
COMPLEXITY IN ARTIFICIAL LIFE

Daniel Anders Gösta Högberg

(B.Sc. (Honours), Uppsala University)

A THESIS SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

DEPARTMENT OF COMPUTER SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2005

To my parents and my wife

i

Acknowledgments

First and foremost, I would like to express my deepest gratitude, and thank my super-

visor Martin Henz, for his inspiration, support and always helpful comments. Working

in a research area such as Artificial Life has indeed been a trip into the unknown, and

Martin Henz has given invaluable support for such a journey.

I would also like to thank Janardan Mishra for many interesting discussions concern-

ing life, the Earth and everything there between.

For moral support and everyday motivation, I would also like to thank my friend

Magnus Ågren at Uppsala University.

Last but not least, I would like to thank E-Jean Tan for proof-reading this thesis

and for being a tremendous support.

ii

Contents

1 Introduction to Artificial Life 1

1.1 Life is hard to study . 2

1.1.1 Definitions of life . 2

1.1.2 Weak or Strong Artificial Life . 3

1.1.3 Complexity of life . 3

1.2 History and background . 4

1.2.1 Cellular automata . 5

1.2.2 Assembler automata . 6

1.3 Evolutionary complexity . 8

1.4 Thesis outline . 10

2 Evolution 12

2.1 Biological evolution . 13

2.2 An example of evolution . 14

2.3 Artificial evolution . 15

2.3.1 Replication . 15

2.3.2 Variation . 15

2.3.3 Selection . 17

2.4 Chemostat . 17

2.5 Merit function and fitness landscapes . 19

2.5.1 Genetic drift . 20

2.5.2 Müller’s ratchet . 21

3 A New Artificial Chemistry—SALTA 22

3.1 Micro-level: Virtual CPU and program 23

iii

3.1.1 CPU . 23

3.1.2 Program . 24

3.2 Macro-level: Dynamics . 32

3.2.1 Self-replication and death (r) . 33

3.2.2 Mutation (') . 34

3.2.3 Merit (S) . 35

3.2.4 Scheduling (α) . 35

4 Mutational Evolution 37

4.1 Information theory and quasi-species . 38

4.1.1 Eigen’s quasi-species . 38

4.1.2 Strive for the smallest . 40

4.2 Adaptive landscape—an example . 40

4.2.1 Evolution, as a function of mutation rate 41

4.2.2 Evolution, as a function of population size 43

4.2.3 Evolution, as a function of topology 44

5 Genetic Recombination 47

5.1 Composable evolution . 48

5.2 Extending SALTA with recombination 49

5.2.1 Recombination for computation 49

5.2.2 Negative effects of recombination 50

5.3 Experiment: recombination versus mutation 50

5.3.1 Complex evolution with mutation 51

5.3.2 Complex evolution with recombination 52

5.3.3 Genotype length and diversity 55

6 Symbiosis and co-evolution 57

6.1 Cost-benefit relations and symbiosis . 58

6.2 Symbiosis and co-evolution in Artificial Life 59

6.3 Extending SALTA with symbiosis . 59

6.3.1 I/O Buffer . 61

6.3.2 Resources . 61

iv

6.4 Experiment: Sufficient conditions for symbiosis 61

6.4.1 (a) Single layer without resource relations 63

6.4.2 (b) Single layer with resource relations 64

6.4.3 (c) Multiple layers without resource relations 65

6.4.4 (d) Multiple layers with resource relations 66

6.5 Mutational pressure with symbiosis . 69

7 Red-Queen Evolution 73

7.1 Open-ended evolution . 74

7.2 Red-Queen hypothesis and evolution . 74

7.2.1 Model for evolution in an ever-changing environment 75

7.3 Modifying SALTA . 75

7.3.1 Resources . 76

7.3.2 I/O Buffer . 76

7.3.3 Merit function . 76

7.4 Experiment: open-ended evolution . 77

7.4.1 Experimental observations . 77

8 Conclusion 82

8.1 Summary . 82

8.2 Contributions . 84

8.3 Discussion . 84

8.4 Critique . 84

8.5 Future work . 85

A Settings and Parameters 93

A.1 Command line arguments . 93

A.1.1 Default SALTA . 93

A.1.2 SALTA with symbiosis . 95

A.1.3 SALTA with Red-Queen . 95

A.2 Initialization file . 96

A.3 Global settings . 97

A.4 Output file . 98

v

B Glossary 100

vi

Summary

This thesis introduces a new evolutionary platform called SALTA, for the study of evolu-

tionary complexity in a finite population of digital organisms. These organisms execute

assembler-like programs that run on individual CPUs, and have a clear distinction be-

tween “genotype” (program) and “phenotype” (execution). By imposing differential

reproductive success, based on the organism’s executional behavior (via a merit func-

tion), self-replication, natural selection and mutation introduce evolution in the popula-

tion. Throughout the conducted experiments, a new notion of evolutionary complexity

is defined as the product of (genotype or phenotype) diversity and average genotype

size. The evolutionary platform is formally defined using the notion of a chemostat ; a

model which is widely used in biology and chemistry to conduct experiments with finite

systems. Since the default platform is extended and used in a wide range of experi-

ments, the implementation is modular with many built-in parameters. The genotype

instruction-set is also made small and as robust as possible under mutation.

In the first set of experiments, basic parameters such as mutation rate, population

size and offspring dispersal were investigated in the evolution of pre-defined logical

functions by point-mutation. It was found that evolutionary complexity decreases in

the evolution of the logical functions.

Thereafter, genetic recombination was added in the second set of experiments to be

compared with point-mutation for evolving the logical functions. Recombination was

found to be more efficient than mutation, for smooth fitness landscapes and for bridging

gaps in rugged fitness landscapes.

In order to try to increase evolutionary complexity, interdependence between the

(biotic or abiotic) environment and the evolving population was introduced in the third

and fourth set of experiments. In the third set of experiments, symbiosis was added

to the model. This was done by (i) layering the model with chemostat layers and (ii)

vii

connecting the layers with a transfer of the resources that are used for merit. By doing so,

sufficient conditions were found for symbiosis, e.g. by using a novel correlation measure

called vicinity difference. It was also found that symbiosis gave increased evolutionary

complexity in terms of increased phenotype diversity and genotype size. In the fourth

set of experiments, a new merit function was defined for open-ended evolution in a

theoretical Red-Queen scenario. We found that genetic drift limited the genotype growth

earlier than the error threshold, and that the evolved genotypes were strongly dependent

on the population size. Theoretically, this model should give unbounded complexity by

indefinite genotype growth and accumulative genotype diversity, although genetic drift

was found to limit such evolution.

To conclude, we found that recombination was more efficient than point-mutation for

certain fitness landscapes, and that interdependencies between environment and evolv-

ing population—e.g. by symbiosis or Red-Queen evolution—increased our evolutionary

complexity measure.

viii

Tables

3.1 Default self-replicating organism. 31

3.2 Experimentally smallest self-replicating organism. 31

3.3 Self-replicating OR-computing program. 33

4.1 Default merit and merit with gap. 41

4.2 Mutation rate, average merit per organism, average genome length, aver-

age genotype diversity, and evolutionary complexity. 43

5.1 NOT and NAND computing self-replicating organisms. 54

6.1 The 4 possible settings for dimensional difference and resource relations. 62

7.1 Experimental and theoretical genome length. 81

8.1 Summary of experiments. 86

ix

Figures

2.1 Point-mutations: substitution, insertion and deletion. 16

2.2 Genetic recombination: merge and split. 17

2.3 Fitness landscape with peaks and valleys. 19

3.1 Program word. 25

3.2 Illustrates how pattern-based addressing can be used. 26

3.3 Illustrates how the instruction SET can be used. 28

3.4 Illustrates how the instruction COPY can be used. 29

3.5 One cycle of self-replication. 34

4.1 Evolution in terms of average population merit as a function of mutation

rate. 42

4.2 Average merit and genome length for different mutation rates. 42

4.3 Average merit as a function of population size. 44

4.4 Average abundance of evolved logical functions in 0-D and 2-D topologies. 45

4.5 Genotype diversity plotted against evolutionary progress for 2-D and 0-D

topologies. 46

5.1 Self-replication and genetic recombination (self-replicating loops are striped). 50

5.2 Equivalence function possibly evolved through genetic recombination. . 51

5.3 Merit for a single run and average merit over all successful populations

finally evolving EQU. 53

5.4 Merit for a single run and average merit over all successful populations

finally evolving EQU with mutation or recombination. 55

5.5 Number of populations that evolved EQU for different rates of genetic

recombination. 56

5.6 Average genotype length and genotype diversity with mutation only and

with mutation and recombination. 56

x

6.1 Modified model with 2 layers. 60

6.2 Illustration of accumulative graphs. 62

6.3 Accumulative phenotype abundance and average genotype length, with-

out resource relations or layers. 64

6.4 Accumulative phenotype abundance and average genotype length, with

resource relations but without layers. 65

6.5 Accumulative phenotype abundance, without resource relations but with

layers. 66

6.6 Average genotype length, without resource relations but with layers. . . 67

6.7 Accumulative phenotype abundance, with resource relations and layers. 68

6.8 Average genotype length, with resource relations and layers. 69

6.9 Low mutational pressure during evolution of two populations in symbiosis. 71

6.10 High mutational pressure during evolution of two populations in symbiosis. 72

7.1 Average genotype length with local offspring dispersal, evolved with dif-

ferent population sizes and merits . 79

7.2 Average genotype length with non-local offspring dispersal, evolved with

different population sizes and merits . 80

xi

Chapter 1

Introduction to Artificial Life

Artificial Life (AL) is an interdisciplinary research field that tries to abstract from life

as-we-know-it, to find conditions for its origin and dynamics, and possibly enable instan-

tiation of life as-it-could-be [Lan88]. Recently, the availability of powerful computers has

made it possible to simulate artificial life in numerous different computational “artificial

chemistries”. Artificial Chemistry (AC) is an important subfield of Artificial Life, that

tries to abstract from molecular processes to investigate the emergent dynamics of these

complex systems [DZB01]. But the history of computational research in Artificial Life

is much older. As early as in the 1940’s, was von Neumann interested in the logic of

self-replication, and constructed the first universal self-replicator by hand in a cellu-

lar automaton [vN66, Sip98]. His construction distinguished between “genotype” and

“phenotype”, which has been claimed to be the true contribution of von Neumann’s

work (about five years before DNA was actually discovered) [McM00b]. Today, diverse

areas of Artificial Life, such as the origin of life, symbiosis, autopoiesis (self-production),

self-organization and evolutionary novelty, are of particular interest. Artificial Life has

branched over time, and we may today identify a number of related research fields: Ar-

tificial Chemistry (AC), Artificial Intelligence (AI), Genetic Algorithms (GA), Artificial

Neural Networks (ANN) and Robotics.

Overview This chapter will first give an introduction to the relatively unknown and

interdisciplinary field of Artificial Life and its history, and then outline this thesis.

The first section will discuss Artificial Life as a research area, in particular problems

associated with evolution and life. The second section will give a historical overview of

1

1.1. LIFE IS HARD TO STUDY 2

related research areas, and how they connect to this work. The third section will present

the motivation, and the main thesis for this work. Finally, the last section will outline

the structure of this thesis in a chapter-by-chapter overview.

1.1 Life is hard to study

Life is a hard subject to study, and proposed fundamental definitions, conditions and

properties are still questioned. We only witness one instance of life; developed on the

foundations of natural chemistry, and coded into carbon here on earth. Artificial Life is

not restricted to one kind of chemistry, instead any (artificial) chemistry is considered. In

contrast to other areas of science, some aspects of life does not seem to be decomposable,

but holistic. Analytical approaches to investigate these aspects of life immediately fail;

some of its properties come from its whole, not from its individual parts. Biological life

is, for example, hierarchically ordered at least in five levels of interaction: molecular

level, cellular level, organism level, population level and ecosystem level [TJ95]. Some

definitions of life (see below) are also directly defined by global properties, e.g. Langton

defines life as [Lan88]:

[...] a property of the organization of the matter, rather than a property of

the matter itself.

Life is also an emergent phenomenon, e.g. biological life has organized itself to very high

complexity over the last 2 billion years [Ada98, DZB01, Sip98]. So, instead of analyzing

life, Artificial Life tries to synthesize it. By synthesizing artificial life, researchers try

to: understand the dynamics of evolution, find sufficient conditions for self-organization,

study replication, find the origin of life, and more. Again, many problems in the study

of Artificial Life are connected to the very notion of life, e.g. studying (self-)replication

demands a sound definition of an offspring.

1.1.1 Definitions of life

A fundamental, but important problem is to define life. Since Artificial Life is looking

at phenomena arising in “living matter”, a definition of “living” is necessary. In biology,

typically there are no problem in identifying life. But there are exceptions, e.g. scien-

tists are still arguing whether viruses are alive [Rya02]. Viruses do not reproduce by

1.1. LIFE IS HARD TO STUDY 3

themselves, instead they replicate by inserting their genome into a replicating host cell.

At the same time viruses do evolve, although through close co-evolution with its hosts.

Several broad definitions of life have been proposed [Ada98]:

Physiological definitions focus on observable functions of an entity; such as moving,

reacting to stimulation, and so on.

Metabolic definitions look at resource exchange between an entity and its environment.

Biochemical definitions center around the capability of storing hereditary information

in nucleic acids.

Genetic definitions use the process of evolution (replication, variation and selection)

as definition of life, but do not specify how hereditary material is encoded.

Thermodynamic definitions are very general, and focus on the ability of life to main-

tain low levels of entropy (disorder).

These definitions may be modified and/or combined to cover a desired definition of life.

In this work we adopt the genetic definition above. This is a very pragmatic definition

that includes entities which intuitively are not alive, e.g. genetic algorithm solutions,

rumors or other spoken messages (see Section 2.2).

1.1.2 Weak or Strong Artificial Life

From a philosophical perspective, there are two schools of Artificial Life: Weak AL

and Strong AL [Tay99]. Researchers belonging to the school of Weak AL, view life

synthesized by artificial means as merely simulations or imitations of life. This is in

contrast to the school of Strong AL, which claims that Artificial Life is (potentially)

realizations of life, i.e. true instantiations of life created by artificial means. This work

is in agreement of the latter view of Artificial Life, solely for the sake of argument (recall

our definition of life from above). By defining life in terms of evolution, we could more

precisely discuss about Artificial Evolution instead of Artificial Life.

1.1.3 Complexity of life

A puzzling, but intriguing aspect of life is its complexity. In biology, complexity of life

may intuitively be defined by species diversity and behavior, where the latter may be

1.2. HISTORY AND BACKGROUND 4

concrete-sized e.g. by the number of different organs. Darwin explained the great di-

versity of different phenotypes as a direct result of rich quantities of different ecological

niches, which new species were adapted to by natural selection [Dar59, May02]. Gould

has argued in neo-Darwinian spirit that geographical locality and gradual genetic change

is the factor behind new species and novel features (phenotype) [Gou02]. Researchers

have also emphasized the importance of genetic recombination and symbiosis as major

factors in the evolution of complex life [Hux59, Rid00, Mar81, Rya02]. Among other

hypotheses for the complexity of life, in particular for the evolution of sexual reproduc-

tion, is the Red-Queen hypothesis [vV73, Wil03]. Throughout this work, complexity

will be defined in terms of diversity and average genotype size, in a finite population of

self-replicating organisms with genotype/phenotype distinction; see Section 1.3.

1.2 History and background

Evolution and life have always amazed people. What is the origin of life? What was

the first kind of life? What phases did evolution go through? How did such “perfect”

organs as the eye evolve? How can such complicated organisms as mammals come

about? Evolution has driven biological life to increasingly higher complexity, many

times to extinction [May02]; continuously inventing new functions and mechanisms for

reproduction and survival. At the same time it is important to understand that (neo-

Darwinian) evolution is not teleological ; evolution is not goal-oriented. Still, even though

there is no mastermind behind, life—in the evolutionary theory—has created order where

there was chaos [McM00a].

Viewing life as a mechanical process was an unorthodox thought in the mid of the

nineteenth century. In France around 1748, Julien Offray de La Mettrice argued in

“L’Homme Machine” against Descartes about the dualistic view of life, i.e. that life

is the product of spirit and matter [Hel98]. Later, Darwin’s work of evolution [Dar59]

influenced Samuel Butler (1872) to argue for the possible evolution of machine-like life.

In 1948, proposed Norbert Wiener, founder of cybernetics, that organisms and machines

are essentially kindred entities of information processing devices. Around the same time

started von Neumann to develop the first self-reproducing and universally computing

cellular automaton, influenced by Turing’s universal Automata Theory. This work by

1.2. HISTORY AND BACKGROUND 5

von Neumann laid the foundation for software oriented or computational Artificial Life.

A few years later (1956) was the field of Artificial Intelligence (AI) born. Around 20

years later (1987), the term “Artificial Life” was first used by Chris Langton, to denote

his experiments of how computers can be used to model biological systems. Finally,

at the MIT conference 1994, Artificial Life was established as a new research field by

Langton, Ray and others. In the mission statement by Santa Fe Institute, the purpose

of Artificial Life is summarized [Ins94, p.38]:

Artificial Life (“AL” or “ALife”) studies “natural” life by attempting to

recreate biological phenomena from first principles within computers and

other “artificial” media. ALife complements the analytic approach of tra-

ditional biology with a synthetic approach in which, rather than studying

biological phenomena by taking apart living organisms to see how they work,

researchers attempt to put together systems that behave like living organ-

isms. Artificial Life amounts to the practice of “synthetic biology”.

1.2.1 Cellular automata

Any software-oriented approach in Artificial Life is based on the pioneering work with

the first universal self-replicator by John von Neumann [Ada98, vN66, McM00a]. Von

Neumann’s inspiration came from Turing’s Automata Theory, but was extended into

the logic of universal self-replication. Turing’s Automata Theory defines a universal

automaton as a finite state-space with finitely many transition rules, and a tape for

Input/Output (I/O) operations. The states (actions) consist of reading from the tape,

and moving and/or writing to it. This implies that the finite set of transition rules can

be encoded, and written as a mapping between n-tuples of e.g. natural numbers.

Von Neumann partly constructed the universal self-reproducing automaton as a

2-dimensional (2-D) cellular automata (CA) with a five-cell neighborhood (Neumann

neighborhood), and a cell space of 29 states. The state of each cell at time t + 1 is de-

fined by the state of neighboring cells at time t under the transition rules. In total, his

universal constructor has been approximated to consist of about 50, 000 to 200, 000 cells,

and the number of transition rule is enormous [Sip98]. The purpose of von Neumann’s

automaton was to create a self-replicating entity, such that—given enough material—it

can create an exact copy if itself. His construction separated the description (genotype)

1.2. HISTORY AND BACKGROUND 6

from the actual machine (phenotype), and replication respected this distinction and re-

produced both. His architecture was first formulated in 1948, about five years before

DNA was discovered (1953) by Watson and Crick. Von Neumann also realized that

such a device possibly could construct machines with higher “complexity”, if given a

description (genotype) of such a machine. Although he did not suggest from where such

increasing complexity (in the description) would come from, or how complexity could

be measured [McM00a, MTvK01, McM00b].

1.2.2 Assembler automata

Instead of using cellular automata to implement self-replicators, the so-called assembler

automata were invented. Assembler automata, i.e. assembler programs, formulate a

more powerful way to represent programs than cellular automata. But experiences from

genetic programming and Artificial Life showed that ordinary assembler programs were

too brittle to function under mutation. In steps, a new and more robust assembler took

shape to combat the problems introduced with program perturbation.

• The error tolerance was increased; e.g. by treating an error state as void, i.e. the

error state is ignored and execution is resumed, possibly with some side-effects.

• The instruction set was minimized in size, to make the instruction space smaller,

and the executable behavior easier to evolve.

• The instruction parameters where made less sensitive to mutation, by introducing

special symbolic arguments that indirectly manipulate data in registers or memory.

• Jumps where made less sensitive to variable program length, e.g. by using patterns

to reference program locations (similar patterns in DNA for start/stop are encoded

by so-called codons).

The idea of using assembler-like programs for evolution, came initially from a computer

game called Core War [Dew84] in which hand-written computer programs compete in

a limited cyclic memory space. Among the successful strategies in Core War, are self-

replication together with different techniques for terminating the execution of competing

programs. Today, this family of robust assembler automata are used to study different

evolutionary aspects; such as adaptation, symbiosis and self-organization in finite pop-

ulations of self-replicators. Note that the assembler automata are typically constructed

1.2. HISTORY AND BACKGROUND 7

with an instruction set that facilitates self-copying. Below follows some milestones in

the development of the assembler automata.

Coreworld

After the popularity of Core War (1990), the game was transformed into an evolution-

ary platform called Coreworld by Rasmussen et al. [RKFH90]. They kept the cyclic

memory space (the 1-dimensional, or 1-D, “core”), and used a similar instruction set of

10 assembler-like instructions; each instruction with 2 parameters, and with a number

of different addressing modes. Rasmussen et al. were interested in open-ended, and

emergent evolution, including self-organization. By letting the MOV instruction mutate

the copied instructions with a certain probability, they introduced perturbation into

the system. Since the instruction set was designed for replication, and the population

space (topology) was limited, Darwinian evolution inevitably took place. To control

the number of possible instructions to execute for each organism-update, they used an

energy parameter, set to either “desert” (few instruction executions) or “jungle” (many

instruction executions). They also parameterized the locality of references, e.g. for

jumps, to force local or global interactions between entities. In their experiments, they

used a random core with or without seeding hand-written self-replicators.

For a number of different parameter settings, they started to investigate the emergent

evolutionary dynamics of the core. Rasmussen et al. discovered complex emergent phe-

nomena with the “jungle” setting. Typically, the core showed patterns of self-replicating

structures that looped, but the fixed-points of the system were rather disappointing.

Over time, either most executions died-out, or simple loops dominated. Instead of

open-ended evolution with increasing complexity, Coreworld showed decreasing diver-

sity and decreasing average genotype size (see Section 1.3). Essentially, what lacked was

a better suited instruction set and a potential environment that the core could adapt

to. But their approach was novel, and made way for an ongoing trend in Artificial Life.

Tierra

Thomas S. Ray, a current professor in zoology and computer science at University

of Oklahoma, was inspired by Coreworld and decided to develop a similar, but im-

proved evolutionary system called Tierra, for the emergence of self-organization [Ray91,

1.3. EVOLUTIONARY COMPLEXITY 8

Ray95, Ray03]. Tierra also has a 1-D memory topology like Coreworld, where computer

programs live, compete and die. A novel feature of the Tierra assembler, which the

organisms consisted of, is pattern-based addressing (see page 26). In Tierra, the organ-

isms replicate by self-copying, but are also able to address other genomes, for reading

and/or execution. Ray perturbed the system with mutation, and observed how ecologies

of “parasites”, “hyper-parasites”, “social hyper-parasites”, “cheaters” and “symbionts”

were discovered in his artificial medium. His purpose of finding the emergence of self-

organization, and ecologies was in-a-way achieved. In some aspects Tierra did create

emergent self-organization, but the implicit fitness landscape still did not offer much of

evolutionary complexity to discover.

Avida

Avida [Ada98] was built on inspiration from the success with Tierra, but with some new

design choices to further add evolutionary dynamics. Instead of letting the topology

be in 1-dimension, Avida uses a 2-D grid on which 1 organism exists in each position

(x, y). By using a grid, Avida exhibits locality, such that information is propagated by

self-replication, geometrically in the topology. To avoid parasites, as in Tierra, Avida

do not allow organisms to access each others genomes (by default). Instead, to add

evolutionary dynamics to the system, an explicit merit function can be defined. The

explicit merit function can be used to build complicated fitness landscapes, for evolution

under mutation. In particular, the merit function was defined for addition and bitwise

logical computation, to create “complex evolution” [AB94]. Avida has been used to

show the dynamics of the quasi-species model and to give support for neo-Darwinian

evolution [WWO+01, LOPA03].

1.3 Evolutionary complexity

In the core of this work, is the model with which we simulate artificial life. This evo-

lutionary model is based on the genotype/phenotype distinction, first implemented by

artificial means by von Neumann, but here expressed in a version of the assembler au-

tomata presented above. We assume that the genotype can be generalized to a sequence

of symbols, and the phenotype can be categorized to a set of “computations”. The

1.3. EVOLUTIONARY COMPLEXITY 9

evolutionary model is formally defined in Chapter 2, and implemented in Chapter 3;

particular variations of the model follow in subsequent chapters.

Using this model, we will be concerned with evolutionary factors that create com-

plexity in the framework of a finite population of self-replicating organisms, with a clear

genotype/phenotype distinction. The thesis is that mutual relations between organisms

and the environment (biotic and abiotic) are a major source of evolutionary complexity.

The model will be enriched with evolutionary factors such as symbiosis and the Red-

Queen hypothesis (for open-endedness) to study this mutual relation between organisms

and the environment, for complexity in evolution.

Throughout this work, evolutionary complexity in a certain population will be defined

as the product of diversity and average genotype size. Since we distinguish between

genotype and phenotype, diversity can be measured with respect to both.

genotype diversity is simply the number of equivalence classes the syntactic equiva-

lence relation .= (see Section 2.3) defines in the population. This diversity measure

ranges between 1 (all organisms in the population are syntactically identical) and

s (all organisms in the population of size s are syntactically different).

phenotype diversity is the number of computational groups, e.g. if we consider the

logical computation of the 9 logical functions on page 30, we may have this diversity

measure ranging between 0 and 9.

Note that there is no a priori implication between genotype and phenotype; e.g. there

may be many genotypes which all express the same phenotype, due to quasi-neutral

instructions in our chemistry. Average genotype size is simply the average number

of genotype symbols, for each organism in the population. Other more formal com-

plexity measures are Shannon’s information theory and Kolmogorov’s complexity mea-

sure [Sta03], but they are not discussed here.

It is interesting to note that diversity, and average genotype size are in conflict, un-

less the environment forces them to coincide. Assume, for example, a self-replicating

genotype that replicates with perturbation in a finite but void environment, i.e. addi-

tional behavior, except replication, is not selected for. If we increase the perturbation

rate, (genotype) diversity increases, but the average genotype size decreases. On the

contrary, if the perturbation rate is decreased, (genotype) diversity decreases, but the

1.4. THESIS OUTLINE 10

size of the average genotype increases [WWO+01]; see also Section 4.2.1, and Table 4.2

in particular.

To summarize, the motivation for this thesis is to find factors that create the above

notion of evolutionary complexity in a finite population, despite its natural tendency

to be low. If we successfully identifies evolutionary properties that increase the above

notion of complexity, by introducing a relation between fitness and environment, we

could argue in favor of such a relation as an important factor for evolutionary complexity

in (artificial) evolution.

1.4 Thesis outline

Below follows a chapter-by-chapter overview of this thesis. We first develop an evo-

lutionary platform called SALTA, with inspiration from earlier work with assembler

automata. Then, we conduct experiments with focus on conditions that create evolu-

tionary complexity—as defined above.

• Chapter 2 gives a formal definition of the evolutionary model called chemostat, pre-

sented after an example of non-biological evolution, and an informal discussion of

biological evolution. The important concept of the merit function, and its descrip-

tive fitness landscape are also presented.

• Chapter 3 presents the micro and macro-level of the implementation of SALTA

which is formally defined by the chemostat in Chapter 2. SALTA is developed

for studying evolution of assembler automata, and is used in a number of experi-

ments reported in this work, with the main focus on evolutionary complexity.

• Chapter 4 will start the experiments of evolutionary complexity by looking at how

point-mutation can evolve increasingly difficult logical functions, in a relatively

smooth fitness landscape. In particular, the platform parameters: mutation rate,

population size and offspring dispersal are investigated with their effect on evolu-

tion and evolutionary complexity.

• Chapter 5 introduces genetic recombination as a powerful operator for genetic vari-

ability. Recombination is compared with point-mutation, for the evolution of

1.4. THESIS OUTLINE 11

logical functions, called “complex features”. Genetic recombination is also shown

to create evolutionary complexity in the platform.

• Chapter 6 modifies the default evolutionary model, by adding resource relations

between sub-populations, to capture biotic interdependencies between organisms

(ecologies). The focus is on sufficient conditions for symbiosis, and the emergence

of co-evolution, but also what effect symbiosis has on evolutionary complexity.

• Chapter 7 tries to approach the important relation between abiotic environment and

the population, by introducing an abstract function that metabolizes resources

from “food” to “waste”. This relation will be shown to lead to an ever-changing

fitness landscape which the population continuously has to adapt to, to stay fit

(called the Red-Queen hypothesis), creating indefinite genotype growth (in theory).

Unfortunately, genetic drift limits the evolution, and is subsequently investigated

with respect to the platform parameters.

• Chapter 8 ends by concluding the work with summary, contributions, discussion,

critique and future work.

• Appendix A describes the platform settings, and the format of the initialization and

the output files.

• Appendix B is a glossary over biological definitions, and how they are used in the

context of this thesis.

Chapter 2

Evolution

Today, there is enough evidence to say that evolution is a theory of how our planet

Earth has been shaped through time [May02]. We witness one type of evolution, with

one instance of biological life as its product. All organisms (that we know of) have a clear

genotype/phenotype distinction with genotype encoded in nucleic acids, and phenotype

expressed in natural chemistry. Evolution is a continuous process over time, and even

though its product—life—is complex in constitution and behavior, it has been claimed

that its conditions are remarkably simple; as Daniel Dennett puts it [Pag02]:

[...] evolution will occur whenever and wherever three conditions are met:

replication, variation (mutation), and differential fitness (competition).

Even though we witness only one instance of biological evolution, there is nothing re-

straining us from creating abstract models from it. By doing so, we get a framework for

evolution which can be instantiated to create any form of artificial life. In this thesis,

we narrow the discussion of evolution by adopting the distinction between genotype and

phenotype. Genotype, in this artificial setting, will denote inheritable information in an

organism that is encoded as a sequence of symbols, and expressed as a phenotype.

Overview In this chapter, we will continue the introduction with describing the pro-

cess of evolution. In the first section, evolution will be presented as a theory in biology

and in the second section, as a formal framework in Artificial Life. In the third section,

we illustrate non-biological evolution as an example. A particular abstract evolutionary

platform called chemostat is presented in the fourth section, which will be used as our

12

2.1. BIOLOGICAL EVOLUTION 13

artificial chemistry in the next chapter. Finally, the last section presents the useful no-

tion of fitness landscapes, that will be used throughout this work to illustrate evolution

as a fitness-optimizing process.

2.1 Biological evolution

Today, biological evolution is a theory about replication, genetic variation and natural

selection (induced by competition) [May02].

Replication is the process in biology (used synonymously with reproduction) in which

organisms create offspring to maintain its genetic continuation over generations [May02].

Most high-order organisms such as mammals, reproduce through sexual reproduction

(meiosis), which has been argued to combat many genetic problems, and create high

variability for evolutionary success [Rid00]. For low-order organisms such as prokary-

otes, sexual reproduction is too difficult, and instead they replicate by binary fission

or cloning. Cloning does not result in equally low error rate as sexual reproduction,

but the typically small genotypes can still maintain themselves efficiently through the

generations. Compared to sexual reproduction, cloning does not create equally high

genetic variation, instead prokaryotes share genetic material through lateral gene trans-

fer [MS02, MMP97].

Genetic variation is necessary in a population to adapt itself to changing environ-

ments. Genetic variation is typically achieved by mutation and/or recombination (sexual

reproduction or lateral gene transfer) [May02], but the effective variation in a popula-

tion is essentially a result of two forces: natural selection (see below) and genetic drift

(caused by chance; see Section 2.5.1). A certain amount of genetic variation is necessary

in a population, e.g. to avoid harmful genetic drift which may lead to lowered fitness.

The effect of mutation and recombination in populations can be seen as a continu-

ously changing pool of genetic material, from which organisms may develop phenotypes

to stay adapted. The pressure to stay adapted in a continuously changing environ-

ment, has often been described as the “Red-Queen” hypothesis [vV73]. This analogy

between the Red Queen and continuous adaptation to changing environment, is based

on Lewis Carroll’s story, “Through the Looking Glass”—in which the Queen has to run

2.2. AN EXAMPLE OF EVOLUTION 14

continuously, just to remain where she is.

Natural selection can be viewed as an elimination process, in which those organisms

in a population with less adapted phenotypes are eliminated over generations [May02].

Disappearance of organisms over generations with less adapted phenotypes, is a direct

result of continuously (in each generation) fitting an excessive population to its limited

habitat (topology). This selection process was first stated by Charles Darwin in his “The

Origin of Species” [Dar59], and was based on the observation that the species typically

produce more offspring than can survive. Since the fitter offspring survive to reproduce,

these “stronger” genes are retained and inherited by future generations. While genes of

less desirable traits become eliminated. It is important to note that selection acts on

the phenotype, encoded-for by the genotype, in reaction with the environment. Hence,

evolution acts implicitly on the genotype by limiting its transfer over generations via

the phenotype.

If we look at the genetic diversity in a population, replication is a force that decreases

diversity; in contrast to variation that do the opposite, whereas natural selection may

do both [ES79, May02, Rid00]. If we assume differential fitness, replication decreases

diversity since the most adapted organism, with the highest fecundity, increases in con-

centration over time. In contrast, variation increases diversity by directly modifying

single genotypes, to newer versions in the population, over the generations. Natural

selection may do both. Given a single ecological niche, selection will force all organisms

in the population to adapt to that niche. But, given potentially infinity number of con-

nected niches, variation will branch the population into the different niches to induce

diversity.

2.2 An example of evolution

We can use the evolution of a spoken message to illustrate replication, variation and se-

lection, by an example from [Rid00]. Consider a lethal version of the whispering game,

where a spoken message is transferred between children. Assume that the message is “IF

A TIGER COMES, FREEZE”, and that the children are in a group, in a jungle full of

tigers. Picture that the leader starts spreading this message in a situation of approach-

ing tigers, which becomes repeated between the children (replication). Unavoidably,

2.3. ARTIFICIAL EVOLUTION 15

the message becomes scrambled during communication between the children. Instead of

receiving the original message, versions like: “IF A TIGER COMES, SQUEEZE” or “IF

A TIGER COMES, SNEEZE”, appear in the branching of communication (variation).

Those children who get the scrambled message are likely to be eaten by the hypothetical

tigers in this scenario, and that branch of information is broken (selection). This exam-

ple shows, in addition to evolution, how information is correlated to the environment,

and how low correlation results in elimination. This connection between evolution and

information theory can be understood be viewing evolution as an information-gathering

process, where information about how to best survive in a particular environment is

gradually transfered from that particular environment to the genotype [Ada98].

2.3 Artificial evolution

In this work we will mainly look at the evolution of assembler automata. In the following

definitions of replication, variation and natural selection, derived from a generalization

of above biological ones, we restrict ourselves to the domain of assembler automata A,

i.e. sequences of assembler instructions. We define the syntactic equivalence relation

(.=) over A, such that for two programs p1, p2 ∈ A, p1
.= p2 holds, if and only if p1 and

p2 are equally long sequences of the same assembler instructions; in the same order.

2.3.1 Replication

Replication is the function of one parent p ∈ A, to produce one offspring c ∈ A. Without

any perturbation during replication, c is a clone of p, that is c
.= p. We define replication

as a function from parent to offspring, r : A→ A. Assuming no perturbation we have

r(p) = c, where p
.= c (2.1)

2.3.2 Variation

Variation is the syntactic difference between any two programs p, c ∈ A, induced by mu-

tation or genetic recombination. Mutation is introduced by perturbing replication by

point-mutations: insertion, deletion and substitution (see Figure 2.1). Genetic recombi-

nation may merge or split neighboring genomes [MMP97, KS88, KPP94] (see Section 5).

2.3. ARTIFICIAL EVOLUTION 16

Figure 2.1 Point-mutations: substitution, insertion and deletion.

p
1

p
1

p
2

p
2

p
2

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

	�	�	
	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

�
�

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

��
��
��
��
��
��

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

vvw w
v

SUBSTITUTION INSERTION DELETION

p
1

v

The figure shows 3 types of implemented point-mutation, that perturb the transfer of genotype during

self-replication.

Variation ' between two programs p1, p2 ∈ A through single step point-mutation (sub-

stitution, insertion and deletion), can be defined as follows.

Definition 1 Substitution ('S):

p1 'S p2 ⇔ ‖p1‖ = ‖p2‖ = n ∧

∃i : ∀j 6= i : (pi
1 6= pi

2 ∧ pj
1 = pj

2) (2.2)

Where pi is the i’th instruction in the assembler program p with length ‖p‖ i.e. number

of instructions n.

Definition 2 Insertion ('I):

p1 'I p2 ⇔ ‖p1‖ = ‖p2‖ − 1 = n ∧

∃ij : (hdi(p1)
.= hdi(p2) ∧ tlj(p1)

.= tlj(p2) ∧ i + j = n) (2.3)

Where hdi and tlj are the functions head and tail of length i and j, respectively.

Definition 3 Deletion ('D):

p1 'D p2 ⇔ ‖p1‖ = ‖p2‖+ 1 = n ∧

∃ij : (hdi(p1)
.= hdi(p2) ∧ tlj(p1)

.= tlj(p2) ∧ i + j = n− 1) (2.4)

Variation through genetic recombination (merge and split) can be defined as a relation

between three programs p1, p2, p3 ∈ A as follows.

2.4. CHEMOSTAT 17

Figure 2.2 Genetic recombination: merge and split.

p1

p’2

p1 p2 p1 p2

p3

A

B

C

B B

C

SPLITMERGE

A

A

C

A

Illustrates 2 possibilities of recombination; merge and split.

Definition 4 Merge ('M):

(p1, p2) 'M p3 ⇔ ∃ij : (hdi(p2)
.= hdi(p3) ∧ tlj(p3)

.= p1 ∧ i + j = ‖p3‖) (2.5)

Definition 5 Split ('Sp):

(p1, p2) 'Sp p3 ⇔ ∃i : tli(p2)
.= p3 (2.6)

See also Figure 2.2, where p3 = p′2 for the merge case.

2.3.3 Selection

Natural selection can be defined as the elimination function (S) of fitting an excessive

population of organisms (P) to a finite topology (T) holding n organisms.

Definition 6 Selection (S : AN → AN):

S(P) = P ′, where P ′ ⊆ P ∧ ‖P ′‖ = n ∧ ∀p ∈ P \ P ′ : ∀p′ ∈ P ′ : f(p) ≤ f(p′) (2.7)

Where f : A → N is a well-defined merit function that maps organisms to some merit

in N which gives rise to a measure of fitness (see Section 2.5).

2.4 Chemostat

Evolution in a limited population of organisms can be studied efficiently using a so called

“chemostat” (or reactor vessel) in microbiology [SW95], and recently in Artificial Life

as well [FB94, FWB94, TJ95, YB01]. We may define a chemostat, in general terms,

2.4. CHEMOSTAT 18

as a finite topology holding a limited ensemble of reacting organisms which ultimately

compete for the limited amount of space, and

(i) entities react either in a well defined neighborhood (e.g. n-Moore neighborhood

in 2-D; see below) or without space constraints (mass reaction).

(ii) since replication makes the ensemble grow, a dilution factor (death) constrains the

chemostat by flushing out entities in proportion to the replication rate.

(iii) due to the presence of dilution, entities must find some pathways for their genotype

to be maintained in the system.

n-Moore neighborhood in 2-D is the set of (2n+1)2 surrounding squares at range n, e.g.

at range 1 there are 9 neighboring squares (including the center square). There is also a

n-von Neumann neighborhood, which is the set of 2n(n + 1) + 1 surrounding squares in

a diamond-shape, e.g. at range 1 there are 5 neighboring squares (including the center

square). As topology, a toroidal1 2-D-space is used in our chemostat.

This general chemostat-model can be instantiated with replication (r), variation (')

and selection (S) over the domain of assembler automata (A) as follows. Let T [i, j] be a

2-D array of size s2, where each position (i, j) in T (we impose the Euclidean space R2

on T) holds an organism a ∈ A (denoted aij). We define a fair and random scheduler

α over T as follows. Let r'
R
(p) be the replication function r with variation 'R and

fidelity F ∈ [0, 1] (F = (1−R)l, where l is the genome length of p in number of words,

and R is error rate per replicated instruction/word):

r'
R
(p) =

 p, with probability F

some c such that p 'R c, with probability (1− F)
, (2.8)

where p, c ∈ A. Then the relation ∼ij between the current state of T , and the following

state T ′ after replication of organism aij , can be formulated as

T ij T ′ ⇔ ∀(m,n) ∈Mij(S(aij)) : T ′[m,n] = r'
R
(aij)

∧ ∀x, y ∈ {1, . . . , s} : (x, y) /∈Mij(S(aij))⇒ T [x, y] = T ′[x, y] (2.9)

1A torus can be visualized as a rectangle with end edges put together to form a donut.

2.5. MERIT FUNCTION AND FITNESS LANDSCAPES 19

Figure 2.3 Fitness landscape with peaks and valleys.

Fitness valley

Evolving population

Fitness peaks

Local optimum

Illustration of 2 fitness peaks, and an evolving population that traverses the landscape.

where S(aij) ∈ N is the merit function for the organism aij and Mij(e) is the set of e

positions (m,n) in some order in the 1-Moore neighborhood around the position (i, j)

(excluding the parent position (i, j)). Then the scheduler α is the iterated application

of ij over all positions (i, j) in T:

T α T ′ : ∀i, j ∈ {1, . . . , s} : T ij T ′. (2.10)

Let CHEM (r,', R, S, α, s, T) be such a chemostat.

2.5 Merit function and fitness landscapes

Fitness is the success of an organism, or a particular species, to produce offspring, hence

it is a measure of evolutionary success. Note that fitness will be used as a descriptive

measure, secondary to merit. In concrete terms, we may define a merit function as a

mapping from genotypes to merit, by evaluating the corresponding phenotypes in given

environment. This mapping can be visualized as a descriptive fitness landscape with

peaks and valleys [CAW01, LW04, WP02], representing fitness optimum and minimum

(see Figure 2.3). Evolving populations climb peaks in the fitness landscape, some-

times crossing valleys (saddles), to maximize merit (and fitness)—globally or locally.

The granularity of the climb is the amount of genetic variation in each generation of

the population. In the most fine-grained case, the landscape is traversed by one-step

point-mutations. In the more coarse-grained case, the landscape is traversed by recom-

bination. Beneficial genetic variation moves the population upwards in the landscape,

while deleterious mutations (variation) move the population downwards.

2.5. MERIT FUNCTION AND FITNESS LANDSCAPES 20

This view of evolution as a fitness climb turns it into an optimization problem over

the merit function. Populations try to reach higher peaks, but may get stuck in local

optima by blocking fitness valleys. The larger the population, the more solutions are

simultaneously represented to lower the chance of getting stuck in particular sub-optimal

solutions. Even though a fitness peak has been reached, deleterious mutations may

accumulate to eventually drive the population away to lower fitness (genetic drift, see

below). It may also be the case that the mutation rate is too high to climb a very

sharp fitness peak, or that the mutation rate is too low for bridging fitness valleys in

the landscape.

In biology, fitness landscapes are not smooth, or fixed, but are continuously chang-

ing. Firstly, epistasis cause non-linear interactions between genes, creating a very rugged

landscape such that small one-step mutations may totally displace the phenotype. Sec-

ondly, since fitness is a product of both phenotype and environment, environmental

changes related to the evolving phenotypes modifies the very fitness landscape during

traversal. Hence, there is a cyclic dependency between environment, fitness and evolving

phenotypes, creating dynamic and complex fitness landscapes. Note that the notion of

environment includes both abiotic and biotic entities. Thirdly, the abiotic environment

may drastically change due to external factors, e.g. through changing temperature (ice

age, volcanic activity), changing chemical conditions (gases, catalysts), or topological

changes (continental drift, erosion). In this work we will look at dynamic fitness land-

scapes due to biotic (symbiosis) and abiotic dependencies (Red-Queen hypothesis). We

will also look at both gradual fitness climbs through point-mutation, and more dramatic

climbs through genetic recombination.

2.5.1 Genetic drift

Genetic drift is an opposite force to natural selection that may cause random genetic

changes in a finite population. Although, genetic drift exists in any finite population, it

may become the major driving force in modifying the allele frequency in smaller popu-

lations. In contrast to natural selection, genetic drift is a random force that is based on

differential reproductive success (like natural selection), but where the reproductive suc-

cess in some way is unrelated to phenotype (and genotype). This may be the case, from

one generation to the next if random selection of the reproductive entities is not evenly

2.5. MERIT FUNCTION AND FITNESS LANDSCAPES 21

distributed in the population. The effect becomes especially significant in small popula-

tions when unevenly distributed samples accumulate over many generations. Imagine a

coin that is being tossed 10 times. For this small number of tosses, it is not unlikely to

get 7 heads in a row (chance of 1/27 = 1/128). But if we would toss the coin 1, 000 times

instead, the chance of getting 700 heads in a row is extremely small (1/2700). Hence, a

small number of events has a higher chance of an unevenly distributed outcome than a

large.

2.5.2 Müller’s ratchet

Since genetic drift is random and irrespective of natural selection, evolving populations

may be dislocated in their fitness landscapes. In particular, genetic drift may force

a population of organisms away from an optimal fitness peak. Such harmful genetic

drift may occur when deleterious mutations accumulate at a higher rate than natural

selection can remove them. Since lowered fitness increases the genetic drift, this may lead

to genetic melt-down [Rid00], i.e. population extinction—a hypothesis called Müllers

ratchet [Mul64]. This happens when populations are driven into a negative spiral of

genetic drift, and reduced fitness (inducing each other) [Mul64]. Note that the effect of

Müllers ratchet is high in small and asexual populations under high mutation rate, and

without any form of recombination. Larger and sexually reproducing populations can

accommodate more variety to better combat drift by chance, and cancel-out deleterious

mutations by meiosis. It has also been argued that small population sizes, e.g. as a result

of geographic dislocation, or swift environmental changes (inducing decreased fitness

and population size), is the major source of inter-population variation, and speciation

by genetic drift [Gou02].

Chapter 3

A New Artificial

Chemistry—SALTA

This chapter describes an evolutionary platform called SALTA, that we developed with

inspiration from earlier work with assembler automata, e.g. Tierra and Avida [Ray91,

Ada98], to simulate artificial organisms that consists of a virtual CPU and a mutating

assembler program (genome). A population of these organisms is made to evolve to a

given fitness landscape, via a user-defined merit function, similar to the platform Avida.

In line with von Neumann’s work (see Section 1.2.1), the platform respects the distinction

between genotype and phenotype. SALTA corresponds on the macro-level to the earlier

defined chemostat (CHEM (r,', R, S, α, s, T), see Section 2.4), which has been widely

used in “wetware”, for experiments using microorganisms (e.g. prokaryotes) [YB01].

We will use this artificial chemostat SALTA, and appropriate variations of it, to ef-

fectively conduct a number of experiments with the motivation to study properties that

create complexity in evolution (see Section 1.3). The default model of SALTA, presented

in this chapter, is subsequently extended in Chapter 5, Chapter 6 and Chapter 7 with

both symbiosis, and open-ended evolution to find complexity in the finite population.

In addition to mutation, we have also implemented genetic recombination (see Chap-

ter 5) to compare both types of variation (mutation and recombination), for evolution

in complicated fitness landscapes. The major limitation for this model is the explicitly

defined fitness landscape which implicitly characterizes the environment, although this

approach will be slightly modified in Chapter 7.

SALTA has been implemented such that the platform can easily be extended with

22

3.1. MICRO-LEVEL: VIRTUAL CPU AND PROGRAM 23

different merit functions, topologies and resources to study different evolutionary as-

pects of asexual organisms in the chemostat. The assembler can easily be extended, and

modified to suit different phenotypes. From an implementation perspective, the evo-

lutionary platform can be divided into micro and macro-level architecture (presented

below) to ease further modifications and extensions.

Overview Our artificial chemistry can be sub-divided into micro and macro-level.

The micro-level covers the composition of the organisms and their behavior (complex

computation and self-replication/recombination), and is presented in the first section.

At the macro-level, populations can be observed to compete and gradually adapt to the

environment (fitness landscape), and is explained in the second section.

3.1 Micro-level: Virtual CPU and program

Each organism consists of a virtual CPU (Central Processing Unit) on which execution

of its assembler program (genome) takes place. State changes in the CPU correspond

loosely to state changes in chemical/biological systems. We will use state changes to

represent behavior, i.e. phenotype. The virtual CPU and the instruction set have been

made as simple as possible for clarity, but also powerful enough for self-replication and

arithmetic/logic computation. Along with the CPU and the program is also a set of

flags and variables, necessary for simulation of each organism.

3.1.1 CPU

The virtual CPU consists of three basic components: general purpose registers, pointers

(such as instruction pointer, read pointer and write pointer), and the I/O (input/output)

Buffer.

General purpose registers

There are three general purpose registers (R0, R1 and R2) mainly for mathematical

(arithmetic and logic) computation, but also for conditionals. Each register can hold

a 32-bit word representing either a number, a logic bit-string, or a program word (in-

struction and argument(s)). Before any of the registers can be used as argument for an

instruction, they have to be initialized by executing appropriate instructions.

3.1. MICRO-LEVEL: VIRTUAL CPU AND PROGRAM 24

Pointers

Addressing the genome (e.g. with SET, see page 27), is done through any of the three

pointers; instruction pointer (IP), read pointer (RD) and write pointer (WR). The read

and write pointers do not differ in semantics, but simply have different names out of

convenience. This is not the case for the instruction pointer which slightly differs in

semantics. By default, the instruction pointer cannot be set directly with SET, instead

the instruction pointer is updated in the execution cycle to the next program word, or it

may reference patterns in the genome by the JUMPNEQ instruction. The read and write

pointer have to be initialized before they can be used, but IP is considered initialized at

all times. Note that addressing is pattern-based (see page 26).

I/O Buffer

I/O operations are handled by the so-called I/O Buffer. There is 1 autonomous I/O

Buffer for each organism. It is from this data structure that values are read from, and

computed values are written to, by the INPUT and OUTPUT instructions, respectively (see

page 29). For each new genome execution (see page 25), the I/O Buffer is typically

initialized to a few new values (default 2), and newly computed values are added to

it during execution. Thus, reading from the I/O Buffer may return new values (ini-

tialization values), or previously computed values (if any). The INPUT instruction uses

a hidden second argument, for indexing the I/O Buffer. This second argument gives

deterministic input values for identical genome executions, but possibly different input

values for different genome executions. We may view the I/O Buffer as a set that is

initialized to a few values for each new genome execution, and where new values are

added (if unique) or read (non-destructively) with an index.

3.1.2 Program

Each organism executes its own local assembler program, represented as a cyclic string of

program words, coding both instruction(s) and argument(s). It is cyclic in the sense that

executing, or reading from the last instruction is continued with the first instruction,

in a loop-back fashion. Writing past the last instruction does not cause a wrap to the

beginning, instead copied program words are added to the end of the program to make it

longer. Note that setting the pointer to the end of the program, and then writing to it,

3.1. MICRO-LEVEL: VIRTUAL CPU AND PROGRAM 25

Figure 3.1 Program word.
0 12 22

OP−code Argument 2Argument 1

12 bits 10 bits 10 bits

11 3121

The illustration shows the bit-layout of the program word, that codes both for the instruction and the

arguments.

does not add instructions. Instead a new empty program is automatically allocated as

offspring (see Section 3.2.1), and the write pointer is set to its beginning. Program words

are represented as strings of 32 bits. The first 12 bits code for instructions (via an OP-

code), and the second and third sequence of 10 bits each code for argument(s); giving a

maximum of 4, 096 possible instructions, and an argument range of 1, 024 possible values

(see Figure 3.1). An instruction may have 1 or 2 arguments, typed by the instruction

as either (i) register, (ii) pointer or (iii) pattern. Note that there is epistasis between

program words in the program (genome). In particular, there are data and control

dependencies between the assembler statements.

Execution

Programs are executed by continuous interpretation of each program word in sequence

(except for jumps), until the last instruction loops back to the first, and completing one

genome execution. For each new genome execution, the virtual CPU is cleared such that

registers, read and write pointers are uninitialized, and the I/O Buffer is re-initialized.

If any of an instruction’s arguments is found uninitialized during execution it is deemed

as failed, i.e. that instruction is simply skipped (void execution). For a few instructions,

such as SET and COPY (see page 27), the whole genome execution may be terminated

prematurely in case of an addressing error. Interpretation of each program word is done

in a fetch-decode-execute cycle as follows.

(i) Fetch: Mask out the instruction word (12 bits) and argument words (2 ∗ 10 bits)

from current program word referenced by IP.

(ii) Decode: Given the instruction and argument words, look up corresponding in-

struction and arguments in a dynamic mapping table. The arguments are typed

with respect to the particular instruction.

3.1. MICRO-LEVEL: VIRTUAL CPU AND PROGRAM 26

Figure 3.2 Illustrates how pattern-based addressing can be used.
...

PATTERN LBL_A
...

IP → JUMPNEQ END LBL_A
...

(i)

...
IP’ → PATTERN LBL_A

...
JUMPNEQ END LBL_A

...

(ii)

Illustrates how pattern-based addressing can be used. The first pattern instruction (PATTERN LBL A)
identifies a program location (case (i)), that can be jumped to (case (ii)) by the conditional jump
instruction JUMPNEQ END LBL A, that jumps backwards to the pattern LBL A if not register R0 holds the
pattern instruction PATTERN END

(iii) Execute: The decoded instruction is interpreted with its arguments. Note that

argument values are retrieved from registers, except for patterns which are found

in the program. Execution can become void, or terminated prematurely when

given invalid arguments. If an instruction is successfully executed, any result is

written to the register, or to the program as a program word. IP is always updated

to the next program word.

Pattern-based addressing

Instead of referencing program locations with an absolute or relative address, pattern-

based addressing, similar to the infamous goto ’label’, is used [Ray91]. A particular

advantage with pattern-based addressing in evolving programs is its robustness under

mutation—changes in the program size by insertions or deletions does not affect the

addresses. An obvious disadvantage with pattern-based addressing is that for each

reference to a particular pattern, a complete search of the program for that pattern may

be necessary. For an illustration of patterns and jumps, see Example 3.2

Instruction set

An organism’s behavior (phenotype) is represented in the execution of its program (geno-

type). Similar instruction sets have previously been designed for the study of artificial

life [RKFH90, Ray91, Ada98], typically having support for self-replication and some

type of computation. The following instruction set is made as small as possible, but it

is also designed to be as robust as possible under genetic variation.

• Pattern-based addressing is used to improve program referencing under muta-

3.1. MICRO-LEVEL: VIRTUAL CPU AND PROGRAM 27

tion [Ray91].

• There are no special instructions for replication such as offspring allocation and

parent-offspring division. Instead, allocation and division is automatically handled

by the system.

• Each instruction has argument(s) encoded in its representing program word, and

are dynamically typed by the instruction type (see below).

• Quasi-neutral instructions (e.g. no-ops) are represented by pattern instructions,

and are important for evolutionary plasticity [YB01]. Particular patterns are given

as user-defined arguments (see below).

Based on usage, the instruction set can be divided into two: necessary instructions

for replication, and auxiliary instructions for computation. In contrast to other similar

chemistries [RKFH90, Ray91, Ada98], this chemistry does not have special instructions

for replication, such as allocation of new space or offspring-parent division. Instead, this

is automatically handled by the system to keep the instruction set to a minimum. Below

follows a description of each implemented instruction, for (i) self-replication, (ii) logic

computation and (iii) arithmetic computation.

(i) Self-replication The following 4 instructions are necessary for self-replication.

• [PATTERN patt]

Encodes a virtual program address patt which can be used e.g. as argument for

jumps or pointer references (SET). Pattern-based addressing is very robust under

variation, such as mutation, since changes in the program size does not affect the

address of a particular pattern. A negative aspect of patterns is that, since the

programs are interpreted, a reference may result in a complete program search.

Pattern instructions are also called “quasi-neutral” [YB01] since their execution

does not change the state of the virtual CPU, and are similar to no-ops in other

assembler automata [Ada98]. The pattern instruction never fails to execute. See

also Example 3.2.

• [SET ptr patt]

Sets the pointer ptr to where the first pattern instruction with argument patt can

3.1. MICRO-LEVEL: VIRTUAL CPU AND PROGRAM 28

Figure 3.3 Illustrates how the instruction SET can be used.

RD →
...

PATTERN LBL_A
...

IP → SET RD LBL_A
...

(i)

...
RD’ → PATTERN LBL_A

...
SET RD LBL_A

IP’ →
...

(ii)

Illustrates how the instruction SET can be used. The pattern instruction PATTERN LBL A identifies a
program location (case (i)). At execution of the instruction SET, the given pointer (here the read pointer
RD) is set to the first occurrence of the given pattern (here LBL A) found searching forward (if any),
wrapping from end to beginning (case (ii)).

be found; searching forward from current instruction pointer (IP), and wrapping

around from end to beginning. Typical usage is to set the read pointer to the

beginning of the program, and the write pointer to the end of the program, to

initiate self-replication with subsequent copy instructions. For genetic recombina-

tion, it is possible for the SET instruction to reference a neighboring program in

the pattern search. The instruction fails to execute if the pattern could not be

found in the referenced program. However, the instruction does not immediately

fail when searching without success in a neighboring program; instead the search

is shifted to the executing program. See also Example 3.3.

• [COPY ptrR ptrW]

Copies one program word from pointer ptrR to pointer ptrW , and updates both

pointers. To avoid over-writing patterns that are referenced by the SET instruction,

the word is first read from ptrR and thereafter is ptrR updated to point at the next

word, while ptrW is first updated to the next word and then written to (e.g. see

self-replication in Figure 3.5). As a side effect the copied program word is stored

in register R0. If the write pointer initially references the end of the program, a

new empty program is allocated (offspring born), and the write pointer is set to

its beginning. The instruction fails if either the read pointer ptrR or the write

pointer ptrW has not been initialized (by SET). If the arguments are identical

(same pointer), or either of them is IP, the instruction is simply skipped. See also

Example 3.4.

• [JUMPNEQ pattC pattJ]

Jumps by setting the instruction pointer (IP) to the first occurrence of pattern

3.1. MICRO-LEVEL: VIRTUAL CPU AND PROGRAM 29

Figure 3.4 Illustrates how the instruction COPY can be used.
...

RD → PATTERN LBL_A
...

WR → PATTERN LBL_B
...

IP → COPY RD WR
...

(i)

...
PATTERN LBL_A

RD’ →
...

PATTERN LBL_B

WR’ → PATTERN LBL_A
...

COPY RD WR

IP’ →
...

(ii)

Illustrates how the instruction COPY can be used. The pattern instructions PATTERN LBL A and PATTERN

LBL B identify two program locations, which are referenced by the read pointer (RD) and the write pointer
(WR), respectively (case (i)). At execution of the instruction COPY, the read pointer (RD) is read from and
then updated, while the write pointer (WR) is first updated and then written to (case (ii)).

pattJ found backwards from current IP, only if the pattern instruction with argu-

ment pattC is not in register R0. The search loops back to the end of the genome

if the program start is reached. The instruction fails if register R0 has not been

initialized, or the pattern pattJ could not be found. See also Example 3.2.

(ii) Logic For logical computation, the following instructions have been implemented.

• [INPUT reg]

Reads a value from the I/O Buffer, and stores it in register reg. For deterministic

execution, the same value is read from the I/O Buffer for the same INPUT instruc-

tion and identical genome execution history. The particular value from the I/O

Buffer is chosen by a hidden and fixed second argument, taken modulo the size

of the I/O Buffer. Note that the hidden argument and the size of the I/O Buffer

may vary under mutation. The instruction can never fail assuming the I/O Buffer

is non-empty at all times (which it is since values are non-destructively read, and

the buffer is initialized to some value(s)).

• [OUTPUT reg]

Adds the value in register reg to the I/O Buffer (if unique). The instruction fails

if register reg has not been initialized. If a unique value is added, the I/O Buffer

increases in size by 1, but is cleared and re-initialized after the whole genome has

executed.

3.1. MICRO-LEVEL: VIRTUAL CPU AND PROGRAM 30

• [SWAP regA regB]

Swaps the values in registers regA and regB. The instruction fails if either register

has not been initialized.

• [NAND regA regB]

Computes bitwise logical NAND of registers regA and regB, and stores the result

in register regA. The instruction fails if either register has not been initialized.

Note that regA NAND regB ≡ ¬(regA∧regB), where ∧ and ¬ is bitwise conjunction

and negation, respectively.

(iii) Arithmetic To extend computation with arithmetic, the following instructions

have been implemented (INC is e.g. used in Chapter 7).

• [INC reg]

Increases the value in register reg by 1 modulo program word size. The instruction

fails if register reg has not been initialized.

• [DEC reg]

Decreases the value in register reg by 1 modulo program word size. The instruction

fails if register reg has not been initialized.

• [ADD regA regB]

Adds together the values in register regA and regB (modulo program word size),

and stores the result in register regA. The instruction fails if either register has

not been initialized.

• [SUB regA regB]

Subtracts the value in register regB from the value in register regA (modulo pro-

gram word size), and stores the result in register regA (i.e. reg′A ← (regA−regB)).

The instruction fails if either register has not been initialized.

Self-replication and Computation

Basically, organisms have two types of behavior: (i) self-replication is necessary to main-

tain the genotype in a competitive evolutionary system, (ii) computation can be subdi-

vided into arithmetic and bitwise logic computation, and is necessary for earning merit

to increase in fitness (see Section 3.2.3).

3.1. MICRO-LEVEL: VIRTUAL CPU AND PROGRAM 31

Table 3.1 Default self-replicating organism.
Program Word Semantics

PATTERN START Pattern instruction for start of
genome.

... Computational instructions.

PATTERN END Pattern instruction for start of
replicating gene.

SET RD START Set read pointer to pattern START

(search looping back to start).

SET WR END Set write pointer to pattern END.

PATTERN LOOP Pattern instruction for the loop.

COPY RD WR Copy word from read pointer to
write pointer and put copied word
in register R0, update pointers.

JUMPNEQ LEND LOOP Jump backwards to pattern LOOP

if not R0 contains instruction
PATTERN with argument LEND.

COPY RD WR Copy last word.

PATTERN LEND Pattern instruction for ending
loop.

PATTERN END Pattern instruction for end of
genome.

The table shows the default self-replicating organism together with semantics for each instruction.

Table 3.2 Experimentally smallest self-replicating organism.
PATTERN START

SET RD START

SET WR LEND

PATTERN LOOP

COPY RD WR

JUMPNEQ LEND LOOP

PATTERN LEND

The table shows the experimentally smallest self-replicating organisms, that the system evolved by
seeding it with the default self-replicator.

(i) Self-replication The default self-replicator in Table 3.1 self-replicates through a

self-copying loop (see Section 3.2.1). It is not the shortest self-replicator, e.g. the second

instruction PATTERN END is not necessary for successful self-replication, but used in the

case of genetic recombination. Table 3.2 shows the experimentally smallest self-replicator

(see Section 4.1.2).

(ii) Computation Computation of a function f(i0, ..., in) over input values i0, ..., in

(read with INPUT), is achieved when there is an output t (written by OUTPUT) in a

genome execution such that t = f(i0, ..., in). Consider, for example, the following 9

(bitwise) logical functions which can all be computed with the universal logical function

NAND [LOPA03]: NOT, NAND, AND, OR N, OR, AND N, NOR, XOR and EQU. Assume that the

3.2. MACRO-LEVEL: DYNAMICS 32

organism has taken 2 inputs and made 1 output as follows:

i0 = 〈00000000 10101010 00001111 00000000〉

i1 = 〈00000000 00000000 10101010 11110000〉

t = 〈00000000 10101010 10101111 11110000〉

Then the organism has computed the bitwise OR-function. Any of the 9 functions above

can be computed as a sequence of INPUT, OUTPUT and the universal logical function NAND

(as above); e.g. the OR-function can be computed with three NAND’s:

x OR y ≡ (x NAND x) NAND (y NAND y)

= ¬(¬(x ∧ x) ∧ ¬(y ∧ y))

= (x ∧ x) ∨ (y ∧ y)

= x ∨ y

An example of a program that can compute the logical function OR is given in Ta-

ble 3.3. Note that there is a small possibility that the program will not compute the

OR-function if the two INPUT functions read the same value from the I/O Buffer (the

same value is read if the hidden second argument modulo the I/O Buffer size is the same;

see the INPUT instruction on page 29). The computation of a binary function with iden-

tical arguments is avoided in the merit function. Without this constraint, there would

be no computational difference between the echo-function of a value x, and x OR x.

3.2 Macro-level: Dynamics

Any evolutionary system is based on a notion of fitness, i.e. differential reproductive

success over generations. By viewing the set of organisms at the macro-level, we can

implement fitness by differential execution speed. Based on an organism’s merit m (see

Section 3.2.3), the organism is allowed to execute m genome executions when selected

by the scheduler, and typically resulting in as many offspring (i.e. fecundity of m).

For this, the macro-level of the evolutionary system handles scheduling, self-replication,

mutation, merit and death.

3.2. MACRO-LEVEL: DYNAMICS 33

Table 3.3 Self-replicating OR-computing program.
PATTERN START

INPUT R0

INPUT R1

NAND R0 R0

NAND R1 R1

NAND R0 R1

OUTPUT R0

PATTERN END

SET RD START

SET WR END

PATTERN LOOP

COPY RD WR

JUMPNEQ LEND LOOP

COPY RD WR

PATTERN LEND

PATTERN END

The table shows a self-replicating and OR-computing organism.

Observe that SALTA implements CHEM (r,', R, S, α, s, T), by self-replication (r),

point-mutation or recombination ('), mutation/recombination rate (R), merit function

(S), parallel scheduler (α), topology size (s) and topology (T).

3.2.1 Self-replication and death (r)

Organisms replicate through asexual self-replication (like prokaryotes) [MMP97], which

is implemented by a self-copying loop (see also page 30). The instruction set does not

contain any specific instructions for replication, instead the system handles allocation of

new offspring, their placement and detachment from parent (division). New offspring is

placed in the parents 1-Moore neighborhood (causing death) without regard to copying

success. Example 3.5 shows one whole replication cycle.

Death is necessary to keep the system within the limit of a finite topology. In the

chemostat, death works through dilution at the rate of replication. Death is implemented

in the system by new offspring overwriting a neighbor in the following order of priority.

If any unscheduled neighbor is found, it is replaced with the offspring randomly. If this is

not the case, the oldest neighbor is replaced (each born organism has a unique age), or if

all organisms have the same age, i.e. they are all seeding organisms, a random neighbor

is replaced. By overwriting unscheduled organisms, the system cleans up itself from

unsuccessful replications. Overwriting the oldest organism has been shown to propagate

new information faster in the population [Ada98].

3.2. MACRO-LEVEL: DYNAMICS 34

Figure 3.5 One cycle of self-replication.
IP → PATTERN START

PATTERN END

SET RD START

SET WR END

PATTERN LOOP

COPY RD WR

JUMPNEQ LEND LOOP

COPY RD WR

PATTERN LEND

PATTERN END

(i)

RD → PATTERN START

PATTERN END

SET RD START

SET WR END

IP → PATTERN LOOP

COPY RD WR

JUMPNEQ LEND LOOP

COPY RD WR

PATTERN LEND

WR → PATTERN END

(ii)

PATTERN START

RD → PATTERN END

SET RD START

SET WR END

PATTERN LOOP

IP → COPY RD WR

JUMPNEQ LEND LOOP

COPY RD WR

PATTERN LEND

PATTERN END

WR → PATTERN START

(iii)
PATTERN START

PATTERN END

SET RD START

SET WR END

PATTERN LOOP

COPY RD WR

IP → JUMPNEQ LEND LOOP

COPY RD WR

RD → PATTERN LEND

PATTERN END

PATTERN START

PATTERN END

SET RD START

SET WR END

PATTERN LOOP

COPY RD WR

JUMPNEQ LEND LOOP

COPY RD WR

WR → PATTERN LEND

(iv)

PATTERN START

PATTERN END

SET RD START

SET WR END

PATTERN LOOP

COPY RD WR

JUMPNEQ LEND LOOP

COPY RD WR

PATTERN LEND

IP,RD → PATTERN END

PATTERN START

PATTERN END

SET RD START

SET WR END

PATTERN LOOP

COPY RD WR

JUMPNEQ LEND LOOP

COPY RD WR

PATTERN LEND

WR → PATTERN END

(v)

The example shows self-replication of the default self-replicator in 5 steps. The extended horizontal line

illustrates the automatic separation between parent (upper) and offspring (lower).

3.2.2 Mutation (')

Genetic variation by mutation is captured by perturbing the copying instruction (COPY),

that copies program words from parent to offspring, with point-mutations such as sub-

stitution, deletion and insertion (see also recombination in Chapter 5).

Substitution: modify the copied program word by some random bit flips (default 32),

randomly distributed over the whole word to affect both instruction and argu-

ments.

Deletion: do not copy the word.

Insertion: copy the current word and add an extra random program word before.

Typically, the rate of substitution (µs) is about 1.5 the rate of deletion (µd) and insertion

(µi), i.e. µs = 1.5 ∗ µd = 1.5 ∗ µi. Since µd = µi, program length increases or decreases

with the same rate, without regard to other selective factors. When overwriting instruc-

3.2. MACRO-LEVEL: DYNAMICS 35

tions during recombination, substitution is the only effective point-mutation. Mutation

rates are given as a parameter R to the system.

3.2.3 Merit (S)

To create competition as basis for natural selection, differential reproductive success

is implemented in the system via a merit function. Organisms can earn merit to in-

crease their relative execution speed by computing pre-defined functions. Typically,

more computationally difficult functions give higher merit, but this relation is user-

defined. A merit m is given to an organism at the end of the genome execution, based

on the highest computed function (with respect to merit) as follows. For any output t in

the execution, all previous input values i0, ..., in are tested against all given functions fj

for a match t = fj(i0, ..., in). If such a match is found, a temporary variable is updated

with fj ’s associated merit mj , if mj is higher than the current value of the temporary

variable. An organism can only get merit for a particular function a constant number of

times, to increase the pressure for novelty [Ada98]. By the end of the genome execution,

the organism is given the value of the temporary variable, i.e. merit for the highest

computed function. Since each genome execution may result in new merit (or none),

they are accumulated in a local merit queue. Each time an organism is scheduled, a

new merit is drawn from the organism’s local merit queue to decide the execution speed

of that organism. High merit gives high execution speed, and generally high fecundity

(high number of offspring), see below.

3.2.4 Scheduling (α)

The set of organisms that makes up the population is scheduled by a scheduler (α).

When a parent creates an offspring, that offspring is directly placed in its vicinity, but is

only dispatched to the scheduler after the parent has executed one complete genome ex-

ecution. By default, the scheduler executes each dispatched organism non-preemptively,

randomly but fairly, as many genome executions as the next drawn merit (m) in the merit

queue allows. Thus, the scheduler imposes differential execution speed fairly among the

organisms based on computed merit (m), resulting in differential reproductive success

(fecundity) and fitness. If a dispatched organism has an empty merit queue, it is only

allowed to execute 1 genome execution. This basic execution speed is necessary to keep

3.2. MACRO-LEVEL: DYNAMICS 36

evolution going, by mutating the produced offspring to search for new evolutionary paths

to higher merit.

Chapter 4

Mutational Evolution

There has been a large amount of work in studying how point-mutations can be used

to evolve so-called “digital organisms” [AB94, BP03, HJF97, RKFH90, Ray91, Sip98,

Tay02, LW04, YB01, Wil03]. Some approaches use explicit merit functions, giving rise

to static fitness landscapes [AB94], while others use emerging fitness landscapes through

ecologies [RKFH90, Ray91] or other forms of interaction [Tay02], but in most of them

is random mutation the force of variation. We will, in this chapter, look at mutational

evolution in a fixed fitness landscape.

Overview This chapter will start by looking at how simple point-mutations can evolve

a population to an explicitly defined merit function, without any interaction with the

environment (other than death; see Section 3.2.1). However, complexity will not be of

great concern in this chapter since the focus is more on the basic dynamics of simple

mutational evolution, it will be shown that

(i) populations always lower the average genotype size without environmental fitness

pressure (Section 4.1.2),

(ii) since the merit function creates a fixed fitness landscape with finite high peaks,

evolution will always produce populations of limited average genotype size and

lowest possible diversity (as a function of mutation rate)(Section 4.2.3), and

(iii) genotype diversity is higher in a 2-D topology than in a 0-D topology (Sec-

tion 4.2.3).

37

4.1. INFORMATION THEORY AND QUASI-SPECIES 38

First, a section about Shannon’s information theory and Eigen’s hypothesis about quasi-

species are presented. Basic understanding of information theory and the quasi-species

hypothesis will be useful in the discussion of reported experiments. The strive for a

small genotype is also illustrated in an experiment over a flat fitness landscape. Second,

we define a fitness landscape, by a particular fixed merit function, over a set of logical

functions. Using this fixed merit function, parameters such as mutation rate, population

size and topology are evaluated with respect to their effect on evolution.

4.1 Information theory and quasi-species

Evolution can be seen as a continuous transfer of information from parent to off-

spring, and refined over generations to better adapt each population to its environment

(niche). Information is encoded into the genotype of each organism (assuming geno-

type/phenotype distinction), and is made hereditary by genetic transfer (asexually or

sexually) to the offspring. The genotype holds information in the sense that it is the

evolved “blueprint”, for how an organism can best survive and reproduce in its particular

niche. Formally, Shannon defined information as the amount of correlation between two

systems. In evolution, the two systems are genotype (via the phenotype) and environ-

ment, and they are correlated to each other in terms of entropy [Sha48, Ada98, Ada04].

4.1.1 Eigen’s quasi-species

Quasi-species is a Darwinian model, for evolution of self-replicating entities (molecules or

simple organisms in our case), put forward by Manfred Eigen and Peter Schuster [Eig71,

ES79]. It is applicable to our abstract chemostat CHEM (r,', R, S, α, s, T), defined

earlier (see Section 2.4), hence we may use it to reason about the dynamics.

The term quasi-species was defined by Eigen as the most abundant genotype with

optimal superiority parameter (σopt) defined as

σopt =
S(aopt)

r̄
, (4.1)

where S(aopt) is the merit for the optimally fit genotype/organism (aopt), and r̄ is the

removal rate of each genotype (rate of death), i.e. σopt is the effective propagation rate of

the most fit genotype. His idea was that learned information (about the environment)

4.1. INFORMATION THEORY AND QUASI-SPECIES 39

is stored by the majority of the population, i.e. those entities that replicate most

successfully (σopt). In addition, these optimal genotypes (aopt) must replicate with a

rate above zero. Hence the following constraint must be satisfied

FS(aopt)− r̄ > 0 ⇔ FS(aopt) > r̄

⇔ FS(aopt)
r̄

>
r̄

r̄

⇔ Fσopt > 1. (4.2)

This equation can be reformulated in terms of the error rate R and optimal genotype

length lopt. First we rewrite F as follows (F = (1−R)l, see Section 2.4)

F = (1−R)lopt

= e ln(1−R)lopt

= e lopt ln(1−R)

≈ e−lopt ln(1−(1−R))

= e−lopt ln R. (4.3)

This new formulation together with Equation 4.2 gives

Fσopt > 1 ⇔ e−lopt ln Rσopt > 1

⇔ e−lopt ln R > σ−1
opt

⇔ ln e−lopt ln R > lnσ−1
opt

⇔ −lopt lnR > lnσ−1
opt

⇔ lopt lnR < lnσopt

⇔ lopt < lnσopt
1

lnR

⇔ lopt < lnσopt
1
R

. (4.4)

From Equation 4.4, it is easy to see that the error rate R puts an upper limit to the

genotype length lopt. This is called Eigen’s error threshold, and is reached whenever

Rl = ln(σopt), above which the information cannot be conserved by the system.

Based on this, the error threshold has been suggested to act as an evolutionary gradi-

4.2. ADAPTIVE LANDSCAPE—AN EXAMPLE 40

ent [BP03, Ada95, CAW01, WWO+01]. For evolution to continue beyond this threshold,

error-correction has to be invented. Many different hypotheses about biological error-

correction have been put forward, e.g. the very powerful innovation of diploidity and

sex [Rid00]. Asexual organisms do not have such fancy error-correction mechanisms,

and therefore have smaller genotype.

4.1.2 Strive for the smallest

In the absence of any interesting environment (merit function) to adapt to, asexual

populations will gradually minimize their genome. This has been verified in “wet-

ware” [MPS67] as well as in software [AB94]. There are two reasons for this: (i) smaller

genotypes are faster to copy, and (ii) smaller genotypes can be copied with lower error

rate (recall that replication fidelity decreases with the length l; F = (1−R)l).

In this experiment we used a constant merit function giving rise to a flat fitness

landscape, to evolve the experimentally smallest self-replicator. SALTA was seeded

with the default self-replicator in Table 3.1, and after around 1∗109 genome executions,

the chemostat consisted of more than 90% of the self-replicator in Table 3.2. The initial

self-replicator was 10 instructions long with extra instructions for recombination, but

the final experimentally smallest self-replicator had only 7 instructions. Evolutionary

complexity is therefore at a minimum; both diversity and average genotype size decreases

to an existential minimum. Note that this drive for smallness is strictly based on reason

(ii) above, since the replication speed in SALTA is insensitive to genome size.

4.2 Adaptive landscape—an example

We may define a particular fitness landscape based on point-mutations (see Section 2.3.2)

and computational phenotypes defined over a set of bitwise logical functions (see page 30).

The resulting landscape, defined by default merit (mdef) in Table 4.1, has 6 levels of

increasingly higher peaks, and interconnected by infinitely many paths. Since increas-

ingly more complex logical functions (based on number of needed NAND operators) can

be computed by adding new NAND instructions (by point-mutation), there is always

a non-deleterious mutational path from one peak to another. The highest peaks are

the EQU-peaks, from which there are no ascending climb. Note that there is epistasis

4.2. ADAPTIVE LANDSCAPE—AN EXAMPLE 41

Table 4.1 Default merit and merit with gap.
Function Merit

mdef mgap

NOT 2 2
NAND 3 3
AND 4 1
OR N 4 1
OR 5 1
AND N 5 1
NOR 6 1
XOR 6 1
EQU 8 8

The table shows both default merit (mdef) that increases for more complex logical functions (with
respect to the number of NANDs needed for their computation), and merit with gap (mgap) that creates
a U-shaped fitness landscape.

between instructions which creates some ruggedness. Also note that the existence of

quasi-neutral instructions in the default instruction set, gives indefinitely many peaks

of equal height.

In the following subsections we performed 3 different experiments to identify the

following fundamental parameters in our chemistry: mutation rate, population size and

topology. In all experiments we used the default merit in Table 4.1.

4.2.1 Evolution, as a function of mutation rate

There is a significant amount of work regarding the relationship between mutation

rate and evolution [AB94, Ada95, DF98, BB98, BP03, Eig71, ES79, CAW01, YB01,

WWO+01]. It is illustrative to view mutation and selection as two opposite forces in

evolution; the former creates variation in the population to find new evolutionary paths,

the latter lowers variation to slowly push the population in an evolutionary direction.

To test how the mutation rate affected adaptation in our chemistry, we evolved 10

populations in a 402 topology seeded with default self-replicator (Table 3.1) with extra

quasi-neutral patterns, for different mutation rates (R in CHEM), over 6 ∗ 106 genome

executions.

It was found that there was an optimal mutation rate of 0.00125 for substitution

(rate of deletion and insertion is 1/2.5 the rate of substitution), for which the popula-

tions adapted very fast to the experimentally highest average fitness of about 85%; see

Figure 4.1. For lower mutation rates the adaptation was slower, but for higher rates

the mutation rate induced an error threshold above which organisms cannot replicate

4.2. ADAPTIVE LANDSCAPE—AN EXAMPLE 42

Figure 4.1 Evolution in terms of average population merit as a function of mutation
rate.

0.0000781250

0.0003125000

0.00125

0.005

0.01

0.02

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Evolutionary progress

A
v
e
r
a
g
e

m
e
r
i
t

The figure shows the average population merit during evolution, for a number of different mutation

rates.

Figure 4.2 Average merit and genome length for different mutation rates.

Merit

Length

0

1

2

3

4

5

6

7

8

0 0.005 0.01 0.015 0.02 0.025

Mutation rate

A
v
e
r
a
g
e

m
e
r
i
t

9

14

19

24

29

34

39

44

49

54

A
v
e
r
a
g
e

g
e
n
o
m
e

l
e
n
g
t
h

The figure shows average merit and average genome length for different mutation rates.

with enough precision, for maintaining their phenotypes. Table 4.2 and Figure 4.2 show

the different mutation rates together with merit and genome length, for the average

organism after the total number of genome executions. The inverse relation between

genome length and mutation rate R respects Eigen’s error threshold (Equation 4.4), by

creating an effective upper limit on genotype length. Note also in Table 4.2 that average

genotype size and average genotype diversity are in opposite relation (in conflict) to

each other; average genotype size increases but average genotype diversity decreases, for

higher mutation rates.

4.2. ADAPTIVE LANDSCAPE—AN EXAMPLE 43

Table 4.2 Mutation rate, average merit per organism, average genome length, average
genotype diversity, and evolutionary complexity.

Mutation rate Merit Length Diversity Evol.Compl.
Subs Ins/Del (Length ∗ Diversity)

0.000078125 0.00003125 5.8783125 52 40 2,080
0.0003125 0.000125 6.1749375 44 102 4,488
0.00125 0.0005 6.7139375 29 203 5,887
0.005 0.002 5.6174375 23 475 10,925
0.01 0.004 3.5178125 23 789 18,147
0.02 0.008 1.9138125 19 1037 19,703

The table shows the mutation rates together with measured average merit, average genome length, aver-
age genotype diversity and evolutionary complexity, per organism, for evolution with different mutational
pressure.

4.2.2 Evolution, as a function of population size

An evolving population may be seen as a genetic pool of adaptive approximations. If

the pool is not sufficiently large, there may be divergence in the adaptive process called

genetic drift (see Section 2.5.1). It has been shown that larger populations create a larger

“learning window”, for evolution under different mutation rates [AB94]. Researchers

have also proposed that large products of population size and mutation rates creates

“clonal inference” for asexual populations, lowering the chance of fixation of beneficial

mutations [GL98].

To test how the population size (s in CHEM) affected adaptation in our chemistry,

we evolved 10 populations in different sizes of the 2-D topology, seeded with default

self-replicator (Table 3.1) with extra quasi-neutral patterns, for 6 ∗ 106 genome execu-

tions. Two mutation rates of 0.00125 and 0.000625 for substitution (rate of deletion and

insertion is 1/2.5 the rate of substitution) were tested, both with similar results.

Figure 4.3 shows the average merit, for the different population sizes s2 = 102, 202, ..., 1002,

and over the total number of genome executions. First, note that the total of 6 ∗ 106

genome executions are distributed over the population, resulting in much lower ratio

of genome executions per organism, for larger populations than for smaller. We may

view the genome executions as energy that we invest in different population sizes, for

evolutionary success.

A number of observations can be made:

• Higher population size gives slower learning rate compared to lower population

size. This is not surprising since larger populations distribute less energy per

organism along the x-axis.

4.2. ADAPTIVE LANDSCAPE—AN EXAMPLE 44

Figure 4.3 Average merit as a function of population size.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

Genome executions

A
v
e
r
a
g
e

m
e
r
i
t

10^2 20^2 30^2 40^2

50^2 60^2 70^2 80^2

90^2 100^2

The figure shows average population merit during evolution, for a number of different population sizes.

• Very low population size has a very rugged learning curve compared to higher

population sizes. This may be explained by the relatively narrow search performed

by small populations (larger populations hold more approximations to widen the

search).

• There is an optimal population size (702), for the given mutation rates. This is

a bit surprising, but can be explained by the narrow search, and possibly also

by genetic drift, for the small populations, and clonal inference, for the large

populations. Also, for large populations, the distributed energy to each organism

is less than for small populations; when the population size goes to infinity, the

distributed energy goes towards zero.

It was also noticed that the above observations hold for other mutation rates, but less

obvious for lower rates. Naturally, evolutionary complexity is higher in larger popu-

lations since they can accommodate a larger number of different genotypes. In terms

of genotype size, this is not necessarily the case since small populations can drift, and

dramatically increase the average genome size with quasi-neutral instructions.

4.2.3 Evolution, as a function of topology

It has been argued that the topology is the main factor behind evolutionary diversity

(punctuated equilibrium [Gou02]). Apart from that, topology specifies the locality of

competition and co-operation (see e.g. symbiosis in Section 6). In particular, we may

4.2. ADAPTIVE LANDSCAPE—AN EXAMPLE 45

Figure 4.4 Average abundance of evolved logical functions in 0-D and 2-D topologies.

0-D

OR
AND_N

NOR

EQU

0

200

400

600

800

1000

1200

1400

Genome executions

P
h
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

2-D

OR
AND_N

NOR

EQU

0

200

400

600

800

1000

1200

1400

Genome executions

P
h
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

The figure shows the average abundance of each logical function in 0-D topology (upper) and 2-D

topology (lower) of size 402.

study evolution without locality, i.e. 0-D (mass-reaction), and compare that with evo-

lution in a 2-D topology with locality. In SALTA, a 0-D topology (mass-reaction) was

achieved by randomly dispersing new offspring in T , instead of as in 2-D, in the 1-Moore

neighborhood.

We tested adaptation and genotype diversity, for the same fitness landscape of logical

computation as above, and for both 2-D and 0-D topologies. Except for the dispersal

settings (0-D or 2-D), the experiment was conducted as in Section 4.2.2, but with a fixed

population size of 402 organisms. Figure 4.4 shows adaptation in 0-D and 2-D. In the 0-D

topology, evolution often got stuck in a local optimum (the NOR function), but evolved

this optimum quite fast and for a large percentage of the populations. In contrast,

the 2-D topology did not get stuck in local optimum as frequently. Instead, the global

optimum (the EQU function) evolved slowly but in a higher number of populations; 7

populations in 2-D, compared to 3 populations in 0-D. It is also interesting to note that

the genotype diversity was notably higher in 2-D than in 0-D. Most likely since a 2-D

4.2. ADAPTIVE LANDSCAPE—AN EXAMPLE 46

Figure 4.5 Genotype diversity plotted against evolutionary progress for 2-D and 0-D
topologies.

2-D

0-D

100

150

200

250

300

350

400

Genome executions

G
e
n
o
t
y
p
e

d
i
v
e
r
s
i
t
y

The figure shows average genotype diversity plotted against evolutionary progress for 2-D and 0-D

topologies.

topology creates higher locality in the competition for space than 0-D. Although, the

genotype diversity in either setting decreased continuously from initially around 375, for

both 0-D and 2-D, to around 190 for 0-D, and 250 for 2-D, see Figure 4.5.

We may observe that the locality in the 2-D topology gives better evolutionary

success than for mass-reaction in 0-D. In the 2-D topology, we have higher diversity

of potential genotypes, which broadens the search process. This is compared to mass-

reaction, which exhibits high homogeneity and leads to fast evolution, but more often

to local and not global optimum. It is also worth noting that during evolution the

genotype length constantly decreases; from initially 50 instructions to 36 instructions

(see also Figure 5.6). The decrease is due to the finite amount of information in the

merit function, and the initial amount of useless quasi-neutral instructions that are shed

by natural selection. In terms of evolutionary complexity, 2-D topology gives higher

diversity than 0-D and therefore higher complexity, even though the merit function can

only support limited genotype growth.

Chapter 5

Genetic Recombination

Having studied evolution with mutation as the single factor for variation in the previous

chapter, we now add genetic recombination to the platform to compare them in-between

for evolving “complex features” (i.e. logical functions). Genetic recombination is the

biological process where parallel lineages of genetic material are merged into one geno-

type [KPP94, KS88, MMP97]. For sexual organisms, genetic recombination is part of

meiosis for variation in the gametes (germ cells). For asexual organisms, such as the

prokaryotes, genetic variation is preceded by conjugation, transduction or transforma-

tion. There is also evidence that so-called transposons that multiplies at the gene-level,

are a major factor for genetic recombination, for both sexual and asexual organisms. In

this chapter, we will look at recombination through lateral gene transfer by conjugation,

i.e. parallel lineages of organisms that transfer genetic material in-between to combine

their genotypes. Prokaryotes, e.g. bacteria, are known to conjugate and transfer genetic

elements from donor to recipient, and to establish a relatively transparent pool of genes.

Overview This chapter presents genetic variation through recombination and com-

pares its dynamics with mutation for the evolution of “complex features” (i.e. logical

functions as in previous chapter). It will be shown that recombination is less sensitive

to the fitness landscape, more efficient, and can even drive evolution without mutation

(given sufficiently initial genetic material). In terms of evolutionary complexity it will

also be shown that recombination increases both the genotype diversity and the average

genotype size. In the first section, a short discussion about composability is held. The

second section presents the modified version of SALTA that includes genetic recombina-

47

5.1. COMPOSABLE EVOLUTION 48

tion. In the third and ending section, we reproduce the results of evolution of “complex

features”, published in Nature by Lenski et al. [LOPA03], and compare these results

with recombination. Note the distinction between the evolution of “complex features”

in [LOPA03], and evolutionary complexity denoting the product of diversity and average

genotype size in a finite population (defined in Section 1.3).

5.1 Composable evolution

From a theoretical perspective of viewing evolution as optimization over a set of vari-

ables, there are 3 classes of variable dependencies that may be identified; arbitrary in-

terdependencies, modular interdependencies and weak interdependencies [WP02, Chap-

ter 1].

• If we assume arbitrary interdependencies between the variables (alleles/genes),

the resulting optimization landscape (fitness landscape) is very rugged. Such de-

pendencies are the result of strong and arbitrary functional dependencies between

the variables (high level of epistasis). Solving such optimization problems require

typically an exhaustive search with exponential complexity as a result.

• At the other extreme is the weak, or non-existing interdependencies that create

a smooth landscape with weakly dependent variables, which can be optimized

independently. For such problems, a linear search is typically enough.

• Finally, in the middle of these two extreme cases we may put what Watson calls

modular interdependencies. In this class of variable dependencies, there are subsets

of variables with strong intra-dependencies, but with only weak inter-dependencies

(between subsets). This means that subsets (modules) can be optimized indepen-

dently, and subsequently put together and optimized as a whole.

In computer science we call the last class of optimization problems for “Divide &

Conquer”-problems, typically with complexity exponential to n/2, where n is the num-

ber of variables, instead of exponential to n as in the case of arbitrary interdependencies.

In biology, this view of composable evolution has be put forward by Margulis [Mar81],

in her Serial Endosymbiosis Theory (SET), to explain the origin of the eukaryote cell by

mergers of parallel lineages of organisms. In Artificial Life, Holland proposed this evo-

5.2. EXTENDING SALTA WITH RECOMBINATION 49

lutionary hypothesis, which he named the Building Block Hypothesis [Hol75], as early as

1975. Holland also introduced composable evolution by genetic crossover (meiosis/sex)

in the field of Genetic Algorithms (GA). In this chapter we will recombine genomes

(merge/split), for composable evolution of logical functions.

5.2 Extending SALTA with recombination

Recombination opens up the possibility of copying parts of an organism’s program to

another organism to allow for so-called lateral gene transfer. Instead of copying program

words from parent to offspring in the self-copying loop, the SET instruction may reference

another organism, and allow for instructions to be read from, or written to it. The

neighboring such organism is chosen randomly from the 1-Moore neighborhood (by

default), but the success of recombination is dependent on the existence of matching

patterns in the target program.

In our chemistry, it is made possible, for the self-replicator in Table 3.1, to transfer

instructions to another program by setting the pointer in either, but not both of the

SET instructions to a neighboring program. By doing so, it is possible for the search

of the START or END pattern to reference into another program to allow for transfer of

instructions between existing organisms. If the search fails in the neighboring program,

the search is relocated to the local program instead. Figure 5.1 illustrates the 5 possible

cases of replication and recombination in SALTA.

5.2.1 Recombination for computation

Genetic recombination can effectively chain up sequences of instructions from different

organisms to compute increasingly complex functions. The I/O Buffer makes it possible

for outputs computed earlier to become inputs to another instruction later in the pro-

gram. Higher complex functions can be formed by merging instruction sequences from

different programs, assuming that the complex function can be computed by “Divide

& Conquer” (see above). Complex logical functions, for example, can be computed by

combining simpler logical functions, e.g. (equivalence) x ⇔ y ≡ (x ∧ y) ∨ (¬x ∧ ¬y).

Note that split (case c1 in Figure 5.1) works in the opposite direction by shedding parts

of a program. See Figure 5.2 for an illustration of a recombined program, computing

5.3. EXPERIMENT: RECOMBINATION VERSUS MUTATION 50

Figure 5.1 Self-replication and genetic recombination (self-replicating loops are
striped).

�����
�����
�����
�����

�����
�����
�����
�����
...

A0

A1

IP

WR

RD A0

A1

�����
�����
�����
�����

�����
�����
�����
�����
...

IP

WR

A0

A1

B1

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

...

...

IP

WR,	�	�	
	�	�	
	�	�	

�
�

�
�

�
�

...

�����
�����
�����

�����
�����
�����

...

A1

A1

A0

A0

A0

��
��
��
��

�����
�����
�����
�����
...

RD

IP

A1

B0

B1

WR1 WR2

WR1

WR2

B0

B1

A0

A1

B0

B1

A0

A1

WR2IP,RD,

RD1 RD2

B0

B1

RD2

RD1

RD1

A0

A1

B0

B1

RD2

WR1

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����

(c1)

WR

...

...

...

...

...

...

...

...

IP

WR,

(c2)(a) (b1) (b2)

IP
RD

IP,RD,

Self-replication and genetic recombination (self-replicating loops are striped). Cases: (a) self-replication,
(b1) genetic merge (write pointer WR1 points to neighbor, but not to its last END pattern), (b2) self-
replication (write pointer WR2 points to last END pattern of neighbor), (c1) split (read pointer RD1 points
to neighbor, but not to its first START pattern), (c2) replication (read pointer RD2 points to first START

pattern of neighbor).

the bitwise equivalence function EQU in steps.

5.2.2 Negative effects of recombination

Even though recombination can be used in our chemistry, for effectively evolve logical

functions, it is strictly not a favorable feature. Recombination may merge genomes to

lengthen the target genome very fast, increasing the chance of fatal mutations, or split

genomes to shed the target genome length, and possibly lower its functionality (case

b1 and c1 in Figure 5.1, respectively). Furthermore, recombination lowers the reacting

organism’s fitness by spending valuable genome executions to merge or split genomes,

instead of producing new offspring.

5.3 Experiment: recombination versus mutation

In order to show the evolutionary effect of genetic recombination versus ordinary point-

mutation, and how complexity in terms of diversity and average genotype size are af-

fected, we have conducted a series of experiments with inspiration taken from the work

by Lenski et al. [LOPA03] as a case study.

5.3. EXPERIMENT: RECOMBINATION VERSUS MUTATION 51

Figure 5.2 Equivalence function possibly evolved through genetic recombination.

A AND B

(A AND B) OR

((NOT A) AND (NOT B))

A

NOT B

IOBuffer = {A,B}0

(NOT A) AND (NOT B)

NOT A

B

INPUT

OUTPUT

"NOT"

INPUT

"NOT"

OUTPUT

INPUT

INPUT

"AND"

OUTPUT

INPUT

INPUT

"OR"

OUTPUT

...

...

...

...

...

INPUT

"AND"

OUTPUT

...

INPUT

1

IOBuffer = IOBuffer U {NOT A}2

IOBuffer = IOBuffer U {NOT B}3

4

IOBuffer = IOBuffer U5

IOBuffer = IOBuffer U {A AND B}0

1

2

3

4

IOBuffer = IOBuffer U

{(A AND B) OR ((NOT A) AND (NOT B))}

{(NOT A) AND (NOT B)}

Equivalence function possibly evolved through genetic recombination. The illustration shows a scenario

where possibly simpler logical functions have independently evolved and then merged together to com-

pute the EQU function in steps, via the I/O Buffer. The accumulating I/O Buffer is shown on the right

side of the genome during execution. On the left side, the input and output values from the I/O Buffer

are illustrated as they are used during computation. Patterns are not shown.

Recently, Lenski et al. used the 9 different logical functions (on page 30) to show

support for gradual evolution of “complex features” by random mutation [LOPA03].

They used a platform named Avida [Ada98], and evolved 50 populations to see how

many of these which evolved the most complex logical function—equivalence (EQU).

Instead of having a linearly increasing merit function (as in Table 4.1), they used an ex-

ponentially increasing merit function; based on the number of NAND operations needed

for computing them. Lenski et al. found that 23 out of 50 populations evolved the EQU

function after around 10.8 ∗ 109 executed instructions. They also showed that removing

single, or pairwise logical functions from the merit table did not affect the evolution

significantly.

5.3.1 Complex evolution with mutation

We reproduced gradual evolution by letting point-mutations evolve populations of non-

computing self-replicators (Table 3.1) to a the pre-defined linearly increasing merit func-

tion, defined by the given logical functions (default merit in Table 4.1). A quasi-neutral

5.3. EXPERIMENT: RECOMBINATION VERSUS MUTATION 52

sequence of instructions acted as genetic raw material—as in [LOPA03]. Similar param-

eters as in the original work were used; evolution continued for 6∗106 genome executions,

point-mutation rate per copied word was 0.00125 for substitution, and 0.0005 for inser-

tion and deletion, respectively. After evolution, 17 out of 40 populations had evolved

the most complex logical function EQU. Each such population had almost 90% of the

maximum merit on average; see Figure 5.3.

There are strong similarities between our setting and [LOPA03]. We evolved the

same logical functions (computed by NANDs) in the domain of assembler automata,

with comparable execution duration (3 ∗ 106 instructions on average per organism in

[LOPA03] compared to 562, 500 here, note that our instruction set is about 3 times

smaller), and similar macro-dynamics (self-copying with random mutation in a finite

population of about the same size). We also have the following indications that this

experiment reproduces the results in [LOPA03].

• The ratio 17/40 of evolved populations computing EQU corresponds well to the

success rate of 23/50 in [LOPA03].

• The evolved EQU-computing organisms were similar to the ones in [LOPA03]. Our

EQU-computing populations had an average genome length of 35 instructions, and

looked similar to the organism in Table 3.1, but with extra instructions, e.g. to

compute EQU; compared to the median of 28 instructions (excluding instructions

needed for self-replication) reported in [LOPA03], for those organisms finally com-

puting EQU. Minimum hand-coded EQU-organism is 18 instructions long in our

setting, compared to 34 in [LOPA03].

5.3.2 Complex evolution with recombination

Point-mutation is not the only way for genetic variation, as explained above, genetic

recombination can also be a factor for variation in evolution. In the following 3 subsec-

tions, we will look at (i) how recombination can drive evolution even without mutation

(given enough genetic material), (ii) how recombination may speed up evolution with

mutation, and (iii) how recombination may be crucial for bridging evolutionary gaps.

Hence, ' in CHEM is extended with recombination besides point-mutations.

5.3. EXPERIMENT: RECOMBINATION VERSUS MUTATION 53

Figure 5.3 Merit for a single run and average merit over all successful populations
finally evolving EQU.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Genome executions

M
e
r
i
t

Average
Single_run

The figure shows merit for a single run and average merit over all successful populations finally evolving

EQU.

(i) Recombination or mutation

First, we investigated the effectiveness of genetic recombination versus mutation with

initial populations of organisms that compute the simplest logical functions NOT and

NAND. The populations evolved for 6 ∗ 106 genome executions in a 402 topology, and

seeded with equal amount of NOT and NAND-computing organisms (see Table 5.1).

The rate of point-mutation per copied word was 0.00125 for substitution, and 0.0005 for

insertion and deletion, respectively. For recombination, there was a probability of 0.01

per replication, for either merging or splitting the target genome. It was found that 38 of

the 40 populations evolved the EQU-function with recombination, but only 3 populations

did so with mutation only. In comparison with the experiment in Section 5.3.1, the

low success rate of mutation (3/40 compared to 17/40) is due to the lack of quasi-

neutral instructions in the NOT and NAND-organisms, functioning as evolutionary raw

material.

A comparison of the evolutionary dynamics of genetic recombination and mutation

shows that recombination is much more efficient than mutation. Figure 5.4 shows the

results from the results from the above experiment with NOT and NAND-computing or-

ganisms. Note that the quasi-neutral instructions in Section 5.3.1 give a much smoother

and faster learning curve than without in the case of mutation only. By recombining pre-

existing genetic material (here NOT and NAND), EQU-computing organisms evolved

almost immediately, and reaches a high concentration much faster than by mutation

5.3. EXPERIMENT: RECOMBINATION VERSUS MUTATION 54

Table 5.1 NOT and NAND computing self-replicating organisms.
NOT-organism NAND-organism

PATTERN START

INPUT R0

NAND R0 R0

OUTPUT R0

PATTERN END

SET RD START

SET WR END

PATTERN LOOP

COPY RD WR

JUMPNEQ LEND LOOP

COPY RD WR

PATTERN LEND

PATTERN END

PATTERN START

INPUT R0

INPUT R1

NAND R0 R1

OUTPUT R0

PATTERN END

SET RD START

SET WR END

PATTERN LOOP

COPY RD WR

JUMPNEQ LEND LOOP

COPY RD WR

PATTERN LEND

PATTERN END

The table shows NOT and NAND computing self-replicating organisms.

only. Mutation evolved relatively few EQU-computing populations with comparatively

low concentration after a considerable amount of time.

(ii) Recombination and point-mutation

In order to find out how genetic recombination affected the evolution of mutating pop-

ulations of non-computing self-replicators, we varied the recombination rate (λ) over a

given range, for each population, and for a fixed period of 1 ∗ 106 genome executions

in a 402 topology. Without recombination (λ = 0), only 5 populations evolved the

EQU-function. With genetic recombination, all populations evolved the highest logical

function EQU for some λ, and as many as 25 of the 40 populations evolved EQU for

λ = 0.1 (see Merit def in Figure 5.5)

(iii) Recombination for bridging merit gaps

Finally, we repeated the above experiment with a non-monotonic merit function giving

rise to a U-shaped fitness landscape (see merit mgap in Table 4.1). In particular, we

only gave increasing merit to NOT, NAND and EQU-computing organisms, and found

that none of the populations evolved EQU with mutation only. Fortunately, genetic re-

combination made the organisms bridge the evolutionary gap, and all of the populations

evolved EQU for some λ. It was also found that 31 of the 40 populations evolved EQU

for λ = 0.0729 (see Merit gap in Figure 5.5).

5.3. EXPERIMENT: RECOMBINATION VERSUS MUTATION 55

Figure 5.4 Merit for a single run and average merit over all successful populations
finally evolving EQU with mutation or recombination.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Genome executions

M
e
r
i
t

Recomb_average

Recomb_single_run

Mutation_average

Mutation_single_run

The figure shows the evolved merit for a single run and the average merit over all successful populations

finally evolving EQU, with recombination or mutation only of NOT and NAND-computing organisms.

5.3.3 Genotype length and diversity

In Figure 5.6 we compared genotype diversity and average genotype length, for the

different dynamics of mutation only, and mutation with optimal recombination rate of

λ = 0.0729. Initially genotype diversity and genotype length were much higher, for the

runs with recombination. This is expected since recombination adds extra noise to the

system which increases the diversity. Recombination also increases genotype length by

merging genomes. During evolution, genotype diversity and genotype length strictly

decrease, with or without recombination, to around half the initial values. The decrease

in genotype diversity and genotype length is also expected, and can be explained by

the finite amount of environmental information (merit) and by the drive for increased

fidelity by shedding length. Although, note that throughout the run, recombination

creates higher average genotype length and genotype diversity, i.e. higher evolutionary

complexity.

5.3. EXPERIMENT: RECOMBINATION VERSUS MUTATION 56

Figure 5.5 Number of populations that evolved EQU for different rates of genetic
recombination.

0

5

10

15

20

25

30

35

0.
00
00

0.
00
01

0.
00
08

0.
00
27

0.
00
64

0.
01
25

0.
02
16

0.
03
43

0.
05
12

0.
07
29

0.
10
00

0.
13
31

0.
17
28

0.
21
97

0.
27
44

Genetic recombination rate (λλλλ)

P
o
p
u
l
a
t
i
o
n
s

w
i
t
h

E
Q
U

Merit_def Merit_gap

Number of populations that evolved EQU for different rates of genetic recombination (λ), for default

merit (Merit def) and merit with gaps (Merit gap) in Table 4.1.

Figure 5.6 Average genotype length and genotype diversity with mutation only and
with mutation and recombination.

GenLenMut

GenLenRecomb

DivMut

DivRecomb

0

20

40

60

80

100

120

140

160

180

Genome executions

G
e
n
o
t
y
p
e

l
e
n
g
t
h

0

100

200

300

400

500

600

700

800

900

G
e
n
o
t
y
p
e

d
i
v
e
r
s
i
t
y

The figure shows average genotype length and genotype diversity with mutation only (GenLenMut and

DivMut), and with mutation and with optimal recombination rate λ = 0.0729 (GenLenRecomb and

DivRecomb).

Chapter 6

Symbiosis and co-evolution

So far, our platform has not incorporated any relations to the environment in which the

population evolves. After studying how mutation and recombination may drive the evo-

lution in a fixed fitness landscape, in Chapter 4 and 5, we now add a form of symbiosis

to form interdependencies between the evolving populations. In this way, both popula-

tions act as (biotic) environment to each other. Symbiosis was first defined by Anton

de Bary (1879), as the living together of organisms from different species [DGSR96].

It is a biological phenomenon which challenges a naive version of Darwin’s “survival of

the fittest” since a wide range of species may survive in a habitat by forming symbiotic

relations. In particular, ecologies are established in biology by symbiosis, where different

species create inhabitable niches for each other. Instead of single fitness climbs, sym-

biosis creates very complex fitness landscapes with interdependencies between evolving

symbionts [WP01, WP99].

There are many levels of symbiosis both in space and in behavior. Endosymbiosis,

is a very close symbiotic association between typically a small and a large organism,

where the small is inside the large organism. Such intimate associations have been ar-

gued to cause lateral gene transfer and genetic recombination, e.g. in the case of the

mitochondria [Mar81, MS02]. The opposite association is called exosymbiosis, where

two organisms are anatomically separate, although in some cases physically attached.

Endosymbiotic relationships are generally established to form crucial resource depen-

dencies, while exosymbiosis are established both to form behavioral or resource depen-

dencies.

57

6.1. COST-BENEFIT RELATIONS AND SYMBIOSIS 58

Overview In this chapter, a simple model of exosymbiosis is presented together with

a discussion of its sufficient conditions to possibly increase the evolutionary complexity

in our framework. It will be shown that two conditions have to be met for symbiosis

in our model. The model extends the simple notion of the default chemostat by adding

a third dimension to the space. Symbiotic relations are identified and evaluated using

accumulative phenotype, evolutionary activity and a topology measure we call vicinity

difference. It will be shown that symbiosis can be a source of complexity by increasing

the phenotype diversity in experiment (d); Section 6.4.4. The first section clarifies the

distinction between cost-benefit relations and symbiosis. The second section gives a

summary of earlier work with symbiosis in Artificial Life. The third section presents

an extended version of SALTA which models symbiosis. The fourth section gives an

experimental discussion of sufficient conditions for symbiosis. In the last section, we show

an example of mutational pressure in the symbiotic model visualized with evolutionary

activity [BSP98, BB99].

6.1 Cost-benefit relations and symbiosis

Symbiosis is often discussed in association with cost-benefit relations such as para-

sitism, mutualism and commensalism [IK90, BF95, Mar81, MS02], but such relations

are strictly not necessary, although they may be sufficient [DGSR96].

Parasitism is a symbiotic relationship between a host and a parasite such that the

parasite gains fitness but the host loses fitness.

Mutualism is a symbiotic relationship between two organisms such that both benefit

in fitness.

Commensalism is a symbiotic relationship between a host and another organism such

that the host is not affected (fitness unchanged) but the other organism gains

fitness.

Symbiosis has often been used synonymously to mutualism since such a cost-benefit

relation induces high fitness for both symbionts. We will not be concerned about these

cost-benefit relations; instead the focus will be on the two physical conditions dimen-

sional difference and resource relations.

6.2. SYMBIOSIS AND CO-EVOLUTION IN ARTIFICIAL LIFE 59

6.2 Symbiosis and co-evolution in Artificial Life

Co-evolution implied as a consequence of symbiosis has been presented and discussed

by a number of researchers [BF95, IK90, KJ92, PTJ02, WP01]. Kauffman and Johnsen

extended the NK-fitness model, i.e. a fitness model for genomes of N genes/alleles with

K intra-genome dependencies, to include inter-species epistasis (NKC-fitness) [KJ92].

They showed that the level of intra-genome epistasis has to be higher than the level

of inter-species epistasis for efficient co-evolution, and that there may be evolutionary

pressure for such a relation. The NKC-fitness model was also used by Bull and Fogerty,

to simulate endosymbiosis and symbiogenesis in a multi-agent system, with recombina-

tion by genetic cross-over [BF95]. Both Watson et al. and Ikegami et al. have looked

at parasitic emergence under differential mutation rates [IK90, WRP00]. Symbiosis and

co-evolution has also been investigated as a mechanism of pre-adaptation, followed by

relatively slow mutational adaptation by Watson [WP99, WP01, WP02]. Different kinds

of cost-benefit relations, such as mutualism and ecological relations (predator/prey),

have also been studied [PTJ02, HJF97]. From the abstract view of fitness landscapes,

co-evolution couples two fitness landscapes into an inter-dependent landscape, e.g. in-

creasing fitness for one species may decrease the fitness for another (parasitism). This

means that even though the implemented merit function is fixed, the coupled fitness

landscapes are constantly changing as a function of each other.

6.3 Extending SALTA with symbiosis

We will extend SALTA to look at sufficient conditions for symbiosis and co-evolution.

Basically, the claim is that dimensional difference and resource relations are both suf-

ficient in our evolutionary model to exhibit co-evolution and symbiosis. Figure 6.1

illustrates the modified model for symbiosis with two chemostat layers. It will be shown

that a single layer is not sufficient in our model for exhibiting symbiosis and co-evolution

due to the so-called Competitive Exclusion Principle. This principle, believed to have

originated from the mathematical model by Lotka and Volterra in the 1920’s, states that

for co-existence of more than one species to last, the intra-specific competition for each

species must be greater than the inter-specific competition. Another researcher named

May (1981), defined the same principle slightly differently as the conditions under which

6.3. EXTENDING SALTA WITH SYMBIOSIS 60

Figure 6.1 Modified model with 2 layers.

Layer−1

Layer−0

Resource flow

Offspring and output vicinity

Organism

Projected input vicinity

Modified model with 2 layers. The figure illustrates two chemostat layers (shown as grids) that are

superimposed on-top of each other, and interconnected by input and output relations between the layers

(shown as arrows). Each organism (shown as a black dot) disperses resources and offspring in the

vicinity at the same layer (shown as a solid-line square), but takes inputs from the projected vicinity of

the immediately lower layer (shown as dashed-line square) in a circular fashion, where organisms at the

lowest layer takes from the highest.

more than one species make their livings in identical ways being unable to exist in a

stable fashion [May81]. In other words, more than one species cannot share the same

niche. This is indeed the case in our model, since there is only one merit function for

the population(s) to evolve to.

Dimensional difference means that distinct populations are superimposed on-top of

each other but replicate separately. In the chemostat model, this is achieved by

putting one chemostat layer over the other, creating a 3-D space where offspring

dispersal is local to each 2-D layer (see also Figure 6.1). Note that in this model,

waves of new “species” can co-evolve since they propagate in parallel dimensions.

Resource relations are introduced via the I/O Buffer by mapping inputs and outputs

to the topology as follows. Outputs are dispersed in the 1-Moore neighborhood

of the local topology layer, while inputs are taken from the projected 1-Moore

neighborhood of the immediately lower layer (the lowest layer projects to the

highest, creating a cycle). Hence, Ti in CHEM is modified to hold resources as

well as organisms.

6.4. EXPERIMENT: SUFFICIENT CONDITIONS FOR SYMBIOSIS 61

6.3.1 I/O Buffer

Two extra parameters that represent positions in the neighborhood are added to the

organism’s I/O Buffer, each indicating the input or output preference for the INPUT and

OUTPUT instruction, respectively. In particular, the parameters are 2-tuples of numbers

between 1 and 9, indicating unique positions in the 1-Moore neighborhood. 2-tuples are

enough since only 2 different inputs are needed to compute the binary logical functions.

Both parameters are under mutation, but the output parameter mutates less often than

the input parameter. The difference in mutation rate is to increase the possibility of

the input preferences of one population to adapt to the output preferences of another.

By adapting their input/output preferences, the sub-populations can communicate re-

sources effectively, and possibly establish symbiotic relationships.

6.3.2 Resources

Resources are still bit-strings but since logical functions may be computed in steps and

communicated between the layers, extra information is stored to track the stepwise

computation. In each resource we store the initial bit-string(s) and the last computed

value. For example, an organism may input the resources NOT A and NOT B, and sub-

sequently compute the logical function A OR B by computing (NOT A) NAND (NOT B).

In this computation, the intermediate NOT-values are used, but the final OR-value is

with respect to the initial values A and B. Thus, for each new logical computation we

check that it is a computation based on any of the initial bit-string(s). Resources are

depletable and finite in the topology, hence it has to be continuously seeded with new

resources. The seeding rate of new resources, performed for each new scheduling of the

population, is given as a parameter to the experiments.

6.4 Experiment: Sufficient conditions for symbiosis

To validate the claim that dimensional difference and resource relations are both suffi-

cient for symbiosis in our model, the 4 possible settings in Table 6.1 were independently

tested. For each setting (a–d), two evolutionary measures were used to characterize the

adaptive behavior. Note that each evolutionary measure is based on data sampling with

parameterized granularity.

6.4. EXPERIMENT: SUFFICIENT CONDITIONS FOR SYMBIOSIS 62

Table 6.1 The 4 possible settings for dimensional difference and resource relations.
Resource Layers
Relations Single Multiple

No (a) (c)
Yes (b) (d)

The table shows the 4 possible settings for dimensional difference and resource relations.

Figure 6.2 Illustration of accumulative graphs.

A

B

Illustration of an accumulative function. Function A shows the accumulative quantity of function B.

Note that function A is derived from the area covered by function B.

Accumulative phenotype is an accumulative measure of the highest computed logi-

cal functions (based on merit) in the population. To illustrate, Figure 6.2 shows

two functions; function A shows the accumulative quantity of function B. The

motivation behind accumulative quantities instead of absolute, is to increase the

illustrative clarity by plotting the data to strictly higher values in both axis of the

diagram.

Vicinity difference is a relative measure of the difference in positions between two

populations’ k most frequent genotypes (k = 1 below). Again, the syntactic

identity relation (.=) is used. Algorithmically, vicinity difference between two

populations A and B is computed as follows. First, for each population A and B,

construct a matrix M of the same size as the topology T , with 1s in the positions

M(i, j) of the most frequent genotype g (when k = 1):

∀i, j : M(i, j)←

 1 , if T (i, j) .= g

0 , otherwise
. (6.1)

Second, for each position with a 1-digit, add one for each position in the 2-Moore

6.4. EXPERIMENT: SUFFICIENT CONDITIONS FOR SYMBIOSIS 63

neighborhood with a non-zero value, i.e. position of most frequent genotype.

Hence, each position in the computed matrix M will now be a number between 0

and 25:

∀i, j : M(i, j) = 1⇒M(i, j)←
∑

∀x,y∈2−Moore(i,j)

 1 , if M(x, y) > 0

0 , otherwise
, (6.2)

where 2 −Moore(i, j) is the set of positions (x, y) in the 2-Moore neighborhood

around the position (i, j). Let MA and MB be the final matrices for populations

A and B, respectively. Third, we sum up the absolute difference for each position

in the matrices:

VD =
∑
∀i,j
‖MA(i, j)−MB(i, j)‖. (6.3)

This sum is the vicinity difference (VD) between populations A and B. It is

a measure of how correlated the most frequent genotypes are in the “resource

dimension”.

6.4.1 (a) Single layer without resource relations

First, we looked at what dynamics a single layer of chemostat (T0) exhibits without any

resource relations. Instead of linking resources between organisms, via the topology and

the I/O instructions, fresh random resources were given for each executed input instruc-

tion. The topology was a single layer of size 282 (to later be compared with two layers

of size 202; 282 ≈ 2 ∗ 202, see case (c) below), seeded with the default non-computing

self-replicator with a sequence of quasi-neutral pattern instructions. The mutation rate

was 0.000625 and 0.00025, for substitution and insertion/deletion, respectively. For this

and below experiments (b–d) the default merit function in Table 4.1 was used.

Figure 6.3 shows the accumulative phenotype activity and the average genotype

length during evolution without resource relations or layers, based on one random run.

It is easy to see that the phenotypes very soon converge to a semi-optimal solution

(phenotype NOR). The genotype length fluctuates but increases slightly from 20 to

finally 30 instructions. Since evolution is stuck in the phenotype NOR, the accumulation

of extra instructions is probably a random event (genetic drift) due to the relatively low

mutation rate.

6.4. EXPERIMENT: SUFFICIENT CONDITIONS FOR SYMBIOSIS 64

Figure 6.3 Accumulative phenotype abundance and average genotype length, without
resource relations or layers.

NOR

0

50000

100000

150000

200000

0 200 400 600 800 1000

Sample points

P
h
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

0

5

10

15

20

25

30

35

40

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

The figure shows the accumulative phenotype abundance and average genotype length, evolved in the

model without resource relations or layers.

6.4.2 (b) Single layer with resource relations

Second, using the same settings as in the above experiment (a) we looked at how the

dynamics changed by adding resource relations between organisms. Instead of commu-

nicating the resources between the layers as below, resources were taken (input) and

given (output), in the same layer and in the 1-Moore neighborhood. The seeding rate

was 1.0, i.e. the topology was fully seeded each time the population was completely

scheduled, i.e. after each organism had executed once. The preference mutation rate

per replication was 0.02.

Figure 6.4 shows the accumulative phenotype activity and average genotype length

during evolution with resource relations, but without layers. Compared to the above

case without resource relations, resource relations give a richer phenotype variance.

With resource relations, it was found that the genotypes had a growing number of

INPUT and NAND instructions; illustrated in the second panel of Figure 6.4. The

extra instructions accumulate probably due to the (highly) changing input and output

6.4. EXPERIMENT: SUFFICIENT CONDITIONS FOR SYMBIOSIS 65

Figure 6.4 Accumulative phenotype abundance and average genotype length, with
resource relations but without layers.

NOT

NAND
AND

OR_N

OR

AND_N

NOR

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1000

Sample points

G
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

0

5

10

15

20

25

30

35

40

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

The figure shows the accumulative phenotype abundance and average genotype length, evolved in the

model with resource relations but without layers.

preferences that destroy evolved merit-giving INPUT-NAND-OUTPUT sequences such

that new such sequences have to evolve. Note that there is no sign of symbiosis since the

chemostat converges to the secondary most fit phenotype NOR (Competitive Exclusion

Principle). Note also the exclusive relations between the evolving phenotypes, as soon

as a new phenotype increases in abundance the others decrease; see e.g. NOT and NOR

in Figure 6.4.

6.4.3 (c) Multiple layers without resource relations

Third, we added a second chemostat layer (T1) without resource relations as an inter-

mediate step towards symbiosis and co-evolution. Each layer (T0, T1) was a topology

of size 202 with the same mutation rates and number of genome executions as above

experiments (a) and (b).

Figure 6.5 and Figure 6.6 shows the accumulative phenotype activity and average

genotype length (respectively) during evolution without resource relations, but with

6.4. EXPERIMENT: SUFFICIENT CONDITIONS FOR SYMBIOSIS 66

Figure 6.5 Accumulative phenotype abundance, without resource relations but with
layers.

Layer-0

NOT

OR_N

AND_N

NOR

0

10000

20000

30000

40000

50000

60000

0 200 400 600 800 1000

Sample points

G
e
n
o
m
e

a
b
u
n
d
a
n
c
e

Layer-1

NOT

OR

NOR

0

10000

20000

30000

40000

50000

60000

70000

0 200 400 600 800 1000

Sample points

G
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

The figure shows the accumulative phenotype abundance for Layer 0 and Layer 1, evolved in the model

without resource relations but with layers.

layers. Similar observations as in case (a) can be made. Average genotype length (in

both layers) evolves in about the same way as in case (a). Note that the total number

of organisms is about the same in the layered and the non-layered case (282 ≈ 2 ∗ 202).

Note also that there are no signs of symbiosis since both layers evolve the same semi-

optimal solutions (phenotype NOR) without any visible co-evolution in the phenotype

activity.

6.4.4 (d) Multiple layers with resource relations

Finally, we included both resource relations and multiple layers (T0 and T1) to show

the dynamics of symbiosis and co-evolution. Apart from the layers, the settings were

the same as above. The seeding rate was 0.1, and the mutation rate of the preference

parameters was 0.001 per replication. Note that since the resources are depletable, the

seeding rate is important to force the populations to adapt their resources to each other.

6.4. EXPERIMENT: SUFFICIENT CONDITIONS FOR SYMBIOSIS 67

Figure 6.6 Average genotype length, without resource relations but with layers.

0

10

20

30

40

50

60

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

The figure shows the average genotype length, evolved in the model without resource relations but with

layers.

Too high seeding rate (∼ 1) minimizes the populations resource interdependence, and

too low rate (∼ 0) creates a very fluctuating environment to adapt to. The mutation

rate of the preference parameters is also very important since it controls the level of

resource noise between the layers.

Figure 6.7 and Figure 6.8 shows the phenotype activity and average genotype length

(respectively) during evolution with resource relations and layers. Even though the

accumulative phenotypes are in much lower quantity than in case (c), probably due

to the differences in the availability of resources, it is easy to see that the phenotype

diversity of logical computation is higher, i.e. there are more phenotypes with positive

accumulative growth. The genotype length is relatively low compared to earlier cases (a–

c), probably because the organisms can link resources between the layers, and together

compute the logical functions (semi-optimally in this case). Although, it was observed

that with symbiosis, a very high average genotype length evolved in the majority of the

cases (over 10 differently evolved populations). This was the case when the two layers

adapted well to each other, e.g. in terms of vicinity difference (see below). This genotype

increase can be explained by the continuously changing input and output preferences

together with the changing resource relations between the layers (see also case b above).

It is interesting to note that in Figure 6.7 there are indeed evidence for symbiosis

and co-evolution. For example, at x = 700, the phenotypes OR and OR N in layer-0,

and the phenotypes NOR and AND N in layer-1 co-evolve; both pairs of phenotypes

grow with about the same rate relative to each other. At a closer look, we see that it is

the logical functions OR and OR N in the first layer that is used for computing NOR

6.4. EXPERIMENT: SUFFICIENT CONDITIONS FOR SYMBIOSIS 68

Figure 6.7 Accumulative phenotype abundance, with resource relations and layers.

Layer-0 NOT

NAND
AND

OR_N

OR

AND_N

NOR

0

4000

8000

12000

16000

20000

0 200 400 600 800 1000

Sample points

G
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

Layer-1
NOT

NAND

AND

OR_N

OR

AND_N

NOR

0

4000

8000

12000

16000

20000

0 200 400 600 800 1000

Sample points

G
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

The figure shows the accumulative phenotype abundance in Layer 0 and Layer 1, evolved in the model

with resource relations and layers.

and AND N in the second layer; NOR and AND N are computed by applying NAND

to OR and OR N, respectively. Hence, since symbiosis creates higher (phenotype)

diversity and increasing genotype size by mutual adaptation than without symbiosis,

evolutionary complexity is increased in our model.

Vicinity difference and the shadow model

To measure the topological correlation between two co-evolving populations in case (d),

we used the earlier discussed vicinity difference measure. For this, 10 random popula-

tions evolved, and were compared to a resource-neutral shadow model as follows. For

each run, two pairs of independent chemostat layers were evolved; one pair was the ac-

tual resource-interconnected model and the other was the shadow model. The shadow

model evolved under the same conditions as for the actual model, but with a different

random seed. Continuously, the vicinity difference between resource-interconnected lay-

ers in the actual model (VDa), and between the first layers in the actual model and

6.5. MUTATIONAL PRESSURE WITH SYMBIOSIS 69

Figure 6.8 Average genotype length, with resource relations and layers.

0

5

10

15

20

25

30

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

The figure shows the average genotype length, evolved in the model with resource relations and layers.

the shadow model (VDh), were both computed with parameterized sampling rate. The

seeding rate was set to 0.1, and the mutation rate of the preference parameters was

set to 0.001. As already discussed, symbiosis and co-evolution is balanced by both the

seeding rate and the mutation rate of the preference parameters.

It was found that 8 out of the 10 evolved populations had higher topological corre-

lation between resource-interconnected layers in the actual model, than between non-

interconnected layers between the actual model and the shadow model; i.e. VDa <

VDh. On average, the resource-interconnected layers had 90% of the vicinity difference

between the actual and the shadow model. Note that the sampling resolution is a ma-

jor bottleneck in the vicinity measure; higher sampling rate will give higher difference

between VDa and VDh. Higher sampling resolution was not used due to impractically

long execution time.

6.5 Mutational pressure with symbiosis

By varying the mutation rate, we studied the dynamics of two resource-interconnected

populations by using an evolutionary activity measure. Evolutionary activity is an

accumulative measure of the k most frequent genotypes [BSP98, BB99]. Here we looked

at the most frequent genotype (k = 1). The syntactic identity relation .=, defined

in Section 2.3, was used to classify genotypes in each population to their equivalence

groups.

Figure 6.9 and Figure 6.10 show the mutational pressure on two populations in

symbiosis with 5 different mutational rates: 7.8125 ∗ 10−5, 3.125 ∗ 10−4, 1.25 ∗ 1−−3,

6.5. MUTATIONAL PRESSURE WITH SYMBIOSIS 70

5 ∗ 10−3 and 2 ∗ 10−2. For the lowest mutation rate of 7.8125 ∗ 10−5, co-evolution is

illustrated in the growth of the most frequent genotypes. For example, there are two

such illustrative cases between the sample points x = 1000 and x = 1500, where the most

frequent genotype in each layer occur at the same time, and grows with about the same

rate. When the mutation rate increases, the genotype correlation becomes less obvious.

At the mutation rate of 0.005, the mutation rate is so high that initially there are no

continuity. At the sample point x = 1500, there is one successful genotype in one of the

layers. At a closer look it is a simple self-replicator without any logical computation at

all. Finally, at the highest mutation rate of 0.02, each layer is governed by tiny self-

replicators that continue to persist, although with minor gaps. These gaps are formed

by point-mutations that mutates back and forth among a few similar genotypes (shown

as almost parallel lines). It can also be observed that there are 3 different versions of

these tiny self-replicators in each layer that are mutated in-between.

6.5. MUTATIONAL PRESSURE WITH SYMBIOSIS 71

Figure 6.9 Low mutational pressure during evolution of two populations in symbiosis.

0.000078125

Layer-0

Layer-1

0

10000

20000

30000

40000

50000

60000

70000

0 500 1000 1500 2000

Sample points

G
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

0.0003125

Layer-0Layer-1

0

5000

10000

15000

20000

25000

30000

35000

0 500 1000 1500 2000

Sample points

G
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

0.00125

0

1000

2000

3000

4000

5000

6000

0 500 1000 1500 2000

Sample points

G
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

The figure shows evolutionary activity with low mutational pressure (substitution rate is 7.8125 ∗ 10−5,

3.125 ∗ 10−4 and 1.25 ∗ 1−−3, top-down) during evolution of two populations in symbiosis (i.e. with

resource relations and with layers).

6.5. MUTATIONAL PRESSURE WITH SYMBIOSIS 72

Figure 6.10 High mutational pressure during evolution of two populations in symbiosis.

0.005

Layer-0

Layer-1

0

500

1000

1500

2000

2500

0 500 1000 1500 2000

Sample points

G
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

0.02

Layer-0

Layer-1

0

10000

20000

30000

40000

50000

0 500 1000 1500 2000

Sample points

G
e
n
o
t
y
p
e

a
b
u
n
d
a
n
c
e

The figure shows evolutionary activity with high mutational pressure (substitution rate is 5 ∗ 10−3 and

2 ∗ 10−2, top-down) during evolution of two populations in symbiosis (i.e. with resource relations and

with layers).

Chapter 7

Red-Queen Evolution

After modeling the relation between evolving populations and biotic environment in

the previous chapter, we here introduce abiotic environmental relations in what-we-call

Red-Queen evolution, to possibly create open-ended evolution. In efforts to synthesize

what has been called open-ended evolution, researchers have emphasized important

relationships between organisms and their environment (biotic and abiotic) [HJF97,

Ray95, Tay02]. Open-ended evolution may be found by asking under what conditions

will an evolutionary system continue to produce novel forms with “increasing complex-

ity”? [Sta03]. Most platforms have approached open-ended evolution by presenting

different kinds of optimization problems for the system to solve via an explicit merit

function. These approaches have been shown to asymptotically reach a limited level of

complexity in whatever way complexity has been defined [Tay02]. Other approaches like

Tierra, do not define any explicit merit function, but instead complexity arise through

emerging ecologies of interacting organisms. Similarly, these systems have been shown

to converge to fairly low complexity (genotype size and diversity) [Sta03].

Overview This chapter will focus on the relationship between an evolving population

and its abiotic environment, to possibly increase the evolutionary complexity. In a sim-

ple model, it will be shown that a cyclic fitness-dependency between environment and

population can (theoretically) create “open-ended” evolution to indefinite “complexity”.

Our model illustrates a Red-Queen scenario where the average genotype size and ac-

cumulative genotype diversity may grow indefinitely. In the first section, a discussion

about open-ended evolution is held. In the second section, the Red-Queen hypothesis is

73

7.1. OPEN-ENDED EVOLUTION 74

explained in the light of open-ended evolution in a simple abstract model. In the third

section, a modified version of SALTA is presented that implements the abstract model

for open-ended evolution. And finally in the last section, the experimental results are

presented.

7.1 Open-ended evolution

It has been claimed that what separates evolution in Artificial Life from biological

evolution is the characteristics of open-endedness. From a biological perspective, open-

ended evolution means unbounded diversity and continuous novelty/complexity growth.

Such open-ended evolution with respect to these measures have been observed in the

Phanerozoic fossil record, but never in Artificial Life [BSP98]. It is interesting to note

that it may not necessarily be the case that biological evolution is open-ended, i.e. open-

endedness may not be a necessary condition for complex evolution. Observations both

in Artificial Life and in the Phanerozoic fossil record, are categorized as “long-term”

observations of growing diversity, but this is simply an inductive generalization. For

example, the Phanerozoic biosphere may not exhibit growing diversity forever; implying

bounded diversity, and bounded evolution.

Previously, in Chapter 4 and Chapter 6, we measured evolutionary complexity based

on both genotype/phenotype diversity and average genotype size during adaptation to

a pre-defined merit function, for logical computation. In this chapter, we will focus

only on average genotype size for the notion of complexity since diversity will always be

limited in a finite topology.

7.2 Red-Queen hypothesis and evolution

The Red-Queen hypothesis, first stated by von Valen [vV73], got its name from Lewis

Carrol’s novel “Through the Looking Glass”. In a section of the novel, Carrol describes

a conversation between Alice and the Red Queen in which the Red Queen tells Alice that

she has to run, just to stay in place. This scenario has become popular in describing

how co-evolution may force two symbionts to evolve, just to keep their fitness. This

hypothesis has successfully been applied to artificial co-evolution between populations

of symbiotic organisms (de Bary’s definition of symbiosis) [Wil03]. The hypothesis may

7.3. MODIFYING SALTA 75

as well be applied to a relation with an ever-changing abiotic environment. In particular,

we will look at the Red-Queen hypothesis applied to populations that affect their own

abiotic environment, and in turn their own fitness.

7.2.1 Model for evolution in an ever-changing environment

To create an open-ended evolution by a Red-Queen scenario is to model a cyclic fitness-

dependency between the environment and the evolving population. This is accomplished

by defining a merit function that forces the population to evolve to a continuously

changing abiotic environment, which changes as a result of the activity performed by

the populations to receive merit and increase in fitness.

Assume that we give extra merit to organisms that can metabolize resources in the

environment by a metabolizing function (τ). Let R = {r0, r1, . . . , rn} be a strict partially

ordered set of resources (under <) that can be taken from the environment, metabolized

for merit and returned to the environment. Let ω : A → R, be a preference function

that maps genotypes to metabolizable resources. Then we may define a metabolizing

function as follows.

Definition 7 Metabolizing function τ : R→ R, is a function from “food” to “waste”

such that

τ(r) = r′ ⇔ r < r′ ∧ r = ω(g), (7.1)

where r, r′ ∈ R are resources and g ∈ A is a genotype.

Further, if we assume that the organisms need longer genotypes for metabolizing larger

resources (ri is larger than rj iff rj < ri), evolution will drive the population to longer

genotypes, and increasingly larger resources in the environment.

7.3 Modifying SALTA

Some minor changes are made in SALTA to implement the abstract model in Sec-

tion 7.2.1, in particular how resources are communicated with the environment and how

they give merit. Also, the topology (T in CHEM) is extended to hold resources as well

as organisms, similar to the symbiotic model; see Section 6.3.2.

7.3. MODIFYING SALTA 76

7.3.1 Resources

Similar to the previous versions of SALTA, resources here are used by the organisms to

possibly reward themselves with merit. Although in this version of the platform, we are

not considering logical computation, instead we use an abstract type of resources that

can be used with the metabolizing function τ defined above. To make things concrete,

resources are implemented as natural numbers (R = N), i.e. the bit-strings are made

to represent numbers. Resources are modified by the incremental instruction (INC),

and are ordered by the less-than relation (<) over the natural numbers (gives a strict

partially ordered set) to satisfy the Equation 7.1 for the metabolizing function.

7.3.2 I/O Buffer

Compared to the default version in Chapter 3, the I/O Buffer is here slightly modified.

It is not initialized to any values (resources) but holds a list of values taken during

the genome executions. The I/O Buffer is also modified such that resources are com-

municated to the environment at the very position of the organism, by the INPUT and

OUTPUT instructions (0-Moore neighborhood), in contrast to the 1-Moore neighborhood

in Chapter 6. Outputs are also only returned to the environment as “waste” if success-

fully metabolized by the metabolizing function (τ).

7.3.3 Merit function

Instead of giving a predefined merit for logical computation, a merit (higher than 1) is

given to those organisms that metabolize resources with the τ function above. Note that

there is only one rewarded merit that is higher than the default merit of 1, since there

is only one metabolizing function (τ). The τ function, that is used for the experiments

below, is implemented as follows.

• Patterns are used to encode metabolizable resources in the genome. In the below

experiments, unary encoding of natural numbers by sequences of a special pattern

was the evolutionary easiest approach. For example, a genome with k number of

the special pattern can metabolize the resource represented by the natural number

k. Binary encoding can also be used, but is harder to evolve. The function ω maps

sequences of patterns to such metabolizable resources.

7.4. EXPERIMENT: OPEN-ENDED EVOLUTION 77

• In order to metabolize, and be rewarded a merit higher than the default, the

output w (“waste”) has to be one number greater than the input f (“food”), i.e.

w = f + 1 (see < in the definition of τ in Equation 7.1). Hence, organisms either

replicate with default merit of 1, or with a higher parameterized merit that is

rewarded for metabolizing the resources.

7.4 Experiment: open-ended evolution

We used this modified version of SALTA to experiment with the possibility of “open-

ended” evolution. It is easy to see that the populations will continuously adapt to the

ever-changing environment of natural numbers. By initially seeding with 1’s (bottom

element in the order), the population will “count numbers” indefinitely (theoretically at

least, as we shall see). This type of open-ended evolution is perhaps not very interesting,

although it may be classified as open-ended if we accept that growing genotypes in

general signifies growing complexity, i.e. for the present we ignore diversity. Note that

diversity may be said to increase indefinitely as well (theoretically), if we look at the

accumulative number of different evolving genotypes.

7.4.1 Experimental observations

Even though the system has the theoretic possibility to evolve indefinitely large genotype

sizes, Eigen’s error threshold will limit the evolution. For a certain mutation rate,

Eigen’s error threshold predicts an effective upper limit to the genotype length (see

Equation 4.4).

When running the system as defined above—to “count numbers”—it was soon real-

ized that the evolving genotype was limited to a smaller genotype size than predicted by

Eigen’s error threshold. It was also found that the evolved genotype size was dependent

on the population size. What actually was observed was that the genotype evolved up

to a certain length, and then sharply started to decrease. It was obvious that evolution

traversed the fitness landscape up to a point where genetic drift (see Section 2.5.1) dis-

locates the population indefinitely. To find out what affected this unexpectedly early

dislocation, we conducted a number of experiment with different settings of population

size (s), merit (m) and offspring dispersal. Note that Eigen’s error threshold is not

7.4. EXPERIMENT: OPEN-ENDED EVOLUTION 78

related to population size.

Settings In all runs, the mutation rates of 0.000625 for substitution, and 0.00025 for

insertion/deletion were used. A total of 10 populations evolved, for each combination of

the parameters; population size (s ∈ {10, 20, 30, 40}), merit m ∈ {2, 4, 6, 8} and offspring

dispersal (in local or non-local neighborhood). The seeding self-replicator had 9 quasi-

neutral pattern instructions (different from the unary-encoding pattern), and was from

the beginning not able to metabolize any type of resources. An extra pattern was given

to the system, for the unary encoding of metabolizable resources (PATTERN ONE) together

with an extra instruction for incrementing the resources (INC). Each population evolved

for 1 ∗ 107 genome executions.

Local offspring dispersal

The first set of runs investigates how open-ended evolution is affected by genetic drift

by local dispersal (2-D topology) of offspring in the 1-Moore neighborhood. Figure 7.1

shows the average genome length of continuous evolution in the ever-changing environ-

ment, for the different population sizes and merits.

Observations Some obvious observation can be made:

• For the two smallest populations, of size 10 and 20, the effect of genetic drift is

stronger than the effect of natural selection, and resulting in almost no evolution.

• Larger population sizes creates a significantly higher defense against genetic drift

due to higher diversity, and the effect is obvious for all merit settings. Larger

population sizes also naturally delays adaptation since larger populations consume

more genome executions over time.

• In general, higher merit gives larger genotypes, and seems to combat genetic drift

better than lower merit. This is most likely a result of stronger natural selection

due to increased fecundity by increased merit.

• Higher merit generally results in faster adaptation, but also faster (earlier and

steeper) genetic drift, especially when comparing the merit of 6 and 8 in the

2 largest populations (note that high merit typically results in high fecundity).

7.4. EXPERIMENT: OPEN-ENDED EVOLUTION 79

Figure 7.1 Average genotype length with local offspring dispersal, evolved with different
population sizes and merits

2

4 6

8

0

50

100

150

200

250

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

2 4 6 8

4

0

50

100

150

200

250

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

2 4 6 8

2

4

6

8

0

50

100

150

200

250

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

2 4 6 8

2

4

6

8

0

50

100

150

200

250

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

2 4 6 8

The figure shows the evolved average genotype length with local offspring dispersal, evolved in population

sizes of 102 (upper-left panel), 202 (upper-right panel), 302 (lower-left panel) and 402 (lower-right panel),

and with merits 2, 4, 6 or 8.

Higher merit gives faster propagation of novelty, but when genetic drift comes in,

accumulation of deleterious mutation also seems to become more rapid.

Non-local offspring dispersal

The second set of runs looks at what difference non-local dispersal (0-D topology) of

offspring makes to open-ended evolution, and genetic drift compared to the first set.

Table 7.2 shows the results, for the same settings as in the first set of runs except for

the type of offspring dispersal.

Observations When comparing the effect of non-local offspring dispersal to local

dispersal, it can be seen that in all settings the effect of genetic drift is weaker for the

former, i.e. the genotype length can grow significantly longer with non-local dispersal

(most obvious in the population of size 402). This indicates that the effect of selection is

comparatively stronger than genetic drift in populations of non-local dispersal; compared

7.4. EXPERIMENT: OPEN-ENDED EVOLUTION 80

Figure 7.2 Average genotype length with non-local offspring dispersal, evolved with
different population sizes and merits

28

0

50

100

150

200

250

300

350

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

2 4 6 8

4

8

0

50

100

150

200

250

300

350

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

2 4 6 8

2

4
6

8

0

50

100

150

200

250

300

350

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

2 4 6 8

2

4

6

8

0

50

100

150

200

250

300

350

Genome executions

G
e
n
o
m
e

l
e
n
g
t
h

2 4 6 8

The figure shows the evolved average genotype length with non-local offspring dispersal, evolved in

population sizes of 102 (upper-left panel), 202 (upper-right panel), 302 (lower-left panel) and 402 (lower-

right panel), and with merits 2, 4, 6 or 8.

to local such. One reason for this may be due to increased genetic drift caused by locality

in the case of local dispersal. The same observations as for the first set of runs also hold

for the second set.

Error threshold and genetic drift

Note that the error threshold induced by the mutation rate does limit the genome

length, although genetic drift (see Section 2.1) puts a limit to the evolution much earlier.

Equation 4.4 gives the theoretical values for the error threshold, given the merit used and

mutation rates. Table 7.1 gives the theoretical threshold by Equation 4.4 (Threshold)

and the maximum genome length, for both sets of the experiments (MaxGenLen1 and

MaxGenLen2), and for the different merits (Merit) in the population of size 402.

Thus, even though the model exhibits the theoretic possibility of open-ended geno-

type growth, genetic drift and the error threshold puts an effective limit to evolution. In

terms of evolutionary complexity, we can initially observe increasing complexity through

7.4. EXPERIMENT: OPEN-ENDED EVOLUTION 81

Table 7.1 Experimental and theoretical genome length.
Merit MaxGenLen1 MaxGenLen2 Threshold

2 27 36 616
4 95 128 1232
6 212 313 1592
8 211 272 1848

Experimental and theoretical genome length for the population of size 402, with local and non-local
offspring dispersal (MaxGenLen1 and MaxGenLen2, respectively).

continuously growing genotype, but only up to a certain level. For the organisms to sur-

pass this limit that prevents further evolution, mechanisms to lower the error rate such

as meiosis have to evolve, and/or mechanisms to increase the variation.

Chapter 8

Conclusion

8.1 Summary

In the last four chapters, we have presented experiments to explore properties for evo-

lutionary complexity. Each experiment was set up with its own version of the new

evolutionary platform SALTA to investigate a certain aspect of artificial life with inspi-

ration from biology.

As a starter, the first experiment (Chapter 4) investigated the simplest form of

evolution with a pre-defined merit function, and variation through point-mutation only.

We tested how mutation rate, population size and topology type (offspring dispersal in

0-D or 2-D) affected the evolution. We also reproduced published results concerning

“complex features” by Lenski et al. It was found that all the 3 parameters have a

significant impact on evolution. It was also found that there was an optimal population

size for the given mutation rates. In terms of evolutionary complexity, it was noticed

that both (phenotype and genotype) diversity and average genotype size decreased to a

lower bound; see e.g. Figure 4.5 and Figure 5.6.

In the second experiment (Chapter 5), we introduced genetic recombination as a

second factor to mutation for genetic variation, to compare them for the evolution of

“complex features” (logical functions). Recombination combines existing genes/alleles in

contrast to random mutation, for variation in the evolving population. It was found that

recombination increased the rate of adaptation, made it possible to bridge evolutionary

gaps, and could even drive evolution without mutation (given enough initial genetic

material). In terms of evolutionary complexity, recombination increases both genotype

82

8.1. SUMMARY 83

size and (genotype) diversity, the former due to genome mergers, and the latter due to

the added noise recombination; see also Figure 5.6.

In the third experiment (Chapter 6), we looked at sufficient conditions for symbiosis.

The model was extended in 4 steps, starting with 1 chemostat layer without any resource

relations, and ending with 2 chemostat layers and resource relations. Different settings

of mutation rate were also tested to visualize co-evolution with evolutionary activity.

By using other measures, evidence of co-evolution and symbiosis was only found in the

model with multiple layers (dimensional difference) and resource relations. Since the

merit function is finite, there is no possibility of continuously growing diversity, although

the (phenotype) diversity is higher with symbiosis than without; see Figure 6.7. It can

also be seen that the average genotype size increases, e.g. in Figure 6.8, due to the

accumulation of INPUT and NAND instructions as a result of the continuous adaptation

between the populations and the resource relations.

In the final experiment (Chapter 7), we tried to create open-ended evolution by

modifying the merit function and the resources to achieve continuous genotype growth.

The scenario is based on the Red-Queen hypothesis, where the population and the abiotic

environment evolve together to more complex resources (with respect to the metabolize

function), and longer average genotypes in order to stay fit. In the implementation of

the proposed framework for open-ended evolution, it was found that genetic drift limits

the possibly indefinite genotype growth. We investigated how population size, merit

(fecundity) and offspring dispersal are related to genetic drift. It was found that larger

populations, higher merit and non-local offspring dispersal create a higher threshold

for genetic drift. Since there is no possibility for sex or recombination here, genetic

drift unavoidably limits indefinite genotype growth and open-ended evolution. Also,

since the average genotype size grows until reaching the limit, we may characterize the

accumulative diversity as increasing as well (until dislocation).

To summarize, Table 8.1 presents the different experiments (Exp) and their purpose

(Purpose). Together with obtained results (Results), i.e. primary results, secondary

results and results for the two complexity measures; diversity (Div) and average genotype

length (Len).

8.2. CONTRIBUTIONS 84

8.2 Contributions

We reproduced gradual evolution of logical functions (so-called “complex features”),

published by Lenski et al. [LOPA03], in a similar evolutionary platform that we called

SALTA. Thereafter this model was enriched with genetic recombination, which was

shown to be more efficient than mutation, for evolving the “complex features”.

SALTA was also extended to capture interdependencies between the environment and

the evolving population, and to create evolutionary complexity in a finite population.

We defined evolutionary complexity as the product of (genotype or phenotype) diversity

and average genotype size, and showed that symbiosis and Red-Queen evolution creates

such evolutionary complexity, for biotic and abiotic interdependencies, respectively.

8.3 Discussion

It has been claimed that replication, variation and selection are enough for evolution.

Still, there has been no success in creating any really interesting evolution in Artificial

Life. The basic problem seems to be in how to implement fitness, since natural selection

is what really drives evolution. By defining an explicit merit function to deduce fitness

from, evolution will never create anything more interesting than what is loaded into the

merit function. So where does emergent and interesting evolution in biology come from?

We would like to argue that it is circular relations between the evolving population

and its environment that create evolutionary complexity. Since organism’s phenotypes

are evaluated in their respective environment, to give a measure of fitness, and the

environment is a result of the organisms reactions for fitness, there is an effective relation

between them. It is this type of interdependencies that we have tried to introduce in an

artificial setting, both between organisms (symbiosis “in layers”) and between organisms

and their abiotic environment (Red-Queen evolution).

8.4 Critique

Research in Artificial Life is extremely diverse, and there are many difficulties in this

research area. Fundamental definitions are still very much in question, e.g. what is life?

If we do not know then how can life be studied? In this thesis, life is defined as any

8.5. FUTURE WORK 85

entity which replicates, varies and is under natural selection. In particular, we looked at

assembler programs, or so-called “digital organisms” [Ada98], that self-copied, mutated

(and recombined) and were under natural selection via an explicit merit function. Is this

how we intuitively would characterize life? We propose to narrow the scope of analogous

studies, to more precisely reason about Artificial Evolution instead of Artificial Life.

As has also been discussed earlier, there are obvious weaknesses with an explicitly

defined merit function for studying evolution. Defining such a merit function and con-

sequently using it for imposing fitness, does not render possible emergent evolution.

Hence, evolution is reduced to an optimization process in a fixed domain. We believe

that fitness should not be explicitly defined, instead it should be a product of the system

itself (e.g. see Tierra [Ray95]).

8.5 Future work

As a continuation of trying to find evolutionary complexity, it would be interesting to

try to merge abiotic and biotic relations into one coherent framework, e.g. exhibiting

both symbiosis and Red-Queen evolution.

Throughout this work, we have observed the presence of genetic drift as an opposite

force to natural selection. It would also be interesting to elaborate with techniques to

combat such an important and strong genetic force, e.g. by genetic recombination or

sexual reproduction.

8.5. FUTURE WORK 86

Table 8.1 Summary of experiments.

Exp Purpose
Results

Primary Div
Secondary Len

Mutation
(Chapter 4)

To reproduce results
of complex evolution
by Lenski et al., with
point-mutations and
a finite merit
function.

Complex evolution of logical func-
tions was reproduced, with compa-
rable results and conditions as re-
ported by Lenski et al.

Evolution was found to be a func-
tion of mutation rate, population
size and topology. It was also found
that small populations gave high
genetic drift, and that there was
an optimal population size for the
given mutation rates.

Genetic re-
combination
(Chapter 5)

To show that
recombination is
more efficient than
point-mutations to
evolve a finite merit
function.

Recombination together with point-
mutation was shown to be more effi-
cient than point-mutation only, for
the particular evolutionary land-
scape.
Recombination may be necessary
for bridging evolutionary gaps, and
may even drive evolution single-
handedly.

Symbiosis
(Chapter 6)

To show sufficient
conditions for
symbiosis and
evidence of
co-evolution.

Three different measures were used
to show co-evolution and symbiosis
under the sufficient conditions of (i)
dimensional difference and (ii) re-
source relations.
Evidence of co-evolution was found,
as a function of seeding rate, pref-
erence mutation rate and mutation
rate.

Red-Queen
evolution
(Chapter 7)

To show an approach
to open-ended
evolution with
increasing
complexity in an
ever-changing
environment
(Red-Queen
hypothesis).

Formal model for open-ended evo-
lution was implemented. The possi-
bility of indefinite increase in geno-
type length was limited by genetic
drift.
Genetic drift is strongly related to
population size. Larger popula-
tions, higher merit and non-local
dispersal create a higher threshold
for genetic drift.

Bibliography

[AB94] Chris Adami and C. Titus Brown. Evolutionary learning in the 2D artificial

life system Avida. In Rodney A. Brooks and Pattie Maes, editors, Proceed-

ings of the 4th International Workshop on the Synthesis and Simulation of

Living Systems (Artificial Life IV), pages 377–381, Cambridge, MA, USA,

July 1994. MIT Press.

[Ada95] Christoph Adami. Self-organized criticality in living systems. Physics Let-

ters A, 203:29–32, 1995.

[Ada98] Christoph Adami. Introduction to Artificial Life. Springer-Verlag, Berlin,

1998.

[Ada04] Christoph Adami. Information theory in molecular biology. Physics of Life

Reviews, 1(1):3–22, April 2004.

[BB98] F. Bagnoli and M. Bezzi. Eigen’s error threshold and mutational meltdown

in a quasispecies model. Int. Journ. Mod. Phys. C, 9(999), 1998.

[BB99] Mark A. Bedau and C. Titus Brown. Visualizing evolutionary activity of

genotypes. Artificial Life, 5(1):17–35, 1999.

[BF95] Lawrence Bull and Terence C. Fogarty. Artificial symbiogenesis. Artificial

Life, 2(3):269–292, 1995.

[BP03] M. A. Bedau and N. H. Packard. Evolution of evolvability via adaptation

of mutation rates. Biosystems, 69(2–3):143–162, May 2003.

[BSP98] Mark A. Bedau, Emile Snyder, and Norman H. Packard. A classification of

long-term evolutionary dynamics. In Proceedings of the sixth international

conference on Artificial Life, pages 228–237. MIT Press, 1998.

87

BIBLIOGRAPHY 88

[CAW01] Paulo R. A. Campos, Christoph Adami, and Claus O. Wilke. Optimal

adaptive performance and delocalization in NK fitness landscapes. Physics,

0109020, 2001.

[Dar59] Charles Darwin. On the Origin of Species by Means of Natural Selection.

Murray, London, 1859.

[Dew84] A. K. Dewdney. In the game called Core War hostile programs engage in

a battle of bits. Scientific American, pages 14–21, May 1984.

[DF98] Alves Domingos and J. F. Fontanari. Error threshold in finite populations.

Phys. Rev. E, 57(6), june 1998.

[DGSR96] J. M. Daida, C. S. Grasso, S. A. Stanhope, and S. J. Ross. Symbionticism

and complex adaptive systems I: Implications of having symbiosis occur

in nature. In Lawrence J. Fogel, Peter J. Angeline, and T Baeck, editors,

Evolutionary Programming V: Proceedings of the Fifth Annual Conference

on Evolutionary Programming, pages 177–186. MIT Press, 1996.

[DZB01] Peter Dittrich, Jens Ziegler, and Wolfgang Banzhaf. Artificial chemistries—

a review. Artificial Life, 7(3):225–275, 2001.

[Eig71] M. Eigen. Selforganization of matter and the evolution of biological macro-

molecules. Naturwissenschaften, 58:465–523, 1971.

[ES79] M. Eigen and P. Schuster. The Hypercycle—A Principle of Natural Self-

organization. Springer, Berlin, 1979.

[FB94] Walter Fontana and Leo W. Buss. Arrival of the fittest: Toward a theory

of biological organization. Bulletin of Mathematical Biology, 56:1–64, 1994.

[FWB94] W. Fontana, G. Wagner, and L. Buss. Beyond digital naturalism. Artificial

Life, 1(1):211–227, 1994.

[GL98] Philip J. Gerrish and Richard E. Lenski. The fate of competing beneficial

mutations in an asexual population. Genetica, 102–103:127–144, 1998.

[Gou02] Stephen Jay Gould. The Structure of Evolutionary Theory. Harvard Uni-

versity Press, 2002.

BIBLIOGRAPHY 89

[Hel98] Stefan Helmreich. Silicon Second Nature. University of California Press,

California, 1998.

[HJF97] Peter T. Hraber, Terry Jones, and Stephanie Forrest. The ecology of echo.

Artificial Life, 3(3):165–190, 1997.

[Hol75] J. H. Holland. Adaptation in natural artificial systems. International Jour-

nal of Computational Intelligence and Applications, 1975.

[Hux59] T. H. Huxley. Letter to Charles Darwin. The Correspondence of Charles

Darwin, 7:1858–1859, 1859.

[IK90] Takashi Ikegami and Kunihiko Kaneko. Computer symbiosis—emergence

of symbiotic behavior through evolution. Physica D, 42:235–243, 1990.

[Ins94] Santa Fe Institute. Annual report on scientific programs, 1994.

[KJ92] Stuart A. Kauffman and Sonke Johnson. Co-evolution to the edge of chaos:

Coupled fitness landscapes, poised states, and co-evolutionary avalanches.

Artificial Life II, pages 325–368, 1992.

[KPP94] A. B. Korol, I.A. Preygel, and S.I. Preygel. Recombination, Variability and

Evolution. Chapman and Hall, 2–6 Boundrary Row, London SE1 8HN, UK,

1994.

[KS88] Raju I. Kucherlapati and Gerard R. Smith. Genetic Recombination. Amer-

ican Society for Microbiology, 1913 I Street, N.W., Washington, DC 20006,

1988.

[Lan88] Chris Langton. Toward artificial life. Whole Earth Review, 58:74–79, 1988.

[LOPA03] Richard E. Lenski, Charles Ofria, Robert Pennock, and Christoph Adami.

The evolutionary origin of complex featues. Nature, 423, 5 2003.

[LW04] Ye Li and Claus O. Wilke. Digital evolution in time-dependent fitness

landscapes. Artificial Life, 10(2):123–134, 2004.

[Mar81] Lynn Margulis. Symbiosis in Cell Evolution. W. H. Freeman and Company,

San Francisco, 1981.

BIBLIOGRAPHY 90

[May81] R.M. May. Theoretical Ecology Principles and applications. Sinauer Asso-

ciates, Oxford, 1981.

[May02] Ernst Mayr. What Evolution Is. Basic Books, 2002.

[McM00a] Barry McMullin. John von Neumann and the evolutionary growth of com-

plexity: Looking backward, looking forward... Artificial Life, 6(4):347–361,

2000.

[McM00b] Barry McMullin. The von Neumann self-reproducing architecture, genetic

relativism and evolvability. In Evolvability Workshop at Artificial Life VII:

Proceedings of the Seventh International Conference on Artificial Life, 2000.

[MMP97] Michael T. Madigan, John M. Martinko, and Jack Parker. Brock Biology

of Microorganisms, Eight Edition. Prentice-Hall, New Jersey, 1997.

[MPS67] D. R. Mills, R. L. Peterson, and S. Spiegelman. An extracellular darwinian

experiment with a self-duplicating nucleic acid molecule. Proc. Natl. Acad.

Sci. USA, 58:217–224, 1967.

[MS02] Lynn Margulis and Dorian Sagan. Acquiring Genomes: A Theory of the

Origin of Species. Basic Books, New York, 2002.

[MTvK01] Barry McMullin, Tim Taylor, and Axel von Kamp. Who needs genomes?

In Atlantic Symposium on Computational Biology, Genome Information

Systems and Technology (CBGI), pages 371–408, Duke University, USA,

March 2001.

[Mul64] H. J. Muller. The relation of recombination to mutation advantage. Muta-

tion Research, 1:2–9, 1964.

[Pag02] Mark Pagel. Encyclopedia of Evolution. Oxford University Press, New

York, April 2002.

[PTJ02] Elizaveta Pachepski, Tim Taylor, and Stephen Jones. Mutualism promotes

diversity and stability in a simple artificial ecosystem, 12 2002.

[Ray91] T. S. Ray. An approach to the synthesis of life. In C. G. Langton, C. Taylor,

J. D. Farmer, and S. Rasmussen, editors, Artificial Life II: SFI Studies in

BIBLIOGRAPHY 91

the Sciences of Complexity, Vol. X, pages 371–408, Redwood City, CA,

1991. Addison-Wesley.

[Ray95] Thomas S. Ray. An evolutionary approach to synthetic biology: zen in the

art of creating life. In Christopher G. Langton, editor, Artificial Life: An

Overview, pages 179–210, Cambridge, Massachusetts, 1995. MIT Press.

[Ray03] Tom Ray. Tierra 6.01, network version, 11 2003.

[Rid00] Mark Ridley. Mendel’s Demon—Gene Justice and the complexity of life.

Weidenfeld & Nicolson, London, 2000.

[RKFH90] Steen Rasmussen, Carsten Knudsen, Pasmus Feldberg, and Morten Hind-

sholm. The Coreworld: emergence and evolution of cooperative structures

in a computational chemistry. In Proceedings of the Ninth Annual Interna-

tional Conference of the Center for Nonlinear Studies on Self-organizing,

Collective, and Cooperative Phenomena in Natural and Artificial Com-

puting Networks on Emergent computation, pages 111–134. North-Holland

Publishing Co., 1990.

[Rya02] Frank Ryan. Darwin’s Blind Spot. Houghton Mifflin Company, Boston,

New York, 2002.

[Sha48] C. E. Shannon. A mathematical theory of communication. The Bell System

Technical Journal, 27:379–423, 623–656, July, October 1948.

[Sip98] Moshe Sipper. Fifty years of research on self-replication: An overview.

Artificial Life, 4:237–257, 1998.

[Sta03] R. K. Standish. Open-ended artificial evolution. International Journal of

Computational Intelligence and Applications, 3(167), 2003.

[SW95] Hal L. Smith and Paul Waltman. The Theory of the Chemostat: Dynamics

of Microbial Competition. Cambridge University Press, Cambridge, Febru-

ary 1995.

[Tay99] T.J. Taylor. From Artificial Evolution to Artificial Life. PhD thesis, Uni-

versity of Edinburgh, 1999.

BIBLIOGRAPHY 92

[Tay02] Tim Taylor. Creativity in evolution: individuals, interactions, and environ-

ments. In Creative evolutionary systems, pages 79–108. Morgan Kaufmann

Publishers Inc., 2002.

[TJ95] Charles Taylor and David Jefferson. Artificial life as a tool for biological

enquiry. In Christopher G. Langton, editor, Artificial Life: an overview,

pages 1–14, Cambridge, Massachusetts, 1995. MIT Press.

[vN66] J. von Neumann. Theory of Self-Reproducing Automata. University of

Illinois Press, Urbana, Illinois, 1966.

[vV73] L. van Valen. A new evolutionary law. Evol. Theory, 1:1–30, 1973.

[Wil03] Claus O. Wilke. Does the red queen reign in the kingdom of digital organ-

isms? In Wolfgang Banzhaf, Jens Ziegler, and Thomas Christaller et al.,

editors, Advances in Artificial Life, pages 405–414, Heidelberg, December

2003. Springer-Verlag.

[WP99] Richard A. Watson and Jordan B. Pollack. How symbiosis can guide evo-

lution. In D. Floreano, J. D. Nicoud, and F. Mondada, editors, Advances

in Artificial Life: 5th European Conf., ECAL’99, pages 29–38, Heidelberg,

1999. Springer-Verlag.

[WP01] Richard A. Watson and Jordan B. Pollack. Symbiotic composition and

evolvability. Lecture Notes in Computer Science, 2159:480–490, 2001.

[WP02] Richard A. Watson and Jordan B. Pollack. Compositional evolution: inter-

disciplinary investigations in evolvability, modularity, and symbiosis. PhD

thesis, Brandeis University, 2002.

[WRP00] Richard A. Watson, Torsten Reil, and Jordan B. Pollack. Mutualism, par-

asitism, and evolutionary adaptation. Artificial Life, 7, 2000.

[WWO+01] Claus O. Wilke, Jia Lan Wang, Charles Ofria, Richard E. Lenski, and

Christoph Adami. Evolution of digital organisms at high mutation rate

leads to survival of the flattest. Nature, 412, 7 2001.

[YB01] Gabriel Yedid and Graham Bell. Microevolution in an electronic microcosm.

The American Naturalist, 157(5):465–487, 2001.

Appendix A

Settings and Parameters

By parameterizing the evolutionary system, the user can study many different kinds of

evolutionary experiments. The platform has 3 ways to input parameters: command-

line, initialization file (init-file) and global settings (java class-file). Each run results in

a single output file.

A.1 Command line arguments

The most dynamic parameters are given as command line arguments, and together

with the init-file these are the major parameters for the system. These parameters are

effectively used in scripts, to conduct large scale experiments with possibly many input

and output files.

A.1.1 Default SALTA

The default parameters for SALTA are the following:

• INDATA [file]. Specifies the init-file with path. Default value is ./initData.txt.

• OUTDATA [file]. Specifies the output data file with path. Default value is

./outData.txt.

• SEED [number]. Specifies the random seed to base the simulation on. Identical

seeds will result in identical simulations, everything else being equal. Default value

is 4711.

93

A.1. COMMAND LINE ARGUMENTS 94

• MACROMUT. If given, macro-mutation (recombination) will operate at given rate

(ICHANCE). Default value is false.

• ICHANCE [float]. Specifies the rate of macro-mutation, given as a fraction be-

tween 0.0 (never) and 1.0 (always), effective for each SET instruction to reference a

neighbouring program. Note, that the effective rate (ri) of the i’th SET instruction

to reference a neighbour is: (
∏i−1

j=1) ∗ ri. Default value is 0.0.

• MUTCOPY. If given, the COPY instruction is perturbed by point-mutations: substi-

tution, insertion and deletion, at given rates (below). Default value is false.

• SUBSRATE [float]. Specifies the point-mutation rate of substitution, given as a

fraction between 0.0 and 1.0. Default value is 0.00125.

• DELRATE [float]. Specifies the point-mutation rate of deletion, given as a fraction

between 0.0 and 1.0. Default value is 0.0005.

• INSRATE [float]. Specifies the point-mutation rate of insertion, given as a frac-

tion between 0.0 and 1.0. Default value is 0.0005.

• NRSTEPS [number]. Specifies the total number of genome executions for the sim-

ulation. Default values is 0.

• STEP. If given, lets the user run the simulation stepwise by executing single in-

structions in an interactive fashion (used for debugging). Default value is false.

• SAMPLE [number]. Specifies the sample rate of statistics, as number of times over

total period, written to the output file. Default value is 1.

• ISTART [float]. Specifies a start for macro mutation, given as a fraction of

remaining genome executions, e.g. 0.8 start macro mutation when 80% of the

given genome exections are remaining. Default value is 0.0.

• IEND [float]. Specifies an end for macro mutation, given as for ISTART. Default

value is 0.0.

• RINIT. If given, creates a randomized initialization population instead of the one

specified in the init-file. Default value is false.

A.1. COMMAND LINE ARGUMENTS 95

• NOT LOCAL, specifies if the offspring should be placed in the neighborhood or ran-

domly in the population. Default set to false.

A.1.2 SALTA with symbiosis

SALTA was extended from the default model with the following parameters for symbio-

sis:

• SEEDRATE [float] Specifies the seeding rate of new values (bit-strings) randomly

placed in the topology, given as a fraction of the topology to seed for each whole

scheduling of all organisms; e.g. 0.1 seeds the topology by 10% for each new

scheduling phase. Default set to 0.2.

• PLACERAD [number] Specifies the radius for the Moore neighborhood to output

values to. Default set to 1.

• UPTAKERAD [number] Specifies the radius for the Moore neighborhood to input

values from. Default set to 1.

• LINK If given, links the resources between the layers to possibly induce symbiosis

and co-evolution. Default set to false.

• VICDIFF If given, computes the vicinity difference between all layers in the model,

as relative to a “shadow model”. Default set to false.

• PMUTRATE [float] Specifies the mutation rate for the input parameters, note that

the output is half this mutation rate to ease adaptation. Default set to 0.02.

• NRLAYERS [number] Specifies the number of layers to evolve in the model. Each

layer will be initialized to the given organisms. Default set to 1.

A.1.3 SALTA with Red-Queen

SALTA was extended from the default model with the following parameters for Red-

Queen scenario:

• PLACERAD [number] Specifies the radius for the Moore neighborhood to output

values to. Default set to 1.

A.2. INITIALIZATION FILE 96

• UPTAKERAD [number] Specifies the radius for the Moore neighborhood to input

values from. Default set to 1.

• MERIT [number] Specifies the higher merit, rewarded for metabolizing the re-

sources, as a number between 1 and 8. Overrides the merit in the init-file. Default

set to 1.

A.2 Initialization file

Second most dynamic parameters are given in an initialization file (init-file). The init-file

specifies the experimental world; topology, instruction set, merit function and seeding

population. Path and filename to the init-file is given as command line argument and the

keywords of the file are given below. Comments are written after //, and the different

types of data can be given in any order after the keywords. All white spaces are treated

the same and considered interchangeable. The same init-file is used for all versions of

SALTA.

• MERIT:, is followed by a sequence of 9 numbers 1 to 8 for giving merit to the logical

functions: NOT, NAND, AND, OR N, OR, AND N, NOR, XOR and EQU, in the

same order.

• DIM:, is followed by 1 or 2 for the dimensionality of the topology (1-D or 2-D).

• SPACE:, is followed by a single number that specifies the symmetric length of the

topology. The topology will have (SPACE)(DIM) number of cell positions.

• PATTERNS:, is followed by a sequence of strings, representing user-defined patterns

for the chemistry. Any string is accepted and is not case sensitive in usage.

• INSTRUCTIONS:, is followed by a sequence of strings of implemented instructions

in the chemistry, typically given as a subset.

• GENOME NR:, is followed by a single digit that gives the number of copies of the

subsequent genome, directly followed by the keyword ’GENOME:’ (below).

• GENOME:, is followed by a sequence of instructions (specified by ’INSTRUCTIONS:’)

with their arguments (patterns specified by ’PATTERNS:’).

A.3. GLOBAL SETTINGS 97

A simple init-file may look as follows:

// Default self-replicator

MERIT: 2 3 4 4 5 5 6 6 8

DIM: 2

SPACE: 10

PATTERNS: LEND END LOOP START

INSTRUCTIONS: PATTERN SET COPY JUMPNEQ

GENOME_NR: 0

GENOME: PATTERN START

PATTERN END

SET RD START

SET WR END

PATTERN LOOP

COPY RD WR

JUMPNEQ LEND LOOP

COPY RD WR

PATTERN LEND

PATTERN END

A.3 Global settings

There is also a java class-file called GlobSet.java or ExtGlobSet.java which defines

all global settings for default model and extended such, respectively (the base class is

in the cpu package). This file also has some variables which may be set, but are not

accessible from the command line or the initialization file. We describe some of the most

A.4. OUTPUT FILE 98

useful variables here.

• COPY BITS TO FLIP, specifies how many program word bits to randomly flip during

substitution mutation. Default is 32 bits.

• MAX NR REW, specifies how many times an organism may get rewarded for the same

logical function. Default is 3.

• NR OF GEN TO SAMPLE, specifies how many of the most frequent genomes to sample

for each statistical sample point. Default is 3.

• SAMPLE GEN EVOL ACT, specifies if genetic evolutionary activity [BSP98, BB99]

should be measured (very memory and cpu demanding). Default is false.

• SAMPLE PHEN EVOL ACT, specifies if phenotype evolutionary activity should be mea-

sured. Default is false.

• EVOL ACT SAMPLE RATE, specifies the evolutionary activity sampling rate as a frac-

tion between 0.0 and 1.0 that gives the percentage of genome executions between

each measurement of activity. Default is 0.001, which gives 1, 000 measurements

over given period.

A.4 Output file

All data generated by the platform is collected in an output file, specified by the user

as an argument (see Section A.1). The output file holds data for studying evolution of

the seeded population over time, based on the granularity of the sample rate. Data in

the output file is categorized into sections as follows:

1. GLOBAL SETTINGS contains the simulation settings used for generating this output

data-file.

2. WORLD SETTINGS describes the parsed world data from the initialization file.

3. INPUT DATA states total number of genome executions to run and the number of

samples to take.

A.4. OUTPUT FILE 99

4. STATISTICS gives statistics of computed logical functions, mutations, average gen-

ome length, number of genetically different organisms and so on. One such section

is computed and written to the output for each sample point specified.

5. GENOME EVOLUTIONARY ACTIVITY holds data for measures of genetic evolutionary

activity as tuples of sample point and abundance (optional).

6. GENOME EVOLUTIONARY ACTIVITY holds data for measures of phenotype evolution-

ary activity as tuples of sample point and (optional).

8. VICINITY DIFFERENCE holds data for computed vicinity difference between each

layer relative a shadow model, as 2-tuples.

TIME tells the total simulation time in milliseconds (msec).

Appendix B

Glossary

Adaptation Acquisition of phenotype properties that increase fitness in a given envi-

ronment (niche).

Allele A particular gene instance, coding for variations of a protein (e.g. eye-color).

Chromosome Strand of genetic material (DNA).

Conjugation Physical transfer of genetic material (chromosomes or single genes) be-

tween prokaryotes, and typically followed by genetic recombination to merge trans-

fered genes.

Environment Biotic (anything alive) and abiotic (physical conditions and resources)

elements, having an effect on an organism’s fitness.

Epistasis Functional interdependencies between genes, e.g. such that the existence of

one gene may suppress the effect of other genes.

Fecundity Capacity of produced offspring; measured as a quantity.

Fidelity Accuracy in producing offspring that is identical to its parent.

Fitness An organism’s relative success in producing offspring.

Gene Particular hereditary unit of DNA; coding for a certain protein (function).

Genetic recombination Recombination of gene sequences from possibly different par-

allel sources.

100

101

Genetic drift Genetic non-uniform random change that over time may affect a pool

of evolving genotypes to possibly lower fitness. Genetic drift may be seen as an

opposite force to natural selection, of genetic change by chance in an evolving

population.

Genome Total genetic material of an organism.

Genotype Genetic material of an organism that determines its phenotype.

Gradualism (Darwin) Evolution through small genetic changes by beneficial muta-

tions.

Mutation Random genetic change, typically point-mutations (substitution, deletion

and insertion), that modify single bases in a sequence during replication. Muta-

tions can be neutral, deleterious or beneficial (in fitness).

Natural Selection (Darwinian selection) The mechanism in a population over gen-

erations by which the organisms with lower fitness are removed.

Niche Subspace in an ecology with certain functional properties on an organism or a

population.

Phenotype A particular organism’s physiological character or behavior/trait, which is

coded by its genotype.

Population Ensemble of organisms under evolutionary investigation, and the unit of

natural selection.

Protein Molecule of amino acids; coded by possibly many alleles and has biological

functionals for the host (ultimately creating the phenotype).

Species A species is typically an interbreeding group of organisms, but since prokary-

otes does not interbreed, there are no species in this kingdom of organisms, at

least not by this definition.

Symbiont An organism participating in a symbiotic relationship.

Symbiosis (de Bary’s definition) Long-term close association between different spe-

cies.

102

Symbiogenesis The genesis (birth) of new species through genetic integration of sym-

bionts.

Transduction Insertion of genetic material by viruses into prokaryotes; typically fol-

lowed by genetic recombination.

Transformation Uptake by prokaryotes, of free genetic material from the environment;

typically followed by genetic recombination.

Translation Interpretation of alleles/genes to proteins.

Transposons A sequence of genetic material that can move around in the genome, also

called “jumping gene”; typically followed by genetic recombination.

