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Abstract

The objective of the thesis is to develop efficient view-based models for determining

the states and the identities of target objects in images.

The thesis first proposes a kernel-based method for tracking objects under affine

transformation. The basis of the method is a spatially-and-spectrally smooth affine

matching technique. By precisely characterizing each object’s spatial and spectral fea-

tures, the technique can distinguish similar objects in cluttered scenes and provides the

posture information of the objects that is useful for motion understanding and subse-

quent visual processing such as recognition. Tracking is formulated as optimizing the

matching with respect to affine parameters. An efficient, iterative optimization method

is then proposed, and its superior performance is demonstrated in extensive experiments.

For generic pattern classification, the thesis presents a learning and classification

model called kernel autoassociators. The model takes advantage of kernel feature space

to learn the nonlinear dependencies among multiple samples. It is easier to implement

than conventional autoassociative networks, while providing better performance. In

addition, the thesis proposes a Gabor wavelet associative memory model that inherits

advantages of Gabor wavelet networks in face representation as well as that of ker-

nel autoassociators in nonlinearity learning. The model can dramatically improve the

capability of kernel autoassociators in learning faces, yielding a high-performance face

recognition system.

Note that the following web site provides video sequences and accessory materials

related to the thesis.

http://www1.i2r.a-star.edu.sg/˜hhzhang/PhDThesis
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Chapter 1

Introduction

1.1 Background

In one’s daily life, visual recognition plays a leading role in the process of informa-

tion acquisition from the environment. The huge amount of visual information is con-

tinuously received by approximately 130 million photosensitive cells, rods and cones

in the retina, which then transfers the active image via the optic nerve to the brain

[Hubel and Wiesel, 1994]. Still in mystery, the brain exhibits an excellent capability in

processing the data, abstracting an idea of the dynamic world in relation to oneself, and

identifying the immediate situation.

In the computer vision community, people have been pursuing the capability of

human vision for a few decades, especially by developing computational approaches to

automatic visual recognition. Here the term “automatic visual recognition” refers to

using computers to find and identify known objects (given physical objects such as the

computer I am using) in the perceived images of the environment. It is recognized that

automatic visual recognition has a broad range of applications such as video surveillance,

vehicle navigation, advanced human-computer interface, virtual/mixed reality, biometric

person identification and medical image analysis.

Automatic visual recognition in general remains a very difficult problem primarily

due to the sheer complexity of visual tasks. To understand the difficulties, let’s consider

a specific recognition task, namely, face recognition from a sequence of images.

First of all, the system needs to locate the faces of interest (called targets) in the

images, and to keep attention on them when they are moving around. This is referred

1
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Image Localisation/Tracking

Learning &
Model Database

Recognition Result

Figure 1.1: Automatic Visual Recognition System

The localization/tracking module serves visual attention. Note that tracking
is a recursive inference problem. By learning given images either on-line or
off-line, the learning module acquires the essential knowledge about each
object of interest and stores the pattern into the database. The knowledge
is then used by the recognition module to identify the object image recovered
by the localization/tracking module.

to as visual attention in biological context, or visual detection and tracking in computer

vision. James [James, 1950] describes the attention as “the taking possession by the

mind, in clear and vivid form, of one out of what seem several simultaneously possi-

ble objects”. He also believes that during the attention, one principal object comes

into focus while others are temporarily suppressed. However, because the attention

task involves dynamic imagery and scene analysis which is not fully understood, visual

localization/tracking is a problem of especial difficulty [Toyama, 1998].

After the system locks on the faces, the subsequent recognition process is essentially

to match the observed face images with known faces. In fact, face matching is never

a trivial task since computers need to distinguish a number of faces that have subtle

difference while being subject to considerable variations in terms of facial expressions,

poses and imaging conditions [Zhao et al., 2000].

With the above problems in mind, we need a visual recognition system consisting

of a few basic components (Figure 1.1). The learning/database module learns (either

online or offline) objects of interest from given samples. After image acquisition (frame

grabbing), the localization/tracking module determines the present state of a target

object. The recognition module identifies the tracked object by comparing it with object
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models learned in advance.

Clearly, both tracking and recognition require object models that can distinguish

a particular object from the others and determine its states in given images. In re-

spect of visual object modeling, two methodologies are prevalent in the computer vision

community.

The first methodology is based on 3D model representation in which we assume that

an object can be represented by a mathematical model (such as a 3D generic face model

[Parke and Waters, 1996]) consisting of a set of feature points/surfaces in 3D space,

while there are corresponding features in 2D images. When a 2D image is presented

for tracking and recognition, one needs to rebuild the correspondence between the 2D

features and their 3D counterparts of the object, and this process is called alignment.

In reality, due to the variability in object shape as well as limited sensor resolution, 2D

image features may not occur exactly in the positions predicted by the mathematical

model. Thus, alignment program should allow a small, bounded amount of displacement

of the feature points, and such a methodology is often referred to as bounded error

alignment [Grimson, 1990]. In facial motion analysis, for example, Terzopoulos and

Waters employed complex and physical face models that account for both skin and

muscle dynamics [Terzopoulos and Waters, 1993].

It is noteworthy that the movie industry is calling for realistic 3D models. Corre-

spondingly, recent years have seen a surge of research on realistic 3D models which are

designed to meet the industrial demand. For example, Dimitrijevic et al. presented a

fast, model-based structure-from-motion approach to reconstructing faces from uncali-

brated video sequences [Dimitrijevic et al., 2004].

In the field of visual tracking and recognition, realistic models may not be re-

quired. In fact, many researchers prefer to relatively simpler 3D models. For example,

La Cascia et al. proposed a texture-mapped 3D cylindrical model for head tracking

[Cascia et al., 2000], and Wiles et al. suggested using hyper-patches to model a head

[Wiles et al., 2001]. Many works on articulated human-body modeling resort to using

a set of blobs/elements to describe a figure. In [Plankers and Fua, 2003], for example,

Plänkers and Fua developed a body-modeling framework that relies on attaching im-
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plicit surfaces to an articulated skeleton, leading to a differentiable model that permits

efficient implementation of minimization for the purpose of tracking.

The second methodology for visual object modeling is view-based. A view-based

model consists simply of a collection of 2D views of a 3D object. One does not

need to establish the explicit 3D configuration of feature points on the object. To

account for 3D movements of the object, certain transformations in the 2D views are

considered. For recognition, the presented image would be compared either directly

with sample views or with their high level representations (e.g. principal components

[Turk and Pentland, 1991]).

In comparison with 3D models, view-based models have two important advantages.

First, they greatly simplify model acquisition – the representation of physical surfaces.

Thus, they avoid the potential of modeling error caused by incomplete or inaccurate

3D representation. Second, view-based models allow visual problems to be solved in

a simpler 2D framework. Thus, they are particularly suited to computer vision tasks

in which the computation of precise correspondence between images and 3D space is

not feasible. Furthermore, Aloimonos has asserted that general 3D scene recovery is a

very hard problem and many recovery systems are inherently unstable. He believes that

complete and accurate recovery of scenes is not necessary for many of the problems we

need to solve using vision [Aloimonos and Rosenfeld, 1991].

Many view-based models consider each image as a two dimensional random pattern

or merely a vector after concatenation of rows or columns, and resort to learning the

statistical features of the patterns. They may face the problems caused by image de-

formations of visual objects. Since transformations such as posture change can yield

complicated variations in the images, it remains rather difficult for statistical models to

handle. The problems will become more serious when only a few samples per object are

available for system training. In tracking an unknown or unfamiliar target, for instance,

perhaps just one image sample is available for reference.

Hence, there is a need to develop efficient view-based models, which can learn from

one or a few samples to recover certain image deformations of visual objects and to

determine their identities despite possibly large image variations.
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1.2 Objective and Contributions

With the above motivation, the fundamental objective of the thesis is to develop ef-

ficient view-based models for reasoning the states and the identities of (moving and

transforming) target objects in image sequences.

The thesis comprises two major contributions to the visual tracking and classifica-

tion disciplines. The first contribution is an efficient view-based tracking method that

can infer the posture state (position, size, non-uniform scaling factors, orientation, etc.)

of a target object from images. The basis of the method is a kernel-based spatially-and-

spectrally smooth similarity measure, which can precisely characterize the spatial and

spectral features of the object under affine transformation while being robust against

motion blurs, heavy noise, or visible artifacts in images. The measure is suitable for ac-

curately describing the relation in terms of affine transformation between object images,

and leads to an efficient, iterative optimization procedure to tracking. Furthermore, the

tracking method depends on merely one sample image for reference. Thus, it is easy

to implement and is widely applicable. By combining posture estimation with accu-

rate spatial-spectral representation, the method has two major advantages. First, it

can identify and distinguish between similar objects in cluttered scenes. Second, with

the recovered information about transformation, it naturally leads to better motion

understanding than non-posture-estimation methods that may just recover the object

translation.

The second contribution is to the theory of autoassociators - a special type of neural

networks, and their use in computer vision applications. In particular, the thesis pro-

poses a generic learning machine called the kernel autoassociator model which takes

advantage of kernel feature space to learn the nonlinear dependencies among multiple

samples. The model is much easier to implement than conventional autoassociative

networks, while providing better performance for novelty detection and multi-class clas-

sification. In addition, we also put emphasis on the extension of kernel autoassociators

for face recognition. A novel face representation model called Gabor wavelet associative

memories is presented that dramatically improves the capability of kernel autoassocia-

tors in learning face images, yielding a high-performance face recognition system.
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1.3 Overview

The thesis will address the aforementioned problems in visual tracking and classification.

Due to the diverse nature of these problems, a unified literature survey may tend not

to elucidate but to confuse. Instead, I would like to include literature surveys in their

corresponding chapters. In particular, Chapter 2 presents a brief survey on object

representation models for tracking, Chapter 3 reviews visual tracking systems, Chapter

4 starts by surveying classification algorithms, and Section 5 begins with a review of

face recognition algorithms.

The content of the thesis is as follows. Chapter 2 is a self-contained description of a

kernel-based image matching technique for objects under transformation. The technique

is based on a spatially-and-spectrally smooth similarity measure that offers capability

for accurate and robust posture estimation. To account for image deformations caused

by posture changes, we develop the similarity measure under a typical type of transfor-

mation – affine transformation which is formulated as a combination of a few geometrical

operations in terms of translation, rotating, (non-uniform) scaling and shearing. The

chapter carefully investigates the properties of the affine matching technique, especially

in real situations where an object candidate in the form of an image region may include

a number of background pixels. We show that the background interference may pose

a serious problem to affine matching. Our further study, by investigating how the in-

terference affects matching with respect to individual transformation factors, favorably

suggests a solution to the interference problem.

Chapter 3 follows the study on affine matching in Chapter 2, and emphasizes de-

veloping and assessing a robust tracking method. We derive an iterative and analyt-

ical procedure for maximizing the similarity, with respect to the parameters of affine

transformation, between an object candidate and a given model. A tracking algorithm

is developed by combining the similarity-maximization procedure and the knowledge

about the properties of affine matching. We then discuss the computational complexity

and efficient implementation of the algorithm.

The chapter further describes extensive experiments on the proposed method. Using

computer-generated image sequences, we examine the robustness of the method against
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image noise. Moreover, we assess the tracker with a variety of real-life objects such as

faces, hands, cars and camouflaged tanks. Positive and convincing experimental results

are obtained. In addition, the last section discusses the importance of using explicit

physical operators (regarding scaling, rotation, shearing and translation) in the affine

tracking system, by showing that an affine transformation model without explicitly

accounting for physical operators would hardly lead to practical tracking algorithms.

With the tracking method described in the above two chapters, we are able to recover

target object images under affine transformation. In the following two chapters, we study

how to identify the objects from the recovered images.

Chapter 4 presents for generic pattern classification a novel nonlinear model referred

to as kernel autoassociators. While conventional nonlinear autoassociation models em-

phasize searching for the nonlinear representations of input patterns, a kernel autoasso-

ciator takes a kernel feature space as the nonlinear manifold, and places emphasis on the

reconstruction of input patterns from the kernel feature space. Two methods are pro-

posed to address the reconstruction problem, using linear and multivariate polynomial

functions respectively. We apply the proposed model to novelty detection with or with-

out novel examples, and study it on the Promoter detection and Sonar Target recognition

problems. We also apply the model to multi-class classification problems including wine

recognition, glass recognition, handwritten digit recognition and face recognition. The

experimental results show that kernel autoassociators can provide better or comparable

performance for concept learning and classification in various domains than conventional

autoassociators or other state-of-the-art generic classification systems.

In Chapter 5, we study how to extend kernel autoassociator models for face recog-

nition. We propose a novel face representation model called Gabor Wavelet Associative

Memory (GWAM) by incorporating domain knowledge with a subject dependent Ga-

bor wavelet network. The domain knowledge used here is that an individual face has a

certain configuration of local and global image features such that we can develop a set

of special image kernels (Gabor wavelets) to represent them. Finally, we carry out ex-

tensive experiments to evaluate a GWAM-based face recognition system, in comparison

with other state-of-the-art face recognition systems. Our scheme demonstrates excellent
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performance on three popular databases, namely, the FERET (Release 2), the ORL and

the AR face database.

Chapter 6 presents the conclusion, followed by some brief speculations on future

development of the proposed models/approaches.

The thesis includes some material that has been presented in a few papers, namely,

[Zhang et al., 2004a], [Zhang et al., 2005], [Zhang et al., 2004c]1, [Zhang et al., 2004b],

[Zhang et al., 2004d]. Besides, the following web site also provides video sequences and

accessory materials related to the thesis.

http://www1.i2r.a-star.edu.sg/˜hhzhang/PhDThesis

1
under review



Chapter 2

Kernel-based Affine Matching

2.1 Background

A fundamental problem addressed by this thesis is to search for dynamic target objects

in the pose space (the terminology follows [Grimson, 1990]) while only one sample image

per object is provided for reference. Here the pose space refers to the set of all possible

state of an object in terms of, e.g., position, orientation or size. A critical problem in

tracking is object matching which tells the likelihood of an object’s pose from a given

observation. A matching program would serve prominent functions in identifying the

target object’s state and distinguishing the object from the cluttered background, while

the basis of the matching program would be the model for the object that describes the

object’s characteristics with respect to its poses.

In the field of view-based approaches, an object model is usually set up over image

regions in terms of spatial and color features. The literature has seen a great deal of

relevant research on region modeling and tracking. Table 2.1 summarizes them into two

rough categories – color models and spatial-color models.

The first category emphasizes the color features of target objects. Various parametric

statistical techniques have been used for exploiting essential spectral statistics of objects’

image appearance. In [Wern et al., 1997] a unimodal Gaussian was engaged to model the

color properties of a blob region. Oliver et al. [Oliver et al., 2000] and Yang and Waibel

[Yang and Waibel, 1996] also employed a Gaussian distribution to represent a skin color

cluster of thousands of skin color samples taken from different races. The facial color fea-

tures, if put in appropriate color spaces [Lee et al., 1996, Dai and Nakano, 1996], have

9
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Category Methods Translation Rotation Deformation∗ Accuracy

Color Models
Blobs

√ √ × low
Color-Hist.&Kernels

√ √ × average

Spatial-Color
Models

Image templates
√ × × high

Spatial-feature kernels
√ × × high

Our method
√ √ √

high

∗ Deformation here refers to shearing and non-uniform scaling.

Table 2.1: Categorization of Appearance-based Methods for Visual Tracking.

been shown to be robust against changes in environment factors such as illumination con-

ditions and imaging characteristics (cf. Terrilon’s comparative study on several widely

used color spaces for face detection [Terrillon et al., 2000]). Furthermore, multi modal

Gaussian using Expectation-Maximization algorithm allows one to model blobs with a

mixture of colors [Raja et al., 1998a, Raja et al., 1998b], while it is still an open problem

how to choose the right number of Gaussians.

Non-parametric techniques such as color histograms have also been extensively stud-

ied with visual tracking. Unlike parametric techniques, they do not rely on presumed

probability distribution models. In particular, color histograms appear to be very pop-

ular in video-processing systems for face and head tracking/detection [Birchfield, 1998,

Pei and Tseng, 2002, Cho et al., 2001], hand tracking [Martin et al., 1998], and peo-

ple tracking [Withagen et al., 2002, Lee et al., 2003], or in the field of color indexing

[Funt and Finlayson, 1995]. A recent remarkable work in the area was presented by

Comaniciu et al. [Comanicui et al., 2000] who combined spatial kernels and color his-

tograms to obtain a spatially-smooth similarity function which leads to an efficient,

mean-shift [Cheng, 1995] optimization procedure to tracking. The mean-shift tracking

method has demonstrated excellent performance in various, difficult tracking scenarios

[Comaniciu et al., 2003]. Moreover in [Collins, 2003] it was extended to deal with scaling

objects.

Some of the reasons for color histograms’ wide applicability are that it can be com-

puted easily and fast, it achieves significant data reduction, and it is robust to noise and

local image transformations [Hadjidemetriou et al., 2001]. A general drawback with

color histograms is the lack of convergence to the right density function if the data set is
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small. Therefore, in a recent work [Elgammal et al., 2001] another non-parametric tech-

nique called kernel density estimation was preferred for modeling color features. The

authors applied the technique to people segmentation, and also extended the technique

to people tracking [Elgammal et al., 2003a].

The above methods mostly avoid explicit or accurate spatial feature exploration.

On one hand, they are robust against variations to some extent in scale and pose;

on the other hand, they may be incapable of distinguishing color objects which have

similar color distributions so that the characterization of spatial features is critical.

Furthermore, they cannot provide posture information which is important for motion

understanding.

The second category, spatial-spectral based methods, may be used to infer the pos-

ture of target objects by exploiting the correlation between spatial and color features

in an object image. For detection and tracking, they may take all image windows

of a particular shape and test them to tell if the relevant object is present. Thus,

many of them are related to template matchers. While many objects appear hard

to find with simple template matchers, there is some evidence that reasoning about

relations between many different kinds of templates can be an effective way to find ob-

jects. In [Viola and Jones, 2004], for instance, Viola and Jones presented a fast face

detection scheme that searches all image windows for faces using an Adaboost clas-

sifier trained with a large amount of face and non-face data. In the literature, as a

matter of fact, learning image templates provides a basis for many tracking systems

[Avidan, 2004, Mohan et al., 2001, Nguyen and Smeulders, 2004].

It is recognized that simple template methods may not be robust against image varia-

tions caused by object deformation. An effective methodology by using deformable tem-

plates thus was introduced. Typical examples range from snakes [Blake and Isard, 1998]

to more recent models such as active shape models [Cootes et al., 1993] and active ap-

pearance models [Cootes et al., 2001]. The active models are capable of extracting com-

plex and non-rigid features. A drawback is that the setup of deformable models requires

the use of expert knowledge and expensive job in training.

The present work emphasizes spatial-spectral based methods to involve posture es-
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timation in tracking, as the incorporation of posture estimation has two important

advantages. First, it can improve the system performance for distinguishing similar ob-

jects and cluttered background. Second, it would lead to better motion-understanding.

The main challenge can be identified as the combination of accurate spatial-spectral

representation and robust pose estimation. The posture here concerns orientation, scal-

ing and possibly other transformation factors. The above review shows that, however,

posture estimation for tracking is not well solved especially when one has quite limited

knowledge about the target object. In a generic tracking system, for instance, perhaps

only one sample image per object (some unfamiliar objects) is given for reference.

This chapter presents a novel method to address the problem, by proposing a kernel-

based matching technique for objects under transformation. The basis of the tech-

nique is a representation model using kernel density estimation to characterize the

spatial-spectral features of target objects, since much research has been done on the

theoretical properties of the kernel estimator and its superiority over other estimators

such as histograms is well-established [Scott, 1992]. (Interestingly, Terell has rigorously

proved that virtually all nonparametric algorithms are asymptotically kernel methods

[Terrell and Scott, 1992]). Based on the representation model, we propose an l2 norm

similarity measure that is spatially-and-spectrally smooth. The measure is suitable for

accurate and robust object modeling, and offers capability for posture estimation.

Unlike the work [Elgammal et al., 2001] mentioned earlier that uses kernel density

technique to address color modeling, the present technique addresses the correlation

between spatial and spectral features. Thus, it is capable of providing precise represen-

tation and posture information for our tracking and classification purposes. Another

related technique is by using local histograms [Lowitz, 1983, Bressan et al., 2003] which

relies on heuristic knowledge about region segmentation or feature detection to combine

spatial and spectral features. By contrast, the present technique fuses spatial and spec-

tral information in a more accessible and effective way without the need for heuristic

knowledge, thanks to the non-parametric kernel density method. Furthermore, unlike

local histograms, our technique allows a spatially-and-spectrally smooth similarity mea-

sure that can give rise to an efficient optimization procedure for tracking, as will be
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shown in the next chapter.

More importantly, the technique is suited to address a special image matching issue

in which the objects are subject to affine transformation. We refer to this type of image

matching as affine matching. It should be mentioned that kernel-based representation

and tracking methods have been concerned earlier in [Elgammal et al., 2003b] where El-

gammal et al. used a similar representation model to formulate a similarity measure and

subsequently a tracking system. However, the computation of that similarity measure is

difficult. As a result, even for tracking merely translational objects, the technique has to

depend on a few critical approximations and assumptions that may not be well suited

for object images under deformations (see Section 2.5.2). By contrast, our matching

technique is directly derived from the kernel-based representation model and the affine

transformation formulation in such a manner that the matching is easy and straightfor-

ward and does not rely on critical assumptions for describing images undergoing affine

transformations.

The chapter also investigates the performance of the matching technique by using a

few computer simulations. The consequent findings will contribute enormously to the

development of a practical tracking system in the next chapter, where the excellent per-

formance of affine matching (and affine tracking as an extension) will be demonstrated.

2.2 Kernel Density Estimation

An important point of the representation model to be proposed is that it resorts to

using probability density function to characterize a target object’s appearance in spatial-

spectral space. The shear complexity of real world objects implies that it is hard to

describe the density function with generic parametric methods. Instead, non-parametric

methods especially kernel density estimation are favored for our purposes.

In this section we revisit a general case of density estimation using kernel methods.

Given a set of samples of a random variable x, say {xi}, i = 1, . . . , N , one can estimate

the cumulative distribution function (CDF) F̂ (x), empirically by

F̂ (x) =
1

N

N
∑

i=1

U(x − xi) (2.1)
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where U(x) is a step function:

U(x) =

{

1, x ≥ 0
0, x < 0

(2.2)

Hence, the empirical distribution function F̂ (x) takes a staircase form. Being its

derivative, the probability density estimation is a sum of Dirac delta functions which

are not suited for smooth density functions in real world applications. To obtain a

smooth estimation of a density function, an effective way is to use a regularization

technique which aims to minimize an error function given by

e(F ) =

∫

||F (xi) − F̂ (xi)||2dx +

∫

||f(x)||2dx (2.3)

Here F is an estimator of cumulative distribution function. f(x) = ∂F
∂x

denotes the

density function. Thus, the first integral stands for the empirical estimation error, while

the second integral about f imposes smoothing on the estimator F . A well-known

solution to the optimization is known as Parzen windows, also called kernel density

estimation [Parzen, 1979]

f(x) =
1

Nσ

N
∑

i=1

k(x − xi) (2.4)

where k() is a kernel or window function with bandwidth σ. Probably the most popular

form of k is Gaussian:

k(x) =
1

√

(2π)n|Σ|
exp

[

−1

2
(x − µ)Σ−1(x − µ)T

]

(2.5)

Here µ is the mean of x – a multivariate random vector, Σ is the covariance matrix that

determines the scatter of x across the n-dimensional space. In particular, a large |Σ|

corresponds to a large bandwidth that in turn imposes strong smoothing on the density

function, and vise versa.

In real applications, the multivariate Gaussian kernels are often simplified as product

kernels ([Scott, 1992], p150)

k(x) =
1

Nσ1 · · ·σd

N
∑

i=1







d
∏

j=1

k

(

xj − xij

σj

)







(2.6)

Here the kernels k are univariate Gaussian functions. A vector x consists of n elements:

{xj}, j = 1, . . . , d, and {σj} is the corresponding bandwidth. Geometrically, the estimate

places a probability mass of size 1/N centered on each sample point.



Chapter 2. Kernel-based Affine Matching 15

Sample
  Num. 

Samples 

60 

150 

300 

600 

σ → 2.5 5 10 {h
i
*}

True Density 

Figure 2.1: Kernel density estimates of a multi-Gaussian distribution.

The leftmost column shows the sample sets, to the right their corresponding
estimate with different kernel bandwidth σ.

Figure 2.1 shows kernel density estimation of a bivariate Gaussian distribution. The

distribution comprises two uncorrelated variables with three major modes centered at

(0, 0), (−25, 20), (10,−30) whose standard variances are (12, 12), (8, 8) and (5, 5) re-

spectively. The three modes have the same prior probability. From this distribution,

we generate 4 sample sets at size 60, 150, 300 or 600. The product kernels are used to

estimate the density function. In the tests, we examine different kernel bandwidth: 2.5,

5, 10 or h∗
i where h∗

i is an automatically selected bandwidth according to [Scott, 1992]

ĥ∗
i = σ̂iN

− 1

d+4 (2.7)

where σ̂i is the empirical standard variance of variable xi. It is evident from the figure

that a large bandwidth tends to provide a global picture of the distribution but has the

potential to over-smooth the data. On the other hand, a small bandwidth emphasizes

local structures but may result in some false modes not really present in the true density.

Other important points include: a) a larger sample set tends to produce more accurate

estimation, b) the automatically selected kernel bandwidth h∗
i yields favorable estimation
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across various size of sample sets.

The present work tentatively puts emphasis on fixed-bandwidth kernel density esti-

mation. It is possible that variable-bandwidth kernels will extend the current work espe-

cially for true density functions with quite complicated local structures [Terrell and Scott, 1992].

However, variable kernel estimation remains challenging [Devroye and Lugosi, 2000] and

is beyond the scope of this study.

2.3 The Spatial-Spectral Representation Model

The goal of tracking is to find and determine the state of target objects that appear

similar to given models through an image sequence. From the perceptual point of view,

the appearance features that distinguish the objects are characterized by their particular

color and texture patterns. Therefore, an effective representation model is crucial for

the success of visual tracking.

The present work takes a statistical approach to appearance representation. Consider

a given object that appears as an image region consisting of a set of pixels {xi} and the

colors {ui = u(xi)}, i = 1, . . . , N . We refer to such an image region as an observation

denoted by Ω = {(xi,ui)}. To represent Ω, we use kernel density estimation to describe

the probability density of a pixel’s position and color:

f(x,u|Ω) =
α

N

N
∑

i=1

ks(||x − xi||2)ku(||u − ui)||2) for (xi,ui) ∈ Ω (2.8)

where ks and ku are kernel functions with bandwidth hs and hu, respectively for spatial

and spectral component. Besides, α = αsαu is a normalization constant (αs or αu is the

normalization constant for ks or ks) giving
∫

fdudx = 1.

It should be mentioned that a similar kernel-based representation model has been

studied in [Elgammal et al., 2003b] where Elgammal et al. used the representation

model to formulate a similarity measure and subsequently a tracking system. How-

ever, our study shows that their formulation is not suited to address our affine matching

problems (see Section 2.5.2).

The probability density across spatial-spectral space essentially characterizes the

joint spatial-spectral correlation in the appearance data. And the kernel density es-

timation, especially with Gaussian kernels for their favorable properties in terms of
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Figure 2.2: Examples of spatial-spectral models for object representation.

The left column displays two objects to be represented, to the right the
learned density surfaces as 3D profiles that characterize especially the red
and white regions. Red means high and blue means low density.

scalability and differentiability, can produce good approximations to natural distribu-

tions [Scott, 1992]. In addition, it allows one to describe different levels of details in

the spatial-spectral pattern, by choosing appropriate kernel bandwidth hs and hu. For

example, it would have an advantage over other models when accurate spatial-spectral

representations are of importance for distinguishing the objects.

From [Micchelli, 1986], it is known that no Gaussian can be written as a linear

combination of Gaussians centered at other points. It naturally follows that the above

representation model is different from another one, unless they correspond to the same

appearance data. In other words, the model is effective in identifying and distinguishing

the represented object.

Figure 2.2 illustrates two examples to demonstrate how the kernel model can ef-

fectively represent visual objects with similar color features. In the left column are

shown two synthetic objects. Since their color features are similar, it will be difficult

for color-distribution techniques such as color histograms to differentiate between them.

Furthermore, the complex concentric structure of the second object will handicap blob
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models in correctly describing the special spatial-spectral pattern.

It can be seen from the figure that the proposed representation model can be used

to discriminate between the objects despite their close similarity in color distribution.

To visualize the estimated density function in the 5-dimensional space {x, y, r, g, b}, we

display two 3D profiles of the density surface for each object. In particular, the middle

column plots the profiles of the density functions at (g = 0, b = 0) while the r component

is variable, and the density surface at a fixed r value is drawn as a set of contours in

the (x, y) plane. Similarly, the right column plots the profiles of the density function

at (g = 255, b = 255). These profiles clearly show that the proposed model accurately

captured the special spatial-spectral modes of red and white regions. In other words,

the model produced special and distinctive representations for the objects by correlating

their spatial and spectral features.

2.4 The Similarity Measure

As mentioned earlier, visual tracking is to find an object of similar appearance to a

target model through the image sequence. An important component of the tracking

process is the similarity measure which tells the likelihood of an observation – called a

target candidate – Ωp to be the target Ωq. Hereafter the target candidate and the target

model are represented by the corresponding representation functions p = f(x,u|Ωp) and

q = f(x,u|Ωq) respectively.

A natural way to define the similarity is to use a l2 norm measure

D0(p, q) = −
∫

||p − q||2dudx (2.9)

= −
∫

ppdudx −
∫

qqdudx + 2

∫

pqdudx

It is obvious that the possibly largest value of the similarity measure is zero which

happens if and only if the two representations are exactly identical. Besides, the larger

the measure, the closer the similarity between q and p.

With the following general relation

exp(− 1

2σ2
(ξ − ξ1)

2)exp(− 1

2σ2
(ξ − ξ2)

2) (2.10)

= exp(− 2

2σ2
(ξ − ξ1 + ξ2

2
)2 )exp(− 1

2σ2

(ξ1 − ξ2)
2

2
)
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there is

pp =
α2

N2
p

∑

i,j

ks(2||x −
(x

(p)
i + x

(p)
j )

2
||2) · ks(

||(x(p)
i − x

(p)
j )||2

2
)

·ku(2||u −
u

(p)
i + u

(p)
j

2
||2)ku(

||u(p)
i − u

(p)
j ||2

2
) (2.11)

where x
(p)
i (i = 1 . . . Np) or x

(q)
i (i = 1 . . . Nq) denotes a pixel from the candidate p or

the model q. The integral of pp is then derived as

∫

ppdudx =
α2

2
1

2
+ 1

l N2
p

∑

i,j

ks(
||(x(p)

i − x
(p)
j )||2

2
)ku(

||u(p)
i − u

(p)
j ||2

2
) (2.12)

where l is the length of color feature u.

Applying similar manipulations to the integral of pq, we have

∫

pqdudx =
α2

2
1

2
+ 1

l NpNq

∑

i,j

ks(
||x(p)

i − x
(q)
j ||2

2
)ku(

||u(p)
i − u

(q)
j ||2

2
) (2.13)

The integral of qq can be obtained in a similar way (here the details are omitted).

By canceling the common factor (αsαu/2
1

2
+ 1

l ), the similarity measure becomes

D0(p, q) = − 1

N2
p

∑

i,j

ks(
||(x(p)

i − x
(p)
j )||2

2
)ku(

||u(p)
i − u

(p)
j ||2

2
) (2.14)

+
2

NpNq

∑

i,j

ks(
||x(p)

i − x
(q)
j ||2

2
)ku(

||u(p)
i − u

(q)
j ||2

2
)

− 1

N2
q

∑

i,j

ks(
||(x(q)

i − x
(q)
j )||2

2
)ku(

||u(q)
i − u

(q)
j ||2

2
)

2.5 Matching Objects under Affine Transformation

During tracking, the target object usually keeps moving through consecutive frames,

and the dynamics of the object may lead to considerable deformations in the object’s

image. The deformation is important for video understanding, but it poses a challenging

problem to the accurate object representation as well as tracking. Here we set out to

study how to address the problem by adapting the above kernel-based representation

model to a particular class of image deformation described by affine transformation.
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Figure 2.3: Affine Transformation

2.5.1 Affine Transformation

Let’s first consider a set of points on a near-planar 3D surface that undergoes rigid

body transformation and scaling. Such a transformation is defined by 7 parameters:

three parameters to specify a translation, 3 parameters to specify a rotation and one

parameter to denote a scaling factor. To simplify, the induced deformation in the 2D

image can be described with an affine transformation [Blake and Isard, 1998], which in

turn can be written in the form of a combination of 2D geometrical operators involving

scaling, rotation, shearing and translation respectively.

Figure 2.3 gives two examples of affine transformation, where ax and ay represent

the scaling factors, θ denotes the angle of rotation with respect to the center point (xc),

xt stands for the translation vector, and s controls the shearing effect that can transform

a rectangular into a parallelogram.

These transformation operators can be written in matrix/vector form as

Rotation :

(

cosθ −sinθ
sinθ cosθ

)

Scaling :

(

ax 0
0 ay

)

(2.15)

Shearing :

(

1 s
0 1

)

Translation :

(

xt

yt

)

(2.16)

In this work, we consider an affine transformation by combining scaling, shearing,
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rotation and translation successively. The combination suffices for our purposes, as

justified by our empirical study with many real-world tracking tasks. The formulation

of the transformation is thus given by

x
(T )
i = ax(x̂i + sŷi)cosθ − ayŷisinθ + xt (2.17)

y
(T )
i = ax(x̂i + sŷi)sinθ + ayŷicosθ + yt

or in matrix form as

x
(T )
i = M(a, s, θ)x̂i + xt (2.18)

Here x̂i = (x̂i, ŷi) is the relative position of the point xi to the center point xc of the

object: x̂i = xi − xc; x
(T )
i denotes the position after transformation; xt represents

the displacement of the center of the object; and M(a, s, θ) stands for the deformation

matrix

M(a, s, θ) =

[

axcosθ −aysinθ + saxcosθ
axsinθ aycosθ + saxsinθ

]

(2.19)

Without loss of generality, we set the center of the target model at origin, i.e. xc =

(0, 0). Therefore, xt in Eq. (2.18) will represent the center of the deformed object image,

and hereafter it is referred to as the position of the object.

2.5.2 Affine Matching with Kernel-based Models

Section 2.4 provides a similarity measure between two object images. When one image is

subject to affine transformation, the similarity measure will become an affine matching

problem: for a known model Ωq and an acquired image observation Ωp, how to describe

their similarity with respect to affine transformation?

One may use computers to synthesize a deformed object image from the model Ωp

with each possible T = {M,xt} and evaluate the similarity between the synthesized

image and Ωq. The method will be computationally expensive. An alternative, efficient

approach is to first rewrite the representation model by combining the affine formulation

Eq. (2.18) and the representation formulation Eq. (2.8), yielding

p
T
(x,u) =

α

N

N
∑

i=1

ks(||x − x
(T )
i ||2)ku(||u − ui)||2) (2.20)

=
α

N

N
∑

i=1

ks(||x − M(a, s, θ)xi − xt||2)ku(||u − ui)||2)
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where p
T

denotes the representation model of Ωp that has undergone transformation T .

It follows that the similarity measure between Ωp and Ωq with respect to T becomes

D0(T ) = − 1

N2
p

∑

i,j

ks(
||M(a, s, θ)(x

(p)
i − x

(p)
j )||2

2
)ku(

||u(p)
i − u

(p)
j ||2

2
) (2.21)

+
2

NpNq

∑

i,j

ks(
||M(a, s, θ)x

(p)
i + xt − x

(q)
j ||2

2
)ku(

||u(p)
i − u

(q)
j ||2

2
)

− 1

N2
q

∑

i,j

ks(
||(x(q)

i − x
(q)
j )||2

2
)ku(

||u(q)
i − u

(q)
j ||2

2
)

∆
= −I1(pT

, p
T
) + I2(pT

, q) − I3(q, q)

where I1, I2 and I3 represent the three addenda respectively.

In a related work [Elgammal et al., 2003b], Elgammal et al. used a similar kernel-

based representation model to formulate a similarity measure and subsequently a track-

ing system. In specific, they used Kullback-Leibler information distance between regions

Ωp and Ωq.

De(q||p) =

∫

qlog
q

p
dxdu (2.22)

=

∫

qlogqdxdu −
∫

qlogpdxdu

= −Hq − Lq

The first term is the entropy with the distribution q, and the second is the expectation

of function logp under the density q.

The major problem of the method is that the two terms (and their derivatives) are

difficult to compute precisely in close form. In their work, Elgammal et al. firstly

resorted to approximating the second one with an empirical likelihood given by Lq ≈
∑

{xi,ui}∈Ωq
logp(xi,ui) that requires a large number of object pixels for good approxi-

mation. As to the entropy term Hq, they divided the entropy into two parts: Hq(x,u) =

Hq(x) + Hq(u|x). To approximate Hq(u|x), they assumed that the local distribution of

the feature u at point x can be approximated as a Gaussian distribution. However, due

to the interaction with other feature points in the neighbourhood, the local distribution

may not be a simple Gaussian, especially when the kernel bandwidths hs and hu are not

very small (i.e. strong interactions between neighbouring points are present).
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They also made a critical assumption that Hq(x) is invariant upon any region hy-

pothesis. However, it is quite questionable because the shape of the region will clearly

determine the entropy. Only if the regions are with the same size and shape, the en-

tropies can be the same. In other words, that similarity measure may apply well to

non-deformation object images, but can be seriously deteriorated especially by shearing

and scaling operators.

In short, the computation of the similarity measure in [Elgammal et al., 2003b] is

difficult and the approximations rely on a few critical assumptions and may not be

well-suited for object images under deformation. By contrast, our similarity measure is

directly derived from the kernel-based representation model and the formulation of affine

transformation in such a way that the computation is straightforward in close form and

does not depend on critical assumptions. More importantly, it is easily applicable to

images undergoing affine transformations, as will be demonstrated in the next section.

2.6 Properties of Affine Matching

With T varying across the state space of transformation, the above affine matching will

produce a similarity hyper-surface D0(T ). In practice, the true transformation T is

generally unknown between image patterns, while the system would use affine matching

to determine it. For this purpose, the affine matching should be able to indicate the

state by having a corresponding maximum on D0(T ).

2.6.1 The Ideal Case

The ideal case here means that the two observations Ωp and Ωq correspond to the

same object. It implies that they do not include any pixels from the background. In

practice, the prerequisite to such observations is a perfect segmentation that remains a

very challenging problem and is beyond the scope of this thesis.

We have conducted computer simulations to investigate affine matching in this case

(Figure 2.4). Panel (a) draws the object before transformation, and Planel (b) draws

the transformed counterpart. Specifically, the object shears by s = 1, scales by a =

(0.85 1.25), rotates by θ = π/6, and finally translates by xt = (8 8). Panel (b)-(e) plot

the similarity surface of the two objects, with each graph for a particular transformation
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operator. It can be seen that the similarity surface is smooth and has a maximum

corresponding to the true state T ∗. It implies that one can correctly determine the

transformation T using the affine matching method.

2.6.2 The Real Case

Obtaining an ideal observation mentioned above is not feasible in practice. Instead, it is

quite possible to extract a candidate Ωp which covers the target object while including

a number of background pixels. In other words, Ωp = ΩT ∗

q

⋃

Ωb, where ΩT ∗

q denotes the

deformed target model (Nq pixels) and Ωb represents the included background region

(Nb pixels). We represent ΩT ∗

q by fq∗ and Ωb by fb (Eq. 2.8).

Since the representation model Eq. (2.8) takes an additive form, we can describe the

observed pattern p by

p =
1

Nq + Nb
[Nqfq∗ + Nbfb] (2.23)

For convenient manipulation, we now consider the similarity measure D0(p, q
T
) in-

stead of D0(pT
, q). (Note that due to the physical nature, the two measures are inter-

changeable for the purposes of matching and tracking.) With the following expression

||p − q
T
||2 = || 1

Nq + Nb
[Nqfq∗ + Nbfb] − q

T
||2 (2.24)

=
[

q2
T
− 2fq∗qT

+ f2
q∗

]

+
[

2Nb(Nq + Nb)
−1(fq∗qT

− fbqT
)

+(Nq + Nb)
−2(N2

b f2
b + 2NqNbfbfq∗ − (2NqNb + N2

b )f2
q∗)

]

∆
= ||fq∗ − q

T
||2 + sa

where sa stands for those enclosed in the second pair of square brackets, we have a new

expression of the similarity measure

D0(p, q
T
) =

∫

||p − q
T
||2dudx

= D0(qT
, fq∗) +

∫

sadudx (2.25)

It can be seen that the first addendum is essentially a similarity measure in ideal case

by taking the hidden object fq∗ as the model and the target model as the candidate. In

other words, the first term corresponds to a measure with a minimum at the desired T ∗.

The second term
∫

sadudx, therefore, determines whether or not the similarity measure

has a minimum at T ∗.
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Figure 2.4: Affine matching in an ideal case.

The object and its transformed image are shown in the top row. They
are both perfectly segmented from the background, resulting in two ideal
observations. Below then are drawn the similarity surfaces with respect to
each particular transformation factor. Note that we draw −D0 instead of
D0 in the graphs.
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Let’s study the derivatives of the term with respect to transformation T . From

Eq. (2.24), we have

∇T

∫

sadudx =
2Nb

Nq + Nb

∫

(fq∗ − fb)
∂q

T

∂T
dudx + 0 (2.26)

= 2τ

∫

(fq∗ − fb)
∂q

T

∂T
dudx

where the ratio τ represents the proportion of background pixels in the candidate: τ =

Nb

Nq+Nb
. Thus, the overall gradient of D0(T ) with respect to T at T ∗ can be written as

∂D0(T )

∂T

∣

∣

∣

∣

T=T ∗

= 2τ (

∫

(fq∗ − fb)
∂q

T

∂T
dudx)

∣

∣

∣

∣

T=T ∗

(2.27)

The equation shows that the similarity bias induced by background pixels is pro-

portional to τ which serves a similar function to Signal Noise Ratio. In other words, a

candidate with fewer background pixels (thus smaller τ) is more likely to produce a cor-

rect similarity measure. Consider two types of candidate in (Figure 2.5). The first type,

called coarse candidate, is simply a loose region around the predicted target position.

The other one called fine candidate uses a region precisely covering the predicted target

object. Obviously, the coarse candidate may include a large number of background pix-

els, while the fine candidate includes possibly only a few background pixels. The fine

candidate, however, relies heavily on the precise information about geometrical object

state. On the other hand, the coarse one just needs a position prediction close to the

true target.

Now consider a simple case in which the background pixels have a uniform distrib-

ution in the spectral-spatial space. In other words, fb = 1
αb

where αb is a normalization

constant for αb

∫

fbdudx = 1. Consider the similarity bias as Eq. 2.27. There is

2τ
∂

∫

fbqT
dudx

∂T

∣

∣

∣

∣

T=T ∗

∝ ∂
∫

q
T
dudx

∂T

∣

∣

∣

∣

T=T ∗

= 0 (2.28)

Moreover, because fq∗ = q∗
T
, we have

2τ
∂

∫

fq∗qT
dudx

∂T

∣

∣

∣

∣

T=T ∗

∝
∫

q
T

∂q
T

∂T
dudx

∣

∣

∣

∣

T=T ∗

=
1

2

∂
∫

q2
T
dudx

∂T

∣

∣

∣

∣

∣

T=T ∗

(2.29)

∝
∂

[

∑

i,j ks

(

||M(xi − xj)||2/2
)

ku

(

||ui − uj ||2/2
)

]

∂T

∣

∣

∣

∣

∣

∣

T=T ∗
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Figure 2.5: Two types of candidate for Tracking.

Although the term still takes a rather complex form, it is clearly irrelevant to the

translation vector xt. Hence, background interference induced by a uniform-distribution

Ωb will have a trivial effect on affine matching with respect to translation.

We have investigated the effect of background interference in the similarity measure

with simulations. Figure 2.6 shows the results with coarse candidates. Panel (b) plots

an extracted candidate as a bounding box centered at the predicted target position

xt = (−4,−4) (while the true position is given by x∗
t = (0, 0)). It can be seen that a

large portion of the candidate is background pixels (τ is around 0.6). The corresponding

similarity measure (a hypersuface) is shown in Panel (e) on translation vector xt, and

it has a minimum at x∗
t despite the background interference. The similarity measure on

rotation angle θ are plotted in Panel (c). The curves were generated from the candidates

extracted at xt = (−4,−4), xt = (−2,−2), xt = (0, 0), respectively. It is evidence that

with the predicted position in a small error range (e.g. xt−x∗
t < 4), the candidate could

produce a similarity measure that has a maximum at the desired T ∗. Similar results are

obtained on affine matching with respect to shearing.

However, it is evidence that the similarity measure on scaling is sensitive to back-

ground interference (Panel (d)). With a coarse candidate even at the true target position,

i.e. xt = (0, 0), the minimum of the similarity measure largely strayed from T ∗.

Favorably, additional simulations demonstrate how fine candidates can produce cor-
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Figure 2.6: Affine matching in real case.

xd represents the difference between a predicted position and the true posi-
tion. Note that we draw −D0 instead of D0 in the graphs.
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Figure 2.7: Similarity surfaces with various scaling factors.

The figure draws the similarity measures with 5 candidates at α
(p)
x =0.75, 1,

1.25, 1.5 or 2, where α
(p)
x denotes a predicted scaling factor which is plotted

as a black dot on the similarity measure curve. Note that we draw −D0

instead of D0 in the graphs.

rect similarity measures on scaling. Five candidates at predicted scaling factor (a
(p)
x =0.75,

1.0, 1.25, 1.5 or 2.0, true scaling factor a∗x is 1.25) were used, resulting in 5 different

similarity curves shown in Figure 2.7. It can be seen that, with the candidates close

to the true object in scaling (e.g. with a
(p)
x from 1 to 1.5), the similarity measure has

a minimum precisely at a∗x. The simulation results also suggest that one can use the

similarity measure with a candidate at a given scaling factor to obtain a more accu-

rate estimation of the scaling factor. Intuitively, deploying this method iteratively will

eventually lead the system to finding the true scaling factors.

The results of the above investigation can be summarized as below:

1. When an ideal candidate is provided that corresponds exactly to the target object,

the similarity surface produced by affine matching accurately reflects the ground

truth.

2. In real cases where perfect candidates are not accessible, affine matching may be

seriously interfered by involved background pixels. Nevertheless, affine matching



Chapter 2. Kernel-based Affine Matching 30

with respect to translation is still consistent and robust.

3. In real cases, affine matching with respect to rotation and shearing can be affected

to some extent by background interference. If one knows the position of the object,

nevertheless, better candidates can be extracted to produce good affine matching.

4. In real cases, affine matching with respect to scaling is sensitive to background

interference. A feasible remedy is to resort to fine candidates.

2.7 Summary

This chapter proposes a novel affine matching technique based on a kernel-based repre-

sentation model. The representation model uses kernel density estimation to characterize

the spatial and spectral correlation in a single image of an object, and has given rise to

a spatially-and-spectrally smooth similarity measure. The similarity measure has been

adapted to visual objects under affine transformation, yielding an affine matching tech-

nique. In addition, a few computer simulations have demonstrated the performance of

the matching technique in various cases.

The kernel-based model and the affine matching technique indeed provide a basis

for a robust visual tracking approach to be elaborated in the next chapter. And their

performance will be demonstrated by a variety of experiments therein.
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Visual Affine Tracking

3.1 Introduction

As discussed in the last chapter, the thesis considers an important type of transformation

called affine transformation that is able to describe the image variations of near-planar

objects’ 3D movements. And the last chapter has proposed an affine matching model

based on a kernel-based representation model. A problem naturally arises: how to

efficiently search for a target object and determine its transformation state by using the

kernel based representations?

This chapter follows the kernel-based object modeling scheme, and focuses on how

to use the model to infer the transformation state of an object in a given image. We

first extend the kernel-based affine matching model to formulate the objective of affine

tracking (Section 3). Next, we derive an analytical optimization procedure to maximize

the similarity between an observation and a given target model (Section 4). Moreover,

a practical tracking algorithm (Section 5) is developed by incorporating the knowledge

about the properties of affine matching (elaborated in the last Chapter) into the iterative

maximization procedure. We also discuss the computational complexity and efficient

implementation of the algorithm.

We conduct extensively experimental study on the proposed method. Using computer-

generated image sequences, we examine the robustness of the method against image noise

(Section 6). Moreover, we assess the tracker with a variety of real-life objects such as

faces, hands, cars and camouflaged tanks (Section 7). The experimental results are

positive and convincing. The last section discusses why it is important to use explicit

31
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physical operators (regarding scaling, rotation, shearing and translation) in the affine

tracking system (Section 8). We show that an affine model without explicitly accounting

for physical operators would hardly give rise to practical tracking algorithms.

3.2 Related Work

As we have mentioned earlier, visual tracking is of paramount importance in many sci-

entific and engineering fields such as surveillance and targeting [Collins et al., 2000],

motion capture and recognition from motion [Aggarwal and Cai, 1999]. In principle, it

means to determine the dynamic state of one or multiple objects when a set of observa-

tions – image frames – become available on-line.

To recover the dynamics of an target object, one may start by describing the evolution

of the object and its image by a state-space model which consists of a state transition

model (i.e. dynamics model) and a measurement model (i.e. observation model).

xt = f(xt−1,vt−1) (3.1)

yt = h(xt,nt) (3.2)

Here f represents the state transition function, and h represents the measurement func-

tion. yt denotes an observation such as an acquired image. The state transition process

and the measurement process are both subject to noise vt−1 or nt that represents un-

certainties in the dynamics or the measurement. The state model often assumes a first

order Markov state process {xt} which means that, given the previous state of an object,

its present state is independent upon earlier history.

At time t, the objective of tracking is to estimate the object’s present state xt by

inferring from the present observation yt and the target’s previous state xt−1 (with

Markovian assumption). The tracking process is essentially a fusion of two inferences:

the inference from history using the dynamics model p(xt|xt−1), and the inference from

the present observation using the observation model whose probabilistic form p(yt|xt)

is called the likelihood.

The inference fusion can be carried out with recursive Bayesian filtering. Particularly

if the state transition model and the measurement model are both linear and Gaussian,
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Kalman filter provides a natural and perfect solution [Bar-Shalom and Fortmann, 1988].

The technique has been widely used in a number of visual applications such as tracking

contours [Blake and Isard, 1998], vehicles [Boykov and Huttenlocher, 2000] and faces

[Qian et al., 1998]. Moreover, a variant of the Kalman technique called extended Kalman

filter was introduced to address low-order nonlinear filtering problems. More impor-

tantly for visual tracking, a sequential Monte Carlo technique called particle filtering

was introduced to dealing with complex dynamics [Isard and Blake, 1996], since then

the visual tracking field has seen an explosion of interest in particle filters.

The topic of filtering is well rooted in control theory, while the topic of observation

modeling is more relevant to the computer vision discipline. An observation model

essentially describes the correlation between the observation and the state, thus allowing

one to infer the object’s state from perceived images. With effective representation

models in hand, one may accomplish tracking even without using sophisticated filtering

programs. Moreover in many applications, changes in location and appearance of a

target object are small across consecutive frames, and this fact suggests one to use

special procedures to search for the object in a certain state subspace around a predicted

state of the object.

An underlying problem is, the searching-based tracking scheme may be very compu-

tationally expensive, especially when the object’s state space is of high dimension (i.e.

a high degree-of-freedom object) that gives rise to a huge state space. Thus, one needs

to develop efficient methods such as gradient based schemes [Bascle and Deriche, 1995,

Hager and Belhumeur, 1996] for seeking the objects in the state space.

This chapter concentrates on efficient tracking methods for searching the affine trans-

formation states of target objects. Tracking affine movements is in fact a topic that has

been extensively studied. For instance, [Vacchetti et al., 2004] presented a method that

tracks an object in 3D space by tracking local images subject to affine transformation.

Moreover, Ferrari proposed a system that uses edge and texture information to de-

termine the affine transformation of simple planar shapes [Ferrari et al., 2001]. Bascle

and Deriche introduced a method to track complex shapes, by combining deformable

contours and deformable region models [Bascle and Deriche, 1995].
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affine transformation (T)

Figure 3.1: An affine tracking problem

However, existing affine tracking systems do not address precise spatial-spectral rep-

resentation and its extension to efficient searching program. In many situations, a precise

spatial-spectral representation may provide more reliable clues for inference than e.g.

simple edges and colors. Furthermore, it can offer a good description of textures. As

Landy put it [Landy, 1996], the occurrence of texture in a scene is useful in a number of

ways: the characteristics of a single texture may be used to identify the surface material

[Beck et al., 1983]; texture segregation can be an important component in identifying

objects [Yan et al., 2004, Zhu et al., 2001]; characteristics of the texture in the image

may be used to infer properties of the 3D layout of objects and object shape (shape-

from-texture) [Todd and Akerstrom, 1987, Suen and Healey, 2000].

3.3 Extending Kernel-based Affine Matching to Tracking

Consider tracking a tank shown in Figure 3.1. At frame t, we know the previous state

(T ∗
t−1) of the tank plus the given target model – a reference image of the object, and we

need to compute the present tank state T ∗
t by inferring from its present appearance –

here a quadrangle image region.

However, the tank appearance in the form of a region in the image It is hidden

to the tracking system. How to extract the appearance, therefore, becomes a critical

problem. It can be seen that if the underlying state T ∗
t is known, one can easily extract

the appearance by projecting the model to the present image and picking out those

pixels covered by the model. Consider an object state T and a model Ωq. We use the
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following criterion to select the pixels belonging to the object.

Ωp(T ) : {xi,ui|T−1(xi) ∈ Ωq} (3.3)

Thus the candidate region Ωp is a function on T .

From an image region Ωp with T to the target model Ωq, the similarity measure D0

is given by Eq. 2.9 and here is a copy:

D0(T (Ωp), Ωq) = − 1

N2
p

∑

i,j

ks(
||M(a, s, θ)(x

(p)
i − x

(p)
j )||2

2
)ku(

||u(p)
i − u

(p)
j ||2

2
) (3.4)

+
2

NpNq

∑

i,j

ks(
||M(a, s, θ)x

(p)
i + xt − x

(q)
j ||2

2
)ku(

||u(p)
i − u

(q)
j ||2

2
)

− 1

N2
q

∑

i,j

ks(
||(x(q)

i − x
(q)
j )||2

2
)ku(

||u(q)
i − u

(q)
j ||2

2
)

∆
= −I1(pT

, p
T
) + I2(pT

, q) − I3(q, q)

where I1, I2 and I3 represent the three addenda on the right hand respectively. The

components of T including M and xt refer to Section 2.5.1.

We denote by D0(T ) the similarity between an image region Ωp with T and a target

model Ωq. Generally, the object’s true appearance Ω
T

among all possible image regions

in the present frame has a closest similarity D∗
0 to the target model Ωp. Hence, we

formulate the affine tracking as below.

For a target model Ωq and an image I, affine tracking aims to find the affine transfor-

mation state T ∗ which corresponds to via Eq. 3.32 the true object image region Ωp = Ω
T

which has, among all possible regions in I, the maximal similarity D∗
0 to the model.

T ∗ = argmax
T

{D0(T (Ωp), Ωq)|Ωp, Ωq} (3.5)

Clearly, the problem demands efficient searching procedures to find such a T ∗. In the

below we first consider a simplified problem: how to compute the affine transformation

T ∗ so as to maximize the similarity between a model and a given observation Ωp.

3.4 The Optimization Procedure

Given a model Ωq and an observation (a target candidate) Ωp, because the term I3 =

∫

qqdudx in the similarity measure (Eq. 3.4) is fixed, we can simplify the similarity
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formulation by

D(p
T
, q) = −I1(pT

, p
T
) + I2(pT

, q) (3.6)

With a given target candidate Ωp, a possible way to maximize the similarity D(p
T
, q)

is by achieving

∇D(p
T
, q) =

∂D

∂xt
∆xt +

∂D

∂θ
∆θ +

∂D

∂a
∆a +

∂D

∂s
∆s = 0 (3.7)

which implies that

∇xt = 0; ∇a = 0; ∇θ = 0; ∇s = 0 (3.8)

are to be satisfied. Now, we derive the respective solutions.

3.4.1 Computing Translation Vector xt

From Eq. (3.4), it can be seen that I1(pT
, q) is independent of xt. So there is

∇xtD(p
T
, q) = −∇xtI1(pT

, p
T
) + ∇xtI2(pT

, q)

= 0 + ∇xt
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= 2
∑

i,j

wij(xt + M(a, s, θ)x
(p)
i − x

(q)
j ) (3.9)

where the weight wij is given by

wij =
2

NpNq
gs(

||M(a, s, θ)x
(p)
i + xt − x

(q)
j ||2

2
)ku(

||u(p)
i − u

(q)
j ||2

2
) (3.10)

with gs(·) representing the derivative ∂ks(x)/∂x. If ks is a Gaussian kernel function, gs

would also take a Gaussian form.

Therefore, ∇xtD(p
T
, q) = 0 leads to the following solution.

x∗
t =

∑

i,j wij(x
(q)
j − M(a, s, θ)x

(p)
i )

∑

i,j wij
(3.11)

Since xt is involved in the weights {wij} (see Eq. 3.10) on the right side, this is indeed

an iterative solution for computing the translational vector xt.
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3.4.2 Computing Rotation Angle θ

Consider the partial derivative of I1(pT
, p

T
) with respect to θ. Let

f
(1)
ij

∆
= ||M(a, s, θ)(x

(p)
i − x

(p)
j )||2

= a2
x(x

(p)
i + sy

(p)
i − x

(p)
j − sy

(p)
j )2 + a2

y(y
(p)
i − y

(p)
j )2 (3.12)

which is independent upon θ. From Eq. (3.4), we have

∂I1(pT
, p

T
)

∂θ
=

1

N2
p

∑

i,j

∂ks(f
(1)
ij /2)

∂θ
ku(

||u(p)
i − u

(p)
j ||2

2
) = 0 (3.13)

So I1(pT
, p

T
) is also independent upon θ.

Consider the partial derivative of I2(pT
, q) with respect to θ. Let

x̂
(q)
j = x

(q)
j − xt, x

(a)
i = M(a, s, θ)x

(p)
i (3.14)

and

f
(2)
ij = ||x(a)

i − x̂
(q)
j ||2 (3.15)

Then there is

f
(2)
ij = (x

(a)
i − x̂

(q)
j )2 + (y

(a)
i − ŷ

(q)
j )2

= (2ayy
(p)
i x̂

(q)
j − 2ax(x

(p)
i + sy

(p)
i )ŷ

(q)
j )sinθ

+(−2ax(x
(p)
i + sy

(p)
i )x̂

(q)
j − 2ayy

(p)
i ŷ

(q)
j )cosθ

+(a2
x(x

(p)
i + sy

(p)
i )2 + a2

yy
(p)2
i + x̂2

j + ŷ2
j )

≡ aijsinθ + bijcosθ + cij (3.16)

where cij is a variable independent upon θ.

Now, from Eq. (2.13) there is

∂I2(pT
, q)

∂θ
=

2

NpNq

∑

i,j

∂ks(f
(2)
ij /2)

∂θ
ku(

||u(p)
i − u

(q)
j ||2

2
) (3.17)

=
∑

ij

wij

∂f
(2)
ij

∂θ

= β1cosθ + β2sinθ (3.18)

Here wij has been given in Eq. 3.10, and β1, β2 are given by

β1 =
∑

i,j

wijaij , β2 =
∑

i,j

−wijbij (3.19)
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Therefore, ∇θD(p
T
, q) = 0 would lead to β1cosθ + β2sinθ = 0. And the solution is

θ∗ = −sin−1(
β1

√

β2
1 + β2

2

) (3.20)

Since in fact β1,2 on the right side indirectly involve (via wij in Eq. 3.10) the parameter

θ, the solution implies an iterative procedure to achieving ∇θD(p
T
, q) = 0. Besides,

because of the property of arcsine, Eq. (3.20) would suggest two values: θ and θ + π.

In practice we can choose the one that produces relatively larger similarity distance

D(p
T
, q).

3.4.3 Computing Scaling Factors a

Let’s first consider the partial derivatives of I1(pT
, p

T
) with respect to a. By introducing

Eq. (3.12) to Eq. (2.12) and Eq. (2.13), we have

∇axI1(pT
, p

T
) = ∇ax





1

N2
p

∑

i,j

ks(
f

(1)
ij

2
)ku(

||u(p)
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(p)
j ||2

2
)





=
∑

i,j

1

2
vij
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(1)
ij
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=
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vij(x
(p)
i + sy

(p)
i − x

(p)
j − sy

(p)
j )2ax (3.21)

and

∇ayI1(pT
, p

T
) = ∇ay
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N2
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2
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where vij is given by

vij =
1

N2
p

gs(
f

(1)
ij

2
)ku(

||u(p)
i − u

(p)
j ||2

2
) (3.23)

Similarly, for I2(pT
, q) we have

∇axI2(pT
, q) = ∇ax





2
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f
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2
)ku(
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j ||2
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ij

1

2
wij
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ij

∂ax

=
∑

ij

wij
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(x
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i )2ax − sinθ(x
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(q)
j

−cosθ(x
(p)
i + sy

(p)
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(q)
j ] (3.24)
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and

∇ayI2(pT
, q) = ∇ay
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where wij is given by Eq. (3.10).

Therefore, for ∇aD(p
T
, q) = ∇a(−I1(pT

, q) + I2(pT
, q)) = 0 we have

a∗x =

∑

ij wij(sinθ(x
(p)
i + sy

(p)
i )ŷ

(q)
j + cosθx

(p)
i x̂

(q)
j )

(

∑

ij wij(x
(p)
i + sy

(p)
i )2

)

− ∑

ij vij(x
(p)
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(p)
i − x

(p)
j − sy

(p)
j )2

(3.26)

a∗y =

∑

ij wij(cosθy
(p)
i ŷ

(q)
j − sinθy

(p)
i x̂

(q)
j )

(

∑

ij wijy
(p)2
i

)

− ∑

ij vij(y
(p)
i − y

(p)
j )2

(3.27)

Since ax,y is involved in both wij and vij on the right sides, the equations imply an

iterative procedure to computing scaling factors.

3.4.4 Computing Shearing Factor s

Consider now the partial derivatives of I1(pT
, p

T
) with respect to s. By introducing

Eq. (3.12) to Eq. (2.12) and Eq. (2.13), we have

∇sI1(pT
, p

T
) = ∇s
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≡ z1s + z2 (3.28)

Consider I2(pT
, q). We first rewrite f

(2)
ij from Eq. (3.16) as

f
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It follows that ∇sI2(pT
, q) would become

∇sI2(pT
, q) = ∇s
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ks(
f

(2)
ij

2
)ku(

||u(p)
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(p)
j ||2
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=
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2
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≡ z3s + z4 (3.30)

Therefore, the solution to ∇sD(p
T
, q) = ∇s(−I1(pT

, p
T
) + I2(pT

, q)) = 0 can be

derived as

s∗ = −z2 − z4

z1 − z3
(3.31)

This solution implies an iterative procedure to computing shearing factors because both

wij and vij on the right side involve the shearing factor s.

3.4.5 Discussion on Optimization

In the above subsections we have derived a set of iterative functions for maximizing the

similarity function Eq. 3.7. Though the iterative functions are derived and expressed

for a few parameters respectively, it is also straightforward to write the iterations in one

joint function T ∗ = Fiter(T ) where Fiter is a vector of functions. And by using Fiter one

may update all parameters at once in one iteration step.

However, direct application of the joint iterative function Fiter may not lead to the

desired tracking results. As will be discussed in the next section, the highly complexity

of similarity surfaces in real applications usually would make it inappropriate to use

joint-iteration for all parameters at once. Later on in Section 3.10.2 we will see such

an example. Instead, we would better use the individual iteration functions (associated

with respective physical meanings) to navigate the optimization toward the desired true

states on the similarity surfaces.

3.5 The Tracking Algorithm

The previous section derived an optimization procedure to the maximization of similar-

ity measure D(p
T
, q), with respect to T , between the model Ωq and a fixed candidate
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Ωp of object image, where Ωp is not necessarily the true object image. According to

the properties of affine matching (see Chapter 2.6), the procedure would lead to the

true transformation state T ∗, provided that the observation Ωp is identical (or suffi-

ciently close) to the true appearance Ω
T

of the present object. Recall the affine tracking

formulation elaborated in Section 3.3. One needs to search in the image for the true

object image Ω
T

by optimizing both the candidate Ωp and the correlated transforma-

tion state T . In the below we propose an optimization scheme based on the proposed

similarity-maximization procedures and the essential properties of affine matching.

Suppose the object is moving continuously across consecutive frames. In other words,

the present object would lie in the vicinity of its previous position in the image. One

may simply use the previous state as the initial estimation of the current state. Note

that if the system considers dynamics, a more sophisticated prediction of the current

state may be available. The initial estimation, though may not be very accurate, still

enables one to obtain a coarse candidate (see Section 2.6) that can serve as an appropri-

ate candidate for infering the translation (i.e. the object position), using the proposed

similarity maximization procedure for computing translational vector. This is justified

by the properties of affine matching that affirm the robustness of affine matching with

respect to translation. The recovered position information then allows one to extract a

fine candidate whose affine matching to the model would indicate the correct shearing

and rotation state. That’s to say, with the fine candidate, one can use the similarity

maximization procedures for computing the shearing and rotation state. With the re-

covered information about translation, shearing and rotation, one can proceed to acquire

even better fine candidates that finally lead one to the accurate estimation of scaling

factors.

It is easy to see that the candidate extraction is a crucial task in the tracking scheme.

Here we use a flexible method to extract a candidate: for an target model Ωq and an

estimated transformation T , we extract the candidate defined by both T and a relaxation

factor ǫ.

Ωp : {xi,ui|
(

min
xj∈Ωq

||T−1(xi) − xj ||2
)

< ǫ} (3.32)
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Here ǫ controls the size of the neighborhood of the estimated object region. Clearly,

larger ǫ will produce a larger (i.e. coarser) candidate, and vise versa.

The tracking method mentioned above is essentially a coarse-to-fine scheme, and it

pursues better and better candidates in the searching process. The following details the

proposed tracking algorithm. The particular ǫ should be selected according to the true

situations involving e.g. the object’s size and uncertainties in motion.

1. Initialization: create the object model Ωq using a sample image; set frame no.

k = 0 and the object’s initial state T0;

2. Proceed to next frame: k = k + 1;

3. Obtain the prediction of the transformation state Tk = {x(k)
0 , θ(k), s(k),a(k)}; here

we may just set them to Tk = Tk−1;

4. Estimating the transformation parameters:

(a) Estimating translation vector x
(k)
0 :

i. Extract a candidate region Ωp according to Tk, with appropriate ǫ (Eq. (3.32));

ii. Update x
(k)
0 by Eq. (3.11);

iii. If the iteration converges, i.e. d(x
(k)
0 ) < ǫx, where ǫx is a preset small

value and d(x
(k)
0 ) is the change of x

(k)
0 in current iteration step, proceed

to Step (b); otherwise go back to Step 4.a.i;

(b) Estimating rotation angle and shearing factor {θ(k), s(k)}:

i. Extract a candidate region Ωp according to Tk, with appropriate ǫ (Eq. (3.32));

ii. Update θ(k) by Eq. (3.20);

iii. Update s(k) by Eq. (3.31);

iv. If d(θ(k)) < ǫθ and d(s(k)) < ǫs, proceed to Step (c); otherwise return to

Step 4.b.i;

(c) Estimating scaling factors a(k):

i. Extract a candidate region Ωp according to Tk, with appropriate ǫ (Eq. (3.32));

ii. Update a(k) by Eq. (3.26);
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iii. If d(a(k)) < ǫa, proceed to Step 5; otherwise go to Step 4.c.i.

5. If (a)(b)(c) yield no change in Tk, go to Step 2 for next frame; otherwise go to

Step 4 to further optimize the estimations.

Initial estimation of position

Ture object and its position

Initial observation candidate

Candidate with known position

Candiate with known position, pose
and shearing factor

Figure 3.2: Coarse-to-fine affine tracking scheme

Figure 3.2 illustrates the coarse-to-fine algorithm for affine tracking. When a new

frame is presented, the tracking system has merely a rough prediction of the object posi-

tion and pose. Thus, only coarse candidate extraction is feasible. The coarse candidate

in turn provides a clue to obtain a more reliable estimation of the object position. The

system is then able to extract a better candidate (with possibly fewer background pixels

in the candidate) to infer the shearing and rotation parameters. Finally, the system

extracts an even better candidate to compute scaling factors. It can be seen that, along

with the coarse-to-fine searching, the candidate becomes continuously better in quality.

In brief, the coarse-to-fine search scheme above is able to greatly enhance the tracking

system by choosing the right pixels for processing. There are three facts to the advantage

of the scheme:

1. Since the target object’s region is supposed to be known in the first frame, we can

accuratly know the exact shape of the object;

2. Because the object usually undergoes continuous transformations, initial candi-

date region can be extracted to effectively encompass the true object image while

including only a few, if any, background pixels;

3. Real objects usually show coherent spatial-temporal image features. Our object
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models are well-suited to describe the features coherences, as they are designed to

capture the smooth correlations between the features by using kernels. In addition,

they can also follow the continuous changes in the features by using adaptation

frame by frame.

3.6 Computational Complexity and Efficient Implementa-

tion

Because the algorithm is iterative and it usually takes a few iterations (usually less than

4 in each step) to converge, the overall computational complexity would mainly depend

on the cost of each iteration. In Step 4 for computing translation vector, each iteration

according to Eq. 3.11 requires O(NpNq) computational time (Recall that Nq(Np) is the

number of target(candidate) pixels). Similarly, in Step 5 for computing rotation angle

according to Eq. 3.20, the computational cost is approximately given by O(NpNq). For

computing both scaling factors according to Eq. 3.26 and shearing factor according to

Eq. 3.31, it takes additional O(N2
q ) time to complete each iteration. Hence, we con-

clude that the overall computational cost for scaling/shearing factors is approximately

O(NpNq + N2
q ).

In the implementation, an efficient scheme can be employed to reduce the computa-

tional complexity. Since kernel function yields almost trivial value for those input vectors

distant from the kernel centroid, the scheme would omit those vectors in the computa-

tion. For instance, the scheme chooses only the pixels j that satisfy k(||xj − xi||2) < ǫ

in the real computation of x∗
t (Eq. 3.11). With a certain Gaussian bandwidth and a

certain ǫ (taken as 0.01 in the tests), obviously, the number of these pixels chosen for

computation is bounded and the bound can be easily calculated. Suppose this number

be η, then the cost of each iteration of computing translation or rotation parameters

would be reduced to O(ηNq). Similarity, the cost of computing the shearing/scaling

parameters would also be reduced to O(ηNp + ηNq).

In a real implementation on a conventional 1.3GHz Pentium-M PC, the tracking

algorithm achieved a frame rate of 2fps for a target object of around 1000 pixels in RGB

images.
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3.7 Tracking Synthetic Objects

The purpose of this section is to examine the tracking algorithm’s performance against

image noise, by using a synthetic diamond-shaped object. The object randomly moves

through computer-generated image sequences, with each sequence corrupted by additive

zero-mean Gaussian noise with a particular variance (σ2
n). Some images of the object

are shown in Figure 3.3, where high level of noise (especially for σn > 50) clearly poses

a serious challenge to the estimation of the object state.

0 20 30 40 50 60 80

Figure 3.3: Synthetic objects under various levels of noise.

The number under each image denotes the standard variance of the Gaussian
noise.

The first evaluation compares the proposed method with the mean-shift tracker

[Comanicui et al., 2000] in tracking a translational object. In order to obtain accurate

evaluation, we ran 8 independent trials at each noise level and averaged the results.

Figure 3.4 plots the tracking errors as functions over noise level. The proposed method

could accurately track the object under noise level σ ≤ 70, while the mean-shift tracker

worked well only if noise level is much lower (σ ≤ 30).

The second evaluation examines the proposed method in tracking the object under

a particular type of transformation (rotation, shearing or scaling) in combination with

translation. We also ran 8 independent trials at each noise level. Figure 3.5 plots the

experimental results. The method performed well under noise level σ ≤ 60 (for shearing

or rotating) or σ ≤ 40 (for scaling). The results suggest that the method is insensitive

to noise in scaling or rotating objects. In the presence of noise in scaling objects, the

method appears to be less robust but the performance is still favorable in view of the

heavy noise it can handle well at σ = 40 (Note that even without object scaling in the

earlier test, the mean-shift tracker could not deal with such noise).

The last evaluation examines the proposed method in tracking the object under



Chapter 3. Visual Affine Tracking 46

20 30 40 50 60 70 80 90 100
10

-2

10
-1

10
0

10
1

10
2

10
3

10
4

Nois e level ( σ )

K ernel-A ffine

means hift

M
S

E
(

x
t)

Figure 3.4: Comparative results of tracking synthetic object, with the proposed method
or mean-shift.

fully affine transformation. Eight independent trials at each noise level were conducted.

Figure 3.6 plots the results which show that the method can accurately determine the

object state despite heavy noise corruption in the images.

3.8 Tracking Real-world Objects

The purpose of this section is to examine the proposed method in tracking real-world

objects, in comparison with the state-of-the-art mean-shift tracker. A variety of target

objects are considered, including hands, faces, cars, tanks and a special circular object.

Hand and Face Tracking

The hand video (Figure 3.7 and 3.8) was captured in a lab environment using a video

camera. The test sequence is at 4fps and 360×288 pixels. In the videos, the two

hands exhibit the same color features which are also similar to the background. The

experimental results show that the mean-shift tracker failed to track the object, while

the proposed method accurately computed the hand state throughout the sequence. The

results can be attributed to the fact that precise spatial-spectral representation models

in the proposed method are critical for distinguishing the objects with similar color

features.

The face video is at 4fps and 160×120 pixels. The face is continuously moving and

rotating, resulting in large variations in size and pose angle. Figure 3.9 draws some
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(a) Translation and Rotation (b) Translation and Shearing
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(c) Translation and Scaling

Figure 3.5: Tracking synthetic objects over various levels of noise

tracking results. It can be seen that the tracker was able to accurately determine the

position, orientation and size of the face, despite the fact that the face was subject to

slightly out-of-plane rotation.

Circle Tracking

The target object in this experiment is a red-white circular object that moves and

rotates on a red-white chessboard (Figure 3.10 and 3.11). The tracking task appears to

be very difficult, since the circle looks quite similar to the background. Nevertheless,

the results (Figure 3.10) show that the proposed method can accurately determine the

object state throughout the sequence. It is also evident from Figure 3.11 and 3.12

that neither the mean-shift tracker nor Condensation [Isard and Blake, 1996] (a contour

tracker with particle filtering) could perform well in this setting. These suggest that

precise spatial-spectral representation is critical for distinguishing objects with similar

color features.
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Figure 3.6: Tracking synthetic objects with affine transformation under image noise at
σ = 40.

Circles denote the true state, while the curves represent tracking results in
different trials.

Vehicle Tracking

The vehicle video (Figure 3.13) was acquired from KOGS/IAKS Universität Karlsruhe.

The target objects are cars turning at a road crossing. The image quality is poor due to

high-ratio video compression and snowy weather, plus the small size of the object image

in the video. Comparing Frame 0 and Frame 36, it can be seen that the object image

undergoes a considerable deformation especially in terms of rotation and shearing. The

tracking results show that the tracker could still accurately capture the car’s movement

and recover the trajectory.

We captured another car video (Figure 3.14) at 360×288 pixels and 15fps. Note

that only the image regions around the target are extracted for display, as the target is

rather small in the images. The movement of the car is out-of-plane, posing a challenge

to single-example based systems to recover affine transformation. In spite of that, the

proposed tracker favorably determined the car’s state in terms of orientation, dimension

and position.

Tank Tracking

The tank videos (Figure 3.15 and 3.16) are at 15fps and 356× 288 pixels. The tracking

is made very challenging by the close similarity between the appearances of the camou-

flaged tanks and the meadow background. Note that due to considerable out-of-plane

rotation, some parts of the tanks are absent in the first frame but are present later,
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Figure 3.7: Hand tracking with the proposed method.

Figure 3.8: Hand tracking with the mean-shift tracker.
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Figure 3.9: Face Tracking

and they are not taken into consideration in the representation models. Nevertheless,

the proposed method was still able to accurately recover the affine transformation of

tanks. On the other hand, the same tracking task will largely perturb other systems

using smooth blobs or contour models, due to the similar, complex patterns in both the

target and the background.

3.9 Summary

The experimental results show that the proposed tracking method is capable of tracking

affine transformation of a variety of synthetic and real world objects. In particular,

the proposed method appeared to be very robust against image noise and significantly

outperformed the state-of-the-art mean-shift tracker in the simulations. Besides, the

method could accurately recover the state of moving hands and a moving circle in

cluttered background, while the mean-shift tracker could not identify them. In addition,

a few experiments on vehicles and camouflaged tanks also demonstrate that the method

is able to deal with affine transformation in various scenarios.

The good performance can be attributed to three important components of the

method. The first important component is the kernel-based representation model, which

can accurately characterize an object and effectively identify the object in cluttered

background. For instance, the camouflaged tank has been well identified though it

appears very similar to the background. In addition, the smoothness of Gaussian kernels

in both spectral and spatial spaces allows minor variations in the object image. Thus,
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Figure 3.10: Tracking circle with proposed method.

The figure shows the target model as well as the tracking results by the
proposed affine tracker, where the tracking results are denoted by the out-
lines and the directions. The lower right sub-images detail the white-framed
regions in the original images that encompass the object.

Frame 1 Frame 30 Frame 60

Figure 3.11: Tracking circle with the mean-shift tracker
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Figure 3.12: Tracking circle with the Condensation. Here we show only cropped images
to bring out the details of random samples used for Condensation. True objects are
outlined by red circles.

despite the presence of motion blurs, heavy noise, or visible artifacts in the images, the

model is still robust and accurate for representation.

The second important component of the method is the incorporation of affine trans-

formation in the tracking formulation. It allows us to describe and capture transfor-

mation of near-planar objects through image sequences, in terms of shearing, scaling,

rotation and translation. The recovered image deformation not only provides rich infor-

mation about the object movement, but also enables us to continuously take advantages

of precise spatial-spectral features that are essential for identifying the objects.

The third component which attributes greatly to the good performance is the op-

timization procedure. The procedure is effective for seeking the transformation state.

When implemented in a special searching-based tracking algorithm, it enables us to iter-

atively improve the estimation of the state while continuously improving the acquisition

of the object image.

At present, setting up a representation model is a trivial task upon the acquisition

of a sample image of a target object. Hence, the tracking system is easy to implement.

There are a few possible ways to enhance the representation model. As suggested by

Collins [Collins and Liu, 2003], for example, the system may select, for target object

representation, distinctive features from the background. We need to mention that this
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Figure 3.13: Vehicle Tracking Experiment 1

The upper left panel shows the first frame of the traffic video, with white
frame denoting the car to be tracked. The right panel plots the tracking
results as a sequence of arrow. The start point of an arrow represents the
estimated position, while the arrow points to the estimated pose angle.

scheme has a side effect in that it may loss some essential information about the shape

deformation. Therefore, it will be promising but challenging to incorporate feature

selection techniques into our kernel-based affine tracking method.

The presented tracking method emphasizes not on tracking complex 3D objects but

on tracking near-planar objects’ rigid deformation in terms of affine transformation.

Therefore, it may face problems in dealing with complex objects that show different

views in an image sequence. One may extend the presented tracking scheme to dealing

with full 3D objects, by setting up an 3D representation model. But obviously, that will

be a demanding and challenging job, since complete 3D modeling requires a great deal

of prior knowledge about the particular objects plus the problem is yet to be well-solved

in general.

This work also pays scant attention to efficient implementation. As mentioned ear-

lier, tracking speed on a 1000-pixel target is about 2 fps which may be insufficient for

many real applications. A possible way to dramatically improve the computational ef-

ficiency is to reduce the number of kernels [Girolami and He, 2003] in the kernel-based

representation model, while the topic is beyond the scope of this thesis.
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Figure 3.14: Vehicle Tracking Experiment 2

The black boxes denote the estimated image region of the car. The small
squares represent the positions of the moving vehicle, while the segments
pointing out from the positions show the changing direction of the car.

3.10 Discussions

3.10.1 A brief discussion on other affine-invariant tracking methods

Affine-invariant tracking has long been interesting to the computer vision community.

And the thesis has mentioned a number of existing methods for it in the introduction

section of the previous chapter. We have also seen that in many cases color features

alone could not provide sufficient characteristic information and spatial-color feature

based approaches would be more appropriate.

A prominent problem with the feature-based approaches is that it is generally very

difficult to handle complex variations of the features caused by transformations. More

specifically, the problem mostly lies in the design of a searching function for properly

and efficiently updating the parameters based on observed image features.

In a conventional way, many trackers (e.g. [Ferrari et al., 2001]) do not use analytical

searching (or iterative) functions, instead they scan possible values for the object’s state

and pick the most-likely one. But the approach tends to be less effective and elegant

than analytical searching methods such as the active appearance models (AAMs) method
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Figure 3.15: Tank tracking 1

The white frame denotes the estimated outlines of the tank model.

[Cootes et al., 2001]. By learning a number of image samples for each deformable object,

the AAMs can well represent dynamic and complex image features. Importantly for

tracking, the authors presented a linear, iterative function to adapt the models to the

images. But the convergence of the linear iterations has yet to be proven in a strict

sense.

More recently, J. Winn and A. Blake [Winn and Blake, 2004] introduced a Bayesian

network for affine tracking. Their inference algorithm includes a global search over a

discretised transform space followed by a local optimisation with a trust-region Newton

method. In addition, it uses bottom-up cues to restrict the space of possible affine trans-

formations in order to aid correct convergence. Similar to our work, they also decom-

posed the transformation matrix into some element matrices respectively for translation,

rotation and scaling, and a freeform linear transformation. A small regret is that their

searching objective function can not be optimised analytically.

Unlike the previous tracking methods, the presented tracker in the paper takes ad-

vantages of both the kernel-based spatial-color representation model and the analytical
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Figure 3.16: Tank tracking 2

The white frame denotes the estimated outlines of the tank model.

search algorithm. The algorithm is derived from a mathematical analysis and inherits

the favorable properties of the traditional iterative programming for solving non-linear

problems. Besides, thanks to the full differentiability of the objective function, it is possi-

ble to use more advanced, analytical optimization techniques in the tracking framework.

3.10.2 About a non-physically-parameterized transformation model

The affine transformation model presented involves a few geometrical operations in-

cluding translation, rotation, scaling and shearing. In the proposed method we use a

transformation that explicitly describes those factors. On the other hand, the transfor-

mation can also be written in such a form that those physical operators are transparent

to the user. This affine transformation model, here called the physically-implicit model,

may be applicable to some tracking tasks where the transformation parameters with

physical meaning are not required.

In this section, we show that the physically-implicit model also lead to an iterative

optimization procedure for similarity maximization and tracking as well. However, we
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show that the optimization procedure in practical tracking settings would hardly con-

verge to the true states of target objects. In other words, the physically-implicit model

is not as applicable as the proposed physically-explicit model to real tracking tasks.

First, we can write the physically-implicit affine transformation as

x(T ) =

(

ρ11 ρ12

ρ21 ρ12

)

x + xt =

(

ρT
1 x

ρT
2 x

)

= Mx + xt (3.33)

where the matrix M consists of four elements that implicitly reflect the geometrical

operations except translation. A tracking system based on this new form of affine

transformation may be appealing in some applications where the explicit transformation

parameters are not desired. Now let’s derive a tracking method from the new affine

formulation and investigate how it works in practice.

Similar to the optimization procedures described in Section 3.4, a tracking method

based on the affine formulation Eq.3.33 will also resort to optimization procedures for

finding the transformation factors.

Given an observation Ωp, for the purpose of tracking, one needs to find a transfor-

mation T that maximizes its similarity to the target model. We adapt the similarity

measure in Eq 3.6 to the new affine formulation, yielding
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Thus, maximizing the similarity amounts to finding a transformation state T that sat-

isfies ∇
T
D(p

T
, q) = 0.

Consider the term D1. By defining

f
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we have
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Therefore, the derivatives are
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And the derivatives of D1 with respect to T can be computed by
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Now consider the term D2. By defining
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So, the derivatives of D1 with respect to T can be computed by
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Therefore, letting ∇D(p
T
, q) = 0 amounts to having ∇−D1(pT

, p
T
)+∇D2(pT

, q) = 0,

which yields

(A1 − B1)ρ1 + c1 = 0 (3.47)

(A2 − B2)ρ2 + c2 = 0 (3.48)

So the maximization problem can be solved with linear algebra:

ρ1 = (A1 − B1)
−1c1 (3.49)

ρ2 = (A2 − B2)
−1c2 (3.50)

The equations imply an iterative solution, since A1,2 and B1,2 are variable matrices

indirectly determined by ρ1,2.

For the translation estimation (xt), we can still use the iteration equation Eq. 3.11,

because the term xt in Eq. 3.33 play the same role as in the original affine formulation

(Eq. 2.18).

To examine the above method, we use the same artificial objects introduced ear-

lier. The object is scaled by 1.25, sheared by π/6, rotated by π/12. So the resulting

transformation matrix is M∗ = (ρ11 = 1.21, ρ12 = 0.44, ρ21 = 0.32, ρ22 = 1.15). An
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observation Ωp is a coarse candidate defined by an estimation of state T = {M,xt}.

And, to its advantage, we set the position estimation xt precisely at the true position.

The optimization procedure is used to find an M that maximize the similarity between

Ωq and Ωp with respect to T . Figure 3.17 shows the tracking results. It is evident that

the procedure could not converge to the true transformation state.

Figure 3.17: Affine tracking without explicitly accounting for transformation operations.

The left panel shows the object for modeling. The right panel shows the
noise-corrupted image and the object subject to affine transformation. The
white parallelogram denotes the estimated region of the object.

To investigate the underlying problem, we compute the similarity surface and show

it in Figure 3.18. From the graph, it can be seen that the similarity surface does

not correctly indicate the state of transformation, since the maximum on the surface

significantly strays away from the true state.

Here we would like to brief a possible reason. Let’s consider the properties of affine

matching. They assert that estimating different transformation factors has different re-

quirements on the quality of object image candidate. In particular, the affine matching

with respect to scaling factors is sensitive to background interference in an acquired

candidate. The proposed method (Section 3.5) avoid simultaneously estimating all the

transformation parameters with a candidate that may possibly include a considerable

number of background pixels. Instead, it uses an effective scheme that only performs

scaling-factor estimation when it acquires appropriate candidate by recovering the in-

formation about other parameters. On the other hand, the physically-implicit model

does not differentiate the estimation of scaling factors from the others, and therefore

can hardly deal with the background interference problem.
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Figure 3.18: Similarity surface of affine matching

The horizontal axes represent the deformation factors (for all ρ). The sim-
ilarity surface is drawn as four functions over the factors. True values of
deformation factors are printed under the graph. Note that in the graph we
plot −D0(pT

, q) instead of D0(pT
, q), therefore the minimal points on the

curves correspond to the maximal points on the similarity surface.



Chapter 4

Kernel Autoassociators for

Concept Learning and

Recognition

A fundamental issue addressed by this thesis is visual recognition. The previous chapters

have presented an approach to recovering the geometrical properties of target objects

(in terms of affine transformation). One can use the recovered information to obtain

normalized images/features of the object, and the normalization is a prerequisite to the

success of many generic pattern recognition systems.

Suppose the image patterns of target objects are presented in normalized form. The

objective of this chapter is to develop a generic classification scheme that discriminates

among different classes of image patterns. To this end, we propose a neural network

model based on kernel methods to learn the nonlinearity in the patterns. The chapter

also studies its application to various binary-class and multi-class classification tasks.

Its applications in combination with special domain knowledge will be described in the

next chapter.

4.1 Background

Pattern classification is an important issue in a variety of scientific and engineering dis-

ciplines. Two elements play key roles in a classification process: concept and category

[Medin and Coley, 1998]. Concept refers to an abstract representation of a category,

while category refers to the set of entities picked out by the concept. The problem of

concept learning is often made difficult by the shear complexity of patterns present in real

62
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tasks. A well-known example is face recognition in which facial images can be very com-

plicated and highly nonlinear especially when faces are subject to change in view angle

or lighting condition [Zhao et al., 2000]. It is also known that linear approaches such as

Fisher linear discriminant and principal component analysis [Turk and Pentland, 1991]

are not well suited to learn the nonlinear concept.

This chapter emphasizes an alternative approach to nonlinear concept learning and

pattern classification by using a special type of artificial neural networks called autoasso-

ciators. An autoassociator is a brain-like distributed network that learns from the sam-

ples in a category to reproduce each sample at the output by a mapping ([Haykin, 1999]

p. 66)

x̂i = F (xi) (4.1)

where xi is the ith sample (viewed as a vector herein) in a given sample set xi, i ∈ [1, N ]

with size N .

The reproduction may seem pointless, whereas through learning the autoassociation

the network may find the commonalities in the samples and thus grasp the underly-

ing concept ([McLeod et al., 1998] p.72). For instance, Kohonen has demonstrated in

an early work that an autoassociator can be used to store and retrieve face images

[Kohonen, 1980]. Daunicht has also demonstrated that autoassociators are useful for

modeling neuromechanics [Daunicht, 1991].

Autoassociators are generally used as one-class learning machines. In other words,

each network corresponds to a particular category, and during training it receives only

the samples within the category. An important consequence is that the network will

learn to accurately reproduce positive samples (samples in the corresponding category),

producing a reproduction error surface that reflects the distribution of the samples:

Er(~x) = ||F (x) − x|| (4.2)

where Er denotes the error of reproduction through the autoassociation function F for

a given pattern x.

Thus, autoassociators provide an alternative approach to concept learning. In partic-

ular, the higher the reproduction quality for an input pattern, the more likely it belongs
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to the category for which the autoassociator is constructed. That provides a basis for

various autoassociator-based classifiers as below which depend on reproduction error

surfaces to discriminate between classes.

Autoassociators are well suited to address a special binary classification issue called

novelty detection in which novel or abnormal patterns are expensive or difficult to obtain,

thus only a few or even no novel examples are available for learning. An extensive

survey in the area of novelty detection can be found in [Markou and Singh, 2003a], and

Markou and Singh have especially presented in [Markou and Singh, 2003b] an excellent

review on autoassociator-based approaches. Autoassociator-based approaches rely on

the fact that, since an autoassociator only learns to give high quality reproductions for

normal patterns, the reproduction of a novel pattern will yield a large error which can

be thresholded to signal novelty. This classification methodology has been applied to

various detection problems such as face detection [Féraud et al., 2001], motor failure

detection [Petsche et al., 1996], network security [Yeung and Chow, 2002], and natural

language grammar learning [Hanson and Kegl, 1987].

Autoassociators are also useful for multi-class classification with a competitive scheme.

The system creates a set of networks for each class, and then a probe pattern is repro-

duced by each network in testing phase. The respective reproduction error provides

the basis for competition among the networks. The particular network with the small-

est value of reproduction error is declared winner of the competition. This classifi-

cation methodology has been successfully demonstrated in various applications, such

as handwritten character recognition ([Schwenk and Milgram, 1995, Zhang, 2001]) and

face recognition [Zhang et al., 2004a].

In the field of autoassociative networks, linear autoassociators such as correlation

associative memories have been extensively studied. Kohonen has pointed out that us-

ing a linear autoassociator to store and recall patterns is equivalent to computing a

principal component analysis of the cross-product matrix of the patterns and recon-

structing them as a weighted sum of eigenvectors [Kohonen, 1980]. It’s the same case

with multi-layer linear autoassociative networks, according to Baldi and Hornik’s the-

oretical study in [Baldi and Hornik, 1989]. As the consequence, linear autoassociators



Chapter 4. Kernel Autoassociators for Concept Learning and Recognition 65

have serious limitations in exploring high order dependency among data. Naturally,

nonlinear autoassociators are favorable.

Existing nonlinear autoassociator models are generally based on a special type of

back-propagation networks [Rumerlhart et al., 1986] called autoassociative multilayer

perceptrons. Such a network includes nonlinear hidden units between the input and

the output units. The input-to-hidden layer connections perform the encoding with the

hidden units building for input patterns internal representations, while the hidden-to-

output layer connections do the decoding. That’s why this type of networks are often

referred to in the literature as autoencoders.

Autoencoders with one hidden layer have demonstrated their capability for learn-

ing low-dimensional nonlinear features [Hanson and Gluck, 2000]. However, it has been

claimed that in some image processing cases [Cottrell et al., 1987, Valentin et al., 1994,

Hertz et al., 1991] they are comparable to linear PCA. An existing method to over-

come this problem is by having multiple hidden layers[Kramer, 1991]. The conse-

quent architecture called nonlinear principal component analysis (NLPCA) often con-

sists of three hidden layers, and its capability has been demonstrated in various domains

[DeMers and Cottrel, 1993, Usui et al., 1991].

According to Moghaddam’s study on face recognition [Moghaddam, 1999], however,

NLPCA can be considerably outperformed by other methods including independent

component analysis (ICA) [Comon, 1994a] and even the linear method of principal

component analysis. The author suggests that the NLPCA’s poor performance can

be attributed to the general difficulty of computing nonlinear manifolds and the com-

plexity of cost functions riddled with local minima. Furthermore, Malthouse has also

pointed out certain limitations of autoencoders [Malthouse, 1998]. For example, when

the network’s solution is used to extrapolate, or when there are training values close

to ambiguity points on principal curves, the encoding results by the network will be

incorrect.

The goal of this chapter is to propose an alternative, more effective approach to mod-

eling nonlinear autoassociations. To this end, we emphasize a special type of nonlinear

method called kernel methods which have been established as a context for solving a
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variety of nonlinear problems [Scholkopf and Smola, 2002]. In brief, kernel methods op-

erate a special class of functions called reproducing kernels [Saitoh, 1988] k(x1,x2) in the

input pattern space (RN ), which amounts to casting the data into a high-dimensional

kernel feature space (H) by a possibly implicit map Φ, and taking the dot product there:

k(x1,x2) =< Φ(x1), Φ(x2) > (4.3)

By virtue of this property, many linear algorithms have been extended to the kernel

feature space, with the outcomes being nonlinear in the input space. Well-known

examples include support vector machines (SVMs) [Vapnik, 1995], kernel Fisher dis-

criminant (KFD)[Baudat and Anouar, 2000] and kernel principal component analysis

(KPCA) [Scholkopf et al., 1998].

Φ( )

F(A)( )

F(B)( )

Class A Class B

input Space

kernel feature Space

A

Bb

b

Figure 4.1: Illustration of kernel autoassocition.

Input patterns are projected through Φ(·) to a kernel feature space H. Then
each kernel autoassociator learns to reconstruct a particular class of patterns
from their kernel features. Here Fb (or Fback hereafter) denotes a reverse
mapping function from the feature space to the original space.

The chapter provides a new perspective of kernel methods by using them to address

the nonlinear autoassociation issue. In particular, we propose a kernel autoassociator

model which associates the input and the output by mapping through the kernel feature

space. Fig. 4.1 gives an illustration, where the autoassociation is accomplished through

two phases: first, an input pattern x is cast into a kernel feature space by Φ(x): x →

Φ(x), and it is then subsequently mapped backwards to the input space via Fback:
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Φ(x) → x̂, where Fback is class-dependent (F
(A)
back for class A and F

(B)
back for class B).

The subscript b denotes that the function is for reverse mapping. Without otherwise

specified, we will omit the class label m in describing reverse mapping functions in

general.

Hence, the kernel autoassociation involves two important issues on the kernel map-

ping (Φ) and the reverse mapping (Fback) respectively. As mentioned earlier, autoen-

coders involve two comparable issues regarding the setup of nonlinear representations

and the pattern reconstruction from the representations. Unlike autoencoders, kernel

autoassociators put emphasis not on building nonlinear representations because choos-

ing a reproducing kernel will automatically establish an associated kernel feature space.

Instead, since the setup of reproducing kernel and kernel feature space has already been

elegantly studied in the literature, we would like to pay particular attention to the

reverse mapping.

Recall the two phases of kernel autoassociation as depicted in Figure 4.1. It can

be seen that the first phase of kernel autoassociation through the kernel mapping Φ(x)

is just a straightforward process without learning the particular concept from samples.

Thus, the learning task rests on the modeling of the reverse mapping Fback, which should

reflect the characteristics of the category.

It is worthwhile to mention that in a relevant study [Scholkopf et al., 1999], Schölkopf

has proposed an algorithm for the reverse mapping Fback. However, it is not suited to

model autoassociators due to two reasons: first, it does not involve the learning of

class-specific reverse mapping; second, it is only applicable to Gaussian kernels.

This chapter addresses the above problem by proposing two reverse mapping meth-

ods. The first method uses linear functions in the kernel feature space, while the second

one uses multivariate polynomial functions. The two methods are both applicable to

arbitrary kernel types, and more importantly, they allow learning particular concepts

of classes. Besides, a regularization method is proposed to improve the generalization

performance of the kernel autoassociators with polynomial reverse mapping functions.

We apply kernel autoassociators to novelty detection and multi-class classification

problems. Two detection schemes are developed for novelty detection with or without
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novel examples, and they are tested on Promoter detection and Sonar Target recogni-

tion. The chapter proceeds to apply kernel autoassociators to multi-class classification

problems in the domains of wine recognition, glass recognition, handwritten digit recog-

nition and face recognition. The experimental results show that kernel autoassociators

provide better or comparable performance for concept learning and recognition in vari-

ous domains than conventional autoassociators and other existing recognition systems.

In summary, the chapter presents an alternative approach to nonlinear autoassocia-

tion. By making use of a kernel feature space, the approach resorts to relatively simpler

functions (linear or polynomial) for learning, in contrast to conventional autoassocia-

tion machines that use a complex class of functions – such as a collection of sigmoid

functions in multilayer perceptrons. The approach appears to be more accessible and

easier to implement, and it is promising for a variety of novelty detection and multi-class

classification applications.

The rest of the chapter is organized as follows. Section II introduces kernel au-

toassociator and elaborates two models for the reverse mapping. Section III presents

a regularization method to improve the generalization performance of kernel autoasso-

ciators with polynomial reverse mapping functions. The proposed model is evaluated

with simulations in Section IV, while Section V applied kernel autoassociators to novelty

detection. Experiments on multi-class recognition are illustrated in Section VI, followed

by the discussions and the conclusion in Section VII.

4.2 The Kernel Autoassociator Model

Kernel autoassociators produce pattern reproduction through Reproducing Kernel Hilbert

Spaces (RKHS), which provide a unified context for solving a variety of statistical mod-

eling and function estimation problems. Here, we review some basic concepts, the first

one of which is about the positive definite function.

Let T be an index set, e.g Euclidean space EN . A function k(x, t), (x, t) ∈ T ⊗ T

is said to be a positive definite function on T ⊗ T if, for every number n, every set

t1, . . . , tn, and every a = [a1, . . . , an]T ∈ RN we have

n
∑

i,j=1

aiajk(ti, tj) ≥ 0 (4.4)



Chapter 4. Kernel Autoassociators for Concept Learning and Recognition 69

Let k(·, ·) be a positive definite function on T ⊗ T , and kt(·) = k(t, ·) a functional

with respect to t. When t is fixed, kt will be a determined function. According to

the Moore-Aronszajn Theorem [Aronszajn, 1950], there exists, corresponding to k(·, ·),

a unique collection of real valued functions on T , called a RKHS Hk:

kt ∈ Hk for each t ∈ T (4.5)

L
∑

l=1

alktl
∈ Hk for any finite L and {al} (4.6)

The inner product in H is defined by

< kx, kt >= k(x, t) (4.7)

Let an arbitrary function in Hk be expressed in form of Eq. 4.6. Then we have

< kt, f >=< kt,
L

∑

l=1

alktl
>=

L
∑

l=1

al < kt, ktl
>=

L
∑

l=1

alk(tl, t) = f(t) (4.8)

That is why k(·, ·) is called the reproducing kernel for Hk.

Hence, by choosing a reproducing kernel function k one can cast a pattern x into a

RKHS Hk: k(x, ·), and Hk is called a kernel feature space with respect to k.

The principle of kernel autoassociators, as mentioned earlier, is to perform autoas-

sociation mapping via the kernel feature space, i.e. reconstructing patterns from their

counterparts in Hk. Hereafter a reconstruction (the reverse mapping) function is denoted

by

x̂ = F
(m)
back(Φ(x)) , for x ∈ class m (4.9)

where Φ(x) = k(x, ·) represents the feature in functional form in Hk. As we have men-

tioned in Introduction, the subscript b denotes that the function is for reverse mapping.

Note that without otherwise specified, we omit the class label m in describing a reverse

mapping function hereafter.

A positive definite function k(., .) is associated with a unique RKHS, and thus can

be used as a kernel function for kernel methods [Scholkopf and Smola, 2002]. In fact,

the kernel autoassociator model does not confine the selection of kernel function k, while

in the present chapter we tentatively examine two of the most popular kernel functions,
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namely, Gaussian function and the polynomial function.

Gaussian kernel: k(x1,x2) = exp(−||x1 − x2||2
2σ2

) (4.10)

Polynomial kernel: k(x1,x2) = (xT
1 x2 + 1)p (4.11)

where p denotes the power of the polynomial, σ the bandwidth of the Gaussian kernel.

A kernel autoassociator learns the concept of a category in a very high dimensional

feature space Hk, in contrast to conventional methods that learn in the input space or

a low dimensional feature space. This methodology may raise doubts about whether it

is good to resort to a higher dimensional feature space for learning, since the curse of

dimensionality principle asserts that the difficulty of learning may increase drastically

with the dimensionality.

The doubts can be resolved by the statistical learning theory which states: not

the dimensionality but the complexity of the function class matters [Vapnik, 1998], and

learning can be simpler if one uses a class of functions of low complexity. Another under-

lying justification is in Cover’s theorem [Cover, 1965] on the separability of patterns. It

states that a complex classification problem cast in a high dimensional space nonlinearly

is more likely to be linearly separable than in a low dimensional space, provided two con-

ditions are satisfied. First, the transformation is nonlinear. Second, the dimensionality

of the feature space is high enough. A good example is a support vector machine that

solves classification problems with linear decision rules in a high dimensional feature

space instead of using nonlinear, complex decision rules in the input space.

It can be seen that our kernel feature mapping x → Φ(x) satisfies the above two

conditions. As already shown in Figure 4.1, the kernel autoassociator model casts input

patterns into a kernel feature space, and learns the class-specific dependencies between

the feature space and the input space. The aforementioned theory suggests that we

may use a simple class of functions such as linear functions or polynomials in the kernel

feature space for concept learning.

4.2.1 Linear Functions for Fback

Let Fback be a linear mapping function from Hk to the input space EN . The com-

plete autoassociator is still nonlinear even though Fback is linear because of the intrinsic
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nonlinearity of the feature mapping Φ(·). When the patterns to be reproduced are mul-

tidimensional, Fback will be composed of a set of functions {fbn
}, each corresponding

to an element of the output space: Fback = [fb1 , . . . fbN
]T . Consider an element func-

tion fbn
. We will omit the element-label n hereafter without otherwise specified. The

function in linear form is given by

x̂ = fback(Φ(x)) =< βφ, Φ(x) > (4.12)

Here x̂ denotes an element of the output vector x̂, and βφ is a vector in the feature

space. Suppose the vector βφ can be spanned by the images of M training samples

[Scholkopf et al., 1999]

βφ =
M
∑

i=1

biΦ(xi) (4.13)

we can rewrite the linear function fback as

x̂ =<
M
∑

i=1

biΦ(xi), Φ(x) >=
M
∑

i=1

bik(xi,x) = bTk (4.14)

where b = [b1, . . . , bM ]T is the vector of expansion coefficients, and k represents the

vector of kernel products k = [k(x1,x), . . . , k(xM ,x)]T . Then the complete output

vector x̂ is given by

x̂ = Bk (4.15)

where B = [b1, . . . ,bN ] denotes the collection of linear projections for each output

element. Interestingly, it is the same as the expression of a kernel associative memory

(KAM) [Zhang et al., 2004a], which however is derived in a different way as an extension

of correlation associative memories. This finding suggests that KAMs can be considered

as a special form of kernel autoassociators.

Given a set of samples, say, (x1,x2, . . . ,xM ) for training, one can first compute the

kernel product vectors {k1,k2, . . . ,kM}. The desired output of the network can then be

expressed by

(x1,x2, . . . ,xM ) = B(k1,k2, . . . ,kM ) or X = BK (4.16)

Here X is the matrix with each column an example pattern, and K represents the matrix

with each column a corresponding kernel product vector.
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One way to learn the projection matrix B is by finding a matrix that minimizes the

empirical square error
∑

i ||xi − Bki||2. A method to the minimization is given by

B = XK+ (4.17)

where K+ is the pseudo-inverse of the kernel product matrix K: K+ = (KT K)−1KT .

4.2.2 Polynomials for Fback

Let Fback consist of more complex functions, namely, 2nd order multivariate polynomials

x̂ = fback(Φ(x)) = ΦT (x)WφΦ(x) + βT
φ Φ(x) + cφ (4.18)

where Wφ, βπ and cφ are the polynomial coefficients. This formulation takes the feature

Φ(x) as a column vector (i.e. βT
φ Φ(x) =< βφ, Φ(x) >), and allows exploring up to 2nd

order nonlinearity in the reverse mapping fback.

The direct calculation of Eq. (4.18) is not feasible because generally the kernel feature

vector Φ is given in an implicit or extremely high dimensional form. Thus, we need to

resort to approximation techniques to solve the problem.

Suppose that Φ(x) can be approximated by a low dimensional representation:

Φ(x) =
Na
∑

i=1

αivi = (v1, · · · ,vNa
)(α1, · · · , αNa

)T = V α (4.19)

Here V is a matrix with each column a basis vector {vi} of the Na-dimensional subspace,

and α denotes the projections of Φ onto V . We then have a new expression of the second

order polynomial Eq. (4.18), given by

x̂ = αT Wα + βT α + c (4.20)

where c = cφ, W = V T WφV and β = V βφ. Clearly, it turns out to be a polynomial

function with respect to the coefficient vector α.

Polynomials on Kernel Principal Components

Kernel Principal Component Analysis

A kernel subspace for the above representation can be set up by the KPCA technique

[Scholkopf et al., 1998], which essentially performs a linear PCA in the kernel feature
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space.

Φ(x) = Φ̄ + (Φ(x) − Φ̄) = Φ̄ +
Na
∑

i

αivi (4.21)

where Φ̄ is the average of all Φ(xi): Φ̄ = 1
M

∑M
i=1 Φ(xi) over M training samples. The

set {vi} consists of the orthogonal bases of the principal subspace, and vi⊥vj . That

allows one to calculate the expansion coefficients αi using direct projection

αi =< (Φ(x) − Φ̄),vi > (4.22)

Now consider the calculation of vi and αi. Given a collection of training feature

vectors Φ(xj), the corresponding principal components must lie in the subspace spanned

by Φ(xj).

vi =
M
∑

j=1

γij(Φ(xj) − Φ̄) (4.23)

where the coefficient vector γi := (γi1, . . . , γiM )T is a vector of expansion coefficients .

The coefficients are determined with an eigenvector problem [Scholkopf et al., 1998]

Mλγ = K̃γ (4.24)

for nonzero eigenvalues λ. Here K̃ij :=< (Φ(xi) − Φ̄), (Φ(xj) − Φ̄) >. It follows that

αi =
M
∑

j=1

γij < (Φ(x) − Φ̄), (Φ(xj) − Φ̄) > (4.25)

=
M
∑

j=1

γij

[

k(x,xj) −
1

M

M
∑

n=1

(k(x,xn) − k(xj ,xn)) +
1

M2

M
∑

n1

M
∑

n2

k(xn1,xn2)

]

Applications to polynomials for Fback

It can be seen that, due to the presence of Φ̄, the expression of α in Eq. 4.21 is not

compatible with the original polynomial formulations (Eq. 4.19 and Eq. 4.20). Thus, we

need to rewrite the polynomial function by

x̂ = fback(Φ(x)) = (ΦT (x) − Φ̄)Wφ(ΦT (x) − Φ̄) + βT
φ (ΦT (x) − Φ̄) + cφ (4.26)

This formulation will lead to a polynomial on the subspace feature vector α, similar to

Eq. (4.20). But the vector α here is given by Eq. (4.22) instead of Eq. (4.19).



Chapter 4. Kernel Autoassociators for Concept Learning and Recognition 74

Obviously, training an autoassociator amounts to estimating the parameters W ,β

and c from a given set of samples. Although the function Eq. (4.20) is nonlinear in the

variable α, it can be favorably expressed as a linear function with respect to {W, β, c}

x̂ =
Na
∑

i=1

Na
∑

j=1

αiαjwij +
Na
∑

i=1

αiβi + c (4.27)

Hence, the learning problem can be conveniently solved with linear algebra.

In the following, we show that there exists a polynomial function on kernel product

k equivalent to that on α. In other words, one can avoid computing KPCA in running

autoassociators, allowing fast implementation.

Let’s first study the calculation of α in Eq. (4.25). A few terms there depend only

on the training examples {xi} while being irrelevant to the input pattern x. They can

be rewritten as

ui =
M
∑

n=1

k(xi,xn) +
1

M2

M
∑

n1=1

M
∑

n2=1

k(xn1,xn2) (4.28)

It follows that

αi = γT
i [k + u] − 1

M
(γT

i 1M )(kT 1M ) (4.29)

where 1M is a M -unit long vector of all 1’s. Denoting Γ = (γ1, γ2, . . .), the whole vector

α reads

α = ΓT [k + u] − 1

M
(ΓT 1M1T

M )k = ΓT [k + u] − (ΓT E)k (4.30)

where E is an M × M matrix consisting of all 1’s.

Substituting the expression for α in Eq. (4.20), the equation becomes

x̂ = fback(Φ(x)) = kT Wkk + βT
k k + ck (4.31)

which is a multivariate polynomial on the kernel product vector k. Details of Wk, βk and

ck are given in Table 4.1, which reveals the relationship between a polynomial function

on α with its equivalence on the kernel product vector k. Thus, running autoassociators

will use pre-computed Wk, βk and ck without computing kernel principal analysis.

4.3 Regularization of Kernel Polynomials

Learning machines may face the so-called ”over-fitting” problem in which the machines

specialize well to training samples but generalize poorly to new patterns. To solve
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Table 4.1: The polynomial in KPCA subspace versus that on kernel products.
αT Wα + βT α + c kWkk + βkk + ck

W Wk = (ΓT (I − E))T WΓT (I − E)

β βk = 2(ΓT (I − E))T WΓTu + (ΓT (I − E)T β

c ck = (ΓTu)T WΓTu + ΓT β + c

Note: I denotes the identity matrix.

the problem and enhance the generalization performance, a common approach is by

regularization which aims to stabilize the solution by means of some auxiliary non-

negative functional that embeds prior information about the solution [Morozov, 1984].

The prior information usually involves an assumption that the input-output mapping

function is smooth, in the sense that similar inputs correspond to similar outputs. Since

autoassociator tries to produce the same pattern at output as input, this assumption is

also justifiable for our kernel networks.

Now consider the regularization for kernel autoassociators with polynomial backward

mapping fback. We define the roughness of a kernel polynomial by

Rr(fback) =

∫

||Dfback||2dα =

∫
∥

∥

∥

∥

∂fback(α)

∂α

∥

∥

∥

∥

2

dα (4.32)

where α is the kernel features by KPCA (see Eq. (4.25)). And D is a linear differential

operator. For simplicity, all the feature vectors α are supposed to be normalized such

that 0 ≤ α ≤ 1. That leads to an efficient way to compute the roughness as below.

4.3.1 Roughness of Polynomial Functions

Let’s consider the polynomial function fback in Equation 4.20. Its first order differential

regulator reads

Dfback =

∥

∥

∥

∥

∂fback(α)

∂α

∥

∥

∥

∥

2

(4.33)

= (β + 2Wα)T (β + 2Wα)

= βT β + 4βT Wα + 4αT W T Wα

= s1 + s2 + s3

where s1,...,3 represent accordingly the three terms above. Given the kernel feature

vector α whose elements range in [0,1] (after normalization), the integral of the three
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components of Dfback, i.e. s1, s2 and s3 would be

∫

s1dα =

∫

βT βdα = βT β (4.34)
∫

s2dα = 4

∫

(βTw(1)α1 + βTw(2)α2 + · · ·)dα (4.35)

= 2(βTw(1) + βTw(2) + · · ·) = 2
Na
∑

i=1

βTw(i)

∫

s3dα =

∫

4αT (W T W )dα (4.36)

= 4

∫

(w(1)Tw(1)α1α1 + w(1)Tw(2)α1α2 + · · ·)dα1α2 . . . αNa

= (

∫

p11dα3
1 +

∫

p12dα2
1α

2
2 + · · ·) +

1

3
(

∫

p11dα3
1 +

∫

p22dα3
2 + · · ·)]

=
Na
∑

i=1

Na
∑

j=1

pij +
1

3

Na
∑

i=1

pii

where w(i) denotes the ith column vector in the matrix W , and pij represents w(i)Tw(j).

Summing up the above equations gives rise to the expression of the roughness measure:

Rr(fback) = βT β + 2
Na
∑

i=1

βTw(i) +
Na
∑

i=1

Na
∑

j=1

w(i)Tw(j) +
1

3

Na
∑

i=1

w(i)Tw(i) (4.37)

where w(i) is the ith column vector of the matrix W .

4.3.2 Regularization Algorithm

During training, we will consider not only empirical reconstruction errors but also the

roughness of the network. Thus, the objective function is defined by

G(fback) =
M
∑

i=1

[xi − fback(xi)]
2 + λRr(fback) (4.38)

where λ determines the trade-off between empirical error and the roughness.

Let’s first decompose the objective function into two components respectively for the

empirical reconstruction error et(fback) and the roughness measure Rr(fback).

et(fback) =
M
∑

i=1

(xi − fback(α
(i)))2 (4.39)

es(fback) =

∫

||Dfback||2dα (4.40)

The derivatives of et would be

∂et(fback)

∂c
= 2

M
∑

i=1

(xi − fback(α
(i)))

∂(xi − fback(α
(i)))

∂c
= −2

M
∑

i=1

(xi − fback(α
(i)))(4.41)
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∂et(fback)

∂β
= 2

M
∑

i=1

(xi − fback(α
(i)))

∂(xi − (α(i)T Wα(i) + βT α(i) + c))

∂β
(4.42)

= −2
M
∑

i=1

(xi − fback(α
(i)))α(i)

∂et(fback)

∂wjk
= 2

M
∑

i=1

(xi − fback(α
(i)))

∂(xi − (α(i)T Wα(i) + βT α(i) + c))

∂wjk
(4.43)

= −2
M
∑

i=1

(xi − fback(α
(i)))

∂(
∑ ∑M

m,n=1 wmnα
(i)
m α

(i)
n )

∂wjk

= −2
M
∑

i=1

(xi − fback(α
(i)))α

(i)
j α

(i)
k

The derivatives of Rr would be

∂Rr(fback)

∂c
= 0 (4.44)

∂Rr(fback)

∂β
=

∂(βT β + 2
∑Na

i=1 βTw(i) + · · ·)
∂β

(4.45)

= 2β + 2
Na
∑

i=1

w(i)

∂Rr(fback)

∂wjk
=

∂(2
∑Na

i=1 βTw(i) +
∑ ∑Na

m,n=1 w(m)Tw(n) + 1
3

∑Na

m=1 w(m)Tw(m))

∂wij

= 2βj +
∂(

∑ ∑Na

m,n=1 wjmwjn + 1
3wjkwjk)

∂wjk

= 2βj + 2
Na
∑

m=1

wjm +
2

3
wjk (4.46)

Hence, the above derivatives of et and es directly lead to the derivatives of G = et+es

as below Eq. (4.38) with respect to W , β and c, and we have

∂G(fback)

∂c
= −2

M
∑

i=1

(xi − fback(xi)) (4.47)

∂G(fback)

∂β
= [−2

M
∑

i=1

(xi − fback(xi))α
(i)] + λ[2β + 2

Na
∑

i=1

w(i)] (4.48)

∂G(fback)

∂wjk
= [−2

M
∑

i=1

(xi − fback(xi))α
(i)
j α

(i)
k ] + λ[2βj + 2

Na
∑

m=1

wjm +
2

3
wjk](4.49)

Training a kernel autoassociator means minimizing the objective function Eq. 4.38.

Because the function is continuous and differentiable, the minimization can be obtained

at ∂G(fback)
∂c

= 0, ∂G(fback)
∂β

= 0 and ∂G(fback)
∂wjk

= 0. To solve the minimization problem,

we tentatively use Matlab nonlinear optimization toolbox in the implementation. For
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the minimization, the second order partial derivatives of G can be useful and easily

computed by

∂2G

∂c2
= 2M (4.50)

∂2G

∂cβ
= 2

M
∑

i=1

α(i) (4.51)

∂2G

∂cwjk
= 2

M
∑

i=1

α
(i)
j α

(i)
k (4.52)

∂2G

∂βjc
= 2

M
∑

i=1

α
(i)
j (4.53)

∂2G

∂β2
= 2

[

M
∑

i=1

α(i)α(i)T

]

+ 2λI (4.54)

∂2G

∂βmwjk
= 2 + 2

M
∑

i=1

α
(i)
j α

(i)
k α(i)

m (4.55)

∂2G

∂wjkc
= 2

M
∑

i=1

α
(i)
j α

(i)
k (4.56)

∂2G

∂wjkβ
= 2

[

M
∑

i=1

α
(i)
j α

(i)
k α(i)

]

+ 2λd(j) (4.57)

∂2G

∂wjkwln
= 2

[

M
∑

i=1

α
(i)
l α(i)

n α
(i)
j α

(i)
k

]

+ 2λ

[

1

3
δ(j − l, k − n) + δ(j − l, 0)

]

(4.58)

where d(j) is a Na-element vector of all 0 except the j-th element being 1. And δ(x, y)

is the Dirac function whose value is zero across the entire space except δ(0, 0) = 1.

4.3.3 Performance of Regularized Autoassociators

To examine the performance of the regularization networks, we use two problems (the

Promoter recognition and the Sonar Target recognition) to be introduced later as test

beds. In each problem, 3 experiments using 5-fold cross-validation techniques were con-

ducted and results were averaged. A range of values for λ were tested to examine its

effect on both the empirical reconstruction error and the roughness of the backward

mapping function. The reconstruction error, the roughness and the recognition per-

formance of the regularized networks were obtained and are plotted in Figure 4.2 and

Figure 4.3 as functions with respect to λ.

The results indicate that our regularization method effectively controlled the rough-

ness of the kernel networks. Although the smoother networks yielded larger error for
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Figure 4.2: Regularized networks in the Promoter recognition problem.

Panel (a) shows the mean reconstruction errors for samples respectively from
the training set and the test set, and the errors are drawn as the functions
over the regularization parameter λ which controls the smoothness of the
regularized networks. Panel (b) shows the roughness measure of the regu-
larized networks and their performances in terms of recognition/detection
error rates.

the training set, they produced better results for the test set and thus demonstrated

better generalization performance. Furthermore, with λ in an appropriate range, the

classification performance of kernel autoassociators can also be enhanced as shown in

Figure 4.2 and Figure 4.3. In practice, the appropriate value for λ could be estimated

empirically by naive searching with cross-validations on the training set. A possible neg-

ative consequence is much more computational complexities. It will be an interesting

topic to automatically determine λ from the training set.

4.4 Nonlinear Learning with Autoassociators

This section aims to evaluate the capability of the proposed models for nonlinear con-

cept learning. We generated an artificial dataset which consists of a few samples on

a 2D spiral, as plotted in the upper left panel of Fig. 4.4. We constructed a kernel

autoassociator with linear Fback and another one with polynomial Fback (hereafter re-

ferred to as KAA-1, KAA-2 respectively). Besides, an autoencoder with sigmoid transfer

function was applied for comparison. The respective reproduction error surfaces are dis-

played as images in Fig. 4.4, where the error value is denoted by gray level (i.e. bright
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Figure 4.3: Regularized networks in the Sonar Target Recognition domain.

Please refer to Figure 4.2 for the explanation.

means small). Particularly for the autoencoder we tested a various number (4 to 40) of

hidden neurons, but obtained similar results. The configuration (including the kernel

bandwidth and the number of kernel principal components) of kernel autoassociators is

automatically set (see Section 4.5.4).

The experimental results show that, in spite of the complex structure of spiral pat-

terns, the kernel autoassociators were able to produce reconstruction error surfaces that

correctly reflected the data structure. On the other hand, the autoencoder produced a

unimodal-Gaussian-alike error surface, akin to linear machines.

We also conducted a comparison between kernel density estimate [Scott, 1992] (a

non-parametric technique for density estimation) and kernel autoassociators, by using

a set of examples generated from a 3-mode 2D random distribution. The samples and

the experimental results are plotted in Figure 4.5.

The results show that every method successfully captured the three modes by the

estimated density surface or reconstruction error surface. In particular, with the same

kernel bandwidth (σ), kernel autoassociators appear to produce smoother surfaces than

kernel density estimate. Thus, they tend to have better generalization capability while

maintaining good specialization capability.



Chapter 4. Kernel Autoassociators for Concept Learning and Recognition 81

Samples MLP

KAA-1 KAA-2

Figure 4.4: Concept learning on spiral pattern.

Results are shown as reconstruction error surfaces. KAA-1 or KAA-2 rep-
resents kernel autoassociator with linear or polynomial reconstruction func-
tions. Note the results with KAA-1 and KAA-2 were thresholded because
some reconstruction errors (outsides the region of interest) can be extremely
large.

4.5 Applications to Novelty Detection

As mentioned earlier, novelty detection is the identification of novel patterns of which

the learning system is given few samples in the training stage. This problem happens

when novel or abnormal examples are expensive or difficult to obtain. Here we consider

two specific problems, i.e. promoter detection and sonar target recognition.

The Promoter problem takes as input segments of DNA, some subset of which

represent promoters. A promoter is a sequence that signals to the chemical processes

acting on the DNA where a gene begins. The goal of the problem is to train a classifier

that is able to detect promoters – the novel patterns. The Sonar Target recognition

problem takes as input the signals returned by a sonar system in the cases where mines

and rocks were used as targets. We choose mine patterns as novelty.

We acquired both the Promoter database and the sonar target database from UCI

Machine Learning Repository. In particular, the promoter database consists of 106

samples, 53 for promoters while the others for non-promoters. Each sample is a 57-unit
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Figure 4.5: Results of concept learning on multimodal pattern.

The results are shown as probability density surface (by kernel density esti-
mate) or reconstruction error surface (by kernel autoassociators).

Unknow Pattern

Normal Pattern
Gallery

ThresholdAutoassociator error output

Figure 4.6: Novelty Detection Scheme.

An autoassociator learns normal examples; when an unknown pattern is
presented, the reconstruction error by the autoassociator will be compared
with a threshold to signal whether it is a novel pattern (with larger error)
or a normal pattern (with smaller error).

long string composed of four chars {a, c, g, t}, which we convert to {1, 2, 3, 4} in the

experiment. The sonar target database comprises 111 positive and 97 negative patterns

(60-unit long).

The autoassociator detection system relies on the fact that an autoassociator is

designed to learn normal patterns, thus the network would tend to produce relatively

larger reproduction errors for novel patterns. The errors can be thresholded to signal

novelty. Figure 4.6 plots the detection scheme.

The specific threshold (ξ) is crucial for the system performance, and should be chosen

carefully. In respect of the threshold setting, there are two different cases in novelty

detection. In one case, a small number of novel patterns are available for training the

detection system; in the other case, one can obtain merely normal patterns for the

training. For the two cases, we propose and study two different approaches.
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4.5.1 Novelty detection with novel examples

With samples from both novel and normal patterns, novelty detection can be viewed as

a usual binary classification problem. The goal is to find a rule that best separates the

positive and negative classes.

Given an unknown object x, the system will produce a reconstruction error e(x) and

the probability of x to be identified as novelty is given by P (e(x) > ξ). Let the novel

class be ω1 and the normal class be ω0. The probability of misclassification is

Pe = P (e(x) < ξ, ω1) + P (e(x) > ξ, ω0) (4.59)

=

∫

[P (e(x) < ξ)p(x, ω1) + P (e(x) < ξ)p(x, ω0)] d(x)

Here P (e(x) < ξ, ω1)(P (e(x) > ξ, ω0)) is the probability of a novel (normal) pattern

classified as normal (novel). The empirical value of the above error is given by

Pe =
1

Ni

∑

xi∈ω1

P (e(xi) < ξ) +
1

Nj

∑

xj∈ω0

P (e(xj) > ξ) (4.60)

where xi (xj) is a random sample generated from the distribution p(x, ω1)(p(x, ω0)),

and Ni or Nj denotes the number.

For the given samples and an autoassociator, e(xi) is fixed and P (e(xi) < ξ) takes

binary value (0 or 1) that depends on the threshold ξ. Thus, setting the threshold

becomes equivalent to seeking a ξ that minimizes Pe in Eq. 4.60. Since ξ is a one

dimensional variable, it can be easily determined with a simple searching program.

We set up an autoassociator system with the above threshold setting method, and

tested it over the aforementioned two detection problems. Parzen-window novelty de-

tectors (ParzenND) [Yeung and Chow, 2002] – a kernel density estimation technique for

novelty detection, and autoencoders, are compared using the same threshold setting

method.

In the experiment, each method was evaluated using 5-fold cross-validation (see

[Haykin, 1999] p.213): the whole data set was randomly partitioned into 5 subsets, and

at every fold one subset was picked out for testing while the remainder was used for

training. To enhance the accuracy of evaluation, the classification error rates reported

here are averaged over 10 tests.
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Table 4.2 lists the detection error rates (See the table for the explanation of the sym-

bols). It shows that in both domain studies, KAA-2P , KAA-2G and KAA-1G outper-

formed the Parzen-window method and the autoencoder method. The KAA-1P system,

on the other hand, achieved moderate results similar to the Parzen-window method.

Note that all the compared methods were empirically tuned to their best performance

in the experiment.

Table 4.2: Novelty detection accuracy with novel examples

Novelty Detection Approach

KAA-1G KAA-2G KAA-1P KAA-2P Parzen-window Autoencoder

Promoter 20.4 ± 7.4 18.1 ± 9.9 26.1 ± 9.1 19.4 ± 8.9 22.7 ± 8.4 30.3 ± 13.2

Sonar 27.0 ± 5.5 26.2 ± 7.4 33.9 ± 6.1 27.5 ± 6.7 28.5 ± 6.5 32.6 ± 5.3

The superscript P denotes polynomial kernel function, while G denotes
Gaussian kernel function. Numbers after each “±” are standard deviations
of the detection accuracy.
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Figure 4.7: Recognition error rates over the number of novel examples in the two novelty
detection problems.

The number of novel examples used for training ranges from 5 to 40.

In addition, we examined the systems’ sensitivities in the two domains to small

numbers of novel examples. A typical discriminant machine – a MLP classifier – is also

compared. Fig. 4.7 shows the results, which indicate that neither KAA-1 nor KAA-2 is

sensitive to the small number of novel examples, but the performance of MLP classifier

deteriorated along with the decreasing number of novel examples.



Chapter 4. Kernel Autoassociators for Concept Learning and Recognition 85

4.5.2 Novelty detection without novel examples

In the case without novel samples for training, the above method to determine the

novelty detection threshold ξ is not applicable. Instead, we adopt a method from

[Yeung and Chow, 2002] that is designed to achieve a given false detection rate (FDR):

υ = P (e(x) > ξ|x ∈ ω0) (4.61)

Similar to Eq. 4.60, the equation can also be expressed in terms of samples, and υ will

become a function with respect only to ξ. Therefore, for a given FDR, ξ can be easily

determined with a one-dimensional search procedure.

The same threshold setting method is used to compare kernel autoassociators with

autoencoders, SOM-ND [Ypma and Duin, 1998] and a Parzen-window novelty detector

([Yeung and Chow, 2002]). The Parzen-window detector is a non-parametric density es-

timation technique for novelty detection, while SOM-ND is a novelty detection technique

based on self-organizing maps.

We conducted experiments with five-fold cross-validation, which is the same as in

the previous subsection. The results are summarized in Table 4.3. Here υ = 0.1.

Table 4.3: Novelty detection accuracy without novel examples

KAA-1G KAA-2G KAA-1P KAA-2P

Promoter 24.2 ± 7.5 20.7 ± 8.6 29.0 ± 11.0 27.9 ± 5.5

Sonar 31.6 ± 10.7 28.2 ± 6.6 34.9 ± 7.6 29.3 ± 7.9

Parzen-window Autoencoder SOM-ND

Promoter 23.9 ± 9.1 27.7 ± 10.2 26.5 ± 9.4
Sonar 29.5 ± 5.8 37.0 ± 8.2 32.5 ± 7.03

The table shows that KAA-2G achieved the best detection results. Other techniques

are comparable in terms of detection accuracy.

4.5.3 Autoassociator-based novelty detection against noise

To examine the robustness of the proposed method, we conduct the experiment where

the Gaussian noise is added to the test data in the Promoter database, independently
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distributed over each dimension with standard deviation from 0 to 1.5. Figure 4.5.3

shows the detection results.
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Figure 4.8: Kernel autoassociators against noise for the Promoter detection.

Here shows the resulting detection accuracies (without novel examples) as
functions over the level (standard deviation) of additive zero-mean Gaussian
noise.

It needs to be mentioned that the standard deviation of the Promoter patterns is

about 1.1 on each dimension, while the detection accuracy remains larger than 70%

under the noise up to σ = 0.6. The results demonstrate that the kernel machines are

not very sensitive to additive noise.

4.5.4 Discussions on Novelty Detection

This section has studied the autoassociator-based novelty detection system in various

situations. The results indicate that either with or without novel examples, kernel

autoassociators (especially the KAA-2G) achieved slightly better results than Parzen-

window detectors, and significantly outperformed autoencoders or SOM-ND detectors.

Furthermore, the KAA systems demonstrated consistent performance against a varying

number of novel examples, in contrast to the MLP classifier that requires a large number

of novel examples for good performance.

Comparing the autoassociators in the two detection domains, those using Gaussian

kernels seem to outperform others using polynomial kernels. Furthermore, the experi-

mental results also attest to the robustness of Gaussian kernel autoassociators against

additive noise.
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The architectures of kernel autoassociators are determined by only a few parame-

ters. For kernel autoassociators with linear backward mapping fback, the user needs

only to choose between different types of kernels (Gaussian, polynomial, etc.). For ker-

nel autoassociators with polynomial fback, the user may need to choose an additional

parameter - the number (Na) of kernel principal components. But in practice, the num-

ber Na can be automatically selected to account for a high percentage of variance of the

samples (e.g., 90% in the tests). Our empirical study also suggests that the ultimate

performance of kernel autoassociators is not very sensitive to Na.

However, as Markou and Singh put it [Markou and Singh, 2003a], there is no single

best model for novelty detection and the success depends not only on the type of method

used but also statistical properties of data handled. Thus, a specific parameter-setting

method can not be always suitable for different problems. And in some cases we may re-

sort to empirical methods such as cross-validation for parameter setting ([Haykin, 1999],

page 213).

It’s worthwhile to mention that Markou and Singh have summarized important prin-

ciples related to novelty detection [Markou and Singh, 2003a]. The principle of parame-

ter minimization states that a novelty detection method should aim to minimize the

number of parameters that are user set. Kernel autoassociators inherit an advantage of

neural networks for novelty detection in that during network training, a priori informa-

tion is not very critical on data distribution [Markou and Singh, 2004]. Furthermore,

to define a kernel autoassociator the user only needs to select one essential parameter:

the kernel type, since the other parameters such as the number of principal components

can be learned from the training samples. Hence, the proposed model adheres more

closely to this principle than conventional autoencoders which need to define a number

of parameters including the number and the dimension of layers, and the transfer func-

tions. Besides, the principle of independence asserts that the novelty detection method

should show reasonable performance in the context of imbalanced data set, small num-

ber of samples, and noise. Our experiments in Section 5.A and 5.C indicate that the

proposed method with kernel autoassociators offers satisfactory performance in such a

context. In addition, since the training/running of kernel autoassociators is of low com-
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putational complexity, the networks enable online adaptation which is in accordance

with the principle of adaptability and the principle of computational complexity.

4.6 Applications to Multi-Class Classification

As one-class learning machines, kernel autoassociators can be used for multi-class classi-

fication tasks, if each autoassociator is associated with an individual category to learn its

concept. The system would use a competitive classification scheme shown in Figure 4.9

: when a test pattern is presented, it will be reproduced by each autoassociator, the

respective reproduction results will be collected and compared, with the best one indi-

cating the corresponding class. In the subsections to follow we examine this classification

scheme on various recognition problems.

Unknow Pattern

Autoassociator N (Class N)

Autoassociator 2 (Class 2)

Autoassociator 1 (Class 1)

argmin

Error 1

Error 2

Error N

Output

Figure 4.9: Multi-Class Classification Scheme based on Autoassociators.

Each autoassociator is trained with the examples from its associated class.
When an unknown pattern is presented, it will be processed by all the net-
works respectively. The system will collect and compare the reconstruction
errors, and pick out the network with the minimal error.

4.6.1 Wine and Glass Recognition

The Wine Recognition data [Aeberhard et al., 1992] is acquired from UCL Repository

of Machine Learning Databases. The data set contains 3 types of wines, each type

has 59, 71 or 48 instances. The analysis of the wines determines the quantities of 13

constituents.

The Glass Recognition data is also acquired from UCL Repository of Machine Learn-

ing Databases. The data set contains instances of 6 types of glasses. Each type has 70,

17, 76, 13, 9 or 27 instances. The goal is to determine the glass type from 9 attributes.

We used a 2-fold cross-validation technique to test the autoassociator-based classi-
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fication scheme in these two recognition domains. Typical classification machines such

as multilayer perceptrons and support vector machine were tested for comparison. Each

network was tuned to achieve the best performance. The comparative recognition results

are summarized in Table 4.4. Besides, since neural networks are usually sensitive to the

pattern scale, in the experiment we use a pre-processing program to normalize the Wine

and Glass data to the value range [-1, 1]. (In the other experiments the acquired data

were already in normalized form.)

KAA-1 KAA-2 Autoencoder MLP SVM

Wine 95.8 ± 2.7 96.9 ± 1.5 90.5 ± 3.37 92.6 ± 5.5 98.3 ± 1.3

Glass 62.1 ± 4.2 62.6 ± 5.4 59.3 ± 4.5 43.1 ± 6.1 57.8 ± 5.9

Table 4.4: Comparative results of wine and glass classification

The results show that kernel autoassociators are comparable to support vector ma-

chines in terms of recognition accuracy, and clearly outperforms both autoencoders and

multilayer perceptrons.

4.6.2 Handwritten Digit Recognition

Here we consider the handwritten digit recognition problem with the US-Postal Service

(USPS) handwritten digit database that consists of 7291 training images and 2007 test

images (16 × 16 pixels).

To illustrate the classification process with autoassociators, some examples from the

test set are shown in Figure 4.10. The leftmost column displays the probe patterns, to

the right their respective reproductions by the KAA-2 networks corresponding to ’0’ to

’9’. The first three rows in the figure show that three patterns of ’0’/’2’/’3’ get best

reproduction from the correct networks (i.e. the 1st/3rd/4th network). There exists

only a few cases in which the correct network among all networks cannot reproduce the

best reproduction for a new pattern. An example is given in the bottom row where a

pattern of class ’7’ is misclassified as ’9’.

Table 4.5 summarizes the classification results in comparison with the published

scores of other technologies. In addition, a newly proposed kernel Fisher discriminant

method [Juwei et al., 2003] called KDDA, as well as KPCA-NN – a 1-Nearest-Neighbour
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Figure 4.10: Examples of handwritten digit recognition with kernel-autoassociator clas-
sifier on the USPS database.

The leftmost column displays the test patterns, to the right their reconstruc-
tions by each kernel autoassociator, with the best results being singled out
by a frame.

technique with KPCA features (see [Juwei et al., 2003]), has been implemented for com-

parison. The results in the table demonstrate that KAA-1 and KAA-2 could match

LeNet and SVM in terms of performance while significantly outperforming autoencoders

or kernel density baseline (a kernel density estimate).

In the comparison, the tangent distance approach yielded the best result. This can

be explained by the fact that it is the only one here that dedicatedly explores domain

knowledge about the invariance of image patterns. Similarly, there is a variant of SVM

referred to as virtual SVM [Scholkopf, 1997] that, by incorporating prior knowledge

about image invariance, gained considerable improvement and produced a good clas-

sification error rate of 3.0% on the USPS database. Similarity, incorporating domain

knowledge may also yield a promising extension of kernel autoassociators.

Table 4.5: Recognition error rates on USPS.
Method Error Rate

KAA-1 4.38%

KAA-2 4.68%

Autoencoder 7.42%

Kernel Density baseline [Keysers et al., 2000] 5.5%

Nearest Neighbor [Keysers et al., 2000] 5.7%

KDDA 10.0%

KPCA-NN 6.15%

LeNet1[LeCun et al., 1999] 4.2%

SVM[Scholkopf et al., 1995] 4.0%

Tangent Distance[Simard et al., 1998] 2.5%



Chapter 4. Kernel Autoassociators for Concept Learning and Recognition 91

4.7 Summary

In this chapter we have proposed a novel nonlinear autoassociator model. By making

use of kernel feature space, the model resorts to relatively simpler functions (linear and

polynomials) for autoassociation learning, in contrast to conventional nonlinear machines

using a complex class of functions.

The kernel autoassociator model has been applied to novelty detection with or with-

out novel examples. Experimental results show evidence of the robustness of the system

in the context of imbalanced data set, small number of samples, and noise. Further-

more, the model has an intrinsic advantage over conventional nonlinear autoassociators

in terms of fast training and easy tuning, as well as much less user-set parameters.

The multi-class recognition scheme based on autoasociators is a detection-based ap-

proach [Japkowicz et al., 1995]. Thus it has an inherent advantage over discriminant-

based methods in terms of adaptability. Particularly, when a new subject is added to

the system, the detection-based approach needs only to create a new network for the

subject without re-training the other networks. On the other hand, discriminant-based

methods usually need to retrain all the classifiers in the system.

Besides, the simulations and the extensive experiments show that the proposed

method can capture complex nonlinear features and clearly outperform autoencoders.

Compared with other systems, kernel autoassociators offer better or comparable perfor-

mance, though they are generic one-class learning machines. In conclusion, the proposed

method provides an alternative approach to nonlinear autoassociation modeling, and is

promising in various nonlinear concept learning and recognition applications.



Chapter 5

Kernel Autoassociator Model for

View-based Face Recognition

5.1 Introduction

The thesis aims to develop efficient view-based models not only for capturing the move-

ment, but also for identifying the objects of interest despite large variations in the

images. The tracking problem about affine transformation has been addressed in Chap-

ter 2 and 3. We have also presented in Chapter 4 a generic pattern recognition scheme.

It is of importance to extend the scheme to specific recognition issues, especially face

recognition which is recognized as a typical visual recognition problem and has been a

very active research topic in pattern recognition and computer vision communities in

the last decade. It has a wide range of applications such as content-based indexing,

identity authentication, access control and surveillance. Two excellent reviews can be

found in [Chellappa et al., 1995, Zhao et al., 2000]. This chapter focuses on how to in-

corporate domain knowledge about face images into kernel autoassociators to produce

a high-performance face recognition system.

Face recognition generally remains very challenging in terms of 1) large intra-class

variance – complex and large variations in face images from changes in image condition,

facial expression or pose; 2) small inter-class variance – close similarity between many

individual faces; 3) practical limitation in face examples – only one or several examples

per subject for a large population.

Two major issues are critical for addressing the face recognition problem. The first

one is how to create efficient representations for face images; the second one is how to

92
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classify a face using the selected representation and few examples per subject.

Selecting an appropriate image representation is crucial to the success of face recog-

nition. Psychophysical studies suggest that the visual perception tasks such as similar-

ity judgment tend to operate on a low-dimensional representation of the sensory data

[Edelman, 1999]. One natural approach is to resort to low-dimensional geometric rep-

resentations. For example, [Kanada, 1973] proposed to use geometric features based on

the relative positions of eyes, nose and mouth [Kanada, 1973]. The pre-requisite for

the success of this approach is an accurate facial feature detection scheme, which still

remains a very difficult problem.

A widely used alternative methodology is by holistic or local image decomposition

with some special 2D signals (so-called image kernels). A typical example is Eigen-

faces which apply the technique of principal component analysis (PCA) to the pictorial

domain, and represent faces by linear combinations of appropriately selected principal

components [Turk and Pentland, 1991]. But Eigenfaces are only capable of capturing

2nd order pairwise dependency between pixels, though it is widely recognized that much

of the discriminating information is contained in higher order statistics of face images

[Bartlett and Sejnowski, 1997].

Some extensions of Eigenfaces have been proposed for face recognition, e.g. prob-

abilistic principal component analysis (PPCA) [Moghaddam and Pentland, 1997] and

local feature analysis (LFA) [Penev and Atick, 1996]. The PPCA method uses eigen-

space decomposition for probability density estimation on high-dimensional data, and

applies the densities to formulate a maximum-likelihood estimation framework for ob-

ject detection and recognition. The LFA method extracts, from the holistic PCA bases,

local topographic representations with local features. But it has been reported that the

LFA method does not necessarily outperform PCA in terms of recognition performance

[Donato et al., 1999].

Independent Component Analysis (ICA) [Bartlett and Sejnowski, 1997, Comon, 1994b]

can also be viewed as an extension of PCA. It projects a raw image linearly onto some sta-

tistically independent components, accounting for higher order statistics. It has demon-

strated superior performance over PCA for face recognition[Liu and Wechsler, 1999].
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In order to accurately capture the local features in face images, a strict spatial-

frequency analysis is often desirable. Wavelet analysis is particularly useful for this

purpose since it has the unique characteristics of space-frequency localization. In com-

puter vision, the multi-resolution scheme in wavelet analysis has been justified by psycho

visual research as human visual system processes images in a multiple-scale way. Among

various type of wavelet functions, Gabor functions provide the best possible trade off

between spatial resolution and frequency resolution [Gabor, 1946]. There is also a strong

biological relevance of processing images by Gabor wavelets as they have similar shapes

as the receptive fields of simple cells in the primary visual cortex (V1) [Daugman, 1988].

In the last several years, a number of Gabor wavelets based methods have been

proposed for face recognition, such as Gabor-Fisher classifier [Liu and Wechsler, 2002]

and elastic bunch graph (EBG) [Wiskott et al., 1997]. Liu et al. employs traditional

Gabor filtering together with an enhanced Fisher linear discriminant model (EFM) to

effectively reduce the dimension of feature vectors produced by Gabor filtering. On the

other hand, a EBG extracts certain sets of Gabor coefficients called Jets at predefined

positions, which can substantially represent the local spatial and local frequency features

on a face image.

Unlike EBG with manually determined feature positions and Gabor functions, a

recently proposed Gabor wavelet network (GWM) [Krueger, 2001] represents an image

by a set of weighted Gabor wavelets that vary in continuous state space. GWN has

been applied to face recognition [Krueger, 2001], where one GWN is created for each

face example. Given a probe image, the system will encode it with each GWN in

the gallery, and comparing the encoded probe image against examples in the gallery.

Because a GWN was designed to represent a single static image rather than a set of

images, what it captures may be more likely to be transient features in a particular

image than essential and consistent features that identify the subject.

For the second major issue in face recognition, many discrimination techniques have

been proposed, for example, Fisher linear discriminant(FLD) and Neural Networks clas-

sifiers. FLD separates two classes by simultaneously maximizing between-class scatter

and minimizing within-class scatter. A major drawback of FLD in face recognition is
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the critical demand for a large training set for good generalization, which may be very

difficult to meet. Examples of applying neural networks in face recognition include (1)

the convolutional neural network (CNN) [Lawrence et al., 1997], which is a hybrid ap-

proach by combining self-organizing map(SOM) and a convolutional neural network;

and (2) the probabilistic decision-based neural networks [Lin et al., 1997].

Another kind of neural networks that has been actively researched in face recognition

is the associative memory (AM) [Kohonen, 1980]. Essentially, AM-based classification

learns how to do recognition by categorizing positive examples of a subject. There has

been a long history of associative memory research and the continuous interest is due to

a number of attractive features of these networks, such as content addressable memory,

collective computation capabilities etc. Kohonen is the first to illustrate some useful

properties of auto-associative memory with faces as stimuli [Kohonen, 1977].

In this chapter, we study how to extend kernel autoassociator models (introduced

in last chapter) for face recognition. First, we examine the direct application scheme

which uses kernel autoassociators to learn face images. Next, we propose a novel face

representation model called Gabor Wavelet Associative Memory (GWAM) by incorpo-

rating domain knowledge with a subject dependent Gabor wavelet network. The domain

knowledge here used is that an individual face has a certain configuration of local and

global image features such that we can develop a set of special image kernels to repre-

sent them. Finally, we carry out extensive experiments to evaluate a GWAM-based face

recognition system. Three publicly available benchmark face databases, including the

FERET, the ORL and the AR face databases, are used in the experimental study.

The rest of the chapter is organized as follows. Section 2 studies the direct appli-

cations of kernel autoassociators to face recognition. Section 3 starts by proposing a

subject dependent Gabor wavelet network (SDGWN) for face representation, followed

by the presentation of the Gabor wavelet associative memory (GWAM) model. In Sec-

tion 4, we describe the experimental results. A summary is given in Section 5.
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5.2 Direct Application and Performance

In the direct applications of kernel autoassociators to face recognition, the classifica-

tion system essentially inherits the architecture of the multi-class classification scheme

illustrated earlier in Figure 4.9. In other words, the system comprises a collection of au-

toassociators, each one is trained with face examples from its associated subject. When

an unknown face is presented, it will be processed by all the networks respectively. The

system will collect and compare the reconstruction errors, and pick out the one that

produces the minimal error. Thus, no domain knowledge about faces is applied in this

system. The performance of the recognition scheme is studied in the following.

Experiments on UMIST Database

The UMIST database [Graham and Allinson, 1998] consists of 575 gray-scale images for

20 subjects, each covering a wide range of poses from profile to frontal views. Some

UMIST faces are shown in Figure 5.1, where large variations can be clearly observed.

Figure 5.1: Complex patterns present in multiview face recognition (examples from the
UMIST database)

We divide the data into a training set and a test set. The training set consists

of 6 images per person, whilst the remainder images in the database constituting the

test set. In the experiment KPCA-NN (a 1-Nearest-Neighbour technique with KPCA

features) and KAA-2 (kernel autoassociators with polynomial reverse mapping) both use

40 principal components. In addition, two non-kernel techniques including 1-Nearest-

Neighbour (NN) and autoencoders are also compared. We have tuned each system and

picked out their best results in the comparison. Final results in terms of recognition

error rate over σ (the bandwidth of Gaussian kernel k) are plotted in Fig. 5.2.

The results indicate that the kernel autoassociator methods can produce better recog-

nition than the others except KDDA. Note that they outperformed KDDA earlier in the

OCR experiment (see the last chapter). And, the kernel autoassociator approach ap-
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Figure 5.2: Comparative face recognition results on the UMIST database.
Here shown the recognition error rates as functions of the bandwidth σ
of Gaussian kernels used by the kernel machines. Note 1-NN represents 1-
Nearest-Neighbor technique, and it serves as a baseline together with another
non-kernel machine, i.e. an autoencoder.

pears to be overall more robust across various classification domains.

Experiments on the ORL database

The Olivetti-Oracle Research Lab (ORL) database consists of 40 subjects, and each

subject has 10 different facial views representing various expressions, small occlusion

(by glasses), different scale and orientations (Figure 5.3). Thus, the database contains

totally 400 face images. The resolution of the images is 112×92. Note the ORL database

has been used in many previous works such as[Lawrence et al., 1997, Li and Lu, 1999]

(a face recognition scheme that combines the Self-organizing Map with convolutional

neural networks) and [Turk and Pentland, 1991].

From the ORL database, we randomly selected a small number (3 or 5) of faces out of

10 for each subject to set up a GWAM model, and then counted the recognition accuracy

on the remaining faces. Because there are only a few of training examples available,

the deformation variances of the faces are difficult to capture. One efficient approach

for tackling the issue is to augment the training set with some synthetically-generated

face images. In this experiment, we synthesized images by some simple geometrical
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Figure 5.3: Examples from the ORL database. Here shown 4 persons, each with two
face images.

transformations, particularly rotation and scaling. Such an approach has also been

used in some previous face recognition studies, and generally improves performance. In

the present work, we generated 10 synthetic images from each raw training image by

making small, random perturbations to the original image: rotation (up to +5 and -5)

and scaling (by a factor between 95% and 105%). The final recognition results are listed

in Table 5.4.

Table 5.1: Comparative recognition accuracy on ORL database
n Eigenfaces AA-MLP SOM+CN KAA-1 KAA-2

3 81.8 86.5 88.2 89.3 90.4

5 89.5 92.0 96.5 94.5 95.5

The results show that kernel autoassociators outperformed Eigenfaces and AA-MLP

techniques, while achieved comparable performance to SOM+CN.

5.3 Spatial-Frequency Feature Learning and Face Recog-

nition

The last section has introduced kernel autoassociators to directly classifying face images,

without exploiting the special domain knowledge about faces. It is known that domain

knowledge about face images is critical for face processing systems. Hence, in this section

we present a novel autoassociator model to take advantages of both domain knowledge

and the kernel autoassociation model. The domain knowledge here used is that an

individual face has a certain configuration of local and global image features such that

we can develop a set of special image kernels to represent them.



Chapter 5. Kernel Autoassociator Model for View-based Face Recognition 99

5.3.1 Subject Dependent Gabor Wavelet Networks

Wavelet networks were first introduced in [Zhang and Benveniste, 1992] as a combina-

tion of feed-forward neural networks and the continuous wavelet decomposition. The

principle of a wavelet network consists in choosing a set of wavelets as activation func-

tions for the second layer, adaptively according to a specific function f to be represented,

such that an approximation f̂ would be a linear combination of this wavelet set. Let

the raw function be f(x) and the wavelets be {ψ(ai · x + bi)}, the approximation f̂(x)

is given by

f̂(x) =
M
∑

i=1

wiψ(ai · x + bi) (5.1)

And the objective of tuning the network is to minimize the approximation error

ǫ =
∥

∥

∥f − f̂
∥

∥

∥

2
(5.2)

where wi is a weight and ψ the wavelet function, and ai, bi are the parameters in terms

of dilation and translation of the function. M is the number of wavelets being used,

defining the dimension of the second layer of the network.

Krueger extended the Wavelet Networks to 2D image representation by using Gabor

functions [Krueger, 2001]. A Gabor wavelet network (GWN) thus adopts the following

form

f̂(x) =
M
∑

i=1

wiψi(x) (5.3)

Here ψi, a particular 2D Gabor function, is defined by

ψi(x) =
k2

i

σ2
i

exp(−k2
i Θ

T
i (x − xi0)/2σ2

i )exp(−j · kiΘ
T
i (x − xi0)) (5.4)

where ki,Θi,σi,xi0 define the frequency, the phase, the spatial bandwidth and the centre

of a Gabor kernel, respectively.

The Gabor wavelet Eq. 5.4 is a complex function, therefore has a real part and a

imaginary part. The two parts differ by π/2 in phase. An example is given in Figure 5.4

that shows the two parts emphasize different types of image features. In particular, the

real part tends to capture the features with relatively smooth structure at the center. On

the other hand, the imaginary part would capture the transitional features at the center.

In other words, the real part is suited for ridge but the imaginary part is suited for edge.
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(a) Real Part (b) Imaginary Part

Figure 5.4: Real and Imaginary Parts of a Gabor kernel

It must be pointed out that the choice of values for σ and Θ may also considerably

influence the wavelet image.

Because real world images are usually of real value, we may need to choose between

the real and imaginary part of the kernel to represent the image. In [Krueger, 2001],

Krueger suggests to manually select the desired part in accordance with the given image

features. For example, he claims that if the edge of the object is of more importance

than smooth features, we should choose imaginary parts of Gabor kernels because they

are suitable for edge representation. However, manually selection method is neither

convenient nor suitable because many objects would better be identified by both edge

and ridge features.

The present work introduces an alternative, simple way to solve the problem. Instead

of choosing between imaginary and real parts, we just add in a phase-shift variable ρs

to the real part, yielding

ψi(x) =
k2

i

σ2
i

exp(−k2
i Θ

T
i (x − xi0)/2σ2

i )cos(kiΘ
T
i (x − xi0) + ρs) (5.5)

With ρs being 0, the result will be equivalent to the real part of an kernel; with

ρs being π/2, the function will be identical to the imaginary part. When the value ρs

varies, the image of the kernel function Eq. 5.5 would reflect the change, and such an

example is given in Figure 5.5.

A GWN is optimized for the representation of a single static image. But in face

recognition, we have to take into account the variations in each subject. In other words,

what GWN captures may be more likely to be transient features in a particular face

image than essential and consistent features that identify the subject.
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0 π/8 4π/8 5π/8 6π/8 7π/82π/8 3π/8

Figure 5.5: A Gabor kernel with shifting phase

Originals 1 3 8 16

Figure 5.6: Progressive representation of faces with Gabor wavelets.
(Original images from FERET2 [Phillips et al., 1998]). The leftmost column
gives a set of training samples; to the right are representations of a image
by SDGWN with 1,3,8 and 16 Gabor wavelets, respectively.

To overcome this drawback, we extend the GWN model to a subject dependent

Gabor wavelet network (SDGWN) model. For a given subject and its image set {fj}, a

SDGWN aims to approximate the images by a common set of Gabor wavelets. (It must

be pointed out that the common wavelet set differs from subject to subject.)

fj(x) =
M
∑

i=1

wjiψi, j = 1 · · ·N (5.6)

And the objective of network training is

E =
∑

j

∥

∥

∥

∥

∥

fj −
M
∑

i=1

wjiψi

∥

∥

∥

∥

∥

2

=
∑

j

{
∫

[

fj(x) −
M
∑

i=1

wjiψi(x)

]2

dx} (5.7)

Here {ψi} is the common set of Gabor wavelets, Wj = {wj1 . . . wjM} a weight vector

specific for an image fj , and can be considered as the projection of fj into the subspace

spanned by {ψi}.

Subject dependent Gabor wavelet network (Eq. 5.6) describes the variable appear-

ances of a given subject rather than a single image. With a common set of bases, it is

possible to grasp the concept of a subject by studying its examples in forms of weight

vectors {Wj} in the common subspace spanned by {ψi}.

In Figure 5.6, we demonstrate how a SDGWN uses a common set of Gabor wavelets

to progressively represent a subject. The wavelet set is specified to the images in the
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Figure 5.7: Subject representation with different number of Gabor wavelets.
From left to right are shown 3 instances of a person represented by an iden-
tical set of Gabor wavelets. From top row to bottom row are shown the
original faces, the approximations with 16 Gabor wavelets and the approxi-
mations with 80 Gabor wavelets, respectively.

left column. Note that only the representation results for the first image are displayed.

It is evident that particular wavelets may capture some local spatial and frequency

features across the images. For instance, here the most significant (largest energy)

Gabor wavelet captures the feature on the cheek; the subsequent wavelet captures the

feature around eyebrow and forehead. It is also obvious that the approximation accuracy

largely depends upon the number of Gabor wavelets in the representation network.

With the weight vector trained for different images, a SDGWN produces different

approximations. Figure 5.7 gives such an example of SDGWN representation using a

common set of wavelets. The top row shows three face images of a subject, for which

a representation network was created. The next two rows draw the representations

respectively with 16 Gabor wavelets and with 80 Gabor wavelets.

The configuration of Gabor wavelets {ψi} is crucial for accurate representation.

Hence, the optimization of Eq. (5.2) that determines the configuration plays a vital role

in the system. In this work, we use Levenberg-Marquardt algorithm and multi-scale

strategy that was proposed by Krueger [Krueger, 2001]. In particular, we construct two

layers of Gabor functions in each representation network. The top layer is for capturing

large scale features by using Gabor functions with larger spatial frequency k, while the
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Origin GWN1 GWN2 GWN3 SDGWN

Figure 5.8: Comparative performance for representing a new face.
The leftmost one is an input image to be represented by different
GWN/SDGWN models which have been trained in advance by a set of 3
images. 3 GWNs, each adapted to a gallery image, produced 3 individual
representations shown successively to the right, while the rightmost one is
the representation by a SDPGWN model that has been adapted to the whole
training set.

bottom layer is for refining and captures local, small-scale features. The optimization

scheme offers efficient computation. For an image at size 150 × 130, it will cost ap-

proximately 20 seconds to optimize 16 top-level Gabor functions, and 1 minute or so

for 64 bottom-level functions, by non-optimized Matlab codes running on a PentiumIII

733MHz system.

It should be pointed out that because Gabor wavelets are non-orthogonal, it is

impossible to calculate a weight wi by directly projecting an image f onto the Gabor

wavelet {ψi}. In practice, we resort to linear algebra to find the weight vector that

produces a minimal approximation error. Thus, the weight vector can be efficiently

computed by

Wj = Ψ̃fj with Ψ̃ = Ψ+ = (ΨT Ψ)−1ΨT (5.8)

Figure (5.8) shows a simple comparison between GWN and SDGWN for face rep-

resentation. We used three samples for training and another image for test. A SDGWN

model was adapted to the three images, and three GWN models were adapted to the

three images respectively. Representations of the test image are drawn successively to

the right of original one in the figure. It can be seen that the SDGWN demonstrates

better capability, since it favorably describes the expression appearance and details more

precise facial features.
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Table 5.2: Performance of GWN and SDGWN as a Function of approximation accuracy
for new images

mean var

GWN 0.843 0.028

SDGWN 0.893 0.018

SDGWN vs. GWN

To compare SDGWN with GWN on their approximation performance, we generated a

test-bed – a randomly selected subset from the FERET database. The data set contains

117 images for 10 subjects, and 3 images per subject were randomly selected for training,

while the remainder composes the testing set.

When a new pattern is presented, both SDGWNs and GWNs produce their represen-

tations. The representation efficiency is evaluated by measuring the difference between

the output and the input pattern, according to the similarity measurement in Eq. (5.9).

Note we used 80 Gabor wavelets for each SDGWN/GWN model; moreover, to take

advantages of multiple GWNs for each subject, we only selected the best output from

them. Table 5.2 shows the final results that suggest the SDGWN model produced clearly

better representations.

5.3.2 The Gabor wavelet associative memory model

The SDGWM model offers an effective approach to face representation. As kernel au-

toassociators with Gaussian kernels have proven in the last chapter to be an efficient

approach for concept learning and recognition, we use it as the basis to develop a Gabor

wavelet associative memory (GWAM) (Fig. 5.9) which consists of five layers:

1. The first layer receives the input image, say f ;

2. The second layer serves as an encoder that transforms the input pattern f into

the particular SDGWN subspace and produces a weight vector x according to

Eq. (5.8);

3. The third layer compares the pattern x (weight vector) with prototypes in kernels,

and produces a kernel product vector k;
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Kernel Layer

Gabor wavelets
(Encoder)

Gabor wavelets
(Decoder)

Input face Recalled face

Figure 5.9: Architecture of Gabor wavelet associative memory.
Gabor wavelet associative memory is a combination of a Gabor wavelet net-
work and a kernel associative memory. The 2nd layer and the 4th layer cor-
respond to a particular set of Gabor wavelets, and are used to encode/decode
the image patterns to/from the SDGWN subspace. A kernel autoassociator
model is embedded as the center part between the encoder and the decoder
layers.

4. The fourth layer uses the vector k to recall a weight vector pattern k̂ from the

kernel autoassociative memory, according to Eq. (4.12) (here we consider kernel

autoassociators with linear backward mapping functions Fb);

5. The last layer produces the final approximation by decoding the weight vector k̂

into image domain, according to (Eq. (5.3));

Therefore, the GWAM model inherits the advantages of both SDGWN and kernel

autoassociators in face representation and concept learning. Similar to the classification

scheme in the last chapter, we set up a modular face recognition system (Fig. (5.10).

In this scheme, each subject is associated with a particular GWAM model. At the

recognition stage, a probe image f is input to all GWAM models to produce respective

reproductions. The similarity measurements between the probe image and recalled

images are taken to determine which class the image f is from. Given the probe image

f and a recalled image f̂ , we adopted a widely used similarity measurement given by

cos(f̂ , f) =
f̂T f

‖f̂‖ · ‖f ‖
(5.9)

To better illustrate this scheme, in Figure 5.11 we show an example of the recognition

process by GWAMs. The top image is the probe image to be recognized. It is encoded
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& Classification

Output

Figure 5.10: Face recognition scheme.
The probe image is first input to individual GWAMs to yield respective re-
constructions, which are compared with original image by a similarity mea-
surement. And the system classifies the image to the class with the maximal
similarity.

(a)

(b) (c) (d)

GWAM1

GWAM2

GWAM3

Figure 5.11: Illustration of face recognition process by GWAM.
(a) A probe image to be recognized; (b) SDGWN representations being
used as the keys for the kernel autoassociators; (c) The reconstructions from
recalled weight vectors by the autoassociators; (d) The typical faces of the
three subjects. In this picture we show only the top three reproductions,
with the best one (left) singled out.
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by various GWAM models to produce different representations that are shown in the

second row. The representations are in turn transferred, in forms of weight vectors, to

kernel associative memories to recall weight vector patterns. The recalled weight vector

patterns are then mapped backwards to image domain, producing the final reconstruc-

tions. In the third row we show only the top three reconstructions in terms of minimal

reconstruction error. The bottom row denotes each subject with a typical image from

the training gallery. It is evidence that the true subject’s network tends to produce the

best reproduction.

5.4 Performance of GWAM-based Face Recognition Sys-

tem

We have conducted extensive experiments to examine the proposed face recognition

scheme and to compare it with other well-known methods, e.g. the Eigenfaces, SOM+CN

[Lawrence et al., 1997], Line Edge Map [Gao and Leung, 2002], and ARENA [Sim et al., 1999],

using some publicly available benchmark face databases, i.e. the FERET standard fa-

cial database (Release2) [Phillips et al., 1998], the Olivetti-Oracle Research Lab (ORL)

database [Samaria and Harter, 1994] and the AR face database from Purdue University

[Martinez and Benavente, 1998].

Experiments on FERET Database

FERET2, the second release of the FERET, consists of 14,051 8-bit gray-scale face

images with views ranging from frontal to left and right profiles. The database design

took into account various image variations from different expressions, different hairstyles

and different illuminations.

FERET2 provides explicit coordinate information for 3816 images. From these im-

ages, we selected the subjects with more than 5 frontal or near-frontal (Pose angle

≤ 15◦) images. Finally, we have a dataset of 119 persons with 927 images, which were

pre-processed by a normalization program based on the given eye positions, yielding

images at 130×150 pixels (see Figure 5.12).

We carried out a few experiments with the data set. In each experiment, the training

set P was selected from the whole data set, and the remainder constituted the testing
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Figure 5.12: Samples from FERET face database.
Top row: samples from FERET database. Bottom row: the corresponding
normalized images.

set G. When the number of samples per subject is m = 3, there were totally 357 images

for training and 570 images for testing; when m = 4, there were 476 training images

and 451 testing images.

Here we compare the proposed scheme with a variant of Eigenfaces, called PCA-

nearest-neighbour [Sim et al., 1999]. Basic Eigenfaces compute the centroid of weight

vectors for each person in the training set, by assuming that each person’s face images

will be clustered in the eigenface space. While in PCA-nearest-neighbor, every weight

vector is stored for richer representation. When a probe image is presented, it first

transforms into the eigen-space and the weight vector will be compared with memorized

patterns, then a nearest-neighbor (NN) algorithm will be employed to locate the closest

pattern class. From the face data set, we first computed the covariance and then chose

the first n eigenvectors to construct an eigen-space. We tried a few n from 20 to 40 but

did not perceive remarkable variance in the performance. Without otherwise specified,

n = 25 in the following.

Another face recognition system under comparison is a recently proposed simple

nearest-neighbor based template matching algorithm, termed ARENA [Sim et al., 1999],

which employs reduced-resolution images and a simple similarity measure defined as

L∗
0(~x − ~y) =

n
∑

|xi−yi|>δ

1 (5.10)

where δ is a user–defined constant for which we took δ = 10. Similar to the above PCA
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technique, every training pattern was memorized. The distance from the query image to

each of the stored images in the database is computed and the label of the best match

is returned.

The experiment also investigates and compares the performance of another face

recognition system [Zhang et al., 2004a] that combines discrete wavelet transform (DWT)

features and kernel associative memory (with linear backward mapping functions Fb).

The system is referred to as KAA-WT hereafter.

To evaluate our proposed GWAM system using the FERET dataset, we first set up

one GWAM model for each subject, which is determined by the Gabor set {ψn}, sample

weights {xn}, kernel autoassociator weight matrix W and variance σ. When a probe

image is given at test stage, a GWAM system recognizes the face by picking up the

optimal reconstruction.

Table 5.3: Recognition accuracy for FERET dataset
n PCA ARENA KAA-WT GWAM

M=80 M=16

3 54.3 55 84.7 99.3 95.8

4 55.2 55.2 91.6 99.6 99.1

As elaborated in Section 1, the number of Gabor wavelets, i.e. the GWAM’ dimension

M , has remarkable influence on the reconstruction precision. To examine its influence

on the system performance, we conducted experiments with M =80 and 16 respectively.

The experimental results are summarized in Table 5.3. Obviously, GWAM dramatically

outperformed other systems.

We adopted an evaluation methodology proposed by the developers of FERET

[Phillips et al., 1998]. In this evaluation, the recognition system will answer a ques-

tion like “is the correct answer in the top n matches?” rather than “is the top match

correct?”. The performance statistics are reported as cumulative match scores. In this

case, an identification is regarded as correct if the true object is in the top n matches.

For example, if n = 5 and 80 identifications out of 100 satisfy the condition (have their

true identities in top 5 matches respectively), the cumulative match score for R5 is

80/100 = 0.8.
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Figure 5.13: Comparison of accumulated accuracy on FERET.
The left one illustrates accumulated accuracy from GWAM, KAA-WT,
PCA-2, ARENA respectively. The right details the left figure in a particular
region for comparing GWAM and KAM models.

Figure 5.13 illustrates the cumulative match scores with different algorithms. The

rank is plotted along the horizontal axis, and the vertical axis denotes the percentage

of correct matches. Again, GWAM exhibits clear superiority over other methods. It is

also interesting to notice that with GWAM, the true class of an image consistently lies

in top 4 matches, i.e. R4 = 100%.

Experiments on ORL database

ORL database contains 40 subjects with 10 images per subject. The images are acquired

under variable lighting condition, facial expressions and viewpoint. The image resolution

is 92×112. Based on this database, we are able to compare our system with some others,

i.e. [Lawrence et al., 1997, Li and Lu, 1999].

Some examples of ORL face images have been given in Figure 5.3 earlier. From the

ORL database, we randomly selected a limited number (3 or 5) of faces out of 10 for

each subject to set up a GWAM model, and then counted the recognition accuracy on

the remaining faces. The results are given in Table 5.4 where the GWAM system (with

16 Garbor wavelets in each network) again shows superior performance.
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Figure 5.14: Accumulated accuracy on FERET by GWAM.
M : the number of Gabor wavelets, N : the number of training samples for
each subject.

Table 5.4: Recognition accuracy for the ORL database
n PCA SOM+CN ARENA KAA-WT GWAM

M=80 M=9

3 81.8 88.2 92.2 94.3 100 97.9

5 89.5 96.5 97.1 98.2 100 98.8

Experiments on AR face database

The AR face database from Purdue University consists of over 3000 color images of the

frontal view faces of 126 people, with roughly 26 different images per person, recorded in

two different sessions separated by two weeks and each session consisting of 13 images per

person[Martinez and Benavente, 1998]. We randomly selected 42 males and 44 females

to create the experimental dataset. We pre-processed all the images by a normalization

process by first turning them into gray scale images, followed by an image normalization

based on eye positions.

AR face images show dramatically varying lighting conditions. Though theoretical

analysis suggested that a function invariant to illumination does not exist in general

case [Moses and Ullman, 1992], an object representation robust to lighting variations is
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Figure 5.15: Samples from AR face database.
Sample images of training (2 leftmost) and test faces (under varying lighting
conditions). The top row shows the original images from one session. The
bottom row shows the normalized images from both sessions.

Table 5.5: Recognition accuracy for AR database
L. Cond. Eigenface Edge map LEM GWAM

Left . 26.8% 82.1% 92.9% 96.5%

Right . 49.1% 73.2% 91.1% 90.9%

Both . 64.3% 54.5% 74.1% 89.0%

still critical in real world applications. Here we would like to compare our method (with

80 Gabor wavelets for each GWAM model) with some recent techniques such as the

Line Edge Map (LEM) [Gao and Leung, 2002]. LEM uses polygonal line segments of

edges to represent a face, and then a kind of Hausdorff distance measure was proposed

to compare the LEMs for recognition.

In this experiment, we selected 2 normal views from each person to set up the training

set, while the testing set includes other 6 images, i.e. 2 “Left light on”, 2 “Right light

on” and 2 “Both lights on” (Fig.5.15).

Experimental results are summarized in Table 5.5, in which the performances of

other techniques were duplicated from [Gao and Leung, 2002]).

Remarks:

1. The GWAM significantly outperforms other techniques in general situations. But

in “right light on” case it achieved a similar rate to that of LEM.

2. Our system shows robust performance under varying lighting conditions. By sim-

ple calculation, the maximum variation of the accuracy is only 7%, comparing to

18.8% with LEM, 27.6% with Edge Map and 37.5% with Eigenfaces.

3. The performance of LEM or “Edge map” degrades by “worse” illumination condi-

tions, while the Eigenfaces improves. This suggests that “single side” illumination
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has some adverse effects on the methods using “holistic texture” information than

on those using “edge information”. On the other hand, our GWAM system seems

to inherit both advantages of “edge method” and “texture method”.

4. Apparently, the recognition rates with left light on are higher than that with right

light on. This is because the illumination from the right side is generally stronger

than that from the left side, as has been pointed out in [Gao and Leung, 2002].

5.5 Summary

In this chapter we have applied kernel autoassociators to the challenging problem of face

recognition. We tentatively examined the direct application of kernel autoassociator

models to recognizing face images. More importantly, we proposed a high performance

face recognition system by taking advantages of both Gabor wavelet networks for face

representation and kernel autoassociators for concept learning and recognition. Here

Gabor wavelet networks employ the domain knowledge about face images that an indi-

vidual face has a certain configuration of local and global image features such that we

can develop a set of special image kernels to represent them.

We have carried out extensive experiments to evaluate the GWAM-based face recog-

nition scheme, in comparison with other state-of-the-art face recognition systems. Our

scheme provided excellent performance on three popular databases, namely, the FERET

(Release 2), the ORL and the AR face database. The results suggest that we have suc-

cessfully incorporated domain knowledge about face images into kernel autoassociators

to develop a high performance face recognition system.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

The fundamental objective of the thesis is to develop efficient view-based models for

determining the states and the identities of (moving and transforming) known objects

in images.

We developed a tracking method on the basis of a kernel-based model for repre-

senting objects under affine transformation. The model allows a robust, spatially-and-

spectrally smooth similarity measure with respect to affine transformation parameters.

The method can distinguish similar objects in cluttered scenes; and it also leads to bet-

ter motion understanding than non-posture-estimation methods. It has demonstrated

excellent performance for determining the affine transformation of visual objects in var-

ious synthetic and real-world tasks. In addition, since it depends on merely one sample

image, it is quite easy to implement and is suited to many real tracking tasks that have

only few samples for each target object.

For generic object classification, the thesis presented a learning and classification

model called kernel autoassociators. The model takes advantage of kernel feature space

to learn the nonlinear dependencies among multiple samples. It is more accessible and

easier to implement than conventional autoassociative networks, while providing better

performance. The model has demonstrated excellent performance in novelty detection

and multi-class classification. For a special type of object recognition – face recognition,

a Gabor wavelet associative memory model was presented that combines Gabor wavelet

networks for face representation and kernel autoassociators for nonlinearity learning.

114



Chapter 6. Conclusion and Future Work 115

It has been shown that the model can dramatically improve the capability of kernel

autoassociators in learning faces, yielding a high-performance face recognition system.

In conclusion, the thesis has proposed a few efficient view-based models that can be

applied to visual tracking and recognition.

6.2 Future Work

The theme throughout the thesis was the use of computational approaches to model

one or multiple images of an object, for either tracking or recognition. It is interesting

to expect the future extension of these approaches in the field of computer vision and

pattern recognition. In particular, we may expect improvements in at least three areas.

Multi-Sample Spatial-Spectral Representation. The current tracking method

depends on a given sample image represented by the kernel-based spatial-spectral model.

However, in some cases a single image may not be sufficient for reference, especially when

the target object has largely different images resulting from changing views. As many

tracking tasks may offer multiple samples for each target object, it is promising to extend

the representation model as well as the tracking method by taking advantage of multiple

samples. We suggest that statistical representation models based on the samples should

be so considered as to account for more complex image transformations induced by e.g.

non-ridge 3D object deformations.

Filtering Mechanism. Visual tracking can be viewed as a fusion process that com-

bines the dynamics of target objects and the observation. This thesis emphasizes not

on dynamics but on observation models and the related object-searching method. As

the presented method was essentially a searching mechanism that seeks a target object

around a predicted position/state, it is possible to incorporate a special particle filtering

scheme to enhance the method. Such a scheme will bring two potential benefits: it will

improve the efficiency of particle-filtering-based tracking by particle-optimization (the

importance of the optimization can be seen in [Deutscher et al., 2000][Zhang et al., 2004e]);

it will increase the robustness of the current tracking method especially when the target

objects are subject to fast, non-continuous movements.
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Discriminant Autoassociation Learning. An autoassociator is essentially used

to model a particular class by describing the dependency among the patterns. Thus, it

avoids directly analyzing the difference between classes, and mostly caters to applications

like one-class learning such as novelty detection in which few or no examples of the

negative class are available. What follows is an interesting question: is it possible

to better account for discriminating features in training autoassociators. In fact, the

current mechanism of autoassociators does not necessarily preserve all the essential

discriminating information. Therefore, we may in future work consider how to design

a special autoassociation scheme which not only learns the dependencies among the

patterns in the positive class, but also preserves the important features that distinguish

it from other classes. We refer to this problem as discriminant autoassociation learning.

In any case, it appears that the proposed tracking method, the nonlinear autoasso-

ciation model and the face recognition scheme will continue to serve as important bases

of more advanced and sophisticated algorithms that can make computers better see and

understand the visual world.
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