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Summary 
 
 

 

The [4+2] Diels-Alder reactions involving 3,4-dimethyl-1-phenylphosphole 44 

and three sulfonated phosphine functionalized dienophiles viz. 3,4-dimethyl-1-

phenylphosphole-1-sulfide 45, diphenylvinylphosphine sulfide 53 and 

divinylphenylphosphine sulfide 56 were carried out by employing palladium complexes 

containing the ortho metalated (R)-(1-(dimethylamino)ethyl)naphthalene (Rc)-36 as the 

chiral template. Appreciable selectivity and successful separation of the diastereomers 

formed in the cycloaddition reaction could be achieved only in the case of the reaction 

involving 3,4-dimethyl-1-phenylphosphole-1-sulfide. It was observed that 3,4-dimethyl-

1-phenylphosphole functions as the cyclic diene whilst the sulfonated analogue 3,4-

dimetyl-1-phenylphosphole-1-sulfide assumes the role of dienophile in the course of the 

cycloaddition. The absolute stereochemistry of the formed P^P(S) ligand was established 

by means of single crystal X-ray diffraction analysis of the formed cycloadduct 

(Rc,Sp,Rp)-48. In the case of the cycloaddition reactions involving 53 and 56, separation 

of the diastereomers formed was not successful owing to the poor selectivity of the 

cycloaddition. These P^P(S) ligands were characterized by means of single crystal X-ray 

analysis of their dichloro complexes which crystallized out as racemic mixtures. 

The cycloaddition reaction between 3,4-dimethyl-1-phenylphosphole-1-sulfide 45 

and divinylphenylphosphine 58 resulted in the formation of four isomers in unequal 

amounts ( 17: 3: 1: 1). The major isomer (Rp,Rp,Sp)-61b was subsequently isolated as its 

dichloro complex (Rp,Sp)-62b and its solid state structure characterized by means of 

 viii



single crystal X-ray diffraction analysis. The single crystal X-ray diffraction analysis 

confirmed the formation of a enantiomerically pure P^P(S) ligand with 5 chiral centers. 

Similar reactions involving 45 and arsine functionalized dienophiles viz., 

diphenylvinylarsine 65 and divinylphenylarsine 69 were carried out using the 

bis(acetonitrile) complex (Rc)-51 as the reaction promoter. These reactions resulted in the 

formation of ligands of the type As^P(S) wherein the ligands coordinated to the 

palladium metal centre through sulfur and arsine. The selectivity in these cycloadditions 

was poor and the formed diastereomers could not be separated by either column 

chromatography or fractional crystallization.  

Enantiomerically pure diphosphine ligands carrying one phosphorous and three 

carbon stereogenic centers were generated from the Diels-Alder reaction between 

phosphine functionalized terminal alkenols [ i.e. (a) 3-diphenylphosphanyl-but-3-en-1-ol 

72 (b) 2-diphenylphosphanyl-prop-2-en-1-ol 73 ] and 3,4-dimethyl-1-phenylphosphole 44, 

with platinum complex (Rc)-43 as the chiral inductor. Both cycloaddition reactions 

showed good selectivity with only one enantiomer being formed. The products formed 

viz., (Rc,Sp)-76 and (Rc,Sp)-81   were isolated in high yield and were characterized by 

means of single crystal X-ray diffraction analysis. Their structures in solution were 

ascertained by means of 2D 1H-1H ROESY NMR spectroscopy. Subsequent 

decomplexation and re-preparation of the products proved the optical purity of the chiral 

diphosphines formed. 

The chiral organopalladium template (Rc)-36 was used to promote asymmetric 

hydrophosphination of phosphine functionalized alkenols. The reaction showed 

appreciable regio-stereoselectivity in the case of 3-diphenylphosphanyl-but-3-en-1-ol 

 ix



ligand with the hydrophosphination products being formed in the ratio 4:1:18:2. The 

major isomer (Rc,Rc)-87a was subsequently isolated in appreciable yield (78%) in its 

optically pure form. The similar reaction involving 2-diphenylphosphanyl-prop-2-en-1-ol 

however did not exhibit appreciable selectivity. 
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Nomenclature 
 
 The nomenclature used throughout the thesis confirms to the format adopted by 
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Vol. 116-125, p 102).  

X-ray Structural Data 

The X-ray structural analyses were kindly carried out by Assoc. Prof.Jagadese J.Vittal, 

Ms. Tan Geok-Kheng and Prof. Lip Lin Koh at the National University of Singapore. 

Full structural data (listing of crystal and refinement data, bond distances, angles and 

thermal parameters) are available from Prof.Leung Pak-Hing upon request. 
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General Introduction 
 

 
1.1 Chirality and its Significance 
 

The concept of "chirality" has been known since the 18th century. In simple terms, 

chirality is "handedness", that is, the existence of left/right opposition. The term Chiral is 

derived from the Greek name cheir meaning "hand" and apparently was coined by Lord 

Kelvin in 1904, in his Baltimore Lectures on Molecular Dynamics and the Wave Theory 

of Light in which he stated ..."I call any geometrical figure, or group of points, chiral, 

and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought 

to coincide with itself".1a Since Louis Pasteur discovered the existence of distinct chiral 

isomers in his laboratory,1b attempts have been made to understand and utilize this critical 

molecular property at the synthetic level. 

The inherent chirality of living systems dictates extraordinary specificity in the 

recognition of chiral molecules, so that a molecule and its mirror image, whether it is a 

pharmaceutical, an insecticide, a herbicide, a flavor or a fragrance, will almost always 

elicit different biological effects. This specificity presents a challenge for the industrial 

synthesis of these compounds since chemists must control the three-dimensional spatial 

arrangements adopted by their products so that only the required enantiomer is produced.  

The importance of chirality of drugs has been increasingly recognized, and the 

consequences of using them as racemates or as enantiomers have been frequently 

discussed.  
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While there are examples where both enantiomers have similar therapeutic 

properties, for instance the drug ibuprofen, there are numerous cases where one of the 

isomers causes serious side-effects (Figure 1.1). 

 

     Ibuprofen-anti-inflamatory drug
      (administered in racemic form)

N
H

O

OH

OO

N
O

O

  (R)-thalidomide-sedative
     (S) form teratogenic

C
H
C

(S)-pencillamine -anti-arthritic
       (R)-form toxic

HO

H
N

N
H

HO

        (S,S)-(+)-ethambutol - anti-tubercular drug
(R,R)-form causes optical neuritis leading to blindness

HO

(S)-levodopa - drug for Parkinson`s disease
      (R)-form causes granulocytopenia

H3C
CH3

SH

NH2

COOH

OH

COOH

NH2

 

 

Figure 1.1 

 

Therefore one of the most active areas of chemical research is centered on how to 

synthesize handed (chiral) compounds in a selective manner, rather than as mixtures of 

mirror-image forms (enantiomers) with different three-dimensional structures 
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(stereochemistries). Nature points the way in this endeavor: different enantiomers of a 

given biomolecule can exhibit dramatically different biological activities, and enzymes 

have therefore evolved to catalyze reactions with exquisite selectivity for the formation of 

one enantiomeric form over the other.  

 

1.3 Methodologies in Synthesis of Compounds with Desired Chirality 

 

Various well established strategies have been developed to achieve single 

enantiomer synthesis; they will be briefly discussed in this section. The main routes to 

single enantiomers can be classified as chiral pool method, chiral resolution, biological 

asymmetric methods and chemical asymmetric methods. 

 

1.2.1 Synthesis from Chiral Pools 

 

This method takes advantage of the inexpensive, readily available 

enantiomerically pure natural products such as lactic acid, carbohydrates, amino acids 

and their derivatives.2 These can be manipulated into forming desired target molecules 

with retention or inversion of configuration or chirality.3,4,5 Though chiral pool 

methodology produce least chiral impurities the obvious limitation is the limited 

diversity of chiral pools. 
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1.2.2 Chiral Resolution 

 

 Chiral resolution makes use of the fact that enantiomers differ in their interactions 

with chiral materials and constitutes the main method for the industrial synthesis of pure 

enantiomers. The racemic substrate is derivatised by reaction with a enantiomerically 

pure compound and the resulting diastereomeric product is separated by crystallization 

and also by means of chromatography.6,7,8 The desired enantiomer is then regenerated by 

chemical manipulations. Another protocol followed involves kinetic resolution wherein 

the fact that enantiomers react at different rates towards chiral reagents is utilized. 9,10,11 

The chiral entity may be a biocatalyst ( enzyme or microorganism ) or a chemocatalyst 

( chiral acid ,base or metal complex). In ideal case, one enantiomer is converted to the 

product while the other remains unchanged.  

 

1.2.3 Asymmetric Synthesis 

 

 Asymmetric synthesis can be defined as any chemical reaction that affects the 

structural symmetry in the molecules of a compound, converting the compound into 

unequal proportions of compounds that differ in the dissymmetry of their structures at the 

affected centre. 

 A ‘normal’ reaction which gives enantiomeric products is required to produce 

each in equal amounts because of the enantiomeric relationship between the two 

transition states. If a component of the transition state other than the substrate is chiral, 

and present as a single enantiomer itself, then the enantiomeric products need not be 
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formed in equal amounts. One of the enantiomers should be formed in excess. This is the 

basis of asymmetric synthesis.  Despite success achieved using resolution and chiral 

pools, there has been increasing interest in asymmetric synthesis.  

12

Asymmetric synthesis can be broadly classified into two categories; biological 

asymmetric methods (involving enzymes, whole organisms or catalytic antibodies)  13  and 

chemical asymmetric methods. The reagents affecting chemical asymmetric synthesis are 

used either stoichiometrically 14  or catalytically 15. The discovery by Wilkinson and co-

workers 16  that chlorotris(triphenylphosphine)rhodium, [RhCl(PPh3)3], can be used as an 

efficient catalyst for the hydrogenation of unhindered olefins, sparked a tremendous 

interest in asymmetric catalysis. The methodology involving replacement of the 

triphenylphosphine in the catalyst with chiral phosphines has resulted in the generation of 

a plethora of powerful homogeneous catalysts which in turn has led to the preparation of 

many chiral compounds in high enantiomeric purity.  

 

1.3 Transition Metal Complexes in Asymmetric Synthesis 

 

 Among the various methods employed , enantioselective synthesis employing 

chiral transition metal complexes provides one of the most general and flexible methods 

in asymmetric synthesis The utilization of chiral catalysts, in particular transition metal 

complexes incorporating chiral ligands, has become an important approach to achieve 

enatioselectivity in homogeneous organic synthesis. Transition metals are often employed 

in the design of asymmetric catalysts because of their manifestations of variable 

oxidation states ( useful in reactions involving redox processes) and coordination number 
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as well as their ability to coordinate with a wide range of ligands, either through σ or π- 

bonding and thus stabilize them. The incorporation of chiral ligands (chiral auxiliaries) 

serves to effect aymmetric induction. The chirality is transmitted to the site of reaction to 

discriminate the binding substrate, usually in terms of steric preference. Following the 

discovery of Wilkinson’s catalysts, many examples of catalysis involving transition metal 

complexes have been reported.17 These metallic species offer enormous possibilities and 

opportunities due to their diverse catalytic activity and also because they provide virtually 

unlimited per mutability by virtue of their organic ancillaries. Transition metal catalysis 

offers the possibility of achieving complex organic synthetic transformations that 

combine complete efficiency (100% yield) with complete chemical and stereochemical 

control (one product only) while minimizing or even eliminating reagents, waste products 

and solvents. This chemical utopia is achievable but will require an ever more 

sophisticated understanding of the interactions of transition metal species and their 

substrates, investigations of which will continue well into, if not throughout, the 21st 

century.  

 
1.4 Transition Metal Complexes with Phosphine based Ligands in Asymmetric 

Catalysis 

 
 

In 1968 Horner and Knowles showed that asymmetric hydrogenation is possible 

with Wilkinsons complex RhCl(P(C6H5)3 modified with chiral ligands.18,19,20 The 

discovery that diphosphines containing metal complexes are efficient catalysts was made 

by Kagan et.al.21,22 They developed (-)-DIOP 3 whose successful application refuted a 

long held belief that it was necessary to have the chirality of the ligand centered at the 
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phosphorous atom.23,24 Today transition metal species with phosphorous containing 

ancillary ligands are extensively used in catalysis, often providing dramatic or subtle 

selectivity in the conversion of substrates to desirable end products.  

 

1.4.1 Asymmetric Hydrogenation 

 

Attempts at hydrogenation of prochiral olefins using the Wilkinson complex 

resulted in low optical yields. Important progress was made by Bosnich, Kagan, Knowles 

and Sabacky when they prepared chiral bidentate phosphines and introduced them into 

the synthesis of Schrock/Osborn type25 square planar 16 electron rhodium complexes.26 

Figure 1.2 shows examples of commonly used chiral bidentate phosphines. 

 

H3C CH3

Ph2P PPh2

CHIRAPHOS

P P
OCH3H3CO

DIPAMP

PPh2
PPh2

O

O

H

H

DIOP

PPh2PPh2

BINAP

(1) (2)

(3) (4)  

Figure 1.2 
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Different kinds of substrates has been hydrogenated using these catalysts 

including amino acid precursors,27  enamides,28 carboxylic acid derivatives,29,30 

aldehydes,31,32 ketones33  and alcohols.34,35,36 Table 1.1 gives an overview about the 

results for hydrogenation of amino acid precursors.27

 
 

 
Table 1.1 Chiral diphosphines, optical purity (%) 

 
         Substrates               DIPAMP             DIOP        CHIRAPHOS          BINAP  

 
      

          
 CO2H

NHCOCH3

CO2H

NHCOPh

CO2H

NHCOCH3

           94                      73                    91                       67 
 

  
         96                       64                   99                        96 
 
 
 
 
         95                      81                   89                         84 
 
 

 
 

         
 

 

Summarizing literature data about asymmetric hydrogenations using chiral phosphine 

ligands., they should fulfill the following requirements:37

1. bidentate (1,2-diphosphine) ligands, 

2. formation of five membered chelate rings, 
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3. rigid carbon backbone on the phosphine ligand, 

4. aryl substituents at the phosphorous atom, 

5. cheap chiral starting material and a short high yield synthesis. 

 

1.4.2 Allylation   

 

 Allylation reactions are an attractive route for the formation of carbon-carbon 

bonds because the allylated products can be transformed into organic molecules 

possessing a variety of functional groups.38,39,40  Among selective allylation reactions, 

addition of an allyl group to carbonyl compounds to provide optically active secondary 

homoallylic alcohols is a valuable synthetic method because the products are readily 

transformed into β-hydroxycarbonyl compounds and various other chiral compounds.41 

There are a few methods available for a catalytic process including a 

chiral(acyloxy)borane complex 42,43 and a binaphthol-derived chiral titanium complex. 

44,45,46 Yamamoto et.al have devised an alternative method involving BINAP•Ag(I) 

complex for asymmetric allylation of aldehydes ( Scheme 1.1, Table 1.2 ). 47 

 

SnBu3 + RCHO
cat. BINAP.AgOTf

THF, -20 0C, 8h R ∗

OH

 

Scheme 1.1 
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Table 1.2 Asymmetric allylation of aldehydes catalysed by (S)-BINAP•AgOTf   
 

            Substrate                                                      Yield (%)                              % ee 
 

 
       PhCHO                                                                88                                       96 
 

 
                                              59                                          97 
                    

 
CHO

MeO

 
                                             95                                           96 
                                                        

 
CHO

Br

 
                                               94                                          93     
                           

 
O CHO

 
     (E)-PhCH=CHCHO                                              83                                       88 
 

 
     PhCH2CH2CHO                                                  47                                       88                                      
 

 
 

 

Various other chiral phosphine•Ag(I) complexes involving CHIRAPHOS 1, 

DIPAMP 2 and DIOP 3  are known to promote the allylation of various substrates. 48 

 

1.4.3 Asymmetric Heck Reactions   

  

Transition metal catalysed carbon-carbon bond formation reactions have become 

an invaluable tool for synthetic chemists. Among the most successful and widely applied 

of such transformations is the Heck reaction, which has been known since the late 1960s. 

Hayashi reported the first example of an intermolecular asymmetric Heck reaction in 

1991 involving the phenylation of 2,3-dihydrofuran with phenyl triflate catalysed by a 
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Pd(OAc)2/(R)-BINAP 4 combination which involves a aryl-palladium triflate BINAP 

intermediate.49 

   

O
+ ArOTf

[Pd(OAc)2 - (R)-BINAP]

O OAr Ar
+

(R) (S)

(>90% ee)

i-Pr2NEt, benzene

(Ar = Ph, p-ClC6H4, m-ClC6H4,p-MeCOC6H4, p-NCC6H4)
 

Scheme 1.2 
 
 

Chiral phosphine ligands have since been extensively used in asymmetric Heck 

reactions on varied substrates.50 More recently, other novel planar chiral phosphines 

based on the (arene)tricarbonylchromium (0) unit  have been employed for asymmetric 

Heck reaction involving phenylation of 2,3-dihydrofuran substrate.51  

 

 

1.4.4 Other Reactions Involving Transition Metal Complexes with Phosphine 

Based Ligands  

 

 Asymmetric coupling reactions with Grignard reagents were found to be 

catalyzed by nickel-phosphine complexes.52,53 Recently   chiral (β-aminoalkyl)phosphine 

ligand containing palladium complexes have also been employed successfully for 

Grignard cross coupling reactions.54,55,56 Asymmetric catalytic hydroformylation has been 

successfully carried out by employing rhodium(I) complexes containing chelating chiral 

diphosphines such as BINAP 4 and CHIRAPHOS 1 with moderate to high enantiomeric 

purity.57,58,59 Recent developments have been centered on chiral phosphine-phosphite 
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ligand containing rhodium(I) complexes.60 More recently P-chiral diphosphines bearing 

methoxy groups have been investigated as ligands in rhodium-catalyzed asymmetric 

hydroformylation involving styrene derivatives as substrates.61 Asymmetric 

hydrocarboxylation of styrene and its derivatives have also been carried out using Pd(II) 

complexes containing DIOP 3.62,63,64  Chiral phosphine complexes have also been used 

for asymmetric synthetic protocols like cycloaddition,65 hydrovinylation,66 

hydroboration,67 Suzuki coupling68 and epoxidation69 among others. 

 

1.5 Methods for Preparation of P-Chiral Phosphines and Their Derivatives70,71

 

The driving force for the preparation of P-chiral systems stems from the rapidly 

growing utility of such compounds in not only asymmetric catalysis (Section 1.4) but also 

in fields like chemotherapy,72 pest control,73 bioorganic chemistry74  and asymmetric 

synthesis.75 The fact that P-chiral organophosphorous compounds could not be found in 

the natural pool of chirality has stimulated the research in the synthesis of such 

compounds in their enantiomerically pure forms.76  

 

1.5.1 Kinetic Resolutions 

 

 The first kinetic resolution of a phosphine is due to Wittig and co-workers who 

succeeded in partially resolving p-biphenylyl-1-naphthylphenylphosphine by means of its 

quaternization with half-molar amounts of paraformaldehyde and (+)-camphor-10-

sulfonic acid ( Scheme  1.2 ).77 
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Scheme 1.2 

  

The unreacted half of the phosphine was found to be enriched in the (-)-

enantiomer while the other half, which was recovered from the 

hydroxymethylphosphonium salt 6 by treatment with Et3N contained accordingly the (+)-

enantiomer in excess. 

 Attempts to kinetically resolve phosphines through their partial oxidation with 

chiral peracids and amine oxides met with very little success.78 The reverse approach, 

relying on reduction of racemic phosphines oxides with chiral reducing agents, led to 

more promising results.  The reduction of oxides 8, 9 and 10 by chiral alanes (Figure 1.3) 

derived from AlH3 and (-)-1-phenylethylamine79 or LiAlH4 and (S)-2-

(aniinomethyl)pyrrolidine80 yielded more promising results. 

 

P

O

Ph

Ph
Me

8

P

O

Ph
Men-Pr

P

Me

OPh

9 10  

Figure 1.3 
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An efficient kinetic resolution of 1-phenyl-2-phospholene 1-oxide 12 by means of 

its 1,3-dipolar cycloadditions with chiral scalemic nitrones was developed by Brandi and 

co-workers.81 Crucial to this development were previous observations that 12 is 

approached by nitrones exclusively in the exo mode82 and only from the side bearing the 

P=O entity.83 The resolution process is shown in Scheme 1.3.  
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O-

-

RO OR

+
P

Ph O

1.5 benzene, 60 0C

N
O

PRO

RO
H

H

H

O Ph

+
N

O

PRO

RO
H

H

H

O Ph

+
P

O Ph

(S,S)-11 12 13a 13b (R)-(-)-14  

Scheme 1.3 

 

 In the experiment involving the nitrone 11 possesing sterically demanding alkoxy 

groups ( R= t-Bu), the unreacted (-)-R-14 was isolated in 27% yield ( to be compared 

with 33.3% theoretical yield after virtually complete conversion of the nitrone) and was 

determined to be of high enantiomeric purity (96%). The process proved similarly 

effective in resolution of phospholene sulfide and is likely to become of more general 

utility.  

 Enzymatic kinetic resolution of P-chiral phosphines derivatives has also been 

accomplished. A short series of simple phosphinylacetates ( e.g., R= Me, Et, CH2Ph, 

CH=CH2) was successfully resolved via PLE-catalyzed hydrolysis which afforded 

unreacted esters and acids of up to 98% enantiomeric purity.84 

 15



P

O

Ph
R

PLE
P

O

Ph
R

CO2Me P

O

R
Ph

CO2H+CO2Me

 

Scheme 1.4 

Recent studies have shown that the enzyme bacterial phosphotriesterase catalyzes 

the stereoselective hydrolysis of phosphinate esters, affording facile kinetic resolution   

protocol.85 Also lipase catalyzed kinetic resolution of P-chiral 

hydroxymethanephosphinates and hydroxymethylphosphine oxides have been reported in 

ionic liquids.86  

 
1.5.2 Resolution via Covalent Diastereomers 
 
 
 This procedure have been employed for the first time in the preparation of the 

optically active phosphinyl acrylate 15 as shown in Scheme 1.5.87  

P
Ph OEt

Ph

+
Cl

CO2Men
100-1200C

65%
P

Ph

Ph

O

CO2Men

1.crystallization
2. NaOH, THF-H2O
3. 2-bromopyridinium
methiodide

P
Ph

Ph

O

CO2Me

(1:1)

(+)-(SP)-15  

Scheme 1.5 

 
 
  Reaction of  ethylbenzylphenylphosphinite with (-)-menthyl 2-chloroacrylate 

yielded a 1:1 mixture of P-epimeric menthyl trans-2-phosphinylacrylates of which one 

epimer could be isolated in pure form by a series of crystallization from acetone. 
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Subsequent transesterification afforded (+)-(Sp)-15 in which phosphorous remained the 

sole stereogenic centre. 

 In a related Arbusov approach88  butylphenylvinylphosphinite 16 was allowed to 

react with (-)-menthyl bromoacetate to afford equimolar mixture of menthyl 

(phenylvinylphosphinyl)acetates (RP)/(SP)-17 from which one diastereomer 

spontaneously crystallized out from the crude reaction mixture upon cooling to room 

temperature. The product was then conveniently freed from the carbomenthoxy auxiliary 

by a one-step decarbalkoxylation yielding enantiomerically pure (SP)-18 (Scheme 1.6).  

 

PPh O-Bu

16

1. BrCH2CO2Men

2. Spontaneous
    seperation

PPh COOMen

O

(SP)- 17

LiCl.H2O

DMSO
PPh Me

O

(SP)- 18

 

Scheme 1.6 

 

 Other examples of the method being employed to separate P-chiral phosphines 

chalcogenides and aminoacids can also be found in literature.90,91 

 

1.5.3 Self-Resolving Systems 

 

 This method is similar to that discussed in the previous section in that resolution 

was realized by means of a covalent bound auxiliary, but different in that the chiral, 

typically C-chiral, unit introduced to the phosphine structure for the purpose of resolution 
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is meant to be retained in the target structure. Preparation of chiral phosphines by this 

method requires that at least one of the three C-P bonds is formed under the 

circumstances that the C-chiral auxiliary subunit is already present in the 

organophosphorous precursor or in the reagent structure. Nevertheless, even in the most 

efficient cases, almost without exception, access to individual diastereomers of the 

desired C,P-chiral phosphines derivative had to rely ultimately on separation. 

 In 1975 Naylor and Walker reported that alkylation of sodium 

methylphenylphosphide with (+)-1-phenylethyl chloride followed by oxidation of the 

crude products by H2O2 led to the formation of a 63:37 mixture of oxides of which the 

major could be isolated by chromatography on silica gel.92 Using similar methods 

diastereomers of novel oxides 19 and 20 and bis(oxide) 21 were also prepared, though 

except for (RP,SP)-21, they were not separated ( Figure 1.4).  

P

O

Men
Ph

R

19   R= Et
20   R= i-Pr

P P

OO

Men
Ph Ph Men

21
 

Figure 1.4 

  

Alkylations of phosphide anions with bifunctional racemic alkylating agent 22 

derived from tartaric acid were studied by Burgess and co-workers93 in the course of their 

work on P-chiral analogs of DIOP 3. The systems studied are shown in Scheme 1.7. No 

carbon-to-phosphorous induction was observed in any of the alkylations studied and, by 

default, the 1:2:1 mixture of the three diastereomeric bis(phosphines) had to be dealt with 
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in each case. Even though careful crystallization yielded pure 23, the other 

bis(phosphines) had to be converted into the corresponding mixture of their molybdenum 

tetra carbonyl complexes of the type 27 which proved eventually separable by flash 

chromatography. 
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Scheme 1.7 

 
  

Mathey and co-workers have reported that raecmic primary and secondary 

phosphines coordinated to tungsten can be reacted with electrophiles in a highly 

stereoselective manner. As shown in Scheme 1.8 deprotonation and subsequent alkylation   

of (menthyphosphine)pentacarbonyltungsten 28 with i-BuI gives two diastereomeric 
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secondary phosphines complexes 29a and 29b as either 7:3 or 3:7 mixture depending on 

the reaction temperature.94   

P
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P
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P
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CH2CHMe2 CH2CHMe2

H
+

28 29a 29b  

Scheme 1.8 
 
 
  

Cycloaddition reactions of an organophosphorous compound to a chiral auxiliary 

as a means of formation of self-resolving cycloadducts were employed by two groups. 

Mathey and co-workers95 used a [4+2] cycloaddition of phosphole 30 to menthyl and 

bornylphenylpropiolates to obtain diastereomeric 1-phosphanorbornadienes of type 31 

(Scheme 1.9). In the menthyl series the depicted oxidized major product was separated 

from its minor regioisomer on silica gel and was then resolved by HPLC into two 

individual P-epimeric oxides which were finally reduced back to phosphines by SiHCl3-

pyridine. The corresponding epimers in the bornyl series were not resolved.  
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1.5.4 Direct Resolutions 

 

 There are two main synthetic strategies adopted in direct resolution of chiral 

phosphines, one involving chromatography and the second by means of resolving agents. 

 

a. By Chromatography: Since the advent of high performance chromatographic 

techniques and development of a range of chiral stationary phases (CSPs) resolution of 

rcemic mixtures by chromatographic methods has become a viable alternative to the 

existing classical methods of resolutions. Early analytical studies on chiral phosphines 

derivatives focused mainly on phosphine oxides96 and typically required the prescience of 

π-basic97, usually condensed aromatic98, substituents in their structures since interactions 

based solely on the P=O dipole were considered not efficient enough. The number of 

successful, although not always complete, semi-preparative and preparative 

chromatographic resolutions of P-chiral phosphines and their derivatives is also 

continuously growing.99  

 
b. By Resolving Agents:  The first known optically active organophosphorous compound, 

ethylmethylphenylphosphine oxide 32, was obtained by direct resolution of the racemate 

using (+)- bromocamphorsulfonic acid as the resolving agent for the separation of the 

diastereomeric salts by fractional crystallization. Subsequently the same technique was 

used to resolve benzymethylphenylphosphine oxide 33.100 
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Figure 1.5 

 
 
  

Resolution employing (-)-dibenzoyltartaric acid (DBTA) has been successful in 

difficult separation of diastereomeric P-chiral compounds101,102 as well as for resolution 

of the backbone chiral diphosphorous systems such as NORPHOS103  and BINAP 4.104 

The first successful resolution of a simple P-chiral phosphonium salt was reported by 

McEwen and co-workers in 1959. They were able to resolve 

benzylethylmethylphenylphosphonium iodide 34 using silver hydrogen dibenzoyltartarate 

( Ag-DBHT) as the resolving agent and this methodology quickly gained more general 

use and importance.105 

 In the early 1970s, two groups developed general procedures for direct resolution 

of phosphines via their diastereomeric transition metal complexes. One of those 

procedures which was developed by Otsuka and co-workers106 relies on chiral palladium 

(II) complexes 35 – 37 derived from enantiomeric 1-phenylethylamines, 1-

napthylethylamines and sec-butylisonitrile as the resolving agents ( Figure 1.6 ., only one 

isomer of each complex is shown ). 
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Figure 1.6 

 
 A general procedure of such resolution utilizing typically only 0.5 equiv of the 

resolving agent is given in Scheme 1.10.  
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Scheme 1.10 
 

 
 Even though it was realized that matching of a suitable metal complex with the 

phosphines was a primary requirement, the method nevertheless proved efficient and 

reasonably general and thus provided access to phosphines in high enantiomeric purity. 

Typically, the unreacted excess phosphines remaining in the mother liquor provided one 
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enantiomer in highly enriched condition whereas the other enantiomer was usually 

recoverable from the precipitated crystalline complex of the type 35a. It needs to be 

noted that,  even though a preliminary analysis would infer that these resolutions come in 

the realm of classical kinetic resolution, they were driven by crystallization (or 

precipitation) of the less soluble of the two diastereomeric complexes equilibrating 

quickly in solution via ligand exchange rather than difference in complexation rates of 

the two phosphines enantiomers. 

 Complexes 35 and 36 were employed by Wild and co-workers107-110 for 

the resolution of bidentate phosphines. Their remarkably efficient resolution of o-

phenylenebis(methylphenylphosphine) 38 by the chloro-bridged dimmer (R)-35 is shown 

in Scheme 1.11.111 Nearly complete precipitation of the complex 40 followed by effective 

two step decomplexation resulted in the isolation of the optically pure (S,S)-38 in 85% 

overall yield and subsequent recovery of the optically pure (R,R)-38 from the mother 

liquor in high yield (90%) . The related bidentate ligands (R,R)- 41 and (R,S)- 42 ( Figure 

1.7 ) were also resolved using the same methodology although in the case of the “meso” 

– type (R,S)- 42 the complex 36 had to be used.   
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 Complexes 35 and 36 were also used with success for resolution of some P-

achiral axially dissymmetric phosphines 112,113,114 although they failed to resolve C3-

symmetric phosphines. The diastereomerism that ensued on interactions of such 

complexes with racemic phosphines could also be utilized for determination of the optical 

purity of the latter. 110,115 The versatility of this complex as resolving agent for several 

other asymmetric bidentate and monodentate ligands that contain tertiary phosphorous 

and arsine atoms has been demonstrated.116-119  

 

1.6 The Two Important Chiral Templates used in the Project 
 
 

The chiral templates chosen for the project are the organopalladium complex 

containing ortho-metalated (R)-(1-(dimethylamino)ethyl)naphthalene (R)-36 and its 

platinum analog (R)-43 ( Figure 1.8). 

NMe

Me Me

Pd
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NMe
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 Figure 1.8 

 

A unique stereochemical feature that makes this naphthalene ligand an ideal 

auxiliary for asymmetric ligand transformation reactions is that there is a strong internal 

steric repulsion between the methyl substituent on the stereogenic carbon and its 

neighboring napthylene proton.120a The crystallographic analysis and 2-dimensional 

solution NMR studies involving rotating Overhauser effect (ROESY) have confirmed 
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that the organometallic ring is locked into the static δ conformation, both in solid state 

and in solution.121a The prochiral NMe groups control the stereochemistry of the 

neighboring coordination sites by virtue of the fact that they are locked into non-

equivalent axial and equatorial positions. Besides the steric based control, the auxiliary 

also influences an electronic control since the σ-donating nitrogen and the π-accepting 

naphthylene carbon of the organometallic ring control the regioselectivity of the 

incoming ligands. Ligands with soft donors (like phospholes) prefer to bind trans to the 

NMe2 entity of the auxiliary.121b  

 

1.7 Aims of the Present Project 

 

 This project is intended to contribute to the knowledge and development of 

synthetic methods involving P-chiral phosphines. To date the importance of chiral 

phosphines in asymmetric catalysis has been well established. This has led to the need for 

a variety of functionalized chiral phosphines with chirality residing either on the P or on 

the C-backbone or on both.  

 In the initial part of the project we seek to synthesize a series of chiral phosphines 

ligands of the type P^P(S) through [4+2] cycloaddition reactions involving 3,4-dimethyl-

1-phenylphosphole ( DMPP) 44 and its sulfonated analog ( DMPPS) 45 as dienes. The 

ability of DMPPS 45 to act as diene and dienophile in asymmetric Diels-Alder reaction 

will be studied via an attempted metal template promoted cycloaddition between 44 and 

45 . 
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The reaction of the phosphole 44 with various sulfonated phosphine 

functionalized dienophiles and that of the sulfonated phosphole 45 towards phosphine 

and arsine functionalized dienophiles will be studied in order to compare the effect of the 

sulfonation on reaction rates and selectivity in this class of metal template promoted 

cycloaddtions involving (R)-36. Notably, studies on chiral As^P(S) ligands are almost 

non-existent in literature.  This study assumes added significance in view of the fact that 

mixed donor ligand systems have shown promising catalytic activity.122,123,124

In the second part of the project we wish to study the efficacy of the template (R)-

43 as chiral promoter in the asymmetric synthesis via Diels-Alder cycloaddition 

involving 44, of chiral phosphanorbornene systems with hydroxyl functionality. The 

hydroxyl functionality of the synthesized chiral diphosphine has the potential to be 

converted to many other derivatives such as ether, ester or even nitride which therefore 

provides access to many other analogues. It needs to be noted that among other 

applications, chiral functionalized phosphines are efficient controllers for cytotoxicity of 

gold-based anti cancer drugs. 125,126  The drug activities and selectivities are critically 

controlled by the selected functionalities and their locations within a particular chiral 

phosphines skeleton. The synthesized chiral phosphines ligands therefore will have 

application in this study owing to the inherent potential of changing the hydroxyl entity in 

them to other selected functional groups.  
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The final part of the study involves asymmetric hydrophosphination reaction 

between diphenylphosphine and phosphine functionalized alkenols, employing the 

template (R)-36. The alkenols themselves are to be synthesized in a highly regiospecific 

manner by hydrophosphination of their alkynol precursors using diphenylphosphine.  In 

fact, alkenylphosphines themselves are attracting interest as building blocks in organic 

synthesis and as useful ligand precursors for catalysis. The study will therefore involve a 

two-stage hydrophosphination of alkynols culminating in the synthesis of diphosphine 

ligands with chirality residing in the carbon backbone. 
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2.1 Introduction 
 
 
2.1.1 Classic and Inverse electron-demand Diels-Alder Reactions: Reactivity, 

Regio and Stereo-selectivity and Substituent Effects. 

 

 
 The asymmetric Diels-Alder reaction127 (Nobel Prize 1950) is one of the most 

efficient and elegant methods for the construction of chiral six-membered rings. The 

formation of two carbon-carbon bonds leading to the creation of up to four concatenated 

stereogenic centers in a single step makes this reaction a versatile synthetic tool for 

constructing simple and complex molecules.128,129,130 Reactivity studies on numerous 

Diels-Alder reactions involving various dienes and dienophiles have shown that the 

reactivity, regiochemistry and stereochemistry of the reaction depends on the HOMO-

LUMO energy separation131 of the components: the lower the energy difference, the 

lower is the transition state energy of the reaction.132,133,134  Classic electron-demand 

Diels-Alder reactions are accelerated by electron-donating substituents in the diene and 

by electron-withdrawing substituents in the dienophile (Figure 2.1). On the other hand, 

inverse electron-demand Diels-Alder reactions are influenced by electronic effects of the 

substituents in the opposite way. The neutral electron-demand Diels-Alder reaction is 

HOMO-LUMO-diene controlled and is insensitive to substituent effects. The 

regiochemistry is determined by the overlap of the orbitals that have larger coefficients 

(larger lobes).   
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 The greater the difference between the orbital coefficients of the two end atoms of 

the diene and the two atoms of the dienophile, which form the two bonds, the more 

regioselective the cycloaddition. 

 Cyclic dienes can give stereoisomeric products depending on whether the 

dienophile lies under or away from the diene in the transition state. When the diene and 

dienophile are aligned directly over each other the endo product is formed. Alternatively 

when the participating diene and dienophile are staggered with respect to each other the 

exo product is preferentially formed (Figure 2.2). 
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2.1.2 Importance of Chiral Mixed Donor Ligands 

 

Chiral bidentate ligands have been used extensively to perform asymmetric 

transformations. The most commonly employed are bidentate phosphines, however, 

promising catalytic activity have been noticed for mixed donor ligands such as P-S 

ligands.135  Ligands of the type P^P(S), where the ligand chelates through P and S atoms,  

are less studied. Particularly few reports exist on their complexes. The coordination 

chemistry of bis-phosphine monochalcogenides was first investigated by Grim and 

coworkers.136 On the other hand P^P(S) ligands have been investigated to a much lesser 

extend.137-140  

             Phosphine sulfides were first synthesized by Strecker and Spitaler in 

1926.141 The synthesis involved direct addition of sulfur to triethyl phosphate at room 

temperature to form triethyl thionophosphate. It is also well documented that similar 

addition occurred with the trialkylphosphines, to form the trialkylphosphine sulfides.142 

From force-constant measurements by Siebert143, the O=P bond order in OPCl3 is 

determined to be 2.09 whereas the S=P bond order for SPCl3 is 1.57, suggesting that both 

the P=O and P=S bonds have significant π  character.144 

 Diphenylphosphine sulfide and divinylphenylphosphine sulfide are typical 

pentavalent phosphines. It was shown from previous works that the dienophile in these 

molecules is not the P=S bond, but rather the C=C counterpart. The reason probably lies 

in the fact that the P=S acts as an electron withdrawing group when attached to the 

vinylic group, thereby activating the double bond. Furthermore, the geometry at the 

pentavalent phosphorous does not allow proper alignment of the orbitals for a 
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cycloaddition. The presence of phenyl groups at the phosphine would cause steric 

hindrance and therefore not favor a cycloaddition to the P=S bond in these ligands. 

 Phospholes exhibit great versatility as ligands in coordination chemistry. They 

can behave as two, four and six electron donors. Two electrons can be donated from the 

phosphorous lone pair, the diene system behaves as a four electron donor, and when both 

coordination modes operate simultaneously the ring acts as a six electron donor. This rich 

coordination chemistry prompted the study of their sulfonated analogues. The synthesis 

of 3,4-dimethyl-1-phenylphosphole 1-sulfide ( DMPPS) 45 was first reported by Mathey 

et. al in 1970.145  In the past thirty years the reactivity of phosphole sulfide towards 

various olefinic compounds in cycloaddition reactions have been intensively studied. 

Phosphole sulfide undergoes cycloaddition either as a cyclic diene or a dienophile via its 

C=C double bonds.146 In behavior unlike that known for phosphole oxides, phosphole 

sulfides also act as dienophiles in reaction with dienes, thereby giving valuable 

cycloadducts147,148 including a member of a rare class of phosphole heterocycles 

describable as phosphasteroids.149  In contrast to the oxide analogue, DMPPS is a 

relatively stable ligand that does not undergo dimerization rapidly under mild conditions. 

For example, 3,4-dimethylphosphole sulfides are normally monomeric150 whereas the 

corresponding oxides are dimeric. 

 As an analogue of phospholes, phosphole sulfides are precursors of phospholyl 

compounds. Phospholyl ligands are versatile ligands as they have the same number of π – 

electrons as the cyclopentadienyl ligand and they have the additional ability to coordinate 

a second metal via their phosphorous lone pair. This versatility has led to numerous 

studies on phospholyl ligands and their coordination chemistry.151 Unlike phospholyl 
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ligands, phosphole sulfides have been less explored from the point of view of their 

coordination chemistry.  

 

2.1.3 Preparation and Isolation of 3,4-Dimethyl-1-phenylphosphole 1-Sulfide           

(DMPPS) 45 

 

 DMPPS 45 can be prepared from 3,4-dimethyl-1-phenlphosphole 44 by treatment 

of the latter at room temperature with excess sulfur for 3 hours.152 3,4-dimethyl-1-

phenylphosphole sulfide was obtained in 75% yield as pale yellow solid. The 31P{1H} 

NMR spectrum ( 121MHz, CDCl3) exhibited a sharp singlet at δ 46.37  ( Scheme  2.1). 

P
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P
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44 45  

 Scheme 2.1 

 The synthesis can also be achieved by the reaction of DMPP 44 with 

thiobenzophenone. The reaction rate is however considerably slower (5 days) and the 

yield, lower (71%). 
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2.2      Asymmetric Diels-Alder Reaction between DMPP and 3, 4- Dimethyl-1-           

phenylphosphole 1-Sulfide ( DMPPS)  

 
2.2.1 Preparation of exo-Products : (Rc,Rp,Sp)- 48 and (Rc,Sp,Rp)- 48 
 
 

The reaction was initiated with (Rc)-36 (Scheme 2.2). The neutral monomer (Rc)-

46 was obtained by coordinating DMPP regiospecifically to (Rc)-36.153 Treatment of this 

chloro species in dichloromethane with aqueous silver perchlorate generated the 

corresponding perchlorate analogue (Rc)-47 in quantitative yield.154
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A solution of (Rc)-47 was subsequently refluxed with one equivalent of 3, 4- 

dimethyl-1- phenylphosphole 1-sulfide 45 in 1,2-dichloroethane. The reaction was 

monitored by means of 31P{1H} NMR spectroscopy ( 121 MHz) and was found to be 

complete in 48 hrs. Prior to isolation the 31P{1H} NMR spectrum of the crude product in 

CD3CN exhibited two pairs of doublets indicative of a diastereomeric mixture (3:1). For 

the major diastereomer (Rc,Sp,Rp)-48,   the doublets were observed at δ 61.30 ( JP-P = 11.4 

Hz ) and 115.27 ( JP-P = 11.4 Hz). For the minor isomer the doublets occurred at δ 61.96 

( JP-P = 11.4 Hz )  and 114.80 ( JP-P = 11.4 Hz). The signals in the low field region at 

115.3 and 114.8 of the NMR spectrum are typical for bridgehead phosphorous adopting 

the exo-syn stereochemistry.155 The 31P NMR analysis thus revealed that the two possible 

diastereomers were generated as a 3:1 mixture.  

The first attempt to separate the two diastereomers by means of fractional 

crystallization from acetonitrile - diethyl ether yielded crystals which consisted of both 

diastereomers in almost equal ratio as evidenced by the 31P{1H} NMR spectrum. The 

mother liquor obtained from the first crystallization attempt was however found to be 

pure since only signals of the major isomer, (Rc,Sp,Rp)-48, was observed. The major 

isomer was subsequently purified by column chromatography on silica gel with an eluent 

system comprising of ethyl acetate/hexane (3:1). The complex was crystallized out from 

acetonitrile on slow diffusion of diethyl ether as pale yellow prisms. The single crystal X-

ray diffraction analysis was employed to confirm the coordination chemistry of 

(Rc,Sp,Rp)-48 . 
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2.2.2 Single Crystal X-ray Diffraction Analysis of (Rc,Sp,Rp)-48 

The single crystal X-ray diffraction studies confirmed the coordination chemistry 

of the isolated major diastereomer (Rc,Sp,Rp)-48 ( Figure 2.3 ). The formed cycloadduct 

coordinates to the palladium template as a bidentate chelate via phosphorous and sulfur 

atoms of the DMPP and the DMPP=S respectively. 

 

Figure 2.3  Molecular structure and absolute configuration of (Rc,Sp,Rp)-48 
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The sulfonated phosphole binds to the metal centre trans to the C of the metal 

template while the phosphorous of the DMPP occupies the position trans to the nitrogen 

of the template. This study also revealed that the absolute configurations at P(1), P(2), 

C(1), C(4), C(5) and C (6) in the complex were S, R, R, S, R and R respectively. 

The geometry at the palladium centre is distorted square planar with angles at 

palladium in the range of 80.7(2) – 94.0(1) and 171.3(1) – 173.9(2)°. The bite angles 

formed by the two chelate rings are 80.7(2)° for the naphthylamine ring of the template 

and 94.01(6)° for the (S=P)-P chelate. Selected bond distances and angles are listed in 

Table 2.1. 

 

           Table 2.1 Selected bond lengths (Å) and angles ( ° ) for  (Rc,Sp,Rp)-48 

 

Pd(1)-C(13)                    2.004(5)                      Pd(1)-N(1)                    2.146(4) 

Pd(1)-P(1)                      2.226(1)                      Pd(1)-S(1)                     2.481(1) 

P(2)-S(1)                        1.987(2)                      P(2)-C(8)                      1.768(6) 

C(8)-C(7)                       1.321(8)                      C(6)-C(7)                      1.535(8) 

C(5)-C(6)                       1.564(8)                      P(2)-C(5)                      1.832(6) 

C(5)-C(4)                       1.550(9)                      C(1)-C(6)                     1.544(8) 

P(1)-C(4)                        1.856(6)                     P(1)-C(1)                      1.874(5)  

C(13)-Pd(1)-N(1)           80.7(2)                       C(13)-Pd(1)-P(1)           92.0(1) 

N(1)-Pd(1)-P(1)             171.3(1)                     C(13)-Pd(1)-S(1)           173.9(2) 

N(1)-Pd(1)-S(1)             93.4(1)                       P(1)-Pd(1)-S(1)              94.0(1) 

P(2)-S(1)-Pd(1)              92.4(1)                      C(4)-P(1)-Pd(1)              116.7(2) 
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C(1)-P(1)-Pd(1)             123.9(2)                    C(8)-P(2)-S(1)              113.0(2) 

 

            

The bond angle at the bridgehead phosphorous, C(4)- P(1)- C(1) [ 80.4 (3) °], is in 

agreement with that observed for exo dimeric phosphole sulfides reported earlier156 ( ca. 

80° ) and is indicative of  the elevated levels of strain at the bridge. This bridgehead angle 

was also the same as that observed for the cycloadduct obtained from the asymmetric 

dimerization of DMPP in the presence of the platinum(II) analogue of the same 

template.157 The bridgehead C-P-C angle is also expectedly smaller than those seen in 

complexes obtained from the cycloaddition of diphenylvinylphosphine with DMPPS158 

( ca. 83° ) and also for the exo-thioamide-substituted 7- phosphanorbornene P-S bidentate 

chelate.159 The Pd-S and P=S distances were observed to be 2.481(1) and 1.987(2) A° 

respectively. It is noteworthy that in this cycloaddition DMPPS functions as a dienophile 

whereas DMPP functions as the cyclic diene. 

 

2.2.3 Preparation of the Dichloro Complex   (Sp,Rp)-49 

 

The chiral naphthylamine auxiliary in complex (Rc,Sp,Rp)-48 was removed 

chemoselectively by treatment with hydrochloric acid at room temperature. The dichloro 

complex (Sp,Rp)-49 was obtained as yellow crystals from acetonitrile-diethyl ether. The 

31P{1H} NMR spectrum of the complex in CDCl3 showed signals at δ 60.54 ( d, 1P, JPP = 

15.2 Hz), 106.63 ( d, 1P, JPP = 15.2 Hz).  
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                                          Scheme 2.3 

 

2.2.4 Single Crystal X-ray Structural Analysis of  (Sp,Rp)-49 

 

The molecular structure and the absolute configuration of the recrystallised 

(Sp,Rp)-49 were established by single crystal X-ray crystallographic analysis (Figure 2.4). 

The absolute configurations of the stereogenic centers were found to be retained even 

after reaction under acidic conditions. Selected bond parameters are given in Table 2.2. 

 

Table 2.2  Selected bond lengths ( Å) and angles ( ° ) for (Sp,Rp)-49 

________________________________________________________________________ 

Pd(1)-P(1)                    2.194(9)                     Pd(1)-Cl(1)                   2.318(1)   

Pd(1)-S(1)                    2.324(1)                     Pd(1)-Cl(2)                   2.381(1) 

P(2)-S(1)                      2.017(1)                     C(5)-C(6)                     1.559(5) 

P(1)-Pd(1)-Cl(1)          83.0(4)                       P(1)-Pd(1)-S(1)              91.5(4) 

Cl(1)-Pd(1)-S(1)          171.8(4)                     P(1)-Pd(1)-Cl(2)            174.4(3) 

Cl(1)-Pd(1)-Cl(2)         94.9(4)                      S(1)-Pd(1)-Cl(2)             91.1(4) 

C(4)-P(1)-C(1)             81.1(2)                      P(2)-S(1)-Pd(1)               93.1(5) 
________________________________________________________________________ 
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Figure 2.4 Molecular structure and absolute configuration of (Sp,Rp)-49 
 

 
2.2.5    Decomplexation and the Optical Purity of  (Sp,Rp)-49 

 

The optically active ligand (Rp,Rp)-50 can be stereospecifically cleaved off from 

the complex (Sp,Rp)-49  by treatment of the dichloro complex with aqueous potassium 

cyanide at room temperature (Scheme2.4). 
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It is noteworthy that the apparent inversion of configuration that occurs at the 

tertiary phosphorous stereogenic center when the ligand is liberated from the metal is 

merely a consequence of the Cahn-Ingold-Prelog ( CIP ) sequence rule.160 The liberated  

(Rp,Rp)-50 was obtained as a colorless oil in 83% yield. The 31P{1H} NMR spectrum of 

the free ligand in CDCl3 exhibited two doublets at δ 58.12 ( d, 1P, 3JPP = 7.6Hz) and  

106.50 ( d, 1P, 3JPP = 7.6Hz), the low field resonance signal confirms the retention of the 

exo-syn stereochemistry.155  
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Owing to the susceptibility of the non coordinated bridgehead phosphorous to 

oxidation, the liberated (Rp,Rp)-50 cannot be stored in its pure form. Hence the liberated 

ligand was re-complexed to selected metal ions to form stable metal complexes. 

Furthermore, in order to determine the optical purity of (Rp,Rp)-50, the liberated ligand 

was recoordinated to the bis(acetonitrile) complex (Rc)-51 (Scheme 2.4). The 

recoordination procedure was monitored by 31P{1H} NMR spectroscopy. In CDCl3, the 

31P NMR spectrum of the crude recoordination product showed two doublets at δ 61.30 

( JP-P = 11.4 Hz ) and 115.27 ( JP-P = 11.4 Hz). These NMR signals are identical with 

those recorded for the major diastereomer generated from the original cycloaddition 

reaction. No 31P{1H} signals could be detected at δ 61.96 and 114.80, thus conforming 

that liberated (Rp,Rp)-50 is optically pure. In a further check, (Rp,Rp)-50 was 

recoordinated regiospecifically to (Sc)-51 to generate the diastereomeric complex 

(Sc,Sp,Rp)-48. The 31P{1H} NMR spectrum of the crude product in CDCl3 showed two 

doublets at 61.96 and 114.80. No 31P{1H} NMR signals could be detected for the major 

diastereomer thus reaffirming that liberated (Rp,Rp)-50 is stereochemically pure. 
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2.3 Asymmetric Diels-Alder Reaction between DMPP and 

diphenylvinylphosphine sulfide ligand. 

 

2.3.1 Preparation of exo-Products : (Rc,Rp)- 52 and (Rc,Sp)- 52  
 
 
 
The reaction of (Rc)-47 with diphenylvinylphosphine sulfide 53, proceeded smoothly 

under ambient conditions. The reaction was monitored by 31P{1H} NMR spectroscopy 

(121 MHz, CDCl3) and was found to be completed in three days. 
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On completion the 31P NMR spectrum showed two pairs of singlets at δ 49.38, 

113.28 (minor) and 52.06, 113.91 (major). The signals were attributed to a possible 

diastereomeric pair in a 2:1 ratio with the low field resonances indicative of bridgehead 

phosphorous with exo-syn stereochemistry.155 The high field signals at δ 49.38 and 52.06 

are attributed to the non-bridging phosphorous of the two diastereomeric cycloadducts 

(Rc,Rp)- 52 and (RcSp)- 52. It needs to be noted that the non-observance of coupling 

between the two phosphorous centers is consistent with what has been observed in 

similar P^P(S) bidentate cycloadducts involving 7-phosphanorbornene systems on 

Pd(II).158  Attempts to separate and isolate the two diastereomers via column 

chromatography and fractional crystallization, however, were not successful.  

 

2.3.2 Preparation of the Dichloro Complex   (Sp)-54 and (Rp)-54 

 

To confirm the identity of the two diastereomers and with a view to possibly 

separate them via fractional crystallization, the chiral naphthylamine auxiliary in the 

1:0.6 diastereomeric mixture was removed chemoselectively from palladium by stirring a 

dichloromethane solution of the complex mixture with concentrated hydrochloric acid at 

room temperature (Scheme 2.6) .  

 The 31P{1H} NMR spectrum (121 MHz) of the crude reaction mixture in CDCl3 

exhibited two singlets at δ 50.05 and 111.65. Fractional crystallization was attempted in a 

wide range of solvent systems. Yellow crystals suitable for single crystal X-ray 

diffraction analysis were finally obtained from acetonitrile-diethyl ether as yellow prisms 

in 76% yield. 
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2.3.3 Single Crystal X-ray Diffraction Analysis of 54  

The molecular structure of 54 was established by a single crystal X-ray structural 

determination. The single crystal X-ray diffraction analysis of 54, however, reveals the 

presence of both enantiomers in the unit cell. The ORTEP for (Rp)-54 is shown in Figure 

2.5, and is taken as the representative molecule in order to study the coordination aspects 

for the cycloadducts which were formed as racemic mixture.  

The phosphanorbornene skeleton coordinates to the palladium centre as bidentate 

chelate via P → Pd and P=S → Pd. The structural analysis revealed that the 

diphenylphosphinosulfide group is substituted at the exo position of the 
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phosphanorbornene skeleton.  The geometry at the palladium is distorted square planar 

with angles at palladium in the range of 83.4(4) – 95.3(4) and 174.4(4)-178.7(4)°. 

 

Figure 2.5  Molecular structure and absolute configuration of (Rp)-54 

 

The bond angle at the bridgehead phosphorous, C(3)-P(2)-C(6) (81.47(15)°), is 

similar to those observed for (Sp,Rp)-49 [81.06(16)°] indicative of similar levels of strain 

in the 7-phosphanorbornene P^P(S) ligand framework. It is also noted that the bridgehead 
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strain is much higher than that observed for the cycloadduct formed between DMPPS and 

diphenylvinylphosphine on a Pd(II) centre158 [83.0(1)°], possibly due to the fact that in 

the latter the  bridgehead P is less constrained by coordination requirements since the 

coordination is thru the S in the P=S bridgehead rather then directly through P. Selected 

bond distances and angles are listed in Table 2.3.               

Table 2.3 Selected bond lengths (Å) and angles ( ° ) for  (Rp)-54 

 

Pd(1)-P(2)                    2.203(9)                        Pd(1)-S(1)                    2.299(9) 

Pd(1)-Cl(2)                  2.318(1)                        Pd(1)-Cl(1)                   2.401(9) 

P(1)-C(15)                   1.805(3)                        P(1)- C(9)                    1.805(3) 

P(1)-C(1)                     1.826(3)                        P(1)-S(1)                      2.012(1) 

P(2)-C(3)                     1.837(3)                        P(2)-C(6)                     1.849(3) 

P(2)-Pd(1)-S(1)           90.9(3)                          P(2)-Pd(1)-Cl(2)          83.4(4) 

S(1)-Pd(1)-Cl(2)         174.3(4)                        P(2)-Pd(1)-Cl(1)          178.6(4) 

S(1)-Pd(1)-Cl(1)         90.3(3)                          Cl(2)-Pd(1)-Cl(1)         95.2(4)  

C(3)-P(2)-Pd(1)          116.4(1)                       C(6)-P(2)-Pd(1)           120.2(1) 

P(1)-S(1)-Pd(1)           101.1(4)  

 

  It is noteworthy that the S → Pd bond in (Rp)-54 is weaker than that in 

(Sp,Rp)-49 [2.324(1)°] formed from cycloaddition of DMPP and DMPPS wherein the S 

belongs to the sulfonated phosphole acting as dienophile. The S → P bond although is of 

the same strength as that formed in the cycloadduct formed in the reaction between 
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DMPPS and diphenylvinylphosphine where the S belongs to the sulfonated phosphole 

acting as dienophile. 

2.4 Metal Template Promoted Diels-Alder Reaction between DMPP and   

divinylphenylphosphine sulfide Ligand.     

     

2.4.1 Preparation of exo-Products  
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In order to further explore the reactions of sulfonated vinylphosphines towards 

DMPP and to understand the reason for the low selectivity observed in the case of the 

cycloaddition involving diphenylvinylphosphinesulfide and DMPP, a further reaction 

was carried out involving sulfonated divinylphenylphosphine and DMPP (Scheme 2.7). 

 The attempted Pd(II) template promoted cycloaddition reaction between (Rc)-47 

and sulfonated divinylphenylphosphine 56 proceeded at room temperature in 

dichloromethane and was monitored by 31P{1H} NMR spectroscopy ( 121MHz, CDCl3). 

The reaction was found to be complete in 4 days. The crude reaction mixture showed the 

presence of 4 isomers in the ratio 3.14: 2.06: 1: 2.53. The set of resonance signals at the 

low field range between δ 113.22 and 114.54 was clearly indicative of the formation of 

the cycloadduct. Attempts to separate out the isomers by means of column 

chromatography and fractional crystallization proved futile.  

 

2.4.2   Preparation of Dichloro Complexes of 55 
 
 

In order to establish the structure of the cycloadduct formed and to possibly 

separate the isomers of 55 as neutral complexes, the dichloro complexes of the products 

were prepared by chemoselective removal of the ortho-metallated naphthylamine 

auxiliary as shown in Scheme 2.8. 

 Attempts to separate the isomers by means of column chromatography did 

not yield any results. Therefore attempt was made to separate the isomers by fractional 

crystallization.  
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2.4.3   Single Crystal X-ray Structural Analysis of 57 

 

 Single crystal X-ray diffraction analysis of the first crop of pale yellow prisms 

obtained from the reaction mixture containing the dichloro complexes revealed that both 

enantiomeric forms of one of the diastereomers has co-crystallized out ( Figure 2.6). 

Subsequently another batch of crystals were obtained as yellow needles and analyzed by 

single crystal X-ray diffraction revealing the presence of the other diastereomer, also 

present as a enantiomeric mixture (Figure 2.7). 

 From the single crystal X-ray analysis, it was confirmed that the cycloadduct 

produced in the reaction between divinylphenylphosphine sulfide and DMPP coordinates 
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to the metal centre through S → Pd and P → Pd bonds. The geometry at the palladium is 

distorted square planar in both isomers. The angles at palladium are in the ranges 83.7(3) 

– 93.8(3)° and 175.5(4) – 176.7(4)° for  (Rp,Sp) and (Sp,Sp)-57b and in the range 83.4(1) – 

93.7(2)° and 174.8(1) – 176.2(2) for (Rp,Rp) and (Sp,Rp)-57a. The selected bond distances 

and angles for the two diastereomers are given in Table 2.4 and Table 2.5. 

 
 

Figure 2.6   The molecular structure of enantiomeric complex (Rp,Sp) -57b     
( representative molecule from enantiomeric mixture) 
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Figure 2.7    The molecular structure of the enantiomeric complex (Sp,Rp)-57a            
(representative molecule from enantiomeric mixture) 

 
 

Table 2.4 Selected bond lengths (Å) and angles (°) for complex  (Rp,Sp)- 57b 
 

 
Pd(1)–P(2)                   2.209(9)                          Pd(1)–Cl(2)                     2.314(9) 
 
Pd(1)–S(1)                   2.309(1)                          Pd(1)–Cl(1)                     2.397(1) 
 
P(1)–C (9)                   1.786(4)                          P(1)–C(11)                      1.796(4) 
 
P(1)–C (2)                   1.828(3)                          P(1)–S(1)                         2.006(1) 
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P(2)–C(6)                    1.841(4)                          P(2)–C(3)                        1.845(3) 
 
C(1)–C(6)                   1.558(5)                          C(1)–C(2)                        1.564(5) 
 
C(2)–C(3)                   1.550(5)                          C(3)–C(4)              1.523(5)   
 
C(4)–C(5)                   1.333(5)                          C(5)–C(6)                        1.513(5) 
 
P(2)–Pd(1)–S(1)         92.6(3)                            P(2)–Pd(1)-Cl(2)             83.7(3) 
 
S(1)-Pd(1)-Cl(2)        175.5(4)                          P(2)-Pd(1)-Cl(1)              176.6(4) 
 
S(1)-Pd(1)-Cl(1)        89.9(3)                            Cl(2)-Pd(1)-Cl(1)             93.8(3) 
 
C(2)-P(1)-S(1)          113.6(1)                           C(6)-P(2)-C(3)                  81.7(2) 
 
C(6)-P(2)-Pd(1)        113.9(1)                           C(3)-P(2)-Pd(1)                119.6(1) 
 
P(1)-S(1)-Pd(1)        102.5(5) 

 
           
 
 
Table 2.5    Selected bond lengths (Å) and angles (°) for complex (Sp,Rp)-57a 

 
 
Pd(1)-P(2)                    2.191(4)                        Pd(1)-S(1)                   2.297(3) 
 
Pd(1)-Cl(1)                  2.316(4)                        Pd(1)-Cl(2)                  2.386(4) 
 
P(1)-C(1)                     1.834(13)                      P(1)-S(1)                      2.015(4) 
 
P(2)-C(6)                     1.866(12)                      P(2)-C(3)                     1.830(12) 
 
C(1)-C(2)                    1.517(19)                      C(1)-C(6)                     1.571(19) 
 
C(2)-C(3)                    1.529(19)                      C(3)-C(4)                     1.43(2) 
 
C(4)-C(5)                    1.32(2)  
 
P(2)-Pd(1)-S(1)           91.5(1)                         P(2)-Pd(1)-Cl(1)          83.3(1) 
 
S(1)-Pd(1)-Cl(1)         174.8(1)                       P(2)-Pd(1)-Cl(2)          176.2(2) 
 
S(1)-Pd(1)-Cl(2)         91.4(1)                         Cl(1)-Pd(1)-Cl(2)         93.7(2) 
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C(1)-P(1)-S(1)            112.1(4)                       C(3)-P(2)-Pd(1)           117.6(5) 
 
C(6)-P(2)-Pd(1)          119.6(4)                        P(1)-S(1)-Pd(1)           99.0(1) 
 
C(2)-C(1)-P(1)           116.4(10)                      C(3)-P(2)-C(6)            79.9(6) 
 

 
 
 
 

2.5          Conclusion and Mechanistic Proposal for Asymmetric Diels-Alder Reactions               

involving DMPP and sulfonated dienophiles  

 
 Three sulfonated dienophiles were used in the attempted Palladium (II) metal 

template promoted asymmetric Diels-Alder reactions with 3,4-dimethyl-1-

phenylphosphole (Figure 2.8). 

 

P
SPh

P
PhPh

P
Ph

45 53 56

S S

 
 

Figure 2.8  Sulfonated dienophiles employed in conjunction with DMPP for 
the asymmetric Diels-Alder reactions 

 
 

As can be seen from the results summarized in Table 2.6, appreciable selectivity 

and separation of the diastereomers formed in the cycloaddition could only be achieved 

in the case of the reaction wherein the sulfonated phosphole counterpart of DMPP acted 

as dienophile. A complete analysis of the reasons behind this observed selectivity is 

possible only by 2-dimensional NMR spectroscopic studies and single crystal X-ray 

analysis of the isolated pure diastereomers. 
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Table 2.6 Comparison of Stereoselectivity of ligands 45, 53 and 56 in Diels-
Alder reactions involving DMPP 

 
  

45 
 

53 
 

56 

 
 

Reaction 
conditions 

 
Cycloaddition 
Reaction; rt; 
CH2Cl2;  
2 days 

 
Cycloaddition 
Reaction; rt; 
CH2Cl2;   
3 days            

 
Cycloaddition 
Reaction; rt;    
CH2Cl2;   
4 days    

 
 
 
 
 
Cycloaddition 

with 
(Rc)-47  

 
 
 
Selectivity 

 
 

2 isomers 
 

3.34:1 

 
 

2 isomers 
 

1.67:1 

 
 

4 isomers 
 
3.14: 2.06: 1: 2.53 

 
 

Owing to the low selectivity in the case of cycloadditions involving 53 and 56, 

resolution of the formed diastereomers by means of fractional crystallization or column 

chromatography did not yield desired results. A possible stereochemical explanation for 

the observed selectivity is therefore put forth based on model studies. 

 
 Due to the distinct electronic directing effect originating from the σ – donating 

nitrogen and π – accepting carbon atom of the ortho-metallated naphthylamine ring, it has 

been well established that when heterobidentate ligands are coordinated to the employed 

metal template, the softer of the two donors always takes up a position trans to NMe2  

group.161,162 So the absence of regioisomers in all the three cycloadditions is  expected in 

the case of these P^P(S) ligand systems.  
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 For the cycloadditions involving 53 and 56 as dienophiles, the molecular 

model studies reveal that the steric repulsion in both approaching directions of the 

sulfonated dienophile to DMPP is small (Figure 2.9). The existence of sulfur atom 

between Pd and P extends the distance between the dienophilic centre and the metal 

allowing easy aligning of the dienophile to form both plausible diastereomers. 

 Furthermore the sterically bulky groups on the P are further away from the 

directing effects of NMe groups on the ortho-metallated naphthylamine template. This 

increase in distance from metal centre furthermore weakens the stereochemical control 

exerted by the naphthylamine auxiliary. 
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Figure 2.9  Possible diastereomers for the cycloaddition involving 53 and 56 

  

 In the case of the cycloaddition between DMPP and its sulfonated counterpart 

wherein the DMPPS acts as the dienophile it was observed that the selectivity between 

the two diastereomers were appreciable. It was also possible to isolate one of the 
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diastereomer and analyze it by means of single crystal X-ray diffraction. A Drieding 

model study based on the diffraction analysis is given in Figure 2.10. 
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Figure 2.10 The two diastereomers formed in the cycloaddition of 45 and DMPP 

 
 

It needs to be noted that the vinylic bond of the dienophile in the case of 45 is part 

of a phosphole 5-membered ring and therefore is much more restrained than the vinylic 

bonds in the case of 53 and 56 which are free to rotate along the P-C bond. It can be seen 

from the model studies that in the case of the less favored isomer B the phosphole ring 

projects into the metal coordination sphere. The methyl groups on the DMPPS entity 

therefore projects towards the cyclopalladated naphthylamine entity and therefore is 

sterically hindered by the methyl groups on both the chiral carbon centre of the 

naphthylamine ring and also the NMe groups as shown in Figure 2.8. Thus the fact that 

45 is a dienophile wherein the vinylic entity is part of a substituted phosphole brings into 

consideration steric factors which are absent in the case of 53 and 56 and is believed to be 

the reason for the stereospecificity observed.  
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2.6 Asymmetric Diels-Alder Reaction Involving 3,4-Dimethyl-1-    

phenylphosphole-1-Sulfide and divinylphenylphosphine 

 
2.6.1 Preparation of exo-Products:   
 
 A solution of the dimeric Pd complex (Rc)-36 in dichloromethane was treated 

with two equivalents of diphenylvinylphosphine 58 for 6 hrs. (Rc)-59 (Scheme 2.9).  
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Scheme 2.9 
 

  

The monomeric complex (Rc)-59 was obtained in high yield (90%). The 31P{1H} 

NMR spectrum (121 MHz, CDCl3) of (Rc)-59 exhibited a singlet at δ 25.06 . The Cl 

ligand of the pure (Rc)-59 was subsequently replaced by the ClO4-group by treatment 
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with excess aqueous silver perchlorate solution in dichloromethane for 30 minutes. The 

percholorato complex (Rc)-60 was obtained in quantitative yield (90%) upon work up. 

The 121 MHz 31P{1H} NMR spectrum of the complex  in CDCl3 exhibited a sharp singlet 

at δ 32.68. 

 The divinylphenylphosphine palladium complex (Rc)-60 was reacted with an 

equivalent mole of DMPPS 45 to give a mixture of diastereomers as shown in Scheme 

2.9. Prior to isolation, the 121MHz 31P{1H} NMR spectrum of the crude product in 

CDCl3 exhibited eight singlets at δ 50.08, 54.51, 56.67, 59.18, 76.61, 77.14, 78.56 and 

79.15. The high field signals at δ 76.61, 77.14, 78.56 and 79.15 are typical for bridgehead 

phosphorous adopting the exo-syn stereochemistry. The 31P NMR spectrum thus revealed 

that the four isomers were generated as a 17: 3: 1: 1 mixture. Unfortunately, efforts to 

separate the isomers directly via column chromatography or fractional crystallization 

were unsuccessful. 

 To isolate the cycloadducts in their enantiomerically pure forms, the chiral 

naphthylamine auxiliary in the diastereomeric mixture was removed chemoselectively by 

stirring a dichloromethane solution of the diasteromeric complexes with concentrated 

hydrochloric acid at room temperature (Scheme 2.10). The major dichloro complex 

(Rp,Sp)-62b  precipitated out of solution on adding n-hexanes to the crude reaction 

mixture in dichloromethane. Yellow prisms were obtained on recrystallisation from 

dichloromethane-diethyl ether. The 121 MHz 31P{1H} NMR spectrum of the complex in 

CDCl3 exhibited two sharp singlets at δ 42.39 and 77.55. The other isomers could not be 

isolated from the mother liquor. 
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Scheme 2.10 
 
 
2.6.2 Single Crystal X-ray Diffraction Analysis of  (Rp,Sp)-62b 
 
 

The molecular structure and absolute configuration of the recrystallised (Rp,Sp)-

62b was established by single crystal X-ray crystallographic analysis (Figure 2.11 ). The 

cycloadduct coordinated to the palladium(II) centre via its phosphorous and sulfur donor 

atoms. 
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Figure 2.11  Molecular structure and absolute stereochemistry of  (Rp,Sp)-62b 

 

  The geometry at the metal centre is distorted square planar  with angles at 

palladium in the range of 82.7(5)-92.2(5)° and 100.7(5)-176.5(5)°. The absolute 

configurations of the newly formed stereogenic centers at  P(1), C(1), C(3), C(6) and P(2) 

are R, S, S, S and S  respectively. Selected bond lengths and bond angles are given in 

Table 2.7.  
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Table 2.7  Selected bond lengths (Å) and angles (°) of (Rp,Sp)-62b 

 

Pd(1)-P(1)                   2.229(1)                        Pd(1)-S(1)                   2.289(1) 

Pd(1)-Cl(2)                 2.311(1)                        Pd(1)-Cl(1)                  2.374(1) 

Pd(1)-C(9)                  1.797(5)                        P(1)-C(11)                   1.813(5) 

P(1)-C(1)                    1.823(4)                        P(2)-S(1)                      2.008(1) 

P(1)-Pd(1)-S(1)          100.7(5)                        P(1)-Pd(1)-Cl(2)          84.4(5) 

S(1)-Pd(1)-Cl(2)         174.8(5)                       P(1)-Pd(1)-Cl(1)          176.5(5) 

S(1)-Pd(1)-Cl(1)         82.7(5)                        Cl(2)-Pd(1)-Cl(1)         92.1(5) 

C(1)-P(1)-Pd(1)          117.0(2)                      C(6)-P(2)-C(3)             83.7(2) 

C(6)-P(2)-S(1)            117.7(2)                      P(2)-S(1)-Pd(1)            115.1(7) 

C(2)-C(1)-P(1)            111.3(3)                     C(6)-C(1)-P(1)             115.8(3) 

C(2)-C(3)-P(2)            100.1(3) 

 

  The bond angles within the Pd-P-S ring are in the range of 100.7(5)-117.7(2)°. 

The bond angle at the bridgehead phosphorous C(6)-P(2)-C(3), (83.7(2)Å) is similar to 

that observed in  related  compounds containing the exo-cycloadduct formed from 

DMPPS and diphenylphenylphosphine158 ( 83.0(1)Å)  and also in the case of the exo-

thioamide-substituted 7-phosphanorbornene P-S bidentate chelate.159 The Pd(1)-P(1) 

bond distances in (Rp,Sp)-62b ( 2.229(1) Å) is similar to that in the complex involving 

diphenylvinylphosphine and DMPPS ( 2.242(1) Å ), similarly the Pd(1)-S(1) bond length 

(2.289(1)Å) is almost the same as that found in the complex involving 

diphenylvinylphosphine as dienophile (2.299(1)Å). Apparently the P=S→Pd 
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coordination in (Rp,Sp)- 62b is of similar strength as the coordination in the cycloadduct 

of DMPPS and diphenylvinylphosphine. 

 

2.6.3 Decomplexation and the Optical Purity of the P-S Cycloadduct (Rp,Sp)-62b 

 

 The optically active diphosphine ligand (Sp,Sp)-63 can be stereospecifically 

liberated from the complex (Rp,Sp)-62b by treatment with aqueous potassium cyanide at 

room temperature ( Scheme 2.11 ). 
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Scheme 2.11 
 

 

Liberated (Sp,Sp)-63 was obtained as colorless oil in 68 % yield. The 31P{1H} 

NMR spectrum of the free ligand in CDCl3 exhibited two singlets at δ 32.65 and 65.21. 

The low field resonance being a confirmation of the retention of the exo-syn 

stereochemistry.155 Since the non-coordinated phosphorous atom is highly air-sensitive, 

the liberated ligand (Sp,Sp)-63 cannot be stored in its pure form. Hence the liberated 

ligand was re-complexed to selected metal ions to form stable metal complexes. As there 

is a need to confirm the optical purity of complex (Rp,Sp)-62b, the liberated ligand was 

therefore coordinated to the bis(acetonitrile) complexes (Rc)-51 and (Sc)-51 as shown in  

Scheme 2.12. The recoordination to (Rc)-51 generated the complex (Rc, Rp, Sp)- 61b . The 
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121 MHz 31P{1H}NMR spectrum in CDCl3 for the complex formed after recoordination 

of the free ligand to  (Rc)-51 showed peaks at δ 50.08 and 76.60 which are identical to the 

resonance signals seen in the original cycloaddition reaction spectrum and are therefore 

assigned to (Rc, Rp, Sp)- 61b in the original cycloaddition reaction spectrum . Similarly 

the 31P{1H} NMR spectrum for the product formed from coordination of the free ligand 

(Sp,Sp)-63 to the bis(acetonitrile) complex (Sc)-51 showed signals at δ 54.51 and 77.14 

which match those seen in the original cycloaddition reaction and are attributed to the 

complex (Sc,Rp,Sp)- 64 which is the enantiomer of the original cycloaddition product  

(Rc,Sp ,Rp)-61a and therefore show similar chemical shifts. 
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The re-coordination process therefore proves the optical purity of the released 

ligand and also helps to assign signals seen in the original cycloaddition reaction to the 

complexes (Rc, Rp, Sp)- 61b and (Rc, Sp, Rp)-61b. The two remaining pairs of signals ( δ 

56.67, 59.18, 78.56 and 79.15) can be attributed to the complexes (Rc, Rp, Sp)-61a and (Rc, 

Sp, Rp)-61a though it is not possible to assign the observed signals to a particular isomer 

as in the case of (Rc, Rp, Sp)- 61b and (Rc, Sp, Rp)-61a.  

 

2.7 Cycloaddition Involving Metal Activated 3,4-Dimethyl-1-phenylphosphole- 

1-Sulfide and diphenylvinylarsine 

 
2.7.1 Preparation of exo-Products:   
 
 
 The cycloaddition reaction was carried out by adding stoichiometric amounts 

of DMPPS 45 and diphenylvinylarsine 65 to a solution of the bis(acetonitrile) complex 

(Rc)-51 in dichloromethane at room temperature (Scheme 2.13). The reaction was 

monitored using 31P{1H} NMR spectroscopy and was found to be complete in 3 days. 

Analysis of the 31P{1H} NMR spectrum (121MHz, CDCl3) showed the formation of the 

diastereomeric products (Rc,Rp)-67 and (Rc, Sp)-67 as indicated by the resonance signals 

at  δ 77.55 ( s ) and 79.69 ( s ). The signals were in the ratio 1:0.5 and therefore showed 

that the stereoselectivity of the cycloaddition is only moderate. 

  The regiochemistry of the formed cycloadduct is assigned based on comparison 

with cycloadducts formed in similar reactions involving DMPPS 45 and 

diphenylvinylphosphine158 wherein the softer ligand (phosphine) takes up the position 

trans to the N of the chiral auxiliary and the sulfonated phosphole entity of the 
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cycloadduct binds trans to the aromatic C of the auxiliary. It needs to be noted that the 

high field signals are typical of P in the bridgehead position of the phosphanorbornene 

skeleton for this class of cycloadducts. This signal is also similar to the one observed for 

the cycloaddition reaction involving DMPP 44 and diphenylvinylphosphine 65.163
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Scheme 2.13 
  

 Attempts to isolate the diastereomers by means of fractional crystallization 

and column chromatography did not succeed. With a view to isolating them as neutral 

complexes, the naphthylamine auxiliary was chemoselectively removed by treatment 

with concentrated hydrochloric acid (Scheme 2.14). After work-up, the 31P{1H} NMR 

spectrum in CDCl3 showed a singlet at δ 77.99. The enantiomers formed on removal of 
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the chiral auxiliary ie., (Rp)- 68  and (Sp)- 68  is expected to show similar chemical shifts 

in the absence of chiral shift reagents.  
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Scheme 2.14 
 
 
  The two enantiomers could not be separated by means of fractional 

crystallization or column chromatography. Suitable single crystals of the dichloro 

complex of the cycloadduct also could not be obtained for single crystal X-ray diffraction 

analysis. The structural integrity of the racemic cycloadduct was confirmed by cleaving 

of the ligand from the chiral metal template by treatment with aqueous KCN and 

subsequently re-coordinating it back to (Rc)-51 whereby it regenerated the two 

diastereomers obtained in the original cycloaddition reaction. 
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2.8 Diels-Alder Reaction Involving the Metal Activated 3,4-Dimethyl-1-

phenylphosphole 1-Sulfide and divinylphenylarsine   

 

2.8.1  Preparation of exo products 
 
 The bis(acetonitrile)-complex (Rc)-51 was allowed to react with 3,4-Dimethyl-1-

phenylphosphole 1-Sulfide 45 and divinylphenylarsine 69 in dichloromethane at room 

temperature (Scheme 2.15). 
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Scheme 2.15 
 
 
 The reaction was monitored by means of 31P{1H} spectroscopy and was 

found to be complete in 5 days. The 121 MHz 31P{1H} NMR spectrum of the crude 

reaction mixture in CDCl3 showed presence of 4 signals at δ 76.86, 77.27, 78.87 and 
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79.34. The signals were indicative of the bridgehead P in the formed cycloadduct and 

were in the same range as the DMPPS bridgehead P signal seen for the reactions 

involving diphenylvinylarsine discussed in Section 2.7.1. The NMR signals were 

indicative of the formation of four diastereomers in the ratio 4:1.7:1:1.3. Attempts at 

isolating the diastereomers by means of column chromatography and fractional 

crystallization techniques did not yield desirable results. 

 

2.8.2 Preparation of chloro complexes for 70 

 

            The chiral naphthylamine auxiliary in the diastereomeric mixture was removed 

chemoselectively by stirring a solution of 70 in dichloromethane with concentrated 

hydrochloric acid at room temperature (Scheme 2.16).  
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Attempted separation of the diastereomers using column chromatography and fractional 

crystallization did not succeed. Crystallization using dichloromethane- n-hexanes yielded 

pale yellow prisms suitable for single crystal X-ray diffraction analysis. 

 

2.8.3     Single crystal X-ray diffraction analysis of 71 

 

The molecular structure of the crystallized 71 was established by single crystal X-

ray diffraction analysis. The analysis showed that both hand forms of the cycloadduct had 

co-crystallized out. The separation of the isomers by means of fractional crystallization 

was not successful. The X-ray crystallographic analysis confirmed the formation of the 

cycloadduct with coordination to metal centre via P=S sulfur and As donors. Selected 

bond lengths and angles for the representative isomer (Sp,RAs)-71b are shown in Table 2.8.  

The geometry at the palladium metal centre for (Sp,RAs)-71b is distorted square 

planar with angles ranging from 84.3(4)-98.6(4) and 177.0(5)-173.5(4)°. The bond angle 

at the bridgehead phosphorous C(6)-P(1)-C(3) (83.3(2)Å) is larger than those observed 

for the analogous cycloadduct  involving divinylphenylphosphine and DMPPS ( 79.9(6)Å) 

indicative of less strain at the bridgehead for the arsine analogue. The As→Pd bond in 

(Sp,RAs)- 71b, (2.326(6)Å), is noticeably weaker than the P→Pd bond in the 

divinylphenylphosphine-DMPPS analogue (2.191(4)Å).  
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Figure 2.12 Molecular structure of 71 
 

Table 2.8 Selected bond lengths (Å) and angles (°) for (Sp,RAs)- 71b 

 

Pd(1)-S(1)                     2.301(1)                       Pd(1)-Cl(2)                        2.315(1) 

Pd(1)-As(1)                   2.326(6)                       Pd(1)-Cl(1)                        2.356(1) 

As(1)-C(2)                    1.957(5)                 P(1)-C(6)                          1.829(5) 
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P(1)-C(3)                      1.831(5)                       P(1)-S(1)                        2.010(1) 
 
C(1)-C(6)                      1.548(7)                      C(1)-C(2)                       1.555(7) 
 
C(2)-C(3)                      1.546(6) 
 
S(1)-Pd(1)-Cl(2)           177.0(5)                     S(1)-Pd(1)-As(1)              98.6(4) 
 
Cl(2)-Pd(1)-As(1)         84.4(4)                       S(1)-Pd(1)-Cl(1)              85.2(5) 
 
Cl(2)-Pd(1)-Cl(1)          92.0(5)                      As(1)-Pd(1)-Cl(1)            173.5(4) 
 
C(6)-P(1)-C(3)              83.3(2)                      P(1)-S(1)-Pd(1)               115.4(7) 
 

 
      
   

 
2.9     Conclusions 
 
 
 

The cycloaddition reaction involving DMPPS and divinylphenylphosphine showed 

appreciable selectivity (16.7:2.8:1:1). Furthermore the cycloaddition proceeded smoothly 

under mild conditions. In the documented cycloaddition reactions involving DMPPS, 

however, prolonged and strong heating conditions were generally required.146d In the case 

of the reactions involving DMPPS and the arsine functionalized dienophiles the 

selectivity was found to be poor with separation of isomers unsuccessful after repeated 

attempts using fractional crystallization and column chromatography. The rate of the 

reactions were similar to the one involving DMPP and diphenylvinylarsine163 and much 

slower than the one involving DMPP 44 and diphenylvinylphosphine.164 The most likely 

cause for the slower rate is the lower dienophilicity of diphenylvinylarsine. It is 

interesting to note that no Diels-Alder reaction is observed between free 

diphenylvinylarsine and DMPPS or involving divinylphenylarsine and DMPPS. 
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Introduction 
 
 
3.1 Introduction 
 
          Enantiomerically pure diphosphines containing stereogenic phosphorous and 

carbon centers and selected functionalities have long been considered as powerful 

auxiliaries for metal based homogenous asymmetric catalysis.165,166,167  These chiral 

ligands have also been extensively used in chemotherapy and asymmetric organic 

synthesis.168,169  So far most of the reported P-stereogenic diphosphines have been 

synthesized utilizing their borane complexes or by optical resolution. To date complexes 

containing enantiomerically pure forms of orthometalated [1-

(dimethylamino)ethyl]naphthalene are considered the most efficient resolving agents for 

certain types of chiral diphosphines with up to six stereogenic centers.120b  

As an extension of the work discussed in chapter 2, wherein the palladium(II) 

complexes containing the enantiomerically pure forms of the orthometalated [1-

(dimethylamino)ethyl]naphthalene 36 were employed to synthesize  heterobidentate 

ligands of the type P^P(S) and As^P(S), we utilize the platinum analogue of the chiral 

auxiliary 43 to prepare enantiomerically pure alcohol functionalized 5-phosphino-7-

phosphabicyclo[2.2.1]hept-2-ene ligands which contain one asymmetric phosphorous 

centre and three asymmetric carbon atoms in a highly stereoselective manner. It is of 

interest to note that the phosphine functionalized terminal alkynols employed in this 

cycloaddition reaction themselves will be synthesized in a highly regioselective manner 

via hydrophosphination of the respective terminal alkynol entity with diphenylphosphine. 

These ligands will subsequently be utilized as substrates for a second stage asymmetric 
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hydrophosphination employing the chiral auxiliary 36 (Chapter 4) to yield diphosphines 

with chirality residing in the C backbone. 

 

3.2 Hydrophosphination of Terminal Alkynols with Dominant Markovnikov     
Regioselectivity 

 
 
3.2.1 Synthesis of 3-Diphenylphosphanyl-but-3-en-1-ol,  72.  
 
 
 The synthetic protocol followed for the synthesis of 3-diphenylphosphanyl-but-3-

en-1-ol  is shown in Scheme 3.1. 
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 It is important to note that the hydroxyl group on the alkynol is susceptible to 

nucleophilic attack by the phosphide ion. Therefore it is necessary to protect the 

functional group which possesses an exchangeable proton that can quench the phosphide 

ion. Instead of using standard protecting groups such as silyl ether to mask the hydroxyl 

group, it was deprotonated so as to prevent it quenching the phosphide ion. 

 The 31P{1H} (121 MHz, CDCl3) of the crude reaction product obtained after 

‘work-up’ showed the presence of three products at δ -3.35, -22.32 and -31.02 in the ratio 

5: 1: 1.2 . Isomer identification from 31P{1H} NMR spectroscopic data was carried out 

based on principles employed for similar reactions involving free radical addition of 

diphenylphosphine to alkynes.170.171  Purification and separation of the isomers formed 

were achieved by means of silica gel chromatography which yielded the Markovnikov 

product as colorless oil in 43.2 % yield [ 31P{1H} δ -3.35 ].  

  

3.2.2  Synthesis of 2-Diphenylphosphanyl-prop-2-en-1-ol,  73. 

 

The hydrophosphination of propargyl alcohol was carried out using the same 

method as that employed for 3-butyn-1-ol discussed in Section 3.2.1. The reaction was 

monitored by means of 31P{1H} NMR spectroscopy and was found to be complete in 3 

days. Unlike in the case of 3-butyn-1-ol, only the Markovnikov product was selectively 

formed as a result of the hydrophosphination (Scheme 3.2).   

The 31P NMR ( 121 MHz, CDCl3) spectrum of the crude reaction mixture after 

‘work-up’ showed only one  signal at δ -9.20 which was attributed to the Markovnikov 
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product. Purification of the product using silica gel column chromatography yielded pure 

73 as colorless oil in 73.4% yield.   
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Scheme 3.2 

 

3.3      Preparation and Isolation of butenol Substituted exo-cycloadduct: (Rc,Sp)-76 

 

The 3-diphenylphosphanyl-but-3-en-1-ol ligand 72 was allowed to coordinate to 

the platinum complex (Rc)-43 in dichloromethane yielding the complex (Rc)-74 as dark 

yellow solid in 69.9 % yield (Scheme 3.3).  

The 31P{1H} NMR spectrum of the complex (CDCl3, 121 MHz) showed a signal 

at δ 22.14 ( s, 1JPtP = 4182.8 Hz ). The coordination shift and coupling constant is 

indicative of the formation of (Rc)-74. The Cl ligand of pure (Rc)-74 was subsequently 

substituted by a ClO4 ligand through treatment of the chloro complex with excess 

aqueous silver perchlorate in dichloromethane. The perchlorato complex (Rc)-75 was 

obtained in 91.1% yield. When (Rc)-75 was reacted with an equivalent of DMPP 44, at 

room temperature in dichloromethane for 8 hrs. The cycloadduct (Rc,Sp)-76 was obtained 
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as the sole product. The reaction was found to be highly selective with only one 

diastereomer formed exclusively as indicated by the 31P{1H} NMR spectrum. 
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Scheme 3.3 
 

  

The 31P{1H} NMR spectrum ( CDCl3, 121 MHz) of the reaction product showed 

the following signals: δ 39.62 ( d, 1P, 1JPt-P =  3567.4 Hz, 3JPP = 22.8 Hz  ), 115.45 ( d, 1P, 

1JPt-P =  1580.4 Hz, 3JPP = 22.8 Hz  ). The low field doublets are typical for bridgehead 

phosphorous adopting exo-syn stereochemistry.155 It is noteworthy that the Pt-P 

(bridgehead) coupling in (Rc,Sp)-76 is significantly smaller ( 1580.4 Hz ) than that 

observed for the non-bridgehead P in the cycloadduct ( 3567.4 Hz). This is typical of P 

donor located trans to a strong  π-accepting aromatic carbon atom.172 The reaction 
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mixture was subsequently concentrated and layered with n-hexanes to yield yellow 

crystals of (Rc,Sp)-76 in 79.7 %  yield.  

 

3.3.1       Single crystal X-ray diffraction analysis of (Rc,Sp)-76. 

  

The molecular structure and absolute configurations of the recrystallised (Rc,Sp)-

76  were established by single crystal X-ray crystallographic analysis (Figure 3.1).  

 

 

Figure 3.1 Molecular structure and absolute configuration of (Rc,Sp)-76. 
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The structural analysis revealed that the bridgehead P in the cycloadduct is 

substituted trans to the aromatic carbon of the naphthylamine chiral auxiliary. The 

cycloadduct is coordinated to the Platinum (II) centre as a bidentate chelate via its two P 

atoms.  

 

Table 3.1  Selected bond lengths (Å) and angles (°) of (Rc,Sp)-76 

 

Pt(1)-C(1)                         2.069(9)                      Pt(1)-N(1)                           2.125(9) 

Pt(1)-P(1)                         2.252(3)                      Pt(1)-P(2)                            2.279(3) 

O(1)-C(17)                      1.54(2)                         C(16)-C(17)                        1.54(2) 

C(16)-C(18)                    1.54(2)                         C(20)-C(21)                        1.30(2)  

C(1)-Pt(1)-N(1)               79.9(4)                        C(1)-Pt(1)-P(1)                    96.9(3) 

N(1)-Pt(1)-P(1)               175.9(3)                       C(1)-Pt(1)-P(2)                   177.0(3) 

N(1)-Pt(1)-P(2)               100.4(3)                       P(1)-Pt(1)-P(2)                    82.67(9) 

C(18)-P(1)-Pt(1)             106.2(3)                       C(19)-P(2)-C(22)                82.3(6)       

C(19)-P(2)-Pt(1)             109.1(3)                       C(22)-P(2)-Pt(1)                 119.2(4) 
 
C(22)-C(15)-C(18)         107.0(9)                       C(19)-C(18)-C(15)             102.8(8) 
 
C(19)-C(18)-P(1)           105.3(7)                        C(15)-C(18)-P(1)               106.5(7) 
 

 
    
 

The analysis confirms the absolute stereochemistry at the four newly generated  

chiral centers P(2), C(22), C(19) and C(18) to be S, S, S and R respectively. Selected 

bond lengths and bond angles for (Rc,Sp)-76 are given in Table 3.1. The coordination 

geometry is distorted square planar with angles at platinum ranging between 79.9(4) – 
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100.4(3) and 175.9(3) to 177.0(3), with the bite angles of both the five membered chelate 

rings being acute. The angle around the bridgehead phosphorous is 82.3(6)Å, which is 

typical for this class of phosphanorbornene ligands.121 The Pt(1)-P(1) and Pt(1)-P(2) 

distances are not significantly different [2.252(3)Å and 2.279(3)Å respectively]. 

 

3.3.2      Solution 2-D 1H-1H-ROESY NMR Spectroscopic Assignment of (Rc,Sp)-76 

 

In order to confirm the structure of the cycloadduct formed in solution state, a 500 

MHz solution 2-D 1H-1H ROESY NMR study of (Rc,Sp)-76 was carried out in CD2Cl2. 

The 2-D ROESY NMR spectrum of (Rc,Sp)-76 is shown in Figure 3.2. Figure 3.3 shows 

the numbering scheme adopted for the assignment.  Strong NOE signals are observed for 

the interaction between H11 and all the three methyl groups viz. Me8, Me9 and Me10 

( Signals F-H).  

These NOE interactions are consistent with the staggered orientation of these 

substituents when the (R)-naphthylamine ring adopts the δ conformation.121 Accordingly, 

Me10 shows interaction only with NMe(eq) ( Signal C). The absence of a Me10-NMe(ax) 

NOE signal therefore indicates a δ conformation for the 5-membered (R)-metallated 

napthylamine ring. The interactions that provide the driving forces for Me10 to assume 

the axial position are also observed in the spectrum viz. H11-H19 (Signal I) and Me10-

H19 (Signal N). The ROESY signals clearly reveal that as evidenced in the solid state, 

the (R)-naphthylamine organometallic ring adopts the δ conformation in solution. It was 

also observed that due to the rigid skew ring conformation and the strict planarity of the 

naphthylamine ring, the H13 aromatic proton projects towards the space below the PPh2 
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group of the cycloadduct and exhibits NOE signals at characteristically low chemical 

shifts which are readily identified (Signals R and S). These signals also establish the 

regio-stereochemistry of the cycloadduct. The absence of any NOE signal between H4 

and PPh indicates that the P-Phenyl group at the bridgehead adopts the anti position to 

the H4 group which is consistent with the S absolute configuration at the bridgehead 

phosphorous centre.  

 

Figure 3.2 500MHz 2-D ROESY spectrum of  (Rc,Sp)-76 in CD2Cl2. Selected NOE 

interactions: A: Me5-Me6; B: NMe(eq)-NMe(ax); C: Me10-NMe(eq); D: H3-H4; E: Me6-H7; 

F: NMe(ax)-H11; G: NMe(eq)-H11; H: Me10-H11; I: H11-H19; J: H7-PPh; K: NMe(ax)-PPh; L: 
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NMe(eq)-PPh; M: Me10-PPh; N: Me10-H19; O: H3-o-Ph; P: H7-o-Ph; Q: H7-o-Ph’; R: H13-o-

Ph; S: H13-o-Ph’.  
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Figure 3.3    Numbering scheme used for (Rc,Sp)-76 in the 2-D 1H-1H-ROESY NMR 

studies. 

 

3.3.3    Preparation and X-ray Structural Analysis of (Sp)-77 

 

The chiral naphthylamine auxiliary in (Rc,Sp)-76 was chemoselectively removed by 

stirring and dichloromethane solution of the complex with concentrated hydrochloric acid 

at room temperature ( Scheme 3.4). 
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Scheme 3.4 

  

The dichloro complex (Sp)-77 precipitated out as pale yellow microcrystals from 

dichloromethane-n-hexanes in 89.5 % yield. The 31P{1H} NMR spectrum of the 

complex in CDCl3 showed  the following signals : δ 35.59 ( d, 1P,  1JPtP = 3435.2 Hz, 
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JPP = 19.0 Hz ), 94.96 ( d, 1P, 1JPtP = 3191.9 Hz, JPP = 19.0 Hz ). In contrast to (Rc,Sp)-

76 , in (Sp)-77 both non-equivalent phosphorous donor atoms are coordinated trans to 

Cl ligands and therefore the two P-Pt couplings are similar in magnitude. The 

molecular structure and absolute configuration of the complex (Sp)-77 were established 

by single crystal X-ray crystallographic analysis (Figure 3.4). 

 

Figure 3.4  Molecular structure of (Sp)-77 
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The structural analysis revealed that the phosphanorbornene skeleton has not 

undergone any change during the removal of the chiral naphthylamine auxiliary. The 

geometry at the platinum metal centre is distorted square planar with angles at platinum 

in the range of 83.11(5)- 97.04(6) and 174.48(6)- 179.17(6)°.  The absolute 

configurations of the four stereogenic centers  at P(2),C(1),C(8) and C(2) is S,S,S and R, 

respectively. Selected bond lengths and angles are given in Table 3.2. 

 

Table 3.2 Selected bond lengths (Å) and angles (°) of (Sp)-77 

 

Pt(1)-P(2)                    2.213(1)                        Pt(1)-P(1)                        2.231(1) 

Pt(1)-Cl(2)                  2.350(1)                        Pt(1)-Cl(1)                       2.359(1)  

P(1)-C(2)                    1.876(5)                        P(2)-C(8)                         1.859(5) 

P(2)-C(5)                    1.847(5) 

P(2)-Pt(1)-P(1)           83.1(5)                          P(2)-Pt(1)-Cl(2)               174.5(6) 

P(1)-Pt(1)-Cl(2)         91.7(6)                          P(2)-Pt(1)-Cl(1)               97.0(6) 

P(1)-Pt(1)-Cl(1)         179.2(6)               Cl(2)-Pt(1)-Cl(1)              88.2(6) 

C(5)-P(2)-C(8)           81.3(2) 
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3.3.4 Decomplexation and Optical Purity of  (Sp)-77 

 

 The optically active diphosphine ligand (Rp)-78    can be chemoselectively 

liberated from the complex (Sp)-77 by treatment of the dichloro complex with aqueous 

potassium cyanide at room temperature (Scheme 3.5).                                                                                  
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Scheme 3.5 
 
  

The 31P{1H} NMR spectrum of the free ligand in CDCl3 exhibited two doublets at 

δ 35.34 (3JPP = 26.5 Hz ) and 98.46 (3JPP = 26.5 Hz ). The low field resonance confirms 

that the exo-syn stereochemistry is retained.155 Owing to the extreme air sensitivity of the 

released ligand attributed to the non-coordinated phosphorous atom, the liberated (Rp)-78 

cannot be stored in its pure form. Hence the liberated ligand was re-coordinated to the 

complex (Rp)-43 (Scheme 3.6).  
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This procedure also provides a means to confirm the optical purity of the released 

ligand. The recoordination procedure was monitored by 31P{1H} NMR spectroscopy. In 

CDCl3, the 31P{1H} NMR spectrum of the crude reaction product showed only the signals 

originally observed for the sole diastereomer generated from the original cycloaddition 

reaction. The absence of any other signals indicated that (Rp)-78 is enantiomerically pure. 

 

3.4 Preparation and Isolation of the propenol substituted exo-cycloadduct: 

(Rc,Sp)-81 

 

3.4.1 Preparation of chloro complex (Rc)-79. 

 

 The ligand 2-diphenylphosphanyl-prop-2-en-1-ol 73 in dichloromethane was 

added to a solution containing the dimeric complex (Rc)-43 to yield the chloro complex 

(Rc)-79 in 73.9% yield (Scheme 3.7). 
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Scheme 3.7 

 

 The  31P{1H} NMR (CDCl3) spectrum of the complex (Rc)-79 showed a singlet at 

δ 19.81 ( 1JPt-P =  4243.6 Hz ). The reaction mixture was concentrated and layered with n-

hexanes to yield pale yellow prisms of (Rc)-79.  
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3.4.2  Single crystal X-ray diffraction studies on (Rc)-79. 

 

The single crystal X-ray diffraction analysis data showed that the  ligand 2-

diphenylphosphanyl-prop-2-en-1-ol 73 has coordinated trans to the NMe2 group of the 

metal template ( Figure 3.5). Selected bond lengths and bond angles are given in Table 

3.3.  

 

 

  

Figure 3.5     Molecular structure and absolute configuration of (Rc)-79 
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Table 3.3 Selected bond lengths (Å) and angles (°) for complex (Rc)-79 

________________________________________________________________________ 
 

Pt(1)-C(1)                           2.078(6)                    Pt(1)-N(1)                        2.181(5) 
 
Pt(1)-P(1)          2.244(1)                     Pt(1)-Cl(1)                       2.423(1) 
 
O(1)-C(16)                         1.504(8)                    C(15)-C(17)                     1.311(8)  
 
C(15)-C(16)                       1.540(8)                     
 
C(1)-Pt(1)-N(1)                 74.00(1)                     C(1)-Pt(1)-P(1)               102.1(2) 
 
N(1)-Pt(1)-P(1)                  175.6(1)                    C(1)-Pt(1)-Cl(1)              171.2(1)  
 
N(1)-Pt(1)-Cl(1)                 98.0(1)                      P(1)-Pt(1)-Cl(1)              86.1(5) 
 
________________________________________________________________________ 
   

 
 

3.4.3 Asymmetric Diels-Alder reaction involving (Rc)-79 and DMPP 44 
 
 

The complex (Rc)-79 was treated with aqueous silver perchlorate to convert the Cl 

group to the more labile ClO4 entity thus yielding complex (Rc)-80 (Scheme 3.8). 

 
 

N
Pt

Cl

P

OH

Ph
Ph

(Rc)-79

N
Pt

OClO3

P

OH

Ph
Ph

(Rc)-80

P
Ph

N
Pt

(Rc,Sp)-81

P

P

Ph

Ph Ph
OH

ClO4
-

+
AgClO4

44

 
 
 Scheme 3.8 
 
  

 A solution of the perchlorato complex obtained (Rc)-80 was then allowed to react 

with DMPP 44. The mixture was allowed to stir at room temperature for 8 hrs to yield a 
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yellow solution of complex (Rc,Sp)-81. The 31P{1H} NMR spectrum of the crude reaction 

mixture in CDCl3 showed only two doublets at δ 42.04 ( d, 1P, 1JPt-P =  3591.9 Hz, JPP = 

22.8 Hz  ) and 117.82 ( d, 1P, 1JPt-P =  1586.1 Hz, JPP = 19.0 Hz  ) . As in the case of the 

cycloaddition reaction involving 3-diphenylphosphanyl-but-3-en-1-ol and DMPP the 

31P{1H} NMR spectrum was indicative of the formation of only one diastereomer. The 

low field doublets are typical of the bridgehead phosphorous of the formed cycloadduct 

adopting exo-syn stereochemistry.155  The Pt-P coupling constants are also indicative of 

the regiochemistry of the cycloadduct. The lower value for the bridgehead P (1JPt-P =  

1586.1 Hz)  compared to the other P signal (1JPt-P =  1586.1 Hz) is typical of P positioned 

trans to strong  π-accepting aromatic carbon atom.172  Upon crystallization pale yellow 

needle like crystals were obtained using a crystallizing solvent system consisting of 

acetonitrile- diethyl ether in 81.2 % yield. 

 

3.4.4 Single crystal X-ray Structural Analysis of (Rc,Sp)-81  
 
 
 The X-ray analysis of (Rc,Sp)-81 reaffirms that, as desired, an enantiomerically 

pure complex has been formed (Figure 3.6). The analysis shows that the template 

directed synthesis of the platinum diphosphine adduct has proceeded with the desired 

regio- and stereoselectivity.  

 The structural analysis confirms the absolute stereochemistry at the newly 

generated four chiral centers P(2), C(21), C(18) and C(15) to be S, S, S and S respectively. 

The geometry at the platinum centre is distorted square planar with angles at platinum in 

the ranges of 80.9(3)- 100.5(2) and 174.9(2) – 175.1(2)°. The C-P-C angle within the 
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phosphorous-norbornene skeleton is acute (81.1(4) Å), the two associated P-C bonds 

being almost the same [1.851(8) and 1.852(8) Å for C(18) and C(21) respectively]. 

  
 
 
 

Figure 3.6 Molecular structure and absolute configuration of (Rc,Sp)-81 
 
 
   

 The two Pt-P bond distances are dissimilar, with the bond trans to the carbon 

of the naphthylamine auxiliary being longer by 0.027 Å. This indicates that the 
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phosphorous atoms have quite different donor abilities.173 Selected bond lengths and 

bond angles are given in Table 3.4.  

 

Table 3.4 Selected bond lengths (Å) and angles (°) of  (Rc,Sp)-81 

 
 
Pt(1)-C(1)                          2.078(8)                     Pt(1)-N(1)                    2.157(6) 
 
Pt(1)-P(1)                          2.258(2)                     Pt(1)-P(2)                     2.285(2) 
 
C(15)-C(16)                      1.529(12)                    
 
C(1)-Pt(1)-N(1)                 80.9(3)                      C(1)-Pt(1)-P(1)            95.8(2) 
 
N(1)-Pt(1)-P(1)                 175.1(2)                    C(1)-Pt(1)-P(2)            174.9(2) 
 
N(1)-Pt(1)-P(2)                 100.5(2)                    P(1)-Pt(1)-P(2)            82.5(7) 
 
C(21)-P(2)-Pt(1)               109.1(2)                    C(18)-P(2)-Pt(1)          119.8(3) 
 
C(17)-C(18)-P(2)              99.7(5)                     C(15)-C(21)-P(2)         96.0(5) 
 
C(17)-C(15)-P(1)             106.4(5)                    C(16)-C(15)-C(17)      112.0(7) 
 
C(15)-P(1)-Pt(1)              106.4(3) 
 

 
 
 
3.4.5 Solution 2-D1H-1H-ROESY NMR spectroscopic assignment of (Rc,Sp)-81 

 

A 500MHz solution 2-D 1H-1H ROESY NMR study of (Rc,Sp)-81 was carried out 

in CD2Cl2 in order to confirm the structure of the cycloadduct formed in solution state . 

The 2-D 1H ROESY NMR spectrum of  (Rc,Sp)-81 is shown in Figure 3.7. The 

numbering scheme adopted is shown in Figure 3.8.  Strong NOE signals consistent  with 

the staggered orientation of substituents when the (R)-naphthylamine ring adopts the δ 
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conformation are observed for the interaction between H10 and all the three methyl 

groups viz. Me7, Me8 and Me9 ( Signals H-J).  

 

 

Figure 3.7 500MHz 2-D ROESY spectrum of  (Rc,Sp)-81 in CD2Cl2. Selected NOE 

interactions: A: Me4-Me5; B: NMe(eq)-NMe(ax); C: Me9-NMe(eq); D: H2-H1; E: Me5-H1; F: 

Me(ax)-H3; G: Me4-H3; H: Me(ax)-H10; I: Me(eq)-H10; J: Me9-H10; K: H10-H18; L: H6-o-Ph;  

M: H6-o-Ph’;  N: NMe(ax)-PPh; O: NMe(eq)-PPh; P: H2-o-Ph’; Q: Me9-PPh; R: Me5-PPh; S: 

Me9-o-Ph’;   T: H12-o-Ph’; U: H12-o-Ph.       
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Figure 3.8 Numbering scheme used for (Rc,Sp)-81 in the 2-D 1H-ROESY NMR  

studies. 

 

As in the case of (Rc,Sp)-76 discussed in Section 3.3.2, these NOE signals are 

consistent  with the δ conformation of the (R)-naphthylamine ring.121 As seen in the case 

of (Rc,Sp)-76 , Me9 shows interaction only with NMe(eq) ( Signal C) indicative of a δ 

conformation for the 5-membered (R)-metallated naphthylamine ring. It was also 

observed that the H13 aromatic proton projects towards the space below the PPh2 group 

of the cycloadduct and exhibits NOE signals at characteristically low chemical shifts 

(Signals T and U). These signals also establish the regio-stereochemistry of the 

cycloadduct in solution.  

 
3.4.6 Preparation and X-ray Structural Analysis of (Sp)-82 

 

The chiral naphthylamine auxiliary in (Rc,Sp)-81 was chemoselectively removed 

by stirring a dichloromethane solution of the complex with concentrated hydrochloric 

acid at room temperature ( Scheme 3.9). Crystallization using dichloromethane n-hexanes 

yielded pale yellow prisms in 91.5 % yield. 
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Scheme 3.9 
  

The 31P{1H} NMR in CDCl3 showed two doublets at  δ 32.67 ( 1JPtP = 3447.6, JPP 

= 19.0 Hz )  and 94.52 (1JPtP = 3225.9, JPP = 19.0 Hz ). Since the two non-equivalent 

phosphorous donor atoms are coordinated trans to a chloro ligand, the two P-Pt couplings 

are of equal magnitude.  

 The molecular structure and the absolute stereochemistry of the dichloro 

complex were determined by single crystal X-ray structure analysis (Figure 3.9). Selected 

bond distances and angles are listed in Table 3.5. The study revealed that the absolute 

configurations have been retained from (Rc,Sp)-81. The absolute configurations at P(2), 

C(4), C(7) and C(1) are S, S, S and S respectively. The geometry at the Pt is distorted 

square planar with the angles of 84.0(4) – 93.2(4)° and 173.9(4)-176.7(4)°. The bond 

lengths of the two Pt-P bonds are 2.197(1) and 2.248(1)Å respectively. The diphosphine 

coordinates on the platinum as a bidentate ligand via the two phosphorous atoms. The 

angle formed around the bridgehead phosphorous is 81.9(2)°, which is typical for this 

class of phosphanorbornene ligands. 
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Figure 3.9 Molecular structure and absolute configuration of (Sp)-82 

 

Table 3.5   Selected bond lengths (Å) and angles (°) for (Sp)-82 

 

Pt(1)-P(2)                        2.197(1)                          Pt(1)-P(1)                        2.248(1) 
 
Pt(1)-Cl(2)                      2.354(1)                          Pt(1)-Cl(1)                       2.367(1) 
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C(1)-C(2)                       1.580(6)                           O(1)-C(2)                       1.378(6) 
 
P(2)-Pt(1)-P(1)               84.0(4)                            P(2)-Pt(1)-Cl(2)              176.7(4) 
 
P(1)-Pt(1)-Cl(2)             93.0(4)                            P(2)-Pt(1)-Cl(1)               93.2(4) 
 
P(1)-Pt(1)-Cl(1)            173.9(4)                          Cl(2)-Pt(1)-Cl(1)             89.9(4) 
 
C(1)-P(1)-Pt(1)             104.9(1)                          C(7)-P(2)-C(4)                 81.9(2) 
 
C(7)-C(1)-C(3)            104.6(3)                           C(3)-C(1)-P(1)                 104.9(3) 
 
C(4)-C(3)-C(1)            106.2(3)                           C(5)-C(4)-C(3)                107.2(4) 
 
C(5)-C(6)-C(7)            111.2(4)                           C(6)-C(7)-C(1)                109.7(3) 
 

 
                  
 
 
 
3.4.7 Decomplexation and Optical Purity of  (Sp)-82. 
 
   
 Treatment of a dichloromethane solution of (Sp)-82 with saturated aqueous 

potassium cyanide liberated the optically pure diphosphine (Rp)-83 quantitatively as air 

sensitive oil (Scheme 3.10).  
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Scheme 3.10 

 

The 31P{1H} NMR spectrum of the free diphosphine in CDCl3 exhibited a pair of 

doublets at δ 19.21 and 108.89. The low field 31P resonance indicated that the exo-syn 
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stereochemistry remains. It is to be noted that the apparent inversion of configuration that 

takes place at the phosphorous stereogenic centre during the liberation process is merely 

a consequence of the Cahn-Ingold-Prelog (CIP) rules.160 

 The optical purity of (Rp)-83 was confirmed by the re-preparation of (Rc,Sp)-81 

from the liberated ligand (Rp)-83 and the dimeric complex (Rc)-43 (Figure 3.11). 
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Scheme 3.11 
 
 
 The 31P{1H} NMR spectrum of the reaction mixture showed  the same resonance 

signals that were obtained for the original cycloadduct (Rc,Sp)-81 thus reaffirming that the 

liberated (Rp)-83 is enantiomerically pure . 

 

3.5 Conclusions 

 

 It is seen that the naphthylamine complex promotes the asymmetric Diels-Alder 

reaction between DMPP and phosphine functionalized terminal alkenols. The regio-

stereoselectivity was found to be good with only one isomer being formed exclusively. It 

needs to be noted that the cheaper palladium analogue of the chiral promoter was the 

initial choice for synthesizing the diphosphine ligands containing stereogenic 

phosphorous centers, but was found to give poor selectivity. The formed alcohol 
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functionalized chiral diphosphines have the potential of being employed in the synthesis 

of gold-phosphine drugs though no biological studies were carried out as part of this 

project. The presence of the hydroxyl functionality provides access to other derivatives 

which can be used to study structure-functionality relationship in future biological studies. 
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Introduction 
 
 
 
4.1 Introduction 
 
  
 One of the most promising processes for the construction of carbon-phosphorous 

bonds is the addition of phosphorous-hydrogen bonds to unsaturated carbon linkages. 

This synthetic protocol has immense potential in terms of synthetic value and atom 

economy. Compared to the addition of other heteroatom hydrogen bonds like 

hydrosilylation,174 hydroboration,175 hydrostannation176 etc., hydrophosphination  has 

been much less studied. With free phosphines, addition onto an unsaturated C-C bond has 

been achieved under basic,177 radical178,179 or thermal activation.180 However due to the 

severe conditions involved, a mixture of products are often obtained, resulting in 

moderate yields. The ortho-metallated complex 36 has been previously used as chiral 

auxiliary to promote the asymmetric hydroamination of ethynyphosphines and aniline 

yielding P-chiral iminophosphines.   181

More recently hydrophosphination reactions between diphenylphosphine and (E)- 

and (Z)-diphenyl-1-propenylphosphine under mild conditions have also been achieved 

using the same complex.182 In order to extend this protocol to the hydrophosphination of 

functionalized olefinic systems culminating in the synthesis of functionalized chiral 

diphosphines with chirality residing in the carbon backbone, the hydrophosphination of 

phosphine functionalized alkenols synthesized ( Chapter 3, Section 3.2) is studied. It 

needs to be noted that this is a second stage hydrophosphination on the hydroxyl 

functionalised olefinic system since the compounds 72 and 73 themselves were prepared 

 103



by a regio- stereoselective hydrophosphination of the parent alkynols (albeit not 

involving the metal template complex). 

 
4.2 Hydrophosphination of 3-Diphenylphosphanyl-but-3-en-1-ol 
 
 
4.2.1 Synthesis of (Rc,Rc)-87a 

 

 The 3-diphenylphosphanyl-but-3-en-1-ol ligand 72 was allowed to 

coordinate to the palladium complex (Rc)-36 in dichloromethane yielding the complex 

(Rc)-84 as yellow solid in 69.9 % yield (Scheme 4.1). 

 

N
Pd

Cl

2

N
Pd

Cl
PPh2

P
Ph

PhCH2Cl2, rt

(Rc)-36 (Rc)-84

OH

72

OH
 

Scheme 4.1 

 

The 31P{1H} NMR spectrum of the complex (CDCl3, 121MHz) showed a singlet 

signal at δ 40.59 . The coordination shift (Δ = 44.0 ppm) is indicative of the formation of 

(Rc)-84. The Cl-ligand in (Rc)-84 was subsequently replaced by a ClO4 counterpart 

through treatment of (Rc)-84 with excess aqueous silver perchlorate in dichloromethane. 

The perchlorato complex (Rc)-85 in dichloromethane was then reacted with an equivalent 

of diphenylphosphine at -78°C to yield the hydrophosphination products as shown in 

Scheme 4.2. 
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Scheme 4.2 
 
  

The reaction temperature was maintained at -78°C for 10 hrs and subsequently 

stirred at room temperature for another 24 hrs to obtain a dark red solid product. The 

31P{1H} NMR spectrum of the crude reaction mixture showed the presence of four pairs 

of doublets that are attributed to the isomers (Rc,Rc)-86a, (Rc,Rc)-87a, (Rc,Sc)-86b and  

(Rc,Sc)-86b. The 31P{1H} signals (121.5 MHz, CDCl3) observed were as follows: δ 31.38 
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( d, JPP = 34.2 Hz), 39.81 (d, JPP = 22.7 Hz ), 47.49 (d, JPP = 34.2 Hz), 47.97 (d, JPP = 30.4 

Hz), 50.36 ( d, JPP = 30.4 Hz), 52.62 ( d, JPP = 30.4 Hz), 66.42 (d, JPP = 34.2 Hz), 77.05 

( d, JPP = 22.7 Hz). The ratio of the isomers was found to be 4.0: 1.0: 18.5: 2.2. 

Subsequently the major isomer (Rc,Rc)-87a was separated by means of fractional 

crystallization as pale yellow crystals  from dichloromethane- diethyl ether. The 31P{1H} 

NMR spectrum ( CDCl3 ) of pure (Rc,Rc)-87a  showed the following signals: δ 39.29 ( d, 

1P, JPP = 26.6Hz ), 76.06 ( d, 1P, JPP = 26.6 Hz ).  

 

4.2.2 Single Crystal X-ray Diffraction Analysis of (Rc,Rc)-87a 

 

The single crystal X-ray diffraction analysis of the isolated pure isomer (Rc,Rc)-

87a revealed that the expected five-membered diphosphine chelate has been formed 

( Figure 4.1). The newly formed stereogenic centre at C(16)  adopts the R configuration 

as observed from Figure 4.1.  

The geometry at the Pd centre is distorted square planar with angles of 80.4(2) – 

101.5(1)° and 173.8(1) – 177.6(1)°. The five-membered diphosphine chelate adopts the λ 

ring configuration, with the CH2-CH2-OH substituent at C(16) occupying the axial 

position. The tetrahedral distortion is necessitated to reduce the unfavorable steric 

repulsions existing between the substituent on C(16) and the axial phenyl group on P(1). 

The same steric considerations are responsible for the staggered orientation of the phenyl 

groups on P(2) and the methyl groups on N(1). Selected bond lengths and angles are 

given in Table 4.1. 
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Figure 4.1 Molecular structure and absolute stereochemistry of (Rc,Rc)-87a 

 
 
 

Table 4.1 Selected bond lengths (Å) and angles (°) for (Rc,Rc)-87a 
 

 
Pd(1)-C(1)                       2.053(4)                      Pd(1)-N(1)                    2.140(3) 
 
Pd(1)-P(1)                       2.250(1)                      Pd(1)-P(2)                     2.355(1) 
 
P(1)-C(16)                      1.862(5)                      P(2)-C(15)                     1.829(5) 
 
O(1)-C(18)                     1.434(10)                    C(15)-C(16)                   1.546(7) 
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C(16)-C(17)                   1.536(6)                      C(17)-C(18)                  1.500(8) 
 
C(1)-Pd(1)-N(1)            80.4(2)                        C(1)-Pd(1)-P(1)             93.6(1) 
 
N(1)-Pd(1)-P(1)            173.8(1)                      C(1)-Pd(1)-P(2)             177.6(1) 
 
N(1)-Pd(1)-P(2)            101.5(1)                      P(1)-Pd(1)-P(2)             84.5(4) 
 
C(16)-C(15)-P(2)          110.6(3)                     C(17)-C(16)-C(15)        110.5(4) 
 
C(17)-C(16)-P(1)          115.1(4)                     C(15)-C(16)-P(1)           109.7(3) 
 
C(18)-C(17)-C(16)       112.5(5)                      O(1)-C(18)-C(17)         113.5(6)  
 

 
 
 
 
4.2.3 Synthesis of the dichloro complex (Rc)-88 
 
 
 

A solution of (Rc,Rc)-87a in dichloromethane was treated with concentrated 

hydrochloric acid to remove the naphthylamine auxiliary chemoselectively (Scheme 4.3). 
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Scheme 4.3 

 

The 31P{1H} NMR spectrum of the dichloro complex (121 MHz, CDCl3) showed 

signals at δ 51.05 ( d, 1P, JPP = 7.5 Hz ) and 71.34 ( d, 1P, JPP = 7.5 Hz ). The dichloro 

complex (Rc)-88 crystallized from dichloromethane - n-hexanes as pale yellow prisms. 
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4.2.4 Single crystal X-ray diffraction analysis of  (Rc)-88 
 

 
Figure 4.2 Molecular structure and absolute configuration of (Rc)-88 

 
 

The single crystal X-ray diffraction analysis (Figure 4.2) confirmed that the 

naphthylamine auxiliary has been removed with no change to the diphosphine ligand 

structure and stereochemistry. Complex (Rc)-88 adopts the original R absolute 

configuration at the chiral centre C(2). Selected bond lengths and angles for (Rc)-88 are 

given in Table 4.2. 
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Table 4.2 Selected bond lengths (Å) and angles (°) for (Rc)-88 
 

 
 
Pd(1)-P(2)                         2.220(4)                   Pd(1)-P(1)                        2.233(4) 
 
Pd(1)-Cl(2)                       2.348(4)                   Pd(1)-Cl(1)                       2.368(4) 
 
P(1)-C(2)                          1.854(14)                 P(2)-C(1)                          1.839(14) 
 
C(1)-C(2)                         1.495(19)                 C(2)-C(3)                          1.529(19) 
 
C(3)-C(4)                         1.54(2)                     C(4)-O(1)                          1.43(2) 
 
P(2)-Pd(1)-P(1)                86.0(1)                     P(2)-Pd(1)-Cl(2)               89.3(1) 
 
P(1)-Pd(1)-Cl(2)              174.8(2)                   P(2)-Pd(1)-Cl(1)               176.3(1) 
 
P(1)-Pd(1)-Cl(1)              92.1(1)                    Cl(2)-Pd(1)-Cl(1)              92.7(1) 
 
C(2)-P(1)-Pd(1)               108.9(5)                  C(1)-P(2)-Pd(1)                 108.5(5) 
 
C(2)-C(1)-P(2)                 109.9(1)                 C(1)-C(2)-C(3)                  114.0(1) 
 
C(1)-C(2)-P(1)                 108.7(1)                 C(3)-C(2)-P(1)                   113.0(9) 
 
C(2)-C(3)-C(4)                112.9(1)                O(1)-C(4)-C(3)                  109.4(1)              
 

 
 
 
4.2.5 Decomplexation and Optical Purity of the (C-Chiral) diphosphine (Rc)-89 
 
 

It is noteworthy that the optically active diphosphine ligand with chirality residing 

on the C atom (Rc)-89 can be stereospecifically cleaved from (Rc)-88 by treatment of the 

dichloro complex with aqueous potassium cyanide at room temperature for 2 hrs 

( Scheme 4.4). 
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The liberated ligand was obtained as pale yellow oil on removal of solvents under 

reduced pressure. 31P{1H} NMR ( CDCl3 ) spectra showed resonances at δ 19.31 ( d, 3JPP 

= 19.0 Hz ) and -0.17 ( d, 3JPP = 19.0 Hz ). Due to the extreme air sensitivity of the non-

coordinated phosphorous atoms, the liberated (Rc)-89 could not be stored in its pure form. 

Therefore the liberated ligand was re-complexed to the bis(acetonitrile) complex (Rc)-51 

(Scheme 4.5). 
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Scheme 4.5 

 
The recoordination process is also a means of verifying the optical purity of the 

released ligand. To establish the identity of the minor isomers that were generated in the 

original hydrophosphination reaction, (Rc)-89 was re-complexed to the bis(acetonitrile) 
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complex (Rc)-51. The re-complexation of the released ligand (Rc)-89 to the 

bis(acetonitrile) complex (Rc)-51 was monitored by 31P{1H} NMR spectroscopy (121 

MHz, CDCl3) and gave signals at δ 39.65 ( d, 1P, JPP = 22.8 Hz ), 47.91 ( d, 1P, JPP = 

30.4 Hz ), 50.23 ( d, 1P, JPP = 30.4 Hz ) and 76.89 ( d, 1P, JPP = 22.8 Hz ).  The 

resonance signals at δ 39.65 and 76.89 are identical to those observed for the major 

product (Rc,Rc)-87a  in the original hydrophosphination reaction. The signals at  δ 47.91 

and 50.23 matches signals seen in the original reaction mixture and are assigned to the 

regioisomeric product of (Rc,Rc)-87a  viz. (Rc,Rc)-86a. Formation of regioisomers during 

the recoordination of liberated ligands to the naphthylamine auxiliary is well established. 

Previous studies on similar isomeric systems have shown that, for a pair of regioisomers 

such as (Rc,Sc)-86a and (Rc,Sc)-87a formed on the naphthylamine chiral auxiliary system, 

the separation in 31P{1H} resonance signals will be significantly larger than that observed 

for diastereomeric complexes such as (Rc,Rc)-87a and (Rc,Sc)-87b.182,183    

The re-complexation reaction with  (Sc)-51 gave signals at δ 31.27 ( d, 1P, JPP = 

30.4 Hz), 47.43 ( d, 1P, JPP = 34.2 Hz), 52.39 ( d, 1P, JPP = 34.2 Hz) and 66.37 ( d, 1P, 

JPP = 30.4 Hz). In order to assign these signals to  (Rc,Sc)-86b and its regioisomer (Rc,Sc)-

87b we need to draw an analogy with (Rc,Rc)-86a and (Rc,Rc)-87a. The coupling 

constants of the two pairs of signals are also a very good spectroscopic handle for pairing 

up the resonances of the minor isomers. Comparison of the signals to those of (Rc,Rc)-86a 

and (Rc,Rc)-87a clearly indicates that the signals at δ 31.27 ( d, 1P, JPP = 30.4 Hz) and 

66.37 ( d, 1P, JPP = 30.4 Hz) are due to the diastereomer of (Rc,Rc)-86a viz., (Rc,Sc)-86b, 

and the signals at δ 47.43 ( d, 1P, JPP = 34.2 Hz), 52.39 ( d, 1P, JPP = 34.2 Hz) can be 

assigned to the regioisomer of (Rc,Sc)-86b viz., (Rc,Sc)-87b. 
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4.3 Hydrophosphination of 2-Diphenylphosphanyl-prop-2-en-1-ol 
 
 
4.3.1 Synthesis of the Hydrophosphination products 
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Scheme 4.6 

 
 
 

 The 2-diphenylphosphanyl-prop-2-en-1-ol ligand obtained by means of 

hydrophosphination of propargyl alcohol (Section 3.2.2) was coordinated to the dimeric 

orthometallated palladium complex (Rc-36) as shown in Scheme 4.6. The reaction was 

allowed to stir for 8 hrs at room temperature and then the solvent removed under reduced 

pressure to give a yellow solid. The 121 MHz  31P{1H} NMR spectrum of the complex 

showed a singlet signal at δ 40.59 in CDCl3 . 

Crystallization using   acetonitrile- diethyl ether gave yellow prisms of (Rc)-90. 

The monophosphine complex formed was characterized by means of single crystal X-ray 

diffraction analysis (Figure 4.3). Selected bond angles and bond lengths are given in 

Table 4.3. The coordination around the metal centre is distorted square planar with angles 

at palladium in the range of 80.6(2)-93.9(1) and 171.2(1)-173.4(1)°.   
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Figure 4.3 Molecular structure of (Rc)-90 

 
 
 

Table 4.3 Selected bond lengths (Å) and bond angles (°) of (Rc)-90 
 

 
Pd(1)-C(1)                             2.005(4)                  Pd(1)-N(1)                            2.126(4) 
 
Pd(1)-P(1)                             2.251(1)                  Pd(1)-Cl(1)                          2.413(1) 
 
O(1)-C(16)                           1.380(7)                   C(15)-C(17)                        1.306(7) 
 
C(15)-C(16)                         1.490(8)                   
 
C(1)-Pd(1)-N(1)                   80.6(2)                    C(1)-Pd(1)-P(1)                  93.9(1) 
 
N(1)-Pd(1)-P(1)                   173.4(1)                  C(1)-Pd(1)-Cl(1)                 171.2(1) 
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N(1)-Pd(1)-Cl(1)                  92.5(1)                   P(1)-Pd(1)-Cl(1)                  93.3(5)  
 

 
 
 

The chloro complex (Rc)-90 was subsequently converted to the perchlorato 

species by treatment with aqeous silver perchlorate as shown in Scheme 4.7. 
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The perchlorato complex (Rc)-91 was dissolved in dichloromethane and was 

allowed to react with diphenylphosphine at -78°C for 10 hrs and then stirred at room 

temperature for further 48 hrs to give a dark red solid upon removal of solvents under 

reduced pressure. The 31P{1H} spectrum (CDCl3, 121 MHz) of the reaction mixture prior 

to attempted fractional crystallization showed the following signal pattern :  δ 30.75 ( d, 

1P, JPP = 30.4 Hz), 37.96 ( d,1P, JPP = 22.8 Hz ), 41.88 ( d, 1P, JPP = 30.4 Hz ), 41.94 ( d, 

1P, JPP = 30.4 Hz ), 49.42 ( d, 1P, JPP = 30.4 Hz), 51.30 ( d, 1P, JPP = 30.4 Hz), 60.85 ( d, 

1P, JPP = 30.4 Hz) and 67.63 ( d, 1P, JPP = 22.8 Hz). The signals were indicative of the 

formation of isomers in the ratio 1: 2.4: 5.3: 7.8.  

Attempted fractional crystallization using dichloromethane – n-hexanes gave 

yellow prisms suitable for single crystal X-ray diffraction analysis. Preliminary 31P{1H} 

NMR (121 MHz, CD2Cl2) spectral studies on the crystals indicated the presence of two 

isomers since four doublet signals were observed at δ 41.55 ( d, 1P, JPP = 30.4 Hz), 41.97 

( d, 1P, JPP = 30.4 Hz), 50.01( d, 1P, JPP = 30.4 Hz) and 51.46 ( d, 1P, JPP = 30.4 Hz). 

 

4.3.2 Single crystal X-ray diffraction analysis of 92 

 

 Single crystal X-ray diffraction analysis of the yellow prisms obtained from the 

hydrophosphination reaction mixture confirmed that the two diastereomers (Rc,Rc)-92a 

and (Rc,Sc)-92b  have co-crystallized out (Figure 4.4 and 4.5). Selected bond lengths and 

bond angles for the two diastereomers are given in Table 4.3.  

 .  
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Figure 4.4 Molecular structure and absolute configuration of (Rc,Rc)-92a 
 

 
Figure 4.5 Molecular structure and absolute configuration of (Rc,Sc)-92b 
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Table 4.3 Selected bond lengths (Å) and angles (°) of 92 
 

 
                         (Rc,Rc)-92a   (Rc,Sc)-92b 

 
 
Pd(1)-C(1)                  2.059(7)                                    Pd(2)-C(42)                   2.059(7) 
 
Pd(1)-N(1)                 2.141(6)                                     Pd(2)-N(2)                     2.140(6) 
 
Pd(1)-P(2)                  2.245(2)                                     Pd(2)-P(4)                     2.257(1) 
 
Pd(1)-P(1)                  2.350(2)                                     Pd(2)-P(3)                     2.394(1) 
 
P(1)-C(15)                 1.835(8)                                     P(3)-C(56)                     1.853(8) 
 
P(2)-C(16)                 1.843(8)                                     P(4)-C(57)                     1.828(8) 
 
C(15)-C(16)              1.497(11)                                   C(56)-C(57)                   1.537(11) 
 
C(15)-C(17)              1.518(13)                                   C(56)-C(58)                   1.491(12) 
 
O(1)-C(17)                1.366(14)                                   O(2)-C(58)                     1.447(12) 
 
C(1)-Pd(1)-N(1)        80.4(3)                                       C(42)-Pd(2)-N(2)          79.8(3) 
 
C(1)-Pd(1)-P(2)        95.7(2)                                        C(42)-Pd(2)-P(4)          93.3(2) 
 
N(1)-Pd(1)-P(2)        175.1(2)                                      N(2)-Pd(2)-P(4)           172.8(2) 
 
C(1)-Pd(1)-P(1)        174.0(2)                                      C(42)-Pd(2)-P(3)          175.6(2) 
 
N(1)-Pd(1)-P(1)        99.4(2)                                        N(2)-Pd(2)-P(3)           101.7(2) 
 
P(2)-Pd(1)-P(1)        84.8(7)                                        P(4)-Pd(2)-P(3)           85.1(7) 
 

 
        
  

As can be seen from the single crystal X-ray diffraction data, the two 

diastereomers differ in the chirality at C(15) and C(56) respectively. For  (Rc,Sc)-92a   the 

chirality at C(15) is S whereas in the case of (Rc,Rc)-92b the chiral carbon C(56) adopts 
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the R configuration. Both diastereomers show similar coordination pattern with the 

geometry at the Pd metal centre being distorted square planar. The angles formed by the 

diphosphine chelate and the naphthylamine template at the Pd metal centre being in the 

range of 80.4(3)-99.4(2) and 174.0(2)-175.1(2)° for (Rc,Rc)-92a . The diastereomer 

(Rc,Sc)-92b  showed slightly elevated strain with angles at the metal centre being in the 

range of 79.8(3)-101.7(2) and   172.9(2)-175.6(2)°. 

 The two diastereomers (Rc,Rc)-92a and (Rc,Sc)-92b  which co-crystallized out 

were converted to their dichloro species ( Scheme 4.8). 
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The crude reaction mixture showed two doublets when monitored by 31P{1H} 

NMR spectroscopy ( 121 MHz, CD2Cl2) at δ 53.28 ( d, 1P, JPP  = 7.6 Hz) and 66.15 ( d, 

1P, JPP = 7.6 Hz). The reaction mixture was concentrated and diethyl ether added 

resulting in the formation of pale yellow crystals which were analyzed by means of single 

crystal X-ray diffraction analysis (Figure 4.7). 

 

 

Figure 4.7  Molecular structure of 93 
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The single crystal X-ray diffraction analysis showed that as expected, the 

attempted separation of the neutral species did not succeed. The two enantiomers (Rc)-

93a and (Sc)-93b co-crystallized out in the same unit cell. 

 

4.4 Conclusions 

 

 The chiral organopalladium template promoted asymmetric hydrophosphination 

of phosphine functionalized alkenols has been demonstrated. The reaction showed 

appreciable regio-stereoselectivity in the case of 3-diphenylphosphanyl-but-3-en-1-ol 

ligand with the hydrophosphination products being formed in the ratio 4.0: 1.0: 18.5: 2.2. 

The major isomer (Rc,Rc)-87a  was subsequently isolated in appreciable yield ( 78%) in 

its optically pure form.  

The similar reaction involving 2-diphenylphosphanyl-prop-2-en-1-ol however did 

not exhibit appreciable selectivity. The major regio-isomer crystallized out as a racemic 

mixture. Subsequent attempts to separate them after conversion to the neutral dichloro 

species also did not succeed. It needs to be noted that in the case of 3-

diphenylphosphanyl-but-3-en-1-ol the major product was the isomer wherein the 

phosphine functionalized alcoholic entity occupied a position trans to the NMe2 group of 

the chiral template whereas in the case of the major isomers (isolated as racemic mixture) 

of hydrophosphination involving 2-diphenylphosphanyl-prop-2-en-1-ol, the phosphine 

functionalized alcohol entity occupied a position trans to the C of the chiral template. 

This is believed to be due to the steric factor involved in the case of 3-

diphenylphosphanyl-but-3-en-1-ol wherein the -CH2-CH2-OH entity on the chiral carbon 
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extends into the metal coordination sphere and is sterically hindered by the presence of 

the NMe2 group of the naphthylamine auxilliary. The shorter –CH2-OH group of the 2-

diphenylphosphanyl-prop-2-en-1-ol meanwhile does not have an appreciable steric 

impact and therefore can afford to occupy the position trans to the C of the template.  
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Experimental Section 

 

All reactions and manipulations of air-sensitive compounds were carried out 

under a positive pressure of dry, oxygen-free nitrogen on a high-vacuum line, or on a 

standard Schlenk line. Solvents were dried and freshly distilled according to standard 

procedures and degassed prior to use when necessary.  The 1-D 1H and 31P{1H) NMR 

spectra were measured on a Bruker ACF 300 spectrometer operating at 300.13 and 

121.49 MHz respectively. The data is presented as follows: chemical shift, multiplicity, 

number of active nuclei and coupling constant(s) in Hertz (Hz).  1H and 31P{1H) NMR 

chemical shifts are referenced relative  to Me4Si and H3PO4 respectively. Phase- sensitive 

ROESY spectra were obtained on a Bruker AMX 500 spectrometer and were acquired 

into 1024 X 512 matrix with a 250ms spin lock time and a spin lock field strength such 

that γBB1/2π = 5000 Hz and then transformed into 1024 X 1024 points using a sine bell 

weighting function in both dimensions. Optical rotations were measured on the specified 

solutions in a 1 cm cell at specified temperatures using a Perkin-Elmer model 341 

polarimeter. Melting points were determined using a Büchi B-545 automatic melting 

point apparatus. Elemental analyses were performed by the Elemental Analysis 

laboratory of the Department of Chemistry at the National University of Singapore. 

 

Materials 

 Both enantiomers of bis(acetonitrile)[1-[1-(dimethylamino) ethyl]-2-naphthalenyl-

C,N] palladium(II) perchlorate (Rc)-51 and (Sc)-51,184 di-μ-chloro bis[1-
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(dimethylamino)ethyl]-2-naphthalenyl-C,N]dipalladium(II) dichloromethane solvate (Rc)-

36,108 chloro[1-[1-(dimethylamino)ethyl]-2-naphthalenyl-C,N]3,4-dimethyl-1-

phenylphosphole)palladium(II) (Rc)-46,153  perchlorato(R)-1-[1-(dimethylamino)ethyl]-2-

naphthalenyl-C,N][3,4-dimethyl-1-phenylphosphole-P]palladium(II) (Rc)-47,154 di-μ-

chloro bis[(R)-1-(dimethylamino)ethyl]-2-naphthalenyl-C,N]diplatinum(II) 

dichloromethane solvate (Rc)-43,185 3,4-dimethyl-1-phenylphosphole 44,186 3,4-dimethyl-

1-phenylphosphole-1-sulfide 47,145 diphenylvinylphosphine,187 diphenylvinylarsine 65,184 

diphenylvinylphosphine sulfide188 53 were prepared as previously reported. Solvents 

were distilled, dried and degassed by standard procedures where necessary. Column 

chromatography was performed using silica gel 60 (0.040-0.063mm, Merck).  

Caution! All perchlorate salts should be handled as potentially explosive compounds. 

 

Synthesis of [(R)-1-[1-(dimethylamino)ethyl]-2-naphthalenyl-C,N] [ 9-thio-9-

phenylphosphino-2,3,6,7-tetramethyl-6-ethylene-10-phenyl-10-phosphabicyclo[2,2,1] 

hept-2-ene-P9(R)P10(S)]palladium (II)perchlorate,  (RcSpRp)-48 

 

A solution of (R)c-47 (1.20g, 1.8 mmol) in 1,2-dichloroethane (50 mL) was 

treated with DMPPS 45 (0.40g, 1.8 mmol) and refluxed. The reaction was monitored by 

31P{1H} NMR spectroscopy and was found to be complete in 2 days. Removal of solvent 

under reduced pressure gave a yellow solid (1.42 g, 97%). The 31P NMR spectrum of the 

crude product in CD3CN exhibited two pairs of doublets indicative of a diastereomeric 

mixture (1:0.3). For the major diastereomer (Rc,Sp,Rp)-48,   the doublets were observed at 
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δ 61.3 ( JP-P 11.4Hz ) and 115.3 ( JP-P 11.4Hz).For the minor isomer the doublets occurred 

at δ 62.0 ( JP-P 11.4Hz )  and 114.8_( JP-P 11.4Hz). Attempted fractional crystallization 

yielded crystals which consist of both diastereomers but the mother liquor obtained 

showed presence of only the major isomer. The major isomer was subsequently purified 

by column chromatography on silica gel with ethyl acetate/hexane (3:1) and crystallized 

out from acetonitrile-ether as pale yellow prisms (0.55 g, 39%). [α]D = -96.7º (c 0.3, 

CH2Cl2), mp: 238-240 º C. Anal. Calcd for C38H42ClNO4P2PdS: C, 56.2; H, 5.2; N, 1.7; S, 

3.9. Found: C, 56.6; H, 5.6; N, 1.5; S, 3.6.  31P{1H} NMR (CDCl3) : δ 61.34 ( d, 1P, JPP = 

11.4Hz), 115.25 ( d, 1P, JPP = 11.4Hz) .1H NMR (CDCl3) : δ 1.57 (s, 3H, =CMe ), 1.60 (s, 

3H, =CMe ), 1.62 (d, 3H, CHMe, 3JHH = 6.8 Hz), 2.04 (s, 3H, NMeaxial), 2.17 (s, 3H, 

CMe), 2.34 (s, 3H, =CMe), 2.65 ( s , 3H, NMeequal), 2.88 (d, 1H, 3JHH = 3Hz, H1), 3.31 (m, 

1H, H4), 4.12 (dd, 1H, 1JPH = 14Hz, 3JHH = 7.23Hz, H8), 4.23 (qn, 1H, 3JHH = 4JPH = 6.02 

Hz, H10), 6.34 (d, 1H, 2JPH = 28Hz, H7), 7.22-7.92 (m, 16H, aromatics). 

 

Preparation of dichloro[ 9-thio-9-phenylphosphino-2,3,6,7-tetramethyl-6-ethylene-

10-phenyl-10-phosphabicyclo[2,2,1]hept-2-ene-P9(R)P10(S)]palladium(II)perchlorate,  

(Sp,Rp)-49 

  The complex (Rc,Sp,Rp)-48 (0.40g) was dissolved in dichloromethane (30 mL). To 

this solution, hydrochloric acid (4mL, 37%) was added and the resulting solution was 

stirred vigorously for 1 day. The reaction mixture was then washed with distilled water (3 

X 10 mL) and dried with magnesium sulfate. Removal of all solvent left the crude 

product as yellow powder, 0.25g (87%). The dichloro complex (Sp,Rp)-49 was then 
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further crystallized by slow diffusion of diethyl ether into a saturated solution of the 

compound in acetonitrile,  as  yellow crystals  0.18g. [α]D = -175.57º (c0.1, CH2Cl2), mp: 

254-256 º C. Anal.  Calcd. for C38H42ClNO4PPdS: C, 49.2; H, 4.4; S, 5.5. Found: C, 48.8; 

H, 4.5; S, 5.3. 31P{1H} NMR (CDCl3) : δ 60.54 ( d, 1P, JPP = 15.2Hz), 106.63 ( d, 1P, JPP 

= 15.2Hz) .  1H NMR (CD2Cl2) : δ 1.42 (s, 3H, =CMe ), 1.45 (s, 3H, =CMe ), 2.37 (s, 3H, 

=CMe), 2.59 (dd, 1H, 3JHH = 2.01Hz, H1), 3.38 (m, 1H, H4), 4.12 (dd, 1H, 1JPH = 14.25Hz, 

3JHH = 7.23Hz, H8), 6.79 (d, 1H, 2JPH = 28.5Hz, H7), 7.4 1-7.83 (m, 16H, aromatics). 

Decomplexation of 9-thio-9-phenylphosphino-2,3,6,7-tetramethyl-6-ethylene-10-

phenyl-10-phosphabicyclo[2,2,1]hept-2-ene-P9(R)P10(S)-biphosphole,  (Rp,Rp)-50. 

To the solution of dichloro complex (Sp,Rp)-49  ( 0.08 g) in dichloromethane ( 10 

mL), an aqueous solution of potassium cyanide (  0.3 g) was added under a nitrogen 

atmosphere, and the resulting solution was stirred vigorously for 1 h. The aqueous phase 

was separated, and the organic layer was washed with water (3 X 5 mL) and dried over 

magnesium sulfate. Removal of the solvent under vacuum gave ligand (Rp,Rp)-50 as an 

air-sensitive colorless oil in 83 % yield ( 0.05  g); [α]D= -165.13 º (c 0.1, CH2Cl2) , 31P{1H} 

NMR (CDCl3) : δ 58.12 ( d, 1P, 3JPP = 7.6Hz), 106.50 ( d, 1P, 3JPP = 7.6Hz) .  

To determine the optical purity of (Rp,Rp)-50  , the liberated ligand was 

recoordinated to the bis(acetonitrile) complex (Rc)-51 to regenerate the diastereomeric 

complex (RcSpRp)-48. In CDCl3, the 31P NMR spectrum of the crude recoordination 

product showed two doublets at δ 61.3 and 115.3. In a further check (Rp,Rp)-50  ,  was 

recoordinated regiospecifically to (Sc)-51 to generate the diastereomeric complex 
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(ScSpRp)-48. The 31P NMR spectrum of the crude product in CDCl3 showed two doublets 

at 61.9 and 114.8.  

Synthesis of diphenylvinylphosphine sulphide, 53 

 

To a solution of diphenylvinylphosphine (3,17g, 0.015 moles) in distilled benzene, 

sublimed sulfur (0.48g, 0.015 moles) was added with stirring. The temperature rose to 55° 

C in 1 min and then dropped rapidly. The reaction mixture was allowed to stir for 30 

minutes. A few solid particles appeared which were subsequently removed by filtration. 

The crude oil obtained on removal of benzene was dissolved in dichloromethane and 

hexane added till turbidity appeared. Yellow fine needles obtained on keeping at + 4.0°C 

(2.10 g, 87.7%). 31P{1H}NMR CDCl3 : δ 37.05 (s, 1P), 1H NMR (CDCl3) : δ 6.80 ( ddd, 

1H,  3JHHtrans = 18.1 Hz, 3JHHcis = 11.6 Hz, 2JHP = 24.3 Hz, PCH ), δ 6.27 ( ddd, 1H, 2JHH = 

1.2 Hz, 3JHH = 13.2 Hz, 3JHP = 14.6 Hz, cis-PCCH ), 6.39 ( ddd, 1H, 2JHH = 1.2 Hz, 3JHH = 

7.3 Hz, 3JHP = 17.7 Hz, trans-PCCH ), 7.44-7.79 ( m, 10H, aromatics). 

 

Synthesis of exo-cycloaddition products [(R)-1-[1-(dimethylamino)ethyl]-2-naphthyl-

C,N][7-thio-7-diphenylphosphino-2,3-dimethyl-5-phenyl-5-

phosphabicyclo[2.2.1]hept-2-ene-P7(R/S)]palladium(II)perchlorate, (Rc,Sp)-52 and 

(Rc,Rp)-52 

 

To a solution of complex (Rc)-47 in dichloromethane (0.91g, 0.001 moles), 

diphenylvinylphosphine sulphide 53 (0.33g, 0.001 moles) was added and stirred for 72hrs 

at room temperature. The solvent was removed under reduced pressure to give a dark 
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yellow solid. This compound was chromatographed on a silica gel column 

(dichloromethane:diethyl ether) giving complexes (Rc,Sp)-52 and (Rc,Rp)-52 as pale  

yellow solids . (0.71 g, 70.6%). Anal. Calcd for C40H42ClNO4P2PdS: C, 57.4; H, 5.0; N, 

1.7; S, 3.8. Found: C, 56.9; H, 5.3; N, 1.9; S, 3.7. 31P{1H}NMR CDCl3 :  δ 49.38 ( s ), 

52.05 ( s ), 113.28 ( s ), 113.91 ( s ). 

 

Synthesis of dichloro][7-thio-7-diphenylphosphino-2,3-dimethyl-5-phenyl-5-

phosphabicyclo[2.2.1]hept-2-ene-P7(R/S)]palladium(II), (Sp)-54 and (Rp)-54   

    

A solution of complexes (Rc,Sp)-52 and (Rc,Rp)-52 ( 0.51 g , 0.0006 moles) in 

dichloromethane ( 5mL) was treated with excess concentrated hydrochloric acid ( 0.80 

mL ) for  1 day. The reaction mixture was subsequently washed with distilled water (3 X 

10 mL), dried with magnesium sulphate and subsequently crystallized out from 

acetonitrile-diethyl ether as yellow prisms. (0.28g, 76%). Anal. Calcd. for 

C26H25Cl2P2PdS: C, 51.3; H, 4.1 ; S, 5.3. Found: C, 51.2; H, 4.1; S, 5.2. 1H NMR 

(CDCl3): δ 1.55 ( s, 3H, C=CMe ), 1.65 ( s, 3H, C=CMe ), 3.34 ( m, 2H, S=PCH  + 

PhPCH ), 3.49 (m, 2H, S=PCHCH2 ), 3.54 ( m, 1H, PhPCH ) , 7.35-8.33 ( m, 15H, 

aromatics). 

 
 
Synthesis of divinylphenylphosphine sulphide, 56 

 

To a solution of divinylphenylphosphine (1.62g, 0.01mols) in benzene, excess 

sublimed sulfur (0.52g) was added and the mixture stirred vigorously for 6hrs. The 
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solution was filtered to remove excess sulfur. The crude product was subsequently 

concentrated and purified by silica-gel column chromatography (dichloromethane: n-

hexanes). Removal of solvents gave yellow solid ( 1.45g, 74.7 %) of the desired product. 

31P{1H}NMR CDCl3 : δ 32.53  ( s, 1P ),   1H NMR (CDCl3) : δ 6.56 ( ddd, 1H,  3JHHtrans = 

18.1 Hz, 3JHHcis = 11.6 Hz, 2JPH = 24.6 Hz, PCH ),  6.22 ( ddd, 1H, 2JHH = 1.6 Hz, 3JHH = 

3JPH = 13.6 Hz,  cis-PCCH ), 6.39 ( ddd, 1H, 2JHH = 1.6 Hz, 3JHH = 15.7 Hz, 3JPH = 21.0 

Hz, trans-PCCH ), 7.48-7.84 ( m, 10H, aromatics). 

 

Synthesis of exo-cycloaddition products [(R)-1-[1-(dimethylamino)ethyl]-2-

naphthalenyl-C,N][5-thio-5-(ethenylphenylphosphino)-2,3-dimethyl-7-phenyl-7-

phosphabicyclo[2.2.1]hept-2-ene ]palladium(II)perchlorate, 55. 

 

Divinylphenylphosphine sulfide 56 (0.6g, 0.003 mols) was added with stirring to 

a solution of (Rc)-47 (2.0 g, 0.003 mols) in dichloromethane. The reaction was allowed to 

stir for 4 days at room temperature. The solvent was removed to yield the compound as 

dark yellow solid. The product was further purified by means of silica-gel column 

chromatography using ethyl acetate – n-hexanes to yield the exo-products as yellow solid 

upon removal of solvents. (1.7 g, 73.9 %). 31P{1H}NMR CDCl3 : 47.03 ( s ), 47.13 ( s ), 

47.38 ( s ), 49.29 ( s ), 113.22 ( s ), 114.19 ( br s, overlap ) , 114.53 ( s ). 
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Synthesis of dichloro[5-thio-5-(ethenylphenylphosphino)-2,3-dimethyl-7-phenyl-7-

phosphabicyclo[2.2.1]hept-2-ene ]palladium(II), 57.   

 

A solution of the exo-products (0.98 g, 0.001 mols) in dichloromethane was 

treated with excess concentrated hydrochloric acid (2 mL) and stirred vigorously for 1 

day. The reaction mixture was washed with water ( 3 X 10 mL ) and further dried using 

magnesium sulphate .Pale yellow prisms were obtained  from dichloromethane – n-

hexanes ( 0.22 g, 39.3 % ),  31P{1H}NMR CD2Cl2 : 47.18 ( s, 1H ), 111.01 ( s, 1H ). 1H 

NMR (CDCl3): δ 1.24 ( s, 3H, C=CMe ), 1.65 ( s, 3H, C=CMe ), 2.82 ( m, 1H, 

S=PCHCH2 ), 3.15 ( m, 2H, S=PCH  + PhPCH  ), 3.4 ( m, 1H,  PhPCH ),  6.62 ( ddd, 1H,  

3JHHtrans = 18.0 Hz, 3JHHcis = 11.4 Hz, 2JPH = 25.5 Hz, S=PCH vinylic ), 6.32 ( ddd, 1H, 

2JHH = 1.6 Hz, 3JHH = 3JPH = 17.7 Hz,  cis-PCCH ), 6.43 ( ddd, 1H,  3JHH = 12.1 Hz, 3JPH = 

34.1 Hz, trans-PCCH ), 7.40-7.69 ( m, 10H, aromatics). The mother liquor yielded dark 

yellow crystals from dichloromethane - n-hexanes (0.08g, 14.3 %). 31P{1H}NMR 

CD2Cl2 : 47.50 ( s, 1H ), 110.39 ( s, 1H ). 1H NMR (CD2Cl2): δ 1.40 ( s, 3H, C=CMe ), 

1.68 ( s, 3H, C=CMe ), 2.82 ( m, 1H, S=PCHCH2 ), 3.19 ( m, 2H, S=PCH  + PhPCH  ), 

3.61 ( m, 1H,  PhPCH ),  6.65 ( ddd, 1H, 2JHH = 1.6 Hz, 3JHH = 3JPH = 17.7 Hz,  cis-

PCCH ), 6.75 ( ddd, 1H,  3JHH = 12.0 Hz, 3JPH = 34.3 Hz, trans-PCCH ), 6.87 ( ddd, 1H,  

3JHHtrans = 18.1 Hz, 3JHHcis = 11.4 Hz, 2JPH = 25.1 Hz, S=PCH vinylic ),7.40-7.93 ( m, 10H, 

aromatics). 
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Preparation of chloro[(R)-1-[1-(dimethylamino)ethyl]-2-naphthyl-C,N][di-1-

ethynylphosphine]palladium(II), (Rc)-59. 

 

A solution of divinylphenylphosphine ( 1.30 g , 0.008 moles ) and (Rc)-36 (  2.73     

g ,  0.004 moles ) in dichloromethane was stirred for 3hrs. The solvent was removed and 

the resultant yellow precipitate was purified by chromatography on a silica gel column 

(ethyl acetate: n-hexanes, 3:2) to yield pure compound (Rc)-59 as yellow solid (1.78 g,   

76.9 %). m.p:203°C (dec.). Anal. Calcd for C29H31ClNPd: C, 58.9; H, 5.9; N, 2.6. Found: 

C, 59.3; H, 6.0; N, 2.8. [α ]D = - 99.1° (c 1.1; CH2Cl2). 
31P{1H}NMR CDCl3 : δ 25.05 (s, 

1P),1H NMR ( CDCl3 ) : δ 1.97 ( d, 3H, 3JHH = 6.4 Hz, CHMe ), 2.73 ( s, 3H, NMe ), 2.95 

( d, 3H, 4JPH = 3.6 Hz, NMe ), 4.34 (qn, 1H, 3JHH = 4JPH = 6.0 Hz, CHMe ), 5.68 ( ddd, 

1H, 3JHH = 19.0, 3JPH = 18.2, 2JHH = 1.3 Hz, cis –PCCH ), 5.95 ( ddd, 1H, 3JPH = 40.1, 

3JHH = 11.5, 2JHH = 1.3 Hz, trans –PCCH ), 6.14 ( ddd, 1H, 3JPH = 40.1, 3JHH = 11.9 , 2JHH 

= 1.3 Hz, trans- PCCH ) , 6.48 ( ddd, 1H, 2JPH = 20.6, 3JHH = 19.2, 3JHH = 11.5 Hz, PCH ), 

6.68 ( ddd, 1H, 2JPH = 20.0, 3JHH = 19.3, 3JHH = 11.9 Hz, PCH ), 6.81-7.32 ( m, 11H, 

aromatics ) .  

 

Synthesis of exo-cycloaddition products [(R)-1-[1-(dimethylamino)ethyl]-2-

naphthalenyl-C,N][5-phenyl-1-ethenylphosphino-2,3-dimethyl-7-thio-7-phenyl-7-

phosphabicyclo[2.2.1]hept-2-ene]palladium(II)perchlorate, 61.  

 

To a solution of (Rc)-60 (0.92 g, 0.001 moles) in dichloromethane, DMPPS 45 

(0.30 g, 0.001 moles) was added and stirred at room temperature for 3 days. The 
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dichloromethane was removed to yield a dark yellow solid which was further purified by 

column chromatography using silica gel (4: 1, ethyl acetate: n-hexanes) to yield the 

products as yellow solid upon removal of eluents (0.42 g, 62.0 %). 31P{1H}NMR CDCl3 : 

δ 50.08 (s, 1P) , 54.51(s, 1P), 56.67 (s, 1P), 59.18 (s, 1P) , 76.61 (s, 1P) , 77.14 (s, 1P), 

78.56 (s, 1P), 79.15 (s, 1P).  

 

Preparation of dichloro[5-phenyl-1-ethenylphosphino-2,3-dimethyl-7-thio-7-phenyl-

7-phosphabicyclo[2.2.1]hept-2-ene PP

5,P7
P ]palladium(II), (Rp,Sp)-62b. 

 

A solution containing mixture of complexes 61 (0.38g, 0.0005 moles) in 

dichloromethane   was stirred vigorously with excess hydrochloric acid for 24 hrs . The 

reaction mixture was then washed with water (3 X 10 mL ) and dried using magnesium 

sulphate . A pale yellow solid was obtained on removal of solvents. Fractional 

crystallization using dichloromethane- diethyl ether yielded pale yellow prisms (0.19 g, 

61.4 %). [α]D = +53.26º (c0.4, CH2Cl2) m.p : 254°C (dec.), 31P{1H}NMR CDCl3 : 42.39 

( s, 1H ), 77.55 ( s, 1H ). 1H NMR (CDCl3): δ 1.41 ( s, 3H, C=CMe ), 1.64 ( s, 3H, 

C=CMe ), 2.43 ( m, 1H, PCHCH2 ), 3.29 ( m, 1H, PhPCH  ), 3.33 ( m, 1H,  S=PCH ), 

3.59 ( m, 1H,  S=PCH ),  6.12 ( ddd, 1H,  3JHHtrans = 19.6Hz, 3JHHcis = 12.4 Hz, 2JPH = 26.0 

Hz, PhPCH vinylic ), 6.28 ( ddd, 1H, 2JHH = 1.5 Hz, 3JHH = 3JPH = 18.2 Hz,  cis-PCCH ), 

6.39 ( ddd, 1H,  3JHH = 12.4 Hz, 3JPH = 35.0 Hz, trans-PCCH ), 7.38-8.12 ( m, 10H, 

aromatics) 
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Decomplexation of [5-phenyl-1-ethenylphosphino-2,3-dimethyl-7-thio-7-phenyl-7-

phosphabicyclo[2.2.1]hept-2-ene PP

5,P7
P ], (Sp,Sp)-63. 

 
To the solution of dichloro complex (Rp,Sp)-62b ( 0.06 g) in dichloromethane ( 10 

mL), an aqueous solution of potassium cyanide (  0.3 g) was added under a nitrogen 

atmosphere, and the resulting solution was stirred vigorously for 3 h. The aqueous phase 

was separated, and the organic layer was washed with water (3x 5 mL) and dried over 

magnesium sulfate. Removal of the solvent under vacuum gave ligand (Sp,Sp)-63 as an 

air-sensitive colourless oil in 68 % yield ( 0.028  g); [α]D= -11.54 º (c 0.1, CH2Cl2) , 

31P{1H} NMR (CDCl3) : δ 32.65 ( s), 65.21 (s).  

Synthesis of diphenylvinylarsine, 65. 
 
 

Sodium diphenylarsenide was prepared by addition of Na metal (1.50 g, 65.0 

mmoles) to a stirring solution of diphenylarsine (5.00 g, 22.0 mmoles) in dried THF (100 

mL) for 1 d. The sodium diphenylarsenide salt was added drop wise (over 1 hr.) to the 

vinylbromide (2.60 g, 24.0 mmoles) solution in THF which was cooled to -96°C 

(acetone/dry ice bath). The reaction mixture was allowed to reach ambient temperature 

and further refluxed for 3 hr. and left to stir overnight. The excess THF was distilled off 

and hydrolyzed with saturated ammonium chloride and extracted with diethyl ether. The 

organic layer was separated and dried over magnesium sulphate. The solvent was 

removed completely and the pale yellow oil obtained was distilled under reduced 

pressure. The product was obtained as a colorless viscous oil : yield 4.26 g (77%), bp 

118-130°C at 0.2 mmHg, 1H NMR (CDCl3) : δ 5.64 (dd, 1H, 3JHH = 18 Hz (trans), 2JHH = 

1.7 Hz (vicinal) AsCH=CH2 (cis to As)), 6.00 (dd, 1H, 3JHH = 11 Hz (cis), 2JHH = 1.6 Hz 
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(vicinal) AsCH=CH2 (trans to As)), 6.73 (dd, 1H, 3JHH = 19 Hz (trans), 3JHH = 11 Hz (cis), 

AsCH=CH2), 7.14 – 7.36 (m, 10H, aromatics).  

 
Synthesis of exo-cycloadduction products [(R)-1-[1-(dimetylamino)ethyl]-2-

naphthyl-C,N][5-diphenylarsino-2,3-dimethyl-7-phenyl-7-thio-7-

phosphabicyclo[2.2.1]hept-2-ene]palladium(II)perchlorate, (Rc,Rp)-67 and (Rc,Sp)-67.  

 
To a solution of (Rc)-51 in dichloromethane ( 1.23 g, 0.003 moles ) , DMPPS 45 

( 0.58 g, 0.003 moles ) and diphenylvinylarsine 65 ( 0.67 g, 0.003 moles ) was added and 

left to stir for 3 days. The solvent was removed under reduced pressure to give a yellow 

residue. Purification was carried out by silica-gel column chromatography with ethyl 

acetate – n-hexanes (3:1 v/v) as eluent to give the diastereomeric complexes of the 

product (1.7 g, 83.0 %).     31P{1H} NMR ( CDCl3 ) : δ 77.55 ( s ) , 79.69 ( s ). 

 

Synthesis of dichloro[5-diphenylarsino-2,3-dimethyl-7-phenyl-7-thio-7-

phosphabicyclo[2.2.1]hept-2-ene]palladium(II), (Rp)-68 and (Sp)-68.  

 

A solution of the diastereomers, (Rc,Rp)-67 and (Rc,Sp)-67  ( 1.0 g, 0.002 moles ) 

in dichloromethane was stirred vigorously with excess concentrated dichloromethane ( 5 

mL) for 8 hrs at room temperature. The excess acid was washed off with water (3 X 10 

mL) and the organic layer was dried using magnesium sulphate. After removal of 

solvents under reduced pressure a yellow solid was obtained (0.72 g, 85.6 %). Anal. 

Calcd for C30H36Cl2SPAs: C, 49.5 ; H, 4.9; S, 4.8. Found: C, 49.6 ; H, 4.6; S, 4.5, 31P{1H} 

NMR ( CDCl3 ) :  δ 77.99, 1H NMR ( CDCl3 ) : δ 1.58 ( s, 3H, C=CMe ), 1.66 ( s, 3H, 
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C=CMe ), 2.55 ( m, 1H, AsCH  ), 2.82 ( m, 3H, AsCHCH2 + S=PCH  ), 3.23 ( m, 1H, 

S=PCH ) , 7.47-8.03 ( m, 15H, aromatics). 

 
Synthesis of dichlorophenylarsine.  
(slight modification of literature procedure).189

 
 

Phenylarsonic acid (10g) was dissolved in concentrated hydrochloric acid (17 

mL), in a separating funnel. Few crystals of iodine (54 mg) were added and sulfur 

dioxide was bubbled through the solution until separation of the product ceased. The 

lower layer (dark red) was collected under nitrogen and dried using molecular sieves (4A) 

overnight. The crude (pale yellow oil) was distilled under vacuum to give the pure 

product as pale yellow solution. Yield 9.02 g (82 %), bp 82-90° C at 0.8 mm Hg. 1H 

NMR (CDCl3): 7.52-7.88 (m, 5H, aromatics). 

 

Synthesis of divinylphenylarsine, 69. 
 
 

Vinylbromide (  5.0g,   47  moles) in THF ( 100 mL ) was added drop wise to 

magnesium turnings ( vacuum dried with dry stirring for 8 hrs )( 2.0    g,  83  moles ), in 

THF ( 20 mL). The grignard generated was stirred at room temperature for 1hr. Excess 

THF (100 mL) was added to the reaction mixture to prevent solidification of the 

generated grignard. The grignard was then filtered into a dropping funnel and added 

dropwise (over 1.5 hrs) to a cooled (- 78 ° C) solution of dichlorophenylarsine in THF 

(100mL). The reaction mixture was allowed to reach ambient temperature and stirred 

overnight. The solvent was completely removed and the residue (dark red oil) was 

distilled under reduced pressure. The product was obtained as colorless viscous oil : 
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Yield 2.89 g ( 77 % ), bp 58-61° C at 0.2 mm Hg. 1H NMR (CDCl3) : 5.66 (dd, 2H, 3JHH 

=19Hz , trans, 2JHH =1.6 Hz (vicinal) As-CH=CH2 ( cis to As), 5.93 ( dd, 2H, 3JHH = 

11Hz (cis), 2JHH = 1.6Hz (vicinal) As-CH=CH2( trans to As) , 6.57(dd, 2H, 3JHH =19Hz 

(trans) 3JHH = 11Hz (cis) AsCH=CH2, 7.16-7.41(m, 5H, aromatics). 

 

Synthesis of exo-cycloaddition products [(R)-1-[1-(dimethylamino)ethyl]-2-

naphthalenyl-C,N][5-phenyl-1-ethenylarsino-2,3-dimethyl-7-thio-7-phenyl-7-

phosphabicyclo[2.2.1]hept-2-ene]palladium(II)perchlorate, 70. 

 

To a solution of (Rc)-51 in dichloromethane (1.80 g, 0.004 moles), DMPPS 45 

(0.84 g, 0.004 moles) and divinylphenylarsine 69 (0.78 g, 0.78 moles) was added and 

reaction was left stirring for 5 days at room temperature.  A dark red solution was 

obtained which yielded the mixture of products on removal of solvents as dark red solid. 

31P{1H} NMR (CDCl3): δ 76.86 ( s ), 77.27 ( s ), 78.87 ( s ), 79.34 ( s ) . 

 

Synthesis of dichloro[5-phenyl-1-ethenylarsino-2,3-dimethyl-7-thio-7-phenyl-7-

phosphabicyclo[2.2.1]hept-2-ene]palladium(II), 71.   

  

A solution of the exo-cycloadducts 70 in dichloromethane (0.99 g, 0.001 moles) 

was treated with excess concentrated hydrochloric acid (5 mL) and stirred vigorously for 

8 hrs. The reaction mixture was then washed with water (3 X 10 mL) dried using 

magnesium sulphate and solvent removed to yield crude product as dark yellow solid. 

The material was crystallized from dichloromethane – n-hexanes as pale yellow prisms 
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(0.22 g, 27 %). Anal. Calcd for C22H24AsCl2PPdS: C, 43.9 ; H, 4.0; S, 5.3. Found: C, 

43.9; H, 4.2; S, 5.2.  31P{1H}NMR CD2Cl2 : 77.64 ( s, 1H ) . 1H NMR (acetone-d6): δ 

1.69 ( s, 3H, C=CMe ), 1.72 ( s, 3H, C=CMe ), 3.12 ( m, 1H, AsCHCH2 ), 3.52 ( m, 2H, 

PhAsCH + S=PCH ), 3.56 ( m, 1H,  S=PCH ),  6.41 ( d , 1H, 3JHH = 11.2 Hz, trans -

AsCH=CH ) , 6.46 ( d , 1H, 3JHH = 18.5 Hz, cis-AsCH=CH ), 6.98 ( dd, 1H, 3JHH = 18.1 

Hz, 3JHH = 11.4 Hz , AsCH=CH2) 7.53-8.22 ( m, 10H, aromatics). 

 
Synthesis of 3-diphenylphosphanyl-but-3-en-1-ol,  72. 
 

Diphenylphosphide ion was generated by addition of diphenylphosphine ( 2.79 g, 

0.016 moles ) with stirring to a schlenk flask containing sodium metal ( 0.37 g, 0.016 

moles )  in THF ( 100 mL ). The mixture was left to stir overnight. A solution of n-

butyllithium in hexane (15% in hexane, 10.11 mL, 0.0162 moles) was added to 3-butyn-

1-ol (1.22 mL, 0.0162 moles) in THF with stirring. The diphenylphosphide solution 

generated previously was then added to this solution drop wise with vigorous stirring at 

0° C. The reaction mixture was allowed to reach room temperature and stirred for 5 days. 

The solvent was then distilled off to leave a dark brown slurry to which brine (150 mL) 

was added. The mixture was subsequently extracted with dichloromethane (3 X 100 mL). 

The organic layer was then dried with magnesium sulphate and solvent removed by 

distillation to give a dark yellow oil. The crude product was purified by means of silica 

gel column chromatography using 20% ethyl acetate in hexane under purified nitrogen. 

The product was collected as the first fraction which gave a yellow oil on removal of 

eluents (1.78 g, 43.2 %). 31P{1H} NMR (CDCl3):  δ -3.36 ( s ). 

 

 138



Preparation of chloro[(R)-1-[1-(dimethylamino)ethyl]-2-naphthyl-C,N][ 3-

diphenylphosphanyl-but-3-en-1-ol] platinum(II), (Rc)-74.  

 

A solution of 3-diphenylphosphanyl-but-3-yn-1-ol 72 ( 1.75 g, 0.007 moles ) in 

dichloromethane was added drop wise with stirring to (Rc)-43 (   3.00g, 0.003 moles ) in 

dichloromethane. The reaction mixture was allowed to stir for 6 hrs at room temperature. 

A dark yellow solid was obtained on removal of solvents under reduced pressure (3.35 g, 

69.9 %). [α]D = +28.9º (c 0.5, CH2Cl2). mp: 223-226°C, Anal. Calcd for 

C31H35Cl3NP1OPt: C, 48.47 ; H, 4.6; N, 1.8 Found: C, 48.7; H, 4.7; N, 1.8. 31P{1H} 

NMR ( CDCl3 ) : δ 22.14 ( s, 1JPtP = 4182.8 Hz ), 1H NMR ( CDCl3): δ 1.97 ( d, 3H, 2JHH 

= 2.6 Hz,  CHMe ), 2.91 ( d, 3H, 3JPH = 0.8 Hz , NMe ), 3.01 ( d, 3H, 3JPH = 1.3 Hz, 

NMe ), 4.00 ( m, 2H, CH2CH2OH ), 4.48 ( m, 2H, CH2CH2OH ), 4.6( qn, 1H, 3JHH = 4JPH 

= 6.4 Hz, CHMe ),  ), 5.19 ( d, 3JPH = 16.4 Hz , cis-PC=CH2 ), 5.95 ( d, 3JPH = 33.7 Hz, 

trans-PC=CH2 ), 6.49 – 8.14 ( m, 16 H, aromatics ). 

 

Synthesis of [(R)-1-[1-(dimethylamino)ethyl]-2-naphthyl-C,N][(4R,7S)-5,6-dimethyl-

7-phenyl-2-(diphenylphosphino)-7-phosphabicyclo[2.2.1]hept-5-en-2-yl 

ethanol]palladium(II) perchlorate, (Rc,Sp)-76. 

 

To a solution of   (Rc)-74 ( 3.00 g , 0.004 moles ) in dichloromethane , silver 

perchlorate ( 1.04 g, 0.005 moles ) in water ( 3 mL ) was added and stirred vigorously for 

30 mins to ensure through mixing. The reaction mixture was then washed with water (3 X 

10 mLs) to remove the excess perchlorate and the extracted organic layer was dried using 
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magnesium sulphate. A yellow solid was obtained on removal of solvents ( 3.01 g, 91.1 

% ). A solution of DMPP 44 (0.79g, 0.004 moles) in dichloromethane was added 

dropwise to the percholato complex (Rc)-75 (3.01 g, 0.004 moles) in dichloromethane and 

allowed to stir at room temperature for 8 hrs. The reaction mixture was subsequently 

concentrated and layered with n-hexanes to yield yellow crystals (2.98 g, 79.7 %). [α]D = 

-147.05º (c 0.7, CH2Cl2).m.p: 236-238°C, Anal. Calcd for C42H46ClNO5P2Pt: C, 53.8 ; H, 

4.9; N, 1.5 Found: C, 53.6; H, 4.9; N, 1.4. 31P{1H} NMR (CDCl3) : δ 39.62 ( d, 1P, 1JPt-P 

=  3567.4 Hz, 3JPP = 22.8 Hz  ), 115.45 ( d, 1P, 1JPt-P =  1580.4 Hz, 3JPP = 22.8 Hz  ). 1H 

NMR ( CD2Cl2 ) :   δ 1.41 ( s, 3H, C=CMe ), 1.86 ( s, 3H, C=CMe ), 1.87 ( d, 3H, 2JHH = 

6.0 Hz, CHMe ), 2.51 ( s, 3H, NMe ), 2.65 ( m, 2H, Ph2PCCH2 ), 2.95 ( s, 3H, NMe ), 

3.18 ( m, 2H,CH2CH2OH ), 3.37 ( m, 2H, CH2CH2OH ), 3.41 ( m, 1H, PhPCH ), 3.47 ( m, 

1H, PCH ),  4.73 ( qn, 1H, 3JHH = 4JPH = 6.0 Hz, CHMe ), 6.64 – 8.48 ( m, 21H, 

aromatics ). 

 

 

Synthesis of dichloro[(4R,7S)-5,6-dimethyl-7-phenyl-2-(diphenylphosphino)-7-

phosphabicyclo[2.2.1]hept-5-en-2-yl ethanol]palladium(II), (Sp)-77. 

 

A solution of the complex (Rc,Sp)-76 ( 2.53 g, 0.003mols ) in dichloromethane 

was stirred vigorously with concentrated hydrochloric acid ( 3mL ) for 8 hrs. The 

resultant mixture was then washed with water (3 X 20 mL) and the organic layer dried 

with magnesium sulphate. Upon removal of solvents a pale yellow solid was obtained 

which yielded pale yellow microcrystals from dichloromethane-n-hexanes (1.88 g, 89.5 
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%). [α]D = -36.2º (c 0.4, CH2Cl2), m.p: 288°C (decomp.), Anal. Calcd for C28H30Cl2OP2Pt: 

C, 47.4 ; H, 4.3  Found: C, 47.6 ; H, 4.6.  31P{1H} NMR ( CDCl3): δ 35.59 ( d, 1P,  1JPtP = 

3435.2 Hz, JPP = 19.0 Hz ), 94.96 ( d, 1P, 1JPtP = 3191.9 Hz, JPP = 19.0 Hz ). 1H NMR 

( CDCl3):  δ 1.27 ( s, 3H, C=CMe ), 1.71 ( s, 3H, C=CMe ), 2.89 ( m, 2H, Ph2PCCH2 ), 

3.13 ( m, 2H, CH2CH2OH ), 3.19 ( m, 2H, CH2OH )  3.44 ( m, 1H, PhPCH ), 3.52 ( m, 

1H, PhPCH ), 7.47 – 8.26 ( m, 15H, aromatics ). 

 

Decomplexation of [(4R,7S)-5,6-dimethyl-7-phenyl-2-(diphenylphosphino)-7-

phosphabicyclo[2.2.1]hept-5-en-2-yl ethanol], (Rp)-78. 

 
A solution of potassium cyanide (0.45 g,    7.00 mmols) in water ( 2 mls) was 

added to a solution of the complex (Sp)-77 (  0.05 g, 0.07 mmols ) in dichloromethane 

( 20 mL ) and stirred vigorously to ensure through mixing. The reaction was complete in 

4 hrs. The organic layer was washed with water (3 X 5 mL) and then dried with 

magnesium sulphate. A pale yellow oil was obtained on complete removal of solvents 

(0.018 g, 57.6 %). [ α ]D = +38.5 (c 0.1, CH2Cl2).  31P{1H} NMR ( CDCl3 ) : 35.34 ( d, 

3JPP = 26.5 Hz ), 98.46 ( d, 3JPP = 26.5 Hz ). 

A solution of the freshly released ligand in dichloromethane ( 0.007  g,  0.02   

mmols ) was added with stirring to a solution of complex 43( 0.007 g, 0.008 mmols ) in 

dichloromethane  and silver perchlorate ( 1.86 g,  0.009 mmols ) in water . The reaction 

mixture was stirred at room temperature for 30 mins and then washed with water (3 X 5 

mL) , dried with magnesium sulphate and then the organic layer dried to obtain a yellow 

solid. 31P {1H} NMR was identical to (Rc,Sp)-76. 
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Synthesis of 2-diphenylphosphanyl-prop-2-en-1-ol , 73.  
 
 

Sodium metal (0.37 g, 0.016 moles) was placed in a 250 mL schlenk flask 

containing THF (100 mL). This was followed by the addition of diphenylphosphine (2.79 

g, 0.016 moles) with stirring. The mixture was left to stir overnight and was observed to 

turn to a deep-red color characteristic of the diphenylphosphide ion.  Propargyl alcohol 

(0.94 mL, 0.016 moles) was then placed in a 500 mL Schlenk flask with THF (100 mL). 

To this solution, n-butyllithium (15 % solution in hexane) (0.01618, 9.86 mL) was added 

with stirring. Following this the sodium diphenylphosphide generated was then 

transferred drop wise into the shclenk flask with stirring at 0° C. The react mixture was 

allowed to reach room temperature and further stirred over three days. Most of the THF 

was then distilled off followed by addition of brine (150 mL) to the residue. The mixture 

was then extracted three times, each time with 100 mL of dichloromethane. The organic 

layer was subsequently extracted and dried with magnesium sulphate and solvent 

removed via distillation, leaving a highly viscous dark red oil. The crude product was 

purified via elution through a silica-gel column using 20% v/v ethyl acetate: n-hexanes as 

eluent, under an inert atmosphere. The recovered product was pale yellow oxygen 

sensitive oil (2.87 g, 73.4 %). 31P NMR (CDCl3): δ - 9.20.  
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Synthesis of chloro[(R)-1-[1-(dimethylamino)ethyl]-2-naphthyl-C,N][ 2-

diphenylphosphanyl-prop-2-en-1-ol] platinum(II), (Rc)-79. 

 

A solution of 2-diphenylphosphanyl-prop-2-en-1-ol (1.99 g, 0.008 moles) in 

dichloromethane (20 mL) was added drop wise with stirring to a solution of complex 

(Rc)-43(3.5 g, 0.004 moles) in dichloromethane. The reaction was allowed to stir for 6 hrs 

after which solvent was removed under reduced pressure to give the crude product as 

yellow solid. The crude product was purified via silica gel column chromatography using 

(dichloromethane: n-hexanes, 3:1 v/v followed by acetone: dichloromethane, 1:1 v/v). 

The pure product    was crystallized from dichloromethane: diethyl ether as yellow prisms. 

(1.98 g, 73.9 %). [α]D = +55.0º (c 0.2, CH2Cl2), m.p: 240-241°C, Anal. Calcd for 

C29H31ClNOPPt: C, 51.9; H, 4.6; N, 2.1 Found: C, 51.9; H, 4.7; N, 2.2. 31P{1H} NMR 

(CDCl3) : δ 19.81 ( s, 1P, 1JPt-P =  4243.6 Hz ). 1H NMR ( CDCl3 ) :   δ 1.95 ( d, 3H, 2JHH 

= 6.4 Hz, CHMe ) , 2.85 ( d, 3H, 3JPH =  0.8 Hz,  NMe), 3.18 ( d, 3JPH = 1.3 Hz, NMe ), 

4.09 ( m, 2H,  CH2OH  ), 4.61 ( qn, 1H, 3JHH = 4JPH = 6.4 Hz, CHMe ), 5.19 ( d, 3JPH = 

17.7 Hz , cis-PC=CH2 ), 6.08 ( d, 3JPH = 36.1 Hz, trans-PC=CH2 ), 6.68 – 8.26 ( m, 16 H, 

aromatics ). 
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Synthesis of [(R)-1-[1-(dimethylamino)ethyl]-2-naphthyl-C,N][(4R,7S)-5,6-dimethyl-

7-phenyl-2-(diphenylphosphino)-7-phosphabicyclo[2.2.1]hept-5-en-2-yl 

methanol]palladium(II) perchlorate, (Rc,Sp)-81. 

 

To complex (Rc)-79 ( 1.50 g, 0.002 moles ) in dichloromethane , silver perchlorate 

( 0.62 g, 0.003 moles ) in distilled water ( 2 mL ) added and the reaction mixture was 

stirred vigorously at room temperature for 30 mins. The crude product was passed 

through celite to remove the AgCl precipitate formed and subsequently washed with 

water (3 X 50 mL) and dried using magnesium sulphate . Removal of solvents gave the 

perchlorato complex (Rc)-80, as yellow solid (1.38 g, 93.8 %). A solution of the 

perchlorato complex (1.35 g, 0.002 moles) in dichloromethane was treated with DMPP 

44 (0.37 g, 0.002 moles). The mixture was allowed to stir at room temperature for 8 hrs 

to yield a yellow solution. Pale yellow needle like crystals were obtained using a 

crystallizing solvent system consisting of acetonitrile- diethyl ether (1.34 g, 81.2 %). [α]D 

= +4.43º (c 0.3, CH2Cl2), m.p: 253-245°C, Anal. Calcd. for C41H44ClNO5P2Pt: C, 53.4 ; H, 

4.8; N, 1.5 Found: C, 52.9; H, 4.6; N, 1.7. 31P{1H} NMR (CDCl3) : δ 42.04 ( d, 1P, 1JPt-P 

=  3591.9 Hz, JPP = 22.8 Hz  ), 117.82 ( d, 1P, 1JPt-P =  1586.1 Hz, JPP = 19.0 Hz  ) . 1H 

NMR ( CDCl3 ) :   δ 1.42 ( s, 3H, C=CMe ), 1.81 ( s, 3H, C=CMe ), 1.94 ( d, 3H, 2JHH = 

6.0 Hz, CHMe ), 2.55 ( s, 3H, NMe ), 2.83 ( m, 2H, Ph2PCCH2 ), 3.03 ( s, 3H, NMe ), 

3.67 ( m, 2H, CH2OH ), 3.78 ( m, 1H, PCH ), 3.95 ( m, 1H, PCH ),  4.73 ( qn, 1H, 3JHH = 

4JPH = 6.4 Hz, CHMe ), 6.66 – 8.78 ( m, 21H, aromatics ). 
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Synthesis of dichloro[(4R,7S)-5,6-dimethyl-7-phenyl-2-(diphenylphosphino)-7-

phosphabicyclo[2.2.1]hept-5-en-2-yl methanol]palladium(II) perchlorate, (Sp)-82. 

 

A solution of the complex (Rc,Sp)-81 ( 1.02 g, 0.001 moles ) in dichloromethane 

was treated with concentrated hydrochloric acid ( 5 mLs ), and allowed to stir vigorously 

for 8 hrs at room temperature. The resultant solution was washed with water (3 X 20 mL) 

and the organic layer dried with magnesium sulphate. Upon filtration and subsequent 

removal of solvents a pale yellow solid was obtained. Crystallization using 

dichloromethane – n-hexanes yielded pale yellow prisms (0.7888 g, 91.5 %). [α]D = -

24.7º (c 0.3, CH2Cl2) , m.p: 230°C (decomp.), Anal. Calcd for  C27H28OCl2P2Pt : C, 46.6 ; 

H, 4.0 Found: C, 46.8; H, 4.0. 31P{1H} NMR (CDCl3) : δ 32.67 ( d, 1P, 1JPtP = 3447.6, JPP 

= 19.0 Hz ), 94.52 ( d, 1P,  1JPtP = 3225.9, JPP = 19.0 Hz ). 1H NMR (CD2Cl2): δ 1.51 ( s, 

3H, C=CMe ), 1.69 ( s, 3H, C=CMe ), 2.91 ( m, 2H, Ph2PCCH2 ), 3.13 ( d, 2H, CH2OH ), 

3.43 ( m, 1H, PhPCH ), 3.89 ( m, 1H, PhPCH ), 7.52 – 8.29 ( m, 15H, aromatics ). 

 

Decomplexation of [(4R,7S)-5,6-dimethyl-7-phenyl-2-(diphenylphosphino)-7-

phosphabicyclo[2.2.1]hept-5-en-2-yl methanol], (Rp)-83. 

 

A solution of the complex (Sp)-82  in dichloromethane ( 0.05 g, 0.075 mmols ) in 

dichloromethane ( 10 mL ) was thoroughly stirred for 3 hrs with an excess of potassium 

cyanide ( 0.24 g , 7.460 mmols ) in water ( 1 mL ) . The organic layer was separated, 

washed with water (3 X 10 mL) and dried over magnesium sulphate. Removal of the 

solvent left colorless air sensitive oil (0.018 g, 56.2 %). [ α ]D = -52.4 (c 0.1, CH2Cl2), 
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31P{1H} NMR ( CDCl3) : δ 19.21 ( d, 1P, 3JPP = 113.9 Hz ), 108.89 ( d, 1P,  3JPP = 113.9 

Hz ). 

A solution of the freshly released ligand (Rp)-83  ( 0.005 g, 0.011 mmols ) in 

dichloromethane was added to a solution of complex (Rc)-43  ( 0.005 g, 0.006 mmols ) in 

dichloromethane ( 10 mL ) and silver perchlorate ( 0.004 g, 0.022 mmols ) in water ( 2 

mL ) with vigorous stirring . The reaction mixture was left to stir for 30 mins and 

subsequently washed with water (3 X 10 mL) and the organic layer dried with 

magnesium sulphate to yield the product as yellow solid. 31P{1H}NMR (CDCl3) was 

identical to the complex (Rc,Sp)-81. 

 
Synthesis of chloro[(R)-1-[1-(dimethylamino)ethyl]-2-naphthalenyl-C,N][3-

(diphenylphosphino)but-3-en-1-ol], (Rc)-84. 

 

To a solution of complex (Rc)-36 in dichloromethane (1.88 g, 0.003 mols ), 3-

diphenylphosphanyl-but-3-yn-1-ol ( 1.41 g, 0.005 mols ) in dichloromethane was added 

drop wise with stirring. The reaction mixture was allowed to stir for 8 hrs and then the 

solvent removed under reduced pressure to give a yellow solid (1.95 g, 95.6 %) m.p: 220-

223°C, Anal. Calcd for C30H33NClPOPd: C, 60.4; H, 5.5; N, 2.4 Found: C, 60.4, H, 5.9, 

N, 2.4.  31P{1H} NMR ( CDCl3) : δ 40.59 ( s ). 1H NMR ( CDCl3 ) :  δ 2.07 ( d, 3H, 2JHH 

= 6.4 Hz, CHMe ), 2.72 ( s, 3H, NMe ), 2.98 ( s, 3H, NMe ), 3.98 ( m, 2H, CH2CH2OH ), 

4.09 ( m, 2H, CH2CH2OH ), 4.37 ( qn, 1H, 3JHH = 4JPH = 6.0 Hz , CHMe ), 5.39 ( d, 1H, 

3JPH = 17.2 Hz, cis-PC=CH2 ), 5.91 ( d, 1H, 3JPH = 35.3 Hz, trans-PC=CH2 ), 6.54 – 8.17 

( m, 16H, aromatics ).   
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Synthesis of [(R)-1-[1-(dimethylamino)ethyl]-2-naphthalenyl-C,N][(R)3,4-

bis(diphenylphosphino)butan-1-ol]palladium(II)perchlorate, (Rc,Rc)-87a. 

 

A solution of complex (Rc)-84 (1.56 g, 0.002 mols) in dichloromethane was 

treated with aqueous silver perchlorate (0.63 g, 0.003 mols) for 30 mins. The reaction 

mixture was subsequently washed with water (3 X 20 mL) and the organic layer dried 

using magnesium sulphate. Upon removal of solvent, perchlorato complex (Rc)-85 was 

obtained as yellow solid (1.39    g, 94.5%). To (Rc)-85 (1.39 g, 0.002 moles) in 

dichloromethane, diphenylphosphine (0.35 g, 0.002    moles) was added with stirring at -

78° C. The temperature was maintained for 10 hrs and subsequently stirred at room 

temperature for 24 hrs to obtain a dark red solid upon solvent removal. Pale yellow 

crystals were obtained on crystallization using dichloromethane- diethyl ether (1.32 g, 

78.0 %). [α]D = -8.9º (c 1.4, CH2Cl2), m.p: 229-231°C (decomp.), Anal. Calcd for 

C43H46Cl3NO5P2Pd : C, 55.5 ; H, 4.9; N, 1.5 , Found: C, 55.7; H, 5.2; N, 1.4.  , 31P{1H} 

NMR ( CDCl3 ): 39.29 ( d, 1P, JPP = 26.6Hz ), 76.06 ( d, 1P, JPP = 26.6 Hz ).  1H NMR 

(  CDCl3 ): 1.15 ( m, 1H, Ph2PP

1CH’HCH ), 1.38 ( m, 1H, Ph P1
2 P CH’HCH ), 2.09 ( d, 3H, 

3JHH = 6.4 Hz, CHMe ), 2.41 ( s, 3H, NMe ), 2.71 ( s, 3H, NMe ), 2.91 ( m, 1H, 

PP

2CHCH  ),  3.07 ( ddd, 2H, 2
3J = 3.2 Hz, HH 

3J  = 11.05, HH
3J  = 17.55 ), 3.53 ( m, 2H, 

CH CH OH ), 4.52 ( qn, 1H, 

PH

2 2
3J  = 4JPH = 6.0Hz, CHMe ), 6.81 – 8.47 ( m, 26H, 

aromatics ).  

HH
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Synthesis of dichloro[(R)3,4-bis(diphenylphosphino)butan-1-ol]palladium(II), (Rc)-

88.  

 

A solution of the complex (Rc,Rc)-87a (  0.99 g, 0.001 mols ) in dichloromethane 

was stirred with concentrated hydrochloric acid ( 5 mL ) for 8 hrs. The excess acid was 

then removed by washing with water (3 X 20 mL) and the organic layer dried using 

magnesium sulphate. Upon removal of solvent a pale yellow solid was obtained. 

Crystallization from dichloromethane- n-hexanes yielded pale yellow prisms (0.62 g, 

86.1%). [α]D = +37.5º (c 0.2, CH2Cl2). m.p: 214-217°C. Anal. Calcd. for 

C29H30Cl4OP2Pd : C, 49.4 ; H, 4.3, Found: C, 49.9; H, 4.7.  31P{1H} NMR ( CDCl3 ): 

51.05 ( d, 1P, JPP = 7.5 Hz ), 71.34 ( d, 1P, JPP = 7.5 Hz ). 1H NMR ( CD2Cl2 ) : 0.86 ( m, 

1H, P1CHH’ ), 0.94 ( m, 1H, P1CHH’ ), 2.87 ( ddd, 3JHH = 4.8 Hz, 3JHH = 12.4 Hz, 3JPH = 

14.7 Hz ). 

 

Decomplexation of (R)-3,4-bis(diphenylphosphino)butan-1-ol, (Rc)-89. 
 
 
 

A solution of the complex (Rc)-88 (   0.03 g, 0.05 mmol ) in dichloromethane was 

stirred vigorously with aqueous potassium cyanide (  0.16 g, 0.24 mmol ) for 2 hrs. The 

organic layer was separated and washed with water (3 X 10 mL) and then dried with 

magnesium sulphate. A pale yellow oil was obtained on removal of solvents under 

reduced pressure (0.01 g, 57.2 %). [α]D = +64.9 (c 0.2, CH2Cl2). 31P{1H} NMR ( CDCl3 ) :  

- 19.31 ( d, 3JPP = 19.0 Hz ), -0.172 ( d, 3JPP = 19.0 Hz ).  
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A solution of the freshly prepared free ligand (Rc)-89 (0.1g, 0.02 mmol) in 

dichloromethane was added with stirring to a solution of complex (Rc)-51 ( 0.01 g, 0.02    

mmol ) in dichloromethane. The reaction mixture was allowed to stir for 1hr at room 

temperature. The solvent was removed under reduced pressure to yield a yellow solid. 

31P{1H} NMR ( CDCl3 ): δ 39.65 ( d, 1P, 3JPP = 22.8 Hz ), 47.91 ( d, 1P, 3JPP = 30.4 Hz ), 

50.23 ( d, 1P, 3JPP = 30.4 Hz ), 76.89 ( d, 1P, 3JPP = 22.8 Hz ).   

 

 
Synthesis of chloro[(R)-1-[1-(dimethylamino)ethyl]-2-naphthalenyl-C,N][2-

(diphenylphosphino)prop-2-en-1-ol], (Rc)-90. 

 

 

To a solution of complex (Rc)-51 in dichloromethane (2.04 g, 0.003 mols), 2-

dipenylphosphanyl-prop-2-en-1-ol ( 1.45 g, 0.006 mols ) in dichloromethane was added 

drop wise with stirring. The reaction was allowed to stir for 8 hrs and then the solvent 

removed under reduced pressure to give a yellow solid. Crystallization using   

acetonitrile- diethyl ether gave yellow prisms (1.87 g, 93.0 %). [α]D = -38.7º (c 0.3, 

CH2Cl2), m.p: 211-213°C, Anal. Calcd for C29H31ClNOPPd : C, 59.8 ; H, 5.3; N, 2.4 , 

Found: C, 60.0; H, 4.9; N, 2.5.  31P{1H} NMR ( CDCl3) : δ 38.65 ( s ). 1H NMR 

( CDCl3 ) :  δ 2.02 ( d, 3H, 2JHH = 6.4 Hz, CHMe ), 2.80 ( s, 3H, NMe ), 2.98 ( s, 3H, 

NMe ), 4.12 ( m, 2H, CH2OH ), 4.37 ( qn, 1H, 3JHH = 4JPH = 6.0 Hz , CHMe ), 5.16 ( d, 

1H, 3JPH = 16.9 Hz, cis-PC=CH2 ), 6.02 ( d, 1H, 3JPH = 33.7 Hz, trans-PC=CH2 ), 6.56 

– 8.12 ( m, 16H, aromatics ).   

 

 149



Synthesis of [(R)-1-[1-(dimethylamino)ethyl]-2-naphthalenyl-C,N][2,3-

bis(diphenylphosphino)propan-1-ol]palladium(II)perchlorate, (Rc,Rc)-92a and 

(Rc,Sc)-92b. 

 
 

To a solution of the complex (Rc)-90 ( 1.57   g, 0.003 mols ) in dichloromethane , 

silver perchlorate (  0.83  g, 0.004 mols ) in water ( 4 mL) was added and stirred for 30 

mins at room temperature. The reaction mixture was then washed with water (3 X 20 mL) 

and dried with magnesium sulphate to yield the perchlorato complex (Rc)-91 (1.82 g, 94.3     

%). A solution of the perchlorato complex in  dichloromethane ( 1.82 g,  0.003 mols )  

was cooled to -78 ° C and subsequently treated  with diphenylphosphine ( 0.52 g, 0.003    

mols ) and the temperature was maintained for 10 hrs and then stirred at room 

temperature for further 48 hrs to give a dark red solid upon removal of solvents under 

reduced pressure. Crystallization employing dichloromethane-n-hexane gave yellow 

prisms (0.99 g, 39 %).Anal. Calcd for C41H42ClNO5P2Pd : C, 59.2 ; H, 5.0; N, 1.7 , Found: 

C, 58.9; H, 4.9; N, 1.7.  31P{1H}NMR ( CD2Cl2 ): δ 41.55 ( d, 1P, 3JPP = 30.4 Hz ), 41.97 

( d, 1P, 3JPP = 30.4 ), 50.01 ( d, 1P, 3JPP = 30.4 ), 51.46 ( d, 1P, 3JPP = 30.4 ).  

 
 
Synthesis of dichloro[2,3-bis(diphenylphosphino)propan-1-ol]palladium(II), (Rc)-93a 

and (Rc)-93b. 

 

A mixture of complexes (Rc,Rc)-92a and (Rc,Sc)-92b ( 0.85 g, 0.001 mols ) in 

dichloromethane was treated with concentrated hydrochloric acid ( 4 mL ) and was left to 

stir for 8 hrs. The excess acid was then removed by means of washing with water (3 X 20 
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mL) and the organic layer was extracted and dried using magnesium sulphate. The 

reaction mixture was concentrated and n-hexanes added. Yellow prisms were obtained on 

standing (0.52 g, 84.5 %). 31P{1H} NMR ( CD2Cl2) : δ 53.28 ( d. 1P, JPP = 7.6 Hz ), 66.15 

( d, 1P, JPP = 7.6 Hz ). 1H NMR ( CD2Cl2): δ 2.29 – 2.47 ( m, 2H, CHCH2OH ), 2.66 – 

2.77 ( m. 1H, PCHH' ), 2.88 – 2.98 ( m, 1H, PCHH' ), 3.62 ( dd, 2H, 3JPH = 10.4 Hz, 

3JHH = 5.2 Hz , CH2OH ), 7.50 – 8.08 ( m, 20H, aromatics ). 
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Appendix 1 

X-ray Crystallographic Data for [(R)-1-[1-(dimethylamino)ethyl]-2-naphthalenyl-

C,N] [ 9-thio-9-phenylphosphino-2,3,6,7-tetramethyl-6-ethylene-10-phenyl-10-

phosphabicyclo[2,2,1] hept-2-ene-P9(R)P10(S)]palladium (II)perchlorate, (RcSpRp)-48. 

(Figure 2.3) 

Table A.1.1 Crystal data and structure refinement for (RcSpRp)-48 

Empirical formula  C38 H42 Cl N O4 P2 Pd S.0.5{C4H10O} 

Formula weight  849.64 

Crystal system  Monoclinic 

Space group  P2(1) 

Unit cell dimensions a = 11.8816(16) Å α = 90°. 

 b = 15.681(2) Å β = 101.760(3)°. 

 c = 22.532(3) Å γ = 90°. 

Volume 4110.1(10) Å3 

Z 4 

Density (calculated) 1.373 Mg/m3 

Goodness-of-fit on F2 0.996 

Final R indices [I>2sigma(I)] R1 = 0.0568, wR2 = 0.1099 

R indices (all data) R1 = 0.0888, wR2 = 0.1215 

Absolute structure parameter -0.01(2) 
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Table A.1.2.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex (RcSpRp)-48 .  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

____________________________________________________________________________________  

 x y z U(eq) 

____________________________________________________________________________________   

Pd(1) 7761(1) 2854(1) 6661(1) 45(1) 

P(1) 9254(1) 2338(1) 6318(1) 46(1) 

P(2) 9105(1) 1610(1) 7722(1) 53(1) 

S(1) 7510(1) 1545(1) 7238(1) 63(1) 

N(1) 6263(3) 3458(3) 6864(2) 50(1) 

N(2) 7051(5) 1866(4) -464(3) 72(2) 

Cl(1) 7582(1) 9704(1) 3625(1) 70(1) 

Cl(2) 8614(3) 4911(2) 8971(1) 123(1) 

O(1) 7080(4) 9130(4) 3157(3) 100(2) 

O(2) 8288(5) 10295(5) 3417(3) 124(2) 

O(3) 8300(6) 9251(4) 4101(3) 122(2) 

O(4) 6703(4) 10122(4) 3839(3) 114(2) 

C(1) 10789(4) 2611(3) 6649(3) 46(1) 

C(2) 11388(5) 1913(4) 6340(3) 54(1) 

C(3) 10829(5) 1179(4) 6316(3) 57(2) 

C(4) 9788(5) 1270(4) 6601(3) 51(2) 

C(5) 10231(5) 1474(4) 7282(3) 54(2) 

C(6) 10881(4) 2345(3) 7317(3) 48(1) 

C(7) 10308(5) 2968(4) 7690(3) 51(1) 

C(8) 9517(5) 2657(4) 7965(3) 55(2) 

C(9) 12489(5) 2118(5) 6139(3) 73(2) 

C(10) 11080(7) 344(5) 6058(4) 79(2) 

C(11) 12156(5) 2257(4) 7645(3) 68(2) 

C(12) 10668(6) 3874(4) 7736(3) 70(2) 

C(13) 7846(4) 3972(3) 6240(2) 42(1) 

C(14) 8806(4) 4350(4) 6072(3) 48(1) 

C(15) 8748(5) 5136(4) 5801(3) 57(2) 

C(16) 7707(5) 5611(4) 5699(3) 57(2) 

C(17) 7644(6) 6441(5) 5442(3) 74(2) 

C(18) 6647(7) 6896(6) 5372(4) 93(2) 

C(19) 5688(6) 6551(5) 5560(4) 97(3) 
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C(20) 5722(6) 5756(5) 5782(4) 80(2) 

C(21) 6738(5) 5263(4) 5880(3) 56(2) 

C(22) 6832(4) 4434(4) 6146(3) 47(1) 

C(23) 5804(5) 3995(4) 6319(3) 55(2) 

C(24) 5155(5) 3484(5) 5800(3) 76(2) 

C(25) 5374(5) 2864(5) 7004(3) 77(2) 

C(26) 6682(6) 4014(5) 7402(3) 79(2) 

C(27) 9046(5) 2320(4) 5504(3) 57(2) 

C(28) 9721(5) 2780(5) 5176(3) 70(2) 

C(29) 9468(7) 2741(7) 4558(4) 99(3) 

C(30) 8590(10) 2243(9) 4257(4) 130(4) 

C(31) 7932(9) 1797(9) 4566(5) 133(4) 

C(32) 8149(7) 1847(6) 5175(4) 93(3) 

C(33) 9350(6) 841(4) 8327(3) 58(2) 

C(34) 10183(6) 983(5) 8820(3) 74(2) 

C(35) 10423(7) 372(7) 9281(4) 94(3) 

C(36) 9847(9) -381(7) 9232(5) 103(3) 

C(37) 9015(10) -507(5) 8728(5) 100(3) 

C(38) 8737(8) 81(5) 8274(4) 80(2) 
 

________________________________________________________________________________________________ 
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Appendix 2 

X-ray Crystallographic Data for dichloro[ 9-thio-9-phenylphosphino-2,3,6,7-

tetramethyl-6-ethylene-10-phenyl-10-phosphabicyclo[2,2,1]hept-2-ene-

PP

9(R)P10(S)]palladium(II)perchlorate  (S ,R )-49. . (Figure 2.4) p p

Table A.1.3 Crystal data and structure refinement for (SpRp)-49 

Empirical formula  C24 H26 Cl2 P2 Pd S 

Formula weight  585.75 

Crystal system  Orthorhombic 

Space group  Pna2(1) 

Unit cell dimensions a = 16.4405(8) Å α = 90°. 

 b = 9.4660(5) Å β = 90°. 

 c = 15.7152(8) Å γ  = 90°. 

Volume 2445.7(2) Å3 

Z 4 

Density (calculated) 1.591 Mg/m3 

Goodness-of-fit on F2 1.015 

Final R indices [I>2sigma(I)] R1 = 0.0351, wR2 = 0.0561 

R indices (all data) R1 = 0.0444, wR2 = 0.0576 

Absolute structure parameter 0.00(2) 
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Table A 1.4.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex (SpRp)-49 .  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

Pd(1) 6579(1) 3408(1) 4989(1) 36(1) 

Cl(1) 7490(1) 3512(1) 3865(1) 52(1) 

Cl(2) 7368(1) 4869(1) 5906(1) 66(1) 

P(1) 5947(1) 1906(1) 4156(1) 33(1) 

P(2) 4698(1) 4094(1) 5133(1) 37(1) 

S(1) 5522(1) 3350(1) 5971(1) 48(1) 

C(1) 5497(2) 2479(4) 3137(2) 37(1) 

C(2) 5065(2) 1122(4) 2895(3) 45(1) 

C(3) 4713(2) 544(4) 3566(3) 44(1) 

C(4) 4880(2) 1412(3) 4361(2) 37(1) 

C(5) 4471(2) 2878(3) 4264(2) 34(1) 

C(6) 4830(2) 3573(3) 3446(2) 34(1) 

C(7) 5183(2) 5005(3) 3673(2) 35(1) 

C(8) 5099(2) 5435(3) 4477(2) 39(1) 

C(9) 5080(3) 605(5) 1996(3) 70(1) 

C(10) 4249(2) -800(4) 3628(3) 64(1) 

C(11) 4179(2) 3780(4) 2759(2) 48(1) 

C(12) 5615(2) 5840(4) 3007(3) 51(1) 

C(13) 6496(2) 268(3) 4026(2) 39(1) 

C(14) 6953(3) -27(4) 3311(3) 60(1) 

C(15) 7347(3) -1305(5) 3250(4) 80(2) 

C(16) 7295(3) -2267(5) 3885(5) 88(2) 

C(17) 6844(3) -1998(4) 4614(4) 71(2) 

C(18) 6444(2) -700(4) 4688(3) 54(1) 

C(19) 3808(2) 4632(3) 5697(2) 36(1) 

C(20) 3266(2) 3632(4) 5999(2) 46(1) 

C(21) 2601(2) 4042(4) 6473(3) 54(1) 

C(22) 2473(2) 5416(5) 6655(3) 57(1) 

C(23) 3005(3) 6428(4) 6359(3) 58(1) 

C(24) 3667(2) 6048(4) 5875(3) 49(1) 
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Appendix 3 

X-ray Crystallographic Data for dichloro][7-thio-7-diphenylphosphino-2,3-

dimethyl-5-phenyl-5-phosphabicyclo[2.2.1]hept-2-ene-P7(R/S)]palladium(II), 

Complex 54. Figure 2.5. 

Table A.1.5 Crystal data and structure refinement for complex 54 

Empirical formula  C28 H29 Cl2 N P2 Pd S 

Formula weight  650.82 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 12.3423(6) Å α = 90°. 

 b = 18.4502(9) Å β = 110.3160(10)°. 

 c = 13.1919(7) Å γ = 90°. 

Volume 2817.2(2) Å3 

Z 4 

Density (calculated) 1.534 Mg/m3 

Goodness-of-fit on F2 1.130 

Final R indices [I>2sigma(I)] R1 = 0.0444, wR2 = 0.0983 

R indices (all data) R1 = 0.0545, wR2 = 0.1020 
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Table A 1.6.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex 54.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pd(1) 3035(1) 6973(1) 5480(1) 25(1) 

Cl(1) 2892(1) 6117(1) 4067(1) 41(1) 

Cl(2) 2092(1) 6250(1) 6350(1) 45(1) 

P(1) 5487(1) 7898(1) 5970(1) 21(1) 

P(2) 3136(1) 7743(1) 6786(1) 23(1) 

S(1) 3979(1) 7775(1) 4741(1) 28(1) 

C(1) 5302(3) 8102(2) 7254(2) 22(1) 

C(2) 5240(3) 7422(2) 7938(3) 26(1) 

C(3) 4081(3) 7486(2) 8152(3) 26(1) 

C(4) 4088(3) 8182(2) 8757(3) 26(1) 

C(5) 4144(3) 8760(2) 8163(3) 26(1) 

C(6) 4148(3) 8518(2) 7061(2) 22(1) 

C(7) 4109(3) 8173(2) 9898(3) 39(1) 

C(8) 4253(4) 9538(2) 8466(3) 43(1) 

C(9) 6422(3) 7119(2) 6179(3) 24(1) 

C(10) 6031(3) 6471(2) 5643(3) 35(1) 

C(11) 6756(4) 5870(2) 5887(3) 42(1) 

C(12) 7850(3) 5921(2) 6629(3) 38(1) 

C(13) 8244(3) 6567(2) 7146(3) 36(1) 

C(14) 7533(3) 7166(2) 6927(3) 30(1) 

C(15) 6191(3) 8652(2) 5584(3) 24(1) 

C(16) 6455(3) 8570(2) 4651(3) 36(1) 

C(17) 6950(3) 9128(2) 4269(3) 41(1) 

C(18) 7178(3) 9776(2) 4816(3) 43(1) 

C(19) 6907(4) 9867(2) 5737(4) 45(1) 

C(20) 6414(3) 9307(2) 6127(3) 35(1) 

C(21) 1755(3) 8077(2) 6745(3) 26(1) 

C(22) 1303(3) 7908(2) 7551(3) 37(1) 

C(23) 228(3) 8161(2) 7475(3) 41(1) 

C(24) -402(3) 8586(2) 6615(3) 41(1) 

C(25) 43(3) 8760(2) 5818(3) 39(1) 
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C(26) 1113(3) 8501(2) 5876(3) 29(1) 

N(1S) 5317(5) 5658(2) 8474(4) 88(2) 

C(2S) 4898(5) 5372(2) 7683(4) 63(1) 

C(1S) 4398(5) 5005(3) 6654(4) 74(2) 
________________________________________________________________________________ 
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Appendix 4 

X-ray Crystallographic Data for dichloro[5-thio-5-(ethenylphenylphosphino)-2,3-

dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]hept-2-ene ]palladium(II), (Rp,Sp)-57b.   

 

Table A.1.7 Crystal data and structure refinement for complex (Rp,Sp)-57b 

Empirical formula  C22 H24 Cl2 P2 Pd S 

Formula weight  559.71 

Crystal system  Monoclinic 

Space group  Cc 

Unit cell dimensions a = 12.724(3) Å α = 90°. 

 b = 20.666(4) Å β = 114.095(4)°. 

 c = 11.189(2) Å γ = 90°. 

Volume 2685.9(10) Å3 

Z 4 

Density (calculated) 1.384 Mg/m3 

Goodness-of-fit on F2 1.066 

Final R indices [I>2sigma(I)] R1 = 0.0748, wR2 = 0.1813 

R indices (all data) R1 = 0.0919, wR2 = 0.1912 

Absolute structure parameter -0.16(8) 
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Table A 1.8.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex (Rp,Sp)-57b.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pd(1) 5045(1) 2263(1) 4289(1) 33(1) 

Cl(1) 5697(4) 1617(2) 3041(4) 60(1) 

Cl(2) 5012(3) 1395(2) 5679(4) 50(1) 

P(1) 2904(3) 3250(2) 3893(3) 31(1) 

P(2) 5181(3) 3035(2) 3016(3) 34(1) 

S(1) 4373(3) 2977(2) 5389(3) 37(1) 

C(1) 3151(10) 3513(6) 2464(12) 40(3) 

C(2) 3059(11) 2987(8) 1451(12) 47(4) 

C(3) 4193(11) 3007(8) 1285(11) 45(3) 

C(4) 4335(12) 3627(8) 813(13) 51(4) 

C(5) 4435(13) 4088(7) 1669(16) 56(4) 

C(6) 4387(11) 3809(6) 2879(13) 40(3) 

C(7) 4570(20) 4809(8) 1640(20) 88(6) 

C(8) 4282(19) 3727(11) -577(18) 86(6) 

C(9) 1794(12) 2635(6) 3355(14) 45(3) 

C(10) 1973(16) 2044(9) 3790(20) 72(5) 

C(11) 2290(11) 3902(6) 4459(11) 34(3) 

C(12) 1994(18) 4492(8) 3803(15) 76(6) 

C(13) 1490(20) 4958(9) 4214(16) 87(7) 

C(14) 1275(13) 4859(7) 5377(14) 52(4) 

C(15) 1597(16) 4284(8) 5989(16) 61(4) 

C(16) 2101(14) 3811(7) 5558(13) 49(4) 

C(17) 6630(11) 3226(7) 3237(13) 45(3) 

C(18) 7055(14) 3011(10) 2333(17) 68(5) 

C(19) 8172(16) 3163(13) 2560(20) 98(8) 

C(20) 8854(15) 3493(12) 3680(20) 92(7) 

C(21) 8410(20) 3701(13) 4510(20) 97(7) 

C(22) 7352(13) 3592(9) 4372(16) 66(5) 

________________________________________________________________________________ 
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Appendix 5 

X-ray Crystallographic Data for dichloro[5-thio-5-(ethenylphenylphosphino)-2,3-

dimethyl-7-phenyl-7-phosphabicyclo[2.2.1]hept-2-ene ]palladium(II), (Sp,Rp)-57a. 

Figure 2.7.  

 

Table A.1.9 Crystal data and structure refinement for complex (Sp,Rp)-57a 

Empirical formula  C23 H26 Cl4 P2 Pd S 

Formula weight  644.64 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 8.9599(10) Å α = 90°. 

 b = 18.034(2) Å β = 98.168(2)°. 

 c = 16.6192(18) Å γ  = 90°. 

Volume 2658.2(5) Å3 

Z 4 

Density (calculated) 1.611 Mg/m3 

Goodness-of-fit on F2 1.090 

Final R indices [I>2sigma(I)] R1 = 0.0441, wR2 = 0.1142 

R indices (all data) R1 = 0.0511, wR2 = 0.1179 
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Table A 1.10.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex (Sp,Rp)-57a .  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  
 x y z U(eq) 

________________________________________________________________________________   

Pd(1) 6659(1) 7065(1) 1698(1) 28(1) 

Cl(1) 4605(1) 7733(1) 945(1) 47(1) 

Cl(2) 6035(1) 5960(1) 1025(1) 38(1) 

P(1) 7406(1) 7868(1) 3543(1) 28(1) 

P(2) 8459(1) 6394(1) 2397(1) 27(1) 

S(1) 7473(1) 8140(1) 2378(1) 36(1) 

C(1) 6996(4) 6288(2) 3623(2) 34(1) 

C(2) 8138(4) 6941(2) 3813(2) 29(1) 

C(3) 9485(4) 6761(2) 3355(2) 28(1) 

C(4) 10209(4) 6053(2) 3727(2) 33(1) 

C(5) 9252(4) 5487(2) 3585(2) 35(1) 

C(6) 7773(4) 5729(2) 3100(2) 32(1) 

C(7) 9492(6) 4692(2) 3853(3) 54(1) 

C(8) 11754(5) 6082(2) 4192(3) 47(1) 

C(9) 8585(4) 8492(2) 4181(2) 32(1) 

C(10) 9277(4) 9060(2) 3914(3) 41(1) 

C(11) 5563(4) 7928(2) 3845(2) 34(1) 

C(12) 4286(4) 8074(2) 3291(3) 42(1) 

C(13) 2909(5) 8127(3) 3576(3) 49(1) 

C(14) 2796(5) 8039(2) 4383(3) 51(1) 

C(15) 4061(5) 7889(3) 4928(3) 50(1) 

C(16) 5440(5) 7829(2) 4669(3) 45(1) 

C(17) 9842(4) 5983(2) 1844(2) 31(1) 

C(18) 11166(4) 6371(2) 1791(2) 40(1) 

C(19) 12218(5) 6080(3) 1348(3) 50(1) 

C(20) 11971(5) 5405(3) 968(3) 53(1) 

C(21) 10675(5) 5015(2) 1020(2) 47(1) 

C(22) 9597(4) 5303(2) 1466(2) 39(1) 
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Appendix 6 

X-ray Crystallographic Data for dichloro[5-phenyl-1-ethenylphosphino-2,3-

dimethyl-7-thio-7-phenyl-7-phosphabicyclo[2.2.1]hept-2-ene PP

5,P7
P ]palladium(II), 

(Rp,Sp)-62b. Figure 2.11.  

 

Table A.1.11 Crystal data and structure refinement for complex (Rp,Sp)-62b 

Empirical formula  C22 H24 Cl2 P2 Pd S 

Formula weight  559.71 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 9.6477(4) Å α = 90°. 

 b = 15.0107(7) Å β = 90°. 

 c = 16.6936(8) Å γ = 90°. 

Volume 2417.55(19) Å3 

Z 4 

Density (calculated) 1.538 Mg/m3 

Goodness-of-fit on F2 1.052 

Final R indices [I>2sigma(I)] R1 = 0.0464, wR2 = 0.0873 

R indices (all data) R1 = 0.0549, wR2 = 0.0903 

Absolute structure parameter -0.04(3) 
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Table A 1.12.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for (Rp,Sp)-62b .  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pd(1) 4558(1) 1697(1) 3738(1) 29(1) 

P(1) 4339(1) 2888(1) 2950(1) 29(1) 

P(2) 4995(1) 3702(1) 4927(1) 30(1) 

S(1) 5033(1) 2364(1) 4941(1) 40(1) 

Cl(1) 4789(1) 374(1) 4507(1) 45(1) 

Cl(2) 4068(1) 903(1) 2586(1) 41(1) 

C(1) 4803(5) 3964(3) 3380(3) 28(1) 

C(2) 6375(4) 3990(3) 3626(3) 33(1) 

C(3) 6421(5) 4338(3) 4493(3) 38(1) 

C(4) 5746(5) 5249(3) 4517(3) 34(1) 

C(5) 4395(5) 5194(3) 4341(3) 33(1) 

C(6) 3976(5) 4244(3) 4152(3) 31(1) 

C(7) 6585(6) 6070(4) 4704(4) 52(2) 

C(8) 3339(6) 5930(3) 4310(3) 47(1) 

C(9) 5417(6) 2803(3) 2076(3) 42(1) 

C(10) 6000(6) 3457(4) 1690(3) 51(2) 

C(11) 2586(5) 3007(3) 2573(3) 31(1) 

C(12) 1496(5) 2863(4) 3080(4) 43(1) 

C(13) 143(6) 2932(4) 2819(4) 57(2) 

C(14) -101(6) 3181(5) 2038(4) 68(2) 

C(15) 978(7) 3335(6) 1531(4) 87(3) 

C(16) 2327(6) 3271(5) 1794(3) 65(2) 

C(17) 4623(5) 4077(3) 5925(3) 33(1) 

C(18) 5711(5) 4308(3) 6433(3) 39(1) 

C(19) 5442(6) 4528(4) 7216(3) 52(2) 

C(20) 4093(6) 4532(5) 7489(4) 59(2) 

C(21) 3023(6) 4309(5) 6982(4) 58(2) 

C(22) 3278(5) 4068(4) 6203(4) 43(1) 
________________________________________________________________________________ 
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Appendix 7 

X-ray Crystallographic Data for dichloro[5-phenyl-1-ethenylarsino-2,3-dimethyl-7-

thio-7-phenyl-7-phosphabicyclo[2.2.1]hept-2-ene]palladium(II), Complex 71, Figure 

2.12.  

 

Table A 1.13 Crystal data and structure refinement for complex 71 

Empirical formula  C22 H24 As Cl2 P Pd S 

Formula weight  603.66 

Temperature  273(2) K 

Crystal system  Monoclinic 

Space group  P2(1)/n 

Unit cell dimensions a = 12.5297(5) Å α = 90°. 

 b = 9.3137(4) Å β = 97.4250(10)°. 

 c = 20.1170(8) Å γ = 90°. 

Volume 2327.93(16) Å3 

Z 4 

Density (calculated) 1.722 Mg/m3 

Goodness-of-fit on F2 1.189 

Final R indices [I>2sigma(I)] R1 = 0.0585, wR2 = 0.1053 

R indices (all data) R1 = 0.0770, wR2 = 0.1111 

Largest diff. peak and hole 0.851 and -0.689 e.Å-3 
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Table A 1.14.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex 71.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pd(1) 3433(1) 6698(1) 2338(1) 26(1) 

As(1) 4176(1) 6555(1) 3457(1) 27(1) 

Cl(1) 2840(1) 7026(1) 1187(1) 36(1) 

Cl(2) 5131(1) 6010(2) 2123(1) 38(1) 

P(1) 1302(1) 6962(1) 3408(1) 26(1) 

S(1) 1713(1) 7361(2) 2492(1) 38(1) 

C(1) 2771(4) 8424(5) 4116(3) 32(1) 

C(2) 3195(4) 6853(5) 4126(2) 26(1) 

C(3) 2188(4) 5881(5) 4007(2) 25(1) 

C(4) 1590(4) 6093(5) 4611(2) 26(1) 

C(5) 1227(4) 7443(5) 4640(2) 28(1) 

C(6) 1530(4) 8330(5) 4063(3) 30(1) 

C(7) 598(5) 8094(6) 5145(3) 42(1) 

C(8) 1508(5) 4855(6) 5080(3) 42(1) 

C(9) 4902(5) 4789(6) 3719(3) 40(1) 

C(10) 4683(5) 3936(7) 4178(3) 54(2) 

C(11) -59(4) 6322(5) 3305(2) 28(1) 

C(12) -272(4) 4857(6) 3288(3) 33(1) 

C(13) -1322(4) 4386(7) 3153(3) 41(1) 

C(14) -2154(5) 5356(7) 3039(3) 44(2) 

C(15) -1953(4) 6799(7) 3069(3) 45(2) 

C(16) -904(4) 7301(6) 3206(3) 39(1) 

C(17) 5241(4) 8024(6) 3689(3) 31(1) 

C(18) 5128(5) 9319(6) 3356(3) 45(2) 

C(19) 5844(5) 10433(7) 3522(3) 53(2) 

C(20) 6694(6) 10223(8) 4028(3) 59(2) 

C(21) 6819(5) 8947(8) 4368(3) 55(2) 

C(22) 6081(5) 7845(7) 4197(3) 43(1) 
________________________________________________________________________________ 
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Appendix 8 

X-ray Crystallographic Data for [(R)-1-[1-(dimethylamino)ethyl]-2-naphthyl-

C,N][(4R,7S)-5,6-dimethyl-7-phenyl-2-(diphenylphosphino)-7-

phosphabicyclo[2.2.1]hept-5-en-2-yl ethanol]palladium(II) perchlorate, Complex 

(Rc,Sp)-76, Figure 3.1 .  

 

Table A 1.15 Crystal data and structure refinement for complex (Rc,Sp)-76 

Empirical formula  C42 H46 Cl N O5 P2 Pt 

Formula weight  937.28 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 9.3185(4) Å α = 90°. 

 b = 20.2115(9) Å β = 90°. 

 c = 21.4080(8) Å γ = 90°. 

Volume 4032.0(3) Å3 

Z 4 

Density (calculated) 1.544 Mg/m3 

Goodness-of-fit on F2 1.053 

Final R indices [I>2sigma(I)] R1 = 0.0683, wR2 = 0.1477 

R indices (all data) R1 = 0.0925, wR2 = 0.1589 

Absolute structure parameter 0.010(12) 

Largest diff. peak and hole 2.206 and -0.665 e.Å-3 
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Table A 1.16.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for (Rc,Sp)-76.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pt(1) 5286(1) 4041(1) 7200(1) 46(1) 

P(1) 6958(3) 4832(1) 7058(1) 45(1) 

P(2) 5684(3) 4274(2) 8228(1) 51(1) 

O(1) 9490(30) 6764(9) 7958(8) 224(10) 

N(1) 3629(11) 3325(5) 7280(4) 61(2) 

C(1) 4854(13) 3873(5) 6265(4) 50(3) 

C(2) 5219(13) 4291(5) 5761(4) 52(2) 

C(3) 4835(12) 4117(6) 5163(5) 63(3) 

C(4) 4063(13) 3553(7) 5028(5) 57(3) 

C(5) 3681(15) 3375(8) 4423(6) 77(4) 

C(6) 2940(20) 2825(10) 4309(7) 103(6) 

C(7) 2475(17) 2423(10) 4778(8) 101(6) 

C(8) 2793(15) 2558(8) 5388(7) 78(4) 

C(9) 3616(11) 3148(6) 5535(5) 55(3) 

C(10) 4061(13) 3326(6) 6153(5) 53(3) 

C(11) 3737(14) 2890(7) 6718(5) 60(3) 

C(12) 4906(19) 2358(6) 6789(6) 87(4) 

C(13) 3605(15) 2913(7) 7871(6) 80(4) 

C(14) 2211(12) 3679(7) 7258(6) 69(3) 

C(15) 8429(13) 4325(6) 8085(5) 57(3) 

C(16) 8893(14) 5551(7) 7888(7) 76(4) 

C(17) 8320(20) 6257(9) 7791(10) 113(6) 

C(18) 7753(11) 5002(6) 7850(5) 53(2) 

C(19) 6447(12) 5095(6) 8293(4) 50(3) 

C(20) 6961(14) 5103(7) 8962(5) 59(3) 

C(21) 7427(14) 4523(8) 9132(5) 67(4) 

C(22) 7390(12) 4038(7) 8581(4) 59(3) 

C(23) 6745(18) 5702(8) 9361(6) 85(5) 

C(24) 7952(18) 4268(8) 9746(5) 81(5) 

C(25) 8456(12) 4638(7) 6543(4) 56(3) 

C(26) 9450(20) 5091(10) 6351(9) 137(9) 
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C(27) 10610(20) 5009(11) 6007(8) 122(7) 

C(28) 10642(18) 4376(13) 5750(6) 110(7) 

C(29) 9739(19) 3864(8) 5919(7) 95(5) 

C(30) 8620(13) 4023(9) 6312(6) 74(4) 

C(31) 6094(13) 5586(6) 6766(5) 54(3) 

C(32) 6667(19) 6051(8) 6371(6) 91(5) 

C(33) 5830(30) 6581(8) 6123(8) 100(6) 

C(34) 4470(30) 6653(10) 6288(9) 121(8) 

C(35) 3830(20) 6194(9) 6666(11) 116(7) 

C(36) 4680(20) 5671(8) 6892(8) 95(5) 

C(37) 4312(14) 4194(8) 8839(5) 73(4) 

C(38) 3139(16) 4591(10) 8821(7) 92(5) 

C(39) 2060(19) 4530(13) 9277(9) 126(8) 

C(40) 2330(40) 3990(20) 9739(10) 191(18) 

C(41) 3520(30) 3594(19) 9742(11) 174(16) 

C(42) 4406(18) 3702(9) 9295(6) 91(5) 

Cl(1) 319(7) 7376(4) 6376(4) 209(4) 

O(2)* 1410(20) 7526(13) 5890(8) 156(11) 

O(3)* 960(20) 7444(12) 7009(7) 124(7) 

O(4)* -900(30) 7852(14) 6312(12) 300(20) 

O(5)* -220(30) 6690(10) 6290(12) 245(16) 

O(2A)# 1770(20) 7530(20) 6118(17) 200 

O(3A)# 430(40) 6786(13) 6789(15) 200 

O(4A)# -230(40) 7951(13) 6737(16) 200 

O(5A)# -690(30) 7230(20) 5850(13) 200 

________________________________________________________________________________  

*sof=0.6 #sof=0.5 
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Appendix 9 

X-ray Crystallographic Data for, Complex dichloro[(4R,7S)-5,6-dimethyl-7-phenyl-

2-(diphenylphosphino)-7-phosphabicyclo[2.2.1]hept-5-en-2-yl ethanol]palladium(II), 

Complex (Sp)-77, Figure 3.4.  

 

Table A 1.17 Crystal data and structure refinement for complex (Sp)-77 

Empirical formula  C28 H30 Cl2 O P2 Pt 

Formula weight  710.45 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 11.1520(6) Å α = 90°. 

 b = 11.3003(5) Å β = 90°. 

 c = 21.2068(10) Å γ = 90°. 

Volume 2672.5(2) Å3 

Z 4 

Density (calculated) 1.766 Mg/m3 

Goodness-of-fit on F2 0.978 

Final R indices [I>2sigma(I)] R1 = 0.0355, wR2 = 0.0647 

R indices (all data) R1 = 0.0403, wR2 = 0.0662 

Absolute structure parameter -0.001(6) 
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Table A 1.18.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex (Sp)-77.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pt(1) 2124(1) 2974(1) 3039(1) 27(1) 

P(1) 1741(1) 4573(1) 3623(1) 26(1) 

P(2) 2706(1) 4305(1) 2336(1) 28(1) 

Cl(1) 2555(2) 1281(1) 2429(1) 45(1) 

Cl(2) 1526(2) 1705(1) 3859(1) 50(1) 

O(1) 1089(5) 9050(4) 3471(2) 56(1) 

C(1) 796(5) 5566(5) 2542(2) 27(1) 

C(2) 1758(4) 5858(4) 3063(3) 26(1) 

C(3) 1584(5) 7035(5) 3417(2) 34(1) 

C(4) 1336(7) 8141(5) 3053(3) 53(2) 

C(5) 3006(5) 5745(4) 2716(2) 26(1) 

C(6) 3051(5) 6551(5) 2149(2) 27(1) 

C(7) 2241(6) 6233(5) 1721(2) 32(1) 

C(8) 1516(5) 5192(4) 1944(3) 28(1) 

C(10) 3959(6) 7529(6) 2105(3) 47(2) 

C(11) 1982(6) 6812(5) 1100(3) 47(2) 

C(1A) 2915(6) 4837(5) 4206(2) 30(1) 

C(2A) 3981(6) 4208(6) 4160(3) 40(2) 

C(3A) 4884(6) 4389(7) 4591(3) 54(2) 

C(4A) 4756(6) 5205(7) 5067(3) 49(2) 

C(5A) 3704(7) 5813(6) 5115(3) 46(2) 

C(6A) 2762(6) 5626(5) 4691(2) 39(1) 

C(1B) 349(5) 4588(5) 4075(3) 31(1) 

C(2B) 327(6) 3969(5) 4641(3) 37(1) 

C(3B) -689(7) 3929(6) 4995(3) 47(2) 

C(4B) -1719(6) 4502(6) 4800(3) 47(2) 

C(5B) -1716(6) 5093(6) 4242(3) 46(2) 

C(6B) -685(6) 5142(6) 3874(3) 39(2) 

C(1C) 3835(5) 3957(5) 1761(3) 32(1) 

C(2C) 4942(6) 4531(6) 1754(3) 42(2) 

C(3C) 5769(6) 4260(7) 1300(4) 55(2) 
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C(4C) 5514(8) 3413(7) 855(4) 67(2) 

C(5C) 4439(8) 2847(7) 859(4) 63(2) 

C(6C) 3601(7) 3117(6) 1312(3) 47(2) 
________________________________________________________________________________ 
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Appendix 10 

X-ray Crystallographic Data for Complex chloro[(R)-1-[1-(dimethylamino)ethyl]-2-

naphthyl-C,N][ 2-diphenylphosphanyl-prop-2-en-1-ol] platinum(II), Complex (Rc)-

79, Figure 3.5.  

 

Table A 1.19 Crystal data and structure refinement for complex (Rc)-79 

Empirical formula  C29 H31 Cl N O P Pt 

Formula weight  671.06 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 12.3326(6) Å α = 90°. 

 b = 13.3464(7) Å β= 90°. 

 c = 16.1563(9) Å γ = 90°. 

Volume 2659.3(2) Å3 

Z 4 

Density (calculated) 1.676 Mg/m3 

Goodness-of-fit on F2 1.010 

Final R indices [I>2sigma(I)] R1 = 0.0346, wR2 = 0.0670 

R indices (all data) R1 = 0.0408, wR2 = 0.0690 

Absolute structure parameter 0.006(7) 

Largest diff. peak and hole 1.802 and -0.534 e.Å-3 
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Table A 1.20.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for (Rc)-79.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pt(1) 1158(1) 1351(1) 8951(1) 26(1) 

P(1) 1916(1) 349(1) 9905(1) 27(1) 

Cl(1) 16(1) -69(1) 8613(1) 40(1) 

N(1) 535(4) 2391(4) 8024(3) 34(1) 

O(1) 1593(4) -2839(4) 9257(4) 55(2) 

C(1) 1952(4) 2701(4) 9158(3) 26(1) 

C(2) 2483(5) 3013(5) 9891(4) 35(1) 

C(3) 3018(4) 3949(5) 9939(4) 35(2) 

C(4) 3055(4) 4665(5) 9266(4) 36(2) 

C(5) 3664(5) 5606(5) 9284(5) 43(2) 

C(6) 3722(5) 6276(5) 8609(5) 50(2) 

C(7) 3183(5) 6036(5) 7899(5) 50(2) 

C(8) 2574(5) 5152(5) 7855(5) 43(2) 

C(9) 2505(5) 4420(5) 8534(4) 34(1) 

C(10) 1949(4) 3431(4) 8517(4) 29(1) 

C(11) 1378(4) 3107(5) 7753(4) 32(1) 

C(12) 2086(6) 2560(6) 7133(4) 48(2) 

C(13) -250(5) 3068(6) 8435(5) 48(2) 

C(14) 66(6) 1842(6) 7316(4) 51(2) 

C(15) 1606(4) -1103(4) 9944(4) 31(1) 

C(16) 1905(5) -1752(5) 9190(4) 42(2) 

C(17) 1146(5) -1551(5) 10575(4) 44(2) 

C(18) 3287(4) 262(4) 9815(4) 29(1) 

C(19) 3800(5) -540(5) 10239(4) 44(2) 

C(20) 4840(5) -646(6) 10166(5) 52(2) 

C(21) 5345(5) 63(6) 9666(5) 48(2) 

C(22) 4860(5) 846(5) 9236(5) 46(2) 

C(23) 3813(5) 947(5) 9304(4) 34(1) 

C(24) 1604(4) 759(4) 10948(4) 32(1) 

C(25) 2198(6) 505(5) 11636(4) 45(2) 

C(26) 1829(8) 640(7) 12418(5) 62(2) 
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C(27) 882(7) 1049(6) 12543(5) 61(2) 

C(28) 303(6) 1332(6) 11879(5) 53(2) 

C(29) 664(5) 1187(5) 11087(4) 42(2) 
________________________________________________________________________________ 
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Appendix 11 

X-ray Crystallographic Data for Complex [(R)-1-[1-(dimethylamino)ethyl]-2-

naphthyl-C,N][(4R,7S)-5,6-dimethyl-7-phenyl-2-(diphenylphosphino)-7-

phosphabicyclo[2.2.1]hept-5-en-2-yl methanol]palladium(II) perchlorate, Complex  

(Rc,Sp)-81, Figure 3.6.  

 

Table A 1.21 Crystal data and structure refinement for complex (Rc,Sp)-81 

Empirical formula  C43 H45 Cl N2 O5 P2 Pt 

Formula weight  962.29 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 9.419(2) Å α = 90°. 

 b = 20.225(5) Å β = 90°. 

 c = 21.293(6) Å γ = 90°. 

Volume 4056.3(18) Å3 

Z 4 

Density (calculated) 1.576 Mg/m3 

Goodness-of-fit on F2 1.027 

Final R indices [I>2sigma(I)] R1 = 0.0529, wR2 = 0.1226 

R indices (all data) R1 = 0.0629, wR2 = 0.1263 

Absolute structure parameter 0.025(10) 

Largest diff. peak and hole 3.937 and -1.773 e.Å-3 
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Table A 1.22.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex (Rc,Sp)-81.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pt(1) 4770(1) 5960(1) 7198(1) 36(1) 

P(1) 3093(2) 5176(1) 7058(1) 38(1) 

P(2) 4457(2) 5690(1) 8231(1) 39(1) 

O(1)* 1966(10) 3820(4) 7755(5) 66(2) 

O(1A)# 10(20) 4607(16) 7614(9) 70(8) 

N(1) 6480(7) 6665(3) 7274(4) 44(2) 

C(1) 5142(9) 6125(4) 6249(4) 42(2) 

C(2) 4679(10) 5763(4) 5780(4) 48(2) 

C(3) 5033(8) 5919(4) 5135(4) 43(2) 

C(4) 5913(10) 6461(4) 5002(4) 44(2) 

C(5) 6267(11) 6653(5) 4395(4) 56(2) 

C(6) 7137(13) 7183(7) 4268(5) 74(3) 

C(7) 7693(13) 7539(6) 4788(5) 66(3) 

C(8) 7366(11) 7390(5) 5377(5) 54(3) 

C(9) 6439(9) 6858(4) 5509(4) 44(2) 

C(10) 6012(9) 6671(4) 6136(4) 40(2) 

C(11) 6389(10) 7107(5) 6689(4) 44(2) 

C(12) 5318(14) 7648(4) 6777(5) 62(3) 

C(13) 7804(9) 6278(5) 7250(5) 56(2) 

C(14) 6463(13) 7082(5) 7839(5) 71(3) 

C(15) 2356(9) 4985(4) 7857(4) 37(2) 

C(16) 1288(10) 4418(4) 7900(5) 51(2) 

C(17) 1717(10) 5663(5) 8121(4) 46(2) 

C(18) 2761(9) 5889(4) 8627(4) 41(2) 

C(19) 2763(10) 5389(5) 9156(4) 44(2) 

C(20) 3240(10) 4807(4) 8962(3) 42(2) 

C(21) 3710(9) 4844(4) 8283(3) 38(2) 

C(22) 3423(12) 4171(5) 9314(5) 61(3) 

C(23) 2275(13) 5577(6) 9816(4) 60(3) 

C(24) 3976(11) 4434(4) 6743(4) 46(2) 

C(25) 5416(13) 4375(6) 6825(5) 66(3) 
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C(26) 6189(16) 3856(6) 6595(8) 96(5) 

C(27) 5507(19) 3365(6) 6251(6) 82(4) 

C(28) 4125(18) 3414(6) 6157(5) 79(4) 

C(29) 3290(14) 3922(5) 6404(5) 68(3) 

C(30) 1574(9) 5384(5) 6553(4) 46(2) 

C(31) 1457(10) 5996(6) 6320(4) 57(2) 

C(32) 314(13) 6183(6) 5917(5) 71(3) 

C(33) -659(13) 5693(8) 5771(5) 80(4) 

C(34) -584(12) 5081(7) 6020(6) 84(4) 

C(35) 546(11) 4929(6) 6425(5) 66(3) 

C(36) 5850(11) 5717(5) 8819(4) 50(2) 

C(37) 7007(12) 5277(6) 8773(4) 65(3) 

C(38) 8042(16) 5280(8) 9230(7) 99(5) 

C(39) 7981(14) 5700(9) 9734(6) 91(5) 

C(40) 6896(14) 6113(7) 9788(6) 84(4) 

C(41) 5813(11) 6146(6) 9332(4) 60(3) 

Cl(1) 9016(5) 2875(3) 7424(3) 128(2) 

O(2) 9541(16) 3230(6) 6908(6) 146(5) 

O(3) 8067(17) 2401(6) 7248(8) 176(6) 

O(4) 8230(19) 3424(8) 7715(7) 185(7) 

O(5) 10120(16) 2713(9) 7849(8) 195(7) 

C(1S) 10060(20) 7201(12) 9168(11) 192(11) 

C(2S) 9150(20) 7492(9) 9624(8) 106(5) 

N(1S) 8390(30) 7741(8) 10032(11) 170(8) 

________________________________________________________________________________  
*sof=0.75 #sof=0.25 
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Appendix 12 

X-ray Crystallographic Data for dichloro[(4R,7S)-5,6-dimethyl-7-phenyl-2-

(diphenylphosphino)-7-phosphabicyclo[2.2.1]hept-5-en-2-yl methanol]palladium(II) 

perchlorate, Complex (Sp)-82, Figure 3.9.  

 

Table A 1.23 Crystal data and structure refinement for complex (Sp)-82 

Empirical formula  C28 H30 Cl4 O P2 Pt 

Formula weight  781.35 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 9.0762(10) Å α = 90°. 

 b = 17.7661(19) Å β = 90°. 

 c = 18.235(2) Å γ = 90°. 

Volume 2940.4(6) Å3 

Z 4 

Density (calculated) 1.765 Mg/m3 

Goodness-of-fit on F2 0.988 

Final R indices [I>2sigma(I)] R1 = 0.0260, wR2 = 0.0576 

R indices (all data) R1 = 0.0296, wR2 = 0.0589 

Absolute structure parameter 0.004(5) 
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Table A 1.24.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex (Sp)-82.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pt(1) 6413(1) 2528(1) 2227(1) 23(1) 

Cl(1) 7079(1) 1624(1) 1332(1) 33(1) 

Cl(2) 7014(1) 1666(1) 3161(1) 36(1) 

P(1) 5975(1) 3464(1) 3027(1) 24(1) 

P(2) 5778(1) 3368(1) 1401(1) 25(1) 

O(1) 4103(6) 4943(2) 3498(2) 72(1) 

C(1) 5018(5) 4213(2) 2474(2) 32(1) 

C(2) 4842(8) 5014(3) 2841(3) 66(2) 

C(3) 3561(5) 3829(3) 2190(2) 37(1) 

C(4) 3820(5) 3651(2) 1366(2) 33(1) 

C(5) 3955(5) 4404(2) 966(2) 33(1) 

C(6) 5133(6) 4777(2) 1205(2) 36(1) 

C(7) 5982(5) 4317(2) 1773(2) 29(1) 

C(8) 2796(6) 4636(3) 436(3) 49(1) 

C(9) 5694(7) 5534(3) 983(3) 50(1) 

C(10) 7701(5) 3846(2) 3372(2) 29(1) 

C(11) 8983(5) 3447(3) 3242(2) 37(1) 

C(12) 10325(5) 3699(3) 3508(3) 44(1) 

C(13) 10406(6) 4341(3) 3897(3) 47(1) 

C(14) 9146(6) 4746(3) 4044(3) 44(1) 

C(15) 7803(5) 4510(2) 3784(3) 37(1) 

C(16) 4853(5) 3207(2) 3816(2) 28(1) 

C(17) 4921(5) 3592(2) 4480(2) 37(1) 

C(18) 4044(5) 3368(3) 5064(2) 46(1) 

C(19) 3104(6) 2767(3) 4994(3) 45(1) 

C(20) 3045(6) 2375(3) 4345(3) 42(1) 

C(21) 3931(4) 2590(2) 3760(2) 33(1) 

C(22) 6539(5) 3348(2) 484(2) 31(1) 

C(23) 7989(6) 3556(3) 386(3) 45(1) 

C(24) 8587(6) 3552(3) -312(3) 55(1) 

C(25) 7777(7) 3332(3) -900(3) 50(1) 
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C(26) 6336(7) 3112(3) -806(3) 51(1) 

C(27) 5686(6) 3125(3) -107(2) 40(1) 

C(1S) 184(7) 838(3) 2532(3) 66(2) 

Cl(1A) 1212(2) 1611(1) 2806(1) 80(1) 

Cl(1B) 78(2) 137(1) 3199(1) 94(1) 
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Appendix 13 

X-ray Crystallographic Data for [(R)-1-[1-(dimethylamino)ethyl]-2-naphthalenyl-

C,N][(R)3,4-bis(diphenylphosphino)butan-1-ol]palladium(II)perchlorate, (Rc,Rc)-87a, 

Figure 4.1.  

 

Table A 1.25 Crystal data and structure refinement for complex (Rc,Rc)-87a 

Empirical formula  C43 H46 Cl3 N O5 P2 Pd 

Formula weight  931.50 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 10.0929(11) Å α = 90°. 

 b = 19.017(2) Å β = 90°. 

 c = 22.489(2) Å γ = 90°. 

Volume 4316.5(8) Å3 

Z 4 

Density (calculated) 1.433 Mg/m3 

Goodness-of-fit on F2 1.077 

Final R indices [I>2sigma(I)] R1 = 0.0487, wR2 = 0.1235 

R indices (all data) R1 = 0.0537, wR2 = 0.1269 

Absolute structure parameter -0.01(3) 
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Table A 1.26.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for (Rc,Rc)-87a.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pd(1) 5174(1) 5680(1) 7369(1) 28(1) 

P(1) 3453(1) 5077(1) 6989(1) 29(1) 

P(2) 4523(1) 5170(1) 8278(1) 35(1) 

N(1) 6875(3) 6275(2) 7634(2) 35(1) 

O(1) 818(6) 3333(3) 7669(3) 96(2) 

C(1) 5659(4) 6130(2) 6569(2) 29(1) 

C(2) 5301(5) 5933(2) 5983(2) 36(1) 

C(3) 5747(5) 6276(3) 5500(2) 39(1) 

C(4) 6576(5) 6870(2) 5560(2) 36(1) 

C(5) 7001(5) 7262(3) 5048(2) 47(1) 

C(6) 7782(6) 7834(3) 5108(2) 51(1) 

C(7) 8189(6) 8051(3) 5688(2) 47(1) 

C(8) 7790(5) 7693(2) 6178(2) 38(1) 

C(9) 6974(4) 7096(2) 6128(2) 34(1) 

C(10) 6506(4) 6700(2) 6628(2) 31(1) 

C(11) 6880(4) 6924(2) 7254(2) 34(1) 

C(12) 5903(6) 7476(3) 7481(2) 46(1) 

C(13) 8071(5) 5838(3) 7468(2) 47(1) 

C(14) 6990(6) 6464(3) 8273(2) 48(1) 

C(15) 2750(5) 5003(3) 8188(2) 42(1) 

C(16) 2472(4) 4641(2) 7585(2) 37(1) 

C(17) 974(5) 4600(3) 7470(3) 50(1) 

C(18) 320(7) 4019(4) 7813(3) 82(2) 

C(19) 3922(4) 4334(3) 6524(2) 36(1) 

C(20) 2973(6) 3850(3) 6310(2) 48(1) 

C(21) 3373(8) 3286(3) 5986(3) 61(2) 

C(22) 4676(11) 3178(3) 5872(3) 87(3) 

C(23) 5636(8) 3629(4) 6077(3) 74(2) 

C(24) 5244(6) 4213(3) 6402(2) 50(1) 

C(25) 2271(4) 5618(2) 6582(2) 34(1) 

C(26) 1737(6) 5421(3) 6039(2) 48(1) 
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C(27) 796(6) 5853(3) 5765(3) 59(2) 

C(28) 387(6) 6462(3) 6034(3) 58(2) 

C(29) 924(6) 6648(3) 6578(3) 55(1) 

C(30) 1857(5) 6241(3) 6848(3) 46(1) 

C(31) 4622(6) 5625(3) 8994(2) 50(1) 

C(32) 5521(8) 5440(4) 9422(2) 67(2) 

C(33) 5577(10) 5819(5) 9949(3) 93(3) 

C(34) 4769(11) 6341(4) 10063(3) 93(3) 

C(35) 3846(9) 6538(4) 9649(4) 81(3) 

C(36) 3784(7) 6186(3) 9102(3) 65(2) 

C(37) 5267(5) 4323(3) 8415(2) 38(1) 

C(38) 6218(5) 4062(3) 8029(2) 43(1) 

C(39) 6793(6) 3410(3) 8139(3) 53(1) 

C(40) 6426(6) 3030(3) 8628(3) 55(1) 

C(41) 5455(6) 3275(3) 9013(3) 54(1) 

C(42) 4861(6) 3913(3) 8907(2) 45(1) 

C(1S) 5050(20) 4397(6) 4545(4) 234(12) 

Cl(1A) 3606(3) 4923(2) 4773(1) 110(1) 

Cl(1B) 5963(4) 5020(3) 4073(2) 176(2) 

Cl(1) -894(2) 2405(1) 6485(1) 91(1) 

O(2) -1416(12) 2423(5) 5932(3) 166(4) 

O(3) -786(10) 1731(5) 6687(4) 157(4) 

O(4) 269(10) 2773(6) 6540(5) 175(4) 

O(5) -1783(15) 2696(9) 6843(7) 277(9) 

_____________________________________________________________________________________ 
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Appendix 14 

X-ray Crystallographic Data for dichloro[(R)3,4-bis(diphenylphosphino)butan-1-

ol]palladium(II), (Rc)-88, Figure 4.1.  

 

Table A 1.27 Crystal data and structure refinement for complex (Rc)-88 

Empirical formula  C29 H30 Cl4 O P2 Pd 

Formula weight  704.67 

Crystal system  Triclinic 

Space group  P1 

Unit cell dimensions a = 9.193(2) Å α = 90°. 

 b = 9.091(2) Å β = 99.492(6)°. 

 c = 19.086(5) Å γ = 90°. 

Volume 1573.1(7) Å3 

Z 2 

Density (calculated) 1.488 Mg/m3 

Goodness-of-fit on F2 1.140 

Final R indices [I>2sigma(I)] R1 = 0.0970, wR2 = 0.2208 

R indices (all data) R1 = 0.1087, wR2 = 0.2280 

Absolute structure parameter 0.01(9) 
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Table A 1.28.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex(Rc)-88 .  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pd(1) 5842(1) 2439(1) 7640(1) 14(1) 

P(1) 7484(4) 1535(4) 8528(2) 16(1) 

P(2) 5848(4) 215(4) 7160(2) 18(1) 

Cl(1) 6003(4) 4821(4) 8150(2) 30(1) 

Cl(2) 4041(4) 3172(5) 6685(2) 33(1) 

C(1) 7430(15) -816(16) 7635(7) 21(3) 

C(2) 7621(14) -483(15) 8412(7) 18(3) 

C(3) 9016(14) -1143(15) 8844(8) 23(3) 

C(4) 8978(19) -2831(19) 8873(9) 39(4) 

O(1) 7872(15) -3288(15) 9272(7) 52(3) 

C(1A) 9316(4) 2271(5) 8505(2) 18(3) 

C(2A) 9590(4) 2883(5) 7872(2) 35(4) 

C(3A) 10989(5) 3410(6) 7822(3) 30(4) 

C(4A) 12113(4) 3324(7) 8405(3) 35(4) 

C(5A) 11839(4) 2712(6) 9038(3) 24(3) 

C(6A) 10440(4) 2185(5) 9088(2) 26(3) 

C(1B) 7072(4) 1854(5) 9419(2) 22(3) 

C(2B) 7516(5) 3143(5) 9783(2) 22(3) 

C(3B) 7105(5) 3414(7) 10440(2) 27(3) 

C(4B) 6250(6) 2395(8) 10733(2) 39(3) 

C(5B) 5806(5) 1105(7) 10368(2) 38(4) 

C(6B) 6217(4) 835(6) 9711(2) 40(4) 

C(1C) 4212(4) -834(5) 7244(2) 14(3) 

C(2C) 4162(5) -2351(5) 7149(2) 26(3) 

C(3C) 2890(5) -3125(6) 7219(3) 38(4) 

C(4C) 1669(5) -2383(7) 7384(3) 47(4) 

C(5C) 1718(4) -867(7) 7479(3) 54(5) 

C(6C) 2990(4) -93(6) 7409(2) 29(3) 

C(1D) 6043(5) 222(5) 6227(2) 29(3) 

C(2D) 7136(5) 1126(6) 6039(2) 44(4) 

C(3D) 7389(6) 1154(7) 5341(2) 64(6) 
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C(4D) 6549(7) 278(8) 4831(2) 48(5) 

C(5D) 5455(6) -626(7) 5018(2) 53(5) 

C(6D) 5202(5) -654(6) 5716(2) 38(4) 

C(1S) 8290(30) 5867(15) 5630(20) 163(17) 

ClA 7555(8) 5565(9) 6473(4) 92(2) 

ClB* 9132(13) 7724(11) 5791(6) 83(3) 

ClC# 9887(16) 4576(15) 5810(9) 75(5) 

________________________________________________________________________________  
*sof =0.6 #sof=0.4 
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Appendix 15 

X-ray Crystallographic Data for chloro[(R)-1-[1-(dimethylamino)ethyl]-2-

naphthalenyl-C,N][2-(diphenylphosphino)prop-2-en-1-ol], (Rc)-90, Figure 4.3.  

 

Table A 1.29 Crystal data and structure refinement for complex (Rc)-90 

Empirical formula  C29 H31 Cl N O P Pd 

Formula weight  582.37 

Crystal system  Orthorhombic 

Space group  P2(1)2(1)2(1) 

Unit cell dimensions a = 12.2005(5) Å α = 90°. 

 b = 13.3602(6) Å β = 90°. 

 c = 16.7910(8) Å γ = 90°. 

Volume 2737.0(2) Å3 

Z 4 

Density (calculated) 1.413 Mg/m3 

Goodness-of-fit on F2 0.928 

Final R indices [I>2sigma(I)] R1 = 0.0523, wR2 = 0.0877 

R indices (all data) R1 = 0.0674, wR2 = 0.0926 

Absolute structure parameter 0.03(3) 

Largest diff. peak and hole 1.519 and -0.538 e.Å-3 
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Table A 1.30.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex(Rc)-90 .  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   

Pd(1) 1224(1) 1577(1) 8470(1) 37(1) 

P(1) 2185(1) 805(1) 7504(1) 35(1) 

Cl(1) 2679(1) 2748(1) 8756(1) 53(1) 

N(1) 225(3) 2145(3) 9404(2) 44(1) 

O(1) 3834(4) 738(4) 8852(3) 83(1) 

C(1) -141(4) 780(3) 8269(3) 32(1) 

C(2) -482(4) 292(4) 7564(3) 41(1) 

C(3) -1448(4) -220(3) 7526(3) 38(1) 

C(4) -2145(4) -290(3) 8191(3) 39(1) 

C(5) -3131(4) -849(4) 8169(4) 52(2) 

C(6) -3776(5) -921(4) 8833(4) 60(2) 

C(7) -3482(5) -441(4) 9529(4) 66(2) 

C(8) -2538(4) 111(4) 9575(4) 53(2) 

C(9) -1846(4) 199(4) 8901(3) 41(1) 

C(10) -837(4) 739(4) 8920(3) 37(1) 

C(11) -465(4) 1287(4) 9658(3) 48(1) 

C(12) 149(5) 551(5) 10204(3) 68(2) 

C(13) 807(5) 2594(5) 10095(3) 68(2) 

C(14) -497(5) 2922(4) 9058(3) 61(2) 

C(15) 3655(4) 1118(4) 7450(3) 46(1) 

C(16) 4346(5) 747(5) 8119(4) 69(2) 

C(17) 4085(4) 1594(4) 6846(3) 59(2) 

C(18) 1706(4) 1187(3) 6522(4) 39(1) 

C(19) 1322(4) 2161(4) 6459(3) 48(1) 

C(20) 1067(5) 2572(4) 5740(4) 63(2) 

C(21) 1152(6) 2010(5) 5075(4) 73(2) 

C(22) 1509(6) 1031(5) 5112(4) 71(2) 

C(23) 1787(5) 627(4) 5842(4) 56(2) 

C(24) 2265(4) -568(3) 7557(3) 38(1) 

C(25) 3017(5) -1068(5) 7091(4) 60(2) 

C(26) 3136(6) -2098(5) 7173(4) 67(2) 
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C(27) 2508(5) -2619(4) 7706(4) 54(2) 

C(28) 1779(5) -2118(4) 8168(4) 60(2) 

C(29) 1667(4) -1088(4) 8104(3) 45(1) 

________________________________________________________________________________ 
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Appendix 16 

X-ray Crystallographic Data for [(R)-1-[1-(dimethylamino)ethyl]-2-naphthalenyl-

C,N][2,3-bis(diphenylphosphino)propan-1-ol]palladium(II)perchlorate, Complex-92,  

Figure 4.4 and 4.5.  

 

Table A 1.31 Crystal data and structure refinement for complex 92  

Empirical formula  C41.50 H43 Cl2 N O5 P2 Pd 

Formula weight  875.01 

Crystal system  Triclinic 

Space group  P1 

Unit cell dimensions a = 9.7268(4) Å α = 105.5550(10)°. 

 b = 10.9351(5) Å β = 92.7950(10)°. 

 c = 19.9748(9) Å γ = 98.1280(10)°. 

Volume 2017.83(15) Å3 

Z 2 

Density (calculated) 1.440 Mg/m3 

Goodness-of-fit on F2 1.012 

Final R indices [I>2sigma(I)] R1 = 0.0569, wR2 = 0.1238 

R indices (all data) R1 = 0.0764, wR2 = 0.1340 

Absolute structure parameter 0.02(3) 

Largest diff. peak and hole 0.662 and -0.453 e.Å-3 
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Table A 1.32.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complexe 92.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pd(1) 9835(1) 9792(1) 9021(1) 43(1) 

Pd(2) 8608(1) 9508(1) 3587(1) 41(1) 

P(1) 9025(2) 7704(2) 8302(1) 49(1) 

P(2) 8372(2) 10402(2) 8314(1) 48(1) 

P(3) 9898(2) 11528(2) 3564(1) 46(1) 

P(4) 10145(2) 8632(2) 2868(1) 41(1) 

O(1) 8125(11) 5819(11) 6764(5) 147(4) 

O(2) 14033(7) 11723(8) 3127(5) 103(2) 

N(1) 11201(7) 9348(5) 9764(3) 55(2) 

N(2) 7092(7) 10111(6) 4294(4) 55(2) 

C(1) 10717(8) 11627(7) 9586(4) 45(2) 

C(2) 10752(10) 12791(9) 9398(5) 57(2) 

C(3) 11528(9) 13904(7) 9781(5) 57(2) 

C(4) 12326(8) 13962(7) 10411(4) 50(2) 

C(5) 13155(11) 15110(8) 10824(5) 71(3) 

C(6) 13896(11) 15129(9) 11402(6) 82(3) 

C(7) 13870(12) 13995(10) 11634(6) 89(3) 

C(8) 13072(10) 12887(8) 11260(5) 70(2) 

C(9) 12247(8) 12813(7) 10635(4) 53(2) 

C(10) 11418(8) 11661(7) 10198(4) 49(2) 

C(11) 11280(8) 10441(7) 10419(4) 49(2) 

C(12) 10014(12) 10366(9) 10828(5) 85(3) 

C(13) 12611(8) 9342(8) 9495(4) 58(2) 

C(14) 10763(12) 8094(8) 9928(5) 75(3) 

C(15) 8233(9) 7892(7) 7490(4) 57(2) 

C(16) 7381(9) 8951(8) 7687(4) 61(2) 

C(17) 7329(14) 6766(9) 6964(5) 93(4) 

C(18) 7633(9) 6823(8) 8625(4) 54(2) 

C(19) 6942(10) 7483(8) 9179(4) 61(2) 

C(20) 5790(12) 6919(13) 9415(6) 83(3) 

C(21) 5334(11) 5640(12) 9105(6) 94(3) 
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C(22) 5975(12) 4934(10) 8542(6) 93(3) 

C(23) 7105(11) 5509(8) 8311(5) 75(3) 

C(24) 10371(9) 6704(8) 8056(4) 58(2) 

C(25) 10495(11) 5635(8) 8290(4) 71(3) 

C(26) 11632(15) 5033(11) 8133(6) 99(4) 

C(27) 12566(16) 5377(14) 7737(7) 110(4) 

C(28) 12475(12) 6453(14) 7513(6) 103(4) 

C(29) 11402(12) 7090(11) 7660(5) 83(3) 

C(30) 7033(8) 11251(8) 8729(5) 55(2) 

C(31) 7127(11) 11828(10) 9418(6) 72(3) 

C(32) 6067(14) 12376(10) 9752(6) 85(4) 

C(33) 4847(15) 12340(13) 9345(10) 107(5) 

C(34) 4736(12) 11804(11) 8674(7) 89(3) 

C(35) 5794(10) 11270(9) 8347(5) 72(2) 

C(36) 9242(9) 11231(7) 7735(4) 50(2) 

C(37) 8616(10) 11911(9) 7372(4) 68(2) 

C(38) 9344(14) 12461(10) 6914(5) 87(3) 

C(39) 10650(15) 12254(11) 6823(6) 94(4) 

C(40) 11348(13) 11572(11) 7167(6) 91(3) 

C(41) 10619(10) 11081(9) 7634(5) 69(2) 

C(42) 7629(7) 7751(6) 3650(4) 40(2) 

C(43) 7543(9) 6520(7) 3191(5) 49(2) 

C(44) 6929(8) 5435(8) 3345(5) 58(2) 

C(45) 6373(7) 5511(7) 3970(4) 49(2) 

C(46) 5750(8) 4401(8) 4146(5) 61(2) 

C(47) 5196(10) 4496(11) 4768(6) 83(3) 

C(48) 5220(11) 5700(12) 5249(5) 87(3) 

C(49) 5807(8) 6799(9) 5084(4) 62(2) 

C(50) 6390(7) 6744(7) 4450(4) 49(2) 

C(51) 7015(7) 7845(6) 4263(4) 42(2) 

C(52) 7036(9) 9165(8) 4744(4) 58(2) 

C(53) 8286(12) 9504(11) 5290(5) 97(4) 

C(54) 7279(12) 11459(9) 4745(6) 93(4) 

C(55) 5723(9) 9888(9) 3883(6) 83(3) 

C(56) 11612(8) 11107(7) 3305(4) 47(2) 

C(57) 11299(8) 9928(7) 2663(4) 53(2) 
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C(58) 12672(10) 12113(10) 3165(6) 75(3) 

C(59) 10269(8) 12885(7) 4342(4) 50(2) 

C(60) 11262(9) 12953(9) 4856(5) 66(2) 

C(61) 11449(11) 13956(10) 5464(5) 74(3) 

C(62) 10609(13) 14809(10) 5569(5) 85(3) 

C(63) 9570(12) 14771(9) 5072(5) 81(3) 

C(64) 9410(9) 13831(8) 4455(4) 61(2) 

C(65) 9266(8) 12221(7) 2890(4) 52(2) 

C(66) 9991(9) 13309(7) 2784(5) 59(2) 

C(67) 9538(11) 13795(9) 2258(5) 77(3) 

C(68) 8304(13) 13199(10) 1850(5) 79(3) 

C(69) 7575(10) 12142(9) 1970(5) 77(3) 

C(70) 8038(9) 11628(8) 2474(5) 60(2) 

C(71) 9410(7) 7608(7) 2026(4) 44(2) 

C(72) 8137(9) 7774(9) 1750(5) 64(2) 

C(73) 7522(10) 7024(10) 1116(5) 78(3) 

C(74) 8199(11) 6089(8) 721(4) 71(3) 

C(75) 9450(9) 5915(9) 968(5) 59(2) 

C(76) 10055(8) 6644(7) 1605(4) 49(2) 

C(77) 11287(8) 7769(7) 3243(4) 41(2) 

C(78) 12533(8) 7479(8) 2954(5) 53(2) 

C(79) 13314(9) 6733(9) 3234(5) 58(3) 

C(80) 12932(9) 6292(8) 3785(5) 64(2) 

C(81) 11771(9) 6570(9) 4063(5) 70(2) 

C(82) 10915(8) 7315(8) 3807(4) 51(2) 

Cl(1) 5073(3) 2847(3) 6402(2) 91(1) 

O(3) 4528(17) 3998(12) 6561(7) 224(7) 

O(4) 6402(8) 3312(11) 6269(6) 160(4) 

O(5) 4931(14) 2461(13) 6992(5) 201(6) 

O(6) 4235(11) 2172(10) 5804(5) 153(4) 

Cl(2) 4466(3) 9182(2) 1495(1) 73(1) 

O(7) 5172(8) 8924(9) 2049(4) 111(3) 

O(8) 5311(11) 9144(10) 969(4) 133(4) 

O(9) 4103(9) 10418(6) 1695(4) 106(3) 

O(10) 3204(8) 8341(8) 1290(5) 136(4) 

C(1S) 2992(13) 9010(20) 5870(11) 206(10) 
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Cl(1A) 1335(7) 8484(6) 5932(3) 200(2) 

Cl(1B) 4000(8) 8803(7) 6543(3) 225(3) 

________________________________________________________________________________  
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Appendix 17 

X-ray Crystallographic Data for dichloro[2,3-bis(diphenylphosphino)propan-1-

ol]palladium(II), Complex-93,  Figure 4.7.  

 

Table A 1.33 Crystal data and structure refinement for complex 93 

Empirical formula  C28 H28 Cl4 O P2 Pd 

Formula weight  690.64 

Crystal system  Monoclinic 

Space group  P2(1)/c 

Unit cell dimensions a = 19.514(5) Å α = 90°. 

 b = 8.547(2) Å β = 107.224(5)°. 

 c = 17.987(4) Å γ = 90°. 

Volume 2865.3(12) Å3 

Z 4 

Density (calculated) 1.601 Mg/m3 

Goodness-of-fit on F2 1.111 

Final R indices [I>2sigma(I)] R1 = 0.0698, wR2 = 0.1387 

R indices (all data) R1 = 0.0968, wR2 = 0.1492 

Largest diff. peak and hole 1.035 and -1.003 e.Å-3 
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Table A 1.34.  Atomic coordinates  ( x 104) and equivalent  isotropic displacement parameters (Å2x 103) 

for complex 93.  U(eq) is defined as one third of  the trace of the orthogonalized Uij tensor. 

________________________________________________________________________________  

 x y z U(eq) 

________________________________________________________________________________   
Pd(1) 2404(1) 6578(1) 4400(1) 27(1) 

P(1) 2716(1) 4249(2) 4950(1) 31(1) 

P(2) 1560(1) 5306(2) 3493(1) 40(1) 

Cl(1) 3342(1) 7757(2) 5361(1) 41(1) 

Cl(2) 1984(1) 8980(2) 3780(1) 50(1) 

O(1B)* 835(9) 770(18) 4051(10) 55(4) 

C(1B)* 1884(13) 2980(30) 4741(9) 29(6) 

C(2B)* 1525(9) 3268(13) 3865(10) 29(5) 

C(3B)* 815(10) 2358(19) 3733(12) 45(5) 

O(1)# 864(4) 1588(9) 4420(4) 59(2) 

C(1)# 2007(4) 2811(10) 4472(5) 30(2) 

C(2)# 1744(5) 3189(7) 3603(4) 31(2) 

C(3)# 1400(5) 2724(11) 4839(5) 44(2) 

C(4) 2888(3) 4241(7) 5992(3) 34(1) 

C(5) 2450(3) 5141(8) 6298(4) 44(2) 

C(6) 2539(4) 5188(9) 7082(4) 50(2) 

C(7) 3078(4) 4301(9) 7577(4) 53(2) 

C(8) 3513(5) 3387(10) 7290(4) 65(2) 

C(9) 3427(4) 3366(8) 6485(4) 49(2) 

C(10) 3469(3) 3379(7) 4724(3) 34(1) 

C(11) 3612(3) 1778(7) 4797(4) 40(2) 

C(12) 4189(4) 1161(8) 4612(4) 47(2) 

C(13) 4634(4) 2099(8) 4358(4) 46(2) 

C(14) 4511(4) 3691(8) 4276(4) 45(2) 

C(15) 3933(3) 4338(7) 4458(4) 40(1) 

C(16) 652(3) 5779(7) 3484(3) 39(2) 

C(17) 531(4) 6896(8) 3980(4) 50(2) 

C(18) -157(4) 7276(9) 3975(5) 62(2) 

C(19) -732(4) 6530(11) 3464(5) 65(2) 

C(20) -619(4) 5400(12) 2985(4) 70(3) 

C(21) 67(4) 5027(9) 2988(4) 57(2) 
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C(22) 1616(4) 5550(8) 2506(4) 48(2) 

C(23) 1071(4) 6192(8) 1924(4) 47(2) 

C(24) 1148(4) 6337(9) 1189(4) 56(2) 

C(25) 1755(4) 5865(10) 1032(5) 66(2) 

C(26) 2308(5) 5265(12) 1604(5) 83(3) 

C(27) 2242(4) 5108(11) 2337(5) 79(3) 

C(1S) 4145(5) 7671(11) 7439(5) 84(3) 

Cl(1A) 4495(2) 7251(3) 8419(1) 93(1) 

Cl(1B) 4441(1) 9466(3) 7200(1) 77(1) 

________________________________________________________________________________  

*sof=0.3 #sof=0.7 
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