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Summary 

For most distributed computing systems (DCS), distributed system reliability (DSR) and 

the completion time of an application are the two most important requirements. To meet 

these requirements, it is essential that appropriate algorithms are developed for proper 

program and file allocation and scheduling. This dissertation focuses on the development 

of algorithms to maximize DSR and/or minimize the completion time based on more 

practical DCS models.  

In almost all current reliability-oriented allocation models program and file allocation has 

been considered separately, rather than simultaneously. In this study a reliability–oriented 

allocation model was proposed, which considered the program and file allocation together 

so as to obtain the highest possible DSR. Certain constraints were also taken into account 

to make the model more practical. The model is very comprehensive and can be reduced 

to some other existing models under certain conditions.  

To solve the NP-hard problem of simultaneous program and file allocation formulated 

herein, a Genetic Algorithm (GA) was proposed. To gauge the suitability of Tabu Search 

(TS) and GA for solving this problem, a TS was proposed and the results of TS were 

compared with those of GA. GA and TS were both found to be capable of finding the 

optimal solutions in most cases when the solution space was small. However TS 

outperformed GA with shorter computing time and better solution quality for both small 

and large solution space. Further improvements in performance over that of the TS were 

obtained by using a parallel TS (PTS). Simulation results showed that the solution quality 
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did not change significantly with increased number of processors whereas the speedup of 

the PTS basically grew linearly when the number of processor was not very large.  

Extensive algorithms have been proposed for the NP-hard problem of scheduling a 

parallel program to a DCS with the objective of minimizing the completion time of the 

program.  Most of these, however, assumed that the DCS was homogeneous. An iterative 

list algorithm was proposed in this dissertation to solve the scheduling problem for the 

more difficult heterogeneous computing systems. Simulation results showed that the 

proposed algorithm outperformed most existed scheduling algorithms for heterogeneous 

computing in terms of the completion time of the application. 

To consider DSR and completion time simultaneously, a multi-objective optimization 

problem was formulated and a Tabu Search algorithm proposed to solve the problem. 

Two “lateral interference” schemes were adopted to distribute the Pareto optimal 

solutions along the Pareto-front uniformly. Simulation results showed that “lateral 

interference” could improve the “uniform distribution of non-dominated solutions” and 

was not sensitive to the different computation schemes of distances between the solutions. 

In addition, a general centralized heterogeneous distributed system model was formulated 

and a solution algorithm developed to compute the distributed service reliability. 

Keywords: 

Task Scheduling, Distributed Computing System Reliability, Genetic Algorithm, Tabu 

Search, Multi-objective Optimization, Reliability Analysis 
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Chapter 1  

Introduction 

A distributed computing system (DCS) consists of a collection of autonomous 

computers/processors linked by a network, with software designed to produce an 

integrated computing facility (Coulouris & Dollimore 2000). In such a system, an 

application consists of several tasks/programs. (In this dissertation, task and program, 

and computer and processor are used interchangeably for consistency with the 

literature.) The tasks may be executed on the different computers. Two communicating 

tasks executing on different computers communicate with each other using the 

system’s network, thereby incurring communication cost. Communication costs are 

also incurred when some tasks need to access files on different computers. 

Distributed computing has attracted more and more research effort over the last two 

decades as its performance-price ratio and flexibility exceeds that of supercomputers. 

The past decade has witnessed an ever-increasing demand for and the practice of high 

performance computing driven by powerful DCSs.  

Compared with supercomputers, DCSs generally provide significant advantages, such 

as better performance, better reliability, better performance-price ratio and better 

scalability (Coulouris & Dollimore 2000). Performance (e.g., completion time) and 

reliability are essential requirements for most DCSs (Shatz et al. 1992), and to meet 
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these requirements, it is important to employ a good algorithm for proper program and 

file allocation and scheduling.  

In a homogeneous system, the computation times of a task on different processors are 

the same, and the communication times between two tasks on different processors are 

also the same. A heterogeneous DCS has several advantages over a homogeneous DCS. 

A heterogeneous DCS is a suite of diverse high-performance machines interconnected 

by high-speed links, so it can perform different computationally intensive applications 

that have diverse computational requirements. As the allocation and scheduling for a 

heterogeneous DCS are more difficult than that for a homogeneous one, most 

scheduling algorithms for DCSs assume that the distributed systems are homogeneous.  

This dissertation focuses on scheduling, allocation algorithms for heterogeneous DCSs 

to meet certain criteria, for example maximum reliability and minimum completion 

time. At the same time, computing the DCSs’ reliability is the prerequisite of 

reliability-oriented allocation and scheduling, so the computation and analysis of the 

reliability is also considered.  

1.1 The problems & methodologies 

Increasingly, DCSs are being employed for critical applications, such as aircraft 

control, banking systems and industrial process control. For these applications, 

ensuring system reliability is of critical importance. DCSs are inherently more 

complex than centralized computing systems, which could increase the potential for 

system faults. The traditional technique for increasing the distributed system reliability 

(DSR) is to provide hardware redundancy. However, this is an expensive approach. 

Moreover, many times, the hardware configuration is fixed. When the hardware 



Chapter 1. Introduction 

3 
 

configuration is fixed, the system reliability depends mainly on the assignment of 

various resources such as programs and files (Kumar et al. 1986, Raghavendra et al. 

1988). Extensive program allocation or file allocation algorithms have been proposed 

to maximize the DSR. However most previous studies considered the program and file 

allocation problems separately rather than simultaneously as the optimum method. In 

addition, to make the allocation model more practical, certain constraints need to be 

taken into account.  

In this dissertation, a more practical program and file allocation model was constructed 

by including constraints on program cost, file storage, and completion time. This 

model is very comprehensive and can degenerate to some other models in certain 

circumstances.  

Reliability-oriented program allocation and file allocation are both NP-hard problems. 

Considering the program and file together and taking into account these constraints 

make the problem harder. A Genetic Algorithm (GA) was therefore proposed to solve 

the problem. GA’s are inspired by Darwin's theory of evolution based on the survival 

of the fittest species as introduced by Holland (1977) and further described by 

Goldberg (1989). GA is a meta-heuristic that is easy to model and be applied to 

various optimization problems.  

As this problem has constraints, the solution produced by GA is sometimes not 

feasible. Dealing with infeasible solutions needs extra computational effort and may 

impact the quality of solution. In this case, adjustments were applied to deal with the 

infeasible solutions.  

Tabu Search (TS) (Glover 1989, 1990) is another meta-heuristic method used for many 

large and complex combinatorial optimization problems. This can usually produce 
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quite good solutions although the algorithm is more complicated to implement.  A TS 

was therefore proposed to solve the same problem and the results of TS were 

compared with those of GA.  Simulation results show that TS outperforms GA in this 

case.  

In practical situations, scheduling must be completed within a short time interval, and 

therefore a parallel TS was proposed to solve the problem and to further improve the 

performance of TS.  

As the completion time is another important goal for distributed computing, the 

scheduling of parallel applications to minimize the completion time is very important 

in a DCS. An application consists of a number of tasks which may have dependencies. 

The scheduling problems are NP-hard in the general case (Gary & Johnson 1979); 

extensive heuristic scheduling algorithms have been proposed to minimize the 

completion time (schedule length) (Kwok & Ahmad 1999b). However, most of the 

existing task scheduling algorithms either assume that the DCSs are homogeneous or 

are high-complexity algorithms.  

In this dissertation, a low-complexity algorithm for heterogeneous DCS was proposed 

to maximize the schedule length and the performance tested on randomly generated 

application graphs and some real world application graphs. 

Maximizing the DSR and minimizing the schedule length are two major objectives of 

scheduling for DCSs. Most research has considered these two objectives separately 

although ideally they should be considered simultaneously. Some researchers proposed 

considering one of them as a constraint. However, it is very difficult to estimate a 

value for DSR or schedule length as the limitation. Hence, in this dissertation, Pareto’s 
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optimality concept was used to obtain a set of solutions rather than a single solution, 

and a TS algorithm was presented to solve the problem.  

Analysis and computation of DSR is the prerequisite for reliability oriented allocation 

and scheduling. Several reliability measures have been studied by the researchers in 

the context of DCSs. For example, Raghavendra et al (1988) first introduced the 

distributed program reliability (DPR) and DSR. DPR is a measure of the probability 

that a given program can run successfully and be able to access all the required files 

from remote sites in spite of faults occurring in the processing elements and the 

communication links. DSR is the probability that all the given distributed programs 

can run successfully.  

Most of these measurements cannot be simply implemented to analyze the service 

reliability of a centralized heterogeneous distributed system, designed and developed 

to provide certain important services, as it is affected by many factors including system 

availability and distributed program/system reliability. This dissertation studied the 

properties of centralized heterogeneous distributed systems and developed a general 

model for the analysis. Based on this model, an algorithm to obtain the service 

reliability of the system was also developed.  

1.2 Contributions 

This section briefly summarizes the major contributions of the work described in this 

dissertation. 

The dissertation presents a more practical reliability–oriented allocation model, which 

considers the program and file allocation together and takes into account certain 
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constraints such as program cost, file storage and  completion time. This model, 

compared to previous models, is more practical, more comprehensive and can 

degenerate to some other models.  

A GA is proposed to solve this NP-hard problem. Inappropriately dealing with 

unfeasible solutions may impact the quality of solutions. In this case, adjustments are 

applied to deal with the infeasible solutions. A TS is also designed to find optimal or 

near optimal solutions, and the results of GA and TS are compared to gauge their 

suitability for solving this problem. The numerical results show that in this case TS 

outperforms GA with shorter computing time and better solution quality. Comparison 

of results for this and other cases suggests that, if we have good knowledge of the state 

space, TS should be used; if not, then GA may be a better choice.  

In certain practical situations scheduling must be achieved within a short time interval. 

Therefore to further improve the performance of the TS in this respect, a parallel TS is 

proposed to solve the same problem. The speedup of the parallel TS grows linearly 

with increase in number of processors without adversely affecting the solution quality, 

when the number of processors is not very large. This runs contrary to the common 

opinion that TS is not suitable for parallelization due to the sequential inherence  of TS. 

To minimize the completion time (schedule length), this dissertation proposes an 

iterative list scheduling algorithm for heterogonous DCSs. Simulation results, based on 

randomly generated application graphs as well as real applications, showed that in 

most cases the proposed algorithm obtained shorter schedule length compared with 

previous algorithms.  

To maximize the systems reliability and minimize the schedule length simultaneously, 

a TS algorithm is used to obtain a set of solutions by means of the Pareto optimality 
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concept. In addition, “lateral interference” is adopted to investigate two schemes to 

distribute the Pareto optimal solutions along the Pareto-front uniformly. The results 

show that “lateral interference” can improve the “uniform distribution of non-

dominated solutions” and is neither sensitive to the different computation schemes nor 

to distances between the solutions. 

To compute the distributed service reliability, a prerequisite for the reliability oriented 

allocation and scheduling, a centralized heterogeneous distributed system model and 

an algorithm, which first analyzes the service reliability of the system, are proposed. 

1.3 Organization of the dissertation 

This chapter has given a brief introduction to some basic concepts in allocation and 

scheduling for DCS, reviewed some major work related to the topics addressed in this 

dissertation and described the methodologies used. 

The rest of this dissertation is arranged as the following: 

Chapter 2 introduces related works involving DSR computation algorithms, reliability 

oriented program and file allocation algorithms, completion time oriented task 

scheduling algorithms, and multi-objective optimization. 

Chapter 3 presents a reliability-oriented optimization model with storage, cost and 

completion time constraints in which program allocation and file allocation are 

considered together, and a GA is proposed to solve the problem. 

Chapter 4 proposes a TS to solve the same problem presented in Chapter 3 and 

compares the results of TS and those of GA. In addition, to further improve the 
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performance of the TS, a parallel TS (PTS) is proposed and the performance of PTS is 

analyzed by simulation. 

Chapter 5 presents an iterative list scheduling algorithm to minimize the completion 

time which, together with DSR considered in Chapters 3 and 4, are the two most 

important requirements for heterogeneous DCSs. The proposed algorithm can obtain 

high quality solution with low time complexity.  

Chapter 6 describes a scheduling model to maximize DSR and minimize the 

completion time, considered in Chapters 3 – 5, simultaneously. A TS algorithm was 

used to obtain a set of Pareto optimal solutions and a number of measurements adopted 

to distribute solutions along the Pareto surface uniformly.  

Chapter 7 focuses on how to analyze and compute the reliability for centralized 

heterogeneous DCSs, this being a prerequisite for the reliability oriented allocation 

algorithms.  

Chapter 8 summarizes this dissertation by discussing the contributions and limitations 

of the whole work. It also suggests some possible directions for future research.
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Chapter 2  

Literature Review 

This chapter briefly surveys related work on distributed computing system reliability 

(DSR) evaluation, Reliability oriented task and file allocation, Completion time 

(Schedule length) oriented scheduling algorithms and Multi-objective optimization. 

2.1  Distributed computing system reliability evaluation 

Researchers have developed several reliability measures. Merwin & Mirhakak (1980) 

defined a survivability index S to measure survival in terms of the number of programs 

that remain executable in the DCS after some nodes or links become inoperative. The 

survivability index, however, is not applicable to large distributed systems because of 

the large computing time required (Martin & Millo 1986).  

Aggarwal & Rai (1981) defined the network reliability for a computer-communication 

network and proposed a method based on spanning trees to evaluate the network 

reliability. 

Satyanarayana (1982) proposed a source-to-multiple-terminal reliability (SMT 

Reliability), i.e. derived a topological formula to solve a variety of network reliability 

problems. The formula considered the unreliability of vertices and links, and with 

failure events s-independent or not. The formula, however, involves only non-
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cancelling terms although it explicitly characterizes the structure of both cancelling 

and non-cancelling terms in the reliability expression obtained by inclusion-exclusion.  

Computer network reliability and SMT reliability are good reliability measures for 

computer communication network networks, but neither of them considers the effects 

of redundancy of programs and files in the distributed system. This issue was 

considered by Raghavendra et al. (1988) who developed an efficient approach based 

on graph traversal to evaluate distributed program reliability (DPR) and distributed 

system reliability (DSR).   

DPR is the probability that a given program can run successfully and be able to access 

all the required files from remote sites in spite of faults occurring among the 

processing elements and the communication links. DSR is the probability that all the 

given distributed programs can run successfully.  

Kumar et al. (1986) presented a Minimum File Spanning Trees (MFST) algorithm to 

compute DSR. The MFST is 2-step process:  

• Step 1 computes all MFST,  

• Step 2 converts these MFST’s to a symbolic reliability expression.  

The MFST’s major drawback is that it is computationally complex and prior 

knowledge about multi-terminal connections is needed. To improve the MFST 

algorithm, Kumar et al (1988) developed an algorithm called Fast Algorithm for 

Reliability Evaluation (FARE) that does not require an a priori knowledge of multi-

terminal connections for computing the reliability expression. The FARE algorithm 

uses a connection matrix to represent each MFST and proposes some simplified 

techniques for speeding up the analysis process.  



Chapter 2. Literature Review 

11 
 

Chen & Huang (1992) proposed the FST-SPR algorithm that further improved the 

evaluation speed by reducing the number of subgraphs generated during reliability 

evaluation. The basic idea of the FST-SPR is to make the subgraphs generated 

completely disjointed, so that no replicated subgraphs are generated during the 

reliability evaluation process. Chen et al (1997) proposed another algorithm: HRFST 

that does not need to search a spanning tree during each subgraph generation.  

MFST’s drawbacks were also alleviated by the Generalized Evaluation Algorithm for 

Reliability (GEAR) (Kumar & Agrawal 1993). GEAR is a 1-step algorithm that can 

compute the terminal-pair reliability, computer-network reliability, distributed program 

reliability and DSR. It is also more efficient than the MFST. 

Chen & Lin (1994) presented an algorithm for computing the DSR - the Fast 

Reliability Evaluation Algorithm (FREA) that is based on a factoring theorem 

employing several reliability preserving reduction techniques. Compared with existing 

algorithms on various network topologies, file distributions, and program distributions, 

FREA is much more economical in both time and space.  

Chang et al. (1999) proposed a polynomial-time algorithm to analyze the DPR of ring 

topology and showed that solving the DPR problem on a ring of trees topology is NP-

hard.  Later, Chang et al. (2000) developed a polynomially solvable case to compute 

DPR when some additional file distribution is restricted on the star topology which is 

NP-hard.   

Lin (2003) presented two linear-time algorithms to compute the reliability of two 

restricted subclasses of DCSs with star topology. There are ||V  nodes and || F files in 

the DCS. The first algorithm runs in |)(| FO  when the file distribution is limited to 
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being bipartite and non-separable. The second algorithm runs in O(|V|), when each file 

is allocated to no more than two distinct nodes and each node contains at most two 

distinct records. If the failure and working probabilities of every node are identical, 

then the computation can be accelerated to |)|(log VO  time by means of the Fibonacci 

number and the Lucas number. 

2.2  Reliability oriented task and file allocation  

The reliability oriented task allocation problem can be stated as follows: 

Given an application consisting of m tasks and a DCS with n processors, 

allocate each of the tasks to one or more of the processors such that the system 

reliability is maximized subject to certain resource limitations and constraints 

imposed by the application or environment. 

In the reliability oriented task allocation model, Bannister & Trivedi (1983) achieved 

optimization by balancing the load over a homogeneous system. However, their model 

does not consider failures of communication links and does not give an explicit system 

reliability measure. Hariri and Raghavendra (1986) considered that the reliability was 

maximized and the communication delay was minimized. They also considered the 

problem of task allocation for reliability by introducing multiple copies of tasks, but 

did not give an explicit reliability expression. In addition, their algorithm assumes that 

all the processors and communication links have the same reliability and each 

processor runs exactly one task.  

Hwang and Tseng (1993) proposed a heuristic algorithm for reliability-oriented design 

of a distributed information system to the k copies of the distributed tasks assignment 
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(k-DTA) problem. In Shatz et al. (1992)’s task allocation model, a cost function 

represents the unreliability caused by execution of tasks on processors of various 

reliability and by interprocessor communication. An A* algorithm is applied to do the 

state space search. This algorithm may be “trapped” in local minima which prevent the 

search from yielding an optimal solution. Kartik & Murthy (1995) further reduced the 

size of the search space by finding a set of mutually s-independent (non-

communicating) tasks. Compared with the algorithm of Shatz et al. (1992) that of 

Kartik & Murthy (1997) can produce optimal allocations at all times and reduces the 

computations by using the ideas of branch-and-bound with underestimates and task 

independence.  

The models of Shatz et al. (1992), Kartik & Murthy (1995) and Kartik & Murthy 

(1997) do not include the concept of a task requiring access to a number of data files. 

However this concept is considered in the model of Tom & Murthy (1998). 

Mahmood (2001) presented a least-cost branch-and-bound algorithm to find optimal 

task allocations and two heuristic algorithms to obtain sub-optimal allocations for 

realistically sized large problems in a reasonable amount of computational time.  

Vidyarthi & Tripathi (2001) proposed a genetic algorithm based task allocation to 

maximize the reliability of the distributed system. The GA showed a better result than 

that of Shatz et al. (1992) in terms of the system reliability.  

Chiu et al. (2002) developed a heuristic algorithm for k-DTA reliability oriented task 

allocation problem. The simulation shows that, in most test cases with one copy, the 

algorithm finds sub-optimal solutions efficiently. Even when the algorithm cannot 

obtain an optimal solution, the deviation is very small.  
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The distribution of data files can also impact on the reliability of distributed systems 

(Dowdy & Foster 1982). Pathak et al. (1991) developed a genetic algorithm (GA) to 

solve file allocation problems so as to maximize the reliability of distributed 

program(s). In this scheme, the different constraints are discussed, for example, the 

total number of copies of each file and the memory constraint at each node.  

Pathak et al. (1991) also found that beyond a certain point, increasing the redundancy 

of files could not improve the reliability of the DCS. Kumar et al. (1995a) developed a 

genetic algorithm (GA) to solve the reliability oriented file allocation problem for 

distributed systems, and the proposed method was compared with optimal solutions to 

demonstrate the accuracy of the solution obtained from GA based methodology. 

Kumar et al. (1995a) also provided the relation between degree of redundancy of files 

and the maximum achievable reliability of executing a program. They showed that the 

redundancy is helpful in improving the reliability only up to a certain point. Beyond 

this point, no significant improvement in the reliability is achieved by increasing the 

redundancy of the files. 

There are some file allocation problems with other objectives. Murthy & Ghosh (1993) 

formulated a file allocation model that sought to obtain the lowest cost file allocation 

strategy and to ensure the attainment of acceptable levels of response times during 

peak demand periods, for all on-line queries. Chang et al. (2001) addressed a files 

allocation problem in DCS’s to minimize the expected data transfer time for a specific 

program that must access several data files from non-perfect computer sites.  

In addition, there has been some research on increasing system availability (Lutfiyya et 

al. 2000). Goel and Soejoto (1981) first considered the performance of a combined 

software and hardware system. A generalized model has also been proposed in Sumita 
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and Masuda (1986). Markov models are also implemented to analyze the system 

availability, combining both software and hardware failures and maintenance 

processes (Welke et al. 1995, Lai et al. 2002). 

2.3  Schedule length oriented task scheduling algorithms 

The general task scheduling problem includes the problem of assigning the tasks of an 

application to suitable processors and the problem of ordering task execution on each 

processor. When the parameters such as execution times of tasks, the data size of 

communication between tasks, and task dependencies, are known a priori, the problem 

is static scheduling. 

2.3.1 Static scheduling 

Static scheduling is utilized in many different types of analyses and environments. The 

most common use of static scheduling is for predictive analyses. Sometimes it is also 

used for post-mortem analyses. In static scheduling, information about the processor 

and about the tasks is assumed available. Extensive work has been done on static 

scheduling. The problem is known to be NP-hard in general form (Coffman 1976).  

In the general form of a static task scheduling problem, an application can be 

represented by a directed acyclic graph (DAG) in which nodes denote tasks and 

directed edges denote data dependencies among the tasks. A task may have one or 

more inputs. When all inputs are available, the task is triggered to execute. After its 

execution, it generates its outputs. If there is a directed edge from task iv  to task jv ,  

task iv  is the parent of task jv  and task jv  is the child of task iv . A task with no 

parent is called an entry task and a task with no child is called an exit task. Every task 
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has a weight called the computation cost of the task, and every edge has a weight 

called communication cost of the edge. The communication cost is incurred if the two 

tasks are scheduled on different processors; otherwise the communication cost is zero.   

Some researchers used graph theory methods (Bokhari 1979; Bokhari 1981; Stone 

1977; Stone 1978; Stone & Bokhari 1978).  Chu et al. (1980), and Chern et al. (1989) 

used the integer 0-1 programming techniques to solve the resource allocation problem. 

However, heuristic methods are the most prevalent ones to solve task scheduling. 

Typical heuristic approaches include: 

2.3.1.1 List scheduling algorithms  

List scheduling algorithms include Insertion Scheduling Heuristics (Hwang et al. 

1989), Modified Critical Path (Wu & Gajski, 1990), Mapping Heuristics (El-Rewini & 

Lewis 1990), Dynamic Critical Path (Sih & Lee 1993), Hybrid Mapper (Matheswaran 

& Siegel 1998), and Heterogeneous Earliest Finish Time (Topcuoglu et al. 2002), etc. 

The basic idea of list scheduling is to assign priorities to the tasks and to place the 

tasks in a list arranged in descending order of priorities. The task with a higher priority 

is scheduled before a task with a lower priority. The task is assigned to a suitable 

processor to minimize a predefined cost function.  

t-level (top level) and b-level (bottom level) are two major attributes for assigning 

priorities. The t-level of a task iv  is the length of the longest path from an entry task to 

iv  in the DAG (excluding iv ). Here, the length of a path is the sum of all the task and 

edge weights along the path. The b-level of a task iv  is the length of the longest path 

from task iv  to an exit task. Because the edge weight may be zero when the two tasks 

are assigned to the same processor, the t-level and b-level of a task are dynamic 
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attributes.  Some scheduling algorithms do not take into account the edge weights in 

computing the b-level, which is referred to as static b-level or simply static level. 

Another important concept is critical path (CP), which is a path from an entry node to 

an exit node whose length is the maximum. 

The t-level and b-level attributes are used in various ways to assign a task a higher 

priority. A higher priority can be a smaller static level (El-Rewini & Lewis 1990), a 

smaller t-level, a larger b-level (Topcuoglu et al. 2002), a larger (b-level - t-level) or a 

smaller (t-level - b-level) (Wu & Gajski 1990). 

During the processor selection phase, task iv  is assigned to the suitable processor so 

that the earliest start time (Wu & Gajski 1990) or earliest finish time of task iv  

(Topcuoglu et al. 2002) is minimized. The earliest start time of task iv  on processor 

jp  is decided by two items: the ready-time of task iv  and the earliest available time of 

processor jp . The ready-time of task iv  is the time when all data needed by task 

iv have arrived at processor jp . When determining the earliest available time of 

processor jp , some algorithms only consider scheduling a task after the last task on 

processor jp . Some algorithms also consider the idle time slots on processor jp  and 

may insert a task between two already scheduled tasks (Topcuoglu et al. 2002), which 

still satisfy the data dependency.  

Some algorithms just order the ready tasks instead of whole tasks. The ready tasks are 

those that whose parent tasks have been scheduled. The Earliest Time First (ETF) 

algorithm (Hwang et al. 1989) computes the earliest start times for all ready tasks and 

then selects the one with the smallest start time. The earliest start time of a task is the 
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smallest one among the start time of the task on all processors. This algorithm uses the 

static level to break the tie of two tasks.  

The following algorithms have been developed for heterogeneous environments:  

Mapping Heuristic (MH) (El-Rewini & Lewis 1990) initializes a ready task list 

ordered in decreasing static level and each task is scheduled to a processor that allows 

the earliest start time. The algorithm takes into account the heterogeneity during the 

scheduling process, but assumes that the environment is homogeneous when 

computing the computation time of tasks and the communication time. When 

communication contention is considered, the time complexity is )( 32 pvO  for v  tasks 

and p processors; otherwise, it is )( 2 pvO . 

Dynamic Level Scheduling (DLS) algorithm (Sih & Lee 1993) computes the dynamic 

levels (DL) for all ready tasks. DL is the difference between the static level of a task 

and its earliest start time on a processor, so every task has several DL’s. At each step, 

the ready task-processor pair that maximizes DL is chosen for scheduling. When it 

computes the static level, the computation time of a task is the median value of the 

computation times of a task on the processors. The time complexity is )( 3 pvO  for v  

tasks and p  processors. 

Levelized-Min Time (LMT) algorithm (Iverson et al. 1995) uses the so-called level to 

sort tasks. A task in a lower level has higher priority than a task in a higher level. 

Within the same level, the task with higher computation time has higher priority. Then, 

the algorithm assigns the task to a processor so that the summation of the task’s 

computation time and transfer time taken by all the required data for this task is 



Chapter 2. Literature Review 

19 
 

minimum. For a fully connected DAG, the time complexity is )( 22 pvO  for v  tasks 

and p  processors. 

Heterogeneous Earliest-Finish-Time (HEFT) algorithm (Topcuoglu et al. 2002) 

significantly outperforms DLS, MH and LMT in terms of average schedule length ratio, 

speedup, etc.  The HEFT algorithm selects the task with the highest b-level value at 

each step and assigns the selected task to the processor that minimizes its earliest finish 

time with an insert-based approach. When computing the priorities, the algorithm uses 

the task’s average computation time on all processors and the average communication 

rates on all links. The time complexity is )(epO  for e  edges and p  processors. For a 

dense graph, the time complexity is )( 2 pvO  for v  tasks and p  processors. 

2.3.1.2 State space search reduction algorithms  

Shen &Tsai (1985) treated the task assignment as a graph-matching problem and used 

a state-space search method – A* algorithm to solve it. However, their model did not 

consider the precedence relations between tasks. Wang & Tsai (1988) consider the 

precedence relations between tasks into the model. Ajith & Murthy (1999) also used a 

state space technique – A* algorithm to obtain an optimal allocation designed  to 

minimize the total turnaround time of all tasks. In Tom & Murthy (1999)’s method, the 

state space search can be drastically reduced by scheduling independent tasks last. 

2.3.1.3 Metaheuristic algorithms  

Tripathi et al. (1996) presented a genetic task allocation algorithm for DCS. In this 

algorithm, how to improve the initial population structures of GA’s is discussed by 

finding that the incorporation of the problem specific knowledge into the construction. 

Budenske et al. (1997) presented a GA for real-time on-line input-data dependent 
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remappings of the tasks to the processors in the heterogeneous hardware platform 

using previously stored and off-line statically determined mappings. Kwok & Ahmad 

(1997) proposed a parallel GA-based algorithm with an objective to simultaneously 

meet the goals of high performance, scalability, and fast running time. Ignatius & 

Murthy (1997) presented an efficient heuristic algorithm based on simulated annealing 

(SA) for solving the task allocation problem in DCSs.   

2.3.1.4 Clustering algorithms (Sarkar 1989, Wu & Gajski 1990, Gerasoulis & 

Yang 1992, Kim & Yi 1994, Yang & Gerasoulis 1994, Kwok & Ahmad 

1996, Palis et al. 1996, Srinivasan & Jha 1999)  

This group of algorithms maps the tasks to an unlimited number of clusters (UNC). 

The basic idea of clustering algorithms is that, at the beginning of the scheduling 

process, each node is considered as a cluster. In the subsequent steps, two clusters are 

merged if the merging reduces the completion time. This merging procedure continues 

until no cluster can be merged. The rationale behind the algorithms is that they can 

take advantage of using more processors to further reduce the schedule length. 

However, the clusters generated by the algorithm may need a post-processing step for 

mapping the clusters onto the processors because the number of processors available 

may be less than the number of clusters. 

2.3.2 Dynamic scheduling 

The dynamic scheduling heuristics can be grouped into two categories: on-line mode 

and batch-mode heuristics. Both on-line and batch mode heuristics assume that 

estimated expected task execution times on each machine in the computing system are 

known (Ghafoor & Yang 1993, Kafil & Ahmad 1998). 
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Chen et al. (1988) proposed a heuristic search algorithm called “dynamic highest level 

first/most immediate successors first” (DHLF/MISF) to find a fast but sub-optimal 

schedule. In this algorithm, the A* algorithm coupled with an efficient heuristic 

function is bound to achieve a minimum-schedule length.  

Sih  & Lee (1993) presented a technique to use dynamically-changing priorities to 

match tasks with processors at each step, and schedules over both spatial and temporal 

dimensions to eliminate shared resource contention.  

Zomaya & Teh (2001) developed a dynamic load-balancing genetic algorithm to 

search optimal or near-optimal task allocations during the operation of the parallel 

computing system. The algorithm considers other load-balancing issues such as 

threshold policies, information exchange criteria, and interprocessor communication.  

2.3.3 Genetic Algorithm, Tabu Search and Simulated Annealing and their 

applications 

There is one class of combinatorial optimization algorithms: general iterative 

algorithms. Because of their ease of implementation and robustness in solving various 

problems, more and more researchers use this kind of method to solve the 

combinatorial optimization problems. We introduce three popular iterative algorithms: 

Genetic Algorithm, Tabu Search and Simulated Annealing.  

Genetic Algorithm (GA) is a search algorithm inspired by the mechanism of evolution 

and natural genetics (Holland 1975, Goldberg 1989). GA starts with initial population 

and an individual in the population is a string of symbols and is an abstract 

representation of the solution. The symbol is called a gene and each string of genes is 

termed a chromosome. The individuals in the population are evaluated by some fitness 

measure. The population of chromosomes evolves from one generation to the next 
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through the use of two types of genetic operators: (1) mutation which alters the genetic 

structure of a single chromosome, and (2) crossover which obtains a new individual by 

combining genes from two selected parent chromosomes. Based on the fitness value, 

two individuals (parents) are selected from the population. The genetic operators 

(crossover and mutation) are applied to the selected parents with some probability to 

generate new possible solutions called offsprings. The performance of GA depends 

largely on: 1) the representation of the solution to the problem, 2) parameter selection 

(population size and probabilities of crossover, mutation), 3) crossover and mutation 

mechanism. Genetic Algorithm (GA) has the following features. Firstly, GA guides its 

search by evaluating the fitness of each solution instead of the optimization function. 

Hence, we can implement GA’s to some problems the state space of which  we are not 

familiar with. Secondly, the algorithm is a multi-path approach that searches many 

peaks in parallel, hence reducing the possibility of local minimum trapping. Thirdly, 

GA explores the search space where the probability of finding improved performance 

is high.  

Kumar et al. (1995b) developed a GA for network topology design to maximize the 

network reliability under different network constraints. The problems solved here deal 

with optimizing those network parameters that characterize the network reliability. 

Sena et al. (2001) presented a parallel version of a Genetic Algorithm and 

implemented it on a cluster of workstations to obtain optimal and/or sub-optimal 

solutions to the well-known Traveling Salesman Problem.  

Tabu Search (TS) is a higher-level method for solving combinatorial optimization 

problems (Glover 1989, 1990). TS starts from an initial feasible solution, makes 

several neighborhood moves and then selects the move producing the best solution 

while keeping track of the regions of the solution space which have already been 
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searched so as not to repeat a search near these areas. In other words, TS uses the 

memory to preserve a number of previously visited states along with a number of 

states that might be considered unwanted. This information is stored in a Tabu List. 

The performance of TS depends largely on 1) encoding of state space, 2) choice of the 

neighborhood structure, 3) length of the Tabu list. These parameters are usually 

difficult to select. In addition to the above Tabu parameters, two extra parameters are 

often used: Intensification and Diversification.  Intensification is to encourage move 

combinations and solution features historically found good. They may also initiate a 

return to attractive regions to search them more thoroughly. Diversification adds 

randomness to this otherwise deterministic search.  

Pierre & Elgibaoui (1997) used a Tabu Search to search the sub-optimal solutions for 

network topology design to minimize the total communication cost with performance 

and reliability constraints. Jozefowska et al. (2002) used Tabu Search for scheduling 

jobs on parallel, identical machines with an additional continuous resource to minimize 

the makespan.  

Simulated Annealing (SA) is an iterative search method inspired by the annealing of 

metals (Kirkpatrick et al., 1983, Cerny 1985). Starting with an initial solution SA tries 

to minimize a cost function by making “moves”, which are occasionally accepted 

solutions of higher values of the cost function with the probability controlled by a 

parameter called temperature. One of the salient features of SA is that the probability 

of acceptance of moves that increase the cost function exponentially decreases as 

temperature decreases. The process ends as soon as temperature is low enough that no 

further improvement can be expected. At high temperature, the search is almost 

random, while at low temperature the search becomes almost greedy. At zero 
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temperature, the search becomes totally greedy, i.e., only good moves are accepted 

(Kirkpatrick et al. 1983, Cerny 1985).  

In a large combinatorial optimization problem, an appropriate move mechanism, cost 

function, solution space, and cooling schedule are required in order to find an optimal 

solution with SA. Kim et al. (2002) presented a scheduling problem for unrelated 

parallel machines with sequence-dependent setup times, using SA. Baykasoglu (2002) 

presented a SA algorithm developed to solve the Flexible Job Shop Scheduling 

Problem. 

These algorithms have several similarities (Sait & Youssef, 1999): 

1. They are approximation (heuristic) algorithms, i.e., they do not guarantee 

finding an optimal solution.  

2. They are blind, in that they do not know when they have reached an 

optimal solution. Therefore they must be told when to stop.  

3. They have “hill climbing” property, i.e., they occasionally accept uphill 

(bad) moves.  

4. They are general, i.e., they can easily be engineered to implement any 

combinatorial optimization problem; all that is required is to have a 

suitable solution representation, a cost function, and a mechanism to 

traverse the search space.  

5. Under certain conditions, they asymptotically converge to an optimal 

solution.  

In general, GA is easy to model and be applied to any type of optimization problems. 

However, the quality of solution is usually not as good as those from TS and SA. SA is 

ranked next (Pierre & Elgibaoui 1997, Jozefowska et al. 1998, Augugliaro et al. 1999, 

Fu & Su 2000, Youssef et al. 2001) and TS highest as it can usually produce quite a 
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good solution although the algorithm is more complicated to implement. The reason 

that TS outperforms the GA and SA may be that TS has a memory mechanism.  

2.4  Multi-objective optimization 

 Many real-world optimization problems inherently involve multiple non-

commensurable and often competing objectives. For this kind of problem, optimizing 

one of the objectives often means that other objectives have to be compromised.  

There are three broad categories in solving multi-objective (MO) optimization 

problems. Conventional MO optimization methods often combine these multiple 

objectives into a single scalar, by using  addition, multiplication or other combinations 

of arithmetical operations. If the combination is possible, this approach is the simplest 

one and the most computationally efficient one.  However, it is very difficult to devise 

such a method, because accurate scalar information on the range of objectives must be 

known to avoid some objectives dominating others.  

Alternatively, only one objective is optimized and the others are treated as constraints 

(Erschler et al. 1976, Fox 1987). However, there is one potential pitfall in that the 

algorithm may not be able to find a feasible solution because the problem is over-

constrained. 

The third category is the Pareto based method, which uses the concept of Pareto’s 

optimality to obtain a set of solutions instead of just one. Some related definitions are 

described as follows: 

A general multi-objective minimization optimization problem is a problem in 

which the n objective functions nkfk ,,2,1, L= are simultaneously minimized. 
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It is likely, however, that the objective functions are a nonlinear vector function 

F of a general decision variable s  in the whole solution space S , 

where ))(,),(),(()( 21 sfsfsfsF nL= .  

Definition 2.1 (Pareto dominance): A given vector ),,,( 21 nuuuu L= is said to 

dominate another vector ),,,( 21 nvvvv L=  iff  

iiii vunivuni <∈∃∧≤∈∀ },,,2,1{},,,2,1{ LL  (2.1) 

Definition 2.2 (Pareto-optimal): Given a set of solutions },,{ 21 msssS L= , a 

solution Ssi ∈  is said to be Pareto-optimal iff no solution Ss j ∈  dominates 

solution is . 

Pareto-optimal solutions are also called non-dominated, efficient, and non-

inferior solutions. The corresponding objective vectors are referred to as non-

dominated. The set of all non-dominated vectors is called as the non-dominated 

set, or tradeoff surface, of the problem.  

Definition 2.3 (Pareto front): Given a multi-objective optimization function 

)(sF  and a set of Pareto-optimal solutionΩ , the Pareto-front is: 

)|))(,),(()({ 1 Ω∈== ssfsfsFu nK   (2.2) 

Evolutionary algorithms are particularly suitable to solve multi-objective optimization 

problems because they can produce a set of solutions simultaneously instead of just 

one. Even in the late 1960s, Rosenberg (1967) considered the possibility of using 

genetic-based search to solve the multi-objective optimization. Later, an early GA 

application on multi-objective optimization by Schaffer (1985) opened a new avenue 

of research in this field.  
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As evolutionary algorithms need scalar fitness information to work, most research on 

evolutionary multi-objective optimization are related to the fitness assignment. There 

are three broad categories (Fonseca & Fleming 1995): aggregating function based 

approaches, population based non-Pareto-based approaches, and population based 

Pareto-based approaches. 

2.4.1 Aggregating function based approaches 

Given evolutionary algorithms that need a scalar fitness value to work, it is logical to 

combine the multiple objectives into a single one using either an addition 

multiplication or any other combination of arithmetical operations. The function of 

combining objectives into one is normally referred to as aggregating function. The 

main advantage of this method is that, if the combination of objectives is possible, it is 

very simple and very efficient because no further interaction with the decision maker is 

required. However the disadvantages of this method are very obvious. Some accurate 

information on the range of the objectives has to be known to avoid having one of 

them  dominate the others. However, obtaining such information on each objective is 

very computationally expensive. The following section introduces the most popular 

aggregating approaches. 

2.4.1.1 Weighted sum approach 

The basic idea of this method is the addition of all the objective functions together 

using different weighting coefficients for each one of them. The main strength of the 

method is its computational efficiency which enables the generation of a strongly non-

dominated solution that can be used as an initial solution for other techniques. The 

main weakness of the method is that the optimization process is sensitive to the 

weights (Coello 1996) and that it is very difficult to choose appropriate weights 
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without prior knowledge on the shape of the search space. It also suffers from the 

disadvantage of excluding the concave portions of the trade-off curve (Coello 1996). 

Gen et al. (1995, 1997) added fuzzy logic to handle the uncertainty involved in the 

decision making process. A weighted sum is still used in this approach, but the 

coefficients of the objectives are represented with fuzzy numbers reflecting existing 

uncertainty regarding their relative importance.  

2.4.1.2 Goal attainment 

In this approach, the decision maker first provides a set of goals and weights.  

For a k objectives minimization problem: 

Minimize         α  

subject to:         kixfwb iii ,,2,1)( L=≥+α                                                        (2.3) 

where   ib is the ith  goal;  

 α is a scalar variable unrestricted in sign;  

 iw  is the weight for ith  objective, which is normalized, i.e., 1||
1

=∑
=

k

i
iw ; )(xfi  

is the ith  objective function. 

The main advantage is that it is very simple to implement and is computational 

efficient. The main disadvantage is the misleading selection pressure (Wilson & 

MacLoud 1993).  The selection pressure is the degree to which the better individuals 

are favored; the higher the selection pressure, the more the better individuals are 

favored.  Hence, the higher the selection pressure, the faster the convergence rate. 
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2.4.2 Population-based non-Pareto approaches 

To overcome the difficulties of the aggregating approaches, several alternative 

algorithms have been proposed. This section introduces some of the approaches. 

2.4.2.1 Vector evaluated genetic algorithm (VEGA) 

The basic idea of the VEGA is that the main population is divided into sub-populations 

and selection is performed according to each objective function in each sub-population 

(Schaffer 1985). These sub-populations would be shuffled together to obtain a new 

population. The main advantage of this approach is its simplicity. The obvious 

disadvantage is that it only manages to find certain extreme solutions along the Pareto 

tradeoffs. In addition, the shuffling and merging of all sub-populations correspond in 

fact to fitness averaging for each of the objective components. It therefore suffers from 

the same disadvantage as does the linear combination of the objectives, i.e., the 

inability to produce Pareto-optimal solutions in the presence of non-convex search 

spaces (Richardson et al. 1989).  

To deal with the first disadvantage, Schaffer (1985) suggested some heuristics. For 

example, to use a heuristic selection preference approach for non-dominated 

individuals in each generation or to crossbreed among the sub-population. 

Cvetkovic et al. (1998) also proposed several approaches to overcome VEGA’s 

problems. For example, to wait for a certain number of generations before shuffling 

together the population, or to copy or migrate a certain number of individuals from one 

sub-population to another. Interestingly, however, the nominally disadvantageous 

tendency of VEGA to favor certain solutions can be of advantage when handling 

constraints, because in this case favoring a solution that does not violate any constraint 

over those which do is just what is needed. Surry et al. (1995), for instance, used 
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VEGA to model constraints in a single-objective optimization problem to avoid the 

need for a penalty function. 

As an extension of VEGA, Lis and Eiben (1997) proposed a multi-sexual genetic 

algorithm, where each individual has an additional feature of sex or gender and one 

individual from each sex is used in recombination. There are as many sexes as the 

optimization criteria and each individual is evaluated according to the optimization 

criteria related to its sex.  

2.4.2.2 Lexicographic ordering 

The basic idea is that the objectives are ranked in order of importance by the designer 

and then the optimum solution is obtained by minimizing the objective functions, 

starting with the most important one and proceeding according to the assigned order of 

importance of the objectives (Fourman 1985). In another version of this algorithm 

(Fourman 1985), which apparently worked quite well, an objective was randomly 

selected at each run. In the algorithm of Kursawe (1991), one of the objectives was 

also selected randomly at each step according to a probability vector. The main 

advantage of this method is that in some cases it overcomes the disadvantage of a 

weighted sum of objectives enabling VEGA to see, as convex, a concave trade-off 

surface. This does however depend on the distribution of the population and on the 

problem itself. The main weakness in this approach is that it will tend to favor more 

certain objectives when many are present in the problem, and so will not obtain the 

whole trade-off surface.  

2.4.2.3 Weighted Min-Max approach 

The basic idea of this approach is to solve the optimization problems for each objective 

separately to obtain the extremes of the objective functions. The desirable solution is 
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then the one which gives the smallest values of the relative increments of all the 

objective functions. The idea is taken from game theory which deals with solving 

conflicting situations. The min-max approach to a linear model was proposed by 

Solich (1969), and was further developed by Osyczka (1978, 1984), Rao (1986) and 

Tseng and Lu (1990). The main advantage is its simplicity and computational 

efficiency because it does not require checking for non-dominance. The main 

disadvantage is that it can create a very high selection pressure if certain combinations 

of weights are produced at early stages of the search (Coello 1999).  

Hajela & Lin (1992) included the weights of each objective in the chromosome to 

generate a set of Pareto-optimal solutions by varying the weighting coefficients. Coello 

(1996) proposed two variations of the weighted min-max strategy used by Hajela & 

Lin (1992). Ishibuchi & Murata (1996) proposed an algorithm similar to the weighted 

min-max technique (Hajela & Lin 1992), which maintains adequate diversity (Bently 

& Wakefield 1997). However, in some case, sharing techniques or a local research 

technique have to be used to keep the diversity (Coello 1996).   

2.4.3 Pareto based approaches 

Goldberg (1989) proposed an idea of using Pareto-based fitness assignment to solve 

the problems of Schaffer’s approach (Schaffer 1985). The basic idea is that all the non-

dominated individuals are assigned the highest rank and eliminated from the further 

contention. Then, from the rest, another set of non-dominated solutions are assigned 

the next highest rank. The process continues until the all individuals are ranked. The 

Pareto method was found to outperform the Vector Evaluated Genetic Algorithm 

(VEGA) method in some cases (Hilliard et al. 1989, Liepins et al. 1990, Ritzel et al. 

1994).  
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The main advantage of this method is that it is not sensitive to the shape or continuity 

of the Pareto front, these two issues being of serious concern in mathematical 

programming techniques (Coello 1999).  The main disadvantage is that there is no 

efficient algorithm to check for non-dominance in a set of feasible solutions (Coello 

1996).  

Goldberg (1989) also suggested using “niching” techniques to keep the individuals’ 

diversity. i.e., to prevent the individuals from converging to a single point on the front. 

Hence, “niching” techniques can also prevent the GA becoming trapped in local 

optima.  

“Niching” techniques are based on the mechanism of natural ecosystems. An 

ecosystem consists of several subspaces and different species. Every subspace supports 

different species which compete to survive and are capable of interbreeding among 

themselves but are unable to breed with individuals outside their groups. The search 

space can be viewed as the ecosystem, a niche as a subspace and a group of individuals 

with similar metrics as a species. For each niche, the resources are finite and must be 

shared among the individuals of that niche. A niche is commonly referred to as an 

optimum of the domain, the fitness representing the resources of that niche. By 

analogy, niching methods tend to achieve a natural emergence of niches and species in 

the system. 

A well-known niching technique is the sharing method which was originally 

introduced by Holland (1975) and improved by Goldberg and Richardson (1987). 

Fitness sharing modifies the search landscape by reducing the payoff in densely 

populated regions. Typically, the shared fitness '
if of an individual i  with fitness if is 

simply  
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f ='                                                                (2.4)  

where im is the niche count which can be calculated as the following equation: 

∑
=

=
N

j
iji dshm

1
)(                                                          (2.5) 

where N is the population size and )( ijdsh is the sharing function, representing the 

similarity level between the individuals i  and j . The most widely used sharing 

function is given as following: 





 <−=

otherwise
difddsh sijsij

ij
,0

,)/(1)( σσ α
                           (2.6) 

where ijd is the distance between individual i  and j ; sσ  denotes the threshold of 

dissimilarity and α  is a constant parameter which regulates the shape of the sharing 

function.  

Sharing methods tend to encourage search in unexplored regions of the solution space 

and benefit the formation of stable niches. However, setting the threshold of 

dissimilarity sσ requires a priori knowledge of how far apart the optima are. For real 

world problems, the information on the distance between the optima is generally not 

available. Various empirical formulas have been proposed to set the threshold of 

dissimilarity but this problem remains the major flaw in the method (Mahfoud 1995).  

On the other hand, a fixed threshold of dissimilarity is for all individuals. Hence the 

sharing method can fail to work in cases where  the optima are not equidistant or the 

estimated distance between two peaks is incorrect.  
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Another drawback of the sharing scheme is that the computation of niche counts is 

very expensive. Clustering analysis (Yin & Germay 1993) and dynamic niching 

(Miller & Shaw 1996) can reduce computational complexity and increase the sharing 

effectiveness. In addition, when the computational time to compute the fitness of 

individuals is far more expensive than the computational cost of sharing scheme, 

standard sharing can be implemented with only a small increase in the computational 

requirements. 

Goldberg (1989) suggested a method to overcome the disadvantage of VEGA by 

means of a non-dominated sorting procedure in conjunction with a sharing technique. 

This non-dominated sorting procedure uses a ranking selection method to emphasize 

good individuals and a niche method to maintain stable subpopulations of good 

individuals.  

Several algorithms based on this idea, have been proposed, including Multiple 

Objective Genetic Algorithm (MOSA) (Fonesca & Fleming 1993) and Non-Dominated 

Sorting Genetic Algorithm (NSGA) (Srinivas & Deb 1994). These methods 

implemented Goldberg’s suggestion in different ways. The following section briefly 

discusses the these algorithms and a Tabu-Based Exploratory Evolutionary Algorithm 

(EMOEA) (Tan et al. 2003). 

2.4.3.1 Multiple objective genetic algorithm (MOGA) 

Fonseca and Fleming (1993) proposed to rank a certain individual according to the 

number of the individuals that dominate it. All non-dominated individuals are assigned 

rank 1, and the rank of a dominated one is one plus the number of the individuals that 

dominate it. The fitness assignment is performed in the following way (Fonseca and 

Fleming 1993): 
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1. Sort the individuals according to the rank. 

2. According to the method proposed by Goldberg (1989), assign fitness to 

individuals by interpolating from the best rank 1 to worst rank n. Usually the 

interpolation is linear, but not necessarily. 

3. Average the fitness of the individuals with same rank, so all the individuals with 

same rank are assigned to same fitness. 

In this method, a number of individuals have the same fitness. This type of blocked 

fitness assignment tends to cause premature convergence (Goldberg & Deb 1991). To 

avoid this, a sharing on objective domain was used to distribute the population over the 

Pareto-optimal region. The main advantages of the method are that it is efficient and 

relatively easy to implement (Coello 1996). The main disadvantage is that its 

performance is highly dependent on the selection of the threshold of dissimilarity.   

2.4.3.2 Niched Pareto genetic algorithm 

Horn & Nafpliotis (1994) proposed a tournament selection scheme based on Pareto 

dominance instead of a non-dominated sorting and ranking selection method in solving 

multi-objective optimization problems. Tournament selection is one of the most widely 

implemented selection techniques for GA’s and involves selection of the best 

individual from a subset comprising individuals randomly chosen from the current 

population.. In this scheme (Horn & Nafpliotis 1994), two candidates for selection and 

a comparison set of individuals are picked randomly from the population. Each of the 

candidates is then compared with each individual in the comparison set. If one 

candidate is dominated by the comparison set and the other is not the latter is selected 

for reproduction. If neither or both are dominated by the comparison set, i.e., there is a 

tie, then sharing is used to choose a winner.  
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The main advantage of this method is that it is very fast because this approach applies 

Pareto selection to a subset of the population instead of to the entire population at each 

run. It can produce good non-dominated fronts that can be kept for a large generation 

(Coello 1996). The main disadvantage is that the approach needs to select a suitable 

size for the tournament to perform well (Coello 1999). 

2.4.3.3 Non-dominated sorting genetic algorithm 

Srinivas and Deb (1994) proposed the Non-dominated Sorting Genetic Algorithm 

(NSGA). Before selection is performed, the population is ranked on the basis of non-

domination. Then all non-dominated individuals are classified into a first front. All 

these individuals are assigned to the same dummy fitness to provide them with an 

equal reproductive potential.. These classified individuals are then shared with their 

dummy fitness value to maintain the diversity of the population. After sharing these 

individuals are ignored temporarily and the rest of the individuals are dealt with by the 

same process to form second front. The process continues until all individuals in the 

population are classified into different fronts. The dummy fitness value should be 

smaller than the minimum shared dummy fitness value of the previous front.  

A stochastic remainder proportionate selection was used for this approach. Since 

individuals in the first front have the maximum fitness value, they always get more 

copies than the rest of the individuals. This results in quick convergence of the 

population toward non-dominated regions and sharing helps to distribute it over this 

region. The efficiency of NSGA lies in the way in which multiple objectives are 

reduced to a dummy fitness function using a non-dominated sorting procedure. With 

this approach any number of objectives can be solved and both maximization and 

minimization problems can be handled.  
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The main advantage of this method is that it can handle any number of objectives and 

allows multiple equivalent solutions to exist. The main disadvantage is that it is 

inefficient compared to  MOGA (Coello 1996). 

2.4.3.4 Tabu-based exploratory evolutionary algorithm (EMOEA) 

Tan et al. (2003) proposed an exploratory multi-objective evolutionary algorithm 

(EMOEA) that integrates the features of Tabu Search and evolutionary algorithm for 

multi-objective optimization. In addition, a new “lateral interference” is presented to 

distribute non-dominated individuals along the discovered Pareto-front uniformly. The 

lateral interference can be performed without the need for parameter settings, unlike 

many niching or sharing methods, and can be flexibly applied in either the parameter 

or objective domain. Besides the lateral interference, the Tabu restriction also helps to 

maintain the diversity of the solutions, which in turn helps to prevent the search from 

becoming trapped in local optima as well as concurrently promoting the evolution 

towards the global trade-offs. In addition, EMOGA offers a competitive behavior to 

escape from local optima in a noisy environment. 
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Chapter 3  

A Reliability Oriented Genetic Algorithm for Distributed 

Computing Systems 

Distributed computing systems (DCS) are common today as they provide cost-

effective design to achieve system reliability, availability and performance 

requirements (Kumar et al. 1986, Raghavendra et al. 1988, Shatz et al. 1992, Kumar & 

Agrawal 1993, Yeh & Chiu 2001, Wong & Dillon 2000). When the topology of a DCS 

is fixed, the distributed system reliability (DSR) depends mainly on the assignment of 

various resources such as programs and files (Kumar et al. 1986, Raghavendra et al. 

1988). For systems with long mission times or with a large number of processors, an 

improved program allocation can increase the system reliability dramatically (Shatz et 

al. 1992).  

DSR, which was first studied by Kumar et al. (1986), is defined as the probability for 

all the distributed programs to work successfully. Note that the reliability concept here 

is a general one depending on the definition of failure and other performance 

requirements. Kumar et al. (1986) also presented an algorithm called MFST (Minimal 

File Spanning Tree) to compute the DSR. A drawback of the MFST algorithm is that it 

is computationally complex and prior knowledge about multi-terminal connections is 

needed. Later an algorithm called GEAR (Generalized Evaluation Algorithm for 

Reliability) was developed (Kumar & Agrawal 1993) to resolve the problem. Other 
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related algorithms have also been presented (Chen & Huang 1992, Chen & Lin 1992, 

Chen & Lin 1994). 

Reliability oriented task allocation problems have been studied extensively (Wang & 

Shatz 1988, Shatz et al. 1992, Hwang & Tseng 1993, Kartik & Murthy 1997, Tom & 

Murthy 1999, Vidyarthi & Tripathi 2001, Mahmood 2001).  

The distribution of data files can also have impact on the reliability of distributed 

systems (Dowdy & Foster 1982). Consequently, there has been research done on 

reliability oriented file allocation (Pathak et al. 1991, Kumar et al. 1995a).  Most 

previous studies however considered the program allocation and file allocation 

problems separately, whereas both should be optimally allocated simultaneously to 

achieve the highest level of system reliability.  

Chari (1996) presented a heuristic procedure for DCS design along with the location of 

data files and programs, but the procedure aimed at minimizing the DCS cost. Chiu et 

al. (2002) developed a reliability oriented heuristic algorithm to assign the files and 

tasks for DCS with memory space (storage) constraints. However, speeding up 

computation is one of the main reasons to build the DCS. If the storage capacity of one 

processor is large enough for the storage of all programs and all files, the heuristic 

algorithm of Chiu et al. (2002) assigns all programs and files to this processor, which 

is not rational for a DCS.  In fact, the assignment of programs and files is often 

subjected to the completion time constraint and the cost constraint (Shatz et al. 1992).  

In this chapter it is proposed to first construct a reliability oriented optimization model 

with the storage constraints, cost constraint and completion time constraint by 

considering both program allocation and file allocation together. Considering the 

program and file allocation together and taking into account these constraints makes 
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the problem difficult to solve. It is this computational problem that is the subject of the 

current study.  

The problem has important practical applications. For example, many organizations 

want to implement a common distributed information system by using their existing 

computer and network resources. The system reliability is an important requirement in 

this case. The topology of the system is fixed, so the system reliability depends mainly 

on the program and file allocation. Generally the organizations have many computers 

and  are willing to offer these resources albeit with several resource constraints.   

The chapter is organized as follows. Section 3.1 describes the DCS design problem and 

an optimization model for the program and file allocation. Section 3.2 presents an 

exhaustive search algorithm and a genetic algorithm to solve the optimization problem. 

Section 3.3 presents two numerical examples to compare the two algorithms. Then, 

some sensitivity studies are carried out for the investigation of important parameters. 

Section 3.5 concludes this chapter. 

3.1  Optimization model 

3.1.1 Structure of the system  

A typical DCS can be depicted by a graph as in Figure 3.1, where nodes denote the 

processing elements, which are linked by the network. Each node includes a set of 

programs and a set of files. In the DCS, successful execution of programs is dependent 

on the successful access of necessary files distributed throughout the system.  

Recall that Kumar et al. (1986) defined distributed program reliability (DPR) as the 

probability that a given program can run successfully and be able to access all the 
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required files from remote sites in spite of some faults occurring among the processing 

elements and the communication links.  

Network

Processors 
(4 to j-1)

Processors 
(j+1 to n-2)

1N jN

nN

3N

2N

1−nN

 

Figure 3.1: n processors of a distributed system 

Similarly, the DSR is defined as the probability that all programs perform successfully 

in a DCS.  To explain DSR, we first introduce a concept – file spanning tree (FST) 

(Kumar et al. 1986) which is a tree that connects the root node, where the program 

runs, to other nodes that hold all the files required for executing the given program. A 

minimal file spanning tree (MFST) (Kumar et al. 1986) is an FST that contains no 

subset FST.  

The DPR is defined as 

DPR = Pr(at least one MFST for the given program is working) 



Chapter 3. A Reliability Oriented Genetic Algorithm for DCS 

42 
 

This can be written as 

)Pr(
1
U
MFSTN

i
iMFSTDPR

=
=                                         (3.1) 

where MFSTN  is the number of the MFST for the given program. 

Similarly, the subgraph which provides all the required connections for executing all 

the programs in the distributed system is referred to as a forest (Raghavendra et al. 

1988). The minimal file spanning forest (MFSF) (Raghavendra et al. 1988) is defined 

as the forest which contains no subset forest.    Correspondingly, the DSR is given as  

)Pr(
1
U
MFSFN

j
jMFSFDSR

=
=                                              (3.2) 

where MFSFN  is the number of the MFSF for the given distributed system. 

Different assignments of programs and files on a given distributed system lead to 

different DSRs. The  more copies there are of the programs the higher will be the DSR. 

However, the budget for purchasing programs is usually limited. As each copy of the 

programs requires a fixed amount of resource, the number of copies of each program is 

also limited. Similarly, each node has a limited storage capacity and therefore the 

number of copies of each file is also limited. A further constraint is that the completion 

time for a transaction cannot be delayed beyond a certain deadline. 

In order to maximize the DSR’s, subject to the above constraints, we need to determine 

the optimum number of redundant copies of programs and files, and to then assign 

them to various locations in the DCS. The optimization model is presented below. 

3.1.2 Modelling and optimization of system reliability 

Notations:  
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Cb:   budget limit; 

Cj:   cost for a copy of program Pj; 

Ct:   completion time limit; 

jF :  j-th distributed file; 

FN :  number of files; 

nN :   number of nodes; 

PN :   number of programs; 

ijNF :  assignment of file Fj on the node Ni ; 

ijNN :              link between nodes Ni and Nj;  

ijNP :  assignment of program Pj on node Ni; 

jP :   j-th computing program; 

→

jPF :   set of files required by the j-th program jP ; 

Sj:   size of the j-th file Fj; 

iSC :  storage limit of node Ni; 

Tij:  completion time of program Pj at node Ni. 

 

The topology of the distributed system is denoted by ),,2,1,( nij NjiNN K= , which 

has the value 1 or 0: 1=ijNN  if there is a link between node iN  and node jN , else 0.  

Each copy of the program Pj spends the expected cost of Cj (j=1,2,…, NP). The 

assignment of these programs is denoted by NPij (i=1,2,…, Nn; j=1,2,…, NP), which 

has the value 1 or 0: NPij=1 if program jP  is assigned to node iN , else 0. Thus, the 

total cost for all the programs can be calculated by 
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There is usually a project budget for preparing the programs, which restricts  the total 

cost to be no greater than the budget limit denoted by Cb, i.e. C bC≤ . 

A given program Pj executed at node Ni requires a completion time of Tij, i=1,2,…, Nn 

and  j=1,2,…, NP. Thus, the total completion time for the processing node Ni can be 

computed by 

∑
=

=
PN

j
ijiji NPTT

1
, i=1,2,…, Nn      (3.4) 

For a project, there usually exists a time constraint for all the nodes to complete their 

own programs, such that the completion time of any node Ni cannot exceed the 

completion time limit (Ct), i.e. ti CT ≤  for all i. 

Each copy of the required file Fj  has its own file size Sj, j=1,2,…, NF.  

The assignment of these copies of files is denoted by NFij, i=1,2,…, Nn and j=1,2,…, 

NF, which has the value either 1 or 0: NFij=1 if file jF  assigned to node iN , else 0. 

Thus, the total size of files stored in the processing node Ni can be computed by 

∑
=

=
FN

j
ijji NFSZ

1
,  i=1,2,…, Nn      (3.5) 

As the storage device of a node Ni has a limited capacity, the total size of files stored in 

the node Ni cannot exceed its storage limit (SCi), i.e. ii SCZ ≤  for all i.  
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The DCS consists of at least one copy of all the computing programs Pj, j=1,2,…, NP 

and at least one copy of all the required files Fj, j=1,2,…, NF, which is denoted by the 

basic constraints, i.e. 0
1

>∑
=

nN

i
ijNP , j=1,2,…,NP and ∑

=

>
nN

i
ijNF

1
0 , j=1,2,…, NF.  

Based on the above conditions, our objective is to maximize the DSR. The DSR can be 

computed by an algorithm called GEAR (Kumar & Agrawal 1993), which is a 

generalized algorithm for evaluating DSR. In order to compute DSR, the following 

variables are required to be known: the topology of the distributed system 

nij NiNN ,,2,1, K=  and nNj ,,2,1 K= ;the computing programs {P1,P2……
PNP } and 

the program allocation nij NiNP ,,2,1, K=  and PNj ,,2,1 K= ; the files required by 

each program Pj NjPF ,,2,1, K=
→

 and the file allocation nij NiNF ,,2,1, K=  and 

FNj ,,2,1 K= ; and the reliability of the links.  

GEAR (Kumar & Agrawal 1993) evaluates all the sub-networks that satisfy the file 

requirement for given programs. The inputs of the algorithm include the topology of 

the network, the program allocation, file allocation and the reliability of the links. In 

each step, the algorithm updates four vectors: program vector (PV), file vector (FV), 

reliability vector (RV) and loop vector (LV). PV keeps the information that which 

required programs have been found; correspondingly, FV keeps the information that 

which required files have been found. RV maintains the information about the links in 

the subnetwork and is used to computer the DSR. LV keeps the information about the 

nodes that have been traversed in a subnetwork. Form a root node, GEAR searches the 

adjacent nodes in parallel and updates PV, FV, RV, and LV.  RV is updated in such a 

way that all the terms in the RV are disjoint, so they can be added directly to get the 

reliability expression.  
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There are two termination rules of a search path. One is that all programs and the 

required file have been found,  as indicated by the PV and FV. Another is that all 

nodes have been traversed, as indicated by LV. The RV of each terminal node that 

satisfies the first termination rule, is the reliability term. The DSR is the sum of all 

these reliability terms. More details of the evaluation process can be found in the paper 

of Kumar & Agrawal (1993). 

In our optimization model, the topology of the distributed system nij NiNN ,,2,1, K=  

and nNj ,,2,1 K= , the computing programs {P1, P2,…,
PNP } and the files required by 

the programs {
→→→

pNPFPFPF ,,, 21 K } are assumed to have already been obtained. The 

optimization model for program and file assignment can be stated as following. 

Decision variables:  NPij , i=1,2,…, Nn; j=1,2,…,NP,  

NFij,  i=1,2,…, Nn; j=1,2,…,NF. 

 

Object function: 

Maximize ),,,,( ilikkkij NFNPPFPNNfDSR
→

=                                  (3.6) 

        where  FPn NlNkNji ,,2,1;,,2,1;,,2,1, KKK ===  

 

Constraints: 

  Basic Constraints: 

          0
1

>∑
=

nN

i
ijNP  , j=1,2,…,NP,        (3.7) 
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                                   ∑
=

>
nN

i
ijNF

1
0 ,  j=1,2,…,NF,     (3.8) 

  Cost Constraint: 

            b

N

i

N

j
ijj CNPC

n P
≤⋅∑∑

= =1 1
      (3.9) 

  Completion Time Constraint: 

 ∑
=

≤⋅
PN

j
tijij CNPT

1
, i=1,2,…, Nn    (3.10) 

  Storage Constraints: 

           i

N

j
ijj SCNFS

F
≤⋅∑

=1
, i=1,2,…, Nn    (3.11) 

3.2  Solution algorithms  

In order to obtain the solution for the above optimization model, an exhaustive search 

algorithm and a genetic algorithm are presented. The exhaustive algorithm can 

guarantee the optimal solution but is computationally complex. The genetic algorithm 

can effectively find a good solution but cannot guarantee the optimal result every time. 

3.2.1 Exhaustive search algorithm 

The exhaustive search algorithm consists of the following steps: 

Step 1: Set maximum DSR (DSRMax) to 0 and set optimum program and file 

allocation set {PFLOpt} to Ф. 

Step 2: Select a new program and file allocation PFLNew={ }mnij NFNP ,  from 

{0,0,…,0} to {1,1,…,1} by changing 0 to 1 one by one. 
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Step 3: If the PFLNew fits the basic constraints, cost constraint, completion time 

constraint and storage constraints, go to step 4. Otherwise, go to step 2. 

Step 4: Use GEAR algorithm to calculate the new allocation’s DSR (DSRNew). 

Step 5: If NewMax DSRDSR < , set Φ=}{ OptPFL  and add NewPFL  into {PFLOpt}. 

Otherwise if NewMax DSRDSR = ,  add NewPFL  into {PFLOpt}. 

Step 6: Are all the allocations from {0,0,…,0} to {1,1,…,1} searched? If yes, 

go to step 7. Otherwise, go to step 2. 

Step 7: Output the optimum allocation set {PFLOpt} and the maximum DSR 

( MaxDSR ). 

The result of {PFLOpt} contains all the optimal assignments that can obtain the 

maximum DSR ( MaxDSR ) without violating any of the constraints.  

Although this exhaustive search algorithm can guarantee the finding of all the optimal 

assignments, the effectiveness of the algorithm is low. A more effective algorithm will 

be developed in the following subsection.  

3.2.2 Genetic algorithm implementation 

A genetic algorithm is an evolutionary optimization technique, which is a rapidly 

growing area of artificial intelligence. Genetic algorithms are inspired by Darwin's 

theory of evolution based on the survival of the fittest species as introduced by Holland 

(1975) and further described by Goldberg (1989).  Some genetic operators for this 

optimization problem are first introduced and then the general procedures are 

presented. 

3.2.2.1 Operators 

Chromosome encoding 



Chapter 3. A Reliability Oriented Genetic Algorithm for DCS 

49 
 

Since the purpose of the chromosome is to represent whether the program or file is 

placed on the corresponding node or not, every chromosome is a list of binaries 

corresponding to { }mnij NFNP , . Hence, the length of the chromosome is 

FnPn NNNNN ** += .  

Selection 

We implement Roulette Wheel Selection here. Parents are selected according to their 

fitness. Fitter chromosomes have large fitness value, more chance the random number 

falls into their scope. Hence, the fitter the chromosomes are, the more chances they 

have of being selected. The basic process can be described as follows:  

1. Calculate the sum of all chromosome fitnesses in population – Sall.  

2. Generate a random number from the interval (0, Sall)-r.  

3. Go through the population and sum the fitness from 0 - sum s. When the sum 

s is greater then r, stop and the current chromosome is selected. 

For example, suppose that there are four chromosomes in the population and their 

fitnesses are 0.8, 0.9, 0.85, 0.95 respectively. The Roulette Wheel Selection procedure 

is as follows: 

1. The sum is 0.8 + 0.9 + 0.85 + 0.95 = 3.3 

2. The random number is 2 

3. (0.8 + 0.9) < 2 < 0.8 + 0.9 + 0.85, the third chromosome is selected. 

If we use the DSR as the fitness, the difference is very small between the 

chromosomes and therefore it does not provide enough discrimination between 
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chromosomes with very close DSR.  This is especially so when most chromosomes are 

close to the optimal solution. To overcome this problem we use the following fitness 

function: 

)ln(
1

DSR
Fitness −

=       (3.12) 

 

Since DSR is between 0 and 1, ln(DSR) will tend to 0 and the Fitness will tend to 

infinity as the DSR tends to 1. Thus, Equation (3.12) can enlarge the difference 

between the chromosomes and give a chromosome, whose DSR is closer to 1 and just 

a little larger than the others, more chance of being selected.  

Crossover 

In crossover, two new chromosomes are formed by swapping the sets of genes of two 

parent chromosomes. In a program and file assignment problem, crossover diversifies 

the population by swapping parts of the two parent chromosomes selected randomly. A 

chromosome resulting from a crossover may comprise a combination of program and 

file assignment that is infeasible requiring an adjustment to be made  as below. 

Mutation 

To avoid convergence to a local optimum as the population size increases, the 

mutation operation is used more frequently. Every bit of the chromosome has the 

predefined probability – mutation rate to be selected as the mutation site. If the 

corresponding bit is 1, it is changed to 0, and vice versa. The mutated chromosome 

must satisfy all the constraints or else adjustment is required as below. 
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Adjustment 

There are various methods of handling constraints, for example, penalty function, 

adding repair operators, or just discarding the infeasible solution. In the current case, it 

is difficult to find an effective and efficient penalty function. The method of discarding 

the infeasible solution is most suited to the case where the infeasible solutions appear 

infrequently. However, if infeasible solutions appear frequently but can be adjusted to 

feasible solutions without too much computational cost, repair operators are efficient 

and effective.  

Our algorithm is of this type and therefore we have selected the repair operators to 

handle constraints. In this section, repair operators are referred to as adjustment. 

1) Basic Constraint Adjustment: 

If the number of copies of any program jP  is 0, i.e. 0
1

=∑
=

nN

i
ijNP , a random node iN  is 

selected and a copy of this program is put on it, i.e. ijNP  is changed to 1. The 

allocation, however, is not allowed to violate the completion time constraint. 

If the number of copies of a file jF  is 0, i.e. ∑
=

nN

i
ijNF

1
, a random node iN  is selected 

and a copy of this file is put on it, i.e. ijNF  is changed to 1.  The allocation, however, 

is not allowed to violate the storage constraint. 
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2) Cost Constraint Adjustment 

If the chromosome does not satisfy the cost constraint, a random copy of the program 

that has the largest number of copies is inversed to 0. This adjustment is repeated until 

the chromosome satisfies the cost constraint. 

3) Completion Time Constraint Adjustment 

If some nodes do not meet the completion time constraint, there are two possible 

adjustments depending on the conditions.  First, if every program presenting on the 

infeasible nodes has just one copy in the DCS, i.e. ),2,1(,1
1

P

N

i
ij NjNP

n
K∈=∑

=
, 

randomly select a program presenting on the infeasible nodes and transfer it to another 

feasible node. Otherwise, any program presenting on the infeasible nodes that has the 

largest number of copies is inversed to 0.  The above adjustments are repeated until the 

adjusted chromosome satisfies the completion time constraint. 

4) Storage Constraint Adjustment 

If some nodes do not meet the storage constraints, then in a similar method to that used 

for completion time adjustment, the adjustment is done in one of two ways depending 

on the conditions applying. If every file presenting on the infeasible nodes has just one 

copy in the DCS, i.e., )2,1(,1
1

F

N

i
ij NjNF

n

K∈=∑
=

, randomly select a program 

presenting on the infeasible nodes and transfer it to another feasible node. Otherwise, 

any file presenting on the infeasible nodes that has the largest number of copies is 

inversed to 0.  The above adjustments are continued until the adjusted chromosome 

satisfies the storage constraint. 
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3.2.2.2 Implementation procedure 

Based on the above operators, the general procedures for the GA to solve this 

optimization problem are as below: 

Step 1: Encode the solutions into chromosomes; 

Step 2: Generate an initial population; 

Step 3: Selection; 

Step 4: Crossover; 

Step 5: Mutation; 

Step 6: Do the chromosomes satisfy the constraints? If yes, go to step 8; and if 

no, go to step 7; 

Step 7: Adjustment; 

Step 8: If the number of generations reach a predetermined value (termination 

criteria), stop GA; and if no, go to step 3; 

This optimization problem can be effectively solved by GA according to the above 

procedures. Some numerical examples are shown in the next section. 

3.3  Numerical examples 

In this section, two numerical examples are illustrated. The first one is a four-node 

system and the result of the GA is compared with that of the exhaustive search 

algorithm. The second example is a ten-node system. All algorithms have been 

implemented in VC++ 6.0 on a Pentium II 266 MHZ processor with 128 M of RAM. It 

is shown that GA can provide good solution within acceptable time but the exhaustive 

search algorithm cannot finish the execution within an acceptable time. 
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3.3.1 A four-node distributed computing system  

The topology of the four-node DCS is depicted in Figure 3.2.  

N1

N2

N3

N4

 

Figure 3.2: Topology of a four-node DCS 

There are three computing programs to be executed in the DCS (P1, P2, P3). Files 

needed for program execution, link reliability used, and completion times of programs 

are shown Tables 3.1-3.3. The costs of each program are 1, 6, 4, respectively, and there 

is a cost limit of 15. The size of each file is 3, 5 and 2, respectively. The storage 

constraints are assumed to be 5, 5, 5, 1 for each node. 

Table 3.1: Required files for program execution 

Programs Needed Files 
P1 F1,F2 
P2 F1,F3 
P3 F3 

Table 3.2: Link reliabilities of a four-node distributed system 

Node 1 2 3 4 
1 1 0.9 0.7 
2 0.9 1 0.75 0.9 
3 0.75 1 0.6 
4 0.7 0.9 0.6 1 
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Table 3.3: Completion time of each program and the completion time constraint 

                                Node 
Program 1 2 3 4 

1 2.0 3.0 1.5 2.0 
2 4.0 6.0 3.1 4.0 
3 6.0 9.0 4.5 6.0 

Completion Time Constraint               6 
 

An exhaustive search algorithm was used to search for the optimal assignment of the 

four-node DCS and two optimum solutions were found. The maximized reliability of 

the four-node DCS is 0.8745. The optimum assignments are shown in Table 3.4. 

Table 3.4: Optimum allocation for the four-node DCS 

Nodes N1 N2 N3 N4 
Programs P1,P2   P3 P3 

Solution1 
  
  Files F1,F3 F2 F2   

Nodes N1 N2 N3 N4 
Programs P1,P2   P3 P3 

Solution2 
 
 Files F2 F1,F3 F1,F3   

 

The GA was also implemented to solve the same problem. The parameters of GA are 

given below:  Population size: 50; Mutation probability: 1.0%; Crossover probability: 

70%; and Generation: 40. The GA was repeated 10 times, and results are given in 

Table 3.5. 
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Table 3.5: The result of the GA algorithm for the optimum allocation 

Solutions Frequency DSR Nodes N1 N2 N3 N4 
Programs P1,P2   P3 P3 1 

  
4 

  
0.8745

  Files F1,F3 F2 F2   
                

Programs P1,P2   P3 P3 2 
  

3 
  

0.8745
  Files F2 F1,F3 F1,F3   

                

Programs P1 P2 P3 P3 3 
  

2 
  

0.864
  Files F1,F3 F2 F2   

                

Programs P1,P2   P3   4 
  

1 
  

0.8115
  Files F2 F3 F1,F3   

 

Table 3.5 shows the GA cannot guarantee optimum solutions but most results are 

optimal or near optimal. The average computing duration was 7.8s which was far less 

than that of the exhaustive search algorithm. With the same parameters, the GA ran 

1000 times and the result statistics are presented in Table 3.6: 

Table 3.6: The result statistics of the GA 

DSR 0.8745 0.864 0.8115 
Frequency 408 344 248 
Computing duration         6.303 

 

Table 3.6 shows that, in this case, the probability of the GA finding the optimum 

solution is the highest (40.8%), which means that the GA can obtain the optimum 

solution most often when the state space is small. The computing duration of the 

exhaustive search algorithm is about 60 seconds while the average computing duration 

of the GA is about 6.303 seconds. It is obvious that GA can obtain the optimal or sub-

optimal solution in less time than the exhaustive search algorithm does. For some 

complex DCS’s, the exhaustive search algorithm may not therefore be an acceptable 

method.  
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3.3.2 A ten-node distributed computing system  

The topology of the ten-node distributed system is depicted by Figure 3.3. The DCS 

involves ten programs and twelve files. Files needed for program execution, link 

reliabilities and constraints are shown in Table 3.7 – 3.12. The parameters of GA are as 

follows: Population size: 50; Mutation probability: 1.0%; Crossover probability: 70%; 

and Generation: 50.  

The ten solutions obtained by the GA are listed in Table 3.13 below. 

N1

N2

N3 N5

N9 N8

N7

N6

N10

N4

 

Figure 3.3: Topology of a ten-node DCS 

Table 3.7: Needed files for program execution 

Programs P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 

Needed Files 
F1, 
F2, 
F4 

F2, 
F4 

F3, 
F5 

F4 F5, 
F3 

F6, 
F11

F7, 
F12

F8 F9 F10 
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Table 3.8: Link reliabilities of a ten-node distributed system 

Nodes 1 2 3 4 5 6 7 8 9 10
1 1.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95
2 0.90 1.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.80 1.00 0.95 0.00 0.00 0.00 0.00 0.00 0.99
4 0.00 0.00 0.95 1.00 0.90 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.90 1.00 0.80 0.00 0.95 0.00 0.00
6 0.00 0.00 0.00 0.00 0.80 1.00 0.85 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.85 1.00 0.95 0.00 0.00
8 0.00 0.00 0.00 0.00 0.95 0.00 0.95 1.00 0.90 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 1.00 0.85

10 0.95 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.85 1.00

Table 3.9: Cost of each program and the cost constraint 

Programs P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

 Cost 1 2 4 2 3 5 4 2 3 2
Cost Constraint       35 

Table 3.10: Completion time of each program and the completion time constraint 

                                Node     
Program 1 2 3 4 5 6 7 8 9 10

1 2.0 3.0 4.0 2.0 3.0 4.0 6.0 3.0 2.5 1.0
2 3.0 4.5 6.0 3.0 4.5 6.0 9.0 4.5 3.8 1.5
3 2.6 3.9 5.2 2.6 3.9 5.2 7.8 3.9 3.3 1.3
4 4.0 6.0 8.0 4.0 6.0 8.0 12.0 6.0 5.0 2.0
5 5.0 7.5 10.0 5.0 7.5 10.0 15.0 7.5 6.3 2.5
6 3.4 5.1 6.8 3.4 5.1 6.8 10.2 5.1 4.3 1.7
7 2.2 3.3 4.4 2.2 3.3 4.4 6.6 3.3 2.8 1.1
8 3.2 4.8 6.4 3.2 4.8 6.4 9.6 4.8 4.0 1.6
9 3.8 5.7 7.6 3.8 5.7 7.6 11.4 5.7 4.8 1.9

10 2.8 4.2 5.6 2.8 4.2 5.6 8.4 4.2 3.5 1.4
Completion Time Constraint      10 

Table 3.11: Size of each file 

Files F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 
Size 3 5 2 3 4 2 5 3 2 1 3 2 

Table 3.12: Size constraint of each node 

Node N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 
Storage Constraint 5 5 5 1 10 15 7 2 5 4 
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Table 3.13: Solution for the ten-node DCS by GA 

Solutions DSR Duration (s) 

1 0.915 381 
2 0.913 429 
3 0.917 460 
4 0.915 412 
5 0.915 415 
6 0.901 373 
7 0.908 365 
8 0.910 360 
9 0.911 374 
10 0.921 422 

Table 3.14: One of the best assignments (DSR=0.921) among the ten solutions 

Nodes Programs Files Nodes Programs Files 
N1 P2,P3 F2 N6   F1,F6,F9,F10,F11,F12 
N2   F1,F6 N7   F1,F10,F11 
N3 P4 F5 N8 P7 F9 
N4 P1,P6   N9 P5 F3,F4 
N5 P9 F7,F8,F9 N10 P7,P10 F6,F12 

 

From Table 3.13, the maximum reliability that GA can find in ten iterations is 0.921 

with one of the assignments as shown in Table 3.14. As no results have ever been 

presented for a model which considers both program and file allocation, there are no 

benchmarks available in the literatures to assess the quality of the GA solution for 

large problems. Also, there are no relaxation techniques available to obtain some 

upper-bound benchmarks for this kind of problems. In this situation, we can only use 

statistical data (mean and standard deviation) to assess the quality of the GA solution 

for large problems.  

The mean of reliability was 0.913 and the standard deviation was 0.0055. The average 

computing duration was 399.1 seconds. We believe that these results confirm the 
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effectiveness of GA in finding a good enough assignment in an  acceptable execution 

time. 

3.4  Sensitivity analysis 

In our optimization model, some of the parameters such as the costs of programs and 

completion times usually have to be estimated from a source that may not be accurate.  

Sensitivity analysis have therefore been carried out to determine the effect of these 

parameters on the optimal assignment of programs and files and the consequent effect 

on DSR.   Such analyses should be helpful to practitioners in determining the accuracy 

required for this data  

3.4.1 Sensitivity to the expected cost of programs 

The expected cost Cj of a copy of program Pj is affected by the price fluctuation of 

software market.  A sensitivity analysis of the expected cost parameter C2 is shown in 

this section, and similar studies can also be implemented in analyzing other cost 

parameters. 

Taking the example of four-node computing system, let the expected cost C2 of each 

copy of P2 change from 0 to 10 to see the influence of the cost on the optimal 

assignment of programs and files when other parameters are fixed. Table 3.15 shows 

the results of the sensitivity analysis. 
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Table 3.15: Sensitivity analysis of the program cost parameter 

One of the assignment Number of Copies  
C2 N1 N2 N3 N4 DSR  P1 P2  P3 Total 
0 P3 P2 P1,P2

1 F1,F3 F2 F2 
2       
3       

P1
 
 
 

0.8745 2 2 1 5 

4 P1,P2,  P3,  P3, 
5 F1,F3 F2 F3

6   

 
F2 
    

0.8745 1 1 2 4 

7 P3 P2 P1 
8 F1,F3 F2 F1 
9       

P1
 
 

0.864 2 1 1 4 

P1,P2 P3 
10 F1,F3   F2   

0.8115 1 1 1 3 

 

In general, as the expected cost of program P2  increases, the DSR decreases due to the 

number of redundant copies of the programs being reduced by the limitation of budget. 

From Table 3.13, we can observe that there are four different solutions of assignment 

when C2 changes from 0 to 10:  

1) 30 2 ≤≤ C , the budget is sufficient to purchase 2 copies of P1 and P2 and one copy 

of P3 (totally 5 copies). With this selection, the maximum DSR can reach 0.8745 by 

means of one of the assignments given in Table 3.13;  

2) 64 2 ≤≤ C , the budget is sufficient to purchase 1 copy of P1 and P2 and 2 copies of 

P3 (totally 4 copies), and the maximum DSR can also reach 0.8745;  

3) 97 2 ≤≤ C , the budget is sufficient to purchase 2 copies of P1 and 1 copy of P2 and 

P3 (totally 4 copies), and the maximum DSR is reduced to 0.864;   
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4) Finally, when 102 =C , the budget is only sufficient to purchase one copy of all the 

programs (totally 3 copies), so the DSR decreases to 0.8115 according to the optimal 

assignment presented in Table 3.15.  

The  sensitivity analysis shows that, with C2 in the range 0 to 6, the maximum DSR is 

robust to the fluctuation of program prices its value being maintained at 0.8745.  

The second range of C2  with a total of 4 copies of programs has the same DSR as the 

first range with a total of 5 copies of programs. This shows that having too many 

redundant copies of programs in a distributed system may sometimes be inutile. 

3.4.2 Sensitivity to the completion time  

The predetermined completion time constraint (Ct) may fluctuate in practice for 

reasons such as customer requirement changes. Hence the system designer may also 

want to know what the effect of the Ct fluctuation has on the solved optimal 

assignment of programs and files. 

A sensitivity approach is proposed here to analyze the influence of Ct on the optimal 

solution. Again taking the four-node example in Section 3.3.1, let Ct change from 4 to 

13 with the other parameters unchanged. The results for the sensitivity analysis are 

given in Table 3.16. 
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Table 3.16: Results for the sensitivity to the changes of completion time constraint 

Ct DSR Assignment 
  N1 N2 N3 N4 

Number of Nodes Free  
from Executing Programs  

4 0   

5 
 

0.8115 
 

P2 
F1,F3 

P1
F2

P3
F2

P1
 

0 
 

 

6 0.8745 
7 0.8745 

P1,P2 
F1,F3 F2

P3
F2

P3
 

1 
 

 

8 
 

0.9315 
 

P1,P3 
F1,F3 

P2
F2

P3
F2  

1 
 

 

9 
 

0.942 
 

P1,P2 
F1,F3 

P3
F2

P3
F2  

1 
 

 

10 0.942 
11 0.942 

P2,P3 
F1,F3 

P1
F2

P1
F2  

1 
 

 

12 0.942 
13 0.942 

P1,P2,P3
F1,F3 F2 F2  

3 
 

 

As shown in Table 3.16, over the range in Ct  from 4 to 9, the more time there is 

available for all the programs (Ct), the higher the DSR that can be obtained according 

to the optimal assignment. With  12≥tC  there is no influence of time constraint (Ct) 

on the DSR when all the programs can be completed on a single node, such as N1. On 

the other hand, if 5.4<tC , the DSR will always be 0 because the least completion 

time of program 3P  is 4.5. 

3.5  Discussions 

Some related work is worth mentioning here. Kumar et al. (1995a) developed a genetic 

algorithm (GA) to solve a file allocation scheme. In their scheme, the objective 

function was to maximize the distributed program reliability (DPR) when the topology 

of the system, program distribution, files needed for program execution and reliability 

parameters were given. From the viewpoint of system level, the distributed systems 
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reliability (DSR) can describe the system better than the DPR. Hence, the objective of 

our optimization model was to maximize the DSR. When the number of programs is 

set to 1, the objective to maximize DSR is the same as maximizing DPR, the objective 

function in Kumar et al. (1995a). 

At the same time, when the topology of the DCSs is given, the DSR depends mainly 

on the allocation of various resources such as the assignment of programs and needed 

files (Kumar et al. 1986, Raghavendra et al. 1998).  Hence, to maximize the DSR, the 

file allocation and program allocation should be considered together. Our algorithm 

deals with both the program allocation and file allocation to maximize the DSR. When 

the program allocation is fixed, the models will degenerate to the file allocation 

problem discussed by Kumar et al. (1995a). 

In the optimization model of Kumar et al. (1995a) the different constraints, for 

example, the total number of copies of each file and the memory constraint at each 

node, are discussed. In our model, some additional constraints such as the cost 

constraint and completion time constraints are considered. Although more constraints 

make the GA more difficult to implement, they make the optimization model more 

practical.  

Kartik & Murthy (1997) presented a heuristic algorithm to solve the program 

allocation problems for maximizing the DSR. In their algorithm, the network topology 

of the computer system was assumed cycle-free, which means that there exists one 

unique path between any pair of nodes.  

Our optimization model does not limit the topology because GEAR (Kumar & 

Agrawal 1993) used by our model does not limit the network topology of the computer 

system. In addition our optimization model permits redundancies, which is a more 
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general situation and considers both the program allocation and file allocation together.. 

Our optimization model is therefore more general and practical than that of Kartik & 

Murthy (1997). 

This chapter presented an optimization model that considered file allocation and 

program allocation together. Two solution algorithms were developed to solve the 

problem. The first is an exhaustive search algorithm, which can guarantee to find all 

the optimum solutions but at the expense of long run-time. The second is a genetic 

algorithm, which is more effective in run time than the first (especially for some 

complex DCS’s). The genetic algorithm is therefore strongly recommended when the 

DCS is too complex to be solved by the exhaustive algorithm in an acceptable time,.  

A sensitivity analysis was also conducted, which showed that extending completion 

time might improve the DSR and release more computers for alternative tasks without 

sacrificing the DSR. 
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Chapter 4  

A Reliability Oriented Tabu Search for Distributed 

Computing Systems 

In Chapter 3, an optimization model for program and file assignment with the 

objective to maximize the distributed system’s reliability (DSR) was presented and a 

Genetic Algorithm (GA)  was proposed to solve the problem. For many combinatorial 

optimization problems, Genetic Algorithm can provide excellent results. For example 

Vidyarthi & Tripathi (2001) used a simple GA to optimize the reliability of a DCS 

with task allocation, which provided better results than that of Shatz et al. (1992). 

However, GA is a population-based search, and requires the evaluation of multiple 

prospective solutions (i.e., a population) over many generations. Hence, for some 

complex problems, GA’s may need significant amount of computational effort.  

Tabu Search (TS) is a competing meta-heuristic method for many of the same large 

and complex combinatorial optimization problems. Beginning with an initial feasible 

solution, successive “moves” to superior solutions are made within a neighborhood. To 

avoid convergence to a local optimum, particular moves are temporarily deemed to be 

“tabu”.  

Combined with other methods, TS can provide even better results. Budenbender et al. 

(2000) propose a hybrid Tabu Search/Branch-and-Bound algorithm to solve a 

transportation network design problem. Chen & Lin (2000) combined Tabu search and 
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noising method to solve a special version of the task allocation problem that included 

both capacity constraint and number of task constraints along with the inclusion of 

fixed cost.  

Unlike GA’s, TS is not population-based but successively moves from solution to 

solution. This offers some potential for improved efficiency if it also provides the same 

or improved quality of solutions for the same execution time. Pierre & Elgibaoui (1997) 

applied a Tabu Search to the topological design of computer networks with a reliability 

constraint and this provided better solutions than GA and Simulated Annealing (SA). 

Balicki & Kitowski (1993) considered three evolutionary algorithms to solve a three-

criteria optimization problem of finding a set of Pareto-optimal task assignments, and 

finally recommended the algorithm with Tabu mutation. Subrata & Zomaya (2003) 

used GA, TS, and ant colony algorithm (ACA) to solve the reporting cells planning 

problem, and TS showed the best performance. 

In some cases, however, GA outperforms TS. Mayer et al. (1998) concluded that TS 

had methodological flaws when applied to multi-dimensional systems with continuous 

independent variables, and GA’s were found to be both efficient and successful for this 

kind of problem. Braun et al. (2001) compared 11 different heuristics including GA, 

TS, SA and A*
 for mapping a class of independent tasks onto heterogeneous DCSs. 

The results showed that GA consistently gave the best results.  

As there are the widely differing views on the efficiency of available methods, this 

chapter compares GA and TS to gauge their suitability for solving the program and file 

allocation problem.  

The chapter is organized as follows. Section 4.1 describes a TS algorithm to solve the 

optimization problem. Section 4.2 reports on two numerical examples to compare GA 
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and TS. Section 4.3 presents a parallel TS to further improve the performance of the 

TS. Section 4.4 reports the computational results of the parallel TS. Finally, Section 

4.5 presents the conclusions of the chapter.  

4.1 A TS algorithm 

The optimization model has been presented in Chapter 3. In order to obtain the 

solution for this optimization model, an exhaustive search algorithm and a genetic 

algorithm were presented. In this chapter, a TS algorithm is proposed to solve the same 

problem. The exhaustive algorithm can guarantee the optimal solution but is 

computationally complex and, for large scale problems cannot obtain the optimal 

solution in an acceptable time. Therefore, for small-scale problems, the results of the 

exhaustive algorithm were used to evaluate the results of TS and GA. For large scale 

problems, the results of the TS and the GA were compared with each other. 

TS, developed by Glover (1989, 1990), is a general purpose heuristic technique. It has 

been successfully applied to a variety of combinatorial problems. An important feature 

of TS is the Tabu list (also called the short-term memory) which records those solution 

states that are not permitted at the current iteration. Restricting the next move to only 

non-Tabu state solutions can prevent cycling and help to overcome local optimality. 

However, this may result in rejecting some worthwhile moves. Therefore, a solution 

state remains “tabu” only for a number of iterations.  

In this research, TS combined with branch-and-bound is employed and particular 

features such as “back-tracking” and “restarting” are incorporated. At the same time, a 

greedy algorithm was used to generate an initial solution. 
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4.1.1 Basic initial solution 

We attempt to construct an initial feasible, and hopefully good, solution by a greedy 

algorithm as follows: 

• Compute the priority of each node and sort them 

First, compute the priorities of the nodes which is defined as the following 

equation: 

)1(1)Pr(
1

)(,∏
=

−−=
il

j
jtii RN                                                  (4.1) 

where  

iN  is the node i;  

)(, jtiR  is the reliability of the link between node iN  and node )( jtN ; 

)( jt  is the jth node which is directly linked with node iN  ;  

il  is the number of the nodes which are directed linked with node iN . 

After computing the priorities of the processors, sort the processors into the 

processor sequence according to their priorities in descending order. 

 Compute the priority of each program and sort them. The priority of the 

program is the number of the file that the corresponding program needs. The 

programs are sorted into the program sequence according to their priority in 

descending order 

 Compute the priority of each file and sort them.  The priority of the file is the  

number of the programs that need the file. The files are sorted into the file 

sequence according to their priority in descending order. 
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• Assign the programs and files to the processor 

Programs are assigned in the program sequence to the processors until 

Completion Time Constraint is violated. After this, the next processor in the 

processor sequence is chosen and the procedure is repeated until all the 

programs are assigned.  

Files are assigned in the file sequence to the processors until Storage 

Constraints are violated. After this, the next processor in the processor 

sequence is chosen and the procedure is repeated until all the files are 

assigned. This method can guarantee that the solution is feasible. 

As the feasible solutions obtained by the greedy algorithm can be far away from 

optimal in terms of the objective function value, we designed an improved algorithm 

that attempts to  improve the initial solution. It combines the branch-and-bound 

optimization algorithm with TS. The whole solution space can be partitioned into 

subsets according to the number of the copies of the programs and files. Where the 

number of copies of the program and file are at maximum we refer to this as the 

saturated state case. In this case, different copies of the program or file are treated as 

different elements. We refer to the different copies of the program Pi as Pi (j); and 

different copies of the file Fi  as Fi(j).  

Proposition 1: Given two program and file sets A and B, if the number of copies of 

each program or file in set A is not less than the number of copies of the corresponding  

program or file in set B, then the reliability of the optimal allocation of the set A is not 

worse than that of the optimal allocation of the set B.  
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Proof: 

Given program and file sets A and B, where the copies of each program or file in set A 

are not less than corresponding copies of program or file in set B, i.e., AB ⊆ . 

Let      C denotes the set which consists of the different elements of set A and set B; 

*
bDSR  denote the DSR when the set B is optimally allocated;  

       *
aDSR  denote the DSR when the set A is optimally allocated; 

        *
bS  denote the set of all the sub-networks that satisfy the program requirement 

and file requirement when the set B is optimally allocated; 

        aS denote the set of all the sub-networks that satisfy the program requirement 

and file requirement when the set B is optimally allocated and the set C is randomly 

allocated; 

         *
aS  denote the set of all the sub-networks that satisfy the program requirement 

and file requirement when the set A is optimally allocated. 

If  BA = , then **
ba DSRDSR = . 

If  AB ⊂ , 

Because the DSR is computed by evaluating all the subnetworks(or sub-trees) 

that satisfy the program requirement and file requirement (Kumar & Agrawal 

1993), then  

)( **
bb SfDSR =  
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αα )1()1)(1(1)()( ****
bbbcbaa DSRDSRDSRSSfSfDSR −+=−−−=+==   

where cS  is the increase of the sub-networks due to the set C.  

α  is the reliability of the extra subnetworks set cS . 

It is evident that: 0≥cS , so 0≥α ; 

1* ≤bDSR ; so 0)1( * ≥− bDSR ; so 0)1( * ≥− αbDSR ; 

So *
ba DSRDSR ≥  

And it is evident that: aa DSRDSR ≥* . 

So **
ba DSRDSR ≥ . 

■ QED 

The above result suggests that we only need to search the program and file sets which 

are in saturated states.  

4.1.2 Neighborhood and candidate list 

Because the neighborhood significantly affects the solution quality, it is necessary to 

clarify how the neighborhood is defined.  

The neighborhood of current solution is a subset of the whole solution space, in which 

each solution can be reached from current solution by an operation called a move. 

A common way to explore a neighborhood is to generate a candidate list of the 

possible moves and then to evaluate each one until an acceptance criterion is met. 

However, the neighborhood to be examined can be quite large for the problem. An 
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answer to this is to use an appropriate candidate list strategy which selects a subset of 

the available moves to narrow down the examination of the elements of the 

neighborhood. The simplest of these strategies is to simply pick this subset at random 

(Reeves 1993) — a random subset candidate list strategy. Because the neighborhood is 

totally random, we therefore adopt the random candidate list strategy.  

4.1.3 Definition of moves 

Adaptation of TS to a specific problem mainly relies on the definition of moves. The 

moves describe how to explore the neighborhood. In this case, there are eight kinds of 

moves: add program, add file, reduce program, reduce file, exchange programs, 

exchange files, move program, and move file. 

• Add program: Randomly select a program. This program should not belong to 

the “Tabu List of Added Programs” and adding one more copy of this program 

should not violate the cost constraint. Then add one copy of this program to a 

randomly selected processor that should satisfy completion time constraints.  

• Add file: Randomly select a file. This file should not belong to the “Tabu List 

of Added Files”. Then add one copy of this file to a randomly selected 

processor that should satisfy storage constraints.   

• Reduce program: Randomly select a program which has more than one copy, 

then delete it. 

• Reduce file: Randomly select a file which has more than one copy. Then delete 

it. 

• Exchange programs: Two different programs on different processors exchange 

their locations. The new solution should not belong to the “Tabu List of 
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Solutions”. After exchanging, the corresponding two processors should satisfy 

the completion time constraint. 

• Exchange files: Two different files on different processor exchange their 

locations. The new solution should not belong to the “Tabu List of Solutions”. 

After exchanging, the corresponding two processors should satisfy the storage 

constraints. 

• Move program: Move a randomly selected program on a randomly selected 

processor to another processor. The new solution should not belong to the 

“Tabu List of Solutions”. After moving, the processor should satisfy the 

completion time constraint. 

• Move file: Move a randomly selected file on a randomly selected processor to 

another processor. The new solution should not belong to the “Tabu List of 

Solutions”. After moving, the processor should satisfy the storage constraint. 

4.1.4 Tabu lists 

There are four Tabu lists: “Tabu List of Solutions”, “Tabu List of Added Programs”, 

“Tabu List of Added Files” and “Tabu List of Program and File Set”.  

• “Tabu List of Solutions” records the recent solutions. 

• “Tabu List of Added Programs” records the recent programs which were added 

to processors.  

• “Tabu List of Added files” records the recent files which were added to 

processors.  

• “Tabu List of Programs and File Set” records the recent program and file set. 
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4.1.5 Intensification strategies 

Intensification strategies are designed to encourage solution features historically found 

to be good. They may also initiate a return to an attractive region to search it more 

thoroughly. In this research, two types of intensification strategies are implemented 

which may be viewed as a form of back-tracking. 

Type 1 intensification strategy:  After the predefined number (I1) of moves from the 

solution x, if a better solution than the solution x cannot be found, then return to the 

solution x.  

Type 2 intensification strategy: During the searching of the set of programs and files S, 

a best solution was found. After searching the predefined number (I2) of different 

program and file sets, a better solution than the best solution found in the set S cannot 

be found, then search the program and file set S again. 

4.1.6 Diversification strategies 

TS diversification strategies are designed to lead the search into new regions and by 

this means can increase the effectiveness of exploring the solution space. The main 

purpose of diversification is to prevent searching processes from cycling. In addition, 

diversification can impart robustness to the search.  

In this chapter, one diversification strategy, namely restarting, is implemented.  Thus 

within the program and file set, we search the solution space for a predefined time 

before changing to a different program and file set.  

4.1.7 The procedures of TS 

The procedures of TS used in the chapter are the following: 

Notations: 
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bestDSR :  DSR of bestx ; 

tempbestDSR :  DSR of tempbestx ; 

S :   current program and file set; 

bestS :   program and file set where bestx  was found; 

NTL :   Tabu List of Program and File Set; 

x :   current solution; 

bestx :   the best solution found until now; 

tempbestx :  the temporary best solution; 

The DSR of solution x  can be computed by )(xfDSR = . 

1.  Generate an initial feasible solution x ; Φ=NTL  

2.  xxbest = ; )( bestbest xfDSR =   

3.   while s<s-max do 

4.    while ( x  satisfies cost constraint and completion time constrain) do 

5.   Add program and update the “Tabu List of Added Programs” 

6.  end while 

7.   while ( x  satisfies storage constraints) do 

8.  Add file and update the “Tabu List of Added Files” 

9. end while 

10. if NTLS ∉  then  

11.  Update the NTL  

12. xxbest = ; )( tempbesttempbest xfDSR =  

13.     while t < t-max do 

14.   Implement the type 1 intensification strategy 
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15. Sequentially implement one of “Exchange programs”, 

“Exchange files”, “Move program”, “Move file” and update 

“Tabu List of Solutions” 

16.   )(xfDSR =  

17.    if tempbestDSRDSR >  then 

18.    xxtempbest = ; DSRDSRtempbest =  

19.    end if 

20.   t = t + 1 

21.     end while 

22.  Implement the type 2 intensification strategy 

23                    if besttempbest DSRDSR >   

24.   tempbestbest xx = ; tempbestbest DSRDSR =  

25.   end if 

26. end if 

27.    while ( x  satisfy the basic constrain) do 

28.  Reduce program  

29.  Reduce file 

30. end while 

31.       s = s + 1 

32. end while 

33. Return the best solution bestx and bestDSR  
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4.2 Numerical examples 

In this section, two numerical examples are illustrated. The first one is a four-node 

system and the results of the TS and GA are compared with that of an exhaustive 

search algorithm. The second example is a 10-node system and the result of the TS is 

compared with that of a GA. All algorithms have been implemented in VC++ 6.0 on a 

Pentium III 500 MHZ processor with 128 M of RAM. 

4.2.1 A four-node distributed computing system  

An exhaustive search algorithm was used to search the optimal assignment for the 

same four-node DCS used in section 3.3.1 and two optimum solutions were found. The 

maximized reliability of the four-node DCS is 0.8745 and the computing duration is 42 

seconds.   

A TS and GA were also implemented to solve the same problem. The parameters of 

TS are given in Table 4.1 and those  of GA in Table 4.2. TS and GA were run 1,000 

times and the resulting statistics are shown in Table 4.3. 

Table 4.1: The parameters of TS for 4 node DCS 

Length of "Tabu List of Solutions" 10 
Length of "Tabu List of Added Programs" 1 
Length of "Tabu List of Added Files" 1 
Length of “Tabu List of Program and File Sets" 3 
I1 10 
I2 20 
s-max 25 
t-max 50 

Table 4.2: The parameters of GA for 4 node DCS 

Population size 50 
Mutation probability 1.0% 
Crossover probability 70% 
Generation 40 
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Table 4.3: The result statistics of the TS and GA for four node DCS 

Maximized DSR 0.8745 
DSR 0.8745 0.864 0.8115 
DSR/DSRmax 100% 98.80% 92.80% 
Frequency (TS) 86.3% 13.7% 0 
Frequency (GA) 72.7% 15.6% 11.7% 
  TS (s) GA (s) 
Mean Computing duration  2.372 3.86 
Maximal Computing duration 4 5 
Minimal Computing duration 2 3 

 

The exhaustive search algorithm could find two optimal solutions and the maximized 

DSR was 0.8745 in 42 seconds. As shown in Table 4.3, the TS cannot guarantee 

optimal solutions but most results are either optimal or near optimal. In this case the 

probability for the TS to find the optimum solution is 86.3%, which means that the TS 

can get the optimum solution most often when the state space is small. The average 

computing duration of the TS is about 2.372 seconds which is far less than the duration 

time of exhaustive search algorithm. It is evident that TS can obtain the optimal or 

good enough solutions in far less time than that required by the exhaustive search 

algorithm. The performance of GA is very similar to that of TS, i.e., GA can also 

obtain the optimal or good enough solutions in far less time than that required by the 

exhaustive search algorithm.  Comparing the results of TS with those  of GA shows 

however that TS outperforms the GA with shorter computing time and better solution 

quality.  

4.2.2 A ten-node distributed computing system  

For the same 10-node distributed system as used in section 3.3.2, incorporating 10 

programs and 12 files, the exhaustive algorithm cannot be run to completion.  Hence 

only TS and GA were used to solve this example problem. The parameters of TS are 

given in Table 4.4 while those of the GA are shown in Table 4.5.  
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Table 4.4: The parameters of TS for 10 node DSC  

Length of "Tabu List of Solutions" 50 
Length of "Tabu List of Added Programs" 5 
Length of "Tabu List of Added Files" 5 
Length of “Tabu List of Program and File Sets" 10 
I1 10 
I2 20 
s-max 25 
t-max 50 

Table 4.5: The parameters of GA for 10 node DSC  

Population size 50 
Mutation probability 1.0% 
Crossover probability 70% 
Generation 50 

 

TS and GA were run 100 times, respectively, to get an accurate representation of the 

actual mean value. The statistic results are shown in Table 4.6. In the Table, mean 

DSR is the average of the solution values obtained from the 100 runs.  It represents the 

expected DSR obtained using the algorithms. Mean duration is the average of the 

computing times and represents the expected duration.  

Table 4.6: The result statistics of the TS and GA for ten node DSC 

  TS GA 
Mean DSR 0.927 0.923 
Min DSR 0.913 0.901 
Max DSR 0.946 0.941 
Standard Deviation of DSR 0.006 0.004 
Mean Duration 118.8 268.4 
Min Duration 103 200 
Max Duration 139 295 

 

Table 4.6 shows that in this case TS obtained a mean DSR of 0.927.  This is higher 

than the mean DSR of 0.923 obtained by GA . The maximum DSR that TS obtained 

was 0.946 which is higher than the maximum DSR of 0.941 obtained by GA. Also, the 
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minimum DSR TS obtained was 0.913 which is higher than and the minimum DSR of 

0.901 obtained by GA.  

To make it easy to read the results, we present them  as a histogram in Figure 4.1. The 

histogram clearly shows that TS produces solutions of better quality than those 

produced by  GA.  

The mean computing duration of TS was 118.8 seconds which is far less than the mean 

computing duration of GA at 268.4 seconds. Hence we conclude that in this case TS 

outperforms GA with shorter computing time and better solution quality.  
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Figure 4.1: Histogram of the results of TS and GA for 10 node DCS 

4.3 A Parallel Tabu Search  

For this reliability oriented program and file allocation problem, TS outperforms GA. 

However, in some practical settings where scheduling must be produced within a short 

time interval, TS may not finish execution within the time limit. To reduce the 



Chapter 4.  A Reliability Oriented Tabu Search for DCS 

82 
 

execution time, a possible method is to parallelize the algorithm. Hence, a Parallel 

Tabu Search (PTS) is proposed to further improve the performance of the TS.  

The PTS has almost the same procedures as the sequential TS. However, the initial 

solution generation is different from that of the sequential one. The sequential one uses 

a greedy algorithm to generate one initial solution, but the parallel one needs multiple 

initial solutions, which should all be different in order to search the solution space 

along different trajectories.  Initial solutions are generated randomly, but all of them 

should be in saturated state. 

There are three types of parallelization strategies that are often used in combination 

optimization:  

1) Parallelization of operations within an iteration of the solution method,  

2) Decomposition of problem domain or search space,  

3) Multi-search threads with various degrees of synchronization and cooperation. 

For this problem, the solution space can be partitioned into subsets, e.g. different 

program and file sets, so multiple search paths are maintained in parallel to search 

different subsets and accelerate the TS. The implementation runs on a network of 

workstations and follows a master-slave scheme. Each slave performs a partial TS, e.g. 

from step 12 to step 22 in the sequential TS, and the master co-ordinates the work and 

feeds the slaves with a new program and file set in the saturated state.  
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4.4 Computation results of PTS 

The parallel TS was coded in C++ and process communications were handled by the 

message passing interface (MPI) software. The algorithm was implemented on a 

cluster of PCs and each PC is with a Pentium processor IV 2.4 GHZ processor. 

The ten-node DCS described in Chapter 3 is again used to measure the performance of 

the proposed PTS. The results confirm that the PTS can find near-optimal solutions 

within acceptable execution times. It is worth noting that the PTS only searches the 

program and file sets that are in the saturated state that the number of copies of the 

programs and files is as large as possible. This is a kind of branch and bound method 

to make the search space far smaller than the original one. Consequently, the run time 

is reduced significantly.  

The PTS also uses the random subset candidate list strategy to reduce the search space 

because even within one program and file set the search space is quite large. In 

addition, the PTS searches the regions more thoroughly by using two intensification 

strategies, and in these regions the probability is high that better solutions can be found. 

Furthermore, the PTS also uses a diversification strategy to overcome the local 

optimality and to increase the effectiveness and the robustness in exploring the 

solution space.  

The results obtained support the idea that TS is a general-purpose heuristic technique 

and that a well-designed TS can obtain near-optimal solutions in acceptable time, 

especially when TS combines with other optimization techniques. 

The speedup was used to measure the performance of the PTS. This is defined as the 

ratio between the sequential and parallel running time: iTTispeedup /)( 1= , where 1T  is 
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the running time of the sequential program and  Ti is the running time of the parallel 

program on i processors.  

The results presented in Figure 4.2 indicate that the speedup of the PTS basically 

grows linearly when the number of processor is not very large. A possible reason for 

this is that the solution space is partitioned into subsets; every processor searches a 

subset; and only small amount of communication is needed. In this situation, the 

speedup would be expected to be roughly linear.  
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Figure 4.2: Speedup of the PTS 

In addition, the mean of the solutions was computed for each case when processor 

number changes. This is shown in Table 4.7 where it can be seen that increasing the 

number of processors has negligible effect on the solution quality. 

 

  



Chapter 4.  A Reliability Oriented Tabu Search for DCS 

85 
 

Table 4.7: The result statistics of the PTS when the processor number changes 

 
Processor Number Mean Standard 

Deviation 
1 0.94448 0.00175 
2 0.94496 0.00189 
3 0.94468 0.00172 
4 0.94430 0.00154 
5 0.94452 0.00157 
6 0.94451 0.00171 
7 0.94523 0.00190 
8 0.94438 0.00166 

4.5 Conclusions 

In this chapter a TS was developed to solve the same program and file assignment 

problem as that presented in Chapter 3 with the objective of maximizing the DSR. The 

results of the TS were compared with those of GA. The results of the two numerical 

problems considered   showed that TS outperformed GA with shorter computing time 

and better solution quality.  However, it was evident that the design of a good TS 

requires far more insight into the problem and that much more effort is needed 

compared with the requirements for implementing a good GA for the same problem.  

Hence if we do have good knowledge of the state space, TS should be used, otherwise, 

GA may be a better choice. 

To further improve the performance of the sequential TS, a PTS was proposed. The 

numerical results showed that the speedup of the PTS basically grew linearly when the 

number of processor was not very large. The simulation result also showed that the 

solution quality was not obviously affected by the number of processors used.  
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Chapter 5  

A Completion Time Oriented Iterative List Scheduling for 

Distributed Computing Systems 

In Chapters 3 and 4, a system reliability oriented allocation model was presented and 

several algorithms were proposed to solve the problem. Beside system reliability, the 

completion time is another very important requirement for distributed computing, so 

the scheduling of parallel applications to minimize the overall completion time 

(schedule length) is highly critical. A popular representation of the parallel application 

is the directed acyclic graph (DAG) in which the nodes represent application tasks and 

the directed arcs or edges represent inter-task dependencies.  As the problem of finding 

the optimal schedule is NP-hard (Gary & Johnson 1979) in the general case, extensive 

heuristic algorithms have been proposed. These algorithms may be broadly classified 

into the following four categories:  

• Task-Duplication-Based (TDB) scheduling (Papadimitriou & Yannakakis 1990, 

Colin et al. 1991, Palis et al. 1996, Ahmad & Kwok 1998, Darbha & Agrawal 

1998, Park & Choe 2002, Kang & Agrawal 2003) 

• Bound number of processors (BNP) scheduling (Hwang et al. 1989, McCreary 

& Gill 1989,  Wu & Gajski 1990, Maheswaran & Siegel 1998, Park & Kim 
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2002, Radulescu & Gemund 2002, Topcuoglu et al. 2002, Dhodhi et al. 2002, 

Diaz et al. 2003, Oguz et al. 2003)  

• Unbounded number of clusters (UNC) scheduling (Sarkar 1989, Wu & Gajski 

1990, Kim & Yi 1994, Yang & Gerasoulis 1994, Kwok & Ahmad 1996, 

Srinivasan & Jha 1999)  

• Arbitrary network topology (ANP) scheduling (El-Rewini & Lewis 1990, Sih 

& Lee 1993)  

In TDB scheduling, the basic idea is to reduce the communication overhead by 

redundantly allocating some tasks to multiple processors. Non-TDB algorithms which 

assume arbitrary task graphs with arbitrary time on nodes and edges can be divided 

into two categories: one category assumes that the processors are fully connected to 

each other meaning that there is no communication contention; the other category 

assumes that the processors are linked by an arbitrary network topology (ANP) 

meaning that the scheduling process must consider the communication contention. The 

former category can be divided into further two categories: unbounded number of 

clusters (UNC) scheduling algorithms and bound number of processors (BNP) 

scheduling.  

The algorithm presented in this chapter belongs to the last category, which is the most 

common case in the real world. More detailed descriptions and classifications of 

various scheduling strategies can be found in Kwok & Ahmad (Kwok & Ahmad 

1999b). 

List scheduling is a very popular method for BNP scheduling. The basic idea of list 

scheduling is to assign priorities to the tasks of the DAG and place the tasks in a list 
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arranged in descending order of priorities. A task with a higher priority is scheduled 

before a task with a lower priority and ties are broken using some method. To compute 

the priorities of the tasks, the DAG must be labeled with the computation time of the 

tasks and the communication times of the edges.  We differentiate the computation 

time label of a task in a DAG from the actual computation times of a task on all the 

processors, and refer to the former as the time-weight of the task.  Similarly we refer to 

the communication time label of an edge on the DAG as the time-weight of the edge. 

In a homogeneous distributed computing system, the computation times of a task on 

different processors are the same. Hence the time-weight of a node is its computation 

time on any processor. Similarly, in a homogeneous DCS, the communication times 

between two tasks on any link are same. Hence the time-weight of an edge is the 

communication time between the corresponding two tasks on any link.  

In a heterogeneous DCS, on the other hand, the computation times of a task on 

different processors may be different, and so is the communication times between two 

tasks on different links. Hence, the time-weight of every node and the time-weight of 

every edge, which are labeled on the DAG, have to be computed during the scheduling 

process.  

Several variant list schedulings have been proposed to deal with the heterogeneous 

environment, for example, Mapping heuristic (MH) (El-Rewini & Lewis 1990), 

Dynamic-Level Scheduling (DLS) algorithm (Sih & Lee 1993), Levelized-Min Time 

(LMT) algorithm (Iverson et al. 1995), and Heterogeneous Earliest-Finish-Time 

(HEFT) algorithm (Topcuoglu et al. 2002).  

The HEFT algorithm significantly outperforms the DLS algorithm, MH and LMT 

algorithm in terms of average schedule length ratio, which is normalizing the schedule 
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length to a lower bounder (Topcuoglu et al. 2002), speedup etc. The HEFT algorithm 

selects the task with the so-called highest upward rank value at each step and assigns 

the selected task to the processor, which minimizes its earliest finish time with an 

insert-based policy. When computing the priorities, the algorithm uses the task’s mean 

computation time on all processors and the mean communication rates on all links. We 

believe that use of the mean is inadequate for task scheduling.  

In this chapter, we propose an iterative algorithm that uses list scheduling for task 

allocation in heterogeneous computing systems. The algorithm generates an initial 

solution with moderate quality and then improves the solution iteratively. The priority 

for constructing the scheduling list and the processor selection policy are selected 

according to the conclusions of Kwok and Ahmad (Kwok Ahmad 1999a).  

In each iteration step, the time-weights of the nodes and edges of the DAG are updated 

using results from the previous iteration. The initial solution is obtained by the mean 

computation times of all tasks on all processors as the time-weight of the 

corresponding node and the mean communication time of all communication links as 

the time-weight of the corresponding edge.  During the iterative steps, the results of the 

previous iteration are used to compute and update the time-weights of the nodes and 

edges in order to construct a new list. The algorithm keeps the best solution found 

during the iterations and returns it on termination. The initial step happens to be the 

same as the HEFT algorithm (Topcuoglu et al. 2002). However, with subsequent 

schedule improvements, it can potentially find better schedules than the other 

algorithms mentioned above.  

The algorithm has been tested on a large number of randomly generated problems of 

different sizes and two real applications. It was found that in the majority of the cases, 
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there were significant improvements made to the initial schedules, which means that 

the proposed algorithm outperforms HEFT, DLS, MH, and LMT algorithms in terms 

of the average schedule length. In particular, the algorithm performs better when the 

tasks to processors ratio is large.   

This chapter is organized as follows. Section 5.1 provides a formal description of the 

task scheduling problem.  Section 5.2 introduces our scheduling algorithm. Section 5.3 

gives a numerical example. Section 5.4 investigates the performance of our algorithm 

in various heterogeneous computing systems. Finally Section 5.5 draws some 

conclusions. 

5.1 Task-scheduling problem 

Notations: 

lkjic ,,, : communication time from task iv to task jv  when task iv  was 

assigned to processor kp and task jv  was assigned to processor 

lp ; 

s
jic , : time-weight of the directed edge from task iv to task jv  during 

the s-th iteration which is used to compute the priorities of the 

tasks; 

jid , :  data transfer size (in bytes) from task iv  to task jv ; 

jie , :  directed link from i-th task to j-th task; 

),( ji pvEST :  earliest computation start time of task iv  on processor jp ; 

),( ji pvEFT :  earliest computation finish time of task iv  on processor jp ; 

p:  number of processors available in the system; 
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ip :  i-th processor in the system; 

jir , : communication rate (in bytes/second) between processor ip  and 

processor jp ; 

v:  number of tasks in the application; 

iv :  i-th task in the application; 

jiw , :  computation time to complete task iv  on processor jp ; 

s
iw : time-weight of task iv during the s-th iteration, which is used to 

compute the priorities of the tasks. 

An application is represented by a directed acyclic graph G=(V, E), where V is the set 

of v tasks that can be executed on any of the available processors; E ⊆ V × V is the set 

of e directed arcs or edges between the tasks representing the dependency between the 

tasks.   

For example, if Ee ji ∈, , then task jv  cannot start before task iv  completes its 

execution. A task may have one or more inputs. When all its inputs are available, the 

task is triggered to execute. After its execution, it generates its outputs. A task with no 

parent node in the DAG is called an entry task and a task with no child node in the 

DAG is called an exit task.   

Without lost of generality, we assume that the DAG has exactly one entry task entryv  

and one exit task exitv . If multiple exit tasks or entry tasks exist, they may be connected 

with zero time-weight edges to a single pseudo exit task or a single entry task that has 

zero time-weight. In addition, the system includes a set of p processors which are 
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assumed to be fully linked. Hence there is no communication contention (Darbha & 

Agrawal 1998).  

We assume that there is just one task executing on a processor at any one time and 

each processor is equipped with a queue to hold tasks waiting to execute on the 

processor. When all inputs of a task are available, the task is triggered to execute. After 

its execution, the outputs are generated. Once the execution of a task is completed, the 

processor is assumed to be immediately available for the execution of the next task 

scheduled on that processor. However, it is possible for a task to receive data from 

predecessors while another task is been executed, and likewise, it is possible for a task 

to send data to successor tasks. Furthermore, the output data items produced by the 

completed task are assumed to be available for all successor tasks to be executed on 

that processor. If multiple output data items produced by a task are to be transferred to 

successor tasks scheduled on other processors, then these data items are assumed to be 

transferred to their respective destination concurrently.  

The communication time lkjic ,,,  from task iv to task jv , when task iv  was assigned to 

processor kp and task jv  was assigned to processor lp  is  

lkjilkji rdc ,,,,, /=                                                    (5.1) 

The earliest execution start time on processor jp  of entry task entryv  is  

0),( =jentry pvEST       (5.2) 

To compute the earliest execution start time of other tasks, the assignment of the 

immediate predecessor tasks must be known. Let us assume that mv  is one of the 
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immediate predecessor tasks of iv  and mv  was assigned to the processor np . The 

earliest execution start time of task iv on processor kp  is  

)}),((max),,(max{),( ,,,)( knimnmvpredvkiki cpvEFTpvAvailablepvEST
im

+=
∈

    (5.3) 

where ),( ki pvAvailable  is the earliest time when processor kp  is available for task iv  

execution; )( ivpred  = { vm ∈ V | emi ∈ E} is the set of immediate predecessors of task 

iv ; knimc ,,,  is the communication time between task mv and task iv  given that task mv  

was assigned to processor np and task iv  was assigned to processor kp . The inner 

maximization block in Equation (5.3) returns the ready-time, i.e., the time when all 

data needed by task iv  have arrived at processor kp . 

The earliest execution finish time on processor ep  of entry task entryv  is 

),( eentry pvEFT  = eentryw ,      (5.4) 

For other tasks, the earliest execution finish time of task iv on processor kp  is 

),(),( , kikiki pvESTwpvEFT +=                 (5.5)  

After all tasks in the DAG have been scheduled to satisfy all precedence constraints, 

the schedule length SL is the earliest finish time of the exit task exitv .  That is  

SL = ),( xexit pvEFT     (5.6) 

where exit task exitv  has been assigned to processor xp .  

The primary objective of the scheduling problem is to minimize the schedule length SL 

by determining the assignment of tasks to processors subject to the tasks dependency 

constraints. 
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5.2 Iterative list scheduling algorithm 

5.2.1 Graph attributes used by our algorithm 

The time length of a directed path from tasks iv to jv is defined as the sum of all the 

time-weights of the tasks (including iv and jv ) and time-weight of the edges along the 

path between iv and jv .  

A critical path (CP) of a DAG is a path from the entry task to exit task, whose time 

length is the maximum. The bottom-level (b-level) (Kwok & Ahmad 1999a) of task iv  

is the longest time-length from task iv  to the exit task and is bounded by the time-

length of the critical path of the graph. The b-level of a task is a dynamic attribute 

because the time-weight of an edge may be zeroed when the two incident tasks are 

scheduled to the same processor.  

5.2.2 The priority selection 

Kwok and Ahmad (1999a) compared several list scheduling algorithms on a common 

homogeneous platform and concluded that the Modified Critical-Path (MCP) (Wu & 

Gajski 1990) algorithm performs better than others in terms of schedule length and 

running time of algorithms. The MCP algorithm uses the as-late-as-possible (ALAP) 

time of a task as the priority.  

The ALAP time of a task is computed by first computing the time length of CP and 

then subtracting the b-level of the task from it. First, the MCP algorithm computes the 

ALAP times of all the tasks and then constructs a list of tasks in ascending order of 

ALAP times. Ties are broken by considering the ALAP times of the children of a task. 

The tasks on the list are then scheduled using the insertion approach, one by one to a 

processor that allows the earliest possible start time.  
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Because the length of the CP is a constant, our algorithm uses the b-level of a task as 

the priority. Our algorithm first computes the b-levels of all tasks and then constructs a 

list of tasks in descending order of b-level values. Ties in b-levels are recursively 

broken using the b-levels  of the tasks’ children.   

5.2.3 Scheduling list construction 

To construct the scheduling list for the initial solution, the time-weight of every task 

must be known. The initial time-weight of task iv  is assigned the mean value of the 

computation time of task iv  on all processors.  That is 

p

w
w

p

j
ji

i

∑
== 1

,
0                                                          (5.7) 

Similarly, the initial time-weight of the edge from tasks iv  to jv  based on the mean 

value across all the fully connecting links is 
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At the s-th iteration, suppose task iv  was allocated to processor kp  and task jv  was 

allocated to processor lp  at the previous iteration, then the time-weight of task iv  is: 

)1()(
,1

,, −++= ∑
=

≠=
αα pwww

pm

kmm
miki

s
i                                (5.9) 

where α  is a non-negative constant. The parameter α  is referred to as the weighting 

factor, which has to be determined either heuristically or empirically. s
iw  is a weighted 

mean of the computation time jiw ,  of task iv  on all processors.  
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If α  > 1, then more weight is put on kiw , . Because processor kp  is the processor to 

which task iv  was allocated during the (s-1)-th iteration, when we compute the time-

weight of task iv  for s-th iteration, i.e., s
iw ,  we put a weight on the computation time 

of task iv  on processor kp , i.e., kiw , . Hence, the time-weight of a task for s-th iteration 

depends on the assignments of the previous iteration, i.e., the (s-1)-th iteration.  

The time-weight of the edge from task iv  to task jv  at the s-th iteration is: 
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The b-level of task iv  at the s-th iteration is defined by: 

))(()( ,
)(

j
ss

ji
vsuccv

s
ii

s vbcMaxwvb
ij

++=
∈

                                         (5.11) 

where )( ivsucc = { vj ∈ V | eij ∈ E}  is the set of immediate successors of task iv .  

For the exit task exitv , since it has no successor, its b-level is 

s
exitexit

s wvb =)(                                                               (5.12) 

Based on the time-weights of the tasks and the time-weights of the edges, the 

scheduling list is constructed with respect to the b-level. 

5.2.4 Processor selection step 

Kwok and Ahmad (1999a) compared several list scheduling algorithms on a common 

homogeneous platform and concluded that insertion-based policy is better than the 

non-insertion-based policy during the processor selection step. Insertion-based policy 

permits the insertion of a task into an earliest idle time slot between two tasks that are 
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already scheduled on the same processor. Hence, our algorithm assigns the selected 

task to the processor which minimizes its earliest finish time with an insert-based 

policy. The time slot must be larger than the computation time of the task being 

scheduled. In addition, the precedence constraint should be preserved. The procedure 

for looking for an idle time slot on one processor kp  for task iv  is as following: 

1.  Compute the inner maximization block in Equation (5.3) as ),(_ ki pvtimeready , 

i.e., the time when all data needed by task iv  has arrived at processor kp . 

2. =),( ki pvAvaiable  the finish time of the last task in the task list of processor kp  

3. While the task list of processor kp is not empty && ),(_ ki pvtimeready  < the start 

time of the last task in the task list of processor kp  do 

4.         if (the finish time of the second last task >= ),(_ ki pvtimeready ) && (the start 

time of the last task – the finish time of the second last task)>= kiw ,  then 

5.                      =),( ki pvAvaiable  the finish time of the second last task 

6.            else if (the finish time of the second last task < ),(_ ki pvtimeready ) && (the 

start time of the last task – ),(_ ki pvtimeready )>= kiw ,  then 

7.                      =),( ki pvAvaiable  ),(_ ki pvtimeready  

8.            end if 

9.             Delete the last task from the task list of processor kp  

10.  end while 
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11.  )),(_),,(max(),( kikiki pvtimereadypvAvaiablepvEST =    

where the task list of processor kp  consists of the tasks which have been assigned to 

the processor kp  and sorted by ascending finish time. 

5.2.5 The procedure of the algorithm 

The procedure for the iterative scheduling algorithm is described as following: 

1. s = 0. 

2. Compute the time-weights of the tasks with Equation (5.7) 

3. Compute the time-weights of the edges with Equation (5.8) 

4. BestSL = a very large number 

5. while s ≤ smax do 

6. Compute the b-levels for all tasks by traversing graph from the exit task 

7.       Sort the tasks into a scheduling list by non-increasing order of b-level 

8.  while the scheduling list is not empty do 

9.       Remove the first task iv  from the scheduling list  

10. for each processor kp  do 

11.                   Compute ),( ki pvEFT  using the insertion-based scheduling policy  

12.        end for 

13.                  Assign task iv  to the processor that minimizes EFT of iv  

14.           end while 

15. ScheduleLength = ),(
exitvexit PvEFT  

16. If ScheduleLength < BestSL then 

17. BestSL = ScheduleLength, and the current schedule is the best schedule 

18.      end if 
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19. Compute the time-weights of the tasks with Equation (5.9) 

20.           Compute the time-weights of the edges with Equation (5.10) 

21. s = s + 1 

22. end while 

23. Return the best schedule 

The initial step is the same as that of the Heterogeneous Earliest-Finish-Time (HEFT) 

algorithm (Topcuoglu et al. 2002) which significantly outperforms Dynamic-Level 

Scheduling (DLS) algorithm (Sih & Lee 1993), Mapping Heuristic (MH) (El-Rewini 

& Lewis 1990) and Levelized-Min Time (LMT) algorithm (Iverson et al. 1995) in 

terms of average schedule length ratio, speedup, etc. The improvement step of our 

algorithm has the potential to produce shorter schedule length than those of the HEFT, 

DLS, MH and LMT algorithms.  

5.2.6 The time-complexity analysis 

The time-complexity of scheduling algorithms for DAG is usually expressed in terms 

of the number of nodes v, the number of edges e, and the number of processors p. The 

time-complexity analysis for one iteration of our algorithm is as follows:  

Computing the time-weights of the tasks and the edges can be done in time )(vpO . 

Computing the b-levels can be done in time )( veO + . Sorting the tasks can be done in 

time )log( vvO . The processor selection for all tasks can be done in time 

))2/(( 2 vpvepO ++ , i.e., in time )( 2vepO + . Hence, the time complexity for one 

iteration is: 

)()log)(( 22 vepOvepvvvevpO +=+++++  
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If smax denotes the maximum number of iterations which is normally small, then the 

time complexity of the whole algorithm is ))(( 2vepsO max +  in the worst case. 

For a dense graph when the number of edges is proportional to )( 2vO , the time 

complexity becomes ))(( 2
max pvsO .  

5.3 Numerical example 

Figure 5.1 shows a DAG with 8 tasks and 11 edges. There are two processors available 

in the heterogeneous computing system. Table 5.1 shows the computation time of each 

task on every processor. For simplicity, we assume homogeneous communication and 

the communication times are as labeled on the edges in Figure 5.1.  

 

 

 

 

 

 

 

 

 

Figure 5.1: A sample directed acyclic graph with 8 tasks 
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Table 5.1: Computation times of every task on every processor 

Task P1 P2 
1 70 84 
2 68 49 
3 78 96 
4 89 26 
5 30 88 
6 66 86 
7 25 21 
8 94 36 

 
The time-weights of the tasks are computed by using Equation (5.7) as follows: 

772/)8470(0
1 =+=w  

…… 

Similarly, the time-weights of other tasks can be obtained, as shown in Table 5.2.  

The b-levels of the tasks are computed as follows: 

65)( 0
88

0 == wvb  

183)6595(23))(()( 8
00
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0
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0 =++=++= vbcwvb  

…… 
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Table 5.2 shows the initial time-weights and b-levels of the tasks. The initial 

scheduling list of the tasks is }.,,,,,,,{ 85764231 vvvvvvvv  
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Table 5.2: Time-weights and b-levels of the tasks during initial step 

Task 
0
iw  )(0

ivb
1 77 512 
2 58.5 344.5 
3 87 356 
4 57.5 310.5 
5 59 170 
6 76 199 
7 23 183 
8 65 65 

 

The processor selection procedure is as follows: 

0),( 11 =pvEST  

0),( 21 =pvEST  

70),( 11 =pvEFT  

84),( 21 =pvEFT  

),(),( 2111 pvEFTpvEFT < , so task 1v  is assigned to processor 1p . 

70)}070(,70max{}),({,70max{),( 1,1,3,11113 =+=+= cpvEFTpvEST  

149)}7970(,0max{}),({,0max{),( 2,1,3,11123 =+=+= cpvEFTpvEST  

1487078),(),( 131,313 =+=+= pvESTwpvEFT  

24514996),(),( 232,323 =+=+= pvESTwpvEFT  

),(),( 2313 pvEFTpvEFT < , so 3v  is assigned to processor 1p . 

…… 
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There is a special case when assigning task 5v . There is a time slot on processor 1p  

between task 3v  and task 7v  ,which has already been assigned on processor 1p ; and 

the time slot is larger than the computation time of task 5v  on processor 1p . Hence, 

the earliest time that processor 1p  is available for task 5v  execution is the time just 

after task 3v  finishes execution – 148, not the time just after task 7v  finishes execution 

– 325 

148}70,148max{}),(max(,148max{),( 1,1,5,11115 ==+= cpvEFTpvEST  

316)}6670(,316max{}),(max(,316max{),( 2,1,5,11125 =+=+= cpvEFTpvEST  

17814830),(),( 151,515 =+=+= pvESTwpvEFT  

40431688),(),( 252,525 =+=+= pvESTwpvEFT  

),(),( 2515 pvEFTpvEFT < , so task 5v  is assigned to processor 1p . 

374
)}}0325(),58316(),0178max{(,325max{

}}),((

),),((),),(max{(,325max{),(

1,1,8,717

1,2,8,6261,1,8,51518

=
+++=

+

++=

cpvEFT

cpvEFTcpvEFTpvEST

 

420
)}}95325(,316),46178max{(,316max{

}}),((

),),((),),(max{(,316max{),(

2,1,8,717

2,2,8,6262,1,8,51528

=
++=

+

++=

cpvEFT

cpvEFTcpvEFTpvEST

 

46837494),(),( 181,818 =+=+= pvESTwpvEFT  

45642036),(),( 282,828 =+=+= pvESTwpvEFT  

),(),( 2818 pvEFTpvEFT > , so task 8v  is assigned to processor 2p . 

Hence, with the above insertion policy we obtain the task schedule which is illustrated 

by Figure 5.2.  
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Figure 5.2: Scheduling of task graph during initial step 

Table 5.3 shows the start time and finish time of all the tasks.  It can be seen from 

Table 5.3 that current schedule length is 456. 

Table 5.3: Start time and finish time of every task during initial step 

Task P1 P2 
1 0-70   
3 70-148   
2   155-204
4   204-230
6   230-316
7 300-325   
5 148-178   
8   420-456

 

For the first iteration, we select 4 as the weighting factor. Then the time-weights of the 

tasks are computed as follows: 

8.72)124(
)8470*4(1

1 =−+
+=w  

…… 
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v1 v3 v5 v7

v2 v4 v6 v8 
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Because task 1v  was assigned on processor 1p  during the initial scheduling, the 

processor 1p  is put more weight when the time-weight of the task 1v  is computed 

during the first iteration. We believe that the weighted mean of the computation time 

of the task on every processor can represent the time-weight of the task better than the 

mean of the computation time of the task on every processor. Table 5.4 shows the 

updated time-weights and b-levels of the tasks. The new scheduling list of the tasks is 

}.,,,,,,,{ 86572341 vvvvvvvv  Figure 5.3 illustrates the new schedule obtained in the 

first iteration.  

Table 5.4: Time-weights of the tasks and b-levels during first iteration 

Task 
1
iw  )(1

ivb  

1 72.8 448.2 
2 52.8 182.4 
3 81.6 266.2 
4 38.6 275.4 
5 41.6 135.2 
6 82 129.6 
7 24.2 166.8 
8 47.6 47.6 

 
 
 
 
 
 
 
 



Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS 

106 
 

 

Figure 5.3: Scheduling of task graph during first iteration 

Table 5.5 shows the start time and finish time of every task. It can be seen from Table 

5.5 that the new schedule length is 452, which is less than 456 from the initial schedule. 

One possible reason for this is that we have used the weighted mean of the 

computation time of the task on every processor to represent the time-weight of the 

task, and this has placed more weight on the processor to which the corresponding task 

was assigned during the immediately previous iteration.  

Table 5.5: Start time and finish time of every task during first iteration 

Task P1 P2 
1 0-70   
4 70-159   
3 159-237   
2   155-204
7 237-262   
5 262-292   
6 292-358   
8 358-452   

 
For the second iteration, the time-weights of the tasks and the b-levels are as shown in 

Table 5.6. The new scheduling list of the tasks is }.,,,,,,,{ 87564321 vvvvvvvv  Figure 

5.4 illustrates the schedule obtained in the second iteration.  
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Table 5.6: Time-weights of the tasks and b-levels during second iteration 

Task 
2
iw  )(2

ivb  

1 72.8 450 
2 52.8 292.2 
3 81.6 234 
4 76.4 183 
5 41.6 124 
6 70 152.4 
7 24.2 106.6 
8 82.4 82.4 

 

 

Figure 5.4: Scheduling of task graph during second iteration 

Table 5.7 shows the start time and finish time of every task. We note from Table 5.7 

that the current schedule length is 424, which is less than the 452 obtained during first 

iteration.  

Table 5.7: Start time and finish time of every task during second iteration 

Task P1 P2 
1 0-70   
2 70-138   
3 138-216   
4   170-196
6 216-282   
5   196-284
7 282-307   
8 330-424   
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By exhaustive search algorithm, we obtain the optimal schedule of 364 for this case. 

To compare the result of the iterative algorithm with the optimal solution, we use the 

degradation from the best (Kwok & Ahmad 1999a), which is defined as: (the result - 

the best)/ the best.   

The degradation from the best for this case is (424-364)/364 or 16.67%. This compares 

with the degradation from the best of  (456-364)/364 or 25.27% obtained  from the 

HEFT. The iterative algorithm has therefore improved the scheduling after two 

iterations in this case. 

5.4 Performance analysis based on randomly generated application 

graphs 

In order to analyze the performance of our algorithm, we randomly generate some 

application graphs. Our objective is to study the amount of improvement to the initial 

schedule length that can be achieved by our iterative algorithm. 

5.4.1 Generation of random application graphs 

With selected input, the random graph generator outputs the weighted directed acyclic 

graph, the computation times of every task at every processor, the communication rate 

of every link, and the data transfer size between tasks. The input of the random graph 

generator is as follows: 

• Number of tasks (v) 

• Height of the DAG (h): The v tasks are randomly partitioned into h levels. 
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• The link density (β): The probability ( ),( jilP ) that there is a directed link from the 

tasks of level  i to the tasks of level j is: 

)(),( ij
P jil −

=
β                                                     (5.13) 

where ),1(,, hjiij ∈> . 

• Number of processors (p) 

• The maximum computation time ( maxC ) and the minimum computation time ( minC ): 

The computation time of every task on every processor is a uniform random 

variable on the interval ),( maxmin CC . 

• The maximum communication rate ( maxR ) and the minimum communication rate 

( minR ): The communication rate jir ,  between processor ip  and processor jp  is a 

uniform random variable on the interval ),( maxmin RR . 

• Communication to computation time ratio (CCR): It is the ratio of the average 

communication time to the average computation time. The average communication 

times between two tasks on every link is a uniform random variable on the interval 

)*,*( maxmin CCCRCCCR . Then the data transfer size between tasks can be 

obtained. 

5.4.2 Comparison with optimal solutions 

When the solution space is not very large, we can obtain the optimal solutions by the 

exhaustive search algorithm. With the parameters in Table 5.8, the link density is 

varied from 0 to 1 with increments of 0.1; the CCR varied through the values 0.1, 0.25, 

0.5, 0.75, 1, 2.5, 5, 7.5 and 10. The algorithm was run 1,000 times and the 
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“degradation from the best” value computed for each case. The results show that the 

average degradation from the best is 7.44%, which shows that the results of the 

proposed algorithm are near optimal solutions. 

Table 5.8: The Parameters the base example 

Number of Tasks 8 
Number of Processors 2 
DAG Height 4 
Minimum Computation Time 20 
Maximum Computation time 100 
Minimum Communication Rate 1 
Maximum Communication Rate 4 
Weighting factor 4 
Number of Iteration 5 

 

5.4.3 Simulation results  

An investigation was carried out to determine how the various parameters of the 

algorithm impact the degree to which the initial schedules are improved through the 

iterative steps.  The schedule length improvement ratio is defined as: 

i

fi
i l

ll
r

−
=                                                             (5.14) 

where il  is the initial schedule length and fl  is the finial schedule length. 

With the parameters shown in Table 5.9, the weighting factor is varied from 0 to 10 

with increments of 1, and then varied as 20, 100, 1000; the link density is varied from 

0 to 1 with increments of 0.1; and the CCR varied through the values 0.1, 0.25, 0.5, 

0.75, 1, 2.5, 5, 7.5 and 10. The simulation was run 1,000 times for each case, resulting 

in a total of 10,780,000 runs. The results showed that in 71.30% of the cases the 

schedule was improved and that the average improvement ratio was 5.4%, Given its 
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initial step is the same as that of the HEFT (Topcuoglu et al. 2002), the proposed 

algorithm can produce shorter schedule length than previous algorithms in most cases.  

Table 5.9: The parameters for DAG and scheduling 

Number of Tasks 40 
Number of Processors 3 
DAG Height 10 
Minimum Computation Time 20 
Maximum Computation time 100 
Minimum Communication Rate 1 
Maximum Communication Rate 4 
Number of Iteration 5 

 

5.4.4 Sensitivity analysis of link density, weighting factor and CCR 

To investigate how the link density impacts the results, we compute the percentage of 

improved cases and the average improvement ratios with various link density levels. 

The results are shown in Figures 5.5 and 5.6, respectively. 
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Figure 5.5: Percentage of improved cases varies with the link density 
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Figure 5.6: Average improvement ratio varies with the link density 

Figures 5.5 and 5.6 show that when the link density is varied from 0 to 0.1, the 

percentage of improved cases and the average improvement ratio first increase and 

then gradually decrease with increase of link density. When the link density is 0, all 

tasks are independent, which means that computing the time-weights of the edges in 

the iterative steps have hardly any impact on the schedule. Hence the percentage of 

improved cases and the average improvement ratio, when the link density is 0, are both 

lower than those when the link density is 0.1.  

With the link density increasing, however, the task dependencies have more and more 

impact on the b-levels.  On the other hand, computing the time-weights of the edges in 

the iterative steps has less impact on the b-levels. Therefore, the percentage of 

improved cases and the average improvement ratio will gradually decrease when the 

link density is increased.  

To investigate how the weighting factor impacts the result, we compute the percentage 

of improved cases and the average improvement ratio for a series of weighting factors.  

The results are shown in Figures 5.7 and 5.8, respectively. 
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Figure 5.7: Percentage of improved cases varies with the weighting factor 
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Figure 5.8: Average improvement ratio varies with the weighting factor 

Figures 5.7 and 5.8 show that when the weighting factor is 0, both the percentage of 

improved cases and the average improvement ratio are lowest apart from when the 

weighting factor is 1. When the weighting factor equals 0, the equations for computing 

the time-weight of task iv  and the time-weight of the edge from task iv  to task jv  

during s-th iteration reduce to the following two equations: 
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A weighting factor of 0 value means that, during s-th iteration, the time-weights of the 

tasks are computed by ignoring the processor to which the corresponding task was 

assigned in the preceding iteration. The time-weights of the edges are computed by 

ignoring the link between the two processors to which the corresponding tasks are 

assigned in the preceding iteration. 

 When the weighting factor is equal to 1, the equations for computing the time-weights 

of the tasks and the time-weights of the edges during iterations are the same as those 

during initial step. Therefore, the final schedule is the same as the initial one. 

When the weighting factor is increased from 2 to 20, the percentage of improved cases 

and the average improvement ratio have trivial difference. This means that the final 

schedule is not sensitive to the weighting factor. 

When the weighting factor is equal to 100 or higher, the percentage of improved cases 

and the average improvement ratio have a decreasing trend. When the number of 

processors is far less than the weighting factor, the equation for computing the time-

weight of task iv  and the time-weight of the edge between task iv  and task jv  during 

iterations reduce to the following two equations: 

ki
s
i ww ,=                                                                     (5.17) 

lkji
s

ji rdc ,,, /=                                                              (5.18) 
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This means that the time-weight of task iv  is the computation time of task iv  on the 

processor to which the task was assigned during the preceding iteration; the time-

weight of the edge from task iv  to task jv  is the communication time of corresponding 

tasks on the processors to which the corresponding tasks were assigned in the 

preceding iteration. 

The following discusses how the CCR impacts the results. We compute the percentage 

of improved cases and the average improvement ratio with different CCR levels.  The 

results are as shown in Figures 5.9 and 5.10, respectively.  

Figure 5.10 shows that the average improvement ratio gradually increases when CCR 

is increased, but Figure 5.9 shows that the percentage of improved cases gradually 

decreases when CCR is increased. Therefore, when CCR is large we take a higher risk 

that the iterative steps will not improve the final schedule length, but we will obtain 

higher average improvement ratio if the final schedule length is indeed less than the 

initial one.  
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Figure 5.9: Percentage of improved cases varies with the CCR 
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Figure 5.10: Average improvement ratio varies with the CCR 

5.4.5 Sensitivity analysis of the task number and the processor number 

Based on the parameters in Table 5.10, the weighting factor is varied from 0 to 10 with 

increments of 1 and then varied as 20, 100, 1000; the link density is varied from 0 to 1 

with increments of 0.1; the CCR is varied as 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5 and 10; 

the task number is varied as 3, 6, 10, 20, 40, 60, 80, 100.  The simulation is run 100 

times under each case. We compute the percentage of improved cases and the average 

improvement ratio with task number 3, 6, 10, 20, 40, 60, 80 and 100.  The results are 

shown in Figures 5.11 and 5.12, respectively. 

Table 5.10: The Parameters for DAG and scheduling 

Number of Processors 3 
DAG Height 10 
Minimum Computation Time 20 
Maximum Computation time 100 
Minimum Communication Rate 1 
Maximum Communication Rate 4 
Number of Iteration 5 
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Figure 5.11: Percentage of improved cases varies with task number/processor 
number 
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Figure 5.12: Average improvement ratio varies with task number/processor 
number 

Figure 5.11 shows that when the ratio of task number to processor number is small, the 

percentage of improved cases is very small, i.e., the iterative steps make  hardly any 

improvement in the initial schedule. However, when the ratio is increased, the 

percentage of improved cases is increased. When the ratio is 13 or greater, the 

percentage of improved cases reaches the maximum and stops increasing.   
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Figure 5.12 shows that average improvement ratio has the same trend as the percentage 

of improved cases when the task number to processor number ratio is less than or equal 

to 13. The improvement ratio, however, begins to decrease when the ratio of task 

number to processor number is greater. 

We repeated the above simulation with the task number fixed at 100 and the processor 

number varying as 3, 6, 10, 20, 40, 60, 80, and 100.  The results are shown in Figures 

5.13 and 5.14. 
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Figure 5.13: Percentage of improved cases varies with task number/processor 
number 
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Figure 5.14: Average improvement ratio varies with task number/processor 
number 

Figure 5.13 shows that the percentage of improved cases increases when the ratio of 

task number to processor number is increased. When this ratio exceeds a certain value, 

the percentage of improved cases reaches the maximum and levels out. The trend is 

similar to that in Figure 5.11 and means that the iterative algorithm is more effective 

when the ratio of task number to  processor number is large.  

Figure 5.14 shows that, unlike the trend shown in Figure 5.12, the average 

improvement ratio always increases when the ratio of task number to processor 

number is increased. In Figure 5.12, the processor number is fixed as 3 and, in Figure 

5.14, the task number is fixed as 100, which cause the different trend. However, in 

both figures, when the ratio of task number to processor number is large, the proposed 

algorithm perform better than it does when the ratio is very small. 

5.5 Performance analysis on application graphs of real world 

problems 

The use of real applications is common for  testing the performance of algorithms 

(Srinivasan & Jha 1999, Topcuoglu et al. 2002, Woodside & Monforton 1993, Wu & 
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Gajski 1990). Therefore, in addition to running the iterative algorithm on randomly 

generated DAGs, we also ran it on two real world problems: a digital signal processing 

(DSP) example (Woodside & Monforton 1993) and a Gaussian elimination (Wu & 

Gajski 1990). 

5.5.1 DSP  

We selected a DSP example to test the iterative algorithm because the computation 

time and the communication data can be estimated very accurately. There are 119 tasks 

in the DSP task graph. The task graph of the DSP and the parameters for the DSP can 

be found in Woodside & Monforton (1993).   

In this case, just the CCR value and the processor number are changed. The CCR is 

varied as 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5 and 10 and the processor number is varied 

as 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, and 80. An appropriate weighting factor was 

selected and the algorithm was run 1,000 times in each case. The results are shown in 

the Figures 5.15 and 5.16. 
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Figure 5.15: Percentage of improved cases varies with processor number 
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Figure 5.16: Average improvement ratio varies with processor number 

Figure 5.15 shows that when the processor number is small, the percentage of 

improved cases is very close to 100,  indicating that in the majority of the cases there is 

improvement in the initial schedule. However, the percentage of improved cases 

decreases slightly as the processor number is increased. The trend is the same as that 

obtained for the randomly generated DAGs.  

The results therefore confirm again that this iterative algorithm is more effective when 

the ratio of  task number to processor number is large.  

Figure 5.16 shows that, unlike the findings for the randomly generated DAGs, there is 

no clear relation in this case between the average improvement ratio and the task 

number. It is possible that the special data structure of DSP cause this difference.  

5.5.2 Gaussian elimination  

The task graph of the Gaussian elimination, with a matrix size of 5, can be found in 

Wu & Gajski (1990). The total number of the tasks for this case is equal to 

2
2

32
−

+ mm , where m is the matrix size. We use a Gaussian elimination with matrix 

size of 50 and therefore the total number of the tasks is 1323. The CCR varied as 0.1, 
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0.25, 0.5, 0.75, 1, 2.5, 5, 7.5 and 10 and the processor number from 2 to 40 with 

increments of 2. We selected an appropriate weighting factor and ran the algorithm 

1000 times in each case. The results are shown in the Figures 5.17 and 5.18.  
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Figure 5.17: Percentage of improved cases varies with processor number 

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%

2 6 10 14 18 22 26 30 34 38

Processor Number

A
ve

ra
ge

 Im
pr

ov
em

en
t 

R
at

io

 

Figure 5.18: Average improvement ratio varies with processor number 

Figure 5.17 shows that the percentage of improved cases is virtually constant and very 

close to 100 over the range of processor number from 2 to 20, but decreases sharply 

when the processor number exceeds 20. Again, the results support the earlier 

conclusion that the iterative algorithm is more effective when the ratio of task number 

to processor number is large. 
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Figure 5.18 shows that average improvement ratio increases with the percentage of 

improved cases when the processor number is less than 20. The improvement ratio, 

however, begins to decrease when the processor number is greater than 20. This shows 

again that when the ratio of task number to processor number is large, the proposed 

algorithm perform better than it does when the ratio is very small. However, when the 

ratio of task number to processor number is very large, the performance of the 

proposed algorithm may become worse. 

5.6 Conclusions 

In this chapter, an iterative list scheduling algorithm for the heterogeneous DCSs is 

proposed and studied. Bottom-level (b-level) was selected as priority in constructing 

the scheduling list. The b-levels were computed with the mean of the computation 

times of a task on every processor and the mean of the communication times of an 

edge on every link during the initial step, and with the weighted mean during 

subsequent iterations. The processor selection step uses the insertion-based policy that 

considers the possible insertion of a task to an idle time slot between two already-

scheduled tasks. The initial step of our algorithm is the same as that of the HEFT 

(Topcuoglu et al. 2002). However, the iterative algorithm can produce shorter schedule 

lengths through subsequent iterations than those obtained by the HEFT (Topcuoglu et 

al. 2002), DLS (Sih & Lee 1993), MH (El-Rewini & Lewis 1990) and LMT (Iverson 

et al. 1995) algorithms.   

We determined the percentage of cases that resulted in an improved final schedule and 

the average improvement ratio with randomly generated task graphs under various 

parameters and two real applications. It is observed that when the ratio of task number 
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to processor number is small, the iterative algorithm does not perform well but when 

the ratio is greater than a certain value, an improvement in the final schedule is 

obtained in most of cases that were simulated. The possible reason is when the task 

number is much larger than the processor number, there are much more choice for the 

processor selection. The probability that the initial solution is far from the optimal 

solution is big, i.e. there are more space to improve the initial solution. 

A sensitivity analysis carried out showed that the percentage of cases in which the final 

schedule length is less than the initial one and the average improvement ratio are both 

insensitive to the weighting factor used for computing the mean during an iteration, 

which make it easy to select the weighting factor. 
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Chapter 6  

Reliability and Completion Time Oriented Tabu Search for 

Distributed Computing Systems  

In Chapter 5, a completion time oriented task scheduling problem was studied, in 

which the tasks could be dependent and the data dependencies were represented by 

directed acyclic graphs (DAG). The general DAG scheduling problem has been shown 

to be NP-complete (Garey & Johnson 1979) and this has stimulated researchers to 

propose a myriad of heuristic algorithms. Most proposed scheduling algorithms are 

based on minimizing the completion time (schedule length) without considering the 

possible failure of the processors or relevant network resources. However, in reality, 

processor and network failures are possible and these can have an adverse effect on 

applications being executed on the system, especially in a large network of processors. 

Large, long-running applications are particularly sensitive to failures. In a failure-

prone system, assigning tasks to processors without considering possible failures may 

result in a significant increase in the average completion time of the application  when 

failures occur. This chapter addresses scheduling methods which simultaneously 

minimize schedule length and maximize system reliability.  

Conventional multi-objective optimization methods often combine multiple objectives 

to form a single composite one by using, for example, the weighted-positive-sum 

approach. However, in most cases this combination is very difficult or even impossible. 
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Alternatively, only one objective is optimized while others are treated as constraints 

(Erschler et al. 1976, Fox 1987). In this case however, the algorithm may not find a 

feasible solution because the problem is over-constrained.  Fonseca (1995) employed 

the concept of Pareto’s optimality using an evolutionary algorithm to obtain a set of 

solutions at multiple points along the tradeoff surface of multiple objectives 

simultaneously. Evolutionary algorithms have been extensively adopted to solve the 

multi-objective optimization problems because they deal simultaneously with a set of 

possible solutions (population). This enables a set of Pareto-optimal solutions to be 

obtained in a single iteration of the algorithm, while traditional methods have to 

perform a series of runs to obtain a set of solutions. Nevertheless it is very difficult to 

recombine two solutions to generate new solutions due to the data dependency.  

Hou et al. (1994) proposed a crossover schema for DAG scheduling to minimize the 

schedule length. However, in some cases feasible solutions cannot be generated by 

using this method. Ahmad & Dhodhi (1995) and Kwok & Ahmad (1997) used genetic 

algorithms to solve DAG scheduling problem, but in their methods a chromosome is a 

scheduling list. Hence, post-processing is needed to obtain the final schedule; i.e. the 

ordered tasks have to be assigned to the appropriate processor to minimize the 

schedule length. Hence, it is not easy to adopt this method for considering the system 

reliability. Oh & Wu (2004) proposed a genetic algorithm for task scheduling in 

multiprocessor systems to minimize the total tardiness of tasks and the number of 

homogeneous processors, and it is very difficult to utilize the algorithm to address the 

proposed problem too. In this chapter, we propose a TS algorithm to solve the multi-

objective problem.  

Tan et al. (2003) presented an exploratory multi-objective evolutionary algorithm 

(EMOEA) and proposed “lateral interference” for population diversity. Experimental 
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results have shown that EMOEA performs well in searching and distributing non-

dominated solutions uniformly along the trade-offs. To apply “lateral interference”, it 

is necessary to compute the distance metric among the solutions. However, this is not a 

straightforward process when the objectives are non-commensurable. This chapter 

proposes two schemes to compute the distance among the solutions.  

This chapter is organized as follows. Section 6.1 describes the scheduling problem for 

the heterogeneous DCS. Section 6.2 introduces the multi-objective optimization 

problem and proposes two definitions of metric length. Section 6.3 presents a Tabu 

Search algorithm to solve the proposed problem. Section 6.4 describes some 

simulations to compare the results with the two definitions of metric length. Finally, 

Section 6.5 presents the conclusions of this chapter.   

6.1 Modelling 

Notations: 

lkjic ,,, : communication time from task iv to task jv  when task iv  was 

assigned to processor kp and task jv  was assigned to processor 

lp ; 

jid , :  data transfer size (in bytes) from task iv  to task jv ; 

:e   number of directed links among the tasks 

jie , :  directed link from i-th task to j-th task; 

),( ji pvEST :  earliest start time of task iv  on processor jp ; 

),( ji pvEFT :  earliest finish time of task iv  on processor jp ; 

jil , :  direct link between processor ip  and processor jp ; 

p:  number of processors available in the system; 

ip :  i-th processor in the system; 
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jir , : communication rate (in bytes/second) between processor ip  and 
processor jp ;  

R :  distributed computing system reliability; 

iR : reliability of the processor ip , which is the probability that 
processor ip  is functional; 

jiR , : reliability of the directly link jil ,  between processor ip  and 

processor jp ; 

SL :  schedule length; 

:UR    distributed computing system unreliability. 

v:  number of tasks in the application; 

iv :  i-th task in the application; 

:, jiw   computation time of task iv  on processor jp ; 

iλ :  failure rate of processor ip ;  

ji,λ :  failure rate of link jil ,  between processor ip and processor jp . 

An application is represented by a DAG. An example of a small DAG is shown in 

Figure 6.1. The details of the application modeling and the computation of the 

completion time have been described in Chapter 5. The following will discuss the 

reliability analysis of the system. 
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Figure 6.1: A DAG example 

The failures of processors and links in the system are assumed to follow a Poisson 

process and to be statistically independent. Furthermore, once a processor or link has 

failed, it is assumed that it remains in the failed state for the remainder of the execution 

of the application. Similar assumptions have been used by Shatz & Wang (1989), 

Shatz et al. (1992), Kartik & Murthy (1997), Iverson (1999). To successfully execute 

the application, each processor should be functional during the time that its assigned 

tasks are executing and each relevant link should be functional during the time that 

corresponding inter-task communication are executing. 

Since the failure of a processor follows a Poisson process, at time t the reliability of a 

processor ip  is tie λ− . The reliability requirement of processor ip  is therefore: 
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)),(max( iji pvEFT
i eR λ−=                                                      (6.1) 

The max term in Equation (6.7) gives the finish time of the last task executed on 

processor ip .  

Similarly, the reliability requirement of link jil ,  is: 

 jiji f
ji eR ,,

,
λ−=                                                            (6.2) 

where jif ,  is the finish time of the last communication between processor ip  and 

processor jp , i.e., the time that link jil ,  is required to be functional for the inter-task 

communication during the execution of the application.  

Recall that the failures of processors and links in the system are assumed to be 

statistically independent. Therefore, the reliability of the systems R is: 

  ∏∏
==

⋅=
v

ji
ji

v

i
i RRR

1,
,

1
                                                     (6.3) 

The objective of this problem is to maximize the reliability of the system and minimize 

the schedule length. These two objectives are non-commensurable and may be 

competing. The problem usually has no unique, perfect solution, but a set of non-

dominated and possible solutions, known as the Pareto-optimal set (Ben-Tal 1980). For 

convenience, we convert the objective of maximizing distributed system reliability 

(DSR) to minimizing system unreliability (UR), where DSRUR −= 1 . Hence, the 

objectives of the proposed problem are: 

Minimize: SL and UR                                           (6.4) 
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6.2 Multi-objective optimization  

A general multi-objective minimization optimization problem simultaneously 

minimizes n objective functions nkfk ,,2,1, L= . It is possible that the objective 

functions are a nonlinear vector function F of a general decision variable s  in a whole 

solution space S , where ))(,),(),(()( 21 sfsfsfsF nL= . To facilitate the description, 

we first give the follows definitions (Tan et al. 2002). 

Definition 6.1 (Pareto dominance): A given vector ),,,( 21 nuuuu L= is said to 

dominate another vector ),,,( 21 nvvvv L=  iff  

iiii vunivuni <∈∃∧≤∈∀ },,,2,1{},,,2,1{ LL  

Definition 6.2 (Pareto-optimal): Given a set of solution },,{ 21 msssS L= , a solution 

Ssi ∈  is said to be Pareto-optimal iff no solution Ss j ∈  dominates solution is . 

Pareto-optimal solutions are also called non-dominated or efficient solutions. The 

corresponding objective vectors are referred to as non-dominated. The set of all non-

dominated vectors is called the non-dominated set, or tradeoff surface, of the problem.  

Definition 3 (Pareto front): Given a multi-objective optimization function )(sF  and a 

set of Pareto-optimal solutionΩ , the Pareto-front is: 

)|))(,),(()({ 1 Ω∈== ssfsfsFu nK  

Tan et al. (2003) proposed a Tabu-based exploratory multi-objective evolutionary 

algorithm (EMOEA), which uses the Tabu list to prevent the search from becoming 

trapped in local optima and to promote concurrently the evolution towards the global 

trade-offs.  Tan et al. (2003) also presented a new lateral interference to distribute non-
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dominated solutions along the discovered Pareto-front uniformly. The lateral 

interference can be applied in either the parameter or objective domain. The basic 

concepts of the lateral interference based population distribution method are as follows.  

First the population is ordered according to the Pareto ranking scheme proposed by 

Fonseca & Fleming (1995). The ranking scheme assigns all non-dominated individuals 

as rank 1. The rank of a dominated solution is equal to the number of solutions 

dominating it plus one. An example for a minimization problem of two objectives 1f  

and 2f  is shown in Figure 6.2, in which the numbers are the ranks of the individuals. 

 

Figure 6.2: Pareto ranking scheme for multi-objective optimization 

The lateral interference takes place between the individuals which have the same rank. 

Given a sub-population 'P  consisting of 'N  m-dimensional individuals of the same 

rank, the metric distance between any two individuals is  and js  is defined by 

2||||),( jiji ssssd −=                                                (6.5) 

where 2||.||  implies the 2-norm. 
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If iT  denotes the territory of the individual is , and nearest
is  the nearest individual to 

individual is , then ij Ts ∈   iff   ),(),( nearest
ii

nearest
ij ssdssd ≤ .  

If an individual js  belongs to the territory of individual is , individual js  can be 

subjected to interference from individual is . The more individuals subjected to 

interference, the less chance of survival. Tan et al. (2003) use the interference severity 

to denote the number of the territories to which an individual belongs.  

In this case, where the preferences of the two objectives are not known, the ranking 

scheme based on the Pareto optimality is an appropriate approach to compute the 

fitness of each individual in an evolutionary algorithm (Srinivas and Deb 1994; 

Fonseca 1995). The solutions with the same rank according to the Pareto–ranking 

schema can be differentiated by the interference severity. However, one challenge is 

how to define the metric distance between two solutions, as this is a 2-dimensional 

vector, i.e., system unreliability and schedule length which are non-commensurable.  

Given a set of solutions 'X  consisting of xN  2-dimensional solutions, which have the 

same rank, we propose two metric lengths ),( ji ssd  and ),(' ji ssd between two 

solutions and compare the solutions by using these two. 

22 )
)()(

()
)()(

(),(
SL

sSL

SL
sSL

UR

sUR

UR
sUR

ssd jiji
ji −+−=                        (6.6) 

where )( isUR  is the value of system unreliability of solution is , and )( isSL  is the 

value of schedule length of solution is ; UR  is the mean of system unreliability of all 

solutions in 'X , and SL is the mean of schedule length of all solutions in 'X . 
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22' )
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(),(
SL
sSL

SL
sSL

UR
sUR

UR
sUR

ssd jiji
ji σσσσ

−+−=                               (6.7) 

where )(URσ  is the standard deviation of system unreliability of all solutions in 'X , 

and )(SLσ  is the standard deviation of schedule length of all solutions in 'X . 

6.3 A Tabu Search for the multi-objective scheduling 

Tabu Search (TS) is a competing meta-heuristic method for many of the complex 

combinatorial optimization problems (Glover & Laguna 1997). Unlike evolutionary 

algorithms, TS is not population-based but successively moves from solution to 

solution and terminates with either an optimal or a near-optimal solution. However the 

global optimum for multi-objective optimization is a set of Pareto-optimal solutions, 

instead of a single optimum. To overcome this problem, the proposed algorithm 

involves two different lists: a Pareto optimal solution list and Tabu list. The Pareto 

optimal solution list stores the current Pareto optimal solutions while the Tabu list 

records the recently visited solutions and is used to avoid revisiting a state in the short 

term. For limiting the computational effort required, limits are placed on the length of 

these two lists 

The procedure of the algorithm is follows: 

1. Randomly generate a feasible solution x , and put the solution into the Pareto 

optimal solution list PL  and the Tabu List TL .  // :x Current solution. 

2. while max−< ss do 

3.           Generate a new solution x  by one step “move” and TLx∉   

4.            Update TL . 
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5.            if x  dominates some solutions in PL  then  

6.                x  replaces the dominated solutions in PL . 

7.            else if x does not dominate any solution and is not dominated by any  

solution in PL  then 

8.                        Add x  into PL  

9.            end if 

10.            if pLPL >||  then  // |:| PL  Length of PL ; :pL  Predefined value of the 

length of PL . 

11.                 All the solutions are ranked according to the interference severity 

increasingly 

12.                 The last one is deleted from PL  

13.            end if  

14.            Implement intensification strategy 

15.            Implement diversification strategy 

16. end while 

17. Return the Pareto optimal solution list   

 

Encoding: 

In this case the solution representation should satisfy two conditions:  

1. Every task is present and appears only once;  

2. The data dependency should be satisfied. 

On this basis, the solution is coded as follows: 
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lkp

ji

vvP

vvP

,,:

,,:1

L

M

L

 

Each solution consists of p substrings, each of which corresponds to a processor.   

Each list corresponds to the tasks executed on a processor, and the order of the tasks in 

the list indicates the order of execution. The dependency between the tasks on different 

processors is considered when the schedule length is computed.  

Move: 

During the “move” operator, the dependencies among the task must be satisfied. For 

example, if there is a directed link from task iv  to task jv and a directed link from task 

jv  to task kv , then task kv  can not be executed before task iv .  

To express the direct dependency relation between the tasks, we use the adjacency 

matrix )( ijaA = , where 





=
otherwise

vtovfromlinkdirectaexistthereif
a ji

ij ,0
task task ,1

     (6.8) 

To obtain the indirect dependency between the tasks, we first compute the attainability 

matrix, )( ijtt = , where 





=
otherwise

vtovfrompathaexistthereif
t ji

ij ,0
task task ,1

                 (6.9) 

The attainability matrix can be derived from adjacency matrix using Warshall's 

algorithm. Task jv  cannot start before task iv  completes its execution if 1=ijt .   
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There are two styles of moves:  

• Exchange the order of two selected tasks:  

o Randomly select a processor where there are at least two tasks.  

o  Randomly select a task jv from the selected processor, and given there is a 

task list on the selected processor ,...),,(..., kji vvv .  

 If 0=jkt , then exchange the order of  task jv  and task kv .   

 If 0>jkt  and 0=ijt , then exchange the order of  task iv  and task jv .  

 If 0>ijt  and 0>jkt , then give up. 

• Move a selected task to another processor: 

o Randomly select a task on a randomly selected processor. 

o Move the selected task to end of task list of another randomly selected 

processor. 

o Move the task forward until it cannot be moved further.  

 
After the move, a deadlock may happen as shown in the DAG given in the Figure 6.1 

where the following scheduling is obtained by the move.  

P0: T2, T4, T3, T6 

P1: T0, T5, T1, T7, T8 

In this case, task T4 cannot be executed before task T1 finishes, and task T5 cannot be 

executed before task T3 finishes. When deadlock happens, if the task Ti is not ready to 

be executed, we check the successor task Tj of Ti.  If task Tj is ready to be executed, 

we exchange the order of task Ti and task Tj. 
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Intensification strategy: 

If after the predefined number of “moves”, we still cannot find a Pareto optimal 

solution, then the last found Pareto optimal solution is used as the current solution. 

This strategy can initiate a return to the attractive regions for a more thorough search. 

However, to avoid a repeated search for the same solution, the length of Tabu list 

should be larger than the predefined number of “moves” for intensification strategy. 

Diversification strategy: 

After the predefined number of “move”, a solution in Pareto optimal solution list is 

randomly selected as the current solution. This selected solution cannot be the last 

found Pareto optimal solution as this strategy would restrict the search to the neighbors 

of one Pareto optimal solution. 

6.4 Simulation study 

In this section two metrics are used to validate and compare the performance of the 

proposed TS with the two distance computation schemes. For this problem, the actual 

trade-off surface cannot be obtained through the method of deterministic enumeration 

as it can in some other cases. Hence we propose the “comparison of non-dominated 

solution number” method to measure the performance of the proposed algorithm. This 

method comprises the following: 

Given two sets of non-dominated solutions A  and B , set BAC ∪=  and delete 

the dominated solutions in set C . Then compare | CA∩ | and | CB ∩ |. 
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In addition, we also adopt the metric – “uniform distribution (UD) of non-dominated 

solutions” (Tan et al. 2002) to measure the performance of the proposed algorithm as 

follows: 

Given a set of non-dominated solutions 'X ,  

isS
XUD

+
=

1
1)( '                                                      (6.10) 

where isS  is the standard deviation of the interference severity of all the 

solutions in set 'X , and is formulated as, 

1

))()((
1

2'

−

−
=
∑
=

x

N

i
i

is N

Xisxis
S

x

                                                (6.11) 

where xN  is the size of the set 'X ; )( ixis  is the interference severity of the 

solution ix ; )( 'Xis  is the mean value of interference severities of all solutions 

in set 'X . 

6.4.1 Performance analysis on randomly generated DAGs 

We randomly generate a set of DAGs by using the random graph generator, which has 

been described in Chapter 5. The random graph generator outputs the weighted 

directed acyclic graph, the computation times of every task at every processor, the 

communication rate of every link, and the data transfer size between the tasks.  

In this case, there is a set of computers which are interconnected by a switch-based 

network. The computers and the network can both be heterogeneous. The failure rate 
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of the processors and the links are assumed to be uniformly distributed between 

3101 −×  and 4101 −×  (Dogan & Ozguner 2002, Plank & Elwasif 1997).  

Using the parameters shown in Table 6.1, the link density is varied from 0.1 to 1 with 

increments of 0.1 and the CCR varied through the values 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 

7.5 and 10.  

The parameters of the TS are listed in Table 6.2. The length of Tabu list cannot be less 

than the predefined number for intensification strategy, as this would cause repeat 

searching for the same individuals in accordance with the intensification strategy 

which repeatedly returns the search to the last Pareto optimal solution if another Pareto 

optimal solution cannot be found within the predefined number of “moves”.  

On the other hand the length of the Tabu list cannot be too large, as this may cause 

rejection of too many “moves”.  

The simulation was run 100 times for each case. In each case the algorithm was run in 

three schemes:  

 without considering the lateral interference,  

 considering lateral interference according Equation (6.6),  

 considering lateral interference according Equation (6.7).  

Equation (6.6) computes the distance between two solutions by using the mean of all 

solutions in the current solution set, whereas Equation (6.7) computes the distance 

between two solutions by using the standard deviation of all solutions in the current 

solution set. For ease of notation, we refer to these three schemes as SW, SA, and SD, 

respectively. Based on “comparison of non-dominated solution number”, there is no 
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difference among these three schemes in 96.8% of the cases. However, comparison of 

the three schemes based on “uniform distribution of non-dominated solutions”, 

presented in Table 6.3, shows that SA and SD are better than SW in most cases, 

whatever SA or SD is used to compute UD and the results based on UD of SA and that 

of SD are almost the same. The results show that “lateral interference” can benefit to 

the uniformly distributing the Pareto-optimal solutions along the trade-offs, i.e. 

population diversity, whatever the schema is used to compute the distance among 

solutions. The results also are also not sensitive to the schema used to compute the 

distance among solutions in this case. 

Table 6.1: The parameters for DAG 

Number of Tasks 100 
Number of Processors 10 
DAG Height 10 
Minimum Computation Time 20 
Maximum Computation Time 100 
Minimum Communication Rate 1 
Maximum Communication Rate 10 

Table 6.2: The parameter of TS for random DAG 

Length of Pareto Optimal Solution List 10 
Length of Tabu List 50 
Predefined Number for Intensification 20 
Predefined Number for Diversification 500 
s-max 5000 

Table 6.3: Comparison of three schemes based on UD for random DAG 

Scheme A Scheme B Percentage of B is better than A
Scheme used to compute 

UD 
SA 83.70% 
SD 80.60% 

SA 

SA 83.70% 
SW 

SD 80.60% 
SD 

SD SA 10.40% SA 
SA SD 9.80% SD 
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6.4.2 Performance analysis on a real-world problem 

The performance of algorithms is commonly tested using real applications (Srinivasan 

& Jha 1999, Topcuoglu et al. 2002, Woodside & Monforton 1993, Wu & Gajski 1990). 

Therefore, in addition to the randomly generated DAGs, we also ran the proposed 

algorithm on a real-world problem: Gaussian Elimination (Wu & Gajski 1990). The 

task graph of the Gaussian Elimination, whose matrix size is five, can be found in Wu 

& Gajski (Wu & Gajski 1990).  

The total number of the tasks is equal to 2
2

32
−

+ mm , where m is the matrix size. A 

Gaussian Elimination whose matrix size is 50 is used giving a  total number of the 

tasks of 1,323.  In this case, the number of processors is 10. CCR is varied through the 

values 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5 and 10. The parameters of TS are listed in 

Table 6.4. The simulation was run 100 times for each case and, as before, in each case 

the algorithm was run using the three schemes: SW, SA and SD.  

It was found that, based on “comparison of non-dominated solution number”, there is 

no difference between these three schemes in 95.9% of the cases. However, based on 

“uniform distribution of non-dominated solutions”, a comparison of the results for the 

three schemes as detailed in Table 6.5 provide conclusions similar to those obtained 

with the Random DAG problem  shown in Table 6.3. Thus SA and SD are shown to be 

better than the scheme SW in most cases, whatever SA or SD is used to compute UD 

and the results of SA and that of SD are almost the same. 

 

 



Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS 

143 
 

Table 6.4: The parameter of TS for Gaussian Elimination 

Length of Pareto Optimal Solution List 20 
Length of Tabu List 50 
Predefined Number for Intensification 20 
Predefined Number for Diversification 500 
s-max 5000 

Table 6.5: Comparison of three schemes based on UD for Gaussian Elimination 

Scheme A Scheme B Percentage of B is better than A
Scheme used to compute 

UD 
SA 93.90% 
SD 90.60% 

SA 

SA 93.90% 
SW 

SD 90.60% 
SD 

SD SA 5.40% SA 
SA SD 6.30% SD 

6.5 Conclusions 

In the scheduling of DCSs, maximizing system reliability and minimizing schedule 

length should be considered simultaneously rather than separately as done by most 

researchers. In this chapter, we presented a multi-objective optimization problem by 

maximizing the DCS reliability (minimizing system unreliability) and minimizing the 

schedule length simultaneously and proposed a Tabu search algorithm to solve this 

problem. At the same time we adopted the “lateral interference” to investigate two 

schemes to distribute the Pareto optimal solutions along the Pareto-front uniformly. 

Randomly generated DAGs and a real application task graph – Parallel Gaussian 

Elimination were used to evaluate the performance of the proposed algorithm.  

The “non-dominated solution number” and the “uniform distribution of non-dominated 

solutions” were the two performance measures used to compare the two schemes 

considering the “lateral interference” and the one without considering the “lateral 

interference”. For “non-dominated solution number” it was found that there is 
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basically no difference among three schemes. For “uniform distribution of non-

dominated solutions, the two schemes considering the “lateral interference” are much 

better than the one without considering it and there is basically no difference between 

the first two schemes.  Hence, “lateral interference” can improve the “uniform 

distribution of non-dominated solutions” and is not sensitive to the different 

computation schemes of distances between the solutions. 
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Chapter 7  

Modelling and Analysis of Service Reliability for Distributed 

Computing Systems 

Distributed systems have been increasingly applied in many safety-critical systems 

(Levitin 2002, Leger et al. 1999), such as the banking systems, military systems, 

power plants and so forth. System reliability is very important to these types of 

systems because failures may cause much loss in monetary term or lives.  

Since distributed systems are developed to provide services with specific objectives 

such as running a computer program, controlling a production process or completing 

other tasks, the service reliability of the distributed system is a key criterion of QoS 

(Quality of Service). A definition of distributed service reliability can be the 

probability to successfully provide the service in a distributed environment and  this is 

the definition adopted in this chapter. 

Most of the distributed systems can be modeled as centralized heterogeneous 

distributed systems. This type of system consists of a number of subsystems managed 

by a control center. For example, for the Client/Server (Browser/Server) systems, 

every Client/Browser in the sub-distributed systems is managed by a control center of 

Servers. For the IP telephone systems, the control center manages the computers in 

sub-distributed systems to provide telephone services. The service reliability in a 
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centralized heterogeneous distributed system is determined not only by the system 

availability of the control center, but also by distributed program reliabilities of the 

subsystems.  

The system availability of the control center is of major concern because an 

unavailable control center will sometimes cause critical problems to a service (Pham et 

al. 1997, Sols & Nachlas 1995). Srinivasan and Jha (1999) described a method to 

determine an allocation that introduces safety into a heterogeneous distributed system 

and at the same time attempts to maximize its availability. On the other hand, the 

reliability of each program in the system is also important to a service. The system 

availability and distributed program reliability have been discussed in the Chapter 2.  

However, most of the earlier research on system availability or distributed 

program/system reliability cannot be simply implemented to analyze the service 

reliability of centralized heterogeneous distributed systems because reliability is 

affected by many factors including system availability and distributed program/system 

reliability. This chapter studies the properties of centralized heterogeneous distributed 

systems and develops a general model for the analysis. Based on the model, algorithms 

are developed to obtain the service reliability of the system.   

This chapter is organized as follows. Section 7.1 presents a model for a centralized 

heterogeneous distributed system (CHDS), and develops a solution algorithm for the 

distributed service reliability in CHDS. The implementation of system availability 

function of the virtual machine (VM) is also studied. Section 7.2 gives an application 

example to illustrate the procedure and the feasibility of the algorithm. Then in Section 

7.3 we analyze the performance and sensitivity of the system availability function, 

both of which are important issues in the application of this type of model. 
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7.1 Centralized heterogeneous distributed system (CHDS) and 

analysis  

Most distributed service systems can be modeled by a CHDS. This type of distributed 

system incorporates heterogeneous subsystems with various operation platforms on 

different computers in diverse topological networks managed by a control center. The 

structure of CHDS is depicted by Figure 7.1.  
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Figure 7.1: Structure of the centralized heterogeneous distributed service system 

The control center consists of M servers (M≥1). These servers support a VM. The VM 

can manage and control programs and data from heterogeneous subsystems through 

virtual nodes. The virtual nodes can mask the differences among various platforms. 

They are a type of virtual executing element that only includes a basic unit for 

executing data, i.e. CPU and Memory. The entities of VM and virtual nodes are 

supported by the software and hardware in the control center. 

The heterogeneous sub-distributed systems are composed of different types of 

computers with various operating systems connected by diverse topologies of networks. 
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These subsystems exchange data with the VM through SSPI (System Service Provider 

Interface). They are connected with virtual nodes by routers which enable them to 

cooperate to achieve a distributed service under the management of a VM such as the 

wide-area computing or grid technology.    

Most service systems can be categorized as CHDSs as shown in Figure 7.1.  For 

example, in Client/Server (Browser/Server) systems, the control center can be viewed 

as Servers and every Client (Browser) can be viewed as a node in the sub-distributed 

systems. In IP telephone systems, every terminal is a telephone and the computers in 

sub-distributed systems and the control center provide the services such as connecting 

two distant telephones and calculating the fee. This structure has also been applied into 

some other areas such as banks, hospitals, companies and libraries.  

The centralized heterogeneous distributed service system in Figure 7.1 can also be 

reduced to some other systems. First, if the subsystems use identical operation 

platform and computers, the heterogeneous subsystems can be reduced to 

homogeneous subsystems. Second, if a system has only one distributed system to 

complete a service without a control center, we can omit the control center and retain 

only one of the subsystems. Under this condition, the distributed service reliability 

becomes the same as the distributed program reliability (Kumar et al. 1986, Lin et al. 

1999a). Finally, if a service system is equipped with only a control center, we can 

ignore the sub-distributed systems. In this condition, the distributed service reliability 

becomes the same as system availability (Lai et al. 2002). 

The whole process for a service in a distributed system may be repeated frequently so 

the reliability analysis of a distributed service is crucial for a distributed system. 
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7.1.1 Service reliability analysis of CHDS 

Notations: 

)(tA : availability function of VM at time t, 

DSRi: distributed system reliability for i-th sub-distributed system, 

)(0 tP : probability that the VM is in working state at time t, 

)(1 tP : probability that the VM is in malfunctioning state at time t, 

)( bs tR : distributed service reliability function of bt , 

bt : initial time for the service, 

j
bfT : time point at which the j-th program need the files prepared in the VM 

k
bpT : beginning time when the k-th program runs in VM, 

k
exT : execution time period for those programs in VM, 

VMi:  VM used in subsystem i. 

In this chapter, distributed program (system) reliability is defined as the probability of 

successful execution of a program (all the programs) running on multiple processing 

elements that need to retrieve data files from other processing elements (Kumar et al. 

1986). The system availability of the control center or VM is the probability for it to be 

available.  

For a distributed system, the distributed service reliability is defined as the probability 

to successfully achieve the service in a distributed system. This will depend on both 

system availability to provide the service and the system reliability in providing the 

service. 
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7.1.2 General model of distributed service reliability 

In a distributed service system, a service includes different distributed programs 

completed on different computers. Some later programs might require several 

precedent programs to be completed. Every program requires a certain execution time. 

The execution of some programs might require certain input files that are saved or 

generated on different computers of the distributed systems (Kumar & Agrawal 1993). 

The overall distributed service reliability depends on the availability of a program for 

the service, the availability of input files to the program and the service reliability of 

the subsystem.  

The reliability of a service is determined by the reliability of distributed programs in 

each subsystem and the availability of the control center. If a service can be achieved 

successfully, the programs running in every subsystem must be successful. The VM 

should be available at the moment any program needs a certain input file prepared in 

VM. It also has to be available during the period when the programs are being 

executed in VM.  

The critical path method (Hillier and Lieberman 1995) can be used to determine the 

time point at which the programs require the files prepared in the VM ( j
bfT ) (j=1,2,…J). 

We can also obtain the starting time when the programs runs in the VM ( k
bpT ) and the 

corresponding execution time period for those programs ( k
exT ) (k=1,2,…,K). 

If  )(tA  is the availability of VM at time t and we assume that the programs require 

input files at the beginning time, j
bfT , the availability of the input files can be 

calculated as 
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 )( jPf  = )( j
bfTA , j=1,2,…J.       (7.1) 

It is assumed that the VM is available from the beginning to the end when a program 

runs on it otherwise, the program fails. Thus, the average availability of the programs, 

which start at time k
bpT  with the execution time period k

exT , can be calculated as 

 )(kPpr = k
ex

TT

T

TdttA

k
ex

k
bp

k
bp

/)(∫
+

, k=1,2,…,K.      (7.2) 

Let N be the number of subsystems in the CHDS. The DSR for the i-th subsystem is 

denoted by DSRi (i=1,2,…,N). Let the VM initially be a perfect node in every 

subsystem and compute DSRi (i=1,2,…,N) for every subsystem. 

In order to calculate distributed service reliability, some additional assumptions on 

statistical independence are needed:  

1) DSRi (i=1,2,…,N) is assumed to be mutually independent;  

2) The files prepared in the VM are also mutually independent; 

3)  The programs running in the VM are mutually independent. Although the 

independence assumption may not always be true, it is acceptable as a first 

order approximation. In fact, when service requests are independent, the 

failures of the VMs in providing the service will also be independent. 

The distributed service reliability function to the initial time, bt , can be calculated by 

)( bs tR =∏ ∏ ∏
= = =

⋅⋅
N

i

J

j

K

k
prfi kPjPDSR

1 1 1

)()(     (7.3) 
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We view the VM as a perfect node in calculating DSRi without considering the 

availability of prepared files and executed programs in it. Thus, the service reliability 

is the whole DSR ∏
=

N

i
iDSR

1

 multiplied by the availability of files and programs in VM.  

The availability of files and programs in VM can be expressed as the product of 

∏
=

J

j
f jP

1

)(  and ∏
=

K

k
pr kP

1

)( . Hence, the overall distributed service reliability function can 

be expressed as Equation (7.3). Note that the model is a general one and any specific 

reliability and availability functions can be used. 

7.1.3 Solution algorithm  

In applying the general approach, we need the structure of CHDS and can then use the 

model in Section 3.1. The algorithm for the calculation of the distributed service 

reliability can be presented as the following six steps: 

Step 1: Identify the structure of CHDS and relationship between programs and files; 

Step2: Obtain the availability function of the VM with any existing      models; 

Step 3: Let the VM be a perfect node in every subsystem and calculate DSRi 
(i=1,2,…,N); 

Step 4: Using the critical path method to determine j
bfT (j=1,2,…J) and k

bpT , k
exT  

(k=1,2,…,K); 

Step 5: Calculate )( jPf  and )(kPpr  as shown in Equation (7.1-7.2). 

Step 6: Calculate the distributed service reliability function to the initial time, bt , 
through Equation (7.3). 

Note that we can implement different models and methods to calculate distributed 

service reliability. (1) For subsystems, there are two conditions to calculate DSRi: a) 

Assume the nodes in sub-distributed system are perfect. The DSRi can be calculated 

through the algorithms (Kumar et al. 1986, Kumar et al. 1988, Chen & Huang 1992, 

Kumar & Agrawal 1993, Chen et al. 1997). b) Assume the nodes in sub-distributed 
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system are imperfect. The DSRi can be calculated through the algorithms (Ke & Wang 

1997, Lin et al. 1999b). (2) For the availability function of the VM )(tA , it can be 

calculated differently through the methods given in (Welke et al. 1995, Lai et al. 2002, 

Hariri & Mutlu 1995, Laprie & Kanoun 1992) and so on if the conditions match the 

assumptions in these articles.  

7.2 An application example 

An actual bank automatic payment system is investigated as a numerical example of 

the service analysis of a CHDS. In this system, there is a payment center and three sub-

payment systems. 

7.2.1 The structure of CHDS  

The structure of this distributed service system is described in Figure 7.2.  
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Figure 7.2: A centralized distributed service system 

In Figure 7.2, there are three subsystems. The network topologies are common 

topologies, a star topology and a ring topology, in which “R” means router and 

]21,1[, ∈iei is the links among the nodes.  
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Table 7.1 shows the programs and prepared files arranged in the distributed system. 

Table 7.2 shows the relationship between programs and their precedent programs. If 

there are no precedent programs for a program, it can run at initial time when input 

files are available. Table 7.2 also shows the input files and execution times for every 

program. If there are no input files required by a program, the program can run 

immediately after its precedent programs are completed.  

Table 7.1: The programs and prepared files in different nodes 

Node Programs Files 
1 P1 F1, F5 
2 P4 F1, F2 
3 P2, P3 F2, F5 
4 P2, P3 F2, F5 
5 P4 F3, F6 
6 P5, P7 F6 
7 P6 F7, F8, F9 
8 P7 F7, F8, F9 
9 P5, P6 F6 

10 P8, P11 F10, F11, F12 
11 P9 F11 
12 P10 F10 
13 P9, P10 F12 
14 P8, P11 F10, F11, F12 
VM SP1, SP2, SP3, SP4 F4, F13, F14 
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Table 7.2: Required files, precedent programs and execution time for programs 

Programs Required Files Precedent Programs Execution Time 
( exT ) 

P1 F1,F2,F3 ------ 5 
P2 F2,F4,F6 ------ 25 
P3 F1,F3,F5 P1,P2 32 
P4 F1,F2,F4,F6 SP1,SP2 33 

SP1 F6 P3,P6 43 
P5 ------ ------ 17 
P6 F6,F13,F9 P5 19 
P7 F6,F8 SP2,SP3 21 

SP2 F2,F11 P9,P10 16 
P8 ------ P1 45 
P9 F11,F12 P5 121 

P10 F11,F14 SP1 37 
SP3 F3,F8 P8,P10 21 
P11 F14,F10,F12 SP3 32 
SP4 F5,F12 P4,P7,P11 20 

“------” means no precedent programs or no input files. 
 

7.2.2 The availability function  

The VM is assumed to have a failure intensity function )(tλ . There are maintenance 

personnel to repair the failure of the VM and the repair time is exponentially 

distributed with parameter 5.0=µ . For the failure intensity function of the VM, we 

use the GO model presented by Goel and Okumoto (1979) in which the failure 

intensity function is given by 

)exp()( btabt −=λ                                                 (7.4) 

The values of a and b are assumed to be 10 and 0.01, respectively, in this example. We 

incorporate this model into the Markov process as a time-dependent Markov model. 

Note that any other model can be used but this model is selected here because it is the 

most widely used.  

In our Markov model, we assume that there are two states, up (working state) and 

down (malfunctioning state). Let )(0 tP  be the probability for the VM to be working at 
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time t, and )(1 tP  be the probability for it to be in a malfunctioning state at time t. The 

corresponding Kolomogorov's differential equations are 

 )('0 tP = )(1 tPµ - )()( 0 tPt ⋅λ      (7.5) 

and 

)(1 tP =1- )(0 tP       (7.6) 

With the initial conditions )0(0P =1, )0(1P =0, it can be shown that 

 )(

0

)(
0 /1)(

btaeta
t

bxaex eedxetP
−+−−− ⋅








+= ∫ µµµ    (7.7) 

which is the availability function )(tA  in our case.  

7.2.3 The distributed system reliability 

The DSR from the left subsystem to the right subsystem in Figure 7.1 is denoted by 

DSRi (i=1,2,3). The three subsystems can be separated as shown in Figure 7.3. 
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Figure 7.3: The separated subsystems from Figure 7.1. 

In Figure 7.3, VMi (i=1,2,3) represents the VM used in subsystem i. Now we calculate 

DSRi ( i=1,2,3) numerically with the assumptions that all the nodes are perfect and the 
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probability for every communication edge to be available is 0.9. The graphs for DSR1 

can be reduced through the rules in FST-SPR algorithm presented in Chen and Huang 

(1992) as shown in Figure 7.4. 

Hence, we can obtain the result of DSR1=0.9496 through the GEAR algorithm 

presented by Kumar and Agrawal (1993). In the same way, we can get DSR2=0.8817 

and DSR3=0.9068. 
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Figure 7.4 The reduced graph for subsystem 1. 

7.2.4 The distributed service reliability function 

The critical path graph for the example given in Table 7.2 is drawn in Figure 7.5. The 

value marked on the edge is the execution time, those on the node are the starting times 

and the dot-arrow lines represent the critical path. 
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Figure 7.5: Critical path for Table 7.2 

From the critical path shown in Figure 7.5 and Table 7.2, j
bfT  (j=1,2,…,5) can be 

shown to be { bt , bt +17, bt +100, bt +154, bt +158} for the programs {P2, P6, P10, P4, 

P11} using the files prepared in the VM. We can also get k
bpT  (k=1,2,3,4) to be { bt +57, 

bt +138, bt +137, bt +190) and the corresponding execution time period k
exT  to be {43, 

21, 16, 20} for the programs {SP1, SP2, SP3, SP4} executed in the VM. 

With Equations (7.1, 7.2, 7.7), we get  

)( jPf = )( j
bfTA , j=1,2,…5,       

in which j
bfT   is { bt , bt +17, bt +100, bt +154, bt +158} and  

)(kPpr = k
ex

TT

T

TdttA
k

ex
k

bp

k
bp

/)(∫
+

, k=1,2,3,4,      

in which k
bpT  is { bt +57, bt +138, bt +137, bt +190)  and  k

exT   is {43, 16, 21, 20}. 

Hence, using Equation (7.3), we can obtain the distributed service reliability function 

to service starting time bt  as  
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)( bs tR =∏ ∏ ∏
= = =

3

1

5

1

4

1

)()(
i j k

prfi kPjPDSR     (7.8) 

This distributed service reliability function has the form displayed in Figure 7.6. 

 

bt  

Service Reliability

 

Figure 7.6: Typical distributed service reliability function to service starting time. 

From Figure 7.6, it can be observed that the lowest service reliability is not at the 

initial time point when the software failure intensity of the VM is the highest as 

Equation (7.4). This is because we assumed that the initial state for the VM is up 

(working). When bt  is larger than the lowest point, the distributed service reliability 

increases. This is because identified bugs of the VM are fixed, resulting in a decrease 

in the failure intensity. Towards the end, the distributed service reliability approaches a 

steady state availability of 0.7592, which is obtained by  

∏
=

3

1i
iDSR = 0.9496×0.8817×0.9068=0.7592. 

When the availability of VM approaches 1, the distributed service reliability is 

approaching 0.7592.   



Chapter 7 Modeling and Analysis of Service Reliability for DCS 

160 
 

7.3 Further analysis and application of the general model 

With specific input parameters, the distributed service reliability can be computed. Via 

the modelling and further analysis, some general conclusions can be drawn. The VM in 

the control center is the heart of the CHDS, and hence, the system availability )(tA  of 

the VM is critical to the distributed service reliability. In order to achieve a high 

reliability of the service, the control center should be equipped with sufficient 

maintenance personnel to repair the failures of the VM. The availability function of the 

VM can help the decision maker to allocate maintenance personnel effectively at 

different stages and to decide the release time that provides certain pre-required system 

availability. In this section we discuss some related analysis that makes use of the 

general model and which could be of importance in practical applications. 

7.3.1 A general approach 

The system availability reaches the lowest point at an early stage. This is because a 

large number of faults are identified when system testing begins. The system 

availability starts recovering after the lowest point and approaches a steady value after 

an extended period of time. This state is reached when identified faults have been fixed. 

The time at which the system availability is at its minimum is important as around this 

time point *t , a significant amount of effort needs to be put into fault fixing and 

system testing to help increase system availability of the VM quickly. When the faults 

are fixed, the system availability recovers and effort on fault fixing and testing can be 

reduced accordingly. Eventually, only a few faults will be left and at this stage, the 

manpower for the fault fixing and system testing of the VM can be moved to elsewhere. 

Hence, the minimum system availability time point *t  is an important indicator for the 
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managers of the control center for enabling them to distribute the resources on the VM 

at different stages.  

It is easy to calculate the time of minimum system availability if the availability 

function of the VM, )(tA , is known. By differentiating )(tA , and then solving 

)(' tA =0, we can get the  solution that is the minimum time point *t . 

Furthermore, if the management wants to know the time when the VM system reaches 

certain availability level LA , the system availability function )(tA  can be used by 

solving the equation of )(tA = LA . Its solution can help the managers to decide the 

release time of the VM accordingly. For example, the customers may require the 

system availability to be at least LA . Hence, we need to know the time point when the 

system availability reaches this required system availability level. At this point the 

testing can be stopped and the system can be released. 

Another important issue in this type of analysis is the sensitivity studies. Usually the 

model parameters are assumed to be known. A deviation from the assumed value could 

lead to significant differences between the actual and the calculated values. To 

minimize these errors, effort should be made to obtain accurate estimates of the 

important parameters. Since a number of parameters are involved, it is useful to 

identify the ones that influence the results most. Sensitivity analysis of the parameters 

is therefore highly recommended. The results obtained from these analyses can help 

decision makers and analysts to better allocate the resources.   

7.3.2 The application example revisited 

To clearly address some of the issues raised in the previous section, we revisit the 

application example in Section 7.2 with some further analysis. This type of study is 



Chapter 7 Modeling and Analysis of Service Reliability for DCS 

162 
 

important in system studies and for the management to fully make use of the modelling 

and analysis. 

7.3.2.1 Minimum system availability of the VM 

The minimum availability point of Equation (7.7) can be obtained by taking the 

derivative and setting it to zero. That is 

 )(' tA = )( btaete
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Let )(' tA =0 and let  t*  be the solution, i.e.,  
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It is not difficult to obtain the value of t* numerically by using Maple or Mathematica, 

or some other symbolic software. 

For example, with parameters a=10, b=0.01 µ =0.5, Equation (7.10) can be solved by 

Maple to give  t*=8.88 and the minimum system availability A(t* )=0.8453. 

7.3.2.2 Time to achieve a required system availability 

Suppose that the customers require the system availability to be at least LA .  From 

Equation (7.7), this can be obtained by solving the following equation 

)(
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)( 1)(
btbx aet
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t
aex e

e
dxetA

−− +−− ⋅







+= ∫ µµµ = LA      (7.11) 
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Since there may be two solutions, we require that *tt ≥  where *t  can be solved by 

Equation (7.10) first. 

A simple approximation is presented here for solving Equation (7.11) and carrying out 

further analytical study. In a Markov Chain, there is a transition time from initial state 

to steady state. We assume that it takes more time between the initial time and the 

release time of the test than the transition time of the Markov process. Based on this 

assumption, from the equations for long-run Markov chain (Hillier & Lieberman 1995) 

we get 

 )(tA = )(0 tP =
µ

µ
+−btbea

     (7.12) 

In order to calculate the time point that satisfies the customers’ requirement LA , let 

)(tA = LA  and t can be obtained as 

 







⋅−⋅−=
abAb

t
L

µ)11(ln1      (7.13) 

In our example with parameters a=10, b=0.01 µ =0.5, the time point for LA =0.98 can 

be calculated be 228.24.  

7.3.2.3 Sensitivity analysis 

There are three parameters in the availability function (7.7), a, b and µ . The 

sensitivity of different parameters is shown in Figure 7.7 and Figure 7.8. 
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Figure 7.7: Sensitivity of µ  (left) and a (right) 

As expected, a greater repair rate implies higher system availability. Similarly, when a 

increases, the system availability decreases because the failure intensity function 

increases as Equation (7.4). However, in the case of parameter b the effect is not 

obvious, as shown in Figure 7.8 
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Figure 7.8: Sensitivity of b. 

The curves in Figure 7.8 cross each other which means that when b increases, system 

availability decreases at the early stage and increases at the later stage. Equation (7.4) 
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can be used to explain this. There are two parts in the failure intensity function of GO 

model, ab and exp(-bt). When b increases, the first part, ab, increases while the second 

part, exp(-bt), decreases. Thus, at the early stages, when the time t is small the 

influence of the second part is less than that of the first part so the failure intensity 

function increases and the system availability decreases. Conversely, at the later stage, 

the time t is large and the influence of the second part is more than that of the first part 

so the failure intensity function decreases and the system availability increases.   

With Equation (7.10), we can calculate the time point of the minimum system 

availability and the time a certain availability is achieved. On the other hand, it would 

be useful to see the influence of the repair rate on these two quantities. We analyze the 

Markov model with the numerical example presented in Section 7.3.2. It is assumed 

that a=10 and b=0.01. Let µ  change from 0.3 to 0.7 to calculate the minimum system 

availability point through Equation (7.10). The time of the minimum system 

availability *t  vs. the repair rate µ  is shown in the left curve of Figure 7.9.  The 

minimum system availability A(t*) vs. µ  is depicted in the right curve of Figure 7.9.  
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Figure 7.9: Sensitivity analysis of repair rate 

From Figure 7.9, we can see the rate of decrease in t* (rate of increase in A(t*) ) as the 

repair rate µ  increases.  We can also see that A(t*) is a convex function of µ . This 

means that adding µ∆ on a smallµ  improves more availability than adding the same 

µ∆  on a large µ . The curve of  “t*  vs. µ ” is concave, which means that adding 

µ∆ on a smallµ  reduces more time of minimum availability than adding the same µ∆  

on a large µ . This type of study is useful for allocating the maintenance personnel 

optimally, which is another interesting problem for the further research.  

7.4 Conclusions 

In this chapter, a general model was presented for the widely CHDS. Based on this 

model, a solution algorithm was presented and the time for the VM to reach either its 

minimum system availability or a specifically required system availability was studied.  

An application of the model on an actual bank automatic payment system was shown. 

In addition, sensitivity analysis were carried out  to determine the effects of the 

intrinsic parameters on the system availability and the lowest availability point. 
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Since our approach is general and the CHDS has been applied in different areas, the 

algorithm for the distributed service reliability analysis can be used to estimate the 

reliability of the service in a distributed system during both the testing phase and the 

operational phase. During the testing phase, the service reliability function can help to 

allocate testing resources accordingly. For example, around the minimum service 

reliability time, more maintenance personnel and testing resources should be allocated 

to test and repair the system than at the later stage when the service reliability is high 

and the amount of testing resource can therefore be reduced.  

Also, if given a requirement on the service reliability after release, the time for release 

can also be determined. Moreover, for projects with fixed deadlines, the model can 

help system managers to determine the testing intensity or manpower according to the 

estimated reliability performance given different levels of testing intensity. 

Furthermore, during the operational phase, the quality of service can also be assessed 

through the service reliability measure. 
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Chapter 8  

Conclusions and Future Work 

In this chapter, a summary of the merits and the limitations of the work conducted is 

offered and areas for future research are suggested to conclude this dissertation.  

8.1 Conclusions  

The system reliability and schedule length are two very important criteria for DCSs. 

Hence, this dissertation focuses on heuristics algorithms to maximize the system 

reliability and/or to minimize the completion time (schedule length).  

8.1.1 Reliability oriented algorithms 

When the topology of a DCS is fixed, the DSR depends mainly on the assignment of 

various resources such as the programs and files. Especially for systems with long 

mission times or with a large number of processors, an improved program allocation 

can increase the system reliability dramatically. 

8.1.1.1 Modelling 

 There has been extensive work done on the development of program and file 

allocation algorithms designed  to maximize system reliability.  However in most of 

this work the program and file allocations have been considered separately whereas to 

achieve the highest level of system reliability these allocations should be considered 
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simultaneously. Chapter 3 of this dissertation presents a reliability-oriented 

optimization model in which both program allocation and file allocation are considered 

together. In real world situations, there are a number of constraints on, for example, the 

storage, costs and completion times. To make the model more practical, therefore these 

constraints have also been taken into account making it more practical and more 

comprehensive than models previously developed by others, as can be seen from the 

following comparison. 

Kumar et al. (1995a) developed a genetic algorithm (GA) to solve a file allocation 

scheme. In their scheme, the objective function was to maximize the distributed 

program reliability (DPR). From the system level viewpoint, the distributed systems 

reliability (DSR) describes the system better than the DPR. Hence, the objective of our 

optimization model was to maximize the DSR. When the number of programs is set to 

one, the objective to maximize DSR is the same as maximizing DPR, the objective 

function in Kumar et al. (1995a). When the program allocation is fixed, the models 

will degenerate to the file allocation problem discussed by Kumar et al. (1995a). In the 

optimization model of Kumar et al. (1995a) the different constraints, for example the 

total number of copies of each file and the memory constraint at each node, are 

discussed. In our model, some additional constraints such as the cost constraint and 

completion time constraints are considered. Although more constraints make the GA 

more difficult to implement, they make the optimization model more practical.  

In the optimization model of Kartik & Murthy (1997) to solve the program allocation 

problems for maximizing the DSR, the network topology was assumed cycle-free. Our 

proposed optimization model does not limit the topology and permits redundancies, 

which makes it more generally applicable. Also, the program allocation and file 



Chapter 8. Conclusions and Future work  

170 
 

allocation are both considered together by our proposed optimization model, making it  

more general and practical than that of Kartik & Murthy (1997). 

A sensitivity analysis showed that the optimal assignment was robust to variations in 

program prices and that extended completion time might improve the DSR and cause 

more computers to become available for carrying out other services without sacrificing 

the DSR. 

Program allocation and file allocation problems are NP-hard,. However, considering 

program and file allocation together and taking into account resource constraints 

makes the problem harder to solve. Hence, in chapter 3 a genetic algorithm is  also 

proposed to aid solution of  this problem.  

8.1.1.2 Genetic algorithm 

Genetic algorithms are easy to model and be implemented to solve various problems.  

However, the crossover and mutation operators may produce some infeasible solutions.   

To overcome this problem, adjustment (repair) operators were implemented to adjust 

an infeasible solution to a feasible one.  The repair scheme is suitable for the case 

where infeasible solutions appear frequently but can be repaired without too much 

computational cost. In addition, the “fitness” which is a function of reliability is used 

instead of directly using the reliability. This function can enlarge the difference 

between the individuals to give more chance to the better individuals, so that the 

algorithm can converge rapidly. 

Numerical simulations were run to evaluate the performance of the proposed GA. 

When the solution space is small, the results of GA were compared with that of an 

exhaustive search algorithm. The comparison showed that in most cases the GA could 

obtain the optimal solutions with much less computation time. On the other hand, 
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when the solution space is very large, the exhaustive algorithm cannot finish in an 

acceptable time but the genetic algorithm can obtain some good solutions and hence is 

strongly recommended.  

8.1.1.3 Tabu Search and comparison with the GA  

For many combinatorial optimization problems, GA can provide excellent results. 

However, GA is a population-based search, and requires the evaluation of multiple 

prospective solutions over many generations. Hence, for some complex problems, 

GA’s may need a significant amount of computational effort. In addition, when the 

problem has certain constraints, the crossover and mutation may produce some 

infeasible solutions. Some effort is needed to deal with these infeasible solutions. 

Unlike GA’s, TS is not population-based but successively moves from solution to 

solution. This offers some potential for improved efficiency if it also provides the same 

quality of solutions in a shorter time or provides improved quality for the same time.  

Comparative studies show that in some cases GA outperforms TS, but in others  TS 

outperforms GA. Due to the widely different views on the efficiency, chapter 4 

proposed a TS and then compared the performance of GA and TS to gauge their 

suitability for solving the program and file allocation problem. 

The whole solution space is inherently partitioned into several subsets according to the 

number of the copies of the programs and files. The TS combined with the “branch-

and-bound” technique was implemented and particular features such as “back-

tracking” and “restarting” were incorporated.  

The results from two numerical examples showed that TS outperforms GA with short 

computing time and better solution quality.  However, the design of good TS requires 

far more insight into the problem and much more effort is needed compared to the 
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requirements for implementing a good GA for the same problem.  Hence if we do have 

good knowledge of the state space, TS should be used, otherwise, GA may be a better 

choice. 

 
8.1.1.4  A parallel TS 

In some practical situations, scheduling must be completed within a short time interval. 

To shorten the execution time of an algorithm without comprising the solution quality, 

a natural method is to parallelize the algorithm. Hence, in chapter 4 a Parallel Tabu 

Search (PTS) is proposed to solve the program and file allocation problem. 

For this problem, the solution space can be inherently partitioned into a number of 

subsets, and multiple search paths used in parallel to search different subsets so as to 

accelerate the TS. The implementation of PTS followed a master-slave scheme. The 

simulation results showed that the speedup of the PTS basically grows linearly with 

number of processors when the number of processor was not very large. A possible 

reason for this is that when the solution space is partitioned into subsets, every 

processor searches a subset; and only a small amount of communication is needed,  

thus generating an approximately linear function. The simulation results showed the 

solution quality was virtually unaffected by the number of processors.  

8.1.2 Completion time oriented algorithm 

Completion time is another important parameter in DCSs. In a parallel application the 

data dependencies can be represented by a directed acyclic graph (DAG). Intensive 

research has been done on DAG scheduling to minimize the completion time (schedule 

length), which is a NP-hard problem. However, most of these algorithms assume that 

the DCSs were homogeneous, for example, list scheduling. Heterogeneous Earliest-

Finish-Time (HEFT) algorithm (Topcuoglu et al. 2002) adopted list scheduling for 
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heterogeneous systems, it significantly outperformed Mapping heuristic (MH) (El-

Rewini & Lewis 1990), Dynamic-Level Scheduling (DLS) algorithm (Sih & Lee 1993), 

Levelized-Min Time (LMT) algorithm (Iverson et al. 1995) in terms of average 

schedule length ratio, speedup, etc.  However, as it only uses the mean value to 

construct the scheduling list, the scheduling may be misdirected.  

Chapter 5 proposed an iterative algorithm based on the idea of list scheduling for 

heterogeneous systems. The algorithm generates an initial solution with moderate 

quality and then improves the solution iteratively. During the iterative steps, the results 

of the previous iteration are used to construct a new list. The initial step happens to be 

same as HEFT. Consequently, if the final schedule length is less than the initial one, 

the iterative algorithm can produce shorter schedule length than those of the HEFT, 

DLS, MH, LMT.  

To test the performance of the proposed algorithm, a random generator of direct 

acyclic graphs was designed. Simulations were run on a large number of randomly 

generated problems of different sizes and two real applications, and the results showed 

that in the majority of cases, there were significant improvements made to the initial 

schedules, which means that the proposed algorithm outperforms HEFT algorithm, 

DLS algorithm, MH, LMT algorithm in terms of the average schedule length. In 

particular, the algorithm performs better when the tasks to processors ratio is large.  

Sensitivity analysis shows that neither the percentage that final schedule length is less 

than the initial one nor the average improvement ratio are sensitive to the weighting 

factor ,i.e.,  the weight when computing the mean during iteration.   
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8.1.3 Completion time and reliability oriented algorithm  

Although intensive research has been done on DAG scheduling, most proposed 

scheduling algorithms are designed to minimize the schedule length without 

consideration of the possible failure of the computation machines or associated 

network resources. In a failure-prone system, assigning tasks to machines without 

considering possible failures may result in a significant increase in the average 

execution time of the application in the presence of failures. Chapter 6 described a 

multi-objective optimization problem to minimize schedule length and maximize the 

system reliability simultaneously.  

Evolutionary algorithms have been extensively adopted to solve the multi-objective 

optimization problems, however for this particular problem, it is very hard to 

recombine two solutions to generate new solutions due to the data dependency. Hence, 

a TS was proposed to solve this multi-objective problem.  

To distribute the Pareto-optimal solutions along the Pareto-front uniformly, “lateral 

interference” was adopted. To apply “lateral interference”, it is necessary to compute 

the distance metric between the solutions and two schemes have been proposed to do 

this. 

Randomly generated DAGs and a real application were used to determine the 

performance of the proposed algorithm. The “non-dominated solution number” and the 

“uniform distribution of non-dominated solutions” are the two performance measures 

used to compare the two schemes, one considering the “lateral interference” and the 

the other without. For “non-dominated solution number” there was basically no 

difference between the three schemes. For “uniform distribution of non-dominated 

solutions, the two schemes considering the “lateral interference” were much better than 
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the one without considering it and there was basically no difference between the first 

two schemes. 

8.1.4 Reliability analysis and computation for DCS 

Service reliability of a distributed system is a key criterion of  QoS (Quality of 

Service). Most of the distributed systems can be modeled as CHDSs. The service 

reliability in a CHDS is determined not only by the system availability of the control 

center, but also by distributed program reliabilities of the subsystems.  Most earlier 

research on system availability or reliability cannot be simply applied to analyze the 

service reliability of CHDSs.  

Chapter 7 described a general model for a CHDS. Based on this model, a solution 

algorithm was presented and the time for the VM to reach its minimum system 

availability or required system availability was studied. An application of the model to 

an actual bank automatic payment system was presented. In addition, a sensitivity 

analysis was conducted to determine the effect on the system availability of certain 

intrinsic parameters and their effect on the lowest availability point.  

8.2 Future work 

For the program and file allocation problem proposed in chapter 3, when the solution 

space is very large, the exhaustive algorithm cannot finish execution in acceptable time, 

and therefore no optimal solutions are available to compare with the results of the 

proposed algorithms. The upper bound, if available, would be very useful for 

evaluating the performance of the algorithms proposed in this dissertation. Although 1 

is the upper bound of the system reliability, for some cases, the system reliability of the 

optimal solution is far from 1. A method to obtain a realistic upper bound for the 
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proposed problem would be valuable as the alternative value of 1 is in many cases not 

appropriate  . 

Most DAG scheduling to minimize the schedule length assumes that the processors of 

the system are fully linked, which means that there is no communication contention. 

The assumption is true when the number of the processors is not large, but when the 

number of the processors is very large, this assumption is obviously not true. When 

communication contention exists, communication scheduling and routing must be 

taken into account. Future research on DAG scheduling to maximize the schedule 

length should consider this communication contention. 
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