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SUMMARY 
 
 
In this thesis, different temporal phase analysis methods are studied. Temporal phase 

analysis techniques allow accurate measurements on non-static objects, using whole-

field optical methods, such as classical interferometry, electronic speckle pattern 

interferometry (ESPI), shearography as well as fringe projection and moiré techniques. 

They cover a large domain of resolutions and range for measurement of instantaneous 

shape and displacement of rough and smooth objects. In temporal phase analysis, a 

series of fringe or speckle patterns is captured during the deformation or vibration of 

the tested specimen. The intensity variation on each pixel is analyzed along time axis.  

Based on two existing temporal phase analysis methods, temporal Fourier analysis 

and phase scanning method, a new technique is proposed in this study. It uses a robust 

mathematic tool ⎯ continuous wavelet transform as the processing algorithm.  

An analytic wavelet is selected for analysis of phase related properties of real 

functions. The complex Morlet wavelet is used as a mother wavelet because it gives 

the smallest Heisenberg box so that better temporal and frequency resolutions are 

obtained. Selection of a suitable central frequency of a Morlet wavelet is discussed. 

The instantaneous frequency of intensity variation of a pixel, which is the first 

derivative of a temporal phase, can be extracted by the maximum modulus ⎯ the 

ridge of a wavelet coefficient. The temporal phase can then be calculated by two 

methods, integration or unwrapping methods. The system errors involved in these two 

methods are evaluated, especially when the signal frequencies are non-uniform. To 

avoid phase ambiguity problem in the wavelet technique, temporal carrier technique is 

applied when vibrating objects are measured.  
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To demonstrate the validity of the proposed temporal wavelet analysis 

technique, several experiments based on various optical techniques are designed for 

different applications. These include the profiling of surface with height step using 

shadow moiré technique; instantaneous velocity, displacement and shape 

measurement on continuously deforming objects using ESPI and shadow moiré, 

absolute displacement measurement on vibrating objects using temporal carrier 

technique and displacement derivatives measurement using digital shearography. The 

results generated by temporal Fourier analysis are also presented for comparison. It is 

observed that wavelet analysis generates better results. As wavelet analysis calculates 

the optimum frequency at each instant, it performs an adaptive band-pass filtering of 

the measured signal, thus limits the influence of various noise sources and increases 

the resolution of measurement significantly. However, it requires longer computing 

time, higher speed and larger memory. 

The wavelet processing as proposed in this work demonstrates a high potential 

for robust processing of continuous sequencing of images. The study on different 

temporal phase analysis techniques will broaden the applications in optical, non-

destructive testing area, and offer more precise results and bring forward a wealth of 

possible research directions. 
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NOMENCLATURE 
 

 
a Scaling in wavelet transform 
 

fa  Background in Fourier transform 
 

rba  Scaling on the ridge at position b 
 

SA  Sensitivity factor in shearography 
 
b shifting parameter 
 

SB  Sensitivity factor in shearography 
 
C Fourier transform of fc  
 

fc  Complex function in Fourier transform 
 

SC  Sensitivity factor in shearography 
 

Fd  Distance between the projector and camera axis 
 

Sd   Distance between the camera axis and the light source in shadow moiré set up 
 

0f   Spatial frequency of the projected fringes on the reference plane  
 
H Parameter related to profile in shadow moiré 
 

Fh  Relative height of object to reference plane in fringe projection technique 
 

Sh  Distance between the grating plane and object 
 

0I  Background of intensity variation 
 

MI  Modulation factor of intensity variation 
 

maxI  Maximum gray value  
 

minI  Minimum gray value 
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nI  Intensity at phase step n 
 

Fk  Optical coefficient related to the configuration of the system in fringe 
projection technique 

 
Sk  Constant related to the shadow moiré set up 

 
FL  Distance between the LCD projector and the reference plane 

 
Sl  Distance between the light source and the grating plane in shadow moiré set 

up 
 
m Adjustable coefficients 
 
N Total number of step in phase shifting technique 
 
s Signal 
 
S Adjustable coefficients 
 
u Horizontal spatial frequency 
 
v Vertical spatial frequency 
 
V Visibility of speckle pattern 
 
w Window function 
 

SW  Wavelet coefficients 
 

nα  Phase step in phase shifting technique 
 
β Rotating angle of the moiré grating 
 
ϕ∆  Phase change 

 
iϕ  Initial random phase 

 
λ  Wavelength of light source 
 

pφ  Phase value at point P 
 
φ  Phase 
 

0ϕ  Initial phase at 00 =T  
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ϕ  Phase 
 
ω Frequency in spectrum 
 

t∆  Temporal duration 
 
ω∆  Frequency bandwidth 

 
σ Square root of variance of the Gaussian window 
 
Ψ  Mother wavelet 
 

abΨ  Daughter wavelet 
 

0ω  Central (or mother) frequency of Complex Morlet wavelet 
 
ζ  Frequency variable 
 
ε  Corrective term 
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CHAPTER ONE 

 
INTRODUCTION 

 
 
1.1 Background  

In the last several decades, the drive for higher performance and reliability of devices, 

structures, and processes in engineering has placed stringent demands on the methods 

used in their development and operation. Optical metrology is a major and inseparable 

part of these methods. The field of optical metrology is arguably more than one 

century old. However, major advances have resulted from the invention of laser only 

about fifty years ago. This new light source opened a realm of new techniques to both 

the physicist and the engineer. With the advent of the laser, coherent optics has been 

brought into measurement techniques such as moiré method which resulted in the 

rapid development of moiré interferometry and the adaptation of optical spatial 

filtering schemes; and holographic interferometry became practicable at the same time. 

In 1970’s, the genesis and evolution of speckle interferometry, speckle photography 

and shearography were observed. The maturing of all these techniques occured in the 

1980’s. Due to the rapid development of computer and charged couple device (CCD) 

camera, automation becomes the major theme of research during the 1990’s.  

The transition of such methods into industrial area is a slow but accelerating 

process. As usual, high-technology domains such as space and aeronautical industries 

were the first to employ them, since there is a genuine need to understand the 

behavior of new materials and structures before sending them into space. The 

automotive industry has also used holography and shearography to detect defects in 
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tires or to study the vibration modes of car components, in order to detect potential 

failure points and reduce acoustic noise sources. Some manufacturers started using 

shape measurement methods to better control the complex shapes of car body parts 

that are assembled automatically by robots. Optical techniques, such as shadow moiré 

and moiré interferometry, also gained recognition in electronics industry in the 

measurement of thermally-induced deformation of electronic package and PCB board. 

Optical interferometry techniques are usually applied on precision 

measurement of tiny deformation or unevenness of objects.  Generally, they are non-

contacting and whole-field techniques. The results obtained by the aforesaid methods 

are usually in the form of fringe patterns that represent different physical quantities, 

such as distance, in-plane or out-of-plane displacements, or stresses. Although a 

fringe pattern representing distance, deformation or distortion is readily obtained, 

expert interpretation is necessary to convert these fringes into desired information. For 

accurate mapping of these physical quantities, which will thus permit numerical 

differentiation, various fringe processing algorithms, notably the Fourier transform 

and phase shifting, have been used.  

  Phase shifting technique is a predominant method to retrieve accurate phase 

values from sinusoidal fringe patterns. However, it requires several, normally three, 

four or five images to be captured with prescribed phase steps. Due to this reason, 

normal phase-shifting approach also limits optical techniques to the measurement of 

static objects. Furthermore, in order to remove the 2π phase discontinuities, spatial 

phase unwrapping is compulsory. However, two dimensional spatial phase 

unwrapping is usually a difficult step, especially in processing of speckle patterns, 

because of the noise effect and low modulated pixels may produce breaks in wrapped 

phase map and generate large phase errors when unwrapping process is performed. 
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Optical interferometry can also be applied to the determination of vibration modes of 

objects. For high-frequency linear vibration, any vibration state can be considered as 

the superposition of all the vibration modes. Thus determining the vibration modes of 

the objects is fundamental for vibration analysis. Time averaged methods, based on 

holography, moiré or electronic speckle pattern interferometry (ESPI), possess many 

advantages over the other techniques: they directly acquire a spatially dense, full-field, 

real-time image of the mode shape, while other techniques require the reconstruction 

of the mode shape from single point measurements. Furthermore, with optical 

techniques, there is no physical contact with the structure, thus eliminating mass 

loading and local stiffening issues associated with contact sensors.  

  In some cases, high resolution 3-D displacement or surface profiling of objects 

under vibration or continuous profile changing can give useful information of 

dynamic response and deformation of the objects concerned. However, it is very 

difficult to be achieved with phase shifting technique and with time averaged method. 

Due to the rapid development of high-speed digital recording devices, it is now 

possible to record fringe patterns with rates exceeding 10,000 frames per second (fps). 

Retrieving precise instantaneous spatial phase maps from those fringe patterns along 

the time-axis enables instantaneous 3-D profile and deformation as well as dynamic 

response to be studied. Generally, two methods are used to analyze the instantaneous 

fringe patterns, namely, spatial phase analysis and temporal phase analysis. Spatial 

phase analysis is a method to retrieve an instantaneous phase map from one fringe 

pattern. In late 1990’s, a new phase evaluation method based on temporal analysis has 

been introduced. It analyzes the phase point-wisely along time axis, so that the 

disadvantages of spatial phase evaluation techniques mentioned above are avoided. 

This advantage is more obvious in the processing of speckle patterns, as the temporal 
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intensity variation on each pixel is much less noisy than spatial distribution of a 

modulated random speckle pattern. One dimensional Fourier transform became a 

predominant method in temporal phase analysis.  

 

1.2   Scope of work 

Figure 1.1 shows a flow chart of various fringe analyzing techniques being applied on 

different problems. The scope of this dissertation work is focused on the temporal 

phase analysis techniques and applying them to measurement of continuously-

deforming objects or low-frequency vibrating objects indicated in Fig. 1.1 in red 

colour. The objectives of this thesis include: (1) studying two existing temporal phase 

analysis methods, i.e. temporal Fourier transform (Huntely and Saldner, 1997) and 

phase scanning (Li et al. 2001), and their advantages and weaknesses; and  (2) 

developing a new temporal processing technique based on time-frequency analysis 

and wavelet transform to overcome problems encountered in existing methods. The 

outcome will be a robust technique that would process a series of fringe patterns and 

reconstruct temporal phase evolution precisely. The objectives of this thesis also 

include (3) introducing a new experimental technique, temporal carrier, to overcome 

the phase ambiguity problem involved in temporal phase analysis methods, and (4) 

applying those temporal phase analysis methods, especially the new temporal wavelet 

analysis on different static and dynamic problems with various optical techniques. 

Applications include surface profiling on objects with step changes; measurement on 

continuously-deforming objects; measurement on low-frequency vibrating objects and 

displacement derivative measurement on a continuously-deforming plate.   
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1.3 Thesis outline 

An outline of the thesis is as follows:  

Chapter 1 provides an introduction of this dissertation.  

Chapter 2 provides a literature survey in three parts: In the first part, an 

overview of whole-field optical techniques used in dynamic phase evaluation is 

presented, followed by shadow moiré, ESPI ,digital shearography and fringe 

projection techniques that are used to demonstrate the temporal phase analysis 

algorithms; and examples using these techniques are also presented. Different spatial 

fringe analysis techniques are also reviewed. The second part describes the state-of-

the-art in the field of temporal phase analysis and two temporal phase analysis 

methods are included (temporal Fourier transform and phase scanning method). The 

last part introduces the concept of wavelet and includes a literature survey on wavelet 

applications in optical interferometry. 

Chapter 3 focuses on temporal phase analysis algorithms. It includes selection 

of complex Morlet wavelet as a mother wavelet, the selection of central frequency of 

the Morlet wavelet, and applying Morlet wavelet on phase extraction. Different 

properties of this new technique are characterized through simulations and examples. 

The method provides us with a very efficient method of evaluating the phase of 

interferograms temporally. Some problems involved in this new technique are also 

discussed. In the second part of this chapter, a phase scanning method is discussed 

and applied on vibrating objects.  

Chapter 4 describes the practical aspects of a dynamic phase measurement. 

The setup of fringe projection, shadow moiré, ESPI and digital shearography are 

described.  
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Chapter 5 presents the results of different temporal phase analysis techniques, 

especially temporal wavelet analysis.  In Section 5.1, temporal wavelet analysis is 

applied to surface profiling with a height step by rotating a moiré grating. In Section 

5.2, temporal wavelet analysis and Fourier analysis are applied on continuously 

deforming objects using shadow moiré and ESPI. The results from these methods are 

compared. In section 5.3, the main focus is on vibrating objects. Two techniques are 

presented. One is the temporal carrier technique and the other is the phase scanning 

method. In the last section, displacement derivatives are measured using temporal 

carrier with digital shearography. In addition, Haar wavelet transform is introduced to 

obtained the transient curvature and twist of a plate. 

Chapter 6 emphasizes the contribution of this project work and shows 

potential development on dynamic measurements. 
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Figure 1.1 Fringe analysis techniques applied on different types of object 
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CHAPTER TWO 

 
LITERATURE REVIEW 

 
 

2.1 Review of whole-field optical techniques 

Optical metrology (Cloud, 1995) encompasses a large number of techniques allowing 

direct or indirect measurement of diverse physical quantities. The developments 

presented in this dissertation are conducted in the framework of “fringe-based” 

methods where information are coded as an intensity modulation of light. Such 

techniques can be temporal or spatial and usually rely on the use of an interference 

phenomenon or a specific structuring of light.  

  A particular focus here is the so-called “whole-field” techniques, which 

provide direct measurement on a large number of points in a limited number of steps. 

Examples of application include measurement of shape, deformation, strain, refractive 

index, etc. Typically, an image of the object under study is obtained with 

superimposed alternately dark and bright fringes which are directly related to the 

measured quantity. When it is imaged on a two-dimensional spatial detector such as 

CCD camera, the intensity distribution of light is coded in a digital form. This digital 

image can be processed by a computer to extract the useful information.  

  The optical techniques mentioned in this section are suitable tools for shape or 

deformation measurements on rough or smooth objects that can be opaque or 

transparent. They offer sensitivities ranging from decimeter to sub-micrometer. Some 

of them are more suitable for evaluating shape while others are better suited for 
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displacement or deformation evaluation. In shape measurement, classical 

interferometry (Steel, 1986), such as Michelson interferometer and Newton ring are 

usually used for high precision measurements, while shadow moiré (Meadows et al., 

1970), projection moiré (Takasaki, 1970) and fringe projection (Suganuma and 

Yoshizawa, 1991) are less sensitive and thus more suitable for three-dimensional 

measurement of large unevenness of surfaces. Large deformations can be evaluated 

by comparing of two shapes while small deformations or displacements can be 

assessed with sensitive techniques such as holography (Vest, 1979), moiré 

interferometry (Post et al. 1994) and electronic speckle pattern interferometry 

(Vikhagen, 1990). Shearing techniques used conjointly with speckle interferometry 

provide a method to evaluate directly the out-of-plane displacement derivatives (Hung, 

1982). 

  

2.1.1 Review of techniques for shape and displacement measurement 

In this section, the techniques used in this dissertation are reviewed in detail. They are 

fringe projection technique, shadow moiré,  electronic speckle pattern interferometry 

(ESPI) and digital shearography.  

 

2.1.1.1 Fringe Projection Technique 

Fringe projection technique (Sirnivasan et al. 1984) is not an interferometric 

technique in essence, but it provides fringe patterns very similar to two wavefront 

interferograms. Hence, fringe analysis methods can be used to obtain quantitative 

information. In the fringe projection technique, a known fringe pattern, in our case a 

linear grating with sinusoidal wave configuration, is projected onto a surface of 

interest at a certain angle; the distribution of the fringe pattern on the surface is 
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perturbed in accordance with the profile of a test surface when it is observed from a 

different angle, thereby a three-dimensional feature of the object is converted into a 

two-dimensional image.  

 
Figure 2.1 Schematic layout of the projection and imaging system 

 
 
Figure 2.1 shows the schematic layout of the projection and imaging system. 

With normal viewing, the phase change ϕ  due to height Fh  is given by (Quan, et al. 

2000) 
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spatial frequency of the projected fringes on the reference plane and Fk , which can be 

obtained by calibration, is an optical coefficient related to the configuration of the 

system. ϕ  is the phase angle change which contains information on the surface height 

information. 

When a sinusoidal fringe pattern (ie, straight lines parallel to the reference y-

axis in Fig. 2.1) is projected onto an object, the mathematical representation of the 

intensity distribution captured by a CCD camera is governed by the following 

equation: 

 

[ ]),(2cos),(),(),( 00 yxxfyxIyxIyxI M ϕπ ++=                       (2.2) 

 
where ),(0 yxI and ),( yxIM  are the background and modulation factor respectively, 

and ),( yxϕ is the phase which contains the shape information. 

  
(a)             (b) 

Figure 2.2 (a) Fringe pattern on a merlion paperweight; (b) reconstructed shape of the 
merlion 

 

  Figure 2.2(a) shows a typical fringe pattern captured using the fringe 

projection technique. The phase value ),( yxϕ  in Eq. (2.2) can be extracted by 

different algorithms, such as spatial Fourier transform (Takeda et al. 1982), phase 
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shifting (Quan, et al. 2000), etc. The height of each point can then be reconstructed 

using Eq. (2.1). Figure 2.2(b) shows the reconstructed profile of the object.  

  The fringe projection technique has the following merits: (1) easy 

implementation; (2) phase shifting, fringe density and direction change can be 

realized with no moving parts if a computer controlled LCD projector is used (Hung, 

et al. 2002); and (3) fast full field measurement. Because of these advantages, the 

coordinate measurement and machine vision industries have started to commercialize 

the fringe projection method and some encouraging applications has been reported by 

Gartner et al. (1995), Muller (1995) and Sansoni et al. (1997). However, to make this 

method even more acceptable for industrial use, some issues have to be addressed, 

including the shading problem, which is inherent to all triangulation techniques. The 

360-deg multiple view data registration (Stinik et al. 2002) and defocus with projected 

gratings or dots (Engelhardt and Hausler, 1988) show some promise. 

 

2.1.1.2 Shadow Moiré 

Since Lord Rayleigh first noticed the phenomena of moiré fringes, moiré techniques 

have been used for a number of testing applications. However, a rigorous theory of 

moiré fringes did not exist until the mid-fifties when Ligtenberg (1955) and Guild 

(1956) explained moiré for stress analysis by mapping slope contours and 

displacement measurement. Excellent historical reviews of the early work in moiré 

have been presented by Theocaris (1962, 1966). Books on this subject have been 

written by Guild (1960), Theocaris (1969) and Durelli and Parks (1969) for optical 

gauging and deformation measurement. Until 1970, advances in moiré techniques 

were primarily in stress analysis. Some of the first applications of moiré to measure 
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surface topography were reported by Meadows et al. (1970), Takasaki (1970) and 

Wasowski (1970). 

  Similar to the fringe projection technique, Moiré topography is not an 

interferometric technique, but widely used in shape measurement (Chen, et al. 2000). 

Depending on the optical arrangement of the system, moiré topography can be 

classified into: shadow moiré and projection moiré. In projection moiré, the fringes, 

which contain information of surface profile, are generated by projecting a grating 

onto the object and viewing through a second grating in front of the viewer. Shadow 

moiré uses a single grating that is placed close to the object. An oblique light beam 

passes through the grating and casts a shadow of the grating on the object surface. The 

shadow is distorted in accordance with the profile of the test surface. When the 

shadow is viewed from a different direction through the original grating, the grating 

and its distorted shadow interfere, thus generating fringes which depict loci of the 

surface depth with respect to the plane of the grating. Compared with projection moiré, 

shadow moiré is a relatively cheap and simple technique. 

  In a typical optical arrangement of shadow moiré shown in Fig. 2.3, the light 

source and the camera are placed at the same distance Sl  from the grating with a pitch 

p. The mathematical representation of the intensity distribution recorded with a CCD 

camera is given by the following equation (Jin et al. 2001): 
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π      (2.3) 

 

where Sd  is the distance between the camera axis and the light source, ),( yxhS  is the 

distance from the grating plane to a point P (x, y). In normal cases, the distance 
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between the grating and object is very small compared to that between the light source 

and object, i.e., ),( yxhl SS >> , thus Eq. (2.3) can be simplified as 

 

[ ]),(cos),(),(),( 0 yxhkyxIyxIyxI SSM+=       (2.4) 

 

where 
S

S
S pl

dk π2
=  is a constant related to the optical setup. Figure 2.4 shows a typical 

shadow moiré fringe pattern captured on a spherical cap. The profile of the object can 

be reconstructed after image processing. The shortcomings of shadow moiré 

topography include: (1) lower resolution of contouring fringes; (2) difficulty in 

judging whether a surface is convex or concave from a moiré pattern (Arai et al. 

1995). 

 
 

Figure 2.3 Schematic layout of shadow moiré system 
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  Due to the progress of computer capacities and image processing techniques in 

1990’s, different types of phase-shifting methods were applied in moiré topography to 

address these shortcomings, i.e., to achieve high resolution measurements and to 

enable determination of the direction of the curved surface. These methods include 

combination of shifting the light source and moving grating in z-direction (Yoshizawa 

and Tomisawa, 1993), combination of rotating the grating in x-y plane and moving it 

in z-direction (Jin et al. 2000), and rotating the grating in x-z plane (Xie et al. 1997). 

However, in shadow moiré technique, phase shifting is not easily accomplished 

(Mauvoisin et al. 1994) and is also limited to measurement of constant surface profile. 

 

 
 

Figure 2.4 Typical moiré fringe patterns on a spherical cap 
 

  The moiré technique has also been applied to dynamic problems (Hung et al. 

1977a; Hovanesian et al. 1981; Fujimoto, 1982) based on the time-averaged method. 

These applications generate the object images and superimpose on moiré fringes from 

which vibration amplitudes are determined. However, the methods cannot be applied 

to the study of movement and contour of an object as a function of time. 
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2.1.1.3 Electronic Speckle Pattern Interferometry (ESPI) 

Simply speaking, ESPI involves recording two speckle patterns of an object 

corresponding to two slightly different states. For an object having a diffuse surface, 

each speckle pattern is the result of two light wave-fronts interfering at the image 

plane of a CCD camera. The light wave-fronts are the reference wave-front, which is 

an expanded beam of laser, and the object wave-front, which is scattered from the 

laser-illuminated object surface. This optical arrangement is similar to conventional 

film-based holography and is thus often known as Digital Holography. 

  In spite of similarity in the optical arrangement, wave-front reconstruction for 

film-based holography is different from that for digital holography. In film-based 

holography, the two speckle patterns are recorded sequentially and superimposed 

(image addition) on the same film; and wave-front reconstruction is achieved through 

viewing the film against the reference wave-front. In digital holography, however, 

two intensity maps corresponding to the two speckle patterns are separately recorded 

using a CCD camera and then digitized using a frame grabber; and wave-front 

reconstruction is achieved through digital subtraction of the two intensity maps on a 

pixel-by-pixel basis.  

  The intensity distribution is generally expressed in the following manner, 

which is also similar to the general expression for fringe projection (Eq. 2.2). 

 

ϕcos0 MIII +=                    (2.5) 

 

Where 0I  and MI  are the background and modulation intensity, respectively. ϕ  is the 

phase value which is different for different deformed states. 
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    When the intensity of a reference state and deformed states are recorded, they 

can be described by  
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        (2.6) 

 

where ϕ∆  is the phase change due to deformation. Since iϕ  is a random variable, 

both images do not display any fringe patterns. However if these two images are 

subtracted from each other, we can obtain 
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while the values of iϕ  and MI  vary randomly from one point to another, the 

⎟
⎠
⎞

⎜
⎝
⎛

2
sin ϕ∆ -term is generally a slowly varying modulation of the random intensity 

difference. Dark and bright areas show up as correlation fringes. Correlation by 

subtraction can be done electronically in real-time, thus enabling visualization of the 

evolution of fringe patterns.  

  ESPI can be used to measure in-plane and out-of-plane displacements 

depending on the optical arrangement.  Figure 2.5 shows a setup for out-of-plane 

displacement measurement, which is similar to Michelson interferometer. In the z-

direction, the sensitivity or amount of deformation that produces one fringe is 
2
λ , 

where λ  is the wavelength of the laser. As in other optical techniques, it is impossible 
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to judge the direction of deformation from one ESPI fringe pattern as shown in Fig. 

2.5. 

 

Figure 2.5 ESPI setup for out-of-plane displacement measurement and the typical 
fringe pattern obtained by image subtraction 

 

 
2.1.1.4 Shearography 

The technique of shearography (Hung, 1982; 1989) requires the use of an image-

shearing device placed in front of an ordinary camera so that two laterally displaced 

images of the object surface are focused at the image plane of the camera, and thus 

the technique is named as shearography. The shearing device brings two nonparallel 

beams scattered from two different points on the object surface to become nearly co-

linear and interfere with each other. As the angle between the two interfering beams 

in almost zero, the spatial frequency of the interference fringe pattern is so low that it 
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is resolvable by a low-resolution image sensor such as a CCD. A typical set-up of 

digital shearography is illustrated in Fig. 2.6.  

 
 

Figure 2.6 Digital shearography set-up and typical fringe pattern obtained by image 
subtraction. 

 

  The phase change ϕ∆  is induced by the relative optical path length change 

between the light scattered from two neighboring points, ),,( zyxP  and ),,( zyxxP δ+  

on the object surface. In this case the shearing direction is assumed parallel the x-axis, 

and the amount of shearing is xδ . It can be shown that ϕ∆  is related to the relative 

displacement ),,( wvu δδδ  of two neighboring points separated by: 
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where SA , SB  and SC  are sensitivity factors related to the position of the 

illumination point and the camera position.  If the amount of shearing xδ  is small, the 
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relative displacement can be approximated as the displacement derivatives respect to 

x. The direction of shearing determined the direction of the derivative. Should the 

shearing direction be parallel to the y direction, the derivatives in Eq. (2.8) becomes 

the displacement derivatives with respect to y. It is possible to employ a multiple 

image-shearing camera to record the displacement derivatives with respect to both x 

and y simultaneously (Hung and Durelli, 1979). Compared with holography, 

shearography does not require a reference light beam. This feature leads to simple 

optical setups and alleviation of the coherence length requirement of laser and 

environmental stability demand. With the rapid development of computer and image 

processing technologies, digital shearography received wide acceptance in the last 

two decades. 

 

2.1.2 Review of fringe analysis techniques 

In previous sections, a set of whole-field optical techniques is briefly presented. These 

techniques share a common property that the reconstructed intensities encode phase-

change that is associated with a corresponding change in displacements, deformations, 

or other physical quantities. Different types of qualitative diagnostics are possible 

with a visual analysis of these fringe or speckle patterns. However, more and more 

applications require that a complete quantitative analysis be performed with high 

sensitivity. Phase measurements based on digital fringe processing are techniques 

adopted in this area.  These techniques have precisions in the order of one hundredth 

of the sensitivity of a given interferometer. They can be classified according to the 

number of images required into two families: the single image techniques which, 

historically, are the oldest but new refinements still appear every year and the 
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multiple-image approach which offers additional possibilities that have not yet been 

fully exploited.  

  In this section, two single-image based techniques are reviewed, they are (1) 

skeletonization & fringe tracking and (2) single-image carrier-based method using 

Fourier transform. Next, the multiple-image phase-shifting algorithms are described 

briefly. As most of these methods provide a modulo- π2  phase map of the 

interferogram, difficulty in two-dimensional phase unwrapping is also discussed, 

leading to a possible solution ------- temporal phase analysis.  

 

2.1.2.1 Fringe skeletonization and fringe tracking 

 

Fringe skeletonization techniques use morphological operators (Serra, 1988) that 

locate the mass center of a pixel cluster using thresholding of the gray level of an 

image. The fringe skeletons represent a set of points where the phase is an odd or 

even multiples of π, assuming that 0I  and MI  are locally constant and a continuous 

phase map can be reconstructed by interpolation (Robinson and Reid, 1993).  

  Fringe tracking is another method of obtaining a fringe skeleton. Special 

algorithms are constructed to “follow” paths along the maximum and minimum 

intensity regions defining bright and dark fringes. The method performs poorly in 

images where the extremes are loosely defined, as in ESPI fringe patterns. 

  These methods are adopted when none of the methods mentioned below can 

be used, as their accuracy is seldom better than a tenth of the measurement sensitivity. 
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2.1.2.2 Single-image carrier-based method 

 

The second fringe analysis technique is based on the use of “carrier fringe”, which 

basically consists of a set of parallel fringes of constant spacing. These initially 

straight fringes are distorted by a phase change induced by a deformation (Quan et al. 

1996), or by the shape of the object. In effect, a phase wedge is introduced in the 

interferogram. Sometimes introducing carrier fringes is a complicated process as in 

shearography (Shang et al. 2001).  However, the main advantage of this method is the 

use of a single image to perform the phase evaluation. The knowledge of phase slope 

corresponding to the carrier fringes solves the problem of the absolute sign of the 

phase.  

  Assuming that the carrier fringes are in y-direction (Fig. 2.1) and with spatial 

frequency 0f , the intensity profile is given by Eq. (2.2). The Fourier technique, 

proposed by Takeda et al. (1982), has been widely used, particularly in cases where 

no abrupt fringe discontinuities exist.  The intensity distribution can be expressed in a 

complex form as: 

 

)2exp(),()2exp(),(),(),( 00 xfiyxcxfiyxcyxayxI fff ππ −++=    (2.9) 

where  

 

),(),( 0 yxIyxa f =  and [ ]),(exp),(
2
1),( yxiyxIyxc Mf ϕ=            (2.10) 

),( yxc f and ),( yxc f are complex functions, and − denotes complex conjugation. The 

two-dimensional Fourier transform of this image is then computed: 
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),(),(),(),( 00 vfuCvfuCvuAvuI ++−+=                            (2.11) 

 
where u and v are the horizontal and vertical spatial frequencies and ),( vuC is the 2-D 

Fourier transform of ),( yxc f .  

As ),( yxa f , ),( yxc f  and ),( yxϕ  are slowly varying functions compared to 

the spatial carrier frequency f0 , using the convolution theorem, ),( 0 vfuC −  can be 

isolated with different types of window, such as Hamming and Kaiser (Huang, 1975) 

and translated by f0 towards the origin. This removes the carrier and results in a 

complex image containing ),( vuC . The inverse Fourier transform then yields the 

complex function ),( yxc f . The phase of this function is ),( yxϕ  and can be obtained 

by 
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where Re and Im represent the real and imaginary parts of ),( yxc f , respectively. The 

phase is numerically obtained as an arctangent function. Taking into account the signs 

of both the numerator and denominator, this yields a value in the range of )2,0[ π . The 

resulting modulo-2π image is often called a “wrapped phase map”. The removal of 

this modulation is discussed in Section 2.1.2.4. Figure 2.7(a) shows a fringe pattern 

obtained on a curved surface by fringe projection technique. The resulting wrapped 

phase is shown in Fig. 2.7(b). From a practical point of view, the number of fringes 

created by the deformation should not be larger than the number of carrier fringes. 

The width of the peaks in the frequency domain is a function of the pitch variations in 
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the initial image. If the gradient of the fringes due to deformation becomes too high, 

the peaks would spread out and overlap, making the selection of a single peak 

impossible. However, Fourier transform is not the only technique to extract phase 

from a fringe pattern. Recently, Gabor transform and wavelet transform were used 

successfully. These algorithms will be discussed in Section 2.3. 

 

   
(a)     (b) 
 

Figure 2.7 (a) Fringe patterns obtained by fringe projection technique; (b) wrapped 
phase map computed with the carrier-based Fourier transform method 

 
 

2.1.2.3 Phase-shifting technique 

Phase-shifted images are acquired after modification of the optical path length of one 

of the two interfering light waves-fronts. The result is a movement of the fringes in 

the image without changing the shape of the phase map. These interferograms lead to 

a mathematical extraction of the phase φ and permit the determination of its sign.  

  An ubiquitous device for phase shifting in interferometer is the piezoelectric 

transducer (PZT), which can translate or rotate optical components, typically a mirror 

or a reference plate, by a small amount with a resolution close to a few tens of 

nanometers. This element has proven to be essential for the practical realization of 

phase-shifting.  
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  With the capability to introduce controlled phase changes nα  in an 

interferogram, Eq. (2.5) becomes: 

 

[ ]nM yxyxIyxIyxI αϕ ++= ),(cos),(),(),( 0        

      nvnu yxIyxIyxI αα sin),(cos),(),(0 ++=                                                  (2.13) 

 

where ),(cos),(),( yxyxIyxI Mu ϕ=  and ),(sin),(),( yxyxIyxI Mv ϕ−= . For the 

solution of the non-linear system of equations, Gauss least square method is used. 

),(0 yxI , ),( yxIu  and ),( yxIv  are obtained by minimizing the errors, i.e., the sum of 

the quadratic errors { }∑
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n
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2
0 ]sin),(cos),(),([),( αα  is to be 

minimized. Obtaining the partial differential of this function with respect to ),(0 yxI , 

),( yxIu  and ),( yxIv , and equating the derivatives to zero gives a linear system of 

equations as (Sirohi and Chau, 1999): 
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This system is to be solved pointwise: 
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This is the general equation (Kong and Kim, 1995) for phase shifting algorithms. A 

large number of algorithms have been introduced in 1990s. Table 2.1 presents some 

of these algorithms with three, four or five steps. Similar to Fourier transform, the 

result obtained is a wrapped phase. Figure 2.8 shows a typical 4-step phase shifting 

algorithm applied with fringe projection technique. Four fringe patterns with 

2/π shifting are projected by a LCD fringe projector on a 50-cent coin and perturbed 

fringe patterns are captured by CCD camera as shown in Fig. 2.8(a). Using 4-steps 

phase-shifting algorithm shown above, a wrapped phase map as shown in Fig. 2.8(b) 

is obtained. Figure 2.8(c) shows a continuous phase map after unwrapping. It is still a 

slanted phase distribution, however, an absolute phase value (Fig. 2.8(d)) can be 

obtained easily by subtracting the phase value of the base plane. 

 
Table 2.1  Algorithms of phase shifting 

N Phase-step nα  Expression for ),(tan yxϕ  
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The limitation of the phase shifting techniques is that they require several, 

normally three to five, images together with prescribed phase steps. For this reason, it 

is mainly adopted in measurement of static objects. Generally, it is not suitable for 

measuring continuous deformation. However, if the rate of the phase shift and 

recording are sufficiently high, the phase-shifting method can also be used in dynamic 

measurement. Huntley et al. (1999) adopted Pockels cell instead of traditional PZT 

phase shifter to generate a four phase-step in a very short time.  High-quality phase 

maps from a vibrating object were extracted. However, the improvement was mainly 

in hardware rather than in the phase shifting algorithm.  

90º

0º
180º

270º
90º

0º
180º

270º

  

(a)                      (b) 

           

                          (c)                                                                             (d) 
 

Figure 2.8 (a) Four perturbed fringe patterns with 2/π  phase shifting on a 50-cent 
coin.  (b) wrapped phase map obtained by 4-step phase shifting, (c) continuous 

 phase map after phase unwrapping, (d) gray level map of a 50-cent coin 
 



 
CHAPTER TWO                                                                                           LITERATURE REVIEW 

 
28

2.1.2.4 Phase unwrapping 

The previous sections show that the results obtained by carrier-based Fourier 

transform and phase shifting is a modulo- π2  phase map. The process of converting 

the discontinuous phase information into a continuous function which is directly 

related to the physical parameter measured is called phase unwrapping. This can be 

defined in the following expression (Creath, et al. 1993): 

“Phase unwrapping is the process by which the absolute value of the phase angle of a 

continuous function that extends over a range of more than π2  (relative to a predefined 

starting point) is recovered. This absolute value is lost when the phase term is wrapped upon 

itself with a repeat distance of π2  due to the fundamental sinusoidal nature of the wave 

function (electromagnetic radiation) used in the measurement of physical properties.” 

  The process of phase unwrapping (Judge and Bryanston-Cross, 1994) is the 

last but maybe the most difficult step of the quantitative measurement. The 

unwrapping process consists, in one way or another, of comparing pixels or groups of 

pixels to detect and remove the π2  phase jumps. Numerous solutions exist to process 

single wrapped phase images (Ghiglia and Pritt, 1998), based on path dependent or 

path independent algorithms, such as branch cut method (Just et al. 1995), quality-

guided path following algorithm (Bone, 1991), mask cut algorithm (Priti et al. 1990), 

minimum discontinuity approach (Flynn, 1996), cellular automata (Ghiglia et al. 

1987), neural networks and so on. They all present advantages and disadvantages, 

emphasizing the fact that no single tool can be used to solve all the problems in this 

field (Robinson and Reid, 1993). 

  Generally, there are two main difficulties in phase unwrapping. The first is 

erroneous phase values, often in the case of speckle interferometry. Correct filtering 

of a wrapped phase map can greatly improve the results, as long as the proportion of 
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erroneous phase values within the image stays reasonable, say less than 30%. Above 

this value, the effectiveness of filtering process is limited. Unwrapping algorithms 

based on group processing instead of individual pixels usually perform better in the 

presence of noise. 

  The second difficulty arises from physical discontinuities in the wrapped 

phase map. They correspond to abrupt step changes on the object in the case of shape 

measurement, or discontinuities of an object surface in the case of deformation 

measurement, for example, cracks. The problem also appears when fringes are located 

in unconnected zones in an image. Different zones in an image can be unwrapped but 

they do not share a common phase origin.  

  Once unwrapping process is completed, a phase map has to be transformed 

into its corresponding physical quantity, such as shape or displacement. This is 

accomplished using a sensitivity vector. The process is not always easy or accurate as 

unwanted sensitivities as well as sensitivity variations need to be considered.  

   The algorithms mentioned above are “spatial” algorithms in the sense that a 

phase map is unwrapped by comparing adjacent pixels or pixel regions within a single 

image. A completely different approach was proposed by Huntley and Saldner (1993) 

where a series of wrapped phase images are used. Each corresponds to a step in the 

deformation process of an object and unwrapping is conducted along the time axis for 

each pixel. No spatial relationship is used. The advantages are manifold. First, 

erroneous phase values do not propagate in the image. Second, physical 

discontinuities can be dealt with automatically. Third, isolated regions in the 

interferogram are correctly unwrapped, without any uncertainty concerning their 

relative phase order. The limitation is that the experiment must be conducted step by 
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step, which can be a problem when a load has to be controlled precisely. However, the 

basic idea behind this method is that the phase at each pixel is evaluated as a function 

of time. This concept leads to a family of phase extraction methods ------ temporal 

phase analysis techniques, which is very well adapted to the measurement on 

continuously deformed or vibrating objects.  

 

2.2 Review of temporal phase analysis techniques 

Within the field of deformation measurement, the study of the response of objects to 

impact loading and vibration is a subject of great interest in experimental mechanics 

and constitutes one of the most appealing applications of optical interferometry. 

Interesting research describing transient deformation measurement by use of twin-

cavity double-pulsed lasers has been published by Fernandez et al. (1998) and Farrant 

(1998). Provided that both laser pulses effectively freeze the object movement, ESPI 

will produce a fringe pattern representing an instantaneous deformation field between 

pulses. However, these techniques have an important limitation. To obtain the 

evolution of the transient deformation, an experiment must be repeated many times, 

each time with a different delay between the beginning of the impact loading and the 

emission of the second laser pulse. This means non-repeatable events such as rapid 

crack propagation, cannot be studied in detail. A further limitation with such an 

approach is the inability to record more than one exposure of the deformed state, 

which means that phase-shifting techniques cannot be employed. Single image 

carrier-based methods are frequently used, but these have significant drawbacks of 

reduced phase resolution compared with phase shifting.  

One solution to these problems is to record a sequence of interferograms 

throughout the entire deformation history. If the temporal sampling rate is sufficiently 
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high, temporal phase analysis can be used to extract high-quality phase maps, and 

temporal phase unwrapping allows absolute displacement fields to be obtained 

(Brown, 1989; Huntley 1993). The term “absolute” here means the total displacement 

from the start of the measurement process, as opposed to displacement relative to a 

reference point in the field of view, which is all that can be achieved with spatial 

unwrapping.  

 

Figure 2.9 Schematic layout of temporal phase analysis technique 

 
Figure 2.9 shows the schematic layout of the temporal phase analysis 

technique. During deformation, a series of frames is recorded, from which intensity 

variation over time is extracted for each point. Fourier transform is the predominant 

method in temporal phase analysis to retrieve the phase. It works by pixelwise Fourier 

transforming the data, zeroing everything but a band around a peak frequency, and 
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transforming back into time domain, thereby effectively performing a bandpass filter. 

Result of the inverse Fourier transform is the phase of the filter fringe signal, which is 

then unwrapped. Figure 2.10 shows an example of the Fourier transform process on 

one pixel.  

  

       (a)          (b) 

          
                            (c)           (d) 

 

Figure 2.10 (a) Intensity variation of one pixel; (b) frequency spectrum of the signal 
and bandpass filter; (c) wrapped phase; (d) continuous phase after unwrapping. 

 
 

Temporal Fourier analysis and temporal phase unwrapping (Huntley and 

Saldner, 1997) were firstly applied with wavelength-scanning interferometry (Takeda 

and Yamamoto, 1994) for surface contour with discontinuities. When the object 

contains discontinuities that are due, for example, to specimen edges or growing 
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cracks, spatial unwrapping is potentially risky because of the possibility of 

unwrapping across a boundary which can cause spatial propagation of a large phase 

error. By contrast, the combination of temporal phase analysis and temporal phase 

unwrapping means that each pixel in the camera behaves as an independent 

displacement sensor. For a continuously-varying wavelength (Tiziani et al. 1997, 

Kuwamura and Yamaguchi 1997), a temporal interference signal is observed at each 

pixel of the detector array in the image plane.  During data acquisition, a series of 

frames is recorded, from which the intensity variation over time is extracted for each 

pixel. In this case, the phase value of each pixel varies due to a change of wavelength 

of the light source instead of displacement. Temporal Fourier analysis and one 

dimensional phase unwrapping are then applied on each pixel. The height information 

of each pixel can be extracted independently. Figure 2.11 is a result given by Tiziani 

(2000).  It shows a milled aluminum surface with steps of 0.4 mm and 0.8 mm. The 

tilt at the top is 8°, and the object itself was tilted by 5°. Measurement of such tilted 

surfaces would be difficult with classical interferometric methods as the fringe density 

would become much too high to be analyzed. A similar concept has been applied on 

shadow moiré profilometry by Jin et al. (2001). Instead of changing the wavelength in 

interferometry, the frequency of the grating above the object to be measured was 

changed by in-plane rotation (Hung et. al, 1977b) and a series of fringe patterns was 

captured at certain intervals. Fourier transform was then applied on each pixel to 

obtain the height information. 

At the end of 1990s, temporal phase evaluation technique (Luo, 2001) has 

gained wider applications in the measurement of large continuous deformation 

(Joenathan et al. 1998a). A typical technique is temporal speckle pattern 

interfeormetry (TSPI).  Speckle methods have been used for different deformation 
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measurements because of several advantages, especially the simplicity of the 

experimental arrangement. ESPI has enhanced the possibility of real-time and highly 

quantitative analysis. However, the speckle interferometric methods suffer because of 

their high sensitivity, which is of the order of half the wavelength of light. For large 

deformations, the number of fringes that can be observed depends on the size of the 

CCD array. With a 512×512  array, one can observe about 20 fringes on the monitor 

for reasonably good quantitative analysis. Therefore the upper limit on an object 

deformation is around 6-7µm. 

 

Figure 2.11 Milled steps of 0.4 mm and 0.8 mm (Tiziani, 2000) 

 
 Temporal speckle pattern interferometry (TSPI) makes use of the fact that a 

continuous deformation of the object introduces fluctuations in the phase of the 

speckles in the image plane of the object. Although the intensity modulation in the 

speckles occurs over the whole image plane, the individual speckles are analyzed as a 

function of time. Depending on the optical arrangement used, the phase of the 

speckles can be related to out-of-plane or in-plane motion (Joenathan et al. 1998b) or 

the slope of the object deformation (Joenathan et al. 1998c) as well as for shape 

analysis. Figure 2.12 shows a typical wrapped phase map obtained by TSPI. 
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Besides speckle methods, temporal phase analysis has also been applied with 

fringe projection techniques to retrieve the out-of-plane displacement (Pawlowski et 

al. 2002).  In this case, a high quality linear fringe pattern is projected onto the object 

surface. Similarly, Fourier transform method is used to evaluate the temporal phase 

value pixel by pixel.  

 

 

Figure 2.12 Typical wrapped phase difference distribution obtained from TSPI 
 
 

The temporal Fourier transform has its disadvantages. If the deformation is 

highly nonlinear then the process of extracting data using Fourier transform method 

will not be accurate. The width of the side bands in the spectrum therefore increases 

and overlaps with the central peak. Selecting a proper bandpass filtering window 

becomes difficult.  

 To overcome this problem, Li et al. (2001) presented a simple but effective 

method, called phase scanning method to retrieve the phase from the variation of the 

gray value. If the amplitude of vibration is large enough, the variation of an instant 

phase value );,( tyx pppφ  of a point P will be higher than π2 , which implies intensity 

change of more than one period. With this assumption, the phase value at any instant 

can be calculated by the following equation: (Li, et al. 2001) 
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where ),(max pp yxI  and ),(min pp yxI  denote the maximum and minimum gray value at 

point P, respectively. );,( tyxI pp  is the gray value of point P at instant t. Similarly, 

unwrapping is executed on the time axis. 

The significant drawback of the phase scanning method is that it cannot be 

applied to a very noisy signal as the accuracy of the method relies on the correct 

identification of the maximum and minimum values in each cycle of the intensity 

variation. Although Li also applied this algorithm to speckle fringe patterns, it is 

found that the method is more suitable for clear patterns obtained by incoherent 

methods such as fringe projection and shadow moiré.  Furthermore, it needs more 

sampling points in one cycle of gray value variation. Li mentioned at least 6 sampling 

points; however, according to our experience, it is found that 10 to 16 sampling points 

per cycle produce the best results. Relatively large errors in the phase profile are also 

found when the gray value approaches extreme values. The errors are introduced by: 

(1) maximum or minimum values detected by the camera are slightly different from 

the actual extreme gray scale values; (2) for a sine-wave configuration, a slight 

difference in gray level near the extreme values causes a large change in phase value.  
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2.3 Review of wavelet applications in optical interferometry 

Wavelet analysis has become an effective tool in many research areas since the last 

decade. An interesting historical account by Daubechies (1992) shows that different 

domains of physics and engineering have developed methods that can all be brought 

in a larger perspective based on wavelets. The same situation applies in optical 

metrology. In this section, a brief introduction of wavelet analysis is discussed, 

followed by reviews of wavelet applications in optical interferometry, in particular its 

applications in phase retrieval using one fringe pattern; speckle noise reduction; and 

flow detection. 

 

2.3.1 Fourier analysis and continuous wavelet transform 

From the reviews presented above, two types of signals are processed in optical 

interferometry. One is the spatial distribution of the gray value variation; it could be a 

one-dimensional or two-dimensional signal. The other is the temporal intensity 

variation on each pixel, which is obviously a one-dimensional signal. Fourier 

transform is one of the effective algorithms in this area. It was introduced in 1807 by 

Fourier. Although rejected by his contemporaries, Fourier’s ideas have been 

developed into one of the cornerstones of contemporary mathematics and engineering. 

Fourier transform (FT) is a standard tool for obtaining the frequency spectrum of a 

given signal s(t) over its total duration. The definition of FT is expressed as: 

 

dtetss tiωω −+∞

∞−∫= )()(ˆ                 (2.17) 
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Normally the spectrum )(ˆ ωs  is complex. The amplitude of the spectrum represents 

the weight of different frequencies that compose the signal. The signal s can be 

reconstructed by an inverse Fourier transform: 

 

ωω
π

ω dests ti)(ˆ
2
1)( ∫

∞+

∞−
=              (2.18) 

 
The properties of Fourier transform are well known. Here only the Parseval-

Plancherel theorem is recalled, which will help us move back and forth between time 

and frequency domains. It establishes the following relation for two functions f(t) and 

g(t): 
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π
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∞+

∞−
=              (2.19) 

 
where g is the complex conjugate of g. 

Figures 2.10(a) and (b) show an example of one-dimensional Fourier 

transform. As long as we are satisfied with linear time-invariant operators, the Fourier 

transform provides simple answers to most questions. It is suitable for a wide range of 

applications such as signal transmissions or stationary signal processing. However, if 

we are interested in transient phenomena, Fourier transform becomes a cumbersome 

tool. The Fourier coefficient is obtained in Eq. (2.17) by correlating s(t) with a 

sinusoidal wave tie ω . Since the support of tie ω  covers the whole real line, )(ˆ ωs  

depends on the values s(t) for all times Rt∈ . This global “mix” of information makes 

it difficult to analyze the local property of s(t)  from )(ˆ ωs . For this reason different 

types of representation were created. One of them is the short-time Fourier transform 

(STFT).  
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In STFT, a window function )( τ−tw  localized at a time τ is used to isolate a 

small portion of the signal s(t). The product )()( τ−twts  is then Fourier transformed 

to generate an estimation of the instantaneous spectrum ),( τωS : 
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The second term is a consequence of Eq. (2.19). It shows that the time localization 

corresponds to frequency localization. A particular spectrum component ),( τωS  is 

influenced by the weighted value of s(t) in a region surrounding τ ; on the other hand, 

it is influenced by a set of frequencies α  such that 0)(ˆ ≠−ωαw . The time-frequency 

uncertainty principle affects the resolution, which leads to trade-off between time and 

frequency localization. The narrower the time window, the better the temporal 

resolution can be achieved, at the cost of a poorer resolution in frequency and vice 

versa. In the case of Fourier transform being applied to the whole signal, )(tw  is as 

large as the signal support. Hence, the corresponding frequency band can be very 

narrow, which implies that the frequency resolution is high. This trade-off is the 

consequence of the uncertainty principle which states that the product of the temporal 

duration t∆  and frequency bandwidth ω∆  is necessarily larger than a constant factor: 

21≥ω∆∆t . Equality holds if and only if the window function w is Gaussian. Hence, 

no function can be better localized in both temporal and spectral domains than a 

Gaussian window. The use of Gaussian window in STFT is called Gabor transform 

(Abbate et al. 2001) which was originally proposed by Gabor in 1946: 
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The only parameter is the variance 2σ  of the Gaussian window, which permits best 

time-frequency localization for a certain signal.  

When STFT is used, ω∆∆t  is constant in the whole time-frequency plane 

once the window function )(tw  is selected. This means that STFT at any point 

),( 00 ωt  in the time-frequency plane provides information about the signal s(t) with an 

accuracy given by t∆  and ω∆  in the time and frequency domain. This localization is 

uniform in the entire plane, resulting in a uniform tiling of this plane with a 

rectangular cell of fixed dimension as shown in Fig. 2.13(a).  

 
         (a)              (b) 

Figure 2.13 Time-frequency analysis cell in the case of : (a) Short-time Fourier 
transform (b) wavelet transform 

 

If signal s(t) has a transient component with a support (duration) smaller than 

t∆ , it is difficult to locate the signal with an accuracy better than t∆ . A similar 

situation is observed for signals with a small support in the frequency domain. If we 

choose a smaller value of t∆ , the time resolution increases while the frequency 

resolution ω∆  decreases. Therefore, if the signal s(t) is composed of a very short 

transient time with monochromatic (single frequency) sinusoidal waves, it is difficult 

to find an optimal window )(tw . Hence STFT is only suitable for analyzing signals 
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that have signal components with similar ranges as the temporal and frequency 

supports.  

In dynamic problems, the actual frequency of a signal may range from very 

low frequencies up to Nyquist frequency. Similar observations led Morlet, working in 

seismic signals, to devise a different type of analysis ------ wavelet transform, where 

the width of the analyzing window is automatically adapted to the particular 

frequency band of interest. In the case of continuous wavelet transform, time-

frequency resolution will vary according to the frequency of interest, as shown in Fig. 

2.13(b), where at higher frequencies the time resolution is smaller at the cost of a 

large frequency window. The uncertainty principle ensures that the area of each tile is 

constant and equivalent to ω∆∆t  as in STFT case. 

 Wavelet transform, similar to STFT, maps a signal s(t), into a two-dimensional 

domain ( the time-frequency plane) and is denoted by 
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where )(tΨ  is in general called the mother wavelet, and the basis functions of the 

transform, called daughter wavelets, are given by: 
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abΨ  is a set of basis functions obtained from the mother wavelet )(tΨ  by 

compression or dilation using scaling parameter a and temporal translation using shift 

parameter b. abΨ denotes the complex conjugate of abΨ . 
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 The scaling parameter a is positive and varies from 0 to ∞. For 1<a , the 

transform performs compression of the signal, and for 1>a , the transform performs 

dilation of the signal. The signal s(t) can be recovered from the wavelet coefficients 

),( baWS  by inverse wavelet transform 
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provided that constant c is 
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Equation (2.24) is also referred to as the reconstruction formula, inverse 

transform, or synthesis, and Eq. (2.25) is generally known as the admissibility 

condition. In practice, this reconstruction is not very useful for a particular application 

in optical measurement, but the fact that c must exist leads to some admissibility 

conditions (Chui, 1992) on the function )(tΨ . First, )(tΨ  must be a square-integrable 

complex-value function (note )(2 RL∈Ψ ), that is: 

 

∞<∫
+∞

∞−
dtt 2)(Ψ                   (2.26) 

 
As )(tΨ  is supposed to be a window function, it should also verify: 

 

∞<∫
+∞

∞−
dtt)(Ψ                   (2.27) 

Consequently, )(ˆ tΨ  is a continuous function. It follows from Eq. (2.25) that )0(Ψ̂  

must be zero. As explained earlier, wavelet analysis is performed differently for high 
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and low frequencies. This is illustrated in Fig. 2.13 where the elementary “cells” in 

the time-frequency domain are compared for wavelet and STFT. Accordingly, 

wavelet transforms present a better frequency resolution in the low frequencies 

domain, at the expense of time localization, and a higher temporal resolution at high 

frequencies, at the expense of spectral resolution.  

The following shows an example of the wavelet transform mentioned above. 

Figure 2.14 shows a signal with two frequencies which occur consecutively along the 

time axis. The frequencies are 102π   and 152π , respectively. The modulus of CWT 

using complex Morlet wavelet is presented in Fig. 2.15. The dashed line shows the 

maximum modulus of wavelet transform, which indicates the instantaneous 

frequencies with maximum energy.   

The wavelet decomposition presented above is continuous, but a standard 

approach is to explore a signal at a specific number of locations obtained by “binary 

dilation” and “dyadic translation”, which means wavelet coefficients are calculated 

for the set of points ja 2= , where j is an integer. In the case of orthogonal wavelets 

this type of decomposition is efficient and non-redundant. Many algorithms 

(Wickerhauser, 1994) have been developed for filtering or compression of signals 

using the so-called multi-resolution feature of wavelet. However, our goal is to extract 

an accurate phase from instantaneous frequency of a signal. Hence our focus is on 

continuous wavelet transform (CWT). 

CWT expands a one-dimensional temporal intensity variation of certain pixels 

into a two-dimensional plane of frequency (related to scaling a) and position b as 

shown in Fig. 2.15. The dashed line is called the ‘ridge’ of the continuous wavelet 

transform, which is the trajectory of maximum 2),( baWS  on the temporal-frequency 



 
CHAPTER TWO                                                                                           LITERATURE REVIEW 

 
44

plane. The instantaneous frequency of the signal can be obtained by ridge extraction. 

More details will be given in Chapter three. 

 

Figure 2.14  A signal with two frequencies occurred consecutively along time axis 

 

Figure 2.15 Modulus and ridge of CWT obtained by Complex Morlet wavelet 
( πω 40 = )  

 
The main difference between Fourier transform and continuous wavelet 

transform is in the choice of basis functions or the functions with which convolution 

of the signal is carried out. Fourier transform uses wave, while wavelet transform use 

functions which have a compact support --- wavelet. Wavelet transform makes it 

possible to separate signals from different frequency components and simultaneously 

study their local structure with a resolution corresponding to the chosen scale. This 

feature makes it more suitable for temporal analysis. 
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2.3.2 Wavelet in optical metrology 

In optical interferometry, wavelet analysis is mainly applied in (1) phase retrieval; (2) 

speckle noise reduction and (3) flaw detection and feature analysis. 

2.3.2.1 Phase retrieval 

As wavelet is able to extract the instantaneous frequency of a signal, this feature is 

mainly applied to the retrieval of phase from spatial intensity variations. There are 

two methods to obtain the phase: one is by integration of the instantaneous frequency 

(Watkins et al., 1999). Using this method, phase unwrapping is not required (Afifi et 

al. 2002). Similar to Fourier transform, using wavelet analysis one is also unable to 

determine the sign of phase. This is the problem of phase ambiguity. Watkins et al. 

(1997) and Tan et. al (1997) used a two-step phase shifting to overcome this problem. 

The phase step can be chosen arbitrarily between 0 and π. Another way for phase 

extraction is to compute the phase at a wavelet ridge: 

[ ]
[ ]⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

),(Re
),(Imtan)( 1

baW
baWb

rbS

rbSϕ                  (2.28) 

where  Im and Re are respectively the imaginary and real part of a complex wavelet 

coefficients. rba  is a scaling on the ridge. Obviously, phase unwrapping cannot be 

avoided. Morimoto et al. (1995; 2002) used the method for phase retrieval in the grid 

method, while Wei et al. (1999) used it to analyze an interferogram of a temperature 

field produced by two heaters. It was also applied to analyze the crystal growth 

(Xiong et al., 2000; Fang et al., 2001a) and speckle-shearing interferometry (Fang et 

al. 2001b). In speckle-shearing interferometry, differentiation was applied on a phase 

map obtained by wavelet analysis, and curvature information is extracted. It was 

mentioned that the wavelet analysis gives a better solution with noise reduction and 
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without deficiency of filter window choice as in Fourier transform. However, due to 

phase ambiguity, carrier technique is still applied on an initial interferogram. Qian et 

al. (2003a) applied a phase-shifting windowed Fourier ridges method to solve this 

problem and show better results than the normal phase-shifting and digital shearing 

methods. As wavelet analysis is able to extract the instantaneous frequency of a signal, 

it gains wide applications in analyzing moiré fringe patterns. In the moiré technique, 

the strain measured is the first derivative of the phase value, which can be directly 

obtained from the instantaneous frequency. Wang (2002) and Asundi (2002) applied 

Gabor filters to extract the strain contour. Qian et al. (2003b) extracted the strain map 

directly using two-dimensional continuous wavelet and their results are presented in 

Fig. 2.16. Figure 2.16(a) is a typical moiré interferometric pattern and Fig. 2.16(b) is 

its Fourier transform, which is very complex; Fig. 2.16(c) shows the strain contour by 

conventional moiré of moiré method while Fig. 2.16(d) is the whole field strain 

distribution obtained by wavelet ridge extraction.  Similar results in moiré 

interferometry were reported by Kadooka et al. in 2003. Wavelet analysis has also 

been used to process the speckle patterns (Federico and Kaufmann, 2001; 2002). 

However, due to the noise effect of the speckle, only simulated fringe patterns with 

carrier were evaluated at present. Similar applications (Dursun et al. 2003; Zhang and 

Weng, 2004) can be found in fringe projection techniques. 

The applications mentioned above are in spatial domain. The wavelet analysis 

shows an alternative method of carrier based Fourier transform, and is able to produce 

better results. Wavelet transform has also been applied to temporal phase analysis of 

speckle interferometry. The concept was first introduced by Colonna de Lega in 1996 

and some preliminary results were presented (1997). Cherbuliez et al. (1999; 2001) 

extended the study to phase retrieval from fringe patterns in dynamic problems. 
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Figure 2.16 (a) Original moiré fringe pattern; (b) Fourier spectrum of (a); (c) strain 
contour by moiré of moiré; (d) strain map by wavelet analysis (Qian et al. 2003b) 

 

2.3.2.2 Speckle noise reduction 

Another main application of wavelet analysis in optical interferometry is speckle 

noise reduction.  The method is also effective for other noises, such as electronic 

noise. As mentioned above, one is able to extract the instantaneous frequency of a 

signal using CWT which acts as an adaptive filter, and it reduces the noise effectively. 

Liu et al. (2004a and 2004b) used CWT to improve a fringe pattern in moiré 

interferometry and accurate results were obtained. However, it is only effective for 

fringe patterns with a cosine profile and is comparatively slow in computing. Another 

method is the use of discrete wavelet transform (DWT). Speckle pattern 

interferometry by wavelet denoising was realized by Kaufmann et al. (1996) and 
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Berger et al. (1997). When wavelet denoising was applied to time-averaged digital 

speckle pattern interferometry fringes, Shakher et al. (2001) found a median filtering 

before wavelet denoising would improve the results.  Some recent developments on 

this topic were reported by Federico and Kaufmann (2001b), Shakher et al. (2002) 

and Kumar et al. (2004). 

  One advantage of wavelet denoising is the preservation of discontinuities with 

noise removal. Miao et al. (2002) achieved it by recognizing the high-frequency 

components from wavelet coefficients. It is more complicated than wavelet 

thresholding. An example of wavelet denoising is given in Fig. 2.17 which is a 

simulated noisy fringe pattern. Processed results using wavelet and low-pass filtering 

are shown in Figs. 2.17(b) and (c). 

 

2.3.2.3 Flaw detection and feature analysis 

In optical nondestructive testing, detecting a defect on products is a process different 

from deformation measurement. Usually a defect exists when an unusual frequency 

appears. The main purpose of flaw detection is to identify whether unusual 

frequencies exist and where they are located. Since wavelet transform reveals 

frequency as well as spatial information, it is an ideal tool for this purpose. In order to 

classify the different types of features (flaws), a suitable wavelet base with certain 

parameters should be designed. It should be sensitive only to certain features and 

reject any others. This has been realized not only through simulation but also by opto-

electronic image processor with a solution suitable for industrial applications. 

Recently, several developments on this application have been reported by Kayser et al. 

(1999), Kruger et al. (2000; 2001) and Kallmeyer et al.(2002). The above-mentioned 
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work can also be understood as wavelet matched filters (Roberge and Sheng, 1994) 

for pattern recognition. An application on wineglass inspection was presented by 

Wang and Asundi (2000) using Gabor filtering. Recknagel et al. (2000) proposed 

another interesting method for defect detection. Usually a surface can be represented 

by a polynomial but not the defects. A suitable wavelet with a certain order of 

vanishing moments is able to suppress the surface. Thus the surface has no 

contribution to the wavelet coefficients. As wavelet coefficients caused by noise is 

dense and small while that contributed by defects are sparse and large, they can be 

separated.  

 
Figure 2.17 A comparison of results from wavelet denoising and low-pass filtering: (a) 

computer generated fringe pattern; (b) pattern after wavelet denoising; (c) pattern 
after low-pass filtering 

     

  Another application is in 3D profile measurement (Sandoz, 1997) using white 

light interferometry, where the output irradiance of one point is a cosine function 

modulated by an envelope. Once the light source is chosen, both the frequency of the 

cosine function and the envelope are known and the positions of fringe patterns are 

retrieved. Since the patterns appear like a wavelet atom, a similar wavelet base can be 

selected to detect the position with good accuracy.  
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When optical interferometry is applied in dynamic measurement, a series of speckle 

or fringe patterns is captured. The intensity variation of each pixel can be expressed as 

 

[ ]);,(),(cos);,();,();,( 00 tyxyxtyxItyxItyxI M ϕϕ ++=     (3.1) 

 

where ),(0 yxϕ  is the initial phase on each pixel,  );,( tyxϕ  is a time-dependent phase 

function related to the object motion or deformation. );,(0 tyxI  and );,( tyxIM , which 

are also functions of time, are both slowly-varying functions. Temporal phase analysis 

extracts the phase );,( tyxϕ  from this one-dimensional signal. As shown in the 

previous chapter, Fourier transform is most commonly used in temporal phase 

analysis. Phase scanning is another option; however, it has not been used in the 

analysis of vibrating objects.  In this chapter, we will only focus on:  (1) wavelet 

transform and (2) phase scanning method on vibrating objects. 

 
3.1 Temporal wavelet analysis 

3.1.1 Transform representation: spectrogram and scalogram 

The concept of continuous wavelet transform (CWT) is presented briefly in the last 

chapter. It maps a signal s(t), into a two-dimensional plane of scaling a and shift b. 

Here we recall the Eqs.(2.22) and (2.23) as follows: 



 
CHAPTER THREE                                               THEORY OF TEMPORAL PHASE ANALYSIS 

 

51
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where )(tΨ  is in general called the mother wavelet, and the basis functions of the 

transform, called daughter wavelets, are given by: 

 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
a

bt
a

tab ΨΨ 1)(                 (3.3) 

 
abΨ  is a set of basis functions obtained from the mother wavelet )(tΨ  by 

compression or dilation using scaling parameter a and temporal translation using shift 

parameter b.  The results of continuous wavelet transform are usually presented in 

“spectrograms” or “scalograms”. The example shown in Fig. 2.15 is the spectrogram 

of a signal of two frequencies. The vertical scale indicates the frequency.  

 The second type of representation is the scalogram, Fig. 3.1, where the linear 

frequency scale is replaced by a linear representation of a scaling factor a. As a 

general case, the frequency is proportional to the reciprocal of scaling factor a. For 

example, in a complex Morlet wavelet, the analysis frequency ω  and the scaling 

factor a has a relationship of  

 

a
0ωω =                    (3.4) 

 
where 0ω is a coefficient of wavelet basis. In Morlet wavelet transform, the physical 

meaning of a is the number of sampling points in a cycle of  0ω  phase change. The 

top of Fig. 3.1 corresponds to the lowest frequency, while the bottom of the image 

corresponds to the highest frequency. The frequency domain is identical in scalogram 
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(Fig. 3.1) and spectrogram (Fig. 2.15). In this work, a scalogram is adopted as it is the 

direct result of a CWT and is easily understood by the reader. 

 
 

Figure 3.1 Scalogram of Morlet wavelet transform of a signal in Fig. 2.14 
 

 
3.1.2 Selection of wavelet 

The choice of wavelet depends on the nature of a particular application. For space-

frequency analysis, a wavelet that is optimally localized in terms of both spatial width 

and frequency bandwidth is needed. For a smooth signal, a good choice is a wavelet 

that is smooth itself and therefore has good frequency localization. In contrast, a 

signal that contains discontinuities is better analyzed using wavelets with good spatial 

localization to accurately map the rapid changes in signal. This is similar in time-

frequency analysis. 

Delpart et al. (1992) and Guillemain and Kronland-Martinet (1996) who work 

in the field of acoustic signal processing showed the use of wavelet analysis to obtain 

the phase information.  Their work deals with complicated signals with many 

components and mixed harmonics. In the present work, the signals obtained, either 

spatial or temporal signals, are similar to a simple sinusoidal signal with the presence 

of noise. Their signals are usually sufficiently over-sampled so that they do not suffer 

Sampling point
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from any aliasing problem. Furthermore, they are not interested in the phase of the 

different frequencies, while this is the quantity of prime importance in the present 

work.  

 To measure accurately the time evolution of frequency transients or tones, it is 

more appropriate to utilize a complex function as the mother wavelet, in order to 

properly separate the phase and amplitude information of the signal. To analyze phase 

related properties of a real function (e.g. determination of instantaneous frequency), a 

complex CWT is more suitable than a real CWT or a discrete wavelet transform 

(DWT). The most commonly-used mother wavelet for such an application is the 

complex Morlet wavelet which is the product of a real Gaussian window by a 

complex oscillating exponential function: 

 
)exp()()( 0titgt ωΨ =          (3.5) 

where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2
exp)(

2ttg  0ω  is the “mother” frequency or central frequency, the only 

parameter that has to be selected. Figure 3.2 shows the real part and imaginary part of 

a complex Morlet wavelet when the central frequency is chosen as πω 20 = .The 

different wavelets used during time-frequency analysis are derived from the mother 

wavelet by a scaling a and time translation b. Hence, a wavelet derived from the 

mother wavelet takes the form: 
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The scale parameter a determines the width of the analysis window. At the 

same time, it defines the analysis frequency as shown in Eq. (3.4). Unlike the Gabor 
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transform, the functions used at different frequencies have the same “shape” and a 

varying width. This is illustrated in Fig. 3.3 where the real part of Morlet wavelet and 

Gabor windows are plotted for three frequencies, along with their Gaussian envelopes. 

The extent of the analysis window depends on the analysis frequency ω  of the Morlet 

wavelet. Wavelets are “constant shape” windows in the sense that there is always the 

same number of oscillations in the window, whatever the scaling factor. This is 

obviously not the case for Gabor transform. 

 
Figure 3.2 Real part and imaginary part of complex Morlet wavelet ( πω 20 = ) 

 
 
 

 
 

Figure 3.3 (a) Real part of a Morlet wavelet in time domain with three frequencies, 
from left to right: (1) 20ω  ( 2=a ); (2) 0ω  ( 1=a ); (3) 02ω  ( 21=a ).  

(b) real part of the Gabor windows for the same frequencies. 
 
 

Real part

Imaginary part
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Substituting Eq. (3.6) into Eq. (3.2), a wavelet coefficient of continuous complex 

Morlet wavelet transform is obtained: 
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 A normalization factor 
a

1  is adopted here to ensure all dilated wavelets have 

the same energy. It is worth noting that we restrict ourselves to the positive frequency 

domain, since the spectral information of a real signal is completely and equivalently 

represented in both the positive and negative frequency domains. Using Parseval-

Plancherel theorem, Eq. (3.7) can also be written as: 
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where )(ˆ ωs  denotes the Fourier transform of signal )(ts . Equation (3.8) shows that 

the wavelet coefficient is obtained by a integral on the product of Fourier transform of 

the signal by a frequency window of ( )bi
a

a ωωω exp
2

exp
2

0
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
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⎞

⎜
⎝
⎛ −− , which is a 

Gaussian window of variance 21 a , centered at a0ωω = , multiplied by a phase term. 

It illustrates the fact that the frequency band used to calculate a particular wavelet 

coefficient varies according to the central analysis frequency. If ω∆  is defined as the 

width of the frequency window, it can be shown that the wavelet analysis is 

performed at a constant value of ωω∆  whereas Gabor transform performs an 

analysis at a constant ω∆  value. Figure 3.4 shows various Morlet wavelets with 
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scaling factors of a = 1, 2, 4 and 8 in frequency domain. The mother frequency is 

selected as πω 20 = . 

 
Figure 3.4 Morlet wavelets ( πω 20 = ) in frequency domain (a = 1, 2, 4 and 8) 

 

  From Fig. 3.4,  it can be observed that in a complex Morlet wavelet transform, 

a high frequency resolution is obtained for low frequency signals, while the 

corresponding time localization is poor and vice versa. The behavior of a Gabor 

transform is simpler as the same frequency resolution and time localization are 

obtained for all frequency components of a signal. The popularity of a complex 

Morlet wavelet as an analyzing tool is due to the fact that it is described by an analytic 

function, and so is its Fourier transform. However, it has an infinite support, though 

this is not a practical problem as its envelope decreases rapidly from 0=t . In addition, 

the Morlet wavelet is not strictly speaking an admissible wavelet, though for 50 >ω , 

the admissibility condition is practically satisfied. 

  The maximum frequency, maxω , for which a CWT is meaningful is 

determined by the sampling rate of the signal, and its Nyquist frequency Nyquistω  

(Oppenheim et al., 1999). 
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tNyquist ∆
πωω =<max                    (3.9) 

 

where t∆  is the sampling time interval, which implies that the minimum meaningful 

scale for wavelet transform is 

π
∆ω ta 0

min >                    (3.10) 

The Nyquist frequency Nyquistω  is represented by the dashed line in Fig. 3.4. The 

minimum meaningful frequency (maximum scale) is determined by the length of the 

window such that at least one period ωπ2=T  should be contained within the 

window of the wavelet, and ultimately by the length of the signal, i.e. the window 

length should always be shorter than the length of the signal.  

 

3.1.3 Selection of wavelet parameters  

As mentioned before, 0ω  is the only parameter needed to be properly selected, and in 

order to satisfy the admissibility condition, 0ω must be larger than 5. Proper selection 

of the mother frequency 0ω  determines the overall “balance” between time and 

frequency resolution. In this section, based on the scalogram of a wavelet transform, 

some examples will be given to show how 0ω  affects the results of a continuous 

wavelet transform. This would throw some light on the preparation of guidelines for 

proper selection of 0ω . 

  Figure 2.14 shows a signal with a frequency jump, i.e. two frequencies which 

occur consecutively along time axis. The frequencies are 102π   and 152π  (10 and 

15 sampling-points /cycle), respectively.  Figure 3.5 shows three scalograms of a 
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continuous complex Morlet wavelet transform with different mother frequencies. TO   

is the overlapping length of two frequencies in the time axis. FB  is the width of the 

coefficient peak in scale (frequency) domain. From Fig. 3.4, it is clear that a higher 

0ω  would shift the frequency window to the right, which is the high frequency area; 

thus at a particular frequency, a narrower window is obtained, resulting a more 

detailed analysis of the frequency content of a signal. This will increase the resolution 

in frequency domain, but decrease the resolution in time domain due to the use of 

large temporal windows as shown in Fig. 2.13. It can be observed that TO  increases 

with 0ω , which implies that the resolution in time domain decreases with increasing 

0ω ; It is also seen that FB decreases with increasing 0ω  which indicates that the 

resolution in frequency domain increases with 0ω .  

  Another example given in Fig. 3.6 is a sum of two signals with different but 

close frequencies: 202π  and 232π . Figures 3.6(b), (c) and (d) show the scalograms 

of a complex Morlet wavelet transform with different mother frequencies 0ω . In Fig. 

3.6(b), the two components are too near to each other to be correctly resolved in the 

scalogram. However, if we increase the value of 0ω , as shown in Figs. 3.6(c) and (d), 

the two frequencies are distinctly resolved.  

  Figure 3.7 shows the scalograms obtained for a simulated sinusoidal signal of 

frequency 202π  and modulation 50=SMI  with added random noise with 

modulation 200=NMI . It is clear that not much of the sinusoidal signal is visible in 

the signal plot of Fig. 3.7(a). Accordingly, the analysis with a very well temporally 

localized wavelet, πω 20 = , does not give much information about the signal’s actual 

frequency evolution. However, doubling the mother wavelet frequency, as shown in 
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Fig. 3.7(c), provides a good frequency resolution and the ridge which represents the 

peak becomes visible. When the wavelet coefficients are calculated near the signal’s 

frequency, only a small frequency band is used, which limits the amount of noise that 

affected the transform. In other words, the signal-to-noise ratio (SNR) is increased. If 

0ω  is increased to 8π, Fig. 3.7(d), most of the noise is filtered out, thus showing the 

frequency evolution of the signal more clearly. The continuous line shows the 

location of maximum wavelet coefficients; it is almost a straight line at scale 20=a . 

  The previous examples might lead the reader to conclude that a large 0ω  value 

is always beneficial. This is true only when the signal frequency does not change 

significantly. However, in cases where the frequency changes dramatically, the time 

localization should be preserved in order to keep the analysis tool flexible. Sometimes 

striking a good time/frequency resolution balance is difficult, particularly if the 

analysis is supposed to be automatic. More discussion on the effect of 0ω  on the 

accuracy of phase extraction is given in the following section. In this study, 0ω  is 

normally selected as π2  to satisfy the admissibility condition and keep the flexibility 

of the wavelet analysis. This is because in temporal phase analysis, the signals are 

generally not seriously affected by the noise which is usually more serious in spatial 

domain. 
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(a) 

 

(b) 

 

 
(c) 

 

Figure 3.5 Complex Morlet wavelet transform of a signal with frequency jump: (a) 
πω 20 = ; (b) πω 40 = ; (c) πω 80 =  
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 (a)  

(b)  

(c)  

(d)  

Figure 3.6 (a) A simulated signal with frequencies of 2π/20 and 2π/23 and its 
Complex Morlet wavelet transform (b) πω 20 = ; (c) πω 80 = ; (d) πω 160 = .  
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 (a)  

(b)  

(c)  

 (d)  

Figure 3.7  (a) A simulated sinusoidal signal with frequency of 2π/20 (20 sampling- 
points/cycle) and  added random noise [ ×++ NMSM II ϕcos100  random noise] and its 

complex Morlet wavelet transform:  (b) πω 20 = ; (c) πω 40 = ; (d) πω 80 =  
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3.1.4 Phase extraction from a ridge  

In this section, the phase extraction techniques from the ridge of a wavelet transform 

is discussed. The instantaneous frequency )(tIω  of a cosine modulation 

)(cos)()( ttItf M ϕ=  is defined as the positive derivative of the phase: 

 

0)()( ≥′= ttI ϕω                 (3.11) 

 

The derivative can be chosen to be positive by adapting the sign of )(tϕ . As shown in 

Eq. 3.5, the complex Morlet wavelet is constructed by multiplying a window )(tg  

with a sinusoidal wave. The Fourier spectrum )(ˆ ωg  of )(tg , is maximum at 0=ω . 

The coefficient of a complex Morlet wavelet transform can be written as (Mallat, 

1998) 

 

( ) ( )[ ] ( ){ } ( )[ ]bibbagbIabaW M ϕζεϕζ exp,)(ˆ
2

),( ⋅+′−=  

      ( ) ( )[ ] ( ){ } ( )[ ]bibbagbIa
M ϕζεϕζ −⋅+′++ exp,)(ˆ

2
            (3.12) 

 

where 
a

0ωζ = , as the term ( )[ ]biϕ−exp  and the DC terms are negligibly small with a 

proper selection of 0ω , only the term ( )[ ]biϕexp  remains in Eq. (3.12). Thus, the 

wavelet coefficient can be written as 

 

( ) ( )[ ] ( ){ } ( )[ ]bibbagbIabaW M ϕζεϕζ exp,)(ˆ
2

),( ⋅+′−=                                        (3.13) 
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 where ),( ζε b  is a corrective term which is negligible if the following conditions are 

satisfied:  

 

( )
( )
( ) 12

2
0 <<

′′

′ bI
bI

b M

M

ϕ
ω                  (3.14) 

 
and  

 

1
)(
)(2

0 <<
′
′′

b
b

ϕ
ϕ

ω                   (3.15) 

 
The presence of ϕ′  in the denominator of Eq. (3.14) and Eq. (3.15) shows that MI ′′  

and ϕ′  are slow varying if ϕ′  is small but may vary much more quickly for large 

instantaneous frequencies. Delprat et al. (1992) shows a different proof with similar 

results using a stationary phase approximation. The complete development of Mallat’s 

method is presented in Appendix A. 

The examples presented above show that instantaneous frequency information 

appears in a scalogram in the form of a “peak” in the modulus. Its vertical variation 

reflects a signal frequency variation. The width of this peak for a given time b is 

shown by the width of the Gaussian frequency window shown in Fig. 3.3. The 

trajectory of maximum value of 2),( baW  on the a-b plane is called a ‘ridge’. Since 

)(ˆ ωg  is maximum at 0=ω , and if ),( ζε b  is negligible, 2),( baW  reaches a 

maximum when 

 

( )
rb

rb a
b 0ωζϕ ==′                               (3.16) 
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where ( )bϕ′  is the instantaneous frequency of the signal, and rba  denotes the value of  

a at instant b on the ridge. The wavelet transform on the ridge can then be expressed 

as 

 

( ) ( ) ( )[ ]bigbI
a

baW M
rb

rb ϕexp0ˆ
2

),( ≈                           (3.17) 

 
It can be observed that the phase of the wavelet coefficient on the ridge is 

exactly equal to the phase of the signal. The phase can be retrieved by two methods. 

One method calculates the arctangent of the ratio of the imaginary and real parts of 

the wavelet transform on the ridge.  

 
[ ]
[ ]⎟

⎟
⎠

⎞
⎜⎜
⎝

⎛
= −

),(Re
),(Imtan)( 1

baW
baWb

rb

rbϕ                 (3.18) 

 
where Re and Im denote respectively the real and imaginary parts of the wavelet 

transform. However, )(bϕ  obtained from Eq. (3.18) is within ),[ ππ− and phase 

unwrapping cannot be avoided if a continuous phase value is needed. One of the 

advantages of this method is that the initial phase value of the first sampling point can 

be partially obtained. “Partially” means whatever the initial phase value is, the 

calculated phase value is within the range of ),[ ππ− . This phase value is not useful if 

only the displacement is measured in optical interferometry. However, sometimes the 

instantaneous shape of the object is also needed. In this case, the phase can only be 

calculated by Eq. (3.18), and temporal and spatial phase unwrapping are required. 

  In the second method, the phase value )(bϕ  is calculated by integration of the 

instantaneous frequency shown in Eq. (3.16), and phase unwrapping procedure can be 

avoided. The main problem involved in this method is that the boundary conditions of 
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integration can not be determined. This method can only be used to calculate the 

phase change between two instants. Figures 3.8 and 3.9 show an example of phase 

extraction by the two methods mentioned above. 

 
(a) 

 

 
(b) 

 

 
(c) 

 
 

Figure 3.8 (a) A simulated single-frequency signal; (b) theoretical phase value of the 
signal; (c) modulus of complex Morlet wavelet transform and its ridge. 
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Figure 3.8(a) shows a simulated signal with a signal frequency of 252π , its 

theoretical phase values is given in Fig. 3.8(b). The initial phase of the first sampling 

point is 32 +π (rad). Figure 3.8(c) shows the scalogram of complex Morlet wavelet 

transform, and the dashed line shows its ridge. The ripple is observed on the ridge. 

Figure 3.9(a) are the phase values obtained by Eq. (3.18) and one-dimensional phase 

unwrapping. Theoretically, the initial phase of the first sampling point will be 

retrieved as 3 (rad) instead of 32 +π (rad). In optical interferometry, this π2  phase 

difference may be recovered by spatial phase unwrapping. However, the value we 

obtained by wavelet transform is 2.863 (rad). A 0.137 (rad) phase difference is found 

between the calculated phase and theoretical phase. The error at the start point will 

remain in the unwrapping process, but it will not affect the relative phase difference 

between two sampling points. Figure 3.9(b) is the phase change obtained by the 

method of integration. The initial phase of the first sampling point cannot be retrieved, 

and if it is set to zero, the graph represents the phase change of the signal. The 

theoretical phase change within the first one hundred sampling points is 24.88(rad). 

The difference between the initial phases obtained by these two methods is circled in 

Figs. 3.9(a) and (b). Figure 3.10 shows the error in phase change using different phase 

retrieving methods. The first method shows good results with a maximum fluctuation 

of 0.0024(rad). However, the second method gives the results of 24.78 (rad), or a 

0.41% error.  The errors observed in these two methods are mainly due to the 

discreteness of the signal and the wavelet. The rba  values obtained fluctuate between 

25 and 25.5 when the step in scale sweeping used is 0.5. This error could be reduced 

by increasing the resolution of scale sweeping with the cost of longer computing time. 

When the frequency of the signal processed is not very high, the error is generally not 



 
CHAPTER THREE                                               THEORY OF TEMPORAL PHASE ANALYSIS 

 

68

large and can be neglected. However, two important observations are made from Fig. 

3.10: (1) The process of integration may smoothen the random errors but will 

accumulate system errors; (2) The phase values obtained directly from the modulus of 

wavelet transform is not sensitive to rba , and unlike the process of integration, the 

unwrapping process will not accumulate system error significantly. Generally, the 

phase obtained by the first method mentioned above is more accurate than the results 

from the second method. 

 
(a) 

 

 
(b) 

 
Figure 3.9 (a) Phase change obtained by arctan term and phase unwrapping; (b) phase 

change obtained by integration 
 
 

Figure 3.11 shows another example of wavelet phase extraction. As shown in 

Fig. 3.11(a), the frequency of the signal is increasing along the time axis, and the 

phase evolution is given in Fig. 3.11(b). Fig. 3.11(c) shows the scalogram and ridge of 

wavelet transform between sampling point No. 301 and No. 400.  
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Figure 3.10 Errors in phase change within first 100 sampling point using different 

phase extraction methods. 
 

 
(a) 

 
(b) 

 
(c) 

Figure 3.11 (a) A simulated signal with increased frequency; (b) theoretical phase 
value of the signal; (c) modulus of complex Morlet wavelet transform and its ridge 

from sampling point No. 301 to No. 400. 
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 The theoretical phase change between sampling point No. 301 and No. 400 is 

25.00 (rad), but the results obtained by Eq. (3.18) and unwrapping is 24.62(rad) or 

1.52% in error. The result from integration method is less accurate, 24.41(rad) or 

2.36% in error. Compared to the single frequency signal, there is another source of 

error. When the frequency of the signal is changing along the time axis, )(bϕ ′′  is no 

longer zero and a system error due to the corrective term ε  in Eq. (3.13) will be 

introduced. From Eq. (3.15), ),( ζε b  remains small only when the value of 
)(
)(2

0 b
b

ϕ
ϕ

ω
′
′′

 

is much smaller than one. 
)(
)(

b
b

ϕ
ϕ
′
′′

 is the factor which represents how fast the 

frequency changes at a certain instant. Generally, this value is different at different 

instants. However, the error in phase change is contributed by each sampling point 

between two instants. To evaluate the error introduced by a certain value of 
)(
)(

b
b

ϕ
ϕ
′
′′

 is 

difficult.  In order to analyze the error of a certain ratio, a signal with following 

special phase function is simulated. 

 
 Stemt ⋅=)(ϕ                   (3.17) 

 
where S and m are variable coefficients.  With this phase function, the signal 

)(cos0 tIIa M ϕ+=  will have an identical value of S
t
t

=
′
′′

)(
)(

ϕ
ϕ

 along the time axis. 

With a certain value of 0ω , each sampling point will have the similar contributions to 

the phase error.  Figure 3.12 shows the phase evolution when S is varied from 0.001 

to 0.015. Figure 3.13 shows two examples of simulated signal for 001.0=S  and 

010.0=S . The value of m here is adjustable so that the signal simulated is suitable 
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for analysis. Here, it is selected such that theoretical phase change which occurs 

within point Nos. 301 and 400 equals to 25 (rad) at different values of S. Figure 3.14 

shows the scalograms and the ridges of wavelet transform of these two signals.  

Figure 3.15 shows the percentage errors for different values of S using two 

different phase extraction methods. Although some fluctuations are found on each 

curve, generally the error increases with the value of S. The error in the integration 

method is generally larger than that by arctangent method. However, when the mother 

frequency is selected as πω 20 = , the errors are small and will not affect the results 

too much. Figure 3.16 shows the percentage error of the integration method using 

wavelet with different mother frequencies 0ω . The error remains small in both cases 

when there is no drastic phase change. However, when 008.0>S , it is found that the 

error increases drastically using a wavelet of πω 40 = . For wavelet with πω 40 = , 

time localization is poorer than that with πω 20 = . When a signal with a large 

frequency variation is processed, it will generate larger errors in phase extraction. 

This is another point that should be considered when selecting 0ω . 0ω  should not be 

too large so that the time localization is preserved and system error is limited. 

 
 

Figure 3.12 Phase evolution of signal with different values of S 
 

S = 0.001 to 0.015 

Sampling point 
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(a) 

 

 
(b) 

 
Figure 3.13 Examples of signal with different S: (a) 001.0=S ; (b) 010.0=S . 

 

 
(a) 

 

 
(b) 

 
Figure 3.14 Scalograms of signals and their ridges with (a) 001.0=S ; (b) 010.0=S  

in the range from sampling point No. 301 to sampling point No. 400 ( πω 20 = ) 
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Figure 3.15 Percentage error with different values of S using two phase extraction 
methods ( πω 20 = ) 

 

 
 

Figure 3.16 Percentage error with different mother frequencies 0ω  using integration 
method  

 

  In the above analysis, wavelet transform has been used to extract phase from 

simulated signals without noise. If a signal is contaminated with noise, its wavelet 

transform (modulus and phase) will also be contaminated. The signal-to-noise ratio 

(SNR) however will be the largest near the ridge, because most of the energy of the 

signal is concentrated near the ridge (unless the noise is also of narrow-band and with 

frequencies near that of the signal). Hence using the transform to estimate the 
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instantaneous frequency is better than using the signal directly like phase scanning 

method.  

 

3.1.5 Other problems in wavelet phase extraction 

1. Border effects 

As shown in Eq. (3.2), wavelet transform is a process of calculating the correlation 

coefficient between a wavelet function and the signal. Obviously this process will 

generate large errors at the beginning and end of the signal. This is known as the 

border effect of the wavelet transform. Figure 3.17 shows a scalogram of the 

simulated signal with a frequency of 252π  as shown in Fig. 3.8(a). Large errors are 

observed at the beginning and end of the signal.  

 
Figure 3.17 Scalogram of a wavelet transform on the signal shown in Fig. 3.8(a) 

 

  The easiest way to remove the border effect is to truncate the result of wavelet 

transform and discard the results near the left- and right-hand edges of the signal. This 

will result in a loss of information. A more proper method is to first extend the signal 

without changing the properties at the edges, process the wavelet transform and then 

truncate the results accordingly. There are several techniques to extend the signal. 

Symmetrical or zero padding extension techniques are commonly used. However, in 

Sampling point 
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this study, a linear predictive extrapolation method introduced by Press et al. (1992) is 

used. According to their algorithm, the phase and frequency of the signal are 

maintained after the extension. The wavelet transforms and scalograms shown above 

are applied on the extended data, and the results are truncated appropriately. 

 

2. Ridge extraction algorithm 

The most straightforward method for determining the ridge of the CWT (hence the 

instantaneous frequency) of a signal from its modulus is to determine, for each time b, 

the scale a for which the modulus of the transform is maximum. The drawback of this 

method is that it would take a lot of time to explore the whole frequency domain. 

Furthermore, this method would be vulnerable to noise, which occurs frequently in 

speckle interferometry. However, it is easy to incorporate a priori information on the 

ridge as a constraint, for example, the ridge is smooth. So the value of rba  at a certain 

instant can be predicted using the value of neighboring points. In this study, the value 

)(iarb  on a point i is predicted as )2()1(2)( −−−= iaiaia rbrbpredict , and the modulus 

in the range of 5)( ±iapredict is calculated to determine the maximum value. This 

algorithm also assumes that the change of scale a between two adjacent sampling 

points is not dramatic. 

 

3. Phase ambiguity 

Similar to temporal Fourier transform, the wavelet transform is unable to determine 

the sign of a phase. It is also not possible to analyze a part of the object that is not 

moving. Adding a temporal carrier to the image acquisition process would overcome 

the problem. However, temporal wavelet transform is also limited by the Nyquist 
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sampling theorem. Analyzing signals with a frequency higher than half of the 

acquisition rate is impossible. The selected temporal carrier frequency should be high 

enough so that the phase change of each point on the object is in one direction. 

However, it cannot be too high due to the limitation of Nyquist sampling theorem 

mentioned above. Sometimes a compromise is not easily reached if the capturing rate 

of the camera is not high enough.  

 

3.2 Phase scanning method 

Phase scanning method is a simple phase extraction algorithm which calculates the 

phase directly from a signal. As mentioned before, if the signal is contaminated 

seriously with noise, this method is weak in eliminating errors. Generally, this method 

is not suitable to process speckle patterns of ESPI or DSSI. It is more suitable for 

processing fringe patterns obtained from fringe projection or shadow moiré in which 

the SNR is much higher. Furthermore, it is also more suitable for measurement on 

vibrating objects. In this study, phase scanning is used to measure instantaneous shape 

and displacement of a low frequency vibrating object using fringe projection and 

shadow moiré.  

  As mentioned at the beginning of this chapter, in dynamic measurement, the 

intensity variation of each pixel can be expressed by Eq. (3.1) regardless of the 

method applied. The phase scanning method is based on two assumptions: (1) 

);,(0 tyxI  and );,( tyxIM  are both slowly-varying functions, and can be regarded as 

constants within one period of intensity change; (2) phase change );,( tyxϕ  is more 

than π2 .  With these assumptions, the detectable maximum and minimum intensities 
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within one period of intensity change at a certain point P (x,y) on a test surface can be 

written as 

 

),(),(),( 0max yxIyxIyxI M+=               (3.18) 

),(),(),( 0min yxIyxIyxI M−=               (3.19) 

 
Subsequently, Eq. (3.1) is rewritten as 

 

[ ] [ ] );,(cos),(),(
2
1),(),(

2
1);,( minmaxminmax tyxyxIyxIyxIyxItyxI φ−++=         (3.20) 

 
where );,(),();,( 0 tyxyxtyx ϕϕφ += . Hence the phase value can be expressed as 

 

⎥
⎦

⎤
⎢
⎣

⎡
−

−−
=

),(),(
),(),();,(2arccos);,(

minmax

minmax

yxIyxI
yxIyxItyxItyxφ             (3.21) 

 

As the first phase term in Eq.(3.1) is constant on the time-axis, the relative phase 

variation due to vibration or deformation at point P can be obtained as 

 
);,();,();,( 12 tyxtyxtyx φφ∆ϕ −=                 (3.22) 

 
At a certain time T, the instantaneous phase map, which represents the contour of a 

specimen can be expressed as 

 
);,(),();,( 0 TyxyxTyx ϕϕφ +=                 (3.23) 

 
where );,( Tyxϕ denotes the phase which is related to the vibration amplitude or 

deformation at instant T. Both phase values );,( tyx ∆ϕ  and );,( Tyxφ  are wrapped 



 
CHAPTER THREE                                               THEORY OF TEMPORAL PHASE ANALYSIS 

 

78

phase, as );,( tyxφ  given by Eq. (3.21) is between 0 to π. These values have to be 

converted from [0, π) to [0, 2π) for unwrapping. Table 3.1 shows the details of the 

conversion.  The phase values after conversion are determined by two factors, namely 

direction of vibration or deformation and the slope of intensity 
t
I
∂
∂   along the time 

axis. Unwrapping the phase values );,( tyx ∆ϕ  given by Eq.(3.22) along the time-axis 

is a one dimensional problem; retrieving the continuous phase values from );,( Tyxφ  

in Eq.(3.23) is a two-dimensional unwrapping problem and numerous unwrapping 

algorithms are applicable. 

 
Table 3.1 Conversion of phase values from [0, π )  to [0, π2 ) 

Phase value 
between  
[0, π )  

Direction of 
vibration or 
deformation 

Slope of intensity along 

Time Axis 
t
I
∂
∂  

Phase value between
[0, π2 ) after 
conversion 

≥ 0 π2 -φ  
Outward 

< 0 φ  
≥ 0 φ  

φ  
Inward 

< 0 π2 -φ  
 
 
 Another problem involved in the measurement of a vibrating object is to 

identify the extreme positions of vibration. Theoretically, it is impossible to identify 

them from a one-dimensional signal on a pixel. However, in most of the low 

frequency vibration applications, all points on an object have the same direction of 

movement. They reach an extreme position at the same instant. In this case, these 

instants are readily identified since the first derivative of intensity (
t
I
∂
∂ ) of most pixels 

changes sign (either from negative to positive or vice versa). Figure 3.18 shows an 

example of the phase scanning method in extracting temporal phase from the gray 

value intensity of a pixel. Figure 3.18(a) is the intensity variation of that pixel. Four 
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extreme positions of vibration [as indicated in Fig. 3.18(a)] are identified in ninety 

sampling points. The wrapped phase values are shown in Fig. 3.18(b). After 

unwrapping along the time-axis, the continuous phase profile, as shown in Fig. 

3.18(c), can be obtained. 

 
(a)  
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(c) 

 
Figure 3.18 (a) Intensity variation of a pixel; (b) wrapped phase values; (c) continuous 

phase profile after unwrapping 
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From Fig. 3.18, it can be observed that the phase change ΦA  representing the 

amplitude of vibration is around 13 (rad). 22 sampling points are found within the 

phase change of ΦA . Theoretically, this signal can be separated into 5 sections in 

which the phase change is in one direction, and temporal Fourier transform and 

temporal wavelet transform can also be applied on these sections. Obviously these 

two methods are not suitable for such short signals due to the border effect mentioned 

above. Although the signal can be extended to avoid the errors at the border, this will 

increase the processing time drastically as the extended signal may be several times 

larger than the original signal.  

Another problem that should be emphasized in the measurement of vibrating 

objects is the method to identify the extreme positions of the vibration. These 

positions are identified according to the behavior of the pixels in the images. It is 

impossible to identify them from a one-dimensional signal on an individual pixel. If 

the points on the object have different directions of movement and reach extreme 

positions at different instants, it would be impossible to process the signal as 

mentioned above. In this case, the temporal carrier technique is the only solution to 

the problem.  
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CHAPTER FOUR 

 
DEVELOPMENT OF EXPERIMENTATION 

 
 
 
To demonstrate the application of temporal phase analysis method mentioned in the 

previous chapter, four optical techniques with different measurement sensitivities are 

chosen. They are electronic speckle pattern interferometry (ESPI), shadow moiré, 

fringe projection technique and shearography. In the first section of this chapter, some 

equipment used in dynamic measurement are introduced. In the subsequent sections, 

experimental techniques used in these methods are described in detail. 

 

4.1 Equipments used for dynamic measurement 

 

4.1.1 High speed camera 

  
The recording rate of a normal CCD camera is about 30 frames per second (fps). 

However, even in low frequency vibration measurement, this is not sufficient for 

minimum requirement of phase measurement ------ Nyquist sampling rate. A high-

speed camera is thus indispensable. In this investigation, a high-speed camera, Kodak 

Motion Carder Analyzer, Monochrome Model SR-Ultra is used (shown in Fig. 4.1). It 

is a compact monochrome high-speed motion analyzing system designed for high-

speed applications. It includes a full range of standard features, and optional 

accessories to record, view, measure and store the information required for high-speed 

manufacturing.  
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Figure 4.1 Kodak Motion Corder Analyzer, Monochrome Model SR-Ultra 

 
 The sensor of the high-speed camera is a CCD with a pixel size of 7.4 µm × 

7.4 µm, and an array of 658 pixels × 496 pixels. It has recording rates ranging from 30, 

to 10,000 fps. The size of an output image varies with the recording rate. At a 

recording rate of 250 fps, it has 512 pixels × 480 pixels, and 546 images can be 

recorded within a 2.2 second period. At the highest recording rate of 10,000 fps, the 

image size is reduced to 128 pixels × 34 pixels and 30,832 images can be recorded 

within 3.0 seconds. The camera has a standard 8-bit monochrome BMP or TIFF 

output with 256 gray levels. It is also compatible with all C-mount camera lenses.  

 

4.1.2 Telecentric gauging lens 

 
Temporal phase analysis technique traces the intensity of a pixel on a series of images. 

Hence, it is necessary that a particular pixel on the series of images represents the 

same point on an object. Generally, the method is only suitable for analyzing out-of-

plane displacement or very small in-plane displacement. However, when out-of-plane 

displacement is measured using shadow moiré or fringe projection technique, the 

displacement is already in the range of at least several millimeters. In-plane shifting of 
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the object on the images can be eliminated by capturing the object at right angles. 

However, when a conventional camera is used, the magnification varies with the 

working distance. To avoid error due to variation of magnification, a telecentric 

gauging lens is used. The magnification of a telecentric lens, unlike conventional 

lenses, is independent of working distance. It remains constant regardless of the 

distance of the camera from an object. This reduces magnification errors and greatly 

extends the gauging depth of field.  Figure 4.2 illustrates the difference between a 

telecentric and a conventional lens. With this special lens, the location of a non-

stationary object remains the same within an image and only the fringe pattern in an 

image is shifted periodically. The model of telecentric lens used in this investigation 

is a Melles Groit 59LGH416 lens. 

 

Figure 4.2 Difference between telecentric gauging and conventional lens imaging 

 

4.1.3 PZT translation stage 

 
A piezoelectric translation stage with a computer control system is one of the key 

equipment to ensure precise dynamic measurement in ESPI.  It is mainly used for: (1) 

Telecentric Lens Conventional Lens 
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generating a temporal carrier by shifting a reference object at constant speed; (2) 

prescribing a linear or nonlinear displacement. The translation stage used is a 

Piezosystem Jena, PX 300 CAP PZT stage. It can generate a maximum horizontal 

displacement of 300 µm. It contains a closed loop capacitive control system with a 

position accuracy of 0.05% at a full motion of 300 µm. It has a resolution of 1 nm and 

works well for high-precise positioning. It has a maximum load of 10N. 

  

Figure 4.3 PZT translation stage (Piezosystem Jena, PX 300 CAP) and its controller 

 

4.2 Experimental setup 

In this section, the experimental setups are described in detail according to the 

different optical techniques: fringe projection, shadow moiré, ESPI and digital 

shearography. In these techniques, the basic setups are similar. However, the test 

samples and loading methods are varied.  

 

4.2.1 Fringe projection 

 
The fringe projection experiment is employed to study a vibrating object by phase 

scanning. The experimental setup is shown in Fig. 4.4. A coin of 21 mm diameter and 

having a diffused surface is subjected to vibration at different amplitudes with a 

vibrator. The frequency of vibration is controlled by a function generator and a 
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vertical sinusoidal fringe pattern is projected onto the object at the same time by a 

programmable LCD projector. The fringe patterns are captured at right angles by a 

Kodak high-speed CCD camera with telecentric gauging lens.  

 
 

Figure 4.4 Experimental setup of fringe projection method for phase scanning  
 

 
The pitch of the fringe pattern and angle of projection are selected according 

to the amplitude of vibration such that the phase variation in one cycle of vibration is 

more than π2 . Coefficient Fk  in Eq. (2.1) is calibrated by shifting an object through 

a known distance in the z-axis and the corresponding phase difference on the object is 

determined by conventional 4-step phase shifting method. 
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4.2.2 Shadow moiré 
 
Shadow moiré method is also employed in this investigation to illustrate the 

algorithms for temporal phase analysis. Figure 4.5 shows the experimental setup for 

measurement on a continuously-deforming or vibrating object. A vertical sinusoidal 

grating with a certain frequency is positioned close to an object with diffused surface. 

The pitch of the grating is selected according to the displacement or contour of the 

object to be measured. A coarse grating will reduce the sensitivity; however, the 

fringes will produce good contrast. Due to diffraction, the grating frequency used in 

shadow moiré technique should be less than 6 lines/mm.  A 150W DC white-light 

source with an optical fiber illuminates a test object at a certain angle. The moiré 

fringe patterns are captured at right angles by a high-speed CCD camera with a 

telecentric gauging lens. As the imaging area is smaller than the telecentric lens, each 

point on the object would be imaged at right angles. In this case, the camera and the 

light source do not have to be placed at the same distance from the object as required 

in Fig. 2.3. This will reduce errors caused by mis-alignment.  

  To determine whether the fringes represent a convex or concave surface, 

carrier fringes are introduced by a rotating grating inclined at a small angle in x-z 

plane. This changes the relative distance between the grating and the object, but will 

not introduce any error in contouring. However, due to diffraction effect, the fringe 

contrast would reduce with an increase in distance. As the angle of rotation is small, it 

will not significantly affect the results.  The variation of the grating pitch due to the 

rotation is also not considered for the same reason. 

Different test samples and loading methods are used in this study. Figure 4.5 

shows a simply-supported Perspex beam (8 mm in width and 60 mm in length) which 

is subjected to a continuous deformation in the z-direction. A test coin subjected to a 
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rigid body motion in the z-direction is also used.  These experiments employ the 

temporal phase analysis algorithm for continuous deformation. For measurements on 

a vibrating object, the specimen (within dotted circle) in Fig. 4.5 is replaced by an 

object subjected to low frequency vibration using a shaker (as shown in Fig. 4.6). The 

frequency of vibration is controlled by a function generator. Two vibrating specimens 

are tested, a spherical cap and a coin.   

 

 

Figure 4.5 Typical shadow moiré setup for continuous deformation measurement 

 
  Shadow moiré technique is also applied on profile measurement of an object 

with step change. In this application, the specimen tested is stationary, however the 

frequency of a grating is varied by rotating the grating, and a series of fringe patterns 

is captured during the rotation. Figure 4.7 shows the experimental setup. A linear 
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sinusoidal grating, placed close to the specimen, is mounted on a rotary indexing 

stage that has an accuracy of 00167.0 . A 150W DC white-light source with an optical 

fiber illuminates the object at a certain angle. Moiré fringe patterns are recorded using 

a CCD camera whose optical axis is normal to the plane of the grating. The grating is 

rotated from °= 0α  to o90=α  at increments of °=∆ 5.0α which is achieved with a 

computer-controlled motorized rotating stage. A total of 181 images are recorded for 

processing. Two specimens are measured in this study, an object with a stepped 

profile and a coin with small variation in surface profile. 

 

Figure 4.6 The vibrating object and loading device 

4.2.3 ESPI 

Figure 4.8 shows a typical setup of ESPI. A beam of He-Ne laser (30 mW, λ = 632.8 

nm) illuminates a specimen with diffuse surface and a reference plate at right angles 

through a beam splitter. The object and reference beams are recorded on a CCD 

sensor. During deformation of the object, a series of speckle patterns is captured by a 

high speed CCD camera with a telecentric gauging lens. For continuous deformation 

measurement, several specimens are used. The first specimen is a fully-clamped 
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square plate with several artificial defects (circular blind holes with different depths). 

The width and thickness of the plate are 80 mm and 5 mm, respectively. The plate is 

loaded by a uniformly-distributed pressure applied with compressed air, and 

continuously deformed by increments of pressure in the chamber (shown in Fig. 4.8). 

 

Figure 4.7 Shadow moiré setup for profile measurement on objects with step change 

 

The second specimen is a cantilever beam which is loaded with a non-linear 

motion at the free end using a computer-controlled piezoelectric translation stage 

(shown in Fig. 4.3). The setup is similar to that shown in Fig. 4.8. Only a portion of 

the beam is inspected. Figure 4.9 shows the cantilever beam with the loading device 

and the area of interest. This experiment is to study the effect of varying frequency on 
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phase evaluation. Figure 4.10 shows another specimen which is a micro-beam tested 

by ESPI. The length, width and thickness of the beam are 2.5 mm, 0.25 mm and 0.25 

mm, respectively. The setup is similar to that shown in Fig. 4.8, however the 

telecentric lens is replaced by a long working distance microscopic lens (OPTEM 

Zoom 100). The beam is subjected a prescribed displacement by a PZT translation 

stage at the free end.  

 

 

 

Figure 4.8 Typical ESPI setup for continuous deformation measurement. 
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Figure 4.9 A cantilever beam with non-linear motion 

 

 

Figure 4.10 A micro-beam tested by ESPI 

Figure 4.11 shows another ESPI setup for measurement of a vibrating object 

with a temporal carrier. The test specimen (shown in Fig. 4.12) is a Perspex cantilever 

beam with a diffuse surface. The length, width and thickness of the beam is 400 mm, 

20 mm and 4 mm, respectively. It is subjected to a sinusoidal vibration at the free end 

using a vibrator. The frequency of vibration is controlled by a function generator and 

the area near the clamped end is measured. To generate a temporal carrier, the 

reference plate is mounted on a computer-controlled piezoelectrical transducer. 

During vibration, the reference plate is given a linear rigid body motion with a certain 

velocity. In order to retrieve the phase change of temporal carrier, a stationary 

reference block with a diffuse surface is mounted above the vibrating beam and it is 

captured together with the beam. 
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Figure 4.11 ESPI setup with temporal carrier 

 

 

 

Figure 4.12 Reference block, cantilever beam and loading device for experimental 
setup shown in Fig. 4.11 
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Figure 4.13  Digital shearography setup with temporal carrier 

 

4.2.4 Digital Shearography 

Figure 4.13 shows a typical setup of digital shearography. The test specimen in this 

study is a square plate with a circular blind hole (50 mm in diameter), clamped at the 

edges by rows of screws. The width and thickness of the plate are 80 mm and 5 mm, 

respectively. The plate is loaded by a uniformly distributed pressure applied with 

compressed air, and continuously deformed by increments of pressure in the chamber. 

The plate is with near normal illumination using a He-Ne laser (30 mW, λ = 632.8 

nm). A modified Michelson shearing interferometer is adopted as the shearing device. 

The image shearing mmx 3=δ  is generated by rotating mirror M1 with a small angle. 
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To generate a temporal carrier, mirror M2 is mounted on a computer-controlled PZT 

stage. During the deformation of the plate, it is applied with a linear rigid body 

motion at certain velocity. To retrieve the phase change of the temporal carrier, a 

stationary reference block with a diffuse surface is mounted besides the object and its 

image is captured along with the plate. During deformation of the object, a series of 

speckle patterns is captured by a high speed CCD camera (KODAK Motion Corder 

Analyzer, SR-Ultra) with a recording rate of 60 frame/s (fps). 
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CHAPTER FIVE 

 
RESULTS AND DISCUSSION 

 
 
 
In this chapter, the results of temporal phase analysis are presented in detail according 

to different applications. They are profiling object surface with step change; 

instantaneous velocity, displacement and contour measurement on continuously 

deforming objects, displacement and contour measurement on vibrating objects and 

displacement derivatives measurement on continuously deforming objects. Each 

application may include more than one optical technique. The results from temporal 

wavelet analysis are described in detail, temporal Fourier analysis is normally used to 

generate the results for comparison. Phase scanning method is only used on vibrating 

objects. Temporal wavelet and Fourier analyses are executed on Matlab platform; and 

phase scanning is executed using Visual C++.  

 

5.1 Surface profiling on an object with step change 

 
As mentioned in Chapters 2 and 3, the intensity distribution captured by the CCD 

camera in Fig. 4.7 is governed by Eqs. (2.3) and (3.1). When the grating is rotated at 

an angle β (see Fig. 5.1), Eq. 2.3 can be rearranged as 

⎥
⎦

⎤
⎢
⎣

⎡
⋅+= ),(cos2cos),(),(),(

0
0 yxH

p
yxIyxIyxI M

βπ                (5.1) 

where  0p  is the physical pitch of the grating, 
),(
),(),(

yxhl
yxhdyxH

SS

SS

+
⋅

=  is a parameter 

related to the profile.  
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Figure 5.1 The rotation of a grating 

 
  The first specimen tested in this application is an object with a step-change 

profile. Figure 5.2(a) shows the dimensions of the object. The heights of the steps are 

respectively 1.62 ± 0.01 mm and 3.31 ± 0.01 mm when measured from the topmost 

surface using a dial gauge. Figure 5.2(b) shows the area of interest on a test object 

without the grating. The frequency of the grating used is 4 lines/mm. The distance Sd  

and Sl  (shown in Fig. 2.3) are 175 mm and 355 mm respectively. The fringe patterns 

are captured at right angles by a CCD camera when the grating is rotated from °= 0β  

at increments of °= 5.0β∆ . One hundred and eighty one images are captured for 

processing. A 5×5 mean mask is applied to remove high-frequency grating lines on 

the images. At each pixel, 181 sampling points along the time axis are obtained. 

Figures 5.3(a) and 5.3(b) show respectively the gray value variation of points A1 and 

B1 [see Fig. 5.2(b)]. Lower frequency of gray value variation is observed at point A1 

than point B1, which implies that ),( yxhS at point A1 is smaller than that at point B1. 

Due to diffraction effect, fringe contrast is low when the distance between the object 

and grating is large. Figure 5.3 shows that point A1 has a much better contrast than 

β 
p 

0p  
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point B1. However, different contrast at individual pixels will not affect the results of  

pointwise phase extraction. 

 
(a) 

 

 
 

(b) 
 

Figure 5.2 (a) Dimension of a step-change object; (b) area of interest on a specimen 
with step-change. 

 
 
  Continuous wavelet transform is used to extract the phase from the intensity 

variation of each pixel. At a point P(x, y), the phase value )(bxyϕ  of wavelet 

transform ),( baWxy on the ridge is related to distance ),( yxhS . Figure 5.4 shows a 

scalogram of wavelet transform and the ridge at points A1 and B1. To determine the 
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phase variation ϕ∆  between two rotating angles 1β  and 2β , an integration on the 

instantaneous frequency )(bxyϕ′  is performed, and phase unwrapping procedure is 

avoided in both temporal and spatial domain. ),( yxH  in Eq. (5.1) can then be 

determined by  

 

)cos(cos2
),(

21

0

ββπ
ϕ∆
−
⋅

=
pyxH                 (5.2)  

 
 

(a) 

 
 

(b) 
Figure 5.3 (a) Gray value variation of point A1; (b) Gray value variation of point B1. 

 
 

  Theoretically, a phase change ϕ∆  between two known rotating angles 1β  and 

2β  is sufficient to obtain the value of ),( yxH . However, with a selected 1β  value, a 
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series of ϕ∆  can be obtained for different angles of 2β . Hence, it is more reasonable 

to calculate ),( yxH  by a series of ϕ∆  instead of just one. In this study, ),( yxH  is 

determined using least square fitting in Eq. (5.2); subsequently ),( yxhS  is obtained 

by 

 

),(
),(),(

yxHd
lyxHyxh

S

S
S −

⋅
=                                                                          (5.3) 

 
 

(a) 

 
 

(b) 
 

Figure 5.4 Scalograms of a wavelet transform on intensity variation and the ridges at 
(a) point A1 and  (b) point B1. 

 
 

  In this study, 1β  is selected as 30º and 2β  varies from 30.5º to 70º. H(x,y) on 

each point is obtained by least-square fitting; subsequently, the heights ),( yxhS  at 
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step I, II, and III (see Fig. 3b) are obtained as 1.97±0.01 mm, 3.59±0.02 mm and 

5.27±0.03 mm respectively. Figure 5.5(a) shows a gray scale map of height difference.  

The absolute height of each step measured from the top surface are 1.62±0.03 mm and 

3.30±0.04 mm respectively. The average discrepancy, when compared with results 

from dial gauge measurement, is 0.3%. Figure 5.5(b) shows a 3D reconstruction of 

the area of interest on the object. A relatively high unevenness is observed at step III, 

this is due to the lower contrast of the intensity variation and noise. 

 

 
 

(a) 
 

 
(b) 

 
Figure 5.5 (a) gray scale map on area of interest; (b) 3D plot of area of interest 
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  The temporal wavelet analysis is also applied on a coin of 24.5 mm diameter 

[shown in Fig. 5.6(a)]. A small area of interest containing 300×300 pixels [also 

indicated in Fig. 5.6(a)] is cropped. A grating with frequency of 6 lines/mm is 

selected. The distance Sd  and Sl   are respectively 310 mm and 160 mm. The fringe 

patterns are also captured at right angles by a CCD camera when the grating is rotated 

at increments of °= 5.0β∆ . Similarly 181 images are captured for processing. A 3×3 

mean mask is also applied to remove the high-frequency grating lines on each image. 

At each pixel, 181 sampling points along the time axis are obtained. The processes are 

similar with the object mentioned above. Figures 5.6(b) and 5.6(c) show typical moiré 

fringe patterns at °= 30β  and °= 40β . The gray scale map representing the contour 

of the coin is given in Fig. 5.7(a). Figure 5.7(b) shows a 3D plot of the area of interest. 

To verify the accuracy of the proposed method, a comparison with the mechanical 

stylus method is carried out. Figure 5.8 shows a comparison of the profile on cross 

section C1-C1 [see Fig. 5.6(a)].  The results compared well with the mechanical stylus 

method and the accuracy of proposed method is in the order of 10 µm. However, a 

slightly larger error is observed in the circled area. This is due to the presence of the 

shadow on that part of the object. 

  It is worth noting that only sampling points between 30º and 70º are used in 

the calculation as it is not necessary to capture fringe patterns from of 0º to 90º. As 

shown above, accurate results can be obtained by using signals between 30º and 70º 

and extending the signals using linear prediction algorithm as mentioned in Chapter 3. 

Comparing the results with that of Jin et al. (2001), temporal wavelet analysis gives 

much better results. Jin et al. show an uncertainty value of ±0.57 mm using temporal 

Fourier transform, this value is at least ten times that of temporal wavelet transform. 
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Furthermore, since the grating frequency variation is not linear during rotation, non-

consistent angle steps were used in their application to obtain a single frequency of 

intensity variation. This increases the difficulty of automatic measurement as the 

grating rotating speed and the recording rate of a CCD camera are normally consistent. 

This shortcoming of the Fourier analysis can thus be overcome by the use of temporal 

wavelet analysis. 

 

 
(a) 

 
 

    
(b)      (c) 

 
 

Figure 5.6 (a) Area of interest on a 50-cent coin and typical moiré fringe patterns at  
(b) °= 30β ; (c) °= 40β . 
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(a) 
 
 
 

 
(b) 

 
 

Figure 5.7 (a) gray scale map of area of interest of a 50-cent coin;  
(b) 3D plot of area of interest. 
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Figure 5.8  A comparison of surface profile of a 50-cent coin at cross-section C1-C1 
between shadow moiré and mechanical stylus methods.  

 

 
5.2 Measurements on continuously-deforming objects 

 
In this section, temporal wavelet transform is used to process fringe patterns captured 

during continuous deformation of an object. Two methods, shadow moiré and ESPI, 

are used in the measurements for different ranges. Results showing instantaneous 

velocity, displacement and contour of various objects are presented. 

 
5.2.1 Results of shadow moiré method 

According to Eq. (2.4), when a continuously-deforming object is measured by the 

shadow moiré technique, the instantaneous phase )(txyϕ  at a point P(x,y) is given by  

 

( ));,(),();,()()(
00 tyxhyxhktyxhktt SSSSSxyxyxy ∆ϕ∆ϕϕ +==+=    (5.4) 
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shape, and );,( tyxhS∆  represents the displacement of point P. The instantaneous 

shape and displacement can be obtained by retrieving the phase )(txyϕ  from intensity 

variation of each point using temporal wavelet transform. Furthermore, as the 

instantaneous frequency )(txyϕ′  can be extracted, the velocity of deformation can also 

be obtained.  

 The first test specimen is a simply-supported Perspex beam subjected to 

continuous deformation in the z-direction using a motorized stage and the 

experimental setup is shown in Fig. 4.5.  Figure 5.9 shows three typical fringe patterns 

captured on a part of the simply-supported beam at intervals of 0.008s with an 

imaging rate of 125 fps. The distance Sd  and Sl  (see Fig. 2.3) are respectively 360 

mm and 465 mm, and as the grating is placed close to the object, the assumption of 

),( yxhl SS >>  is satisfied. Five hundred fringe patterns are captured during a four-

second period and the first 128 consecutive images are processed. At each pixel, 128 

sampling points along the time axis are obtained. Figure 5.10(a) shows the gray value 

variation of points A2 and B2 [see Fig. 5.9(a)]. Due to diffraction effect, fringe 

contrast is low when the distance between the object and grating is large. A slight 

increase in contrast is observed at both points A2 and B2, which implies that distance 

);,( tyxhS  is decreasing.  The errors on phase extraction due to amplitude variation 

can be omitted as it is slow-varying and Eq. (3.14) is satisfied. A slight difference in 

amplitude between points A2 and B2 is also observed due to non-uniform illumination 

and surface reflectivity. This will not affect the results as each pixel in the image is 

processed independently of each other. Only temporal frequencies are considered as 

they contain information on velocity and displacement. Compared to point B2, a 

higher temporal frequency is observed at point A2. This implies that point A2 deforms 
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faster than point B2. The modulus of the Morlet wavelet transform of intensity 

variation of points A2 and B2 are shown respectively in Figs. 5.10(b) and 5.10(c). The 

dashed line shows the ridge of the wavelet transformation where the maximum 

modulus are found. Only a slight variation of rba  is observed on the ridge, which 

implies that the velocities do not vary significantly along the time axis. 

 

 
(a) 

 

 

(b) 

 

 

(c) 

 
Figure 5.9 Typical moiré fringe patterns of a simply-supported beam at:  (a) 0.4s; (b) 

0.64s; (c) 0.88s. 
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(a) 

(b) 

(c) 

 

Figure 5.10 (a) Gray values of points A2 and B2. (b) modulus of Morlet wavelet 
transform at point A2; (c) modulus of Morlet wavelet transform at 
point B2. 
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The transient velocities of points A2 and B2, obtained directly from the 

instantaneous frequency, are given in Fig. 5.11(a). In this application, integration 

method mentioned in Chapter 3 is applied on continuous deformation measurement as 

the frequencies of the signal are quite uniform. Integration of 
rba
π2  is carried out on 

each pixel to obtain a continuous temporal displacement curve at each pixel [see Fig. 

5.11(b)]. Displacement between any two instants 1T  and 2T  can be obtained from 

)(
12 TT ϕϕ − . Figure 5.12 shows a spatial displacement distribution within two instants 

sT 4.01 = and sT 8.02 = . 

 
(a) 

 
(b) 

Figure 5.11 (a) Instantaneous velocity and (b) displacement of points A2 and B2. 
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For comparison of the results on continuous displacement measurement, 

temporal Fourier analysis is also applied on the same fringe patterns. As the 

displacements of each pixel are different, different frequency spectrums are expected.  

To cover all frequencies, a relatively wider bandpass filter is selected. The filtered 

spectrum is inverse-transformed to obtain a wrapped phase. One-dimensional phase 

unwrapping is then applied on each pixel along the time axis. Figure 5.13 shows a 3D 

displacement plot obtained by temporal Fourier transform. Figure 5.14 shows a 

comparison of displacement on cross section C2-C2 [see Fig. 5.9(a)]. It is observed 

that results from these two methods agree well. However, wavelet method provides a 

much smoother displacement map. The fluctuation in Fourier transform is about 0.02 

mm. However, the fluctuation is less than 0.01 mm in the wavelet method.  From the 

comparison, it is seen that more accurate displacements are obtained using the 

wavelet method. 

Figure 5.12 Displacement of a beam between sT 4.01 = and sT 8.02 =  using temporal 
wavelet analysis 
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Figure 5.13 Displacement of a beam between sT 4.01 = and sT 8.02 =  using temporal 

Fourier analysis 
 

 

Figure 5.14 Comparison of displacement at cross section C2-C2 between temporal 
wavelet and Fourier analysis. 

  

To retrieve an instantaneous contour of the specimen, Eq. (3.18) plus 

unwrapping process is the only method to obtain a wrapped phase map [see Fig. 

5.15(a)], as the integration method can only retrieve the phase change )(txyϕ∆ in Eq. 

wavelet result

FT result 
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(5.4). Obviously, the unwrapping process cannot be avoided. Figures 5.15 (b) and 

5.15 (c) show respectively an unwrapped phase map in spatial domain and a 3-D 

contour at instant sT 8.02 = . 

 

 

(a) 

 

(b) 

 
(c) 

Figure 5.15  (a) Wrapped phase map; (b) phase map after unwrapping; and (c) 3-D 
plot of instantaneous surface profile at sT 8.02 = . 
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To verify the accuracy of the contour measurement, a test coin of 22.4 mm 

diameter with a diffuse surface is subjected to a rigid body motion in the z-axis [see 

Fig.5.16(a)]. The distance Sd  and Sl  (see Fig. 2.3) are 300 mm and 450 mm 

respectively and the frequency of the grating is 6 lines/mm. The camera recording rate 

remains at 125fps. Figures 5.16(b) and 5.16(c) show typical fringe patterns recorded 

at different instants.  Carrier fringes are introduced by slightly rotating the grating in 

x-z plane. One hundred and twenty eight consecutive images are selected for 

processing from a total of 500 frames. Figure 5.17(a) shows the gray value variation 

of points D2 and E2. Although the initial phases of these two points are different, the 

frequencies of gray value variation along time-axis are the same, which implies that 

these two points have similar velocities and displacements. The moduli of the Morlet 

wavelet transform of these two points are also the same and one of them is shown in 

Fig. 5.17(b). Figures 5.18(a) and 5.18(b) show respectively a wrapped and unwrapped 

phase map at instant sT 8.0= . In Fig. 5.18(b), the unwrapped phase has been 

subtracted from a base plane value to remove the carrier effect. Figure 5.19 shows a 

3D reconstruction of the area of interest on the coin. Figure 5.20 shows a comparison 

of the profile on cross section F2-F2 (see Fig.9a) using the proposed wavelet and 

mechanical stylus methods. The results generally agree well and the maximum 

discrepancy is about 15 µm. This is of the same order of error as that of the phase 

shifting method.  It should be noted however, that in phase shifting method, at least 

three images are required. 
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(a) 

 

  

(b)       (c) 

 

Figure 5.16 (a) Area of interest on a coin and typical moiré fringe patterns at 
(b) 0.4s; (c) 0.8s. 
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(a) 

 
(b) 

Figure 5.17 (a) Gray values of points D2 and E2; (b) modulus of Morlet wavelet 
transform at point D2 and E2. 

 

  
(a)        (b) 

 
Figure 5.18 (a) wrapped phase map; (b) phase map after unwrapping at sT 8.02 = . 
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Figure 5.19 Reconstructed 3-D plot of instantaneous surface profile of a test coin at 
sT 8.02 = . 
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Figure 5.20 A comparison of surface profile of a test coin at cross-section F2-F2 
between wavelet and mechanical stylus 
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5.2.2 Results of ESPI and Micro-ESPI 

 
From the results presented in the previous section, it may not be obvious that temporal 

wavelet analysis shows better results than temporal Fourier transform, as the noise 

effect is not very serious in shadow moiré fringe patterns. In this section, temporal 

wavelet analysis is applied on ESPI fringe patterns where noise effect is more obvious.   

According to Eq. (2.5), when a continuously-deforming object is measured by 

ESPI, the intensity variation on each pixel can be expressed as 

 
)](cos[);,();,();,( 0 ttyxItyxItyxI xyM ϕ+=  

   )](cos[);,();,( 00 ttyxItyxI xyxyM ϕ∆ϕ ++=  

   
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ ++=

λ
πϕ );,(4cos1);,( 00

tyxzVtyxI xy                (5.5) 

 
where );,(0 tyxI  is the intensity bias of the speckle pattern, V is the visibility, and 

);,( tyxz  is the out-of-plane deformation of the object. As xy0ϕ is a random phase, it is 

impossible to retrieve shape information from phase value )(txyϕ .  Instantaneous 

velocity and deformation can only be retrieved from phase change )(txyϕ∆ . 

As mentioned in Chapter 4, the first test specimen is a fully-clamped square 

plate with several artificial defects. Figure 5.21(a) shows a typical speckle pattern 

captured from a part of a fully-clamped plate at intervals of 0.004 s with an imaging 

rate of 250 fps.  A small area of interest containing 300 ×300 pixels is also shown. 

Five hundred speckle patterns are captured during a two-second period, and the first 

128 consecutive images are processed. Figure 5.21(b) shows an ESPI fringe pattern at 

an instant sT 2.0= , which is obtained by subtraction of two speckle patterns. For 



 
CHAPTER FIVE                                                                                  RESULTS AND DISCUSSION 

 

117

each pixel, 128 sampling points along the time axis are obtained. Figure 5.22 shows 

the gray value variation of points A3 and B3 [indicated in Fig. 5.21(a)]. A difference in 

amplitude is observed due to non-uniform illumination. However, only temporal 

frequencies are considered as they contain information on velocity and displacement. 

The temporal frequency of point A3 is much higher than that of point B3. This implies 

that point A3 deforms faster than point B3. The modulus of the Morlet wavelet 

transform of intensity variation of points A3 and B3 are shown respectively in Figs. 

5.23(a) and 5.23(b). The dashed line shows the ridge of the wavelet transformation 

where the maximum modulus are found. Little variation of rba  is observed on the 

ridge, which implies the velocities are almost constant along the time axis. Figure 

5.24(a) shows the velocities on points A3 and B3 where the transient velocities at each 

pixel can be retrieved.  Integration of 
rba
π2  is carried out on each pixel to generate a 

continuous temporal phase change )(txyϕ∆ . The phase change due to the 

displacement between instant T and T0 can be obtained from )()( 0TT xyxy ϕ∆ϕ∆ − , 

where )( 0Txyϕ∆  is the phase change at instant 00 =T .  In an ESPI setup as shown in 

Fig. 4.8, a π2  phase change represents a displacement of 2/λ  (= 316.4 nm) in the z 

direction. The transient displacements of points A3 and B3 are shown in Fig. 5.24(b). 

Figure 5.25(a) shows a 3-D plot of the out-of-plane displacement at instant sT 2.0= . 

A 3×3 median filter has been used on the phase map to remove several ill-behaved 

pixels. The corresponding fringe pattern is shown in Fig. 5.21(b).  Figure 5.25(b) 

shows the out-of-plane displacements on cross section C3-C3 [indicated in Fig.5.21(a)] 

at different instants. A smooth spatial distribution of displacement is observed.  
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                                                            (a) 
 

                            
 
                                                             (b) 

                
                                                            (c) 
 
Figure 5.21  (a) Area of interest on a typical speckle pattern captured by a high-speed 
CCD camera on a plate specimen; (b) ESPI fringes at instant sT 2.0=  on a test plate; 

(c) typical speckle pattern captured on a beam specimen. 
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Figure 5.22 Gray values of points A3 and B3 
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(b) 

Figure 5.23 (a) Modulus of Morlet wavelet transform at point A3; (b) modulus of 
Morlet wavelet transform at point B3. 
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(a) 
 
 
 
 

 
 

(b) 
 

 
Figure 5.24  (a) Transient velocities of points A3 and B3; 

(b) transient displacements of points A3 and B3. 
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(a) 

 
 
 

 
 

(b) 
 

Figure 5.25 (a) 3D plot of out-of-plane displacement generated by wavelet transform; 
(b) transient displacements on cross-section C3-C3 obtained by wavelet transform. 
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For comparison, temporal Fourier analysis is also applied on the same speckle 

patterns. Bandpass filters of different widths are applied. As the temporal frequencies 

of each pixel are different, a relatively wide filter provides the best results as it 

includes all frequencies. A one-dimensional phase unwrapping is then applied along 

the time axis, as all phase values obtained by inverse Fourier transformation are 

within [0, 2π). Figures 5.26(a) shows a 3-D displacement plot from temporal Fourier 

analysis and Fig. 5.26(b) shows the out-of-plane displacements at cross-section C3-C3. 

As in wavelet transform, a 3×3 median filter is also applied on the phase map. 

However, the fluctuation due to noise is still obvious. In Figs. 5.25 and 5.26, it is 

observed that the maximum displacement fluctuation due to noise is around 0.08 µm 

in Fourier transform, but only 0.02 µm in wavelet analysis. 

In the second experiment, a slightly non-linear loading is applied to a 

cantilever beam using a piezoelectrical transducer. Figure 5.21(c) shows a typical 

speckle pattern captured from the beam. Figure 5.27(a) shows modulus of the wavelet 

transform of intensity variation on point D3 [indicated in Fig. 5.21(c)] which is 

arbitrarily selected to illustrate the process.  Different values of  rba  on the ridge are 

observed which imply the nonlinearity of the velocities. Figure 5.27(b) shows the 

velocity of point D3 which is directly derived from instantaneous frequency in Fig. 

5.27(a). A smooth transient displacement curve of point D3 is obtained through 

integration of velocity (shown in Fig. 5.28). Figure 5.29 shows the velocity 

distribution on cross-section E3-E3 [indicated in Fig. 5.21(c)] at different instants. 

From a comparison of the displacements using wavelet and Fourier analysis (shown in 

Fig. 5.30), it is observed that CWT on each pixel generates a smoother spatial 

displacement distribution at different instants compared to Fourier transform. The 

maximum displacement fluctuation due to noise is around 0.04 µm in Fourier 
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transform, but only 0.02 µm in wavelet analysis. Similar results on a tiny beam using 

micro-ESPI are presented in Appendix B. 

 
(a) 

 
 

 
 

(b) 
 
 

Figure 5.26 (a) 3D plot of out-of-plane displacement generated by Fourier transform;  
(b) Transient displacements on cross-section C3-C3 obtained by Fourier transform. 
 

t = 0.3s

t = 0.2s 

t = 0.1s 



 
CHAPTER FIVE                                                                                  RESULTS AND DISCUSSION 

 

124

 

 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

5

10 

15 

20

25

30

35

40

45

(sec)

Sc
al

e 
a

 
 
 

(a) 
 
 
 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
3.6

3.8

4

4.2

4.4

4.6

(sec)

(m
ic

ro
n/

se
c)

 
 
 

(b) 
 
 

Figure 5.27  (a) Modulus of Morlet wavelet transform at point D3; 
(b) Transient velocity of point D3. 
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 Figure 5.28  Transient displacement of point D3. 

 
 
 

 

 
 
 

Figure 5.29 Velocity distribution at cross-section E3-E3 at different instants 
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(a) 

 

(b)     

Figure 5.30 (a) Displacement of a cantilever beam at different instants obtained by 
wavelet transform; 
(b) displacement of a cantilever beam at different instants obtained by 
Fourier transform. 

t = 0.48s

t = 0.32s

t = 0.16s

t = 0.48s

t = 0.32s

t = 0.16s



 
CHAPTER FIVE                                                                                  RESULTS AND DISCUSSION 

 

127

From the above comparison between the results of wavelet and Fourier 

analysis, it can be observed that wavelet analysis shows better results in continuous 

displacement measurement. As wavelet analysis calculates the optimized frequency at 

each instant, it performs an adaptive band-pass filtering of the measured signals, thus 

limiting the influence of various noise sources and increasing the resolution of 

measurement significantly.  In contrast, Fourier transform uses a broader filter which 

is less efficient in eliminating noise effect.  The maximum displacement fluctuation 

due to noise depends on width of the band-pass filter and quality of the speckle 

patterns. 

When loading is linearly increased, the values of )(bIM  and )(bxyϕ′  remain 

constant and the corrective termε  in Eq. (3.13) is negligible. For loading which is 

nonlinear, a slight nonlinearity of )(bxyϕ′ is observed and the corrective term ε  affects 

the results of the instantaneous frequency extraction slightly. If conditions in Eq. 

(3.14) and Eq. (3.15) are satisfied, the errors on frequency )(bxyϕ′  are limited. 

However, when the displacement is extracted by integration, an accumulated error can 

still be observed. Compared to Fourier transform, a slight offset can be observed in 

the wavelet results when the displacement is large.  Comparing the averaged 

displacement at the right end (F3-F3) of the beam [shown in Fig. 5.21(b)], a difference 

of 0.04 µm is observed when the displacement is around 2.3 µm, which indicates that 

the system error due to ε  is around 1.7% for velocity which varies between 3.7 

µm/sec and 4.7 µm/sec (see Fig. 5.27).  

Continuous wavelet transform maps a one-dimensional intensity variation 

signal to a two-dimensional plane of position and frequency, and extracts the 

optimized frequencies. Although some fast-converging iterative algorithms have been 
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introduced and it is not necessary to explore the whole time-frequency plane, CWT is 

still a time-consuming process and requires high computing speed and memory. The 

computation time is about 10 times larger than that of temporal Fourier transform. 

This is the main drawback of CWT in temporal phase analysis. Similar to other 

temporal phase analysis methods, wavelet transform is also limited by Nyquist 

sampling theorem. It is impossible to analyze signals with a frequency higher than 

half of the acquisition rate. However, these two disadvantages become inconspicuous 

due to the rapid improvements in capacity of computers and high-speed CCD cameras.   

Temporal phase analysis technique has the advantage of eliminating speckle 

noise, as it evaluates the phase pixel by pixel along the time axis. There are still some 

ill-behaved pixels; however, compared to the speckle noise in spatial domain, these 

pixels can be easily identified and removed. Temporal wavelet analysis and Fourier 

analysis do have their disadvantages and determination of the absolute sign of the 

computed phase is impossible by both methods. This limits the techniques to the 

measurement of deformation in one direction. Furthermore, they cannot analyze the 

part of an object that is stationary.  Adding a carrier frequency to the image 

acquisition process is a method to overcome these problems.  

 
 

5.3 Measurements on vibrating objects 

Measurement of instantaneous displacement using temporal phase analysis technique 

is more difficult than continuous deformation measurement due to the ambiguity of 

phase change. Two methods are used to solve this problem. Introducing a temporal 

carrier in the capturing process is one of the methods. The carrier frequency should be 

high enough so that the phase change at each point is in one direction. The second 

method is to separate the signal into several sections with phase change in one 
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direction. It is applicable only when extreme positions of the vibration can be 

identified. In this section, applications of these two methods are presented.  

 

5.3.1 Temporal carrier technique 
 

 
The schematic layout of ESPI setup for out-of-plane measurement with temporal 

carrier is shown in Fig. 4.11. The temporal carrier is generated by shifting the 

reference plate constantly with a piezoelectrical transducer stage. A series of speckle 

patterns are captured by a high-speed CCD camera with a telecentric lens during 

deformation. The intensity of each pixel can be expressed as 

 
)](cos[);,();,();,( 0 ttyxItyxItyxI xyM ϕ+=  

   )]()(cos[);,();,(0 tttyxItyxI xyCM φφ ++=  

   
⎭
⎬
⎫

⎩
⎨
⎧

⎥⎦
⎤

⎢⎣
⎡ +++=

λ
πϕπ );,(4),(2cos1);,( 00

tyxzyxtfVtyxI C            (5.6) 

 
where );,(0 tyxI  is the intensity bias of the speckle pattern, V is the visibility, 

),(0 yxϕ  is the random phase, Cf  is the temporal carrier frequency, tft CC πφ 2)( =  is 

the phase change due to temporal carrier, and );,( tyxz  is the out-of-plane 

deformation of the object.  

The cantilever beam (shown in Fig 4.12) is subjected to a sinusoidal vibration 

at the free end using a vibrator. A beam of He-Ne laser (30 mW, λ = 632.8 nm) is 

collimated and illuminates the specimen and a reference plate at right angles through 

a beam splitter. The object and reference beams are recorded on a CCD sensor. To 

generate the temporal carrier, the reference plate is applied with a linear rigid body 

motion at a certain velocity by a computer-controlled PZT translation stage during 
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vibration of cantilever beam. As shown in Fig. 4.12, a still reference block is captured 

together with the beam. A series of speckle patterns is captured by a high-speed CCD 

camera with a telecentric gauging lens.  

 Figure 5.31 shows a typical speckle pattern captured from a part of the 

cantilever beam, together with a still reference block above the beam at intervals of 

0.004 s and an imaging rate of 250 frames/s. The area of interest on the cantilever 

beam contains 400 pixels × 100 pixels with actual length and width of 60.8 mm and 

15.2 mm, respectively. Five hundred speckle patterns were captured over a two-

second period, and the first 400 consecutive images were processed. For each pixel, 

400 sampling points along the time axis were obtained. Figure 5.32(a) shows the 

intensity variation of point R (indicated in Fig. 5.31) on a reference block. The 

modulus of the Morlet wavelet transform of intensity variation of point R is shown in 

Fig. 5.32(b). The dashed line shows the ridge of the wavelet transform where the 

maximum modulus are found. Although the rba  on the ridge is fairly constant, some 

variation of rba  due to noise on the pixel and discreteness of the signal are still 

observed. To eliminate the noise effect, an average value of  rba  was calculated in an 

area of 50 pixels × 50 pixels on the reference block (also indicated in Fig. 5.31). 

Figure 5.32(c) shows the averaged scaling rba  on the ridge. As the reference block is 

stationary, the ridge value represents the effect of temporal carrier, which was applied 

on the reference plate by a PZT transducer.  Little variations of averaged rba  are 

observed, which implies that the temporal carrier is constant along the time axis. 

Integration of 
rba
π2  was carried out along the time axis to generate a continuous phase 

change )(tCφ  due to temporal carrier. 
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Figure 5.31 Typical speckle pattern on a reference block and a cantilever beam with 
area of interest. 

 

 

The phase value )(txyϕ  equals to the phase of wavelet transform ),( baWxy on 

the ridge. Equation (3.18) and one-dimensional phase unwrapping are used to 

calculate the )(txyϕ on each pixel. The phase change between two instants 1T  and 2T  

at point P(x,y) can be expressed  by  

 
( )

λ
ππϕϕϕ )(;,4)(2)()( 12

1212
TTyxzTTfTT Cxyxyxy

−
+−=−=∆ ,            (5.7) 

 

where ( ))(;, 12 TTyxz −  is the out-of-plane displacement of point P between two 

instants 1T  and 2T . As the phase change due to temporal carrier )(2 12 TTfC −π  is 

measured as mentioned above, it can be easily removed from above equation.  
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(a) 

 
 

(b) 

 
 

(c) 
 

Figure 5.32 (a) Temporal intensity variation of point R on a reference block. (b) plot 
of modulus of Morlet wavelet transform at point R; (c) averaged ridge detected on a 

reference block. 
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Figures 5.33 and 5.34 show the intensity variations and the modulus of the 

Morlet wavelet transform on points A4 and B4 (indicated in Fig. 5.31). It can be 

observed that the frequency variation of point A4 is less than that of point B4, 

implying that the vibration amplitude on point A4 is less than that of point B4, as these 

two points have the same vibration frequency in this case. It is reasonable as point A4 

is closer to the clamping end than point B4. Using Eq. (3.18) and one-dimensional 

phase unwrapping, the phase value )(txyϕ  can be retrieved. Subsequently, the 

continuous temporal phase change xyϕ∆  can be obtained. Figure 5.35(a) shows the 

temporal phase change obtained on point B4 and on the reference block. The 

difference between these two lines gives the absolute phase change of point B4 due to 

vibration. As π2  phase change represents a displacement of 2/λ  (=316.4nm) in the 

z direction, the displacement on point B4 can be obtained [shown in Figure 5.35(b)]. 

Four instants, 0T , 1T , 2T  and 3T , are selected as indicated in Fig. 5.35(b). Figure 

5.36(a) shows the out-of-plane displacement along cross section C4-C4 (shown in Fig. 

5.31) at different time intervals )( 01 TT − , )( 02 TT −  and )( 03 TT − . 

For comparison, temporal Fourier analysis was also applied on the same 

speckle patterns. A narrow bandpass filter was applied on the reference block as the 

spectrum of the signal was concentrated. A relatively wider filter was applied on the 

cantilever beam as it would include all frequencies. A one-dimensional phase 

unwrapping was then applied along the time axis,  as all phase values retrieved by 

inverse Fourier transform fall within a [0, 2π) range. Figure 5.36(b) shows the 

temporal displacements on cross-section C4-C4 obtained by temporal Fourier 

transform. Figure 5.37 shows  3-D displacement plots obtained by temporal wavelet 

analysis and Fourier transform. A 3×3 median filter was applied on both phase maps 
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to remove some ill-behaved pixels. It was observed that CWT on each pixel generates 

a smoother spatial displacement distribution at different instants compared to a 

Fourier transform. The maximum displacement fluctuation due to noise is around 0.04 

µm in Fourier transform, but only 0.02 µm in wavelet analysis. 

 
 

 
 
 
 

(a) 
 
 

 

 
 

 
(b) 

 
 

Figure 5.33 (a) Temporal intensity variation of point A4 on a cantilever beam; 
(b) modulus of Morlet wavelet transform at point A4. 
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Figure 5.34 (a) Temporal intensity variation of point B4 on a cantilever beam; 
(b) modulus of Morlet wavelet transform at point B4. 
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Figure 5.35 (a) Phase variation on a reference block and point B4; 
(b) out-of-plane displacement of point B4. 
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Figure 5.36 Displacement distribution along cross-section C4-C4 at different time 
intervals obtained by (a) temporal wavelet transform and (b) temporal 

Fourier transform. 
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(a) 

 
(b) 

 
Figure 5.37 Displacement distribution )( 01 TT −  on a cantilever beam obtained by  

(a) temporal wavelet transform and (b) temporal Fourier transform. 
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In the measurement of vibrating objects, there are two limitations in both 

temporal wavelet and Fourier analysis when the frequency of temporal carrier is 

selected. First, the phase change of each point on the object should be in one direction; 

secondly, both methods are limited by the Nyquist sampling theorem. Analyzing 

signals with a frequency higher than half of the acquisition rate is impossible. Because 

of this, selecting a suitable temporal carrier frequency to the image acquisition 

process, as mentioned above, is not easy. The temporal frequency due to deformation 

depends on two parameters: frequency and amplitude of the vibration. The temporal 

carrier frequency should be high enough so that the phase change of each point on the 

object is in one direction. However, it cannot be too high due to the limitation of 

Nyquist sampling theorem. This is because the phase change at certain points equals 

the sum of the temporal carrier and displacement. This is sometimes not easy to 

compromise when the capturing rate of the camera is not high enough. 

 
 
5.3.2 Phase scanning method 
 
 
Although phase scanning method has limitation on eliminating the noise effect, its 

simple algorithm still gains applications in vibration measurement when the fringe 

patterns are of good quality. In this section, it is applied with two optical techniques: 

fringe projection and shadow moiré. 

 
5.3.2.1 Results of fringe projection technique 
 

 
Figure 4.4 shows the experimental setup of the fringe projection technique. The test 

specimen is a coin loaded by a shaker. Figure 5.38(a) shows an initial image of the 

test object before fringe projection. A small area of interest containing 256 × 256 
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pixels is shown in Fig. 5.38(b). The coefficient Fk  in Eq. (2.1) is calibrated as 0.8692 

mm/rad. The test object is subjected to a triangular wave with a frequency of 

approximately 6 Hz.  Fringe patterns are recorded at intervals of 0.004 s with a 

camera recording rate of 250 fps. Figure 5.38(c) shows typical fringe patterns 

captured by the high-speed CCD camera at different instants. Five hundred images 

can be captured during a two-second period and the first 90 consecutive images are 

processed. Within these 90 images, 4 images representing extreme positions of 

vibration are identified; subsequently, the direction of vibration are determined. The 

extreme positions are readily identified since the first derivative of intensity (
t
I
∂
∂ ) 

changes sign (either from negative to positive or vice versa). 

For each pixel, 90 data points along the time axis are obtained. Figure 3.18(a) 

shows the gray value variation of point A5 [indicated in Fig. 5.38(b)]. The extreme 

positions of vibration are indicated as shown in Fig. 3.18(a). The wrapped phase 

values are presented in Fig. 3.18(b). After unwrapping along the time-axis, the 

continuous phase profile, as shown in Fig. 3.18(c), can be obtained. The frequency of 

vibration is evaluated as 5.68 Hz, and the amplitude of phase change Aφ is 13.12 rad 

and the corresponding amplitude of the vibration is calculated as 11.40 mm. Figure 

5.39 shows the gray value variation, wrapped phase map and continuous phase profile 

of point B5 [indicated in Fig. 5.38(b)], when the specimen is vibrated sinusoidally 

with a frequency of 4.55 Hz and an amplitude of 13.02 mm. 

From Figs. 3.18(a) and 5.39(a), it can be observed that the maximum and 

minimum values of each cycle of phase variation ( π2  change) are slightly different. 

This is due to the fluctuation of the LCD panel and intensity of the projector light 

source. Relatively large errors in the phase profile also occur when the gray value 
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approaches the extreme values. The errors are introduced by: (1) the maximum or 

minimum values detected by the camera are slightly different from the actual extreme 

gray scale values; (2) for a sine-wave configuration, a slight change in gray level near 

the extreme values causes a large change in the phase value. The errors can be 

minimized by proper selection of the recording rate and frequency of the carrier fringe 

so that the number of sampling points is optimized within one cycle of gray level 

change. In this study, it is found that 10 to 16 frames per cycle produce the best 

results. 

At a certain instant, a combination of phase values on each pixel produces a 

spatial wrapped phase map as shown in Fig. 5.40(a). After unwrapping, a continuous 

phase map, which represents the surface profile, can be obtained. Figure 5.40(b) 

shows a continuous phase map of the object. Using the calibrated coefficient Fk , the 

phase map can be converted into a 3-D surface profile as shown in Fig. 5.40(c). Some 

vertical stripes are observed on the phase map; these are due to the errors introduced 

by the extreme values of gray level mentioned above. In spatial coordinates, these 

errors can be reduced by applying a filtering mask on the phase map. In this 

application, a 3×3 median mask is used. 

To verify the accuracy of the proposed method, a comparison is made with the 

carrier-based fast Fourier transform (FFT) and conventional four-step phase shifting 

methods. Four fringe patterns with a phase increment of 2/π are projected onto a 

stationary test coin using the same experimental setup. For each fringe pattern, an 

averaged image is obtained from 500 images. Four of such images are subsequently 

used in the 4-step phase shifting algorithm, while one of the images is used for the 

FFT method.  Figures 5.41(a)-(c) show respectively the phase maps obtained by the 

phase scanning, FFT and phase shifting methods. As the phase evaluation is carried 
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out point-by-point along the time-axis, the phase scanning method is best suited to 

determination of a surface with a complicated profile. As can be seen, the result from 

the phase scanning method [Fig. 5.41(a)] shows a better image quality than the FFT 

method [Fig. 5.41(b)], especially at the top half of the image. The results from the 

phase shifting method [Fig. 5.41(c)] show similar image quality with the phase 

scanning method. However, as mentioned above, images for the phase shifting 

method are obtained on a stationary object. Figure 5.42 shows a comparison of the 

phase profile on cross-section C5-C5 [indicated in Fig. 5.38(b)] between the phase 

scanning and phase shifting methods. It is seen that the phase profiles obtained by the 

two methods agree well. The maximum discrepancy between the two methods is 

0.012 rad, which denotes a height difference of 0.01 mm.  

 
 
5.3.2.2 Results of shadow moiré technique 
 
 
Similar results are obtained using shadow moiré technique. The basic setup of shadow 

moiré is shown in Fig. 4.5, while the specimen and loading device are presented in 

Fig. 4.6. Figure 5.43(a) shows the initial test object without grating in front. The 

radius rsp, height hsp and base radius rb of the spherical cap are respectively 14.5 mm, 

4 mm and 10 mm as shown in Fig. 5.43(b).  The frequency of the grating is 2 

lines/mm.  The distance Sd  and Sl  (shown in Fig. 2.3) are measured as 195 mm and 

335 mm, respectively. As the grating is placed very close to the object, the 

assumption of ),( yxhl SS >>  is valid. The test object is subjected to a sinusoidal 

vibration with a frequency of approximately 6 Hz. Fringe patterns are captured at 

intervals of 0.004s with a camera recording rate of 250 fps. Figures 5.44(a) and 5.44(b) 

show two typical fringe patterns recorded by a high-speed CCD camera at different 
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instants. In order to identify whether the surface is convex or concave, a carrier fringe 

is introduced by rotating the grating with a small angle in the x-z plane.  The first one 

hundred consecutive images are processed. A 5×5 mean mask is used to remove the 

high-frequency grating lines and random noise on the images. Figures 5.44(c) and 

5.44(d) show typical fringe patterns after filtering. The images representing the 

extreme positions of vibration are identified using a similar procedure as the fringe 

projection method.  

  For each pixel, 100 data points along the time axis are obtained. Figure 5.45(a) 

shows the gray value variation of point A6 [indicated in Fig. 5.43(a)]. The wrapped 

phase values are shown in Fig. 5.45(b). After unwrapping along the time-axis, a 

continuous phase profile, as shown in Fig. 5.45(c), can be obtained. The displacement 

of point A6 along the z-axis can be retrieved using Eq. (5.4). In this experiment, the 

displacements of other points on the object are the same as Point A6 as no other loads 

are applied on the object. From Fig. 5.45(c), the frequency of vibration is evaluated as 

5.95 Hz, and the amplitude of phase change is 11.52 rad. The corresponding 

amplitude is calculated as 1.60 mm. At a certain instant, the combination of phase 

values on each pixel produces a spatial wrapped phase map as shown in Fig. 5.46(a). 

After unwrapping a continuous phase map, which is proportional to the surface profile, 

can be obtained. Figure 5.46(b) shows a continuous phase map of the object surface, 

and the corresponding 3-D surface profile as shown in Fig. 5.46(c).  

  To verify the accuracy of the proposed method, a comparison is carried out 

with the mechanical stylus method. Figure 5.47 shows a comparison of the profile on 

cross section B6-B6 [indicated in Fig. 5.43(a)]. The average discrepancy is 3.1%. It is 

to be noted that errors are introduced when smooth filtering is applied to remove high 
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frequency grating lines. Similar to the fringe projection method mentioned above, 

relatively large errors in the profile measurement also occur when the gray levels are 

in the vicinity of the extreme values.  

  A further application of the phase scanning method on a vibrating coin using 

the shadow moiré method is also included in appendix B. In the experiments of 

shadow moiré and fringe projection, a coin with continuous movement was selected 

as a test object several times in the project to verify the accuracy of transient profile 

retrieval in different temporal phase analysis methods. The main reasons of the 

selection are as follows:  (1) during the vibration or continuous movement, the profile 

of coin at any instant keeps the same. So the accuracy of transient profile obtained by 

temporal optical methods can be verified by other independent methods, such as 

mechanical stylus method; (2) the maximum unevenness of the coin is around 100 µm. 

Generally, the profile at this range can only be precisely retrieved by using phase 

shifting algorithm in shadow moiré and fringe projection techniques, when an area of 

10 mm × 10 mm is measured in one image (256 pixel × 256 pixel). From the 

comparison in Fig. 5.41, it can be observed that the result from two-dimensional FFT 

is not good enough. As we know, phase shifting technique needs several fringe 

patterns at one status, and it is very difficult to apply it in the dynamic behavior study. 

However, using proposed temporal phase analysis algorithm, a precise contour of a 

vibrating or continuously-moving coin can be retrieved. The contour map obtained 

has a similar quality as the phase shifting method, which demonstrates the superiority 

of the proposed methods. 

It is worth noting that in all experiments presented in this thesis, the loading 

was not synchronized with image capturing. Any instant can be selected as a reference 
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as only the relative displacement is concerned. Regarding to the transient surface 

contouring, it is a unique value that is not related to the reference. 

  
(a) 

 

 
(b) 

 

   
(c) 

 
Figure 5.38 (a) a 20-cent coin specimen; (b) area of interest (c) typical sinusoidal 
fringe patterns captured at  two different instants: 0s and 0.02s. 
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(c) 

 
Figure 5.39 (a) Gray value variation of point B5; (b) wrapped phase value of point 

B5 and (c) continuous phase profile after unwrapping (point B5). 
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(a)                 (b) 

 
 

 
(c) 

 
 
 

Figure 5.40 (a) Wrapped phase in spatial coordinate at 0.12s 
(b) continuous phase map obtained by phase scanning method 

(c) corresponding 3-D plot of surface profile 
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(a) 

 

 
(b) 

 

 
(c) 

 
Figure 5.41 A comparison of phase maps obtained by (a) phase scanning method (b) 

fast Fourier transform with carrier fringe method (c) 4-step phase shifting 
method. 
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Figure 5.42 A comparison of phase profile between phase scanning and 4-step phase 

shifting methods on cross-section C5-C5 
 

                      (a) 

                    (b) 

Figure 5.43  Specimen: (a) a spherical cap and (b) its dimensions. 
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(a)      (b) 
 
 

  

(c) (d) 

 

 

Figure 5.44 Typical moiré fringe patterns of spherical cap captured at different 
instants (a) 0s (before filtering); (b) 0.092s (before filtering); (c) 0s (after filtering); (d) 
0.092s (after filtering). 
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(c) 
 
 

Figure 5.45 (a) Gray value variation of point A6; (b) wrapped phase value of point A6; 
(c) continuous phase profile after unwrapping (point A6). 
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(a)      (b) 
 

 
(c) 

 

 

Figure 5.46 (a) Wrapped phase in spatial coordinate at 0.092s; (b) continuous phase 
map obtained by phase scanning method; (c) corresponding reconstructed 3-D plot of 
surface profile. 
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Figure 5.47 A comparison of surface profile on cross-section B6-B6 between phase 
scanning and mechanical stylus methods 

 

 

5.4 Displacement derivatives measurement 

There is another type of phase ambiguity problem when digital shearography is 

applied to measure the first derivative of the continuous displacement on a plate. 

Although the plate is deformed in one direction, the phase change at different areas of 

the plate is in opposite directions. In addition, there are zero-phase-change areas on 

the plate. In this case, introducing temporal carrier is the only method to solve this 

problem. The carrier frequency should be high enough so that the phase changes at all 

points are in one direction.  

 The schematic layout of digital shearography for displacement derivative 

measurement with temporal carrier is shown in Fig. 4.13. The temporal carrier is 

generated by shifting Mirror M2 in modified Michelson interferometer with a PZT 

stage. A series of speckle patterns are captured by a high-speed CCD camera with a 

telecentric lens during the deformation. The intensity of each pixel can be expressed 

as 
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where )(0 tI xy  is the intensity bias of the speckle pattern, V is the visibility, xy0φ  is the 

initial random phase, Cf  is the temporal carrier frequency, tft CC πφ 2)( =  is the phase 

change due to temporal carrier, xδ = 3mm is the amount of image shearing in the x-

direction, and )(twxy  is the out-of-plane deformation of the object. Figure 5.48 shows 

the typical shearography fringes of the test specimen with the reference block at an 

instant sT 5.1= , which is obtained by subtraction of two speckle patterns.  

 

Figure 5.48 Typical shearography fringe pattern on a reference block and a plate with 
area of interest 
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 Five hundred and forty images are recorded within 9 seconds, and first three 

hundred speckle patterns are processed pixel-by-pixel along the time axis. The 

interested area on the plate (shown in Fig. 5.48) contains 330 × 330 pixels with the 

actual dimension of 56.3mm × 56.3mm. For each pixel, 300 sampling points along the 

time axis were obtained. Figure 5.49(a) shows the intensity variation of point R7 

(indicated in Fig. 5.48) on the reference block. The modulus of the Morlet wavelet 

transform of intensity variation of points R7 is shown in Fig. 5.49(b). The dashed line 

shows the ridge of the wavelet transform where the maximum modulus are found. 

Although the rba  on the ridge is fairly constant, some variation of rba  due to noise on 

certain pixel are still observed. To eliminate the noise effect, an average value of  rba  

was calculated in an area of 20 × 200 pixels (shown in Fig. 5.48) on reference block. 

Figure 5.49(c) shows the averaged scaling rba  on the ridge. As the reference block is 

not moving, the ridge value represents the effect of temporal carrier, which was 

applied on mirror M2 by a PZT stage.  Little variation of averaged rba  is observed, 

which implies the temporal carrier is constant along time axis. Integration of 
rba
π2  was 

carried out along the time axis to generate a continuous phase change )(t
C

φ∆  due to 

temporal carrier. 

 Figures 5.50 show the intensity variations and the modulus of the Morlet 

wavelet transform on points A7 and B7 (indicated in Fig. 5.48). It can be observed that 

the frequency of intensity variation of point R7 is higher than that of point B7, but 

lower than that of point A7, which implies that the phase changes at these two points 

are of opposite sign. Similar to point R7, integration was carried out on each pixel to 

generate a temporal phase change )()()( ttt xyCxy φφϕ ∆+∆=∆ . Figure 5.51(a) shows 
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the temporal phase change obtained on points A7 and B7 and the averaged phase 

change on reference block. Subtracting the phase change )(tCφ∆  due to temporal 

carrier, the absolute phase change )(t
xy

φ∆  can be obtained on each pixel. Figure 

5.51(b) shows the absolute phase change on points A7 and B7. Combining the phase 

change of each point at certain instant, a high-quality spatial distribution of phase 

change is obtained. Figure 5.52(a) shows the 3-D plot of phase variation obtained by 

temporal wavelet analysis at sT 3= . Figure 5.53(a) shows the phase variation on 

cross-section C-C (shown in Fig.5.48). 

For comparison, temporal Fourier analysis was also applied on the same 

speckle patterns. On a reference block part, a narrow bandpass filter was applied as 

the spectrum of the signal was concentrated. On the plate, a relatively wider filter was 

applied as it should include all frequencies at different pixels. A one-dimensional 

phase unwrapping was then applied along the time axis,  as all phase value retrieved 

by inverse Fourier transform fall within a [0, 2π) range. Figure 5.52(b) shows the 3-D 

plot of phase variation obtained by temporal Fourier analysis at sT 3= . Figure 5.53(b) 

shows the phase variation on cross-section C7-C7 obtained by Fourier analysis. 

Similar as temporal wavelet analysis, a 3×3 median filter was also applied on phase 

maps. However, large errors are still found at some pixels, especially in the area 

where the phase changes are of high positive values. In these areas, the phase change 

measured is the sum of temporal carrier and object. The frequency of signal is high so 

that it overlaps with some noise frequencies. Fourier transform shows lack of 

flexibility when the signal frequency is extracted from noise. From Fig. 5.53 it can be 

observed that CWT generates a much smoother spatial phase distribution at different 

instants compared to a Fourier transform.  
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Figure 5.49 (a) Temporal intensity variation of point R7 on a reference block. (b) plot 
of modulus of Morlet wavelet transform at point R7; (c) averaged ridge detected on a 

reference block. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
 

Figure 5.50 (a) Temporal intensity variation of point A7 on the plate; 
(b) modulus of Morlet wavelet transform at point A7; 

(c) Temporal intensity variation of point B7 on the plate; 
(d) modulus of Morlet wavelet transform at point B7. 
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Figure  5.51 (a) Phase variation on a reference block and point A7 and B7; 
(b) Absolute phase variation on point A7 and B7 after carrier removal. 
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(a) 

 

 
 

(b) 
 
 

Figure 5.52 3D plot of spatial phase variation at sT 3=  obtained by (a) wavelet 
transform and (b) Fourier transform. 
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(a) 
 

 
 

(b) 
 
Figure 5.53  Phase variation on cross section C7-C7 at sT 3=  obtained by (a) wavelet 

transform and (b) Fourier transform. 
 
 

Similar experiment was executed when the image shearing is in y- direction. 

Figure 5.54(a) shows a phase map representing instantaneous value of 
y
w
∂
∂ obtained by 

continuous Morlet wavelet transform. In the field of engineering, the curvature and 

twist measurements of plates are more important, because the stresses experienced by 

the plates are related the to second-order derivatives of displacement (Chau and Zhou, 

2003).  
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Due to the high quality of the transient phase map obtained by temporal 

wavelet analysis, it is possible to perform a numerical differentiation process spatially. 

However, numerical differentiation process between two adjacent sampling points is 

very vulnerable to errors which are magnified during the process and results with 

acceptable accuracy are rarely obtained.  

 In this project, another CWT, Haar wavelet transform, is applied spatially as a 

differentiation operator to obtain the transient curvature and twist. The Haar function 

is the simplest wavelet, and a flexible differentiation operator 
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The wavelet coefficient obtained is the negative value of derivative of the 

signal. Different scaling factors a can be selected according to the extent of the noise. 

The discussion on Haar wavelet as a differentiation operator is given in Appendix C. 

Some preliminary results are presented here. In this application, scaling factor a is 

selected as twenty and the continuous Haar wavelet transform is applied line by line 

in the y- and x- direction on the phase map. The wavelet coefficients obtained 

represent the curvature 2

2

y
w

∂
∂  and the twist 

yx
w
∂∂

∂2

. Figure 5.54(b) and (c) show the 

phase distribution representing the transient curvature and twist obtained.  
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(a) 

 

(b) 

 

(c) 

Fig. 5.54(a) Spatial phase distribution representing 
y
w
∂
∂ obtained by continuous Morlet 

wavelet transform and the phase distribution representing (b) 2

2

y
w

∂
∂  and (c) 

yx
w
∂∂

∂2

 after 

continuous Haar wavelet transform. 
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CHAPTER SIX 

 
CONCLUSIONS AND FUTURE WORK 

 
 

6.1 Conclusions 

As mentioned in Chapter one, there are four main objectives to be achieved in this 

project. Two existing temporal phase analysis techniques are first studied. Fourier 

analysis with the temporal phase unwrapping is the most popular method and is 

widely used with different optical techniques in various static and dynamic 

applications. It is a fast algorithm and has filtering process in frequency spectrum so 

that the noise effects can be eliminated. However, if the phase change on each pixel is 

nonlinear and the spectrums of pixels are different, automatically selecting a proper 

bandpass filtering window becomes difficult. In this thesis, the temporal Fourier 

analysis is generally applied in different applications to generate results for 

comparison. Another algorithm is the phase scanning method, which retrieves phase 

values directly from intensity variation. This method has its limitations on noise 

elimination, as there is no filtering process in the frequency domain. However, its 

simple algorithm is suitable for less noisy fringe patterns obtained by methods such as 

the fringe projection and moiré. Furthermore, it is more suitable for measurement on a 

vibrating object when the extreme positions of the vibration can be identified. The 

method is applied to fringe projection and shadow moiré to extract the transient 

surface profile from a vibrating object and it was observed that the results are better 

than that of the carrier-based spatial Fourier transform.  
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  To overcome the problems encountered in temporal phase analysis mentioned 

above, a new technique based on continuous wavelet transform has been proposed. 

One of the important characteristics of wavelet transform is that the instantaneous 

frequency of a processed signal can be extracted through the ridge of a wavelet 

coefficient. This characteristic is very useful in eliminating noise effect as it is able to 

separate the signal and noise frequencies at any instant. An analytic wavelet is 

normally used for the analysis of phase-related properties of a real function. A 

complex Morlet wavelet is selected as the mother wavelet as it provides the smallest 

Heisenberg box. The selection of a central frequency 0ω  is emphasized. It should be 

large enough to satisfy the admissibility condition of a wavelet transform. Larger 

values of 0ω  provide better resolution in the frequency domain and are more 

powerful in extracting the phase from a noisy signal. However, larger 0ω values also 

result in lower resolution in the time domain. When the frequency of a signal varies, 

large errors are generated when a higher central frequency is selected. In this project, 

as the dynamic behavior of the objects is of more concern, the central frequency is 

selected as πω 20 = . Then the phase change of the intensity variation on each pixel 

can be retrieved by extracting the ‘ridge’ of the wavelet coefficient.  

  Another problem involved in temporal phase analysis techniques is the phase 

ambiguity. Due to this limitation, the temporal phase analysis can only be applied on 

objects that deform in one direction. In this project, this problem is avoided by 

introducing a temporal carrier during the capturing process when a vibrating object is 

measured.  The phase value extracted on each pixel is the combination of the effects 

from the deformation and the temporal carrier.  Subsequently, the temporal carrier is 

removed and the absolute displacement of a vibrating object is obtained.  However, it 
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is noteworthy that the proper selection of the temporal carrier frequency depends on 

the evaluation of the frequency range due to displacement, and the limitation of 

Nyquist sampling theorem has to be considered as well. 

  Several applications are emphasized using the proposed temporal wavelet 

transform together with two existing algorithms. They are profiling of a surface with a 

step change using shadow moiré; instantaneous velocity and deformation 

measurement on a continuously deforming object using shadow moiré and ESPI; 

vibration measurement using temporal carrier with ESPI, and displacement 

derivatives measurement using temporal carrier digital shearography. The phase 

scanning method is also applied on the measurement of a vibrating object when the 

extreme position of the vibration can be identified. From a comparison between 

wavelet transform and Fourier transform, it is observed that wavelet transform 

provides better results, especially in the processing of speckle patterns. In ESPI, the 

maximum displacement fluctuation due to noise is limited to 0.02 µm using wavelet 

transform, while the fluctuation is normally large than 0.06 µm using temporal 

Fourier transform. The more accurate results obtained using wavelet transform require 

longer processing time. The computation time is about 10 times larger than that of 

temporal Fourier transform. However, this limitation becomes insignificant with rapid 

development in computing speed.  

  The results obtained also indicate that the accuracy of temporal Fourier 

transform relies on a proper selection of a filtering window, while the temporal 

wavelet transform can be ‘standardized’ and is more suitable for an automatic process 

without human intervention. In addition, temporal wavelet analysis is more powerful 

in eliminating the noise effect and produces more accurate results. With the rapid 
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development in computer capacity, wavelet transform will thus gain more acceptances 

in optical measurements.  

  The contributions of this project are highlighted as follows: 

Wavelet is still a new algorithm for phase extraction from interferograms. 

Although it has been applied in spatial domain by other researchers to extract the 

phase from fringe patterns with carrier, it can only process the high-quality fringe 

patterns obtained by fringe projection or moiré. Due to the random spatial noise in 

speckle interferometry, either Fourier or wavelet is not as effective when they are 

applied spatially to a fringe pattern.   

The main contribution of this project is the development of a new temporal 

phase analysis approach based on time-frequency analysis and wavelet transform. The 

outcome is a robust technique that permits processing of a series of interferograms 

and reconstructing the temporal phase evolution precisely. This is the first time that 

wavelet has been studied and applied to temporal phase analysis, and generally the 

results from wavelet analysis are much better than those from Fourier analysis and 

have equivalent quality as the phase-shifting method.  

The second contribution is the introduction of a temporal carrier in dynamic 

problems so that the phase ambiguity problem can be avoided in temporal phase 

analysis techniques by the use of a high speed camera.   

Lastly, the combination of the two techniques mentioned above results in a 

more complete and robust processing method which can be applied to a much broader 

area in engineering. This important extension can particularly benefit researchers and 

engineers who are carrying out research in time varying behavior, for example, 

continuous warpage of a PCB board under thermal loading, crack propagation, 

instantaneous shape, displacement and velocity of a vibrating objects, etc. 
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Furthermore, the proposed temporal wavelet method is more suitable as an automatic 

process without human intervention.  

A list of publications arising from this research work is included in Appendix 

D. 

 

6.2 Future work 

The wavelet transform proposed in this work has demonstrated a high potential for the 

processing of a sequence of images. A complex Morlet wavelet is selected as the 

mother wavelet because of its phase properties. Although the effects of some 

parameters have been discussed in this thesis, more explorations such as system 

analysis of errors in wavelet transform for different types of signals, warrant further 

investigations. Furthermore, although complex Morlet wavelet is proved to be have 

the highest overall resolution in time and frequency domain, it is appropriate to look 

at other possible choices of mother wavelets. Some might provide more efficient 

algorithms or more robustness for signal processing. One can also think of the endless 

possibilities of combining different types of wavelet analysis for different physical 

quantity measurements. A good example is shown in this thesis. Haar wavelet has 

been applied spatially on the transient phase maps obtained by temporal wavelet 

analysis. Instantaneous curvature and twist of a continuously-deforming plate are 

obtained. It shows the possibilities for measurement of transient stress changes 

experienced in a plate. 

  At present, phase analysis techniques are used either in spatial or temporal 

domains.  Generally, analyses in spatial domain are applied to two-dimensional 

problems, while analyses in temporal domain are applied to one-dimensional 
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problems. However, in many cases, the algorithms will be more robust if we consider 

them in the temporal-spatial plane, or a combination of techniques in both domains. 

For example, the temporal phase evolution of neighboring pixels can be combined in 

a weighted average using measured interferogram modulation as weights. The result 

is that the phase of some ill-behaved pixels can be interpolated from their neighbors 

when its modulation is too low to permit a successful temporal phase extraction. This 

is normally essential in speckle interferometry.  

  More applications with different optical techniques, such as continuous in-

plane displacement measurement using moiré interferometry or ESPI, can be explored. 

The temporal carrier technique can also be possibly applied to fringe projection and 

projection moiré for vibration measurement. Further exploration of different temporal 

phase analysis techniques will broaden the applications in optical, non-destructive 

testing area and offer more accurate results and bring forward a wealth of possible 

research directions. Hopefully, the results of such investigations, through improved 

robustness of processing algorithms, should increase the applicability of whole-field 

interferometric methods outside of the controlled laboratory environment.  
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APPENDIX 

 
 

APPENDIX A    WAVELET RIDGES 
 
 
We start from the definition of analytic instantaneous frequency. A cosine modulation 

 
)(cos)cos()( 0 tItItf MM ϕϕω =+=                 (a.1) 

 
has a frequency ω  that is the derivative of the phase 0)( ϕωϕ += tt . To generalize this 

notion, real signals f are written as an amplitude MI  modulated with a time-varying 

phase ϕ : 

 
)(cos)()( ttItf M ϕ=   with   0)( ≥tIM                          (a.2) 

 
The instantaneous frequency is defined as a positive derivative of the phase: 

 
0)()( ≥′= tt ϕω                   (a.3) 

 
The derivative can be chosen to be positive by adapting the sign of )(tϕ . One must be 

careful because there are many possible choices of )(tIM  and )(tϕ , which implies 

that )(tω  is not uniquely defined relative to f. 

In windowed Fourier transform, the spectrogram 2),(),( ζζ bSfbfPS =  

measures the energy of f in a time-frequency neighborhood of ),( ζb . The ridge 

algorithm computes instantaneous frequencies from the local maxima of ),( ζbfPS . 

The windowed Fourier transform is computed with a symmetric window )()( tgtg −=  

whose support is equal to [-1/2, 1/2]. The Fourier transform ĝ  is a real symmetric 
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function and )0(ˆ)(ˆ gg ≤ω  for all R∈ω . The maximum ∫−=
21

21
)()0(ˆ dttgg  is on the 

order of 1. Generally, the window g is normalized so that 1=g . For a fixed scale a, 

)/()( 21 atgatga
−=  has a support of size a and a unit norm. The corresponding 

windowed Fourier atoms are  

 
ti

aba ebtgtg ζ
ζ )()(,, −=                    (a.4) 

 
and the windowed Fourier transform is defined by 

 

dtebtgtfgfbSf ti
aba

ζ
ζζ −+∞

∞−
−== ∫ )()(,),( ,,      (a.5) 

 
The following theorem relates ),( ξbSf  to the instantaneous frequency of f. 

 
 
Theorem   

Let )(cos)()( ttItf M ϕ= . If 0≥ζ  then 

 

[ ]( ) [ ]( ) ( )( )ζεϕζζϕζ ,)(ˆ)(exp)(
2
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The corrective term satisfies 
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)(
)(

1, bI
bIa

M

M
I

′
≤ε ; 

)(
)(

sup
2

2/
2, bI

bIa

M

M

abt
I

′′
≤

≤−
ε      (a.8) 
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and if 1)()( 1 ≤′ −bIbIa MM  then 

 
)(sup 2

2/
2, ta

abt
ϕεϕ ′′≤

≤−
         (a.9) 

 
if )(bϕζ ′=  then 

 

( ))(2ˆ
)(
)(

1, bag
bI
bIa

M

M
I ϕε ′′

′
=                  (a.10) 

 
The proof of above theorem is presented by Mallat (1998). Delprat et al. (1992) 

give a different proof of a similar result when )(tg  is a Gaussian, using a stationary 

phase approximation. If the corrective term ( )ζε ,b  can be neglected, Eq. (a.6) 

enables us to measure )(bIM and )(bϕ′ from ),( ζbSf . This implies that the 

decomposition )(cos)()( ttItf M ϕ=  is uniquely defined. By reviewing the proof of 

the theorem mentioned above, one can verify that MI  and ϕ′  are the analytic 

amplitude and instantaneous frequencies of f.  Equations (a.8) and (a.9) show that the 

three corrective terms 1,Iε , 2,Iε  and 2,ϕε  are small if )(tIM  and  )(tϕ′  have small 

relative variations over the support of the window ag . Let ω∆  be the bandwidth of ĝ  

defined by 

 
1)(ˆ <<ωg     for  ω∆ω ≥ .                (a.11) 

 

The term )(ˆsup
)(

ω
ϕω

g
ba ′≥

 of  ( )ζε ,b  is negligible if  

 

a
b ω∆ϕ ≥′ )(                   (a.12) 
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Ridge Points of Windowed Fourier transform  

Let us suppose that )(tIM  and )(tϕ′  have small variations over intervals of 

size a and 
a

b ω∆ϕ ≥′ )(  so that the corrective term ( )ζε ,b  can be neglected. Since 

)(ˆ ωg  is maximum at 0=ω , Eq. (a.6) shows that for each b the spectrogram 

2
,,

2 ,),( ζζ bagfbSf =  is maximum at )()( bb ϕζ ′= . The corresponding time-

frequency points (b, )(bζ ) are called ridges. At ridge points, Eq. (a.6) becames 

 

[ ]( ) ( ) ( )( )ζεζϕζ ,0ˆ)(exp)(
2

),( bgbbibIabSf M +−=              (a.13) 

 
Theorem above proves that the ( )ζε ,b  is smaller at a ridge point because the first 

order term 1,Iε  becomes negligible in Eq. (a.10). This is shown by verifying that 

( ))(2ˆ bag ϕ′  is negligible when ω∆ϕ ≥′ )(ba . At ridge points, the second order term 

2,Iε  and  2,ϕε  are predominant in ( )ζε ,b . 

The ridge frequency gives the instantaneous frequency )()( bb ϕζ ′=  and the 

amplitude is calculated by 

 
( )

( )0ˆ
)(,2

)(
ga

bbSf
bIM

ζ
=                  (a.14) 

 
Let ),( ζΦ bS  be the complex phase of ),( ζbSf . If we neglect the corrective term, the 

Eq. (a.13) proves that ridges are also points of stationary phase: 

 

0)(),(
=−′=

∂
∂ ζϕζΦ b

b
bS                 (a.15) 
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Testing the stationarity of the phase locates the ridges more precisely.  

 

Wavelet Ridges 

Windows Fourier atoms have a fixed scale and thus cannot follow the 

instantaneous frequency of rapidly varying events such as hyperbolic chirps. In 

contrast, an complex wavelet transform modifies the scale of its time-frequency atoms. 

The ridge algorithm of Delprat et al. (1992) is extended to complex wavelet 

transforms to accurately measure frequency tones that are rapidly changing at high 

frequencies.  

An approximately complex wavelet is constructed by multiplying a window g 

with a sinusoidal wave:  

 
)exp()()( 0titgt ωΨ =                   (a.16) 

 
As in the previous section, g is a symmetric window with a support equal to [-

1/2, 1/2], and a unit norm 1=g . Let ω∆  be the bandwidth of ĝ defined in Eq. (a.11). 

if ω∆ω >0  then 0<∀ω , 1)(ˆ)(ˆ
0 <<−= ωωωΨ g . The wavelet Ψ  is not strictly 

analytic because its Fourier transform is not exactly equal to zero at negative 

frequencies. 

Dilated and translated wavelets can be rewritten as 

 

)exp()(1)( ,, ζΨΨ ζ ibtg
a

bt
a

t baab −=⎟
⎠
⎞

⎜
⎝
⎛ −

=                (a.17) 

 

with a
0ωζ =  and  )exp()( 0,, ti

a
btgatg ba ωζ ⎟
⎠
⎞

⎜
⎝
⎛ −

= . 
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The resulting wavelet transform uses time-frequency atoms similar to those of a 

windowed Fourier transform [Eq. (a.5)] but in this case the scale a varies over +R  

while a
0ωζ = : 

 
)exp(,,),( 0,, bigffbaWf baab ωΨ ζ==                (a.18) 

 
The above-mentioned theorem computes ζ,,, bagf  when 

)(cos)()( ttItf M ϕ= , which gives 

 

[ ] [ ] ( )( )ζεϕζϕ ,)((ˆ)(exp)(
2

),( bbagbibIabaWf M +′−=              (a.19) 

 
The corrective term ( )ζε ,b  is negligible if )(tIM  and )(tϕ′  have small variations 

over the supports of abΨ  and if ab ω∆ϕ ≥′ )( . 

The instantaneous frequency is measured from ridge defined over the wavelet 

transform. The normalized scalogram defined by 
a

baWf
bfPW

2

0

),(
),( =ζ

ω
ζ ,  for 

a
0ωζ = , it can be calculated as 

 

( )
2

0
2

0
,)(1ˆ)(

4
1),( ζε

ζ
ϕωζ

ω
ζ bbgbIbfP MW +⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎥
⎦

⎤
⎢
⎣

⎡ ′
−= .            (a.20) 

 
Since ( )ωĝ  is maximum at 0=ω , if ( )ζε ,b  can be neglected, this expression shows 

that the scalogram is maximum at  

 
)()( bb ϕζ ′=                   (a.21) 
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The corresponding points ( ))(, bb ξ  are called wavelet ridges. The analytic amplitude 

is given by 

 

)0(ˆ
),(2

)(
1

0

g
bfP

bI W
M

ζζω −

=                 (a.22) 

 
When )(bϕζ ′= , the first order term 1,Iε  calculated in Eq. (a.10) becomes negligible. 

Similar as windowed Fourier transform, the corrective term is then dominated by 2,Iε  

and 2,ϕε . To simplify their expression, we approximate the sup of MI ′′  and ϕ ′′  in the 

neighborhood of b by their value at b. Since )(
00

ba ϕ
ω

ζ
ω

′== , Eqs. (a.8) and (a.9) 

imply that these second order terms becomes negligible if  

 

( )
( )
( ) 12

2
0 <<

′′

′ bI
bI

b M

M

ϕ
ω                 (a.23) 

 
and 

 

1
)(
)(2

0 <<
′
′′

b
b

ϕ
ϕ

ω                 (a.24) 

 
The presence of ϕ′  in the denominator proves that MI ′  and ϕ′  must have slow 

variations if ϕ′  is small but may vary much more quickly for large instantaneous 

frequencies. 
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APPENDIX B  RESULTS 
 
 
B.1  Temporal phase analysis using Micro-ESPI 

 

Figure 4.10 shows a tiny steel cantilever beam being tested. The length, width 

and thickness of the beam are 2.5 mm, 0.25 mm and 0.25 mm, respectively. The beam 

is continuously loaded with a linear displacement by a PZT stage. During deformation 

of the beam, a series of speckle patterns is captured by a high speed CCD camera 

(KODAK Motion Corder Analyzer, SR-Ultra) with a long working distance 

microscopic lens (OPTEM 100). Figure A.1 shows a typical speckle pattern captured 

at intervals of 0.008 s with imaging rate of 125 fps. Five hundred speckle patterns are 

captured during a four-second period. Among them, two hundred and fifty six 

consecutive images are selected for processing.  

 

 
(b) 

Figure A.1 typical speckle patterns on micro-beam captured by CCD camera. 
 
 

Figure A.2 shows the gray value variation of points A and B (indicated in Fig. 

A.1). A difference in amplitude is observed, however, only temporal frequencies are 

considered as they contain information on velocity and displacement. The temporal 

frequency of point A is lower than that of point B. This implies that Point B deforms 

faster than point B. The modulus of the Morlet wavelet transform of intensity 

variation of points A and B are shown in Figs. A.3(a) and A.3(b) respectively. The 

dashed line shows the ridge of the wavelet transformation where the maximum 

A B 

0 200 400 
(µm) 
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modulus are found. Little variation of rba  is observed on the ridge, which implies the 

velocities are almost constant along time axis. Figure A.4(a) shows the velocities on 

points A and B where the transient velocities at each pixel can be retrieved.  

Integration of 
rba
π2

 is carried out on each pixel to generate a continuous temporal 

phase change )(txyϕ∆ . In an ESPI setup as shown in Fig. 4.8, a π2  phase change 

represents a displacement of 2/λ  (=316.4 nm) in the z direction. The transient 

displacements of points A and B are shown in Fig. A.4(b). Figure A.5(a) shows a 3-D 

plot of the out-of-plane displacement of the beam between two instants sT 4.01 = and 

sT 2.12 = . A 3×3 median filter has been used on the phase map to remove several ill-

behaved pixels. 

For comparison, temporal Fourier analysis is also applied on the same speckle 

patterns. Bandpass filters with different width are applied. A one-dimensional phase 

unwrapping is then applied along the time axis, as all phase values obtained by 

inverse Fourier transformation are within [0, 2π). Figure A.5(b) shows the 3-D 

displacement plot from temporal Fourier analysis. Similar as in wavelet transform, a 

3×3 median filter is also applied on the phase map.  Figure A.6 shows a comparison 

of displacement on central line of the cantilever beam at different instants. A 

smoother spatial distribution of displacement is observed using wavelet analysis. The 

maximum displacement fluctuation due to noise is around 0.06 µm in Fourier 

transform, but only 0.02 µm in wavelet analysis. 
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Figure A.2  Gray values of points A and B. 

 
 
 
 

 
(a) 

 

 
(b) 

 
Figure A.3  Modulus of the Morlet wavelet transform at (a) point A and  (b) point B. 

Point A Point B
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(a) 
  

     
 

(b) 
 

Figure A.4 (a) Instantaneous velocity and (b) displacement at points A and B. 
 

Point A Point B 

Point A Point B 
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(a) 

 
 

(b) 
 
 
 
 

Figure A.5 Displacement of the beam between two instants sT 4.01 = and sT 2.12 =  
by use of (a) temporal wavelet analysis and (b) temporal Fourier 

analysis. 
 
 
 
 
 
 



 
                               APPENDIX                            
  

 

192

 

 
 

(a) 
 
 
 

 
 

(b) 
 
 

Figure A.6 Comparison of displacements at central line of the cantilever beam 
between (a) wavelet and (b) Fourier analysis. 

 

 

 

T = 1.2s 

T = 0.8s 

T = 0.4s 
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B.2  Results on phase scanning method using shadow moiré 
 
The phase scanning method is also applied on a vibrating coin of 24.5 mm diameter 

and having a diffuse surface (shown in Fig. A.7). A small area of interest containing 

256×256 pixels (also indicated in Fig. A.7) is cropped. A grating with difference pitch 

(6 lines/mm) is used to increase the resolution. The distance Sd  and Sl  (shown in Fig. 

2.3) are respectively 245 mm and 250 mm. The test object is subjected to a triangular 

wave vibration with a frequency of approximately 5 Hz. The camera recording rate 

remains at 250 fps. Figures A.8(a) and A.8(b) show two typical fringe patterns 

recorded by high speed CCD camera at different moments. Carrier fringes are also 

introduced on the images by rotating the grating. First one hundred consecutive 

images are processed. The process is similar with the spherical cap mentioned in 

Chapter 6. Figures A.8(c) and A.8(d) are typical fringe patterns after filtering. As the 

surface profile of the coin is much smaller than the spherical cap, it is found that 

increasing the carrier fringe frequency improves the quality of the phase map. 

However, it is observed that the contrast of the moiré fringes changes with the 

distance between the object and grating. High contrast fringes are generated when the 

distance is small. This is due to the diffraction effect of the grating.  From Figs A.8(a) 

and A.8(b) it is observed that the fringe contrast increases from left to right, which 

implies the distance between the coin and grating decreases in this direction.  Higher 

sensitivity can also be obtained by increasing the distance Sd , but this will also 

generate shadow on the object. 

  Figure A.9 shows the vibration amplitude of Point C (indicated in Fig. A.7). 

The frequency and the amplitude of vibration are evaluated as 4.8 Hz and 0.258 mm 

respectively. Figures A.10(a) and A.10(b) show the wrapped phase map and 
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continuous map after unwrapping. Subsequently the 3-D profile of the interest area is 

obtained as shown in Fig. A.10(c).  Figure A.11 shows a comparison of profile plot on 

cross-section D-D (indicated in Fig. A.7) using proposed phase scanning method and 

mechanical stylus method. The average discrepancy is 4.7%. The maximum 

difference is around 10µm which is same order of the error using phase shifting 

method where at least three images are required. 

  

 

 

 

Figure A.7 Specimen 2: a 50-cent coin and area of interest. 
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(a)      (b) 
 
 
 

  
 

(c) (d) 
 
 
 
 

Figure A.8  Typical moiré fringe patterns of interest area captured at different instants 
(a) 0s (before filtering); (b) 0.04s (before filtering); (c) 0s (after filtering); (d) 0.04s 

(after filtering). 
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Figure A.9   Displacement of Point C in z-axis 
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(a)      (b) 
 
 

 
 
 
 

Figure A.10 (a) Wrapped phase in spatial coordinate at 0.04s; (b) continuous phase 
map obtained by phase scanning method; (c) reconstructed 3-D plot of surface profile. 
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Figure A.11  A comparison of surface profile of 50-cent coin on cross-section D-D 
between phase scanning method and mechanical stylus method. 
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APPENDIX C   HAAR WAVELET AS A DIFFERENTIATION OPERATOR 
 
 
Haar wavelet is the simplest wavelet basis function. It has the shortest support among 

all orthonormal wavelets. It is not well adopted to approximating the phase of the 

smooth functions because it has only one vanishing moment. However, it is an 

effective function to extract the derivative from a signal with noise, depending on 

proper selection of scaling factors a. The mother wavelet is given in Fig. A.12(a). 

⎪
⎩

⎪
⎨

⎧
<≤−

<≤
=

otherwise
tif

tif
t

0
1211
210,1

)(ψ                (a.25) 
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(a) 

 
 

 
(b) 

 
 

Figure A.12(a)  Plot of Haar wavelet function; (b) Haar wavelet as a differentiation 
operator. 
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Figure A.12 (b) shows how Haar wavelet works as a differentiation operator. 

The wavelet coefficient of continuous Haar wavelet transform is an approximation of 

the negative value of the first derivative at point B. It is equivalent to calculate the 

average values on AB and BC sections, and obtain the first derivative at point B using 

these two values.  Different values of scaling factor determine the various lengths of 

AB and BC. Obviously the wavelet coefficient obtained is insensitive to the noise that 

has higher frequencies than selected Haar wavelet.  

Figure A.13(a) shows a simulated signal which is a sinusoidal curve extended 

smoothly at the beginning and the end. Figure A.13(b) is its theoretical first derivative 

which is obtained directly from numerical differentiation. Only two discontinuities are 

observed in the first derivative which are circled in Fig. A.13(b).   

 
(a) 

 
(b) 

Figure A.13 (a) A simulated Signal and (b) its theoretical first derivative. 
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Figure A.14(a) shows the first derivative of the signal obtained by Haar 

wavelet when scaling factor a = 20. Figure A.14(b) shows the different in the 

derivatives when different scaling factor a are selected. It can be observed that last 

error occurs at the points that the derivative is not continuous (circled in Fig. 

A.13b).The increment of error is observed when the scaling factor a is increased.  

 

(a) 

 

(b) 

Figure A.14 (a) Derivative obtained by Haar wavelet when a =20; (b) The error in 
derivative when different values of a are selected.  

 

When the noise is involved in signal, the differentiation directly obtained from 

two adjacent points will be failed. Due to the smooth effect mentioned above in Haar 

wavelet, it is a suitable tool to extract the derivatives from a noise signal.  Figure A.15 

shows a simulated signal with some random noise. Although the noise effect is not so 

serious in the signal, the numerical differentiation from two adjacent points [Fig. 

a = 2, 10, 20, 30, 40 and 50 
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A.16(a)] is still unsuccessful. Fig. A.16(b) shows the results from Haar wavelet when 

a = 30. Besides the errors at the discontinuity points mentioned above, relative large 

errors are found at the beginning and end of the signal due to the border effect of the 

continuous wavelet transform. However, this error can be eliminated by extend the 

signal properly with some linear prediction algorithms. The main problem involved in 

continuous Haar wavelet transform is the proper selection of scaling factor a. 

Evaluation of signal and noise frequencies is necessary. In our applications, the signal 

to be processed is generally in very low frequency, such as displacement of a plate; 

and the noise is caused by speckle noise, which is a high-frequency term.  Selection of 

the scaling factor a is not difficult in most of the cases.  

 

 

Figure A.15 A simulated signal with random noise 
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(a) 

 

(b) 

Figure A.16 (a) Result from numerical differentiation directly from two adjacent 
sampling points; (b) Result from Haar wavelet when a =30. 
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