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Summary

Visual information plays an important role in collections of digital video world. 

Since humans tend to use high-level semantic concepts while querying and 

browsing video/image databases, it is critical to develop techniques for semantic 

concept detection (SCD) from visual content. Generally, there are three level 

semantic concepts in videos, namely genre, event and object. Genre is the highest 

level semantic concept to characterize video segments. Object is the lowest level 

semantic concept to represent a meaningful concept. A good solution to semantic 

concept detection will facilitate video/image searching, surveillance and 

authentication, human computer interaction, video skimming and summarization 

etc. 

However recent research works indicate that SCD is difficult and challenging. In 

this thesis, we pay attention to two main challenges i. e. tremendous variability 

and uncertainty of the concepts and multi-modality information fusion. Our work 

consists of two parts, sports news genre identification and SCD in images i.e. 

automatic image annotation (AIA).   

For the former, the challenges are: first, the length of the video shots change 

greatly and some of them are very short due to the characteristics of news; second, 

apart from field shots of different games, there are also some non-field shots such 

as close-up to people which is confusing with field shots. Previous method 

attempted to catch motion pattern failed in this scenario because the pattern 

becomes unstable since shot length is too small. Other work attempted to classify 

shots by features extracted from key frame also didn’t work since temporal pattern 
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are ignored. In this thesis, we proposed a novel feature extraction method to 

overcome the above shortcomings. 

First, two novel features are extracted from frames, the features are sports field 

color ratio based on pre-determined field colors for specific types of sports, and 

background motion, ratio consistent with the background in motion; then compact 

features are calculated to characterize temporal patterns represented by 

aforementioned features (it is a few sequences for a shot). The advantage of our 

method is they are extracted from sample frames rather than key frames of a shot, 

more over they are compact and have some semantic meaning. The effectiveness 

of the method is demonstrated by our experiments conducted with challenging 

dataset from TRECVID 2003.  

Some challenges of AIA lie in image representation and multi-modality 

information fusion. Related work either ignores the contextual information i.e. 

information from neighbor regions or represents the contextual information by 

complicated models; moreover most work combine different features in a naive 

way. To meet the above challenges, we proposed a novel automatic image 

annotation framework and achieved promising results which outperform the state 

of the art works in two frequently used dataset: Corel CD images and TREC2003 

videos. Our contributions can be summarized from two aspects: first, proposed a 

novel image representation scheme with which an image can be treated as a text 

document, while the term of the document catch the contextual information 

effectively, so many text document techniques can be employed; second, proposed 

two flexible information fusion methods for fusing diverse visual features and 

multiple modalities.  
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Chapter 1                    

Introduction 

Nowadays, vast volumes of digital video data are generated in our daily life. How 

to effectively classify and retrieve the desired information from huge collections 

of digital video world is being one of the most crucial and challenging problems. 

In past years, researches on content-based image and video retrieval have been 

actively deployed in many research communities. There have emerged a lot of 

successful paradigms for video parsing, indexing, summarization, classification 

and retrieval [17,28,16,14,9]. Although fruitful results have been achieved in last 

decade, more challenging problems need to be addressed and overcome in the 

future. 

Most traditional efforts focused on retrieving video content by text annotation and 

low level features of images. However, they are questioned and challenged as 

following reasons. Firstly, the cost of manual text annotation is unreasonable 

expensive when the collections of videos are huge. Secondly, it is difficult to 

express semantic concept using low level features. Therefore, in order to 

effectively access the content of image and video data, many problems still need 

to be addressed and tackled. One of important issue is how to segment, classify 

and index the image and video data automatically or semi-automatically. Another 

crucial and challenging issue is how to bridge the gap between the low level 

features and high level semantic concepts.  
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Video databases serve as a perfect example of how the acute need for tools has 

severely constrained the use of multimedia content. A study by Smith and Chang 

reveals that 95% of the queries to their search engine [42] that supports low-level 

matching were semantic and key-word-based.  Therefore, it is a urgent need to 

conduct research on semantic concept detection in image/video. 

Research in understanding the semantics of image/video will open up several new 

applications. Multimedia databases can be better accessed if the index generated 

contains semantic concepts. Surveillance and authentication can definitely benefit 

from semantic analysis. Filtering of multimedia content can enable automatic 

rating of Internet sites and restrict access to violent content. Semantic 

understanding could mean better and natural interfaces in human computer 

interaction. Very low bit-rate video coding, video skimming, summarization, and 

transcoding are among the several applications that could benefit from semantic 

multimedia analysis. 

 

1.1 Problem definition and challenges 

As Figure 1-1 shows, the content of video can be semantically divided into three 

levels [43], the highest level is genre, which can themselves in turn be made up of 

genre. For example a sports program includes several kinds of sports games, 

basketball, ice hockey, baseball etc. The genre of a given video can be, and is 

often contested by reviewers or journalists. The determination of a genre is made 

by viewing the video content and often comes down to subjective views and 

semantic subtleties. 
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Figure 1-1 Semantic concepts of video 

The second level is events. Events are made up of objects and are defined by the 

objects interactions and interrelations over a finite period of time. Event detection 

approaches in general add complexity to the feature extraction process to 

determine the more specific nature of events when compared with genre 

classification.   

Finally, each event is shown to be made up of a number of objects. Objects are 

conceptually the lowest level of classification that can affect the semantic 

meaning of the video content.  

Usually, semantic concepts in video include genre, event and object. Many works 

have been conducted in detecting semantic concepts from video. The most famous 

activity is high-level feature extraction in TRECVID [56]. 17 semantic concepts 

are defined in this task in 2003. They are: Outdoors, News subject face, People, 

Building, Road, Vegetation, Animal, Female speech, Car/truck/bus, Aircraft, 

News subject monologue, Non-studio setting, Sporting event, Weather news, 

Zoom in, Physical violence and Person x. 10 concepts are defined in 2004, they 
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are boat/ship, train, beach, road, Bill Clinton, Madeleine Albright, Basketball 

scored, airplane takeoff, people walking/running, physical violence. The task is as 

follows: given the feature test collection, the common shot boundary reference for 

the feature extraction test collection, and the list of feature definitions, participants 

will return for each feature the list of at most 2000 shots from the test collection, 

ranked according to the highest possibility of detecting the presence of the feature. 

Each feature is assumed to be binary, i.e., it is either present or absent in the given 

reference shot. 

Semantic concept detection in TRECVID and automatic image annotation or 

automatic image captioning [21] is very similar tasks if we ignore the 

temporal-related features in video (e.g. temporal structure and motion), both of 

which are to decide which concepts are related to a given shot (the former) or an 

image. Automatic image annotation (AIA) is a task to automatically assign some 

keywords from a predefined set to an image based on its content. Generally these 

keywords are the semantic descriptors for the image content; it is obviously that 

each keyword represents a semantic concept. Therefore, assign keyword to the 

image is equivalent to detect a concept in the image.  

Recognizing class of objects is one of the fundamental challenges in computer 

vision. Some people address general object recognition [8] problem by defining 

the object as a semantic concept. From this point of view, object recognition is a 

semantic concept detection problem in computer vision. However, many 

researchers conduct their research work in a constrained data set 

[6,11,13,27,46,48,52,53]. Usually the object to be recognized is the main part of 

the image, the background is either very simple or with a little cluttered. Although 
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research work on object recognition also considers object occlusion and unknown 

location in training data, in general, object class recognition can be looked as a 

special case of semantic concept detection in constrained dataset and more 

importantly is a binary classification problem, say, for an image only object and 

background are considered.  

Research work conducted on above area indicate that there are some challenges to 

be met, which can be summarized from three main issues that need to be tackled 

in design a semantic concept detection system, namely representation, detection 

and learning. The first challenge is coming up with models that can capture the 

‘essence’ of a concept, i.e. what is common to the concepts that belong to it, and 

yet are flexible enough to accommodate concept variability (e.g. presence/absence 

of distinctive parts such as mustache and glasses, variability in overall shape, 

changing appearance due to lighting conditions, viewpoint etc). Because there is a 

tremendous variability and uncertainty of the concepts, and also in most of the 

training data the location of the concept is not given, people represent the concept 

with features extracted from a whole image. However, to make certain the features 

carry sufficient information and the learning method tractable, capturing the 

contextual information from different part of the image is critical.  

The challenge of detection is defining metrics and inventing algorithms that are 

suitable for matching models to images efficiently. Usually we extracted high 

dimensional feature from images, the curse of dimensionality make feature 

selection indispensable. And also various feature will be extracted, how to fuse 

them is also a very challenging problem. 
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Learning is the ultimate challenge. If we wish to be able to design visual systems 

that can detect, say, 1000 concepts, then effortless learning is a crucial step. This 

means that the training sets should be small and that the operator assisted steps 

that are required (e.g. label the image regions etc) should be reduced to a 

minimum or eliminated. So we have to face the challenge of insufficient training 

data and the inconsistency between training data and test data. We also need to 

consider use part of incomplete labeled data or even unlabeled data for training, 

which is hot issue in machine learning and have no good solution so far.  

1.2  Objectives 

The problem of detecting semantic concept from visual content is high 

challenging; it involved video/image representation, feature extraction and fusion 

and machine learning. To make the problem more focused, we conduct our 

research on two parts, namely sports news genre identification and automatic 

image annotation. 

For the former, the challenges come from the length of the video shot change 

greatly and some of them are very short. Previous method attempted to catch 

motion pattern failed in this scenario because the pattern becomes unstable since 

shot length is too small. We need to explore a new feature extraction method to 

overcome the above shortcomings. For the latter, challenges of AIA lie in image 

representation and multi-modality information fusion. Related works either ignore 

the contextual information i.e. information from neighbor regions or represent the 

contextual information by complicated models; A new method to represent image 

will be explored which can effectively capture and process the contextual 

information. 
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To sum up, efficiently capturing temporal pattern for video or contextual 

information for image, compactly representing the extracted information and 

effectively learning the concept model are key points to the solution. In addition, 

more and more digital images/videos are becoming available over the World Wide 

Web, but it seems that search engines are still in their infancy. While existing 

search engines normally retrieve images/videos based on low-level features, users 

often have a more abstract notion of what will satisfy them. In fact, there is still a 

big gap between user-based semantic concepts and system-based low-level 

features. Thus, high-level semantic concepts should make contribution to 

image/video retrieval in the internet. Hence in this research, we hope to extend our 

techniques to improve web-based image/video retrieval system to some extent.  

So we can summarize the three main objectives of our research as follows: 

• To tackle the problem of genre identification in sports news video, due to 

the variation of sports games and shot length, this problem is high 

challenging. 

• To tackle the problem of semantic concept detection in image with a novel 

framework, with which can partly meet the aforementioned challenges. 

Concretely, explore a method to represent the image content so that the 

context information can be caught and processed effectively;  

• To explore effective multi-modality information fusion methods so that 

different type of visual features can be combined flexibly with better 

performance than state of the art works. 
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1.3 Outline of the thesis 

This thesis is organized as follows. In next chapter, we survey some work related 

to semantic concept detection from three aspects namely visual information 

representation, statistical techniques to concept detection and multi-modality 

information fusion, the challenges are identified.  

In chapter 3, we address sports news genre identification problem by propose a 

novel feature extraction method which can effectively capture and characterize the 

temporal pattern and classify sports news video shots into predefined classes. 

After that we proposed a novel AIA framework to detect semantic concept in 

images in chapter 4. We firstly proposed a method to transform an image into 

text-alike document so various text categorization techniques can be employed to 

address the AIA problem; then introduced a discriminative multi-class classifier to 

tackle the problem; after that, two novel information fusion schemes are illustrated 

followed by all experiments analysis. Finally we concluded the thesis and 

discussed some future work. 
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Chapter 2 

Related Work 

2.1 Visual information representation 

The visual features extracted include features for representing color, texture, 

structure, shape, motion etc. This processing is done in different color spaces such 

as HSV, RGB [2], YIQ, YUV [19], Lab [54] etc. Color has been represented most 

frequently with histograms, correlograms and moments with varying bin sizes. 

Texture has been represented by Gabor texture [44], Tamura, Wavelets [2], etc. 

Structure has been represented by edge direction histograms [2,18], and edge 

maps. Shape has been represented by moment invariants, templates etc. Motion 

has been represented by motion direction and magnitude histograms, optical flow 

and motion patterns in fixed directions [19]. Visual features have been processed 

from key frames [2,18,54] only or from all I-frames [19,18] within a shot. 

Temporally extracted features also include temporal color correlogram and 

temporal gradient correlogram [34]. Features have been extracted from 

compressed domain [45] as well as decompressed frames. Visual features have 

also been extracted at global level, and regional level (segmented automatically or 

use of regular grids, layouts etc to achieve regional localization).  Although 

various visual features could be extracted from videos and images, in this thesis, 

we will pay our attention to the static visual features, i.e. visual features extracted 

from key frames or images.  
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For semantic concept detection, each image can be represented by a set of 

continuous visual features [25,12] or discrete symbols [10,20,30,8,22]. Duygulu et 

al [10] described images using a vocabulary of blobs. First, regions are created 

using a segmentation algorithm like normalized cuts. For each region, features are 

computed and then blobs are generated by clustering the image features for these 

regions across images. Each image is generated by using a certain number of these 

blobs. In [22], Jeon et al proposed the use of the Maximum Entropy approach for 

the task of automatic image annotation. Given labeled training data, Maximum 

Entropy is a statistical technique which allows one to predict the probability of a 

label given test data. The techniques allow for relationships between features to be 

effectively captured. In the paper, the authors created a discrete image vocabulary 

similar to that used in Duygulu et al [10] and [20]. The main difference is that the 

initial regions they used are rectangular and generated by partitioning the image 

into grids with fixed size rather than using a segmentation algorithm. Features are 

computed over these rectangular regions and then the regions are clustered across 

images. These clusters are called visual symbols to acknowledge that they are 

similar to terms in language. Using these visual symbols, Maximum Entropy can 

compute the probability and in addition allows for the relationships between 

visual symbols to be incorporated. The above models use a discrete image 

vocabulary. In this vocabulary, an image is tokenized by a set of symbols or a 

sequence of symbol. Because each region may just be represented by a few 

symbols, its number of dimensions is far lower than represented by continuous 

feature, it is easy to process those symbols feature. However, symbols are drawn 

out by unsupervised clustering, some information may be missed. 
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A couple of other models use the actual (continuous) features computed over each 

image region. This tends to give improved results. Correlation LDA proposed by 

Blei and Jordan [7] extends the Latent Dirichlet Allocation (LDA) Model to words 

and images. Lavrenko et al. proposed the Continuous Relevance Model (CRM) to 

extend the Cross Media Relevance Model (CMRM) [20] to directly use 

continuous valued image features. This approach avoids the clustering stage in 

CMRM. They showed that the performance of the model on the same dataset was 

a lot better than other models proposed. Feng et al also claimed that continuous 

feature works better than discrete features [12]. However, because the dimension 

of continuous feature is very high, it is very hard to consider the relation between 

different regions represented by those high dimensional features. In other words, 

most of work assumed the independence between regions in a same image. This is 

a weak assumption because the contextual information is very important in 

representing a concept for a image; moreover, it is very hard to fusion different 

features because they are all high dimensional. 

In these proposed models, some assume the set of features extracted from a set of 

grid or regions for an image representation is independent [10,20,24,12]. It is a 

well-known weak assumption, especially for the image. As we know, each grid or 

region has not sufficient discriminative power, while the contextual relation 

among the grids or regions can improve its expressive capacity. This contextual 

relation is embedded in the set of cliques for MRF [8] and the set of hidden states 

and their transitions for 2D-HMM [25].   
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2.2 Statistical techniques to concept detection 

2.1.1 TRECVID 

Most participating groups have approached the concept detection problem as a 

supervised pattern classification problem and have used different pattern 

classification and machine learning algorithms. One fundamental distinction that 

can be made for different groups is whether they approach this as a generic 

classification problem for classes of concepts or whether they approach this as a 

problem requiring a special algorithm for every concept. For example some 

groups use a specialized Face detector while others treat all concepts the same and 

pass the data through the identical processing pipeline for all concepts with the 

only difference in training being the ground truth used for each concept. Figure 

2-1 tries to capture the common elements of the processing pipeline used by most 

groups. Figure 2-1 shows a processing pipeline that starts from extracted media 

features. The next block is the feature-based models, classifiers such as Gaussian 

mixture models [18,44], support vector machines [1,2,18,54], hidden Markov 

models [19], fuzzy KNN [54]. The next block is the feature specific aggregation. 

This is achieved by approaches such as weighted averaging [41,1,2], boosting [54] 

etc. This step involves combining results over models that are built using the same 

features but with different parameter configurations or assumptions such as scale, 

Feature 
Extraction

Rule
Based
Post

Filtering

Cross
Concept

Aggregation

Cross
Media,
Cross

Feature
Aggregation 

Feature-
specific

Aggregation

Feature-
based

Models

Other Feature...
 

Figure 2-1 An abstraction of the common processing pipeline for concept detection [29] 
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frame etc. The next block shows the aggregation across features and modalities. 

Apart from approaches identical to the Feature-specific aggregation, However the 

aggregation here is complicated by the need for synchronization, and for cross 

feature normalization. The next block is the cross concept aggregation. This is 

typically the processing module that accounts for inter-conceptual context [29,2], 

composition of more complex concepts from other primitive models. Then comes 

the rule based module that is used by several groups for combination of models 

[33], filtering [2] etc. Different groups may have one or more of these modules in 

different order. For example the rule based filtering can be the first module [33]. 

2.1.2 Image annotation modeling 

Recently, a number of models have been proposed for image annotation 

[22,4,7,10,20,24,30,25,8,12]. Up to now, most of works for AIA is to develop a 

mapping function, which is a joint distribution of the observed visual features and 

the keywords. Many statistical models have been proposed to learn this joint 

distribution from the training images. For the AIA task, some proposed models try 

to directly estimate the joint distribution between the continuous feature or 

symbols and the keywords. They are the translation model [10], cross-media 

relevance model (CMRM) [20], multiple Bernoulli relevance model (MBRM) 

[12], maximum entropy (ME) [22], and Markov random field (MRF) [8]. Other 

models, such as 2D HMM [25], factor this joint distribution into a conditional 

distribution on the keywords for the visual feature and the keywords distribution. 

The first term is easily learned from the training data for a keyword when these 

keywords are assumed independent. The second term is often assumed uniform in 

this case. In contrary, the keyword distribution in CMRM, MBRM, and MRF is 
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estimated from the manual labels in the training set. Although the keyword 

distribution carries some semantic information about the image content, its 

estimation from the co-occurrence of image and keywords often faces severe data 

sparsity. So how much benefits can be gotten should be further studied.  

Although the proposed models achieve some success, there are still some 

challenging problems. Here we discuss two problems faced in semantic concept 

detection. The first is adaptively selecting discriminative features from the various 

visual features and exploiting their correlations. In the current framework, it is not 

easy. For example, in [20,24,22,25,12], adding one type of features only means 

increasing the dimension of the vector or adding another feature specific classifier 

[2]. They cannot pick out discriminative features for classification and cannot 

exploit the correlation information among these distinctive features. The second is 

that the model is often learned without discriminative training except for ME 

model trained by maximizing conditional entropy [22]. This causes the model 

much sensitive for mismatch between the training data and testing data. When 

they matched, good performance can be gotten. Otherwise, the performance is 

deteriorated. In many real-world applications, mismatch often occurs because it is 

expensive, even impossible in some cases, to collect large labeled data covering 

all possible conditions. This is the case we are always facing for concept 

detection. 

2.3 Multi-modality information fusion 

In general, multimedia data such as images and videos are represented by features 

from multiple media sources. Traditionally, images are represented by keywords 

and perceptual features such as color, texture, and shape. Videos are represented 
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by features embedded in the visual, audio and caption tracks. For example, when 

detection concept from video, non-visual features were extracted, such as audio 

features [1,2,18], ASR Transcript Based Features and Video Optical Character 

Recognition and Metadata [2,18]. These features are extracted and then fused in a  

complementary way for detecting semantic concept.  

Unfortunately, traditional work on multimodal integration has largely been 

heuristic-based. It lacks theories to answer two fundamental questions:  

1) What are the best modalities? 

2) How can we optimally fuse information from multiple modalities?  

Suppose we extract l, m, n features from the visual, audio, and caption tracks of 

videos. At one extreme, we could treat all these features as one modality and form 

a feature vector of l+m+n dimensions, as method 1. At the other extreme, we 

could treat each of the l + m + n features as one modality, as method 2. We could 

also regard the extracted features from each media-source as one modality, 

formulating a visual, audio, and caption modality with l, m, and n features, 

respectively as method 3. Almost all prior multimodal-fusion work in the 

multimedia community employs one of these three approaches. But, can any of 

these feature compositions yield the optimal result? 

There are extensive works to study above problems, especially in the task of 

TRECVID [2,47,50,7,30,22,12,24,55]. Almost all the successful systems in 

TRECVID apply various fusion methods to exploit the power of every available 

visual feature (e.g. color, texture, shape) and modality (visual, textual and audio 

and speech) for improving the system performance [47,2,55].  
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In method 1, various features are concatenated to construct a high dimensional 

vector. Then the classifier is trained on it. This method is natural and simple; 

however, it suffers many weaknesses. The first is the curse of dimensionality. It 

deteriorates robustness of the classifier, especially in the case of the sparse 

training samples. The second is that it is difficult to scale the different features for 

avoiding one of them dominating in the classification. It is not trivial to fuse 

features from the various scales often occurred. Since all features are intertwined, 

it is not easy to analyze the contribution of each type of feature.  Some people 

employ PCA or ICA to select optimal features, however, PCA and ICA cannot 

perfectly identify independent components for at least two reasons. First, like the 

way the k-means algorithm works, all well-known ICA algorithms need a good 

estimate of the number of independent components k to find them effectively. 

Second, ICA only performs the best attempt under some error-minimization 

criteria to find k independent components. But the resulting components, may still 

exhibit interdependencies.  

In method 3, two–step learning is often used. The first step is to learn a set of 

classifiers, each corresponding to one type of visual feature or one modality. Since 

each classifier only handles a few types of features, the affect of the curse of 

dimensionality is reduced to some degree. Analyzing the contribution of each 

feature is also easy. Adding another type of feature can be done by training a new 

classifier and will not affect others, which is very flexible. Each classifier makes 

its decision and a confidence value will be output. The second step is to fuse 

multiple decisions or confidence scores for the final decision. The popular fusion 

scheme is to learn a second classifier on the confidence scores as a feature, e.g. 
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product combination and weighted sum [15,55]. Other methods are the 

maximization / minimization product or average [2].  

However, for product combination, supposing that modalities are independent of 

each other, and we can estimate posterior probability for each modality accurately, 

the product-combination rule is the optimal fusion model from the Bayesian 

perspective. However, in addition to the fact that we will not have truly 

independent modalities, we generally cannot estimate posterior probability with 

high accuracy, product-combination rule is highly sensitive to noise, this strategy 

is not appropriate. The weighted-sum strategy is more tolerant to noise because 

sum does not magnify noise as severely as product. Weighted-sum is a linear 

model, not equipped to explore the interdependencies between modalities. 

Recently, Yan and Hauptmann [59] presented a theoretical framework for 

bounding the average precision of a linear combination function in video retrieval. 

Concluding that the linear combination functions have limitations, they suggested 

that non-linearity and cross-media relationships should be introduced to achieve 

better performance. So, Yi Wu et al [55] proposed the super-kernel fusion scheme 

finds the best combination of modalities through supervised training. or treating 

all features as one modality.  

The above methods have been proved successful in the tasks of TRECVID.  

However, they lack capturing the multi-category discriminative power of the 

training sample and features. It is well known that semantic concept detection are 

a multi-category, multi-label (i.e. an image may have more than one annotations) 

classification problem. The traditional methods often treat them as multiple 
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independent binary classification problems. They cannot efficiently exploit the 

multi-category discriminative power.  

 

 



 

 19

Chapter 3 

Sports news video genre detection  

 

3.1 Introduction 

The extensive amount of multimedia necessitates content-based video indexing 

and retrieval methods. Sports video, due to rich spatial-temporal patterns and 

having tremendous commercial potentials, has been widely studied. However, 

published papers seldom cover sports news video genre identification. Recently 

researchers seldom considered to detect text keywords through automatic speech 

recognition to address the problem. Because available speech recognition systems 

are known to be mature for applications with a single speaker and a limited 

vocabulary. However, their performance degrades when they are used in real 

world applications instead of a lab environment. This is especially caused by the 

sensitivity of the acoustic model to different microphones and different 

environmental conditions. Since conversion of speech into transcripts still seems 

problematic, integration with other modalities might prove beneficial [43]. In this 

research we cast our light into detecting genre by visual features. The challenges 

come from the content varieties of same sports and short shot length. Many works 

have been done for one kind of sports analysis, including segmentation and 

shots/scenes classification [60,32,26,37]; These are quite different from sports 

news shot classification in which shots may come from various sports and also 
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non-sports such as leadin, text caption and people talking.  

Other people studied sports genre classification [35,57,40,3] i.e. classifying sports 

video file into some predefined classes. Considering that different sports often 

present different motion patterns, some researchers attempt to catch motion 

patterns from motion vector [9,42,43]. However their methods may not work 

when the length of the video clip is short since the motion pattern becomes 

unstable at that time. 

On the other hand, Jurgen Assfalg et al [3] classified sports video clip by color 

histogram of the shot keyframes. However, keyframes may not contain significant 

part of the field; and because the number of the keyframes is small, they cannot 

represent the color distribution in all frames of the shot. Xavier et al [57] use 

dominant color of each frame to replace the color histogram. However, they only 

pick one color for each frame, so they may not differentiate sports with the same 

field color, for instance, golf and baseball. Moreover, the introduction of “do not 

care” color makes some shots such as pitching in baseball unclassifiable.  

In addition, some of the above papers indicate that classification accuracy can be 

improved by filter non-field shots [35,3]. Assfalg et al [3] proposed to 

differentiate sports field shot with player shots and audience shots using edge 

features, Drew D. Saur et al [35] proposed a method to differentiate wide-angle 

from close-up by computing camera motion parameter and intra-macroblock in a 

P frame. However their method may not work in classifying close-up shots 

because the former make too strict background assumption for close-up shots and 

the latter assumes that camera moves in wide-angle shots. 

In this chapter we proposed two kinds of features to address the above problems. 

The first is three field color ratio namely yellow (for basketball), green (for 
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baseball and golf), and white (for ice hockey). The second is background motion 

and consistency motion ratio; the latter is the ratio of inner MB (Ref. Figure 3-3) 

whose motion is consistent with the background. We compute these two features 

once for every four frames. Based on them, a 11-dimension feature vector is 

calculated for each shot; using them, a decision tree is employed to classify the 

sports news shots. 

To demonstrate the effectiveness of our methods, we select TRECVID 2003 

dataset to conduct our experiment. Basketball, ice hockey, baseball and golf, 

which compose of 90% of sports field shots in CNN headline news, are four 

predefined classes of field shots. Other three classes are: leadin, which is the fixed 

introduction and ending of the sports news; text, which is text caption shots; and 

non-field sports shots including close-up to people, surroundings of the field and 

audience.   

 

3.2 Feature extraction  

3.2.1  Color features 

 

For each sports type, the color of the playing field is either fixed or it varies in a 

small set of possibilities [3]. The most common field colors in sports video are 

green (golf, baseball, etc) , brown/yellow (basketball, volleyball, etc), and white 

(ice hockey etc). Therefore, we define these three field colors at the current stage. 

After frame decoding, each pixel in the frame is represented by 24-bit colors. We 

quantize the 24-bit colors into standard 256 colors. Then, by learning from some 

example areas, three color sets are learned, namely yellow set (denoted by Y), 
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green set (G) and white set (W). In our experiment, there are 20 elements in Y, 12 

in G, and 8 in W. 

When a frame is quantized into 256 colors, representing it with C(i, j); let Y(i, j), 

G(i, j), W(i, j) denote the binary mark of yellow, green and white color 

respectively, where (i, j) is the coordinate of the pixels in the frame.  As a 

example, we give yellow mark formula:  

1 ( , )
( , )

0 ( , )

C i j Y
Y i j

C i j Y

∈
=

∉

⎧
⎨
⎩

 

Since most of field shots are wide-angle or middle-angle shots, we can remove 

other non-field pixel with yellow in field shot by conducting morphological 

operation. Figure 3-1 shows an example. (a) is an original frame of a basketball 

game and Figure (b) shows the yellow binary mark before morphological 

operation. The last result is given in (c). 

Then the yellow field color ratio can be calculated as follows, 

1 1

_ ( , ) /( * )
W H

i j

y ratio Y i j W H
= =

= ∑∑ , 

where W is the width of the frame, H is the height of the frame. Similarly, by 

replacing Y(i, j) with G(i, j) or W(i, j). Three field color ratios are computed once 

every 4 frames; let it be a column vector (3x1). So for a shot we can get a matrix 

(3xm), m=[n/4], where n is the number of frames in the shot. Figure 3-2 shows 

some typical examples of sports news shot.  The ratios of leadin shot varied  
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(a) 

 

(b) 

 

(c) 

Figure 3-1 Yellow mark extraction binary result, (a) Basketball frame (b) Initial yellow mark (c) 
Final yellow mark color features of a shot 

we can get green color ratio g_ratio and white color ratio w_ratio too.  

greatly and frequently; on the contrary, ratios of text are very stable. Yellow is the 

largest ratio color in basketball, but value is about 0.15 
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(a) 

 

   (b) 

  

(c) 
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                                                (d) 

Figure 3-2  field color ratios of typical shot. X-axis is frame number 

(a) leadin (b) text (c) basketball field (d) non- field shot 

when the field is small part of view.  No ratio is great than 0.1 in some non-field 

shot. 

 

3.2.2  Motion features 

We extract motion features from P frame in compressed MPEG video streams. 

We observed that in most of the close-up shots of sports news, movement of 

foreground is often quite different from that of background; even a slight 

movement also causes big differences in motion vector. On the other hand, to 

differentiate some baseball shots with golf shots, background motion is a critical 

factor. For example, passing ball in baseball field shot also has very high green 

ratio like most of the shots in golf. But, in order to track the ball, the camera in 

baseball shot moves quickly which is quite rare in golf shots. Therefore, we 

proposed a method to extract a new motion feature as follows. 



 

 26

As Figure 3-3 illustrates, we partition macroblocks in a frame into 4 parts. Apart 

from the lowest 3 rows (Ads. MB) which always show some non-relevant 

information in CNN headline news and the periphery macroblocks, the neighbor 

of the periphery macroblocks are background MB because most of the time, most 

of them belong to the background. The remains are inner MB. 

Put all the background MB motion vectors into a set, discard the outlier, we 

compute the average of remain motion vectors in two directions and denot them as 

the background motion vectors (mvxbg, mvybg). 

Then the motion consistency ratio of inner MB is computed as follows, 

_ _

1 1

_ ( , ) /( _ * _ )
W inn H inn

i j

mv ratio cons i j W inn H inn
= =

= ∑ ∑  

{1

0
( , )

if non IntraMB and D TH

otherwise
cons i j

− <
=       

2 2[ ( , ) ] [ ( , ) ]inn bg inn bgD mvx i j mvx mvy i j mvy= − + −  

where mvxinn(i,j) is the motion vector of an inner MB whose position is the i-th 

row and the j-th column of the inner MB area. IntraMB is a kind of macroblock 

which is not coded through motion compensation. TH is a threshold, which is set 

to 8 in out experiment.  W_inn and H_inn are the width and the height of the 

inner MB area in unit of macroblocks.  
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Figure 3-3 Macroblocks partition in a frame 

Motion features of a shot 

Similar to color features, we can get motion features for a shot.  Figure 3-4 

shows some examples.  Figure 3-4(a) and 4(b) is a shot of close-up of a talking 

man, sometime he turn his head during the conversation. So we can see that the 

 

  

(a) 
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               (b) 

   

(c) 

  

                              (d) 

Figure 3-4 motion features of typical shot. X-axis is frame number. (a) and (b) a close-up of a 
talking man (c) baseball shot (passing ball ) (d) golf 
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background motion is relatively small while consistency ratio is lower than 0.8 

many times. 4(c) and 4(d) are two shots with high green ratio, 4(c) is baseball shot 

while 4(d) is golf shot. Obviously, the background motion value of or baseball 

change more greatly than that of golf. 

 

3.2.3  Compact shot features and classification 

  

Although there are obvious patterns in the field color ratio curves and motion 

feature curves, the features matrices are not suitable for shot classification since 

their size (column) change greatly with the shot length and the dimension is still 

high. So we compute the characteristic parameters of each feature, then a compact 

features can be figured out for each shot.  

Let y_ratio(i) represents yellow ratio features of a shot, where i=1,…,m,  the 

meaning of m is same as Section 3.2.1.  We compute the mean and the variance 

of the yellow ratio features as follows: 

1

_ ( ) /
m

y
i

m y ratio i m
=

= ∑
 

2

1

v ( _ ( ) ) /( 1)
m

y y
i

y ratio i m m
=

= − −∑
 

Similarly, the mean and the variance of green ratio features mg,vg, that of white 

ratio features mw,vw, and that of background motion vector mvx,vvx mvy,vvy are also 

calculated.  
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Different from above features, for the last motion feature i. e. consistency ratio of 

inner MB, we do not compute its mean and variance. Observing that in close-up 

shots, this value is often below a threshold THR, we compute the compact 

features like following formula: 

1 _ ( )
( )

0mvr

mv ratio i THR
n i

otherwise

>
=
⎧
⎨
⎩  

1

( ) /
m

mv mvr
i

r n i m
=

= ∑
 

where i,m is the same as above, mv_ratio(i) is the consistency ratio features of a 

shot. THR is set to 0.8 in our experiment. 

Now for a shot, we get 11 features. These features are used to classify the shots by 

decision tree.  

 

3.3 Experiment results 

We use TRECVID 2003 video to conduct our experiment. The shots in this 

dataset change greatly both in content and length. The length of the shots ranges 

from 1 second to 15 seconds.  The basketball shots almost include all kinds of  

NBA field. The baseball shots cover every kind of baseball segments such as 

pitching, running to base, passing ball etc. Golf shots also contain shots from first 

stroke to pushing the ball into the hole, tracking the ball etc. The others shots 

covers the talking people, the surroundings of the sports field, close-up to people 

in the field or besides the field, wide-angle of audiences etc.  
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First the sports video are extracted from CNN headline news, and then encoded 

with TMPEG, the GoP is set to IPPP. Color features are extracted from each I 

frame and motion features from the first P frame of each GoP.  

We separate the dataset into two parts, half of them are for training and validation, 

while the other for testing. C4.5 decision tree is selected as classification tools 

through a machine learning tool Weka.  

The results are given in Tables 3-1 and 3-2. Table 3-1 is a confusion matrix where 

each row shows the classification of ground truth. For example, the first row 

shows that only 1 leadin shot is misclassified into a non-field shot (``Others'' in 

the table) while 17 of them are correctly classified. Table 3-2 shows the 

classification performance, including Precision (denoted by P), Recall (denoted by 

R), and F-measure (denoted by F) 

 

Table 3-1   Confusion matrix of test data 

          L T O BK HK BS G 

Leadin 17 0 1 0 0 0 0 

Text 0 11 0 0 0 0 0 

Others 0 1 67 0 1 0 0 

Basketball 0 0 0 29 0 1 0 

Hockey 0 1 2 1 11 0 0 

Baseball 1 0 6 1 0 16 1 

Golf 0 0 3 0 0 0 3 

 

The tables show that the classification of leadin, text, and basketball shots are 

quite good. However baseball and golf are easy to be mixed with “others” shots. 

The macro precision is 0.883, macro recall is 0.822.  Moreover, apart from 

non-field shots, the classification accuracy of field shots is very high.   
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Table 3-2   Performance of classification 

Class L T O BK HK BS G 

P 0.944 0.846 0.848 0.935 0.92 0.94 0.75

R 0.944 1.000 0.971 0.967 0.73 0.64 0.50

F 0.944 0.917 0.905 0.951 0.82 0.76 0.60

 

 

From the experiment results, we find that half of golf shots and baseball shots are 

miss-classified into “others”, a close look to the failed examples indicated that 

some of the error are caused by the shots content including both the golf field and 

the surrounded environment. For example in CNN headline news on April 20, 

1998, a golf shot from frame 39706th to 39898th covered both sky video segments 

and field segments, which is not segmented into two shots because of an 

unidentified gradual transition. On the other hand, we also find our experiment 

assigned a basketball tag to a baseball shot which is in CNN headline news on 

April 20, 1998 (frame 38925th to 38984th). After analyzing the feature, we found 

that the color features for the baseball fields fell into yellow colors area, which is 

the typical color for basketball field. This phenomenon is caused by the color of 

the grass becomes nearly yellow in the field.  

These failed examples show the importance of shot boundary detection and 

moreover the further analysis to the visual content. For the later, we gave part of 

illustration in the next chapter.  
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Chapter 4 

A Text Information Retrieval Approach to 

Automatic Image Annotation 

In this section, a novel framework is proposed to address automatic image 

annotation problem. This framework benefits from the text representation of the 

image content and multi-class, multi-label maximal figure of merit (MC MFoM) 

based discriminative classifier learning. Here an image is first tokenized into some 

sets of the symbols. Each set is extracted from a distinctive visual feature and 

characterizes the image content from a different point. For example, the color set 

of symbols can be detected from the color features in the training set and the 

texture set of symbols is gotten from texture features. It is similar to the proposed 

models. Unlike the proposed methods, which model co-occurrence of the symbols 

(often 1 symbol set is used) and keywords, here we can use multiple sets of the 

feature specific symbols and a set of patterns is further extracted from these 

symbols. An image can be described using the patterns and their co-occurrence. 

The patterns may be unigram, bigram for a specific set of symbols or 

cross-unigram or -bigram. Anyway, the patterns can be detected using any 

available technology. If we treat the patterns as a visual vocabulary, an image can 

be viewed as a text document. This view facilitates fusing the distinctive visual 

features and exploiting cross-relations among them. It is also easy to utilize the 

high-order statistics of the patterns (e.g. long-term contextual) since many 

techniques have been developed in text information retrieval to automatically 



 

 34

finding semantic relations among the word terms. For each image document, a 

high dimensional vector is used to represent it.  

 

4.1 Text Representation for Image Content 

Image representation has been exhaustively investigated in the communities of 

image processing and computer vision. A lot of excellent works have been done 

for feature extraction. A common sense is that there is not any single visual 

feature that can describe the rich content of an image and differentiate the objects 

and concepts. Efficiently fusing them together is necessary and useful for many 

tasks such as object recognition, AIA and CBIR. A fact is that human can 

discriminate two objects or describe different concepts using the most expressive 

attributes and ignore the non-informative ones. For example, only color feature 

will work well for discriminating a red apple and a green one while the shape will 

not do. Therefore, adaptively selecting the most informative features is important 

as well as the fusion.  

4.1.1 Image Representation 

If the objects in the images can be robustly and correctly detected, the image 

content can be depicted using their combination and relations. Unfortunately, the 

generic object detection is still an unsolvable problem in computer vision, 

although some special detectors have been successfully developed such as the face 

detector. Contrary to the object feature, the mid-level visual features (e.g. the 

region based features) and low-level feature (e.g. the patch or grid based features) 

are easily accessed. In these methods, an image is first divided into a set of the 



 

 35

regions using the automatic segmentation algorithms (e.g. normalized cut [39]) or 

a set of patches or grids. Then the statistical visual features are easily extracted 

from them and an image is described using the set of visual features. These visual 

features can be in a continuous space [24,25,12] or are further tokenized using the 

unsupervised clustering techniques [20,22,8]. These are the commonly used 

representations in the current CBIR and AIA systems.  

4.1.2 Text Representation 

Text categorization and information retrieval have been deeply studied. Many 

successful techniques have been developed, e.g. feature selection and reduction 

algorithms, semantic inferring techniques, robust classifier learning, etc. A good 

survey can refer to [38]. An obvious benefit from text representation is that it is 

relatively easy to explore the (e.g. syntactic and semantic) relations among the 

terms. However, this symbolic representation is naturally in hand like a text for an 

image. Representing the image at the meaningful level requires the object 

detection, which is still a hard problem. A coarse and easy method is to quantize 

the regions or grids to get the symbols. Some of the proposed models learn the 

co-occurrence statistics between the symbols and keywords. The statistical 

contextual dependence among the grids or regions can be incorporated such as 

2D-HMM [25] and MRF [8].  

In this chapter, we will further extend the symbolic image representation and view 

it as a text document where the contextual dependence is explicitly represented by 

a pattern. Here the pattern means a symbol sequence such as the n-gram in the 

language model or a combination of some symbols according to some syntactic 

rules. A visual lexicon will be constructed using all detected patterns. Figure 4-1 
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shows a possible way to get the direction specific bigram patterns. For the site X22, 

its direction specific bigrams (e.g. X22X21, X22X23, X22X11 and X22X33) are gotten 

from its neighboring sites. Here 8 directions are shown. The extracted bigrams 

will be treated as the distinctive patterns for the image representation. Sometimes 

these patterns can be clustered to reduce the size of the visual lexicon. In Figure 

4-1, for example, the horizontal bigrams such as X22X21 and X22X23, can be 

merged. When the visual lexicon is gotten, any image can be viewed as a text 

document with the terms in the visual lexicon to describe its content. Except for 

the n-gram patterns, many other patterns can be exploited, e.g. location or position 

specific pattern, shape pattern, etc.  

The benefits from the text representation for the image are obvious. With the text 

representation the diverse visual features are transformed into the distinctive 

patterns and are uniformly treated. The importance of each visual pattern can be 

explored using the feature selection techniques. It divides the image annotation 

problems into the pattern mining, selecting and modeling, which is relatively 

easier comparing to learning an overall joint distribution for the image content and 

labeled keywords. It also facilitates the integration of the state-of-art feature 

extraction techniques and specific visual feature detectors. Due to the text 

representation, the high-order statistics among the patterns, e.g. syntactic and 

semantic, can be extracted using the automatic semantic inferring techniques such 

as latent semantic indexing (LSI).  

The arising question is whether the text representation will work and the symbols 

and their statistics have sufficient discriminative power. The past works have 

partially given a positive answer.  
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Figure 4-1 An example to show bigram patterns (Xi is the site for the i-th grid) 

 

4.1.3 LSI-based Image Representation 

When the visual lexicon is obtained, an image document is often represented by a 

multidimensional feature vector with the dimension equal to the size of the 

lexicon. Each component of the vector corresponds to its importance of a pattern 

occurred in the image document. In many typical real-world applications, there 

are usually more than ten thousand entries in the lexicon, e.g. there will be 10,000 

bigrams patterns if the size of symbols is 100. Many techniques, such as feature 

selection [5], have been proposed to reduce the dimension. Latent semantic 

indexing (LSI) [15] is an efficient way to achieve both feature extraction and 

reduction. The clustered words based on LSI have some semantic relation, which 

is a long-term dependence among the words. The LSI-based language model is 

also studied in [15]. Here we also apply LSI for feature reduction and selection for 

the image representation, although it is difficult to explain the meaning for each 

component in the LSI space. We expect LSI can capture some long-term 

contextual dependence among the image patterns. As in [15], singular value 

decomposition (SVD) based LSI is used to get a lower dimension than the original 

one by decomposing the term-document matrix H into a multiplication of three  

X11 X12 X13

X21 X22  23 

X31 X32 X33
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                         TUSVH =                             (4.1) 

Here U:M×R is the left singular matrix with the rows ui, 1≤i≤M, U: M×R is the 

diagonal matrix of singular values S1≥S2≥…≥SR>0 and V: K×R is the right singular 

matrix with rows vj, 1≤j≤K. M is the size of the visual lexicon and K is the number 

of the image documents in the training set. 

Both the left and right singular matrices are column-orthogonal. If only the top P 

singular values are remained in matrix S and other (R-P) components are zeroed 

out, we can effectively reduce the LSI feature dimension to P that could be much 

smaller than R. By doing so, three matrices are much smaller in the size than those 

in Eq. (4.1) and the computation requirements are greatly reduced.  

In matrix H, its (i,j)-th element, H(i,j), describes the association between the i-th 

visual pattern and the j-th image document. It is defined as 

( ) jjii ncjiH ,)1(, ⋅−= ε                      (4.2) 

where ci,j is the number of times of the i-th visual pattern occurred in the j-th 

image document, nj the total number of visual patterns which appear in the j-th 

image document, εi the normalized entropy of the i-th term in the training set 

which is further defined as  
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Where ti=∑jci,j denotes the occurrence times of the i-th visual patterns in the 

training set. 
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Using the above definitions, any image document, which is represented by a 

vector dT in the original space with a dimension M, can be characterized using an 

R dimensional vector, v, in the LSI space as in Eq. (4.4). 

1Tv d US −=                           (4.4) 

4.2 Model Estimation With MC MFoM Learning 

Algorithm 

Many statistical models have been proposed for AIA [7,10,20,24,22,30,25,8,12]. 

Some of them, such as MRF, CMRM, CMRM, translation model, etc., are directly 

to model the joint distribution between the set of visual feature (continuous or 

discrete symbols) and the annotated keywords, while others such as 2D-HMM 

model the keyword conditioned distribution of the visual features. The contextual 

dependence is also explored for MRF and 2D-HMM while CMRM, CMRM and 

translation model ignore it. As discussed in Section 4.1, we describe the image 

using a high dimensional vector with each component corresponding to its 

contribution for classification. This let us have more choice for the classifier 

learning. Many classifier learning algorithms have been proposed and studied for 

text information retrieval [5] such as SVM, naïve Bayesian, decision tree. Here we 

just use a linear classifier for the image annotation problem because of its 

simplicity and meaningful explanation for its weights, although others can also be 

exploited.  

Like text categorization, image annotation is also a multi-class, multi-label 

classification problem. The conventional solution for this classification problem is 

1) to learn multiple binary classifiers each corresponding to a class and then 
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independently decides whether a class label should be assigned to a test sample or 

not, or 2) to learn a multi-class classifier and assign the top-N class labels to a test 

sample. As discussed in [15], the former method cannot capture discriminative 

power simultaneously among the multiple classes while the latter has not a 

flexible decision, i.e. fixed size of labels is not a good choice in most of cases. To 

overcome these problems, Gao [15] proposed the multi-class, multi-label maximal 

figure-of-merit (MC MFoM) learning algorithm. This learning algorithm can fully 

take advantage of both positive and negative training samples. In contrast to the 

popular binary classification algorithms, e.g. SVM, the MC MFoM can 

simultaneously learn a multi-class classifier with an embedding multiple-label 

decision rule and the preferred metric. It was shown on the task of text 

categorization that the MC MFoM learned classifier is more robust, particularly 

for small sample training, and work better than the corresponding binary MFoM 

classifier and linear SVM. Since MC MFoM is a discriminative learning algorithm, 

most expressive and informative features for classification will be picked out in 

the learning.  

In the next, we will first introduce multiple-label decision rules for automatic 

image annotation and then MC MFoM learning for AIA. 

4.2.1 Multiple-Label Decision Rules 

In the image annotation problem, there are multiple ground truth labels for an 

image. Here we will first discuss the multiple-label decision rule introduced in 

[15]. The same notations are used. Given N keywords, C={Cj, 1≤j≤N}, and an 

annotated training set, T={(X,Y)}, and Cj is the j-th keyword, with X being a 

sample in a D-dimensional space, Y a set of labels for X and a subset of C. N 
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classifiers with the model parameter set, Λ are estimated from T. Denote Λj as the 

parameter set for the j-th keyword, Cj, then Λ={Λj, 1≤j≤N}. In this chapter, a 

linear discriminant function, gj(X; Λj), is used for the j-th keyword. It is defined as 

                     ( ) jjjj bXWXg +⋅=Λ;                        (4.5) 

where Wj is a weight vector with an equal dimension to X, and bj a shift. They are 

the model parameters for the j-th keyword.  

Then a competitive model, named class anti-discriminant function, is defined for 

each keyword, 
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Where C-
j is a subset containing the most competitive keywords against Cj, |C-

j| is 

the cardinality of the subset, Λ− is the parameter set for all the competitive 

keywords, and η is a positive constant. Eq. (4.6) measures the score from all the 

competing categories and it functions as a negative model for the j-th keyword, 

which is different from the binary classifier where the negative model is trained 

from all negative samples. Based on Eq. (4.5) and (4.6), the decisions rule for 

multiple classes, multiple labels classification problem is defined as the following:  
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For many real-world applications, it is not necessary to verify all keywords to get 

multiple labels. It is enough to verify only the top N-best keyword candidates 

according to their confidence rankings estimated from Eq. (4.5).  

4.2.2 MC MFoM Learning 

To learn multiple linear classifiers defined in Eq. (4.5), the MC MFoM learning is 

applied. For this learning method, an overall objective function, which 

approximates an interested metric as well as embedding multiple-label decision 

rule in Eq. (4.7), is designed. This function should be a continuous and differential 

function for optimization. To accomplish this, a one-dimensional class 

misclassification function, dj(X; Λ), is introduced, 

                   ( ) ( ) ( )−Λ+Λ−=Λ
j

XgXgXd jjjj ;;;                     (4.8) 

where dj(X; Λ)<0 when a correct decision is made and otherwise, dj(X; Λ)≥0. It is 

equivalent to Eq. (4.7) but it is a differential and continuous function while Eq. 

(4.7) is a discrete function. To further normalize the value in Eq. (4.8) and 

simulate the classification error, a class loss function, lj(X; Λ), for the keyword Cj, 

is defined,  

( ) ( )( )βα +Λ−+
=Λ ;1

1; Xdj je
Xl

                     (4.9) 

where α is a positive constant that controls the size of the learning window and the 

learning rate, and β is a constant measuring the offset of dj(X; Λ) from 0. They are 

empirically determined. The value of Eq. (4.9) simulates the error count made by 

the j-th classifier for a given test sample X. 
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With the definition in Eq. (4.9), we can approximate the commonly used metric, 

i.e. precision, recall and F1, for information retrieval. For a class Ci, they are 

defined respectively, 
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Where TPj is the true positive, FPj is the false positive, and FNj is the false 

negative for the j-th keyword. Correspondingly, their approximated functions on 

the training set T are as follows:  

( ) ( )∑ ∈
∈⋅Λ≈

TX jjj CXXlFN 1;                     (4.13) 

( )( ) ( )∑ ∈
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TX jjj CXXlFP 1;1                   (4.14) 

                   ( )( ) ( )∑ ∈
∈⋅Λ−≈

TX jjj CXXlTP 1;1                   (4.15) 

Here 1(.) is the indicator function of any logical expression. With the above 

definition, the overall objective function can be defined according to the chosen 

metric. Here we will optimize the micro-averaging F1 measure to estimate the 

linear model parameters. So the objective function is defined as follows to 

approximate it, 

( ) [ ]∑∑∑∑ ====
++=Λ

N

i i
N

i i
N

i i
N

i i TPFNFPTPXL
1111

22;            (4.16) 



 

 44

To find its solution, the generalized probabilistic descent (GPD) algorithm is used, 

which iteratively estimates the model parameters.  

4.3 Discriminative fusion scheme 

Now we will study the fusion techniques in the unified framework for AIA 

discussed above. Since the fusion is based on the multi-category discriminative 

learning, we name it the discriminative fusion schemes. In the next, an early 

fusion scheme based on the statistical intra- and inter- pattern association is first 

discussed. Then a late fusion scheme using the model-based transformation is 

proposed. 

4.3.1 Fusing with Ensemble-Pattern Association  

As discussed in Section 4.1.2, an image can be tokenized using multiple sets of 

the visual lexicons, each of which may be extracted from a distinctive visual 

feature. They are used together for the image representation. For each distinctive 

visual lexicon, the intra-lexicon statistical association, e.g. unigram and bigram of 

the visual patterns, can be extracted to describe the co-occurrence of the 

intra-lexicon visual terms. To characterize the statistical association of the 

inter-lexicons among the different visual lexicons, the statistical co-occurrence of 

the cross-pattern can be extracted. Here the cross-pattern means a combination of 

more than one pattern, each of them from a distinctive visual lexicon. For example, 

if there are two visual lexicons, A (color) with M patterns (i-th pattern is Ai) and B 

(texture) with N patterns (j-th pattern is Bj), then the intra-lexicon association may 

be the count of Aj occurred for unigram or that of (Ai, Aj) for bigram. Similarly, 

the intra-lexicon association for B can be extracted. If using the unigram and 
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bigram extracted from one feature to describe the image content, the dimension of 

the feature vector will be M×(M+1) for A and N×(N+1) for B. If only using the 

cross-pattern to represent the content, its dimension will be M×N. 

Given an image, its content is represented by the associations of the intra- and 

inter- lexicon patterns. Since there are multiple visual lexicons, which can be used, 

this fusion method is named the ensemble pattern association (EnPA) based fusion. 

All the extracted associations construct a high-dimensional vector for the image 

representation. Then a classifier is trained based on this representation.  

The EnPA method can explicitly describe and embed the spatial contextual 

information (e.g. bigram) and the relation (inter-pattern co-occurrence) among the 

different type of features. Since all the features are tokenized, we can treat all 

visual features using a unified view. This is a good property considering that the 

visual features maybe extracted using the different scales and techniques. This 

representation facilitates to exploit more high-order relations (e.g. syntactic and 

semantic association) among the patterns using the developed techniques for text 

categorization. For example, the LSI technique can be applied to exploit the 

semantic relation among the visual patterns. 

4.3.2 Model based Transformation 

The model based transformation (MBT) fusion can be treated as a supervised 

mapping from the low-level feature space to the semantic space. It is a later fusion 

method. In this approach, the first step is to train a classifier for a specific feature. 

For a N-concept annotation problem, N discriminant functions are learned from 

the training samples. In this chapter, we apply the MC MFoM learning to train this 
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classifier. If we treat the N discriminant functions as the set of the basis for the 

transformation, we can obtain a new N-dimensional feature with the similarity 

between a given sample and a discriminant function as each of its components. In 

this section, the similarity is the confidence score defined in Eq. (4.8), which is 

similar to the model based vector representation in [31]. The difference is that our 

confidence score is derived from the multi-category classifier while theirs are 

from the binary classifier (i.e. SVM).  

Since the MBT based new feature describes the confidence measure and is 

normalized by the competitive model, it will be more compact with a smaller 

variance comparing to the raw low-level feature. Using the MBT method, it is 

easy to fuse multiple distinctive features. For example, if there are K types of 

features, we can get K N-dimensional features in the model space and then 

concatenate them into a K*N-dimensional feature to describe the image content in 

the model space. With the new representation, we can train another classifier 

using the MC MFoM learning for the final decision. 

The MBT method map any type of features (e.g. visual, textual, audio/speech) into 

a common space, i.e. model space. And then the discriminative MC MFoM 

learning can automatically weight each type of features. If a visual feature or 

modality is more powerful and discriminative, it has a heavy weight. Otherwise, 

its weight will be smaller. It should outperform other heuristic methods such as 

the maximization / minimization product. 
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4.3.3 Combinational Scheme 

The two fusion methods discussed in the above are totally different. They can be 

applied separately as well as can be used together. This combinational fusion 

scheme will provide more flexibility for the semantic concept detection for the 

TRECVID and AIA.  

 

4.4 Experimental Results and Analysis 

To evaluate the proposed AIA framework, we will show the annotation results 

based on the Corel data set. 

4.4.1 Data Set and Baseline 

To provide a meaningful comparison with the previously reported results, we also 

use the dataset provided by Duygulu et al. [10]. The dataset consists of 5,000 

images from 50 Corel Stock Photo CDs. Each CD has 100 images on the same 

topic. Each image contains an annotation of 1-5 keywords. Overall there are 374 

keywords. The dataset is divided into a training set with 4,500 images and a test 

set with 500 images. The baselines are the translation model (TM), CMRM and 

maximum entropy (ME) and their evaluation results are from [22]. In [22], 125 

visterms are clustered from the feature vector consisting of the average LAB color 

and the output of the Gabor filters in the training set. 

In our experiment, an image with the size 128x192 or 192x128 is segmented into 

a set of grids with the size 16x16. In this experiment, we only use the color feature, 

which includes the mean and stand deviation of RGB and LAB and its dimension 
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is 12. Then the k-means clustering technique is used to get 64 symbols for the 

color feature. The visual lexicon includes unigram and bigram of the symbols. 

Except for 64 symbols, a ‘NULL’ symbol is added. If a grid is at the boundary of 

the image, we will count the bigram between the grids with the ‘NULL’. Other 

bigrams are extracted from 4 directions, namely horizontal, vertical, first diagonal 

and second diagonal. Totally the lexicon size is 4,288. Then an image is 

represented using a 4,288 dimensional vector extracted as in Section 4.1.3. The 

LSI-based feature has a full rank 2,293 and we only use 600 dimension based on 

our preliminary experiment. Other features such as texture, shape, etc. are not 

tried to explore. The fusion function of this framework is not evaluated here. We 

will analyze the performance of AIA for only color feature and its adaptively 

feature selection property. 

In this experiment, the settings for the control parameters are set as α=60, β=0.03, 

η=7. Only the top-20 keyword candidates according the scores calculated from Eq. 

(4.5) are verified. For each keyword, we use 20 competitive keywords to estimate 

the scores in Eq. (4.6). 

4.4.2 Comparison with Baseline 

The overall results for 374 keywords are shown in Table 4-1. Comparing to the 

translation model, CMRM model and ME model [22], our model is best in term of 

precision, recall and F1. We get a macro-averaging F1, 0.135, comparing with 

0.11 Figure 4-2 illustrates some annotation examples for 4 selected test images,  
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Ground truth: cat, 

wood, tiger, water 

CMRM: people, water, 

rocks, buildings 

MFoM: water, forest, 

cat, tiger 

 

(a) 

Ground truth: bear, 

polar, snow, tundra 

CMRM: water, sky, 

plane, jet, tree 

MFoM: tree, bear, 

snow, polar, tundra, 

ice 

(b) 

 
Ground truth: marine, 

iguana, water 

CMRM: water, sky, 

plane, bear 

MFoM: water, sky 

 

 

 

(c) 

Ground truth: 

locomotive, railroad, 

smoke, train 

CMRM: water, sky, 

tree, people 

MFoM: moutain, sky, 

tree, train, locomotive, 

railroad, aerial 

(d) 

Figure 4-2 Some annotation examples for CMRM and MFoM 

where the CMRM annotation results are from [24]. They clearly show that our 

MFoM learned for ME, 0.10 for CMRM, and 0.05 for TM. Overall 102 keywords, 

which have a F1 more than zero, are detected. Of 374 keywords, only 260 in the 

test set have more than 1 test image. For 260 keywords, our model has a 

macro-averaging precision, 0.196, recall, 0.193, and F1, 0.193. Considering that 
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only grid-based color feature is used in our experiment and it is simpler than the 

used in TM, CMRM and ME, this result is surprising. Table 4-2 lists the precision 

(P), recall (R) and F1 measure for 49 keywords best predicted in terms of F1 

metric model is better than CMRM. Even for the false accepted annotations, they 

still have some semantic relations with the ground truth.  

For example, ‘Forest’ is a false accepts for image (a), while it has a strong relation 

with the ground truth annotation ‘wood’. Similar observations are seen in images 

(c) and (d).  

More importantly, our model can flexibly decide the size of the annotation, where 

CMRM can only use fixed size. 

Table 4-1 Comparison with TM, CMRM and ME 

 TM CMRM ME MFoM 

P 0.06 0.10 0.09 0.136 

R 0.04 0.09 0.12 0.134 

Macro-averaging

F1 0.05 0.10 0.11 0.135 

P NA NA NA 0.310 

R NA NA NA 0.374 

Micro-averaging

F1 NA NA NA 0.339 

 

 

4.4.3 Adaptive Feature Selection 

From the linear discriminant function in Eq. (4.5), it is clear that the component of 

the model parameter, Wj, represent importance of its corresponding component in 

the feature vector for classification. As MC MFoM trains the classifiers for all 

keywords simultaneously, it is expected that the MC MFoM will pick out the most 

expressive and discriminative feature for classification. This property is shown in 
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Figure 4-3   with selected keywords, ‘sky’, ‘sun’, ‘plane’, and ‘jet’. Here the 

initial weight is the mean of the feature vectors in the training set for a keyword, 

and the learned weight is the model parameters after 30 iterations in the GPD 

training. 

Although each component in the feature vector and model parameters has not 

meaning, we can still learn some good properties for the MC MFoM training. For 

the initial models of 4 keywords, they have a weak discriminative power. For each 

model, only a few components have a dominative contribution to the decision. But 

they are non-discriminative and non-informative for differentiating the distinctive 

keywords. After the MC MFoM training, the weight distribution is significantly 

changed. Some important components are enhanced while other non-informative 

components are suppressed. Even for the semantic-related keywords, e.g. ‘sun’ 

and ‘sky’, and ‘plane’ and ‘jet’, their weight distribution shows more difference 

than the initial weight. 

4.4.4 Discriminative Feature Fusion 

To study the efficiency of the fusion methods, the following experiments are done 

on the Corel dataset: 

E1: only color feature. The color feature is tokenized and the color visual lexicon 

with 64+652-1 patterns is extracted (one NULL symbol is added to describe the 

context of a grids at the image boundary). Then a term-document matrix with the 

size 4,288 * 4,500 (row is the pattern and column is the document) is constructed, 

LSI is used to reduce the dimension. Its full rank is 2,451 and only 600 

eigenvalues are kept. Finally, each image is represented by a 600-dimensional 
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vector in the LSI space. And the linear classifier is trained using the MC MFoM 

learning. 

E2: only texture feature. Similar to E1, we apply LSI to get a 600-dimensional 

vector (here full rank 2,354) for the image representation. 

E3: fusion by concatenating color and texture to get 24-dimensional feature. Then 

the feature is tokenized. Similar to E1, we apply LSI to get a 600-dimensional 

vector (full rank 2,219) for the image representation. 

E4: EnPA fusion (see Section 4.3.1). Two visual lexicons extracted in E1 and E2 

are merged and then cross-pattern between the color pattern and texture pattern is 

counted. A new visual lexicon with 20,864 patterns is built. Then LSI is applied to 

get 600-dimensional feature (full rank 2,435). 

E5: MBT fusion (see Section 4.3.2). Use the multi-category linear classifier 

trained on E1 to map the color feature into the 374-dimensional model space. 

Similarly, the texture is also mapped into the model space using the classifier 

trained in E2. Then a new 374*2 feature is constructed to represent the image, and 

a new linear classifier is then trained on this feature using the MC MFoM 

learning. 

To evaluate the performance, we use the mean precision (P), recall (R), and F1(F) 

measure of the overall concepts as the metric [22,12,24]. In addition, the number 

of the detected concepts (# of detected) is also compared. The comparison for the 

above 5 experiments is shown in Table 4-2.  
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Table 4-2  Performance comparison for Corel dataset 

 P R F # of detected 

E1 0.166 0.130 0.146 99 

E2 0.105 0.102 0.103 90 

E3 0.142    0.121 0.131 100 

E4 0.153 0.151 0.152 109 

E5 0.163 0.179 0.171 126 

 

Table 4-3  Performance comparison for TRECVID 2003 

 P R F # of detected 

E1 0.238 0.195 0.214 10 

E2 0.180 0.222 0.199 10 

E5 0.196 0.288 0.233 10 

 

From Table 4-2, it is clearly seen that the proposed fusion methods (E4 & E5) 

outperform the systems only using one single type of feature and the 

concatenating method. The simply concatenation fusion even worsens the 

performance. It is a common phenomenon observed. That is the reason some 

researchers use various validation method to choose the best concatenation 

method [2]. Comparing to the best result with the single feature (E1), the EnPA 

only has a little improvement (~4.1%) in term of F1 measure. But we can see 10% 

improvement in term of the number of the detected concepts. The best result (E5) 

is obtained using the MBT fusion. The improvement reaches ~17.1% in term of 

F1 comparing to the result using the single feature (E1), and ~27.7% in term of the 

detected concept number. Comparing to the EnPA fusion, the F1 measure is 

improved ~13.2% and the number of the detected concepts is increased 

~15.6%.Similar experiments (E1, E2 and E5) are done on the TRECVID dataset 

except for the concatenation (E3) and EnPA (E4) fusion. 
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Figure 4-3 Adaptive feature selection for MC MFoM 

The results are listed in Table 4-3. Similar observation is seen as for Corel dataset. 

The MBT fusion gets a best result with an improvement, ~8.9%, in term of F1.  

These experimental comparisons clearly show that the proposed fusion methods 

work well for the easy dataset as Corel and for the challenging dataset as 
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TRECVID.  Table 4-4 shows the performance for best predicted 49 keywords, 

which give us a roughly idea about the effectiveness of the proposed method. 

Table 4-4 Best predicted 49 keywords in terms of F1 

 P R F1 

FESTIVAL 1.000 1.000 1.000 

WHALES 1.000 1.000 1.000 

POOL 0.909 0.909 0.909 

PILLAR 1.000 0.700 0.824 

NEST 0.750 0.857 0.800 

FORMULA 0.750 0.750 0.750 

TURN 0.600 1.000 0.750 

JET 0.765 0.684 0.722 

SWIMMERS 0.667 0.750 0.706 

TRACKS 1.000 0.546 0.706 

POLAR 0.727 0.615 0.667 

CORAL 0.667 0.667 0.667 

PATH 0.500 1.000 0.667 

TIGER 0.750 0.600 0.667 

BENGAL 0.667 0.667 0.667 

LAWN 1.000 0.500 0.667 

MOOSE 0.500 1.000 0.667 

MARSH 0.500 1.000 0.667 

OUTSIDE 0.500 1.000 0.667 

PROTOTYPE 0.600 0.750 0.667 

MAUI 1.000 0.500 0.667 

PLANE 0.778 0.560 0.651 

OCEAN 0.600 0.667 0.632 

FOALS 0.444 0.889 0.593 

CAT 0.833 0.455 0.588 

SKY 0.447 0.800 0.573 

BLACK 0.400 1.000 0.571 

CARIBOU 0.667 0.500 0.571 

PYRAMID 0.500 0.667 0.571 

HORSES 0.429 0.750 0.546 

MARE 0.412 0.778 0.539 

CARS 0.778 0.412 0.539 

FLOWERS 0.565 0.482 0.520 

RUNWAY 0.333 1.000 0.500 

RESTAURANT 0.500 0.500 0.500 
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SLOPE 0.333 1.000 0.500 

ZEBRA 0.500 0.500 0.500 

CANYON 1.000 0.333 0.500 

GOAT 0.500 0.500 0.500 

BIRDS 0.667 0.353 0.462 

PLANTS 0.546 0.400 0.462 

RAILROAD 0.600 0.375 0.462 

SUNSET 0.333 0.714 0.455 

SNOW 0.546 0.387 0.453 

SCOTLAND 0.350 0.636 0.452 

DEER 0.400 0.500 0.444 

BEAR 0.700 0.318 0.438 

WATER 0.330 0.621 0.431 

LOCOMOTIVE 0.600 0.333 0.429 
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Chapter 5  

Conclusion and future work 

5.1 Conclusion 

In this thesis, two parts of research work on semantic concept detection from 

visual content are introduced, namely sports news video genre identification and 

automatic image annotation.  

For the former, a novel feature extraction method has been proposed. Sports field 

ratio based on pre-determined field colors for specific types of sports, and 

background motion, ratio consistent with the background in motion are proposed 

features, they are applied to classify the sports news video shots into 7 predefined 

video shot classes including 4 sports field namely basketball, baseball, ice hockey 

and golf, using C4.5 decision tree. The advantage of our method is they are 

extracted from every frame rather than one key frame in a shot, more over they are 

compact and have some semantic meaning. The effectiveness of the method is 

demonstrated by our experiments conducted with challenging dataset from 

TRECVID 2003.  

For the latter, a multi-class text categorization framework for automatic image 

annotation is proposed. The proposed approach benefits from a text representation 

for image content and MC MFoM multi-class discriminative classifier learning. 

The image-text representation applies the ensemble visual lexicons detected with 
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the various techniques to tokenize a given image and then represent its content 

using multiple symbolic documents. This method makes it feasible to exploit the 

statistical associations among the different features and more high-order statistics. 

In this framework, two fusion methods, i.e. ensemble-pattern association and 

model-based transformation, are discussed. Based on the representation, the MC 

MFoM learning is used to train robust multi-class classifiers jointly. In the 

training stage, the weighting coefficients can be automatically adjusted according 

to their importance for annotation. Finally, the proposed framework is evaluated 

on the Corel dataset and TRECVID 2003 dataset. Our experimental results show 

that this framework supplemented with the model-based transformation fusion 

achieves a high performance for image annotation. 

For the Corel dataset, we obtain a macro-averaging F1 of 0.179 for the 374 

concepts, which outperforms the state-of-art results using the MBRM model.  

 
 

5.2 Summary of the major work 

 A novel feature extraction method was proposed, the feature can capture the 

temporal pattern of sports news video shot and classify them into some 

predefined classes. The effectiveness of the method is demonstrated by very 

challenging dataset.  

 A novel image representation technique was proposed. The novelty is the 

contextual information of the images can be represented as bigrams in a text 

document, so many text document techniques can be employed to address 

image annotation problem.  
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 A discriminative multi-class classifier method was employed to conduct AIA. 

With this framework two flexible information fusion methods for fusing 

diverse visual features were proposed. Experiments conducted on CorelCD 

and TRECVID show above methods outperform the state of the arts AIA 

techniques. 

5.3 Future work 

Although promising results were achieved by the above work, however, the 

pattern extracted from images has no obvious meaning, which impairs the 

effectiveness of the framework. To tackle the SCD problem more effectively, we 

should find some semantic mid-level features to bridge gap between 

non-meaningful low-level features and high meaningful semantic concepts. These 

mid-level features or patterns are intermediate representations of the content, 

which can facilitate the description of the content. We will conduct research on 

employing semi-supervised learning techniques to detect patterns from large-scale 

image/video database. We expect that this approach can make the detected patters 

have semantic meanings to some degree.  On one hand, because these patterns or 

mid-level features are clustering result from low-level features, their dimensions 

should be far smaller than the original low-level features; moreover, having some 

semantic meaning they can be a good intermediate to bridge the gap between 

low-level features and high-level semantic concepts. On the other hand, we only 

need to label very small training data to carry the prior knowledge; it obviously 

lessens the boring and error-prone manually labeling burden.   

So we can summarize the three main objectives of coming research: 
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 To bridge the gap between low-level features and high-level semantic 

concepts we employ semi-supervised clustering method to exploit 

intermediate features. The key research points are how to model the prior 

knowledge of semantic concept and design an objective function to integrate 

them. These constraints can be formulated as an instance [50,23], a statistical 

model [49], or some other properties of the data (e.g. locally lineal, [36]). In 

Wanjun Jin ACMMM’04 [51], negative constraint are formulated according 

to co-occurrence based correlation and thesaurus (WordNet) based correlation. 

On the other hand, due to imperfect segmentation or small size grids, the 

regions are often over-segmented. How to group those regions is a 

challenging problem. We can label a few images as a positive soft constraint 

to improve the clustering result.  

 Employ our semantic concept detection method to more challenging data such 

as images collected from internet, combine the detected concept with other 

visual features to improve the performance of current image retrieval system.    

 Extending the above method to spatial-temporal signals to detect concepts 

from video shots. Some method to cluster temporal signals need to be 

explored. HHMM is successfully employed to extract patterns from video 

signals (Lexing Xie et al, ICME’03 [58]). We need to find some method to 

improve temporal signal clustering. 
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