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Summary 

 

Yield management was initiated in the airline industry with a special emphasis on 

ticket booking systems (overbooking, pricing and allocation etc.). In the last forty 

years since the first publication on overbooking control, air ticket reservation systems 

have evolved from a low-level inventory control process to a major strategic 

information system. Yield management, alternatively known as revenue management, 

can be defined as the integrated management of price and inventory to maximize the 

profitability of a company (or minimize the expected total cost). In the case of 

combination air carriers, or airlines operating airplanes that carry passengers as well 

as cargo, it is the management of passenger fares and seats together with cargo rates 

and cargo space.  

In both ticket booking and space booking processes, airlines usually adopt the strategy 

of overbooking. Overbooking is a practice of intentionally accepting an excess of 

tickets or cargo bookings than the corresponding capacity along the booking process 

to compensate for possible cancellations and no-shows. The purpose of this study is to 

formulate mathematical models to determine the optimal cargo overbooking level so 

as to minimize the expected total under-sales cost and spoilage cost. 

The cargo booking process in this paper is modeled as a two-dimension Markov 

process in the overbooking model. It is a combination of homogeneous Poisson 

arrival process with constant arrival rate and non-homogeneous Poisson cancellation 

process with cancellation rate depending on the number of customers in the system. 

The two state variables are defined as the number of bookings in the system and the 

total amount of space that has been booked. Within each decision period, one and 
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only one of three events will happen: arrival event, cancellation event and non-event. 

Limiting probability distribution is used to approximate the joint probability 

distribution of the final number of bookings and final amount of cargo coming for 

boarding. Since the resulting state-space of the model is large, the mathematical 

software Mathematica is used to solve the problem. Simulation results show that the 

static overbooking model produces very good approximations on real booking 

behaviors and ensures the minimum expected total cost. 

The overbooking model constructed is useful in airline cargo space booking 

operations. The study provides an effective mathematical approach to solve the real 

problem in air cargo space booking. It improves operational efficiency of the cargo 

booking system and helps airlines to maximize the revenue from the cargo sector. 
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jiA ,  Sub-transition matrix describing the transition from iX n =  to 

jX n =+1 , where 1,,1 +−= ioriij ;  

C     Flight capacity for air cargo; 

),( nn YXCa   Cancellation variable in period n  with state variables ),( nn YX ;  

CS    The summation of underage cost and overage cost; 

D    Individual demand, which is assumed to have discrete uniform 

distribution, taking on a value from }...,,2,1{ d ; 

][⋅E    Expectation operator; 

),(, yxf
NN YX    Joint probability mass function of NX  and NY ; 

)(xf
NX   Marginal probability mass function of NX ; 

)(yf
NY   Marginal probability mass function of NY ; 

))}(,{( jXYj nn =  The collection of all states, given that j  customers are in the 

system; 

n  and N  Decision periods with n  denoting any period along the process 

and N  denoting the time of departure; 

xX n
N =   The number of all states given xX n = ; 

OL   Overbooking level, which is defined as the extra space beyond 

capacity that can be reserved in booking process; 

OC    Overage cost in overbooking model; 

Op    Overage penalty; 
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Up    Underage penalty; 

UC    Underage cost in overbooking model; 

nX   State variable one, which is defined as the number of customers 

in system in period n ; 

nY    State variable two, which is defined as the amount of space 

reserved in system in period n ; 

nX
nnn yyy ...,, 21  The nX  bookings in the system in period n ; 

)( xXY nn =  Space of nY  when xX n = , which is the collection of all 

possible values of nY  given xX n = ; 

λ    Arrival rate; 

)( nXτ   Cancellation rate, which is assumed to be a function of nX ; 

),...,( 21 MatrixNππππ =  Limiting probability distribution of the transition matrix, where 

matrixN =∑
=

=

NC

i
iX n

N
0

; 
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1. Introduction 

 

The invention of aircraft in the early twentieth century is one of the greatest 

breakthroughs in human. In fact, air transport industry started initially in 1919 soon 

after the First World War, but it was not until peace was restored after the Second 

World War that the era of major expansion really began.  

 

1.1 Airline industry 

Air transport plays an important role in modern society. Airplanes, an invention of 

20th century, have developed extensively during the past half-century. No other form 

of transportation still has as much potential for further development in this century. “It 

is a big industry, becoming the key element in the world’s largest industry, travel and 

tourism, which generates $3400 billion a year in revenue, accounts for approximately 

10 percent of world GDP, takes almost 11 percent of consumer spending, and 

employs over 200 million people, or roughly one in every nine people in the global 

labor force. Over the last 50 years the airline industry has consistently grown at a very 

fast rate, well above the growth rate in world GDP”. (Hanlon, P. “Global airlines: 

competition in transnational industry”, Oxford, 1996, page 1)  

Nowadays the influence of airline industry permeates every corner of the world. 

Millions of passengers travel by air each day. Passengers can be divided into tourist or 

business travel. With the difference of traveling purposes in mind, airlines charge 

different prices to different customers at different time points along booking process. 

Behind this popularity of passenger traveling in airline industry, air industry also 

provides transportation for cargo. This part of air transport called air cargo transport 
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grows fast. Though the revenue from cargo transport accounts for only a fraction of 

total airline revenue, more attention is being paid on air cargo in recent years in view 

of its steady growth. Nowadays manufacturers usually prefer air transport to ship 

finished products to customers so as to minimize inventory cost. If you want to send 

out letters or parcels quickly, airmail service is readily available at any post office. 

Alternatively, express mail service is another way to increase the speed of delivery, 

such as FedEx, UPS and OCS to name a few. The above gives some examples of 

applications of airline industry familiar to readers. 

 

1.2 Introduction of yield management 

This thesis is focused on cargo yield management with an emphasis on overbooking 

problem. However, the origin of yield management comes from passenger sector. It is 

necessary to trace the origin of yield management and study the techniques used in 

passenger yield management, which will help the modeling of cargo overbooking 

later on. A general idea of yield management in passenger and cargo sectors will be 

presented first in this chapter and a detailed review of yield management will be 

presented in the next chapter. 

To fully and systematically maintain profit, most big airlines around the world are 

employing yield management, also known as revenue management, which is the 

science of profit maximization, to capture each possible chance of earning. Yield 

management is the integration of science, information technology, and business 

process to deliver the right product to the right customer at the right time at the right 

price. The origin of yield management comes from situation where perishable 

products exist. For example, the value of rooms in a hotel cannot be realized until on 
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the day that it is occupied by lodgers. Before being booked out, unoccupied rooms 

means lose of money to the hotel. To take another example in car-rental industry, only 

after cars are rented out, can the company possibly earn money; otherwise, cars are 

staying at garage. Similarly, the empty seats on a flight become valueless once the 

flight takes off. Managers in these industries are faced with the question on how to 

effectively allocate perishable products at suitable prices. Yield management is the 

tool to handle this problem.  

The techniques used in yield management are mainly from operations research. 

Etschmaier and Rothstein (1974) presented an introduction to the use of operations 

research (OR) in the international airline industry and demonstrated the scope and 

significance of airline OR activities. 

After 1978’s deregulation in American, new airlines emerged to share the total profit. 

Intense competition ensued among them. Since customers were allowed to cancel 

their previous booked tickets, airlines started intentionally booking more tickets 

before take-off to counter against cancellations (overbooking).  

At first, almost all-quantitative research in yield management is focused on 

controlling overbooking level, the amount of extra seats (more than flight fixed 

capacity) that can be intentionally booked out before departure. Airlines tend to 

overbook to counter against such factors as cancellations and no-shows. However, 

overbooking has its own downside in that airlines run the risk of not having enough 

seats for all ticket holders. When such a situation happens, airlines are forced to deny 

some boarding to the extra ticket holders and pay a penalty in the form of financial 

compensations to bumped passengers. The long-term effect is that airlines may lose of 

customer goodwill. On the other hand, if the overbooking level were set too low, there 

would be some un-occupied seats left on the day of departure. The tough decision 
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remains how to set this level, later referred as overbooking level, so as to maximize 

total system revenue. 

Later after acknowledging different economic conditions of two major groups of 

travelers, say leisure and business, airlines began to notice the importance of 

effectively controlling their perishable inventory—seats on a plane. That is, how 

many empty seats should be reserved for late-booking business travelers along the 

reservation process? One way to deal with this problem is to offer discounted tickets, 

which must be booked far earlier than other fare class tickets. By this policy the 

accept/deny decision becomes when is the best time to close the booking of 

discounted tickets.  

Generally speaking, there are two approaches towards this target. Non-nested 

allocation approach and nested booking limit approach. The latter—nested booking 

limit approach, in which a certain number of seats are “protected” from being sold to 

the booking classes of lower values at a certain time, is widely used nowadays. The 

figure (Lee and Hersh (1993)) below presents how the two approaches work. In the 

figure, iA  is defined as the allocation for booking class i , iL  is the number of seats 

that should be protected from being sold to the booking classes of lower values and 

iB  is the booking limit for class i .  
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(a) Non-nested Seat Allocation Approach 

 

 

Booking Capacity= kk AAAAA +++++ −1321 ...  

(b) Nested Booking Limit Approach 

 

 

 1B              2B           3B                                                                1−kB      kB  

   Booking Capacity= 1B = 1L + 2B  

                                                 2B = 2L + 3B  

                                                             … 

                                                     1−kB = 1−kL + kB  

                                                       kB = kL  

Figure 1.1 Two Approaches to Seat Inventory Control 

Another method solving accept/deny decision is based on EMSR (expected marginal 

seat revenue), where in the case of single-leg flight with two nested fare classes, a 

low-fare class demand is accepted as long as the revenue from this demand is greater 

than the expected marginal seat revenue for high-fare class got by reserving one more 

seat for this class. Usually this approach is used in conjunction with dynamic 

programming. There are a lot of papers on this subject. The mathematical models 

presented in these papers are constructed on different assumptions about arrival 

process, cancellations, no-shows behavior, demand distribution and segment control 

system. 

Intentionally changing ticket price for identical seats on a flight is another tool used 

by airlines to differentiate products. Some researchers like Curry (1993b) suggested 

 
   1A            2A           3A                          .  .  .                             1−kA          kA  

 
    
    1L               2L                                        .  .  .                                     1−kL         
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Pricing ≈ Inventory Control and Inventory ≈ Pricing. Though historically pricing in 

revenue management is considered distinct form inventory control, the revenue 

management of the future must consider both pricing and inventory control 

simultaneously because of the inter-relationship between them. 

These days another strategy named as “adjustable-curtain” strategy is practiced by 

some airlines. This practice means airline adjusts the size of the business-class section 

of the aircraft shortly before boarding takes place. This strategy enables the carrier to 

deny boarding of economy-class passengers in the event of a high show-up of 

business-class passengers by enlarging the business-class section at the expense of the 

economy-class section. Ringbom and Shy (2002) developed a method of computing a 

reservation policy that the above-mentioned strategy would be utilized prior to 

boarding. Other possible future research direction of revenue management is package 

bid price control (Weber, 2001), which consists of flight tickets, beds in hotels and 

hired car together.  

Some difficulties in passenger yield management are concerned with: 1) multi-leg 

problem (networking); 2) group tickets booking. The amount of both analytical and 

mathematical efforts caused by the above difficulties is immense because it is not 

simply the question of rejecting lower fare class to cater for late-arriving business 

demand. Conceivably sometimes high fare class with only one leg itinerary would be 

rejected to reserve the seat for possible low fare class with two or more legs. 

Furthermore, any effective approach towards yield management must be operated in 

dynamic environment. So far only a handful of papers have delved into these areas. 

Now yield management is finding its own ever wider applications in other industries 

that used to be off limits, manufacturing industry, tele-communication industry and 

energy industry to name a few. Metters and Vargas (1999) extended yield 
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management concepts to the nonprofit sector, where profit maximization is no longer 

a goal. Secomandi, Abbott, Atan and Boyd (2002) presented the opportunity analysis 

study (OAS), designed by PROS research and design department, to determine the 

applicability of revenue management in new business situations. Bertsimas and 

Shioda (2003) developed optimizations models to maximize revenue in a restaurant. It 

is becoming increasingly difficult to categorically exclude any sector of the economy 

from its marketing magic. Yield management is a new way of doing business for 

many industries, the essence of success for others, and is increasingly at the heart of 

the fastest growing new e-business ventures. 

 

1.3 Overview of cargo yield management 

The above talked about the main features, difficulties, method used in passenger yield 

management and the perspectives of passenger yield management. Next attention will 

be turned to another major division of airline yield management— cargo yield 

management. 

Concurrently, along with the popularity of passenger travel, manufacturers also turn 

to air transportation to ship their products to the perspective customers due to its 

speed, safety and reliability. And many companies are implementing just in time 

( JIT ) strategy to decrease inventory-holding cost, which requires fast mobility of raw 

material and finished products from one place to another place. Air transportation is 

the best choice. Furthermore, airlines, equipped with advanced technology and under 

intense competition, are trying their best to reduce operational cost within airlines so 

as to compete with other means of transportation. As a result, the price charged for 

cargo is not as high as before.  
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Generally speaking, cargo will board the same flight as passengers, occupying the 

aircraft’s cargo space. However, if the amount of cargo a customer wants to carry is 

big enough to take up all cargo space on a craft, the customer can turn to another type 

of cargo shipping service: freighter fleet. That is, airplanes are used exclusively for 

cargo. The need for freighter capacity will increase as pressure continues for 

improved air cargo service levels not easily satisfied with lower-hold capacity. Large 

freighters show the greatest proportionate increase. 

Although the revenue from cargo transport accounts for only a fraction of total 

revenue of airline, more attention is being paid to air cargo in recent years in view of 

its steady growth. According to World Air Cargo Forecast (1995), air cargo growth is 

expected to average 6.6% per year until 2014 referring to the graph below. 

 

Figure 1.2 World Air Cargo Traffic Forecasting 

Along with the development of yield management in passenger sector, the techniques 

of yield management are now being introduced into air cargo service, drawing on the 

passenger yield management experiences. Although both passenger and cargo yield 

management have very similar characteristics in terms of operation, problem 

description and ways of solving it, there are great differences between them. An 

obvious distinction is that air cargo travels only one way on a route. The majority of 
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air passengers who fly out on a route will also return. Another problem is the cargo 

mix. Air cargo is extremely heterogeneous such as size, density, type, shape and 

fragility, which would greatly affect operational procedure, price level charged and 

handling process. All of these will affect the approach towards cargo yield 

management. Passengers are homogeneous in the sense that they each occupy a seat 

on a plane. 

Cargo yield management process usually consists of the following four steps 

according to Kasilingam (1996). The first step is to forecast the space capacity 

available for sale, in terms of weight, volume, and position. Passenger ticket booking 

information is required at this stage. The second step is to allocate space for long-term 

contracts. The next step is to overbook the remaining capacity to compensate for the 

cargo booking behavior in terms of cancellations, no-shows and variable tendering. 

The final step is to allocate the overbooked capacity to different markets so as to 

maximize the whole cargo revenue. 

Few articles can be found to deal with cargo overbooking problem. This paper is 

armed to bridge this gap and do some research in cargo overbooking problem. 

Air cargo revenue management is an excellent research area with a high potential for 

new models and procedures to accurately represent the cargo business, and to provide 

the required decision support. Overbooking and allocation problems provide the most 

opportunity in terms of future research. There is a tremendous potential for modeling 

these problems under varying assumptions. 
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2. Literature Review 

 

Yield management can be applied to industries with perishable inventories. The most 

successful application is in the airline industry. The management system for 

perishable inventories must be effective so that the revenue generated can be 

maximized.  

In the forty years since the first publication on overbooking control, airline 

reservation systems have evolved from low-level inventory control processes to major 

strategic information systems. At the very beginning of the development of revenue 

management, almost all research work focused on controlled overbooking level. Since 

the overbooking calculations depended on the prediction of customers behavior, 

mainly on the probability distributions of the number of passengers who would finally 

show up for boarding on the day of departure, it has stimulated other useful research 

on forecasting of passenger cancellations, no-shows and go-shows. 

Later, airlines began to offer discounted fare so as to stimulate leisure travelers to 

book earlier. The problem that airlines faced is how to set lower fare limit to ensure 

maximum overall revenue. This is the main theme behind a lot of papers. Along with 

the rapid development of computer and information technology over the last twenty 

years, it is technically possible for airlines to handle large amount of data within a 

relatively short time period. This advancement further boasted revenue management 

from single leg control, through segment control, to origin-destination control.  

Kraft, Oum and Tretheway (1986) described the basic concept of airline seat 

management. Kimes (1989 a & b) discussed basic characteristics of yield 

management, classified different types of solution approaches and presented the 
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managerial implications of yield management. Harris and Peacock (1995) 

summarized ten-step to yield management success. Brooks and Button (1994) 

examined the development of yield management in 1980s and 1990s and assessed its 

longer term viability for transport industries. A comprehensive taxonomy used in 

yield management can be found in Weatherford and Bodily (1992) and a more 

detailed account of the origins of yield management can be found in Belobaba (1987a 

& b), Smith, Leimkuhler and Darrow (1992) and Tang (1995). Mcgill and Ryzin 

(1999) provided a comprehensive and up-to-date overview of this area with a 

bibliography of over 190 references. 

Weatherford and Bodily (1992) gave a detailed summary of taxonomy used in yield 

management. Belobaba and Wilson (1997) studied impacts of yield management in 

competitive environment. Pak and Piersma (2002) gave an overview of the solution 

methods presented throughout the literature. Barnhart, Belobaba and Odoni (2003) 

presented an overview of several important areas of operations research applications 

in the air transport industry. For each of these areas, the paper provided a historical 

perspective on OR contribution. 

In airline industry, yield management first came from passenger ticket booking and 

later found its applications in cargo yield management. In the following sections, past 

research in passenger yield management will be reviewed in four key areas—

forecasting, overbooking, inventory control and pricing. Emphasis is focused on 

overbooking, which is relevant to the thesis. Subsequently, the application of yield 

management in air cargo sector will be highlighted. 

 

 



 
Chapter 2                                                                                             Literature Review 
                                                                                                                  

                                                                                                                                   12 

2.1 Passenger yield management 

2.1.1 Forecasting 

Forecasting is a particularly critical component in airline revenue management 

because of the direct impact on booking limits. Beckmann (1958 a & b) used Gamma 

distributions to model the components of show-ups and developed an approximate 

optimality condition for the overbooking level. Balobaba (1989) dealt with uncertain 

demand by assuming normal distribution for total demand for a flight. Weatherford, 

Bodily and Pfeifer (1993) constructed a mathematical model by using non-

homogeneous Poisson process (NHPP) to model the timing of potential customer 

arrivals for each class.  

Carpenter and Hanssens (1994) measured the inference of pricing strategy in airline. 

Proussaloglou and Koppelman (1995) developed a conceptual framework for 

analyzing carrier demand in a competitive. Curry (1994 a & b) pointed out that 

revenue management would more reply on the prediction of consumer behavior. 

Weatherford and Pfeifer (1994) analyzed the economic value of advance booking. 

Belobaba and Farkas (1999) incorporated yield management booking limits into the 

methodology used to estimate the number of spilled passengers. Zaki (2000b) 

analyzed the importance of forecasts in airline industry. 

 

2.1.2 Overbooking 

Overbooking has the longest research history of any of the components of the revenue 

management problem. The objective of most of the early technical research on airline 

overbooking was to control the probability of denied boarding within limits set by 

airline management. Overbooking generates a large portion of the revenue 
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management benefits. One simple model is to assume the number of no-shows is a 

deterministic fraction of the number of bookings.  

Beckmann (1958a) proposed a non-dynamic optimization model for overbooking by 

assuming that the probability distributions of cancellations and no-shows were known. 

Thompson (1961) analyzed the risk associated with static overbooking problem and 

studied revenue losses behind overbooking practice. Falkson (1968) expressed his 

viewpoints on airline overbooking problem: advantages and disadvantages. Rothstein 

(1971) classified the motivations of implementing overbooking in airline industry, 

which was not stated clearly in Falkson (1969). Vickrey (1972) discussed some 

problems related to overbooking. Rothstein (1975) attempted to set the problem of 

overbooking in proper perspective. Liberman and Yechiali (1978) studied an 

overbooking problem in hotel industry with stochastic cancellations, in which only 

single-day stay and one type of room were studied. Ruppenthal and Toh (1983) 

analyzed effects of airline deregulation on the booking policy (overbooking) to 

overcome no-shows. 

Almost all modern models are probabilistic models. Rothstein (1985) gave a survey of 

the application of operations research to airline overbooking. This article analyzed the 

motivation of overbooking, discussed the relevant practices of the air carriers, and 

described significant contributions and implementations of operations research. Lau 

and Lau (1988) considered an extension of the classical newsboy problem where a 

stochastic price-demand relationship existed for the product. Alstrup (1986) presented 

an overbooking model for a single-leg flight with two types of passengers. Bodily and 

Pfeifer (1992) discussed the effect of overbooking decision rules under different 

assumption of passenger show-up behavior. Curry (1993a) considered common ideas 

behind overbooking models and discussed the effect of different factors to 
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overbooking calculation. Chatwin (1998) considered a multi-period airline-

overbooking problem that related to a single-leg flight and a single service class. In 

another paper of Chatwin (1999), he analyzed a model of airline overbooking in 

which customer cancellations and no-shows were explicitly considered. Coughlan 

(1999) used multi-dimensional search routines to find optimal overbooking level. 

 

2.1.3 Seat inventory control 

The problem of seat inventory control across multiple fare classes have been studied 

by many researchers since 1972. There has been significant progress from 

Littlewood’s rule for two fare classes, to EMSR (expected marginal seat revenue) 

control, to optimal booking limits for single-leg flight, to segment control and, more 

recently, to origin-destination control. The simplest approach to controlling seat 

inventories is to deal with each flight leg independently, rather than trying to solve the 

whole network.  

 

2.1.3.1 Single-leg seat inventory control 

Alstrup, Boas, Madsen and Victor (1985) presented an overbooking model for a fixed 

nonstop flight with two types of passengers, taking cancellations, reservations prior to 

departure and no-shows into consideration. Pfeifer (1989) derived a decision rule as a 

function of the percentage difference in two fares and two defined probabilities.  

Brumelle, Mcgill, Oum, Sawaki and Tretheway (1990) modeled that demands for 

classes were stochastically dependent. Wollmer (1992) constructed a model to two-

fare-class problem. Bodily and Weatherford (1995) studies multi-price problem with 

overbooking and diversions. Zhao and Zheng (2001) illustrated a two-class dynamic 

seat allocation model with passenger diversion and no-shows. Belobaba (1987a) 
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extended Littlewood’s rule to multiple fare classes and introduced the term EMSR 

method for the general approach. Brumelle and Mcgill (1993) addressed the problem 

of determining optimal booking policies for multiple fare classes that shared the same 

seating pool on one leg.  

Lautenbacher (1999) constructed a discrete-time, finite-horizon MDP model to solve 

the single-leg problem without cancellations, overbooking, or discounting. You (1999) 

formulated optimal decision policies for single-leg and two-leg with no multiple seat 

bookings.  

Bitran and Mondschein (1995) studied optimal strategies for renting hotel rooms 

when there was a stochastic and dynamic arrival of customers with multiple day stays. 

Papastavrou, Rajagopalan and Kleywegy (1996) presented a model to determine the 

optimal policy for loading the knapsack within a fixed time horizon so as to maximize 

the expected accumulated reward. Van Slyke and Young (2000) studied a stochastic 

knapsack problem and found some application to yield management. Li and Oum 

(2002) provided the equivalence of the optimality conditions for three models that 

dealt with the seat allocation problem for a single-leg, multi-fare flight with 

independent fare class demands.  

Dynamic programming treatments of the single leg problem were presented in 

Virtamo (1991), Lee and Hersh (1993), Robinson (1995) and Hamzaee, Vasigh 

(1997). Kleywegt and Papastavrou (1998 & 2001), Subramanian, Stidham Jr. and 

Lautenbacher (1999), Lauthenbacher and Stidham Jr. (1999) and Liang (1999). Other 

literatures dealing with single-leg and multiple fare classes can be found in Feng and 

Xiao (2000), Kuyumcu and Garcia-diaz (2000) and Gosavi, Bandla and Das (2002). 
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2.1.3.2 Segment and origin-destination control 

The inventory control problem becomes even more complicated with the development 

of hub-and spoke route network by most large airlines. Ever since the 1980s, network 

effects in revenue management have become significant because the number of 

passengers taking more than one flight leg increased dramatically.  

As early as 1977, Ladany and Bedi developed a decision model to determine an 

operating policy for allocation of seats to passengers flying full and partial spans. 

Dror, Trudeau and Ladany (1988) proposed a deterministic network minimum cost 

flow formulation that allowed for cancellations on arcs in the network. Other works 

on single fare network problem can be found in Curry (1990), Phillips (1994), Boyd 

and Grossman (1991) and Wong, Koppelman and Daskin (1993).  

Soumis and Nagurney (1993) developed a stochastic, multi-class network equilibrium 

model of airline passenger transportation with an application to the national Air 

Canada airline. 

In recent years, the most successful approaches to solving the airline yield 

management problem are bid pricing. Talluri and Ryzin (1999) proposed a 

randomized version of the deterministic linear programming (DLP) method for 

computing network bid price. Victoria Chen, Dirk and Johnson (1999 a & b) 

addressed bid-price policy in detail on how to determine bid prices for single-leg, 

two-leg and star network problems at different reading time period.  

Other papers dealing with biding pricing can be found in Guenther (1998), Boyd 

(2000), Feng and Xiao (2001), Bertsimas and Popescu (2002), Bertsimas and Popescu 

(2000), Chen, Gunther and Johnson (2003), Brumelle and Walczak (2003) and 

Bertsimas and de Boer (2004). 
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2.1.4 Pricing 

The existence of different prices for airline seats is the starting point for revenue 

management. Curry (1993b) emphasized that revenue management of the future must 

consider both pricing and inventory control simultaneously. Feng and Gallego (1995) 

addressed the problem of deciding the optimal timing of a single price change from a 

given initial price to either a given lower or higher second price. Treatments of single 

leg revenue management as a dynamic pricing problem can be found in Ladany and 

Arbel (1991), Gallego and Ryzin (1994, 1997), Feng and Gallego (1995, 2000), You 

(1999), Zhao and Zheng (2000) and Feng and Xiao (2000a).  

Weatherford (1997) addressed optimal pricing problem of up to three-fare classes 

with diversion. Other related papers can be found in Li (2001), Jung and Weber 

(2001), Weatherford (2001), Chatwin (2000) and Chun (2003).  

 

2.2 Cargo yield management 

In view of the history of the development of revenue management, most references 

were devoted to passenger yield management. Research in air passenger problem has 

been far more advanced than that in air cargo sector. The reason behind this is partly 

because the profit portion of cargo in an airline is comparatively smaller than that of 

passenger sector, partly because passengers have higher priority than cargo and partly 

because the characteristics of cargo revenue management are more difficult to handle. 

Strictly speaking research in air cargo yield management is still in its infancy. Few 

works can be collected in air cargo yield management. More efforts need to be 

devoted in this area.  
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Hendricks and Kasilingam (1993) showed that three dimensional cargo capacity was 

difficult to forecast and affected by many factors: fuel weight, passenger weight, mail 

weight, belly volume, stacking loss, mail volume to name a few. In order to do a good 

forecasting, all factors must be considered together. A simple forecast model was 

presented in the paper. Kasilingam (1996) pointed out uncertain capacity added to the 

complexity of the cargo yield management in comparing with passenger yield 

management. Any approaches to cargo yield management problem depended on the 

precision of forecasting. Rao, Ivanov and Smith (1999) presented a forecasting model, 

which was shown to have gained an accuracy improvement in the range of 25%-60% 

over the exponential smoothing based model.  

Hendricks and Kasilingam (1993) provided a brief discussion on the idea behind 

cargo-overbooking model that optimal solution was to maximize expected net revenue 

subjected to desired service constraints. Kasilingam (1997) presented two 

formulations of the air cargo-overbooking problem under discrete and continuous 

probability distribution for capacity respectively, and formulations were applicable for 

computing overbooking levels for any reading day. Irrgang (1999) presented a general 

idea on how to optimize fuel, cargo, and passenger payload on long haul flights. 

Kasilingam (1996) analyzed characteristics of cargo revenue management. Cargo 

revenue management differed from passenger revenue management in several 

respects due to the specific characteristics of cargo inventory, cargo business and 

cargo booking behavior. A cargo-overbooking model was proposed by the paper. 

According to this model, the probability distributions of capacity and final show-up 

rate were assumed known and the overage cost and spoilage cost were assumed 

known. The expected underage cost and overage cost could be determined by 

comparing show-up with flight capacity. The expected total cost was the summation 
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of the two. The optimal overbooking level could be determined by differentiating the 

expected total cost with respect to overbooking level and setting it equal to zero. 

Karaesmen (2001) considered a simplified air cargo problem with one arrival 

requesting one item only with weight and volume two attributes. It showed that a 

linear programming based approach proposed for airline seat inventory control can be 

used for air cargo as well. 

Mariana (2004) presented ten challenges in air cargo revenue management as 

networking, routing, clients, allotments, services, capacity, dimension, lumpiness, 

booking and IT business. Narayanan (2004) discussed the challenges in cargo systems 

with respect to forecasting and optimization and introduced archetypal science 

technique that would address challenges. Nielsen (2004) presented the advantages and 

disadvantages of applying Sebra software at Vergin Atlantic cargo and suggested 

some changes to the software. Couzy (2004) introduced the current cargo revenue 

management situation at KLM cargo. Froehlich (2004) summarized several key 

factors to the success of revenue management at Lufthansa cargo. 

 

2.3 Conclusion 

The review has presented some interesting characteristics of revenue management. It 

is an excellent research area with a high potential for new models and procedures to 

represent airline business, and to provide the required decision support. It is clear that 

revenue management will continues to generate applications and research questions 

for years to come. 
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3. Cargo Booking Process 

 

3.1 Introduction 

A major portion of air cargo travels through the hands of intermediaries known as 

freight forwarders. Please refer to figure 3.1 below. The essence of a forwarder’s 

function is to consolidate many small shipments into one large shipment and then to 

offer the large shipment as one entity to the airline. Each freight forwarder may have 

its own customers and is able to book air space from different airlines. This is just like 

what is happening in air ticket-booking process. Passengers make reservations from 

travel agents because they can get discounts from airlines. Furthermore, travel agents 

can help to find the cheapest air-fare among different airlines. 

Freight forwarders can be classified as big and small ones according to the amount of 

space they reserve from airlines. Big forwarders are preferred because they are able to 

book greater amount of space with higher load consistency than small ones do. 

Usually the price charged by forwarder for door-to-door service is lower than the rate 

that shipper would pay if they dealt directly with the airline. A forwarder with a 

steady volume of business is in a good position to negotiate a favored rate. Nowadays 

airlines and big forwarders are usually bounded by long-term contracts with specified 

terms and conditions. Signing contracts with forwarders are common practice in the 

airline industry. 
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Figure 3.1 Space Booking Process 

From the above figure, it can be seen that revenue management will come into place 

to help airline control booking before the process starts, such as demand forecast, 

capacity forecast and overbooking if overbooking level is set before process and will 

not change along the process. Space allocation will play a role along the process.  

The cargo booking system opens a few weeks before the flight departs. Once the 

system opens, forwarders will come to make reservations. For those forwarders with 

contracts, they have to confirm their utilization. For others, they have to wait for the 

availability of space. Since the big forwarders are preferred with load consistency, 

space will usually be protected from selling to small ones. Then the rest is sold to 

other customers including small forwarders and ad-hoc customers. The purpose of the 

overbooking model that will be discussed later is to determine the optimal 

overbooking level for the capacity left for ad-hoc customers. 

However, forwarders may cancel their previous partial or whole bookings. If 

cancellations are made earlier than a certain time before departure, which is set by 

airline, there will be no penalty for this kind of cancellations since the airline still has 

sufficient time to look for another customer to fill up the space. Otherwise, forwarders 
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will be penalized. However, the long-term effect of such cancellations from the big 

forwarders is that they may not be able to sign the same amount of space again in the 

next year. As a result, big forwarders are cautious on the decision as to how much 

space to be obtained from contracts.  

Since cancellations are allowed in the system, airline will overbook a certain amount 

of capacity to compensate for the effect of cancellations (overbooking). This extra 

space beyond flight capacity is defined as overbooking level in this thesis. The risk 

behind overbooking practice is that more cargo than the flight physical capacity may 

possibly show up on the day of departure. If such thing does happen, the airline will 

be penalized for not being able to provide space for reserved cargo. This is expensive 

and will affect the goodwill of an airline in a long run. The tough decision remains on 

how much the overbooking limit should be set so as to minimize the expected 

underage cost and overage cost. 

Furthermore, any cargo has both volume and weight properties, which is different 

from ticket booking. The overall load of a flight is restricted by both volume and 

weight limits. When the space booking process is concerned, the lower of either 

volume or weight limit is set as the baseline of space allocation. 

 

3.2 Assumptions 

In order to simplify the problem, some assumptions are made. After the problem is 

simplified, a mathematical model will be formulated to find the optimal overbooking 

level with the minimum expected underage cost and overage cost. The assumptions 

made in this problem are listed in this section. 
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First, the capacity for cargo is supposed to be known. The carrier considered in this 

paper is a combination carrier in that passengers will board the same flight as the 

cargo. Passengers and their luggage will compete for the limited capacity of the flight 

in terms of both volume and weight. The capacity for cargo is to be determined by 

such factors as the shape of aircraft, the number of customers on board, the luggage 

weight, the mail weight and fuel weight. However the space booking system is 

parallel to the passenger ticket booking system. These factors cannot be determined in 

advance. Capacity forecasting is definitely needed in real time.  

Secondly, demands will independently come for bookings. The number of bookings 

in the system and the total amount of reserved space etc. will not affect a customer’s 

booking behavior. Furthermore, the demand pool is assumed to be big enough that 

demands would constantly arrive at the booking counter. The arrival process is 

supposed to be a Poisson process with a constant arrival rate. 

Random demand for space is assumed to follow the same discrete uniform 

distribution. Cargo demand is multiple-unit in nature, which is different from ticket 

booking. Although each demand may vary from each other, they cannot have a wide 

range of demand size since the model is for the small forwarders and ad-hoc 

customers. They may be considered as having very similar characteristics in terms of 

booking size. So the probability distribution of each customer is assumed to be the 

same in this model. In the simplest form, the random demand is supposed to have a 

discrete uniform probability distribution, evenly taking a value from d...,,2,1 . 

Partial cancellation is supposed to be nonexistent in this system. Partial cancellation 

means that a forwarder, who is unable to take all of his previous booked space, wants 

to cancel part of the reserved space. This exercise is allowed in real practice, but it 
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would pose a great difficulty in mathematic modeling. Partial cancellation, in 

modeling, will result in that a customer, who made a partial cancellation, will still 

remain in the system with a demand size different from his original one. In this case 

booking status is hard to capture. So this practice is not allowed in the model. That is, 

when a customer comes for cancellation, he will cancel his booking totally and leave 

the system. 

The cancellation process is assumed to follow a Poisson process with a rate dependent 

on the number of customers in the system. At each period, customers who made 

reservations may want to cancel their previous bookings. The chance of a cancellation 

event in one period is directly related to the number of customers in the system. 

Intuitively the more customers in the system, the higher will be the chance that a 

customer would come to cancel. So the cancellation rate is assumed to be a function 

of the number of customers in the system. In the simplest form, assume that 

cancellation rate is a linear function of the number of customers in the system. 

Finally the property of cargo is assumed to be compatible with each other. Some kind 

of materials cannot board on the same flight with others. For example, food cannot be 

on the same flight with chemicals. The characteristic of cargo is assumed to be the 

same in this model. This means all cargo from different customers can at least board 

the same flight. Furthermore, only single-leg flight will be considered in the model. 

The network effect will not be discussed. 

 

3.3 Mathematical representation of the booking process 

Notations: 
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nX   State variable one, which is defined as the number of customers in the 

system at the end of period n ; 

nY   State variable two, which is defined as the amount of space reserved in 

the system at the end of period n ; 

C   Flight capacity for air cargo;  

),( nn YXCa  Cancellation variable in period n  with state variables ),( nn YX ;  

D   Individual demand, which is assumed to have discrete uniform 

distribution, taking on a value from }...,,2,1{ d ; 

n  and N  Decision period with n  denoting any period along the process and N  

denoting the time of departure; 

OL    Overbooking level, which is defined as the extra space beyond 

capacity that can be reserved in booking process; 

λ    Constant arrival rate; 

)( nXτ  Cancellation rate, which is assumed to be a function of nX ; 

For a single-leg flight with a given departure date, the booking period starts from the 

opening to the departure. This whole booking period is divided into a set of stages, 

called decision periods, indexed by N...,,2,1  with the start point of period 1 

(represented as 0) corresponding to the opening of the booking process and the end of 

period N  corresponding to the time of departure. In each decision period, assume one 

and only one of the three events will occur: an arrival event that one customer comes 

for booking, a cancellation event that one of the customers in the system comes to 

cancel his previous booking and non-event that nothing happens.  

The relation between booking period and the three events of arrival event, 

cancellation event and non-event can be shown in figure 3.2 below. Seen from Fig. 
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3.2, there is an arrival event in period 1, a cancellation event in period 3 and non-

event in period 4. The numbers at the bottom indicate the decision periods. 

 

 

 

 

 

 

Figure 3.2 Decision Periods and Three Events 

Since cancellations make it hard for the airline to predict the final boarding cargo on 

the flight, the airline usually adopts the strategy of overbooking. This means more 

space than the capacity will be booked before departure. High overbooking level will 

possibly result in bumped cargo on the day of departure, while low overbooking level 

will possibly result in the empty space after take-off. Both cases would result in loss 

of revenue to airline. The determination of the overbooking level is crucial to the 

airline. This thesis will mainly focus on the overbooking problem in air cargo revenue 

management. 

In passenger yield management, one passenger is usually assumed to book only one 

ticket, so one state variable is enough to describe booking status. Two state variables 

are needed to describe the cargo-booking process. One is the number of customers in 

the system in period n denoted as nX  and another is the total booked space up to 

period n denoted as nY . At the beginning of the booking process, the two state 

variables are all equal to zero because no booking is accepted. That is, 00 =X  and 
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00 =Y . And the values of NX  and NY  represent the final number of customers and 

the final amount of cargo that come for boarding on the day of departure. 

Along the booking process, suppose customers will independently come for 

reservations. And based on the assumption that the demand pool is big enough, 

arrivals follow a homogeneous Poisson process with a constant rate denoted as λ . 

Suppose λ  equals to 0.3 bookings per day in the model.  

If a random demand D  comes for booking, an accept/deny decision is made 

according to the booking limit, which is defined as the summation of capacity C  and 

overbooking level OL . Capacity C  is supposed to be 20 units in the model. OL  is 

defined as the extra space beyond flight capacity that can be booked before departure. 

This demand D  will be accepted as long as there is enough empty space, and the state 

variables will transfer to 1+nX = 1+nX  and 1+nY = nY + D . Otherwise it will be rejected, 

and the state variables will transfer to 1+nX = nX  and 1+nY = nY . In the simplest form, 

assume the random variable D  follows a discrete uniform probability distribution, 

evenly taking on a value from }...,,2,1{ d . That is, D  will take each value with 

probability 
d
1 . In this paper, assume d  equals to 10 units. 

Meanwhile, customers who have made bookings before may come for cancellations. 

Unlike the arrival process, the cancellation events are directly related to bookings in 

the system:  

1. Only those customers already in the system can cancel.  

2. The cancellation size can only come from the bookings in the system.  

Intuitively, the chance of a cancellation event in the next period would be higher 

when there are more customers in the system. Hence, it is appropriate to assume that 
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the cancellation process follows a non-homogeneous Poisson process with a 

cancellation rate )( nXτ  dependent on the number of customers in the system at time 

n defined as nX . Assume that cancellation rate is a 0.02 times of nX , or 

50
)( n

n
X

X =τ . If a cancellation event happens in one period, one of the bookings will 

leave the system completely as no-partial cancellation has been assumed in the model. 

This transition corresponds to 1+nX = 1−nX  and 1+nY = nY - ),( nn YXCa , where ),( nn YXCa  

is defined as the cancellation size, whose probability distribution will be discussed in 

the next chapter. 

Transitions from period to period in connection with booking limit can be shown in 

figure 3.3 below. In Fig. 3.3, numbers below the time axis represent the decision 

period.  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Transitions and Booking Limit 
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Seen from Fig. 3.3, the first two demands are accepted while the third one is rejected 

because accepting it will result in exceeding the booking level. In other words, the 

value of nY  cannot exceed the booking limit. 

Finally the booking process can be shown as a birth and death process in terms of the 

number of customers in the system nX  as presented in Fig. 3.4, where the numbers in 

the nodes indicate the value nX . The node with a number 1 inside represents that only 

one booking is in the system. The three arrows starting from this node represent the 

three possible events in the next period. The arrow from node 1 to node 2 indicates an 

arrival event and is accepted. The arrow from node 1 to node 0 indicates a 

cancellation event. Also the arrow from node 1 to node 1 indicates a non-event. It is 

just like a birth-and-death process whereby the number of customers in the booking 

system will increase by one, or decrease by one, or remain the same in next period. 

The NC in the last node is the maximum number of customers that can possibly stay 

in the system. The value of NC  is determined by the booking limit and the minimum 

demand size. In this case the minimum demand size is assumed to be one, so there 

may have at most C +OL customers in the system. 

 

 

 

 

 

Figure 3.4 Booking Process in Terms of the Number of Customers in the System 
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Furthermore, the arrival events come with a constant rate λ and the cancellation 

events come with a rate )( nXτ , dependent on the current number of customers as 

shown in the Fig. 3.4. 

The cargo booking process has been described. The booking status will change from 

period to period given different event happening. The booking process will be 

modeled having Markovian property in the next chapter and the limiting probability 

will be determined to calculate the expected cost. 
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4. Markovian Property and Transition 

Matrix 

 

Booking process in this model will be formulated as having Markovian property. Any 

future behavior of the process can be fully determined by the current state. By using 

this property, we are able to see the long-run behavior of the process. How to 

formulate the space booking process as a Markov process will be discussed in this 

section first and the determination of the three transition probabilities will be 

addressed later. In the following, the derivation of cancellation probability distribution 

will be discussed and the structure of the transition matrix will be presented last. 

 

4.1 Markovian property 

When booking opens a few weeks before departure, the process will evolve from one 

period to the next, starting from no booking till the flight taking off. In each stage, not 

only the number of bookings (one customer has one booking) is recorded, the total 

booked space is also needed to describe the state of the system. As a result, two state 

variables ),( nn YX  are defined in this problem. The space of nX  and nY  are [0, NC ] 

and [0, OLC + ] respectively as discussed before. Accordingly, the whole state space 

of ),( nn YX  is )1()1( ++×+ OLCNC . The booking process is a two-dimensional 

process. Next it will be shown how to formulate it as a Markov process next. 

Within each period, one and only one of three events may happen: an arrival event, a 

cancellation event and non-event. If an arrival comes for booking, the demand will be 
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accepted as long as it does not exceed the remaining capacity (booking limit minus 

reservations on hand). In other words, the demand within the range [0, nYOLC −+ ] 

will be accepted; otherwise, it will be rejected. If a cancellation event happens, one of 

the bookings in the system will leave the system completely and release a certain 

amount of space for future booking. Furthermore, in order to formulate the process 

having Markovian property, the amount of cancellation from one specific booking 

cannot be obtained. As a result, the probability distribution of the cancellation size 

must be determined by the current state of the system, which will be discussed in 

section 4.3. In this setting, the cancellation size is independent of the past events. 

Finally if nothing happens, the state will remain the same. 

When the above three events are considered together, based only on the current state 

the system, transitions from one period to another period can be determined. Hence, 

the system is assumed to possess Markovian property because any particular future 

behavior of the system is dependent on the current state of the system when its current 

state is known exactly. 

 

4.2 Transition probabilities 

As stated above, state of the system at one period will transit to another state in the 

next period with a certain probability. The determination of the transition probabilities 

will be discussed in this section.  

Suppose in one period, a demand, which is so big as to exceed booking limit OLC + , 

is rejected, resulting in the state variables being the same as before. In this case, the 

arrival but rejected event produces the same result as the non-event. The two events 

will result in the value of nX  and nY  being unchanged. They are collectively called 
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the no-change transition. Similarly, the arrival and accepted event and the cancellation 

event are referred to as the arrival and accepted transition and the cancellation 

transition respectively (refer to Fig. 4.1). 

 

 

 

 

 

 

 

 

.  

Figure 4.1 Three Transitions in Booking Process 

In period n , an arrival will come with a constant rate λ and a cancellation will come 

with a rate )( nXτ , depending on the current state. So the probability that either an 

arrival or a cancellation event will occur is calculated by ))((1 nXe τλ+−−  according to 

the exponential distribution of the waiting time between these two events. 

Complementarily, the probability of non-event within this period is ))(( nXe τλ+− . 

Next given an event (either an arrival or a cancellation) occurs, the probability that 

this event is an arrival event or a cancellation event is determined by the ratio of the 

corresponding rate. An arrival event comes with a probability 
)( nXτλ

λ
+

, and a 

cancellation event comes with a probability 
)(

)(

n

n

X
X
τλ

τ
+

. Furthermore, an arrival 

Period n Period n+1

State: ( nn YX , ) 

Arrival and Accepted Transition: ),1( DYX nn ++

Cancellation Transition: ),1( ),( nn YX
nn CaYX −−  

No-Change Transition: ),( nn YX  



 
Chapter 4                                                     Markovian Property and Transition Matrix                         
                                                                                                                  

                                                                                                                                   34 

comes with a demand taking a value from }...,,2,1{ d  with a probability 
d
1 . If the 

demand is less than nYOLC −+ (the remaining capacity), it will be accepted; 

otherwise, it will be rejected. In the case of a cancellation event, the probability 

distribution was determined by the method discussed later, given known state 

),( nn YX . 

As a whole, the corresponding probabilities of three transitions within one period are 

summarized below: 

 No-change transition: 

         
}{

)(
]1[

)},(),(|),(),{(

))(())((

11

iDP
x

ee

yxYXyxYXP

xx

nnnn

=⋅
+

⋅−+

===

+−+−

++

τλ
λτλτλ  



 −+>−+−+

=
otherwise

yOLCdddyOLC
i

0
,1...,,1

               (4.1) 

 Arrival and accepted transition: 

       
}{

)(
]1[

)},(),(|),1(),{(

))((

11

iDP
x

e

yxYXiyxYXP

x

nnnn

=⋅
+

⋅−

==++=

+−

++

τλ
λτλ  

],min[,...,2,1 yOLCdi −+=                        (4.2) 

 Cancellation transition: 

        
}{

)(
)(]1[

)},(),(|),1(),{(

),())((

11

iCaP
x

xe

yxYXiyxYXP

nn YXx

nnnn

=⋅
+

⋅−

==−−=

+−

++

τλ
ττλ  

),(
max

),(
min

),(
min ,...,1, nnnnnn YXYXYX CaCaCai +=                    (4.3) 

It can be shown that the summation of the above three kinds of transition probabilities 

within one period of time equals to one. 
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Where 0}0{ ==DP ; ),(
min

nn YXCa  and ),(
max

nn YXCa  are the minimum and maximum value 

of ),( nn YXCa  respectively given known state ),( nn YX . The determination of ),(
min

nn YXCa  

and ),(
max

nn YXCa  will be discussed later. 

Three transition probabilities have been discussed in this section. Each random 

demand is assumed to have the same discrete uniform distribution, and, based on the 

state of the system, the cancellation probability distribution can be determined as 

discussed in the next section. After that, a transition matrix will be constructed. 

 

4.3 Derivation of cancellation probability distribution 

As stated before, cancellation event is directly related to bookings in the system. If no 

one is in, it is impossible to have a cancellation event in the next period. Theoretically 

cancellation size can only be one of the existent bookings. In this section, the 

probability distribution of cancellation ),( nn YXCa  will be shown to be derived only 

from current booking status so as to model the process as a Markov process.  

 

4.3.1 Determination of cancellation size 

Suppose the current state is ),( nn YX . If the next event is a cancellation event, it must 

be one of the nX  bookings in the system. However, according to the Markovian 

property, the conditional probability of any future event is independent of the past 

events and depends only upon the present state. As a result, no information about each 

individual booking is available. In other words, ),( nn YXCa  must be derived from the 

current state ),( nn YX .  
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First the minimum and the maximum values of ),( nn YXCa  should be determined, which 

are equal to the possible minimum and maximum demands already in the system. 

Define ),(
min

nn YXCa  and ),(
max

nn YXCa  as the minimum and the maximum values of the 

cancellation size respectively given that the current state is ),( nn YX . They can be 

determined by the following equations. 

                        })1(,1max{),(
min dXYCa nn

YX nn ⋅−−=                                             (4.4a) 

                        )}1(,min{),(
max −−= nn

YX XYdCa nn                                                 (4.4b) 

Accordingly, the cancellation size ),( nn YXCa  can take an integer from space 

],[ ),(
max

),(
min

),( nnnnnn YXYXYX CaCa=Ω . The different combination of nX  and nY  will 

determine the different values of ),(
min

nn YXCa  and ),(
max

nn YXCa , and in turn determine 

different scope of ),( nn YXΩ . The superscription is used to denote these differences. 

Although ),( nn YXCa  can take an integer from ),(
min

nn YXCa  to ),(
max

nn YXCa , the chance of 

taking each value is different, which will be discussed next. 

 

4.3.2 Probability distribution of cancellation size 

The method to obtain the probability distribution of ),( nn YXCa , given state ),( nn YX , 

will be discussed in this section. After this distribution is obtained, the complete 

stationary transition matrix from period to period can be constructed in the next 

subsection.  

Define nX
nnn yyy ...,, 21 as the nX  bookings in the system in period n . Because 

demand is independent, nX  bookings are exchangeable to each other. Without loss of 
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generality, any j
ny , nXj ≤≤1  is considered as the jth booking in the system. 

Obviously, for any booking j
ny , nXj ≤≤1 , we have ),( nn YXj

ny Ω∈ , nXj ≤≤1 .  

The next step is to determine the probability distribution of ),( nn YXCa . The 

mathematical expression of this probability is as follows: 

                )},(|{ ),(),(
nn

YXYX YXkCaP nnnn =           ),(),( nnnn YXYXk Ω∈                 (4.5) 

where ),( nn YXk  represents a specific value from ),( nn YXΩ . The relation between nX  and 

nY  is as following.  

∑
=

=
nX

j
n

j
n Yy

1

 

The expression (4.5) can be re-written as the following: 

               ∑
=

==
n

nnnn

X

j
n

j
n

YXYX YykCaP
1

),(),( }|{          ),(),( nnnn YXYXk Ω∈  and nXj ≤≤1    

Furthermore, these demands are exchangeable to each other because the independent 

arrival of each demand is assumed in the modeling. Without loss of generality, 

assume ),( nn YXk  is the thX n  demand in the system. So the above expression becomes 
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  ),(),( nnnn YXYXk Ω∈      (4.6) 
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Seen from the above derivation, to calculate the probability distribution of ),( nn YXCa , 

the probability of ∑
=

=
nX

j
n

j
n YyP

1
}{  and ∑

−

=

−=
1

1

),( }{
n

nn

X

j

YX
n

j
n kYyP  needs to be computed 

first. One way to do it is to recursively condition on the last item in the summation, 

referring to the formula below. 

...

]}{}{[
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}{}{
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)),(,1(
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                                                                                                                         (4.7) 

where ),(),( nnnn YXYXk Ω∈  and ),1( ),( nYnX
nn kYXk −− ∈ ),1( ),( nYnX

nn kYX −−Ω . 

Seen from the above derivation, it is able to calculate the probability of 

∑
=

=
nX

j
n

j
n YyP

1
}{  and ∑

−

=

−=
1

1

),( }{
n

nn

X

j

YX
n

j
n kYyP  given known nX  and nY .  

 

Numerical example 1 

Suppose there is only one customer in the system with a demand i , }...,,2,1{ di∈ . 

That is nX =1 and nY = i . The minimum cancellation size ),(
min

nn YXCa  and the maximum 

cancellation size ),(
max

nn YXCa  are obtained by  

                        iidiCa i ==⋅−−= },1max{})11(,1max{),1(
min  

                        iididCa i ==−−= },min{)}11(,min{),1(
max  
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So the probability distribution of the cancellation size is computed as follows: 

1
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                             (4.8) 

 

Numerical example 2 

Suppose the state of the booking system is 3=nX , 5=nY  and 10=d . The minimum 

cancellation size ),(
min

nn YXCa  and the maximum cancellation size ),(
max

nn YXCa  are obtained 

by 

1}15,1max{}10)13(5,1max{)5,3(
min =−=⋅−−=Ca  

3}3,10min{)}13(5,10min{)5,3(
max ==−−=Ca  

So the probability distribution of the cancellation size is computed as follows: 
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We have 
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Based on the calculation procedure discussed above, the cancellation probability 

distribution in every period can be recursively computed, given the current state of the 

system ),( nn YX . 

 

 

4.4 Formulation of transition matrix 

The booking process is formulated as a two dimensional Markov process in this 

model. Given the state of the system, there are stationary transition probabilities in 

each period. These transition probabilities will transform the system from one state to 

another state. By summarizing all possible transition probabilities together in a matrix 

format, a transition matrix can be constructed. This is the main topic of this section.  

 

4.4.1 Dimension of transition matrix 

The dimension of the transition matrix is directly related to the value of each 

parameter assumed in the model and it will increase greatly if the value of parameter 
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increases. If 0=nX , nY  can only be zero. So nY  can only take one value given 

0=nX . Similarly, if 1=nX , nY  can take values from }...,,2,1{ d , a total of d  

possible values. Define )( xXY nn =  as the collection of all possible values of nY  

given that xX n = . That is, )( xXY nn = = }|{ xXY nn = . Define xX n
N =  the size of 

)( xXY nn = . The derivation of the value of )( xXY nn =  and xX n
N =  for a given nX  is 

illustrated below.  

xX n =              )( xXY nn =                                                    xX n
N =  

nX =0         }0{}0|{ ==nn XY                                            0=nXN =1 

nX =1         }...,,2,1{}1|{ dXY nn ==                               1=nXN = d  

nX =2         }2...,,3,2{}2|{ dXY nn ⋅==                         12)1(2 +⋅−== dN
nX  

nX =3         }}3,min{,...,4,3{}3|{ dOLCXY nn ⋅+==     

                                                                            }13)1(,2min{3 +−−+== dOLCN
nX                           

     …                     …                                                                     … 

nX = NC      }{}|{ OLCNCXY nn +==                          1==NCX n
N  

The last line in the above derivation is obtained by the fact that the minimum demand 

size is 1 unit. So the maximum possible number of customer in the system 

is OLCNC += . 

In the general form, when nX = i ,  }},min{...,,1,{)( diOLCiiiXY nn ⋅++==  and  

 




+−+
+≤×+−⋅

== otherwiseiOLCMax
OLCdidi

N iX n }1,0{
1)1(

                                      (4.9) 

The value of nY  must be bounded at OLC + , the booking limit, because the 

accept/reject decision is that any demand beyond the booking limit will be rejected. 
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The total number of states of the booking system is the summation of all iX n
N = , 

NCi ≤≤0 . Suppose matrixN  equal to ∑
=

=

NC

i
iX n

N
0

. So the dimension of the transition 

matrix is matrixN × matrixN =∑
=

=

NC

i
iX n

N
0

× ∑
=

=

NC

i
iX n

N
0

. It could be very big if the value of 

OL  and d  are set high. Suppose d =10 and 22=+OLC , then the dimension of the 

transition matrix becomes 240240× .  

 

4.4.2 Break down of transition matrix 

As stated above, the dimension of transition matrix is big even for a moderate 

problem. The complete matrix cannot be easily represented in this thesis due to the 

magnitude it involves. Instead, the whole matrix is broken down into a set of sub-

matrices to ease the task of representation so that readers can have a global view of 

the format of the matrix. Three kinds of sub-matrices, each corresponding to one 

transition within one period, are defined as follows. 

jjA ,                        The sub-matrix representing the no-change transition, given 

  nX = j . The first j  in the subscription indicates the value of 

nX  and the second j  indicates the value of 1+nX . 

1, +jjA                     The sub-matrix representing the accept transition, given nX = j . 

j  and 1+j  in the subscription indicate the value of nX  and  

1+nX  respectively. 

1, −jjA                        The sub-matrix representing the cancellation transition, given  
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nX = j . j  and 1−j  in the subscription indicate the value of 

nX  and 1+nX  respectively. 

))}(,{( jXYj nn =     The collection of all states, given that j  customers are in the 

     system. Because the space of )( jXY nn = depends on j ,  

))}(,{( jXYj nn =  represents the collection of all possible 

states given  j  customers in the system. 

Suppose the current state ),( nn YX comes from ))}(,{( jXYj nn = . When a demand is 

accepted, the state will transit to a state coming from ))}1(,1{( +=+ jXYj nn . 

Similarly, when a cancellation and a non-event happens, the state will transit to a state 

coming from ))}1(,1{( −=− jXYj nn  and from ))}(,{( jXYj nn =  respectively. 

Transition probabilities can be determined by the method discussed previously. In the 

transition matrix, three sub-matrices, jjA , , 1, +jjA , and 1, −jjA , are used to represent 

these transitions. 

So the stationary transition matrix of booking process can be illustrated as follows in 

terms of sub-matrices.  

NCNCnn

nn

nn

nn

nnnnnnnn

ANCXYNC

AAXY
AAAXY

AAXY
NCXYNCXYXYXY

P

,

2,21,2

2,11,10,1

1,00,0

...000)}(,{
..................
0...0)}2(,2{
0...)}1(,1{
0...0)}0(.0{

)}(,{...)}2(,2{)}1(,1{)}0(,0{

=

=
=
=

====
=

  

note: 0 in the above matrix represents zero matrix of corresponding dimension. 
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The dimension of each sub-matrix kjA , , jjk ,1−=  and 1+j , is determined by the 

space of )( jXY nn =  and )( kXY nn = . That is, jX n
N =  and kX n

N =  to be specific. So 

the dimension of sub-matrix kjA ,  is kXjX nn
NN == × . Similarly, the dimension of the 

whole transition matrix P is given by matrixN × matrixN  =∑
=

=

NC

i
iX n

N
0

× ∑
=

=

NC

i
iX n

N
0

.  

Seen from the first row of the matrix, which represents transitions when no booking is 

in the system, only the no-change transition and the accept transition are possible 

because no booking is available to cancel. Similarly, when there are NC bookings in 

the system as shown in the last row of the matrix, there are only the no-change 

transition and the cancellation transition possible. In this case, demand will not be 

accepted any longer since booking level reaches booking limit already.  

 

4.4.3 The input of probabilities in sub-matrices 

The layout of the complete transition matrix has been discussed previously in terms of 

the sub-matrices. The detailed input of the sub-matrices jjA , , 1, +jjA  and 1, −jjA  will be 

discussed one by one in this section. 

The transition probability is defined as follows, which will be used in the sub-matrices. 

 )},(),(|),(),{(),( 11, yjYXyjYXPyyp nnnnjj === ++ , );( jXYy nn =∈  

 )},(),(|),1(),{(),( 1211211, yjYXyjYXPyyp nnnnjj =+== +++ , )(1 jXYy nn =∈ ,  

)1(2 +=∈ jXYy nn , and 21 yy < ; 

 )},(),(|),1(),{(),( 1211211, yjYXyjYXPyyp nnnnjj =−== ++− , )(1 jXYy nn =∈ ,  

)1(2 −=∈ jXYy nn , and 21 yy > ; 

1. No-change transition matrix jjA , :  
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Each probability in the sub-matrices NCjA jj ...,,2,1,0,, =  is composed of two parts. 

One is the probability that non-event will happen and another is the probability that a 

demand will be rejected. The layout of the matrix is shown below. 

),(...000
...............
0...)2,2(00
0..0)1,1(0
0...00),(
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jjjj

jj
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jjp
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=  

* jM  substitutes for },min{ OLCdj +× . 

Seen from the above matrix, it is a diagonal matrix. The general expression of the 

entry jj
kla ,   ( jNk

nX == ...,,2,1  and jNl
nX == ...,,2,1 ) in the matrix jjA , can be 

summarized as below: 
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                                                                                                                                 (4.10) 

Seen from the above expression, 1−+ kj  represents the value of nY . Only the 

diagonal items are non-zeros for the no-change transition sub-matrices, and the 

dimension of the matrix jjA ,  is jXjX nn
NN == × . 

 

2. Accept transition matrix 1, +jjA : 

The item in the sub-matrices 1...,,2,1,0,1, −=+ NCjA jj  represents the probability 

that a demand will be accepted. The layout of the sub-matrices is shown below. 
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* jM substitutes for },min{ OLCdj +⋅  and 1+jM substitutes for 

},)1min{( OLCdj +⋅+ . 

The general expression of the entries 1, +jj
kla   ( jX n

Nk == ...,,2,1  and 

1...,,2,1 +== jX n
Nl ) in the matrices 1,...2,1,0,1, −=+ NCjA jj  can be summarized as 

below: 
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                                                                                                                          (4.11) 

Seen from the above expression, 1−+ kj  and lj +  represent the value of nY  and 

1+nY  respectively. As a result, the difference between the two, 1+− kl  is the demand 

size. Similarly the dimension of 1, +jjA  is given by .1+== × jXjX nn
NN  

3. Cancellation transition matrix 1, −jjA : 

The item in the sub-matrices NCjA jj ...,,2,1,0,1, =−  represents the probability that a 

cancellation event will happen. The layout of the sub-matrix is shown below. 
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* jM substitutes for },min{ OLCdj +⋅  and 1−jM substitutes for 

},)1min{( OLCdj +⋅− . 

The general expression of the entries 1, −jj
kla   ( jX n

Nk == ...,,2,1  and 

1...,,2,1 −== jX n
Nl ) in the matrices NCjA jj ...,,2,1,0,1, =− can be summarized as 

below: 
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                                                                    (4.12) 

Seen from the above expression, 1−+ kj  and 2−+ lj  represent the value of nY  and 

1+nY . And the difference between the two, 1+− lk  represents the cancellation size. 

The dimension of 1, −jjA  is given by .1−== × jXjX nn
NN  

The determination of cancellation probability }1{ ),( +−= lkCaP nn YX  indicated in 

expression (4.12) has been discussed in the previous section.  

Based on what has been discussed so far, the transition matrix can be determined once 

the value of OL , d , λ , )( nXτ  and capacity C  are given. However the dimension of 

this matrix is too big to be presented manually. Instead, computer is used to do it. 
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Mathematica software is used to accomplish this task and each item in the transition 

matrix can be filled in by this software automatically and efficiently. The summation 

of each row in the matrix, which by probability theory must be equal to 1, can be used 

to test the correctness of the matrix. 

Once the transition matrix is obtained, efforts will be spared to solve this matrix to 

obtain the limiting probability distribution. This limiting probability distribution is 

approximated as the joint distribution of the number of bookings and the amount of 

reservations on the day of departure. In turn, the expected total cost (underage cost 

and overage cost) can be determined. 
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5. Overbooking Model 

 

A stationary transition matrix from period to period is obtained in the previous 

chapter. By solving this stationary transition matrix, a limiting probability distribution 

can be obtained. Limiting probability represents the probability that the system will be 

in a certain state when time goes to infinite. In the problem, limiting probability 

distribution is approximated as the joint distribution of two state variables on the day 

of departure. In other words, the distribution of final cargo coming for boarding can 

be obtained. In turn, the expected overage cost and underage cost can be determined 

to evaluate the control on the system. 

 

5.1 Limiting probability distribution 

After the complete transition matrix is obtained, the limiting probability distribution 

can be calculated accordingly. Theoretically, the limiting probability distribution in 

this problem means the joint probability distribution of the final number of customers 

and the final amount of cargo coming for boarding before flight takes off when the 

time goes to infinity. However, the space booking process cannot be opened forever 

in reality. Instead, the limiting probability distribution is used in this case as an 

approximation of the joint probability distribution of the final number of customers 

and the final show-up cargo on the day of departure. That is, it is approximated as a 

joint distribution of NX  and NY . If convergence is achieved fast, this approximation 

is acceptable; otherwise, it is unacceptable. The effect of time on the optimal result 

will be discussed later. 
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Define: 

),...,( 21 MatrixNππππ =  Limiting probability distribution of the transition matrix, 

where matrixN =∑
=

=

NC

i
iX n

N
0

; 

),( yxf
NNYX   Joint probability distribution of NX  and NY ; 

( )
NXf x  Marginal probability mass function of the number of 

bookings on the day of departure; 

( )
NYf y  Marginal probability mass function of the amount of 

reserved space on the day of departure; 

Based on the theorem that the limiting probability distribution ),...,( 21 MatrixNππππ =  is 

the unique nonnegative solution of the equations 

                               ∑
=

=
matrixN

k
klkl a

1
ππ                   1, 2, ..., matrixl N=               (5.1) 

                                         1
1

=∑
=

matrixN

k
kπ                                                          (5.2) 

In the above formula, matrixN =∑
=

=

NC

i
iX n

N
0

 is the dimension of the transition matrix and 

kla  is the ( , )k l th item in the transition matrix, where 1, 2, ...,k = matrixN and 

1, 2, ...,l = matrixN . The total number of the equations in (5.1) equals matrixN . To solve 

the system equations, one equation from (5.1) should be eliminated and equation (5.2) 

should be added to obtain the values of 1 2 3( , , ,... )
matrixNπ π π π π= . 

The dimension of the matrix will be very big even if the value of d  and OL  is 

assumed moderate. This matrix cannot be solved manually. Mathematica software is 

used to help solve the above systems of the linear equations.  
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As analyzed before, the solution to this system of linear equations is approximated as 

the joint probability distribution of NX  and NY , which is defined as 

},{),( yYxXPyxf NNYX NN
=== , NCX N ≤≤0  and OLCYN +≤≤0 . And 

consequently the marginal probability mass function of NX  and NY , which are 

defined by }{)( xXPxf NX N
==  and }{)( yYPyf NYN

==  respectively, can be 

determined by 

                     ∑===
x

NNN
yxfxXPxf YXNX

φ

),(}{)(                                    (5.3) 

                    ∑===
y

NNN
yxfyYPyf YXNY

φ

),(}{)(                                       (5.4) 

where 

    xφ  denotes the set of all points in the range of ),( NN YX  for which xX N =  and  

    yφ  denotes the set of all points in the range of ),( NN YX  for which yYN = . 

By using the formula (5.4), the approximate probability distribution of the final cargo 

for boarding on the day of departure can be obtained. Consequently, the amount of 

over-load and the under-load can be determined after comparing it with the flight 

capacity. And finally the expected overage cost and the expected underage cost can be 

calculated. 

 

5.2 Overbooking model 

As stated before, higher overbooking level will possibly result in more bumped cargo 

on the day of departure, while lower overbooking level will leave some empty space 

on the flight after take-off. In either case, airline loses money. The objective is to find 

an optimal overbooking level to minimize the expected cost. In this section, it is 
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shown how to formulate the overbooking model to find the optimal overbooking level 

with the minimum expected cost.  

The model is basically a newsboy model. At the moment of take-off, if the cargo 

coming for boarding is below the capacity C  (20 units), the aircraft will take off with 

empty space, which means a loss of money for airline called as underage cost. 

Otherwise, if the cargo for boarding exceeds the capacity C , some cargo cannot 

board the scheduled flight. The bumped cargo due to airline not being able to provide 

the capacity for the customer as promised will cause the overage cost. The cost used 

in this model to evaluate the performance of the system is defined as the summation 

of both underage cost and overage cost. This is different from the actual operational 

cost in practice. In the modeling, the underage cost and the overage cost are defined 

as Up  and Op  per unit of space respectively. The objective of this model is to find the 

optimal overbooking level to minimize the expected underage cost and overage cost. 

Define: 

Op  overage penalty, which is the cost incurred by airline not being able to 

provide the capacity for the customer as promised. It is assumed equal 

to 1.3 dollars per unit bumped space; 

Up  underage penalty, which is the unit cost of empty space on an aircraft  

after flight take-off. It is assumed equal to 1.0 dollars per empty space. 

The expected cost equals to the expected underage cost plus the expected overage cost. 

The formula of computing the expected cost must be obtained first. Then the optimal 

overbooking level can be determined by minimizing the expected cost. The algorithm 

will be shown below. 
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First assuming the value of NY  is known, there are two cases concerning NY  and 

capacity C . If CYN ≤ , spoilage occurs and the amount of spoilage is equal to NYC − ; 

the corresponding underage cost is )( NU YCp −× . If CYN > , over-sale occurs and 

the amount of over-sale is equal to CYN − ; the corresponding overage cost is equal to 

)( CYp NO −× .  

Next the assumption that NY  is deterministic is relaxed; then the expected underage 

cost (spoilage cost) denoted as ][UCE  and the expected overage cost denoted as 

][OCE  given by equations (5.5) and (5.6) below. 

                       )()(][
0

yYPyCpUCE N

C

y
U =−×= ∑

=

                                   (5.5) 

                      )()(][
1

yYPCypOCE N

OLC

Cy
O =−×= ∑

+

+=

                                          (5.6) 

The expected cost denoted as ][CSE  can be computed as given below. 

          ∑∑
+

+==

=⋅−+=⋅−=

+=
OLC

Cy
NO

C

y
NU yYPCypyYPyCp

OCEUCECSE

10

)()()()(

][][][
            (5.7)  

Next the above cost function (5.7) will be shown to be a convex function of 

overbooking level. 

Proof of convexity of the cost function 

Seen from the equation (5.7), the first part on the right hand side (underage cost) 

decreases with the increase of booking limit, and the second part (overage cost), 

starting from zero, increases with the increase of booking limit. Since the overage 

penalty must be greater than the underage penalty, the increment from the second part 
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will sooner or later overcome the decrease from the first part. The summation of the 

two parts is a convex function. Please refer to the figure  5.1 below.  

 

Figure 5.1 The Movement of Cost Function 

The objective of the model is to find an optimal overbooking level *OL  such that the 

expected total cost is minimized. According to the algorithm discussed above the 

overbooking level OL  must be provided first in order to obtain ][CSE . A searching 

method is used to find the optimal solution as follows: 

     Step 1: Initially set aOL  and bOL  equal to 1 and 2 respectively. So the booking 

limit is 1+C  and 2+C ;  

     Step 2: Compute the corresponding expected total cost ][ aCSE  and ][ bCSE  

respectively;  

     Step 3: Compare the two expected total cost ][ aCSE  and ][ bCSE . If 

][ aCSE > ][ bCSE , set ba OLOL = , 1+= bb OLOL  and go to step 2; otherwise, 

the optimal overbooking level *OL  equals to aOL .  

OL

][CSE

0  

][OCE

][UCE  

][CSE  
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Based on the algorithm discussed above, Mathematica software is used to calculate 

the optimal overbooking level. The program is composed of two parts. The first part is 

to input transition probabilities so as to construct transition matrix and the second part 

is to search the optimal overbooking level. The flowchart, as well as the Mathematica 

program, is appended at the end of this thesis. Equipped with this powerful software, 

the optimal overbooking level can be obtained, and the sensitivity of parameters in the 

model can also be checked. The time used in the calculation is very short and results 

will be presented and discussed in the following sections.  

 

Numerical example 

Suppose the flight capacity C  is known as 20 units. Random demand D  follows 

discrete uniform probability distribution, evenly taking a value from }...,,2,1{ d , 

where d  is assumed to be 10 units. Constant arrival rate λ  is assumed to be 0.3 

booking per day and cancellation rate )( nXτ  is assumed to be linear function of nX , 

the number of bookings in period n . Assume 
50

)( n
n

X
X =τ  in the model. The 

underage cost Up  is assumed to be 1 and the overage cost Op  is assumed to be 1.3. 

After running Mathematica program, the optimal result is as follows. 

The optimal overbooking level *OL  is 2 and the corresponding expected total cost is 

2.83459. The dimension of transition matrix is 240240× . It is big, but the calculation 

time is short, about several seconds by Mathematica. According to the program results, 

the expected load on the flight is 18.4424. And the probability that the load is below 

capacity is 0.641054, and the probability that the load is above capacity is 0.358964.  
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Next it will be shown numerically that the expected cost is a convex function of OL . 

Since OL  is non-negative, the expected total cost will be determined given different 

OL . The results are shown in Fig. 5.2 below. 

Expected Total Cost Vs OL
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Figure 5.2 Cost Function for Overbooking Model 

So far, the overbooking model has been constructed and a numerical example has 

been given. Recall the constructed overbooking model. Given a known demand 

(arrival rate, cancellation rate and individual demand size), a known capacity and a 

known pricing structure, the optimal overbooking level ( *OL ) can be obtained. The 

relation between input variables and output will be analyzed in the next section, which 

may help to deepen the understanding of the model. 

 

5.3 Sensitivity of input variables 

The purpose of this section is to check the relationship between input parameter and 

output so that we can have a global view of the effect of one parameter on the optimal 

result. In addition, the obtained relationship between input and output may help check 
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the correctness of the model. The combined effect of two parameters will be discussed 

in the subsequent section. 

 

5.3.1 The effect of capacity (C ) 

In the example above, C  is assumed to be 20 units. Given all other parameters 

the same, C  is changed from 16 to 24 and the optimal overbooking level 

denoted as *OL  can be calculated. The results are shown in Fig. 5.3 and 5.4. 
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Figure 5.3 Optimal OL  Vs. Capacity 
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Optimal Cost Vs. Capacity (C)
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Figure 5.4 Optimal Cost Vs. Capacity 

Seen from the above figures, with the increase of flight capacity, the *OL  

increases slightly and the expected total cost increases also. It is reasonable in 

that when more capacity is available, more requests for bookings can be 

accepted and more revenue is generated. The overbooking level is insensitive 

to capacity given other parameters at the set values. Please refer to the curve in 

Fig. 5.2 from capacity 17 to 24. Although flight capacity increases, *OL  

remains unchanged. 

 

5.3.2 The effect of demand ( D ): 

Random individual demand D  is assumed to be independent and follow the 

same discrete uniform distribution with the maximum value d =10. Given all 

other parameters the same, d  is changed from 2 to 11 and the optimal 

overbooking level, as well as corresponding optimal cost, is determined by 

Mathematica program. The results are shown in figure 5.5 and 5.6 below. 
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Optimal OL Vs. Demand (D)
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Figure 5.5 Optimal OL  Vs. Demand 
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Figure 5.6 Optimal Cost Vs. Demand 

Seen from the above two figures, the *OL  first decreases, then increases with 

the increase of maximum demand size d . The optimal cost first decreases, 

then increases with the increase of maximum demand size d . This is due to 

the combined effect of underage and overage penalty ( Up  and Op ). At the 

low level of d  (=2), the load is low, so the effect of underage is prominent. 

Underage cost plays a big role in the total cost, so the overall cost is big as 
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seen at d =2 in Figure 5.6. At this point, overbooking level should be 

increased so as to absorb more demands. With the increase of d , load will 

increase accordingly, as a result the expected cost decreases while the overage 

cost is minor.  

While at the high level of d  (5 to 11), load tends to increase and more cargo is 

bumped. Overage cost is prominent in the total cost, while the underage cost is 

minor, so the total cost increases in this case. Overbooking level is slightly 

increased in this range of d  so as to control the amount of overage. On the 

other hand, with the increase of d , the variance of demand increases greatly. 

The overbooking level should be increased to counter the effect of the great 

demand variance.  

 

5.3.3 The effect of overage penalty ( Op ) 

In the example, the overage penalty is 1.3 dollar per unit of bumped cargo. Given 

all other parameters fixed, change overage penalty from 1.1 to 2.0 and determine 

the *OL  and the corresponding expected cost. Note here Op  must be greater than 

Up , thus the minimum value is set at 1.1. The results are shown in figure 5.7 and 

5.8 below. 
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Optimal OL Vs. Overage Penalty (po)
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Figure 5.7 Optimal OL  Vs. Overage Penalty 
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Figure 5.8 Optimal Cost Vs. Overage Penalty 

With the increase of Op  ranging from 1.1 to 2.0, it is becoming more expensive to 

having the overage. As a result, *OL  decreases to decrease the chance of the 

occurrence of overage. The optimal cost increases with the increase of Op . 

Suppose the overage cost is set very big, the overbooking level should be set at 

zero to avoid any possible overage. 
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5.3.4   The effect of underage penalty ( Up ) 

In the example, the underage penalty is 1.0 per unit of space. Underage penalty in 

this example represents perishable value of air space. Once flight takes off, the 

value of empty space on the flight is lost. Underage penalty helps airline take into 

consideration of load factor. The higher load, the lower underage cost is.  

Given all other parameters fixed, change Up  from 0.4 to 1.2 and calculate optimal 

result for each case. The results are shown in figure 5.9 and 5.10 below. 
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Figure 5.9 Optimal OL  Vs. Underage Penalty 
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Optimal Cost Vs. Underage Penalty (pu)
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Figure 5.10 Optimal Cost Vs. Underage Penalty 

Seen from the above two figures, with the increase of Up  ranging from 0.4 to 

1.2, *OL  will slightly increase and optimal cost will increase. Overbooking level 

is forced to set higher so as to accept more bookings and to increase overall load. 

But with the increase of overbooking level, overage cost will increase, so the 

overall expected cost will increases. 

 

5.3.5   The effect of arrival rate (λ ) 

It is assumed that requests have a constant arrival rate in the model. It reflects 

the intensity of demand. With the increase of arrival rate λ , more customers 

come for bookings. Since the cancellation rate is fixed, higher arrival rate 

means higher chance of arrival event in the next stage. In the model it is 

assumed to be 0.3 per day. It will be changed from 0.05 to 0.5 to see the effect 

on optimal result, given all other parameters fixed. The result is shown in 

Figure 5.11 and 5.12 below. 



 
Chapter 5                                                                                          Overbooking Model                         
                                                                                                                  

                                                                                                                                   64 

Optimal OL Vs. Lamda
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Figure 5.11 Optimal OL  Vs. λ  

Optimal Cost Vs. Lamda
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Figure 5.12 Optimal Cost Vs. λ  

With the increase of λ , more demands will come for reservations, so higher 

chance of overage happens. *OL  should be decreased to decrease the chance 

of the occurrence of overage. Seen from figure 5.12, *OL  decreases greatly 

with the increase of λ . It is said *OL  is sensitive to λ . And with the decrease 

of *OL , overage cost is decreased and more demand coming in will increase 

loading. As a result, the overall cost decreases with the increase of arrival rate. 



 
Chapter 5                                                                                          Overbooking Model                         
                                                                                                                  

                                                                                                                                   65 

In the meantime, a simulation model is constructed to visualize the booking process 

and to verify the robustness of the formulated overbooking model. 

 

5.4 Combined effect of two input variables 

In section 5.3, the effect of individual input variable on the optimal results has been 

discussed. But we do not know whether there is cross effect of two variables. In this 

section, the effect of two input variables will be analyzed to have better understanding 

of the model. 

 

5.4.1 Effect of underage and overage penalty 

The underage cost Up  is assumed as 1 dollar per unit of empty space on the flight and 

the overage cost Op , which is must be greater than underage cost, is assumed as 1.3 

dollar per unit of bumped cargo. It is shown that the optimal overbooking level and 

optimal cost will increase with the increase of Up  . It is also shown that the optimal 

overbooking level will decrease with the increase of Op  and the optimal cost will 

increase with the increase of Op . In this sub-section, the value of Up  will be changed 

from 0.4 to 1.2 given two different values of Op , say 1.3 and 1.8. The result is shown 

below. 
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Optimal Cost Vs. Pu (Diff. Po)
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Figure 5.13 Optimal Cost Vs. Up  (Different Op ) 

Seen from the above figure, the curve 3.1=Op  is close to the curve 8.1=Op . With 

the increase of Up  and Op , the expected total cost will increase. But the amount of 

increment is different for two variables. The increment is significant for Up  as 

compared with the effect for Op . For example, the expected cost increases about 2 

dollars more when Up  changes from 0.5 to 1.0 for both given values of Op . In other 

words, the optimal cost is more sensitive to Up  than Op . 

This effect can also be shown the other way around when Op  is changed from 1.1 to 

2.0 given different values of Up  (0, 0.5 and 1.0 in the figure). Please refer to the 

figure 5.14 below. 
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Optimal Cost Vs. po (Diff pu)
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Figure 5.14 Optimal Cost Vs. Op  (Different Up ) 

Seen from figure 5.14, optimal cost will slightly increase with the increase of Op , but 

when Up  changes from 0 to 0.5, the increment in expected cost is significant. Please 

refer to the curve 0=Up  and 5.0=Up  in the figure. 

 

5.4.2 Effect of capacity and arrival rate 

Another interesting effect of the problem is the relation between flight capacity C  

and demand arrival rate λ . As discussed before, the optimal OL  and optimal cost 

will increase with the increase of capacity and will decrease with the increase of 

arrival rate λ . Considered together, assume capacity C  is changed from 16 to 24 

given different arrival rate λ (0.1, 0.2 and 0.3). The results are shown in figures below. 
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Figure 5.15 Optimal OL  Vs. Capacity (Different λ ) 

 

Optimal Cost Vs. Capacity (Diff lamda)
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Figure 5.16 Optimal Cost Vs. Capacity (Different λ ) 

It is shown from the above two figures, when λ  is at high level 0.2 and 0.3, the 

optimal results do not differ too much between two curves. But when λ  is at low 

level at 0.1, the difference becomes significant. Please compare the curve 1.0=λ   

with two others in the figures. And the difference in cost increases with the increase 

of C . It is due to the combined effect of C  and λ . That is, the demand with an 



 
Chapter 5                                                                                          Overbooking Model                         
                                                                                                                  

                                                                                                                                   69 

arrival rate 1.0=λ  is too weak and is unable to utilize capacity C  ranging from 16 to 

24. In this case, underage cost is significant and the overall cost increases. OL  should 

be increased to try to accept more demands in the course of booking.  
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6. Result and Discussion 

 

In the previous chapter, an overbooking model has been formulated to obtain optimal 

overbooking level so as to minimize the expected underage cost and overage cost. In 

the course of modeling, limiting probability distribution was used to approximate the 

joint probability distribution of the final number of customers and the final total 

amount of cargo coming for boarding in the overbooking model. Limiting probability 

distribution is the long-term behavior of the booking system, but the system for 

reservation opens only a few weeks (say four weeks in the example) before departure. 

Whether the limiting probability distribution is a suitable representation of final joint 

probability distribution needs to be checked. In other word, whether the transition 

matrix formulated in the model converges within four weeks needs to be checked. 

Furthermore, the model can help to find the optimal booking period for the airline. 

In order to check the overbooking model formulated in the previous chapters, a 

simulation program is introduced first. The main purpose of this simulation program 

is to see the actual behavior of the final number of bookings and the final amount of 

cargo coming for boarding. In this chapter, the results obtained in these simulations 

will also be compared with previous overbooking model.  

Firstly, the formulation of the simulation program is introduced. Then the optimal 

results obtained from overbooking model and simulation are compared with each 

other. The discussion on suitable range of capacity, the effect of time variable and the 

variance of optimal result will come next. And finally a conclusion is drawn at the end 

of this chapter. 

 



 
Chapter 6                                                                                       Result and Discussion                         
                                                                                                                  

                                                                                                                                   71 

6.1 Simulation program 

The formulation of the simulation program will be addressed in this section. The main 

difference of simulation from the previous model is that time is no longer infinite. The 

booking period is set at four weeks as the example used in the previous chapter. 

Notations used in the program are listed below to ease the understanding of the 

program, which is appended at the end of this thesis. 

 

6.1.1 Notations 

xn  State variable one, which is represented by the number of customers in 

time n in the system;  

yn  State variable two, which is represented by the total amount of space 

that has been reserved up to time n  and takes a value from 0 to 

booking limit olc + ;  

ol  Overbooking level, which is defined as the extra space that can be 

reserved before departure; 

c  Flight physical capacity, which is assumed to be known in this model;  

d The random demand size of a customer, which is assumed to have 

discrete uniform probability distribution taking a value from d...,,2,1 ;  

ca The cancellation size, which is equal to the reservation size of one 

booking selected to leave the system; 

λ  The constant arrival rate of booking process;  

)(xnτ  The cancellation rate of booking process at time n, which is assumed to 

be dependent on the value of xn ;  

timeclock The whole booking period from the opening to the departure; 
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waittime The time period between two successive events; 

uc   The underage cost per unit of empty space; 

oc   The overage cost per unit cargo space; 

 

6.1.2 Assumptions 

The assumptions made for the simulation will be discussed in this section. Some are 

different from the previous model. 

In comparing with the optimal result obtained in the previous model a fixed booking 

period (four weeks) is assumed. The result obtained from the previous model will be 

compared with simulation given four weeks of the booking period. The booking 

period will then be set longer to see the effect of time variable on the optimal result. 

After the booking period is set, the next-event incrementing time advance mechanism 

is used to advance the simulation clock. Once the time is running out, the reservation 

system will be stopped. The waiting time between two successive events is 

determined by the arrival rate and the cancellation rate. No non-event occurs within 

waiting time. 

Arrivals (requests for reservations) is assumed to come independently and to follow a 

Poisson process with a constant arrival rate λ . Booking status will not affect demand 

pattern. And also assume the demand distribution is the same for every individual 

demand, following discrete uniform probability distribution taking a value from 

d...,,2,1  with a probability
d
1 . 

The cancellation rate )(xnτ  is assumed to be a linear function of the number of 

bookings in the system. As the same as before, )(xnτ  is assumed to be 
50
xn  in the 
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simulation. When a cancellation event happens, a cancellation is uniformly selected 

from the xn  bookings currently in the system. The cancellation size ca equals to the 

booking selected. Once a cancellation is selected, it will leave the system completely. 

This assumption is different from the previous model as the process is not formulated 

as a Markov process here. In the simulations, the Markovian restriction was not 

assumed. As a result, when a specific booking is selected to cancel, its corresponding 

size is the cancellation size. Partial cancellation is not allowed in the simulation. 

Similar to the previous model, the criterion used to make an accept/deny decision in 

each period is the booking limit olc + . The demand, which exceeds the remaining 

capacity ynolc −+ , will be rejected; otherwise, it will be accepted. 

2000 replications are used to obtain the average result, which will be compared with 

the expected result obtained in the previous model. Furthermore, random number 

needs to be generated in the simulation. In order to repeat the process, a seed is 

assigned each time when running the simulation. The seed used to generate random 

number is assumed to be ol×10 .  

 

6.1.3 Description of simulation program 

In running the program, time clock is set at four weeks. The time between two 

successive events is called as waiting time. The waiting time, which is determined by 

the arrival rate λ  and the cancellation rate )(xnτ  in period n , has an exponential 

distribution. In period n  for one event to happen, the random waiting time has to be 

generated from an exponential distribution with the parameter equal to )(xnτλ + , 

referring to the equation (6.1) below. Then the time clock will be deducted by this 

waiting time to see whether the time is running out.  
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                    )1(
)(

1 RandomLn
xn

timewaiting −
+

−=
τλ

                                     (6.1) 

In a period denoted as n , two state variables are defined similar to those defined in 

the previous model: the total number of customers (one customer one booking) in the 

system xn  and the total booked space yn . Given an event, either a request for 

booking or a cancellation, comes, it has to be differentiated as an arrival event or a 

cancellation event by the corresponding probabilities:  

                      
)(

}|{
xn

eventoneeventarrivalP
τλ
λ

+
=                                         (6.2) 

                      
)(

)(}|{
xn

xneventoneeventoncancellatiP
τλ

τ
+

=                               (6.3) 

Furthermore, if it is an arrival event, a decision must be made as to whether to accept 

it or not according to booking limit olc + . However, if it is a cancellation event, one 

booking will be uniformly selected from the xn  bookings in the system in period n  

and this booking is regarded as being canceled and will leave the system completely.  

The booking process will proceed like what has been described above until the 

departure time is reached. At the end of the process, the final bookings on hand will 

be recorded. This final reservation on hand will be compared with flight capacity to 

compute the cost, either an underage cost or an overage cost.  

After that, the whole booking process will repeat 2000 times. Each time a final 

bookings on hand and a cost can be determined. Hence, there are 2000 data of the 

final bookings on hand and 2000 data of the total cost. Finally the average final 

bookings on hand and the average total cost can be calculated by these data. The 

average final bookings on hand and the average total cost will be compared with the 

results obtained from the previous overbooking model. 
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A flowchart of the program and the Mathematica program can be found in the 

Appendix. 

 

6.2 Optimal result 

Take the same example as used in the previous model. Suppose capacity C =20 and 

individual demand D  has a discrete uniform probability distribution, evenly taking a 

value from 10...,,2,1 . That is, 10=d . Constant arrival rate λ =0.3, and the 

cancellation rate )( nXτ  is 
50

nX
, which is assumed to be a linear function of nX . The 

overage penalty is Op =1.3 and underage penalty is Up =1.0.  

The optimal overbooking level according to the overbooking model, is 2 with the 

expected cost 2.83459. The expected cargo coming for boarding on the day of 

departure is 18.4424. There is 0.641054 chance that the coming cargo is below flight 

physical capacity and 0.358946 chance that the coming cargo is above flight capacity. 

In the later case, overage occurs. 

Given the same setting mentioned above, the simulation produced an average cost of 

3.2761 after running 2000 times of replications if overbooking level is set at 2. The 

average amount of cargo coming for boarding is 17.9475. The probability that the 

final cargo for boarding is below the flight capacity is 0.657, and the probability that 

the final cargo for boarding is above the flight capacity is 0.343.  

It was observed that the results from simulation were not far away from the results 

obtained in overbooking model. However, this single average cost given overbooking 

level equals to 2 cannot guarantee optimization at this moment. Hence, this simulation 

program is run several times given different overbooking level, each time the average 
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cost and the average cargo coming for boarding are recorded and compared with other 

results. The point that produces the minimum cost is 2=ol , which is the same as 

overbooking model. Please refer to the table 6.1 below. 

Table 6.1 Results from Simulation 

OL  0 1 2 3 4 5 6 7 8 9 

Ave_Cost 3.56 3.28 3.28 3.59 3.93 4.45 5.01 5.82 6.37 6.99

Ave_Cargo 16.4 17..2 18.0 18.7 19.6 20.7 20.9 21.7 22.4 22.9

 

Seen from the first row in table 6.1, the average cost first decreased then increased 

with the increase of overbooking level. At the point 2=OL , the average cost reached 

the minimum. The result confirmed with that obtained in overbooking model. The 

average cargo coming for boarding increases with the increase of overbooking level. 

Please refer to the second row in the table 6.1. As the randomness of the simulation is 

due to random numbers generated in the program, optimal result cannot be guaranteed 

every time when this program is run. However, the overall trend is obvious.  

Recall that similar results are obtained in solving overbooking model in the last 

chapter. Plot the results obtained by two methods in one figure, we can have a clear 

view of the movement of the optimal results against overbooking level. Please refer to 

Figure 6.1 below, in which cost obtained from overbooking model and simulation is 

compared given different overbooking level (where the curve with marker ◊ 

represents results obtained from overbooking model and the curve with marker □ 

represents simulation). 
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Figure 6.1 Cost Comparison between Overbooking Model and Simulation 

Similarly, the final cargo coming for boarding of overbooking model and simulation 

is shown in Figure 6.2 below (again the curve with marker ◊ represents overbooking 

model and the curve with marker □ represents simulation). 
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Figure 6.2 Final Load Comparison between Overbooking Model and Simulation 

Seen from the above two figures, results from overbooking model and simulation are 

close either in terms of cost or final cargo. Overbooking model and simulation yield 

the same optimal result. That is, at point 2=OL , cost is the minimum. It is clear that 
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cost is a convex function of OL . Furthermore, with the increase of OL , the final 

cargo coming for boarding increases. 

Please refer to Figure 6.2, the difference in final cargo coming for boarding becomes 

bigger when the overbooking level is set at high value. It is due to the combined effect 

of flight capacity and booking time. Given a fixed setting of booking condition stated 

at the beginning of this section, the increase of overbooking level means the increase 

of booking limit. More demands can be accepted in the course of booking. Since the 

booking period is fixed in simulation, the booking system cannot fully utilize the extra 

space provided by airline within the set time span. In other word, 28 days is not long 

enough for the system to converge as in this example. As a result, the final coming 

cargo deviates greater in the area of bigger overbooking level than in the area of 

smaller overbooking level.  

However, if the booking period increases, the difference between overbooking model 

and simulation, either in small overbooking level or in big overbooking level, will 

become almost identical. This would be discussed in section 6.4. 

There comes another question: within what range of flight capacity is the overbooking 

model formulated in the previous chapter valid? This will be discussed in the next 

section. 

 

6.3 Suitability check of the overbooking model 

As stated towards the end of last section, the overbooking model formulated can only 

be applied to a certain range of flight capacity. Beyond this range, the result obtained 

by overbooking model cannot be a good estimation of actual booking behavior in 

airline since the limiting probability distribution is used to approximate joint 
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probability distribution of final cargo coming for boarding and final number of 

bookings. In other word, if the system cannot converge in 28 days as set in the 

example, the optimal result obtained by overbooking model may not be convincing. 

The valid range of capacity will be discussed in this section. All other parameters 

remain the same as the previous numerical example. 

In order to check the validity of capacity, the optimal results from overbooking model 

and simulation need to be compared, given different value of capacity and all other 

parameters unchanged. It is obvious that the smaller the flight capacity, the faster the 

booking system will converge to the limiting case. As a result, set capacity from 20 to 

50. Under each value of the capacity, the optimal overbooking level and optimal cost 

by the overbooking model and simulation are determined. Results are shown in figure 

below. 
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Figure 6.3 Optimal Cost Comparison Given Different Capacity 
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Figure 6.4 Optimal OL  Comparison Given Different Capacity 

In Figure 6.3, the difference in final cost between overbooking model and simulation 

is small when capacity is from 20 to 25, and increases when capacity is above 25. It 

implies that the actual booking system cannot converge fast to the limiting probability 

distribution within 28 days. When capacity increases, capacity becomes relatively big 

as compared with arrival rate and the intensity of demand. As a result, more time is 

needed to absorb the large demands. Hence, 28 days is not enough for the system to 

converge. With the increase of capacity, the deviation between overbooking model 

and simulation is becoming larger. In this case, overbooking model is not suitable for 

determining the optimal overbooking level.  

In this section, only the capacity is checked to determine the validity of overbooking 

model. Other parameters can also be checked by the same method. The purpose of 

doing this is to bring the idea to reader that all the input parameters should match with 

each other in order to obtain valid result.  
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6.4 Effect of time variable 

Recall that the final cargo probability distribution in the overbooking model is 

approximated from the limiting probability distribution. That is, the result from the 

infinite booking period is used to represent booking behavior of a finite period. It is 

not known for sure whether this approximation is good or not. In other words, 

whether the booking period (28 days) exercised is long enough for the system to 

converge. In this section, the effect of time variable will be discussed. 

In the simulation as mentioned in section 6.2, booking period is supposed to be 28 

days. 28 days may not be optimal from the airline’s viewpoint. If the booking period 

is set too short, booking system cannot converge fast within the period, so the result 

obtained in the overbooking model is unsuitable. On the other hand, if the booking 

period is set too long, the operational expense will increase. There is an optimal 

booking period for airline to use. 

To analyze the effect of time variable, the simulation is run several times by setting 

different booking period at 28, 40 and 50 days respectively. Under each situation, the 

final cargo coming for boarding and the corresponding cost are recorded for different 

overbooking level ranging from 1 to 10. The result is shown in figures below. For 

easy reference, the result from overbooking model is also included for comparison. 
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Figure 6.5 Final Cost Vs. OL  Given Different Booking Period 
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Figure 6.6 Final Cargo Vs. OL  Given Different Booking Period 

In the above two figures, the results from overbooking model are represented by the 

curve with marker ◊. It is shown that with the increase of booking period, the 

difference between overbooking model and simulation model decreases. When 
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booking period is above 50 days, the difference between two models is almost 

negligible. Furthermore, except that 28 days curve is a little far away from that of 

overbooking model, all others are much closer to that of overbooking model. This 

means the system converges fast about 40 days later.  

It should be noted that the system converges after 40 days does not mean that 40 days 

is better than 28 days or that the longer of booking period, the better the result which 

the airline will obtain. The determination of booking period depends on:  

1. the operational complexity of a booking system;  

2. the expense of implementing proposed booking system;  

3. the stability of booking system.  

The first two concerns are always related to the fact that complex system usually 

requires expensive operational cost. The third concern can be viewed as the 

robustness of a booking system. The above three concerns can be combined as an 

optimal booking period is the one which can balance operational complexity and 

robustness of the booking system.  

Intuitively, the longer the booking period, the more complex a booking system is. The 

objective of selecting an optimal booking period becomes one of finding a shortest 

booking period, which can satisfy the stability requirement.  

 

6.5 The variance of optimal result 

The variance of the optimal results has not been considered. Since the limiting 

probability distribution used in overbooking model represents the booking behavior 

when time goes to infinity, the optimal results from the overbooking model have 

minimum variance as compared with the results from simulation. It does not matter 
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the booking period is set at 28 days or 40 days. In simulation, the variance of optimal 

result (optimal final cost and optimal final cargo coming for boarding) will decrease 

with the increase of booking period. Hence, the variance of the optimal result can also 

be used to measure the convergence of simulation in the overbooking model. 

In the overbooking model, limiting probability distribution is used to approximate the 

distribution of the final number of customers and the final amount of cargo for 

boarding, in which case the variances of the two parameters are the minimum. 

According to the overbooking model, the variance of the final cargo coming for 

boarding is 12.4895 and the variance of the final cost is 7.5349. These two values 

represent the baseline of the variance of final cargo and final cost for simulation given 

different booking period. The results are shown in figures below, in which the 

booking period is set at 10, 15, …, 45 and 50 days. 
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Figure 6.7 Variance of Final Cargo Vs. Booking Period 
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Variance of Final Cost Vs. Booking Period
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Figure 6.8 Variance of Final Cost Vs. Booking Period 

Seen from the above two figures, the variance of final cargo and final cost decreases 

with the increase of booking period. The minimum is the one obtained in overbooking 

model. If airline wants to determine a reasonable booking period with a certain 

requirement on the variance of the optimal result, the above two figures are helpful. 

 

6.6 Conclusion 

From chapter 3 to chapter 6, the cargo booking process is assumed to be two-

dimension Markov process. It is a combination of homogeneous Poisson arrival 

process with constant arrival rate and non-homogeneous Poisson cancellation process 

with cancellation rate depending on the number of bookings in the system. The two 

state variables are defined in the model. And the limiting probability distribution is 

used to approximate the joint probability distribution of the final number of customers 

and final amount of reservation coming for boarding on the day of departure. 

Mathematica was used to solve the problem. 

The results from simulation confirm the same optimal results obtained by 

overbooking model, given the same setting of input variables. The simulation results 
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show that the overbooking model produces good predictions on real booking 

behaviors and ensures the minimum expected total cost. Results show that the optimal 

overbooking level can be obtained with practical meaning as compared with 

simulation. When parameters are within certain range, the optimal result obtained is 

reliable. In applying the model, it is necessary to first check whether parameters are in 

the valid space.  

Although the overbooking level obtained in this model is static in that it is determined 

before the booking opens and will remain constant along the process, the model helps 

understand the mechanism among arrivals, cancellations and overbooking control.  
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7. Conclusion 

 

Most airlines around the world are employing yield management, also known as 

revenue management, to help maximize revenue. Yield management is the integration 

of science, information technology, and business processes to deliver the right product 

to the right customer at the right time at the right price. The origin of yield 

management comes from the situation where perishable products exist.  

Along with the development of yield management in passenger sector, the techniques 

of yield management are now being introduced into air cargo service, drawing on the 

passenger experience. In both ticket booking and space booking processes, airlines 

usually adopt the strategy of overbooking. Overbooking is a practice of intentionally 

accept a certain more number of tickets or cargo bookings than the corresponding 

capacity along booking process to compensate for possible cancellations and no-

shows. The purpose of this study is to formulate mathematical models to help 

determine optimal cargo overbooking level so as to minimize the expected total 

under-sale cost and spoilage cost (or maximize the expected revenue). 

 

7.1 Concluding remarks 

The cargo booking process is formulated as a two-dimension Markov process in the 

statistic overbooking model. It is a combination of homogeneous Poisson arrival 

process with a constant arrival rate and non-homogeneous Poisson cancellation 

process with cancellation rate depending on the number of customers in the system. 

The two state variables are defined in the model: one is the number of bookings in the 

system and the other is the total amount of space that has been booked.  
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The arrivals (request for bookings) were assumed to follow Poisson process with a 

constant arrival rate and each individual demand was assumed to have a discrete 

uniform probability distribution, evenly taking a value from d...,,2,1 . Cancellation 

can only come from the bookings already in the system. The probability distribution 

of cancellation in one period can be purely derived from the booking status, so that 

the formulated process has Markovian property.  

Within each decision period, one and only one of three events will happen: arrival 

event (a request for booking), cancellation event (a request for cancellation) and non-

event (nothing happens). Limiting probability distribution is used to approximate the 

joint probability distribution of the final number of bookings and final amount of 

cargo coming for boarding on the day of departure. Since the resulting state-space of 

the model is large, the mathematical software Mathematica was used to solve the 

problem.  

Since cargo booking starts only a few weeks before departure, the validity of using 

limiting probability distribution has to be checked. A simulation program was used to 

confirm this. 

The simulation results showed that the proposed overbooking model converged within 

four weeks as used in the example. The overbooking model produced very good 

approximations on real booking behaviors and ensured the minimum expected total 

cost. Another point to be noted is that the optimal result is valid only when the model 

converges with booking period; otherwise, the result is useless.  

The models constructed in the thesis would be useful in airline cargo space booking 

operations. The study provides an effective mathematical approach to solve the real 

problem in air cargo space booking. It would greatly improve operational efficiency 
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of the cargo booking system and help airlines to maximize revenue from the cargo 

sector. 

 

7.2 Limitations and future research 

The overbooking model formulated is static in that the overbooking level is set at the 

beginning of booking process and it will not change over the whole process. In other 

words, the model is unable to capture the latest booking information. On the other 

hand, since the limiting probability distribution is used to approximate the joint 

distribution of final amount of cargo and final number of bookings coming for 

boarding, the overbooking model cannot be run several times along the process such 

that it can consider the latest booking information. This is because the limiting 

probability is in fact the behavior of the system when time goes to infinity. The 

optimal result is only valid when the transition matrix converges within booking 

period; otherwise, the model cannot be applied as discussed in the chapter 6. 

One possible future research direction is to delve into dynamic overbooking model, 

which the author has been working for a long time. One possible structure is to 

consider discrete-time dynamic programming formulation. Suppose there is a known 

cargo capacity on a combined-carrier for cargo booking. The booking process is 

arbitrarily divided into several periods depending on the booking status, time left 

before departure and the capability of airline to update the demand/cancellation 

information. The status of the system is the amount of reservation on hand and the 

system will be reviewed in each period. The interval between two review points does 

not need to be equal. Mostly probably, the interval at the beginning of the process is 

longer than the interval at the end of process.  
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Requests for booking will come along the booking process. The individual arrival is 

not considered in the model. Instead, the demand that will come in the one period 

(from one review point to the next review point) is estimated and the cancellation 

from the current reservation that may possibly come in the one period is also 

estimated. The total demand in each period depends on the time left before departure 

and the number of cancellations in one period depends on the booked reservation in 

the system. Given that these two distributions can be obtained from the airline, the 

objective of the model is to determine how much reservation to accept in the one 

period, named as booking limit, so as to maximize the expected total revenue, based 

on the booking status, time left before departure and the demand and cancellation 

distribution pattern. Since these two probability distributions can be modified from 

period to period, the booking limit can also be modified from period to period till 

flight take-off.  

Another possible research direction is to consider long-term allocation from airline’s 

perspective. As stated in chapter 3, airline will sign contract with freight forwarders 

long before actual booking for a specific flight begins. Signing long-term contract will 

decrease the risk to airline for not being able to find enough demand to fill up space 

on flights when actual booking starts. Long-term contract will decrease the variance 

of final show-up cargo on a flight and simplify the operation in airline. This practice 

will also help airline keep a certain market share, which will increase an airline’s 

competition in a long run. But freight forwarders signing contracts usually obtain a 

discounted price for cargo, which will in a sense decrease airline’s revenue. There is a 

decision to be made by airline as to how much capacity should be allocated to long-

term contracts. If less capacity is allocated to contract, airline may not be able to find 
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enough ad-hoc demand to fill the capacity left. Or if more capacity is allocated to 

contract, airline may loss some revenue. 

On the other hand, freight forwarders also need to consider how much capacity to 

obtain from airlines. If getting less, forwarders will loss money in the cast that more 

demand comes for reservation. If getting more, forwarders will loss of goodwill from 

airline if they cancel some contracted capacity, which will affect the competition in 

signing contract for the next season. The above mentioned problem can be modeled 

from airline’s perspective, forwarder’s perspective or both.  

From the literature received, few people have been working these two problems in 

airline industry. Air cargo revenue management is an excellent research area with a 

high potential for new models and procedures to accurately represent the cargo 

business, and to provide the required decision support. 
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Appendix A Program Flowchart 

i. Flowchart of static overbooking model: 

 Main Program: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Initialization: po, pu, λ, c, d; 

Preparation for searching OL*: starting point OL=1; 
Two booking limit: bla=c+OL; blb=bla+1; 

Calculate the E(TC) for bla and blb respectively:  
totcosta=Function(d, nca, bla, po, pu, c, λ); 
totcostb=Function(d, ncb, blb, po, pu, c, λ); 

totcosta>totcostb? 

OL* found: optimalol=bla-c; E(TC) found 

Output: optimalol and totalcost;

End 

Start 

Update bla and 
blb: 
bla=blb; 
blb=bla+1;

Y 
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 Function (d, nc, ol, po, pu, c, λ): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start 

Vector n used to store 
nXN : ]1[ +nXn = 

nXN ;  

Dimension of Trans_Matr: sumn=∑
+

=

1

1

][
nc

j

jn  

Trans_Matr defined: a, sumn× sumn; 

Vector τ used to store Can_Rate: 50][ jj =τ ; 

Prepare for calculating Can_Prob_Dis: 
Vector tempa[j]=1/d; 

*Initial Sub_Matr positioning Var.:  
nac0=nac1=0; nac2=n[1]=N0; nac3=nac2+n[2];  
n[2]=N1; 

Input 0,0A  and 1,0A  

nX =1 

Update positioning Var.:  
nac0=nac1; nac1=nac2; nac2=nac3; nac3+=n[ nX +2]; 
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If nX =1, input 0,1A ; Else input 1, −nn XXA :  
1.Calculate camin and camax; 

2. }{
1

n

X

j

j
N YyP

n

=∑
=

 are stored in vector tempb; 

3. Input 1, −nn XXA ; 
4. Update tempa=tempb; 

Input 
nn XXA ,  

Input 1, +nn XXA  

nX +=1 

nX ≤ nc? 

Formatting Trans_Matr: 
Transpose: linearmatrix=Transpose[a]; 
Diagonal items minus 1: linearmatrix[[j,j]]- =1; 
First row set to 1: linearmatrix[[1,j]]=1;

2

N 
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* The top-left items of the sub-matrix 1, −nn XXA , 
nn XXA ,  and 1, +nn XXA  are used to 

position them in the global transition matrix. Given nX  bookings in the system, the 

index of the top-left items of 1, −nn XXA , 
nn XXA ,  and 1, +nn XXA  are defined by (nac1+1, 

nac0+1), (nac1+1, nac1+1) and (nac1+1, nac2+1) in the program. 

 

 

2

Formatting RHS vector: b=[1,0,0…0]sumn 

Solve Trans_Matr: 
st=LinearSolve[linearmatrix, b] 

Calculate the marginal prob_dis of NY ; 
The results stored in vector stateprob

Calculate the E(TC) 

Return 
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ii. Flowchart of the Simulation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Start

Initialization: po, pu, λ, c, d, ol; 
Booking limit: bl=c+ol; 
Booking period: timeclock=28 days; 
Booked demands stored in vector redmd; 
Replicate: replicate=2000 

Can_Rate stored in vector τ: τ[xn]=(xn-1)/15; 

j=1 

Initial setting: xn=0, yn=0, noofevt=0; 

Generate the first waiting time stored in waittime; 
The remaining time: temptime=timeclock-waittime; 

First event: noofevt+=1; 

Arrival prob: arvlprob=
]1[ ++ xnτλ

λ
; 

Generate random number pseudevt from U(0, 1);

1

Initial setting: 
accunoofevt=accumun=accumov=frequn=freqov=0; 
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pseudevt≤ arvlprob?

1

Generate a random integer number 
pseudd from U(1, d); 
temp=yn+pseudd; 

Generate a random integer number temp 
from U(1, xn); 
Can. size: ca=redmd[temp]; 

temp≤ bl? 

xn+=xn; 
yn=temp; 
redmd[xn]=pseudd; 

Generate the next waiting time stored in waittime; 
The remaining time: temptime =temptime-waittime; 

temptime≥ 0?

Update the recording: 
redmd[temp]=redmd[xn]; 
xn-=1; 
yn=yn-ca;

2

Y N 

Y 

N 

N 

Y 
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2

Recording: rpltyn[j]=yn; rpltxn[j]=xn; 
Accumulative No. of event: accunoofevt + =noofevt; 

yn≤ c?

rpltcost[j]=pu(c-yn); 
accumun+=rpltyn[j]; 
frequn+=1; 

rpltcost[j]=po(yn-c); 
accumov + =rpltyn[j]; 
freqov + =1; 

j+=1

j≤ replicate?

Output:   1. Average load: aveyn=
replicate

krpltyn
replicate

k
∑
=1

][
; 

               2. Average cost: avecost=
replicate

ktrplt
replicate

k
∑
=1

][cos
; 

               3. Average under load: aveun=
frequn

accumun
; 

               4. Average overage load: aveov=
freqov

accumov
; 

               5. Average No. of events: avenoofevt=
replicate

taccunoofev
; 

End

Y N 

N 

Y 
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Appendix B Mathematica Program 

i. Optimal overbooking level program: 

expectedtotalcost@d_,nc_, bl_, po_, pu_,c_, λ_D:=ikjjjj H*Determine the size of Yn HXnL*L
m = Array@n,nc+2D;
For@j= 0,jd≤ bl,j++, n@j+1D =jHd−1L +1D;
breakn= j;
For@j= breakn,j≤ nc+2, j++,n@j+1D = Max@0, bl−j+1DD;
H*Dimensionof transitionmatrix*L
sumn= ‚

j=1

nc+1
n@jD;

  H*a is transitionmatrix*L
a= Table@0, 8sumn<, 8sumn<D;

H*CancellationRate*L
tau= Array@τ,ncD; DoAτ@jD =

j
50

, 8j,1,nc<E;
recura= Array@tempa, blD; recurb =Array@tempb, blD;
DoAtempa@jD =

1
d
, 8j, bl<E;

arr@x_D:= NA λ

λ + τ@xD E;can@x_D:= NA τ@xD
λ+ τ@xD E; expo@x_D := N@Exp@− λ − τ@xDDD;

H*Positionof Submatrix*L
nac0= nac1= 0;nac2 =n@1D;nac3= n@2D+nac2;

H*A0,0  and A0,1 *L
a@@1,1DD = N@Exp@−λDD;
DoAa@@1,jDD = NA1

d
H1− Exp@−λDLE, 8j, nac2+1,nac3<E;
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ForAi= 1, i≤ nc, i++,

nac0= nac1; nac1 =nac2; nac2= nac3; nac3 +=n@i+2D;
H*A1,0*L

IfAi== 1,

Do@a@@j, 1DD = N@H1−expo@iDL×can@iDD, 8j, nac1+1, nac2<D,
  H*Determine cancellationdistribution*L
ForAj= 1,j≤ nac2−nac1, j++,

camin= Max@1,j+i−1−Hi−1LdD; camax= Min@d, j+i−1− Hi−1LD;
tempb@j+i−1D =

1
d

 ‚
k=camin

camax
tempa@j+i−1−kD;

DoAa@@nac1+j, nac0+j−k+1DD =
tempa@j+i−1−kD
dtempb@j+i−1D H1−expo@iDLcan@iD,8k, camin,camax<E E;

Do@tempa@kD = tempb@kD, 8k, Min@id, blD<D E;
           H*Anc,nc*L
IfAi nc,

Do@a@@nac1+j,nac1+jDD = N@expo@iD + H1−expo@iDLarr@iDD, 8j, n@i+1D<D,
             H*Ai,i*L

Do@a@@nac1+j,nac1+jDD = N@expo@iDD, 8j, Min@n@i+1D, n@i+2D −d+1D<D;
DoAa@@nac1+n@i+2D −d+1+j, nac1+n@i+2D −d+1+jDD =

NAexpo@iD+
j
d
H1−expo@iDLarr@iDE, 8j,n@i+1D −n@i+2D +d−1<E;H*Ai,i+1*L

DoAa@@nac1+j, nac2+kDD = NA 1
d
H1−expo@iDLarr@iDE, 8j, n@i+1D<,8k,j, Min@j+d−1,n@i+2DD<E E E;

H*Transfer a into Ain AX=B*L
linearmatrix= Transpose@aD;
Do@linearmatrix@@j, jDD −= 1., 8j, 1,sumn<D;
Do@linearmatrix@@1, jDD = 1., 8j, 1,sumn<D;
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       H*The format of vector B*L
b= Array@itemb, sumnD;
itemb@1D = 1.; Do@itemb@jD =0., 8j, 2, sumn<D;

H*Solve systems equation*L
st= LinearSolve@linearmatrix, bD;
stsum = ‚

j=1

sumn
st@@jDD;

t3= Table@0, 8i, 1, nc<, 8j, 1, Min@bl, nc∗dD<D;
k= 1;
For@i= 1, i≤ nc, i++, Do@k++;t3@@i, i+jDD =st@@kDD, 8j, 0, n@i+1D −1<DD;
      H*Determine distribution of YN*L
stateprob= Array@tempd, Min@bl, nc∗dD +1D;
stateprob@@1DD = st@@1DD;
Do@stateprob@@jDD = Sum@t3@@k, j−1DD, 8k, nc<D, 8j, 2, Min@bl, nc∗dD +1<D;
                 H*Expted total cost*L
exptcost= po ‚

k=Min@c,d∗ncD+2

Min@bl,d∗ncD+1 Hk−1−cLstateprob@@kDD
+ pu ‚

i=1

Min@c,d∗ncD+1Hc−i+1L stateprob@@iDD
y{zzzzH* Main Program *LH*Input*L

c= 20;d =10; po= 1.3; pu =1.0; λ = 0.3;

     H*Starting Point of OL*L
ola= 1;

   H*bl stands for booking limit*L
bla= nca= c+ola;
blb= ncb= bla+1;
totcosta= expectedtotalcost@d, nca, bla, po, pu, c, λD;
totcostb= expectedtotalcost@d, ncb, blb, po, pu, c, λD;  

While[totcosta>totcostb, 
    bla=blb;blb=ncb=bla+1; totcosta=totcostb;  
    totcostb=expectedtotalcost[d,ncb,blb,po,pu,c, λ]]; 
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      (*Optimal OL Found*) 
optimalol=bla-c;       
                                                                                                      
     (*Output*) 
optimalol 
totcosta 
 
 

 

ii. Simulation program 

d= 10; λ =0.3; timeclock= 28; c=20; pu= 1.0; po=1.3;
replicate= 2000;

replicateyn= Array@rpltyn,replicateD;
replicatexn= Array@rpltxn,replicateD;
replicateCost= Array@rpltCost,replicateD;
averageyn= Array@aveyn,10D;
averageCost= Array@aveCost,10D;
averageun= Array@aveun,10D;
averageov= Array@aveov,10D;
averagenoofevt= Array@avenoofevt,10D;
ForAbl= 22, bl≤ 22, bl++,

SeedRandom@10blD;
accumun= accumov= accunoofevt= frequn= freqov= 0;
tow= Array@τ, blD;
DoAτ@jD=

j−1
50

, 8j,1, bl<E;
recorddemand= Array@redmd, blD;  
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ForAj= 1, j≤ replicate, j++,

xn= 0; yn =0; noofevt= 0;

waittime= −
1

λ +τ@xn+1D Log@1−Random@RealDD;
temptime= timeclock− waittime;

WhileAtemptime≥ 0,

noofevt= noofevt+1;

arvlprob=
λ

λ + τ@xn+1D ;
pseudevt= Random@RealD;
If@pseudevt≤ arvlprob, H∗arrival event∗L

pseudd= Random@Integer, 81, d<D;
temp= yn+ pseudd;
If@temp≤ bl,

xn= xn+1; yn= temp;
redmd@xnD = pseuddD,

temp= Random@Integer, 81, xn<D; H∗cancellation event∗L
ca= redmd@tempD;
redmd@tempD = redmd@xnD;
redmd@xnD = 0;
xn= xn−1;
yn= yn−caD;

waittime= −
1

λ +τ@xn+1D Log@1−Random@RealDD;
temptime= temptime− waittimeE;

accunoofevt= accunoofevt+noofevt;
rpltyn@jD = yn;
rpltxn@jD = xn;
If@yn≤ c,

rpltCost@jD = puHc−ynL; accumun= accumun+rpltyn@jD;
frequn= frequn+1,

rpltCost@jD = poHyn−cL; accumov= accumov+rpltyn@jD;
freqov= freqov+1D E;  
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averageyn@@bl−20DD = NA ⁄k=1
replicatereplicateyn@@kDD

replicate
E;

averageCost@@bl−20DD =
⁄k=1
replicatereplicateCost@@kDD

replicate
;

aveun@bl−20D =
accumun
frequn

;

aveov@bl−20D =
accumov
freqov

;

avenoofevt@bl−20D =
accunoofevt
replicate E;

averageyn
averageCost
averagenoofevt
averageun
averageov
frequn
freqov  

 


