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SUMMARY 

We propose a framework for story segmentation in news video by comparing two

learning-based approaches: (1) Hidden Markov Models (HMM); and (2) Rule

induction technique. In both approaches, we divided our framework into 2 levels, shot

and story levels. At the shot level, we define three clusters totalling 17 shot

categories. The clusters are heuristic-based (contains commercial shots); visual-based

(consists of Weather and Finance shots, Anchor shots, program logo shots etc.) and

Machine-learning-based clusters (contains live-reporting shots, People shots, sport

shots, etc.). We represent each shot using low-level feature (176-Luv colour

histogram), temporal features (audio class, shot duration, and motion activity) and

high level features (face, shot type, videotexts), and employ a combination of

heuristics, specific detectors and decision trees to classify the shots into the respective

categories. At the story level, we use the shot category information, scene/location

change and cue-phrases as the features, and employ either HMM or rule induction

techniques to perform story segmentation. We test our HMM framework on the 120

hours of news video from TRECVID 2003 and the results show that we could achieve

an F1 measure of over 77% for story segmentation task. Our system achieved the best

performance during TRECVID 2003 evaluations [TRECVID 2003]. We also test our

rule induction framework on the same TRECVID data and we could achieve an

accuracy of over 75%. The results show that our 2-level framework is effective in

story segmentation. The framework has the advantage of dividing the complex

problem into 2 parts and thus partially alleviates the data sparseness problem in 
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machine learning. Our further analysis shows that as compared to HMM, the rule

induction approach is easier to incorporate new (heuristic) rules and adapt to new

corpora.   
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CHAPTER 1 
INTRODUCTION 

 

 

1.1 Introduction 

The rapid advances in computing, multimedia, and networking technologies have 

resulted in the production and distribution of large amount of multimedia data, in 

particular digital video. To effectively manage these sources of videos, it is necessary 

to organize them in a way that facilitates user browsing and retrieval. Much effort has 

been made by researchers to segment, index and organize digital videos in terms of 

shots [Gunsel 1996] [Das and Liou 1998] [Ide 1999]. Digital videos, especially news 

videos such as CNN, ABC, etc that are available on the web are a good source of 

information. Users normally do not start reading news or viewing news video from 

the start of news broadcast until the end. Instead, the users often access the news by 

topics of their interests. Some users give priority to finance or business news while 

others are interested in world news such as the “war in Iraq”, etc. Thus, a news video 

broadcast needs to be segmented into appropriate units to support this kind of access.  

Research on segmenting an input video into shots, and using these shots as the basis 

for video organization is well established [Zhang 1993][Lin 2000][Anantharamu 2002]. 

A shot represents a contiguous sequence of visually similar frames. It does not 

usually convey any coherent semantics to the users. The shot units, however, are 
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important when the users want to access only some shots of a particular story, such 

as, a shot of a Prime Minister giving speech on the Iraq war. In order to support such 

kind of access, it is important to classify the shot units into appropriate categories, 

such as speech shot, anchor shot, etc. 

However, for news video, users usually remember video contents in terms of events 

or stories but not in terms of changes in visual appearances as in shots. It is thus 

necessary to organize video contents in terms of small, single-story unit that 

represents the conceptual chunks in users’ memory. Moreover, the stories can be 

summarized in different scales to support users’ query such as “give me a summary 

on sport news”, etc. Thus, the story units serve as the basic units for news video 

organization. Finally, these story units with their classified shots can be stored in the 

database to support news retrieval task. A scenario for news video organization and 

retrieval is illustrated in Figure 1.1. 

The problem of segmenting news video into story units is challenging, especially 

when there is no supplementary text transcript. Story segmentation based on text 

transcript is easier and less expensive than the segmentation performed on news video 

using audio-visual based features. There are several techniques to perform text 

segmentation on news transcript. Most techniques are statistical-based designed to 

find coherent body of text terms that represents a story or topic. The story boundary 

therefore occurs at a position where there is least coherent or similarity between 

adjacent text units. Based on this principle, one successful technique is the tiling 

technique reported in [Hearst 1994]. However, the maximum accuracy reported for 

story segmentation based on news transcripts of CNN and ABC news used in 
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TRECVID 2003 evaluations [TRECVID 2003] was only about 62%. A similar level 

of performance was reported in [Allan 1998] for text-based topic detection and 

tracking (TDT) task. The reason for this low-level of performance is because statistics 

of text alone is insufficient to capture the rich set of semantic clues and presentation 

features used to signify the end of stories in news video. Thus, there is a need to look 

into audio-visual features of news video to assist in story segmentation.  

 

Figure 1.1: A scenario of news video organization  

 

Several reported works [Connor 2001][Wu 2003] focused on capturing anchor shots 

as the basis to determine the begin/end of stories. The approach works well for news 

video with simple and little variation in structure in which a new news story always 

starts with the anchor shot. From the results in TRECVID 2003, such techniques 

could achieve an accuracy of about 54%. Now, consider the CNN news (Refer to 

Appendix B for the details of the web site of CNN) , their news reporting structures 

  Q: “Give me a video on speech by 
President Bush on Iraq war” 
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are more complex and exhibit great variation in the various programs screened during 

the news broadcast as shown in Figure 1.2. We can see from the Figure that a news 

story may begin with: (a) an anchor shot such as types s1, s2, s3, and s7; (b) a 

program logo shot such as type s5; (c) none of the above at all such as type s4 and s6. 

As for the stories that begin with anchor shot, the usual type is type s1 in which a 

story starts with an anchor shot and ends before the next anchor shot. However, it is 

possible that the reporter is reporting continuous news stories within a studio (type 

s2) without any other shots or reporting multiple stories with live-reporting or outdoor 

shots but with no obvious clues for story transition (type s3). Therefore, to tackle the 

problem efficiently, we need to look more than just at anchor shots but also pay 

attention to all other program structure within a news broadcast.  

Figure 1.2: News story types found in CNN news broadcast 

(s1) Story starts with Anchor 
person shot (common case) 

  S6) weather report

(s3) Anchor reports multiple stories with 
some outdoor/live-reporting shots 

 (s4) Continuous sport stories (s5) Story starts with program logo 

(s7) Repeated pattern between anchor and distance reporter

(s2) Anchor reports multiple 
stories in the studio  

-Story unit 
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1.2 Our Approach 

This research aims at developing a system that can automatically and effectively 

segment news video into story units. Our aim is to investigate the choice of features 

that are important for story segmentation and the selection of statistical approach that 

best suits the news structures and patterns. For comparison, we propose two learning-

based frameworks for news story segmentation based on: a) Hidden Markov Models 

[Rabiner and Juang 1993]; and b) Rule-induction approach based on GRID system 

[Xiao 2003]. It is well known that the learning-based approaches are sensitive to 

feature selection and often suffers from data sparseness problems due to the 

difficulties in obtaining sufficient amount of annotated data for training. One 

approach to tackle the data sparseness problem is to perform the analysis at multiple 

levels as is done successfully in natural language processing (NLP) research [Dale 

2000]. For example, in NLP, it has been found to be effective to perform the part-of-

speech tagging at the word level, before the phrase or sentence analysis at the higher 

level. In this research, the video is analyzed at the shot and story levels using a variety 

of features.  

At the shot level, we use a set of low-level, temporal, and high-level features to model 

the contents of each shot. Next, we classify the shots into meaningful categories. In 

our study, there are 13 shot categories that are common to most of the news video. 

There are: Intro/Highlight, Anchor, 2Anchor, People, Speech/Interview, Live-

reporting, Still-image, Sports, Text-scene, Special, Finance, Weather, and 

Commercials. In order to cover the data provided by TRECVID [TRECVID 2003], 
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we also introduce “LEDS” (to represent lead-in/out shots), “TOP” (top story logo 

shot), “PLAY” (for play of the day logo shot), “SPORT” (to capture sport logo shots), 

and “HEALTH” (to represent health logo shots). From these categories, we divided 

them into three main clusters. They are visual-based, heuristic-based and learning-

based clusters. The grouping of each cluster is determined by the characteristics and 

the method to be used for shot classification. For example, the visual-based cluster 

includes shot categories such as Weather, Finance, LEDS, TOP, etc. These categories 

of shots are visually similar within each broadcast station. Thus, they can best be 

represented using color histograms of key frames and identified using image 

similarity matching techniques. The heuristic-based cluster contains shots of 

commercial category. Most countries require the broadcast stations to put some blank 

frames preceding and/or after the commercials. Also most companies try to pack as 

much information about their advertising products as possible into short commercial, 

thus the cut rate of shots within a commercial is much higher than that of other news 

reports. We thus employed heuristic techniques to identify this shot category. Finally, 

shots in learning-based cluster are those that cannot be described using any 

structures. Here we use machine learning technique such as the Decision Tree to 

classify such shot categories. Although, the number of categories may vary slightly 

when applying to other news corpora, the three clusters of categories can be applied 

to general news video.  

At the story level, we use the shot category information (represented by unique Tag-

ID), together with temporal and high-level features within a learning framework to 

identify news story boundaries.   
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In order to demonstrate that our 2-level framework is effective, we employ two 

learning-based approaches at the second level to perform story segmentation. They 

are the HMM approach and the rule-induction approach based on GRID system [Xiao 

2003]. The main idea of the GRID-based rule induction approach is to use global 

occurrence statistics of each of the features of the current and neighbor shots around 

the story boundaries to extract rules. We found that, this approach, although simple, 

gives effective results.  

 

1.3 Motivation 

The motivations of this research are: 

 To investigate structures of news programs from various TV stations and 

define a general news structure for further analysis in story segmentation. 

 To investigate and select essential features for story segmentation. Our aim is 

to select key features that can be automatically extracted from MPEG video 

using the existing tools.  

 To define and classify the video shots into meaningful categories. The 

objectives for doing this are: a) to support further browsing and retrieval; and 

b) to facilitate story segmentation process. 

 To develop an automated system to segment news video into stories and 

classify these stories into semantic units while considering the data sparseness 

problem.  
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1.4 Main Contributions 

The main contributions in this research are: 

 We have designed and developed a two-level multimodal framework for story 

segmentation in news video.  

• At the first level, we defined shot categories and their 

characteristic that cover all categories of shot in general news 

video. We employ a hybrid approach including specific 

detectors and machine learning techniques to perform shot 

classification 

• At the second level, we employ different machine learning 

approaches, including HMM and rule-induction technique to 

perform story segmentation  

 We demonstrate the effectiveness of our framework on a large scale data 

provided by TRECVID 2003 using the two machine-learning techniques. The 

data contains about 120 hours of CNN and ABC news video of year 1998. 

The evaluations show that we could achieve an accuracy of about 77.5% in F1 

measure when using full set of features in the HMM framework. Our system 

is one of the best performing systems from TRECVID 2003 evaluations. For 

rule-induction approach, we achieve an accuracy of about 75% in F1 measure. 

Thus, we have demonstrated that our 2-level framework incorporating 

different machine learning techniques is effective for news story segmentation 

problem.  
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1.5 Thesis Organization 

The rest of the thesis is organized as follows. Chapter 2 gives background of video 

segmentation and video structure, news structure, definition of news story, and related 

work on story segmentation, shot classification and detection of transition boundaries. 

Chapter 3 presents a design of our multi-modal two-level framework. Chapter 4 

discusses details of the selection and extraction of features as well as the selection of 

shot categories while Chapter 5 describes the classification of shots. Chapter 6 gives 

details of our Hidden Markov Models (HMM) framework and the evaluation results 

on small scale test (on local news video) and large scale tests (on TRECVID 2003 

data). Chapter 7 discusses details of Global Rule Induction (GRID) technique 

together with the experimental results on TRECVID 2003 data. Finally, we conclude 

our work in Chapter 8. 
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CHAPTER 2 
BACKGROUND AND RELATED WORK 

 

 

2.1 News Story Segmentation 

This section describes the background for news story segmentation. We first need to 

segment an input news video into basic visually contiguous units called shots. Next, 

we try to structure the shots that comprise a news story. A general news structure and 

a definition for a news story are also given. Finally, related work on story 

segmentation and video classification are discussed. 

 

2.1.1 Shot Segmentation and key frame extraction 

In order to perform story segmentation in news video, we need to segment the input 

news video into shots. A shot is a continuous group of frames that the camera takes at 

a physical location. A semantic scene is defined as a collection of shots that are 

consistent with respect to a certain semantic theme (for example several shots taken at 

the beach). Figure 2.1 illustrates the structure of frames, shots, scenes, and video 

sequence. 
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Effective techniques for detecting abrupt changes or hard cuts are reported in 

[TRECVID 2003] and [TRECVID2004]. The best accuracy they could achieve is 

more than 90%. In CNN and ABC news video used in TRECVID 2003 and 

TRECVID 2004, more than 60% of the total shots used in shot detection task are hard 

cuts and more than 20 % are gradual transitions. 

Gradual transition is frequently used for editing technique to connect two shots 

together and can be classified into three common types: fade in/out, dissolve, and 

wipe. Fade-in is a shot, which begins in total darkness and gradually lightens up to 

full brightness of a scene; and fade out is the opposite. Dissolve is a gradual change 

from one scene into another scene, in which one gradually decreasing in intensity 

(fade out), the other gradually increasing (fade in) at the same time and rate. Lastly, 

wipe shows the new scene appearing behind the line which moves across the screen. 

Figure 2.2 presents examples of cut and gradual transition of type dissolve. 

  

  

Figure 2.1: The structure 
of video frames, shots, 
scenes, and video sequence 

Dissolve 

Cut Figure 2.2: 
Examples of cut 
and gradual 
transition. 
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After the video is decomposed into shots, there are several ways in which the contents 

of each shot can be modeled. We can model the contents of the shot: (a) using a 

representative key frame; (b) as feature trajectories; or, (c) using a combination of 

both. In this research, we adopt the hybrid approach as a compromise to achieve both 

efficiency and effectiveness. Most visual content features will be extracted from the 

key frame while motion and audio features will be extracted from the temporal 

contents of the shots. This is reasonable as we expect the visual contents of shots to 

be relatively similar so that a key frame is a reasonable representation. Although 

sophisticated techniques are suitable to select one or more key frames for a shot (see 

for example [Anantharamanu 2002]), here we simply select the I-frame that is nearest 

to the center of the shot as the key frame.  

 

2.1.2 News Structure 

Most news videos have rather similar and well-defined structures. The news video 

typically begins with several Intro/Highlight shots that give a brief introduction of the 

upcoming news to be reported.  The main body of news contains a series of stories 

organized in term of different geographical interests (such as international, regional 

and local) and in broad categories of social political, business, sports and 

entertainment.  Each news story (though not always true) normally begins with 

Anchor-person shot. Most news broadcasts end with reports on Sports, Finance, 

and/or Weather. In a typical half an hour news, there will be at least one period of 
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commercials, covering both commercial products and self-advertisement by the 

broadcast station.  Figure 2.3 illustrates the structure of a typical news video. 

 

 

 

 

Figure 2.3: The structure of a typical news video. 

Although the ordering of news items may differ slightly from broadcast station to 

station, they all have similar structure and news categories. In order to project the 

identity of a broadcast station, the visual contents of each news category, like the 

anchor person shots, finance and weather reporting etc., tends to be highly similar 

within a station, but differs from that of the other broadcast stations. Hence, it is 

possible to adopt a learning-based approach to train a system to recognize the 

contents of each category within each broadcast station.  

 

2.1.3 News Story Definition and the Segmentation problems 

2.1.3.a Definition of News Story 

In this research, we follow the definition as in the guidelines in TDT-2 (phase 2 of 

Topic Detection and Tracking (TDT)) project. TDT is a multi-site research project 

under the Linguistics and Data Consortium (LDC), which was founded in 1992 in the 

University of Pennsylvania with a grant from the Advanced Research Projects 

News  

Next Topic 

Anchor Shot 

• • •

News SportsCom2NewsFinanceNewsCom1 News Intro 

Current Topic 
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Agency (ARPA). It is an open consortium of universities, companies and government 

research laboratories. It creates, collects and distributes speech and text databases, 

lexicons, and other resources for research and development purposes. More 

information about LDC can be found on LDC home page [LDC 1992]. The TDT 

project, now in its third phase, aims to develop core technologies for news 

understanding systems. Specifically, TDT systems discover the topical structure in 

un-segmented streams of news reporting as it appears across multiple media and in 

different languages. For a detailed discussion of the goals of TDT, see [Wayne 1998]. 

The TDT-2 project addresses multiple sources of information in the form of both text 

and speech from newswire and radio and television news broadcast programs. 

The TDT-2 guidelines were used as the guide for news story segmentation task in 

TRECVID 2003 evaluations [TRECVID 2003]. In the guidelines, a “news” story is 

defined as a segment of a news broadcast with a coherent news focus which contains 

at least two independent, declarative clauses. The rest of coherent segments are 

labeled as “misc” (miscellaneous). These “misc” stories cover a mixture of footages, 

including commercials, lead-ins, reporter chit-chats etc. Further details of the 

guidelines can be found in [TRECVID 2003].  

2.1.3.b Problems in News Story Segmentation 

As we can see, the definition is defined on text document (news transcript), how can 

we associate this definition to stories in news video is an important issue. From the 

structure of news video in Figure 2.3 and the structure of general video in Figure 2.1, 

a story unit may consist of several scenes. These scenes may not be visually similar to 
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one another. Thus, the problem of news story segmentation cannot be solved by just 

looking at the visual contents of video. As a result, story segmentation in news video 

is a hard problem especially when an input news video comes without transcripts. 

Because of this, most related works proposed solutions to this problem assuming that 

news transcripts are available [Merlino 1997]. In this case, we can make the problem 

simpler by considering the common words or phrase before the news begins, ends, 

change of topics, switching of person, etc. Each broadcast station has its own pattern 

word strings to indicate the transitions. For example, in CNN news, there are phrases 

such as “Good evening/morning, I am <person name> from CNN headlines news” 

appearing at the beginning before the actual news is being reported. Another example 

is “weather forecast is next” at the end of the story before the “weather” news report, 

etc. Thus, locating the transition is the task of locating and matching string patterns. 

We call such string patterns cue-phrases. 

However, not all-individual news has consistent cue-phrases indicating the beginning 

of the next topic. This is why we cannot achieve high accuracy while only using this 

feature from the news transcripts. Moreover, from the reported results in [TRECVID 

2003], the best performance that we could achieve when using only the features from 

news transcript is about 62%. This is because the state-of-the-art techniques for topic 

segmentation seem to under segment the news stories based on text alone [Hearst 

1994]. 

On the other hand, segmenting news stories based only on audio-visual (AV) is an 

even harder problem. We need a system that can understand story units as semantic 
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units. The problem then is what types of AV features can identify boundaries of these 

units. 

 

2.2 Relevant Research 

Many works on extracting story units from multimedia documents have been 

published in recently years. Early work was reported in [Yeung 1996] in which they 

focused on movies. Others investigated story segmentation for documentary video 

[Slaney 2001], while some on news video [Merlino 1997] [Hauptmann and Witbrock 

1998][Hsu and Chang 2003]. As for news, most of the works performed story 

segmentation based on news transcripts [Hauptmann 1997] [Merlino 1996] on 

assumptions that the transcripts were available. However, in actual cases, the 

transcripts are not always available for all news broadcasts. To give overall view of 

story segmentation task either when transcript is available or not available (use only 

video and audio streams), we will discuss related work that performed story 

segmentation based on text, AV features and both. Furthermore, we will also 

introduce relevant works that are related to part of our research, namely, video 

classification and detection of video transition. 
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2.2.1 Related Work on Story Segmentation 

2.2.1.a Text Segmentation Approach 

[Hearst 1994] introduced the use of text tiles to segment paragraphs in text documents 

by topic. Text tiles are adjacent regions that can be separated through automatically 

detected topic changes. The main concept of using text tile is, for a given window 

size, each pair of adjacent blocks of text can be compared according to how similar 

they are lexically. The method assumes that the more similar the two blocks of text 

are, the more likely that they belong to the same subtopic. Conversely, if two adjacent 

blocks are dissimilar, this implies a change in topic. The topic boundaries are 

determined by changes in the sequence of similarity scores. This method is 

preliminary designed for topic segmentation on news transcript. It works well on the 

data reported in [Hearst 1994]. However, it tends to under segment the large news 

transcript data set provided by the TRECVID. Moreover, the story boundaries found 

by the algorithm tend to be off by a few sentences from the actual boundaries. This is 

not likely to be acceptable as the boundaries found must be within 5 seconds of actual 

boundaries allowable by TRECVID.  

2.2.1.b Shot Clustering Approach using Color Histogram 

 [Yeung 1996] introduced scene transition graph (STG) to detect story units in video 

based on similarity of shot and time-constrained clustering. The partition is found by 

looking for cut edges in STG. They used color histogram to group shots that are 

visually similar and temporary closed into clusters. In addition, different clusters 

should have sufficient difference in characteristics. They defined shot similarity 
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distance as a number of frames between two shots that are close to each other. The 

temporal distance is expressed as: d(Si, Sj) = min (|bj –ei|, |bi – ej|, i ≠ j); and d(Si, Sj) 

= 0 for i=j. If d(Si, Sj) is less than a threshold, T (the number of frames), then the two 

shots are grouped into the same cluster. This work inspires many other works in the 

area of story segmentation. The system is simple and works well on the data reported. 

However, a news story unit normally comprises several scenes that might be 

dissimilar. The system thus may detect two adjacent dissimilar scenes that belong to 

one story as two separate stories.  

2.2.1.c Hybrid approach using Multi-modal Features 

In this approach, multiple techniques are used to handle feature extraction and 

segmentation in each of the available sources such as text (news transcripts), audio, 

and video stream.  

[Merlino 1997] introduced a system called Broadcast News Editor (BNE). BNE 

captures, analyzes, annotates, segments, summarizes, and stores broadcast news. 

They used CNN prime news programs from 12/14/96 – 1/13/96 as the test data. 

Though they used all the data sources, they focused mostly on the use of features 

from news transcript such as hand-off phrases from anchor to reporter and reporter 

back to anchor, cue phrases that are likely to occur at the beginning of new stories, 

speaker change markers (“>>”), topic change markers (“>>>”), and blank lines to 

determine story boundaries.  For video, they performed anchor, black frames, and 

logo detections. As for audio, they identify sufficiently long silence segments as the 

beginning and end of commercials. They presented state transitions such as the “start 
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of story”, “advertising” states, etc. using finite state automaton (FSA). Some of the 

states that they defined are: Start of broadcast; Start of Highlight; End of Highlights; 

Start of Story; Advertising; and End of Broadcast. Their reported a performance of 

74% and 97% for precision and recall respectively. Their system however was not 

tested on the TRECVID data hence it cannot be directly compared to other recent 

systems. Further drawback of their system is that it relies heavily on news transcript 

and draws little cues from video and audio. This is unlikely to be satisfactory when 

news transcripts are not available.  

[Hauptmann and Witbrock 1998] reported research done as part of the Informedia 

Digital Library Project first introduced by [Wactlar 1996]. The main success of the 

Informedia project is based on the assumption that they can obtain sufficiently 

accurate speech recognition outputs from news broadcast for use in information 

retrieval. [Hauptmann and Witbrock 1998] detected and used black frame to separate 

commercial blocks from news stories and utilized frame similarity based on color 

histogram to identify anchor shot based on the assumption that anchor shots would 

reappear at regular intervals throughout a news program. Each appearance of anchor 

shot was claimed to denote a segment boundary of some type. In this work, optical 

flow for motion estimation such as camera motion and object motion was computed 

and used to examine story boundaries. This is based on their assumption that scenes 

containing movements may be less likely to occur at story boundaries. For audio track 

extracted from the news video, they performed speech recognition using their own 

Sphinx-II system, which extracts text from speech in the audio track. They then used 

closed-captioned transcripts to correct the possible errors in the output from Sphinx-
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II. Also, from close captions, they obtained the marker for changes between 

advertisements and news story as well as markers for speaker change (using “>>” 

markers) and topic change (using “>>>” marker). They used anchor shots, motion, 

and the markers as cues to detect the change in news topic. Their system seems to be 

very effective. However, the system relies on the corresponding news transcript to 

correct the audio recognition output, and if the transcript is not available, the system 

performance will definitely be affected. 

[Slaney 2001] introduced a method to detect edges in multimedia documents in which 

they used two videos, one audio (music) and one text document as the test data. They 

used color, text, and audio signals as the features and employed singular-value 

decomposition (SVD) to reduce the dimensionalities of the feature space. They 

adopted the concept of scale-space technique in the edge finding process. The scale-

space contained color space, word (from text documents) space, and acoustic space. 

By applying scale-space segmentation, they tried to detect the edges in all the signals 

that correspond to large changes. Their system gives an intuitive and reasonable idea 

to video segmentation as they looked for large changes in all signals at different 

scales.  

[Hsu and Chang 2003] employed a statistical framework called exponential or 

maximum entropy model to select the most significant features of various types. The 

features they used are Acoustics (whether the next shot is dominated by any audio 

types), Speaker identification (to identify anchor speech shot), Face, Superimposed 

text captions, Motion, A/V combination (used a combination of face and speech), and 

Cue phrase (whether there is a presence of cue phrase in the segment). They 
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considered the changes of the features from the previous to the current shots. They 

used Kullbak Leibler divergence measure in optimization procedure to estimate the 

model parameters. The exponential model constructs an exponential, log-linear 

function that fuses multiple features to approximate the posterior probability of an 

event i.e. story boundary, given the audio-visual data surrounding the point under 

examination. The construction process contains two main parts: parameter estimation; 

and feature induction. Finally, they employed dynamic programming approach to 

estimate possible story transition. They tested on 3.5 hours of Mandarin news in 

Taiwan. The total data contains 100 news stories and achieved the maximum 

accuracy of 90% when using the full set of features. When tested their system on the 

TRECVID data using the full feature set, they could achieve an accuracy (as reported 

at TRECVID 2003) of about 69%. Their work is the most similar to our work as we 

first proposed in [Chaisorn 2002]. The main differences are: (a) for the similar subset 

of selected features, they looked at the changes of feature values, for instance from 

low motion to high motion, between the previous and current shots, rather than 

looking only at current shot contents itself; and (b) we divided our framework into 

two levels (like the approach used in NLP), shot and story levels whereas they 

employed a single-level framework; and (c) they performed story segmentation using 

maximum entropy and dynamic programming techniques while we used HMM 

framework and rule-induction approaches.  

[Greiff 2001] from MITRE Corporation performed story segmentation based on news 

transcripts. They employed HMM to model the generation of word production during 

news program. Their investigation was done in two respects: 1) to exploit the 
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differences in feature patterns that are likely to be observed at different points in the 

development of news story; and 2) to derive a more detailed modeling of the story-

length distribution profile, unique to each new source. They modeled the generation 

of news stories as a 251-state Hidden Markov Model. From the news transcripts, they 

extracted 3 features: (a) coherence feature of text (based on N words immediately 

prior to the current word. If the current word does not appear in the buffer then its 

coherence value is 0, otherwise the value is calculated based on some log value, N = 

50, 100, 150, and 200); (b) the duration of un-transcribed section; and (c) the trigger 

(cue) words. The system was tested on 15 ABC news video from TDT-2 corpus. The 

probabilities of false-alarm and missed boundaries were reported to be 0.11 and 0.14 

respectively.  

Appendix B lists the details of the web sites for ABC news and other broadcasters 

used in this study and in related work. 

 

2.2.2 Related Work on Video Classification  

Another area of research that is related to story segmentation and organization is 

video classification. It is a hot topic of research for many years and much interesting 

research has been done. Because of the difficulty and often subjective nature of video 

classification, most early works examined only certain aspects of video classification 

in a structured domain such as sports or news. As video classification is not the main 

emphasize of news video segmentation, we will give a brief review of related work 

on this topic. 
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2.2.2.a Statistical Approach 

[Wang 1997] employed mainly audio characteristics and motion as the features to 

classify the TV programs into the categories of news report, weather forecast, 

commercials and football games. For audio features, they employed mean and 

standard deviation of volume distribution, silence interval distribution, spectrogram, 

central frequency and bandwidth. As for the motion, for each frame, they computed 

histogram of motion vector field, spatial correlation of motion vector field and phase 

correlation function (CPF). Their analysis is based mainly on the average and 

standard deviation values of each of the features. This is based on their observations 

that different TV programs tend to have different audio characteristics and motion 

levels. For example, weather news and normal news reports have similar audio 

characteristics. They have smaller standard deviation in volume and silence intervals. 

On the other hand, in TV commercials, a speech is delivered very quickly. In 

addition, the silence ratio and mean silence interval is small. Further details on the 

analysis can be found in [Wang 1997]. 

2.2.2.b HMM Approach 

[Wei 2000] used video text and faces as the features and employed the HMM 

framework to classify the video clips into the classes of commercials, news, sitcom, 

and soap. They achieved the accuracy of over 80% on short video clips. In their work, 

they extracted the trajectories of the video and construct hierarchical information 

consisting of three layers: 1) Video layer that contained the general information such 

as the number of face trajectories, their average duration, and cut rate, etc.; 2) 

Trajectory layer that was related to each unique face or text trajectory in the video 
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clip such as their duration, and movement type, etc.; and 3) Model layer that explains 

the face trajectory, which is a series of face models in a sequence of successive 

frames. One model corresponds to a single face or text detected in the frame. It 

includes the color, location, and size information. Each frame of the input video is 

represented by one of the 15 types (Anchor person text, face-text, Wide close up, 

Close shot, Many-face, Two-face, Medium close face, Many-text-line, Few-text-line, 

One-text-line, Uniform frame, Shot-start frame, Face-only, No-face-text and 

Undefined), with one symbol per type. These 15 symbols are then used in their HMM 

framework. Further details of their work can be found in [Wei 2000].  

[Eickeler 1997] considered 6 features, derived from the color histogram and motion 

variations across the frames, and employed HMM to classify the video sequence into 

the classes of Studio Speaker, Report, Weather Forecast, Begin, End, and the editing 

effect classes. They achieved more than 90% for the classes of Studio Speaker and 

Report, about 40% for editing effects and more than 80% for the rest of the classes.  

2.2.2.c Rule-Based Approach 

[Chen and Wong 2001] employed a rule-based approach to classify an input video 

into five classes of news, weather reporting, commercials, basketball, and football. 

They used the feature set of motion, color, text caption, and cut rate in the analysis. 

For each individual frame of the input video, the system classified the frame into one 

of the five classes. They employed CLIPS 6.5 rule-based programming language to 

extract rules. An example of the rule generated is: low-motion-magnitude & low-
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colorfulness & high P-MPC (Percentage-of-Most Prominent color) => news. More 

details of their work and the generated rules can be found in [Chen and Wong 2001]. 

2.2.2.d Hybrid Approach 

 [Ide 1998] tackled the problem of news video classification and used videotext, 

motion and face as the features. They first segmented the video into shots, and used a 

hybrid of heuristic approach and clustering technique to classify each shot into one of 

the five classes of: Speech/report, Anchor, Walking, Gathering, and Computer 

Graphics categories. These five classes, as reported in their work, covered 57% of the 

news video used for experiment. Their classification technique seems effective for 

this restricted class of problems.  

 

2.2.3 Related work on Detection of Transition Boundaries 

Another category of techniques incorporated information within and between video 

segments to determine class transition boundaries using HMM approach. One such 

work [Alatan 2001] focused on entertainment type videos rather than news video. They 

aimed to detect dialog and its transitions. They modeled the shots using the features 

of audio (music/silence/speech), face and location changed, and used HMM to locate 

the transition boundary between the classes of Establishing, Dialogue, Transition, and 

Non-dialogue.  

Identifying news story boundaries is the task of detecting a change of news topic. The 

identification can be achieved by detecting a change from some shot category to a 

particular type of shot category, for example changing from live-reporting shot to 
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leads-in shot (as found in CNN news video). Thus, it is possible to apply their 

technique to detect story transition in news video. 

 

2.3 Summary  

Related studies on shot classification have demonstrated the effectiveness of their 

techniques. For example, for the detection of anchor shots in news video, most 

techniques could achieve quite high accuracy. However, detecting shots such as “Bill 

Clinton” or “physical violence” is more difficult. The best accuracies as reported in 

[TRECVID 2003] and [TRECVID 2004] are about 23% for detecting “Bill Clinton” 

shots and less than 10% for detecting “physical violence” shots. Thus, we can see 

from the results that there is a need for further research to find a better solution to 

tackle these problems. 

Most related work on story segmentation employed machine-learning based approach 

in a single-level framework. As we know the machine-learning based approaches tend 

to suffer from data sparseness problem, thus most systems cannot achieve high 

accuracy. One way to alleviate the data sparseness problem is to adopt a multi-level 

learning framework, in which the problem is divided into sub-problems. This is 

similar to the approach taken in NLP (Natural Language Processing) research in 

which they perform part-of-speech tagging at the word level, following by other task 

such as noun-phrase extraction, parsing etc. at the sentence and higher level. Thus, it 

is reasonable to adopt a similar idea to design a multi-level framework for story 

segmentation in news video in a learning-based framework.  
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CHAPTER 3 
THE DESIGN OF OUR SYSTEM 

FRAMEWORK 
 

 

This Chapter discusses the design of the proposed approach. It presents an overview 

of the two-level system components includes shot segmentation, feature extraction 

and the main processes: shot classification (I) and story segmentation (II), as shown 

in Figure 3.1.  

 

3.1 System Components 

Although news video is structured, it presents great challenges in identifying story 

boundaries. The stories obtained can then be further classified into semantic classes 

such as “news story” or “miscellaneous story” as defined in TRECVID. In this 

research, the framework for story segmentation was designed and scaled to cope with 

large news video corpus such as the test data provided by TRECVID. It is composed 

of two levels: the shot level that classifies the input video shots into one of the 

predefined categories using a hybrid of heuristic and learning based approaches; and 

story level that performs story segmentation using machine learning and statistical 

methods based on the output of shot level and other temporal features. The 

framework on story segmentation is similar to the idea of natural language processing 
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(NLP) research in performing part-of-speech tagging at the word level, and higher-

level analysis at the phrase and sentence level.  

Before we can design the framework, to tackle the problem effectively, we must 

address three basic issues. First, we need to identify the suitable units to perform the 

analysis. Second, we need to extract an appropriate set of features to model and 

distinguish different categories. Third, we need to adopt an appropriate technique to 

perform shot classification and identify the boundaries between stories. To achieve 

this, we adopt the following strategies as shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

Figure 3.1: Overall system components. Note: SU is story unit. 

 

a) We first segment the input video into shots using a mature technique. This process 
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resolution technique developed in our lab [Lin 2000] and [Anantharamu 2002]. For 

the data provided by TRECVID, shot boundaries were given together with the 

videos. Thus we use these common shot boundaries for the test on TRECVID data 

so that our results can be compared to other participating systems based on these 

basic units. 

b) We extract a suitable set of features to model the contents of shots. The features 

include low level visual and temporal features, and high-level features. We select 

only those features that can be automatically extracted in order to automate the 

entire classification process.  

c) We employ a hybrid of specific detectors and a learning-based approach that uses 

the multi-modal features to classify the shots into the set of well-defined 

categories. This step is called shot classification (I) which involves three main sub 

processes: heuristic-based shot detection; visual-based shot detection; and 

machine-learning-based shot detection. This is based on the characteristics of the 

defined shot categories.  

d) Finally, given a sequence of shots in respective subcategories, we use a 

combination of shot categories and temporal features to identify story boundaries. 

The first approach that we proposed for story segmentation is the HMM approach 

[Chaisorn 2002], which has also been used in the TRECVID evaluations. Although 

we can compare our system performance with other systems based on the results 

evaluated by TRECVID, all the systems used different features and frameworks. In 

order to find alternative technique to compare with our HMM framework based on 
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the same set of feature and the 2-level framework, we employ rule-induction 

technique to perform story segmentation. This is based on the observation that the 

output from HMM corresponds to some rule patterns. For example, the transition 

from shot category of any type to Anchor shot typically indicates story changes. 

Another example is the transitions from Commercials to lead-ins shots also 

provide indication of story changes. We can therefore see that we can employ 

technique call rule-induction, which is much simpler than HMM. The details of the 

two approaches will be discussed in Chapter 5 and 6. 

The next chapter discusses the details of shot content analysis, the defined shot 

categories and the selection and extraction of features. 
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CHAPTER 4 
SHOT CATEGORIES AND FEATURES 

 

 

The purpose of this Chapter is two-fold. First it presents details of the selection of 

shot categories and their characteristics. It also briefs on shot segmentation and key 

frame extraction techniques. Second it presents details of the selection and extraction 

of features to support shot classification and story segmentation processes. Defining 

appropriate shot categories and the selection of prominent features is one of the 

contributions in this thesis.  

 

4.1 The Analysis of Shot Contents 

4.1.1 Shot Segmentation and Key Frame Extraction  

The first step in news video analysis is to segment the input news video into shots. 

We employ the multi-resolution analysis technique developed in [Lin 2000] and 

[Anantharamu 2002] that can effectively locate both abrupt and gradual transition 

boundaries effectively. 

After the video is segmented, there are several ways in which the contents of each 

shot can be modeled. We can model the contents of the shot: (a) using a 

representative key frame; (b) as feature trajectories [Chen and Chua 2001]; or, (c) 



Chapter 4   

Shot Categories and Features 32

using a combination of both. In this research, we adopt the hybrid approach as a 

compromise to achieve both efficiency and effectiveness. Most visual content 

features will be extracted from the key frame while motion and audio features will be 

extracted from the temporal contents of the shots. This is reasonable as we expect the 

visual contents of the shots to be relatively similar so that a key frame is a reasonable 

representation. We select the I-frame that is nearest to the center of the shot as the key 

frame.  

 

4.1.2 Shot Categories 

4.1.2.a The Selection of Shot Categories 

The next step is to determine an appropriate and complete set of categories to cover 

all shot types. The categories must be meaningful so that the category tag assigned to 

each shot is reflective of its content and facilitates the subsequent stage of segmenting 

and classifying news stories. We study the set of categories employed in related 

works, and the structures of news video. We arrive at the following set of shot 

categories. They are Intro/Highlight, Anchor, 2Anchor, People, Speech/Interview, 

Live-reporting, Still-image, Sports, Text-scene, Special, Finance, Weather, and 

Commercial. These 13 categories cover all essential types of shots in news video 

under study including CNN, ABC, and Singapore news. The coverage of each of the 

categories in news reports may vary from station to station. For example, each CNN 

or ABC news broadcast provided by TRECVID 2003 contains about 40% of 
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commercials, 26% of Live-reporting, 9.5% of Anchor and 2Anchor shots, and the 

remaining shot categories cover the rest of the shots.  

In addition to these categories, in order to cover the data provided by TRECVID 

[TRECVID 2003], we also introduce a cluster of program logos including: LEDS (to 

represent lead-in/out shots); TOP (top story logo shot); PLAY (for play of the day 

logo shot), SPORT (to capture sport logo shots); and HEALTH (to represent health 

logo shots). Out of the above categories, some are quite specific such as the Anchor 

or Speech categories. Others are more general like the Sports, Special or Live-

reporting categories.  

However, some of the categories share common characteristics such as Weather and 

Finance, which are visually similar within a broadcast station. Thus, we can group 

those shots with common properties into the same cluster. In this study, news video 

shots are grouped into three clusters. The first cluster is the Heuristic-based cluster 

for Commercial shots. The detection of commercial shots was performed based on a 

combination of black frames (detected using color histogram), high cut rate and low 

confidence value in ASR (Automatic Speech Recognition) output.  

The next cluster is the Visual-similarity-based cluster which is subdivided into two 

groups: a) visual-similarity within a broadcast station such as Weather, Finance and 

those program logos shots; and b) visual-similarity across news broadcast station such 

as, Anchor and 2Anchor. For this cluster, we use 176-Luv-color-histogram of the key 

frame to represent each shot. Image similarity matching is employed to identify the 

shots in the first group while clustering technique is used to detect the categories in 
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the second group. This is based on the fact that Anchor and 2Anchor shots within a 

news broadcast contain similar back ground throughout the whole sequence of video.  

The last cluster is the Machine-learning-based (ML) cluster with such categories as 

People, Live-reporting, Text-scene, etc. shots.  Shots within this cluster are classified 

using Decision Tree.  

Figure 4.1 presents the three clusters of shot categories. 

 

 

 

 

 

Figure 4.1: Clusters of the shot categories in this framework 

It is found from the experiments (details will be discussed later in Chapter 6 on the 

result of story segmentation) that shot categories of visual-based cluster especially 

Anchor and 2Anchor are the most significant categories in identifying story change. 

They contribute to over 70% of the total stories found by our system and the 

remaining categories of the same cluster contribute more than 10% while ML-based 

cluster contributes to about 16% of total stories found. 

4.1.2.b Shot Categories and their Characteristics 

• Heuristic-based cluster 

SShhoott cclluusstteerrss

HHeeuurriissttiicc  bbaasseedd  VViissuuaall--ssiimmiillaarriittyy
bbaasseedd  

MMLL 
BBaasseedd  ((DD..TT..))  

AAnncchhoorr,, 22AAnncchhoorr 

WWeeaatthheerr,, ffiinnaannccee 

LLiivvee--rreeppoossttiinngg  

SSppoorrtt 

Text-scene PPrrooggrraamm LLooggooss,, 
LLEEDDSS

CCoommmmeerrcciiaallss  

EEttcc.. 



Chapter 4   

Shot Categories and Features 35

o Commercials.  Commercials are used to present messages or to sell 

products. Because it is expensive to air commercials especially during 

prime hours, the commercials tend to be short and packed with product-

related information. Thus commercials typically contain fast changing 

shots, and end with still images showing the company’s logos or products. 

In most countries, it is mandatory to air several black frames preceding or 

after a block of commercials [Koh and Chua 2000]. However, this is not 

always the case in many countries, like in Singapore. Our studies show 

that commercial boundaries can normally be characterized by the presence 

of black frames, still frames and/or audio silence [Koh and Chua 2000]. 

• Visual-similarity-based cluster  

o Finance. This type of shots is characterized by image content. Based on 

our video sample, Finance shots normally appear in the middle of the 

news. The visual contents of these shots, in terms of colors, position of 

text, music, etc., are almost the same within a broadcast station. Thus, we 

can effectively identify such shots simply by using the image similarity 

between an unseen shot (represented by its key frame) and the 

representative key frame of Finance shot. Example images of this category 

are shown in Figure 4.2. 

o Weather. This type of shots is similar to Finance shots in such a way that 

the visual contents of these shots are very similar. Thus we can again use 
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image similarity measure to identify these shots. Examples of key frame of 

Weather shot are shown in Figure 4.2. 

 
Finance 

 
Finance 

 
Weather 

 
Weather 

Figure 4.2: Examples of Finance and Weather categories  

 

o Program logos: Special types of program logos found in CNN news video 

are LEDS, PLAY, HEALTH, SPORT, and TOP. Examples of the 

categories are shown in Figure 4.3. 

 

LEDS 
 

LEDS 
 

HEALTH 

 
TOP 

 
SPORT 

 
PLAY 

Figure 4.3 Examples of program logos in CNN news video. 
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o Anchor. This is the most typical shot type in news reports with one anchor 

person appearing in fixed background. Thus, the shot is normally of closed 

up or medium distance shot containing one detected frontal face. Also, at 

the beginning of the anchor shots, there are usually one to two lines of text 

at the bottom stating the anchor person’s name and title. The shot duration 

is usually long.  Examples of anchor shots in CNN and ABC news videos 

from the TRECVID data are shown in Figure 4.4 

Figure 4.4: Examples of anchor shots from CNN and ABC news video 

o 2Anchor. Shots in this category containing two anchor persons and are 

usually shown as part of transition from one topic to the next. They are 

usually medium shots with two detected (frontal) faces. The shot duration 

is usually short (switch topics). Examples of 2Anchor shots are presented 

in Figure 4.5. From the Figure, we can see from the shots of ABC news 

that, the main anchor person is facing his back to the audiences, thus his 

face is not seen. In this case, sometimes the face detection system used in 

 
CNN 1 (left) CNN 2 (center) CNN 3 (right) 

 
ABC 1 (left) ABC 2 (center) ABC 3 (right) 
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this thesis can only detect only one face. Thus, this shot will likely be 

misclassified into Anchor. 

 
CH5 

 
CNN 

 
ABC 

Figure 4.5: Examples of 2Anchor shots from CH5, CNN, and ABC news 

• Machine-learning-based (ML) cluster 

For the remaining categories, their characteristics are not obvious and they can best 

be discriminated using a machine learning technique. Here Decision Tree is employed 

to perform the classification. It is found that shots in this cluster are not only useful 

for story segmentation but also in news video retrieval. The assigned categories are 

used for further indexing and supporting interactive task such as a query on specific 

Speech or Text-scene shots on certain news story. For example, in order to support the 

query, “give me speech shots by Bush on Iraq war”, the system: (a) first locates the 

story (or stories) of Iraq war; (b) locates Bush’s name in the story (stories); and (c) 

tries to get the Speech shots around the region that Bush’s name appears. However, 

this application is beyond the scope of this thesis. The details of each category in this 

cluster are given below. Figure 4.6 presents some examples of each category in this 

cluster. 

o People. We adopt the notion used in TRECVID 2003 which defined for a 

shot containing two or more faces as People shot. This type of shots 

usually contains at least two detected faces with similar sizes in a frame. 
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However, the accuracy is dependent very much on face detection 

algorithm. If the faces in the frame are not large enough or are not strictly 

frontal then some of these shots will be misclassified. Shot duration of this 

type usually varies from medium to long. 

People Speech Still-image 

 Intro/Highlight sports sports 

 Text-scene  Live-reporting  Special  

Figure 4.6 Examples of categories in the machine-learning based cluster 

o Speech/Interview/Reporting. For simplicity without lost of generality, we 

will call this type as “Speech” shot. When a person is giving a speech, 

being interviewed, or when a reporter is reporting news from a relay spot, 

there is usually one person speaking in the middle of a frame. This type of 

shot is similar to Anchor shot, thus additional technique is required to 

solve the ambiguity. One technique is to perform clustering to identify the 

background of Anchor person shots since anchor person appears much 
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more frequently in a news broadcast with almost identical background but 

with different background from the person in the Speech shots. 

o Still image. Usually, when there are one or more faces (or no face) 

detected with or without text captions and there is no motion in the shot; 

then it is possible that the shot comprises still images. 

o Intro/Highlight. Before the actual news is reported, several Intro/Highlight 

shots are introduced giving the introduction of the upcoming news to be 

reported.  These shots contain speech with background music, and the shot 

duration is normally short. In the news under study, the duration of these 

shots is less than 10 seconds on average. 

o Sports. In our training and testing samples, there are a few types of sport 

that are commonly reported such as, soccer (football), basketball, golf, and 

tennis. These shots normally contain background noise and high motion. 

In this work, we simply use these characteristics to classify sport shots as a 

general sport category. Additional techniques are required to further 

classify the shots into specific types of sport, such as soccer, basketball, 

etc. 

o Text-scene. This type of shot is used to present the summary of events 

such as the results of a sport game, or the latest currency exchange rates 

etc. They typically contain only multiple lines of normally centralized text. 

We discover in TRECVID data that Text-scene appearing after a sport 

reporting usually indicates a transition to the next sport news report. 
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o   Special. This is a special type of category for the news under study. It is 

used to present the typically light-hearted events. For example, in our 

sample, one such shot is about a dolphin giving birth to a baby. This 

category is hard to detect as its characteristic is similar to that of live 

reporting, except in some broadcast channel, they will present this report 

with music in the background. Under this study, this type is found in some 

CNN news and local news (Mediacorp, channel 5). 

o Live-Reporting. Live-reporting shots typically involve the reporting of an 

event, follow by footages of the event. The event can be of any types and 

in any environment. Thus it is hard to detect such shots. In this research, 

we simply classify those shots that do not fit into any of the above 

categories as live-reporting shots. 

4.1.2.c Relationship between Shot Categories and Story Units 

In general, news video contains a series of stories organized in term of different 

geographical interests (such as international, regional and local) and in broad 

categories of social political, business/finance, entertainment, sports and weather. 

Each story may contain shots of several categories begins with an Anchor shot (~60% 

of news begins with Anchor shot), followed by several People, Live-reporting, and/or 

Speech shots.  

Different news stories may contain similar combination of shot categories. However, 

the patterns, order, and frequencies of shot categories are different. For example, 

general news reporting, such as the world news, will contain mostly Anchor person 
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shots with some People, Live-reporting and a few Speech shots. On the other hand, 

the sports story will contain mostly the actual sports footages, possibly with some 

Speech, Live-reporting and Text-scene shots. Figure 4.7 illustrates the relationship 

between story and shot categories.  

 

Figure 4.7: A relationship between shot categories and story units 

 

4.2 Choice and Extraction of Features  

The choice of suitable features is critical to the success of most learning-based 

classification systems. Here, we aim to derive a comprehensive set of features that 

can be automatically extracted from MPEG video to facilitate shot classification. Our 

focus is on using existing tools to extract the best set of features to solve our problem.  

 

Weather Sports News 
reporting 

News 
reporting 

Text-
scene 

People  Speech  Sports Anchor 
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4.2.1 Low-level Visual Content Feature 

Color Histogram: Color histogram models the visual composition of the shot. It is 

particularly useful to resolve two scenarios in shot classification. First, it can be used 

to identify those shot types with similar visual contents such as the weather and 

finance reporting. Second, the color histogram can be used to model the changes in 

background between successive shots, which provides important clues to determining 

a possible change in shot category or story. Here, we represent the content of key 

frames using a 176-Luv color histogram as expressed in [Chua and Chu 1998]. 

 

4.2.2 Temporal Features 

Background scene change: Following the discussions on color histogram, we include 

the background scene change feature to measure the difference between the color 

histogram of the current and previous shots. By using clustering method and raising 

threshold value, we can derive the change feature. It is represented by ‘c’ if there is a 

change and ‘u’ otherwise.  

The algorithm to detect background scene changed is applied to key frames extracted 

from each shot.  Euclidean distance was employed to measure the similarity between 

shots (key frames). After similarities between any two shots of the video have been 

computed, shots with similarity values higher than the predefined-threshold are 

passed to clustering algorithm. Shots in the same cluster are considered to be in the 

same scene, if their distances span within a 50-shot window.  
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Speaker change: Similar to background scene change feature, this feature measures 

whether there is a change of speaker between the current and previous shot. It takes 

the value of ‘u’ for no change, and ‘c’ if there is a change. The later condition also 

applies to shots that do not contain speech but when there is a change from the 

previous speech to non-speech shot or vice versa.  The change from non-speech shot 

to speech shot can be done on top of the audio classes obtained during audio 

classification (to be discussed later). However, for those consecutive shots containing 

audio track of different speakers, we need a speaker identification method to identify 

the change. Most well known method is based on the Gaussian model of each 

speaker. Given an unknown speech model, the system compares with the models in 

the database. Speaker-ID of the model that gives the minimum distance with the 

unknown speech is then assigned. In general, a person’s voice carries unique audio 

features and different from one another. Thus, it is possible to identify a speaker 

provided the system has the speaker model in the database. Speaker change feature 

was used in our early work. However, we did not include this feature in the series of 

test done on the TRECVID data. The reason is because after we performed the testing 

on a subset of the training data, we found that this feature degraded our system 

performance.  

Audio: This feature is very important especially for Sport and Intro/Highlight shots. 

For Sport shots, its audio track includes both commentary and background noise, and 

for Intro/Highlight shots, all the narrative is accompanied by background music. 

Here, we adopt an algorithm similar to that discussed in [Lu 2001] to classify audio 

into the broad categories of speech, music, noise, speech and noise, speech and music, 
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or silence. They employed three sets of Support Vector Machine (SVM) to classify 

the audio classes. The first SVM is to separate speech from non-speech data. The 

second SVM is to discriminate pure-speech and non-pure speech on the speech class 

obtained from the first SVM. Finally, the third SVM is to differentiate background 

noise from music on non-speech data obtained from the first SVM. Audio features 

used in their technique include Mel-frequency ceptrum coefficients, Zero-crossing 

rate, Short time energy, Spectrum Flux, and noise frame ratio.  Further details can be 

found in [Lu 2001]. They reported the accuracies of about 87% and 94% for pure-

speech and non-pure speech respectively; and accuracies are about 82 and 92% for 

music and background sound (noise) respectively. Figure 4.8 shows a binary tree for 

the SVM classification while Figure 4.9 shows an example of the analysis of some of 

the audio features used in our work. 

 

 

 

 

 

 

Figure 4.8: Binary tree for multi-class classification 
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Motion activity:  For MPEG video, there is a direct encoding of motion vectors. 

Motion vector of current frame and reference frame are used to reconstruct the 

current frame.  This feature can be used to indicate the level of motion activities 

within the shot. To compute motion activity, for each frame of a shot, the number of 

macro blocks that contains non-zero motion vectors is counted. This number can be 

denoted as NMC. Frames with high NMC means there are large number of macro 

block containing non-zero motion vectors and thus these frames are of high motion 

whereas frames of low NMC mean they are of low motion. Figure 4.10 illustrates 

macro block structure and motion vector in MPEG video. Further details of motion 

vector and MPEG-1 standard can be referred elsewhere or in [MPEG 1993].  

We usually see high level of motion in sports and certain live reporting shots such as 

the rioting scenes. Thus, we classify the motion into low (like the Speech shots and 

some People shots where only the head regions have some movements), medium 

(such as riot shots), high (like in sport shots), or no motion (for still frame shots).  

Figure 4.9: Example of the analysis of audio
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Figure 4.10: Illustrates macro block and motion vector in MPEG video. 
 
 

Figure 4.11 presents an example of motion activity for a period of a thousand frames 

taken from two consecutive shots. The first shot is a riot shot (players walking) and 

the second is a Speech shot (one player is being interviewed). We can see that shot 1 

is dominant by moderate motion activity while shot 2 is dominant by low motion 

activity. Here, it is not necessary to differentiate camera movements and object 

movements. From the observation, shots of high activity (either camera movement or 

object movement) usually occur in sport news or riot scenes.  

 

 

 

 

Figure 4.11: A graph of motion activity for a period of a thousand frames taken 
from sport shots. 
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In order to classify motion activity into low, medium and high, there are some 

important factors that need to be considered. Consider the example of the two shots 

given above. In normal case, we may classify the motion activity into high if its value 

is higher than the average value plus the standard deviation. However, it is not 

appropriate in this case. This is because within a shot, in particular, in sport shot, the 

motion activity may begin with low and then high in the middle and persist through 

the end of the shot. To obtain the motion activity for this type of shot, we need to find 

the duration of each type of motions during the shot, and classify the shot based on 

the motion type with the highest duration, or the most dominant motion activity type. 

If, we estimate the motion activity of this shot using the average motion value, then 

this shot will be wrongly classified as medium motion. Therefore, it is reasonable to 

represent each shot by its dominant motion activity which has the highest occurrence 

based on all frames of the shot. The formula used for computing motion activities can 

be expressed as: 
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none ;when x(i,j,k) =0 

high ;when x(i,j,k) > MAavg + σ 

low ;when x(i,j,k) < MAavg -- σ 

medium; otherwise 

MAf = 
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where ),,( kjix  is the number of macro block containing motion vector for frame k, 

shot j and video clip i. Sj is number of frames in shot j. Ni is the number of shots in 

video clip i, and M is the total number of video clips to be processed. N is the average 

number of shots for each video clip. MAavg is the average motion activity (in number 

of macro block) per frame. MAf  is frame motion activity level. Thus, after the motion 

activity for all frames in a shot have been classified, we can represent a sequence of 

the motion activities for the shot as a series of string. For example, a shot contains 10 

frames with motion activities as: ‘low low high high high high high high high 

medium’. To get the motion activity level for this shot, we simply count the highest 

frequency motion, in this case ‘high’ has the highest frequency. Therefore, this shot is 

represented by “high” motion activity. 

Shot duration: For Anchor-person or Interview type of shots, the duration tends to 

range from 20 second to minutes. For other types of shots, such as the Live-reporting 

or Sports, the duration tends to be much shorter, ranging from a few seconds to about 

10 seconds. The duration is thus an important feature to differentiate between these 

types of shots. We set the shot duration to short (if it is less than 10 seconds), medium 

(if it is between 10 to 20 seconds), and long (for shot greater than 20 seconds in 

duration). Shot duration, in symbolic representation, can be derived as follows: 
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Where  Sij  - duration of shot j (in second) in video clip i;  

           Ni – Number of shots in video clips i;  

M – Number of video clips and  

N – Average number of shot per clip 

 

4.2.3 High-level Object-based features 

Face: Human activities are one of the most important aspects of news videos, and 

many such activities can be deduced from the presence of faces. Many techniques 

have been proposed to detect faces in an image or video. In our study, we adopt the 

algorithm developed in [Chua 2002] to detect mostly frontal faces in the key frame of 

each shot. The main concept of face detection in this approach can be expressed as 

follows. First, the system generates contrast representation using average gradient 

energy. Next, neural network face detection model is trained. The system then looks 

for faces at multiple locations and scales. Finally, the system applies Gaussian skin 

color model to verify the faces found. Results of the system tested on a set of video 

clips containing 285 frontal and slightly slanting faces belonging to 25 subjects 

yielded an accuracy of over 89%.  

The objective for face detection in this research is to extract face as well as its size. 

Face in static shots such as Anchor or most of the Speech shots can be detected more 

accurately than those in the dynamic shots, such as the walking scene or sport shots in 

which the number of faces in the same shot may vary due to camera movement. Thus, 

we need to select the appropriate number of faces to reflect the semantic of the shot. 

The number of face/s for each shot can be derived from: 

 ][arg
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Fi    = No. of faces in shot i;   

K   =  { j:  no. of faces detected in shot i, j = 0, 1, 2, ...} 

nij = no. of consecutive frames in shot i containing j faces 

 

Figure 4.12 shows the result of detecting mostly frontal faces and Figure 4.13 

presents an example of the number of detected faces in one shot. Our algorithm 

performs face detection in every I-frame of the shot. Although, processing on a key 

frame per shot is much cheaper, but we want the accuracy of detecting face in a shot 

to be highly sufficient for further processing in story segmentation process. Hence, 

we choose to perform face detection on every I-frame of each shot. 

 

 
 
 
 
 

Figure 4.12: Examples of the result of face detection 

 

Figure 4.13: An example of a shot where there are three possible numbers 
of faces. Number in each cell represents the number of detected face/s 

 

From Figure 4.13, we can see that within this shot we first detected one face, then two 

faces, followed by one and then ended with zero (camera captured on background 

scene or other objects). In this case, we consider the number of faces in this shot to be 

2. This is because, two faces appears for the longest period in the shot as compared to 

1 1 2 2 2 2 1 0 
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that of one face’s  or zero face’s. The resulting shots with one or two detected faces 

will be used as the candidates for Anchor and 2Anchor shots classification.  

Shot type: The type of focal distance of the shot and its background colors help to 

identify the category of the shots such as the Anchor or 2Anchor shots. As it is 

difficult to estimate the camera’s focal distance, we simply use the size of the 

detected faces to estimate the shot type, which includes closed-up (c), medium-

distance (m), long-distance (l), or unknown (u) shot (when no face is detected). The 

estimation of shot type is based on the following formulas:  

 

 

 

 

 

where  Si – The size of the detected face in shot i; 

   W, H - Width and height of the detected face; 

   N – The number of detected faces from all video clips; 

Savg - the average size of a face computed from all detected faces.  

 

We collect a large set of close-up shots from 40 video clips in the training set. These 

shots are of categories Anchor and Speech. After we perform face detection on the 

key frames of these shots, we compute the average size of the detected faces, Savg(c,) 

and their standard deviation, σ(c). The lower bound for the threshold for close-up 

type, T(c) is set to Savg(c) - σ(c). For medium type shot, we collect shots of categories 

People and 2Anchor from the same 40 video clips. Similar to the estimation of close-

up type, we compute the average face size, Savg(m) and its standard deviation, σ(m). 
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We set the upper bound of medium type to be, T(m) and Tupper(m) < Savg(c)- σ(c) 

(which is the lower bound of close-up type). As for the lower bound of this type, 

Tlower(m) , it is set to Savg(m) - σ(m). Therefore, the long distance type shots are those 

shots with face/s detected but their sizes are smaller than the lower bound of Tlower(m). 

Finally, the unknown type was assigned to those shots with no detected face. We 

estimate that the accuracy of our shot type estimation technique is above 95% by 

testing on a different 20 video clips from the training set.  

Videotext: Videotext is another type of object that appears frequently in news video 

and can be used to deduce video semantics. An example of shot category that 

contains multiple lines of videotext is the Text-scene category of which is frequently 

used to show sport or score and finance summary. Thus, the detection of multiple 

lines of centralized videotext is important to differentiate Text-scene shot from other 

categories. Also in Anchor shot or Speech shot categories, besides a face appearing in 

the shot, there will be the person’s name appearing mostly at the bottom. For these 

two categories, videotext is also important. By extracting videotext from the shots 

containing faces, and performing character recognition using OCR (Optical Character 

Reader), we can obtain the names that can be used to associate with the persons 

appearing in the shots. However, the performance of video OCR is not sufficiently 

high and robust to enable videotext to be recognized accurately, hence in this research 

we do not rely on OCR text for shot classification. Instead, we simply employ the 

algorithm developed in [Zhang and Chua 2000] to detect the presence of videotexts. 

In the key frames of each shot, the system simply tries to detect videotext and 



Chapter 4   

Shot Categories and Features 54

determines the number of lines of text. Examples of detected videotext are shown in 

Figure 4.14. 

 
Figure 4.14:  Examples of the detection of Videotexts from key frames 

 
Centralized Videotext: We often need to differentiate between two types of shots 

containing videotexts. The normal shot where the videotexts appear at the top or 

bottom of a shot to indicate its contents; and the Text-scene shot where only a 

sequence of texts is displayed to summarize an event, such as the results of soccer 

games or financial summary. A text-scene shot typically contains multiple lines of 

centralized text, which is different from normal shots that may also contain multiple 

lines of text but normally un-centralized in a corner or at the bottom. Hence, we 

include this feature to identify Text-scene shots. It takes the value “true” for 

centralized text and “false” otherwise. Figure 4.15 presents a view of centralized 

videotext. We develop a simple algorithm for detecting centralized text. From the 

training data, the algorithm performs videotext detection. From all the frames with 

detected videotext and belonging to Text-scene category, we collect statistics 

(average, maximum, minimum) of the coordinate of the text box (a text box is where 

all lines of text in this frame are contained).  

The detection is done on a frame by frame basis. For each frame, the algorithm first 

examines whether there is Videotext and determines the number of lines of text using 
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the algorithm described previously. If there are text lines, then the algorithm extracts 

the boundary box containing the text called the textbox. The algorithm then 

determines whether the box is centralized by considering the 4 main cases as follows 

(see Figure 4.15):  

Centralized 
region 

________________________________ 
|              | 
|   (x1,y2) ______________         | 
|         |    |     | 
|   |    |  | 
|   |    |  | 
|   |    |  | 
|   |______________ |  | 
|      (x2,y1) | 
|_______________________________ | 
        

Figure 4.15: Scenario for Centralized Videotext 
 

 
1) Check if the text box resides in the center box region. 

2) Check if the text box is bigger than the center box and overlaps with the 

center box. 

3) Check whether the width of text box exceeds the center box width and 

overlaps with the center box; and. 

4) Check whether the height of the text box exceeds the center box height. 

 

If one of the above conditions is met, we consider the text is to be centralized. Our 

algorithm could achieve an accuracy of about 85% by testing on a subset of the 

training data containing ~20 hours of video. 

frame 
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Cue-phrase: From the ASR (automatic speech recognition) results of the speech track 

in videos; we analyze the statistics of cue-phrases that typically appear at the 

beginning of news stories (Begin-Cue) and miscellaneous stories (Misc-Cue). For 

each shot, we represent Begin-Cue as 1 (presence of Begin-Cue) or 0 otherwise. This 

feature is used during the story segmentation process. Misc-Cue is used to align the 

detected stories.  

• Begin- cue: We observed that some of the story segments are typically preceded 

or ended with a set of cue phrases. To extract this list of cue phrases, we first compile 

a list of unique n-grams from the ASR transcript in all the story segments, and for 

each n-gram ti, we calculate the probability that the n-gram indicates the start (pb) or 

end of the story (pe) by: 

 

  

)()()()( iiii tEtMtBtT ++=  

 

where: B(ti) - number of stories containing ti in first b n-gram; 

E(ti) - number of stories containing ti in last e n-gram; 

M(ti) - number of stories containing ti in (b+1) to (e-1) n-gram. 

 

The list of pb(ti) and pe(ti) are ranked, and we select the n-grams with p(ti) ≥ 0.80 as 

the cue phrases. In our experiments, we set b and e to 10. Table 4.1 gives some 

examples of the selected cue phrases. 
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Type Cue phrases 

Begin checking the hour’s; 
good evening I am;   

brief review of 

End ABC news Washington; 
john macwethy ABC news; 

CNN New York 

Table 4.1: Examples of begin/end cue phrases. 

 

• Misc-Cue: In addition, miscellaneous (misc) segments contain similar information 

such as reporter chit-chat/scoreboard/stock quotes/advertisements as defined in the 

TDT-2 guidelines. Using a similar method, the list of unique n-grams from the misc 

segments can also be obtained. For each n-gram ti, we compute the probability: 

 

 

where: Nmisc(ti) is number of MISC stories containing n-gram ti  and Nnews(ti) is 

number of NEWS stories containing n-gram ti. 

 

The top ranked n-grams are selected and clustered to generate a list of Misc-cue 

phrases. Some examples of Misc-cue are given in Table 4.2. These Misc-cue phrases 

are used to realign story boundaries (obtained from HMM) to the correct boundaries. 
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Shot Type Cue phrases 
 

Anchor,  
Program logos, 

“Weather forecast is next” 
“top stories are” 

“Good morning this is” 
“when we come back” 

 
Finance “dow industrials” 

“broader markets” 
“nasdaq composite” 

 
sports “On the scoreboard” 

 

Table 4.2: Examples of Misc-cue phrases. 

The scenario for the realignment of stories boundaries is shown in Figure 4.16. As we 

can see from the Figure, the detected boundaries are not at the correct positions due to 

the presence of some Misc-cues that we need to segment out. The detected boundaries 

are correct if we consider only shot boundaries. However, they are not correct if we 

consider the beginning of non-Misc text as the actual start of stories as defined in 

TDT-2.  

 
 
 
 
 
 
 
 
 
 

 
 
 
All the features, discussed above are essential for modeling the content of shots in our 

approach. Sequence of shots and their contents can be viewed and modeled as shown 

in Figure 4.17.  

vviiddeeoo  
DDeetteecctteedd bboouunnddaarriieess

CCoorrrreecctteedd  bboouunnddaarriieess  MMiisscc--ccuuee  

Figure 4.16: Story boundaries before and after the realignments  
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If news video were to be given in MPEG-7 format, we would be able to use or extract 

some of the features directly encoded in MPEG-7 video. These features include color 

histogram, motion activity, face, and audio type. This will save processing time. More 

details on MPEG-7 standard can be found in [MPEG -7 2000] or elsewhere. 

After all features are extracted, the next task is to perform shot classification. The 

shot classification produces shot Tag_ID which is unique for each shot category. The 

shot category information together with scene change and cue-phrase features, are 

then used in the story segmentation process. We will discuss the shot classification 

and the result in the next chapter. Details of the story segmentation using HMM 

approach with the evaluation results are discussed in Chapters 6, while the details of 

story segmentation using rule-based approach is discussed in Chapter 7. 
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Figure 4.17: A view of shot contents in our approach 
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CHAPTER 5 
SHOT CLASSIFICATION 

 

 

This chapter presents the details of shot classification. It discusses shot representation 

and the fundamentals of the shot classification methods. It also presents the 

classification results, which are obtained, from small-scale data set and large-scale 

data set from different sources. In addition, the analysis of effectiveness of the 

selected features is also given.  

 

5.1 Shot Representation 

After the extraction of all features as discussed in the previous chapter, the contents 

of each shot are represented in two forms: a color histogram vector; and a feature 

vector. The histogram vector is used to match the content of a shot with the 

representative shot of certain categories, while the feature vector is used by the 

classifier to categorize the shots into one of the remaining categories. The color 

histogram vector and the feature vector of a shot are of the forms: 

Si  = (h1, h2, …h176)  (5.1) 

           Si   = (f, s, t, c, a, m d)        .       (5.2) 

Where - hi  the histogram value of Luv color i, i =1, 2, .., 176 
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f  the number of faces, Ν∈f  

s the shot type, s ∈{c= closed-up, m=medium, l=long, u=unknown} 

t the number of lines of text in the scene, Ν∈t  

c the text centralized feature. It is set to “true” if the videotexts present are 

centralized, c ∈{t=true, f=false} 

a the class of audio, a ∈ {t=speech, m=music, s=silence, n =noise, tn =  

speech + noise, tm= speech + music, mn=music+noise} 

m  the motion activity, m ∈{vl = very low, l=low, m=medium, h=high} 

d the shot duration, d ∈{s=short, m=medium, l=long} 

 

Note that at this stage we did not include the scene change and speaker change or cue-

phrase features in the feature set. These features are not essential for shot 

classification and will be included in story boundary detection using HMM. 

 

5.2 The Classification of Video Shots 

As described in Section 4.1.2, we divided shot categories into three clusters and thus 

there are three main sub-processes to classify shot categories in each cluster. They are 

heuristic–based (Commercials) shot detection, visually similar shot identification, and 

rule-based shot classification. Figure 5.1 shows the process diagram for the 

classification of shots. 

Each cluster has its own characteristics, thus we need three separate techniques to 

perform the classification of shots. The techniques must be effective and scalable in 

order to cope with large scale data from different domains. The techniques to be 
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discussed in the following sections are employed and enhanced to deal with the 

detection of shot categories in each of the clusters. 

 
 

Figure 5.1: Process diagram for shot classification 

 

5.2.1 Heuristic–based (Commercials) shot detection 

Commercial boundaries can normally be characterized by the presence of black 

frames, still frames, audio silence, or any combination of all of them. We therefore 

employ a heuristic approach to identify the presence of commercials and detect the 

beginning and ending of the commercial blocks [Koh and Chua 2000]. In addition to 

news video, TRECVID 2003 also provides the associated ASR (Automatic Speech 

Recognition) outputs. These ASR outputs (textual data output with their confidence 

level of each word) can be used as another feature source. Low confidence values in 

the ASR results indicate potential commercial breaks. This is because commercials 

tend to have high cut rate with noisy or music background, thus the ASR output tends 

to have low confidence. From the experiments under this study, in addition to high 

cut rate and blank frames, the incorporation of confidence level improves the 

accuracy of commercial detection by about 5%. Figure 5.2 shows the details of our 

commercial detection process as discussed above. 

Shot 
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Visual-based 
shot detection

ML-based shot 
classification 
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Figure 5.2: Diagram for the steps in commercial detection 

 

5.2.2 Visually Similar Shot Detection 

Next we identify the shot types that have high similar visual features. In this cluster, 

there are two sub-types: visually similar within the broadcast station (VSB); and 

visually similar across news broadcast (VSN) in general. Examples of VSB sub-type 

includes Weather and Finance reports, program logos such as “TOP” (top stories log), 

“PLAY” (play of the day log), “SPORT” (sport logo), “HEALTH” (health program 

logo), and “LEDS” (lead-ins/out). Examples of the later sub-type, VSN, include 

Anchor and 2Anchor categories.  

For the classification of the first sub-type, the representative color histograms from 

the key frames of the respective categories are extracted. Then, the image-matching 

algorithm developed in [Chua and Chu 1998] is employed to compute the similarity 

between the key frames in the database and the test images. The algorithm also takes 

into account of perceptually similar colors. We adopt a high threshold of 0.8 to 
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determine whether a given shot belongs to the respective categories. Figure 5.3 

presents a scenario to illustrate the technique. 

 

 

 

 

 

 

Figure 5.3: A scenario for image matching between the test images and the 
database images 

 
 

From Figure 5.3, DBi represents a database for news video of broadcast station i. For 

example, DBCNN  is the database for CNN news video in which the histograms of key 

frames (taken from the training set) of the respective categories are stored. The 

algorithm compares the histogram of the test image with the histograms of images 

stored in the database of the same broadcast station. The category of the test image is 

determined based on the major category of the top three database images whose 

similarity values with the test image are greater than the threshold. The method can 

be applied to any number of broadcast stations. For best result, domain knowledge 

(such as the data source, program schedule, etc.) of news video is an advantage. 

However, if we have no clue as to the source of news video under examination, then 

this technique needs some adjustments. The formulas used to compute image 

similarity are given below. 

 

Image 
matching

Image 
matching

Image 
matching

Test 
images

Test 
images

Test 
images

… 
DB2 DBN DB1 



Chapter 5   

Shot Classification 65

(5.3) 

 

(5.4) 

 

  )),,(_+(1=),,( iDQSIMPERCEPTiDQSIMEXACTiDQSIM ColorColorColor ),,(_  (5.5) 

 
(5.6) 

 
 

 

where Q is the test image and D is a database image; S(i,j) stores the similarity value 

between color i and color j; and NH (Q, i) is the normalized histogram value for color 

i of image Q. The algorithm first computes EXACT_SIMcolor (Q, D) which is the 

similarity between database image D and test image Q without considering the 

perceptual similarity between colors. Next, it computes PERCEPT_SIMcolor (Q, D), 

which taking into account of perceptually similar colors. Finally, it adds the two 

similarity values and normalizes the result to produce SIMcolor (Q, D), which gives the 

overall similarity over all the colors between images Q and D. For more details of the 

algorithm, refer to [Chua and Chu 1998].  

For categories Anchor and 2Anchor in the second sub-type, we employ a clustering 

algorithm to cluster the candidate shots containing one or two detected faces. After 

clustering; we select the biggest cluster to represent the shots for anchor news 

reporting. We further divide this cluster into the clusters of Anchor and 2Anchor 

based on the number of face. There are well-known clustering algorithms such as 

Hierarchical clustering, K-mean clustering, etc. Here, we employ the single-linkage 

hierarchical clustering method [Krishnaiah and Kanal 1982] to perform the Anchor 
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and 2Anchor shot identification. The reason that this algorithm is chosen is because, it 

performs the best on the test data as compared to other clustering algorithms. For 

simplicity, the processing steps of the algorithm are expressed as below.  

Clustering Algorithm: 

Given the set S = {xi}, xi is an instance i, i =1, 2, …N, where N is the total number 

of instance. 

1. Place each instance of S in its own cluster (singleton), creating the list of 

clusters L (initially, the leaves of T):  

L = S1, S2, S3, ..., SN-1, SN. 

2. Compute a merging cost function between every pair of elements in L to find 

the two closest clusters {Si, Sj} which will be the cheapest couple to merge.  

3. Remove Si and Sj from L.  

4. Merge Si and Sj to create a new internal node Sij in T which will be the parent 

of Si and Sj in the result tree.  

5. Go to (2) until there is only one set remaining.  
(Source: Hhttp://genome.imim.es/~eblanco/seminars/docs/clustering/index_types.htmlH) 

 

The most common merging cost functions to measure the distance between any two 

clusters for the Hierarchical clustering are defined as follows.  

Single-linkage:  

),(
,

min ji xxd
jSjxiSix ∈∈

      (5.7) 

 
Average-linkage:  

 ),(1
j

Sx Sx
i

ji

xxd
SS ii jj

∑ ∑
∈ ∈

      (5.8) 
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Complete-linkage: 
 ),(

,
max ji xxd

jSjxiSix ∈∈
      (5.9) 

and the Euclidean distance;  2)(),( jiji xxxxd −=                (5.10) 

Further details of the algorithm can be found in [Krishnaiah and Kanal 1982]. Figure 

5.4 illustrates the clustering of 8 sample data into clusters using the hierarchical 

clustering technique. Here, there are 8 samples to be clustered, namely, a, b, c, d, e, f, 

g and h. The result of clustering yields 3 clusters. The first cluster contains a, b and c; 

the second cluster contains d, e, f, and g; and the last cluster consists of only one 

member h. 

 

 

 

 

 

           a      b   c     d     f     e    g         h 

Figure 5.4: Illustrates clustering algorithm.  

 

The identification of Anchor shots is based on the observations that within news 

broadcast, Anchor shots occur more frequent than any other type of shots containing 

faces and with the same background. Thus, the cluster that contains the largest 

number of shots belongs to anchor category which can be Anchor or 2Anchor 

depending on the number of faces detected. For the example described in Figure 5.4, 
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assuming that the 8 samples are all the shots to be clustered based on color histogram 

distance measurement; the second cluster is selected as Anchor and 2Anchor cluster. 

 

5.2.3 Classification Using Decision Trees 

5.2.3.a Overview of Decision Trees 

After visual-based shots are filtered out, for the rest of the shots, we employ a 

Decision Tree algorithm [Quinlan 1986] and [Quinlan 1997] to perform the 

classification in a learning-based approach. Decision tree (DT) is one of the most 

widely use methods in machine learning. We employ the decision tree because it is 

robust to noisy data, capable of learning disjunctive expression, and the training data 

may contain missing or unknown values [Quinlan 1986]. Decision tree or 

classification and regression tree (CART) [Breiman 1993] has been successfully 

employed in many multi-class classification problems [Dietterich and Bakiri 1995] 

[Zhou 2000]. Thus, decision tree is selected for the shot classification problem in 

machine-learning based cluster. Before we discuss the classification using the 

decision tree, we will first discuss its foundation and an overview.  

A decision tree partitions the input space (also known as the attribute space) of a 

dataset into mutually exclusive regions. Each of which is assigned a label, a value, or 

an action to characterize its data points. A decision tree is a tree structure consisting 

of internal and external nodes connected by branches. An internal node is a decision-

making unit that evaluates a decision function to determine which child node to visit 
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next. In contrast, an external node, also known as leaf or a leaf or terminal node has 

no child nodes and is associated with a label or value that characterizes the given 

data.  

In general, a decision tree is employed as follows. A vector of data (usually composed 

of several attributes or elements) is presented to the starting node of the decision tree. 

Depending on the result of the decision function used by the internal node, the tree 

will branch to one of the node’s children. This is repeated until a terminal node is 

reached whose label or value is then assigned to the given input data. The decision 

mechanism is transparent so we can follow a tree structure easily to explain how a 

decision is made. 

Decision trees used for classification problems are often called classification trees, 

and each terminal node contains a label that indicates the predicted class of a given 

feature vector. However, the term decision tree is more commonly used than 

classification tree, thus we will use the term decision tree in this thesis. General 

diagram of a decision tree is presented in Figures 5.5 (a) –5.5 (b). 

Each node in the tree specifies the test of some attribute of the instance (as shown in 

Figure 5.5 b), and each branch descending from that node corresponds to one of the 

possible values for this attribute. Given m attributes, a decision tree may have a 

maximum height of m. Let  nb be the total number of instances in branch b; nbc be the 

total number of positive instance on branch b of class c; and nt, be the total number of 

instances in all branches. At each iteration, the feature with the minimum average 

entropy is selected for processing. 
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Note: b1, b2, and b3 are branches of the tree.  

(Source: Hhttp://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/4_dtrees1.html H) 
 

Figure 5.5: Decision tree diagram 

The formulas for computing the entropy and average entropy are expressed as follow. 
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 is the probability of positive instance on branch b  

At each stage of the learning process, the decision tree will calculate the average 

entropy of each attribute, and select the attribute with the lowest entropy as the 

branching attribute. The process stops when all the leaf nodes have only one 

individual class.  
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5.2.3.b Presentation of result and measurements 

Normally, the results from the Decision Tree are presented using a confusion matrix 

[Kohavi and Provost, 1998], which contains information about actual and predicted 

classifications done by a classification system. Performance of such systems is 

commonly evaluated using the data in the matrix. The following Table shows the 

confusion matrix for a two class (positive and negative) classifier. The entries in the 

confusion matrix as shown in Table 5.1 have the following meaning in the context of 

our study: 

• a is the number of correct predictions of class negative; 

• b is the number of instances of class negative that are misclassified as 

positive; 

• c is the number of instances of class positive that are misclassified as 

negative; and 

• d is the number of correct predictions of positive instances.  

 

 

 

 

 

 

Table 5.1: Confusion matrix 
 

Several standard measures have been defined for the 2 class matrix:  

• The accuracy (AC) is the proportion of the total number of predictions that 

were correct. It is determined using the equation:  

  Predicted 

  Negative Positive 

Negative a b Actual 

Positive c d 
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    (5.13) 

• The recall or true positive rate (TP) is the proportion of positive cases that 

were correctly identified, as calculated using the equation:  

     (5.14) 

• The false positive rate (FP) is the proportion of negative cases that were 

incorrectly classified as positive, as calculated using the equation:  

     (5.15) 

• The true negative rate (TN) is defined as the proportion of negative cases that 

were classified correctly, as calculated using the equation:  

     (5.16) 

• The false negative rate (FN) is the proportion of positive cases that were 

incorrectly classified as negative, as calculated using the equation:  

     (5.17) 

• Finally, precision (P) is the proportion of the predicted positive cases that 

were correct, as calculated using the equation:  

     (5.18) 

Out of the above, the most commonly used measures are the accuracy (AC), recall or 

true positive rate (TP) and precision (P). 
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Further details on decision trees can be found in [Quinlan 1986], [Quinlan 1986] and 

in [WWW2]. 

 

5.3 Trial Test on Small Data Set 

5.3.1 Training and Test Data 

We want to test our framework on a small data set before applying to the large scale 

data set. This is to investigate how well the system performs and to analyze the 

incurred errors during this test in order to improve the performance on the large scale 

test. In our preliminary test, we use two days of news video (one from May 2001, the 

other from June 2001) obtained from the MediaCorp of Singapore. Each day of news 

video is half an hour in duration. One day is used for training, and the other for 

testing. In order to eliminate indexing errors, we manually index all the features of the 

shots segmented using the multi-resolution analysis algorithm [Lin 2000, and 

Anantharamu 2002]. The training data set contains 440 shots and testing data set 

contains 403 shots.  

 

5.3.2 Results of the Shot Classification 

Table 5.2 presents the results of shot classification which includes the results from the 

decision tree, commercial detection and image matching for Weather and Finance 

shots. Table 5.3 gives the detailed result from the decision tree.  
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Table 5.2: Summary of shot classification results 
 

Table 5.3: The classification result from the decision tree 

 

 Note that this test was done in the earlier stage of research and the visual-based 

clusters contain only Weather and Finance shot categories. Also, Anchor shots were 

classified using the decision tree. From this result, we subsequently improve the 

algorithm by integrating clustering technique to identify Anchor shots (details of the 

result using clustering technique are given later in Section 5.4 on the evaluation of 

TRECVID data). From Table 5.3, the diagonal entries show the number of shots 

correctly classified into the respective category, while the off-diagonal entries show 

those wrongly classified. It can be seen that the largest classification error occurs in 

process F1-value (%) 

1.Commercial detection 97.00 

2.Weather and Finance filtering 100.00 

3.classification using the decision tree 95.1 

Average 97.4 

 Classified as-> a b c d e f g j k l 

a) intro/highlight 26     1     

b) anchor  16     4    

c) 2anchor   2        

d) People    13       

e) still image     1      

f) Live-reporting      82  1   

g) Speech  1     11    

j) sport      1  8   

k) text-scene         6  

l) special          5 
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the Anchor category where a large number of shots is misclassified as Speech. This is 

because their contents are quite similar, and thus we need additional features like 

background and the context of neighboring shots to differentiate them. Overall, our 

initial results indicate that we could achieve a classification accuracy of over 97%. As 

mentioned above, we did not introduce additional technique to detect Anchor shots. 

Thus, we can see from the result in Table 5.3 that high errors occur in differentiating 

Anchor shots and Speech shots. We will present the results of employing the 

clustering algorithm (as discussed in Section 5.2.2) to resolve the ambiguity of these 

categories, including the 2Anchor category in Section 5.4.  

 

 

 

 

 

 

 

 

 

 

 
Figure 5.6: The learnt tree created from the training data 

 

Figure 6.1: The learnt tree created from the training data
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Figure 5.6 presents the learnt decision tree. As we can see from the figure, complex 

tree is not easy to read. One useful by-product of performing the decision tree 

analysis is the set of rules generated by the decision tree. These rules may be used to 

provide better insight into how certain decisions were made. Table 5.4 presents the 

set of 14 rules extracted from the learnt tree. 

 
Rule 1 shot type in [u-l], audio = speech, class-> Live-reporting ** (0.684) 
Rule 2 face =1, shot type in [m-c], captions <= 1, audio = speech, motion = l, 

Class-> Anchor (0.56) 
Rule 3 audio = speech and noise, Class ->Sport (0.686) 
Rule 4 audio in {music and speech, noise), Class -> Intro/highlight 0.796) 
Rule 5 face =1, captions > 1, motion = l, Class -> Speech/Interview (0.59) 
Rule 6 captions <= 1, audio = m, Class -> Intro/Highlight (0.894) 
Rule 7 face >=3, Class-> People (0.807) 
Rule 8 face = 2, shot type in {m-c}, Captions > 1, Class -> 2Anchor (0.581) 
Rule 9 captions Position Center = yes, Class ->Text-only (0.832) 
Rule 10 captions > 1, centralized captions = no, audio = music, Class -> 

Special (0.773) 
Rule 11 face = 1, motion in [l-m], shot duration in [m-h], Class -> 

Speech/Interview (0.771) 
Rule 12 face = 1, motion in [?-n], Class -> Still image (0.763) 
Rule 13: face in {>=2}, shot type in [m-c], Captions <= 1, Class -> People 

(0.593) 
Rule 14 face =1, audio = speech, motion in [m-h], shot duration = l, 

Class ->Live-reporting (0.708) 

Table 5.4: Rules extracted from the learnt tree 

 

5.3.3 Effectiveness of the Selected Features  

In order to ascertain the effectiveness of the set of features selected, we perform 

separate experiments by using different number of features. As face is found to be the 

most important feature, we use the face as the first feature to be given to the system. 

With the face feature alone, the system returns an accuracy of only 59.6%. If we 

include the audio feature, the accuracy increases rapidly to 78.2%. However, this 
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accuracy is still far below the accuracy that we could achieve by using all the 

features. When we successively add in the rest of features in the order of shot type, 

motion, videotext, text centralization, and shot duration, the performance of the 

system improves steadily and eventually reaches the accuracy of 95.10%. The 

analysis indicates that all the features are essential in shot classification. Figure 5.7 

shows summary of the analysis. 

 

 

 

 

 

 
Figure 5.7: Summary of the feature analysis 

 

5.4 Evaluation on TRECVID 2003 Data 

In order to test our system on large scale data set, we participated in the story 

segmentation task in TREC Video Retrieval 2003 evaluations (TRECVID 2003). 

Here, we present only the shot classification results while the results of story 

segmentation evaluated by TRECVID will be given in the next Chapter.  
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5.4.1 Training and Test Data 

The training and test data provided by TRECVID 2003 are CNN and ABC news 

video for the year 1998. Altogether, there are about 120 hours of video (or ~ 240 

video broadcasts). Each half an hour broadcast of CNN and ABC news video contains 

about 300-400 shots. From the training set, we use 20 video clips for training and a 

different 20 video clips for testing. The results are presented in the following Section. 

 

5.4.2 Shot Classification Result 

The result of the shot classification grouped into the three clusters is presented in 

Table 5.5.  

 
Cluster Precision (%) Recall (%) 

Commercials 99.10 95.80 

Visual-similarity-based 89.71 90.30 

ML-based 91.0 90.0 

Average 93.27 92.03 

Table 5.5: Summary of shot classification results 

 

From Table 5.5, we can see that, the best result is obtained for commercial detection 

which we could achieve over 99% in precision and over 95% in recall. For visual 

similarity based shots, we could achieve reasonable accuracy over 89% and 90% for 

precision and recall respectively. Shot categories in this cluster are the most important 

categories. In general, the appearance of the category potentially indicates story 

change. Therefore, it is essential to have an effective algorithm to detect the correct 
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shot categories in this cluster. Our algorithm is considered reasonable and acceptable 

for the detection of the wide range of such categories over the large set of data. 

Finally, for machine-learning based cluster, we could achieve a performance of over 

91% and 90% for precision and recall respectively. Overall, the accuracy of shot 

classification is over 90%. The detailed results of each category of Visual-based 

cluster and ML-based cluster are provided in Table 5.6 and Table 5.7 respectively. 

Category Precision (%) Recall (%) 

Anchor/2Anchor 84.84 87.6 

Weather 100.00 100.00 

Finance 100.00 100.00 

Program logos  

(TOP, HEALTH, SPORT, LEDS and PLAY) 

74.00 73.62 

Average 89.71 90.30 

Table 5.6: Result of each category of Visual-based cluster 

 
a b c d e f g <-Classified as 

38   5    a sports 

 38  10    b Intro/highlight 

 4 58  3   c  People 

2 13  571   6 d  Live-reporting 

   4 292   e  Speech/Face 

     16  f  Text-scene 

 1  2   5 g  Special 
Note: diagonal entries are the number of correct prediction. 
 

Table 5.7: Result of each category of ML-based cluster using the Decision 
Tree 

 

We can see from Table 5.6 that most of the errors are from the detection of those 

temporal-visual based shot types, for example “LEDS”, “TOP”, etc. These types of 
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shots typically appear in very short durations, and the duration may be varying even 

for the same broadcast station but for news of different days. Thus, our algorithm 

which is designed to handle longer video shots fails to detect them effectively. 

However, we have improved the shot classification algorithm by solving the 

ambiguity between Speech and Anchor shots (as can be seen from the results shown 

in Table 5.8 that the detection rate for Anchor category is more than 87% and most of 

the Speech shots, as shown in Table 5.9, are correctly classified). In ML-based 

cluster, most errors are from Live-reporting and Intro/Highlight categories. 

Intro/Highlight shots usually contain background music while Live-reporting shots 

sometimes consist of background noise. The problem occurs when our audio 

classification algorithm misclassified music as noise or vice versa. However, overall 

accuracy of our shot classification algorithm is about 90% (see Table 5.6), hence our 

shot classification algorithm has been demonstrated to be effective. The learnt tree 

from this corpus is similar to that was discussed in Section 5.3, except it doesn’t 

include Anchor and 2Anchor shot categories in the classification. 

The next chapter discusses details of HMM framework for story segmentation level, 

the second stage of our framework. It also presents the result evaluated by the 

TRECVID on the large-scale data set. 
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CHAPTER 6 
HIDDEN MARKOV MODEL APPROACH TO 

STORY SEGMENTATION  
 

 

This Chapter discusses the details of our HMM approach. It also presents the results 

on both the small scale data set and large scale data set evaluated by TRECVID 2003. 

In addition, it also discusses the analysis of errors on both data sets.  

Our two-level approach is similar to the idea of part-of-speech (POS) tagging 

problem in NLP [Dale 2000] that uses a combination of POS tags and lexical 

information to perform the analysis. Here we use the tagged categories obtained from 

shot classification (the first-level) plus the scene change and cue-phrase to identify 

story boundaries. Before presenting details of story segmentation, we will discuss the 

foundation and important issues of HMM. Our discussions are based on the materials 

derived from [Rabiner and Juang 1993]. 

 

6.1 Hidden Markov Models (HMM) [Rabiner and Juang 1993] 

HMM is a powerful statistical tool first successfully utilized in speech recognition 

research. In recent years, HMM has also been applied successfully to applications 

such as pattern recognition, computer vision, and computational molecular biology, 

etc. We employ HMM to model our data for story segmentation because news video 
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is a temporal and sequencing media, composing of audio and video signals. Thus, 

HMM which was first designed for time sequencing data such as speech can be 

readily applied here. The followings discuss some important issues that are needed 

when employing HMM for data analysis.  

 

Notation 

Suppose HMM contains a finite set of states, each of which is associated with a 

probability distribution. Transitions among the states are governed by a set of 

probabilities called transition probabilities. In a particular state, an outcome or 

observation can be generated according to the associated probability distribution.  In 

general, HMM is modeled with λ = {π, A, B}, where 

T = the length of the observation sequence 

N = the number of states in the model 

M = the number of observation symbols 

Q = {q1, q2,.. ,qN} = the states of Markov process 

V = {1, 2 …M} = set of possible observation symbols 

A = {aij} = the state transition probability matrix, where 

aij = P (qt+1 = j | qt = i) 1 ≤ i ≤N and 1 ≤ j ≤ N,   (6.1) 

defines the transition probability of moving from state ii to state jj 

π =  {πi} is the set initial state probability;  

πi  = P (q1 = i)    1 ≤ji ≤ N  (6.2) 

B = {bj (k)} is the observation probability distribution matrix, where 

 bj (k) = P (Ot = vk | qt = j)  1 ≤ k ≤ M;   (6.3) 

defines the symbol distribution in state j, 1 ≤  j ≤ N 

O = (O1, O2, …OT) = observation sequence,  Oi ∈ V for i = 1, 2, 3, … T 
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Model Assumptions 

There are some assumptions that need to be made when using HMM. The 

assumptions are: 

• Model uses finite number of discrete hidden states 

• First order Markov property, that is P(qt | qt-1, qt-2, …) = P(qt | qt-1) 

• Emission probability depends only on current state 

• For homogenous HMM, all probabilities are time-invariant 

 

Types of HMM 

There are two types or topologies of HMM; ergodic and left-to-right. One way to 

classify the types of HMM is by the structure of the transition matrix, A, of the 

Markov chain. Consider the special case of ergodic or fully connected HMM in which 

every state of the model could be reached (in a single step) from every other state of 

the model. As shown in Figure 6.1 (a), for N =4 state model, this type of model has 

the property that every aij coefficient is positive. Hence, for example of Figure 6.1 (a), 

we have,  

 

            A =  

 

 

 

a11 a12 a13 a14 

a21 a22 a23 a24 

a31 a32 a33 a34 

a41 a42 a43 a44 
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Figure 6.1: Illustrates three distinct HMMs. (a) A 4-state ergodic model. (b) 
A 4-state left-to-right model. (c) A 6-state parallel path left-to-right model 

 

Ergodic model is one type of models that best fit to our data. As discussed earlier that 

one way to classify the types of HMM is by the structure of the transition matrix, A 

[Rabiner and Juang 1993]. From our data analysis, aij coefficients are positive and 

thus they satisfy the properties of the Ergodic model 

The left-to-right model (as shown in Figure 6.1 (b)) has the property that as time 

increases, the state index increases (or stays the same) – that is, the system states 

proceed from left to right.  

(c) 
1 6

3 5

42

  (a) 

42

1 3

(b) 
3 421 
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The fundamental property of the left-to-right HMM is that the state-transition 

coefficients have the property 

   aij = 0,  j < i 

That is, no transitions are allowed to states whose indices are lower than that of the 

current state. Furthermore, the initial state probabilities have the property 

 

  πi     =  

 

This means that the initial state must be state 1 with the probability of 1.0. Often with 

the left-to-right models, additional constraint are placed on the state-transition 

coefficients to make sure that large changes in state indices do not occur; hence a 

constraint of the following form is often used. 

   aij = 0,  j > i+∆i 

In particular, for the example in Figure 6.1 (b), the value of ∆i is 2; that is, no jump of 

more than two states are allowed. The form of the state-transition matrix for the 

example is thus, 

    

A =  

 

0, i ≠ 1 

1, i =1 

a11 a12 a13 a14 

0 a22 a23 a24 

0 0 a33 a34 

0 0 0 a44 
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We can see from above A matrix that the coefficients a21, a31, a32, and so on are of 

zero values. This means that no allow of transitions to state index that lower than the 

current state index.  

Besides the above fully connected (ergodic) and left-to-right models; there are many 

other possible variations and combinations. Figure 6.1 (c) shows a cross-coupled 

connection of two parallel left-to-right HMMs.  

From the above descriptions, we can see that the left-to-right HMM is designed to 

model signals whose properties change over time in a successive manner, such as the 

speech; whereas the ergodic model is designed to deal with signals that may transit 

between different states in a more flexible manner. For story segmentation problem, 

we want to be able to flexibly transit a state to any state at any point of time; hence 

the left-to-right HMM is not suitable. To model this flexibility using the left-to-right 

model would require a lot of training data in order to accurately estimate the model 

parameters (refer to implementation issues for the left-to-right model). This is not 

possible because of data-sparseness problem. Hence, we choose ergodic HMM as the 

basic model for our analysis.  

 

Three basic problems  

There are three basic issues that need to be solved when employing HMM. Given a 

HMM λ, and a sequence of observation O, O = (O1, O2, …OT), the problems can be 

described as follows. 
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i) Evaluation: Find P(O|λ) which is the probability that HMM λ produces the 

observation sequence O.  

ii) Decoding: Given the observation sequence O, and the model λ, how to 

estimate state sequence Q = q1, q2, …qT. that is optimum 

iii) Parameter Estimation (Learning): How to train the model to maximize 

P(O|λ) 

Solutions to the three basic problems 

Here, we discuss the solutions to the above problems when employing the HMM 

framework.  

 

The Forward-Backward algorithm 

We need this algorithm to solve the first problem, i.e. given O, O = (O1, O2, …OT), 

find P(O|λ). Figure 6.2 illustrates the Markov process for the forwarding algorithm.   

The algorithm can be derived as follows: 

For t = 1, 2, …T, and i=1, 2, …N, define 

αt(i) = P(O1, O2, …Ot, qt  =Si /λ) (6.4) 

The αt(i) can be computed recursively as: 

1. Initialization: Let α1(i) = πibi(O1);  (6.5) 

for i = 1,2, …,N  

2. Iteration: For t = 1, 2, …T-1 and j =1, 2, …,N; compute 

)()()( 1
1

1 +
=

+ ⎥
⎦

⎤
⎢
⎣

⎡
= ∑ tjij

N

i
tt Obaij αα  (6.6) 
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Figure 6.2: Illustrate Markov process of the forward algorithm. In the figure, 
forward probability for state 2 at time t is αt(2) calculated from summing all 
possible αt-1(i).aij.b2(t) 

 

 3. Termination,  

)()/(
1

iOP
N

i
T∑

=

= αλ     (6.7) 

Similarly, we can define the backward algorithm, which is analogous to the forward 

algorithm, except that it starts at the end and works towards the beginning. Figure 6.3 

shows the diagram of Markov process for the backward algorithm.  

The backward algorithm can be expressed as the following. 

For t =1,2, …, T and i=1,2,…N, define 

  βt(i) = P(ot+1, ot+2, .. oT | qt = i, λ) 

 

 
 Observations =     o1         …              ot-1 ot …          oT 
          t:=               1            …          t-1  t          …          T 

States  
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Figure 6.3: Illustrate Markov process of the backward algorithm.  
 

 

That is the probability of the partial observation sequence from time t+1 to the end, 

given state i at time t and the model λ. We can solve for βt(i) inductively as follows: 

1. Initialization: βT(i) = 1,   (6.8) 

for i =1, 2,…,N 

2. Iteration: For t = T-1, T-2,… 1 and i=1, 2,…N, compute 

)()()( 11
1

jobai ttj

N

j
ijt ++

=
∑= ββ  (6.9) 

We will see later how the forward and backward algorithms help to solve the 

fundamental problems 2 and 3 of HMMs. 
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The Viterbi Algorithm 

We need this algorithm to tackle problem 2, i.e. to decode the optimum state 

sequence for our test data. The algorithm can be summarized as follows: 

1. Define optimal partial path score 

)|...,,..(max)( 211.211,...2,1
λδ tttqtqqt oooiqqqqPi == −−

 (6.10) 

2. Initialization 

)()( 11 obi iiπδ =  (6.11a) 

0)(1 =iψ  ; 1≤ i ≤ N (6.11b) 

3. Dynamic programming and book keeping 

)(])([max )( 11 tjijtNit Obaij −≤≤
= δδ  (6.12) 

2≤ t ≤ T; 1≤ j ≤ N; 

])([ maxarg)( 1
1

ijt
Ni

t aij −
≤≤

= δψ  (6.13) 

2≤ t ≤ T; 1≤ j ≤ N; 

4. Termination 

)(max
1max iP TNi

δ
≤≤

=  (6.14) 

and       )(maxarg
1

iq TNiT δ
≤≤

∧

=  (6.15) 

5. Trace back to get the optimal state sequence (back tracking) 

)( 11 +

∧

+

∧

= ttt qq ψ  (6.16) 

t= T-1, T-2, …1. 

),...( 1

∧∧∧

= Tqqq  (6.17) 

 

There is alternative way to performing Viterbi decoding using log probability. By 

using log, multiplication will be replaced by summation which is easier. The 

algorithm can be derived as: 
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 1. Define log probabilities 

ii ππ log
~

= ijij aa log
~

= ;   )(log)(
~

titi obob =  (6.18) 

 2. Initialization 

)()( 1

~~

1

~
obi ii += πδ  (6.19) 

 3. Dynamic programming, recursion  

)(])([ max)(
~~~

11

~

tjijtNit Obaij ++= −≤≤
δδ  (6.20) 

1≤ t ≤ T; 1≤ j ≤ N; 

])([ maxarg)(
~~

1
1

ijt
Ni

t aij += −
≤≤

δψ  (6.21) 

2≤ t ≤ T; 1≤ j ≤ N; 

4. Termination 

)(maxlog
~

1max

~

max iPP TNi
δ

≤≤
==  (6.22) 

)([max arg
~

Ni1
iq TT δ

≤≤

∧

=  (6.23) 

5. Trace back to get the optimal state sequence, 

  )( 11 +

∧

+

∧

= ttt qq ψ        (6.24) 

t= T, T-1, …1 

  ),...( 1

∧∧∧

= Tqqq        (6.25) 

 

Parameter Estimation 

Estimating a model which maximizes P(λ/O) can be solved as a maximum likelihood 

problem. The algorithm called Baum-Welch can be used to maximize P(λ/O) locally. 

a) Define new variable,  

  ),,...,.../,(),( 11 λξ Ttttt OOOjqiqPji === +   (6.26) 
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 ∑∑
= =
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N

i

N

j
ttjijtttjijt jobaijobai

1 1
1111 )()()()()()( βαβα  (6.28) 

b) Counting state occupancy and transitions, we get 

  ),()|()(
11 jiOiqPi N

j t
T

tt ∑ =
=== ξγ   (6.29) 

c) Using maximum likelihood (ML) for re-estimation of HMM parameters, 

  )|(maxarg 1 λλ
λ

T
ML OP

Θ∈

∧

=     (6.30) 

Then the model λ can be estimated as, 

1. For i =1, 2, …N, let  

  )(1 ij γπ =
∧

     (6.31) 

= expected frequency (number of times) in state i at time t =1 

       

2. For i =1, 2, …N, and j =1,2,…N, compute 

  )(),( 1

1

1

1
ijia T

t t
T

t tij ∑∑ −

=

−

=

∧

= γξ    (6.32) 

  i state from ns transitioofnumber  Expected
j state  toi state from ns transitioofnumber  Expected      =  

3. For j=1,2,…N and k =1,2,…M, compute 

  )()|()(
11

jvojkb T

t tktt

T

tj ∑∑ ==

∧

== γγ   (6.33) 

   j statein   timesofnumber  expected
 vsymbols observing and j statein   timesofnumber  expected

      k=  

 

Re-estimation is an iterative process. The process can be summarized as: 

1. Initialize, λ = (A, B, π) 

2. Compute αt(i), βt(i), γt(i,j) and γt(i) 
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3. Re-estimate the model λ = (A, B, π) 

4. If P(O|λ) increases or reaches some desired threshold, go to 2, else stop. 

 

The above solutions to the three problems are necessary when employing HMM to 

perform data analysis. Other than the above solutions, we have to deal with various 

issues related to the implementation of HMM to solve our problem. The issues 

include scaling, initial parameters estimations and effect of insufficient training data. 

  

6.2 HMM Implementation Issues 

The discussion above has dealt primarily with the theory of HMM and several 

variations on the form of the model. There are several important implementation 

issues that vary across applications. This section discusses the variation when 

employing the model to tackle news video segmentation problem. 

• Scaling. In the Viterbi algorithm (not the log likelihood algorithm), we need to 

perform scaling if the number of our observations is greater than 100 which is 

considered to be sufficiently large. Each video used in our experiments contains a 

large number of shots ranging from ~300-400 shots. Here, the content of each shot is 

represented as a feature vector, and is viewed as one observation. Thus, each of the 

input video comprises about ~300-400 observations to be used in estimating the 

model’s parameters. We can see from the definition of αt(i) of Eq (6.4) that αt(i) 

consists of the sum of a large number of terms, each of the form  
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With qt = i and b is discrete probability as defined by Eq (6.3). Since both a and b are 

less than 1, it can be seen that as t increases (e.g. to 10 or more) the dynamic range of 

αt(i) computation will exceed the precision range of any machine. Thus, the only 

reasonable way to perform the computation is to incorporate a scaling procedure.  

The basic idea of scaling is to keep the scaled αt(i) within the dynamic range of the 

computer 1 ≤ t ≤ T. The procedure multiplies αt(i) by a scaling confident that is 

independent of i but depends only on t. A similar scaling is also done to βt(i) 

coefficients. Consider the computation of αt(i). We use the notation αt(i) to denote the 

unscaled αs; )(it

∧

α to denote the scaled and iterated αs; and )(itα  to denote the 

local version of α being scaled. Initially, for t =1, we compute α1(i) according to Eq 

(6.5) and set  

)(1 iα  = α1(i),     (6.34) 

∑ =

= N

i
i

c
1 1

1
)(

1
α

     (6.35) 

)(1 i
∧

α  = c1α1(i).    (6.36) 

For each t, 2≤ t ≤ T, we first compute )(itα  and this )(itα  will be used to replace 

αt(i) elsewhere in the relevant formulas where the term αt(i) appears. Similarly, we 
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use the same scaling factors for each time t for βs as was used in αs. At the end of the 

process we have  

Log [P(O|λ)] = ∑
=

T

t
tc

1

log .    (6.37) 

We can see that to avoid additional computation, we can use the log probability 

(alternate Viterbi implementation) to obtain the maximum likelihood state sequence. 

Thus, in this research, we chose the log likelihood algorithm to determine the 

maximum likelihood state sequence. 

• Initial Estimates of HMM Parameters. From experience, it has been shown that 

either random (subject to stochastic and nonzero value constraints) or uniform initial 

estimates of π and A parameters are adequate for giving useful re-estimates of these 

parameters in almost all cases. However, for B parameters, experience has shown that 

good initial estimates are helpful in the discrete symbol case, and are essential (when 

dealing with multi mixtures) in the continuous-distribution case. Such estimates can 

be obtained in several ways; (a) manual segmentation of the observation sequence 

into states and averaging of observations within states; (b) maximum likelihood 

segmentation of observations and averaging; and (c) segment k-means segmentation 

with clustering, etc. The details of each method can be found in [Rabiner and Juang 

1993].  

Here, we estimate π and A by using uniform distribution. Thus for each trial 

experiment with different number of states (as we do not know which model best suit 

our observation data) , we assign:  
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πi =  1/N ;  aij =  1/N 

where N is the number of states. For example in the preliminary test on local news, 

we perform several experiments with states ranging from 2 to 9. For each selected 

number of states, we assign the initial values for the model parameters uniformly. 

Thus, if the number of states equals to 4, then we have  

πi =  0.25 ;  aij =  0.25,  i = 1, 2, …, 4; j =1, 2,..4 

As for B, we adopt method (a) to manual segment the observation sequence into 

states and average the observations within states. The elaboration of computing the 

values of bjk will be given later in the Section on the preliminary tests.  

In order to have a right model to be used for the testing sequences, we estimate 

multiple models from multiple training sequences. We then test these models on the 

subset of the training set, the model that gives the best result or maximum likelihood 

probability in obtaining the given observation sequence is then selected.  

Effect of Insufficient Training Data. Another problem associated with training 

HMM parameters via re-estimating methods is that the observation sequence used for 

training is finite. Thus, there is always an inadequate number of occurrences of low-

probability events (e.g. symbol occurrences within states) to give good estimates of 

the model parameters. Here we consider the case of a discrete observation HMM. 

Recall that the re-estimation transformation of )(kb j

∧

 using Eq (6.33), it requires a 

count of expected number of times in state j and observing symbol vk simultaneously. 

If the training sequence is so small that it does not have any occurrence of this event 
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(i.e., qt = j and Ot = vk), bj(k) = 0 and will remain zero after re-estimation. The 

resultant model would produce a zero probability result for any observation sequence 

that actually includes (Ot = vk and qt = j). Such outcome is obviously a consequence of 

the unreliable estimate that bj(k) = 0 due to insufficient data.  

One solution to this problem is to increase the size of the training observations. 

However, this is not often practical. A second solution is to reduce the size of the 

model (e.g. number of states, number of symbols per state). Although this is possible, 

there are physical reasons why the model is used and thus its size cannot be changed. 

A third solution is to find statistical methods that can enhance the reliability of the 

parameters estimates even based on limited training data. Parameters threshold 

constraint is one of the alternatives. This is to ensure that no model parameter 

estimate falls below a specified level. For example, we may specify the floor for a 

discrete symbol model (such as our model), that  

 

  bj(k)  =       (6.40) 

 

For TRECVID data, after we obtain the semantic shot categories, there are 68 

possible observation symbols. Although we have 20 training observation sequences 

each containing about 300-400 observations (symbols), it is found that some symbols 

do not occur in the training sequences. This causes some of the values of bj(k) to be 

zero. Thus, we need to set a floor value for bj(k). Follow Eq (6.41), we set δb to 0.001. 

bj(k), if bj(k) > δb 

 

δb,  Otherwise 
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From observations, this is the minimum value of the values in B matrix independent 

of the number of states used. Therefore, Eq (6.41) becomes, 

 

  bj(k)  =       (6.41) 

 

Besides setting the threshold for model parameters, our two-level framework also 

significantly helps to minimize the data sparseness problem. As we can see in the shot 

classification stage, we have several features such as faces, shot type, audio classes, 

etc. If we use all these features into a vector to represent a shot for the HMM model, 

it will result in a larger space for possible observations, it will aggregate the above 

data sparseness problem. Therefore, by dividing the framework into two stages, the 

number of possible observation symbols required has been significantly reduced. As a 

result, we only have 3 features (shot categories, scene change, and cue-phrase) in the 

observation sequences, and thus greatly minimize the case of no occurrence of certain 

symbols in the training observations. We will carry out further experiments using a 

different method to verify that our two-level framework is superior to one level using 

the same set of features (see Chapter 7). 

 

6.3 The Proposed HMM Data Model 

6.3.1 Preliminary Tests 

bj(k), if bj(k) > .001 

 
.001  Otherwise 
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We first perform a small scale trial test to observe how well our system performs. 

This is to fine-tune our algorithm and try to reduce the errors that may occur during 

the large scale test. We carry out trial test for shot classification as discussed in the 

previous Chapter. The shot tag_IDs obtained from shot classification will be used 

here for story segmentation. In our trial test for HMM analysis, each shot is 

represented by: (a) its tagged category (a unique number is given to each category), ti; 

(b) scene/location change (Sc), si (c = change, u = unchanged); and, (c) speaker 

changed (Sp), pi (c = speaker changed, u = unchanged). The feature vector is 

expressed as:  

 Si    = (ti  si  pi)    (6.42) 

In the preliminary experiments, the system was tested on news video data from 

Mediacorp Singapore. The data consists of two days of news, each containing about 

400 shots. The video shots were first classified into 13 categories as explained in 

details in Section 4.1.2 (except the five additional program logos). Thus, each output 

symbol is represented by 1 of the 13 possible categories of shots (refer to shot 

category ID in Appendix A), 1 out of 2 possible scene change feature values, and 1 

out of 2 possible speaker changed feature values (note that in our earlier work, cue-

phrase was not included in the feature set). This gives a total of 13x2x2 = 52 distinct 

vectors for modeling using the HMM framework. In most applications, it is hard to 

have prior knowledge for the number of hidden states. Thus, we perform the 

experiments by varying the number of states from 2 to 9 to evaluate the results. The 

initial experiments indicate that the number of state equals to 4 gives the best result. 

Figure 6.4 illustrates an ergodic HMM with 4 states used in our approach.  
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Figure 6.4:  The ergodic HMM with 4 hidden states 

When 4 states are used, we need to estimate bjk for 4x52 = 208 probabilities. Since it 

is ergodic model, we can use uniform distribution as discussed above to give initial 

values to the model parameters. Thus, for the 4-states HMM, we have 

πi = 0.25; i =1, 2, 3, 4 

 

A  =  

 

 

As for B, we manually segmented the training sequence evenly according to the 

number of states, each segment has a duration T/N (T is the length of the sequence 

and N is the number of states). Consider a 4-state model with T equals to 12. State 1 

corresponds to the first 3 observations, state 2 to the second 3 observations, and so on. 

For the specific example in our case in which 4-state is used, the observation 

sequence (part of the whole sequence from local news video data) of length 12 is: 1c0 

1u0 1u0 1u0 2c1 4c0 4u0 6c0 6u0 2c1 10c0 10u0. Here, we have symbols 1c0 1u0 

1u0 in state 1, symbols 1u0 2c1 4c0 in state 2, 4u0 6c0 6u0 in state 3 and 2c1 10c0 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25 

0.25 0.25 0.25 0.25

42
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10u0 in state 4. We simply compute the probability of each symbol in each state, we 

get P(state =1, symbol = 1c0) = 0.33 and P(state =1, symbol = 1u0) = 0.67, etc.. The 

rest of the probabilities are computed in the same manner. A summary of the 

probabilities computed is listed in Table 6.1. 

     Symbols 
state 

1c0 1u0 2c1 4c0 4u0 6c0 6u0 10c
0 

10u
0 

1 0.33 0.67 0 0 0 0 0 0 0 
2 0 0 0.33 0.33 0.33 0 0 0 0 
3 0 0 0 0 0.33 0.33 0.33 0 0 
4 0 0 0.33 0 0 0 0 0.33 0.33 

Table 6.1: B matrix associated with the observation sequence. Value in each cell 
is the probability the symbol comes from the corresponding state. 

 

6.3.1.a Results of the Preliminary Test 

We conducted three experiments (Ex I, II, and III) for story boundary detection. As 

explained in Section 4.3.2 a, our initial experiments indicate that the number of states 

equals to 4 gives the best results. Thus, we set the number of states to 4 in these three 

HMM tests. For Ex I, we assume that all the shots are correctly tagged. We perform 

the HMM to locate the story boundaries and we could achieve a F1 value of 93.7%. 

This experiment demonstrates that HMM is effective in news story boundary 

detection. Ex II is similar to Ex I except that we perform the HMM analysis on the 

set of shots tagged using the earlier shot classification stage with about 5% tagging 

error. The test shows that we are able to achieve an F1 measure of 89.7%. The results 

of both tests are presented in Table 6.2. 
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Ex  NB NC FN FP R (%) P (%) F1 (%) 

I 40 37 3 2 94.9 92.5 93.7 

II 40 35 5 3 87.5 92.1 89.7 

Note: NB = total number of correct boundaries, NC – number of corrected detected 
boundaries, FN – number of false positive and FP – number of false positive. 

Table 6.2: Results of HMM analysis of tests Ex I & II 
 

In Ex III, we want to verify whether it is necessary to perform the two-level analysis 

in order to achieve the desired level of performance. We perform HMM analysis on 

the set of shots with their original feature set but without the category information. 

We vary the number of features used from the full feature set to only a few essential 

features. The best result we could achieve is only 37.6% in F1 value. This test shows 

that although in theory a single stage analysis should perform the best, in practice, 

because of data sparseness, the 2-level analysis is superior.  

6.3.1.b Effectiveness of the Features Selected for HMM Analysis 

In order to evaluate the importance of each feature used in Ex II, we perform another 

set of experiments using only the individual feature one at a time, and by adding the 

second and third feature to the Tag-ID feature.  Table 6.3 presents the results of this 

experiment. 

Feature/s  NC FN FP R(%) P(%) F1 (%) 
Tag_ID 35 5 6 87.5 85.4 86.4 
Sp 35 5 93 87.5 27.3 41.7 
Sc 26 14 90 65 22.4 33.3 
Tag_ID+Sp 37 3 7 92.5 84.1 88.9 
Tag_ID +Sp+Sc 35 5 3 87.5 92.1 89.7 

Note: NC – number of correct boundaries, FN – number of false negative,  
FP – number of false positive, R – Recall, and P – Precision. 

Table 6.3: Results of the analysis of Features Selected for HMM 
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Figure 6.5 shows the precision and recall values of the results when using different 

combinations of features.  

 

Figure 6.5: Precision and recall values of the result from EX II. 

 
 

From Table 6.3, it can be seen that when using only the Tag-ID feature, the system 

could achieve an F1 measure of 86.4%. On the other hand, the use of the second and 

third feature alone returns low F1 measures of 41.7 and 33.3 respectively. However, 

by combining the last two features with the Tag-ID feature, the system’s F1 

performance improves gradually from 86.4% (with Tag-ID as the only feature) to 

88.9% (Tag-ID +Sp), and reaches 89.7% when all the three features are included 

(Tag-ID +Sp +Sc). The analysis indicates that the first feature (Tag-ID) is the most 

important feature for story boundary detection. It further confirms that shot 

classification facilitates the detection of news boundaries, and therefore our two-level 

approach is effective.  

6.3.1.c Analysis of HMM results 

The HMM parameters obtained from training the HMM is given below. 
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The HMM model parameters: 

A: 
 0.927110 0.001050 0.001062 0.073777  

0.001048 0.923241 0.001081 0.077629  
0.001110 0.001020 0.852544 0.148326  
0.475093 0.144626 0.361021 0.022260  
B: 
0.001000 0.001000 0.001000 0.001000 0.009450 …… 
0.001000 0.001000 0.001000 0.001000 0.023350 …… 
0.141763 0.329531 0.024386 0.165216 0.023980 …… 
0.001176 0.001199 0.001215 0.001225 0.728444 ……. 
π = 0.001000 0.001000 0.999996 0.001004  

 

We can see that the begin state is State 3 (π  = 0.99999). The transition probabilities 

(coefficients), aij, are positive for all i and j. Thus, these properties satisfy the ergodic 

model.  

 

1.  

 

 
Note: Ii  means observation sequence I, Oi  means output state sequence i 

Figure 6.6: Two examples of the observation sequences and their output 
state sequences 

 
 

From the result, it is found that, for a sequence of shots within the same story, the 

HMM outputs the same state number. For instance, the observation and output state 

sequences in the example shown in Figure 6.6 is State 3, which is the output state for 

all shots of Intro/highlight category even though the observation symbols are 

different (refer to the example of the observation sequence above). State 4 is the 

output state for Anchor shot. However, when the framework is applied to the 

I1:  1cc   1uu   1cu  …. 1uu    2cc     4cc   4uu   6uu   6uu … 
O1: 3         3         3   …      3     4          1       1         1       1 … 
 
I2:  6uc   6uu    6uu …   6uu  10cu  10uu  10uu  10uu … 
O2: 1        1         1   ….      1      4        3        3          3 … 
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(a) 

TRECVID data, the HMM output states within a story have a great change such that 

there are several output states within a story. 
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Figure 6.7: Present the distributions of the observed symbols of the 4 states 
 

In order to compare the distribution of the observation symbols for the training and 

test data sets, we further analyze the distribution of the observation symbols in each 

of the 4 states as shown in Figures 6.7(a) – 6.7(d). From the Figures, we can see that 

for each state, the distribution is dominated by a few (sometime only one) symbols, 

and that the frequency distribution of the same symbol is similar in both the training 

and test data sets. For example, in Figure 6.7(a), which shows the distribution of State 

1, the distribution is dominated by symbols 8 with the frequency of about 50 out of 

183 shots for both the training and test data sets. The corresponding observation 

vector for this symbol is 6uu which represents a Live-reporting shot. Figure 6.7 (b) 

(c) (d)

(b)(a) 
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shows that the distribution of symbols in State 2 is dominated by symbol 27. It 

corresponds to feature 8uu that represents a sport shot. Figure 6.7 (c) shows that the 

distribution of State 3 is dominated by symbols 2 and 4, which correspond to feature 

vectors 1uc and 1uu. Both vectors represent Intro/highlight shots. Finally, the 

distribution of symbols in State 4 as shown in Figure 6.7(d) is dominated by symbol 

5. It corresponds to feature vector 2cc that represents an Anchor person shot.  

 

6.3.2 HMM framework on TRECVID 2003 data 

General news video has a similar structure as discussed in Chapter 2. However, in 

CNN news, the structure is more complex and contains a greater variety of programs. 

Therefore, in order to cope with the data provided by TRECVID which contains 

about 120-hours of ABC and CNN news video, some new features and shot 

categories have to be added or adjusted. This process is necessary when dealing with 

a new data source. However, in general, the 13 categories as used in the above test 

work well for most of the news video.  

Based on the characteristic of the training set, we found that five additional categories 

need to be included. They are, “LEDS”, “HEALTH, “TOP”, “SPORT”, and “PLAY”, 

as detailed in Chapter 4. Still-image category is dropped for this test as there are 

always moving texts at the bottom of the videos even for still images. Speaker 

changed feature is also dropped for this test as it is found to have no contribution to 

the system performance. In addition, cue-phrase feature is incorporated for story 



Chapter 6   

Hidden Markov Model Approach to Story Segmentation 107

segmentation process. The system is then re-trained to cope with the new categories 

and features.  

As our framework is designed for general news video, we train one model each for 

the data from CNN and ABC news video. Figure 6.8 illustrates the training (using the 

Baum-Welch algorithm) and testing processes (using the Viterbi algorithm) of the 

HMM framework. The training process is to estimate the optimum models for both 

CNN and ABC data. The parameter initialization is done in similar way as in the 

preliminary test. From the output states, we collect all states that indicate story 

transitions. 

 

 

 

 

 

 

 

    (a)      (b) 

Figure 6.8: (a) A Training steps of the HMM framework and (b) 
Decoding (testing) steps of the HMM framework 

 

Given the test observed sequence, the algorithm applies the trained model to the test 

data. It decodes the observed sequence and estimates the optimum output state 

sequence. After we have obtained the output state sequence for each of the observed 
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sequences (we have about 120 test sequences to decode), the algorithm then identifies 

story boundaries by detecting transition states. From the training data, we collect the 

ground truth for story boundaries in which we could match the boundaries with the 

states. Those states that indicate story transitions are then used for identifying story 

boundaries. The test process is illustrated in Figure 6.8(b). 

The following shows an example of an observation sequence from the CNN news 

video data when using the full feature set. The sequence is similar to that of the 

preliminary work except that there are more possible observation symbols (as there 

are more shot categories incorporated).  

Observation sequence: 
1c0 1u0 … 2c1 4u0 6u0 … 15c0 6c0 5u0 13c0 13u0 … 

 

The evaluation results and the analysis of the errors are discussed in the following 

Sections  

6.3.2.a Evaluation results 

For the test data, there are about 60 hours of news videos comprising of 2929 story 

boundaries. As part of the requirements from TRECVID 2003, we need to perform 

story segmentation using different combination of features. This is to test the 

effectiveness of using different features for this task, in particular, to illustrate the 

contrast between text-based ASR features, the audio-visual (AV) features and their 

combination. The feature sets used are: (a) only AV features; (b) only ASR feature; 

and (c) a combination of AV and ASR features (AVT). Under the three requirements, 

we conduct five experiments as follows: Runs 1 and 3: using only AV features; Runs 
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2 and 4: using AVT features ; and Run 5: using only ASR features. For the first four 

runs, we employ the HMM framework to locate story boundaries. For each feature set 

AV and AVT, we train the system using different numbers of hidden states. From the 

experiments, the number of hidden states equals to 8 gives the best results for AV 

feature set and the number of hidden states equals to 9 gives the best results for AVT 

feature set. For each feature set, we train a HMM model to be used in our tests. Thus, 

we have one model for AV feature set and another model for AVT feature set. We 

need to estimate bjk for 8x17x2 = 272 probabilities, when 8-state is used for the AV 

feature set,  and need to estimate bjk for 9x17x2x2 = 612 probabilities when 9-state is 

used for the AVT features set. Parameter initialization and estimation are done in the 

similar way as in the preliminary test.  

Figure 6.9 shows an example of an observation sequence and the associated output 

state sequence from the HMM when using the AVT feature set. The detection of story 

boundary is the same as is done in the preliminary test, except that transition states 

that indicate story changes are different. For Run 5, we perform text segmentation [Li 

2001] based on the sequence of text from the ASR. 

I3 1c0 1u0 1u0 2c1 4c0 4u0 6u0 13c0 13u0 

O3 5 3 3 4 1 1 1 7 9 

Figure 6.9: Example of observed symbols and output state sequences when 
using the AVT feature set. 

 

From Figure 6.9, State 4 corresponds to the symbol 2c1 which is of type Anchor shot 

with scene changed and presence of cue-phrase. State 7 corresponds to symbol, 13c0, 
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which is a commercial shot. We can see that the next commercial shot (also symbol 

13c0) corresponds to State 9. However, this State 9 is an internal state within a 

commercial block, and thus it does not indicate story changes. Our algorithm 

therefore ignores this state during the detection of story boundaries. The evaluation 

results of story segmentation for the five runs on the test data containing 2864 story 

boundaries are presented in Table 6.4.  

From Table 6.4, we can see that when using the AV feature set, we could achieve an 

F1 value of 75% (Run3) and when using the AVT feature set (Run 4), an F1 value of 

77.5%. This demonstrates that the ASR based feature helps to improve the result by 

2.5%. The last row presents the result of story segmentation using only text feature 

which could achieve an F1 measure of only 53% (Details of text segmentation are not 

covered and are beyond the scope of this thesis). As compare to the results when 

using multi-modality features such as in Runs 1 – 4, it is obvious that the use of text 

feature alone is insufficient for story segmentation task. 

 

Run Feature DeTBD DeTCoRR FoundinTruth Recall Precision F1 

1 AV 2913 2174 2123 0.741 0.746 0.743 

2 AVT 2818 2218 2177 0.76 0.787 0.773 

3 AV 2806 2150 2102 0.734 0.766 0.750 

4 AVT 2724 2185 2146 0.749 0.802 0.775 

5 ASR 2426 1417 1398 0.488 0.584 0.532 
DeTBD – no. of detected boundaries; DeTCoRR – no. correct detected boundaries; FoundinTruth – 
no. detected boundaries found in the truth data; Recall = FoundinTruth/Total boundaries),  
Precision = DeTCoRR / DeTBD) 

 

Table 6.4: Results of story segmentation on this corpus 
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In order to compare our system with other state-of-the-art systems taking part in 

TRECVID 2003 story segmentation task [TRECVID 2003], Figure 6.10 presents the 

best results based on different set of features. We can see from Figure 6.10 that our 

system achieves the best performance in cases when using only audio-visual based 

features (AV) or when using the full set of features (AV+Text). These results 

demonstrate that our HMM framework is effective and approaches a level of 

performance towards practical deployment of story segmentation system. Also, we 

can see from the results of the two top performing systems (IBM_CU and NUS) that 

by using text feature alone is insufficient to achieve high accuracy as compared to 

using the full set of features.  
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Figure 6.10: Presents the best results achieved by each group. 

 

6.3.2.b Analysis of results from the HMM 

Here we analyze the distribution of the types of stories detected, the errors incurred in 

identifying story boundaries, and the effect of the number of states N.  
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♦ Error Analysis of the story segmentation result 

From observations, stories found in CNN corpus can be grouped into 7 types as 

shown in Figure 6.11.  

Figure 6.11: General stories found in CNN corpus 

 

We present only the analysis of CNN data as the structure for ABC data is simpler 

and causes fewer problems to our system. The most common type of news story is of 

type s1, which starts with the anchor shot and ends before the next anchor shot. This 

type of stories covers about 60% of the total stories. The types of stories that are easy 

to handle are s5 and s6, which can be detected by using visual matching techniques. 

The types of stories that also start with anchor person include s2 and s3 (which cover 

multiple stories) and s7 (which is a repeated pattern between anchor and distance 

reporter and it covers only one story). The structures of these types are more 

(s1) Story starts with Anchor 
person shot (common case) 

  S6) weather report

(s3) Anchor reports multiple stories with 
some outdoor/live-reporting shots 

 (s4) Continuous sport stories (s5) Story starts with program logo 

(s7) Repeated pattern between anchor and distance reporter

(s2) Anchor reports multiple 
stories in the studio  

-Story unit 
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complex; additional techniques are needed to handle anchor person reporting multiple 

stories. Another type with multiple stories is s4: the sports. It causes the most 

detection problem since we do not have features to differentiate different sport types.  

 

 

 

 
 
 

 
 

 
Figure 6.12: Presents histogram of the distribution of found stories  

 

Figure 6.12 presents the distribution of the types of stories found by our system. We 

compute the distribution of the stories in terms of shot category appearing at the 

beginning of each story. The most common type of stories begins with anchor person 

shot (represented by B-anchor in the Figure) which accounts of 72% of all stories. For 

the rest of 28% of stories, we divide them into 3 clusters based on our techniques 

used to detect shot categories. They are: (1) B-Visual: for the stories that begin with 

shot category of visual similarity type; (2) B-Comm: for stories that begin with 

Commercial shot type; and (3) B-ML: for stories that begin with shot of machine-

learning type. B-Visual are stories that begin with shots of categories LEDS, Weather, 

and HEALTH; and B-ML are stories that begin with shots of categories 
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Intro/Highlight and Sport. As can be seen, B-anchor is the most common type, follow 

by B-ML and B-Visual.  

From the error analysis of our HMM framework, there are four main types of 

incurred errors as shown in Figure 6.13. The details of each type are given below.  
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Note: AP – Anchor person shot 

Figure 6.13: The error analysis result of the total error rate 22.5% 

 

(a) Error in detecting multiple sport stories. This error accounts for more than 

50% of total errors (as can be seen n in the Figure). This is because; our system did 

not incorporate the right method to tackle the problem of individual sport reports. The 

HMM can detect a transition of news story (entering into sport news). But it detects 

the whole chunk of several sport reports as one news report.  

 (b)  The second source of errors is from detecting multiple live-reporting stories 

without any clues of story break (s2). This occurred in CNN news video such as 

session called “TOP stories”. The reporter reported multiple stories containing mostly 
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shots of live-reporting categories in which story transitions could not be found by the 

HMM. This error accounts for about 22% of total errors. 

(c) It is often that the reporters (in Anchor shots) report several news stories in 

the studio without any outdoor/indoor or live-reporting shots. Thus there is no change 

of shot between stories, and our system failed to find such story breaks. This error 

accounts for about 11% of total errors. 

(d) Another type of error is called un-seen pattern error (s8). During the test 

phase of story segmentation, many story patterns that were not discovered by HMM 

during training. This is because such “unexpected” patterns did not occur sufficiently 

frequently in training data for HMM to learn the patterns, which is a case of data 

sparseness problem. One typical story pattern learned by HMM is: Anchor shot (Tag-

ID 2) followed by a remote reporter which is under Speech/Face category (Tag-ID 5), 

and 2Anchor (Tag-ID 3), or the Tag-ID sequence; 2 5 3, which is considered as one 

story. However, there are patterns of Tag-ID sequence such as: 2 5 3 2 5 3 2 5 3 

found during testing that should belong to one story. However, for this kind of output 

from the HMM, our algorithm which is a straight forward algorithm in detecting the 

state transitions, detected that as 3 stories. This leads to over segmentation of stories 

in such cases. We estimate that this accounts for about 13% of total errors. One 

approach to overcome this problem is to introduce heuristics. But a better solution is 

to investigate the use of higher order statistics. 
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♦ Effects on number of states N 

To illustrate the effect of varying the number of states in our story segmentation 

model, Figure 6.14 shows a plot of story boundary error rate versus N (x-axis), the 

number of states in the HMM model. The experiment is based on the full set of 

feature AVT on the test data. As we can see, although we obtained local minimum at 

N = 3, 6 and 9, however, we found that the system is more stable when N = 9 at which 

the system gives the minimum error. Therefore, states =9 is adopted in our model. 

 

 
 

 

 

 

 
 

 
 
Figure 6.14: Average story boundary error rate versus the number of 
states N in the HMM 
 

♦ Association of news video sequence with the HMM output states 

From the observations on the news video sequences and on the HMM output states, a 

graphical figure to represent news sequence model and HMM output states for story 

boundary identification is shown in Figure 6.15.  
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Figure 6.15: HMM architecture of news story segmentation.  

There are six main stages (note that it is not “state”) that the HMM may enter. There 

are: Start_news stage, commercial stage (Com), intro/highlight stage (Intro), news 

(News) stage, miscellaneous (Misc stage) and End_news stage. For each stage, there 

is a series of HMM output states beginning with “start” and ending with “end” states. 

The “start” and “end” states of each of the stages may not be the same. The stages of 

the HMM can be summarized as follows. 

1. Start_news. This stage occurs only once in each of the input news sequence. 

Following this stage, the system may either enter the Intro/highlight (Intro in the 

figure) or commercial (Com) stage. If it enters Intro, it then moves to News stage 

directly. But if it starts with Com it may move to Intro before entering the News stage.  

2. Intro. In general news broadcast, there are 3-4 blocks of intro/highlight, at the 

beginning of news broadcast and before the commercial breaks. This intro/highlight 

block contains several shots of Intro/highlight category. The system may exit from 

Com, Misc, or News stage before it comes to this stage (for the 2nd time). 

…Start End 

Com

Intro 

News

Misc 
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Figure 6.16: The relationship between HMM output states and the observation 
symbols of the test data. 

 

3. News. The system may stay in the News stage for some repeated iterations before 

entering one of the other three stages.  

4. Com. There are several commercial blocks within news broadcast especially for 

CNN news. Except for Com that appears at the beginning of news broadcast, it may 

be entered from News, Intro or Misc stage. 

5. Misc. This is the non-news story segments such as the reporters’ chitchats (mostly 

from 2Anchor shots when switching topic) or several Live-reporting shots (before 

commercial break) but with no coherent contents. The system stays here for a short 

duration and goes into other stages again.  

6. End_news. The news reporting sequence repeats between 3, 4, and 5 until it 

reaches the end of the news program.  

The stages discussed above are the main stages to represent a sequence of news 

reporting for news video covered in this research. Figure 6.16 shows the relationships 
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between the HMM output states and the corresponding observation symbols of the 

test data. 

 

6.3.3 Classification of News Stories 

Another task that is defined in TRECVID 2003 is story classification. After story 

boundaries are identified, we need to classify the detected stories into the classes of 

“news” or “misc”. For this task, we use the assigned tag of the first shot of each story, 

time constraint, and heuristic rules to perform the classification.  

 

 

 

 

 

 

 

  (a)      (b) 

Figure 6.17 presents the simple rules for classifying the detected stories into 
the desired class. (a) Common rules for both CNN and ABC news and (b) 
specific rules for CNN news. 

 

Figure 6.17 presents simple rules for classifying the detected stories into the desired 

class. For each story of the training data (either they are under “misc” or “news” 

stories), we collect average duration of a story, category of the first shot of the current 

Specific rules for CNN 
rule 1: if (Curr = ANCHOR) and ((Next = 
WEATHER) or (Next = HEALTH) or (Next = 
2ANCHOR) or (Next = Intro/Highlight)),  
 then the story is  "misc"; 
rule 2: if (Curr = SPORT), then the story is  "news"; 
rule 3: if (Curr = WEATHER),  
 then the story is  "news"; 
rule 4: if (Curr = HEALTH) and (Next  = HEALTH) 
then the story is  "news"; 
rule 5: if (Curr = TEXT-SCENE) and (Prev = sport) 
 then the story is  "misc"; 
 

Common rules for ABC & CNN news  
rule 1. if (Curr = COMMERCIAL),     then the story is  

"misc" 
rule 2. if (Curr = LEDS),     then the story is  "misc"; 
rule 3: if (Curr = Intro/Highlight), then the story is  

"misc"; 
rule 4. if (Curr = ANCHOR) and (Next = LEDS) and 
      story duration <=TOLERANCE,  
   then the story is  "misc"; 
rule 5. if (Curr = ANCHOR) and (Next = COMMERCIAL) 
  then the story is  "misc"; 
rule 6. if (Curr = ANCHOR) and if story_dur 

<=TOLERANCE), then the story is  "misc" , 
 else the story is  "news"; 

rule 7. if (Curr =  2ANCHOR) and (story duration <= 
TOLERANCE), then the story is  "misc"; 

rule 8. if (Curr = OTHERS),  then the story is  "news"; 
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story, category of the first shot of the next story and category of the first shot of the 

previous story. We then derive simple heuristic rules as shown in Figure 6.17 to 

perform news classification. Note that, the rules are formed based on the definitions 

of “news” and “misc” as observed in the news videos provided by TRECVID 2003. 

Most of the rules can be applied to news from other sources too. For example, the 

rule: ‘if the first shot of the detected story is commercial shot, then this story is 

“misc” ’, is always true for all known news broadcasts. However, in order to achieve 

similar level of the performance, other broadcast stations should have similar 

sequences of news categories, otherwise, further study on the new data set and 

learning of new rule set are required.   

Results of our news classification for Runs 1 – 5 are presented in Table 6.5.  

 

Run Feature  Story Classification 

    Recall Precision 

  

F1 

1 F1 0.937 0.939 0.938 
2 F3 0.925 0.963 0.944 
3 F1 0.918 0.953 0.935 
4 F3 0.916 0.965 0.940 

5 F2 0.921 0.773 0.841 

Table 6.5: Result of news classification on this corpus 

Figure 6.18 shows our results as compared to other participating groups under this 

task. Note that, some groups may submit the result only based on one or two of the 

required feature sets. We can see from Figure 6.18 that, our classification algorithm 

performs the best under all required feature sets. The best result of our system is 
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achieved when using the complete set of features, which is the combination of audio, 

video and ASR features; which we could obtain an F1-value of over 94%. 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 6.18: The results comparing to other participating groups 
 

The next chapter discusses another approach to detect story boundaries based on rule 

induction technique. The framework for rule induction is based on our first level 

output shot categories, together with temporal feature set as that used in the HMM 

framework. The purpose of introducing this approach is to compare its performance 

to that of HMM approach on news segmentation on TRECVID data. Another reason 

is that we found the HMM approach to be more complex to understand and maintain, 

and we want to explore the rule induction method which is simpler and easier. 
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CHAPTER 7 
GLOBAL RULE INDUCTION APPROACH 

 

 

This chapter provides an overview of a global rule induction model called GRID 

(Global Rule Induction for text Document) and discusses the application of GRID to 

news story segmentation. It presents the results of story segmentation using GRID 

and compares the result to that of the HMM approach. Finally, it presents the error 

analysis of the results. 

 

7.1 Overview of GRID [Xiao 2003] 

GRID is designed to extract rules to perform information extraction (IE) from text 

documents. It emphasizes the use of global feature distribution in all of the training 

examples in order to make better decision on rule induction. It examines all the 

training instances at the representational levels of lexical syntactic and semantic 

simultaneously, and selects a global optimal feature to start the rule induction process. 

In addition, it adopts information chunks as units to determine the context of rules. It 

is of higher syntactical level than word or token (in text document), and thus it 

provides a more appropriate unit to model the context. The features used by GRID are 

general and applicable to a wide variety of domains, ranging from semi-structured 

corpus to free-text corpus.  
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7.1.1 GRID on Text Documents 

GRID is a supervised rule induction algorithm that learns from training documents in 

which sentences have been tagged for specific slot types such as the name of speaker, 

venue in a seminar announcement etc. The tagged sentences (referred to as training 

instances) of each type are regarded as positive examples, while the remaining 

sentences in the documents are regarded as negative examples. GRID uses 

information chunk derived from shallow parsing as the basic granularity of context 

information. This is to avoid the difficulties in deciding slot boundaries if words were 

to be used as units for context. Both training and testing documents are pre-processed 

by the same basic NLP modules such as the sentence splitter, tokenizer and 

morphological analyzer etc. This step aims to perform syntactic analysis to generate 

information on Part-of-Speech (PoS), noun group and verb group chunking. The 

algorithm then derives the semantic classes of some noun groups, such as person, 

organization, location, and time etc. This is done by using a rule-based named entity 

recognition module, which employs global information such as acronyms, sequence 

of initial capitals, initial capitals of other occurrences, organization suffixes and 

person prefixes of other occurrences from the whole document to resolve the 

ambiguous words that could be person name, organization or others. 

Further details on global information can be found in [Xiao 2003]. The following 

Sections discuss details of data representation and details of how GRID performs 

rules extraction in text documents. 
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7.1.2 The Context Feature Vector 

For every tagged training instance, GRID generates a context feature vector centered 

around the tagged slot. The context feature vector is of the general form: 

                 <c-k> …<c-2> <c-1> tagged_slot <c+1> <c+2> … <c+k> (7.1) 

Here <ci> {i=-k to +k} represents the context units of the tagged slot, and k is the 

number of context units considered. <ci> can be a token, a noun or verb phrase or 

even a syntactic unit such as subject or object and it can be of various feature types, 

including: words, PoS (if it’s a single token); various types of verbs and noun chunks, 

and semantic classes. The context feature vector for a single tagged instance can 

therefore be represented as follows: 

<(-k,f-k
1), .., (-k,f-k

m),.., (-1, f-1
1),.. , (-1, f-1

m), (0,f0
1),.., (0,f0

m), (1,f1
1),.. , (1,f1

m), .., (k,fk
1),.., (k,fk

m)> (7.2) 

where m is the number of linguistic features for each element. 

As shown in Equation (7.2), each element is represented as a tuple (g, fg
i). The first 

part of the tuple, i.e. g, indicates the position of the element within the tagged 

instance. g=0 gives the position of tagged slot, and positive g (or negative g) gives 

the gth right (or left) hand context element from the tagged slot. If there are m features 

and k context elements, then we have a context vector of size (2k+1)× m. 

The second part of the tuple, fg
i, gives the possible appropriate linguistic 

representation for each element. There are 12 features (m=12) to be used. They are 

lexical, syntactic and semantic features. The details are given in Table 7.1. These 
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representations are stored as string type. For NP and VP, the head noun and root verb 

are also stored.  

Feature Description Feature Description

fg
1 Lex. String fg

2 PoS 

fg
3 NP_Person fg

4 NP_Org. 

fg
5 NP_Loc fg

6 NP_Date 

fg
7 NP_Time fg

8 NP_Perc. 

fg
9 NP_Mon. fg

10 NP_Num. 

fg
11 VP_Pass. fg

12 VP_Act. 

Table 7.1: Features that GRID employed 

 

7.1.3 Global Representation of Training Examples 

Given a cluster of training instances of a specific slot type, GRID generates a context 

feature vector for each instance using Eq.(7.2). By arranging all the instances using 

Eq.(7.2) and feature set in Table 7.1, we obtain a global context feature representation 

for the training documents as shown in Figure 7.1. The occurrences of the common 

element features at a specific position g are cumulated as egi. We can see from the 

Figure that we can easily obtain the global distribution frequency of any element 

feature and at any position. Thereafter, a set of the instances covered by any feature 

set f can be derived. As different features play different importance in various 

domains, for example, in the free text terrorist attacks corpus, verb features play 

crucial roles, thus for each feature, a weight coefficient βgi is assigned. 
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    inst.1:<(0,f0
1), (0,f0

2) …,(0,f0
k), …, (g,fg

j),..., (n,fn
m)> 

        inst.2:<(0,f0
1), (0,f0

2) …,(0,f0
k), …, (g,fg

j),..., (n,fn
m)> 

            .         .            .        …    .      …     .      …      . 
              .         .            .        …    .      …     .      ...       . 
              .         .            .        …    .      …     .      …      . 

    inst.h:<(0,f0
1), (0,f0

2) …,(0,f0
k), …, (g,fg

j),..., (n,fn
m)> 

     

 

Figure 7.1: Global distribution of instances & representations 
     

To start the rule induction algorithm, GRID selects element feature that has the 

highest βgi × egi value in the active positive training set. By adding this element 

feature fgi into an active feature set f, a pattern rk(f) that covers a large number of 

active training instances which have the most prominent feature fgi can be generated. 

The quality of rk(f) is determined by using the Laplacian measure. Let nk denotes the 

number of both positive and negative examples covered by rule rk(f), and mk be the 

number of negative examples or errors covered by the rule. The Laplacian expected 

error is defined as: 

    
1
1

))((
+
+

=
k

k
k n

m
frLaplacian     (7.3) 

GRID evaluates the Laplacian measure for the top w element features with high βgi × 

egi values in the active positive training set. The aim is to select the rule that has 

prominent feature fgi with high βgi × egi value while its Laplacian(rk(f)) satisfies the 

pre-defined error tolerance.  
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7.1.4 An Example of GRID Learning 

In this section, we present a simple example taken from [Xiao 2003] to illustrate how 

GRID learns pattern extraction rules. In this example, only a subset of feature 

representations and context elements is presented. The example aims to extract the 

semantic slot <stime>, which indicates the “starting time” of a seminar 

announcement.  

 

context position -2 -1 0 

instance 1 Time : <stime> 3:30 PM </stime> 

instance 2 Time : <stime> 2 p.m. </stime> 

instance 3 Time : <stime> 4 p.m </stime> 

instance 4 start at <stime> 10 am </stime> 

instance 5 begin from <stime> 11:30 AM </stime> 

Table 7.2: An example for extracting slot <stime> 

 

Table 7.2 shows 5 positive instances where the desired slots are tagged. The example 

uses w=1 (i.e. start with the most frequent feature). By examining the feature 

frequency for the context elements at every position around the tagged slot for the 5 

positive instances in Table 7.2, we can see that the tagged slot “NP_Time” appears 

most frequently (it occurs 5 times). Thus, it has the highest coverage in the training 

example pool. This feature is then selected, and the generated rule is: 

“NP_Time  NP_Time is starting time” 

Next, the rule is examined whether it is satisfied the Laplacian measure. This rule 

will cover all the “negative” instances with the presence of NP_Time but are not 



Chapter 7   

Global Rule Induction Approach 128

<stime>. Thus the Laplacian measure will not be satisfied. In order to improve the 

quality of the rule, more contextual information must be included to constraint the 

rule. This is done by examining the context information beside the tagged slot. We 

can see from the table that the token “:” at the 1st left context position appears 3 times 

for all positive instances with <stime> in slot 0, it is therefore selected next, and the 

rule is now constrained as: 

 “: NP_Time  NP_Time is starting time” 

For the CMU seminar announcement corpus, this rule is sufficient to satisfy the 

Laplacian measure, and thus we obtained the 1st rule (see below). Once this rule is 

obtained, the 3 instances are removed from the positive training example pool. The 

above process is iterated on the remaining two positive examples and finally obtains 

another two rules (2nd rule & 3rd rule). Thus, all the generated rules that satisfied the 

Laplacian measure, are: 

1st rule  “: NP_Time  NP_Time is starting time” 

2nd rule  “start at NP_Time  NP_Time is starting time” 

3rd rule  “begin from NP_Time  NP_Time is starting time” 

During testing, if any of these rules applies, the tags <stime> and </stime> will be 

inserted beside the NP_Time’s boundaries. Further details of GRID algorithm can be 

found in [Xiao 2003]. 
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7.2 Extension of GRID to News Story Segmentation 

As discussed in Chapter 4, we try to define the shot categories that are meaningful 

and reflect the semantic of the shots. Some specific categories are useful clues to 

detect the transitions of story. Such categories are Anchor, program logos (such as 

“LEDS”, “PLAY”, etc.), Text-scene, etc. From the observations of output from the 

HMM, we found that there are rules embedded in the patterns. For example, the 

output when using a complete set of features with state equals to 9, a transition from 

any states to State 4 (which corresponds to Anchor shot with the presence of cue-

phrase) indicates a story change. Another example is a transition from State 9 (which 

corresponds to Commercial shot) to State 8 (that corresponds to LEDS shot) also 

indicates a change of story. Given a sequence of shots typed by the category ids and 

the essential features, it seems reasonable that some form of rules can be extracted to 

identify the story boundaries. Here, we investigate the use of GRID system to 

perform rule induction for story segmentation task. 

 

7.2.1 Context Feature Vector 

Given the set of training data (the same as that used at the story segmentation level in 

the HMM approach) with information of story boundaries, we collect positive 

training instances by extracting k shots to the left and k shots to the right of each story 

boundary and use these 2k surrounding shots to create a context feature vector. The 

remaining non-boundary shots in the training data are created in the same way and are 

placed in the negative instance pool. The term tagged slot in GRID system is referred 
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to as story boundary (BD) in our positive training instances. The context feature 

vector is similar to that of Eq (7.1), the difference is only in replacing tagged_slot 

with BD. Thus, we have 

                 <c-k> …<c-2> <c-1> BD <c+1> <c+2> … <c+k>  (7.4) 

where <ci> is a token that represents shot content features. Here, its content features 

are shot category, scene change feature and cue-phrase features as used in our HMM 

framework for TRECVID. A general context feature vector for a single tagged 

instance is the same as in Eq (7.2).  

The overall feature set and its possible values that we used in our experiments are 

given in Table 7.3 (refer to Chapter 4 on the details of each feature). 

 

Feature Description Possible values 

fg
1 Shot category (SC) 1, 2, ..,17 

fg
2 Scene change (SN) “c” or “u” 

fg
3 Cue-phrases (CU) “1” or “0” 

Table 7.3: Features used in our experiments 

 

7.2.2 An Example of GRID Learning 

In this section, we present a simple example to illustrate how GRID learns pattern 

extraction rules from news video data. Table 7.4 shows 5 positive instances where the 
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desired slots are tagged. The example instances are selected from our training data. 

For simplicity, we give an example when using only one feature per context unit. The 

feature is shot categories. Note that, <BD> is inserted as a dummy tagged slot to 

indicate story boundary. 

 

Context position Instances 

LH-2 LH-1 C0 RH+1 RH+2 

1 Speech LR <BD> LEDS LR 

2 sport LR <BD> LEDS sport 

3 LR LR <BD> LEDS sport 

4 sport sport <BD> LEDS LR 

5 sport  Text-scene <BD> LEDS Speech 

Note: LR – Live-reporting category, LEDS – Lead-ins category, LH – left hand context,  
RH – right hand context, and C0 --tagged slot (or story boundary); 

 
Table 7.4: An example for extracting slot <BD> 

 

How GRID extracts rules here is similar to the example on text document described 

earlier in Section 7.1.3. From Table 7.4, with w =1, we can see that at RH+1, “LEDS” 

appears most frequently and thus has the highest coverage in the training example 

pool. This feature is then selected, and the generated rule is: 

“RH+1 = LEDS  C0 is story boundary” 

This rule, however, does not satisfy the Laplacian measure as we found that there are 

many LEDS shots in the corpus that are not the successor of story breaks. For 

example, there are many continuous LEDS shots that belong to one chunk of 

miscellaneous story. So the rule has to be further constrained. Next we examine the 
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contextual information beside the tagged slot. We see that at LH-1 position, the token 

“LR” appears 3 times, and is therefore selected next. The rule is now constrained as: 

“LH-1= LR, RH+1 = LEDS  C0 is story boundary” 

In our corpus this rule is sufficient to meet our Laplacian measure, and thus the first 

rule found is: 

   Rule 1: “LH-1= LR, RH+1 = LEDS  C0 is story boundary” 

Once we obtain this rule, we remove the 3 instances from the positive training 

example pool. The algorithm then iterates the above process on the remaining two 

positive examples and finally obtains another two rules as follows: 

   Rule 2: “LH-1 = sport, RH+1 = LEDS  C0 is story boundary” 

   Rule 3: “LH-2= sport, LH-1   = Text-scene, RH+1= LEDS  C0 is story boundary” 

 

7.2.3 The Overall Rule Induction Algorithm  

General algorithm for GRID is given as follows: 

a) Group tagged instances of the same slot type into one cluster. 

b) Generate context feature vectors for all positive instances in every cluster. The 

resulting kth cluster is Ck, with the positive instance set Pk and negative 

instance set Nk.  Let rk be the set of rules extracted so far to cover Pk; and set 

rk = null. 

c) For every cluster Ck, perform the followings: 

(c1) Loop-1:  // to generate new rules 

                 Let fc=null be the current feature set;  rc(fc) be the current rule; and 
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                      Pc, Nc be the set of instances covered by rc(fc).  Initially, set: Pc = Pk, Nc 

= Nk  

                      RuleAttempt = 0; 

(c2) Loop-2:  // to refine current rule rc(fc) 

• Find top w element features {fg
j} (based on βgi × egi values) that 

covers at least one instance in Pc; 

• Select the fi
j that minimizes the Laplacian measure of the current 

rule rc(fc ∪ fi
j);   Add fi

j to fc, i.e. fc = fc ∪ fi
j 

• RuleAttempt++;  

          (c3) IF Laplacian(rc(fc)) < σ (error tolerance) 

          THEN  // the quality of resulting rule is good 

          Add rule rc to rule set rk; or rk = rk ∪ rc;  

    Update Pk = Pk–{all instances covered by rule rc}; 

    Go to Loop-1 to generate another rule. 

        ELSE  // more work is needed to constraint rule rc 

            Update Pc by removing those instances that are not covered by rc; 

              IF RuleAttempt ≥ λ (max. rule attempt for constraining rules) 

        THEN // relaxing error tolerance; 

               Increase σ; 

Go to Loop-1 to generate new rule:  

(with bigger error tolerance) 

            ELSE  Go to Loop-2 to find new feature f’i
j to refine rule rc. 

        Repeat until Pk is empty. 
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The “RuleAttempt” is related to the length of the generated rule, which the user could 

pre-specify. For example, if we specify the rule length is “4”, then the “RuleAttempt” 

could be 8. That is to say, we constrain the rule to the maximum size of 4 contextual 

units (4 for left and right side around the tagged slot respectively). Based on the 

above algorithm, GRID will generate rules that incorporate the most prominent 

features. If using a single feature cannot satisfy the error tolerance for quality, then 

more features will be added to tighten the constraints until the quality of the resulting 

rule is good enough. GRID is a covering algorithm and each instance in the positive 

training pool is involved to induce one rule. We can also see that GRID is a local 

search algorithm. It performs a form of hill climbing and once the rule with current 

features satisfies the error tolerance it will be output even though adding more 

features would result in lower Laplacian value. In case there are noises in the positive 

training examples, we can apply some “post-pruning” strategy to control the whole 

quality of the learned rules. After the entire rule set has been generated, some of the 

rules may have low coverage on the training set. A post-pruning step that discards all 

rules with Laplacian expected error greater than a threshold has the effect of 

removing the least reliable rules. 

 

7.3 Evaluation on the TRECVID 2003 data 

This section discusses the tests performed on the TRECVID data and the evaluation 

results using GRID algorithm. This approach was employed to compared the result to 

that of the HMM approach. For the rule-based approach, we conduct four 

experiments using different set of features as follows: (i) shot category (SC); (ii) shot 
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category and cue-phrases (SC + CU); (iii) shot category and scene change (SC +SN); 

and (iv) shot category, scene change and cue-phrases (SC+SN+CU). Before we 

present the results, we will discuss the setting up of the testing instances and the 

algorithm to detect story boundaries after the qualified rules are generated.  

 

7.3.1 Creating Testing Instances 

Testing instances are constructed in a similar way to that of training instances. 

Consider the case when k = 2, then we need to create 4-shot instances using the 

window of 4 shots (2 left and 2 right shots) move along the shot sequence. The main 

difference is that for training data, we construct the instances surrounding story 

boundaries. But for test data, we construct the instances from all shots. During 

testing, if any of the generated rules can apply, the tags <BD> will be inserted at the 

position C0. Figure 7.2 presents the construction of N instances when size k =2.  

    Instance 2 

1 2 3 4 5 … N-3 N-2 N-1 N 

   
Instance 1    …    Instance N-3

   
<1> <2> <C0> <3> <4> 

<2> <3> <C0> <4> <5> 
… … … … … 
<i-2> <i-1> <C0> <i> <i+1> 
… … … … … 
<N-3> <N-2> <C0> <N-1> <N> 

         
   

Figure 7.2: Illustrates the construction of the instances when size k =2 
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In the Figure, C0 is inserted to facilitate the examination of the current instance as 

discussed in Section 7.2.2.  

After rules are extracted from the training data, we can then apply these rules to the 

test data. Form our experiments, the number of context units k = 2 gives the best 

result. Below describes the algorithm to apply rules to the test instances to detect 

story boundaries. 

 

Algorithm  

Given X = { X1, X2, .. = XM), M – total number of test instances 

1. For i = 1,..M 

1.1 read an instance Xi from the test instance pool 

for j = 1, .. N (when N = total generated rules) 

1. check whether rule [j] is matched with a pattern in the 

test instance Xi 

2. if yes, instance Xi  contain story boundary at position 

<C0> 

3. else apply the next rule, rule [j+1] until no more rule to 

apply 

1.2 If there are more test instances, then go to step 1.1 until there are 

no more test instances 

 2. End of algorithm. 

 

The evaluation results and errors analysis are presented in the following sections. 
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7.3.2 Evaluation Results 

This section presents the effect of: (1) different context length; and (2) different set of 

features. It also gives the best results achieved by this approach and the set of rules 

generated. Finally, it presents the results as compared to that of the HMM approach 

and the based-line which based on the anchor shot. 

7.3.2.a Effects of different k 

In order to investigate the effect of employing different context length on the 

performance of story segmentation, we conduct a series of experiments by using 

different context length based on the number of shots. Figure 7.3 (a) presents the 

performance of GRID in terms of precision and recall and Figure 7.3 (b) shows it 

corresponding F1 value.  

We can see from the Figures that, the best result is obtained when the contextual 

length k is equal to 2. After k increases to 3 and above, the performance starts to drop. 

When k equals to 4, the recall drops rapidly. This is because when using more context 

units, the learnt rules become more specific (or over learnt). As a result, there are 

fewer patterns in the test data that match the rules, thus resulting in decreasing 

performance.  
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Figure 7.3: Effect of number of context units (x-axis) on performance of 
GRID in: (a) precision-recall value; and (b) F1-value 

 

7.3.2.b Effect of different set of features 

Figure 7.4 compares the result from the four experiments. The results are presented 

using F1 measurement. From the Figure we can see that, when using only shot 

category as the feature, GRID performs better than when using more features, which 

may introduces more errors rather than improving the result. It is demonstrated that, 

shot category is the prominent feature for story segmentation with our rule induction 

algorithm. This is also confirmed from the result of the HMM framework that shot 

categories contribute significantly to the overall accuracy. 

(a) 

(b) 
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Figure 7.4: A comparison of results when using different features for 
rules induction  
 
 

7.3.2.c The best results and the set of rules generated  

Table 7.5 presents the best result from the selected features (only shot category) when 

the number of contextual unit k = 2. We can see from the Table that GRID performs 

reasonable well on this large corpus and achieves an F1 value of over 75%. It 

performs better on ABC corpus rather than CNN corpus. This is because the structure 

of CNN news is more dynamic and complex than that of ABC, where its structure is 

much simpler and only varies slightly within the same corpus.  

 

Data Precision Recall F1 

ABC 71.95 84.51 77.72 

CNN 76.76 68.47 72.38 

average 74.36 76.49 75.05 

 

Table 7.5: Result when using shot category as the feature 
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Figure 7.5: Presents the rules extracted from the training set when 
GRID gives the best result 

 

Figure 7.5 presents the rules extracted from the training set when GRID produces the 

best result for story segmentation. We can see from the Figure that there are only 15 

rules that GRID leant from the training set of this corpus. The most common rule, 

which is generated even when using different number of k, is Rule 1. The implication 

of this rule is any transition to Anchor shot indicates a story change. This is 

independent of the number of contextual unit k as the rule satisfies the Laplacian 

measure for all k. Refer to Table 7.4 and Figure 7.2 for the format of the test instances 

and the interpretation of the rules. During testing, for each instance, if one of these 

rules can be applied, then story boundary is declared at the position C0. 

 

Rule1: RH+1 = Anchor  

Rule 2: LH-2 = sport, RH+1 =LEDS   

Rule 3: LH-1 = ADV, LH2 = LEDS, RH+1 =sport  

Rule 4: RH+1 = LEDS, RH+2 = LR  

Rule 5: RH+1 = Text-scene, RH+2 = sport  

Rule 6: RH+1 = 2Anchor  

Rule 7: LH1 = sport, LH2 = Text-scene  

Rule 8: LH-2 =People, RH+1 =sport  

Rule 9: LH-2 =LR, RH+1 =LEDS  

Rule 10: RH1 =Text-scene, RH+2 = Anchor 

Rule 11: LH-2 = LR, RH+1 = Weather 

Rule 12: RH+1 = HEALTH 

Rule 13: LH-2 = HEALTH 

Rule 14: LH-2 = Anchor, RH+1 =Weather  

Rule 15: LH-2 = LR, RH+1 =Intro/highlight 
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7.3.2.d Comparison of Performances between GRID and HMM approaches 

In order to compare the results, we also peform the experiments that use the detection 

of Anchor shots as a base line. The method of detecting story boundaries by detecting 

just anchor shots is used in various works as reported in the proceedings of 

TRECVID 2003. Table 7.6 presents the best results of the three methods. 

 
 
 
 
 
 
 
 
 

Table 7.6: Comparing the results of the two approaches and the based-line  

 

We can see from the Table that, by detecting only anchor person shots, we could 

achieve F1-value of about 62% which is considered high. Among the three methods, 

the HMM framework is the best for story segmentation. However, rule induction 

approach also gives a promising result closely to that of HMM. Thus, it may be an 

alternative method that can still be further improved to achieve better performance. 

Next Chapter presents the conclusion of our 2-level framework for story 

segmentation of the two approaches.  

 

Methods Precision Recall F1 

HMM 80.2 74.9 77.50 

Rules 74.36 76.49 75.05 

Based-line 
(Anchor) 

77.02 52.4 62.37 
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CHAPTER 8 
CONCLUSION AND FUTURE WORK 

 

 

This Chapter concludes our system framework. It first summarizes the framework, 

the results and the errors incurred during story segmentation. It then provides possible 

solutions to tackle the major problem when adopting HMM approach. Finally it 

discusses trends of future work. 

 

8.1 Conclusion  

We have discussed two approaches to story segmentation in news video: Hidden 

Markov Models (HMM) and rule induction based approaches. In both approaches, we 

divided our framework into 2 levels, shot and story levels. In the shot level, we 

defined three clusters of total 17 shot categories. The clusters are heuristic-based 

(contains commercial shots); visual-based (consists of Weather and Finance shots, 

Anchor shots, program logo shots etc.) and rule-based clusters (contains live-

reporting shots, People shots, sport shots, etc.). For each shot, we used low level 

feature (176-Luv colour histogram), temporal features (audio class, shot duration, and 

motion activity), and high level features (face, shot type, videotexts) and employed a 

combination of heuristics, specific detectors and the decision trees to classify the 

shots into the respective categories. At the story level, we used the shot category 
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information, scene/location change and cue-phrases as the features, and employed 

either HMM or rule induction techniques to perform story segmentation. Besides the 

errors that occur during the experiments, we found that HMM is not easy to be 

enhanced to cope with new corpuses or incorporate any known heuristic patterns. We 

need to re-train the system which involves parameter estimations, re-estimation, 

finding the number of hidden states that give the best results, etc. In comparison, with 

the rule induction approach, it is easy to incorporate new rules and adapt to new 

corpuses.  

The results and errors from each approach can be summarized as follows: 

 

8.1.1 HMM Approach 

The tests on 120-hour of news video from TRECVID showed that our approach is 

effective, and we could achieve the F1 measure of over 77% for story segmentation. 

From the result, we applied simple rules to classify the detected stories into the 

classes of “misc” and “news” and we could achieve over 94% for news classification. 

Our system achieved the best performance during TRECVID 2003 evaluations 

[TRECVID 2003]. We found that there are about 72% of the stories found begin with 

Anchor shot, about 16% with shot of categories of ML-based cluster, and about 11 %  

with shot of categories of Visual-based cluster. From the error analysis (see Section 

6.3.2 b), we found that they are four sources of errors when using this approach. The 

errors are: (1) detection of individual sport news reports which accounted for more 

than 53% of total errors; (2) detection of multiple live-reporting stories accounted for 
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about 22% of total errors; (3) detection of multiple stories in Anchor shot accounted 

for about 11% of total errors; and (4) detection of unexpected patterns accounted for 

about 13% of total errors.  

As discussed above, the main source of error resulted from the detection of individual 

sport stories. In order to improve our system performance, additional technique is 

required to resolve this problem. One possible technique is by adopting multi-scale 

image similarity (MSIS) method. We did a test on a small set of data from the 

training set and found that it helped to improve story segmentation result by about 3% 

compared to when it was not used. The algorithm is based on the observation that 

same sport news has similar colors (for example, soccer news video contains mostly 

green color). Thus, once the background color changes, it is likely that it indicates the 

change to the next sport news. Two scenarios of sport news detection using the multi-

scale image similarity algorithm are presented in Figure 8.1.  

 
    (a)     
  

 
    (b)  
Figure 8.1: Two scenarios for sport news detection in our work, (a) without 
MSIS, and (b) with MSIS. (Note: Soc –soccer; BKB – Basketball; and TN – 
Tennis) 
 

Golf 
 

Soc BKB TN detected Sports  

Golf 
 

Soc BKB TN detected  Sport1 Sport2 



Chapter 8 

Conclusion and Future Work 145

Figure 8.1 (a) presents the result of the detection by the HMM method; and (b) 

presents the result after applying the multi-scale image similarity method. We can see 

that at least one more boundary was detected.  

Another probable solution is by analyzing the associated transcript to spot the specific 

words that are likely to indicate the type of sport. Examples of such words are 

“NBA”, “basketball”, “goal”, and etc. However, by spotting the words, there is no 

guarantee that we can obtain the exact story boundaries as the words may appear in 

the middle or close to the end of the shot or even a few shots after the boundary of a 

new sports story. Thus, if using this algorithm, the boundaries found would not be of 

sufficient accuracy, i.e. it will tend to exceed the 5-second allowance [TRECVID 

2003].  

Beside the above problem, we are also concerned about the cost when dealing with 

large corpora. From the analysis of the effectiveness of the features extracted from 

Singapore news as presented in Figure 5.7, we found that face and audio are two of 

the most important features. The use of only these two features contributes about 78% 

to shot classification accuracy. By including the rest of the features to the system, we 

could then achieve a shot classification accuracy of about 95% (~ 90% for TRECVID 

2003 data set) and about 90% for story segmentation (over 77% for TRECVID 2003 

data set). This demonstrated that the selected features are necessary to achieve such 

performance.  

As for story segmentation using rule induction method, we found that shot categories 

such as Live-reporting and People are less important, and can be dropped from the 

analysis.  
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8.1.2 Rule-induction Approach 

In this approach, we used the same set of features as used in the HMM framework 

and employed rule induction system called GRID to extract rules from the training 

data. The learnt rules were then applied to detect story boundaries in the test data. We 

conducted several experiments based on the same training and test data as used in the 

HMM approach. The results showed that we could achieve the accuracy of about 

75%. Although the accuracy of rule induction approach is slightly lower than that of 

HMM, it has the advantage that it is less complex and easier to adapt to new corpora.  

The errors that incurred during story segmentation using this approach are similar to 

that of the HMM except in sport reports, the rule induction algorithm performs 

slightly better. This is because it could capture the rules like Rules 5, 7 and 8 (see 

Section 7.3.2 c) which indicate transitions of story within sport report. HMM, on the 

other hand, would output the whole chunk of sport report as the same state, resulting 

in only one story.  

 

8.2 Trends and Future Work 

First we can see from the results of TRECVID evaluations that techniques based 

mainly on statistical machine learning methods work well for story segmentation 

problem. However, from the discussion of problems that cause high errors in the 

segmentation, it suggests that the news segmentation is a hierarchical classification 

problem. Although it can be tackled using heuristic approaches as discussed earlier 
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for sports, a principled approach to tackle this problem in a unified framework is to 

employ higher order statistical methods such as the graphical model [Jordan 1998].   

Second, one example of the applications of news stories is in news retrieval and 

summarization. Given a query, the system should be able to retrieve the appropriate 

news stories (news video and the associated text stories) according to the user’s 

specified time constraint. To support this task, adaptive news summarization is 

required. A technique to support question answering on news video was proposed in 

[Yang 2003]. Given a query, the algorithm first locates the relevant news stories, 

summarizes it and then packed the news video into the story within the desired time 

constraint which can be, for example 30 second, to 1 minute etc. Finally, the system 

presents this video summary to the user. Figure 8.2 illustrates a view of news 

summary proposed in this work. 

 

Figure 8.2: A view of a summary of news story 

Third, beyond news segmentation, there is a need to create threading of same news 

stories over a period of time as the work proposed in [Chang 2004]. One variation of 

this work is to detect news events of incoming news streams, similar to the work done 

in TDT (Topic detection and tracking) task in text [TDT 1997]. There is a need to 
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extract semantic threads through multi-level video content analysis, to establish 

automatic concept detection for video semantics understanding and user interactions 

[Chang 2004]. The reconstruction of semantic threads is to be done across multiple 

video broadcast news sources using multi-level concept modeling. Given a query 

such as “give me all video news related to suicide bomb in Indonesia”, this work is 

able to retrieve news of the same topic from multiple news sources through the pre-

linking method. Figure 8.3 shows a scenario of news linking from multiple sources of 

video news broadcast. 

 
 

 
 
 
 

 
 
 
 

 
 
 
 

(source: S.F. Chang ‘s talk, July 5 2004, Inforcomm research, Singapore) 
 
Figure 8.3: A scenario of news linking from multiple sources of video 
news broadcast 

Last but not least, the framework of HMM and Rule induction can be applied to 

segmenting stories (episode) in movie and other genre of video that is composed of 

different coherent units appearing along the time line. Shot categories can be 

enhanced (or dropped) to cope with more (or less) categories in the new data set. 

However, techniques used in our 2-level framework should be applicable. In addition, 

the defined shot categories are useful for video retrieval which is one of the tasks in 
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TRECVID evaluations. Given a query in text and/or video clips, the system must 

search and return the relevant shots. Having well defined shot categories, it helps the 

system to search more efficiently. For example, given a query about weather, the 

system can directly access those shots that are classified into the category of weather 

and perform similarity matching to return the relevant shots. Another example is 

finding “Bill Clinton” shots from the videos in the database. This is a hard problem. It 

involves: searching for shots with detected face(s); and recognizing "Bill Clinton” 

face in the candidate shots. However, by defining shot categories “Speech/Interview” 

and “People” shot, it helps the system to reduce searching time and false alarm rate as 

the system can directly retrieve shots in these two categories and further perform face 

recognition for “Bill Clinton”. 

To conclude, our 2-level multi-modal approach is successful for story segmentation in 

news video and it can be applied to segmenting coherent units in other videos such as 

movies and documentaries. In addition it can also be applied to multimedia content 

analysis in general videos. The analysis is necessary for further video browsing and 

retrieval. 

 



Bibliography 

 150

BIBLIOGRAPHY 

[Allan 1998] J. Allan, J. Carbonell, G. Doddington, J. Yamron & Y. Yang (1998). 

Topic detection and tracking pilot study final report. Proceedings of DARPA 

Broadcast News Transcription and Understanding Workshop, pp. 194-218. 

[Alatan 2001] A. A. Alatan, A. N. Akansu, and W. Wolf. Multi-modal dialog Scene 

Detection using Hidden Markov Models for Content-based Multi-media Indexing. 

Multimedia Tools and applications. Vol.14, pp. 137-151, 2001. 

[Anantharamu 2002] C. Anantharamu, H. Feng, T.-S. Chua. Temporal multi-

resolution Framework for Shot Boundary Detection and Key Frame Extraction. Proc. 

of Int’l. Text Retrieval Conference (TREC’02). NIST, Gaithersburg USA, Nov 2002, 

pp. 500-504. 

[Breiman 1993] L. Breiman, J. H. Friedman, R. Olshen, and C. Stone (1993). 

Classification and Regression Trees. Chapman & Hall, New York, 1993. 

[Chaisorn 2002] Lekha Chaisorn, Tat-Seng Chua, and Chin-Hui Lee (2002). The 

Segmentation of News Video into Story Units. Proc. of IEEE Int’l Conference on 

Multimedia and Expo 2002, Lausanne, Switzerland, Aug 26-29, 2002. 

[Chang 2004] Shih-Fu Chang. Threading and Linking News Video from Multiple 

Sources using Multi-modal cues. A Talk at Institute for Infocomm Research, 

Singapore, July 5, 2004. 



Bibliography 

 151

[Chua and Chu 1998] T.-S. Chua and C. Chu. Color-based Pseudo-object for image 

retrieval with relevance feedback. Proc. of Int’l. Conference Advanced Multimedia 

Content Processing ’98. Osaka, Japan, Nov 1998, pp. 148-162. 

[Chen and Chua 2001] L. Chen and T.-S. Chua. A Match and Tiling Approach to 

Content-based Image Retrieval. Proc. of IEEE Int’l Conference on Multimedia and 

Expo (ICME), Tokyo Japan, Aug 2001, pp. 417-420. 

[Chen and Wong 2001] Y. Chen and E. K. Wong. A knowledge-based Approach to 

Video Content Classification. Proc. of Int’l. Conference SPIE , 2001, pp.292-300. 

[Chua 2000] T.-S. Chua, Y. Zhao and M.S. Kankanhalli. An Automated Compressed-

Domain Face Detection Method for Video Stratification. Proc.  of Int’l. Conference 

on Multimedia Modeling (MMM’2000), Nagoya, Japan, Nov 2000, pp. 333-348. 

 [Dale 2000] R. Dale, H. Moisl, and H. Somers. Handbook of Natural Language 

Processing.  Marcel Dekker, New York USA, 2000. 

[Das and Liou 1998] Madirakshi Das and Shih-Ping Liou. A New Hybrid Approach to 

Video Organization for Content-Based Indexing. Porc. of HIEEE Int’l Conference on 

Multimedia Computing and SystemsH, June 28 - July 01, 1998, Austin, Texas, pp. 372 

[Dietterich and Bakiri 1995] T. G. Dietterich, and G. Bakiri. Solving Multi-class 

Learning Problems via Error-Correcting Output Codes. Journal of Artificial 

Intelligence Research, 1995, pp. 263-286. 



Bibliography 

 152

[Eickeler 1997] Eickeler., A. Kosmala, G. Rigoll. A New Approach To Content-based 

Video Indexing Using Hidden Markov Models. IEEE workshop on Image Analysis for 

Multimedia Interactive Service (WIAMIS), Louvain la Neuve Belgium, June 1997, 

pp. 149-154. 

[Greiff 2001] Warren Greiff, Alex Morgan, Randall Fish, Marc Richards and Amlan 

Kundu. Fine-Grained Hidden Markov Modeling for Broadcast-News Story 

Segmentation. Proc. of Int’l. Conference on Human Language Technology (HLT), 

California, USA. March 2001 

[Gunsel 1996] Bilge Günsel, A. Müfit Ferman, A. Murat Tekalp. Video Indexing 

Through Integration of Syntactic and Semantic Features. Proc. of the 3rd IEEE 

Workshop on Applications of Computer Vision (WACV '96), 1996, pp 90 

[Hauptmann and Witbrock, 1998] A.G. Hauptmann and Michael J. Witbrock. Story 

Segmentation and Detection of Commercials in Broadcast News Video. Proc. of Int’l 

Conference on Advances in Digital Libraries (ADL), California, USA, 1998. pp.168-

179.   

[Hearst 1994] M.A. Hearst (1994). Multi-paragraph segmentation of expository text. 

Proc. of the 32nd Annual Meeting of the Association for Computational Linguistics, 

Las Cruces, New Mexico, June, 9-16. 

[Hsu and Chang 2003] W. H.-M. Hsu and S.-F. Chang (2003). A Statistical 

Framework for Fusing Mid-level Perceptual Features in News Video. Proc. of IEEE 

Int’l Conference on Multimedia and Expo (ICME), Baltimore, USA, July 6-9, 2003. 



Bibliography 

 153

[Ide 1998] I. Ide, K. Yamamoto, and H. Tanaka. Automatic Video Indexing Based on 

Shot Classification. Proc. of Conference on Advanced Multimedia Content 

Processing (AMCP), Osaka, Japan, 1998.  

[Jordan 1998] M-I. Jordan. Learning in Graphical Models. Cambridge MA, MIT 

press, 1998. 

[Koh and Chua 2000] C.-K. Koh and T.-S. Chua. Detection and Segmentation of 

Commercials in News Video. Technical report, The School of computing, National 

University of Singapore, 2000. 

[Krishnaiah and Kanal 1982] P.R. Krishnaiah and L.N. Kanal. Classification Pattern 

Recognition and Reduction of Dimensionality. North-Holland Publishing Company, 

1982. Chapter 12, pp. 267 – 284 

[Kohavi and Provost 1998] R. Kohavi and F. Provost. Glossary of Terms, Editorial 

for the Special Issue on Applications of Machine Learning and the Knowledge 

Discovery Process, Vol 30, No 2/3, Feb/March 1998. 

[LDC 1992] LDC web site, Hhttp://www.ldc.upenn.edu/H 

[Li 2001] Yang Li. Multi-Resolution Analysis on Text Segmentation. Master degree 

thesis, School of Computing, National University of Singapore. 

[Lin 2000] Y. Lin, M. S. Kankanhalli, and T.-S. Chua. Temporal Multi-resolution 

Analysis for Video Segmentation. Proc. of Int’l Conference on Storage and Retrieval 

for Media Databases (SPIE), San Jose, USA, Vol. 3972, Jan 2000, pp. 494-505. 



Bibliography 

 154

[Liu 1998] Z. Liu , J. Huang, and Y. Wang. Classification of TV Programs Based on 

Audio Information using Hidden Markov Models. IEEE Signal Processing Society, 

Workshop on Multimedia Signal Processing, Los Angeles, California USA, 1998, pp. 

27-31 

[Lu 2001] L. Lu, S. Z. Li and H.-J. Zhang (2001). Content-based Audio Segmentation 

using Support Vector Machine. Proc. of IEEE Int’l Conference on Multimedia and 

Expo (ICME), Japan, 2001, pp. 956-959. 

[Merlino 1997] Andrew Merlino, Daryl Morey and Mark Maybury. Broadcast news 

navigation using story segmentation. Proc. of the fifth ACM international conference 

on Multimedia, Seattle, Washington, United States, pp.381 - 391  . 

[MPEG 1993] Implementation of ISO/IEC 11172-2:1993. Information Technology – 

Coding of Moving Pictures and associated audio for digital storage media at up to 

about 1.5 Mbits. 

[MPEG-7 2000] Hhttp://xml.coverpages.org/mpeg7.htmlH  

[O’Connor 2001] O'Connor N, Czirjek C, Deasy S, Marlow S, Murphy N and Alan 

Smeaton. News Story Segmentation in the Fischlar Video Indexing System.  Proc. Of 

Int’l Image Processing (ICIP) 2001 - International Conference on Image Processing. 

Thessaloniki, Greece, 7-10 October 2001.  

Quinlan 1986] J. R. Quinlan. Induction of Decision Trees: Machine Learning. Vol. 1, 

1986, pp. 81-106. 



Bibliography 

 155

[Quinlan 1997] J. R. Quinlan. C 5.0: Programs for Machine Learning. Morgan 

Kaufmann Publisher, San Mateo, California, 1997. See also 

http://www.rulequest.com/ 

[Rabiner and Juang 1993] L. Rabiner and B. Juang. Fundamentals of Speech 

Recognition. Prentice-Hall, Englewood Cliffs New Jersey, 1993. 

[Slaney 2001] Malcolm Slaney, Dulce Ponceleon and James Kaufman. Multimedia 

edges: finding hierarchy in all dimensions. Proc. of the ninth ACM international 

conference on Multimedia, Ottawa, Canada, Sep 30 –Oct 5, 2001. pp. 29 - 40  

[TDT 1997] Topic Detection and Tracking (TDT) Pilot Study Evaluation Plan. 

version 2.8, 22 Oct 1997, from Linguistic Data Consortium.  

[TRECVID 2003] TREC video retrieval evaluation home page. Hhttp://www-

nlpir.nist.gov/projects/trecvid/H. 

[Wactlar 1996] Wactlar, H.D., Kanade, T., Smith, M.A. and Stenven, S.M. Intelligent 

Access to Digital Video: Informedia Project. IEEE Computer. May 1996, 29 (5) pp. 

46-52. See also http: www.informedia.cs.cmu.edu/. 

[Wang 1997] Yao Wang, Jincheng Huang, Zhu Liu and Tsuhan Chen. Multimedia 

Content Classification using Motion and Audio Information. Proc. of Int’l. 

Symposium on Circuits and Systems (ISCAS), Hongkong, 1997. Vol. 2, p 1488 – 

1491. 



Bibliography 

 156

[Wayne 2000] Charles L. Wayne. Multilingual Topic Detection and Tracking: 

Successful Research Enabled by Corpora and Evaluation. In Proceedings of Second 

Internation Conference on Language Resources and Evaluation. LREC-2000 Athens, 

Greece, 31 May - 2 June 2000. 

[Wei 2000] G. Wei, L. Agnihotri, N. Dimitrova. TV Program Classification Based on 

Face and Text Processing, Proc. of IEEE Int’l Conference on Multimedia and Expo 

(ICME), New York, USA, July 2000. 

[Wu 2003] L. Wu, Y. Guo, X. Qiu, Z. Feng, J. Rong, W. Jin, D. Zhou, R. Wang & M. 

Jing (2003). Fudan University at TRECVID 2003. Proc. Of TRECVID 2003 

workshops. 

[WWW2] Hhttp://www2.cs.uregina.ca/~hamilton/courses/831/notes/ml/dtrees/4_dtrees1.htmlH 

 

[Xiao 2003] J. Xiao, T. -S. Chua and J. Liu. A Global Rule Induction Approach to 

Information Extraction. Proc. of the 15th IEEE International Conference on Tools 

with Artificial Intelligence (ICTAI-03), 2003, pp. 530-536. 

[Yang 2003] Hui Yang, Lekha Chaisorn, Yunlong Zhao, Shi-Yong Neo, Tat-Seng 

Chua. VideoQA: Question Answering on News Video. Proc. of Int’l ACM Multimedia 

Conference, California, USA, Nov. 2-9, 2003.  

[Yeung 1996] Minera M. Yeung, Boon-Lock Yeo and Bede Liu. Extracting Story 

Units from Long Programs for Video Browsing and Navigation. Int’l. Conference on 

Multimedia Computing and Systems (ICMCS), Hiroshima, Japan. June 17 – 23, 

1996, pp. 296-305. 



Bibliography 

 157

[Zhang 1993] H.-J. Zhang, A. Kankanhalli and S.W. Smoliar. Automatic Partitioning 

of Full-motion Video.  Multimedia Systems, Vol.1(1), 1993, pp. 10-28. 

[Zhang and Chua, 2000] Y. Zhang and T.-S. Chua. Detection of Text Captions in 

Compressed domain Video. Proc. of ACM Multimedia’2000 Workshops (Multimedia 

Information Retrieval), California, USA, Nov 2000, pp. 201-204. 

[Zhou 2000] W. Zhou, A. Vellaikal, and C–C Jay Kuo. Rule-based Classification 

System for basketball video indexing. Proc. of ACM Multimedia’2000 Workshops 

(Multimedia Information Retrieval), California, USA, Nov 2000, pp. 213-216.



Appendix A 

                                       158

List of Publications 

1. Chua Tat-Seng, Shih-Fu Chang, Lekha Chaisorn and Winston Hsu. Story 

Boundary Detection in Large Broadcast News Video Archives – Techniques, 

Experience and Trends. ACM Multimedia Conference, 10-16 October 2004, New 

York, USA. 

2. Lekha Chaisorn, Chua Tat-Seng, Chin-Hui Lee and Qi Tian. A Hierarchical 

Approach to Story Segmentation of Large Broadcast News Video Corpus. 

Proceedings of IEEE Itnl Conf. on Multimedia and Expo (ICME), 26-30 June 

2004, Taiwan.  

3. Lekha Chaisorn, Tat-Seng Chua, and Chunkeat  Koh. Experience in News Story 

Segmentation of Large Video Corpus. Proceedings of IWAIT 2004, 12-13 January 

2004, Singapore. 

4. Hui Yang, Lekha Chaisorn, Yunlong Zhao, Shi-Yong Neo, Tat-Seng Chua. 

VideoQA: Question Answering on News Video. Proceedings of ACM Multimedia 

conference, 2-7 November 2003, CA, USA. 

5. Lekha Chaisorn, Tat-Seng Chua, Chun-Keat Koh, Yunlong Zhao, Huaxin Xu, 

Huamin Feng. Story Segmentation and Classification for News Video. 

Proceedings of TRECVID 2003, 17-18 November, Washington D.C., USA. 

6. Lekha Chaisorn, Tat-Seng Chua, and Chin-Hui Lee. News Video Segmentation. 

Handbook of Video Database: Design and Applications, 2003. Chapter 47, CRC 

Publishers. 



Appendix A 

                                       159

7. Lekha Chaisorn, Tat-Seng Chua, and Chin-Hui Lee. A Multimodal Framework to 

Story Segmentation for News Video. Journal of World Wide Web (JWWW) 2003, 

Kluwer Academic Publishers.   

8. Lekha Chaisorn, Tat-Seng Chua, and Chin-Hui Lee. Extracting Story Units in 

News Video. Proceedings of IWAIT, 21-22 January 2003, Nagasaki, Japan. 

9. Lekha Chaisorn, Tat-Seng Chua, and Chin-Hui Lee. The Segmentation of News 

Video into Story Units. Proceedings of IEEE Itnl Conf. on Multimedia and Expo 

(ICME), 26-29 August 2002, Lausanne, Switzerland 

10. Lekha Chaisorn and Tat-Seng Chua. The Segmentation and Classification of Story 

Boundaries in News Video. Proceeding of 6th IFIP working conference on Visual 

Database Systems- VDB6 2002, Australia . 

 



Appendix B 
 

                                       160

News Broadcaster Web sites 

Websites of the broadcasters of the news video under study and in related work, 

together with the researchers who have worked with these broadcasters, are given in 

the table below. 

Broadcasters Website  Researcher(s) 

CNN Hhttp://www.cnn.com/ H TRECVID2003 & 2004 

ABC Hhttp://abcnews.go.com/H TRECVID2003 & 2004 

Mandarin 
Taiwan  

Hhttp://www.tvbs.com.tw/H 

Hhttp://www.ettoday.comH 

Hhttp://www.ttv.com.twH 

Hhttp://www.ftv.com.tw/H 

Hsu & Chang 2003 

Channel 5, 
MediaCorp 
Singapore  

Hhttp://ch5.mediacorptv.com/H  Chaisorn et al 2002 
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An Overview of TRECVID 

The details of TRECVID are given below. The information is taken mainly from 

TRECVID 2003 web site ( Hhttp://www-nlpir.nist.gov/projects/tv2003/tv2003.html H).  

TREC Video Retrieval Evaluation (TRECVID) 

The TREC conference series is sponsored by the National Institute of Standards and 

Technology (NIST) with additional support from other U.S. government agencies. The 

goal of the conference series is to encourage research in information retrieval by 

providing a large test collection, uniform scoring procedures, and a forum for 

organizations interested in comparing their results. In 2001 and 2002 the TREC series 

sponsored a video "track" devoted to research in automatic segmentation, indexing, and 

content-based retrieval of digital video. Beginning in 2003, this track became an 

independent evaluation (TRECVID) with a 2-day workshop taking place just before 

TREC.  

TRECVID is coordinated by Alan Smeaton (Dublin City University) and Wessel Kraaij 

(TNO-TPD). Paul Over and Joaquim Arlandis provide support at NIST.  

The following experts serve as an advisory committee: John Eakins (University of 

Northumbria at Newcastle), Peter Enser University of Brighton), Alex Hauptmann 

(CMU), Annemieke de Jong (Netherlands Institute for Sound and Vision), Michael Lew 

(Leiden Insitute of Advanced Computer Science), Georges Quenot (CLIPS-IMAG 

Laboratory), John Smith (IBM), and Richard Wright (BBC).  
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The followings are the guidelines of TREVID 2003 workshop 

1. Goal: 

The main goal of the TREC Video Retrieval Evaluation (TRECVID) is to promote 

progress in content-based retrieval from digital video via open, metrics-based evaluation. 

2. Tasks: 

TRECVID is a laboratory-style evaluation that attempts to model real world situations or 

significant component tasks involved in such situations.  

There are four main tasks with tests associated and participants must complete at least 

one of these in order to attend the workshop.  

• shot boundary determination  

• story segmentation  

• high-level feature extraction  

• search  

Details of each of the above tasks can be found on TRECVID 2003 web site at: 

Hhttp://www-nlpir.nist.gov/projects/tv2003/tv2003.htmlH. Here we present the details of 

story segmentation task. 
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Story segmentation: 

The task is as follows: given the story boundary test collection, identify the story 

boundaries with their location (time) and type (miscellaneous or news) in the given video 

clip(s). This is a new task for 2003.  

A story can be composed of multiple shots, e.g. an anchorperson introduces a reporter 

and the story is finished back in the studio-setting. On the other hand, a single shot can 

contain story boundaries, e.g. an anchorperson switching to the next news topic.  

The task is based on manual story boundary annotations made by LDC for the TDT-2 

project. Therefore, LDC's definition of a story will be used in the task: A news story is 

defined as a segment of a news broadcast with a coherent news focus which contains at 

least two independent, declarative clauses. Other coherent segments are labeled as 

miscellaneous. These non-news stories cover a mixture of footage: commercials, lead-ins 

and reporter chit-chat. Guidelines that were used for annotating the TDT-2 dataset are 

available at Hhttp://www.ldc.upenn.edu/Projects/TDT2/Guide/manual.front.htmlH. Other 

useful documents are the Hguidelines documentH for the annotation of the TDT4 corpus and 

a Hsimilar document on TDT3H, which discuss the annotation guidelines for the different 

corpora. Section 2 in the TDT4 document is of particular interest for the story 

segmentation task.  

Note: adjacent non-news stories are merged together and annotated as one single story 

classified as "miscellaneous".  

Differences with the TDT-2 story segmentation task:  
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1. TRECVID 2003 uses a subset of TDT2 dataset: only video sources.  

2. Video stream is available to enhance story segmentation.  

3. The task is modeled as a retrospective action, so it is allowed to use global data.  

4. TRECVID 2003 has a story classification task (which is optional).  

There are several required and recommended runs:  

1. Required: Video + Audio (no ASR/CC)  

2. Required: Video + Audio + ASR  

3. Required: ASR (no Video + Audio)  

4. The ASR in the required and recommended runs is the ASR provided by LIMSI. 

We have dropped the use of the CC data on the hard drive and adopted use 

the LIMSI ASR rather than that provided on the hard drive because the 

LIMSI ASR is based on the MPEG-1 version of the video and requires no 

alignment. Additional runs can use other ASR systems.  

5. It is recommended that story segmentation runs are complemented with story 

classification.  

With TRECVID 2003's story segmentation task, we hope to show how video information 

can enhance story segmentation algorithms. 

3. Video data: 

Unless indicated, the 2003 test and development data is fully available only to TRECVID 

participants. This includes the basic MPEG-1 files, and derived files such as ASR, story 

segmentation, and transcript files. LDC may make some of the data generally available. 



Appendix C 

    165

Sources 

The total identified collection comprises  

• ~120 hours (241 30-minute programs) of ABC World News Tonight and CNN 

Headline News recorded by the Linguistic Data Consortium from late January 

through June 1998  

• ~13 hours of C-SPAN programming (~ 30 mostly 10- or 20-minute programs) 

about two thirds 2001, others from 1999, one or two from 1998 and 2000. The C-

SPAN programming includes various government committee meetings, 

discussions of public affairs, some lectures, news conferences, forums of various 

sorts, public hearings, etc.  

Additional ASR output from LIMSI-CNRS: 

Jean-Luc Gauvain of the HSpoken Language Processing Group at LIMSI H has graciously 

donated ASR output for the entire collection Be sure to credit them for this contribution 

by a non-participant.  

 

   J.L. Gauvain, L. Lamel, and G. Adda. 

   The LIMSI Broadcast News Transcription System. 

   Speech Communication, 37(1-2):89-108, 2002. 

   ftp://tlp.limsi.fr/public/spcH4_limsi.ps.Z 
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Development versus test data 

About 6 hours of data were selected from the total collection to be used solely as the shot 

boundary test collection. 

The remainder was sorted more or less chronologically (C-SPAN covers a slightly 

different period than the ABC/CNN data). The first half was designated the feature / 

search / story segmentation development collection. The second is the feature / search / 

story segmentation test collection. Note that the story segmentation task will not use the 

C-SPAN files for development or test. 

All of the development and test data with the exception of the shot boundary test data will 

be shipped by the Linguistic Data Consortium (LDC) on an IDE hard disk to each 

participating site at no cost to the participants. Each such site will need to offload the data 

onto local storage and pay to return the disk to LDC. The size of data on the hardrive will 

be a little over 100 gigabytes. The shot boundary test data (~ 5 gigabytes) will be shipped 

by NIST to participants on DVDs (DVD+R). 

Restrictions on use of development and test data 

Each participating group is responsible for adhering to the letter and spirit of these rules, 

the intent of which is to make the TRECVID evaluation realistic, fair and maximally 

informative about system effectiveness as opposed to other confounding effects on 

performance. Submissions, which in the judgment of the coordinators and NIST do not 

comply, will not be accepted. 
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Test data 

The test data shipped by LDC cannot be used for system development and system 

developers should have no knowledge of it until after they have submitted their results for 

evaluation to NIST. Depending on the size of the team and tasks undertaken, this may 

mean isolating certain team members from certain information or operations, freezing 

system development early, etc. 

Participants may use donated feature extraction output from the test collection but 

incorporation of such features should be automatic so that system development is not 

affected by knowledge of the extracted features. Anyone doing searches must be isolated 

from knowledge of that output.  

Participants cannot use the knowledge that the test collection comes from news video 

recorded during the first half of 1998 in the development of their systems. This would be 

unrealistic. 

Development data 

The development data shipped by LDC is intended for the participants' use in developing 

their systems. It is up to the participants how the development data is used, e.g., divided 

into training and validation data, etc. 

Other data sets created by LDC for earlier evaluations and derived from the same original 

videos as the test data cannot be used in developing systems for TRECVID 2003. 
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If participants use the output of an ASR system, they must submit at least one run using 

that provided on the loaner drive from LDC. They are free to use the output of other ASR 

systems in additional runs. 

If participants use a closed-captions-based transcript, they must use only that provided on 

the loaner drive from LDC. 

Participants may use other development resources not excluded in these guidelines. Such 

resources should be reported at the workshop. Note that use of other resources will 

change the submission's status with respect to system development type, which is 

described next.  

There is a group of participants creating and sharing annotation of the development data. 

See the HVideo Collaborative Annotation Forum webpageH for details. Here is Hthe set of 

collaborative annotations created for TRECVID 2003 H.  

In order to help isolate system development as a factor in system performance each 

feature extraction task submission, search task submission, or donation of extracted 

features must declare its type: 

• A - system trained only on common development collection and the common 

annotation of it  

• B - system trained only on common development collection but not on (just) 

common annotation of it  

• C - system is not of type A or B  
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3.1 Common shot boundary reference and key frames: 

A common shot boundary reference has again kindly been provided by Georges Quenot 

at CLIPS-IMAG. Key frames have also been selected for use in the search and feature 

extraction tasks. NIST can provide the key frames on DVD+R with some delay to 

participating groups unable to extract the key frames themselves.  

4. Submissions and Evaluation: 

Here, we present only the submission of story segmentation. The evaluations of other 

tasks can be found on the TRECVID web site. 

The results of the evaluation will be made available to attendees at the TRECVID 2003 

workshop and will be published in the final proceedings and/or on the TRECVID website 

within six months after the workshop. All submissions will likewise be available to 

interested researchers via the TRECVID website within six months of the workshop.  

Story segmentation 

Submissions 

• Participating groups may submit up to 10 runs. All runs will be evaluated.  

• The task is defined on the search dataset, which is partitioned in a development 

and test collection.  

• The reference data is defined such that there are no gaps between stories and 

stories do not overlap.  
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• The evaluation of the story segmentation task will be defined on the video 

segment defined by its clipping points (the overlap between the mpeg file and the 

ground truth data). A table of clipping points is available.  

o For the segmentation task, a boundary <= the first clipping point will be 

ignored (truth and submission); a boundary >= the last clipping point will 

be ignored (truth and submission).  

o For the classification task - only and ALL of the time interval between the 

two clipping points for a file will be considered in scoring even parts of 

stories split by a clipping point.  

• Each group is allowed to submit up to 10 runs by sending the submission in an 

email to Cedric.Coulon@nist.gov.  

Evaluation 

• Since story boundaries are rather abrupt changes of focus, story boundary 

evaluation is modeled on the evaluation of shot boundaries (the cuts, not the 

gradual boundaries). A story boundary is expressed as a time offset with respect 

to the start of the video file in seconds, accurate to nearest hundredth of a second. 

Each reference boundary is expanded with a fuzziness factor of five seconds in 

each direction, resulting in an evaluation interval of 10 seconds.  

• A reference boundary is detected when one or more computed story boundaries 

lies within its evaluation interval.  

• If a computed boundary does not fall in the evaluation interval of a reference 

boundary, it is considered a false alarm.  
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• Story boundary recall= number of reference boundaries detected/ total number of 

reference boundaries  

• Story boundary precision= (total number of submitted boundaries minus the total 

amount of false alarms)/ total number of submitted boundaries  

• The evaluation of story classification is defined as follows: for each reference 

news segment, we check in the submission file how many seconds of this 

timespan are marked as news. This yields the total amount of correctly identified 

news subsegments in seconds.  

• News segment precision = total time of correctly identified news subsegments/ 

total time of news segments in submission  

• News segment recall = total time of correctly identified news subsegments / total 

time of reference news segments  

Comparability with TDT-2 Results 

Results of the TRECVID 2003 story segmentation task cannot be directly compared to 

TDT-2 results because the evaluation datasets differ and different evaluation measures 

are used. TRECVID 2003 participants have shown a preference for a precision/recall 

oriented evaluation, whereas TDT used (and is still using) normalized detection cost. 

Finally, TDT was modeled as an on-line task, whereas TRECVID examines story 

segmentation in an archival setting, permitting the use of global information. However, 

the TRECVID 2003 story segmentation task provides an interesting testbed for cross-

resource experiments. In principle, a TDT system could be used to produce an ASR+CC 

or ASR+CC+Audio run.   


