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Summary

Storage requirements continue to grow because of popularity of data intensive

applications and rapidly increasing client performance. Application servers require

a secure, scalable, highly-available, manageable, and high performance storage so-

lution. However, the current file-level Network Attached Storage (NAS) solution

is good at cross-platform, but poor in performance, while the block-level Storage

Area Network (SAN) solution can achieve high performance, but lacks effective

means to provide cross-platform data sharing. In order to address these issues, this

thesis attempts to provide an intelligent storage solution based on the Object-based

Storage Device (OSD) concept. Object, which is regarded as the convergence of

file and block technologies, can provide the advantages of both of them. Based on

the object access, BrainStor integrates the strengths of NAS and SAN technologies

without inheriting their weaknesses. BrainStor can achieve the high performance

from direct access and the cross-platform data sharing ability from high-level ab-

stract.

This dissertation presents the design and implementation of BrainStor, a

Fibre Channel OSD prototype. BrainStor introduces an OSD architecture with

unique Object Cache Module and Object Bridge Module. There are six key compo-

nents in BrainStor: Object Storage Client (OSC), Object Storage Module (OSM),

Object Cache Module (OCM), Object Bridge Module (OBM), Object Manager

Module (OMM) and Security Manager Module (SMM). The independent OMM

and OSM clusters are adopted to separate the metadata path and data path.

Hence the metadata server is removed from the data path and the OSM pro-

vides the direct data access to clients. Moreover, the OBM makes the BrainStor

system compatible with the existing SAN components, such as the RAID systems
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from different vendors. In addition, Brainstor also offers a scalable cache solution.

OCM, as a centralized cache for the entire BrainStor system, can be scaled to meet

the increasing and unlimited performance needs of storage applications.

Through analyzing BrainStor test results, the dissertation demonstrates its

strengths and further identifies some critical issues about object storage system

design. Iometer and IOzone tests show that the storage scalability can greatly

improve the overall performance of BrainStor. The PostMark test unveils the

metadata management challenges in BrainStor design.

In order to address the metadata management issue, the dissertation further

proposes a Hashing Partition (HAP) method in the OMM cluster design. HAP

uses hashing method to avoid the numerous metadata accesses, and uses filename

hashing policy to avoid the multi-OMM communication. Furthermore, based on

the concept of logical partitions in the common storage space, the HAP method sig-

nificantly simplifies the implementation of the OMM cluster and provides efficient

solutions for load balancing, failover and scalability. Normally, the OMM cluster

supports scalability without any metadata movement. However, if the OMM clus-

ter scales to a number that is greater than the preset scalability capability, some

metadata must be redistributed in the OMM cluster. The Deferred Update algo-

rithm is proposed to improve the response time of this process and minimize its

effects.
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Chapter 1

Introduction

1.1 Motivation

In the information age, storage requirements continue to grow because of rapidly

increasing client performance, popularity of data, such as video and music, and

data intensive applications such as data mining and electronic commerce. Stored

information is at least doubling every 24 months [1]. The growing demand of stor-

age asks for a secure scalable, highly-available, manageable, and high performance

storage solution.

Nowadays, there are three basic storage architectures commonly in use. They

are Direct Attached Storage (DAS), Network Attached Storage (NAS) and Storage

Area Network (SAN). In addition, based on the SAN architecture, SAN file system

also emerges.

1.1.1 Direct Attached Storage (DAS)

Direct Attached Storage (DAS) refers to block-based storage devices, which directly

connect to the I/O bus (e.g. SCSI or ATA/IDE) of a host[4]. In this topology,

as shown in Figure 1.1, most of the storage devices such as disk drives and RAID

systems are directly attached to a client computer through various adapters with
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Storage
SCSI and etc

Figure 1.1: Direct Attached Storage (DAS)

standardized protocol, such as Small Computer System Interface (SCSI) [2].

Although DAS offers high performance and minimal security concerns, there

are some inherent limitations. DAS can provide limited connectivity and scalability.

It can only scale along with the server that it is attached to. DAS is an appropriate

choice for applications, whose scalability requirement is low.

1.1.2 Network Attached Storage (NAS)

Network Attached Storage (NAS) [8] is a LAN attached file server that serves

files using a network protocol such as Network File System (NFS) [9] or Common

Internet File System (CIFS) [3]. Figure 1.2 shows a typical NAS architecture. NAS

can also be implemented on top of a SAN or with DAS, which is often referred to

as a NAS head, as shown in Figure 1.2.

NAS provides excellent capability for data sharing across multi-platform. All

authorized hosts within the same network of the NAS server can access its storage.

Different platforms, such as Windows and Linux, can access the same NAS server

synchronously.

In terms of scalability, capacity of a single NAS server is limited by its direct

attached storage. A NAS head enables better scalability solution from the SAN

that it connects to.

However, NAS leads to an obvious bottleneck. The metadata about the file

attributes and location on devices is managed by the file server, hence all I/O
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NAS
(CIFS/NFS Server)

Attached Storage

LAN/WAN Network

CIFS/NFS ClientsCIFS/NFS Clients

NAS Head
(CIFS/NFS Server)

Storage in SAN

Figure 1.2: Network Attached Storage (NAS)

requests must go through the single file server. No matter NAS is used as a single

file server or NAS head, clients’ access performance is limited by the performance

of the file server.

1.1.3 Storage Attached Network (SAN)

Storage Area Network (SAN) is a high-speed network (or sub-network) that is

dedicated to storage. SAN interconnects all kinds of data storage devices with

associated application servers [4]. In a SAN, application servers access storage at

block level.

SAN addresses the connectivity limits of DAS and thus enables the storage

scalability. New storage devices can be easily connected to a SAN in order to

improve the capacity as well as performance. With this added connectivity, SAN

also needs a better security solution. Therefore, SAN introduces concepts such

as zoning and host device authentication to keep the fabric secure [5]. Figure 1.3

shows a typical SAN setup. All kinds of servers centralize their storage through

a dedicated storage area network. Storage systems, such as RAID subsystem and
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LAN/WAN Network

Window ClientUnix Client Linux Client

File Server VoD Server Database Server

Storage Area Network

Storage
Storage

Storage

RAID Subsystem JBOD

Figure 1.3: Storage Area Network (SAN)

JBOD, connect to SAN and make up a high performance storage pool.

1.1.4 SAN File System

In order to address the performance and scalability limitations of NAS, especially

NAS head, some SAN file systems have emerged in recent years. A SAN file system

architecture is shown in Figure 1.4. Separated servers are built to provide metedata

services. SAN file system can remove the bottleneck at the file server from the data

path and have the direct block-level access to storage. And the SAN file system

can provide the ability of cross-platform data sharing.

In the SAN file system architecture, storage are exposed to all the application

servers. At block level, there is no accordingly security mechanism for each request.

Thus, security is one important issue in SAN file system. Currently, many high-end

storage systems adopt this kind of architecture. For example, IBM’s StorageTank

[6], EMC’s High-Road, Apple’s XSAN and Veritas’ SANPoint Direct.
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Figure 1.4: Architecture of SAN File System

1.1.5 Evolution of Storage

Each of DAS, NAS, and SAN can be used to solve problem specific to particular

applications. Several studies have been conducted on the performance of these

three network storage architectures [10, 11, 12, 13]. Some researchers even explore

the iSCSI-based SAN performance in wireless environment [14].

At enterprise level, DAS is fading due to its limitation of scalability. NAS

achieves cross-platform by providing a centralized server and well know interfaces

such as CIFS and NFS. However its performance is poor due to queuing delay

at the central file server and poor performance of TCP. SAN can achieve great

performance through direct access, low latency fabric and aggregation techniques,

such as Redundant Array of Independent Disks (RAID) [15]. However SAN does

not perform well in cross-platform data sharing. The trade-off in today’s architec-

tures is therefore among high performance (blocks), security, and cross-platform
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data sharing (files). While files allow one to securely share data among systems,

the overhead imposed by a file server can limit performance. On the other hand,

increasing file serving performance by allowing direct client access comes at the

cost of security. Building a scalable, high-performance, cross-platform, secure data

sharing architecture requires a new interface that provides both the direct access

nature of SANs and the data sharing and security capabilities of NAS. OSD [16],

as a next generation interface protocol, is proposed to meet this goal.

Storage System

File System

I/O Application 
Server

Storage System

File System

I/O Application 
Server

Clients

Storage Device

OSD Storage 
Management

Network 2 
(FC,Ethernet)

File Manager

I/O Application 
Server

Storage Device

OSD Storage 
Management

Network 2 
(FC,Ethernet)

Network 2 
(FC,Ethernet)

File Manager

I/O Application 
Server

Storage System

File System

I/O Application 
Server

NAS 

Storage System

File System

I/O Application 
Server

NAS 

Network 1 (Ethernet)

Storage System

File System

I/O Application 
Server

Network 2 
(FC,Ethernet)

Storage System

File System

I/O Application 
Server

Network 2 
(FC,Ethernet)

Network 2 
(FC,Ethernet)

DAS (Direct 
Attached Storage)

NAS (Network 
Attached Storage)

SAN (Storage 
Area Network)

Clients Clients Clients Clients

OSD (Object -based 
Storage Device)

Figure 1.5: Evolution of Storage

The evolution of storage follows the steps shown in Figure 1.5. The first step is

from the direct connected DAS to the networked storage: NAS, which puts storage

server on the user network. Then a dedicated storage network, SAN, emerged. In

SAN, online server can access the storage at block level through another high speed

network, which is normally based on Fibre Channel [17] or iSCSI [18]. In this way,

all the traditional local file systems can be adopted in a SAN infrastructure easily.

Now, storage is moving to Object-based Storage Device (OSD). In OSD,

the storage management component of normal file system is moved to the storage

system. Storage is accessed at object level. OSD is designed to integrates the
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strengths of NAS and SAN technologies without inheriting their weaknesses.

The strength and weakness of DAS, NAS, SAN and OSD can be summarized

in Table 1.1 [21].

Table 1.1: Comparison of DAS, NAS, SAN and OSD
Storage Architecture DAS NAS SAN OSD

Access Layer Block File BLock Object
Security High Medium Low High

Storage Management High/Low Medium High High
Device and Data Sharing Low High Medium High

Storage Performance High Low High High
Scalability Low Medium Medium High

Device Functionality Low Medium Low High

1.2 Object-based Storage Device (OSD): Future

Intelligent Storage

1.2.1 Object Storage

Nowadays, industry has begun to place pressure on the storage interface, demand-

ing it to do more. Since the first disk drive in 1956, disks have grown by over seven

orders of magnitude in density and over four orders in performance. However the

block interface of storage has remained largely unchanged [19]. As storage archi-

tectures becoming more and more complex, the functions that storage system can

perform, are limited by the stable block interface.

In addition, storage devices can be a far more useful and intelligent devices

with the knowledge of data stored on them. Even with the integrated advanced

electronics, processors, and buffer caches, today’s hard disks are still relatively

“dumb” devices. Disks perform two functions: read data and write data, and

know nothing about the data that they store. The basic premise of OSD concept is

that the storage device could be an intelligent device if it knew more information

about the data it stores.
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OSD is the device that stores, retrieves and interprets objects, which contains

user data and their attributes. An object can be looked as a logical collection of raw

user date on a storage device, with well-known methods for access, metadata de-

scribing characteristics of the data, and security policies that prevent unauthorized

access [19].

Unlike blocks, objects are of variable size and can be used to store entire data

structures, such as database tables or multimedia. A single object can be used to

store an entire database or part of a file. The storage application decides what is

stored in an object. And the object storage device is responsible for all internal

space management of the object.

Objects can be regarded as the convergence of two technologies: files and

blocks. Files provide user applications with a high-level abstraction that enables

secure data sharing across different operating systems, but often at the cost of

limited performance due to bottleneck at file server. Blocks offer fast and scalable

access, but this direct access comes at the cost of limited security and data sharing

without a centralized server to authorize the I/O and maintain the metadata.

Objects can provide the advantages of both files and blocks. Object is a basic access

unit that can be directly addressed on a storage device without going through a

server. This direct access offers performance advantages similar to blocks. In

addition, objects are accessed using an interface similar to the file access interface,

thus making the object easily accessible across different platforms. By providing

direct, file-like access to storage devices, OSD enables both high performance and

cross-platform sharing.

In OSD, part of today’s normal file system functions can be moved into stor-

age devices, as shown in Figure 1.6. file system includes two parts: user component

and storage component. User component contains functions, such as hierarchy

management, naming and user access control, while storage component is focused

on mapping logical structures (e.g. files) to the physical structures of the storage

media. By moving low-level storage functions into the storage device itself and
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I/O Application

Block Storage Device

Sector/HBA Interface

File System Storage
Component

File System User Component

System Call Interface

Block Storage

I/O Application

Block Storage Device

Object Interface

File System Storage
Component

File System User Component

System Call Interface

Object Storage

Figure 1.6: Comparison of Block Storage and Object Storage

accessing the storage at object level, the Object-based Storage Device enables:

• Intelligent space management in the storage layer

• Data-aware pre-fetching and caching

• Quality of Service (QoS) support

• Security in the storage layer

This movement is the continued trend of migrating the various functions into

the storage devices. For example, the redundant check function has been moved

into disk.
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OSDs come in many forms, ranging from a single disk drive to a storage

controller with an array of disks. OSDs are not limited to random access or even

writable devices. Tape drives and optical media can also be used to store objects.

The difference between an OSD and a block-based device is the interface, not the

physical media [19].

1.2.2 Object Storage Architecture

Application Server Cluster

Object-based Storage Device Cluster

Metadata
Server
Cluster

Web 
Server

Database
Server

E-mail 
Server

File 
Server

Data

Metadata

Security

VoD
Server

Storage Network
(Fibre Channel)

Figure 1.7: Object Storage Architecture

Based on object concept, the object storage architecture attempts to combine

the advantages of both NAS and SAN. Figure 1.7 shows a typical setup of OSD.

Unlike traditional file storage systems with metadata and data managed by the

same machine and stored on the same device [20], a basic OSD architecture has

the separate Metadata Server (MDS) from the storage. In a basic model, there are

application servers, metadata server and object-based storage device. A separate

cluster of metadata server manages metadata and file-to-object mapping, as shown
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in Figure 1.7. The metadata server is used as a global resource to find the location of

objects, to support secure access to objects, and to assist in storage management

functions. OSD cluster manages low-level storage tasks such as object-to-block

mapping and request scheduling, and presents an object access interface instead of

block-level interface [21].

The goal of such storage system with specialized metadata management is to

efficiently manage metadata and improve the overall system performance. Based

on this architecture, data path and metadata path are separated. Without the

bottleneck of a file server, applications can directly access data stored in OSD.

Moreover, object storage architecture is designed for parallel storage access and

unlimited scalability. With all these benefits, object storage can assure high per-

formance. In addition, metadata servers create a single namespace that is shared

by all of the nodes in the cluster. Therefore, object storage architecture distributes

the system metadata allowing shared file access without a central bottleneck. In

short, OSD storage systems have the following characteristics:

• Cross-platform data sharing

• High performance via direct access and an offloaded data path

• Scalable performance and capacity

• Strong fine-grained security (storage level)

• Storage management

• Device functionality

These features are highly desirable across all kinds of typical storage appli-

cations. Particularly, they are valuable for scientific applications and databases,

which generate high-level concurrent I/O demand for secure, shared files. The

Object-based storage architecture is uniquely suited to meet the demands of these

applications.



12

Besides its benefits, what kinds of challenges does OSD bring to us? OSD

is a comparable new technology and has become a popular term among academic

and industrial research communities. However, the new object concept can raise

many new problems as well. For example, does today’s storage infrastructure still

fit OSD? Is there some new requirements for the metadata management? This

study tries to identify those important challenges through prototyping and testing

an OSD storage system.

1.3 Contributions and Organization of Thesis

1.3.1 Contributions

The study emphasizes the design of an OSD prototype, named BrainStor. The

primary contributions of the thesis can be summarized as follows:

• A Fibre Channel OSD prototype is developed. The study also proposes a new

OSD architecture with unique components, such as Object Cache Module and

Object Bridge Module

• Based on the test results of the OSD prototype, the thesis demonstrates some

key features of object storage, such as the scalability and virtualization, and

further identifies some critical issues in the design of an object storage system,

such as the frequent metadata access.

• Hashing Partition method is proposed to address the frequent metadata ac-

cess issue. Based on this new method, the number of metadata access can be

reduced. Moreover, the new methodology also simplifies the load balancing,

scalability and failover design of the OMM cluster.

• Analysis results of the hashing method show that the Hashing Partition can

reduce the number of metadata requests in both situations: with cache effects

and without cache effects.
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1.3.2 Organization of Thesis

The rest of the thesis is organized as follows. Chapter 2 discusses the other re-

search projects related to object storage. Three important OSD related prototypes

- NASD, Lustre and Intel OSD prototype - are discussed in detail. Chapter 3 is de-

voted to the BrainStor storage architecture, which enables cost-effective bandwidth

and capacity scaling, compatibility, and centralized cache management. After that,

the interfaces and communications between BrainStor nodes are detailed. Then the

internal software architectures of BrainStor nodes are discussed. Chapter 4 presents

the current BrainStor prototype running in the lab. Then test results from three

benchmark tools: Iometer, IOzone and PostMark, are explained. Through these

results, some critical issues in the BrainStor design are identified.

In order to address the metadata management issue identified in Chapter 4,

Chapter 5 details a new metadata server cluster design, named Hashing Partition

(HAP). HAP uses hashing method to reduce the number of metadata requests

and adopts a common storage space to make the cluster more capable to handle

metadata requests. Three key components of HAP are introduced. Then based

on HAP design, an effective and low cost mechanism for load balancing, failover

and scalability of metadata server cluster is presented in order to demonstrate the

strengthes of HAP. Then metadata cluster rebuild is discussed. Next, the HAP

and the directory metadata management is compared based on analysis results.

Chapter 5 also describes some functional experiences of HAP. Finally, Chapter 6

summarizes the conclusions and future works of the study.
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Chapter 2

Background

The concept of OSD has been around for the past 20 years. At the end of 70’s,

object-oriented operating systems raised the initial idea of object-based storage.

Operating systems were designed to use objects to store files on disk. These systems

include the Hydra from Carnegie Mellon University [24] and the iMAX-432 from

Intel [25].

In the 80’s, The SWALLOW project from Massachusetts Institute of Tech-

nology [38] implemented one of the first distributed object storages.

In the 90’s, much of this work about OSD was conducted by Garth Gibson

and his research team at the Parallel Data Lab at Carnegie Mellon University.

Their work focused on developing the underlying concept of OSD with two closely

related projects called Network Attached Secure Disks (NASD) [28] and Active

Disks [23].

In 2002, an OSD Technical Working Group (TWG) has been formed as part

of the Storage Networking Industry Association (SNIA). The charter of this group

is to work on issues related to the OSD command subset of the SCSI command set

and to enable the construction, demonstration, and evaluation of OSD prototypes.

In 2004, OSD SCSI standard (Rev 10) from SNIA OSD TWG is approved by

INCITS Technical Committee T10 as one of standard SCSI command sets.
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While the standards are being developed, some similar technologies to OSD

have been implemented in industry. The National Laboratories, Hewlett-Packard

and Cluster File Systems company are building the highly scalable Lustre file sys-

tem [32]. IBM is researching the object-based storage for their SAN file system,

StorageTank [30]. Centera from EMC and Venti project from Bell implement the

disk-based Write-Once-Read-Many (WORM) storage based on the concept of ob-

ject access for content addressable storage (CAS).

In academic communities, a lot of researchers focus on OSD related topics, for

example, Self-* project in CMU and Object Based Storage System (OBSS) project

in University of California, Santa Cruz (UCSC). Researchers in the University

of Wisconsin (Madison) explored a smart disk systems that attempt to learn file

system structures behind existing block-based interfaces [37]. Some researchers in

the Tsinghua University studied the cluster object storage from the application

point of view [39].

Self-* project in CMU explores new storage solutions with automated man-

agement functions. Self-* storage systems are self-configuring, self-organizing, self-

tuning, self-healing, self-managing systems. Self-* storage has the potential to

reduce the human effort required for large-scale storage systems, which is critical

as storage moves towards multi-petabyte data centers [33]. In this project, new

interfaces between hosts and storage devices are studied [34, 35, 36].

UCSC OBSS project are investigating the construction of large-scale storage

systems using object-based storage devices. On the side of object data manage-

ment, researchers in UCSC are developing an Object-based File System (OFS), and

allocates storage space from different regions according to the variable object sizes,

rather than fixed-size blocks [40, 41]. On the side of object metadata management,

they are working on experiments of metadata partitioning based on Lazy Hybrid

Hashed Hierarchical (LH3) directory management [54]. They are doing research

on replication algorithms and recovery under highly distributed systems [42].
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In terms of available OSD related prototypes, NASD in CMU started the

initial development work on OSD. Another development work is from Lustre project

in Cluster File Systems, inc. Intel also provides a reference OSD implementation

as part of its open source iSCSI project.

2.1 Network Attached Secure Disks (NASD)

Network Attached Secure Disks (NASD) project in CMU developed the basic idea

of OSD. The aim of NASD is to enable commodity storage components to be the

building blocks of high-bandwidth, low-latency, secure scalable storage systems

[26, 27]. NASD explored adding processing power to individual disks, in order to

process networking, security [46], and basic space management functions [29].

NASD sets up a standard for the OSD models. The major components in

NASD prototype are NASD drive, file manager, and clients. In addition, storage

manager is used to coordinate NASDs to build a parallel file system. Dr. Amiri

detailed the design of NASD in his Ph.D. Dissertation [29]. And Dr. Gobioff

proposed an object security architecture in NASD [46].

All the object data and metadata of NASD are persistently stored in its

NASD drive. However, NASD has the separated access paths to data and metadata.

File manager can handle all the metadata requests while NASD drive can respond

to object data requests. There is also a metadata transition path between file

manager and NASD drive. File manager can cache part of metadata in its local

memory to accelerate the response of metadata requests to clients. In addition,

NASD manages the object to block mapping by itself at NASD drive side.
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2.2 Lustre

Lustre is the name of file system solution for high-end applications by Cluster File

Systems, Inc. Lustre is a scalable cluster file system for very large clusters. Lustre

focuses on solving scalability and management issues in large computer clusters

[32]. Lustre runs over different networks, including Ethernet and Quadrics [31].

Lustre has separated data and metadata access paths as well as the separated

persistent storage of data and metadata. Object Storage Target (OST) in Lustre

stores the data objects and responds all the data requests, while Metadata Server

(MDS) in Lustre stores the metadata and handles the metadata requests.

Another feature of Lustre is to adopt ext2, ext3 or other file systems to

complete the object to block mapping. There is a filter layer implemented in

Lustre, which converts the coming object requests to file requests that can be

directly completed by local file systems, such as ext3.

2.3 Intel OSD Prototype

Intel provides an OSD implementation as part of Intel’s iSCSI open source project

to demonstrate the idea of OSD [22]. Intel OSD prototype includes two compo-

nents: client and OSD. Client accesses OSD at object level by using the OSD SCSI

commands defined in the SNIA OSD SCSI standard [16]. However, Intel OSD

prototype does not have separated metadata and data paths.

Intel OSD prototype is a good platform to benchmark the SNIA OSD stan-

dard [16]. It provides a reference code of the standard. Adopting the similar object

storage concept, NASD and Lustre are actually using self-defined interfaces.
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Chapter 3

BrainStor

BrainStor aims at providing an intelligent storage solution based on OSD concept.

BrainStor introduces new modules, such as a centralized Object Cache Module

and Object Bridge Module, to the general OSD architecture. In BrainStor project,

a Fibre Channel OSD prototype using the OSD SCSI command protocol [16] is

developed. This protocol defined by SNIA OSD Technical Working Group (TWG)

plays a critical role in the standardization process of OSD. In the following sections,

the term “OSD protocol” is used with reference to the OSD SCSI command protocol

[16].

3.1 BrainStor Architecture

In BrainStor, there are six main nodes, which are Object Storage Client (OSC), Ob-

ject Storage Module (OSM), Object Cache Module (OCM), Object Bridge Module

(OBM), Object Manager Module (OMM) and Security Manager Module (SMM).

In addition, the OSC has two sub-modules: Object File-system Module (OFM)

and Object Interface Module (OIM). All the nodes are scalable. There are the

OSM Cluster and the OMM Cluster at the core of BrainStor, while other modules

work as feature-enriched nodes. All these nodes are connected to storage network,

as shown in Figure 3.1.
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Figure 3.1: BrainStor Architecture

OSCs can be of all kinds of application servers, such as email servers and

Video-on-Demand (VoD) servers. The OSM cluster is the storage place for raw

data object. The OCM cluster is a cache cluster used to accelerate the access of

storage. The OMM cluster manages the object metadata and file metadata. The

OBM makes the BrainStor network compatible with the existing storage network

and devices. As shown in Figure 3.1, OSCs can access the block storage device,

such as JBOD and RAID system in SAN, through OBM. The SMM provides the

security for BrainStor network. As an addition, a common storage space is used

by the OMM cluster to faciliate the Hashing Partition implementation, which will

be explained in Chapter 5.

BrainStor benefits the storage as follows:

Intelligence

Accessing at object level, BrainStor can learn important characteristics of

data and its operating environments. In other words, storage can know what is

the data stored in itself. Today’s block-level storage devices are mainly unaware of

the users and storage applications, which are using the storage. The only informa-

tion that a block-based storage device knows about the data, is the Logical Block

Address (LBA). Thus, there is entirely no difference to storage between the most
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important data and deleted files in recycle bin.

Object storage devices can understand the relationships between the blocks,

and can use this information to better organize the data layout. In object storage,

object attributes are associated with object. Object metadata includes static infor-

mation about the object (e.g. creation time), dynamic information (e.g. last access

time), and information specific to users (e.g. QoS agreement). Object metadata

can also contain hints about the object’s behavior such as the expected read/write

ratio, the most likely patterns of access (e.g. sequential or random), or the expected

lifetime of the object [19]. With knowledge of this kind of information, BrainStor

can optimize storage management for applications.

Database
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Email 
Servers
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Figure 3.2: Cache in Current Storage Solution

Cache

BrainStor adopts a centralized cache module. Cache design is one of the

most important issues in storage system design. As shown in Figure 3.2, the block-

based storage adopts cache located at individual storage system and the cache

is exclusively accessed by its host storage system. While in BrainStor, cache is

centralized at the Object Cache Module for all storage modules. Furthermore the

OCM is scalable and can be shared by all storage modules as shown in Figure

3.1. In addition, both OCM and OSM are directly accessed by OSCs. This design

changes the role of cache from a storage device cache to a SAN cache.
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High Performance

With a separated OMM cluster, dedicated for metadata management, Brain-

Stor enables a direct high speed data path between OSCs and storage nodes, such

as OSM, OBM or OCM. By removing metadata access out of data access path,

there is no more additional queuing delay in the OMM. BrainStor can also adopt

aggregation techniques, e.g. Redundant Array of Independent Nodes (RAIN) and

RAID.

In addition, the OSC off-loads space management (e.g. allocation of free

blocks and tracking of used blocks) to storage nodes. The OSC does not need to

keep storage information (e.g. free block bitmap) in its local memory. This kind

of information is maintained by the OSM in BrainStor. Thus OSCs have more

resources to serve the applications.

Data Sharing

The higher-level interface and the attributes about the stored data enable

data sharing of objects. The interface to BrainStor is very similar to that of a file

system. Objects can be created or deleted, read or written, and even requested for

certain attributes. File level protocols, such as CIFS and NFS, have proven their

strength to the cross-platform data sharing. Similarly BrainStor can also be shared

between different platforms. Standardized object attributes improve data sharing

by allowing different platforms to share a common set of information describing the

data. Object attributes defined in the OSD protocol, contain information analogous

to that contained in an inode. The inode is the data structure used in many UNIX

and Linux file systems to describe the file [45]. Therefore, many technologies used

in the file level cross-platform sharing, can be integrated with BrainStor easily.

Security

Security is another important feature of object-based storage that distin-

guishes it from block-based storage. There are many similarities between the Brain-

Stor architecture shown in Figure 3.1 and the SAN file system architecture shown
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in Figure 1.4. Both of them have storage and application servers connected to the

network; both of them have separated servers from storage. In this type of archi-

tecture, security is an important issue. Neither clients nor the network is trusted,

since clients and storage devices can be anywhere on the network. Therefore, there

exists the risk of unauthorized clients accessing the storage, or authorized clients

accessing the storage in an unauthorized manner.

In block-based storage, although the security does exist at the device and

fabric level (e.g. devices may require a secure login and switches may implement

zoning), an attacker can easily use its controlled legitimate client to access blocks

that should not be accessed by the client (e.g. modify its own commands to access

the blocks belonging to others). Although zoning technology can help to certain

extent, attacker can at least access all the storage in zones, which are open to its

controlled clients. This situation becomes worse in a SAN file system environment,

where all the storage is open to all clients in order to achieve the parallel access

performance. In addition, storage cannot tell whether the coming requests are

modified by attacker. Hence the entire storage network is also vulnerable to man-

in-middle attack.

BrainStor adopts a credential-based access control system. The SMM gen-

erates credentials at the request of an authorized OSC. The credential gives the

OSC access to specific object storage components. In BrainStor, every access is

authorized according to the SCSI OSD protocol, while it is impossible to provide

such security mechanism in a SAN file system deployment due to the limited block

interface.

3.2 BrainStor Interfaces

BrainStor interfaces to clients are defined in OSD protocol. This SCSI command set

is designed to provide efficient communication operations to OSD, which manage

the allocation, placement, and accessing of variable-size data-storage containers,
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called objects [16]. By using this command set, OSC accesses BrainStor at object

level.

3.2.1 Object Types and Commands

BrainStor system can contain the following object types according to OSD protocol

[16].

• a) Root object: Each BrainStor system contains only one root object. The

data of root object contains the list of Partition IDs. And the attributes of

root object contain global characteristics for the BrainStor system (e.g. the

total capacity and number of partitions that it contains).

• b) Partition object: This kind of object is created by specific commands

from an OSC. A partition contains a set of collections and user objects that

share common security requirements and attributes. Some default values of

partition attributes are copied from specified attributes in the root object.

The data component of a partition is the list of User Object IDs.

• c) Collection object: This object is created by commands from OSCs. Sup-

port for collections is optional. It is used for fast indexing of user objects and

operations involving multiple user objects. A collection is built within one

partition. A partition may contain zero or more collections. A user object

may be a member of many collections concurrently, or does not belong to any

collections at all. Some default values of collection attributes are copied from

specified attributes of the partition in which it is listed. The data component

of a partition is the list of User Object IDs.

• d) User object: This object contains end-user data (e.g. file or database

data). Its attributes include the logical size of the user data and time stamps

for creation, access, and modification of the end user data. Some default
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values of user object attributes are copied from specified attributes of the

partition in which it is listed.

Currently, BrainStor supports ten OSD SCSI commands:

• CREATE PARTITION (Service Action: 0x880Bh): to allocate and initialize

a new partition, and to establish a new partition object as well.

• REMOVE PARTITION (Service Action: 0x880Ch): to delete a partition.

• CREATE (Service Action: 0x8802h): to allocate and initialize a user object.

• REMOVE (Service Action: 0x880Ah): to delete a user object.

• SET ATTRIBUTES (Service Action: 0x880Fh): to set attributes for a spec-

ified root, partition, or user object.

• GET ATTRIBUTES (Service Action: 0x880Eh): to get attributes for a spec-

ified object.

• WRITE (Service Action: 0x8806h): to write the specified number of bytes

to the specified user object at the specified relative location.

• READ (Service Action: 0x8805h): to request storage modules to return data

to the application client from a specified user object.

• OPEN (Service Action: 0x8804h): to communicate to BrainStor that a user

object is to be accessed.

• CLOSE (Service Action: 0x8809h): to cause the specified user object to be

identified as no longer in use.

In BrainStor, file metadata and some object metadata are centralized in the

OMM and the object data is stored in the OSM. The FC communication between

OSC and OMM is dedicated to metadata transition, which is named the Metadata

Stream, as shown in Figure 3.3. The FC communication between OSCs and storage
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Figure 3.3: Data Access in BrainStor

nodes, such as OCM, OBM or OSM, is named the Data Stream. As can be seen in

Figure 3.3, BrainStor have three different Data Streams. OSCs can access objects

by directly requesting to OSMs. They can also request to OCMs for small objects

and access object stored in general block SAN through an OBM.

3.2.2 Create and Write a New Object

Before an OSC accesses any data, it needs to create object partition by using

CREATE PARTITION (0x880Bh) command. If the resources (e.g. free space)

allow, the OMM creates a new object partition and return a unique partition ID to

the OSC. The partition ID is then used in all the following access to the partition.

After the object partition is created, the OSC can create and access objects

in that partition. Whenever the OSC wants to store data, if this is a new object,

firstly the OSC sends OSD CREATE command to the OMM. Then the OMM

creates an object ID (unique identity within BrainStor site) for this command and

also generates a record to keep the metadata of this object. The object metadata
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includes the object ID and the OSM ID, which indicates the ID of OSM to store

data of the object. The file-to-object mapping information and other security and

QoS information are also stored in the metadata. Then, the OMM sends the

response, which informs the OSC the new object ID and OSM ID. Finally, through

the direct Data Stream, the OSC can store raw data of that object to the specified

OSM. This procedure can be completed through OSD WRITE commands.

3.2.3 Read an Existing Object

Whenever an OSC wants to retrieve an object, firstly, through Metadata Stream,

the OSC uses OSD SCSI commands (e.g. SET ATTRIBUTES and GET AT-

TRIBUTES) to access objects metadata in the OMM. If the requested object does

not exist or the OSC does not have the access permission to that object, the OMM

can reject OSC’s requests. Otherwise, the requested metadata is sent to the OSC.

Then after knowing the object metadata such as the object ID and ID of OSM

storing the object, the OSC can initiate an OSD READ command to fetch the

object from the OSM indicated by the OSM ID.

3.2.4 Access through OCM

When an OSC initiates random small I/O requests or requests to small objects,

these requests go to the OCM instead of OSM. Then if other OSCs want to access

the same data, they can directly fetch the data from the OCM. Moreover, the

OCM can also merge random small requests into larger sequential requests. Small

random requests can seriously degrade the performance of hard disk based storage,

while larger sequential requests lead to high performance. Thus merging the small

random I/O requests to large sequential I/O requests improves BrainStor small

I/O throughput.



27

3.2.5 Access Example

In this example, the details of writing a new file to BrainStor system are shown.

Suppose that a single file in a single subdirectory is copied to the BrainStor:

cp /dir1/file1 /mnt/BrainStor/

Where “dir1” is the name of the directory to be created and “file1” is the

file to be written in that directory. It is assumed that root object of BrainStor

and the partition object (n, 0 ) are known. The object partition of BrainStor has

been mounted on the mount point, “/mnt/BrainStor/”. It is also supposed that

the OSC holds a valid capability for the following operations.

• Step 1: READ (Partition ID: N, User Object ID: root directory ID): to read

the content of root directory and check whether the “dir1” directory is already

existed.

• Step 2: CREATE(Partition ID: N ): the OMM creates a new object in parti-

tion N, and return the User Object ID(f ) to hold file “file1”.

• Step 3: CREATE(Partition ID: N ): the OMM creates another new object in

partition N, and return the User Object ID(d) to hold the content of directory

“dir1”.

• Step 4: WRITE(Partition ID: N, User Object ID: f ): to write contents of

file1. If one WRITE cannot store all the data, there may be more than one

WRITE commands needed.

• Step 5: WRITE(Partition ID: N, User Object ID: d): to write contents of

directory “dir1”.

• Step 6: WRITE(Partition ID: N, User Object ID: root directory ID): to up-

date the content of root directory to contain directory “dir1”.
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3.3 BrainStor Nodes
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Figure 3.4: Object Storage Client (OSC) Architecture

An OSC is a server to outside network and a storage client to BrainStor. For

example, it could be a Samba sever that provides file storing and sharing services to

outside clients through Internet or Intranet. As a storage client, the OSC needs to

request data for its application from other nodes in BrainStor. The aim of OSC’s

modules is to provide a set of interfaces to all kinds of server applications, and then

these applications can freely access a virtual storage pool made up by all the other

nodes within BrainStor.

The OSC is implemented in Linux and its internal software architecture is

shown in Figure 3.4. Application module represents all kinds of applications, such

as VoD server, email server, web server, database server and file server. If the
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applications are built up based on file access, BrainStor system can always support

them.

static struct super_operations ofm_ops = {
  read_inode: ofm_read_inode,
  dirty_inode: ofm_dirty_inode,
  write_inode: ofm_write_inode,
  put_inode: ofm_put_inode,
  delete_inode: ofm_delete_inode,
  put_super: ofm_put_super,
  write_super: ofm_write_super,
  write_super_lockfs: ofm_write_super_lockfs,
  unlockfs: ofm_unlockfs,
  statfs: ofm_statfs,
  remount_fs: ofm_remount_fs,
  clear_inode: ofm_clear_inode,
  umount_begin: ofm_umount_begin

};

Figure 3.5: Super Operation APIs

static struct file_operations ofm_dir_operations = {
read: generic_read_dir,
readdir: ofm_readdir,
fsync: ofm_sync_file,

};

static struct file_operations ofm_file_operations = {
read: ofm_file_read,
write: ofm_file_write,
mmap: generic_file_mmap,
open: ofm_file_open,
release: ofm_release_file,
fsync: ofm_sync_file,

};

Figure 3.6: File Operation APIs
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static struct inode_operations ofm_dir_inode_operations = {
create: ofm_create,
lookup: ofm_lookup,
link: ofm_link,
unlink: ofm_unlink,
symlink: ofm_symlink,
mkdir: ofm_mkdir,
rmdir: ofm_unlink,
mknod: ofm_mknod,
rename: ofm_rename,

};

Figure 3.7: Inode Operation APIs

static struct address_space_operations ofm_aops = {
readpage: ofm_readpage,
writepage: NULL,
prepare_write: ofm_prepare_write,
commit_write: ofm_commit_write

};

Figure 3.8: Address Space Operation APIs

The OSC contains two sub-modules: Object File-system Module (OFM) and

Object Interface Module (OIM). All the modules at the OSC are Linux kernel-level

modules. The OFM is a file system to Linux. The OFM registers its APIs with

VFS, and VFS can pass application’s data requests to the OFM through those

standard file system APIs. Figure 3.5, 3.6, 3.7 and 3.8 show the primary APIs that

the OFM supports. Figure 3.5 describes the operations that the super block of

OFM supports. This set of APIs is mainly used to support file system metadata

and inode access. Figure 3.6 gives the file level operations of both file and directory.

Figure 3.7 shows the directory’s inode APIs, which are used to manage the inodes

in directory. Figure 3.8 defines the address space related operations, which are

used to complete all the data transitions. They are called after it is confirmed that

the system cannot find the requested data in its local memory. The OFM needs to

register to VFS during its initialization phase. The following code is called in the

function init module() of kernel module ofm:

return register file system(&ofm fs type);

After this, VFS can pass the application’s data requests to the OFM by using
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those APIs defined in Figure 3.5 to Figure 3.8.

The primary jobs of OFM include hierarchy management, naming and user

access control. The OFM performs metadata access from the OMM cluster and the

mapping from the file requests to object I/O requests. The File Hashing Manager

and Mapping Manager of HAP (introduced in Chapter 5) are function modules in

OFM.

The OFM further contains Object Cache, Lock Client and Security Client

sub-modules. The Object Cache provides object-level local cache to the OFM,

while the Lock Client and Security Client play as the clients to support lock and

security functions.

The primary work of OIM is to generate OSD SCSI commands from the

object I/O requests and complete the object data access. The OIM needs to register

to the SCSI mid-layer in Linux. The OIM controls two kinds of interfaces: Fibre

Channel and Ethernet. Object data and metadata access use Fibre Channel while

lock and security functions utilize Ethernet. It is because Fibre Channel is a storage

protocol that is designed based on initiator and target modes, while TCP/IP is a

communication protocol that is more suitable for the implementation of lock and

security mechanisms.

3.3.2 Object Storage Module (OSM)

The OSM is the module that stores raw data objects. In data storage systems,

there are two kinds of data: raw data and metadata. For example, when you save

a movie file on disk, the data that represents the contents of movie is called raw

data. In this case, the information describing this movie file, such as when the

movie file is created, and where it is located, is called metadata. The OSM holds

the raw data of that movie as user object.

Due to the unique characters of object, the OSM has more intelligence to
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Figure 3.9: Object Storage Module (OSM) Architecture

manage its own storage. A block level storage (e.g. RAID system in SAN) can just

store data according to LBA set by clients, while the OSM can decide the location

of certain object according to metadata of that object. For example, the OSM

can decide the allocation of an object based on its size and QoS attributes. In

the prototype, one OSM holds sixteen 250G serial-ATA hard disks, and of course,

there may be several RAID systems within one normal OSM. In case of locating

that movie file, the OSM has the intelligence to put movie file in either a RAID 0

subsystem or a RAID 5 subsystem depending on the corresponding QoS attributes.

The OSM module is implemented in Linux and its internal software archi-

tecture is shown in Figure 3.9. The OSM has two kinds of interfaces: Ethernet

and Fibre Channel. The Ethernet interface is used to communicate some manage-

ment commands, e.g. OSM login command. Fibre Channel is used for data object

access. The received OSD SCSI commands are put into several independent com-

mand queues. There is several independent kernel threads serving each queue, so
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that the OSM can achieve the parallel access at this level. This multi-thread par-

allel access mechanism can improve the disk access performance, and is especially

helpful to small I/O requests. OSD Layer in Figure 3.9 provides the object inter-

face and handle the incoming OSD SCSI commands. Object Mapping performs the

mapping from object to block. For example, in order to access object 0xabc, object

mapping module may indicate that logical block 0x123 to 0x321 store the data of

this object. Then based on this mapping information, the OSM can complete the

disk access for the object. Policy Center module performs all kinds of intelligent

functions, such as QoS based allocation policy. At the low level, the OSM uses

Logical Volume Manager [43] and RAID controller to manage the low-level block

access. In BrainStor prototype, each OSM has two 8-channel 3ware SATA RAID

adapters to access sixteen 250G SATA hard disk. Therefore, each OSM module

has up to 4000G storage capacity. All storage resources are further integrated in

RAID subsystems. The OSM supports the hardware RAID (including RAID 0, 1,

5, 10) by each 8 channel 3ware SATA RAID controller and the software RAID that

can be used between two independent RAID controllers, such as RAID 50.

3.3.3 Object Cache Module (OCM)

The OCM is the centralized cache for all the other storage modules in BrainStor.

The small random access is the performance killer to disk-based storage, because

those accesses need frequent physical movements of magnetic heads, which intro-

duces additional seek overhead compared to sequential access. On the other hand,

data access in memory is based on electronic access, therefore the small random

access can reach performance as good as the large sequential access. The intro-

duction of OCM greatly improves the system’s capability of handling small and

random requests.

In BrainStor prototype, a single OCM is with 8G memory capacity. Only

I/O requests to small objects are forwarded to the OCM. The definition of small
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object is that object with the size that is less than a preset value, such as 16KB.

On the other hand, all I/O requests to non-small objects go to the OSM directly.

The OCM also has a destage mechanism. Because the OCM does not provide

persistent storage of objects and has limited cache capacity, the OCM finally needs

to destage all data to the OSM. When the OCM is vacant, the OCM may write

data to the OSM in order to synchronize objects. In this case, the written objects

are still kept in the OCM for future access. When the OCM does not have enough

memory for new object requests, the OCM need perform object replacement. Some

objects will be written to the OSM and removed from the OCM. The replacement

algorithm can utilize certain memory replacement policies, such as LRU, FIFO, and

LFU [44]. The OCM can choose an algorithm for small objects based on different

application workload characters.

Because the OCM needs to destage data to the OSM, there may be a “page

fault” when the OSC wants to access a small object that has already been destaged

to the OSM. Therefore, in order to handle the “page fault”, the OCM also needs
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to retrieve object back from the OSM and cache it for the potential future access.

The internal software architecture of OCM is shown in Figure 3.10. The OCM

has two Fibre Channel interfaces. One is used to communicate with OSCs and a

Fibre Channel object target mode device driver controls it, and the other is used

to communicate with the OSM cluster and a Fibre Channel object initiator mode

device driver controls it. Queues in Figure 3.10 are used for the received object

SCSI commands from clients. Cache Manager module handles all the requests. In

addition, cache manager also needs to implement the cache destage and replace

mechanisms. During the destage phase, cache manager can generate OSD WRITE

commands to store data to the OSM cluster. In case of “page fault”, cache manager

also needs to use OSD READ command to read data from the OSM.

As discussed above, the OCM is a centralized cache for the entire BrainStor

system. The OCM is managed by the OMM and accessible to all the OSCs. In

addition, the OCM is scalable. The OMM can easily make OSCs access a new OCM

without any downtime. The feature is very important because the unpredictable

and increasing need of handling small random data requests. The scalability of

OCM cluster is a unique feature of BrainStor.

3.3.4 Object Bridge Module (OBM)

The OBM makes BrainStor network compatible with existing block network and

hardware. The OBM can map the object requests to block access commands that

can be completed by normal block storage device, e.g. RAID system, in current

SAN. After a data center adopts BrainStor system, it can still use their exiting

SAN infrastructure and storage hardware.

The software architecture of OBM is shown in Figure 3.11. The OBM also

has two Fibre Channel interfaces. One is connected to BrainStor network, and a

Fibre Channel object target mode device driver controls the interface. Object SCSI

requests are coming through this interface and queued. The other Fibre Channel
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interface is connected to a SAN and a Fibre Channel initiator mode device driver

controls it. This interface can pass normal block SCSI command to access block

storage. The OSD layer, Object Mapping and Policy Center are similar to modules

in the OSM.

3.3.5 Object Manager Module (OMM)

The OMM is the management center of BrainStor. First of all, the OMM holds

metadata, which is used by the OSC to access objects. For instance, the OSC must

know information like which OSM in the OSM cluster contains the needed object

before it initiates any requests. Secondly, the OMM holds global information about

BrainStor, such as the number of available OSMs, the access modes of each OSM

and access priority of each OSC. Every device needs to login OMM when it boots

up. In addition, the OMM has intelligent functions such as storage virtualization.
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In BrainStor prototype, the OMM provides different virtual disk images to different

OSCs. That means, although all OSCs share the same storage pool, different

OSCs have different views and different access rights to the same storage pool. For

example, OSC1 may view the BrainStor as 2T virtual disk and OSC2 regards the

same BrainStor as 3T virtual disk. Actually both storage space are allocated across

all the OSMs, thus both OSCs can achieve the best parallel access performance.

The internal software architecture of OMM is shown in Figure 3.12. The

OMM consists of three parts: the OMM front-end, the OMM middle layer and the

OMM back-end.
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The OMM front-end includes low level drivers to control the hardware in-

terfaces. One Fibre Channel interface is used to communicate with OSCs, while

the Ethernet interface can help to set up a management channel with all the other

nodes. As shown in other software architecture figures, every node has an Ethernet

interface, and there is a message passing channel by using socket communication.

Every node has two threads serving the Ethernet interface. One is used to receive

messages from other nodes, and the other is used to send messages to certain node

indicated by the IP address. Thus all the nodes can communicate with each other

through Ethernet.

The OMM middle layer performs three works: responding to metadata re-

quests, intelligent functions and management work. The basic function of OMM is

to handle all coming metadata requests from Fibre Channel interface. In addition,

the OMM needs to provide an object-level lock mechanism because there is an

OSC cluster accessing BrainStor instead of one OSC. A lock server in the OMM

performs the task.

Intelligent functions of OMM middle layer support services, such as load bal-

ancing, storage virtualization, OMM cluster load balancing, OMM cluster failover

and scalability. The Intelligent Server module administrates intelligent functions.

Load balancing means that the data object can be evenly distributed to the OSM

cluster by the OMM, therefore the OSC can access objects from different OSMs in

parallel. Storage virtualization is another key feature of BrainStor. All the OMM

cluster and other nodes are transparent to OSC applications, which simply regard

BrainStor as a virtual storage with very huge storage capacity. Moreover, the scal-

ability of OSM cluster is transparent to OSCs. Even if the huge virtual storage

cannot satisfy the storage requirement of application servers, it can dynamically

grow to provide unlimited storage without any downtime of OSCs’ applications.

OMM load balancing, OMM cluster failover and scalability functions will be dis-

cussed in Chapter 5. The Logical Partition Manager of HAP (in Chapter 5) is

actually one function module of Intelligent Functions in OMM middle layer.



39

The Management Server module in OMM middle layer manages all the in-

formation about BrainStor. All other nodes need to login or report their own

information or status to the OMM by using some RPC commands. For example,

a logout command is used to report the departure of a node to the OMM. Thus

there is a RPC server that processes all the coming management commands from

other nodes. Each OMM also has a RPC client in order to communicate with other

OMMs. In addition, the OMM needs to detect the removal and addition of all the

other nodes. Although nodes can report their removal to the OMM, some node

failures, for example power failure, leave no time to logout. In short, the OMM

needs to maintain all the information needed by the intelligent functions.

The OMM back-end performs the real metadata access. The back-end is self-

developed database with outstanding cache ability. The cache performance is even

comparable with that of file systems. The back-end of each OMM can exclusively

control and access one or several logical partitions in the common storage space.

Hence the OMM back-end can provide great performance without the concurrence

control problem. In addition, because the OMM back-end accesses the logical

partitions through a small SAN at block level, another Fibre Channel interface is

used to complete this access. The logical partitions and the common storage space

are discussed in detail in Chapter 5.

The OMM back-end maintains tables about current BrainStor setup. There

are the OSM cluster table, the OSC cluster table and the OCM cluster table as

shown in Figure 3.12. Because the OBM is treated as OSM in the OMM, the OBM

cluster information is also kept in the OSM cluster table. Figure 3.13 describes the

data structure current osc list, current osm list and osc osm list. current osc list

and current osm list record information of the active OSCs and OSMs in BrainStor,

respectively. The osc osm list records the relationship between OSCs and OSMs.

There are three modes of relationship: no-read-no-write, read-only, and read-write.

Based on the relationship list, current osc list structure also maintains a local

osm list that provides a quick index of the accessible OSMs for an OSC. In order
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CURRENT_OSC_LIST

struct current_osc_list {
uint64_t osc_wwn;
uint32_t osm_count; /*number of current

OSMs*/
uint32_t ip_addr;  /*Login IP address*/
uint16_t ipport; /*socket connection port id*/
uint16_t priority; /*General OSC priority*/
uint32_t etc;
uint32_t update_time; /*the last login time*/
/*the list of  accessible OSMs */
struct osm_record *osm_list;
/*the link to the next OSC record*/
struct current_osc_list *next;

};

struct current_osc_list *current_osc_list;

CURRENT_OSM_LIST

struct current_osm_list {
uint64_t osm_wwn;
uint16_t weight; /*a general OSM

weight*/
uint32_t ip_addr;  /*Login IP address*/
uint16_t ipport; /*socket connection port

id*/
uint64_t capacity; /*totoal size*/
uint64_t freespace;
uint64_t no_of_objects; /*total object

number*/
uint8_t device_type;
uint8_t vendor[20];
uint32_t etc;
uint32_t update_time; /*the last login

time*/
/*the link to the next OSM record*/
struct current_osm_list *next;

};

struct current_osm_list *current_osm_list;

OSC_OSM_LIST

struct osc_osm_list {
uint64_t osc_WWN; /*wwn of osc in this relationship*/

     uint64_t osm_WWN; /*wwn of osm in this relationship*/
uint16_t mode; /* Access mode: Read-only, Read&Write*/

      struct osc_osm_list *next; /*the link to the next OSM record*/
};

struct osc_osm_list *osc_osm_list;

OSM_RECORD

struct osm_record {
uint64_t osm_wwn;
/*point of the OSM record in
current_ost_list*/
uint16_t mode; /*access mode*/
struct current_osm_list *osm_ptr;

};

Figure 3.13: Data Structure of OMM Tables

to handle a coming request from an OSC, such as OSD Create command, the OMM

can find out the available OSMs directly from the current osc list of the OSC.

3.3.6 Security Manager Module (SMM)

The SMM performs the security manager functions defined in OSD protocol. The

SMM generates credentials at the request of an authorized OSC, and also returns a

capability key with each credential. The credential gives the OSC access to specific

object storage components. The capability key allows the OSC and storage nodes

to authenticate the commands and data they exchange.

BrainStor adopts the OSD security model, defined in the OSD protocol,
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which is a credential-based access control system. The fundamental element in

an object based security system is a cryptographically capability that encloses a

tamper-proof description of the rights of a client. Out of the main data path, the

SMM can create this capability that represents the security policy. With possession

of this capability, the client can access the storage nodes, and it is the job of the

storage nodes to validate the integrity of the capability to ensure that neither it nor

the request has been modified. Particularly, without maintaining client-specific au-

thentication information on storage nodes, BrainStor can scale independently from

the number and types of clients in the system. Moreover, the capability is created

out-of-band, thus it is not a bottleneck. The credential gives the application client

access to specific objects. Clients present these capabilities to OSM on every I/O

request. The request sent to an OSM includes the command, the OSC capability,

and a digest (integrity check value of the entire request with the capability key).

The OSM needs to validate the integrity of the capability to ensure that

neither it nor the request has been modified. Secrets shared ONLY between SMM

and the storage nodes are used to generate a keyed hash of the capability, which is

just the capability key. Therefore, it can protect both the capability and the whole

client request from modification by the client itself or by the man-in-the-middle.

Upon receipt of a new request, the OSM firstly computes its own key based on the

capability presented in request and the secrets shared between it and the SMM. If

the capability is correct, OSM’s own key should be equal to the capability key. Then

the OSM can validate the client’s digest by matching it with its own keyed hash of

the request (using OSM’s own key). If they match, there is no modification of the

client’s capability and the request. Then, the OSM can process the request. An

application client that only has the capability (e.g. obtained by monitoring CDBs

sent to the OSM) but not the capability key is unable to generate commands with

valid integrity check value. Then the OSM can deny the unauthenticated access of

OSCs. Therefore, every request is authorized by the SMM and validated by storage

nodes. In addition, the man-in-middle attacks can also be detected.
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As defined in OSD protocol, the SMM may reside in the OMM, in the OSM,

in the OSC, or as a separate entity, however the security requirements on the

communications mechanism shall not change based on the location of the SMM

[16]. In BrainStor design, the SMM is designed as an installable software module.

It can be integrated with the OMM as shown in Figure 3.12 or just works as an

independent server. Wherever the SMM is, it should be out-of-band and support

clustering of all the other nodes in BrainStor.

3.4 BrainStor Virtualization

In an ideal storage, users treat storage devices as a virtual storage space with

unlimited capacity. All the internal scalability and errors are transparent to users.

Storage virtualization gathers all physical storage resources into a single pool. From

a central and simple interface, network administrators can administrate common

policies and services across the entire storage pool. This is independent of the

vendor brand, type, and protocol represented by each physically attached storage

system.

In a SAN, there are in-band or out-of-band solutions to the virtualization de-

sign. The virtualization control function of in-band solution resides on a dedicated

appliance within the data-path, as shown in Figure 3.14. Application servers need

to send their data access commands to a virtualization server through fibre, and the

server can further complete the requests by accessing storage systems connected to

the SAN. Data transitions between virtualization server and storage components

can be parallel access. For example, the IPStor from FalconStor company is a

typical in-band storage virtualization product. One drawback of this solution is

that the virtualization server becomes an obvious bottleneck because all the I/O

requests need to go through it.

On the other hand, the out-of-band virtulization solution removes the vir-

tualizaton server from data path, as shown in Figure 3.15. Application servers
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Figure 3.14: In-band Storage Virtualization

can get the necessary virtualization information (e.g. the WWNs of available stor-

age components) from an out-of-band virtualizaton server, which maintains the

information about all the storage and their configuration.

BrainStor adopts the out-of-band solution, because it already has a central-

ized metadata center, the OMM cluster. All metadata requests of client are sent to

the OMM cluster. With knowledge of the overall setup of BrainStor, the OMM is

able to allocate OSMs to the OSC, based on its own policy. For example, different

weight and priority can be assigned to all the OSCs and OSMs, as shown in Figure

3.13. OSMs with certain weight can be reserved for OSCs with the high priority.

The OMM can send this storage virtualization information (e.g. a list of OSM ID)

as part of the metadata. Object file system can get the OSM ID list from returned

metadata. Then the coming raw data requests can be directly sent to the specified

OSMs. Therefore, in order to access its own data, one OSC may even utilize the

entire OSM cluster, which is completely transparent to its applications.

Another feature of storage virtualization is its support to storage scalability.

The OMM cluster has all the nodes status information, and it can also periodically
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check the BrainStor network. Hence any changes, e.g. the addition of new OSM,

can be dynamically detected and responded. During the runtime, BrainStor virtu-

alization supports the addition and removal of OSCs, OCMs, OBMs and OSMs. All

the changes and corresponding process are transparent to clients’ application. Af-

ter the OSC boots up, it can treat the BrainStor as a huge virtual storage pool with

almost unlimited capacity. During the runtime, if BrainStor detects that there is

potential possibility of out-of-space, it can inform the storage administrator to add

more storage dynamically. All these operations do not affect OSC’s applications

at all. Hence there is no downtime due to the scaling of storage capacity.

3.5 Summary

BrainStor is an object storage, which aims at providing an intelligent storage so-

lution. BrainStor introduces new modules, such as a centralized Object Cache

Module and Object Bridge Module. There are six nodes in BrainStor. OSCs can

be all kinds of application servers, such as email servers and Video-on-Demand
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(VoD) server. The OSM cluster is the storage place for raw data object. The

OCM cluster is a centralized cache cluster used to accelerate the access of storage.

The OMM cluster manages all the object metadata and file metadata. The OBM

can make the BrainStor network compatible with the existing storage network and

devices. The SMM provides the security for BrainStor network.

In BrainStor, the OSC can contact the OMM cluster for metadata and access

object through OCM, OSM or OBM. The internal software models of OSC, OSM,

OCM, OBM and OMM are discussed in detail. The SMM in BrainStor follows the

security model defined by OSD protocol. BrainStor adopts the out-of-band storage

virtualization solution. The OMM cluster works as the out-of-band virtualization

server in BrainStor.



Chapter 4

Experiment and Result Discussion

4.1 BrainStor Prototype

OCM Cluster

OMM Cluster
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Figure 4.1: Current BrainStor Prototype

Figure 4.1 shows a picture of BrainStor prototype in the lab. Core modules

include OSC, OMM, OCM, OBM and OSM. This BrainStor prototype is an OSD

prototype over Fibre Channel network. Main features of BrainStor prototype are

46
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Figure 4.2: BrainStor Prototype Logical Connection

summarized as follows:

• Develop an OSD prototype over Fibre Channel network

• Define and develop a centralized Object Cache Module

• Define and develop an Object Bridge Module

• Preliminary results: 145MB/s for single OSC and 190MB/s for single OSM

over 2G FC

• OSM cluster storage virtualization

• OMM cluster dynamic load balancing, scalability and failover support

• Integrate OSD storage with email server (Sendmail)

Figure 4.2 presents the corresponding internal logical connection of modules

in the current BrainStor prototype shown in Figure 4.1. All the nodes are connected

to FC switch, CISCO DS-C 9509 director, and Ethernet switch, Compex DSR2216.

The current version of BrainStor prototype already supports the clustering of all
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the nodes. A RAIDTec JBOD (not shown in Figure 4.1) is used as common stor-

age space. The OBM connects to a block-based SAN and accesses LUNs in the

HDS Lightning 9000 storage system, located in DSI’s Network Storage Lab. The

hardware configurations of each modules are shown in Table 4.1.

Table 4.1: Hardware Configuration of BrainStor Nodes in Experiments

Node Type OMM OCM OBM OSM

CPU Intel Xeon
2.4GHz

Intel Xeon
2.4GHz

Intel Xeon
2.4GHz

Intel Xeon
2.4GHz

Memory 1G DDR266
ECC memory

8G DDR266
ECC memory

512M
DDR266
ECC memory

512M DDR266
ECC memory

Storage The common
storage space
(RAIDTec
JBOD)

Use memory
as storage

SAN storage 16x250G SATA
WD HDD
(7200RPM)

Fibre Chan-
nel

2xQlogic FC
adapter

2xQlogic FC
adapter

2xQlogic FC
adapter

1xQlogic FC
adapter

Ethernet Onboard NIC
(1000Mbps)

Onboard NIC
(1000Mbps)

Onboard NIC
(1000Mbps)

Onboard NIC
(1000Mbps)

Linux Ker-
nel

2.4.20 2.4.20 2.4.20 2.4.20

RAID con-
troller

No No No Yes (3ware 8500
8xSATA RAID
Controller)

Motherboard TYAN s2722 SuperMicro
X5DPI-G2

TYAN s2722 TYAN s2712

4.2 BrainStor Experiments

BrainStor experiments are designed to benchmark the BrainStor architecture and

further identify the key issues in real OSD system developments. Because the

object is a concept between file and block, test tools include block-level benchmark

tool, Iometer [47] as well as file system benchmark tool, IOzone [48]. PostMark test

tool[49] is also used to evaluate the access performance to small files. In addition,

the Finisar Fibre Channel analyzer is used to verify the throughput at physical

level.
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Figure 4.3: Typical Test Setup

A typical test setup is shown in Figure 4.3. The hardware configurations of

all the nodes are shown in Table 4.1. The OSM adopts a 16-HDD RAID 0 for

the best performance. All the nodes used in test are connected through a Fibre

Channel Director (CISCO DS-C 9509). The Finisar Fibre Channel analyzer can

be used to monitor the physical transition on the fibre. Normally, it is connected

between the Fibre Channel switch and the OSM module in order to verify the real

data transition performance. In the following tests, the effects of OSCs’ local cache

are minimized. The test results are the physical data transition results, which are

already verified by the analyzer.

4.2.1 Iometer Test

The purpose of Iometer test is to benchmark the BrainStor prototype from block

device test point of view. Iometer is an industry standard benchmark tool to block

devices, such as disk and RAID systems [47]. Following experiments use the Linux

version Iometer (2003.12.16) in the OSC system.

The explanations of different configuration symbols used in Iometer tests are
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as follows:

• 1-OSC-r/1-OSC-w: BrainStor uses the basic setup, which includes one OMM

and one OSM. There is one OSC running the Iometer read or write test.

• 2-OSC-r/2-OSC-w: BrainStor uses the basic setup, which includes one OMM

and one OSM. There are two OSCs running the Iometer read or write test

simultaneously.

• 3-OSC-r/3-OSC-w: BrainStor uses the basic setup, which includes one OMM

and one OSM. There are three OSCs running the Iometer read or write test

simultaneously.

• 4-OSC-r/4-OSC-w: BrainStor uses the basic setup, which includes one OMM

and one OSM. There are four OSCs running the Iometer read or write test

simultaneously.

• 4C-2OSM-r/4C-2OSM-w: BrainStor prototype includes one OMM and two

OSMs. There are 4 independent OSCs running the Iometer read or write test

simultaneously.

• 4C-2OSM-r1(2)/4C-2OSM-w1(2): BrainStor prototype includes one OMM

and two OSMs. There are 4 independent OSCs doing the Iometer read or

write test simultaneously. 1 and 2 indicate the result at OSM1 or OSM2

respectively.

The above naming method is used in all the Iometer test results. Table 4.2

details the primary Iometer settings used in the tests [47]. The benchmark criterias

used in Iometer tests include performance, I/O per second, average response time

and OSM CPU utilization.
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Table 4.2: Iometer Configuration in Experiments
Configuration Name Setting

Number of Mangers One manager per OSC
Number of Workers per Managers 3

Outstanding I/Os 4
Test Connection Rate 4

Read/Write 100% read or 100% write
Access Pattern 100% Sequence
Request Size 16KB - 512 KB

Ranp Up Time 30 seconds
runtime 300 seconds

4.2.1.1 Iometer Read Test
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Figure 4.4: Performance in Iometer Read Test

Figure 4.4 shows the read performance. The x axis indicates the size of read

requests (KByte) and the y axis shows the read performance (MBps, Mega-Byte

per second). As shown in results, when the number of OSC is increased from 1 to 2,

the performance increases sharply. The best performance of BrainStor is increased

from 145.8MBps to 191MBps at 512KB request size when the number of OSCs

increases from 1 to 2.

When the third OSC is added, the performance with request size larger than

64KB cannot achieve obvious improvement (less than 5%). When the fourth OSC
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is added, the performance is similar as that of 3 OSCs (less than 2% variation).

This scenario is because the OSM already has a heavy load when there are

two OSCs runing the read test. The performance bottleneck is at the OSM side

when there are 4 OSCs running. The OMM is not a bottleneck because Iometer

test does not involve many metadata access. In addition, when the throughput

approaching the maximum, the increasing request size cannot improve the perfor-

mance significantly. So the throughput of requests larger than 128KB tends to

stabilize, as shown in Figure 4.4.

Therefore, similar to the practical situation, another OSM can be dynamically

added in order to overcome the bottleneck. As can be seen in Figure 4.4, the

performance increases sharply again when 4 OSCs do Iometer read test based on

BrainStor prototype with 2 OSMs. The best performance can reach 374MBps when

4 OSCs test the prototype with read requests at the size of 256KB. Thus, the tests

show that BrainStor supports storage scalability, which can improve not only the

capacity but also the performance.
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Figure 4.5: IOps in Iometer Read Test

Figure 4.5 shows the I/O number per second (IOps) during the read tests.

The x axis represents the size of read requests and the y axis indicates the IOps.

Normally, the larger the request size, the lower IOps, because more time are

needed to process a large I/O request than a small I/O request. In case of the

large I/O request, less commands are needed to be transmitted through fibre and

processed by both initiator and target. As a result, large request size always leads

to better performance.

The changes under different setup are similar to the changes in the read

performance as shown in Figure 4.4. The IOps with 3 OSCs and 4 OSCs are

similar due to the load limitation of one OSM. Therefore after another OSM is

added, there is obviously increasing in terms of IOps. Thus, the OSM scalability

can also improve the I/O processing ability of BrainStor.
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Figure 4.6: Average Response Time in Iometer Read Test

Figure 4.6 shows the average response time in the read tests. The x axis

indicates the size of read requests and the y axis represents average response time.

Normally, the larger the request size, the longer the response time. Figure 4.6

shows that the average response time keeps increasing with the number of OSCs.

For example, although the performance of 3-OSC-r and 4-OSC-r are similar, the

response time of 4-OSC-r is much higher than 3-OSC-r. This is also due to the

limitation of OSM processing capability.

The addition of one OSC running Iometer means that there are more I/O

requests generated at the same time. However, because the OSM has already

reached its maximum throughput, although 4 OSCs can generate more I/O requests

in a unit time, the OSM cannot complete them all immediately. More I/O requests

fail to increase the overall performance. Therefore many requests have to wait in

the queue and the average response time increases.

From Figure 4.6, it can be seen that after another OSM is added, the average

response time drops sharply and reaches the same level as 2-OSC-r. Thus, adding

OSMs can also reduce the average response time.



55
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Figure 4.7: OSM CPU Utilization in Iometer Read Test

Figure 4.7 shows the OSM CPU utilization during the read tests. The x axis

represents the size of read requests and the y axis indicates the CPU utilization.

As can be seen in Figure 4.7, the OSM CPU utilization is increasing with its

performance in a certain test setup. The results from 4C-2OSM-r1 and 4C-2OSM-

r2 are similar and a bit less than that of 2-OSC-r. Clearly, two OSMs can almost

share all the read requests evenly, which means that BrainStor can load balance

between the OSM cluster.

One interesting observation is that although the performance of 3-OSC-r and

4-OSC-r is similar, their respective CPU utilizations differ a lot. There are about

30% difference when the request size is 64KByte. It shares the same reason with

the difference in the average response time. As discussed above, more OSCs means

that there are more coming requests waiting in command queues. Hence extra CPU

cycles are taken to process the incoming requests and maintain command queues.

Figure 4.7 shows that the highest OSM CPU utilization is 40.5% under the

read test. Therefore based on the OSM hardware setup introduced above, the CPU

power of OSM is far than enough to support the functions of OSM. The maximum

throughput of OSM is limited not by its CPU, but by disks.
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4.2.1.2 Iometer Write Test
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Figure 4.8: Performance in Iometer Write Test

Figure 4.8 shows the write performance during the Iometer write tests. The

x axis stands for the size of write requests (KByte) and the y axis shows the write

performance (MBps). The result shows that when the number of OSCs is increased

from 1 to 2, the write performance increases sharply. The best write performance

of BrainStor is increased from 129.4MBps to 191MBps at 512KB request size when

the number of OSCs increases from 1 to 2.

However when the third and the fourth OSCs are added, the performance

with request size larger than 64KB cannot achieve obvious improvement (less than

4%). And the improvement is less obvious when adding the fourth OSC than adding

the third one, which means that the OSM has already reached its maximum write

throughput.

Therefore, similar to read test, the dynamical addition of another OSM is a

possible solution to remove the bottleneck. In Figure 4.8, the write performance

increases sharply again when the second OSM is added. The best write performance

can even reach 350MBps when 4 OSCs send write requests to BrainStor with 2

OSMs at the size of 256KB. Thus, the OSM scalability can significantly improve
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the capacity as well as the write performance.

Compared with Figure 4.4, the write performance is slight lower. This is due

to the additional buffer ready notification in write type transition through Fibre

Channel [17]. During the write process, instead of transmitting data and write

command together, the OSC can only send write command to the OSM. After the

OSM have corresponding buffer ready for DMA transition of the write command,

the OSM needs to send back a buffer ready notification to the OSC. After the OSC

receives the notification, data can be written to the OSM through FC network.

Because every write command has one more transition than read command, the

write performance is slightly lower than read performance.
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Figure 4.9: IOps in Iometer Write Test

Figure 4.9 shows the I/O per second (IOps) during the write test. The x axis

represents the size of write requests and the y axis indicates the IOps.

Normally, the larger the request size, the lower the IOps, because more time

are needed to process a large I/O request than a small I/O request. As discussed in

Section 4.2.1.1, although the larger write request size leads to less IOps, it brings

better write performance. The changes under different setups are accordant with

the changes in Figure 4.8. Due to the limitation of one OSM, the IOps with 3

OSCs and 4 OSCs are just slightly different when the request size is larger than

64KB. After another OSM is added, there is obvious increase in terms of IOps.

Thus, storage scalability improves the write IOps as well.

Compared with Figure 4.5, the IOps of write test is lower due to the additional

buffer ready notification.
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Figure 4.10: Average Response Time in Iometer Write Test

Figure 4.10 shows the average response time during the write test. The x

axis represents the size of write requests and the y axis indicates average response

time (ms).

Normally, the larger the size of write requests, the higher the response time.

Figure 4.10 also shows that the average response time keeps increasing with the

number of OSCs. This is also due to the limitation of OSM processing capability

and more write requests have to wait in the command queues, as discussed in

Section 4.2.1.1.

As can be seen in Figure 4.10, after another OSM is added, the average re-

sponse time of write test drops sharply and reaches the same level as 2-OSC-w.

Thus, storage scalability can help to reduce the average response time of writer

as well. Compared with Figure 4.6, the average response time of writer is slightly

longer than that of reader, which is also due to the additional buffer ready notifi-

cation.
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Figure 4.11: OSM CPU Utilization in Iometer Write Test

Figure 4.11 shows the OSM CPU utilization during the tests. The x axis

represents the size of write requests and the y axis indicates the CPU utilization

(%).

As can be seen in Figure 4.11, the OSM CPU utilization normally increases as

the throughput increases under certain test setup, e.g. 1-OSC-w. The results from

4C-2OSM-w1 and 4C-2OSM-w2 are very close. Two OSMs can almost share the

write requests evenly, and BrainStor can load balance between the OSM cluster.

One interesting observation is that although the performance of 3-OSC-w

and 4-OSC-w is similar, their respective CPU utilizations show obvious difference.

It is because extra CPU cycles are taken to process the incoming write requests

and maintain the command queues, as discussed in Section 4.2.1.1.

Figure 4.11 shows that the highest OSM CPU utilization is 46.5% under the

write test, which is higher than that of read testing (40.5%). The CPU power of

OSM is also more than enough to support the functions of OSM. The maximum

throughput of OSM is limited not by its CPU, but by disks.
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4.2.2 IOzone Test

The purpose of IOzone test is to benchmark BrainStor prototype to file operations.

IOzone is a standard file system benchmark tool. The benchmark generates and

measures a variety of file operations [48].

In order to evaluate the BrainStor performance, IOzone setting “-I ” is used

to bypass the OSC’s side cache effect. IOzone write test measures the performance

of writing a new file, which includes writing both data and metadata of the file.

IOzone read test measures the performance of reading an existing file. IOzone

can conduct the read/write test based on different request size. The request size

is less or equal to the size of file. The request record sizes vary from 4KByte to

512KByte in the IOzone test. The internal procedure of IOzone tests is to create

the corresponding test files at specified size in the tested file system and conduct

read or write test with one particular request size. Thus the performance results

are measured according to the size of test file and the size of request size.

Figure 4.12 and 4.13 show IOzone test results of the BrainStor prototype

with one OSC, one OMM and one OSM. The x axis represents the size of test

file, the y axis indicates the size of request record, and the z axis represents the

performance in Kilo-Byte per second (KBps).

As can be seen from Figure 4.12 and 4.13, the performance of both reader

and writer is increasing sharply with the size of request size. This scenario can

also be found in Iometer results. The best performance of reader and writer can

be above 100MBps for single OSC access. The major read performance is around

80 - 100MBps and the major write performance is around 60 - 80MBps. IOzone

results are lower than Iometer results because IOzone tests involve additional file

operations, such as open, and metadata operations, such as updating the access

time of file.
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Figure 4.12: Performance in IOzone Read Test
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Figure 4.13: Performance in IOzone Write Test
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Reader performance is better than writer performance. One reason for this

difference between reader and writer is due to the buffer ready notification of write

commands, as discussed in Section 4.2.1.2. Another reason is that IOzone writer

needs to store both data and file metadata, while IOzone reader only needs to read

data.

4.2.3 PostMark Test

The purpose of PostMark test is to learn the metadata request percent of the total

requests when the OSC accesses thousands small files in BrainStor. PostMark is a

benchmark to measure performance for the ephemeral small files used by Internet

softwares, in particular: electronic mail, net news and web-based commerce.

PostMark is designed to measure the transaction rates for a workload similar

to a large Internet electronic mail server [49]. During the PostMark testing, it firstly

generates an initial pool of random text files ranging in size from a configurable

low bound to a configurable high bound. This file pool is of configurable size and

can be located on any accessible file system. In BrainStor PostMark tests, the pool

is located in the OSC’s “/mnt/brainstor/” directory, which is the mount point of

ofm file system.

Then, a specified number of transactions occur according to the configuration.

Each transaction consists of a pair of smaller transactions: create file, delete file,

read file or append file. Each transaction type and its affected files are chosen

randomly to minimize the influence of file system caching, file read ahead, and disk

level caching and track buffering [49].

PostMark tests are still based on the basic BrainStor prototype, which in-

cludes one OSC, one OMM and one OSM. All the nodes are connected by 2G Fibre

Channel switch. In order to capture all the commands from the OSC, the Finisar

Fibre Channel analyzer is used between the OSC and FC switch this time.
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Figure 4.14: Data Captured by Fibre Channel Analyser

Table 4.3: PostMark Configuration in Experiments
Configuration Name Setting

Files per directory 1000
Number of subdirectories 10

Transitions 500
Read/Write 50% Read and 50% Write

Access Pattern Random
File Size 512Byte - 512K

The PostMark test setting is shown in Table 4.3. The setting means that

PostMark creates 10 subdirectories, each of which contains 1000 files with preset

size. After the pool is set up, PostMark will conduct 500 transactions that may be

read or write transactions on files that are randomly picked up in the pool.

During the test, FC analyzer can capture all the OSD commands, as shown

in Figure 4.14. The main window shows the concise description of all the captured

commands, data and status, while the smaller window below shows the detail

description of the command that is highlighted in the above main window. The

commands indicated with the vertical line are all OSD SCSI commands, which
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are indicated by the OSD operation code (0x7F). The service code from the detail

description of the command tells which OSD operation each SCSI command stands

for. In the above example, the details of Command Descriptor Block (CDB) can be

found in the highlighted SCSI command in the rectangle. The service code of the

CDB is 0x8806, which represents an OSD WRITE command. From the CDB, it

can also be seen that this command intends to write 4KB (0x1000) data to object

C in object partition A (0x0C0A) starting from offset 0.

Figure 4.15 shows the data request percent (DataReq%) and the metadata

request percent (MetadataReq%) of the total requests during the PostMark tests

at different file size. The results are obtained by analyzing and counting all the

data commands and metadata commands in the captured data by FC analyzer

during Postmark tests.
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Figure 4.15: PostMark Test Results

As can be seen in Figure 4.15, there are too many metadata requests com-

paring to the data request in the BrainStor system. There is even more than 70

percent of all I/O requests are for metadata when using PostMark to randomly

access ten thousands 0.5KB files, as shown in Figure 4.15. Numerous metadata

requests queuing in the OMM can damage the overall system performance.

How BrainStor can better manage the metadata and reduce the number of

metadata requests is an critical issue in OSD system design. As can be seen in
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Figure 4.15, the first BrainStor prototype does not address the problem well. In

order to solve this problem, we propose the Hashing Partition method, which will

be discussed in the Chapter 5.

Because different tools has different focuses and vary test methods, PostMark

can unveil the problem of BrainStor while other benchmark tools can achieve com-

parable good performance. PostMark concentrates on performance benchmark

of the ephemeral small files, while Iometer cares the performance of raw devices

and IOzone testes performance on the files. Iometer creates one very large test

file, named iobw.tst, to simulate the entire raw disk and IOzone conducts tests by

reading and writing within files. Both Iometer and IOzone do not involve many

metadata accesses during their tests. On the other hand, PostMark creates a very

large test pool with thousands of small files under different subdirectories, in order

to simulate the storage of a large email server. It also randomly picks up small files

to conduct test. Therefore there are a lot of metadata operations involved.

4.3 Summary

The current BrainStor prototype has the following features:

• An OSD prototype over Fibre Channel network

• A centralized Object Cache Module

• An Object Bridge Module

• Preliminary results: 145MB/s for single OSC and 190MB/s for single OSM

over 2GFC

• OSM cluster storage virtualization

• OMM cluster dynamic load balancing, scalability and failover support

• Integrate OSD storage with email server (Sendmail) and others
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Because the object is a concept between block and file, Iometer and IOzone

are used to benchmark the BrainStor prototype from block and file perspectives

respectively. Iometer results show that adding OSCs can improve the overall per-

formance as long as the OSM cluster can support, and the OSM cluster scalability

improves not only the storage capacity, but also the overall BrainStor performance,

in terms of throughput, IOps, response time and OSM CPU utilization. Storage

virtualization of BrainStor can eliminate the system downtime. IOzone results

show that file-level performance is lower than block-level performance due to the

additional file and metadata operations.

PostMark test unveils the metadata management challenges in the new OSD

architecture. There are too many metadata requests to the OMM cluster, which

damages the overall performance of BrainStor. Chapter 5 will address this problem

in details.
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Chapter 5

Hashing Partition (HAP)

In BrainStor, the performance, availability and scalability of the Object Manager

Module (OMM) cluster are critical. Traditional metadata server cluster suffers

from frequent metadata access and metadata movement within the cluster. In this

thesis, a new method called Hashing Partition (HAP) is proposed for OMM cluster

design [50]. Based on HAP, BrainStor can achieve good performance of OMM

cluster load balancing, failover and scalability.

5.1 Problem

As discussed in Section 4.2.3, metadata management is a critical issue in BrainStor

design. Figure 4.15 shows that too many metadata accesses make the OMM one

potential bottleneck of BrainStor. In some cases, more than 70 percent of all I/O

requests are for metadata during PostMark tests. A trace study of the Unix BSD

file system also found that 50% to 80% of all file system accesses are to metadata

[51]. Although the size of the metadata is small, the traffic volume of such metadata

access degrades the OMM cluster performance and therefore damages the overall

storage system performance.

The intensive metadata requests are attributed to the use of traditional di-

rectory metadata management in the preliminary BrainStor prototype. Although
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this method is widely used, the directory hierarchy must be traversed to get meta-

data information of each file. For example, in order to access the metadata of file:

“/a/b/c/d”, file system firstly needs to access the metadata and then the data of

root directory “/”, in order to know the metadata index of directory “a”. Simi-

larly, file system needs to access metadata and data of “a”, “b” and “c”. After file

system knows metadata and data of all the nodes on the path of file “d” (including

4 metadata accesses and 4 data accesses), file system finally knows the metadata

location of file “d” and access it. This problem of directory metadata management

is often mitigated somewhat by OSC-side cache. However, cache does not help

when large number of OSCs simultaneously access the same directory, which often

happens in a clustering environment.

Besides the number of metadata requests, an extremely unbalanced load dis-

tribution among cluster lets several OMMs overload and most of others free. There-

fore, although the cluster can support more load, the entire OMM Cluster becomes

a bottleneck in BrainStor. For example, if most of “hot” metadata is located in

the same OMM, this one will be “overheated”. And moving all these data from its

local disk to other OMMs introduces additional overheads.

Two different approaches are used to handle this metadata management prob-

lem. First of all, the direct response to this problem is to reduce the number of

metadata requests, for example the hashing method. The second approach is to

make the OMM cluster more capable to handle the increasing metadata requests.

The OMM cluster should be able to perform load balancing during the runtime in

order to avoid the uneven load distribution. In addition, in order to handle the

growing metadata storage and provide reliable metadata storage, the scalability

and failover capability of OMM cluster are critical to BrainStor system. How-

ever based on traditional cluster architecture, the performance of load balancing,

failover and scalability is limited, because most of these operations lead to the

inevitable massive metadata movement within cluster.

Some studies address the metadata management problem by using hashing
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method. The primitive forms of adopting hashing method in file system metadata

management can be found in the Vesta parallel file system [53], which assigns

metadata to OMMs based on a hash of the file identifier, file name, or other related

values. The Lazy Hybrid metadata management method [54] presented a hashing

metadata management with the hierarchical directory support, which dramatically

reduced the total number of metadata requests, however Lazy Hybrid did not deal

with reducing metadata movement between OMMs for load balancing, failover and

scalability.

5.2 Solution - Hashing Partition (HAP)

Application

Mapping Manager

File Hashing Manager

Application Servers

OMM Cluster

Logical Partition Manager

Common Storage Space

H
ashing Partition

OMM Backend

Figure 5.1: Hashing Partition (HAP)

Hashing Partition (HAP) is a new metadata management method, which

provides a total solution for the file hashing, metadata partitioning, and metadata

storage. HAP adopts the hashing method to reduce the number of metadata access,

and focuses on reducing the cross-OMM metadata movement in a clustered design.
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HAP also uses a common storage space in order to achieve high performance of load

balancing, failover and scalability. There are three logical modules in the HAP: file

hashing manager, mapping manager, and logical partition manager, as shown in

Figure 5.1.

In addition, HAP employs an independent common storage space for all

OMMs to store metadata, and this space is further divided into multiple logical

partitions, as shown in Figure 5.1. Each logical partition contains part of global

metadata table. Each OMM mounts and then exclusively accesses logical partitions

allocated to it. Thus as a whole, the OMM cluster can access a unique global

metadata table.
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Figure 5.2: Metadata Access Pattern
1.Filename hashing, 2.Selecting OMM through Mapping Manager, 3.Accessing

metadata by pathname hashing result, 4.Returning metadata to OSC.

The procedure of metadata access is described as follows. Firstly, file hashing
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manager hashes a filename to an integer, which can be mapped to the partition that

stores the metadata of the file in the common storage space. Secondly, mapping

manager figures out the id of OMM that currently mounts that partition. Then

client sends a metadata request with the hashing value of pathname to the OMM.

Finally, logical partition manager located in the OMM side accesses metadata on

the logical partition in the common storage space. Figure 5.2 describes this efficient

metadata access procedure. Normally, only a single message to a single OMM is

required to access a file metadata.

5.2.1 File Hashing Manager

File Hashing Manager (FHM) performs all the hashing. It is part of the Object

File-system Module in OSC architecture as shown in Figure 3.4. In the prelimi-

nary BrainStor prototype, the method of managing metadata is similar to that of

traditional file systems, using directory metadata management. In this way, the

metadata is managed by using a hierarchical directory structure. Whenever client

wants to access metadata of a file, it needs to travel all the nodes on the file path,

including access of metadata as well as content of directories in the path. Thus

instead of using directory metadata management, HAP adopts hashing method

that needs only one direct metadata access based on the hashing of the pathname.

Global Tree (/)

Subtree a (/a/) Subtree b (/b/) Subtree c (/c/)

Figure 5.3: Directory Subtree Partitioning
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In addition, the new design also adopts hashing partitioning that assigns

metadata among OMMs based on a hash result, instead of directory subtree parti-

tioning [52]. NFS [56], AFS [57], and Coda [58], LOCUS [59], and Sprite [60] adopt

the directory subtree partitioning that partitions the namespace among servers ac-

cording to directory subtrees. Given a simple example, there is a global directory

tree that includes three subtrees. According to directory subtree partitioning, each

OMM may just handle each subtree independently as shown in Figure 5.3. Com-

paring to the directory subtree partitioning, hashing partitioning avoids the severe

bottleneck problems when a single file, directory, or directory subtree becomes

popular. Based on a good hashing algorithm, hashing partitioning offers a more

balanced distribution of metadata among OMMs.

There are two hashing partitioning methods:

I Pathname-hashing partitioning

II Filename-hashing partitioning

Pathname-hashing partitioning adopted in Lazy Hybrid [54] uses the full

pathname (e.g. /a/b/filec) to hash, while HAP uses filename (e.g. filec) as the

seed of hashing. Pathname-hashing introduces many metadata movements among

OMMs when a rename operation on a directory happens. Based on method I,

this operation will change the hashing results of most of the files in this directory

subtree due to the changed pathname, then many metadata must be moved from

one OMM to another one indicated by the new hashing results. This is terrible

when renaming a subtree of more than 10,000 files. On the other hand, if the

hashing only uses the filename, all the updates are completed within each OMM

and there is no additional communication between OMMs.

However the filename hashing may introduce a potential bottleneck when a

large parallel access to different files with the same name in different directories.

Files with the same name have the same filename hashing result, therefore their

metadata is mapped to the same OMM. Although it is possible that many parallel
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requests refer to some “hot” files with the same common names, such as readme

and makefile, different “hot” filenames might not be hashed to the same result.

Fortunately, the different hashing values of various popular filenames make all

these “hot spots” distributed among the OMM cluster and reduce the possibility

of the potential bottleneck. In addition, even if certain OMM is over-loaded, the

dynamic load balancing policy (Section 5.3.1) can effectively handle this scenario

and shift the “hot spots” from the overloaded OMM to the lightly loaded OMMs.

Therefore, in BrainStor, file hashing manager adopts method II using the

filename hashing result to choose the OMM. File hashing manager performs two

kinds of hashing: filename hashing for partitioning metadata in the OMM cluster,

and pathname hashing for the metadata allocation and location in an OMM. To

access metadata of a file in the OMM cluster, a client needs to know two facts:

which OMM manages the metadata and where the metadata is located in the logical

partition. Filename hashing answers the first question and pathname hashing solves

the second one. For example, if the client needs to access the file, “/a/b/filec”, it

uses the hashing result of “filec” to select the OMM that manages the metadata.

Then instead of accessing directory “a” and “b” to know where is the metadata

of “filec”, a hash result of “/a/b/filec”, directly indicates where to retrieve the

metadata in the OMM.

Compared with directory metadata management, hashing method makes

some operations expensive. For example, the directory rename operation affects

all the hashing results of files or subdirectories within the renamed directory. As

a result all the corresponding metadata records will be updated based on hashing

method. On the other hand, the directory rename operation only needs to update

the directory’s own data based on directory metadata management. Therefore, if

the applications have a lot of such operations, hashing is not a good choice. For-

tunately, a two years study of the Coda traces [61] for one machine in a general-

purpose environment shows only 117 directory renames, 1851 directory symbolic

links and less than 3000 directory permission and ownership changes. In addi-
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tion, access control becomes a difficult issue in hashing method due to its different

look-up method from traditional directory metadata management. Dr. Brandt has

introduced a dual-entry access control list to address this problem [54].

5.2.2 Logical Partition Manager

Logical partition manager manages all logical partitions in the common storage

space. It performs many logical partition management tasks, e.g. mount/umount,

backup and journal recovery. For instance, logical partition manager can peri-

odically backup logical partitions to a remote backup server. Logical partition

manager is part of the Intelligent Server module in OMM middle layer as shown in

Figure 3.12.

The location of metadata database is another important issue in the Brain-

Stor design. In normal OMM cluster design, every OMM stores metadata on its

local hard disk, and there are two metadata storing methods: one is that every

OMM holds part of the global metadata table. The other is that every OMM holds

a synchronized copy of global table. Method 1 faces difficulties for load balanc-

ing and failover design, such as additional metadata database movement or even

metadata loss during the addition and removal of OMMs. Method 2 faces severe

overhead to synchronize the global table for every metadata updating.

In addition, compared to the user data, metadata uses little storage, thus even

in very large storage system, a central storage space for metadata is acceptable.

Thus, in the new OMM Cluster design, HAP adopts a common storage space for

metadata, which is further subdivided into Logical Partitions (LP). Each LP holds

part of the global metadata table and is managed independently by the OMM back-

end software. During the runtime, OMMs mount all logical partitions and access

metadata on them. Therefore, there is one copy of global metadata table that

is accessible to all OMM. Dynamic load balancing and the addition and removal

of OMM are easily achieved by switching the control of partitions without any
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metadata movement.

Because all OMMs access the common storage space at block level, the OMM

cluster uses the iSCSI or Fibre Channel to build up a small Storage Area Network

(SAN) for metadata storage. For example, in BrainStor system there is another

independent and private zone on a CISCO DS-C 9509 director just for the OMM

cluster, and a RaidTec JBOD is connected, as the common storage space for meta-

data. Based on this SAN structure, it is very easy to add more storage space to

support the scalability of the common storage space.

The logical partitions can be managed by a local file system, by a cluster

file system or by a database. A cluster file system,such as Global File System

(GFS) [55] provides OMMs the ability to access all partitions synchronously at

block level. However the synchronization overhead and cost of cluster file system is

unacceptable in BrainStor. Database also offers each OMM the ability to simulta-

neously access a global metadata database. Due to the characters of metadata and

its access pattern, high cache performance is needed at the OMM side. However,

databases are good at atomic operations but bad at cache performance.

Thus HAP adopts a self-developed local file-system type database with very

good cache performance. The specially designed database is based on a normal file

system. Every OMM uses the database to manage its own logical partitions without

considering synchronization with other OMMs. However, a strict requirement of

this design is that one logical partition can be mounted and accessed by ONLY

ONE OMM at a time, which is the basic principle of the following design.

This common storage space becomes a central node of the whole structure.

The stability and availability affect the health of entire system. Redundancy tech-

nologies such as RAID, can reduce the damage of hard disk failure. Moreover,

remote backup and replication technologies are also necessary to reduce the dam-

age of the entire site failure. In short, this common storage space must be extremely

reliable and recoverable even during some failures.
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5.2.3 Mapping Manager

Mapping manager performs two kinds of mapping tasks: hashing result to logical

partition mapping and logical partition to OMM mapping. Equation 5.1 describes

these two mapping functions. Mapping manager is also part of the Object File-

system Module in OSC architecture as shown in Figure 3.4.

Pi = f(H(filename))

OMMi = ML(Pi, PWi,MWi) (5.1)

Pi ∈ {0, Pn}; H(filename)) ∈ {0, Hn}; OMMi ∈ {0,Mn}

(Hn ≥ Pn ≥ Mn > 0)

Where, H represents a filename hashing function; f stands for the mapping function

that transfers hashing result to partition number (Pi); ML represents the function

that figures out OMM number (OMMi) from partition number and related param-

eters (PW and MW will be explained in Section 5.3.1); Pn is the total number of

partitions; Hn is the maximum hashing value; Mn is the total number of OMMs.

Table 5.1: Example of MLT
Logical Partition Number OMM ID OMM Weight

0 ∼ 15 0 300
16 ∼ 31 1 300
32 ∼ 47 2 300
48 ∼ 63 3 300

When PW and MW are set, mapping manager simplifies the mapping func-

tion ML to a mapping table MLT, which describes the current mapping between

OMMs and logical partitions. It is noted that one OMM can mount multiple par-

titions, however one partition can only be mounted to one OMM. To access meta-

data, mapping manager can indicate the logical partition that stores the metadata

of a file based on the hash result of the filename. Then through MLT, mapping
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manager knows which OMM mounts that partition and manages the metadata of

the file. Finally the client contacts the selected OMM to obtain the file metadata,

file-to-object mapping and other information. Table 5.1 gives an example of MLT.

Based on this table, in order to access metadata on logical partition 18, the client

needs to send request to OMM1.

5.3 Load Balancing, Failover and Scalability

5.3.1 OMM Cluster Load Balancing Design

A good hash algorithm can make object metadata distributed evenly among all

partitions, however it does not mean that every OMM works effectively. First of

all, different OMM might have different hardware and even software capability.

Secondly, the access frequencies of metadata are different and even dynamically

change during the runtime. For example, some hot news, MP3 or even movies in

a web server might be the extreme “hot spots” for only a short period of time,

however after that period, their access frequency drops.

A Dynamic Weight algorithm is proposed to dynamically balance the load

of OMMs. HAP assigns an OMM Weight (MW ) to each OMM according to its

CPU power, memory size and bandwidth, and uses a Partition Weight (PW ) to

reflect the access frequency of each partition. MW is a stable value if the hardware

configuration of the OMM cluster does not change, and PW can be dynamically

adjusted according to the access rate and pattern of partitions. In order to balance

the load between OMMs, mapping manager allocates partitions to OMM based on

Equation 5.2.

∑
PWi

MWi
=

∑Pn
a=0 PWa

∑Mn
a=0 MWa

(5.2)

Where,
∑

PWi represents the sum of PW of all partitions mounted by OMMi ;
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MWi stands for the MW of OMMi ; Pn stands for the total number of partitions;

Mn represents the total number of OMMs.

In addition, each OMM needs to maintain load information about itself and

all partitions mounted on it, and periodically uses Equation 5.3 to calculate new

values.

OMMLOAD(i + 1) = OMMLOAD(i) × α% + OMMCURLOAD × (1 − α%)

PLOAD(i + 1) = PLOAD(i) × β% + PCURLOAD × (1 − β%) (5.3)

Where, OMMCURLOAD is the current load of the OMM; PCURLOAD is the

current load of the logical partition; OMMLOAD(i) represents the load status of

an OMM at time i ; PLOAD(i) stands for the load status of a logical partition at

time i ; α and β are constants used to balance the effects of old value and new

value.

However, OMMs do not need to report their load information to the master

node, e.g. one specified OMM, until an OMM alarms in its overloaded situation,

such as the OMMLOAD exceeding the preset maximum load of the OMM. After

receiving load information from all OMMs, the master node sets the PW of each

partition using new PLOAD values. Then according to new PW and Equation 5.2,

HAP shifts the control of certain partitions from the over-loaded OMMs to some

lightly loaded OMMs and modifies MLT accordingly. This adjustment does not

involve any physical metadata movement between OMMs.

5.3.2 OMM Cluster Failover Design

Typically, a conventional failover design adopts a standby server to take over all

services of the failed server. In BrainStor design, the failover strategy relies on the

clustered approach and supports the multi-OMM failures. In the case of an OMM

failure, mapping manager assigns other OMMs to take over the work of the failed
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OMM. Then the logical partition manager allocates the logical partitions managed

by the failed OMM to its successors. Hence OSCs can still access metadata on the

same logical partition in the common storage space through the successors.

Common Storage Space

OMM Cluster

Logical Partitions

Hashing Partition

Mapping Manager
2

1 3

4

Figure 5.4: OMM Cluster Failover
1.Detecting the OMM failure, 2.Recalculating MW and adjusting MLT, 3.Other

OMMs take over logical partitions of the failure one, 4.Journal recovery

Table 5.2: MLT after OMM1 Fails
Logical Partition Number OMM ID OMM Weight

0 ∼ 15, 17 ∼ 21 0 400
X X X

32 ∼ 47, 21 ∼ 26 2 400
48 ∼ 63, 27 ∼ 31 3 400

First, let’s consider a normal OMM removal. In this case, it may begin with a

command from the system administrator, like “rm OMM1”. Then HAP can work

for this coming change and all MW will be updated. Then HAP generates a new

MLT, based on Equation 5.2. For example, based on MLT shown in Table 1, if

OMM1 is being removed by administrator or even suddenly crashes, Table 5.2 may

be an example of the new MLT. Then logical partition manager can complete all

adjustments based on the new MLT. Logical partition manager can umount logical

partitions from the removing OMM and mount them to other OMMs according to
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the new MLT. During the process which may last for a very short time period, all

coming requests are either queued or denied with a server busy message.

Then, let’s look at the unpredictable OMM failures. During the disaster,

one or more OMMs may fail and disappear from the OMM cluster without any

aura, and of course logical partition manager has no time to perform any umount

operations. HAP has certain monitor mechanism to detect the OMM failure in

cluster. Then after the OMM cluster detects the node failure, the failover procedure

is quit like the procedure of normal OMM removal. The difference is that HAP

depends on the journal function to recovery the logical partitions. Therefore, the

difference is that the mount process will invoke a recovery procedure based on

journal information. Figure 5.4 shows this failover procedure.

5.3.3 OMM Cluster Scalability Design

In the OMM cluster, there are two kinds of scalability. The first one is the scala-

bility of storage capacity for each partition in the common storage space. With the

growth of metadata database, one day, the initial capacity of partitions may not

be sufficient and new storage hardware should be plugged in. Second one is the

scalability of OMM cluster. If the current OMM cluster cannot handle metadata

requests effectively due to the heavy load, new OMMs will be set up to release the

overhead of others. HAP supports both of these scalability requests dynamically

and smoothly.

To consider the storage capacity scalability, the SAN structure provides great

convenience to add more storage, by hot-plugging in hard disks to a RAID system

or even connecting another new storage device to the switch. Besides the hardware

support, HAP runs Logical Volume Manager (LVM) [43] at the OMM side to

extend the storage of current partitions to the new hardware without downtime of

the OMM. HAP is capable to smoothly increase size of logical partitions, therefore,

HAP supports the storage capacity scalability.



82

Table 5.3: MLT after OMM4 is Added
Logical Partition Number OMM ID OMM Weight

0 ∼ 12 0 240
16 ∼ 28 1 240
32 ∼ 44 2 240
48 ∼ 60 3 240

13 ∼ 15, 29 ∼ 31, 45 ∼ 47, 61 ∼ 64 4 240

HAP also significantly simplifies the procedure to scale the OMM cluster. If

the current OMM cluster cannot handle metadata requests effectively due to the

heavy load, new OMMs can be dynamically set up to release the overhead of others.

To the addition of OMM, HAP adjusts MW s and thus generates a new MLT based

on ML. For instance, still based on Table 5.1 in the above example, there is a new

OMM, such as OMM4, added. Finally, the new MLT may be something like Table

5.3. This process does not touch the mapping relationship between filename and

logical partition, because the number of logical partitions is unchanged. Following

the new MLT, logical partition manager umounts certain partitions from existing

OMMs and mounts them to the new OMM. This procedure introduces no physical

metadata movement within the OMM cluster.

An important rule of adjusting MLT in all situations is to minimize the

umount operations, because such operation means the loss of a warmed cache in

one OMM, and a cache warm-up process in another OMM may degrade the system

performance.

5.4 OMM Cluster Rebuild

Although HAP method dramatically simplifies the operation of OMM addition and

removal, HAP actually has a scalability limitation, called Scalability Capability

(SC). The preset number of logical partitions limits scalability capability, since one

partition can only be mounted and accessed by one OMM at a time. For instance

64 logical partitions can support up to 64 OMMs. In order to improve scalability
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Figure 5.5: OMM Cluster Rebuild
1.Sending request to the OMM based on new mapping result, 2.Searching for

metadata and making judgment (the rectangle on the left shows the internal logic
and Op. A is explained in the bottom rectangle), 3.Returning metadata and

deleting it in local, 4.Reporting Error, 5.Returning metadata, 6.Wrong filename

capability, BrainStor administrator can add storage hardware to create new logical

partitions and redistribute metadata among the entire cluster. This metadata

redistribution introduces multi-OMM communication because the change in the

number of logical partitions requires a new mapping function f in Equation 5.1, and

affects the metadata location of the existing files in logical partitions. For example,

after scalability capability is improved from 64 to 256, the metadata of a file may

need to move from logical partition 18 to logical partition 74. The procedure that

redistributes all metadata based on new mapping policy and improves scalability

capability, is called the OMM Cluster Rebuild.

In order to reduce the response time of the OMM cluster rebuild, HAP adopts

Deferred Update algorithm, which defers metadata movement and distributes its

overhead. After receiving the cluster rebuild request, HAP saves a copy of the

mapping function f, creates a new f based on the new number of logical partitions,

and generates a new MLT. Then logical partition manager mounts all logical parti-
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tions including both the old and new according to the new MLT. After that, HAP

responds immediately to the rebuild request and changes the OMM cluster to a

rebuild mode. Thus the initial operation for this entire process is very fast.

During the rebuild, the behavior of the system is as if all the metadata

had been moved to the right logical partitions. And the difference is to deny

another immediate change to improve the scalability capability of OMM cluster.

For example, after system designers improve the SC from 64 to 256, BrainStor

refuses another immediate change to improve SC from 256 to 1024 during the

OMM cluster rebuild. Fortunately, the operation to improve the system scalability

capability is very few, maybe once for several years, thus this effect is acceptable.

Based on Deferred Update algorithm HAP updates or moves the metadata

upon the first access. If an OMM receives a metadata request, and the metadata

has not been moved to the logical partition that is mounted by it, the OMM needs

to use the old mapping function f to calculate the original logical partition number

based on the filename. Then through the new MLT, the OMM can find the OMM

that currently mounts the original logical partition and sends a metadata request

to it. Finally the OMM retrieves the metadata from its original location and

complete the client’s metadata request as well as the metadata movement. Figure

5.5 describes this procedure.

In order to reduce the total time of the OMM cluster rebuild, besides the

metadata movement upon first access, every OMM can have a thread to travel its

metadata database and move the affected metadata to other OMMs. However the

thread can only run in the background as system load permits. By setting the

Maximal Permit Load (MPL) value, HAP can easily control the thread. Only the

light-loaded OMMs whose loads are less than MPL, can run that thread to perform

metadata movement. On the other hand, the heavy-loaded OMMs depend on the

metadata access to move affected metadata to the new place. Thus, the overall

performance is just slightly affected even during the OMM cluster rebuild. Fur-

thermore, if a system simply requires that the time for the OMM cluster rebuild
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should be as little as possible, a large enough MPL lets these updating threads

keep working and make the OMM cluster rebuild completed in the shortest time.

Actually the longer the rebuild time, the less the effects to the system overall per-

formance, because the rebuild process only costs spare system time and resources

and does not compete with other critical metadata serving threads.

With all these algorithms, the OMM cluster rebuild can be completed effec-

tively and BrainStor can support unlimited OMM cluster growth. However, in the

actual application environment, according to the characters of the storage applica-

tions, a reasonable number of logical partitions can entirely avoid the OMM cluster

rebuild.

5.5 Analysis and Experience

5.5.1 HAP Analysis

HAP uses hashing method to avoid the numerous metadata accesses, and uses

filename hashing policy to remove the overhead of multi-OMM communication.

However, most of current file systems are based on traditional directory metadata

management. In Linux, Virtual File System (VFS) adopts file system interfaces

based on the model of directory subtree structure. Therefore, one needs to re-

design the Linux VFS in order to implement a hashing file system for HAP in

Linux. Nevertheless the benefit of hashing method can still be demonstrated by

some analysis.

Figure 5.6 compares the total number of accesses in order to get the metadata

of files at different directory levels between HAP and a normal file system. The

normal file system refers to a general file system adopting the directory metadata

management, such as ext3. It is also supposed that there is no cache effect. The

x axis stands for the depth of file in the directory tree, the y axis stands for the

number of accesses in order to know the metadata of a file. Line 1 (L1) shows
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Figure 5.6: HAP Analysis Result without Cache Effects

the number of metadata access based on HAP without considering cache effect;

Line 2 (L2) shows the number of metadata access based on normal file system

without considering cache effect; Line 3 (L3) shows the number of metadata and

data accesses based on normal file system without considering cache effect.

Because HAP adopts the hashing method, there is only one direct meta-

data access for each file, no matter what the depth of file pathname is. In order

to simplify the analysis, the hashing collision is not considered in HAP analysis.

Therefore, as the Line 1 shows that the number of accesses is always one. In order

to access the metadata of a file, the traditional file system need go through all the

nodes on the file path. Hence the number of metadata access is linearly increasing

with the depth of pathname, as shown in Line 2.

In a normal file system, the sequence to access a file is to go through the

metadata and data of nodes on the file path one by one. For example, in order to

access the metadata of file: “/a/b/c”, the metadata of “/” is accessed and then file

system knows where the data of “/” is. After getting the data of “/”, file system

checks whether directory “a” is under the “/” directory by searching the content

of “/”. If “a” is found, the metadata location of “a” is known. Then similarly, file

system needs to go through metadata of “a”, data of “a”, metadata of “b”, data
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of “b” one by one. Finally, after knowing the metadata address of file “c” in the

data of “b”, file system gets the metadata of file “c”. As a result, the number of

accesses includes both metadata access and data access, and it is increasing even

more sharply with the depth of pathname, as shown in Line 3. When the depth of

pathname is 9, the number of metadata requests of normal file system is 10 times

that of HAP and the number of all requests of normal file system is 19 times that

of HAP.
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Figure 5.7: HAP Analysis Result with Cache Effects

Figure 5.7 shows the comparison result with the cache effect. Line 4 shows

the HAP result when the cache hit rate is constant for files at all levels. Suppose

that the cache hit rate is 60%, then number of accesses at all depth is 0.4 for HAP,

as shown in Line 4 (L4). Line 5 (L5) shows the number of metadata access in

normal file system where the cache hit rate is always 60% at all levels of directory

subtree. Line 6 (L6) shows the number of accesses including both data access and

metadata access in normal file system where the cache hit rate is always 60% at

all levels of directory subtree. Line 7 (L7) shows the number of metadata access

in normal file system where the cache hit rate is decreasing with the depth at the

speed 10% per level. Suppose the cache hit rate is 1 at the root level (depth =

0). Then the cache hit of the first level is 90%. Line 8 (L8) shows the number
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of accesses including both data access and metadata access in normal file system

under the same condition as indicated by the Line 7.

As shown in Figure 5.7, curves L5, L6, L7, and L8 all ascend quickly with the

depth of directory. The variable cache hit rate leads to less metadata access than

the constant cache hit rate when the pathname depth is less than 8. However,

when the pathname depth is 9, the constant cache hit rate leads to less access.

When the depth of pathname is 9, the number of metadata requests of normal file

system in Line 5 is 10 times that of HAP and the number of all requests of normal

file system in Line 6 is 19 times that of HAP; the number of metadata requests of

normal file system in Line 7 is about 11 times that of HAP and the number of all

requests of normal file system in Line 8 is 20 times that of HAP.

As discussed above, HAP has an obvious advantage to normal file system

with either cache-enable or cache-disable, in terms of number of metadata access.

5.5.2 BrainStor Functional Experiments

HAP has been partially implemented in BrainStor prototype in order to support

OMM cluster failover and scalability. In this section, some BrainStor functional

experiments are explained in order to demonstrate HAP’s strengths.

All the following experiment uses the standard BrainStor nodes introduced

in Chapter 4. The following experiments follows the steps:

• Step 1: Add an OSM to a basic BrainStor setup in order to demonstrate the

storage scalability.

• Step 2: Add an OMM to demonstrate the OMM cluster scalability.

• Step 3: Make one OMM failure to show the OMM failover ability, and finally

recovery the failed OMM.
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5.5.2.1 Storage Scalability Experiment

Experiment Setup

1. One basic BrainStor setup: one OSC, one OMM and one OSM connected by

Fibre Channel Switch (CISCO DS-C 9509). All the nodes are also connected

to a Compex DSR2216 Ethernet switch through their on-board NICs.

2. A standby OSM.

3. RaidTec JBOD as the common storage space.

Experiment Process

1. Power on the Fibre Channel Switch as well as Ethernet switch.

2. Set up the basic BrainStor prototype by simply powering on JBOD, OMM

and OSM nodes sequentially. Then the basic BrainStor prototype is ready.

3. Power on the OSC that will automatically connect to the BrainStor proto-

type.

4. Run a test program in the OSC to keep creating files in the “/mnt/brainstor”

directory, which is the mount point of BrainStor storage in Linux.

5. Connect the standby OSM to switches and power on it to dynamically scale

the BrainStor storage while the test program in the OSC is running.

6. After the new OSM joins the BrainStor automatically, it received requests

from the running program in OSC, and new objects are created accordingly

in the OSM.

Observation Results
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The experiment shows that BrainStor prototype supports storage scalabil-

ity. Storage scalability is a key feature of advanced storage system. Without any

downtime, BrainStor can scale the storage capacity and performance during the

runtime of major applications. For example, during the BrainStor Iometer test,

after the second OSM is dynamically added, the performance is almost doubled.

Clearly, two OSMs can provide parallel access to the OSC.

5.5.2.2 OMM Cluster Scalability Experiment

Experiment Setup

1. One basic BrainStor setup: one OSC, one OMM and two OSMs connected by

Fibre Channel Switch (CISCO DS-C 9509). All the nodes are also connected

to a Compex DSR2216 Ethernet switch through the on-board NIC.

2. A standby OMM.

3. RaidTec JBOD as the common storage space.

(It is just the platform after storage scalability experiment.)

Experiment Process

1. This experiment can be directly conducted after storage scalability experi-

ment, or it can be set up independently.

2. The test program used in storage scalability experiment is still running. The

program keeps creating files in the “/mnt/brainstor” directory where Linux

mounts the BrainStor storage. Because the OMM is in the debug mode, when

the program is running, there are running messages on the screen of OMM

due to the coming metadata requests.

3. Connect the standby OMM to switches and simply power on the OMM to

dynamically scale the BrainStor metadata processing capability while the test
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program is running. This new OMM is also with the debug message setting

enabled.

4. After the new OMM joins the BrainStor automatically, there are running

messages about the coming metadata requests on its screen as well. As a

result, both OMMs have debug messages keep arriving on their screens.

Observation Results

The experiment shows that BrainStor prototype supports the OMM cluster

scalability. The scalability of OMM cluster is crucial to handle the numerous

metadata access requests. When the applications demands BrainStor to be more

efficient in processing metadata requests, without any application downtime, a new

OMM(s) can be dynamically added to solve the problem.

5.5.2.3 OMM Cluster Failover Experiment

Experiment Setup

1. One BrainStor setup: one OSC, two OMMs and two OSMs connected by

Fibre Channel Switch (CISCO DS-C 9509). All the nodes are also connected

to a Compex DSR2216 Ethernet switch through the on-board NIC.

2. RaidTec JBOD as the common storage space.

(It is just the platform after the OMM cluster scalability experiment.)

Experiment Process

1. This experiment can be directly conducted after the OMM cluster scalability

experiment, or it can be set up independently.

2. The test program is still running. Just during the runtime, we can shutdown

the power of one of OMMs directly in order to simulate an OMM failure.
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3. The result of this OMM failure is that the program at the OSC stops for

several seconds and goes on operation without any blocking. And the screen

of the remaining OMM can still display continuously the debug messages of

the arriving metadata access requests.

Observation Results

The experiment shows that the failover of OMM can be fully supported. After

the OMM is removed without any notification, there are several seconds break of

the running program. This is because BrainStor needs to ensure that the OMM is

failed. After that, the existing OMM can take over the work of the failed one, as

introduced in Section 5.3.2. Every OMM handles part of metadata storage in the

common storage space (the JBOD). After the failure of one of the two OMMs, the

remaining OMM can still support the metadata accesses that originally should go

through the failed one.

After the OMM fails, a new OMM or the recovered OMM (the failed OMM)

can be added to BrainStor. The procedure is still very simple and similar to the

OMM cluster scalability experiment. For the recovered OMM, only the power-on

is needed. For the new OMM, besides power-on, some simply commands to report

its connection information such as WWN and IP address, are necessary. Then

BrainStor can automatically detect it and allocate logical partitions accordingly.

The entire recovery process does not introduce any downtime.

5.6 Summary

This chapter presents a new method of Hashing Partition to manage the OMM

cluster in BrainStor system. HAP uses hashing method to avoid the numerous

metadata accesses, and uses filename hashing policy to remove the overhead of

multi-OMM communication. Furthermore, based on the concept of logical parti-

tions in the common storage space, HAP method significantly simplifies the imple-
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mentation of the OMM cluster and provides efficient solutions for load balancing,

failover and scalability. A Dynamical Weight algorithm is also presented for OMM

cluster load balancing.

Normally, the OMM cluster supports scalability without any metadata move-

ment. However, if the OMM cluster scales to a number that is greater than the

preset scalability capability, some metadata must be redistributed. This process is

called the OMM cluster rebuild. In HAP, Deferred Update algorithm is proposed

to improve the response time of the rebuild and minimize the cost of the OMM

cluster rebuild.

Finally, HAP analysis results show that HAP can reduce the number of meta-

data access compared with that of the directory metadata management. The func-

tional experiments show the BrainStor’s storage scalability, OMM cluster scalabil-

ity and OMM cluster failover functions. BrainStor can support these intelligent

functions effectively with very simple design based on HAP.
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Chapter 6

Conclusions and Future Works

6.1 Conclusions

This dissertation presents the design and implementation of BrainStor, a Fibre

Channel OSD prototype. The primary motivation of the research is to provide an

intelligent storage solution to feed the unlimited requirements of today’s applica-

tions. Currently, the file-level NAS solution is good at cross-platform based on

high-level abstract, but is poor in performance. And the block-level SAN solution

benefiting from direct access, can achieve high performance, however it lacks ef-

fective means to provide cross-platform data sharing. Object is regarded as the

convergence of file and block technologies and can also provide the advantages of

both of them. BrainStor solution also aims at offering the strength of both NAS

and SAN and overcoming their disadvantages. Based on object access, BrainStor

system can achieve the high performance from direct access and the cross-platform

data sharing from the high-level abstract object.

Another motivation of the study is to identify the key issues in OSD system

design and implementation. OSD is a comparable new technology and has become

a popular term in both academic and industrial research communities. However,

the new object concept can raise many new challenges as well. In this study, an

attempt is made to identify those important challenges through prototyping and
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testing an OSD storage system.

The main contributions of the thesis are summarized as follows:

1. BrainStor system, a Fibre Channel OSD prototype, is developed. Brain-

Stor architecture presents an OSD architecture with unique Object Cache Module

and Object Bridge Module.

There are six key components of BrainStor: Object Storage Client (OSC),

Object Storage Module (OSM), Object Cache Module (OCM), Object Bridge

Module (OBM), Object Manager Module (OMM) and Security Manager Module

(SMM). In BrainStor, an independent OMM cluster is used to separate the meta-

data path and data path, thus that metadata server is removed from the data path

and the OSC has the direct data access to storage. The OBM makes the Brain-

Stor system compatible with the existing SAN components, such as RAID systems

from different vendors. In addition, Brainstor also offers a scalable cache solution.

OCM, as a centralized cache for the entire BrainStor system, can be scaled to meet

the increasing and unlimited performance needs of storage applications. All the

access to BrainStor is based on object, which enables the high performance and

cross-platform data sharing at the same time.

2. Through analyzing BrainStor prototype test results, the dissertation shows

some features of BrainStor, and further identifies some critical issues about OSD

system design. Iometer and IOzone tests show that the storage scalability can

greatly improve the capacity as well as overall performance of BrainStor, and stor-

age virtualization of BrainStor can eliminate the system downtime. PostMark test

unveils the metadata management challenges in the new OSD architecture.

3. In order to address the metadata management issue, the dissertation

proposes a Hashing Partition (HAP) method in the OMM cluster design. HAP

uses hashing method to avoid the numerous metadata accesses, and uses filename

hashing policy to remove the overhead of multi-OMM communication. Further-

more, based on the concept of logical partitions in the common storage space,
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HAP method significantly simplifies the implementation of the OMM cluster and

provides efficient solutions for load balancing, failover and scalability. Dynamic

Weight algorithm is also proposed for OMM cluster load balancing. HAP makes

the once expensive operations in other systems simple and efficient. The massive

metadata movement is replaced by some mount/umount operations, which can be

completed instantly.

Normally, the OMM cluster supports scalability without any metadata move-

ment. However, if the OMM cluster scales to a number that is greater than the

preset scalability capability, some metadata must be redistributed. This process

is called the OMM cluster rebuild. The Deferred Update algorithm is proposed to

improve the response time of the rebuild and minimize its cost.

4. Analysis results of the hashing method show that the HAP can reduce

the number of metadata requests compared with directory metadata management.

The comparisons are conducted in two situations: considering cache effects and

without considering cache effects. In both conditions, the result shows that HAP

has obvious advantage to directory metadata management in terms of the number

of metadata access.

In addition, BrainStor functional experiments demonstrate the storage scal-

ability capability and OMM cluster’s scalability and failover ability.

6.2 Future Works

With increasing interests on OSD technologies, more and more research works have

been done to develop the promising technology. Object-based storage is the future

trend of network storage.

For BrainStor project, the future works includes four aspects:

1. The distributed object file system
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2. Management algorithms of the OMM cluster

3. Object management algorithms of OSM

4. The data security in BrainStor

In terms of the conjunction of BrainStor and other related technologies, to ex-

plore the application of BrainStor technologies in Grid storage is also an interesting

topic.
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