0θ →  to terms of order 2θ , the terminal velocity reduces to  

2 /
3bU ga ρ ρ= ∆                                                   (2.17) 

which is the celebrated Davies and Taylor Equation (1950). 

Collins (1966) obtained a second approximation to the velocity of a large bubble using 

a perturbation analysis to balance the pressure along the interface. The result, in 

generalized form, is  

0.652 /bU ga ρ ρ= ∆                                               (2.18) 

where a  is the average radius of curvature over the surface from 0θ =  to 

37.5oθ = .  

2.6 Bubble formation with wall effect 

As discussed above, bubble formation at a submerged orifice has been investigated 

experimentally and theoretically in the past decades. However, nearly all of the 

previous studies upon bubble formation have not taken into account the dimensions of 

the bubble column. It has generally been assumed that the bubble column diameter was 

very large compared with the orifice size and that the wall effect could be neglected.  

Collins (1967) carried out a study of the influence of containing walls on the velocity 

of spherical-cap bubbles. The work was extended by Bhaga and Weber (1981) who 



Chapter 2                                               Literature review 

 40

also investigated the influence of wall proximity on wake size, external flow fields, 

bubble shape, and skirt behaviour. Coutanceau and Thizon (1981) investigated the wall 

effect on the bubble behaviour in highly viscous liquids experimentally and 

theoretically. Krishna et al. (1999) also investigated the effect of the column diameter 

on the rise velocity of a single spherical cap bubble by introducing a scale correction 

factor which is a function of the ratio of the bubble diameter to the column diameter. 

Generally, decreasing the diameter ratio /cd d , where cd  is column diameter and d 

is bubble diameter, it was found to cause bubble elongation, a decrease in terminal 

velocity, a marked reduction in the wake volume and the rate of fluid circulation within 

the wake, and a delay in the onset and waviness of skirts. 

Ruzicka et al. (2001) investigated the effect of bubble column dimensions on flow 

regime transition. Bubble columns of three different diameters ( 0.14,0.29,0.40cd = m) 

were employed in the experiment. Their study showed that decreasing column size had 

an adverse effect on the homogeneous regime stability and promoted flow regime 

transition. 

2.7 Summary 

Bubble formation at a submerged orifice has been extensively studied in recent 

decades. As discussed above, the model can be classified into two categories, i.e., 

spherical and non-spherical models. However, the focus of previous investigation is on 

those factors, such as orifice diameter, chamber volume, liquid and gas properties, gas 

flow rate, system pressure, liquid depth and liquid motion, and clearly there is no much 

studies taking into account of the wall effect. As we know, wall effect is also a factor 

influencing bubbling formation. Therefore, taking into account of the wall effect is 
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necessary for further study of bubble formation. 

Hooper (1986) developed a non-spherical model with the boundary integral method. 

Boundary integral method was very important for solving boundary values problem in 

PDEs. In nature, only the boundary conditions around a domain were considered, and 

the dimension of the potential problem was reduced by one with the formulation, 

which simplified the calculation. However, the model developed by Hooper (1986) 

was incomplete because the surface tension effect was not taken into account and there 

were many mathematical inconsistencies in his model. Therefore, an improved model 

with the boundary integral model is developed in this study.  

Little work was done on bubble formation with the consideration of bubble-bubble 

interaction. Zhang and Tan (2000) investigated the wake effect on bubble formation 

quite successfully. Based on model developed by Zhang and Tan (2000), this study 

attempts to model bubbling regimes with the consideration of bubble-bubble 

interaction. 
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Chapter 3   Improved modeling of bubble formation with 
the boundary integral method 

 

 

In this chapter an improved model, based on the one proposed by Hooper (1986), is 

developed with the inclusion of the boundary integral method and the effect of the 

surface tension. The boundary integral method is introduced in Section 3.1. Then, the 

theory and the theoretical modeling of bubble formation at a single submerged orifice 

are described in Section 3.2 and 3.3, respectively. The improvements over Hooper’s 

(1986) model are presented in Section 3.4. In Section 3.5, this model is further 

developed in modeling the wall effect on bubble formation by the introduction of a 

specific system of images.  

 

3.1 Boundary integral method 

3.1.1 Introduction 

Engineers and physical scientists are nowadays well conversed with methods such as 

finite differences or finite elements. These techniques discretize the domain of the 

problem under consideration into a number of elements or cells. The governing 

equations of the problem are then approximated over the region by functions which 

fully or partially satisfy the boundary conditions. These methods, together with other 

techniques that are applied on the domain, will be called domain methods.  

The boundary integral method was initially applied to solve elastostatics problems. 
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Later, the method was extended to a wider area, including potential problems. The 

Boundary integral method is based on Green’s formula that enables us to reformulate 

the potential problem as the solution of a Fredholm integral equation. The integral 

equation involves the potential and its normal derivative on the boundary of the region. 

This formulation has the effect of reducing the dimension of the problem by one, 

which has the advantage of rendering the technique computationally efficient, yet 

rigorous. For axisymmetric potential problems, two-dimensional integrals are reduced 

further to one-dimensional integrals by integrating through the polar angle. In this case 

the Green’s functions involve complete elliptic integrals. 

An early application of the integral technique to axisymmetric potential problems was 

by Hess and Smith (1966); their formulation was developed using a source density 

distribution on the body surface (indirect formulation) and using a linear surface, 

constant source distribution. Later, Hess (1975) improved the solution by using a 

curved surface and a source density variation over the surface. More recent application 

of this method in potential problems can be found in Blake et al. (1986, 1987), Bonnet 

(1995) and Power (1995). 

3.1.2 Formulation 

For any sufficiently smooth function, φ , which satisfies Laplace’s equation in a 

domain, Ω, having piecewise smooth surface, S, Green’s integral formula can be 

written as (Brebbia, 1978; Jaswon and Symm, 1977): 

( ) ( ) ( ) ( , ) ( ( )) ( , )
s s

c p p q G p q dS q G p q dS
n n

φ φ φ∂ ∂
+ =

∂ ∂∫ ∫                     (3.1) 
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where ,p S q S∈Ω+ ∈ , 
n
∂
∂

 is the normal derivative outward from S, ( , )G p q  is 

Green’s function 
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p q
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                                                   (3.2) 
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                                       (3.3) 

Choosing p on S yields an equation for either φ  or 
n
φ∂
∂

 on S if the other is specified. 

Once both are known on S, Equation (3.1) can be used to generate φ  at any point 

p∈Ω . In axisymmetric problems, φ  and 
n
φ∂
∂

 are independent of rotational angle 

and integration over this variable can be performed analytically, which is discussed 

below. 

3.1.3 Axisymmetric form of the integrate 

Using cylindrical coordinates with 0 0( ,0, )p r z=  and ( , , )q r zθ=  respectively, we 

have 

1
2 2 2 2

0 0

1 1
| | ( cos ) ( sin ) ( )p q r r r z zθ θ

=
− ⎡ ⎤− + + −⎣ ⎦
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If the surface, S, is parameterized by the variable, ξ, 
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where ( )K k  is the complete elliptic integral of the first kind. Hence, we have 

1
2

2 2

1

10
2 2 2

0 0

4 ( ) ( ) ( ) ( )
1

| | ( ( ) ) ( ( ) )
S

dr dzr K k
d d

dS d
p q r r z z

ξ
ξ ξ

ξ
ξ ξ

⎡ ⎤
+⎢ ⎥

⎣ ⎦=
− ⎡ ⎤+ + −⎣ ⎦

∫ ∫                             (3.7) 



Chapter 3 Improved modeling of bubble formation with the boundary integral method 

 46

The unit normal n
∧

−
 can be expressed as 
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We can write the first θ  integral in Equation (3.11) as 
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and the second θ  integral in Equation (3.11) as 
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2 22 22 2

cos (2cos 1)4
1 cos1 cos

2

d d

kk

ππ θ θ η η

θ η

−
=

⎡ ⎤ ⎡ ⎤−⎣ ⎦−⎢ ⎥⎣ ⎦

∫ ∫
                           

                ( ) ( )

2 2
2 2

3 32 20 0
2 2 2 22 2

8 ( cos 1) 8( 4)
1 cos 1 cos

k d d
k kk k

π πη η η

η η

−
= + −

− −
∫ ∫      
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( )

2 2
3 12 20 0

2 2 2 22 2

8 8( 4)
1 sin 1 sin

2

d d
k kk k

π πη η

ηη
= − −

⎛ ⎞− −⎜ ⎟
⎝ ⎠

∫ ∫  

                
2 2

8 8( 4) ( , ) ( )k k K k
k k

= − Π −                            (3.13) 

where ( , )k kΠ  is the complete elliptic integral of the third kind, which can be written 

in terms of the complete elliptic integral of the second kind, ( )E k , as 

2

( )( , )
1
E kk k

k
Π =

−
                                                    (3.14) 

where 
1

2 22 2
0

( ) (1 sin )E k k d
π

α α= −∫ . 

Hence, 

1

30
2 2 2

0 0

1 ( )( ) 4
| | ( ( ) ) ( ( ) )

S

d rdS
n p q r r z z

ξ ξ

ξ ξ

∂
= −

∂ − ⎡ ⎤+ + −⎣ ⎦
∫ ∫  

0 0 0 02 2 2

2 ( ) 2( ( ) ) ( ( ) ) ( )
( ) 1 ( ) ( )

dz dr dz E k dzr r z z r r K k
d d k d k k d

ξ ξ
ξ ξ ξ ξ ξ ξ ξ

⎧ ⎫⎡ ⎤
+ − − − +⎨ ⎬⎢ ⎥ −⎣ ⎦⎩ ⎭

       (3.15) 

Approximations for ( )K k  and ( )E k  are of the form 

( ) ( ) ( ) ln( )K k P x Q x x= −                                             (3.16) 

( ) ( ) ( ) ln( )E k R x S x x= −                                              (3.17) 

where 21x k= −   

P, Q, R and S are tabulated polynomials that can be found in Abramowitz and Stegun 

(1965). 
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3.1.4 Approximations of the surface shape, potential and its normal 

derivative 

To proceed with the computation, we need to choose a representation for the surface, 

and also for the potential and its normal derivative on the surface. To some extent, 

these choices can be independent, but as the movement of the surface is computed 

using the potential and its normal derivative, the two should be considered together. In 

the description that follows, a plane section through the axis of symmetry of the 

surface is taken, and the potential and its normal derivative will be called functions. 

3.1.4.1 Linear surface-constant functions. (L-C) 

The surface is replaced by a set of N  linear segments Sj, with the potential and its 

normal derivative constant on each segment. The boundary integral equation is 

replaced by its collocation form using the midpoint of each linear segment: 

1 1

1 12 ( ) ( ) ( 1, , )
| | |

1111
|j j

N N

i j jS S
j ji j i j

dS dS i N
n p q n p q

πφ φ φ
= =

∂ ∂
+ = =

∂ − ∂ −∑ ∑∫ ∫     (3.18) 

where pi is the ith point chosen as collocation point, and qj is any point on the segment 

Sj. 

If we denote 
n
φ∂
∂

 by ψ, we can write Equation (3.18) in matrix form as 

1 1

2
N N

iji j ij j
j j

H Gπφ φ ψ
∧

= =

+ =∑ ∑                                            (3.19) 

Defining 2ij ij ijH H πδ
∧

= + , Equation (3.19) may be written as 
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H GΦ = Ψ                                                         (3.20) 

3.1.4.2 Linear surface-linear functions. (L-L) 

jφ  and jψ  are assumed to be single valued at the end points of the linear segments 

which approximate the surface. If the segment is parameterized by ξ in the range (0,1), 

we can define 

1

2

( ) 1
( )

M
M

ξ ξ
ξ ξ
= − ⎫

⎬= ⎭
                                                    (3.21) 

and use the isoparametric approximations for both the surface and the functions. On 

segment Sj we have 

1 1 2

1 1 2

1 1 2

1 1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j j

j j

j j

j j

r r M r M

z z M z M

M M

M M

ξ ξ ξ

ξ ξ ξ

φ ξ φ ξ φ ξ

ψ ξ ψ ξ ψ ξ

−

−

−

−

= + ⎫
⎪= + ⎪
⎬= + ⎪
⎪= + ⎭

                                        (3.22) 

The collocation points are moved to the end points of each segment, yielding 1N +  

equations in the 1N +  unknowns. The integrals on each segment can be written 

1 1 2
1

| |j
ij j ij jS

i j

dS b b
n p q
φ ψ ψ−
∂

= +
∂ −∫                                     (3.23) 

where 

1 2

0 0

1( )
| ( , ) |kij j k

i

b S d M d
p q

π
ξ ξ θ

ξ θ
=

−∫ ∫                                  (3.24) 

and 
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1 1 2
1

| |j
ij j ij jS

i j

dS a a
n p q

φ φ φ−
∂

= +
∂ −∫                                    (3.25) 

where 

1 2

0 0

1( ) ( )
| ( , ) |kij j k

i

a S d M d
n p q

π
ξ ξ θ

ξ θ
∂

=
∂ −∫ ∫                              (3.26) 

3.1.4.3 Quadratic surface – quadratic functions. (Q-Q) 

If the segment is parameterized by ξ in the range (0,1) we can define 

1

2

3

( ) ( 1)(2 1)
( ) 4 (1 )
( ) (2 1)

M
M
M

ξ ξ ξ
ξ ξ ξ
ξ ξ ξ

= − − ⎫
⎪= − ⎬
⎪= − ⎭

                                             (3.27) 

and use the isoparametric approximation for both the surface and the functions. On 

segment Sj we have 

1 1 2 1 3

1 1 2 1 3

1 1 2 1 3

1 1 2 1 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

j j j

j j j

j j j

j j j

r r M r M r M

z z M z M z M

M M M

M M M

ξ ξ ξ ξ

ξ ξ ξ ξ

φ ξ φ ξ φ ξ φ ξ

ψ ξ ψ ξ ψ ξ ψ ξ

− +

− +

− +

− +

= + + ⎫
⎪= + + ⎪
⎬= + + ⎪
⎪= + + ⎭

                              (3.28) 

The collocation points are the endpoints and the midpoint, yielding 2 1N +  equations 

in the 2 1N +  unknowns. The integral on each segment can be written 

1 1 2 3 1
1

| |j
ij j ij j ij jS

i j

dS b b b
n p q
φ ψ ψ ψ− +
∂

= + +
∂ −∫                             (3.29) 

where 
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1 2

0 0

1( )
| ( , ) |kij j k

i

b S d M d
p q

π
ξ ξ θ

ξ θ
=

−∫ ∫                                  (3.30) 

and 

1 1 2 3 1
1

| |j
ij j ij j ij jS

i j

dS a a a
n p q

φ φ φ φ− +
∂

= + +
∂ −∫                             (3.31) 

where 

1 2

0 0

1( ) ( )
| ( , ) |kij j k

i

a S d M d
n p q

π
ξ ξ θ

ξ θ
∂

=
∂ −∫ ∫                              (3.32) 

3.1.5 Numerical integration 

The evaluation of the elements of the matrices H and G are performed numerically. 

Normally Gauss Legendre Quadrature is adequate unless the collocation point pi is 

within the segment Sj or is one of its endpoints, in which case the integrand is singular 

and must be treated specially. To remove the singularity, the singular integrals are 

separated into two terms by subtracting the logarithmic term. The quadrature scheme 

incorporating the logarithm is used to complete the integration. 

Recalling 2 0
2 2

0 0

4 ( )( )
( ( ) ) ( ( ) )

r rk
r r z z

ξξ
ξ ξ

=
+ + −

, x may be written as 

2 2
2 0 0

2 2
0 0

( ( ) ) ( ( ) )1 ( )
( ( ) ) ( ( ) )
r r z zx k
r r z z
ξ ξξ
ξ ξ

− + −
= − =

+ + −
                                (3.33) 

The singularity occurs when for example 1 1( , ) ( ( ), ( )).
2 2o or z r z=  In the vicinity of this 

point 
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2
2

0 2

1 1 1( ) ( ) ( )
2 2 2

dr d rr r
d d

ξ ξ ξ
ξ ξ

= + − + − +                             (3.34) 

2
2

0 2

1 1 1( ) ( ) ( )
2 2 2

dz d zz z
d d

ξ ξ ξ
ξ ξ

= + − + − +                             (3.35) 

Hence 

2

2 2 2
2

0

1( )
21 ( ) [( ) ( ) ]

4
dr dzx k

r d d

ξ
ξ

ξ ξ

−
= − ≈ +                                  (3.36) 

so that essentially ( )K k  behaves like 

21( ) ( ) ( ) ln( ( ) )
2

K k P x Q x A ξ≈ − −                                       (3.37) 

This information is sufficient to allow us to deal with the singularity. 

3.1.5.1 Singularity at ξ=0 

This singularity occurs when p is the point ( , ) ( (0), (0)).o or z r z=  If we write 

Equations (3.7) and (3.15) as 

1

0

1 4 ( ) ( ) ( )
| | ( )S

r J K kdS d
p q D

ξ ξ ξ
ξ

=
−∫ ∫                                    (3.38) 

and 

1

30

1 4 ( )( )
| | ( )S

rdS
n p q D

ξ
ξ

∂
= −

∂ −∫ ∫  
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0 0 0 02 2 2

2 ( ) 2( ( ) ) ( ( ) ) ( )
( ) 1 ( ) ( )

dz dr dz E k dzr r z z r r K k d
d d k d k k d

ξ ξ ξ
ξ ξ ξ ξ ξ ξ ξ

⎧ ⎫⎡ ⎤
+ − − − +⎨ ⎬⎢ ⎥ −⎣ ⎦⎩ ⎭

                                                                 (3.39) 

where  

1
2

2 2( ) ( ) ( )dr dzJ
d d

ξ
ξ ξ

⎡ ⎤
= +⎢ ⎥
⎣ ⎦

                                            (3.40) 

and 

1
2 2 2

0 0( ) ( ( ) ) ( ( ) )D r r z zξ ξ ξ⎡ ⎤= + + −⎣ ⎦                                     (3.41) 

By writing  

2ln( ) ln( ) 2 ln( )xx ξ
ξ

= +                                               (3.42) 

and using Equations (3.16) and (3.17), we separate out the logarithmic singularity as 

follows: 

1

20

1 ( ) ( )4 ( ( )) ( ( )) ln( ) ( )
| | ( )S

r xdS P x Q x J d
p q D

ξ ξξ ξ ξ ξ
ξ ξ

⎧ ⎡ ⎤
= −⎨ ⎢ ⎥− ⎣ ⎦⎩

∫ ∫  

1

0

( ) 12 ( ( )) ln( ) ( )
( )

r Q x J d
D
ξ ξ ξ ξ
ξ ξ

⎫
+ ⎬

⎭
∫                          (3.43) 

21

0 03 20

( ( )) ( ( )) ln( )
1 4 ( )( ) ( ( ) ) ( ( ) )

| | ( ) 1 ( )S

xR x S x
r dz drdS r r z z

n p q D k d d

ξ ξ
ξ ξ ξ ξ
ξ ξ ξ ξ

⎧ −⎪ ⎡∂ ⎪= − + − −⎨ ⎢∂ − − ⎣⎪
⎪⎩

∫ ∫            
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0 02 2 2

2 2 ( ( )) ( ( )) ln( )
( ) ( )

dz dz xr r P x Q x d
k d k d

ξ ξ ξ
ξ ξ ξ ξ ξ

⎫⎤ ⎡ ⎤
− + − ⎬⎥ ⎢ ⎥

⎦ ⎣ ⎦⎭
 

1

0 0 03 2 20

( ) ( ( )) 28 ( ( ) ) ( ( ) )
( ) 1 ( ) ( )

r S x dz dr dzr r z z r
D k d d k d
ξ ξ ξ ξ
ξ ξ ξ ξ ξ ξ

⎧ ⎡ ⎤
− + − − −⎨ ⎢ ⎥−⎩ ⎣ ⎦
∫  

02

2 1( ( )) ln( )
( )

dz r Q x d
k d

ξ ξ
ξ ξ ξ

⎫
+ ⎬

⎭
                          (3.44) 

3.1.5.2 Singularity at ξ= 1
2

 

This is the case when p is the point 1 1( , ) ( ( ), ( )).
2 2o or z r z=  By writing 

( )2ln( ) ln( ) 2 ln(2 1)
2 1

xx ξ
ξ

= + −
−

                                     (3.45) 

we obtain 

( )
1

20

1 ( ) ( )4 ( ( )) ( ( )) ln( ) ( )
| | ( ) 2 1S

r xdS P x Q x J d
p q D

ξ ξξ ξ ξ ξ
ξ ξ

⎧ ⎡ ⎤⎪= −⎢ ⎥⎨− −⎢ ⎥⎪ ⎣ ⎦⎩
∫ ∫  

1

0

( )2 ( ( )) ( ) ln | 2 1|
( )

r Q x J d
D
ξ ξ ξ ξ ξ
ξ

⎫
− − ⎬

⎭
∫                       (3.46) 

The second integral in Equation (3.46) can be split as follows 

( )
11
2

0 0

( ) ( )( ( )) ln | 2 1| ( ) ( ( )) ln 1 2 ( )
( ) ( )

r rQ x J d Q x J d
D D
ξ ξξ ξ ξ ξ ξ ξ ξ ξ
ξ ξ

− = −∫ ∫  

( )
1
1
2

( ) ( ( )) ln 2 1 ( )
( )

r Q x J d
D
ξ ξ ξ ξ ξ
ξ

+ −∫       (3.47) 
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Substituting 1 2η ξ= −  in the first integral in Equation (3.47) and 2 1η ξ= −  in the 

second integral, we obtain 

( )
1

20

1 ( ) ( ) ( )4 ( ( )) ( ( )) ln( )
| | ( ) 2 1S

r J xdS P x Q x d
p q D

ξ ξ ξξ ξ ξ
ξ ξ

⎧ ⎡ ⎤⎪= −⎢ ⎥⎨− −⎢ ⎥⎪ ⎣ ⎦⎩
∫ ∫  

        
1

0

1 1 1 1 1 1( ) ( ( )) ( ) ( ) ( ( )) ( ) 12 2 2 2 2 2 ln1 1( ) ( )
2 2

r Q x J r Q x J
d

D D

η η η η η η

ηη η η

− − − + + +⎡ ⎤
⎢ ⎥ ⎛ ⎞

+ +⎢ ⎥ ⎜ ⎟− + ⎝ ⎠⎢ ⎥
⎣ ⎦

∫  

(3.48) 

Using a similar technique, we obtain 

( )2
1

3 20

( )( ( )) ( ( )) ln( )
2 11 4 ( )( )

| | ( ) 1 ( )S

xR x S x
rdS

n p q D k

ξξ ξ
ξξ

ξ ξ

⎧ −⎪ −∂ ⎪= − ⎨∂ − −⎪
⎪⎩

∫ ∫      

0 0 02

2( ( ) ) ( ( ) )
( )

dz dr dzr r z z r
d d k d

ξ ξ
ξ ξ ξ ξ

⎡ ⎤
+ − − −⎢ ⎥

⎣ ⎦
 

( )0 22

2 ( )( ( )) ( ( )) ln( )
( ) 2 1

dz xr P x Q x d
k d

ξξ ξ ξ
ξ ξ ξ

⎫⎡ ⎤⎪+ −⎢ ⎥⎬
−⎢ ⎥⎪⎣ ⎦⎭

 

1 0
00 3 2 2

1 14 ( ) ( ( )) 212 2 ( )1 1 12( ) 1 ( ) ( )
2 2 2

r S x rdz r r
dD k k

η η
η

η η ηξ

⎧− − ⎡ ⎡ ⎤
⎪ ⎢ ⎢ ⎥−⎪− + −⎢⎨ ⎢ ⎥− − −⎢⎪ ⎢ ⎥−

⎢ ⎣ ⎦⎪ ⎣⎩

∫      

0
0

2

21 1 1( ( ) ) ( ( )) ln( )12 2( )
2

rdr dzz z Q x d
d dk

η η ηηξ ξ η

⎫
⎪⎤− −

− − + ⎬⎥ −⎦ ⎪
⎭
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1 0
00 3 2 2

1 14 ( ) ( ( )) 212 2 ( )1 1 12( ) 1 ( ) ( )
2 2 2

r S x rdz r r
dD k k

η η
η

η η ηξ

⎧+ + ⎡ ⎡ ⎤
⎪ ⎢ ⎢ ⎥+⎪− + −⎢⎨ ⎢ ⎥+ + +⎢⎪ ⎢ ⎥−

⎢ ⎣ ⎦⎪ ⎣⎩

∫  

0
0

2

21 1 1( ( ) ) ( ( )) ln( )12 2( )
2

rdr dzz z Q x d
d dk

η η ηηξ ξ η

⎫
⎪⎤+ +

− − + ⎬⎥ +⎦ ⎪
⎭

   (3.49) 

3.1.5.3 Singularity at ξ=1 

This is the case when p is the point ( , ) ( (1), (1)).o or z r z=  By writing 

( )2ln( ) ln( ) 2 ln(1 )
1

xx ξ
ξ

= + −
−

                                        (3.50) 

we obtain 

1

20

1 ( ) ( )4 ( ( )) ( ( )) ln( ) ( )
| | ( ) 1S

r xdS P x Q x J d
p q D

ξ ξξ ξ ξ ξ
ξ ξ

⎧ ⎡ ⎤
= −⎨ ⎢ ⎥− −⎣ ⎦⎩

∫ ∫  

1

0

(1 ) 12 ( (1 )) (1 ) ln( )
(1 )

r Q x J d
D

η η η η
η η

⎫−
+ − − ⎬− ⎭
∫                    (3.51) 

and 

( )2
1

0 03 20

( ( )) ( ( )) ln( )
11 4 ( )( ) ( ( ) ) ( ( ) )

| | ( ) 1 ( )S

xR x S x
r dz drdS r r z z

n p q D k d d

ξ ξ
ξξ ξ ξ

ξ ξ ξ ξ

⎧ −⎪ − ⎡∂ ⎪= − + − −⎨ ⎢∂ − − ⎣⎪
⎪⎩

∫ ∫

               
( )0 0 22 2

2 2 ( ( )) ( ( )) ln( )
( ) ( ) 1

dz dz xr r P x Q x d
k d k d

ξ ξ ξ
ξ ξ ξ ξ ξ

⎫⎡ ⎤⎤ ⎪− + −⎢ ⎥⎬⎥
−⎦ ⎢ ⎥⎪⎣ ⎦⎭
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1

0 03 20

(1 ) ( (1 ))8 ( ( ) ) ( ( ) )
(1 ) 1 (1 )

r S x dz drr r z z
D k d d

η η ξ ξ
η η ξ ξ

⎧ ⎡+ +
− + − −⎨ ⎢+ − +⎩ ⎣
∫  

0 02 2

2 2 1( (1 )) ln( )
(1 ) (1 )

dz dzr r Q x d
k d k d

η η
η ξ η ξ η

⎤ ⎫
− + + ⎬⎥+ +⎦ ⎭

        (3.52) 

The first integrals in Equations (3.43), (3.44), (3.48), (3.49), (3.51) and (3.52) do not 

contain singularity, and can be integrated by standard Gauss Legendre Quadrature 

shown in Appendix A.1. The other integrals contain an explicit singularity of log type, 

which can be integrated using the quadrature scheme shown in Appendix A.2 tabulated 

by Stroud and Secrest (1966) for the integral 
1

0

1( ) ln( )f x dx
x∫ . 

3.1.5.4 Point on the axis of symmetry 

When the point p is on the axis of symmetry, that is 0( , ) (0, ),o or z z=  the integrations 

can be simplified as follows: 

( )

2 1

10 0
22 2

0

1 ( ) ( )
| |

( ) ( )
S

r J ddS d
p q

r z z

π ξ ξ ξθ
ξ ξ

=
− ⎡ ⎤+ −⎣ ⎦

∫ ∫ ∫  

( )

1

10
22 2

0

( ) ( )2
( ) ( )

r J d

r z z

ξ ξ ξπ
ξ ξ

=
⎡ ⎤+ −⎣ ⎦

∫                              (3.53) 

and 

0 01

30
2 2 2

0

( )( ( ( ) ) ( ( ) ))
1( ) 2

| | ( ) ( ( ) )
S

dz drr r r z z
d ddS d

n p q r z z

ξ ξ ξ
ξ ξπ ξ

ξ ξ

+ − −
∂

= −
∂ − ⎡ ⎤+ −⎣ ⎦

∫ ∫                (3.54) 
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3.1.6 Diagonal element of the matrix H 

After evaluating the integrals and assembling, we find the following system of 

equations:  

H Gφ ψ=                                                         (3.55) 

where the diagonal elements of the matrix, H, include the ( )c p  coefficients. An 

additional device proved helpful in increasing the numerical accuracy of the 

computation is to replace the diagonal elements of the matrix H by 

4ii ij
j i

H Hπ
≠

= −∑                                                   (3.56) 

This property may be deduced from the fact that for the interior problem, the matrix 

Equation (2.55) with φ  constant at all points on the boundary (the Dirichlet problem) 

should yield ( )
n
φψ ∂

=
∂

 zero at all points, while ψ  specified at all points on the 

boundary (the Neumann problem) yields a solution for φ  which contains an arbitrary 

additive constant. Thus for the interior problem, 

ii ij
j i

H H
≠

= −∑                                                      (3.57) 

and consideration of the definition of H leads immediately to Equation (2.56) for the 

exterior problem. 
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3.2 Theory of bubble formation 

3.2.1 Physical system and basic assumptions 

The system under consideration is shown in Fig. 3.1. Gas is pumped into a chamber at 

a constant flow rate, Q , and bubbles out through a small orifice with radius, or , into a 

bath of liquid.  

 

 

 

 

 

 

 

Fig. 3.1 Schematic diagram of physical system 

The following basic assumptions are made: 

(i). The bubble remains symmetrical about its vertical axis during the growth and is 

a volume of revolution around its vertical axis. 

(ii). The depth of the liquid over the plate is high enough compared with the bubble 

diameter. 

(iii). The influence of the gas and liquid viscosities are negligible. 
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(iv). The growth of the bubble is not affected by the presence of other bubbles. 

(v). The gas is ideal and the process is adiabatic. 

(vi). There is no energy exchange or mass transfer across the gas-liquid interface. 

3.2.2 Equations of motion for the liquid 

The viscosity of the liquid is assumed negligible and the flow is assumed to be 

irrotational. Therefore, a velocity potential exists, u φ= ∇ , with Laplace’s Equation: 

2 0φ∇ =                                                           (3.58) 

Then, Bernoulli equation is applied between the liquid side of the bubble surface and a 

point in the liquid, which is chosen at a large distance from the orifice on the plane 

0=z , 

21
2

l o

l l

P Pu gz
t
φ

ρ ρ
∂

+ + + =
∂

                                           (3.59) 

where o lP P gHρ∞= +  is the hydrostatic pressure at the orifice, P∞  is the system 

pressure and H is the total height of liquid above the orifice. 

It is convenient to express the dynamic boundary condition in terms of a material 

derivative by employing the identity 

2D u
Dt t
φ φ∂
= +
∂

 

Thus 21
2

o l

l

P PD u gz
Dt
φ

ρ
−

= − +                                        (3.60) 
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The liquid phase pressure at any point on the bubble surface, lP , is related to the 

pressure within the bubble, bP , by 

l bP P σκ= −                                                       (3.61) 

where σ  is the surface tension coefficient and κ  is the local curvature of the bubble 

surface. 

3.2.3 Thermodynamic equations for the gas flow 

Conservation of mass on the chamber yields 

c
c a c

dV Q q
dt
ρ ρ ρ= −                                                 (3.62) 

where aρ  and cρ  are the gas densities at supply and chamber conditions 

respectively. 

From the first law of thermodynamics applied to the bubble, it follows that 

( ) b
b b

dVd E P Q W
dt dt

= − + ∆ + ∆                                         (3.63)            

where Eb is the internal energy of the gas in the bubble. 

Assuming the gas satisfies the ideal gas law, 

1
b b

b
PVE
γ

=
−

   

where γ  is the adiabatic exponent. Q∆  is the heat added, and assuming adiabatic 
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behavior within the bubble and chamber, it follows that 

1
cP qQ

γ
∆ =

−
 

W∆  is the work done externally and is given by 

cW P q∆ =  

Substituting these equations into Equation (3.63) it follows that 

b b
b b c

dP dVV P P q
dt dt

γ γ+ =                                              (3.64)             

Similarly for the chamber alone, we derive 

c
c a c

dPV P Q P q
dt

γ γ= −                                                (3.65)            

The volumetric flow through the orifice, q is, as follows: 

b b

c

dVq
dt

ρ
ρ

=                                                        (3.66) 

Substituting Equation (3.66) into Equation (3.65) and integrating the resultant equation, 

it follows 

( ) (0) ( ( ) (0))a c b
c c b b

c c c

P PP t P Qt V t V
V V
γ γ ρ

ρ
− = − −                              (3.67) 

Assuming the density is constant b cρ ρ= and a cP P= , the above equation becomes  
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2
0( ) (0) [ ( ) (0)]c

c c b b
c

cP t P Qt V t V
V
ρ

= + − +                                  (3.68) 

where 2
0 g cc R Tγ= , 0c  is the speed of sound,  and is assumed to be constant. 

3.2.4 Orifice equation 

The orifice equation that relates the volumetric flow through the orifice, q, to the 

pressure difference across the orifice is as follows: 

2
0( )b c b

c

dV P Pq k r
dt

π
ρ
−

= =                                            (3.69)             

where k is the orifice coefficient. 

Equation (3.69) becomes 

2
2 2 ( )
( )

c b
b c

o

dVP P
k r dt

ρ
π

= −                                             (3.70) 

From Equation (3.68) and Equation (3.70), we obtain 

2
2

2 2 2( ) (0) [ ( ) (0)] ( )
( )

o c c b
b c b b

c o

c dVP t P Qt V t V
V k r dt
ρ ρ

π
= + − + −                   (3.71) 

3.2.5 Curvature of bubble surface 

In the absence of liquid cross-flow across the orifice, the bubble can be assumed to be 

axisymmetric, and we use a number of two-dimensional (r, z) elements to represent it. 

According to the Young-Laplace Equation, the local curvature of a certain point on the 

surface is defined as 
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1 2

1 1
R R

κ = +                                                       (3.72) 

where R1 and R2 are principal radii of curvature, on vertical and horizontal planes, 

respectively. From analytical geometry, the principal radii of curvature may be 

represented by the following equations (Gray, 1998): 

( )3/ 22
1

1

1

z
R z

′′
=

′+
  and  

( )1/ 22
2

1

1

z
R r z

′
=

′+
                                  (3.73) 

where r and z represent horizontal and vertical positions on the profile, and z′  and 

z′′  denote the first and second derivatives with respect to r which can be obtained 

through curve fitting written in the form ( )z z r=  along the bubble surface. 

3.2.6 Volumetric growth rate of bubble 

With the values of the normal velocity, 
n
φ∂
∂

, which are discussed in section 3.3.2.1, at 

a number of points on bubble surface, Sb, the bubble volumetric growth rate can be 

obtained by the integral 

2
b

b
S

dV rds
dt n

φπ ∂
=

∂∫                                                          (3.74) 

3.3 Numerical solution strategy 

3.3.1 Initial conditions 

We assume that initially the bubble surface is a hemisphere of radius equal to the 

orifice radius. Gas is pumped into the system at a volumetric flow rate, Q, and the 
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initial normal velocity of the bubble is taken to be 

22i
o

QU
rπ

=                                                        (3.75) 

where or  is the radius of the orifice. 

Thus the initial value of φ  is taken to be: 

2 o

Q
r

φ
π

= −  at the bubble surface when t=0 

0φ =  at z →∞  when t=0 

Initially, if we assume q Q= , it follows that 

2

2 2 2(0) (0)
( )

c
b c

o

QP P
k r

ρ
π

= −                                             (3.76) 

From Equations (3.71) and (3.76), we obtain 

2
2 2

2 2 2( ) (0) [ ( ) (0)] [ ( ) ]
( )

o c c b
b b b b

c o

c dVP t P Qt V t V Q
V k r dt
ρ ρ

π
= + − + + −             (3.77) 

The initial value of the bubble pressure, Pb, is assumed to be the sum of the hydrostatic 

pressure at the orifice and the pressure due to surface tension, 

2(0)b o
o

P P
r
σ

= +                                                     (3.78) 

With Equations (3.61), (3.77) and (3.78), Equation (3.60) can be rewritten as:  
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2
2 2 2

2 2 2

1 2( ) [ ( ) (0)] [( ) ]
2 ( )

i o c c b
i i b b

l o c l o l

D c dVu gz Qt V t V Q
Dt r V k r dt
φ ρ ρσ κ

ρ ρ π ρ
= − + − − − + + −  

(3.79) 

3.3.2 Normal velocity with boundary integral method 

How to calculate 
n
φ∂
∂

 at the bubble surface is crucial, and the detail of the boundary 

integral method used to get 
n
φ∂
∂

 is discussed in Section 3.1.  

As the bubble is assumed to be axisymmetric, a cylindrical coordinate system is used. 

Two-dimensional integrals are reduced further to one dimension by integrating through 

the polar angle.  

In order to solve the problem of the two-dimensional bubble computationally, firstly 

the surface is represented by n points which divide the surface into ( 1)n −  elements, 

each being the frustum of a cone. Then an isoparametric linear approximation is used 

for the surface shape, potential and its normal derivative. Thus on each segment, 

( 1, , 1)jS j n= − , we have 

1

1

1

1

( ) (1 )

( ) (1 )

( ) (1 )

( ) (1 )

j j

j j

j j

j j

r r r

z z z

n n n

ξ ξ ξ

ξ ξ ξ

φ ξ φ ξ φ ξ

φ φφ ξ ξ ξ

+

+

+

+

= − +

= − +

= − +

∂ ∂∂
= − +

∂ ∂ ∂

                                          (3.80) 

where the parameter ξ is in the range (0, 1). 

Collocation points are chosen to be these n points on the surface, yielding n equations 
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with the following form: 

1 1
1

1
1 1

2 [(1 ) ] ( , ) [(1 ) ] ( , )
j j

n n
j j

i j j i j i jS S
j j

G p q dS G p q ds
n n n

φ φ
πφ ξ φ ξφ ξ ξ

− −
+

+
= =

∂ ∂∂
+ − + = − +

∂ ∂ ∂∑ ∑∫ ∫  

( 1, , )i n=            (3.81) 

where pi is the thi  point chosen as collocation point with cylindrical coordinates 

( , ,0)i i ip r z=  and qj is any point on the segment Sj with cylindrical coordinates 

( ( ), ( ), )jq r zξ ξ θ= .  

After assembly, the set of equations has the following matrix structure: 

A B
n
φφ ∂

=
∂

                                                        (3.82) 

where A and B are n n×  matrices with the following values of items aij and bij: 

1
12 (1 ) ( , ) ( , )

j j
ij ij i j i jS S

a G p q ds G p q ds
n n

πδ ξ ξ
−

−

∂ ∂
= + − +

∂ ∂∫ ∫                              

1
1(1 ) ( , ) ( , )

j j
ij i j i jS S

b G p q ds G p q dsξ ξ
−

−= − +∫ ∫                               (3.83) 

φ  and 
n
φ∂
∂

 are vectors as follows 

1 2[ , , , ]T
nφ φ φ φ=            

1 2[ , , , ]Tn

n n n n
φφ φφ ∂∂ ∂∂

=
∂ ∂ ∂ ∂

           

With the values of φ  known at each of the collocation points, the matrix Equation 
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(3.82) is solved by standard Gaussian Elimination to yield the normal velocities 
n
φ∂
∂

 

at these collocation points.  

3.3.3 System of images 

A key boundary condition that needs to be specified is the zero-normal-velocity 

condition on the rigid boundary, 

0
n
φ∂
=

∂
  on  0z =        

To satisfy this case of a rigid boundary, an image system is introduced as shown in Fig. 

3.2. Whence Green’s function in Equation (3.81) is replaced by 

1 1( , )
| | | |

G p q
p q p q

= +
′− −

                                          (3.84) 

where q′  is the image of q in the z = 0 plane. 

 

 

 

 

 

Fig. 3.2. System of images 
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3.3.4 Tangential velocity with cubic spline interpolation 

To complete the specification of the surface velocity at a given point, the tangential 

component must be approximated from the given values of the velocity potential 

( )ipφ  where i bp S∈ . We choose the point at the top of the bubble on the axis of 

symmetry as the beginning point and arc length as the parametric variable of the 

velocity potential. Then, cubic spline interpolation is used to construct an 

approximating function ( )sφ φ=  which is used to compute the derivative, φ , with 

respect to s.  

Two boundary conditions are needed in the calculation. 0
s
φ∂
=

∂
 at the top of the 

bubble because of axisymmetry. For the end point, C, it belongs not only to the bubble 

surface, but also to the rigid boundary of the plate. Since the interface cannot 

completely detach from the plate and there is no flow through the plate, C can only 

move along the plate so that the boundary condition 0
n
φ∂
=

∂
 on 0z = , with n the 

normal to the plate, must apply to it. But since it also belongs to the bubble surface, for 

consistency, the component of the velocity tangential and normal to the bubble surface 

at C must also add up to a zero velocity in the direction normal to plate, so that (Fig. 

3.3) 

 | sin | cos 0c c c cs n
φ φθ θ∂ ∂

− =
∂ ∂

                                         (3.85) 

where cθ  can be identified as the dynamic three-phase contact angle (Liow and Gray, 

1988). 
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Fig. 3.3. Illustration of the end point with contact angle 

3.3.5 Non-dimensionalisation  

We use the initial velocity, Ui, as a reference velocity and the orifice radius, or , as the 

reference length. Time is rendered dimensionless with respect to the fundamental 

timescale, /o ir U . Thus, the initial condition is that the bubble is a hemisphere with 

unit dimensionless radius and unit dimensionless velocity.  

With respect to velocity potential, the initial conditions become 

1φ
∧

= −  at bubble surface when t=0 

0φ
∧

=   at z →∞  when t=0 

In developing the numerical solution of these equations, it is convenient to scale all 

terms to obtain dimensionless equations. We choose the Froude number, Fr, Weber 

number, We, Volume number, Vn, and Orifice number, On, to represent the physical 

and geometrical scales in our bubbling system, where: 

SB 

θc 

s
φ∂
∂

 

n
φ∂
∂

 

z 

Rigid Boundary r 

C 



Chapter 3 Improved modeling of bubble formation with the boundary integral method 

 72

2
i

o

UFr
gr

=  

2
l i oU rWe ρ
σ

=    

2 3

2
c o o

l c i

c rVn
V U

ρ
ρ

=  

2 2
c

l

On
k

ρ
ρ π

=  

Thus Equation (3.79) becomes 

2
2 21 1 1 ( 2) ( ) (0)

2
bi

b bi i n
D dVu z Vn Q V V O Q
D Fr We d
φ κ τ τ
τ τ

⎡ ⎤⎛ ⎞
⎡ ⎤ ⎢ ⎥= − + − − − + + −⎜ ⎟⎣ ⎦ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

  

(3.86) 

where τ is the dimensionless unit of time and ^ denotes a dimensionless variable. 

The non-dimensionalisation is also applied to other calculations.  

3.3.6 Time stepping and computational procedure 

To update the position of the bubble and the velocity potential at its surface through 

time, an iterative trapezium rule, Euler’s Method, is used 

,( ) ( ) ( )i i i rr r uτ τ τ τ τ+ ∆ = + ∆                                  

,( ) ( ) ( )i i i zz z uτ τ τ τ τ+ ∆ = + ∆       
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( )( ) ( ) i
i i

D
D
φ τφ τ τ φ τ τ
τ

+ ∆ = + ∆                                        (3.87) 

where ,i ru  and ,i zu  are radial velocity and axial velocity at thi  point of the bubble 

surface respectively. 

When one of the radial distances of the points (except the top point) on the bubble 

surface becomes zero, the detachment of the bubble happens and the computational 

procedure is ended.  

The procedure is summarized in the following steps: 

(i) Initialize all variables. 

(ii) Increment time by ∆t. 

(iii) The field Equation (3.58) is solved using the Boundary Integral Method. Using 

the Green’s formula approach the normal velocity is found directly by solving 

Equation (3.82) numerically. The tangential velocity is solved by cubic spline 

interpolation. 

(iv) Use the velocities found in (iii) to update the position of the surfaces. 

(v) Use the dynamic condition, Equation (3.86), to update the surface potentials. 

(vi) Go back to (ii) and repeat until detachment happens. 

3.4 Improvements over Hooper’s (1986) model 

The proposed model is generally based on Hooper’s (1986) approach to modeling 

bubble formation using the boundary integral method. However, we have made several 

significant improvements and developments in our model. 

Firstly, the selection of dimensionless numbers representing the physical and 
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dimensional parameters allows the natural and a priori formulation of the 

dimensionless equation of potential flow (Equation 3.86), instead of relying on the 

questionable iterative method to define length and time scales proposed by Hooper 

(1986). 

Secondly, Hooper (1986) does not explicitly account for the curvature of the bubble 

surface in relating Pl to Pb. Instead, it was merely stated that due to numerical 

instabilities, the surface tension number was always set to zero, thereby ignoring the 

effect of σ altogether and rendering Pl equal to Pb in all the solutions. 

Thirdly, the use of a realistic boundary condition (Equation 3.85) at the point where the 

bubble surface meets the orifice plate allows us to relate the bubble shape to the 

dynamic three-phase (i.e. gas-liquid-solid) contact angle, θc, instead of the arbitrary 

shape criterion introduced in Hooper’s (1986) work. 

3.5 Modeling the wall effect on bubble formation 

As discussed in Section 2.6, the effect of the bubble column wall on bubble formation 

has rarely been taken into account by most of the researchers. It has generally been 

assumed that the bubble column was very large compared with the orifice size and that 

the wall effect could be neglected. This assumption is generally valid when the 

container diameter is very large with respect to the bubble diameter. However, as the 

column to orifice diameter ratio is reduced, the bubble behavior is modified: the 

influence of liquid circulation becomes relatively greater and the bubble shape 

becomes longer and, in a limiting case, resembles slugs in vertical pipelines. With the 

consideration of the wall effect, the boundary integral model discussed above is further 

developed by the introduction of a system of images.  
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3.5.1 System of images 

To satisfy the no-flux boundary condition on the impermeable column wall where the 

normal velocity is zero, a specific image system is introduced to account for the wall 

effect as shown in Fig. 3.4. For this formulation, Green’s function in Equation (3.84) is 

further modified as: 

1 1 1 1 1 1( , )
| | | | | | | | | | | |

G p q
p q p q p q p q p q p q

= + + + + +
′ ′′ ′′′ ′′′′ ′′′′′− − − − − −

       (3.88) 

where , , ,q q q q′ ′′ ′′′ ′′′′  and q′′′′′  are the images of q  as shown in Fig. 3.4. 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Specific image system. 

3.5.2 Bubbling frequency 

One cycle of bubble formation consists of formation and waiting processes. Thus the 

bubble formation period of one cycle is equal to the sum of tf and tw, and the frequency 

of bubble formation, f, which corresponds to the number of bubbles formed per unit 

time, is the inverse number of the period as follows: 
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1

f w

f
t t

=
+

                                                       (3.89) 

The formation time, tf, can be calculated with the model and the waiting time, tw, can 

be calculated from the fact that after bubble detachment, the pressure in the chamber 

will accumulate due to the continuous input of gas but no outflow of gas from the 

chamber. The chamber pressure expression during the waiting time is derived from 

Equation (3.65) under the condition 0q = : 

c
c

c

dP P Q
dt V

γ
=                                                      (3.90) 

and tf can be obtained from above equation. 

Fig. 3.5 shows a typical chamber pressure fluctuation during one bubble formation 

cycle. 

 

Fig. 3.5 Typical gas chamber pressure vs. time for a bubble formation period 
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Chapter 4   Experimental 

 

This chapter gives detailed descriptions of the experimental setup and the procedures 

used for the investigation of the wall effect on bubble formation at a submerged orifice. 

Section 4.1 illustrates the apparatus used in the study, which includes bubble column, 

gas chamber, plate insert and gas supply system. Measurement techniques, consisting 

of dynamic pressure transducer and high-speed video camera, are introduced in 

Section 4.2. Finally, the experimental conditions and procedures are summarized in 

Section 4.3. 

4.1 Experimental apparatus 

Fig. 4.1 shows a schematic diagram of the experimental apparatus. It consisted of a 

cylinder as the bubble column, a plate insert and a cylinder as the gas chamber. 

Purified air from the compressed gas cylinder was introduced into the gas chamber. 

Air flow rate was controlled by means of three gas flow meters with various ranges. A 

high-speed video camera was used to visually observe bubble formation and a pressure 

transducer was used to record pressure fluctuations in the gas chamber. 

4.1.1 Bubble columns and gas chamber 

The bubble column, designed conveniently for visual and photographical observations, 

was located above the plate insert and gas chamber. The cylindrical bubble column 

was made of 5 mm thickness Plexiglas®. To investigate the effect of column wall on 

bubble formation, three sizes of column, . .I Dφ 30mm×470mm, . .I Dφ 50mm×470mm 
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and . .I Dφ 100mm×470mm, were used. The column was open to atmosphere at the top 

and from which water was introduced into the column so that various liquid depths, H, 

could be achieved. A drain valve was designed near the bottom of the column to 

remove the liquid. 

 

 

 

 

 

 
 
 
 
 
 
 
 

Fig. 4.1 Experimental setup (1.Bubble column, 2.Gas chamber, 3.Plate insert, 
4.High-speed camera, 5.Pressure transducer, 6.Gas inlet, 7.Gas flow meters, 

8.Gas cylinder, 9.Read-out computer, 10.Drain) 
 

The gas chamber, also made of 5 mm thickness Plexiglas®, was located right below the 

plate insert. Two cylindrical gas chambers with different dimensions, 

. .I Dφ 60mm×300mm and . .I Dφ 100mm×300mm, were utilized during the experiment 

in order to achieve different gas chamber volumes. The volume of the gas chamber 

could be varied from 260 cm3 to 2000 cm3 by filling it partially with water without 

water entering the transducer or gas injection lines. The pressure transducer port and 

gas inlet port were located at the upper part of the gas chamber at an angle of 90 
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degrees to each other. A drain valve was designed at the bottom of the gas chamber to 

remove the liquid. 

4.1.2 Plate insert 

An interchangeable plate insert allowed various sizes of orifice to be investigated. It 

comprised an orifice plug and a base flange as shown in Fig. 4.2 and Fig. 4.3 

respectively, both of which were made of Perspex.  

The orifice plug consisted of two parts, base and raised section. The base of the orifice 

plug, with diameter 81 mm and height 12 mm, had a central opening with diameter 28 

mm. The raised section, with diameter 30 mm and height 21 mm, was hollow with 

thickness 1mm for the around and top sides and had an orifice in the center of the 

topside. The size of the orifice plug remained constant throughout the experiment, 

however the orifice varied in diameter, 1.6 mm, 2.0 mm and 2.4 mm respectively. With 

the design, the point of injection occurred in a relatively quiescent region so that the 

influence of bulk liquid circulation effects on bubble formation could be reduced. 

Moreover, the raised section enabled bubble formation at the orifice to be clearly 

captured with a high-speed camera.  

The base flange, with diameter 270 mm and height 12 mm, had a central opening with 

diameter 81 mm onto which the orifice plug with specific orifice was inserted. After 

the orifice plug was inserted, the base flange was bolted between the upper bubble 

column and the lower gas chamber.  

In order to achieve an airtight seal, all gaps, such as between the column and the plate 

insert, and between the plate insert and the gas chamber, were sealed tightly by using 

O-rings.  
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Fig. 4.2 Orifice plug 

 

 

 

 

Fig. 4.3 Base flange 

4.1.3 Gas supply system 

The gas supply system consisted of a high-pressure gas cylinder, pressure regulator, 

rotameters and other ancillary apparatus. Purified air from the compressed gas cylinder 

was introduced into the gas chamber. Three rotameters (Tokyo Keiso, Japan), covering 

the range of flow rates 0.08-0.83 cm3/s, 0.5-5.0 cm3/s and 3.3-33 cm3/s respectively, 

were connected in parallel to control the air flowrate into the gas chamber. In order to 

ensure a smooth flow, the upstream pressure maintained at a value was higher than the 

chamber pressure. Therefore, the gas flow rates indicated by the rotameters should be 

converted to standard conditions as shown in Appendix B. The gas temperature was 

Raised section  

Base of orifice plug 

Orifice  
30mm

33mm 

81mm 

12mm 

12mm 
81mm 

270mm 



Chapter 4                                                   Experimental 

 81

between 20 and 25o C . 

4.2 Measurement techniques 

4.2.1 Dynamic pressure transducer 

Pressure fluctuations during bubble formation in the gas chamber were recorded by 

Microphone ICP® Pressure Sensor (Model 106B50, PCB PIEZOTRONICS). The 

series 106B microphones feature high-sensitivity (output: 72.9 mv/KPa), 

acceleration-compensated quartz pressure elements coupled to built-in integrated 

circuit impedance converting amplifiers. It was designed to measure pressure 

perturbations in air or in fluids in severe conditions.  

The sketch of the pressure transducer is shown in Fig. 4.4. The pressure transducer was 

mounted flush to the chamber wall, and was powered by a signal conditioner (model 

482A06, single channel, PIEZOTRONICS). The analog output from the signal 

conditioner was fed into the computer through a 12-bit ADC (analog digital converter, 

PICO). The ADC-12 converter was connected to the printer port of computer. Its 

measurement range was between 0 and 5 Volt. Collected data was analyzed by a 

driving software installed in the computer. Bubbling frequencies were determined by 

Fast Fourier Transform (FFT) analysis of the pressure-time series data. Assuming that 

the size of the bubble is uniform, a single bubble volume was calculated by dividing 

gas flow rate by the obtained bubbling frequency. 

An important consideration in positioning the pressure tapping in the chamber was its 

placement relative to the gas injection port. In order to minimize the effects of the 

supply air blowing directly into the transducer, the pressure tapping was placed at 90 
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degrees to the injection port.   

 

 

 

 

 

Fig. 4.4 Pressure Transducer System 

4.2.2 High-speed video camera 

High-speed images were recorded during the experiments in order to verify the link 

between pressure transducer fluctuations and actual physical dynamics of the system. 

The FASTCAM-PCI High-Speed Video Camera System (PHOTRONTM) was 

employed for this purpose (Fig. 4.5). It comprised of a FASTCAM-PCI camera head, a 

zoom lens and a control PCI board connecting with the computer. The key features of 

the system are 500 full frames recorded at 512 480×  resolutions and with a 

maximum recording rate of 10,000 frames per second. Motion analysis software, 

named MotionPlus, was installed in the computer to create image files. 

The camera was placed at the same vertical level as the injection orifice and with 1.0 m 

distances from the bubble column. Two 1000W fan-cooled halogen lamps angled 45 

degrees to the front side of the bubble column illuminated the experimental rig, with a 

white board reflector placed behind the bubble column to get balanced lighting during 
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picture recording. 

The shutter speed was used to freeze the motion so as to reduce motion blur. By 

controlling the camera shutter speed and exposure time, get a sharp image was 

obtained. The operation of the high speed camera equipment was straightforward and 

film loading, lens focusing and other adjustments of the equipment was verified prior 

to each run according to the manufacturer’s instructions.  

Fig. 4.5 High-speed Video Camera 

4.3 Experimental conditions and procedures 

4.3.1 Experimental conditions 

The physical properties of air and water are shown in Table 4.1. Table 4.2 lists the 

important parameters for bubble formation, including gas flow rate, orifice diameter, 

column size, liquid height and gas chamber volume, etc. The operating conditions were 

selected to ensure that the independent influence of parameters was being investigated 

as opposed to their combined influence. The primary objectives for the experimental 

work were obtaining the bubbling frequency and bubble volumes under a specified 
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range of operating conditions. The physical experimental results were utilized to 

compare with the predictions of numerical model for validation purposes.  

Table 4.1 Physical properties of air and water at standard conditions (20°C, 1 atm) 

 Filtered Tap Water Purified Air 

Density (ρ) 998.9 kg/m3 1.3 kg/m3 

Viscosity (µ) 1.0×10-3 Pa ⋅ S 1.8×10-5 Pa ⋅ S 

Surface Tension (σ) 7.2×10-2 N/m 

Table 4.2 Experimental conditions 

System Air-Water 

Orifice Diameter 1.6 mm, 2.0 mm, 2.4 mm 

Column Diameter 30 mm, 50 mm, 100 mm 

Gas flow rate into the chamber 0.512 ~ 5.122 cm3/s 

Chamber Volume 430 ~ 1000 cm3 

Liquid Depth 30 cm 

Air/Water Temperature 20.0 ~ 25.0 ℃ 

Atmosphere Pressure 742.0 mmHg 

Over Pressure of Air Source Over 

Chamber Pressure (Gauge) 
0.05 bar 
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4.3.2 Experimental procedures 

For each run of experiment, the procedures was as follows: 

1. Insert the orifice plug with specified diameter into the base flange. Choose one 

specific bubble column and attach the bubble column, plate insert and gas 

chamber together by tightening the bolts. Before locating the pressure transducer 

on the port and connecting the gas pipe with the gas chamber, introduce water into 

the gas chamber to achieve a specified gas chamber volume. 

2. Determine if there is leakage of air after tightening the bolts. Open the gas valve 

of the compressed air cylinder and regulate the outlet pressure (i.e. rotameter inlet 

pressure, 0.05 bar overpressure (gauge)). Then the air is fed into the gas chamber 

and fed into the bubble column through the orifice plate.  

3. Introduce the tap water into the bubble column through a rubber hose with a 

predominant gas flow rate. When the water liquid level in the bubble column is 

about to approach to the value to be set, change gas flow rate into a lower value so 

that the liquid surface fluctuation is reduced to get an accurate reading of the 

liquid. If the gas flow rate is too small, weeping is significant and results in an 

unstable liquid level. 

4. Adjust the gas flow rate after the desired liquid level is obtained and the 

experimental data is collected for the specified operating conditions. Care should 

be taken to ensure that the air pressure and gas flow rate are stable during the 

experimental run. 

5. Activate the high-speed video recorder to record bubble behavior. Pressure 
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fluctuation in the gas chamber is also recorded at the same time and bubble 

frequency and fluctuation amplitude are obtained. 

4.3.3 Reproducibility of experimental data 

In order to confirm the reliability of experimental data, most of the experiments were 

done in triplicate and three runs of experimental data were compared for each 

condition. The experiments were repeated after several days rather than immediately. 

Fig. 4.6 shows the bubble frequency reproducibility of experimental data at 

100cd = mm and 2.4od = mm for gas chamber volume 430cV = cm3. The variability 

was less than 10%, and generally within the expected experimental uncertainty. 
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Fig. 4.6 Reproducibility of bubble frequency at dc =100 mm,  

do = 2.4 mm, Vc = 430 cm3 
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Chapter 5   Results and discussion 

 

In this chapter, first the boundary integral model is validated for single bubbling in 

Section 5.1. Section 5.2 describes the wall effect on bubbling regimes and bubbling 

frequency, experimentally and theoretically. Finally, the discussion for this study is 

presented in Section 5.3. 

  

5.1 Validation of boundary integral model for single bubbling 

The boundary integral model is verified through the comparison of experimental data 

with theoretical predictions for single bubbling. 

For the air-water system of Kupferberg and Jameson (1969) with the following 

experimental conditions:  

Gas flow rate Q = 16.7 cm3/s 

Radius of the orifice ro = 0.16 cm 

Chamber volume Vc = 2250 cm3 

Height of the liquid H =15.24 cm 

The instantaneous shapes and bubble growth curves and chamber pressure fluctuation 

are shown in Fig. 5.1. The bubble shapes obtained by the present model are shown in 

Fig. 5.1(a), which agrees approximately with the experimental shapes shown in Fig. 

5.1(b) obtained from the original photographs in Kupferberg and Jameson (1969). Fig. 

5.1(c) compares the simulated bubble growth curve and chamber pressure fluctuation 

with the experimental data. 
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Fig. 5.1 Bubble shapes, growth curve and chamber pressure fluctuation for 
experimental conditions: Air/Water, Q = 16.7 cm3/s, ro = 0.16 cm, Vc = 2250 cm3, H = 
15.24 cm, from Kupferberg and Jameson (1969). (a) computed bubble shapes by 
present model; (b) approximate experimental shapes; (c) bubble growth curve and 
chamber pressure fluctuation. 
 

For the CO2-water system of LaNauze and Harris (1974) at elevated pressure with 

following experimental conditions: 

Gas flow rate Q = 10 cm3/s 

Radius of the orifice ro = 0.16 cm 

Chamber volume Vc = 375 cm3  

Height of the liquid H = 10 cm;  

System pressure P∞ = 0.69 MN/m2  

the instantaneous shapes and bubble volume are shown in Fig. 5.2. The bubble shapes 

obtained by the present model are shown in Fig. 5.2(a). Fig. 5.2(b) compares the 

simulated bubble growth curves with the experimental data. 
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Fig. 5.2 Bubble shapes and growth curve for experimental conditions: CO2/Water, 
system pressure 0.69 MN/m3, Q = 10 cm3/s, ro = 0.16 cm, Vc = 375 cm3, from LaNauze 
and Harris (1974). (a) computed bubble shapes by present model; (b) bubble growth 
curve . 
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Fig. 5.3 shows a comparison of the bubble shape traced experimentally from the 

high-speed video images with that calculated by the present model with the following 

experimental conditions: 

Gas flow rate Q = 0.854 cm3/s 

Radius of the orifice ro = 0.12 cm 

Column diameter dc = 10 cm 

Chamber volume Vc = 430 cm3 

Height of the liquid H = 30 cm. 

The experimental bubble shapes are not easy to determine precisely because of 

distortion due to cylindrical column. From visual inspection, it is observed that the 

experimental bubble shapes agree approximately with the predicted bubble shapes by 

the present model shown in Fig. 5.3(b). 

Fig. 5.4 shows the variation of bubble volume at detachment with gas flow rate with 

orifice diameter as a parameter under the conditions of Vc = 430 cm3 and H = 30 cm. 

The bubble volumes calculated by the present model are compared with the results 

obtained experimentally, and a reasonable agreement is observed from the comparison. 

Surface tension is one of the contributing factors influencing the bubble volume. To 

verify the effect of surface tension, data has been collected for liquids of different 

surface tensions, water (σ = 72.7 dyn/cm) and petroleum ether (σ = 27.1 dyn/cm), 

using the same orifice (ro = 0.2 cm) by Davidson and Schüler (1960). Fig. 5.5 shows 

the variation of bubble volume at detachment with gas flow rate for different liquids 

(Davidson and Schüler, 1960, as reported by Ramakrishnan, et al., 1969) and the 

calculated results are compared with the experimental data. It can been seen that at 

lower gas flow rates, surface tension has little effect on the bubble volume, while at 
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higher flow rates, the lowering of surface tension produces smaller bubbles. It can be 

noted that our model predictions match the experimental trends closely. 
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Fig. 5.3 Comparison of bubble shapes obtained experimentally with those calculated 
by present model for experimental conditions: Q = 0.854 cm3/s, ro = 0.12 cm, dc = 10 
cm, Vc = 430 cm3, H = 30 cm. (a) experimental shapes (b) calculated shapes. 
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Fig. 5.4 Variation of bubble volume at detachment with gas flow rate. 
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Fig. 5.5 Effect of surface tension on bubble size in inviscid liquid from Davidson and 
Schüler (1960) 
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5.2 Wall effect 

5.2.1 Wall effect on bubbling regimes 

The wall effect on bubble formation was investigated by carrying out experiments with 

different column sizes. Figure 5.6(a to c) shows the video sequences of bubble 

formation for various column diameters of 100 mm, 50 mm, and 30 mm respectively. 

The other parameters have been kept constant for these three sets of experiments as 

follows: gas flow rate 0.854Q = cm3/s, chamber volume 430cV = cm3, the orifice 

diameter 2.4od = mm and the liquid height 30H = cm.  

It was observed that for the largest column with diameter 100cd = mm, only one 

single bubble was formed for each cycle and when the bubble detached, the process 

entered into the waiting period till the next cycle starts, i.e. this is clearly a case of 

single bubbling. When 50cd = mm, it was found that when the first bubble detached, a 

smaller second bubble was formed immediately and the second bubble caught up to 

and coalesced with the first one. After the second bubble detached, the process entered 

into the waiting period till the next cycle started; we can classify this as pairing. When 

30cd = mm, it was found that when the first bubble detached, a smaller second bubble 

was formed immediately and when the second detached, a smaller third bubble was 

formed immediately and the second and third bubbles caught up to and coalesced with 

the first one. After the third bubble detached, the process entered into the waiting 

period till the next cycle started; this was a case of multiple bubbling. 

From the above observation, it is clear that the relative dimensions of the column and 

the orifice has a significant and profound effect on the bubbling regime. 
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Fig. 5.6 High-speed video pictures at Q = 0.854 cm3/s, do = 2.4 mm, Vc =430 cm3: (a) 
dc = 100 mm, time interval = 6 ms; (b) dc = 50 mm, time interval = 8 ms; (c) dc = 30 
mm, time interval = 8 ms.  

 

When the chamber volume was changed from 430 cm3 to 1000 cm3 while keeping 

other operation conditions constant, i.e. gas flow rate 0.854Q = cm3/s, orifice 

diameter 2.4od = mm and liquid height 30H = cm for three sizes of column, the 

video sequences of bubble formation for column diameters of 100 mm, 50 mm, and 30 

mm were shown in Figs. 5.7 (a) to (c) respectively. 

(c)
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Fig. 5.7 High-speed video pictures at Q = 0.854 cm3/s, do = 2.4 mm, Vc =1000 cm3: (a) 
dc = 100 mm, time interval = 6 ms; (b) dc = 50 mm, time interval = 8 ms; (c) dc = 30 
mm, time interval = 10 ms.  

 

It was observed from Fig. 5.7 (a) that for 100cd = mm, a smaller second bubble was 

formed immediately after the first detached and the second one caught up to and 

coalesced with the first one. After the second bubble detached, the process entered into 

(c)
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the waiting period till the next cycle started. Compared with the case of single 

bubbling with chamber volume 430cV = cm3 (Fig. 5.6(a)), the larger chamber volume 

has clearly shifted the bubble formation into the pairing regime. For 50cd = mm and 

30 mm, the bubble formation for 1000cV = cm3 was clearly within the multiple 

bubbling regime, i.e. three or more bubbles were formed in rapid succession during 

each bubbling cycle.  

The results show that with an increase of the chamber volume, the regime of the 

bubble formation will shift towards pairing and multiple bubbling. This observation is 

consistent with McCann and Prince’s (1971) conclusion that pairing and multiple 

bubbling were more likely to occur in the case of large chamber volumes. 

 

5.2.2 Wall effect on bubbling frequency 

A typical set of the chamber pressure signals and the Fast Fourier Transform (FFT) 

analysis of the pressure signals for various column diameters of 100 mm, 50 mm, and 

30 mm are shown in Figures 5.8 and 5.9 respectively. The other parameters are kept 

constant for these three sizes of column as follows: gas flow rate 3.415Q = cm3/s, 

chamber volume 430cV = cm3, orifice diameter 2.4od = mm and liquid height 

30H = cm. It is observed that by decreasing the column diameter, with all other 

conditions remaining unchanged, the bubbling frequency decreases. 
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Fig. 5.8 Typical pressure signals with several column diameters (a) dc = 100 mm 
(b) dc = 50 mm (c) dc = 30 mm at do = 2.4 mm, Q= 3.415 cm3/s, Vc = 430 cm3 
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Fig. 5.9 Signal spectrum with several column diameters (a) dc = 100mm (b) dc = 50mm 

(c) dc = 30 mm at do = 2.4 mm, Q= 3.415 cm3/s, Vc = 430 cm3 
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There are other factors affecting bubbling frequency, such as chamber volume and gas 

flow rate. To obtain a comprehensive understanding of the wall effect on bubbling 

frequency with the consideration of those factors, a series of experiments were carried 

out by changing the experimental conditions of chamber volume and gas flow rate.  

The validity of our theoretical model was investigated by comparing simulated results 

of bubbling frequency with a wide range of experimental data for various column and 

orifice diameters, chamber volumes and gas flow rates.  

Fig. 5.10(a) shows the relationship between bubbling frequency and gas flow rate for 

three sizes of column with orifice diameter 1.6od = mm and chamber volume 

430cV = cm3. The comparisons of experimental results with theoretical predictions are 

also shown in this figure. When orifice diameters are changed to 2.0 mm and 2.4 mm, 

the corresponding relationships are shown in Figs. 5.10(b) and 5.10(c) respectively. It 

is observed that bubbling frequency increases with an increase of the gas flow rate and 

also column diameter, whereas bubbling frequency decreases with increasing orifice 

diameter. Our theoretical model predicts these trends very well, and the agreement 

between simulated and experimental frequencies is good. 

The corresponding bubbling frequencies for 1000cV = cm3 are shown in Figs. 5.11(a), 

(b) and (c) for orifice diameters, 1.6 mm, 2.0 mm and 2.4 mm respectively. The 

experimental trends are similar to those in Fig. 5.10, and again there is good agreement 

between theoretical predictions and experimental data. 
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Fig. 5.10 Relationship between bubble frequency and gas flow rate for various column 
diameters (i) dc = 100 mm (ii) dc = 50 mm (iii) dc = 30 mm at Vc = 430 cm3: (a) do = 1.6 
mm; (b) do = 2.0 mm; (c) do = 2.4 mm 
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Fig. 5.11 Relationship between bubble frequency and gas flow rate for various column 
diameters (i) dc = 100 mm (ii) dc = 50 mm (iii) dc = 30 mm at Vc = 1000 cm3: (a) do = 
1.6 mm; (b) do = 2.0 mm; (c) do = 2.4 mm. 
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5.3 Discussion 

The theoretical model developed with the boundary integral method has been validated 

for single bubbling through the comparison of experimental results with theoretical 

predictions. The model predicts the instantaneous bubble shape, detachment time as 

well as the chamber and bubble pressure. In addition, the wall effect on bubble 

formation was investigated experimentally and theoretically. As the ratio of the column 

diameter to orifice diameter is decreased, the bubbling regimes generally transition 

from single bubbling to pairing and multiple bubbling, with a corresponding decrease 

in bubbling frequency. It is due to the fact that with the decrease of the ratio of column 

to orifice diameter, the liquid circulation increases which affects bubble formation, and 

the detachment happens earlier resulting in smaller bubble volume. Comparison of 

experimental results for bubbling frequency with the theoretical predictions shows that 

the agreement is good, i.e. the boundary integral model successfully predicts the effect 

of the column wall on bubbling frequency.  

However, this model does not take into account the bubble-bubble interaction caused 

by preceding detached bubble. Also this model has the limitation of not being able to 

predict the occurrence of pairing and multiple bubbling. Hence, to understand 

thoroughly the underlying mechanism and take into consideration of the wake effect 

caused by the preceding bubble as well as the bubble-wall interaction, a simplified 

model based on spherical bubble formation and potential flow theory is proposed in 

Chapter 6. 



Chapter 6       Theoretical modeling of bubble-wall and bubble-bubble interactions 

 107

Chapter 6   Theoretical modeling of bubble-wall and 
bubble-bubble interactions 

 

 

In this chapter, the development and the solution strategy for the theoretical modeling 

of bubble-wall and bubble-bubble interactions are described in Section 6.1 and Section 

6.2 respectively. Results and conclusions obtained from this study are presented in 

Section 6.3 and Section 6.4, respectively. 

 

6.1 Model development 

6.1.1 Physical system and basic assumptions 

The schematic diagram of the physical system is shown in Fig. 6.1 and the primary 

assumptions of the model are:  

(i). The bubble shape is a spheroidal segment during formation and deforms into a 

spherical-cap bubble after detachment.  

(ii). The depth of liquid above the plate is high enough compared with the bubble 

diameter so that it has no effect on bubble formation.  

(iii). The gas is an ideal and compressible gas following an adiabatic process.  

(iv). A detached and rising bubble is assumed to exert a wake pressure on the 

subsequent bubble forming at the orifice. However, a following bubble has no 

effect on velocity or shape of the preceding bubble.   

(v). There is no energy exchange or mass transfer across the gas-liquid interface. 
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(vi). At a particular instant, the orifice experiences either upward gas flow (referred 

to as bubbling) or no flow (referred to as waiting). At any instant, the orifice 

only shows one of the above phases. 

 

 

 

 

 

 

 

Fig. 6.1 Schematic diagram of physical system 

6.1.2 Analysis of the gas chamber pressure 

The change of pressure in the gas chamber, cP , is obtained by assuming an adiabatic 

ideal gas and applying first law of thermodynamics to the gas chamber (Tan and Harris, 

1986): 

( )c
c c

dPV P Q q
dt

γ= −                                                   (6.1) 

where γ  is the adiabatic exponent of the gas, cV  is the chamber volume, Q  and 

q are the volumetric flow rates into the chamber and through the orifice, respectively.  

Gas chamber 

H 

Q (Gas inlet) 

Pc , Vc 

q 

Liquid 

s 

a 

rc Pb, Vb 

Pa   



Chapter 6       Theoretical modeling of bubble-wall and bubble-bubble interactions 

 109

6.1.3 Orifice equation  

Gas flow through the orifice is determined by its physical dimensions and the pressure 

difference between the gas chamber and the bubble. As the upward gas momentum has 

been neglected, the volumetric gas flow rate and the pressure drop across orifice can be 

related according to the following equation: 

b
o c b

dV k P P
dt

= −                                                    (6.2) 

where 2 2o o g gk r Cπ ρ=  is the orifice coefficient, '1.5 2 /g oC f b r= +  (Miyahara 

and Takahashi, 1984)  and 'f  is the fanning friction factor, which is approximated 

by 16 / Reof ′ =  (
2

Re g o o
o

g

r uρ
µ

= , where ou  is instantaneous gas velocity through the 

orifice), if laminar flow is assumed; b is orifice plate thickness. 

 

6.1.4 Liquid pressure analysis  

The viscosity of the liquid is assumed negligible and the flow is assumed to be 

irrotational. Therefore, the potential flow theory can be used to describe the process. 

Since the bubble is assumed to be spherical, a moving spherical coordinate system is 

used, with the origin located at the centre of the growing and translating bubble as 

shown in Fig. 6.2.  
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Fig. 6.2 Growth of a bubble. 

For translation, the velocity potential and boundary conditions, which take the vertical 

column wall into account are: 

3 33 3

3 3 3 3 3 3 2

sin cos
sin 2( sin )

c
T

c c

a ra UUr
r a r a r

θφ θ
θ θ

⎡ ⎤
= +⎢ ⎥− −⎣ ⎦

                             

cos ,U
r
φ θ∂

− =
∂

   when  r a=  

0,
r
φ∂

− =
∂

    when  / sincr r θ=                                      (6.3) 

and for spherical expansion, the following velocity potential and boundary conditions 

apply: 

2 2 2 2

2 2 2 2 2 2

sin
( sin ) sin

c
P

c c

a r a r a
r r a r a

θφ
θ θ

⎡ ⎤
= +⎢ ⎥− −⎣ ⎦

 

,a
r
φ∂

− =
∂

 when  r a=  

0,
r
φ∂

− =
∂

 when  / sincr r θ=                                         (6.4) 

where a is an instantaneous bubble radius, cr  is radius of the bubble column, U is the 

rc 

a 
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bubble rising velocity, r  and θ  are the coordinates from the bubble center and the 

overdot denotes a time derivative. 

The velocity potential, φ , around a spherical bubble which is expanding and rising 

can be expressed as the sum of the potential Tφ  due to the rising motion and the 

potential pφ  associated with the expansion (Lamb, 1945; Tsuge et al., 1981), as 

follows: 

3 33 3

3 3 3 3 3 3 2

sin cos
sin 2( sin )

c
T P

c c

a ra UUr
r a r a r

θφ φ φ θ
θ θ

⎡ ⎤
= + = +⎢ ⎥− −⎣ ⎦

 

2 2 2 2

2 2 2 2 2 2

sin
( sin ) sin

c

c c

a r a r a
r r a r a

θ
θ θ

⎡ ⎤
+ +⎢ ⎥− −⎣ ⎦

                         (6.5) 

During bubble formation, the liquid pressure, ),( θrPl , can be expressed as the sum of 

hydrostatic pressure, stP , at that point, the pressure due to bubble expansion and 

translation, and the wake pressure arising from the preceding rising bubble. For a 

given liquid velocity distribution, Bernoulli's expression is 

2( , ) 1
2

l st w

l

P r P P u
t

θ φ
ρ
− − ∂

= −
∂

                                         (6.6) 

where stP  and wP  are static pressure and wake pressure, respectively at the 

coordinate ),( θr , and the absolute liquid velocity is  

2 2

u
r r
φ φ
θ

∂ ∂⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
                                              (6.7) 

Translation of the ),( θr  coordinate system at velocity, U , may be accounted for by 
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using the two expressions:  

θcosUr −= , 
r

U θθ sin
=                                             (6.8) 

Substituting Eqs. (6.5) and (6.7) into (6.6) and with some simplification, we obtain: 

( ) 2 2 2 3 3 2 2 3 2 2

2 2 3 3

, 2 5 cos cos sin cos
2 2 2

l st w

L

P r P P aa a a a aU a U a U a U
r r r r r

θ θ θ θ θ
ρ
− − +

= + + − +  

4 2 5 6 2 6 2
2 2

4 5 6 6cos sin cos
2 8 2
a a a aU a U a U

r r r r
θ θ θ− − − −  

2 2 2 2 2 2

2

2 sin sin sin cos

c

aa r a ar a aU
r

θ θ θ θ+ +
+  

2 3 3 3 3 2 3 2 3 2 5

3

3 sin cos sin cos 2 sin cos sin

c

a aUr a Ur a U a U
r

θ θ θ θ θ θ θ+ + −
+

 

2 3 2 2 3 3

2 3 2 3

cos sin sin cos( )( )
c c

a a a U a a a U
r r r r

θ θ θ θ
+ + +  

3 2 2 3 3

2 2 3

sin sin sin cos( )
2 c c

a U a a a U
r r r

θ θ θ θ
+ +                  (6.9) 

orP  can be found by substituting sr == ,πθ : 

2 2 2 3 2 33 3 3

3 2 3 3 3 2(2 ) (1 ) (1 )
2 2

l l l l l
or so wo

a a aa a as a s gaa a aP P P
s s s s s s s s

ρ ρ ρ ρ ρ
= + − − − + − − + +  

(6.10) 

where soP  is the static pressure at the orifice and woP  is wake pressure at the orifice.  

6.1.5 Bubble pressure analysis  

The pressure within the bubble, bP , is assumed to be uniform and equal to the average 
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pressure in the liquid at the bubble boundary, lP , plus the pressure due to surface 

tension.  

The average liquid pressure at the bubble boundary, lP , can be calculated by 

integrating the liquid pressure over the bubble surface as follows: 

'

0
2 (2 sin ( , ) )

a

l l r as
P adx a P r a d

θ
π π θ θ θ=−

=∫ ∫                                (6.11) 

Substituting into Equation (6.9), and using the results 

2 2
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θ θ θ
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=∫  

0
sin a sd

a
θ

θ θ
′ +

=∫  

3
3

30
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3 3

s sd
a a

θ
θ θ

′
= + +∫  

3
2

30

1sin cos
2 3
sd
a

θ
θ θ θ

′
= +∫  

2 4
3

2 40

1sin cos
4 2 4

s sd
a a

θ
θ θ θ

′
= − +∫  

2 2 5/ 2
4

50

( )sin cos
5

a sd
a

θ
θ θ θ

′ −
=∫  

where ' 1cos ( / )s aθ −= −  

With some manipulation, we obtain 
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2 3
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2 4( ) 2 2
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3 4 2 3
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3 5 2 3

4 3 2 2( ) ( )
5 3 3 so wb

c c

a aU a U a a s sa s P P
r a r a a a

σ⎤+
+ − + + + + + +⎥

⎦
        (6.12) 

where wbP  is the wake pressure imposed by the preceding bubble, which is discussed 

below. 

6.1.6 Wake pressure analysis  

The pressure field in the wake of a detached rising bubble will affect the growth of the 

next bubble. When the bubble detaches, a tongue of liquid moves upward into the rear 

of the bubble, so that the bubble immediately begins to deform towards a spherical-cap 

bubble and attains its terminal velocity (Clift et al., 1978). With Oseen’s modification 

to potential flow, the wake pressure, caused by the detached rising bubble with steady 

velocity at the orifice, can be written as follows (Mittoni, 1997; Zhang and Tan, 2000): 

2 2 2 3

2 3
Re

6 ( )
2 2

l T sc l T sc
wo

bo bo

U a U aP
N s s

ρ ρ−
= −                                       (6.13) 

where sca  is the cap radius of the rising spherical-cap bubble, TU  is the terminal 

rising velocity of the spherical-cap bubble, given by the expression of Davies-Taylor 

equation (Clift et al., 1978): 

( )2
3

sc l g
T

l

ga
U

ρ ρ
ρ
−

=                                               (6.14) 
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bos  is the distance between the rising bubble and the orifice, ReN ( 2 / )sc T l la U ρ µ=  is 

the Reynold number of the detached rising bubble. 

Similarly, the wake pressure at the bubble surface is expressed as follows: 

2 2 2 3

2 3
Re

6 ( )
2 2

l T sc l T sc
wb

bb bb

U a U aP
N s s

ρ ρ−
= −                                       (6.15) 

where bbs  is the mean distance between the detached rising bubble and the growing 

bubble. 

6.1.7 Force balance for the bubble  

A force balance between the acceleration of added mass and buoyancy can be written 

as (LaNauze and Harris, 1974): 

11( ) ( )
16 l b l g b

d V U V g
dt

ρ ρ ρ= −                                          (6.16) 

The value 11/16 is the added mass coefficient of a sphere in the vicinity of a plane wall 

(Milne-Thomson, 1968).  

6.1.8 Bubble detachment criteria  

With the growth and translation of the bubble, detachment will be possible if the liquid 

pressure at the orifice, orP , becomes greater than the bubble pressure, bP , at the 

instant in time when as = (i.e. the earliest time for detachment is when the bubble 

base is tangential to the orifice plate). If the orifice pressure, orP , is also greater than 

the chamber pressure, cP , weeping is possible after bubble detachment. This situation 
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is known as "true single bubbling".  

However, the phenomenon of "pairing" or “multiple bubbling” will be possible if 

cor PP <  when as = . Immediately after the bubble has detached at the point of 

as = , there is an instantaneous upward pressure drop across the orifice since c orP P> . 

This pressure difference, orc PP − , will cause a smaller second bubble to grow very 

quickly. When as = , the second detaches and it catches up to and coalesces with the 

preceding bubble due to the upward wake pressure. The process repeats till cP  is not 

larger than orP  again. It is necessary at this stage to distinguish between “pairing” and 

“multiple bubbling”, although the two are very similar in appearance. One simple 

definition could be used to distinguish them as follows: only two bubbles are formed 

during one cycle of bubble formation for “pairing”, while more than two bubbles are 

formed during one cycle of bubble formation for “multiple bubbling”.   

The criteria for detachment can now be expressed as: the bubble detaches at as = ; 

“pairing” or “multiple bubbling” happens if cor PP <  when the bubble has detached, a 

smaller second or third bubble is formed immediately after the preceding detachment; 

the bubble formation period is ended when cP  is not larger than orP  and it enters 

into the waiting period of one cycle.  

6.1.9 Chamber pressure during waiting period  

After bubble detachment, the pressure in the chamber will accumulate due to the 

continuous input of gas but no outflow of gas from chamber. The chamber pressure 

expression during waiting time is derived from Equation (6.1) under the condition 

0=q : 
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cDET
c

c PQT
V

P lnln +=
γ                                              (6.17)             

where T  is the time from the instant of bubble detachment.  

6.1.10 Bubble frequency f 

One cycle of bubble formation consists of formation time and waiting time. The period 

between the starting point and the detachment point is defined as formation time, tf, 

which can be obtained from the model. The time between the detachment of the one 

cycle of bubble and the growing of the next cycle bubble is defined as the waiting time, 

tw, which can be obtained from Equation (6.17). Thus the bubble formation period 

equals to the sum of tf and tw. The frequency of bubble formation, f, which corresponds 

to the number of bubble formed per unit time, is the inverse number of the period as 

follows 

1

f w

f
t t

=
+

                                                       (6.18) 

 

6.2 Numerical solution strategy 

The expression for gas flow rate into a growing spherical bubble, 

 bdVq
dt

=                                                         (6.19) 

and the definition of bubble rising velocity during formation, 
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dt
dsU =                                                           (6.20) 

ensure closure of the system of equations describing bubble formation. Equations  

(6.1), (6.2), (6.12), (6.13), (6.15), (6.16), (6.19) and (6.20) can be solved 

simultaneously for the variables cP , bP , wbP , woP , q , a , s  and U  using a 

standard Runge-Kutta-Verner fifth and sixth order method.  

The initial conditions were )0(2)0()0( wo
o

bc P
r

PPP ++== ∞
σ , 0)0()0()0( === sUq , 

and ora = , corresponding to a hemisphere with radius equal to the orifice radius. 

The simulations were carried out for a chain of bubbles. The initial bubble was allowed 

to form in a quiescent liquid, i.e., it experienced no wake effect. Each subsequent 

bubble was then simulated as forming, detaching and rising under the influence of the 

wake pressure of its immediate predecessor. In most cases, straightforward 

convergence was attained at the third cycle of bubble formation, i.e., the second and 

the third cycle of bubble formation were virtually identical. The converged values of 

waiting time, and formation time then constitute one bubbling cycle. 

 

6.3 Results and discussion 

6.3.1 Theoretical simulation of bubbling regimes 

The chamber pressure fluctuations during one cycle of bubble formation, which were 

predicted by the present model, are shown in Figs. 6.3 (a) to 6.3 (c) for various column 

diameters of 100 mm, 50 mm and 30 mm respectively with the following conditions: 
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Gas flow rate Q = 0.854 cm3/s 

Radius of the orifice ro = 0.12 cm 

Chamber volume Vc = 430 cm3 

Height of the liquid H = 30 cm. 
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Fig. 6.3 Simulated chamber pressure fluctuation during one bubbling cycle for various 
column diameters (a) dc = 100 mm (b) dc = 50 mm (c) dc = 30 mm at Q = 0.854 cm3/s, 
ro = 0.12 cm, Vc = 430 cm3 and H = 30 cm. 
  

It was observed that for each bubbling cycle, the chamber pressures increased briefly 

at the beginning of bubble formation, as a result of gas flow rate entering the chamber 

being higher than the gas flow rate through the orifice, shown as the inset I in each 

figure. Fig. 6.3(a) shows that after the short duration of pressure increase, the gas 

chamber pressure decreased until the lowest point A, at which the bubble detached 

from the orifice. After the bubble detachment, the chamber pressure increased linearly 

until the chamber pressure was high enough to initiate the next cycle of bubbling, 

which belongs to the waiting period. This is clearly a single bubbling regime.  

Fig. 6.3(b) shows that with the bubble formation, the chamber decreased until point B, 

at which as =  and the bubble detached at this point. Because of the higher chamber 

pressure than the orifice pressure at point A, a second bubble was formed immediately. 

After the first bubble detachment, there was also a short-term pressure increase as 

shown in inset II, after which the chamber pressure decreased again until the lowest 
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point A, and the second bubble detached from the orifice at this point. After that, it 

enters into the waiting period until the next bubbling cycle happens, and this is a 

regime of pairing. 

Fig. 6.3(c) shows that with the bubble formation, the chamber decreased until point B, 

at which as =  and the bubble detached at this point. Because of the higher chamber 

pressure than the orifice pressure at point A, a second bubble was formed immediately. 

After the first bubble detachment, there was also a short-term pressure increase shown 

as the inset II, after which the chamber pressure decreased again until the point C 

where as = , and the second bubble detached from the orifice at this point. Because 

the chamber pressure was still higher than the orifice pressure at point A, a third 

bubble was formed immediately. After the second bubble detachment, there was also a 

short-term pressure increase shown as the inset III, after which the chamber pressure 

decreased again until the point A, and the third bubble detached at this point. After that, 

it entered into the waiting period until the next bubbling cycle happens, and this is 

classified as multiple bubbling. 

Wake pressure induced by detached rising was taken into account in this model. Wake 

pressure behind the rising bubble plays a significant role in determining bubble-bubble 

interaction, and the rotational motion in the liquid induced by the wake tends to detach 

the forming bubble earlier resulting in the transition of the bubbling regimes. It can be 

noted from the observation that our model can simulate the occurrence of the different 

bubbling regimes. 
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6.3.2 Comparison of experimental results with theoretical predictions  

The validity of our theoretical model was investigated by comparing simulated results 

of bubbling frequency with a wide range of experimental data for various column and 

orifice diameters, chamber volumes and gas flow rates.  

Fig. 6.4(a) shows the relationship between bubbling frequency and gas flow rate for 

three sizes of column with orifice diameter, 1.6od = mm, and chamber volume, 

430cV = cm3. It is observed that with the increase of the gas flow rate, the bubbling 

frequency increases, which is consistent with the observation in Snabre and 

Magnifotcham (1998). The comparisons between experimental results with theoretical 

predictions are also shown in this figure. When orifice diameters were changed to 2.0 

mm and 2.4 mm, the corresponding relationships are shown in Figs. 6.4(b) and 6.4(c) 

respectively. The experimental trends are very clear: bubbling frequency increased 

with increasing column diameter and also with increasing gas flow rate, whereas 

bubbling frequency decreased with increasing orifice diameter. The simplified 

spherical growth model predicts these trends as well as the boundary integral model, 

and the agreement between simulated and experimental frequencies is very good. 

The corresponding bubbling frequencies for 1000cV = cm3 are shown in Figs. 6.5(a), 

(b) and (c) for orifice diameters, 1.6 mm, 2.0 mm and 2.4 mm, respectively. The 

experimental trends are similar to those in Fig. 6.4, and again there is good agreement 

between theoretical predictions and experimental data. 
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Fig. 6.4 Relationship between bubble frequency and gas flow rate for various column 
diameters (i) dc = 100 mm (ii) dc = 50 mm (iii) dc = 30 mm at Vc = 430 cm3: (a) do = 1.6 
mm; (b) do = 2.0 mm; (c) do = 2.4 mm.  
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Fig. 6.5 Relationship between bubble frequency and gas flow rate for various column 
diameters (i) dc = 100 mm (ii) dc = 50 mm (iii) dc = 30 mm at Vc = 1000 cm3: (a) do = 
1.6 mm; (b) do = 2.0 mm; (c) do = 2.4 mm. 
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6.3.3 Bubbling regime map  

There are three bubbling regimes, single bubbling, pairing and multiple bubbling, 

which are determined by the ratio of the column diameter to the orifice diameter and 

gas flow rate. The experimental and theoretical regime maps are shown in Figs. 6.6(a) 

and (b) for chamber volume 430cV = cm3 and 1000 cm3 respectively with gas 

flowrate and diameter ratio ( /c od d ) as the parameters. Fig. 6.6 shows boundaries 

between the three bubbling regimes described earlier, viz., single bubbling, pairing and 

multiple bubbling regimes. It was observed that with the decrease of diameter ratio or 

increase of the gas flow rate, the bubbling regimes generally transition from single 

bubbling to pairing and multiple bubbling, and the theoretical regime boundaries were 

in good agreement with the experimental regime boundaries. For the larger chamber 

volume, the theoretical boundaries between adjacent regimes are shifted upwards 

significantly, in accord with our experimental findings. This is consistent with 

McCann and Prince’s (1971) observation that pairing and doubling bubbling are more 

likely to occur in a large chamber volume. 

At very low gas flowrates, below ~0.25 cm3/s, the wall effect disappears, since single 

bubbling occurs for all values of /c od d . The bubble frequency (and hence bubble 

volume) is also independent of /c od d , as can be seen in Figs. 6.4 and 6.5. It appears 

that bubble-bubble interactions are negligible at low bubbling frequencies (less than ~1 

s-1).  
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6.4 Conclusions  

A spherical bubble formation model, which takes into account the wake effect as well 

as the wall effect, has been developed using potential flow theory. Our investigation 

demonstrates that the bubble-wall and bubble-bubble interactions can have profound 

influence on bubbling frequencies and bubbling regimes in bubble formation at a 

submerged orifice. These effects have been successfully modelled by potential flow 

and bubble wake pressure analysis. Also, the occurrence of bubbling regimes could be 

predicted with this model.  
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Fig. 6.6 Bubbling regime map at: (a) Vc = 430 cm3; (b) Vc = 1000 cm3. (Exp. Regimes: 
○ single bubbling, □ pairing, ∆ multiple bubbling; ─── Predicted Regimes Boundary)  
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Chapter 7   Conclusions and recommendations 

 

The mechanics of bubble formation has been investigated in the present study. In this 

chapter, the conclusions obtained from this study and the recommendations for further 

study are presented.  

 

7.1 Conclusions 

7.1.1 Conclusions on bubble formation in a quiescent liquid 

This study attempted to study the mechanics of bubble formation in a quiescent liquid 

theoretically and an improved theoretical model was developed using the boundary 

integral method. The results, including the instantaneous shapes, detachment time, 

liquid circulation as well as the bubble and chamber pressure, obtained with this model 

were in substantial agreement with those data from reported experimental data. This 

shows that the model can predict the process of bubble formation very well. 

Improvements and contributions from this research are summarized as follows: 

1. The selection of dimensionless numbers representing the physical and dimensional 

parameters allows the natural and a priori formulation of the dimensionless 

equation of potential flow, instead of relying on the questionable iterative method 

to define length and time scales. 

2. The effect of the surface tension is included in the model. 

3. The use of a realistic boundary condition at the point where the bubble surface 
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meets the orifice plate allows us to relate the bubble shape to the dynamic 

three-phase (i.e. gas-liquid-solid) contact angle, instead of the arbitrary shape 

criterion. 

7.1.2 Conclusions on bubble formation with wall effect 

This research attempted to assess the wall effect on bubble formation both 

experimentally and theoretically.  

In the experiment, three different bubbling regimes were observed and analyzed by 

means of high-speed video camera and dynamic pressure transducer. The effects of the 

chamber volume, gas flow rate and orifice diameter were also studied. 

The following summarizes the conclusions obtained from the experimental results: 

1. There are three bubbling regimes, single bubbling, pairing and multiple bubbling, 

for bubble formation which are affected by the column diameter. 

2. With the decrease of the diameter ratio or increase of the gas flow rate, the 

bubbling regimes generally transition from single bubbling to pairing and multiple 

bubbling, with a corresponding decrease in bubbling frequency. 

3. Pairing and multiple bubbling are more likely to occur with large chamber volume 

and gas flow rate. For the larger chamber volume, the boundaries between adjacent 

regimes are shifted upwards significantly. 

4. Orifice diameter has an effect on bubble formation. With an increase of the orifice 

diameter, the bubble volume is increased with a corresponding decrease in 

bubbling frequency. 

To investigate the wall effect theoretically, a model was developed using the boundary 
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integral method with the introduction of a specific system of images. Comparison of 

experimental results for bubbling frequency with the theoretical predictions shows that 

the agreement is very good, i.e. the model successfully predicts the effect of the 

column wall on bubbling frequency.  

In addition, to take into consideration the interaction between the column wall and the 

growing bubble at the orifice, as well as the interaction between subsequent bubbles 

formed and detached from the orifice, a theoretical spherical model for bubble 

formation was developed using potential flow theory. Our investigation demonstrates 

that the bubble-wall and bubble-bubble interactions can have profound influence on 

bubbling frequencies and bubbling regimes in bubble formation at a submerged orifice. 

These effects have been successfully modelled by potential flow and bubble wake 

pressure analysis, and the occurrence of the bubbling regime can be predicted with the 

spherical model. Simulated results using the theoretical model agreed very well with 

experimental data. 

7.1.3 Contributions 

The contributions of this research are summarized as follows: 

1. The boundary integral method model initially developed by Hooper (1986) was 

improved significantly. 

2. The wall effect on bubbling frequency and bubbling regime was investigated 

extensively. 

3. For the non-spherical modeling, the boundary integral method and system of 

images were used to predict the bubbling frequency. The spherical model 

developed by Zhang and Tan (2000) was developed with the consideration of wall 
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effect on bubble formation, and the bubbling frequency and bubbling regime can 

be predicted with this improved model. 

 

7.2 Recommendations for further study 

In this section, recommendations for further study are given as follows: 

1. In the problems discussed so far, the gas is not soluble in liquid or it does not react 

with the liquid. However, bubble formation with chemical reaction has many 

applications in physical and chemical processes and it is such a case that we should 

address, especially in the environmental field in which pollution is a serious 

problem. Thus, it is essential to study bubble formation with mass transfer and 

chemical reaction both experimentally and theoretically. Several workers have 

studied mass transfer from the surface of a growing bubble at a gas distribution. 

Burman and Jameson (1976) proposed mass transfer equations during bubble 

formation. Stangle and Mahaling (1989) developed a spherical model to estimate 

the gas absorption rate during bubble formation. Terasaka et al. (1999) conducted 

experiments to measure the absorption rate from pure SO2 gas bubbles to water. A 

pseudo-spherical model for the SO2-water system was proposed. In their model, 

mass transfer from the gas-liquid interface during bubble growth was described by 

the penetration theory. They applied spherical equations of motion and spherical 

gas stream function to describe the bubble growth. Therefore, further study of 

bubble formation should be extended to these cases. 

2. What has been discussed so far is the mechanics of bubble formation under single 

orifice. However, bubble formation with multiple orifices is widely used and 

encountered in practice. Xie and Tan (2003) investigated the bubble formation at 
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multiple orifice and regimes of synchronous, alternative and unsteady bubbling 

were clearly identified in their work. A theoretical model for predicting 

synchronous bubbling frequency was also developed in Xie and Tan (2003). 

Therefore, extending the present model to describe the process of multiple-orifice 

bubble formation is recommended for future research. 

3. Liquid viscosity is one of the factors affecting bubble formation. Zhang and Tan 

(2005) developed a model for the prediction of bubble formation in viscous liquid. 

In Zhang and Tan (2005), the interfacial element method was applied to calculate 

to bubble shape and detachment, and drag force due to the viscous drag was 

incorporated in force balance to take into account of the viscosity effect. To 

investigate the bubble formation more thoroughly, further experimental and 

theoretical study of bubble formation should been carried out with the 

consideration of the effect of the liquid viscosity. 
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APPENDIX A   Integral evaluation 

 

A.1 Standard Gaussian Legendre Quadrature 

The approximate value of an integral over the line segment [ 1, 1]− +  is given by the 

formula: 

1

1
1

( ) ( )
n

i i
i

f t dt w f t
−

=

=∑∫                                                (A.1) 

where it  is a designated evaluation point, iw  is the weight of that point in the sum 

and n  is the number of the points at which the function ( )f t  is evaluated. The 

values of it  and iw  are uniquely determined for any given value of n  and are 

tabulated in the literature. When n  is chosen as 8, the values of it  and iw  are listed 

in the Table A.1. 

Table A.1 Evaluation points and corresponding weight for standard integral 

it  iw  

-0.96028986 0.10122854 

-0.79666648 0.22238103 

-0.52553241 0.31370665 

-0.18343464 0.36268378 

0.18343464 0.36268378 

0.52553241 0.31370665 

0.79666648 0.22238103 

0.96028986 0.10122854 
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In most cases we will want to evaluate the integral on a more general interval, say 

[ , ]a b . We will use the variable x  on this more general interval, and linearly map the 

[ , ]a b  interval for x  onto the [ 1, 1]− +  interval for t  using the linear 

transformation: 

x c mt= +   where 1 ( )
2

c b a= +  and 1 ( )
2

m b a= −  

Finally, we can write the Gaussian Legendre estimate of the integral as: 

1
( ) ( )

nb

i ia
i

f x dx m w f c mt
=

= +∑∫                                          (A.2) 

 

A.2 Integral with singularity of log type 

For an integral containing an explicit singularity of log type over interval [0,1] , the 

evaluation can be obtained as follows: 

1

0
1

1( ) ln( ) ( )
n

i i
i

f t dt w f t
t =

= ∑∫                                             (A.3) 

where it  is a designated evaluation point, iw  is the weight of that point in the sum 

and n  is the number of the points at which the function ( )f t  is evaluated. The 

values of it  and iw  are uniquely determined for any given value of n  and are 

tabulated in the literature. When n  is chosen as 8, the values of it  and iw  are listed 

in the Table A.2. 
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Table A.2 Evaluation points and corresponding weight for integral with singularity 

it  iw  

0.01332024 0.16441660 

0.07975043 0.23752561 

0.19787103 0.22684198 

0.35415399 0.17575408 

0.52945858 0.11292403 

0.70181453 0.05787221 

0.84937932 0.02097907 

0.95332645 0.00368641 
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APPENDIX B   Correction of gas volumetric flow rate 

 

The flow meters used had the scale readings calibrated by the manufacturer for a 

standard condition of air density 1.293 kg/m3, temperature of 20 oC and pressure of 1 

atm (absolute). The formula given below for volumetric flow rate correction for 

different densities, temperature and pressure is: 

2/12/12/1
'

013.1
013.1

273
293293.1

⎥⎦
⎤

⎢⎣
⎡ +

×⎥⎦
⎤

⎢⎣
⎡

+
×⎥

⎦

⎤
⎢
⎣

⎡
×=

P
T

QQ
Gρ

              (B.1) 

where, Q : corrected volumetric gas flow rates (l/min); 

'Q : actual reading of volumetric gas flow rates (l/min); 

Gρ : gas density tested , pure air: 1.293 kg/m3; 

T : gas temperature, 20 oC; 

P : gauge pressure in the flow meter; 

The unit for volumetric gas flow rates in this project was based on standard conditions. 

For example, for gas flow reading 2 l/min at inlet pressure 2 bar, the corrected flow 

rate is: 

min/45.3
013.1

2013.1
20273
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Appendix C                                            List of publications 

 149

APPENDIX C   List of publications 

 

Xiao, Z.Y. and R.B.H. Tan. An improved model for bubble formation using the 

boundary integral method. Chem. Eng. Sci. 60(1), pp.179-186. 2005. 

Xiao, Z.Y. and R.B.H. Tan. Wall effect on bubble formation at a submerged orifice. In 

16th International Conference of Chemical and Process Engineering, 22-26 

August, 2004, Praha, Czech Republic.  

Xiao, Z.Y. and R.B.H. Tan. A model for bubble-bubble and bubble-wall interaction in 

bubble formation. AICHE J. Accepted, 2004. 

Xiao, Z.Y. and R.B.H. Tan. A model for the wall effect on bubble formation at a 

submerged orifice. In 7th Conference on Gas-Liquid and Gas-Liquid-Solid 

Reactor Engineering, 21-24 August, 2005, Strasbourg, France. 

Zhang, Y.L., Z.Y. Xiao and R.B.H. Tan. Interfacial Element Modeling of Bubble 

Formation with Liquid Viscosity. J. Chem. Engng. Jpn. Accepted, 2005. 


