
MODELLING AND SCHEDULING OF HETEROGENEOUS

COMPUTING SYSTEMS

LIU GUOQUAN

NATIONAL UNIVERSITY OF SINGAPORE

2005

CORE Metadata, citation and similar papers at core.ac.uk

Provided by ScholarBank@NUS

https://core.ac.uk/display/48628372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MODELLING AND SCHEDULING OF HETEROGENEOUS

COMPUTING SYSTEMS

LIU GUOQUAN

(M. Eng., Tsinghua University)

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF INDUSTRIAL AND SYSTEMS

ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2005

i

Acknowledgements

I would like to express my heartfelt gratitude to:

My supervisors, Associate Professor Poh Kim Leng and Associate Professor Xie

Min, for both their guidance of my research work and their personal care.

Associate Professor Ong Hoon Liong and Dr Lee Chulung, for their helpful advice

about the topics in this dissertation.

Mr. Dai Yuan Shun, for his advice and suggestion.

Mr. Zeng Yi Feng, for his suggestion and help.

All the other faculty members in the Department of Industrial and Systems

Engineering, from whom I have learnt a lot through coursework, discussions and

seminars.

I would also like to thank my wife Xie Zhaojing, my son Liu Yiyang and other family

members for their hearty support, confidence and constant love on me.

ii

Table of Contents

Acknowledgements………………………………………………………………............. i

Summary ...vii

List of Tables ..ix

List of Figures ... xi

List of Acronyms ... xiii

List of Notations..iv

Chapter 1 Introduction..1

1.1 The problems & methodologies.. 2

1.2 Contributions... 5

1.3 Organization of the dissertation .. 7

Chapter 2 Literature Review ..9

2.1 Distributed computing system reliability evaluation .. 9

2.2 Reliability oriented task and file allocation .. 12

2.3 Schedule length oriented task scheduling algorithms... 15

2.3.1 Static scheduling .. 15

2.3.2 Dynamic scheduling... 20

2.3.3 Genetic Algorithm, Tabu Search and Simulated Annealing and their

applications ... 21

2.4 Multi-objective optimization .. 25

2.4.1 Aggregating function based approaches .. 27

iii

2.4.2 Population-based non-Pareto approaches .. 29

2.4.3 Pareto based approaches .. 31

Chapter 3 A Reliability Oriented Genetic Algorithm for Distributed Computing

Systems..38

3.1 Optimization model .. 40

3.1.1 Structure of the system.. 40

3.1.2 Modelling and optimization of system reliability... 42

3.2 Solution algorithms... 47

3.2.1 Exhaustive search algorithm... 47

3.2.2 Genetic algorithm implementation ... 48

3.3 Numerical examples.. 53

3.3.1 A four-node distributed computing system... 54

3.3.2 A ten-node distributed computing system .. 57

3.4 Sensitivity analysis.. 60

3.4.1 Sensitivity to the expected cost of programs .. 60

3.4.2 Sensitivity to the completion time .. 62

3.5 Discussions.. 63

Chapter 4 A Reliability Oriented Tabu Search for Distributed Computing

Systems..66

4.1 A TS algorithm ... 68

4.1.1 Basic initial solution ... 69

4.1.2 Neighborhood and candidate list .. 72

4.1.3 Definition of moves .. 73

iv

4.1.4 Tabu lists ... 74

4.1.5 Intensification strategies ... 75

4.1.6 Diversification strategies .. 75

4.1.7 The procedures of TS.. 75

4.2 Numerical examples.. 78

4.2.1 A four-node distributed computing system... 78

4.2.2 A ten-node distributed computing system .. 79

4.3 A Parallel Tabu Search ... 81

4.4 Computation results of PTS .. 83

4.5 Conclusions... 85

Chapter 5 A Completion Time Oriented Iterative List Scheduling for Distributed

Computing Systems ...86

5.1 Task-scheduling problem.. 90

5.2 Iterative list scheduling algorithm .. 94

5.2.1 Graph attributes used by our algorithm .. 94

5.2.2 The priority selection .. 94

5.2.3 Scheduling list construction.. 95

5.2.4 Processor selection step .. 96

5.2.5 The procedure of the algorithm... 98

5.2.6 The time-complexity analysis ... 99

5.3 Numerical example ... 100

5.4 Performance analysis based on randomly generated application graphs.............. 108

5.4.1 Generation of random application graphs.. 108

v

5.4.2 Comparison with optimal solutions ... 109

5.4.3 Simulation results... 110

5.4.4 Sensitivity analysis of link density, weighting factor and CCR 111

5.4.5 Sensitivity analysis of the task number and the processor number 116

5.5 Performance analysis on application graphs of real world problems 119

5.5.1 DSP .. 120

5.5.2 Gaussian elimination.. 121

5.6 Conclusions... 123

Chapter 6 Reliability and Completion Time Oriented Tabu Search for

Distributed Computing Systems...125

6.1 Modelling.. 127

6.2 Multi-objective optimization .. 131

6.3 A Tabu Search for the multi-objective scheduling ... 134

6.4 Simulation study ... 138

6.4.1 Performance analysis on randomly generated DAGs 139

6.4.2 Performance analysis on a real-world problem ... 142

6.5 Conclusions... 143

Chapter 7 Modelling and Analysis of Service Reliability for Distributed

Computing Systems ...145

7.1 Centralized heterogeneous distributed system (CHDS) and analysis................... 147

7.1.1 Service reliability analysis of CHDS .. 149

7.1.2 General model of distributed service reliability.. 150

7.1.3 Solution algorithm .. 152

vi

7.2 An application example .. 153

7.2.1 The structure of CHDS ... 153

7.2.2 The availability function ... 155

7.2.3 The distributed system reliability.. 156

7.2.4 The distributed service reliability function ... 157

7.3 Further analysis and application of the general model ... 160

7.3.1 A general approach ... 160

7.3.2 The application example revisited .. 161

7.4 Conclusions... 166

Chapter 8 Conclusions and Future Work..168

8.1 Conclusions... 168

8.1.1 Reliability oriented algorithms .. 168

8.1.2 Completion time oriented algorithm.. 172

8.1.3 Completion time and reliability oriented algorithm....................................... 174

8.1.4 Reliability analysis and computation for DCS... 175

8.2 Future work... 175

References ..177

vii

Summary

For most distributed computing systems (DCS), distributed system reliability (DSR) and

the completion time of an application are the two most important requirements. To meet

these requirements, it is essential that appropriate algorithms are developed for proper

program and file allocation and scheduling. This dissertation focuses on the development

of algorithms to maximize DSR and/or minimize the completion time based on more

practical DCS models.

In almost all current reliability-oriented allocation models program and file allocation has

been considered separately, rather than simultaneously. In this study a reliability–oriented

allocation model was proposed, which considered the program and file allocation together

so as to obtain the highest possible DSR. Certain constraints were also taken into account

to make the model more practical. The model is very comprehensive and can be reduced

to some other existing models under certain conditions.

To solve the NP-hard problem of simultaneous program and file allocation formulated

herein, a Genetic Algorithm (GA) was proposed. To gauge the suitability of Tabu Search

(TS) and GA for solving this problem, a TS was proposed and the results of TS were

compared with those of GA. GA and TS were both found to be capable of finding the

optimal solutions in most cases when the solution space was small. However TS

outperformed GA with shorter computing time and better solution quality for both small

and large solution space. Further improvements in performance over that of the TS were

obtained by using a parallel TS (PTS). Simulation results showed that the solution quality

viii

did not change significantly with increased number of processors whereas the speedup of

the PTS basically grew linearly when the number of processor was not very large.

Extensive algorithms have been proposed for the NP-hard problem of scheduling a

parallel program to a DCS with the objective of minimizing the completion time of the

program. Most of these, however, assumed that the DCS was homogeneous. An iterative

list algorithm was proposed in this dissertation to solve the scheduling problem for the

more difficult heterogeneous computing systems. Simulation results showed that the

proposed algorithm outperformed most existed scheduling algorithms for heterogeneous

computing in terms of the completion time of the application.

To consider DSR and completion time simultaneously, a multi-objective optimization

problem was formulated and a Tabu Search algorithm proposed to solve the problem.

Two “lateral interference” schemes were adopted to distribute the Pareto optimal

solutions along the Pareto-front uniformly. Simulation results showed that “lateral

interference” could improve the “uniform distribution of non-dominated solutions” and

was not sensitive to the different computation schemes of distances between the solutions.

In addition, a general centralized heterogeneous distributed system model was formulated

and a solution algorithm developed to compute the distributed service reliability.

Keywords:

Task Scheduling, Distributed Computing System Reliability, Genetic Algorithm, Tabu

Search, Multi-objective Optimization, Reliability Analysis

ix

List of Tables

Table 3.1: Required files for program execution .. 54

Table 3.2: Link reliabilities of a four-node distributed system... 54

Table 3.3: Completion time of each program and the completion time constraint........... 55

Table 3.4: Optimum allocation for the four-node distributed computing system............. 55

Table 3.5: The result of the GA algorithm for the optimum allocation............................ 56

Table 3.6: The result statistics of the GA ... 56

Table 3.7: Needed files for program execution .. 57

Table 3.8: Link reliabilities of a ten node distributed system... 58

Table 3.9: Cost of each program and the cost constraint .. 58

Table 3.10: Completion time of each program and the completion time constraint......... 58

Table 3.11: Size of each file ... 58

Table 3.12: Size constraint of each node .. 58

Table 3.13: Solution for the ten node DCS by GA ... 59

Table 3.14: One of the best assignments (DSR=0.921) among the ten solutions............. 59

Table 3.15: Sensitivity analysis of the program cost parameter 61

Table 3.16: Results for the sensitivity to the changes of completion time constraint 63

Table 4.1: The parameters of TS for 4 node DCS .. 78

Table 4.2: The parameters of GA for 4 node DCS ... 78

Table 4.3: The result statistics of the TS and GA for four node DCS 79

Table 4.4: The parameters of TS for 10 node DSC .. 80

Table 4.5: The parameters of GA for 10 node DSC ... 80

Table 4.6: The result statistics of the TS and GA for ten node DSC................................ 80

x

Table 4.7: The result statistics of the PTS when the processor number changes 85

Table 5.1: Computation times of every task on every processor 101

Table 5.2: Time-weights of the tasks and b-levels during initial step 102

Table 5.3: Start time and finish time of every task during initial step............................ 104

Table 5.4: Time-weights of the tasks and b-levels during first iteration 105

Table 5.5: Start time and finish time of every task during first iteration........................ 106

Table 5.6: Time-weights of the tasks and b-levels during second iteration.................... 107

Table 5.7: Start time and finish time of every task during second iteration 107

Table 5.8: The Parameters for the base example .. 110

Table 5.9: The parameters for DAG and scheduling .. 111

Table 5.10: The Parameters for DAG and scheduling.. 116

Table 6.1: The parameters for DAG ... 141

Table 6.2: The parameter of TS for random DAG.. 141

Table 6.3: Comparison of three schemes based on UD for random DAG 141

Table 6.4: The parameter of TS for Gaussian Elimination... 143

Table 6.5: Comparison of three schemes based on UD for Gaussian Elimination......... 143

Table 7.1: The programs and prepared files in different nodes 154

Table 7.2: Required files, precedent programs and execution time for programs.......... 155

xi

List of Figures

Figure 3.1: n processors of a distributed system... 41

Figure 3.2: Topology of a four-node DCS.. 54

Figure 3.3: Topology of a ten-node DCS.. 57

Figure 4.1: Histogram of the results of TS and GA for 10 node DCS.............................. 81

Figure 4.2: Speedup of the PTS .. 84

Figure 5.1: A sample directed acyclic graph with 8 tasks .. 100

Figure 5.2: Scheduling of task graph during initial step... 104

Figure 5.3: Scheduling of task graph during first iteration... 106

Figure 5.4: Scheduling of task graph during second iteration .. 107

Figure 5.5: Percentage of improved cases varies with the link density 111

Figure 5.6: Average improvement ratio varies with the link density 112

Figure 5.7: Percentage of improved cases varies with the weighting factor 113

Figure 5.8: Average improvement ratio varies with the weighting factor 113

Figure 5.9: Percentage of improved cases varies with the CCR..................................... 115

Figure 5.10: Average improvement ratio varies with the CCR 116

Figure 5.11: Percentage of improved cases varies with task number/processor number 117

Figure 5.12: Average improvement ratio varies with task number/processor number... 117

Figure 5.13: Percentage of improved cases varies with task number/processor number 118

Figure 5.14: Average improvement ratio varies with task number/processor number... 119

Figure 5.15: Percentage of improved cases varies with processor number 120

Figure 5.16: Average improvement ratio varies with processor number........................ 121

Figure 5.17: Percentage of improved cases varies with processor number 122

xii

Figure 5.18: Average improvement ratio varies with processor number........................ 122

Figure 6.1: A DAG example ... 129

Figure 6.2: Pareto ranking scheme for multi-objective optimization 132

Figure 7.1: Structure of the centralized heterogeneous distributed service system........ 147

Figure 7.2: A centralized distributed service system.. 153

Figure 7.3: The separated subsystems from Figure 7.1. ... 156

Figure 7.4 The reduced graph for subsystem 1... 157

Figure 7.5: Critical path for Table 7.2 .. 158

Figure 7.6: Typical distributed service reliability function to service starting time. 159

Figure 7.7: Sensitivity of µ (left) and a (right).. 164

Figure 7.8: Sensitivity of b.. 164

Figure 7.9: Sensitivity analysis of repair rate ... 166

xiii

List of Acronyms

CHDS: Centralized heterogeneous distributed systems;

DAG: Directed Acyclic Graph;

DCS: Distributed Computing Systems;

DPR: Distributed program reliability;

DSR: Distributed System Reliability;

GEAR: Generalized Evaluation Algorithm for Reliability;

GA: Genetic Algorithm;

MFST: Minimal File Spanning Tree;

PTS: Parallel Tabu Search;

SA: Simulated Annealing;

SL: Schedule Length;

TS: Tabu Search;

VM: Virtual Machine.

xiv

List of Notations

)(tA : availability function of VM at time t;

lkjic ,,, : communication time from task iv to task jv when task iv was assigned to

processor kp and task jv was assigned to processor lp ;

s
jic , : time-weight of the directed edge from task iv to task jv during the s-th

iteration, which is used to compute the priorities of the tasks;

Cb: budget limit;

Cj: cost for a copy of program Pj;

Ct: completion time limit;

jid , : data transfer size (in bytes) from task iv to task jv ;

iDSR : DSR of i-th sub-distributed system;

bestDSR : DSR of bestx ;

tempbestDSR : DSR of tempbestx ;

:e number of directed links among the tasks;

jie , : directed link from i-th task to j-th task;

),(ji pvEFT : earliest computation finish time of task iv on processor jp ;

),(ji pvEST : earliest computation start time of task iv on processor jp ;

jF : j-th distributed files;

jil , : direct link between processor ip and processor jp ;

nN : number of nodes;

FN : number of files;

xv

PN : number of programs;

ijNF : assignment of file Fj on the node Ni ;

ijNN : link between nodes Ni and Nj;

ijNP : assignment of program Pj on node Ni;

p: number of processors available in the system;

ip : i-th processor in the system;

jP : j-th computing program;

)(0 tP : probability for the VM in working state at time t;

)(1 tP : probability for VM in malfunctioning state at time t;

→

jPF : set of files required by the j-th program jP ;

jir , : communication rate (in bytes/second) between processor ip and processor jp ;

iR : reliability of the processor ip , which is the probability that processor ip is

functional;

jiR , : reliability of the directly link jil , between processor ip and processor jp ;

)(bs tR : distributed service reliability function of bt ;

S : current program and file set;

bestS : program and file set where bestx was found;

Sj: size of the j-th file Fj;

iSC : storage limit of node Ni;

bt : initial time for the service;

j
bfT : time point for the j-th programs need the files prepared in the VM;

xvi

k
bpT : beginning time when the k-th programs runs in VM;

k
exT : execution time period for those programs in VM;

Tij: completion time of program Pj at node Ni;

NTL : Tabu List of program and file set;

:UR distributed computing system unreliability;

v: number of tasks in the application;

iv : i-th task in the application;

iVM : VM used in subsystem.

jiw , : computation time to complete task iv on processor ip ;

s
iw : time-weight of task iv during the s-th iteration, which is used to compute the

priorities of the tasks;

x : current solution;

bestx : the best solution found until now;

tempbestx : the temporarily best solution;

iλ : failure rate of processor ip ;

ji,λ : failure rate of link jil , between processor ip and processor jp .

1

Chapter 1

Introduction

A distributed computing system (DCS) consists of a collection of autonomous

computers/processors linked by a network, with software designed to produce an

integrated computing facility (Coulouris & Dollimore 2000). In such a system, an

application consists of several tasks/programs. (In this dissertation, task and program,

and computer and processor are used interchangeably for consistency with the

literature.) The tasks may be executed on the different computers. Two communicating

tasks executing on different computers communicate with each other using the

system’s network, thereby incurring communication cost. Communication costs are

also incurred when some tasks need to access files on different computers.

Distributed computing has attracted more and more research effort over the last two

decades as its performance-price ratio and flexibility exceeds that of supercomputers.

The past decade has witnessed an ever-increasing demand for and the practice of high

performance computing driven by powerful DCSs.

Compared with supercomputers, DCSs generally provide significant advantages, such

as better performance, better reliability, better performance-price ratio and better

scalability (Coulouris & Dollimore 2000). Performance (e.g., completion time) and

reliability are essential requirements for most DCSs (Shatz et al. 1992), and to meet

Chapter 1. Introduction

2

these requirements, it is important to employ a good algorithm for proper program and

file allocation and scheduling.

In a homogeneous system, the computation times of a task on different processors are

the same, and the communication times between two tasks on different processors are

also the same. A heterogeneous DCS has several advantages over a homogeneous DCS.

A heterogeneous DCS is a suite of diverse high-performance machines interconnected

by high-speed links, so it can perform different computationally intensive applications

that have diverse computational requirements. As the allocation and scheduling for a

heterogeneous DCS are more difficult than that for a homogeneous one, most

scheduling algorithms for DCSs assume that the distributed systems are homogeneous.

This dissertation focuses on scheduling, allocation algorithms for heterogeneous DCSs

to meet certain criteria, for example maximum reliability and minimum completion

time. At the same time, computing the DCSs’ reliability is the prerequisite of

reliability-oriented allocation and scheduling, so the computation and analysis of the

reliability is also considered.

1.1 The problems & methodologies

Increasingly, DCSs are being employed for critical applications, such as aircraft

control, banking systems and industrial process control. For these applications,

ensuring system reliability is of critical importance. DCSs are inherently more

complex than centralized computing systems, which could increase the potential for

system faults. The traditional technique for increasing the distributed system reliability

(DSR) is to provide hardware redundancy. However, this is an expensive approach.

Moreover, many times, the hardware configuration is fixed. When the hardware

Chapter 1. Introduction

3

configuration is fixed, the system reliability depends mainly on the assignment of

various resources such as programs and files (Kumar et al. 1986, Raghavendra et al.

1988). Extensive program allocation or file allocation algorithms have been proposed

to maximize the DSR. However most previous studies considered the program and file

allocation problems separately rather than simultaneously as the optimum method. In

addition, to make the allocation model more practical, certain constraints need to be

taken into account.

In this dissertation, a more practical program and file allocation model was constructed

by including constraints on program cost, file storage, and completion time. This

model is very comprehensive and can degenerate to some other models in certain

circumstances.

Reliability-oriented program allocation and file allocation are both NP-hard problems.

Considering the program and file together and taking into account these constraints

make the problem harder. A Genetic Algorithm (GA) was therefore proposed to solve

the problem. GA’s are inspired by Darwin's theory of evolution based on the survival

of the fittest species as introduced by Holland (1977) and further described by

Goldberg (1989). GA is a meta-heuristic that is easy to model and be applied to

various optimization problems.

As this problem has constraints, the solution produced by GA is sometimes not

feasible. Dealing with infeasible solutions needs extra computational effort and may

impact the quality of solution. In this case, adjustments were applied to deal with the

infeasible solutions.

Tabu Search (TS) (Glover 1989, 1990) is another meta-heuristic method used for many

large and complex combinatorial optimization problems. This can usually produce

Chapter 1. Introduction

4

quite good solutions although the algorithm is more complicated to implement. A TS

was therefore proposed to solve the same problem and the results of TS were

compared with those of GA. Simulation results show that TS outperforms GA in this

case.

In practical situations, scheduling must be completed within a short time interval, and

therefore a parallel TS was proposed to solve the problem and to further improve the

performance of TS.

As the completion time is another important goal for distributed computing, the

scheduling of parallel applications to minimize the completion time is very important

in a DCS. An application consists of a number of tasks which may have dependencies.

The scheduling problems are NP-hard in the general case (Gary & Johnson 1979);

extensive heuristic scheduling algorithms have been proposed to minimize the

completion time (schedule length) (Kwok & Ahmad 1999b). However, most of the

existing task scheduling algorithms either assume that the DCSs are homogeneous or

are high-complexity algorithms.

In this dissertation, a low-complexity algorithm for heterogeneous DCS was proposed

to maximize the schedule length and the performance tested on randomly generated

application graphs and some real world application graphs.

Maximizing the DSR and minimizing the schedule length are two major objectives of

scheduling for DCSs. Most research has considered these two objectives separately

although ideally they should be considered simultaneously. Some researchers proposed

considering one of them as a constraint. However, it is very difficult to estimate a

value for DSR or schedule length as the limitation. Hence, in this dissertation, Pareto’s

Chapter 1. Introduction

5

optimality concept was used to obtain a set of solutions rather than a single solution,

and a TS algorithm was presented to solve the problem.

Analysis and computation of DSR is the prerequisite for reliability oriented allocation

and scheduling. Several reliability measures have been studied by the researchers in

the context of DCSs. For example, Raghavendra et al (1988) first introduced the

distributed program reliability (DPR) and DSR. DPR is a measure of the probability

that a given program can run successfully and be able to access all the required files

from remote sites in spite of faults occurring in the processing elements and the

communication links. DSR is the probability that all the given distributed programs

can run successfully.

Most of these measurements cannot be simply implemented to analyze the service

reliability of a centralized heterogeneous distributed system, designed and developed

to provide certain important services, as it is affected by many factors including system

availability and distributed program/system reliability. This dissertation studied the

properties of centralized heterogeneous distributed systems and developed a general

model for the analysis. Based on this model, an algorithm to obtain the service

reliability of the system was also developed.

1.2 Contributions

This section briefly summarizes the major contributions of the work described in this

dissertation.

The dissertation presents a more practical reliability–oriented allocation model, which

considers the program and file allocation together and takes into account certain

Chapter 1. Introduction

6

constraints such as program cost, file storage and completion time. This model,

compared to previous models, is more practical, more comprehensive and can

degenerate to some other models.

A GA is proposed to solve this NP-hard problem. Inappropriately dealing with

unfeasible solutions may impact the quality of solutions. In this case, adjustments are

applied to deal with the infeasible solutions. A TS is also designed to find optimal or

near optimal solutions, and the results of GA and TS are compared to gauge their

suitability for solving this problem. The numerical results show that in this case TS

outperforms GA with shorter computing time and better solution quality. Comparison

of results for this and other cases suggests that, if we have good knowledge of the state

space, TS should be used; if not, then GA may be a better choice.

In certain practical situations scheduling must be achieved within a short time interval.

Therefore to further improve the performance of the TS in this respect, a parallel TS is

proposed to solve the same problem. The speedup of the parallel TS grows linearly

with increase in number of processors without adversely affecting the solution quality,

when the number of processors is not very large. This runs contrary to the common

opinion that TS is not suitable for parallelization due to the sequential inherence of TS.

To minimize the completion time (schedule length), this dissertation proposes an

iterative list scheduling algorithm for heterogonous DCSs. Simulation results, based on

randomly generated application graphs as well as real applications, showed that in

most cases the proposed algorithm obtained shorter schedule length compared with

previous algorithms.

To maximize the systems reliability and minimize the schedule length simultaneously,

a TS algorithm is used to obtain a set of solutions by means of the Pareto optimality

Chapter 1. Introduction

7

concept. In addition, “lateral interference” is adopted to investigate two schemes to

distribute the Pareto optimal solutions along the Pareto-front uniformly. The results

show that “lateral interference” can improve the “uniform distribution of non-

dominated solutions” and is neither sensitive to the different computation schemes nor

to distances between the solutions.

To compute the distributed service reliability, a prerequisite for the reliability oriented

allocation and scheduling, a centralized heterogeneous distributed system model and

an algorithm, which first analyzes the service reliability of the system, are proposed.

1.3 Organization of the dissertation

This chapter has given a brief introduction to some basic concepts in allocation and

scheduling for DCS, reviewed some major work related to the topics addressed in this

dissertation and described the methodologies used.

The rest of this dissertation is arranged as the following:

Chapter 2 introduces related works involving DSR computation algorithms, reliability

oriented program and file allocation algorithms, completion time oriented task

scheduling algorithms, and multi-objective optimization.

Chapter 3 presents a reliability-oriented optimization model with storage, cost and

completion time constraints in which program allocation and file allocation are

considered together, and a GA is proposed to solve the problem.

Chapter 4 proposes a TS to solve the same problem presented in Chapter 3 and

compares the results of TS and those of GA. In addition, to further improve the

Chapter 1. Introduction

8

performance of the TS, a parallel TS (PTS) is proposed and the performance of PTS is

analyzed by simulation.

Chapter 5 presents an iterative list scheduling algorithm to minimize the completion

time which, together with DSR considered in Chapters 3 and 4, are the two most

important requirements for heterogeneous DCSs. The proposed algorithm can obtain

high quality solution with low time complexity.

Chapter 6 describes a scheduling model to maximize DSR and minimize the

completion time, considered in Chapters 3 – 5, simultaneously. A TS algorithm was

used to obtain a set of Pareto optimal solutions and a number of measurements adopted

to distribute solutions along the Pareto surface uniformly.

Chapter 7 focuses on how to analyze and compute the reliability for centralized

heterogeneous DCSs, this being a prerequisite for the reliability oriented allocation

algorithms.

Chapter 8 summarizes this dissertation by discussing the contributions and limitations

of the whole work. It also suggests some possible directions for future research.

9

Chapter 2

Literature Review

This chapter briefly surveys related work on distributed computing system reliability

(DSR) evaluation, Reliability oriented task and file allocation, Completion time

(Schedule length) oriented scheduling algorithms and Multi-objective optimization.

2.1 Distributed computing system reliability evaluation

Researchers have developed several reliability measures. Merwin & Mirhakak (1980)

defined a survivability index S to measure survival in terms of the number of programs

that remain executable in the DCS after some nodes or links become inoperative. The

survivability index, however, is not applicable to large distributed systems because of

the large computing time required (Martin & Millo 1986).

Aggarwal & Rai (1981) defined the network reliability for a computer-communication

network and proposed a method based on spanning trees to evaluate the network

reliability.

Satyanarayana (1982) proposed a source-to-multiple-terminal reliability (SMT

Reliability), i.e. derived a topological formula to solve a variety of network reliability

problems. The formula considered the unreliability of vertices and links, and with

failure events s-independent or not. The formula, however, involves only non-

Chapter 2. Literature Review

10

cancelling terms although it explicitly characterizes the structure of both cancelling

and non-cancelling terms in the reliability expression obtained by inclusion-exclusion.

Computer network reliability and SMT reliability are good reliability measures for

computer communication network networks, but neither of them considers the effects

of redundancy of programs and files in the distributed system. This issue was

considered by Raghavendra et al. (1988) who developed an efficient approach based

on graph traversal to evaluate distributed program reliability (DPR) and distributed

system reliability (DSR).

DPR is the probability that a given program can run successfully and be able to access

all the required files from remote sites in spite of faults occurring among the

processing elements and the communication links. DSR is the probability that all the

given distributed programs can run successfully.

Kumar et al. (1986) presented a Minimum File Spanning Trees (MFST) algorithm to

compute DSR. The MFST is 2-step process:

• Step 1 computes all MFST,

• Step 2 converts these MFST’s to a symbolic reliability expression.

The MFST’s major drawback is that it is computationally complex and prior

knowledge about multi-terminal connections is needed. To improve the MFST

algorithm, Kumar et al (1988) developed an algorithm called Fast Algorithm for

Reliability Evaluation (FARE) that does not require an a priori knowledge of multi-

terminal connections for computing the reliability expression. The FARE algorithm

uses a connection matrix to represent each MFST and proposes some simplified

techniques for speeding up the analysis process.

Chapter 2. Literature Review

11

Chen & Huang (1992) proposed the FST-SPR algorithm that further improved the

evaluation speed by reducing the number of subgraphs generated during reliability

evaluation. The basic idea of the FST-SPR is to make the subgraphs generated

completely disjointed, so that no replicated subgraphs are generated during the

reliability evaluation process. Chen et al (1997) proposed another algorithm: HRFST

that does not need to search a spanning tree during each subgraph generation.

MFST’s drawbacks were also alleviated by the Generalized Evaluation Algorithm for

Reliability (GEAR) (Kumar & Agrawal 1993). GEAR is a 1-step algorithm that can

compute the terminal-pair reliability, computer-network reliability, distributed program

reliability and DSR. It is also more efficient than the MFST.

Chen & Lin (1994) presented an algorithm for computing the DSR - the Fast

Reliability Evaluation Algorithm (FREA) that is based on a factoring theorem

employing several reliability preserving reduction techniques. Compared with existing

algorithms on various network topologies, file distributions, and program distributions,

FREA is much more economical in both time and space.

Chang et al. (1999) proposed a polynomial-time algorithm to analyze the DPR of ring

topology and showed that solving the DPR problem on a ring of trees topology is NP-

hard. Later, Chang et al. (2000) developed a polynomially solvable case to compute

DPR when some additional file distribution is restricted on the star topology which is

NP-hard.

Lin (2003) presented two linear-time algorithms to compute the reliability of two

restricted subclasses of DCSs with star topology. There are ||V nodes and || F files in

the DCS. The first algorithm runs in |)(| FO when the file distribution is limited to

Chapter 2. Literature Review

12

being bipartite and non-separable. The second algorithm runs in O(|V|), when each file

is allocated to no more than two distinct nodes and each node contains at most two

distinct records. If the failure and working probabilities of every node are identical,

then the computation can be accelerated to |)|(log VO time by means of the Fibonacci

number and the Lucas number.

2.2 Reliability oriented task and file allocation

The reliability oriented task allocation problem can be stated as follows:

Given an application consisting of m tasks and a DCS with n processors,

allocate each of the tasks to one or more of the processors such that the system

reliability is maximized subject to certain resource limitations and constraints

imposed by the application or environment.

In the reliability oriented task allocation model, Bannister & Trivedi (1983) achieved

optimization by balancing the load over a homogeneous system. However, their model

does not consider failures of communication links and does not give an explicit system

reliability measure. Hariri and Raghavendra (1986) considered that the reliability was

maximized and the communication delay was minimized. They also considered the

problem of task allocation for reliability by introducing multiple copies of tasks, but

did not give an explicit reliability expression. In addition, their algorithm assumes that

all the processors and communication links have the same reliability and each

processor runs exactly one task.

Hwang and Tseng (1993) proposed a heuristic algorithm for reliability-oriented design

of a distributed information system to the k copies of the distributed tasks assignment

Chapter 2. Literature Review

13

(k-DTA) problem. In Shatz et al. (1992)’s task allocation model, a cost function

represents the unreliability caused by execution of tasks on processors of various

reliability and by interprocessor communication. An A* algorithm is applied to do the

state space search. This algorithm may be “trapped” in local minima which prevent the

search from yielding an optimal solution. Kartik & Murthy (1995) further reduced the

size of the search space by finding a set of mutually s-independent (non-

communicating) tasks. Compared with the algorithm of Shatz et al. (1992) that of

Kartik & Murthy (1997) can produce optimal allocations at all times and reduces the

computations by using the ideas of branch-and-bound with underestimates and task

independence.

The models of Shatz et al. (1992), Kartik & Murthy (1995) and Kartik & Murthy

(1997) do not include the concept of a task requiring access to a number of data files.

However this concept is considered in the model of Tom & Murthy (1998).

Mahmood (2001) presented a least-cost branch-and-bound algorithm to find optimal

task allocations and two heuristic algorithms to obtain sub-optimal allocations for

realistically sized large problems in a reasonable amount of computational time.

Vidyarthi & Tripathi (2001) proposed a genetic algorithm based task allocation to

maximize the reliability of the distributed system. The GA showed a better result than

that of Shatz et al. (1992) in terms of the system reliability.

Chiu et al. (2002) developed a heuristic algorithm for k-DTA reliability oriented task

allocation problem. The simulation shows that, in most test cases with one copy, the

algorithm finds sub-optimal solutions efficiently. Even when the algorithm cannot

obtain an optimal solution, the deviation is very small.

Chapter 2. Literature Review

14

The distribution of data files can also impact on the reliability of distributed systems

(Dowdy & Foster 1982). Pathak et al. (1991) developed a genetic algorithm (GA) to

solve file allocation problems so as to maximize the reliability of distributed

program(s). In this scheme, the different constraints are discussed, for example, the

total number of copies of each file and the memory constraint at each node.

Pathak et al. (1991) also found that beyond a certain point, increasing the redundancy

of files could not improve the reliability of the DCS. Kumar et al. (1995a) developed a

genetic algorithm (GA) to solve the reliability oriented file allocation problem for

distributed systems, and the proposed method was compared with optimal solutions to

demonstrate the accuracy of the solution obtained from GA based methodology.

Kumar et al. (1995a) also provided the relation between degree of redundancy of files

and the maximum achievable reliability of executing a program. They showed that the

redundancy is helpful in improving the reliability only up to a certain point. Beyond

this point, no significant improvement in the reliability is achieved by increasing the

redundancy of the files.

There are some file allocation problems with other objectives. Murthy & Ghosh (1993)

formulated a file allocation model that sought to obtain the lowest cost file allocation

strategy and to ensure the attainment of acceptable levels of response times during

peak demand periods, for all on-line queries. Chang et al. (2001) addressed a files

allocation problem in DCS’s to minimize the expected data transfer time for a specific

program that must access several data files from non-perfect computer sites.

In addition, there has been some research on increasing system availability (Lutfiyya et

al. 2000). Goel and Soejoto (1981) first considered the performance of a combined

software and hardware system. A generalized model has also been proposed in Sumita

Chapter 2. Literature Review

15

and Masuda (1986). Markov models are also implemented to analyze the system

availability, combining both software and hardware failures and maintenance

processes (Welke et al. 1995, Lai et al. 2002).

2.3 Schedule length oriented task scheduling algorithms

The general task scheduling problem includes the problem of assigning the tasks of an

application to suitable processors and the problem of ordering task execution on each

processor. When the parameters such as execution times of tasks, the data size of

communication between tasks, and task dependencies, are known a priori, the problem

is static scheduling.

2.3.1 Static scheduling

Static scheduling is utilized in many different types of analyses and environments. The

most common use of static scheduling is for predictive analyses. Sometimes it is also

used for post-mortem analyses. In static scheduling, information about the processor

and about the tasks is assumed available. Extensive work has been done on static

scheduling. The problem is known to be NP-hard in general form (Coffman 1976).

In the general form of a static task scheduling problem, an application can be

represented by a directed acyclic graph (DAG) in which nodes denote tasks and

directed edges denote data dependencies among the tasks. A task may have one or

more inputs. When all inputs are available, the task is triggered to execute. After its

execution, it generates its outputs. If there is a directed edge from task iv to task jv ,

task iv is the parent of task jv and task jv is the child of task iv . A task with no

parent is called an entry task and a task with no child is called an exit task. Every task

Chapter 2. Literature Review

16

has a weight called the computation cost of the task, and every edge has a weight

called communication cost of the edge. The communication cost is incurred if the two

tasks are scheduled on different processors; otherwise the communication cost is zero.

Some researchers used graph theory methods (Bokhari 1979; Bokhari 1981; Stone

1977; Stone 1978; Stone & Bokhari 1978). Chu et al. (1980), and Chern et al. (1989)

used the integer 0-1 programming techniques to solve the resource allocation problem.

However, heuristic methods are the most prevalent ones to solve task scheduling.

Typical heuristic approaches include:

2.3.1.1 List scheduling algorithms

List scheduling algorithms include Insertion Scheduling Heuristics (Hwang et al.

1989), Modified Critical Path (Wu & Gajski, 1990), Mapping Heuristics (El-Rewini &

Lewis 1990), Dynamic Critical Path (Sih & Lee 1993), Hybrid Mapper (Matheswaran

& Siegel 1998), and Heterogeneous Earliest Finish Time (Topcuoglu et al. 2002), etc.

The basic idea of list scheduling is to assign priorities to the tasks and to place the

tasks in a list arranged in descending order of priorities. The task with a higher priority

is scheduled before a task with a lower priority. The task is assigned to a suitable

processor to minimize a predefined cost function.

t-level (top level) and b-level (bottom level) are two major attributes for assigning

priorities. The t-level of a task iv is the length of the longest path from an entry task to

iv in the DAG (excluding iv). Here, the length of a path is the sum of all the task and

edge weights along the path. The b-level of a task iv is the length of the longest path

from task iv to an exit task. Because the edge weight may be zero when the two tasks

are assigned to the same processor, the t-level and b-level of a task are dynamic

Chapter 2. Literature Review

17

attributes. Some scheduling algorithms do not take into account the edge weights in

computing the b-level, which is referred to as static b-level or simply static level.

Another important concept is critical path (CP), which is a path from an entry node to

an exit node whose length is the maximum.

The t-level and b-level attributes are used in various ways to assign a task a higher

priority. A higher priority can be a smaller static level (El-Rewini & Lewis 1990), a

smaller t-level, a larger b-level (Topcuoglu et al. 2002), a larger (b-level - t-level) or a

smaller (t-level - b-level) (Wu & Gajski 1990).

During the processor selection phase, task iv is assigned to the suitable processor so

that the earliest start time (Wu & Gajski 1990) or earliest finish time of task iv

(Topcuoglu et al. 2002) is minimized. The earliest start time of task iv on processor

jp is decided by two items: the ready-time of task iv and the earliest available time of

processor jp . The ready-time of task iv is the time when all data needed by task

iv have arrived at processor jp . When determining the earliest available time of

processor jp , some algorithms only consider scheduling a task after the last task on

processor jp . Some algorithms also consider the idle time slots on processor jp and

may insert a task between two already scheduled tasks (Topcuoglu et al. 2002), which

still satisfy the data dependency.

Some algorithms just order the ready tasks instead of whole tasks. The ready tasks are

those that whose parent tasks have been scheduled. The Earliest Time First (ETF)

algorithm (Hwang et al. 1989) computes the earliest start times for all ready tasks and

then selects the one with the smallest start time. The earliest start time of a task is the

Chapter 2. Literature Review

18

smallest one among the start time of the task on all processors. This algorithm uses the

static level to break the tie of two tasks.

The following algorithms have been developed for heterogeneous environments:

Mapping Heuristic (MH) (El-Rewini & Lewis 1990) initializes a ready task list

ordered in decreasing static level and each task is scheduled to a processor that allows

the earliest start time. The algorithm takes into account the heterogeneity during the

scheduling process, but assumes that the environment is homogeneous when

computing the computation time of tasks and the communication time. When

communication contention is considered, the time complexity is)(32 pvO for v tasks

and p processors; otherwise, it is)(2 pvO .

Dynamic Level Scheduling (DLS) algorithm (Sih & Lee 1993) computes the dynamic

levels (DL) for all ready tasks. DL is the difference between the static level of a task

and its earliest start time on a processor, so every task has several DL’s. At each step,

the ready task-processor pair that maximizes DL is chosen for scheduling. When it

computes the static level, the computation time of a task is the median value of the

computation times of a task on the processors. The time complexity is)(3 pvO for v

tasks and p processors.

Levelized-Min Time (LMT) algorithm (Iverson et al. 1995) uses the so-called level to

sort tasks. A task in a lower level has higher priority than a task in a higher level.

Within the same level, the task with higher computation time has higher priority. Then,

the algorithm assigns the task to a processor so that the summation of the task’s

computation time and transfer time taken by all the required data for this task is

Chapter 2. Literature Review

19

minimum. For a fully connected DAG, the time complexity is)(22 pvO for v tasks

and p processors.

Heterogeneous Earliest-Finish-Time (HEFT) algorithm (Topcuoglu et al. 2002)

significantly outperforms DLS, MH and LMT in terms of average schedule length ratio,

speedup, etc. The HEFT algorithm selects the task with the highest b-level value at

each step and assigns the selected task to the processor that minimizes its earliest finish

time with an insert-based approach. When computing the priorities, the algorithm uses

the task’s average computation time on all processors and the average communication

rates on all links. The time complexity is)(epO for e edges and p processors. For a

dense graph, the time complexity is)(2 pvO for v tasks and p processors.

2.3.1.2 State space search reduction algorithms

Shen &Tsai (1985) treated the task assignment as a graph-matching problem and used

a state-space search method – A* algorithm to solve it. However, their model did not

consider the precedence relations between tasks. Wang & Tsai (1988) consider the

precedence relations between tasks into the model. Ajith & Murthy (1999) also used a

state space technique – A* algorithm to obtain an optimal allocation designed to

minimize the total turnaround time of all tasks. In Tom & Murthy (1999)’s method, the

state space search can be drastically reduced by scheduling independent tasks last.

2.3.1.3 Metaheuristic algorithms

Tripathi et al. (1996) presented a genetic task allocation algorithm for DCS. In this

algorithm, how to improve the initial population structures of GA’s is discussed by

finding that the incorporation of the problem specific knowledge into the construction.

Budenske et al. (1997) presented a GA for real-time on-line input-data dependent

Chapter 2. Literature Review

20

remappings of the tasks to the processors in the heterogeneous hardware platform

using previously stored and off-line statically determined mappings. Kwok & Ahmad

(1997) proposed a parallel GA-based algorithm with an objective to simultaneously

meet the goals of high performance, scalability, and fast running time. Ignatius &

Murthy (1997) presented an efficient heuristic algorithm based on simulated annealing

(SA) for solving the task allocation problem in DCSs.

2.3.1.4 Clustering algorithms (Sarkar 1989, Wu & Gajski 1990, Gerasoulis &

Yang 1992, Kim & Yi 1994, Yang & Gerasoulis 1994, Kwok & Ahmad

1996, Palis et al. 1996, Srinivasan & Jha 1999)

This group of algorithms maps the tasks to an unlimited number of clusters (UNC).

The basic idea of clustering algorithms is that, at the beginning of the scheduling

process, each node is considered as a cluster. In the subsequent steps, two clusters are

merged if the merging reduces the completion time. This merging procedure continues

until no cluster can be merged. The rationale behind the algorithms is that they can

take advantage of using more processors to further reduce the schedule length.

However, the clusters generated by the algorithm may need a post-processing step for

mapping the clusters onto the processors because the number of processors available

may be less than the number of clusters.

2.3.2 Dynamic scheduling

The dynamic scheduling heuristics can be grouped into two categories: on-line mode

and batch-mode heuristics. Both on-line and batch mode heuristics assume that

estimated expected task execution times on each machine in the computing system are

known (Ghafoor & Yang 1993, Kafil & Ahmad 1998).

Chapter 2. Literature Review

21

Chen et al. (1988) proposed a heuristic search algorithm called “dynamic highest level

first/most immediate successors first” (DHLF/MISF) to find a fast but sub-optimal

schedule. In this algorithm, the A* algorithm coupled with an efficient heuristic

function is bound to achieve a minimum-schedule length.

Sih & Lee (1993) presented a technique to use dynamically-changing priorities to

match tasks with processors at each step, and schedules over both spatial and temporal

dimensions to eliminate shared resource contention.

Zomaya & Teh (2001) developed a dynamic load-balancing genetic algorithm to

search optimal or near-optimal task allocations during the operation of the parallel

computing system. The algorithm considers other load-balancing issues such as

threshold policies, information exchange criteria, and interprocessor communication.

2.3.3 Genetic Algorithm, Tabu Search and Simulated Annealing and their

applications

There is one class of combinatorial optimization algorithms: general iterative

algorithms. Because of their ease of implementation and robustness in solving various

problems, more and more researchers use this kind of method to solve the

combinatorial optimization problems. We introduce three popular iterative algorithms:

Genetic Algorithm, Tabu Search and Simulated Annealing.

Genetic Algorithm (GA) is a search algorithm inspired by the mechanism of evolution

and natural genetics (Holland 1975, Goldberg 1989). GA starts with initial population

and an individual in the population is a string of symbols and is an abstract

representation of the solution. The symbol is called a gene and each string of genes is

termed a chromosome. The individuals in the population are evaluated by some fitness

measure. The population of chromosomes evolves from one generation to the next

Chapter 2. Literature Review

22

through the use of two types of genetic operators: (1) mutation which alters the genetic

structure of a single chromosome, and (2) crossover which obtains a new individual by

combining genes from two selected parent chromosomes. Based on the fitness value,

two individuals (parents) are selected from the population. The genetic operators

(crossover and mutation) are applied to the selected parents with some probability to

generate new possible solutions called offsprings. The performance of GA depends

largely on: 1) the representation of the solution to the problem, 2) parameter selection

(population size and probabilities of crossover, mutation), 3) crossover and mutation

mechanism. Genetic Algorithm (GA) has the following features. Firstly, GA guides its

search by evaluating the fitness of each solution instead of the optimization function.

Hence, we can implement GA’s to some problems the state space of which we are not

familiar with. Secondly, the algorithm is a multi-path approach that searches many

peaks in parallel, hence reducing the possibility of local minimum trapping. Thirdly,

GA explores the search space where the probability of finding improved performance

is high.

Kumar et al. (1995b) developed a GA for network topology design to maximize the

network reliability under different network constraints. The problems solved here deal

with optimizing those network parameters that characterize the network reliability.

Sena et al. (2001) presented a parallel version of a Genetic Algorithm and

implemented it on a cluster of workstations to obtain optimal and/or sub-optimal

solutions to the well-known Traveling Salesman Problem.

Tabu Search (TS) is a higher-level method for solving combinatorial optimization

problems (Glover 1989, 1990). TS starts from an initial feasible solution, makes

several neighborhood moves and then selects the move producing the best solution

while keeping track of the regions of the solution space which have already been

Chapter 2. Literature Review

23

searched so as not to repeat a search near these areas. In other words, TS uses the

memory to preserve a number of previously visited states along with a number of

states that might be considered unwanted. This information is stored in a Tabu List.

The performance of TS depends largely on 1) encoding of state space, 2) choice of the

neighborhood structure, 3) length of the Tabu list. These parameters are usually

difficult to select. In addition to the above Tabu parameters, two extra parameters are

often used: Intensification and Diversification. Intensification is to encourage move

combinations and solution features historically found good. They may also initiate a

return to attractive regions to search them more thoroughly. Diversification adds

randomness to this otherwise deterministic search.

Pierre & Elgibaoui (1997) used a Tabu Search to search the sub-optimal solutions for

network topology design to minimize the total communication cost with performance

and reliability constraints. Jozefowska et al. (2002) used Tabu Search for scheduling

jobs on parallel, identical machines with an additional continuous resource to minimize

the makespan.

Simulated Annealing (SA) is an iterative search method inspired by the annealing of

metals (Kirkpatrick et al., 1983, Cerny 1985). Starting with an initial solution SA tries

to minimize a cost function by making “moves”, which are occasionally accepted

solutions of higher values of the cost function with the probability controlled by a

parameter called temperature. One of the salient features of SA is that the probability

of acceptance of moves that increase the cost function exponentially decreases as

temperature decreases. The process ends as soon as temperature is low enough that no

further improvement can be expected. At high temperature, the search is almost

random, while at low temperature the search becomes almost greedy. At zero

Chapter 2. Literature Review

24

temperature, the search becomes totally greedy, i.e., only good moves are accepted

(Kirkpatrick et al. 1983, Cerny 1985).

In a large combinatorial optimization problem, an appropriate move mechanism, cost

function, solution space, and cooling schedule are required in order to find an optimal

solution with SA. Kim et al. (2002) presented a scheduling problem for unrelated

parallel machines with sequence-dependent setup times, using SA. Baykasoglu (2002)

presented a SA algorithm developed to solve the Flexible Job Shop Scheduling

Problem.

These algorithms have several similarities (Sait & Youssef, 1999):

1. They are approximation (heuristic) algorithms, i.e., they do not guarantee

finding an optimal solution.

2. They are blind, in that they do not know when they have reached an

optimal solution. Therefore they must be told when to stop.

3. They have “hill climbing” property, i.e., they occasionally accept uphill

(bad) moves.

4. They are general, i.e., they can easily be engineered to implement any

combinatorial optimization problem; all that is required is to have a

suitable solution representation, a cost function, and a mechanism to

traverse the search space.

5. Under certain conditions, they asymptotically converge to an optimal

solution.

In general, GA is easy to model and be applied to any type of optimization problems.

However, the quality of solution is usually not as good as those from TS and SA. SA is

ranked next (Pierre & Elgibaoui 1997, Jozefowska et al. 1998, Augugliaro et al. 1999,

Fu & Su 2000, Youssef et al. 2001) and TS highest as it can usually produce quite a

Chapter 2. Literature Review

25

good solution although the algorithm is more complicated to implement. The reason

that TS outperforms the GA and SA may be that TS has a memory mechanism.

2.4 Multi-objective optimization

 Many real-world optimization problems inherently involve multiple non-

commensurable and often competing objectives. For this kind of problem, optimizing

one of the objectives often means that other objectives have to be compromised.

There are three broad categories in solving multi-objective (MO) optimization

problems. Conventional MO optimization methods often combine these multiple

objectives into a single scalar, by using addition, multiplication or other combinations

of arithmetical operations. If the combination is possible, this approach is the simplest

one and the most computationally efficient one. However, it is very difficult to devise

such a method, because accurate scalar information on the range of objectives must be

known to avoid some objectives dominating others.

Alternatively, only one objective is optimized and the others are treated as constraints

(Erschler et al. 1976, Fox 1987). However, there is one potential pitfall in that the

algorithm may not be able to find a feasible solution because the problem is over-

constrained.

The third category is the Pareto based method, which uses the concept of Pareto’s

optimality to obtain a set of solutions instead of just one. Some related definitions are

described as follows:

A general multi-objective minimization optimization problem is a problem in

which the n objective functions nkfk ,,2,1, L= are simultaneously minimized.

Chapter 2. Literature Review

26

It is likely, however, that the objective functions are a nonlinear vector function

F of a general decision variable s in the whole solution space S ,

where))(,),(),(()(21 sfsfsfsF nL= .

Definition 2.1 (Pareto dominance): A given vector),,,(21 nuuuu L= is said to

dominate another vector),,,(21 nvvvv L= iff

iiii vunivuni <∈∃∧≤∈∀ },,,2,1{},,,2,1{ LL (2.1)

Definition 2.2 (Pareto-optimal): Given a set of solutions },,{ 21 msssS L= , a

solution Ssi ∈ is said to be Pareto-optimal iff no solution Ss j ∈ dominates

solution is .

Pareto-optimal solutions are also called non-dominated, efficient, and non-

inferior solutions. The corresponding objective vectors are referred to as non-

dominated. The set of all non-dominated vectors is called as the non-dominated

set, or tradeoff surface, of the problem.

Definition 2.3 (Pareto front): Given a multi-objective optimization function

)(sF and a set of Pareto-optimal solutionΩ , the Pareto-front is:

)|))(,),(()({ 1 Ω∈== ssfsfsFu nK (2.2)

Evolutionary algorithms are particularly suitable to solve multi-objective optimization

problems because they can produce a set of solutions simultaneously instead of just

one. Even in the late 1960s, Rosenberg (1967) considered the possibility of using

genetic-based search to solve the multi-objective optimization. Later, an early GA

application on multi-objective optimization by Schaffer (1985) opened a new avenue

of research in this field.

Chapter 2. Literature Review

27

As evolutionary algorithms need scalar fitness information to work, most research on

evolutionary multi-objective optimization are related to the fitness assignment. There

are three broad categories (Fonseca & Fleming 1995): aggregating function based

approaches, population based non-Pareto-based approaches, and population based

Pareto-based approaches.

2.4.1 Aggregating function based approaches

Given evolutionary algorithms that need a scalar fitness value to work, it is logical to

combine the multiple objectives into a single one using either an addition

multiplication or any other combination of arithmetical operations. The function of

combining objectives into one is normally referred to as aggregating function. The

main advantage of this method is that, if the combination of objectives is possible, it is

very simple and very efficient because no further interaction with the decision maker is

required. However the disadvantages of this method are very obvious. Some accurate

information on the range of the objectives has to be known to avoid having one of

them dominate the others. However, obtaining such information on each objective is

very computationally expensive. The following section introduces the most popular

aggregating approaches.

2.4.1.1 Weighted sum approach

The basic idea of this method is the addition of all the objective functions together

using different weighting coefficients for each one of them. The main strength of the

method is its computational efficiency which enables the generation of a strongly non-

dominated solution that can be used as an initial solution for other techniques. The

main weakness of the method is that the optimization process is sensitive to the

weights (Coello 1996) and that it is very difficult to choose appropriate weights

Chapter 2. Literature Review

28

without prior knowledge on the shape of the search space. It also suffers from the

disadvantage of excluding the concave portions of the trade-off curve (Coello 1996).

Gen et al. (1995, 1997) added fuzzy logic to handle the uncertainty involved in the

decision making process. A weighted sum is still used in this approach, but the

coefficients of the objectives are represented with fuzzy numbers reflecting existing

uncertainty regarding their relative importance.

2.4.1.2 Goal attainment

In this approach, the decision maker first provides a set of goals and weights.

For a k objectives minimization problem:

Minimize α

subject to: kixfwb iii ,,2,1)(L=≥+α (2.3)

where ib is the ith goal;

 α is a scalar variable unrestricted in sign;

 iw is the weight for ith objective, which is normalized, i.e., 1||
1

=∑
=

k

i
iw ;)(xfi

is the ith objective function.

The main advantage is that it is very simple to implement and is computational

efficient. The main disadvantage is the misleading selection pressure (Wilson &

MacLoud 1993). The selection pressure is the degree to which the better individuals

are favored; the higher the selection pressure, the more the better individuals are

favored. Hence, the higher the selection pressure, the faster the convergence rate.

Chapter 2. Literature Review

29

2.4.2 Population-based non-Pareto approaches

To overcome the difficulties of the aggregating approaches, several alternative

algorithms have been proposed. This section introduces some of the approaches.

2.4.2.1 Vector evaluated genetic algorithm (VEGA)

The basic idea of the VEGA is that the main population is divided into sub-populations

and selection is performed according to each objective function in each sub-population

(Schaffer 1985). These sub-populations would be shuffled together to obtain a new

population. The main advantage of this approach is its simplicity. The obvious

disadvantage is that it only manages to find certain extreme solutions along the Pareto

tradeoffs. In addition, the shuffling and merging of all sub-populations correspond in

fact to fitness averaging for each of the objective components. It therefore suffers from

the same disadvantage as does the linear combination of the objectives, i.e., the

inability to produce Pareto-optimal solutions in the presence of non-convex search

spaces (Richardson et al. 1989).

To deal with the first disadvantage, Schaffer (1985) suggested some heuristics. For

example, to use a heuristic selection preference approach for non-dominated

individuals in each generation or to crossbreed among the sub-population.

Cvetkovic et al. (1998) also proposed several approaches to overcome VEGA’s

problems. For example, to wait for a certain number of generations before shuffling

together the population, or to copy or migrate a certain number of individuals from one

sub-population to another. Interestingly, however, the nominally disadvantageous

tendency of VEGA to favor certain solutions can be of advantage when handling

constraints, because in this case favoring a solution that does not violate any constraint

over those which do is just what is needed. Surry et al. (1995), for instance, used

Chapter 2. Literature Review

30

VEGA to model constraints in a single-objective optimization problem to avoid the

need for a penalty function.

As an extension of VEGA, Lis and Eiben (1997) proposed a multi-sexual genetic

algorithm, where each individual has an additional feature of sex or gender and one

individual from each sex is used in recombination. There are as many sexes as the

optimization criteria and each individual is evaluated according to the optimization

criteria related to its sex.

2.4.2.2 Lexicographic ordering

The basic idea is that the objectives are ranked in order of importance by the designer

and then the optimum solution is obtained by minimizing the objective functions,

starting with the most important one and proceeding according to the assigned order of

importance of the objectives (Fourman 1985). In another version of this algorithm

(Fourman 1985), which apparently worked quite well, an objective was randomly

selected at each run. In the algorithm of Kursawe (1991), one of the objectives was

also selected randomly at each step according to a probability vector. The main

advantage of this method is that in some cases it overcomes the disadvantage of a

weighted sum of objectives enabling VEGA to see, as convex, a concave trade-off

surface. This does however depend on the distribution of the population and on the

problem itself. The main weakness in this approach is that it will tend to favor more

certain objectives when many are present in the problem, and so will not obtain the

whole trade-off surface.

2.4.2.3 Weighted Min-Max approach

The basic idea of this approach is to solve the optimization problems for each objective

separately to obtain the extremes of the objective functions. The desirable solution is

Chapter 2. Literature Review

31

then the one which gives the smallest values of the relative increments of all the

objective functions. The idea is taken from game theory which deals with solving

conflicting situations. The min-max approach to a linear model was proposed by

Solich (1969), and was further developed by Osyczka (1978, 1984), Rao (1986) and

Tseng and Lu (1990). The main advantage is its simplicity and computational

efficiency because it does not require checking for non-dominance. The main

disadvantage is that it can create a very high selection pressure if certain combinations

of weights are produced at early stages of the search (Coello 1999).

Hajela & Lin (1992) included the weights of each objective in the chromosome to

generate a set of Pareto-optimal solutions by varying the weighting coefficients. Coello

(1996) proposed two variations of the weighted min-max strategy used by Hajela &

Lin (1992). Ishibuchi & Murata (1996) proposed an algorithm similar to the weighted

min-max technique (Hajela & Lin 1992), which maintains adequate diversity (Bently

& Wakefield 1997). However, in some case, sharing techniques or a local research

technique have to be used to keep the diversity (Coello 1996).

2.4.3 Pareto based approaches

Goldberg (1989) proposed an idea of using Pareto-based fitness assignment to solve

the problems of Schaffer’s approach (Schaffer 1985). The basic idea is that all the non-

dominated individuals are assigned the highest rank and eliminated from the further

contention. Then, from the rest, another set of non-dominated solutions are assigned

the next highest rank. The process continues until the all individuals are ranked. The

Pareto method was found to outperform the Vector Evaluated Genetic Algorithm

(VEGA) method in some cases (Hilliard et al. 1989, Liepins et al. 1990, Ritzel et al.

1994).

Chapter 2. Literature Review

32

The main advantage of this method is that it is not sensitive to the shape or continuity

of the Pareto front, these two issues being of serious concern in mathematical

programming techniques (Coello 1999). The main disadvantage is that there is no

efficient algorithm to check for non-dominance in a set of feasible solutions (Coello

1996).

Goldberg (1989) also suggested using “niching” techniques to keep the individuals’

diversity. i.e., to prevent the individuals from converging to a single point on the front.

Hence, “niching” techniques can also prevent the GA becoming trapped in local

optima.

“Niching” techniques are based on the mechanism of natural ecosystems. An

ecosystem consists of several subspaces and different species. Every subspace supports

different species which compete to survive and are capable of interbreeding among

themselves but are unable to breed with individuals outside their groups. The search

space can be viewed as the ecosystem, a niche as a subspace and a group of individuals

with similar metrics as a species. For each niche, the resources are finite and must be

shared among the individuals of that niche. A niche is commonly referred to as an

optimum of the domain, the fitness representing the resources of that niche. By

analogy, niching methods tend to achieve a natural emergence of niches and species in

the system.

A well-known niching technique is the sharing method which was originally

introduced by Holland (1975) and improved by Goldberg and Richardson (1987).

Fitness sharing modifies the search landscape by reducing the payoff in densely

populated regions. Typically, the shared fitness '
if of an individual i with fitness if is

simply

Chapter 2. Literature Review

33

i

i
i m

f
f =' (2.4)

where im is the niche count which can be calculated as the following equation:

∑
=

=
N

j
iji dshm

1
)((2.5)

where N is the population size and)(ijdsh is the sharing function, representing the

similarity level between the individuals i and j . The most widely used sharing

function is given as following:





 <−=

otherwise
difddsh sijsij

ij
,0

,)/(1)(σσ α
 (2.6)

where ijd is the distance between individual i and j ; sσ denotes the threshold of

dissimilarity and α is a constant parameter which regulates the shape of the sharing

function.

Sharing methods tend to encourage search in unexplored regions of the solution space

and benefit the formation of stable niches. However, setting the threshold of

dissimilarity sσ requires a priori knowledge of how far apart the optima are. For real

world problems, the information on the distance between the optima is generally not

available. Various empirical formulas have been proposed to set the threshold of

dissimilarity but this problem remains the major flaw in the method (Mahfoud 1995).

On the other hand, a fixed threshold of dissimilarity is for all individuals. Hence the

sharing method can fail to work in cases where the optima are not equidistant or the

estimated distance between two peaks is incorrect.

Chapter 2. Literature Review

34

Another drawback of the sharing scheme is that the computation of niche counts is

very expensive. Clustering analysis (Yin & Germay 1993) and dynamic niching

(Miller & Shaw 1996) can reduce computational complexity and increase the sharing

effectiveness. In addition, when the computational time to compute the fitness of

individuals is far more expensive than the computational cost of sharing scheme,

standard sharing can be implemented with only a small increase in the computational

requirements.

Goldberg (1989) suggested a method to overcome the disadvantage of VEGA by

means of a non-dominated sorting procedure in conjunction with a sharing technique.

This non-dominated sorting procedure uses a ranking selection method to emphasize

good individuals and a niche method to maintain stable subpopulations of good

individuals.

Several algorithms based on this idea, have been proposed, including Multiple

Objective Genetic Algorithm (MOSA) (Fonesca & Fleming 1993) and Non-Dominated

Sorting Genetic Algorithm (NSGA) (Srinivas & Deb 1994). These methods

implemented Goldberg’s suggestion in different ways. The following section briefly

discusses the these algorithms and a Tabu-Based Exploratory Evolutionary Algorithm

(EMOEA) (Tan et al. 2003).

2.4.3.1 Multiple objective genetic algorithm (MOGA)

Fonseca and Fleming (1993) proposed to rank a certain individual according to the

number of the individuals that dominate it. All non-dominated individuals are assigned

rank 1, and the rank of a dominated one is one plus the number of the individuals that

dominate it. The fitness assignment is performed in the following way (Fonseca and

Fleming 1993):

Chapter 2. Literature Review

35

1. Sort the individuals according to the rank.

2. According to the method proposed by Goldberg (1989), assign fitness to

individuals by interpolating from the best rank 1 to worst rank n. Usually the

interpolation is linear, but not necessarily.

3. Average the fitness of the individuals with same rank, so all the individuals with

same rank are assigned to same fitness.

In this method, a number of individuals have the same fitness. This type of blocked

fitness assignment tends to cause premature convergence (Goldberg & Deb 1991). To

avoid this, a sharing on objective domain was used to distribute the population over the

Pareto-optimal region. The main advantages of the method are that it is efficient and

relatively easy to implement (Coello 1996). The main disadvantage is that its

performance is highly dependent on the selection of the threshold of dissimilarity.

2.4.3.2 Niched Pareto genetic algorithm

Horn & Nafpliotis (1994) proposed a tournament selection scheme based on Pareto

dominance instead of a non-dominated sorting and ranking selection method in solving

multi-objective optimization problems. Tournament selection is one of the most widely

implemented selection techniques for GA’s and involves selection of the best

individual from a subset comprising individuals randomly chosen from the current

population.. In this scheme (Horn & Nafpliotis 1994), two candidates for selection and

a comparison set of individuals are picked randomly from the population. Each of the

candidates is then compared with each individual in the comparison set. If one

candidate is dominated by the comparison set and the other is not the latter is selected

for reproduction. If neither or both are dominated by the comparison set, i.e., there is a

tie, then sharing is used to choose a winner.

Chapter 2. Literature Review

36

The main advantage of this method is that it is very fast because this approach applies

Pareto selection to a subset of the population instead of to the entire population at each

run. It can produce good non-dominated fronts that can be kept for a large generation

(Coello 1996). The main disadvantage is that the approach needs to select a suitable

size for the tournament to perform well (Coello 1999).

2.4.3.3 Non-dominated sorting genetic algorithm

Srinivas and Deb (1994) proposed the Non-dominated Sorting Genetic Algorithm

(NSGA). Before selection is performed, the population is ranked on the basis of non-

domination. Then all non-dominated individuals are classified into a first front. All

these individuals are assigned to the same dummy fitness to provide them with an

equal reproductive potential.. These classified individuals are then shared with their

dummy fitness value to maintain the diversity of the population. After sharing these

individuals are ignored temporarily and the rest of the individuals are dealt with by the

same process to form second front. The process continues until all individuals in the

population are classified into different fronts. The dummy fitness value should be

smaller than the minimum shared dummy fitness value of the previous front.

A stochastic remainder proportionate selection was used for this approach. Since

individuals in the first front have the maximum fitness value, they always get more

copies than the rest of the individuals. This results in quick convergence of the

population toward non-dominated regions and sharing helps to distribute it over this

region. The efficiency of NSGA lies in the way in which multiple objectives are

reduced to a dummy fitness function using a non-dominated sorting procedure. With

this approach any number of objectives can be solved and both maximization and

minimization problems can be handled.

Chapter 2. Literature Review

37

The main advantage of this method is that it can handle any number of objectives and

allows multiple equivalent solutions to exist. The main disadvantage is that it is

inefficient compared to MOGA (Coello 1996).

2.4.3.4 Tabu-based exploratory evolutionary algorithm (EMOEA)

Tan et al. (2003) proposed an exploratory multi-objective evolutionary algorithm

(EMOEA) that integrates the features of Tabu Search and evolutionary algorithm for

multi-objective optimization. In addition, a new “lateral interference” is presented to

distribute non-dominated individuals along the discovered Pareto-front uniformly. The

lateral interference can be performed without the need for parameter settings, unlike

many niching or sharing methods, and can be flexibly applied in either the parameter

or objective domain. Besides the lateral interference, the Tabu restriction also helps to

maintain the diversity of the solutions, which in turn helps to prevent the search from

becoming trapped in local optima as well as concurrently promoting the evolution

towards the global trade-offs. In addition, EMOGA offers a competitive behavior to

escape from local optima in a noisy environment.

38

Chapter 3

A Reliability Oriented Genetic Algorithm for Distributed

Computing Systems

Distributed computing systems (DCS) are common today as they provide cost-

effective design to achieve system reliability, availability and performance

requirements (Kumar et al. 1986, Raghavendra et al. 1988, Shatz et al. 1992, Kumar &

Agrawal 1993, Yeh & Chiu 2001, Wong & Dillon 2000). When the topology of a DCS

is fixed, the distributed system reliability (DSR) depends mainly on the assignment of

various resources such as programs and files (Kumar et al. 1986, Raghavendra et al.

1988). For systems with long mission times or with a large number of processors, an

improved program allocation can increase the system reliability dramatically (Shatz et

al. 1992).

DSR, which was first studied by Kumar et al. (1986), is defined as the probability for

all the distributed programs to work successfully. Note that the reliability concept here

is a general one depending on the definition of failure and other performance

requirements. Kumar et al. (1986) also presented an algorithm called MFST (Minimal

File Spanning Tree) to compute the DSR. A drawback of the MFST algorithm is that it

is computationally complex and prior knowledge about multi-terminal connections is

needed. Later an algorithm called GEAR (Generalized Evaluation Algorithm for

Reliability) was developed (Kumar & Agrawal 1993) to resolve the problem. Other

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

39

related algorithms have also been presented (Chen & Huang 1992, Chen & Lin 1992,

Chen & Lin 1994).

Reliability oriented task allocation problems have been studied extensively (Wang &

Shatz 1988, Shatz et al. 1992, Hwang & Tseng 1993, Kartik & Murthy 1997, Tom &

Murthy 1999, Vidyarthi & Tripathi 2001, Mahmood 2001).

The distribution of data files can also have impact on the reliability of distributed

systems (Dowdy & Foster 1982). Consequently, there has been research done on

reliability oriented file allocation (Pathak et al. 1991, Kumar et al. 1995a). Most

previous studies however considered the program allocation and file allocation

problems separately, whereas both should be optimally allocated simultaneously to

achieve the highest level of system reliability.

Chari (1996) presented a heuristic procedure for DCS design along with the location of

data files and programs, but the procedure aimed at minimizing the DCS cost. Chiu et

al. (2002) developed a reliability oriented heuristic algorithm to assign the files and

tasks for DCS with memory space (storage) constraints. However, speeding up

computation is one of the main reasons to build the DCS. If the storage capacity of one

processor is large enough for the storage of all programs and all files, the heuristic

algorithm of Chiu et al. (2002) assigns all programs and files to this processor, which

is not rational for a DCS. In fact, the assignment of programs and files is often

subjected to the completion time constraint and the cost constraint (Shatz et al. 1992).

In this chapter it is proposed to first construct a reliability oriented optimization model

with the storage constraints, cost constraint and completion time constraint by

considering both program allocation and file allocation together. Considering the

program and file allocation together and taking into account these constraints makes

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

40

the problem difficult to solve. It is this computational problem that is the subject of the

current study.

The problem has important practical applications. For example, many organizations

want to implement a common distributed information system by using their existing

computer and network resources. The system reliability is an important requirement in

this case. The topology of the system is fixed, so the system reliability depends mainly

on the program and file allocation. Generally the organizations have many computers

and are willing to offer these resources albeit with several resource constraints.

The chapter is organized as follows. Section 3.1 describes the DCS design problem and

an optimization model for the program and file allocation. Section 3.2 presents an

exhaustive search algorithm and a genetic algorithm to solve the optimization problem.

Section 3.3 presents two numerical examples to compare the two algorithms. Then,

some sensitivity studies are carried out for the investigation of important parameters.

Section 3.5 concludes this chapter.

3.1 Optimization model

3.1.1 Structure of the system

A typical DCS can be depicted by a graph as in Figure 3.1, where nodes denote the

processing elements, which are linked by the network. Each node includes a set of

programs and a set of files. In the DCS, successful execution of programs is dependent

on the successful access of necessary files distributed throughout the system.

Recall that Kumar et al. (1986) defined distributed program reliability (DPR) as the

probability that a given program can run successfully and be able to access all the

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

41

required files from remote sites in spite of some faults occurring among the processing

elements and the communication links.

Network

Processors
(4 to j-1)

Processors
(j+1 to n-2)

1N jN

nN

3N

2N

1−nN

Figure 3.1: n processors of a distributed system

Similarly, the DSR is defined as the probability that all programs perform successfully

in a DCS. To explain DSR, we first introduce a concept – file spanning tree (FST)

(Kumar et al. 1986) which is a tree that connects the root node, where the program

runs, to other nodes that hold all the files required for executing the given program. A

minimal file spanning tree (MFST) (Kumar et al. 1986) is an FST that contains no

subset FST.

The DPR is defined as

DPR = Pr(at least one MFST for the given program is working)

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

42

This can be written as

)Pr(
1
U
MFSTN

i
iMFSTDPR

=
= (3.1)

where MFSTN is the number of the MFST for the given program.

Similarly, the subgraph which provides all the required connections for executing all

the programs in the distributed system is referred to as a forest (Raghavendra et al.

1988). The minimal file spanning forest (MFSF) (Raghavendra et al. 1988) is defined

as the forest which contains no subset forest. Correspondingly, the DSR is given as

)Pr(
1
U
MFSFN

j
jMFSFDSR

=
= (3.2)

where MFSFN is the number of the MFSF for the given distributed system.

Different assignments of programs and files on a given distributed system lead to

different DSRs. The more copies there are of the programs the higher will be the DSR.

However, the budget for purchasing programs is usually limited. As each copy of the

programs requires a fixed amount of resource, the number of copies of each program is

also limited. Similarly, each node has a limited storage capacity and therefore the

number of copies of each file is also limited. A further constraint is that the completion

time for a transaction cannot be delayed beyond a certain deadline.

In order to maximize the DSR’s, subject to the above constraints, we need to determine

the optimum number of redundant copies of programs and files, and to then assign

them to various locations in the DCS. The optimization model is presented below.

3.1.2 Modelling and optimization of system reliability

Notations:

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

43

Cb: budget limit;

Cj: cost for a copy of program Pj;

Ct: completion time limit;

jF : j-th distributed file;

FN : number of files;

nN : number of nodes;

PN : number of programs;

ijNF : assignment of file Fj on the node Ni ;

ijNN : link between nodes Ni and Nj;

ijNP : assignment of program Pj on node Ni;

jP : j-th computing program;

→

jPF : set of files required by the j-th program jP ;

Sj: size of the j-th file Fj;

iSC : storage limit of node Ni;

Tij: completion time of program Pj at node Ni.

The topology of the distributed system is denoted by),,2,1,(nij NjiNN K= , which

has the value 1 or 0: 1=ijNN if there is a link between node iN and node jN , else 0.

Each copy of the program Pj spends the expected cost of Cj (j=1,2,…, NP). The

assignment of these programs is denoted by NPij (i=1,2,…, Nn; j=1,2,…, NP), which

has the value 1 or 0: NPij=1 if program jP is assigned to node iN , else 0. Thus, the

total cost for all the programs can be calculated by

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

44

 C = ∑∑
= =

n PN

i

N

j
ijj NPC

1 1
 (3.3)

There is usually a project budget for preparing the programs, which restricts the total

cost to be no greater than the budget limit denoted by Cb, i.e. C bC≤ .

A given program Pj executed at node Ni requires a completion time of Tij, i=1,2,…, Nn

and j=1,2,…, NP. Thus, the total completion time for the processing node Ni can be

computed by

∑
=

=
PN

j
ijiji NPTT

1
, i=1,2,…, Nn (3.4)

For a project, there usually exists a time constraint for all the nodes to complete their

own programs, such that the completion time of any node Ni cannot exceed the

completion time limit (Ct), i.e. ti CT ≤ for all i.

Each copy of the required file Fj has its own file size Sj, j=1,2,…, NF.

The assignment of these copies of files is denoted by NFij, i=1,2,…, Nn and j=1,2,…,

NF, which has the value either 1 or 0: NFij=1 if file jF assigned to node iN , else 0.

Thus, the total size of files stored in the processing node Ni can be computed by

∑
=

=
FN

j
ijji NFSZ

1
, i=1,2,…, Nn (3.5)

As the storage device of a node Ni has a limited capacity, the total size of files stored in

the node Ni cannot exceed its storage limit (SCi), i.e. ii SCZ ≤ for all i.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

45

The DCS consists of at least one copy of all the computing programs Pj, j=1,2,…, NP

and at least one copy of all the required files Fj, j=1,2,…, NF, which is denoted by the

basic constraints, i.e. 0
1

>∑
=

nN

i
ijNP , j=1,2,…,NP and ∑

=

>
nN

i
ijNF

1
0 , j=1,2,…, NF.

Based on the above conditions, our objective is to maximize the DSR. The DSR can be

computed by an algorithm called GEAR (Kumar & Agrawal 1993), which is a

generalized algorithm for evaluating DSR. In order to compute DSR, the following

variables are required to be known: the topology of the distributed system

nij NiNN ,,2,1, K= and nNj ,,2,1 K= ;the computing programs {P1,P2……
PNP } and

the program allocation nij NiNP ,,2,1, K= and PNj ,,2,1 K= ; the files required by

each program Pj NjPF ,,2,1, K=
→

 and the file allocation nij NiNF ,,2,1, K= and

FNj ,,2,1 K= ; and the reliability of the links.

GEAR (Kumar & Agrawal 1993) evaluates all the sub-networks that satisfy the file

requirement for given programs. The inputs of the algorithm include the topology of

the network, the program allocation, file allocation and the reliability of the links. In

each step, the algorithm updates four vectors: program vector (PV), file vector (FV),

reliability vector (RV) and loop vector (LV). PV keeps the information that which

required programs have been found; correspondingly, FV keeps the information that

which required files have been found. RV maintains the information about the links in

the subnetwork and is used to computer the DSR. LV keeps the information about the

nodes that have been traversed in a subnetwork. Form a root node, GEAR searches the

adjacent nodes in parallel and updates PV, FV, RV, and LV. RV is updated in such a

way that all the terms in the RV are disjoint, so they can be added directly to get the

reliability expression.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

46

There are two termination rules of a search path. One is that all programs and the

required file have been found, as indicated by the PV and FV. Another is that all

nodes have been traversed, as indicated by LV. The RV of each terminal node that

satisfies the first termination rule, is the reliability term. The DSR is the sum of all

these reliability terms. More details of the evaluation process can be found in the paper

of Kumar & Agrawal (1993).

In our optimization model, the topology of the distributed system nij NiNN ,,2,1, K=

and nNj ,,2,1 K= , the computing programs {P1, P2,…,
PNP } and the files required by

the programs {
→→→

pNPFPFPF ,,, 21 K } are assumed to have already been obtained. The

optimization model for program and file assignment can be stated as following.

Decision variables: NPij , i=1,2,…, Nn; j=1,2,…,NP,

NFij, i=1,2,…, Nn; j=1,2,…,NF.

Object function:

Maximize),,,,(ilikkkij NFNPPFPNNfDSR
→

= (3.6)

 where FPn NlNkNji ,,2,1;,,2,1;,,2,1, KKK ===

Constraints:

 Basic Constraints:

 0
1

>∑
=

nN

i
ijNP , j=1,2,…,NP, (3.7)

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

47

 ∑
=

>
nN

i
ijNF

1
0 , j=1,2,…,NF, (3.8)

 Cost Constraint:

 b

N

i

N

j
ijj CNPC

n P
≤⋅∑∑

= =1 1
 (3.9)

 Completion Time Constraint:

 ∑
=

≤⋅
PN

j
tijij CNPT

1
, i=1,2,…, Nn (3.10)

 Storage Constraints:

 i

N

j
ijj SCNFS

F
≤⋅∑

=1
, i=1,2,…, Nn (3.11)

3.2 Solution algorithms

In order to obtain the solution for the above optimization model, an exhaustive search

algorithm and a genetic algorithm are presented. The exhaustive algorithm can

guarantee the optimal solution but is computationally complex. The genetic algorithm

can effectively find a good solution but cannot guarantee the optimal result every time.

3.2.1 Exhaustive search algorithm

The exhaustive search algorithm consists of the following steps:

Step 1: Set maximum DSR (DSRMax) to 0 and set optimum program and file

allocation set {PFLOpt} to Ф.

Step 2: Select a new program and file allocation PFLNew={ }mnij NFNP , from

{0,0,…,0} to {1,1,…,1} by changing 0 to 1 one by one.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

48

Step 3: If the PFLNew fits the basic constraints, cost constraint, completion time

constraint and storage constraints, go to step 4. Otherwise, go to step 2.

Step 4: Use GEAR algorithm to calculate the new allocation’s DSR (DSRNew).

Step 5: If NewMax DSRDSR < , set Φ=}{ OptPFL and add NewPFL into {PFLOpt}.

Otherwise if NewMax DSRDSR = , add NewPFL into {PFLOpt}.

Step 6: Are all the allocations from {0,0,…,0} to {1,1,…,1} searched? If yes,

go to step 7. Otherwise, go to step 2.

Step 7: Output the optimum allocation set {PFLOpt} and the maximum DSR

(MaxDSR).

The result of {PFLOpt} contains all the optimal assignments that can obtain the

maximum DSR (MaxDSR) without violating any of the constraints.

Although this exhaustive search algorithm can guarantee the finding of all the optimal

assignments, the effectiveness of the algorithm is low. A more effective algorithm will

be developed in the following subsection.

3.2.2 Genetic algorithm implementation

A genetic algorithm is an evolutionary optimization technique, which is a rapidly

growing area of artificial intelligence. Genetic algorithms are inspired by Darwin's

theory of evolution based on the survival of the fittest species as introduced by Holland

(1975) and further described by Goldberg (1989). Some genetic operators for this

optimization problem are first introduced and then the general procedures are

presented.

3.2.2.1 Operators

Chromosome encoding

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

49

Since the purpose of the chromosome is to represent whether the program or file is

placed on the corresponding node or not, every chromosome is a list of binaries

corresponding to { }mnij NFNP , . Hence, the length of the chromosome is

FnPn NNNNN ** += .

Selection

We implement Roulette Wheel Selection here. Parents are selected according to their

fitness. Fitter chromosomes have large fitness value, more chance the random number

falls into their scope. Hence, the fitter the chromosomes are, the more chances they

have of being selected. The basic process can be described as follows:

1. Calculate the sum of all chromosome fitnesses in population – Sall.

2. Generate a random number from the interval (0, Sall)-r.

3. Go through the population and sum the fitness from 0 - sum s. When the sum

s is greater then r, stop and the current chromosome is selected.

For example, suppose that there are four chromosomes in the population and their

fitnesses are 0.8, 0.9, 0.85, 0.95 respectively. The Roulette Wheel Selection procedure

is as follows:

1. The sum is 0.8 + 0.9 + 0.85 + 0.95 = 3.3

2. The random number is 2

3. (0.8 + 0.9) < 2 < 0.8 + 0.9 + 0.85, the third chromosome is selected.

If we use the DSR as the fitness, the difference is very small between the

chromosomes and therefore it does not provide enough discrimination between

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

50

chromosomes with very close DSR. This is especially so when most chromosomes are

close to the optimal solution. To overcome this problem we use the following fitness

function:

)ln(
1

DSR
Fitness −

= (3.12)

Since DSR is between 0 and 1, ln(DSR) will tend to 0 and the Fitness will tend to

infinity as the DSR tends to 1. Thus, Equation (3.12) can enlarge the difference

between the chromosomes and give a chromosome, whose DSR is closer to 1 and just

a little larger than the others, more chance of being selected.

Crossover

In crossover, two new chromosomes are formed by swapping the sets of genes of two

parent chromosomes. In a program and file assignment problem, crossover diversifies

the population by swapping parts of the two parent chromosomes selected randomly. A

chromosome resulting from a crossover may comprise a combination of program and

file assignment that is infeasible requiring an adjustment to be made as below.

Mutation

To avoid convergence to a local optimum as the population size increases, the

mutation operation is used more frequently. Every bit of the chromosome has the

predefined probability – mutation rate to be selected as the mutation site. If the

corresponding bit is 1, it is changed to 0, and vice versa. The mutated chromosome

must satisfy all the constraints or else adjustment is required as below.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

51

Adjustment

There are various methods of handling constraints, for example, penalty function,

adding repair operators, or just discarding the infeasible solution. In the current case, it

is difficult to find an effective and efficient penalty function. The method of discarding

the infeasible solution is most suited to the case where the infeasible solutions appear

infrequently. However, if infeasible solutions appear frequently but can be adjusted to

feasible solutions without too much computational cost, repair operators are efficient

and effective.

Our algorithm is of this type and therefore we have selected the repair operators to

handle constraints. In this section, repair operators are referred to as adjustment.

1) Basic Constraint Adjustment:

If the number of copies of any program jP is 0, i.e. 0
1

=∑
=

nN

i
ijNP , a random node iN is

selected and a copy of this program is put on it, i.e. ijNP is changed to 1. The

allocation, however, is not allowed to violate the completion time constraint.

If the number of copies of a file jF is 0, i.e. ∑
=

nN

i
ijNF

1
, a random node iN is selected

and a copy of this file is put on it, i.e. ijNF is changed to 1. The allocation, however,

is not allowed to violate the storage constraint.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

52

2) Cost Constraint Adjustment

If the chromosome does not satisfy the cost constraint, a random copy of the program

that has the largest number of copies is inversed to 0. This adjustment is repeated until

the chromosome satisfies the cost constraint.

3) Completion Time Constraint Adjustment

If some nodes do not meet the completion time constraint, there are two possible

adjustments depending on the conditions. First, if every program presenting on the

infeasible nodes has just one copy in the DCS, i.e.),2,1(,1
1

P

N

i
ij NjNP

n
K∈=∑

=
,

randomly select a program presenting on the infeasible nodes and transfer it to another

feasible node. Otherwise, any program presenting on the infeasible nodes that has the

largest number of copies is inversed to 0. The above adjustments are repeated until the

adjusted chromosome satisfies the completion time constraint.

4) Storage Constraint Adjustment

If some nodes do not meet the storage constraints, then in a similar method to that used

for completion time adjustment, the adjustment is done in one of two ways depending

on the conditions applying. If every file presenting on the infeasible nodes has just one

copy in the DCS, i.e.,)2,1(,1
1

F

N

i
ij NjNF

n

K∈=∑
=

, randomly select a program

presenting on the infeasible nodes and transfer it to another feasible node. Otherwise,

any file presenting on the infeasible nodes that has the largest number of copies is

inversed to 0. The above adjustments are continued until the adjusted chromosome

satisfies the storage constraint.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

53

3.2.2.2 Implementation procedure

Based on the above operators, the general procedures for the GA to solve this

optimization problem are as below:

Step 1: Encode the solutions into chromosomes;

Step 2: Generate an initial population;

Step 3: Selection;

Step 4: Crossover;

Step 5: Mutation;

Step 6: Do the chromosomes satisfy the constraints? If yes, go to step 8; and if

no, go to step 7;

Step 7: Adjustment;

Step 8: If the number of generations reach a predetermined value (termination

criteria), stop GA; and if no, go to step 3;

This optimization problem can be effectively solved by GA according to the above

procedures. Some numerical examples are shown in the next section.

3.3 Numerical examples

In this section, two numerical examples are illustrated. The first one is a four-node

system and the result of the GA is compared with that of the exhaustive search

algorithm. The second example is a ten-node system. All algorithms have been

implemented in VC++ 6.0 on a Pentium II 266 MHZ processor with 128 M of RAM. It

is shown that GA can provide good solution within acceptable time but the exhaustive

search algorithm cannot finish the execution within an acceptable time.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

54

3.3.1 A four-node distributed computing system

The topology of the four-node DCS is depicted in Figure 3.2.

N1

N2

N3

N4

Figure 3.2: Topology of a four-node DCS

There are three computing programs to be executed in the DCS (P1, P2, P3). Files

needed for program execution, link reliability used, and completion times of programs

are shown Tables 3.1-3.3. The costs of each program are 1, 6, 4, respectively, and there

is a cost limit of 15. The size of each file is 3, 5 and 2, respectively. The storage

constraints are assumed to be 5, 5, 5, 1 for each node.

Table 3.1: Required files for program execution

Programs Needed Files
P1 F1,F2
P2 F1,F3
P3 F3

Table 3.2: Link reliabilities of a four-node distributed system

Node 1 2 3 4
1 1 0.9 0.7
2 0.9 1 0.75 0.9
3 0.75 1 0.6
4 0.7 0.9 0.6 1

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

55

Table 3.3: Completion time of each program and the completion time constraint

 Node
Program 1 2 3 4

1 2.0 3.0 1.5 2.0
2 4.0 6.0 3.1 4.0
3 6.0 9.0 4.5 6.0

Completion Time Constraint 6

An exhaustive search algorithm was used to search for the optimal assignment of the

four-node DCS and two optimum solutions were found. The maximized reliability of

the four-node DCS is 0.8745. The optimum assignments are shown in Table 3.4.

Table 3.4: Optimum allocation for the four-node DCS

Nodes N1 N2 N3 N4
Programs P1,P2 P3 P3

Solution1

 Files F1,F3 F2 F2

Nodes N1 N2 N3 N4
Programs P1,P2 P3 P3

Solution2

 Files F2 F1,F3 F1,F3

The GA was also implemented to solve the same problem. The parameters of GA are

given below: Population size: 50; Mutation probability: 1.0%; Crossover probability:

70%; and Generation: 40. The GA was repeated 10 times, and results are given in

Table 3.5.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

56

Table 3.5: The result of the GA algorithm for the optimum allocation

Solutions Frequency DSR Nodes N1 N2 N3 N4
Programs P1,P2 P3 P3 1

4

0.8745

 Files F1,F3 F2 F2

Programs P1,P2 P3 P3 2

3

0.8745
 Files F2 F1,F3 F1,F3

Programs P1 P2 P3 P3 3

2

0.864
 Files F1,F3 F2 F2

Programs P1,P2 P3 4

1

0.8115
 Files F2 F3 F1,F3

Table 3.5 shows the GA cannot guarantee optimum solutions but most results are

optimal or near optimal. The average computing duration was 7.8s which was far less

than that of the exhaustive search algorithm. With the same parameters, the GA ran

1000 times and the result statistics are presented in Table 3.6:

Table 3.6: The result statistics of the GA

DSR 0.8745 0.864 0.8115
Frequency 408 344 248
Computing duration 6.303

Table 3.6 shows that, in this case, the probability of the GA finding the optimum

solution is the highest (40.8%), which means that the GA can obtain the optimum

solution most often when the state space is small. The computing duration of the

exhaustive search algorithm is about 60 seconds while the average computing duration

of the GA is about 6.303 seconds. It is obvious that GA can obtain the optimal or sub-

optimal solution in less time than the exhaustive search algorithm does. For some

complex DCS’s, the exhaustive search algorithm may not therefore be an acceptable

method.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

57

3.3.2 A ten-node distributed computing system

The topology of the ten-node distributed system is depicted by Figure 3.3. The DCS

involves ten programs and twelve files. Files needed for program execution, link

reliabilities and constraints are shown in Table 3.7 – 3.12. The parameters of GA are as

follows: Population size: 50; Mutation probability: 1.0%; Crossover probability: 70%;

and Generation: 50.

The ten solutions obtained by the GA are listed in Table 3.13 below.

N1

N2

N3 N5

N9 N8

N7

N6

N10

N4

Figure 3.3: Topology of a ten-node DCS

Table 3.7: Needed files for program execution

Programs P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Needed Files
F1,
F2,
F4

F2,
F4

F3,
F5

F4 F5,
F3

F6,
F11

F7,
F12

F8 F9 F10

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

58

Table 3.8: Link reliabilities of a ten-node distributed system

Nodes 1 2 3 4 5 6 7 8 9 10
1 1.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.95
2 0.90 1.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.80 1.00 0.95 0.00 0.00 0.00 0.00 0.00 0.99
4 0.00 0.00 0.95 1.00 0.90 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.90 1.00 0.80 0.00 0.95 0.00 0.00
6 0.00 0.00 0.00 0.00 0.80 1.00 0.85 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 0.00 0.85 1.00 0.95 0.00 0.00
8 0.00 0.00 0.00 0.00 0.95 0.00 0.95 1.00 0.90 0.00
9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.90 1.00 0.85

10 0.95 0.00 0.99 0.00 0.00 0.00 0.00 0.00 0.85 1.00

Table 3.9: Cost of each program and the cost constraint

Programs P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

 Cost 1 2 4 2 3 5 4 2 3 2
Cost Constraint 35

Table 3.10: Completion time of each program and the completion time constraint

 Node
Program 1 2 3 4 5 6 7 8 9 10

1 2.0 3.0 4.0 2.0 3.0 4.0 6.0 3.0 2.5 1.0
2 3.0 4.5 6.0 3.0 4.5 6.0 9.0 4.5 3.8 1.5
3 2.6 3.9 5.2 2.6 3.9 5.2 7.8 3.9 3.3 1.3
4 4.0 6.0 8.0 4.0 6.0 8.0 12.0 6.0 5.0 2.0
5 5.0 7.5 10.0 5.0 7.5 10.0 15.0 7.5 6.3 2.5
6 3.4 5.1 6.8 3.4 5.1 6.8 10.2 5.1 4.3 1.7
7 2.2 3.3 4.4 2.2 3.3 4.4 6.6 3.3 2.8 1.1
8 3.2 4.8 6.4 3.2 4.8 6.4 9.6 4.8 4.0 1.6
9 3.8 5.7 7.6 3.8 5.7 7.6 11.4 5.7 4.8 1.9

10 2.8 4.2 5.6 2.8 4.2 5.6 8.4 4.2 3.5 1.4
Completion Time Constraint 10

Table 3.11: Size of each file

Files F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12
Size 3 5 2 3 4 2 5 3 2 1 3 2

Table 3.12: Size constraint of each node

Node N1 N2 N3 N4 N5 N6 N7 N8 N9 N10
Storage Constraint 5 5 5 1 10 15 7 2 5 4

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

59

Table 3.13: Solution for the ten-node DCS by GA

Solutions DSR Duration (s)

1 0.915 381
2 0.913 429
3 0.917 460
4 0.915 412
5 0.915 415
6 0.901 373
7 0.908 365
8 0.910 360
9 0.911 374
10 0.921 422

Table 3.14: One of the best assignments (DSR=0.921) among the ten solutions

Nodes Programs Files Nodes Programs Files
N1 P2,P3 F2 N6 F1,F6,F9,F10,F11,F12
N2 F1,F6 N7 F1,F10,F11
N3 P4 F5 N8 P7 F9
N4 P1,P6 N9 P5 F3,F4
N5 P9 F7,F8,F9 N10 P7,P10 F6,F12

From Table 3.13, the maximum reliability that GA can find in ten iterations is 0.921

with one of the assignments as shown in Table 3.14. As no results have ever been

presented for a model which considers both program and file allocation, there are no

benchmarks available in the literatures to assess the quality of the GA solution for

large problems. Also, there are no relaxation techniques available to obtain some

upper-bound benchmarks for this kind of problems. In this situation, we can only use

statistical data (mean and standard deviation) to assess the quality of the GA solution

for large problems.

The mean of reliability was 0.913 and the standard deviation was 0.0055. The average

computing duration was 399.1 seconds. We believe that these results confirm the

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

60

effectiveness of GA in finding a good enough assignment in an acceptable execution

time.

3.4 Sensitivity analysis

In our optimization model, some of the parameters such as the costs of programs and

completion times usually have to be estimated from a source that may not be accurate.

Sensitivity analysis have therefore been carried out to determine the effect of these

parameters on the optimal assignment of programs and files and the consequent effect

on DSR. Such analyses should be helpful to practitioners in determining the accuracy

required for this data

3.4.1 Sensitivity to the expected cost of programs

The expected cost Cj of a copy of program Pj is affected by the price fluctuation of

software market. A sensitivity analysis of the expected cost parameter C2 is shown in

this section, and similar studies can also be implemented in analyzing other cost

parameters.

Taking the example of four-node computing system, let the expected cost C2 of each

copy of P2 change from 0 to 10 to see the influence of the cost on the optimal

assignment of programs and files when other parameters are fixed. Table 3.15 shows

the results of the sensitivity analysis.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

61

Table 3.15: Sensitivity analysis of the program cost parameter

One of the assignment Number of Copies
C2 N1 N2 N3 N4 DSR P1 P2 P3 Total
0 P3 P2 P1,P2

1 F1,F3 F2 F2
2
3

P1

0.8745 2 2 1 5

4 P1,P2, P3, P3,
5 F1,F3 F2 F3

6

F2

0.8745 1 1 2 4

7 P3 P2 P1
8 F1,F3 F2 F1
9

P1

0.864 2 1 1 4

P1,P2 P3
10 F1,F3 F2

0.8115 1 1 1 3

In general, as the expected cost of program P2 increases, the DSR decreases due to the

number of redundant copies of the programs being reduced by the limitation of budget.

From Table 3.13, we can observe that there are four different solutions of assignment

when C2 changes from 0 to 10:

1) 30 2 ≤≤ C , the budget is sufficient to purchase 2 copies of P1 and P2 and one copy

of P3 (totally 5 copies). With this selection, the maximum DSR can reach 0.8745 by

means of one of the assignments given in Table 3.13;

2) 64 2 ≤≤ C , the budget is sufficient to purchase 1 copy of P1 and P2 and 2 copies of

P3 (totally 4 copies), and the maximum DSR can also reach 0.8745;

3) 97 2 ≤≤ C , the budget is sufficient to purchase 2 copies of P1 and 1 copy of P2 and

P3 (totally 4 copies), and the maximum DSR is reduced to 0.864;

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

62

4) Finally, when 102 =C , the budget is only sufficient to purchase one copy of all the

programs (totally 3 copies), so the DSR decreases to 0.8115 according to the optimal

assignment presented in Table 3.15.

The sensitivity analysis shows that, with C2 in the range 0 to 6, the maximum DSR is

robust to the fluctuation of program prices its value being maintained at 0.8745.

The second range of C2 with a total of 4 copies of programs has the same DSR as the

first range with a total of 5 copies of programs. This shows that having too many

redundant copies of programs in a distributed system may sometimes be inutile.

3.4.2 Sensitivity to the completion time

The predetermined completion time constraint (Ct) may fluctuate in practice for

reasons such as customer requirement changes. Hence the system designer may also

want to know what the effect of the Ct fluctuation has on the solved optimal

assignment of programs and files.

A sensitivity approach is proposed here to analyze the influence of Ct on the optimal

solution. Again taking the four-node example in Section 3.3.1, let Ct change from 4 to

13 with the other parameters unchanged. The results for the sensitivity analysis are

given in Table 3.16.

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

63

Table 3.16: Results for the sensitivity to the changes of completion time constraint

Ct DSR Assignment
 N1 N2 N3 N4

Number of Nodes Free
from Executing Programs

4 0

5

0.8115

P2
F1,F3

P1
F2

P3
F2

P1

0

6 0.8745
7 0.8745

P1,P2
F1,F3 F2

P3
F2

P3

1

8

0.9315

P1,P3
F1,F3

P2
F2

P3
F2

1

9

0.942

P1,P2
F1,F3

P3
F2

P3
F2

1

10 0.942
11 0.942

P2,P3
F1,F3

P1
F2

P1
F2

1

12 0.942
13 0.942

P1,P2,P3
F1,F3 F2 F2

3

As shown in Table 3.16, over the range in Ct from 4 to 9, the more time there is

available for all the programs (Ct), the higher the DSR that can be obtained according

to the optimal assignment. With 12≥tC there is no influence of time constraint (Ct)

on the DSR when all the programs can be completed on a single node, such as N1. On

the other hand, if 5.4<tC , the DSR will always be 0 because the least completion

time of program 3P is 4.5.

3.5 Discussions

Some related work is worth mentioning here. Kumar et al. (1995a) developed a genetic

algorithm (GA) to solve a file allocation scheme. In their scheme, the objective

function was to maximize the distributed program reliability (DPR) when the topology

of the system, program distribution, files needed for program execution and reliability

parameters were given. From the viewpoint of system level, the distributed systems

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

64

reliability (DSR) can describe the system better than the DPR. Hence, the objective of

our optimization model was to maximize the DSR. When the number of programs is

set to 1, the objective to maximize DSR is the same as maximizing DPR, the objective

function in Kumar et al. (1995a).

At the same time, when the topology of the DCSs is given, the DSR depends mainly

on the allocation of various resources such as the assignment of programs and needed

files (Kumar et al. 1986, Raghavendra et al. 1998). Hence, to maximize the DSR, the

file allocation and program allocation should be considered together. Our algorithm

deals with both the program allocation and file allocation to maximize the DSR. When

the program allocation is fixed, the models will degenerate to the file allocation

problem discussed by Kumar et al. (1995a).

In the optimization model of Kumar et al. (1995a) the different constraints, for

example, the total number of copies of each file and the memory constraint at each

node, are discussed. In our model, some additional constraints such as the cost

constraint and completion time constraints are considered. Although more constraints

make the GA more difficult to implement, they make the optimization model more

practical.

Kartik & Murthy (1997) presented a heuristic algorithm to solve the program

allocation problems for maximizing the DSR. In their algorithm, the network topology

of the computer system was assumed cycle-free, which means that there exists one

unique path between any pair of nodes.

Our optimization model does not limit the topology because GEAR (Kumar &

Agrawal 1993) used by our model does not limit the network topology of the computer

system. In addition our optimization model permits redundancies, which is a more

Chapter 3. A Reliability Oriented Genetic Algorithm for DCS

65

general situation and considers both the program allocation and file allocation together..

Our optimization model is therefore more general and practical than that of Kartik &

Murthy (1997).

This chapter presented an optimization model that considered file allocation and

program allocation together. Two solution algorithms were developed to solve the

problem. The first is an exhaustive search algorithm, which can guarantee to find all

the optimum solutions but at the expense of long run-time. The second is a genetic

algorithm, which is more effective in run time than the first (especially for some

complex DCS’s). The genetic algorithm is therefore strongly recommended when the

DCS is too complex to be solved by the exhaustive algorithm in an acceptable time,.

A sensitivity analysis was also conducted, which showed that extending completion

time might improve the DSR and release more computers for alternative tasks without

sacrificing the DSR.

66

Chapter 4

A Reliability Oriented Tabu Search for Distributed

Computing Systems

In Chapter 3, an optimization model for program and file assignment with the

objective to maximize the distributed system’s reliability (DSR) was presented and a

Genetic Algorithm (GA) was proposed to solve the problem. For many combinatorial

optimization problems, Genetic Algorithm can provide excellent results. For example

Vidyarthi & Tripathi (2001) used a simple GA to optimize the reliability of a DCS

with task allocation, which provided better results than that of Shatz et al. (1992).

However, GA is a population-based search, and requires the evaluation of multiple

prospective solutions (i.e., a population) over many generations. Hence, for some

complex problems, GA’s may need significant amount of computational effort.

Tabu Search (TS) is a competing meta-heuristic method for many of the same large

and complex combinatorial optimization problems. Beginning with an initial feasible

solution, successive “moves” to superior solutions are made within a neighborhood. To

avoid convergence to a local optimum, particular moves are temporarily deemed to be

“tabu”.

Combined with other methods, TS can provide even better results. Budenbender et al.

(2000) propose a hybrid Tabu Search/Branch-and-Bound algorithm to solve a

transportation network design problem. Chen & Lin (2000) combined Tabu search and

Chapter 4. A Reliability Oriented Tabu Search for DCS

67

noising method to solve a special version of the task allocation problem that included

both capacity constraint and number of task constraints along with the inclusion of

fixed cost.

Unlike GA’s, TS is not population-based but successively moves from solution to

solution. This offers some potential for improved efficiency if it also provides the same

or improved quality of solutions for the same execution time. Pierre & Elgibaoui (1997)

applied a Tabu Search to the topological design of computer networks with a reliability

constraint and this provided better solutions than GA and Simulated Annealing (SA).

Balicki & Kitowski (1993) considered three evolutionary algorithms to solve a three-

criteria optimization problem of finding a set of Pareto-optimal task assignments, and

finally recommended the algorithm with Tabu mutation. Subrata & Zomaya (2003)

used GA, TS, and ant colony algorithm (ACA) to solve the reporting cells planning

problem, and TS showed the best performance.

In some cases, however, GA outperforms TS. Mayer et al. (1998) concluded that TS

had methodological flaws when applied to multi-dimensional systems with continuous

independent variables, and GA’s were found to be both efficient and successful for this

kind of problem. Braun et al. (2001) compared 11 different heuristics including GA,

TS, SA and A*
 for mapping a class of independent tasks onto heterogeneous DCSs.

The results showed that GA consistently gave the best results.

As there are the widely differing views on the efficiency of available methods, this

chapter compares GA and TS to gauge their suitability for solving the program and file

allocation problem.

The chapter is organized as follows. Section 4.1 describes a TS algorithm to solve the

optimization problem. Section 4.2 reports on two numerical examples to compare GA

Chapter 4. A Reliability Oriented Tabu Search for DCS

68

and TS. Section 4.3 presents a parallel TS to further improve the performance of the

TS. Section 4.4 reports the computational results of the parallel TS. Finally, Section

4.5 presents the conclusions of the chapter.

4.1 A TS algorithm

The optimization model has been presented in Chapter 3. In order to obtain the

solution for this optimization model, an exhaustive search algorithm and a genetic

algorithm were presented. In this chapter, a TS algorithm is proposed to solve the same

problem. The exhaustive algorithm can guarantee the optimal solution but is

computationally complex and, for large scale problems cannot obtain the optimal

solution in an acceptable time. Therefore, for small-scale problems, the results of the

exhaustive algorithm were used to evaluate the results of TS and GA. For large scale

problems, the results of the TS and the GA were compared with each other.

TS, developed by Glover (1989, 1990), is a general purpose heuristic technique. It has

been successfully applied to a variety of combinatorial problems. An important feature

of TS is the Tabu list (also called the short-term memory) which records those solution

states that are not permitted at the current iteration. Restricting the next move to only

non-Tabu state solutions can prevent cycling and help to overcome local optimality.

However, this may result in rejecting some worthwhile moves. Therefore, a solution

state remains “tabu” only for a number of iterations.

In this research, TS combined with branch-and-bound is employed and particular

features such as “back-tracking” and “restarting” are incorporated. At the same time, a

greedy algorithm was used to generate an initial solution.

Chapter 4. A Reliability Oriented Tabu Search for DCS

69

4.1.1 Basic initial solution

We attempt to construct an initial feasible, and hopefully good, solution by a greedy

algorithm as follows:

• Compute the priority of each node and sort them

First, compute the priorities of the nodes which is defined as the following

equation:

)1(1)Pr(
1

)(,∏
=

−−=
il

j
jtii RN (4.1)

where

iN is the node i;

)(, jtiR is the reliability of the link between node iN and node)(jtN ;

)(jt is the jth node which is directly linked with node iN ;

il is the number of the nodes which are directed linked with node iN .

After computing the priorities of the processors, sort the processors into the

processor sequence according to their priorities in descending order.

 Compute the priority of each program and sort them. The priority of the

program is the number of the file that the corresponding program needs. The

programs are sorted into the program sequence according to their priority in

descending order

 Compute the priority of each file and sort them. The priority of the file is the

number of the programs that need the file. The files are sorted into the file

sequence according to their priority in descending order.

Chapter 4. A Reliability Oriented Tabu Search for DCS

70

• Assign the programs and files to the processor

Programs are assigned in the program sequence to the processors until

Completion Time Constraint is violated. After this, the next processor in the

processor sequence is chosen and the procedure is repeated until all the

programs are assigned.

Files are assigned in the file sequence to the processors until Storage

Constraints are violated. After this, the next processor in the processor

sequence is chosen and the procedure is repeated until all the files are

assigned. This method can guarantee that the solution is feasible.

As the feasible solutions obtained by the greedy algorithm can be far away from

optimal in terms of the objective function value, we designed an improved algorithm

that attempts to improve the initial solution. It combines the branch-and-bound

optimization algorithm with TS. The whole solution space can be partitioned into

subsets according to the number of the copies of the programs and files. Where the

number of copies of the program and file are at maximum we refer to this as the

saturated state case. In this case, different copies of the program or file are treated as

different elements. We refer to the different copies of the program Pi as Pi (j); and

different copies of the file Fi as Fi(j).

Proposition 1: Given two program and file sets A and B, if the number of copies of

each program or file in set A is not less than the number of copies of the corresponding

program or file in set B, then the reliability of the optimal allocation of the set A is not

worse than that of the optimal allocation of the set B.

Chapter 4. A Reliability Oriented Tabu Search for DCS

71

Proof:

Given program and file sets A and B, where the copies of each program or file in set A

are not less than corresponding copies of program or file in set B, i.e., AB ⊆ .

Let C denotes the set which consists of the different elements of set A and set B;

*
bDSR denote the DSR when the set B is optimally allocated;

 *
aDSR denote the DSR when the set A is optimally allocated;

 *
bS denote the set of all the sub-networks that satisfy the program requirement

and file requirement when the set B is optimally allocated;

 aS denote the set of all the sub-networks that satisfy the program requirement

and file requirement when the set B is optimally allocated and the set C is randomly

allocated;

 *
aS denote the set of all the sub-networks that satisfy the program requirement

and file requirement when the set A is optimally allocated.

If BA = , then **
ba DSRDSR = .

If AB ⊂ ,

Because the DSR is computed by evaluating all the subnetworks(or sub-trees)

that satisfy the program requirement and file requirement (Kumar & Agrawal

1993), then

)(**
bb SfDSR =

Chapter 4. A Reliability Oriented Tabu Search for DCS

72

αα)1()1)(1(1)()(****
bbbcbaa DSRDSRDSRSSfSfDSR −+=−−−=+==

where cS is the increase of the sub-networks due to the set C.

α is the reliability of the extra subnetworks set cS .

It is evident that: 0≥cS , so 0≥α ;

1* ≤bDSR ; so 0)1(* ≥− bDSR ; so 0)1(* ≥− αbDSR ;

So *
ba DSRDSR ≥

And it is evident that: aa DSRDSR ≥* .

So **
ba DSRDSR ≥ .

■ QED

The above result suggests that we only need to search the program and file sets which

are in saturated states.

4.1.2 Neighborhood and candidate list

Because the neighborhood significantly affects the solution quality, it is necessary to

clarify how the neighborhood is defined.

The neighborhood of current solution is a subset of the whole solution space, in which

each solution can be reached from current solution by an operation called a move.

A common way to explore a neighborhood is to generate a candidate list of the

possible moves and then to evaluate each one until an acceptance criterion is met.

However, the neighborhood to be examined can be quite large for the problem. An

Chapter 4. A Reliability Oriented Tabu Search for DCS

73

answer to this is to use an appropriate candidate list strategy which selects a subset of

the available moves to narrow down the examination of the elements of the

neighborhood. The simplest of these strategies is to simply pick this subset at random

(Reeves 1993) — a random subset candidate list strategy. Because the neighborhood is

totally random, we therefore adopt the random candidate list strategy.

4.1.3 Definition of moves

Adaptation of TS to a specific problem mainly relies on the definition of moves. The

moves describe how to explore the neighborhood. In this case, there are eight kinds of

moves: add program, add file, reduce program, reduce file, exchange programs,

exchange files, move program, and move file.

• Add program: Randomly select a program. This program should not belong to

the “Tabu List of Added Programs” and adding one more copy of this program

should not violate the cost constraint. Then add one copy of this program to a

randomly selected processor that should satisfy completion time constraints.

• Add file: Randomly select a file. This file should not belong to the “Tabu List

of Added Files”. Then add one copy of this file to a randomly selected

processor that should satisfy storage constraints.

• Reduce program: Randomly select a program which has more than one copy,

then delete it.

• Reduce file: Randomly select a file which has more than one copy. Then delete

it.

• Exchange programs: Two different programs on different processors exchange

their locations. The new solution should not belong to the “Tabu List of

Chapter 4. A Reliability Oriented Tabu Search for DCS

74

Solutions”. After exchanging, the corresponding two processors should satisfy

the completion time constraint.

• Exchange files: Two different files on different processor exchange their

locations. The new solution should not belong to the “Tabu List of Solutions”.

After exchanging, the corresponding two processors should satisfy the storage

constraints.

• Move program: Move a randomly selected program on a randomly selected

processor to another processor. The new solution should not belong to the

“Tabu List of Solutions”. After moving, the processor should satisfy the

completion time constraint.

• Move file: Move a randomly selected file on a randomly selected processor to

another processor. The new solution should not belong to the “Tabu List of

Solutions”. After moving, the processor should satisfy the storage constraint.

4.1.4 Tabu lists

There are four Tabu lists: “Tabu List of Solutions”, “Tabu List of Added Programs”,

“Tabu List of Added Files” and “Tabu List of Program and File Set”.

• “Tabu List of Solutions” records the recent solutions.

• “Tabu List of Added Programs” records the recent programs which were added

to processors.

• “Tabu List of Added files” records the recent files which were added to

processors.

• “Tabu List of Programs and File Set” records the recent program and file set.

Chapter 4. A Reliability Oriented Tabu Search for DCS

75

4.1.5 Intensification strategies

Intensification strategies are designed to encourage solution features historically found

to be good. They may also initiate a return to an attractive region to search it more

thoroughly. In this research, two types of intensification strategies are implemented

which may be viewed as a form of back-tracking.

Type 1 intensification strategy: After the predefined number (I1) of moves from the

solution x, if a better solution than the solution x cannot be found, then return to the

solution x.

Type 2 intensification strategy: During the searching of the set of programs and files S,

a best solution was found. After searching the predefined number (I2) of different

program and file sets, a better solution than the best solution found in the set S cannot

be found, then search the program and file set S again.

4.1.6 Diversification strategies

TS diversification strategies are designed to lead the search into new regions and by

this means can increase the effectiveness of exploring the solution space. The main

purpose of diversification is to prevent searching processes from cycling. In addition,

diversification can impart robustness to the search.

In this chapter, one diversification strategy, namely restarting, is implemented. Thus

within the program and file set, we search the solution space for a predefined time

before changing to a different program and file set.

4.1.7 The procedures of TS

The procedures of TS used in the chapter are the following:

Notations:

Chapter 4. A Reliability Oriented Tabu Search for DCS

76

bestDSR : DSR of bestx ;

tempbestDSR : DSR of tempbestx ;

S : current program and file set;

bestS : program and file set where bestx was found;

NTL : Tabu List of Program and File Set;

x : current solution;

bestx : the best solution found until now;

tempbestx : the temporary best solution;

The DSR of solution x can be computed by)(xfDSR = .

1. Generate an initial feasible solution x ; Φ=NTL

2. xxbest = ;)(bestbest xfDSR =

3. while s<s-max do

4. while (x satisfies cost constraint and completion time constrain) do

5. Add program and update the “Tabu List of Added Programs”

6. end while

7. while (x satisfies storage constraints) do

8. Add file and update the “Tabu List of Added Files”

9. end while

10. if NTLS ∉ then

11. Update the NTL

12. xxbest = ;)(tempbesttempbest xfDSR =

13. while t < t-max do

14. Implement the type 1 intensification strategy

Chapter 4. A Reliability Oriented Tabu Search for DCS

77

15. Sequentially implement one of “Exchange programs”,

“Exchange files”, “Move program”, “Move file” and update

“Tabu List of Solutions”

16.)(xfDSR =

17. if tempbestDSRDSR > then

18. xxtempbest = ; DSRDSRtempbest =

19. end if

20. t = t + 1

21. end while

22. Implement the type 2 intensification strategy

23 if besttempbest DSRDSR >

24. tempbestbest xx = ; tempbestbest DSRDSR =

25. end if

26. end if

27. while (x satisfy the basic constrain) do

28. Reduce program

29. Reduce file

30. end while

31. s = s + 1

32. end while

33. Return the best solution bestx and bestDSR

Chapter 4. A Reliability Oriented Tabu Search for DCS

78

4.2 Numerical examples

In this section, two numerical examples are illustrated. The first one is a four-node

system and the results of the TS and GA are compared with that of an exhaustive

search algorithm. The second example is a 10-node system and the result of the TS is

compared with that of a GA. All algorithms have been implemented in VC++ 6.0 on a

Pentium III 500 MHZ processor with 128 M of RAM.

4.2.1 A four-node distributed computing system

An exhaustive search algorithm was used to search the optimal assignment for the

same four-node DCS used in section 3.3.1 and two optimum solutions were found. The

maximized reliability of the four-node DCS is 0.8745 and the computing duration is 42

seconds.

A TS and GA were also implemented to solve the same problem. The parameters of

TS are given in Table 4.1 and those of GA in Table 4.2. TS and GA were run 1,000

times and the resulting statistics are shown in Table 4.3.

Table 4.1: The parameters of TS for 4 node DCS

Length of "Tabu List of Solutions" 10
Length of "Tabu List of Added Programs" 1
Length of "Tabu List of Added Files" 1
Length of “Tabu List of Program and File Sets" 3
I1 10
I2 20
s-max 25
t-max 50

Table 4.2: The parameters of GA for 4 node DCS

Population size 50
Mutation probability 1.0%
Crossover probability 70%
Generation 40

Chapter 4. A Reliability Oriented Tabu Search for DCS

79

Table 4.3: The result statistics of the TS and GA for four node DCS

Maximized DSR 0.8745
DSR 0.8745 0.864 0.8115
DSR/DSRmax 100% 98.80% 92.80%
Frequency (TS) 86.3% 13.7% 0
Frequency (GA) 72.7% 15.6% 11.7%
 TS (s) GA (s)
Mean Computing duration 2.372 3.86
Maximal Computing duration 4 5
Minimal Computing duration 2 3

The exhaustive search algorithm could find two optimal solutions and the maximized

DSR was 0.8745 in 42 seconds. As shown in Table 4.3, the TS cannot guarantee

optimal solutions but most results are either optimal or near optimal. In this case the

probability for the TS to find the optimum solution is 86.3%, which means that the TS

can get the optimum solution most often when the state space is small. The average

computing duration of the TS is about 2.372 seconds which is far less than the duration

time of exhaustive search algorithm. It is evident that TS can obtain the optimal or

good enough solutions in far less time than that required by the exhaustive search

algorithm. The performance of GA is very similar to that of TS, i.e., GA can also

obtain the optimal or good enough solutions in far less time than that required by the

exhaustive search algorithm. Comparing the results of TS with those of GA shows

however that TS outperforms the GA with shorter computing time and better solution

quality.

4.2.2 A ten-node distributed computing system

For the same 10-node distributed system as used in section 3.3.2, incorporating 10

programs and 12 files, the exhaustive algorithm cannot be run to completion. Hence

only TS and GA were used to solve this example problem. The parameters of TS are

given in Table 4.4 while those of the GA are shown in Table 4.5.

Chapter 4. A Reliability Oriented Tabu Search for DCS

80

Table 4.4: The parameters of TS for 10 node DSC

Length of "Tabu List of Solutions" 50
Length of "Tabu List of Added Programs" 5
Length of "Tabu List of Added Files" 5
Length of “Tabu List of Program and File Sets" 10
I1 10
I2 20
s-max 25
t-max 50

Table 4.5: The parameters of GA for 10 node DSC

Population size 50
Mutation probability 1.0%
Crossover probability 70%
Generation 50

TS and GA were run 100 times, respectively, to get an accurate representation of the

actual mean value. The statistic results are shown in Table 4.6. In the Table, mean

DSR is the average of the solution values obtained from the 100 runs. It represents the

expected DSR obtained using the algorithms. Mean duration is the average of the

computing times and represents the expected duration.

Table 4.6: The result statistics of the TS and GA for ten node DSC

 TS GA
Mean DSR 0.927 0.923
Min DSR 0.913 0.901
Max DSR 0.946 0.941
Standard Deviation of DSR 0.006 0.004
Mean Duration 118.8 268.4
Min Duration 103 200
Max Duration 139 295

Table 4.6 shows that in this case TS obtained a mean DSR of 0.927. This is higher

than the mean DSR of 0.923 obtained by GA . The maximum DSR that TS obtained

was 0.946 which is higher than the maximum DSR of 0.941 obtained by GA. Also, the

Chapter 4. A Reliability Oriented Tabu Search for DCS

81

minimum DSR TS obtained was 0.913 which is higher than and the minimum DSR of

0.901 obtained by GA.

To make it easy to read the results, we present them as a histogram in Figure 4.1. The

histogram clearly shows that TS produces solutions of better quality than those

produced by GA.

The mean computing duration of TS was 118.8 seconds which is far less than the mean

computing duration of GA at 268.4 seconds. Hence we conclude that in this case TS

outperforms GA with shorter computing time and better solution quality.

0

5

10

15

20

25

30

0.
91

3

0.
91

7

0.
92

0

0.
92

4

0.
92

8

0.
93

1

0.
93

5

0.
93

8

0.
94

2

M
or

e

DSR

Fr
eq

ue
nc

y

TS
GA

Figure 4.1: Histogram of the results of TS and GA for 10 node DCS

4.3 A Parallel Tabu Search

For this reliability oriented program and file allocation problem, TS outperforms GA.

However, in some practical settings where scheduling must be produced within a short

time interval, TS may not finish execution within the time limit. To reduce the

Chapter 4. A Reliability Oriented Tabu Search for DCS

82

execution time, a possible method is to parallelize the algorithm. Hence, a Parallel

Tabu Search (PTS) is proposed to further improve the performance of the TS.

The PTS has almost the same procedures as the sequential TS. However, the initial

solution generation is different from that of the sequential one. The sequential one uses

a greedy algorithm to generate one initial solution, but the parallel one needs multiple

initial solutions, which should all be different in order to search the solution space

along different trajectories. Initial solutions are generated randomly, but all of them

should be in saturated state.

There are three types of parallelization strategies that are often used in combination

optimization:

1) Parallelization of operations within an iteration of the solution method,

2) Decomposition of problem domain or search space,

3) Multi-search threads with various degrees of synchronization and cooperation.

For this problem, the solution space can be partitioned into subsets, e.g. different

program and file sets, so multiple search paths are maintained in parallel to search

different subsets and accelerate the TS. The implementation runs on a network of

workstations and follows a master-slave scheme. Each slave performs a partial TS, e.g.

from step 12 to step 22 in the sequential TS, and the master co-ordinates the work and

feeds the slaves with a new program and file set in the saturated state.

Chapter 4. A Reliability Oriented Tabu Search for DCS

83

4.4 Computation results of PTS

The parallel TS was coded in C++ and process communications were handled by the

message passing interface (MPI) software. The algorithm was implemented on a

cluster of PCs and each PC is with a Pentium processor IV 2.4 GHZ processor.

The ten-node DCS described in Chapter 3 is again used to measure the performance of

the proposed PTS. The results confirm that the PTS can find near-optimal solutions

within acceptable execution times. It is worth noting that the PTS only searches the

program and file sets that are in the saturated state that the number of copies of the

programs and files is as large as possible. This is a kind of branch and bound method

to make the search space far smaller than the original one. Consequently, the run time

is reduced significantly.

The PTS also uses the random subset candidate list strategy to reduce the search space

because even within one program and file set the search space is quite large. In

addition, the PTS searches the regions more thoroughly by using two intensification

strategies, and in these regions the probability is high that better solutions can be found.

Furthermore, the PTS also uses a diversification strategy to overcome the local

optimality and to increase the effectiveness and the robustness in exploring the

solution space.

The results obtained support the idea that TS is a general-purpose heuristic technique

and that a well-designed TS can obtain near-optimal solutions in acceptable time,

especially when TS combines with other optimization techniques.

The speedup was used to measure the performance of the PTS. This is defined as the

ratio between the sequential and parallel running time: iTTispeedup /)(1= , where 1T is

Chapter 4. A Reliability Oriented Tabu Search for DCS

84

the running time of the sequential program and Ti is the running time of the parallel

program on i processors.

The results presented in Figure 4.2 indicate that the speedup of the PTS basically

grows linearly when the number of processor is not very large. A possible reason for

this is that the solution space is partitioned into subsets; every processor searches a

subset; and only small amount of communication is needed. In this situation, the

speedup would be expected to be roughly linear.

1
2
3
4
5
6
7

1 2 3 4 5 6 7 8

Number of Processors

Sp
ee

du
p

Figure 4.2: Speedup of the PTS

In addition, the mean of the solutions was computed for each case when processor

number changes. This is shown in Table 4.7 where it can be seen that increasing the

number of processors has negligible effect on the solution quality.

Chapter 4. A Reliability Oriented Tabu Search for DCS

85

Table 4.7: The result statistics of the PTS when the processor number changes

Processor Number Mean Standard

Deviation
1 0.94448 0.00175
2 0.94496 0.00189
3 0.94468 0.00172
4 0.94430 0.00154
5 0.94452 0.00157
6 0.94451 0.00171
7 0.94523 0.00190
8 0.94438 0.00166

4.5 Conclusions

In this chapter a TS was developed to solve the same program and file assignment

problem as that presented in Chapter 3 with the objective of maximizing the DSR. The

results of the TS were compared with those of GA. The results of the two numerical

problems considered showed that TS outperformed GA with shorter computing time

and better solution quality. However, it was evident that the design of a good TS

requires far more insight into the problem and that much more effort is needed

compared with the requirements for implementing a good GA for the same problem.

Hence if we do have good knowledge of the state space, TS should be used, otherwise,

GA may be a better choice.

To further improve the performance of the sequential TS, a PTS was proposed. The

numerical results showed that the speedup of the PTS basically grew linearly when the

number of processor was not very large. The simulation result also showed that the

solution quality was not obviously affected by the number of processors used.

86

Chapter 5

A Completion Time Oriented Iterative List Scheduling for

Distributed Computing Systems

In Chapters 3 and 4, a system reliability oriented allocation model was presented and

several algorithms were proposed to solve the problem. Beside system reliability, the

completion time is another very important requirement for distributed computing, so

the scheduling of parallel applications to minimize the overall completion time

(schedule length) is highly critical. A popular representation of the parallel application

is the directed acyclic graph (DAG) in which the nodes represent application tasks and

the directed arcs or edges represent inter-task dependencies. As the problem of finding

the optimal schedule is NP-hard (Gary & Johnson 1979) in the general case, extensive

heuristic algorithms have been proposed. These algorithms may be broadly classified

into the following four categories:

• Task-Duplication-Based (TDB) scheduling (Papadimitriou & Yannakakis 1990,

Colin et al. 1991, Palis et al. 1996, Ahmad & Kwok 1998, Darbha & Agrawal

1998, Park & Choe 2002, Kang & Agrawal 2003)

• Bound number of processors (BNP) scheduling (Hwang et al. 1989, McCreary

& Gill 1989, Wu & Gajski 1990, Maheswaran & Siegel 1998, Park & Kim

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

87

2002, Radulescu & Gemund 2002, Topcuoglu et al. 2002, Dhodhi et al. 2002,

Diaz et al. 2003, Oguz et al. 2003)

• Unbounded number of clusters (UNC) scheduling (Sarkar 1989, Wu & Gajski

1990, Kim & Yi 1994, Yang & Gerasoulis 1994, Kwok & Ahmad 1996,

Srinivasan & Jha 1999)

• Arbitrary network topology (ANP) scheduling (El-Rewini & Lewis 1990, Sih

& Lee 1993)

In TDB scheduling, the basic idea is to reduce the communication overhead by

redundantly allocating some tasks to multiple processors. Non-TDB algorithms which

assume arbitrary task graphs with arbitrary time on nodes and edges can be divided

into two categories: one category assumes that the processors are fully connected to

each other meaning that there is no communication contention; the other category

assumes that the processors are linked by an arbitrary network topology (ANP)

meaning that the scheduling process must consider the communication contention. The

former category can be divided into further two categories: unbounded number of

clusters (UNC) scheduling algorithms and bound number of processors (BNP)

scheduling.

The algorithm presented in this chapter belongs to the last category, which is the most

common case in the real world. More detailed descriptions and classifications of

various scheduling strategies can be found in Kwok & Ahmad (Kwok & Ahmad

1999b).

List scheduling is a very popular method for BNP scheduling. The basic idea of list

scheduling is to assign priorities to the tasks of the DAG and place the tasks in a list

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

88

arranged in descending order of priorities. A task with a higher priority is scheduled

before a task with a lower priority and ties are broken using some method. To compute

the priorities of the tasks, the DAG must be labeled with the computation time of the

tasks and the communication times of the edges. We differentiate the computation

time label of a task in a DAG from the actual computation times of a task on all the

processors, and refer to the former as the time-weight of the task. Similarly we refer to

the communication time label of an edge on the DAG as the time-weight of the edge.

In a homogeneous distributed computing system, the computation times of a task on

different processors are the same. Hence the time-weight of a node is its computation

time on any processor. Similarly, in a homogeneous DCS, the communication times

between two tasks on any link are same. Hence the time-weight of an edge is the

communication time between the corresponding two tasks on any link.

In a heterogeneous DCS, on the other hand, the computation times of a task on

different processors may be different, and so is the communication times between two

tasks on different links. Hence, the time-weight of every node and the time-weight of

every edge, which are labeled on the DAG, have to be computed during the scheduling

process.

Several variant list schedulings have been proposed to deal with the heterogeneous

environment, for example, Mapping heuristic (MH) (El-Rewini & Lewis 1990),

Dynamic-Level Scheduling (DLS) algorithm (Sih & Lee 1993), Levelized-Min Time

(LMT) algorithm (Iverson et al. 1995), and Heterogeneous Earliest-Finish-Time

(HEFT) algorithm (Topcuoglu et al. 2002).

The HEFT algorithm significantly outperforms the DLS algorithm, MH and LMT

algorithm in terms of average schedule length ratio, which is normalizing the schedule

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

89

length to a lower bounder (Topcuoglu et al. 2002), speedup etc. The HEFT algorithm

selects the task with the so-called highest upward rank value at each step and assigns

the selected task to the processor, which minimizes its earliest finish time with an

insert-based policy. When computing the priorities, the algorithm uses the task’s mean

computation time on all processors and the mean communication rates on all links. We

believe that use of the mean is inadequate for task scheduling.

In this chapter, we propose an iterative algorithm that uses list scheduling for task

allocation in heterogeneous computing systems. The algorithm generates an initial

solution with moderate quality and then improves the solution iteratively. The priority

for constructing the scheduling list and the processor selection policy are selected

according to the conclusions of Kwok and Ahmad (Kwok Ahmad 1999a).

In each iteration step, the time-weights of the nodes and edges of the DAG are updated

using results from the previous iteration. The initial solution is obtained by the mean

computation times of all tasks on all processors as the time-weight of the

corresponding node and the mean communication time of all communication links as

the time-weight of the corresponding edge. During the iterative steps, the results of the

previous iteration are used to compute and update the time-weights of the nodes and

edges in order to construct a new list. The algorithm keeps the best solution found

during the iterations and returns it on termination. The initial step happens to be the

same as the HEFT algorithm (Topcuoglu et al. 2002). However, with subsequent

schedule improvements, it can potentially find better schedules than the other

algorithms mentioned above.

The algorithm has been tested on a large number of randomly generated problems of

different sizes and two real applications. It was found that in the majority of the cases,

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

90

there were significant improvements made to the initial schedules, which means that

the proposed algorithm outperforms HEFT, DLS, MH, and LMT algorithms in terms

of the average schedule length. In particular, the algorithm performs better when the

tasks to processors ratio is large.

This chapter is organized as follows. Section 5.1 provides a formal description of the

task scheduling problem. Section 5.2 introduces our scheduling algorithm. Section 5.3

gives a numerical example. Section 5.4 investigates the performance of our algorithm

in various heterogeneous computing systems. Finally Section 5.5 draws some

conclusions.

5.1 Task-scheduling problem

Notations:

lkjic ,,, : communication time from task iv to task jv when task iv was

assigned to processor kp and task jv was assigned to processor

lp ;

s
jic , : time-weight of the directed edge from task iv to task jv during

the s-th iteration which is used to compute the priorities of the

tasks;

jid , : data transfer size (in bytes) from task iv to task jv ;

jie , : directed link from i-th task to j-th task;

),(ji pvEST : earliest computation start time of task iv on processor jp ;

),(ji pvEFT : earliest computation finish time of task iv on processor jp ;

p: number of processors available in the system;

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

91

ip : i-th processor in the system;

jir , : communication rate (in bytes/second) between processor ip and

processor jp ;

v: number of tasks in the application;

iv : i-th task in the application;

jiw , : computation time to complete task iv on processor jp ;

s
iw : time-weight of task iv during the s-th iteration, which is used to

compute the priorities of the tasks.

An application is represented by a directed acyclic graph G=(V, E), where V is the set

of v tasks that can be executed on any of the available processors; E ⊆ V × V is the set

of e directed arcs or edges between the tasks representing the dependency between the

tasks.

For example, if Ee ji ∈, , then task jv cannot start before task iv completes its

execution. A task may have one or more inputs. When all its inputs are available, the

task is triggered to execute. After its execution, it generates its outputs. A task with no

parent node in the DAG is called an entry task and a task with no child node in the

DAG is called an exit task.

Without lost of generality, we assume that the DAG has exactly one entry task entryv

and one exit task exitv . If multiple exit tasks or entry tasks exist, they may be connected

with zero time-weight edges to a single pseudo exit task or a single entry task that has

zero time-weight. In addition, the system includes a set of p processors which are

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

92

assumed to be fully linked. Hence there is no communication contention (Darbha &

Agrawal 1998).

We assume that there is just one task executing on a processor at any one time and

each processor is equipped with a queue to hold tasks waiting to execute on the

processor. When all inputs of a task are available, the task is triggered to execute. After

its execution, the outputs are generated. Once the execution of a task is completed, the

processor is assumed to be immediately available for the execution of the next task

scheduled on that processor. However, it is possible for a task to receive data from

predecessors while another task is been executed, and likewise, it is possible for a task

to send data to successor tasks. Furthermore, the output data items produced by the

completed task are assumed to be available for all successor tasks to be executed on

that processor. If multiple output data items produced by a task are to be transferred to

successor tasks scheduled on other processors, then these data items are assumed to be

transferred to their respective destination concurrently.

The communication time lkjic ,,, from task iv to task jv , when task iv was assigned to

processor kp and task jv was assigned to processor lp is

lkjilkji rdc ,,,,, /= (5.1)

The earliest execution start time on processor jp of entry task entryv is

0),(=jentry pvEST (5.2)

To compute the earliest execution start time of other tasks, the assignment of the

immediate predecessor tasks must be known. Let us assume that mv is one of the

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

93

immediate predecessor tasks of iv and mv was assigned to the processor np . The

earliest execution start time of task iv on processor kp is

)}),((max),,(max{),(,,,)(knimnmvpredvkiki cpvEFTpvAvailablepvEST
im

+=
∈

 (5.3)

where),(ki pvAvailable is the earliest time when processor kp is available for task iv

execution;)(ivpred = { vm ∈ V | emi ∈ E} is the set of immediate predecessors of task

iv ; knimc ,,, is the communication time between task mv and task iv given that task mv

was assigned to processor np and task iv was assigned to processor kp . The inner

maximization block in Equation (5.3) returns the ready-time, i.e., the time when all

data needed by task iv have arrived at processor kp .

The earliest execution finish time on processor ep of entry task entryv is

),(eentry pvEFT = eentryw , (5.4)

For other tasks, the earliest execution finish time of task iv on processor kp is

),(),(, kikiki pvESTwpvEFT += (5.5)

After all tasks in the DAG have been scheduled to satisfy all precedence constraints,

the schedule length SL is the earliest finish time of the exit task exitv . That is

SL =),(xexit pvEFT (5.6)

where exit task exitv has been assigned to processor xp .

The primary objective of the scheduling problem is to minimize the schedule length SL

by determining the assignment of tasks to processors subject to the tasks dependency

constraints.

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

94

5.2 Iterative list scheduling algorithm

5.2.1 Graph attributes used by our algorithm

The time length of a directed path from tasks iv to jv is defined as the sum of all the

time-weights of the tasks (including iv and jv) and time-weight of the edges along the

path between iv and jv .

A critical path (CP) of a DAG is a path from the entry task to exit task, whose time

length is the maximum. The bottom-level (b-level) (Kwok & Ahmad 1999a) of task iv

is the longest time-length from task iv to the exit task and is bounded by the time-

length of the critical path of the graph. The b-level of a task is a dynamic attribute

because the time-weight of an edge may be zeroed when the two incident tasks are

scheduled to the same processor.

5.2.2 The priority selection

Kwok and Ahmad (1999a) compared several list scheduling algorithms on a common

homogeneous platform and concluded that the Modified Critical-Path (MCP) (Wu &

Gajski 1990) algorithm performs better than others in terms of schedule length and

running time of algorithms. The MCP algorithm uses the as-late-as-possible (ALAP)

time of a task as the priority.

The ALAP time of a task is computed by first computing the time length of CP and

then subtracting the b-level of the task from it. First, the MCP algorithm computes the

ALAP times of all the tasks and then constructs a list of tasks in ascending order of

ALAP times. Ties are broken by considering the ALAP times of the children of a task.

The tasks on the list are then scheduled using the insertion approach, one by one to a

processor that allows the earliest possible start time.

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

95

Because the length of the CP is a constant, our algorithm uses the b-level of a task as

the priority. Our algorithm first computes the b-levels of all tasks and then constructs a

list of tasks in descending order of b-level values. Ties in b-levels are recursively

broken using the b-levels of the tasks’ children.

5.2.3 Scheduling list construction

To construct the scheduling list for the initial solution, the time-weight of every task

must be known. The initial time-weight of task iv is assigned the mean value of the

computation time of task iv on all processors. That is

p

w
w

p

j
ji

i

∑
== 1

,
0 (5.7)

Similarly, the initial time-weight of the edge from tasks iv to jv based on the mean

value across all the fully connecting links is

)2/)((2
1

1
,

1

,0
,

ppr

d
c p

k
lk

p

kl

ji
ji

−

=

∑ ∑
−

= +=

 (5.8)

At the s-th iteration, suppose task iv was allocated to processor kp and task jv was

allocated to processor lp at the previous iteration, then the time-weight of task iv is:

)1()(
,1

,, −++= ∑
=

≠=
αα pwww

pm

kmm
miki

s
i (5.9)

where α is a non-negative constant. The parameter α is referred to as the weighting

factor, which has to be determined either heuristically or empirically. s
iw is a weighted

mean of the computation time jiw , of task iv on all processors.

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

96

If α > 1, then more weight is put on kiw , . Because processor kp is the processor to

which task iv was allocated during the (s-1)-th iteration, when we compute the time-

weight of task iv for s-th iteration, i.e., s
iw , we put a weight on the computation time

of task iv on processor kp , i.e., kiw , . Hence, the time-weight of a task for s-th iteration

depends on the assignments of the previous iteration, i.e., the (s-1)-th iteration.

The time-weight of the edge from task iv to task jv at the s-th iteration is:

)12/)(()*)1((2
,

1

,
1

,
,

−+−−+

=

∑ ∑
−

+=
αα pprr

d
c

lk

p

m
nm

p

mn

jis
ji (5.10)

The b-level of task iv at the s-th iteration is defined by:

))(()(,
)(

j
ss

ji
vsuccv

s
ii

s vbcMaxwvb
ij

++=
∈

 (5.11)

where)(ivsucc = { vj ∈ V | eij ∈ E} is the set of immediate successors of task iv .

For the exit task exitv , since it has no successor, its b-level is

s
exitexit

s wvb =)((5.12)

Based on the time-weights of the tasks and the time-weights of the edges, the

scheduling list is constructed with respect to the b-level.

5.2.4 Processor selection step

Kwok and Ahmad (1999a) compared several list scheduling algorithms on a common

homogeneous platform and concluded that insertion-based policy is better than the

non-insertion-based policy during the processor selection step. Insertion-based policy

permits the insertion of a task into an earliest idle time slot between two tasks that are

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

97

already scheduled on the same processor. Hence, our algorithm assigns the selected

task to the processor which minimizes its earliest finish time with an insert-based

policy. The time slot must be larger than the computation time of the task being

scheduled. In addition, the precedence constraint should be preserved. The procedure

for looking for an idle time slot on one processor kp for task iv is as following:

1. Compute the inner maximization block in Equation (5.3) as),(_ ki pvtimeready ,

i.e., the time when all data needed by task iv has arrived at processor kp .

2. =),(ki pvAvaiable the finish time of the last task in the task list of processor kp

3. While the task list of processor kp is not empty &&),(_ ki pvtimeready < the start

time of the last task in the task list of processor kp do

4. if (the finish time of the second last task >=),(_ ki pvtimeready) && (the start

time of the last task – the finish time of the second last task)>= kiw , then

5. =),(ki pvAvaiable the finish time of the second last task

6. else if (the finish time of the second last task <),(_ ki pvtimeready) && (the

start time of the last task –),(_ ki pvtimeready)>= kiw , then

7. =),(ki pvAvaiable),(_ ki pvtimeready

8. end if

9. Delete the last task from the task list of processor kp

10. end while

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

98

11.)),(_),,(max(),(kikiki pvtimereadypvAvaiablepvEST =

where the task list of processor kp consists of the tasks which have been assigned to

the processor kp and sorted by ascending finish time.

5.2.5 The procedure of the algorithm

The procedure for the iterative scheduling algorithm is described as following:

1. s = 0.

2. Compute the time-weights of the tasks with Equation (5.7)

3. Compute the time-weights of the edges with Equation (5.8)

4. BestSL = a very large number

5. while s ≤ smax do

6. Compute the b-levels for all tasks by traversing graph from the exit task

7. Sort the tasks into a scheduling list by non-increasing order of b-level

8. while the scheduling list is not empty do

9. Remove the first task iv from the scheduling list

10. for each processor kp do

11. Compute),(ki pvEFT using the insertion-based scheduling policy

12. end for

13. Assign task iv to the processor that minimizes EFT of iv

14. end while

15. ScheduleLength =),(
exitvexit PvEFT

16. If ScheduleLength < BestSL then

17. BestSL = ScheduleLength, and the current schedule is the best schedule

18. end if

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

99

19. Compute the time-weights of the tasks with Equation (5.9)

20. Compute the time-weights of the edges with Equation (5.10)

21. s = s + 1

22. end while

23. Return the best schedule

The initial step is the same as that of the Heterogeneous Earliest-Finish-Time (HEFT)

algorithm (Topcuoglu et al. 2002) which significantly outperforms Dynamic-Level

Scheduling (DLS) algorithm (Sih & Lee 1993), Mapping Heuristic (MH) (El-Rewini

& Lewis 1990) and Levelized-Min Time (LMT) algorithm (Iverson et al. 1995) in

terms of average schedule length ratio, speedup, etc. The improvement step of our

algorithm has the potential to produce shorter schedule length than those of the HEFT,

DLS, MH and LMT algorithms.

5.2.6 The time-complexity analysis

The time-complexity of scheduling algorithms for DAG is usually expressed in terms

of the number of nodes v, the number of edges e, and the number of processors p. The

time-complexity analysis for one iteration of our algorithm is as follows:

Computing the time-weights of the tasks and the edges can be done in time)(vpO .

Computing the b-levels can be done in time)(veO + . Sorting the tasks can be done in

time)log(vvO . The processor selection for all tasks can be done in time

))2/((2 vpvepO ++ , i.e., in time)(2vepO + . Hence, the time complexity for one

iteration is:

)()log)((22 vepOvepvvvevpO +=+++++

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

100

If smax denotes the maximum number of iterations which is normally small, then the

time complexity of the whole algorithm is))((2vepsO max + in the worst case.

For a dense graph when the number of edges is proportional to)(2vO , the time

complexity becomes))((2
max pvsO .

5.3 Numerical example

Figure 5.1 shows a DAG with 8 tasks and 11 edges. There are two processors available

in the heterogeneous computing system. Table 5.1 shows the computation time of each

task on every processor. For simplicity, we assume homogeneous communication and

the communication times are as labeled on the edges in Figure 5.1.

Figure 5.1: A sample directed acyclic graph with 8 tasks

1

3 2 4 5

6 7

8

85 79 100 66

 87 55 86 70 46

58 95

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

101

Table 5.1: Computation times of every task on every processor

Task P1 P2
1 70 84
2 68 49
3 78 96
4 89 26
5 30 88
6 66 86
7 25 21
8 94 36

The time-weights of the tasks are computed by using Equation (5.7) as follows:

772/)8470(0
1 =+=w

……

Similarly, the time-weights of other tasks can be obtained, as shown in Table 5.2.

The b-levels of the tasks are computed as follows:

65)(0
88

0 == wvb

183)6595(23))(()(8
00

8,7
0
77

0 =++=++= vbcwvb

……

512
)}17066(),5.310100(),35679(),5.34485max{(77

))}(()),(()),(()),(max{()(5
00

5,14
00

4,13
00

3,12
00

2,1
0
11

0

=
+++++=

+++++= vbcvbcvbcvbcwvb

Table 5.2 shows the initial time-weights and b-levels of the tasks. The initial

scheduling list of the tasks is }.,,,,,,,{ 85764231 vvvvvvvv

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

102

Table 5.2: Time-weights and b-levels of the tasks during initial step

Task
0
iw)(0

ivb
1 77 512
2 58.5 344.5
3 87 356
4 57.5 310.5
5 59 170
6 76 199
7 23 183
8 65 65

The processor selection procedure is as follows:

0),(11 =pvEST

0),(21 =pvEST

70),(11 =pvEFT

84),(21 =pvEFT

),(),(2111 pvEFTpvEFT < , so task 1v is assigned to processor 1p .

70)}070(,70max{}),({,70max{),(1,1,3,11113 =+=+= cpvEFTpvEST

149)}7970(,0max{}),({,0max{),(2,1,3,11123 =+=+= cpvEFTpvEST

1487078),(),(131,313 =+=+= pvESTwpvEFT

24514996),(),(232,323 =+=+= pvESTwpvEFT

),(),(2313 pvEFTpvEFT < , so 3v is assigned to processor 1p .

……

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

103

There is a special case when assigning task 5v . There is a time slot on processor 1p

between task 3v and task 7v ,which has already been assigned on processor 1p ; and

the time slot is larger than the computation time of task 5v on processor 1p . Hence,

the earliest time that processor 1p is available for task 5v execution is the time just

after task 3v finishes execution – 148, not the time just after task 7v finishes execution

– 325

148}70,148max{}),(max(,148max{),(1,1,5,11115 ==+= cpvEFTpvEST

316)}6670(,316max{}),(max(,316max{),(2,1,5,11125 =+=+= cpvEFTpvEST

17814830),(),(151,515 =+=+= pvESTwpvEFT

40431688),(),(252,525 =+=+= pvESTwpvEFT

),(),(2515 pvEFTpvEFT < , so task 5v is assigned to processor 1p .

374
)}}0325(),58316(),0178max{(,325max{

}}),((

),),((),),(max{(,325max{),(

1,1,8,717

1,2,8,6261,1,8,51518

=
+++=

+

++=

cpvEFT

cpvEFTcpvEFTpvEST

420
)}}95325(,316),46178max{(,316max{

}}),((

),),((),),(max{(,316max{),(

2,1,8,717

2,2,8,6262,1,8,51528

=
++=

+

++=

cpvEFT

cpvEFTcpvEFTpvEST

46837494),(),(181,818 =+=+= pvESTwpvEFT

45642036),(),(282,828 =+=+= pvESTwpvEFT

),(),(2818 pvEFTpvEFT > , so task 8v is assigned to processor 2p .

Hence, with the above insertion policy we obtain the task schedule which is illustrated

by Figure 5.2.

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

104

Figure 5.2: Scheduling of task graph during initial step

Table 5.3 shows the start time and finish time of all the tasks. It can be seen from

Table 5.3 that current schedule length is 456.

Table 5.3: Start time and finish time of every task during initial step

Task P1 P2
1 0-70
3 70-148
2 155-204
4 204-230
6 230-316
7 300-325
5 148-178
8 420-456

For the first iteration, we select 4 as the weighting factor. Then the time-weights of the

tasks are computed as follows:

8.72)124(
)8470*4(1

1 =−+
+=w

……

P1

P2

v1 v3 v5 v7

v2 v4 v6 v8

0 50 100 150 200 250 300 350 400 450 500

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

105

Because task 1v was assigned on processor 1p during the initial scheduling, the

processor 1p is put more weight when the time-weight of the task 1v is computed

during the first iteration. We believe that the weighted mean of the computation time

of the task on every processor can represent the time-weight of the task better than the

mean of the computation time of the task on every processor. Table 5.4 shows the

updated time-weights and b-levels of the tasks. The new scheduling list of the tasks is

}.,,,,,,,{ 86572341 vvvvvvvv Figure 5.3 illustrates the new schedule obtained in the

first iteration.

Table 5.4: Time-weights of the tasks and b-levels during first iteration

Task
1
iw)(1

ivb

1 72.8 448.2
2 52.8 182.4
3 81.6 266.2
4 38.6 275.4
5 41.6 135.2
6 82 129.6
7 24.2 166.8
8 47.6 47.6

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

106

Figure 5.3: Scheduling of task graph during first iteration

Table 5.5 shows the start time and finish time of every task. It can be seen from Table

5.5 that the new schedule length is 452, which is less than 456 from the initial schedule.

One possible reason for this is that we have used the weighted mean of the

computation time of the task on every processor to represent the time-weight of the

task, and this has placed more weight on the processor to which the corresponding task

was assigned during the immediately previous iteration.

Table 5.5: Start time and finish time of every task during first iteration

Task P1 P2
1 0-70
4 70-159
3 159-237
2 155-204
7 237-262
5 262-292
6 292-358
8 358-452

For the second iteration, the time-weights of the tasks and the b-levels are as shown in

Table 5.6. The new scheduling list of the tasks is }.,,,,,,,{ 87564321 vvvvvvvv Figure

5.4 illustrates the schedule obtained in the second iteration.

P1

P2 v2

v1 v4 v3 v7 v6v5 v8

0 50 100 150 200 250 300 350 400 450 500

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

107

Table 5.6: Time-weights of the tasks and b-levels during second iteration

Task
2
iw)(2

ivb

1 72.8 450
2 52.8 292.2
3 81.6 234
4 76.4 183
5 41.6 124
6 70 152.4
7 24.2 106.6
8 82.4 82.4

Figure 5.4: Scheduling of task graph during second iteration

Table 5.7 shows the start time and finish time of every task. We note from Table 5.7

that the current schedule length is 424, which is less than the 452 obtained during first

iteration.

Table 5.7: Start time and finish time of every task during second iteration

Task P1 P2
1 0-70
2 70-138
3 138-216
4 170-196
6 216-282
5 196-284
7 282-307
8 330-424

P1

P2 v4 v5

v1 v2 v3 v7v6 v8

0 50 100 150 200 250 300 350 400 450 500

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

108

By exhaustive search algorithm, we obtain the optimal schedule of 364 for this case.

To compare the result of the iterative algorithm with the optimal solution, we use the

degradation from the best (Kwok & Ahmad 1999a), which is defined as: (the result -

the best)/ the best.

The degradation from the best for this case is (424-364)/364 or 16.67%. This compares

with the degradation from the best of (456-364)/364 or 25.27% obtained from the

HEFT. The iterative algorithm has therefore improved the scheduling after two

iterations in this case.

5.4 Performance analysis based on randomly generated application

graphs

In order to analyze the performance of our algorithm, we randomly generate some

application graphs. Our objective is to study the amount of improvement to the initial

schedule length that can be achieved by our iterative algorithm.

5.4.1 Generation of random application graphs

With selected input, the random graph generator outputs the weighted directed acyclic

graph, the computation times of every task at every processor, the communication rate

of every link, and the data transfer size between tasks. The input of the random graph

generator is as follows:

• Number of tasks (v)

• Height of the DAG (h): The v tasks are randomly partitioned into h levels.

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

109

• The link density (β): The probability (),(jilP) that there is a directed link from the

tasks of level i to the tasks of level j is:

)(),(ij
P jil −

=
β (5.13)

where),1(,, hjiij ∈> .

• Number of processors (p)

• The maximum computation time (maxC) and the minimum computation time (minC):

The computation time of every task on every processor is a uniform random

variable on the interval),(maxmin CC .

• The maximum communication rate (maxR) and the minimum communication rate

(minR): The communication rate jir , between processor ip and processor jp is a

uniform random variable on the interval),(maxmin RR .

• Communication to computation time ratio (CCR): It is the ratio of the average

communication time to the average computation time. The average communication

times between two tasks on every link is a uniform random variable on the interval

)*,*(maxmin CCCRCCCR . Then the data transfer size between tasks can be

obtained.

5.4.2 Comparison with optimal solutions

When the solution space is not very large, we can obtain the optimal solutions by the

exhaustive search algorithm. With the parameters in Table 5.8, the link density is

varied from 0 to 1 with increments of 0.1; the CCR varied through the values 0.1, 0.25,

0.5, 0.75, 1, 2.5, 5, 7.5 and 10. The algorithm was run 1,000 times and the

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

110

“degradation from the best” value computed for each case. The results show that the

average degradation from the best is 7.44%, which shows that the results of the

proposed algorithm are near optimal solutions.

Table 5.8: The Parameters the base example

Number of Tasks 8
Number of Processors 2
DAG Height 4
Minimum Computation Time 20
Maximum Computation time 100
Minimum Communication Rate 1
Maximum Communication Rate 4
Weighting factor 4
Number of Iteration 5

5.4.3 Simulation results

An investigation was carried out to determine how the various parameters of the

algorithm impact the degree to which the initial schedules are improved through the

iterative steps. The schedule length improvement ratio is defined as:

i

fi
i l

ll
r

−
= (5.14)

where il is the initial schedule length and fl is the finial schedule length.

With the parameters shown in Table 5.9, the weighting factor is varied from 0 to 10

with increments of 1, and then varied as 20, 100, 1000; the link density is varied from

0 to 1 with increments of 0.1; and the CCR varied through the values 0.1, 0.25, 0.5,

0.75, 1, 2.5, 5, 7.5 and 10. The simulation was run 1,000 times for each case, resulting

in a total of 10,780,000 runs. The results showed that in 71.30% of the cases the

schedule was improved and that the average improvement ratio was 5.4%, Given its

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

111

initial step is the same as that of the HEFT (Topcuoglu et al. 2002), the proposed

algorithm can produce shorter schedule length than previous algorithms in most cases.

Table 5.9: The parameters for DAG and scheduling

Number of Tasks 40
Number of Processors 3
DAG Height 10
Minimum Computation Time 20
Maximum Computation time 100
Minimum Communication Rate 1
Maximum Communication Rate 4
Number of Iteration 5

5.4.4 Sensitivity analysis of link density, weighting factor and CCR

To investigate how the link density impacts the results, we compute the percentage of

improved cases and the average improvement ratios with various link density levels.

The results are shown in Figures 5.5 and 5.6, respectively.

50%
60%
70%

80%
90%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Link Density

Pe
rc

en
ta

ge
 o

f I
m

pr
ov

ed

C
as

es

Figure 5.5: Percentage of improved cases varies with the link density

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

112

0%
1%
2%
3%
4%
5%
6%
7%
8%

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Link Density

A
ve

ra
ge

 Im
pr

ov
em

en
t R

at
io

Figure 5.6: Average improvement ratio varies with the link density

Figures 5.5 and 5.6 show that when the link density is varied from 0 to 0.1, the

percentage of improved cases and the average improvement ratio first increase and

then gradually decrease with increase of link density. When the link density is 0, all

tasks are independent, which means that computing the time-weights of the edges in

the iterative steps have hardly any impact on the schedule. Hence the percentage of

improved cases and the average improvement ratio, when the link density is 0, are both

lower than those when the link density is 0.1.

With the link density increasing, however, the task dependencies have more and more

impact on the b-levels. On the other hand, computing the time-weights of the edges in

the iterative steps has less impact on the b-levels. Therefore, the percentage of

improved cases and the average improvement ratio will gradually decrease when the

link density is increased.

To investigate how the weighting factor impacts the result, we compute the percentage

of improved cases and the average improvement ratio for a series of weighting factors.

The results are shown in Figures 5.7 and 5.8, respectively.

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

113

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 1 2 3 4 5 6 7 8 9 10 20 100 1000

Weighting Factor

Pe
rc

en
ta

ge
 o

f I
m

pr
ov

ed
 C

as
es

Figure 5.7: Percentage of improved cases varies with the weighting factor

0%
1%
2%
3%
4%
5%
6%
7%
8%

0 1 2 3 4 5 6 7 8 9 10 20 100 1000

Weighting Factor

A
ve

ra
ge

 Im
pr

ov
em

en
t R

at
io

Figure 5.8: Average improvement ratio varies with the weighting factor

Figures 5.7 and 5.8 show that when the weighting factor is 0, both the percentage of

improved cases and the average improvement ratio are lowest apart from when the

weighting factor is 1. When the weighting factor equals 0, the equations for computing

the time-weight of task iv and the time-weight of the edge from task iv to task jv

during s-th iteration reduce to the following two equations:

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

114

)1(
,1

, −= ∑
=

≠=
pww

pm

kmm
mi

s
i (5.15)

)12/)(()(2
,

1

1
,

,
,

−−−

=

∑ ∑
−

+=
pprr

d
c

lk

p

m

p

mn
nm

jis
ji (5.16)

A weighting factor of 0 value means that, during s-th iteration, the time-weights of the

tasks are computed by ignoring the processor to which the corresponding task was

assigned in the preceding iteration. The time-weights of the edges are computed by

ignoring the link between the two processors to which the corresponding tasks are

assigned in the preceding iteration.

 When the weighting factor is equal to 1, the equations for computing the time-weights

of the tasks and the time-weights of the edges during iterations are the same as those

during initial step. Therefore, the final schedule is the same as the initial one.

When the weighting factor is increased from 2 to 20, the percentage of improved cases

and the average improvement ratio have trivial difference. This means that the final

schedule is not sensitive to the weighting factor.

When the weighting factor is equal to 100 or higher, the percentage of improved cases

and the average improvement ratio have a decreasing trend. When the number of

processors is far less than the weighting factor, the equation for computing the time-

weight of task iv and the time-weight of the edge between task iv and task jv during

iterations reduce to the following two equations:

ki
s
i ww ,= (5.17)

lkji
s

ji rdc ,,, /= (5.18)

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

115

This means that the time-weight of task iv is the computation time of task iv on the

processor to which the task was assigned during the preceding iteration; the time-

weight of the edge from task iv to task jv is the communication time of corresponding

tasks on the processors to which the corresponding tasks were assigned in the

preceding iteration.

The following discusses how the CCR impacts the results. We compute the percentage

of improved cases and the average improvement ratio with different CCR levels. The

results are as shown in Figures 5.9 and 5.10, respectively.

Figure 5.10 shows that the average improvement ratio gradually increases when CCR

is increased, but Figure 5.9 shows that the percentage of improved cases gradually

decreases when CCR is increased. Therefore, when CCR is large we take a higher risk

that the iterative steps will not improve the final schedule length, but we will obtain

higher average improvement ratio if the final schedule length is indeed less than the

initial one.

50%

60%

70%

80%

90%

100%

0.1 0.25 0.5 0.75 1 2.5 5 7.5 10

CCR

Pe
rc

en
ta

ge
 o

f I
m

pr
ov

ed

C
as

es

Figure 5.9: Percentage of improved cases varies with the CCR

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

116

0%

2%

4%

6%

8%

10%

0.1 0.25 0.5 0.75 1 2.5 5 7.5 10

CCR

A
ve

ra
ge

 Im
pr

ov
em

en
t R

at
io

Figure 5.10: Average improvement ratio varies with the CCR

5.4.5 Sensitivity analysis of the task number and the processor number

Based on the parameters in Table 5.10, the weighting factor is varied from 0 to 10 with

increments of 1 and then varied as 20, 100, 1000; the link density is varied from 0 to 1

with increments of 0.1; the CCR is varied as 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5 and 10;

the task number is varied as 3, 6, 10, 20, 40, 60, 80, 100. The simulation is run 100

times under each case. We compute the percentage of improved cases and the average

improvement ratio with task number 3, 6, 10, 20, 40, 60, 80 and 100. The results are

shown in Figures 5.11 and 5.12, respectively.

Table 5.10: The Parameters for DAG and scheduling

Number of Processors 3
DAG Height 10
Minimum Computation Time 20
Maximum Computation time 100
Minimum Communication Rate 1
Maximum Communication Rate 4
Number of Iteration 5

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

117

0%
10%
20%
30%
40%
50%
60%
70%
80%

1 2 3 7 13 20 27 33

Task Number/Processor Number

Pe
rc

en
ta

ge
 o

f I
m

pr
ov

ed

C
as

es

Figure 5.11: Percentage of improved cases varies with task number/processor
number

0%

1%

2%

3%

4%

5%

6%

1 2 3 7 13 20 27 33

Task Number/Processor Number

A
ve

ra
ge

 Im
pr

ov
em

en
t R

at
io

Figure 5.12: Average improvement ratio varies with task number/processor
number

Figure 5.11 shows that when the ratio of task number to processor number is small, the

percentage of improved cases is very small, i.e., the iterative steps make hardly any

improvement in the initial schedule. However, when the ratio is increased, the

percentage of improved cases is increased. When the ratio is 13 or greater, the

percentage of improved cases reaches the maximum and stops increasing.

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

118

Figure 5.12 shows that average improvement ratio has the same trend as the percentage

of improved cases when the task number to processor number ratio is less than or equal

to 13. The improvement ratio, however, begins to decrease when the ratio of task

number to processor number is greater.

We repeated the above simulation with the task number fixed at 100 and the processor

number varying as 3, 6, 10, 20, 40, 60, 80, and 100. The results are shown in Figures

5.13 and 5.14.

0%
10%
20%
30%
40%
50%
60%
70%
80%

1.00 1.25 1.67 2.50 5.00 10.00 16.67 33.33

Task Number/Processor Number

Pe
rc

en
ta

ge
 o

f I
m

pr
ov

ed

C
as

es

Figure 5.13: Percentage of improved cases varies with task number/processor
number

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

119

Figure 5.14: Average improvement ratio varies with task number/processor
number

Figure 5.13 shows that the percentage of improved cases increases when the ratio of

task number to processor number is increased. When this ratio exceeds a certain value,

the percentage of improved cases reaches the maximum and levels out. The trend is

similar to that in Figure 5.11 and means that the iterative algorithm is more effective

when the ratio of task number to processor number is large.

Figure 5.14 shows that, unlike the trend shown in Figure 5.12, the average

improvement ratio always increases when the ratio of task number to processor

number is increased. In Figure 5.12, the processor number is fixed as 3 and, in Figure

5.14, the task number is fixed as 100, which cause the different trend. However, in

both figures, when the ratio of task number to processor number is large, the proposed

algorithm perform better than it does when the ratio is very small.

5.5 Performance analysis on application graphs of real world

problems

The use of real applications is common for testing the performance of algorithms

(Srinivasan & Jha 1999, Topcuoglu et al. 2002, Woodside & Monforton 1993, Wu &

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

120

Gajski 1990). Therefore, in addition to running the iterative algorithm on randomly

generated DAGs, we also ran it on two real world problems: a digital signal processing

(DSP) example (Woodside & Monforton 1993) and a Gaussian elimination (Wu &

Gajski 1990).

5.5.1 DSP

We selected a DSP example to test the iterative algorithm because the computation

time and the communication data can be estimated very accurately. There are 119 tasks

in the DSP task graph. The task graph of the DSP and the parameters for the DSP can

be found in Woodside & Monforton (1993).

In this case, just the CCR value and the processor number are changed. The CCR is

varied as 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5 and 10 and the processor number is varied

as 2, 4, 6, 8, 10, 20, 30, 40, 50, 60, 70, and 80. An appropriate weighting factor was

selected and the algorithm was run 1,000 times in each case. The results are shown in

the Figures 5.15 and 5.16.

0.0%
20.0%
40.0%
60.0%
80.0%

100.0%
120.0%

2 4 6 8 10 20 30 40 50 60 70 80

Processor Number

Pe
rc

en
ta

ge
 o

f
Im

pr
ov

em
en

t C
as

es

Figure 5.15: Percentage of improved cases varies with processor number

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

121

2.80%
3.00%
3.20%
3.40%
3.60%
3.80%
4.00%

2 4 6 8 10 20 30 40 50 60 70 80

Processor Number

A
ve

ra
ge

 Im
pr

ov
em

en
t

R
at

io

Figure 5.16: Average improvement ratio varies with processor number

Figure 5.15 shows that when the processor number is small, the percentage of

improved cases is very close to 100, indicating that in the majority of the cases there is

improvement in the initial schedule. However, the percentage of improved cases

decreases slightly as the processor number is increased. The trend is the same as that

obtained for the randomly generated DAGs.

The results therefore confirm again that this iterative algorithm is more effective when

the ratio of task number to processor number is large.

Figure 5.16 shows that, unlike the findings for the randomly generated DAGs, there is

no clear relation in this case between the average improvement ratio and the task

number. It is possible that the special data structure of DSP cause this difference.

5.5.2 Gaussian elimination

The task graph of the Gaussian elimination, with a matrix size of 5, can be found in

Wu & Gajski (1990). The total number of the tasks for this case is equal to

2
2

32
−

+ mm , where m is the matrix size. We use a Gaussian elimination with matrix

size of 50 and therefore the total number of the tasks is 1323. The CCR varied as 0.1,

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

122

0.25, 0.5, 0.75, 1, 2.5, 5, 7.5 and 10 and the processor number from 2 to 40 with

increments of 2. We selected an appropriate weighting factor and ran the algorithm

1000 times in each case. The results are shown in the Figures 5.17 and 5.18.

0%
20%
40%
60%
80%

100%

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

Processor Number

P
er

ce
nt

ag
e

of

Im
pr

ov
ed

 C
as

es

Figure 5.17: Percentage of improved cases varies with processor number

0.00%
1.00%
2.00%
3.00%
4.00%
5.00%

2 6 10 14 18 22 26 30 34 38

Processor Number

A
ve

ra
ge

 Im
pr

ov
em

en
t

R
at

io

Figure 5.18: Average improvement ratio varies with processor number

Figure 5.17 shows that the percentage of improved cases is virtually constant and very

close to 100 over the range of processor number from 2 to 20, but decreases sharply

when the processor number exceeds 20. Again, the results support the earlier

conclusion that the iterative algorithm is more effective when the ratio of task number

to processor number is large.

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

123

Figure 5.18 shows that average improvement ratio increases with the percentage of

improved cases when the processor number is less than 20. The improvement ratio,

however, begins to decrease when the processor number is greater than 20. This shows

again that when the ratio of task number to processor number is large, the proposed

algorithm perform better than it does when the ratio is very small. However, when the

ratio of task number to processor number is very large, the performance of the

proposed algorithm may become worse.

5.6 Conclusions

In this chapter, an iterative list scheduling algorithm for the heterogeneous DCSs is

proposed and studied. Bottom-level (b-level) was selected as priority in constructing

the scheduling list. The b-levels were computed with the mean of the computation

times of a task on every processor and the mean of the communication times of an

edge on every link during the initial step, and with the weighted mean during

subsequent iterations. The processor selection step uses the insertion-based policy that

considers the possible insertion of a task to an idle time slot between two already-

scheduled tasks. The initial step of our algorithm is the same as that of the HEFT

(Topcuoglu et al. 2002). However, the iterative algorithm can produce shorter schedule

lengths through subsequent iterations than those obtained by the HEFT (Topcuoglu et

al. 2002), DLS (Sih & Lee 1993), MH (El-Rewini & Lewis 1990) and LMT (Iverson

et al. 1995) algorithms.

We determined the percentage of cases that resulted in an improved final schedule and

the average improvement ratio with randomly generated task graphs under various

parameters and two real applications. It is observed that when the ratio of task number

Chapter 5. A Completion Time oriented Iterative List Scheduling for DCS

124

to processor number is small, the iterative algorithm does not perform well but when

the ratio is greater than a certain value, an improvement in the final schedule is

obtained in most of cases that were simulated. The possible reason is when the task

number is much larger than the processor number, there are much more choice for the

processor selection. The probability that the initial solution is far from the optimal

solution is big, i.e. there are more space to improve the initial solution.

A sensitivity analysis carried out showed that the percentage of cases in which the final

schedule length is less than the initial one and the average improvement ratio are both

insensitive to the weighting factor used for computing the mean during an iteration,

which make it easy to select the weighting factor.

125

Chapter 6

Reliability and Completion Time Oriented Tabu Search for

Distributed Computing Systems

In Chapter 5, a completion time oriented task scheduling problem was studied, in

which the tasks could be dependent and the data dependencies were represented by

directed acyclic graphs (DAG). The general DAG scheduling problem has been shown

to be NP-complete (Garey & Johnson 1979) and this has stimulated researchers to

propose a myriad of heuristic algorithms. Most proposed scheduling algorithms are

based on minimizing the completion time (schedule length) without considering the

possible failure of the processors or relevant network resources. However, in reality,

processor and network failures are possible and these can have an adverse effect on

applications being executed on the system, especially in a large network of processors.

Large, long-running applications are particularly sensitive to failures. In a failure-

prone system, assigning tasks to processors without considering possible failures may

result in a significant increase in the average completion time of the application when

failures occur. This chapter addresses scheduling methods which simultaneously

minimize schedule length and maximize system reliability.

Conventional multi-objective optimization methods often combine multiple objectives

to form a single composite one by using, for example, the weighted-positive-sum

approach. However, in most cases this combination is very difficult or even impossible.

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

126

Alternatively, only one objective is optimized while others are treated as constraints

(Erschler et al. 1976, Fox 1987). In this case however, the algorithm may not find a

feasible solution because the problem is over-constrained. Fonseca (1995) employed

the concept of Pareto’s optimality using an evolutionary algorithm to obtain a set of

solutions at multiple points along the tradeoff surface of multiple objectives

simultaneously. Evolutionary algorithms have been extensively adopted to solve the

multi-objective optimization problems because they deal simultaneously with a set of

possible solutions (population). This enables a set of Pareto-optimal solutions to be

obtained in a single iteration of the algorithm, while traditional methods have to

perform a series of runs to obtain a set of solutions. Nevertheless it is very difficult to

recombine two solutions to generate new solutions due to the data dependency.

Hou et al. (1994) proposed a crossover schema for DAG scheduling to minimize the

schedule length. However, in some cases feasible solutions cannot be generated by

using this method. Ahmad & Dhodhi (1995) and Kwok & Ahmad (1997) used genetic

algorithms to solve DAG scheduling problem, but in their methods a chromosome is a

scheduling list. Hence, post-processing is needed to obtain the final schedule; i.e. the

ordered tasks have to be assigned to the appropriate processor to minimize the

schedule length. Hence, it is not easy to adopt this method for considering the system

reliability. Oh & Wu (2004) proposed a genetic algorithm for task scheduling in

multiprocessor systems to minimize the total tardiness of tasks and the number of

homogeneous processors, and it is very difficult to utilize the algorithm to address the

proposed problem too. In this chapter, we propose a TS algorithm to solve the multi-

objective problem.

Tan et al. (2003) presented an exploratory multi-objective evolutionary algorithm

(EMOEA) and proposed “lateral interference” for population diversity. Experimental

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

127

results have shown that EMOEA performs well in searching and distributing non-

dominated solutions uniformly along the trade-offs. To apply “lateral interference”, it

is necessary to compute the distance metric among the solutions. However, this is not a

straightforward process when the objectives are non-commensurable. This chapter

proposes two schemes to compute the distance among the solutions.

This chapter is organized as follows. Section 6.1 describes the scheduling problem for

the heterogeneous DCS. Section 6.2 introduces the multi-objective optimization

problem and proposes two definitions of metric length. Section 6.3 presents a Tabu

Search algorithm to solve the proposed problem. Section 6.4 describes some

simulations to compare the results with the two definitions of metric length. Finally,

Section 6.5 presents the conclusions of this chapter.

6.1 Modelling

Notations:

lkjic ,,, : communication time from task iv to task jv when task iv was

assigned to processor kp and task jv was assigned to processor

lp ;

jid , : data transfer size (in bytes) from task iv to task jv ;

:e number of directed links among the tasks

jie , : directed link from i-th task to j-th task;

),(ji pvEST : earliest start time of task iv on processor jp ;

),(ji pvEFT : earliest finish time of task iv on processor jp ;

jil , : direct link between processor ip and processor jp ;

p: number of processors available in the system;

ip : i-th processor in the system;

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

128

jir , : communication rate (in bytes/second) between processor ip and
processor jp ;

R : distributed computing system reliability;

iR : reliability of the processor ip , which is the probability that
processor ip is functional;

jiR , : reliability of the directly link jil , between processor ip and

processor jp ;

SL : schedule length;

:UR distributed computing system unreliability.

v: number of tasks in the application;

iv : i-th task in the application;

:, jiw computation time of task iv on processor jp ;

iλ : failure rate of processor ip ;

ji,λ : failure rate of link jil , between processor ip and processor jp .

An application is represented by a DAG. An example of a small DAG is shown in

Figure 6.1. The details of the application modeling and the computation of the

completion time have been described in Chapter 5. The following will discuss the

reliability analysis of the system.

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

129

Figure 6.1: A DAG example

The failures of processors and links in the system are assumed to follow a Poisson

process and to be statistically independent. Furthermore, once a processor or link has

failed, it is assumed that it remains in the failed state for the remainder of the execution

of the application. Similar assumptions have been used by Shatz & Wang (1989),

Shatz et al. (1992), Kartik & Murthy (1997), Iverson (1999). To successfully execute

the application, each processor should be functional during the time that its assigned

tasks are executing and each relevant link should be functional during the time that

corresponding inter-task communication are executing.

Since the failure of a processor follows a Poisson process, at time t the reliability of a

processor ip is tie λ− . The reliability requirement of processor ip is therefore:

0

1 2 3

4 6

7

5

8

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

130

)),(max(iji pvEFT
i eR λ−= (6.1)

The max term in Equation (6.7) gives the finish time of the last task executed on

processor ip .

Similarly, the reliability requirement of link jil , is:

 jiji f
ji eR ,,

,
λ−= (6.2)

where jif , is the finish time of the last communication between processor ip and

processor jp , i.e., the time that link jil , is required to be functional for the inter-task

communication during the execution of the application.

Recall that the failures of processors and links in the system are assumed to be

statistically independent. Therefore, the reliability of the systems R is:

 ∏∏
==

⋅=
v

ji
ji

v

i
i RRR

1,
,

1
 (6.3)

The objective of this problem is to maximize the reliability of the system and minimize

the schedule length. These two objectives are non-commensurable and may be

competing. The problem usually has no unique, perfect solution, but a set of non-

dominated and possible solutions, known as the Pareto-optimal set (Ben-Tal 1980). For

convenience, we convert the objective of maximizing distributed system reliability

(DSR) to minimizing system unreliability (UR), where DSRUR −= 1 . Hence, the

objectives of the proposed problem are:

Minimize: SL and UR (6.4)

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

131

6.2 Multi-objective optimization

A general multi-objective minimization optimization problem simultaneously

minimizes n objective functions nkfk ,,2,1, L= . It is possible that the objective

functions are a nonlinear vector function F of a general decision variable s in a whole

solution space S , where))(,),(),(()(21 sfsfsfsF nL= . To facilitate the description,

we first give the follows definitions (Tan et al. 2002).

Definition 6.1 (Pareto dominance): A given vector),,,(21 nuuuu L= is said to

dominate another vector),,,(21 nvvvv L= iff

iiii vunivuni <∈∃∧≤∈∀ },,,2,1{},,,2,1{ LL

Definition 6.2 (Pareto-optimal): Given a set of solution },,{ 21 msssS L= , a solution

Ssi ∈ is said to be Pareto-optimal iff no solution Ss j ∈ dominates solution is .

Pareto-optimal solutions are also called non-dominated or efficient solutions. The

corresponding objective vectors are referred to as non-dominated. The set of all non-

dominated vectors is called the non-dominated set, or tradeoff surface, of the problem.

Definition 3 (Pareto front): Given a multi-objective optimization function)(sF and a

set of Pareto-optimal solutionΩ , the Pareto-front is:

)|))(,),(()({ 1 Ω∈== ssfsfsFu nK

Tan et al. (2003) proposed a Tabu-based exploratory multi-objective evolutionary

algorithm (EMOEA), which uses the Tabu list to prevent the search from becoming

trapped in local optima and to promote concurrently the evolution towards the global

trade-offs. Tan et al. (2003) also presented a new lateral interference to distribute non-

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

132

dominated solutions along the discovered Pareto-front uniformly. The lateral

interference can be applied in either the parameter or objective domain. The basic

concepts of the lateral interference based population distribution method are as follows.

First the population is ordered according to the Pareto ranking scheme proposed by

Fonseca & Fleming (1995). The ranking scheme assigns all non-dominated individuals

as rank 1. The rank of a dominated solution is equal to the number of solutions

dominating it plus one. An example for a minimization problem of two objectives 1f

and 2f is shown in Figure 6.2, in which the numbers are the ranks of the individuals.

Figure 6.2: Pareto ranking scheme for multi-objective optimization

The lateral interference takes place between the individuals which have the same rank.

Given a sub-population 'P consisting of 'N m-dimensional individuals of the same

rank, the metric distance between any two individuals is and js is defined by

2||||),(jiji ssssd −= (6.5)

where 2||.|| implies the 2-norm.

1

1

1

2
3

4

1f

2f

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

133

If iT denotes the territory of the individual is , and nearest
is the nearest individual to

individual is , then ij Ts ∈ iff),(),(nearest
ii

nearest
ij ssdssd ≤ .

If an individual js belongs to the territory of individual is , individual js can be

subjected to interference from individual is . The more individuals subjected to

interference, the less chance of survival. Tan et al. (2003) use the interference severity

to denote the number of the territories to which an individual belongs.

In this case, where the preferences of the two objectives are not known, the ranking

scheme based on the Pareto optimality is an appropriate approach to compute the

fitness of each individual in an evolutionary algorithm (Srinivas and Deb 1994;

Fonseca 1995). The solutions with the same rank according to the Pareto–ranking

schema can be differentiated by the interference severity. However, one challenge is

how to define the metric distance between two solutions, as this is a 2-dimensional

vector, i.e., system unreliability and schedule length which are non-commensurable.

Given a set of solutions 'X consisting of xN 2-dimensional solutions, which have the

same rank, we propose two metric lengths),(ji ssd and),(' ji ssd between two

solutions and compare the solutions by using these two.

22)
)()(

()
)()(

(),(
SL

sSL

SL
sSL

UR

sUR

UR
sUR

ssd jiji
ji −+−= (6.6)

where)(isUR is the value of system unreliability of solution is , and)(isSL is the

value of schedule length of solution is ; UR is the mean of system unreliability of all

solutions in 'X , and SL is the mean of schedule length of all solutions in 'X .

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

134

22')
)(
)(

)(
)(

()
)(
)(

)(
)(

(),(
SL
sSL

SL
sSL

UR
sUR

UR
sUR

ssd jiji
ji σσσσ

−+−= (6.7)

where)(URσ is the standard deviation of system unreliability of all solutions in 'X ,

and)(SLσ is the standard deviation of schedule length of all solutions in 'X .

6.3 A Tabu Search for the multi-objective scheduling

Tabu Search (TS) is a competing meta-heuristic method for many of the complex

combinatorial optimization problems (Glover & Laguna 1997). Unlike evolutionary

algorithms, TS is not population-based but successively moves from solution to

solution and terminates with either an optimal or a near-optimal solution. However the

global optimum for multi-objective optimization is a set of Pareto-optimal solutions,

instead of a single optimum. To overcome this problem, the proposed algorithm

involves two different lists: a Pareto optimal solution list and Tabu list. The Pareto

optimal solution list stores the current Pareto optimal solutions while the Tabu list

records the recently visited solutions and is used to avoid revisiting a state in the short

term. For limiting the computational effort required, limits are placed on the length of

these two lists

The procedure of the algorithm is follows:

1. Randomly generate a feasible solution x , and put the solution into the Pareto

optimal solution list PL and the Tabu List TL . // :x Current solution.

2. while max−< ss do

3. Generate a new solution x by one step “move” and TLx∉

4. Update TL .

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

135

5. if x dominates some solutions in PL then

6. x replaces the dominated solutions in PL .

7. else if x does not dominate any solution and is not dominated by any

solution in PL then

8. Add x into PL

9. end if

10. if pLPL >|| then // |:| PL Length of PL ; :pL Predefined value of the

length of PL .

11. All the solutions are ranked according to the interference severity

increasingly

12. The last one is deleted from PL

13. end if

14. Implement intensification strategy

15. Implement diversification strategy

16. end while

17. Return the Pareto optimal solution list

Encoding:

In this case the solution representation should satisfy two conditions:

1. Every task is present and appears only once;

2. The data dependency should be satisfied.

On this basis, the solution is coded as follows:

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

136

lkp

ji

vvP

vvP

,,:

,,:1

L

M

L

Each solution consists of p substrings, each of which corresponds to a processor.

Each list corresponds to the tasks executed on a processor, and the order of the tasks in

the list indicates the order of execution. The dependency between the tasks on different

processors is considered when the schedule length is computed.

Move:

During the “move” operator, the dependencies among the task must be satisfied. For

example, if there is a directed link from task iv to task jv and a directed link from task

jv to task kv , then task kv can not be executed before task iv .

To express the direct dependency relation between the tasks, we use the adjacency

matrix)(ijaA = , where





=
otherwise

vtovfromlinkdirectaexistthereif
a ji

ij ,0
task task ,1

 (6.8)

To obtain the indirect dependency between the tasks, we first compute the attainability

matrix,)(ijtt = , where





=
otherwise

vtovfrompathaexistthereif
t ji

ij ,0
task task ,1

 (6.9)

The attainability matrix can be derived from adjacency matrix using Warshall's

algorithm. Task jv cannot start before task iv completes its execution if 1=ijt .

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

137

There are two styles of moves:

• Exchange the order of two selected tasks:

o Randomly select a processor where there are at least two tasks.

o Randomly select a task jv from the selected processor, and given there is a

task list on the selected processor ,...),,(..., kji vvv .

 If 0=jkt , then exchange the order of task jv and task kv .

 If 0>jkt and 0=ijt , then exchange the order of task iv and task jv .

 If 0>ijt and 0>jkt , then give up.

• Move a selected task to another processor:

o Randomly select a task on a randomly selected processor.

o Move the selected task to end of task list of another randomly selected

processor.

o Move the task forward until it cannot be moved further.

After the move, a deadlock may happen as shown in the DAG given in the Figure 6.1

where the following scheduling is obtained by the move.

P0: T2, T4, T3, T6

P1: T0, T5, T1, T7, T8

In this case, task T4 cannot be executed before task T1 finishes, and task T5 cannot be

executed before task T3 finishes. When deadlock happens, if the task Ti is not ready to

be executed, we check the successor task Tj of Ti. If task Tj is ready to be executed,

we exchange the order of task Ti and task Tj.

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

138

Intensification strategy:

If after the predefined number of “moves”, we still cannot find a Pareto optimal

solution, then the last found Pareto optimal solution is used as the current solution.

This strategy can initiate a return to the attractive regions for a more thorough search.

However, to avoid a repeated search for the same solution, the length of Tabu list

should be larger than the predefined number of “moves” for intensification strategy.

Diversification strategy:

After the predefined number of “move”, a solution in Pareto optimal solution list is

randomly selected as the current solution. This selected solution cannot be the last

found Pareto optimal solution as this strategy would restrict the search to the neighbors

of one Pareto optimal solution.

6.4 Simulation study

In this section two metrics are used to validate and compare the performance of the

proposed TS with the two distance computation schemes. For this problem, the actual

trade-off surface cannot be obtained through the method of deterministic enumeration

as it can in some other cases. Hence we propose the “comparison of non-dominated

solution number” method to measure the performance of the proposed algorithm. This

method comprises the following:

Given two sets of non-dominated solutions A and B , set BAC ∪= and delete

the dominated solutions in set C . Then compare | CA∩ | and | CB ∩ |.

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

139

In addition, we also adopt the metric – “uniform distribution (UD) of non-dominated

solutions” (Tan et al. 2002) to measure the performance of the proposed algorithm as

follows:

Given a set of non-dominated solutions 'X ,

isS
XUD

+
=

1
1)(' (6.10)

where isS is the standard deviation of the interference severity of all the

solutions in set 'X , and is formulated as,

1

))()((
1

2'

−

−
=
∑
=

x

N

i
i

is N

Xisxis
S

x

 (6.11)

where xN is the size of the set 'X ;)(ixis is the interference severity of the

solution ix ;)('Xis is the mean value of interference severities of all solutions

in set 'X .

6.4.1 Performance analysis on randomly generated DAGs

We randomly generate a set of DAGs by using the random graph generator, which has

been described in Chapter 5. The random graph generator outputs the weighted

directed acyclic graph, the computation times of every task at every processor, the

communication rate of every link, and the data transfer size between the tasks.

In this case, there is a set of computers which are interconnected by a switch-based

network. The computers and the network can both be heterogeneous. The failure rate

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

140

of the processors and the links are assumed to be uniformly distributed between

3101 −× and 4101 −× (Dogan & Ozguner 2002, Plank & Elwasif 1997).

Using the parameters shown in Table 6.1, the link density is varied from 0.1 to 1 with

increments of 0.1 and the CCR varied through the values 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5,

7.5 and 10.

The parameters of the TS are listed in Table 6.2. The length of Tabu list cannot be less

than the predefined number for intensification strategy, as this would cause repeat

searching for the same individuals in accordance with the intensification strategy

which repeatedly returns the search to the last Pareto optimal solution if another Pareto

optimal solution cannot be found within the predefined number of “moves”.

On the other hand the length of the Tabu list cannot be too large, as this may cause

rejection of too many “moves”.

The simulation was run 100 times for each case. In each case the algorithm was run in

three schemes:

 without considering the lateral interference,

 considering lateral interference according Equation (6.6),

 considering lateral interference according Equation (6.7).

Equation (6.6) computes the distance between two solutions by using the mean of all

solutions in the current solution set, whereas Equation (6.7) computes the distance

between two solutions by using the standard deviation of all solutions in the current

solution set. For ease of notation, we refer to these three schemes as SW, SA, and SD,

respectively. Based on “comparison of non-dominated solution number”, there is no

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

141

difference among these three schemes in 96.8% of the cases. However, comparison of

the three schemes based on “uniform distribution of non-dominated solutions”,

presented in Table 6.3, shows that SA and SD are better than SW in most cases,

whatever SA or SD is used to compute UD and the results based on UD of SA and that

of SD are almost the same. The results show that “lateral interference” can benefit to

the uniformly distributing the Pareto-optimal solutions along the trade-offs, i.e.

population diversity, whatever the schema is used to compute the distance among

solutions. The results also are also not sensitive to the schema used to compute the

distance among solutions in this case.

Table 6.1: The parameters for DAG

Number of Tasks 100
Number of Processors 10
DAG Height 10
Minimum Computation Time 20
Maximum Computation Time 100
Minimum Communication Rate 1
Maximum Communication Rate 10

Table 6.2: The parameter of TS for random DAG

Length of Pareto Optimal Solution List 10
Length of Tabu List 50
Predefined Number for Intensification 20
Predefined Number for Diversification 500
s-max 5000

Table 6.3: Comparison of three schemes based on UD for random DAG

Scheme A Scheme B Percentage of B is better than A
Scheme used to compute

UD
SA 83.70%
SD 80.60%

SA

SA 83.70%
SW

SD 80.60%
SD

SD SA 10.40% SA
SA SD 9.80% SD

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

142

6.4.2 Performance analysis on a real-world problem

The performance of algorithms is commonly tested using real applications (Srinivasan

& Jha 1999, Topcuoglu et al. 2002, Woodside & Monforton 1993, Wu & Gajski 1990).

Therefore, in addition to the randomly generated DAGs, we also ran the proposed

algorithm on a real-world problem: Gaussian Elimination (Wu & Gajski 1990). The

task graph of the Gaussian Elimination, whose matrix size is five, can be found in Wu

& Gajski (Wu & Gajski 1990).

The total number of the tasks is equal to 2
2

32
−

+ mm , where m is the matrix size. A

Gaussian Elimination whose matrix size is 50 is used giving a total number of the

tasks of 1,323. In this case, the number of processors is 10. CCR is varied through the

values 0.1, 0.25, 0.5, 0.75, 1, 2.5, 5, 7.5 and 10. The parameters of TS are listed in

Table 6.4. The simulation was run 100 times for each case and, as before, in each case

the algorithm was run using the three schemes: SW, SA and SD.

It was found that, based on “comparison of non-dominated solution number”, there is

no difference between these three schemes in 95.9% of the cases. However, based on

“uniform distribution of non-dominated solutions”, a comparison of the results for the

three schemes as detailed in Table 6.5 provide conclusions similar to those obtained

with the Random DAG problem shown in Table 6.3. Thus SA and SD are shown to be

better than the scheme SW in most cases, whatever SA or SD is used to compute UD

and the results of SA and that of SD are almost the same.

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

143

Table 6.4: The parameter of TS for Gaussian Elimination

Length of Pareto Optimal Solution List 20
Length of Tabu List 50
Predefined Number for Intensification 20
Predefined Number for Diversification 500
s-max 5000

Table 6.5: Comparison of three schemes based on UD for Gaussian Elimination

Scheme A Scheme B Percentage of B is better than A
Scheme used to compute

UD
SA 93.90%
SD 90.60%

SA

SA 93.90%
SW

SD 90.60%
SD

SD SA 5.40% SA
SA SD 6.30% SD

6.5 Conclusions

In the scheduling of DCSs, maximizing system reliability and minimizing schedule

length should be considered simultaneously rather than separately as done by most

researchers. In this chapter, we presented a multi-objective optimization problem by

maximizing the DCS reliability (minimizing system unreliability) and minimizing the

schedule length simultaneously and proposed a Tabu search algorithm to solve this

problem. At the same time we adopted the “lateral interference” to investigate two

schemes to distribute the Pareto optimal solutions along the Pareto-front uniformly.

Randomly generated DAGs and a real application task graph – Parallel Gaussian

Elimination were used to evaluate the performance of the proposed algorithm.

The “non-dominated solution number” and the “uniform distribution of non-dominated

solutions” were the two performance measures used to compare the two schemes

considering the “lateral interference” and the one without considering the “lateral

interference”. For “non-dominated solution number” it was found that there is

Chapter 6. Reliability and Completion Time Oriented Tabu Search for DCS

144

basically no difference among three schemes. For “uniform distribution of non-

dominated solutions, the two schemes considering the “lateral interference” are much

better than the one without considering it and there is basically no difference between

the first two schemes. Hence, “lateral interference” can improve the “uniform

distribution of non-dominated solutions” and is not sensitive to the different

computation schemes of distances between the solutions.

145

Chapter 7

Modelling and Analysis of Service Reliability for Distributed

Computing Systems

Distributed systems have been increasingly applied in many safety-critical systems

(Levitin 2002, Leger et al. 1999), such as the banking systems, military systems,

power plants and so forth. System reliability is very important to these types of

systems because failures may cause much loss in monetary term or lives.

Since distributed systems are developed to provide services with specific objectives

such as running a computer program, controlling a production process or completing

other tasks, the service reliability of the distributed system is a key criterion of QoS

(Quality of Service). A definition of distributed service reliability can be the

probability to successfully provide the service in a distributed environment and this is

the definition adopted in this chapter.

Most of the distributed systems can be modeled as centralized heterogeneous

distributed systems. This type of system consists of a number of subsystems managed

by a control center. For example, for the Client/Server (Browser/Server) systems,

every Client/Browser in the sub-distributed systems is managed by a control center of

Servers. For the IP telephone systems, the control center manages the computers in

sub-distributed systems to provide telephone services. The service reliability in a

Chapter 7 Modeling and Analysis of Service Reliability for DCS

146

centralized heterogeneous distributed system is determined not only by the system

availability of the control center, but also by distributed program reliabilities of the

subsystems.

The system availability of the control center is of major concern because an

unavailable control center will sometimes cause critical problems to a service (Pham et

al. 1997, Sols & Nachlas 1995). Srinivasan and Jha (1999) described a method to

determine an allocation that introduces safety into a heterogeneous distributed system

and at the same time attempts to maximize its availability. On the other hand, the

reliability of each program in the system is also important to a service. The system

availability and distributed program reliability have been discussed in the Chapter 2.

However, most of the earlier research on system availability or distributed

program/system reliability cannot be simply implemented to analyze the service

reliability of centralized heterogeneous distributed systems because reliability is

affected by many factors including system availability and distributed program/system

reliability. This chapter studies the properties of centralized heterogeneous distributed

systems and develops a general model for the analysis. Based on the model, algorithms

are developed to obtain the service reliability of the system.

This chapter is organized as follows. Section 7.1 presents a model for a centralized

heterogeneous distributed system (CHDS), and develops a solution algorithm for the

distributed service reliability in CHDS. The implementation of system availability

function of the virtual machine (VM) is also studied. Section 7.2 gives an application

example to illustrate the procedure and the feasibility of the algorithm. Then in Section

7.3 we analyze the performance and sensitivity of the system availability function,

both of which are important issues in the application of this type of model.

Chapter 7 Modeling and Analysis of Service Reliability for DCS

147

7.1 Centralized heterogeneous distributed system (CHDS) and

analysis

Most distributed service systems can be modeled by a CHDS. This type of distributed

system incorporates heterogeneous subsystems with various operation platforms on

different computers in diverse topological networks managed by a control center. The

structure of CHDS is depicted by Figure 7.1.

Sub
Distributed
System-1

Sub
Distributed
System-2

Sub
Distributed
System-N

Router Router Router

Server 1 Server 2 Server M

Virtual Machine

SSPI

Control
Center Virtual

Node

Sub
Distributed

Systems

Figure 7.1: Structure of the centralized heterogeneous distributed service system

The control center consists of M servers (M≥1). These servers support a VM. The VM

can manage and control programs and data from heterogeneous subsystems through

virtual nodes. The virtual nodes can mask the differences among various platforms.

They are a type of virtual executing element that only includes a basic unit for

executing data, i.e. CPU and Memory. The entities of VM and virtual nodes are

supported by the software and hardware in the control center.

The heterogeneous sub-distributed systems are composed of different types of

computers with various operating systems connected by diverse topologies of networks.

Chapter 7 Modeling and Analysis of Service Reliability for DCS

148

These subsystems exchange data with the VM through SSPI (System Service Provider

Interface). They are connected with virtual nodes by routers which enable them to

cooperate to achieve a distributed service under the management of a VM such as the

wide-area computing or grid technology.

Most service systems can be categorized as CHDSs as shown in Figure 7.1. For

example, in Client/Server (Browser/Server) systems, the control center can be viewed

as Servers and every Client (Browser) can be viewed as a node in the sub-distributed

systems. In IP telephone systems, every terminal is a telephone and the computers in

sub-distributed systems and the control center provide the services such as connecting

two distant telephones and calculating the fee. This structure has also been applied into

some other areas such as banks, hospitals, companies and libraries.

The centralized heterogeneous distributed service system in Figure 7.1 can also be

reduced to some other systems. First, if the subsystems use identical operation

platform and computers, the heterogeneous subsystems can be reduced to

homogeneous subsystems. Second, if a system has only one distributed system to

complete a service without a control center, we can omit the control center and retain

only one of the subsystems. Under this condition, the distributed service reliability

becomes the same as the distributed program reliability (Kumar et al. 1986, Lin et al.

1999a). Finally, if a service system is equipped with only a control center, we can

ignore the sub-distributed systems. In this condition, the distributed service reliability

becomes the same as system availability (Lai et al. 2002).

The whole process for a service in a distributed system may be repeated frequently so

the reliability analysis of a distributed service is crucial for a distributed system.

Chapter 7 Modeling and Analysis of Service Reliability for DCS

149

7.1.1 Service reliability analysis of CHDS

Notations:

)(tA : availability function of VM at time t,

DSRi: distributed system reliability for i-th sub-distributed system,

)(0 tP : probability that the VM is in working state at time t,

)(1 tP : probability that the VM is in malfunctioning state at time t,

)(bs tR : distributed service reliability function of bt ,

bt : initial time for the service,

j
bfT : time point at which the j-th program need the files prepared in the VM

k
bpT : beginning time when the k-th program runs in VM,

k
exT : execution time period for those programs in VM,

VMi: VM used in subsystem i.

In this chapter, distributed program (system) reliability is defined as the probability of

successful execution of a program (all the programs) running on multiple processing

elements that need to retrieve data files from other processing elements (Kumar et al.

1986). The system availability of the control center or VM is the probability for it to be

available.

For a distributed system, the distributed service reliability is defined as the probability

to successfully achieve the service in a distributed system. This will depend on both

system availability to provide the service and the system reliability in providing the

service.

Chapter 7 Modeling and Analysis of Service Reliability for DCS

150

7.1.2 General model of distributed service reliability

In a distributed service system, a service includes different distributed programs

completed on different computers. Some later programs might require several

precedent programs to be completed. Every program requires a certain execution time.

The execution of some programs might require certain input files that are saved or

generated on different computers of the distributed systems (Kumar & Agrawal 1993).

The overall distributed service reliability depends on the availability of a program for

the service, the availability of input files to the program and the service reliability of

the subsystem.

The reliability of a service is determined by the reliability of distributed programs in

each subsystem and the availability of the control center. If a service can be achieved

successfully, the programs running in every subsystem must be successful. The VM

should be available at the moment any program needs a certain input file prepared in

VM. It also has to be available during the period when the programs are being

executed in VM.

The critical path method (Hillier and Lieberman 1995) can be used to determine the

time point at which the programs require the files prepared in the VM (j
bfT) (j=1,2,…J).

We can also obtain the starting time when the programs runs in the VM (k
bpT) and the

corresponding execution time period for those programs (k
exT) (k=1,2,…,K).

If)(tA is the availability of VM at time t and we assume that the programs require

input files at the beginning time, j
bfT , the availability of the input files can be

calculated as

Chapter 7 Modeling and Analysis of Service Reliability for DCS

151

)(jPf =)(j
bfTA , j=1,2,…J. (7.1)

It is assumed that the VM is available from the beginning to the end when a program

runs on it otherwise, the program fails. Thus, the average availability of the programs,

which start at time k
bpT with the execution time period k

exT , can be calculated as

)(kPpr = k
ex

TT

T

TdttA

k
ex

k
bp

k
bp

/)(∫
+

, k=1,2,…,K. (7.2)

Let N be the number of subsystems in the CHDS. The DSR for the i-th subsystem is

denoted by DSRi (i=1,2,…,N). Let the VM initially be a perfect node in every

subsystem and compute DSRi (i=1,2,…,N) for every subsystem.

In order to calculate distributed service reliability, some additional assumptions on

statistical independence are needed:

1) DSRi (i=1,2,…,N) is assumed to be mutually independent;

2) The files prepared in the VM are also mutually independent;

3) The programs running in the VM are mutually independent. Although the

independence assumption may not always be true, it is acceptable as a first

order approximation. In fact, when service requests are independent, the

failures of the VMs in providing the service will also be independent.

The distributed service reliability function to the initial time, bt , can be calculated by

)(bs tR =∏ ∏ ∏
= = =

⋅⋅
N

i

J

j

K

k
prfi kPjPDSR

1 1 1

)()((7.3)

Chapter 7 Modeling and Analysis of Service Reliability for DCS

152

We view the VM as a perfect node in calculating DSRi without considering the

availability of prepared files and executed programs in it. Thus, the service reliability

is the whole DSR ∏
=

N

i
iDSR

1

 multiplied by the availability of files and programs in VM.

The availability of files and programs in VM can be expressed as the product of

∏
=

J

j
f jP

1

)(and ∏
=

K

k
pr kP

1

)(. Hence, the overall distributed service reliability function can

be expressed as Equation (7.3). Note that the model is a general one and any specific

reliability and availability functions can be used.

7.1.3 Solution algorithm

In applying the general approach, we need the structure of CHDS and can then use the

model in Section 3.1. The algorithm for the calculation of the distributed service

reliability can be presented as the following six steps:

Step 1: Identify the structure of CHDS and relationship between programs and files;

Step2: Obtain the availability function of the VM with any existing models;

Step 3: Let the VM be a perfect node in every subsystem and calculate DSRi
(i=1,2,…,N);

Step 4: Using the critical path method to determine j
bfT (j=1,2,…J) and k

bpT , k
exT

(k=1,2,…,K);

Step 5: Calculate)(jPf and)(kPpr as shown in Equation (7.1-7.2).

Step 6: Calculate the distributed service reliability function to the initial time, bt ,
through Equation (7.3).

Note that we can implement different models and methods to calculate distributed

service reliability. (1) For subsystems, there are two conditions to calculate DSRi: a)

Assume the nodes in sub-distributed system are perfect. The DSRi can be calculated

through the algorithms (Kumar et al. 1986, Kumar et al. 1988, Chen & Huang 1992,

Kumar & Agrawal 1993, Chen et al. 1997). b) Assume the nodes in sub-distributed

Chapter 7 Modeling and Analysis of Service Reliability for DCS

153

system are imperfect. The DSRi can be calculated through the algorithms (Ke & Wang

1997, Lin et al. 1999b). (2) For the availability function of the VM)(tA , it can be

calculated differently through the methods given in (Welke et al. 1995, Lai et al. 2002,

Hariri & Mutlu 1995, Laprie & Kanoun 1992) and so on if the conditions match the

assumptions in these articles.

7.2 An application example

An actual bank automatic payment system is investigated as a numerical example of

the service analysis of a CHDS. In this system, there is a payment center and three sub-

payment systems.

7.2.1 The structure of CHDS

The structure of this distributed service system is described in Figure 7.2.

Virtual
Machine

e1

e4

e2

e3

e5
e6

e7 e8

1

2 3

4 5

R

R

6

7 8

9

10

R

11

14

12

13

e9

e10

e11

e12

e13

e14

e15

e16

e17
e18

e19

e20

e21 Router

Figure 7.2: A centralized distributed service system

In Figure 7.2, there are three subsystems. The network topologies are common

topologies, a star topology and a ring topology, in which “R” means router and

]21,1[, ∈iei is the links among the nodes.

IBM RS/6000
Unix (AIX 4.3)

Sun Workstation
Sun Solaris 2.5 Compaq Pentium II

IBM Mainframe (ES/9000)
MVS (Multi Virtual Systems)

Chapter 7 Modeling and Analysis of Service Reliability for DCS

154

Table 7.1 shows the programs and prepared files arranged in the distributed system.

Table 7.2 shows the relationship between programs and their precedent programs. If

there are no precedent programs for a program, it can run at initial time when input

files are available. Table 7.2 also shows the input files and execution times for every

program. If there are no input files required by a program, the program can run

immediately after its precedent programs are completed.

Table 7.1: The programs and prepared files in different nodes

Node Programs Files
1 P1 F1, F5
2 P4 F1, F2
3 P2, P3 F2, F5
4 P2, P3 F2, F5
5 P4 F3, F6
6 P5, P7 F6
7 P6 F7, F8, F9
8 P7 F7, F8, F9
9 P5, P6 F6

10 P8, P11 F10, F11, F12
11 P9 F11
12 P10 F10
13 P9, P10 F12
14 P8, P11 F10, F11, F12
VM SP1, SP2, SP3, SP4 F4, F13, F14

Chapter 7 Modeling and Analysis of Service Reliability for DCS

155

Table 7.2: Required files, precedent programs and execution time for programs

Programs Required Files Precedent Programs Execution Time
(exT)

P1 F1,F2,F3 ------ 5
P2 F2,F4,F6 ------ 25
P3 F1,F3,F5 P1,P2 32
P4 F1,F2,F4,F6 SP1,SP2 33

SP1 F6 P3,P6 43
P5 ------ ------ 17
P6 F6,F13,F9 P5 19
P7 F6,F8 SP2,SP3 21

SP2 F2,F11 P9,P10 16
P8 ------ P1 45
P9 F11,F12 P5 121

P10 F11,F14 SP1 37
SP3 F3,F8 P8,P10 21
P11 F14,F10,F12 SP3 32
SP4 F5,F12 P4,P7,P11 20

“------” means no precedent programs or no input files.

7.2.2 The availability function

The VM is assumed to have a failure intensity function)(tλ . There are maintenance

personnel to repair the failure of the VM and the repair time is exponentially

distributed with parameter 5.0=µ . For the failure intensity function of the VM, we

use the GO model presented by Goel and Okumoto (1979) in which the failure

intensity function is given by

)exp()(btabt −=λ (7.4)

The values of a and b are assumed to be 10 and 0.01, respectively, in this example. We

incorporate this model into the Markov process as a time-dependent Markov model.

Note that any other model can be used but this model is selected here because it is the

most widely used.

In our Markov model, we assume that there are two states, up (working state) and

down (malfunctioning state). Let)(0 tP be the probability for the VM to be working at

Chapter 7 Modeling and Analysis of Service Reliability for DCS

156

time t, and)(1 tP be the probability for it to be in a malfunctioning state at time t. The

corresponding Kolomogorov's differential equations are

)('0 tP =)(1 tPµ -)()(0 tPt ⋅λ (7.5)

and

)(1 tP =1-)(0 tP (7.6)

With the initial conditions)0(0P =1,)0(1P =0, it can be shown that

)(

0

)(
0 /1)(

btaeta
t

bxaex eedxetP
−+−−− ⋅








+= ∫ µµµ (7.7)

which is the availability function)(tA in our case.

7.2.3 The distributed system reliability

The DSR from the left subsystem to the right subsystem in Figure 7.1 is denoted by

DSRi (i=1,2,3). The three subsystems can be separated as shown in Figure 7.3.

e1

e4

e2

e3

e5
e6

e7 e8

1

2 3

4 5

R

R

6

7 8

9

10

R

11

14

12

13

e9

e10

e11

e12

e13

e14

e15

e16

e17
e18

e19

e20

e21

VM1 VM2 VM3

Figure 7.3: The separated subsystems from Figure 7.1.

In Figure 7.3, VMi (i=1,2,3) represents the VM used in subsystem i. Now we calculate

DSRi (i=1,2,3) numerically with the assumptions that all the nodes are perfect and the

Chapter 7 Modeling and Analysis of Service Reliability for DCS

157

probability for every communication edge to be available is 0.9. The graphs for DSR1

can be reduced through the rules in FST-SPR algorithm presented in Chen and Huang

(1992) as shown in Figure 7.4.

Hence, we can obtain the result of DSR1=0.9496 through the GEAR algorithm

presented by Kumar and Agrawal (1993). In the same way, we can get DSR2=0.8817

and DSR3=0.9068.

e1

e4

e2

e3

e5
e6

e7 e8

1

2 3

4 5

e9

VM1

e9

Figure 7.4 The reduced graph for subsystem 1.

7.2.4 The distributed service reliability function

The critical path graph for the example given in Table 7.2 is drawn in Figure 7.5. The

value marked on the edge is the execution time, those on the node are the starting times

and the dot-arrow lines represent the critical path.

Chapter 7 Modeling and Analysis of Service Reliability for DCS

158

1P

2P

5P

8P

3P

6P

9P

1SP 10P

3SP

2SP

11P

7P

4P

4SPB
E

bt

bt

bt

bt +5
5

5

25

17

17

45

 32

19

43

121

21

21
37

37 16

16

32

 21

 33

20

bt

bt

bt

bt +25

bt +17

bt +17

bt +57

bt +137

bt +100

bt +138

bt +158

bt +158 bt +190 bt +210

bt +154

Figure 7.5: Critical path for Table 7.2

From the critical path shown in Figure 7.5 and Table 7.2, j
bfT (j=1,2,…,5) can be

shown to be { bt , bt +17, bt +100, bt +154, bt +158} for the programs {P2, P6, P10, P4,

P11} using the files prepared in the VM. We can also get k
bpT (k=1,2,3,4) to be { bt +57,

bt +138, bt +137, bt +190) and the corresponding execution time period k
exT to be {43,

21, 16, 20} for the programs {SP1, SP2, SP3, SP4} executed in the VM.

With Equations (7.1, 7.2, 7.7), we get

)(jPf =)(j
bfTA , j=1,2,…5,

in which j
bfT is { bt , bt +17, bt +100, bt +154, bt +158} and

)(kPpr = k
ex

TT

T

TdttA
k

ex
k

bp

k
bp

/)(∫
+

, k=1,2,3,4,

in which k
bpT is { bt +57, bt +138, bt +137, bt +190) and k

exT is {43, 16, 21, 20}.

Hence, using Equation (7.3), we can obtain the distributed service reliability function

to service starting time bt as

Chapter 7 Modeling and Analysis of Service Reliability for DCS

159

)(bs tR =∏ ∏ ∏
= = =

3

1

5

1

4

1

)()(
i j k

prfi kPjPDSR (7.8)

This distributed service reliability function has the form displayed in Figure 7.6.

bt

Service Reliability

Figure 7.6: Typical distributed service reliability function to service starting time.

From Figure 7.6, it can be observed that the lowest service reliability is not at the

initial time point when the software failure intensity of the VM is the highest as

Equation (7.4). This is because we assumed that the initial state for the VM is up

(working). When bt is larger than the lowest point, the distributed service reliability

increases. This is because identified bugs of the VM are fixed, resulting in a decrease

in the failure intensity. Towards the end, the distributed service reliability approaches a

steady state availability of 0.7592, which is obtained by

∏
=

3

1i
iDSR = 0.9496×0.8817×0.9068=0.7592.

When the availability of VM approaches 1, the distributed service reliability is

approaching 0.7592.

Chapter 7 Modeling and Analysis of Service Reliability for DCS

160

7.3 Further analysis and application of the general model

With specific input parameters, the distributed service reliability can be computed. Via

the modelling and further analysis, some general conclusions can be drawn. The VM in

the control center is the heart of the CHDS, and hence, the system availability)(tA of

the VM is critical to the distributed service reliability. In order to achieve a high

reliability of the service, the control center should be equipped with sufficient

maintenance personnel to repair the failures of the VM. The availability function of the

VM can help the decision maker to allocate maintenance personnel effectively at

different stages and to decide the release time that provides certain pre-required system

availability. In this section we discuss some related analysis that makes use of the

general model and which could be of importance in practical applications.

7.3.1 A general approach

The system availability reaches the lowest point at an early stage. This is because a

large number of faults are identified when system testing begins. The system

availability starts recovering after the lowest point and approaches a steady value after

an extended period of time. This state is reached when identified faults have been fixed.

The time at which the system availability is at its minimum is important as around this

time point *t , a significant amount of effort needs to be put into fault fixing and

system testing to help increase system availability of the VM quickly. When the faults

are fixed, the system availability recovers and effort on fault fixing and testing can be

reduced accordingly. Eventually, only a few faults will be left and at this stage, the

manpower for the fault fixing and system testing of the VM can be moved to elsewhere.

Hence, the minimum system availability time point *t is an important indicator for the

Chapter 7 Modeling and Analysis of Service Reliability for DCS

161

managers of the control center for enabling them to distribute the resources on the VM

at different stages.

It is easy to calculate the time of minimum system availability if the availability

function of the VM,)(tA , is known. By differentiating)(tA , and then solving

)(' tA =0, we can get the solution that is the minimum time point *t .

Furthermore, if the management wants to know the time when the VM system reaches

certain availability level LA , the system availability function)(tA can be used by

solving the equation of)(tA = LA . Its solution can help the managers to decide the

release time of the VM accordingly. For example, the customers may require the

system availability to be at least LA . Hence, we need to know the time point when the

system availability reaches this required system availability level. At this point the

testing can be stopped and the system can be released.

Another important issue in this type of analysis is the sensitivity studies. Usually the

model parameters are assumed to be known. A deviation from the assumed value could

lead to significant differences between the actual and the calculated values. To

minimize these errors, effort should be made to obtain accurate estimates of the

important parameters. Since a number of parameters are involved, it is useful to

identify the ones that influence the results most. Sensitivity analysis of the parameters

is therefore highly recommended. The results obtained from these analyses can help

decision makers and analysts to better allocate the resources.

7.3.2 The application example revisited

To clearly address some of the issues raised in the previous section, we revisit the

application example in Section 7.2 with some further analysis. This type of study is

Chapter 7 Modeling and Analysis of Service Reliability for DCS

162

important in system studies and for the management to fully make use of the modelling

and analysis.

7.3.2.1 Minimum system availability of the VM

The minimum availability point of Equation (7.7) can be obtained by taking the

derivative and setting it to zero. That is

)(' tA =)(btaete
−−µµ)(btaete

−+−µ +)(1)(

0

)(btaet
a

t
aex abee

e
dxe

btbx −+−− −−⋅⋅







+

−−

∫ µµ µµ

 = µ +)(1)(

0

)(btaet
a

t
aex abee

e
dxe

btbx −+−− −−⋅⋅







+

−−

∫ µµ µµ (7.9)

Let)(' tA =0 and let t* be the solution, i.e.,

 µ +)(1 ***

*

)(

0

)(btaet
a

t
aex abee

e
dxe

btbx −+−− −−⋅⋅











+

−−

∫ µµ µµ =0 (7.10)

It is not difficult to obtain the value of t* numerically by using Maple or Mathematica,

or some other symbolic software.

For example, with parameters a=10, b=0.01 µ =0.5, Equation (7.10) can be solved by

Maple to give t*=8.88 and the minimum system availability A(t*)=0.8453.

7.3.2.2 Time to achieve a required system availability

Suppose that the customers require the system availability to be at least LA . From

Equation (7.7), this can be obtained by solving the following equation

)(

0

)(1)(
btbx aet

a

t
aex e

e
dxetA

−− +−− ⋅







+= ∫ µµµ = LA (7.11)

Chapter 7 Modeling and Analysis of Service Reliability for DCS

163

Since there may be two solutions, we require that *tt ≥ where *t can be solved by

Equation (7.10) first.

A simple approximation is presented here for solving Equation (7.11) and carrying out

further analytical study. In a Markov Chain, there is a transition time from initial state

to steady state. We assume that it takes more time between the initial time and the

release time of the test than the transition time of the Markov process. Based on this

assumption, from the equations for long-run Markov chain (Hillier & Lieberman 1995)

we get

)(tA =)(0 tP =
µ

µ
+−btbea

 (7.12)

In order to calculate the time point that satisfies the customers’ requirement LA , let

)(tA = LA and t can be obtained as

 







⋅−⋅−=
abAb

t
L

µ)11(ln1 (7.13)

In our example with parameters a=10, b=0.01 µ =0.5, the time point for LA =0.98 can

be calculated be 228.24.

7.3.2.3 Sensitivity analysis

There are three parameters in the availability function (7.7), a, b and µ . The

sensitivity of different parameters is shown in Figure 7.7 and Figure 7.8.

Chapter 7 Modeling and Analysis of Service Reliability for DCS

164

a=10
b=0.01

µ =0.3

µ =0.5

µ =0.7

µ =0.9

t

Availability

Figure 7.7: Sensitivity of µ (left) and a (right)

As expected, a greater repair rate implies higher system availability. Similarly, when a

increases, the system availability decreases because the failure intensity function

increases as Equation (7.4). However, in the case of parameter b the effect is not

obvious, as shown in Figure 7.8

µ =0.5
a=10

b=0.012

t

Availability

b=0.01

b=0.008

b=0.006

Figure 7.8: Sensitivity of b.

The curves in Figure 7.8 cross each other which means that when b increases, system

availability decreases at the early stage and increases at the later stage. Equation (7.4)

µ =0.5
b=0.01

a=12

t

Availability

a=10

a=8

a=6

Chapter 7 Modeling and Analysis of Service Reliability for DCS

165

can be used to explain this. There are two parts in the failure intensity function of GO

model, ab and exp(-bt). When b increases, the first part, ab, increases while the second

part, exp(-bt), decreases. Thus, at the early stages, when the time t is small the

influence of the second part is less than that of the first part so the failure intensity

function increases and the system availability decreases. Conversely, at the later stage,

the time t is large and the influence of the second part is more than that of the first part

so the failure intensity function decreases and the system availability increases.

With Equation (7.10), we can calculate the time point of the minimum system

availability and the time a certain availability is achieved. On the other hand, it would

be useful to see the influence of the repair rate on these two quantities. We analyze the

Markov model with the numerical example presented in Section 7.3.2. It is assumed

that a=10 and b=0.01. Let µ change from 0.3 to 0.7 to calculate the minimum system

availability point through Equation (7.10). The time of the minimum system

availability *t vs. the repair rate µ is shown in the left curve of Figure 7.9. The

minimum system availability A(t*) vs. µ is depicted in the right curve of Figure 7.9.

Chapter 7 Modeling and Analysis of Service Reliability for DCS

166

µ

*t

Figure 7.9: Sensitivity analysis of repair rate

From Figure 7.9, we can see the rate of decrease in t* (rate of increase in A(t*)) as the

repair rate µ increases. We can also see that A(t*) is a convex function of µ . This

means that adding µ∆ on a smallµ improves more availability than adding the same

µ∆ on a large µ . The curve of “t* vs. µ ” is concave, which means that adding

µ∆ on a smallµ reduces more time of minimum availability than adding the same µ∆

on a large µ . This type of study is useful for allocating the maintenance personnel

optimally, which is another interesting problem for the further research.

7.4 Conclusions

In this chapter, a general model was presented for the widely CHDS. Based on this

model, a solution algorithm was presented and the time for the VM to reach either its

minimum system availability or a specifically required system availability was studied.

An application of the model on an actual bank automatic payment system was shown.

In addition, sensitivity analysis were carried out to determine the effects of the

intrinsic parameters on the system availability and the lowest availability point.

µ

A(t*)

Chapter 7 Modeling and Analysis of Service Reliability for DCS

167

Since our approach is general and the CHDS has been applied in different areas, the

algorithm for the distributed service reliability analysis can be used to estimate the

reliability of the service in a distributed system during both the testing phase and the

operational phase. During the testing phase, the service reliability function can help to

allocate testing resources accordingly. For example, around the minimum service

reliability time, more maintenance personnel and testing resources should be allocated

to test and repair the system than at the later stage when the service reliability is high

and the amount of testing resource can therefore be reduced.

Also, if given a requirement on the service reliability after release, the time for release

can also be determined. Moreover, for projects with fixed deadlines, the model can

help system managers to determine the testing intensity or manpower according to the

estimated reliability performance given different levels of testing intensity.

Furthermore, during the operational phase, the quality of service can also be assessed

through the service reliability measure.

168

Chapter 8

Conclusions and Future Work

In this chapter, a summary of the merits and the limitations of the work conducted is

offered and areas for future research are suggested to conclude this dissertation.

8.1 Conclusions

The system reliability and schedule length are two very important criteria for DCSs.

Hence, this dissertation focuses on heuristics algorithms to maximize the system

reliability and/or to minimize the completion time (schedule length).

8.1.1 Reliability oriented algorithms

When the topology of a DCS is fixed, the DSR depends mainly on the assignment of

various resources such as the programs and files. Especially for systems with long

mission times or with a large number of processors, an improved program allocation

can increase the system reliability dramatically.

8.1.1.1 Modelling

 There has been extensive work done on the development of program and file

allocation algorithms designed to maximize system reliability. However in most of

this work the program and file allocations have been considered separately whereas to

achieve the highest level of system reliability these allocations should be considered

Chapter 8. Conclusions and Future work

169

simultaneously. Chapter 3 of this dissertation presents a reliability-oriented

optimization model in which both program allocation and file allocation are considered

together. In real world situations, there are a number of constraints on, for example, the

storage, costs and completion times. To make the model more practical, therefore these

constraints have also been taken into account making it more practical and more

comprehensive than models previously developed by others, as can be seen from the

following comparison.

Kumar et al. (1995a) developed a genetic algorithm (GA) to solve a file allocation

scheme. In their scheme, the objective function was to maximize the distributed

program reliability (DPR). From the system level viewpoint, the distributed systems

reliability (DSR) describes the system better than the DPR. Hence, the objective of our

optimization model was to maximize the DSR. When the number of programs is set to

one, the objective to maximize DSR is the same as maximizing DPR, the objective

function in Kumar et al. (1995a). When the program allocation is fixed, the models

will degenerate to the file allocation problem discussed by Kumar et al. (1995a). In the

optimization model of Kumar et al. (1995a) the different constraints, for example the

total number of copies of each file and the memory constraint at each node, are

discussed. In our model, some additional constraints such as the cost constraint and

completion time constraints are considered. Although more constraints make the GA

more difficult to implement, they make the optimization model more practical.

In the optimization model of Kartik & Murthy (1997) to solve the program allocation

problems for maximizing the DSR, the network topology was assumed cycle-free. Our

proposed optimization model does not limit the topology and permits redundancies,

which makes it more generally applicable. Also, the program allocation and file

Chapter 8. Conclusions and Future work

170

allocation are both considered together by our proposed optimization model, making it

more general and practical than that of Kartik & Murthy (1997).

A sensitivity analysis showed that the optimal assignment was robust to variations in

program prices and that extended completion time might improve the DSR and cause

more computers to become available for carrying out other services without sacrificing

the DSR.

Program allocation and file allocation problems are NP-hard,. However, considering

program and file allocation together and taking into account resource constraints

makes the problem harder to solve. Hence, in chapter 3 a genetic algorithm is also

proposed to aid solution of this problem.

8.1.1.2 Genetic algorithm

Genetic algorithms are easy to model and be implemented to solve various problems.

However, the crossover and mutation operators may produce some infeasible solutions.

To overcome this problem, adjustment (repair) operators were implemented to adjust

an infeasible solution to a feasible one. The repair scheme is suitable for the case

where infeasible solutions appear frequently but can be repaired without too much

computational cost. In addition, the “fitness” which is a function of reliability is used

instead of directly using the reliability. This function can enlarge the difference

between the individuals to give more chance to the better individuals, so that the

algorithm can converge rapidly.

Numerical simulations were run to evaluate the performance of the proposed GA.

When the solution space is small, the results of GA were compared with that of an

exhaustive search algorithm. The comparison showed that in most cases the GA could

obtain the optimal solutions with much less computation time. On the other hand,

Chapter 8. Conclusions and Future work

171

when the solution space is very large, the exhaustive algorithm cannot finish in an

acceptable time but the genetic algorithm can obtain some good solutions and hence is

strongly recommended.

8.1.1.3 Tabu Search and comparison with the GA

For many combinatorial optimization problems, GA can provide excellent results.

However, GA is a population-based search, and requires the evaluation of multiple

prospective solutions over many generations. Hence, for some complex problems,

GA’s may need a significant amount of computational effort. In addition, when the

problem has certain constraints, the crossover and mutation may produce some

infeasible solutions. Some effort is needed to deal with these infeasible solutions.

Unlike GA’s, TS is not population-based but successively moves from solution to

solution. This offers some potential for improved efficiency if it also provides the same

quality of solutions in a shorter time or provides improved quality for the same time.

Comparative studies show that in some cases GA outperforms TS, but in others TS

outperforms GA. Due to the widely different views on the efficiency, chapter 4

proposed a TS and then compared the performance of GA and TS to gauge their

suitability for solving the program and file allocation problem.

The whole solution space is inherently partitioned into several subsets according to the

number of the copies of the programs and files. The TS combined with the “branch-

and-bound” technique was implemented and particular features such as “back-

tracking” and “restarting” were incorporated.

The results from two numerical examples showed that TS outperforms GA with short

computing time and better solution quality. However, the design of good TS requires

far more insight into the problem and much more effort is needed compared to the

Chapter 8. Conclusions and Future work

172

requirements for implementing a good GA for the same problem. Hence if we do have

good knowledge of the state space, TS should be used, otherwise, GA may be a better

choice.

8.1.1.4 A parallel TS

In some practical situations, scheduling must be completed within a short time interval.

To shorten the execution time of an algorithm without comprising the solution quality,

a natural method is to parallelize the algorithm. Hence, in chapter 4 a Parallel Tabu

Search (PTS) is proposed to solve the program and file allocation problem.

For this problem, the solution space can be inherently partitioned into a number of

subsets, and multiple search paths used in parallel to search different subsets so as to

accelerate the TS. The implementation of PTS followed a master-slave scheme. The

simulation results showed that the speedup of the PTS basically grows linearly with

number of processors when the number of processor was not very large. A possible

reason for this is that when the solution space is partitioned into subsets, every

processor searches a subset; and only a small amount of communication is needed,

thus generating an approximately linear function. The simulation results showed the

solution quality was virtually unaffected by the number of processors.

8.1.2 Completion time oriented algorithm

Completion time is another important parameter in DCSs. In a parallel application the

data dependencies can be represented by a directed acyclic graph (DAG). Intensive

research has been done on DAG scheduling to minimize the completion time (schedule

length), which is a NP-hard problem. However, most of these algorithms assume that

the DCSs were homogeneous, for example, list scheduling. Heterogeneous Earliest-

Finish-Time (HEFT) algorithm (Topcuoglu et al. 2002) adopted list scheduling for

Chapter 8. Conclusions and Future work

173

heterogeneous systems, it significantly outperformed Mapping heuristic (MH) (El-

Rewini & Lewis 1990), Dynamic-Level Scheduling (DLS) algorithm (Sih & Lee 1993),

Levelized-Min Time (LMT) algorithm (Iverson et al. 1995) in terms of average

schedule length ratio, speedup, etc. However, as it only uses the mean value to

construct the scheduling list, the scheduling may be misdirected.

Chapter 5 proposed an iterative algorithm based on the idea of list scheduling for

heterogeneous systems. The algorithm generates an initial solution with moderate

quality and then improves the solution iteratively. During the iterative steps, the results

of the previous iteration are used to construct a new list. The initial step happens to be

same as HEFT. Consequently, if the final schedule length is less than the initial one,

the iterative algorithm can produce shorter schedule length than those of the HEFT,

DLS, MH, LMT.

To test the performance of the proposed algorithm, a random generator of direct

acyclic graphs was designed. Simulations were run on a large number of randomly

generated problems of different sizes and two real applications, and the results showed

that in the majority of cases, there were significant improvements made to the initial

schedules, which means that the proposed algorithm outperforms HEFT algorithm,

DLS algorithm, MH, LMT algorithm in terms of the average schedule length. In

particular, the algorithm performs better when the tasks to processors ratio is large.

Sensitivity analysis shows that neither the percentage that final schedule length is less

than the initial one nor the average improvement ratio are sensitive to the weighting

factor ,i.e., the weight when computing the mean during iteration.

Chapter 8. Conclusions and Future work

174

8.1.3 Completion time and reliability oriented algorithm

Although intensive research has been done on DAG scheduling, most proposed

scheduling algorithms are designed to minimize the schedule length without

consideration of the possible failure of the computation machines or associated

network resources. In a failure-prone system, assigning tasks to machines without

considering possible failures may result in a significant increase in the average

execution time of the application in the presence of failures. Chapter 6 described a

multi-objective optimization problem to minimize schedule length and maximize the

system reliability simultaneously.

Evolutionary algorithms have been extensively adopted to solve the multi-objective

optimization problems, however for this particular problem, it is very hard to

recombine two solutions to generate new solutions due to the data dependency. Hence,

a TS was proposed to solve this multi-objective problem.

To distribute the Pareto-optimal solutions along the Pareto-front uniformly, “lateral

interference” was adopted. To apply “lateral interference”, it is necessary to compute

the distance metric between the solutions and two schemes have been proposed to do

this.

Randomly generated DAGs and a real application were used to determine the

performance of the proposed algorithm. The “non-dominated solution number” and the

“uniform distribution of non-dominated solutions” are the two performance measures

used to compare the two schemes, one considering the “lateral interference” and the

the other without. For “non-dominated solution number” there was basically no

difference between the three schemes. For “uniform distribution of non-dominated

solutions, the two schemes considering the “lateral interference” were much better than

Chapter 8. Conclusions and Future work

175

the one without considering it and there was basically no difference between the first

two schemes.

8.1.4 Reliability analysis and computation for DCS

Service reliability of a distributed system is a key criterion of QoS (Quality of

Service). Most of the distributed systems can be modeled as CHDSs. The service

reliability in a CHDS is determined not only by the system availability of the control

center, but also by distributed program reliabilities of the subsystems. Most earlier

research on system availability or reliability cannot be simply applied to analyze the

service reliability of CHDSs.

Chapter 7 described a general model for a CHDS. Based on this model, a solution

algorithm was presented and the time for the VM to reach its minimum system

availability or required system availability was studied. An application of the model to

an actual bank automatic payment system was presented. In addition, a sensitivity

analysis was conducted to determine the effect on the system availability of certain

intrinsic parameters and their effect on the lowest availability point.

8.2 Future work

For the program and file allocation problem proposed in chapter 3, when the solution

space is very large, the exhaustive algorithm cannot finish execution in acceptable time,

and therefore no optimal solutions are available to compare with the results of the

proposed algorithms. The upper bound, if available, would be very useful for

evaluating the performance of the algorithms proposed in this dissertation. Although 1

is the upper bound of the system reliability, for some cases, the system reliability of the

optimal solution is far from 1. A method to obtain a realistic upper bound for the

Chapter 8. Conclusions and Future work

176

proposed problem would be valuable as the alternative value of 1 is in many cases not

appropriate .

Most DAG scheduling to minimize the schedule length assumes that the processors of

the system are fully linked, which means that there is no communication contention.

The assumption is true when the number of the processors is not large, but when the

number of the processors is very large, this assumption is obviously not true. When

communication contention exists, communication scheduling and routing must be

taken into account. Future research on DAG scheduling to maximize the schedule

length should consider this communication contention.

177

References:

Aggarwal, K.K. and Rai, S. (1981), Reliability evaluation in computer-communication

networks, IEEE Transactions on Reliability, R-30(1), pp. 32-35.

Ahmad, I., and Kwok, Y.-K. (1998), On exploiting task duplication in parallel program

scheduling, IEEE Transactions on Parallel and Distributed Systems, 9 (9), pp.

872-892.

Augugliaro, A., Dusonchet, L., and Sanseverino, E.R. (1999), Genetic, Simulated

Annealing and Tabu Search algorithms: Three heuristic methods for optimal

reconfiguration and compensation of distribution networks, European

Transactions on Electrical Power, 9 (1), pp. 35-41.

Balicki, J., and Kitowski, Z., (2001), Multicriteria evolutionary algorithm with tabu

search for task assignment, Lecture Notes in Computer Science, 1993, pp. 373-

384.

Bannister, J.A. and Trivedi, K.S. (1983), Task allocation in fault-tolerant distributed

systems, Acta Informatica, 20 (3), pp. 261-281.

Baykasoglu, A. (2002), Linguistic-based meta-heuristic optimization model for

flexible job shop scheduling, International Journal of Production Research, 40

(17), pp. 4523-4543.

Ben-Tal, A. (1980), Characterization of Pareto and lexicographic optimal solutions, In

Multiple Criteria Decision Making Theory and Application, Fandel G., and Gal,

T. editors, vol. 177 of Lecture Notes in Economics and Mathematical Systems.

Berlin, Germany: Springer-Verlag, pp. 1–11.

References

178

Bokhari, S.H. (1979), Dual processor scheduling with dynamic reassignment, IEEE

Transactions on Software Engineering, SE-5 (4), pp. 341-349.

Bokhari, S.H. (1981), A shortest tree algorithm for optimal assignments across space

and time in a distributed processor system, IEEE Transactions on Software

Engineering, 7 (6), pp. 583-589.

Braun, T.D., Siegel, H.J., Beck, N., Bölöni, L.L., Maheswaran, M., Reuther, A.I.,

Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D., and Freund, R.F. (2001),

A Comparison of Eleven Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing Systems, Journal of Parallel

and Distributed Computing, 61 (6), pp. 810-837.

Budenske, J.R., Ramanujan, R.S. and Siegel, H.J. (1997), On-line use of off-line

derived mappings for iterative automatic target recognition tasks and a

particular class of hardware platforms, In Proceedings of the Sixth

Heterogeneous Computing Workshop, pp. 96 –110.

Budenbender, K., Grunert, T., and Sebastian, H.J. (2000), A hybrid Tabu

Search/Branch-and-Bound algorithm for the direct flight network design

problem, Transportation Science, 34 (4), pp. 364-380.

Casavant, T.L. and Kuhl, J.G. (1998), A taxonomy of scheduling in general-purpose

distributed computing systems, IEEE Transactions on Software Engineering,

14 (2), pp. 141-154.

Cerny, V. (1985), Thermodynamical approach to the traveling salesman problem: an

efficient simulation algorithm, Journal of Optimization Theory and Application,

45 (1), pp. 41–51.

References

179

Chang, M.S., Chen, D.J., Lin, M.S. and Ku, K.L. (1999), Reliability analysis of

distributed computing systems in ring networks, Journal of Communication and

Networks,1 (1), pp.68-77.

Chang, M.S., Chen, D.J., Lin, M.S. and Ku K.L. (2000), The distributed program

reliability analysis on star topologies, Computer & Operations Research, 27 (2),

pp. 129-142.

Chang, P-Y., Chen, D-J and Kavi, K.M. (2001), File allocation algorithms to minimize

data transmission time in distributed computing systems, Journal of

Information Science and Engineering, 17 (4), pp. 633-646.

Chari, K. (1996), Resource allocation and capacity assignment in distributed systems,

Computers & Operations Research, 23 (11), pp. 1025-1041.

Chen, D-J., Chen, R-S. and Huang, T-H. (1997), A heuristic approach to generating

file spanning trees for reliability analysis of distributed computing systems,

Computers & Mathematics with Applications, 34 (10), pp. 115-131.

Chen, D-J. and Huang, T-H. (1992), Reliability analysis of distributed systems based

on a fast reliability algorithm, IEEE Transactions on Parallel and Distributed

Systems, 3 (2), pp. 139 –154.

Chen, C.L., Lee, C.S.G., and Hou, E.S.H. (1988), Efficient scheduling algorithms for

robot inverse dynamics computation on a multiprocessor system, IEEE

Transitions on Systems, Man, Cybernetics, 18 (5), pp. 729-743.

References

180

Chen, D-J. and Lin, M-S. (1994), On distributed computing systems reliability analysis

under program execution constraints, IEEE Transactions on Computers, 43 (1),

pp. 87-97.

Chen, W-H. and Lin, C-S. (2000), A hybrid heuristic to solve a task allocation problem,

Computers & Operations Research, 27 (3), pp. 287-303.

Chern, M.S., Chen, G.H. and Liu, P. (1989), An LC branch and bound algorithm for

module assignment problem, Information Processing Letters, 32 (2), 61-71.

Chiu, C.C., Yeh, Y.S. and Chou, J.S. (2002), A fast algorithm for reliability-oriented

task assignment in a distributed system, Computer Communications, 25 (17),

pp. 1622-1630.

Chu, W.W., Holloway, L.J., Lan, M.T., and Efe, K. (1980), Task allocation in

distributed data processing, Computer 13, pp. 57-69.

Coello, C.A.C. (1996), An Empirical Study of Evolutionary Techniques for

Multiobjective Optimization in Engineering Design, Ph.D. thesis, Department

of Computer Science, Tulane University, New Orleans, USA.

Coello, C.A.C. (1999). A comprehensive survey of evolutionary-based multiobjective

optimization techniques, Knowledge and Information Systems, 1 (3), pp. 269–

308.

Coffman E. (1976), Computer and Job-Shop Scheduling Theory, John Wiley & Sons.

Colin, J.Y., Chretienne, P. and C.P.M. (1991), Scheduling with small computation

delays and task duplication, Operations Research, 39 (4), pp. 680-684.

References

181

Coulouris, G. and Dollimore, J. (2000), Distributed Systems: Concepts and Design,

Addison-Wesley, 3rd Ed.

Cvetkovic, D., Parme, I. and Webb, E. (1998), Multi-objective optimization and

preliminary airframe design, The Integration of evolutionary and adaptive

Computing Technologies with Product/System Design and Realization, Parme,

I., Ed. Springer-Verlag, New York, pp. 255-267.

Darbha, S. and Agrawal, D.P. (1998), Optimal scheduling algorithm for distributed-

memory machines, IEEE Transactions on Parallel and Distributed Systems, 9

(1), pp. 87 –95.

Dhodhi, M.K., Ahmad, I., Yatama, A. and Ahmad, I. (2002), An integrated technique

for task matching and scheduling onto distributed heterogeneous computing

system, Journal of Parallel and Distributed Computing, 62 (9), pp. 1338-1361.

Diaz, A.R., Tchernykh, A. and Ecker, K.H. (2003), Algorithms for dynamic scheduling

of unit execution time tasks, European Journal of Operational Research, 146 (2),

pp. 403-416.

Dogan, A., and Ozguner, F. (2002), Matching and scheduling algorithms for

minimizing execution time and failure probability of applications in

heterogeneous computing, IEEE Transactions on Parallel and Distributed

Systems 13 (3), 308 – 323.

Dowdy, L.W. and Foster, D.V. (1982), Comparative models of the files assignment

problem, ACM Computing Survey, 14 (2), pp. 287-311.

References

182

El-Rewini, H. and Lewis, T.G. (1990), Scheduling parallel program tasks onto

arbitrary target machines, Journal of Parallel and Distributed Computing, 9 (2),

pp. 138-153.

Erschler, J., Roubellat, F., and Vernhes, J.P. 1976. Finding some essential

characteristics of the feasible solutions for a scheduling problem, Operations

Research 24, 774–783 .

Fonseca, C. M. (1995), Multi-objective Genetic Algorithms with Application to

Control Engineering Problems, Ph.D. Thesis, Department of Automatic Control

and Systems Engineering, University of Sheffield, Sheffield, UK.

Fonseca, C.M. and Fleming, P.J. (1995), An overview of evolutionary algorithms in

multi-objective optimization, Evolutionary Computation, 3 (1), pp.1-16.

Fourman, M.P. (1985), Compaction of symbolic layout using genetic algorithms, in

Genetic Algorithms and Their Applications: Proc. 1st Int. Conf. Genetic

Algorithms, J. J. Grefenstette, Ed. Princeton, NJ: Lawrence Erlbaum, pp. 141–

153.

Fox, M.S. (1987), Constraint-Directed Search: A Case Study of Job-Shop Scheduling,

Pitman, London.

Fu, H.P. and Su, C.T. (2000), A comparison of search techniques for minimizing

assembly time in printed wiring assembly, International Journal Production

Economic, 63 (1), pp. 83-98.

Gary, M.R. and Johnson, D.S. (1979), Computers and Intractability: A Guide to the

Theory of NP-Completeness, W.H. Freeman and Co.

References

183

Gen, M., Ida, K. and Li, Y. (1995), Solving bi-criteria solid transportation problem

with fuzzy numbers by genetic algorithm, International Journal of Computers

and Industrial Engineering, 29, pp. 537-543.

Gen, M. and Cheng, R. (1997), Genetic Algorithms and Engineering Design, John

Wiley and Sons, Inc., New York.

Gerasoulis, A. and Yang, T. (1992), A Comparison of Clustering Heuristics for

Scheduling DAGs on Multiprocessors, Journal of Parallel and Distributed

Computing, 16 (4), pp. 276-780.

Ghafoor, A., and Yang, J. (1993), Distributed heterogeneous supercomputing

management system, IEEE Computer, 26 (6), pp. 78–86.

Glover, F. (1989), Tabu search-Part I, ORSA Journal on Computing, 1 (3), pp.190-206.

Glover, F. (1990), Tabu search-Part II, ORSA Journal on Computing, 2 (1), pp. 4-32.

Glover, F., Laguna, M. (1997), Tabu Search, Kluwer Academic Publishers, Boston.

Goel, A.L. and Okumoto, K. (1979), Time dependent error-detection rate model for

software reliability and other performance measures, IEEE Transactions on

Reliability, R-28 (3), pp. 206-211.

Goel, A.L. and Soenjoto, J. (1981), Models for hardware-software system operational-

performance evaluation, IEEE Transactions on Reliability, R-30 (3), pp. 232-

239.

Goldberg, D.E. (1989), Genetic Algorithms in Search of Optimization and Machine

Learning, Addison Wesley.

References

184

Hajela, P., and Lin, C. Y. (1992), Genetic Search Strategies in Multicriterion Optimal

Design, Structural Optimization, 4, pp. 99-107.

Hariri, S. and Mutlu, H. (1995), Hierarchical modelling of availability in distributed

systems, IEEE Transactions on Software Engineering, 21 (1), pp. 50-56.

Hillier, F.S. and Lieberman, G.J. (1995), Introduction to Operations Research,

McGroaw-Hill, New York.

Hilliard, M. R., Liepins, G.E., Palmer, M. and Rangarajen, G. (1989), The computer

as a partner in algorithmic design Automated discovery of parameters for a

multiobjective scheduling heuristic, In Sharda, B., Golden, L., Wasil, E., Balci,

O. and Stewart, W. editors, Impacts of Recent Computer Advances on

Operations Research, North-Holland Publishing Company, New York.

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, Ann Arbor. MI:

Univ. of Michigan Press.

Hou, E.S.H, Ansari, N., and Ren, H. (1994), A genetic algorithm for multiprocessor

scheduling, IEEE Transactions on Parallel and Distributed Systems, 5 (2), pp.

113-120.

Hwang, G-J. and Tseng, S-S. (1993), A heuristic task assignment algorithm to

maximize reliability of a distributed system, IEEE Transactions on Reliability,

42 (3), pp. 408-415.

Hwang, J.J., Chow, Y.C., Anger, F.D. and Lee, C.Y. (1989), Scheduling precedence

graphs in systems with interprocessor communication times, SIAM Journal of

Computing, 18 (2), pp. 244-257.

References

185

Ignatius, P.P. and Murthy, S.R.C. (1997), On task allocation in heterogeneous

distributed computing systems, Computer Systems Science and Engineering,

12 (4), pp. 231-238.

Iverson, M., Ozuner, F. and Follen, G. (1995), Parallelizing existing applications in a

distributed heterogeneous environment, In Proceedings of Heterogeneous

Computing Workshop, pp. 93-100.

Iverson, M. A. (1999), Dynamic Mapping and Scheduling Algorithms for a Multi-User

Heterogeneous Computing Environment, Ph.D. thesis, The Ohio State

University, Columbus, Ohio.

Jozefowska, J., Mika, M., Rozycki, R., Waligora, G. and Weglarz, J. (1998), Local

search metaheuristics for discrete-continuous scheduling problems, European

Journal of Operation Research, 107 (2), pp. 354-370.

Jozefowska, J., Mika, M., Rozycki, R., Waligora, G. and Weglarz, J. (2002), A

heuristic approach to allocating the continuous resource in discrete-continuous

scheduling problems to minimize the makespan, Journal of Scheduling, 5 (6),

pp. 487-499.

Kafil, M. and Ahmad, I. (1998), Optimal task assignment in heterogeneous distributed

computing systems, IEEE Concurrency, 6 (3), pp. 42–51.

Kang, O.H. and Agrawal, D.P. (2003), Scalable scheduling for symmetric

multiprocessors (SMP), Journal of parallel and distributed computing, 63 (3),

pp. 273-257.

References

186

Kartik S., and Murthy C.S.R. (1995), Improved task-allocation algorithms to maximize

reliability of redundant distributed computing systems, IEEE Transactions on

Reliability, 44 (4), pp. 575-586.

 Kartik, S. and Murthy, C.S.R. (1997), Task allocation algorithms for maximizing

reliability of distributed computing systems, IEEE Transactions on Computers,

46 (6), pp. 719–724.

Ke, W.J. and Wang, S.D. (1997), Reliability evaluation for distributed computing

networks with imperfect nodes, IEEE Transactions on Reliability, 46 (3), 342-

349.

Kim, D.W., Kim, K.H., Jang, W. and Chen, F.F. (2002), Unrelated parallel machine

scheduling with setup times using simulated annealing, Robotics and

Computer-Integrated Manufacturing, 18 (3-4), pp. 223-231.

Kim, D. and Yi, B.G. (1994), A two-pass scheduling algorithm for parallel programs,

Parallel Computing, 20 (6), pp. 869-885.

Kirkpatrick, Jr.S., Gelatt, C. and Vecchi, M. (1983), Optimization by simulated

annealing, Science, 220 (4598), pp. 498–516.

Kumar, A. and Agrawal, D.P. (1993), A generalized algorithm for evaluating

distributed-program reliability, IEEE Transactions on Reliability, 42 (3), pp.

416-426.

Kumar, A., Rai, S. and Agarwal, D.P. (1988), On computer communication network

reliability under program execution constraints, IEEE Journal of Selected Areas

in Communications, 6 (8), pp. 1393-1400.

References

187

Kumar, A., Pathak, R.M. and Gupta, Y.P. (1995a), Genetic algorithm based approach

for file allocation on distributed systems, Computers & Operations Research,

22 (1), pp. 41-54.

Kumar, A., Pathak R.M., Gupta, Y.P. and Parsaei, H.R. (1995b), A genetic algorithm

for distributed system topology design, Computers & Industrial Engineering,

28 (3), pp. 659-670.

Kumar, V.K.P, Hariri, S. and Raghavendra, C.S. (1986), Distributed program

reliability analysis, IEEE Transactions on Software Engineering, SE-12 (1), pp.

42-50.

Kwok, Y.-K. and Ahmad, I. (1996), Dynamic critical-path scheduling: an effective

technique for allocating task graphs onto multiprocessors, IEEE Transactions

on Parallel and Distributed Systems, 7 (5), pp. 506-521.

Kwok, Y.-K., and Ahmad, I. (1997), Efficient scheduling of arbitrary task graphs to

multiprocessors using a parallel genetic algorithm, Journal of Parallel and

Distributed Computing, 47 (1), pp. 58-77.

Kwok, Y.-K. and Ahmad, I. (1999a), Benchmarking and comparison of the task graph

scheduling algorithms, Journal of Parallel and Distributed Computing, 59 (3),

pp. 381-422.

Kwok, Y.-K. and Ahmad, I. (1999b), Static scheduling algorithms for allocating

directed task graphs to multiprocessors, ACM Computing Surveys, 31 (4), pp.

406-471.

References

188

Lai, C.D., Xie, M., Poh, K.L., Dai, Y.S. and Yang, P. (2002), A model for availability

analysis of distributed software/hardware systems, Information and Software

Technology, 44 (6), pp. 343-350.

Laprie, J.C. and Kanoun, K. (1992), X-ware reliability and availability modelling,

IEEE Transactions on Software Engineering, SE-18 (2), pp.130-147.

Leger, J.B., Iung, B., Beca, A.F.D. and Pinoteau, J. (1999), An innovative approach for

new distributed maintenance system: application to hydro power plants of the

REMAFEX project, Computers in Industry, 38 (2), pp. 131-148.

Levitin, G. (2002), Asymmetric weighted voting systems, Reliability Engineering and

System Safety, 76 (2), pp. 205-212.

Li, Y. A. and Antonio, J. K. (1997), Estimating the execution time distribution for a

task graph in a heterogeneous computing system, Proceedings of the 1997

Workshop on Heterogeneous Processing, Geneva, Switzerland, pp. 172-184.

Liepins, G.E., Hilliard, M.R., Richardson, J. and Palmer, M. (1990), Genetic

algorithms application to set covering and travelling salesman problems, In

Brown, D. E. and White, C.C. editors, Operations research and Artificial

Intelligence: The integration of problem-solving strategies, pp. 29-57. Kluwer

Academic, Norwell, Massachusetts.

Lin, M.S. (2003), Linear-time algorithms for computing the reliability of bipartite and

(# <= 2) star distributed computing systems, Computers and Operations

Research, 30 (11), pp. 1697-1712.

References

189

Lin, M.S., Chen, D.J. and Horng, M.S. (1999a), The reliability analysis of distributed

computing systems with imperfect nodes, The Computer Journal, 42 (2), 129-

141.

Lin, M.S., Chang, M.S. and Chen, D.J. (1999b), Efficient algorithms for reliability

analysis of distributed computing systems, Information Sciences, 117 (1-2), pp.

89-106.

Lis, J. and Eiben, A.E. (1997), A multi-sexual genetic algorithm for multiobjective

optimization, In Proc. IEEE Int. Conf. Evolutionary Computation, Indianopolis,

IN, pp. 59–64.

Lutfiyya, H.L., Bauer, M.A., Marshall, A.D. and Stokes, D.K. (2000), Fault

management in distributed systems: a policy-driven approach, Journal of

Network and Systems Management, 8 (4), pp. 499-525.

Maheswaran, M. and Siegel, H.J. (1998), A dynamic matching and scheduling

algorithm for heterogeneous computing systems, In Proceedings of

Heterogeneous Computing Workshop, pp. 57-69.

Mahfoud, S. W. (1995), Niching Methods for Genetic Algorithms, Ph.D. dissertation,

University of Illinois, Urbana-Champaign, 1995.

Mahmood, A. (2001), Task allocation algorithms for maximizing reliability of

heterogeneous distributed computing systems, Control and Cybernetics, 30 (1),

pp. 115-130.

References

190

Martin, E.W. and Millo, R.A.D. (1986), Operational survivability in gracefully

degrading distributed processing systems, IEEE Transactions on Software

Engineering, SE-12 (6), 693-704.

Mayer, D.G., Belward, J.A. and Burrage, K. (1998), Tabu search not an optimal choice

for models of agricultural systems, Agricultural Systems, 58 (2), pp.243-251.

McCreary, C. and Gill, H. (1989), Automatic determination of grain size for efficient

parallel processing, Communications of ACM, 32 (9), pp. 1073-1078.

Merwin, R.E., and Mirhakak, M. (1980), Derivation and use of a survivability criterion

for DDP systems, In Proceedings of the National Computer Conference, 139-

146.

Montgomery, D.C., and Runger, G.C. (2002), Design and analysis of single-factor

experiment: the analysis of variance. Applied Statistics and Probability for

Engineers, John Wiley & Sons, Inc, Third Edition.

Murthy, I. and Ghosh, D. (1993), File allocation involving worst case response times

and link capacities: Model and solution procedure, European Journal of

Operational Research, 67(3), pp. 418-427.

Nakaniwa, A., Onishi, M., Ebara, H. and Okada, H. (2001), Sensitivity analysis in

optimal design for distributed file allocation systems, IEICE Transactions on

Communications, E84B (6), pp. 1655-1663.

Oguz, C., Ercan, M.F., Cheng, T.C.E. and Fung, Y.F. (2003), Heuristic algorithms for

multiprocessor task scheduling in a two-stage hybrid flow-shop, European

Journal of Operational Research, 149 (2), pp. 390-403.

References

191

Oh, J., and Wu, C. (2004), Genetic-algorithm-based real-time task scheduling with

multiple goals, Journal of Systems and Software, 71 (3), pp. 245-258.

Osyczka, A. (1978), An approach to multicriterion optimization problems for

engineering design, Computer Methods in Applied Mechanics and Engineering,

33, pp. 309-333.

Osyczka, A. (1984), Multicriterion Optimization in Engineering with FORTRAN

programs, Ellis Horwood Limited.

Palis, M.A., Lieu, J.-C. and Wei, D.S.L. (1996), Task clustering and scheduling for

distributed memory parallel architectures, IEEE Transactions on Parallel and

Distributed Systems, 7 (1), pp. 46-55.

Papadimitriou, C.H. and Yannakakis, M. (1990), Towards an architecture-independent

analysis of parallel algorithms, SIAM Journal of Computing, 19 (2), pp. 322-

328.

Park, C.-I. and Choe, T.-Y. (2002), An optimal scheduling algorithm based on task

duplication, IEEE Transactions on Computers, 51 (4), pp. 444–448.

Park, H.J. and Kim, B.K. (2002), An optimal scheduling algorithm for minimizing the

computing period of cyclic synchronous tasks on multiprocessors, 51 (4), pp.

444-448.

Pathak, R.M., Kumar, A. and Gupta, Y.P. (1991), Reliability oriented allocation of

files on distributed systems, In Proceedings of the Third IEEE Symposium on

Parallel and Distributed Processing, pp. 886 -893.

References

192

Pham, H., Suprasad, A., and Misra, R.B. (1997), Availability and mean life time

prediction of multistage degraded system with partial repairs, Reliability

Engineering and System Safety, 56(2), pp. 169-173.

Pierre, S. and Elgibaoui, A. (1997), A Tabu-Search approach for designing computer-

network topologies with unreliable components, IEEE Transactions on

Reliability, 46 (3), pp. 350-359.

Plank, J.S. and Elwasif, W.R. (1997), Experimental assessment of workstation failure

and their impact on checkpointing systems, International Symp. Fault-Tolerat

Computing, pp. 48-57.

Radulescu, A. and Gemund, A.J.C. van (2002), Low-cost task scheduling for

distributed-memory machines, IEEE Transactions on Parallel and Distributed

Systems, 13 (6), pp. 648 – 658.

Raghavendra, C.S., Kumar, V.K.P. and Hariri, S. (1988), Reliability analysis in

distributed systems, IEEE Transactions on Computers, 37 (3), pp. 352 –358.

Rao, S. (1986), Game theory approach for multiobjective structural optimization,

Computers and Structures, 25 (1), pp.119-127.

Reeves, C.R. (1993), Improving the efficiency of tabu search in machine sequencing

problems, Journal of the Operational Research Society, 44, pp. 375–382.

Richardson, J.T., Palmer, M.R., Liepins, G. and Hilliard, M. (1989), Some guidelines

for genetic algorithms with penalty functions, In Schaffer, J.D. editor,

Proceedings of the Third International Conference on Genetic Algorithms, pp.

199-197, George Mason University, Morgan Kaufmann Publishers.

References

193

Ritzel, B.J., Eheart, W., and Ranjithan, S. (1994), Using genetic algorithm to a solve a

multiple objective groundwater pollution containment problem, Water

Resources Research, 30 (5), pp. 1589-1603.

Rosenberg, R.S. (1967), Simulation of Genetic Populations with Biochemical

Properties. PhD thesis, University of Michigan, Ann Harbor, Michigan.

Sait, S.M., and Youssef, H., (1999), VLSI Physical Design Automation: Theory and

Practice, McGraw-Hill Book Co., Europe (also copublished by IEEE Press,

New York) 1995 (reprinted with corrections by World Scientific 1999).

Sarkar, V. (1989), Partitioning and Scheduling Parallel Programs for Multiprocessors,

MIT Press, Cambridge, Massachusetts.

Satyanarayana, A. (1982), A unified formula for analysis of some network reliability

problems, IEEE Transactions on Reliability, R-31 (1), pp. 23-32.

Schaffer, D. (1985), Multiple objective optimization with vector evaluated genetic

algorithms, In Genetic Algorithms and their Applications Proceedings of the

First International Conference on Genetic Algorithms, pp. 93-100, Lawrence

Erlbaum.

Sena, G.A., Megherbi, D. and Isern, G. (2001), Implementation of a parallel Genetic

Algorithm on a cluster of workstations: Traveling Salesman Problem, a case

study, Future Generation Computing Systems, 17 (4), pp. 477-488.

Shatz, S. M. and Wang, J.-P. (1989), Models & algorithms for reliability-oriented task-

allocation in redundant distributed-computer systems, IEEE Transactions on

Reliability, 38 (1), pp.16-21.

References

194

Shatz, S.M., Wang, J-P. and Goto, M. (1992), Task allocation for maximizing

reliability of distributed computing systems, IEEE Transactions on Computers,

41 (9), pp. 1156-1168.

Shen, C.C., and Tsai, W.H. (1985), A graph matching approach to optimal task

assignment in distributed computing systems using a mini-max criterion, IEEE

Transactions on Computers, 34 (3), pp. 197-203.

Sih, G.C. and Lee, E.A. (1993), A compile-time scheduling heuristic for

interconnection-constrained heterogeneous processor architectures, IEEE

Transactions on Parallel and Distributed Systems, 4 (2), pp. 75-87.

Sols, A., and Nachlas, J.A. (1995), Availability of multifunctional systems. Reliability

Engineering and System Safety, 47 (2), pp. 69-74.

Solich, R. (1969), Zadanie programowania liniowego z wieloma funkcjami celu (linear

programming problem with several objective functions), Przeglad Statystyczny,

16, pp. 24-30 (In Polish).

Srinivas, N. and Deb, K. (1994), Multi-objective optimization using non-dominated

sorting in genetic algorithms, Evolutionary Computation, 2 (3), 221–248.

Srinivasan, S. and Jha, N.K. (1999), Safety and reliability driven task allocation in

distributed systems, IEEE Transactions on Parallel and Distributed Systems, 10

(3), pp. 238-251.

Stone, H.S. (1977), Multiprocessor Scheduling with the aid of network flow diagrams,

IEEE Transactions on Software Engineering, 3 (1), pp. 85-93.

References

195

Stone, H.S. (1978), Critical load factors in two-processor distributed systems, IEEE

Transactions on Software Engineering, 4 (3), pp. 254-258.

Stone, H.S. and Bokhari, S.H. (1978), Control of distributed processor, Computer, 11,

pp. 97-106.

Subrata, R. and Zomaya, A.Y. (2003), A comparison of three artificial life techniques

for reporting cell planning in mobile computing, IEEE Transactions on Parallel

and Distributed Systems, 14 (2), pp. 142-153.

Sumita, U. and Masuda, Y. (1986), Analysis of software availability/reliability under

the influence of hardware failures, IEEE Transactions on Software Engineering,

SE-12(1), pp. 32-41.

Surry, P.D., Radcliffe, N.J. and Boyd, I.D. (1995), A Multi-Objective Approach to

Constrained Optimization of Gas Supply Networks: The COMOGA Method,

In Fogarty, T.C. editor, Evolutionary Computing. AISB Workshop. Selected

Papers. Lecture Notes in Computer Science, pp.166-180, Springer-Verlag,

Sheffield, U.K.

Tan, K. C., Lee, T. H. and Khor, E. F. (2002), Evolutionary algorithms for multi-

objective optimization: performance assessments and comparisons, Artificial

Intelligence Review, 17 (4), 251–290.

Tan, K.C., Khor, E.F., Lee, T.H. and Yang, Y.J. (2003), A tabu-based exploratory

evolutionary algorithm for multi-objective optimization, Artificial Intelligence

Review, 19 (3), pp. 231—260.

References

196

Tom, P.A. and Murthy, C.S.R. (1998), Algorithms for reliability-oriented module

allocation in distributed computing systems, Journal of Systems and Software,

40 (2), pp. 125-138.

Tom, P.A. and Murthy C.S.R. (1999), Optimal task allocation in distributed systems by

graph matching and state space search, Journal of Systems and Software, 46 (1),

pp. 59-75.

Topcuoglu, H., Hariri, S. and Wu, M.-Y. (2002), Performance-effective and low-

complexity task scheduling for heterogeneous computing, IEEE Transactions

on Parallel and Distributed Systems, 13 (3), pp. 260 –274.

Tripathi, A.K., Vidyarthi, D.P. and Mantri, A.N. (1996), A genetic task allocation

algorithm for distributed computing systems incorporating problem specific

knowledge, International Journal of High Speed Computing, 8 (4), pp. 363-370

Tseng, C.H. and Lu, T.W. (1990), Mini-max multi-objective optimization in structural

design, International Journal for Numerical Methods in Engineering, 30, pp.

1213-1228.

Vidyarthi, D.P. and Tripathi, A.K. (2001), Maximizing reliability of distributed

computing system with task allocation using simple genetic algorithm, Journal

of Systems Architecture, 47 (6), pp. 549-554.

Wang, L.L. and Tsai, W.H. (1988), Optimal assignment of task modules with

precedence for distributed processing by graph matching and state space search,

BIT, 28 (1), 54-68.

References

197

Welke, S.R., Johnson, B.W. and Aylor, J.H. (1995), Reliability modelling of

hardware/software systems, IEEE Transactions on Reliability, 44 (3), pp. 413-

418.

Wong, A.K.Y. and Dillon, T.S. (2000), A fault tolerant model to attain reliability and

high performance for distributed computing on the Internet, Computer

Communication, 23 (18), pp. 1747-1762.

Woodside, C.M. and Monforton, G.G. (1993), Fast allocation of processes in

distributed and parallel systems, IEEE Transactions on Parallel and Distributed

Systems, 4 (2), pp. 164-174.

Wu, M.-Y. and Gajski, D. D. (1990), Hypercool: a programming aid for message-

passing systems, IEEE Transaction on Parallel and Distributed Systems, 1 (3),

pp. 330-343.

Yang, T. and Gerasoulis, A. (1994), DSC: scheduling parallel tasks on an unbounded

number of processors, IEEE Transactions on Parallel and Distributed Systems,

5 (9), pp. 951-967.

Yeh, Y.S. and Chiu, C.C. (2001), A reversing traversal algorithm to predict deleting

node for the optimal k-node set reliability with capacity constraint of

distributed systems, Computer Communication, 24 (3-4), pp. 422-433.

Youssef, H., Sait, S.M. and Adiche, H. (2001), Evolutionary algorithms, simulated

annealing and tabu search: a comparative study, Engineering Applications of

Artificial Intelligence, 14 (2), pp. 167-181.

References

198

Zomaya, A.Y., and Teh Y.H. (2001), Observations on using genetic algorithms for

dynamic load-balancing, IEEE Transactions on Parallel and Distributed

Systems, 12 (9), pp. 899 –911.

199

Publications:

Liu, G.Q., Poh, K.L., Xie, M. (2005), Iterative List Scheduling for Heterogeneous

Computing, Journal of Parallel and Distributed Computing, 65(5), pp. 654-665.

Liu, G.Q., Poh, K.L., Xie, M. (2005), Schedule Length and Reliability Oriented Multi-

objective Scheduling for Distributed Computing, To appear in Proceedings of

the 10th Annual International Conference on Industrial Engineering Theory,

Applications & Practice, Clearwater, Florida, USA.

Liu, G.Q., Xie, M., Dai, Y.S., Poh, K.L. (2004), On Program and File Assignment for

Distributed Systems, Computer Systems Science & Engineering, 19 (1), pp. 39-

48.

Liu, G.Q., Poh, K.L., Xie, M. (2003), A Parallel Tabu Search for Reliability Based

Program and File Allocation, In Proceedings of the 8th Annual International

Conference on Industrial Engineering Theory, Applications & Practice, Las

Vegas, Nevada, USA.

Dai, Y.S., Xie, M., Poh, K.L., Liu, G.Q. (2003), A study of service reliability and

availability for distributed systems, Reliability Engineering & System Safety,

79 (1), pp. 103 -112.

