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Summary

This work presents a general program reasoning framework that is

- able to express a wide range of properties of programs, including but not

limited to safety, liveness, and temporal properties;

- compositional, in a Hoare-logic, assume-guarantee fashion;

- allows the use of assertions;

- has potential for combining automated methods with user-provided infor-

mation;

- incremental, in the sense that it is not needed for the reasoning process to

complete in order to derive useful information about the program; rather,

useful information can be derived after every reasoning step.

We base our work on a semantics, called the progressive semantics, which cap-

tures an abstraction of the sequence of events in a program, as opposed to a flat

set of states. Program properties are descriptions, or rather, approximations of this

semantics. Our approximation scheme uses a set of sets of states (or family) to

approximate a set of states. Thus, an approximation of the progressive semantics

at a program point is a sequence of families.

To be able to reason symbolically about program behavior, we define asser-

tion languages whose formulas are interpreted as sequences of families. Finally, we

present the entire framework centered around a propagation operator, computing

the strongest-postcondition of assertions across program points. An underlying phi-

losophy is that assertions are freely associated with any program points. Further,

an assertion is not just a specification of properties which are to be proved, but

an assertion may also be used as an assumption in order to prove other assertions,

including itself. We thus introduce a notion of conditional correctness, which makes

the entire framework incremental. Each assertion is initially assumed, and may, in

the verification process, become proved. In the end, a proved program is correct on

the proviso that its (hopefully few) unproven assertions are correct. Thus, we do

not need to wait for the reasoning process to complete; the fact that the already

proved assertions are conditionally correct is useful information available before the

completion of the program reasoning procedure.
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Chapter 1

Introduction

Good software is difficult to produce. This contradicts expectations, for building

software requires no large factories or furnaces, ore or acres. It consumes no rare,

irreplaceable materials, and generates no irreducible waste. It requires no physical

agility or grace, and can be made in any locale. What good software does require,

it demands of the intelligence and character of the person who makes it. These

demands include patience, perseverance, care, craftsmanship, attention to detail,

and a streak of the detective, for hunting down errors. Perhaps the most central is

an ability to solve problems logically, to resolve incomplete specifications to consis-

tent, effective designs, to translate nebulous descriptions of a program’s purpose to

definite detailed algorithms. Finally, software remains lifeless and mundane without

a well-crafted dose of the artistic and creative.

Large software systems often have many levels of abstraction. Such depth of

hierarchical structure implies an enormous burden of understanding. In fact, even

the most senior programmers of large software systems cannot possibly know all

the details of every part, but rely on others to understand each particular small

area. Given that creating software is a human activity, errors occur. What is

2
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surprising is how difficult these errors often are to even detect, let alone isolate,

identify, and correct. Software systems typically pass through hundreds of tests of

their performance without flaw, only to fail unexpectedly in the field given some

unfortunate combination of circumstances. Even the most diligent and faithful ap-

plications of rigorous disciplines of testing only mitigate this problem. The core

remains, as expressed by Dijkstra: “Program testing can be used to show the pres-

ence of bugs, but never to show their absence!” [Dij72] It is a fact that virtually

every major software system that is released or sold is, not merely suspected, but in

fact guaranteed to contain errors. This degree of unsoundness would be considered

unacceptable in most other fields. It is tolerated in software because there is no

apparent alternative. The resulting erroneous software is justified as being “good

enough,” giving correct answers “most of the time,” and the occasional collapses of

the system are shrugged off as inevitable lapses that must be endured. Virtually

every piece of software that is sold for a personal computer contains a disclaimer

of any particular performance at all. This means that the customer must hope

and pray that the software performs as advertised, for he has no firm assurance

at all. This lack of responsibility is not tolerated in most other fields of science or

business. It is tolerated here because it is, for all practical purposes, impossible to

actually create perfect software of the size and complexity desired, using the current

technology of testing to detect errors. There is a reason why testing is inadequate.

Fundamentally, testing examines a piece of software as a “black box1,” subjecting

it to various external stimuli, and observing its responses. These responses are then

compared to what the tester expected, and any variation is investigated. Testing

depends solely on what is externally visible. This approach treats the piece of soft-

1White box testing is also often used in practice; this is a technique whereby explicit knowledge

of the internal workings of the item being tested are used to select the test data.



CHAPTER 1. INTRODUCTION 4

ware as a mysterious locked chest, impenetrable and opaque to any deeper vision

or understanding of its internal behavior. A good tester does examine the software

and study its structure in order to design his test cases, so as to test internal paths,

and check circumstances around boundary cases. But even with some knowledge

of the internal structure, it is very difficult in many cases to list a sufficient set of

cases that will exhaustively test all paths through the software, or all combinations

of circumstances in which the software will be expected to function.

In truth, though, this behavioral approach is foreign to most real systems in

physics. Nearly all physical systems may be understood and analyzed in terms of

their component parts. It is far more natural to examine systems in detail, by inves-

tigating their internal structure and organization, to watch their internal processes

and interrelationships, and to derive from that observation a deep understanding

of the “heart” of the system. Here each component may be studied to some degree

as an entity unto itself, existing within an environment which is the rest of the sys-

tem. This is essentially the “divide and conquer” strategy applied to understanding

systems, and it has the advantage that the part is usually simpler than the whole.

If a particular component is still too complex to permit immediate understanding,

it may be itself analyzed as being made up of other smaller pieces, and the process

recurses in a natural way.

This concept was recognized by Floyd, Hoare, Dijkstra, and others, beginning in

1969, and a wealth of alternative techniques to testing is currently in the process of

being fashioned by the computing community. Among these approaches we mention

program correctness, program analysis, and model checking. They are concerned

with analyzing a program down to the smallest element, and then synthesizing an

understanding of the entire program. In general, all these approaches use the means

of mathematical proof in order to discover and guarantee properties of programs.
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This is why we have coined the term program reasoning to refer to this general

category of techniques.

As opposed to testing, reasoning can trace every path through a system, and

consider every possible combination of circumstances, and be certain that nothing

has been left out. This is possible because the method relies on mathematical

methods of proof to assure the completeness and correctness of every step. What

is actually achieved by reasoning is a mathematical proof that the program being

studied satisfies its specification. If the specification is complete and correct, then

the program is guaranteed to perform correctly as well.

However, the claims of the benefits of program reasoning need to be tempered

with the realization that substantially what is accomplished may be considered an

exercise in redundancy. The proof shows that the specification and the program,

two forms of representing the same system, are consistent with each other. But

deriving a complete and correct formal specification for a problem from the vague

and nuanced words of an English description is a difficult and uncertain process

itself. If the formal specification arrived at is not what was truly intended, then the

entire proof activity does not accomplish anything of worth. In fact, it may have

the negative effect of giving a false sense of certainty to the user’s expectations of

how the program will perform. It is important, therefore, to remember that what

program reasoning accomplishes is limited in its scope, to proving the consistency

of a program with its specification2.

Within that scope, however, program reasoning becomes more than redundancy

when the specification is an abstract, less detailed statement than the program.

Usually the specification as given describes only the external behavior of the pro-

gram. In one sense, the proof maps the external specification down through the

2A similar argument can be made about the consistency of testing.
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structure of the program to the elements that must combine to support each re-

quirement. In another sense, the proof is good engineering, like installing steel

reinforcement within a large concrete structure. The proof spins a single thread

through every line of code, but this single thread is far stronger than steel; it has

the infinite strength of logical truth. Clearly this greatly increases one’s confidence

in the finished product.

The theory for creating these proofs of program correctness has been developed

and applied to sample programs. It has been found that for even moderately sized

programs, the proofs are often long and involved, and full of complex details. This

raises the possibility of errors occurring in the proof itself, and brings into question

credibility. This situation naturally calls for automation. Assistance may be pro-

vided by a tool which records and maintains the proof as it is constructed step by

step, and ensures its soundness.

Program reasoning holds the promise in theory of enabling the creation of soft-

ware with qualitatively superior reliability than current techniques. There is the

potential to forever eliminate entire categories of errors, protecting against the vast

majority of run-time errors. However, program reasoning has not become widely

used in practice, because it is difficult and complex, and requires special training

and ability. The techniques and tools that are presented here are still far from be-

ing a usable methodology for the everyday reasoning of general applications. The

mathematical sophistication required is high, the proof systems are complex, and

the tools are only prototypes. The results of this dissertation point the direction to

computer support of this difficult process that make it more effective and secure.

Another approach than testing is clearly needed. If we are to build larger and deeper

structures of software, we need a way to ensure the soundness of our construction,

or else, inevitably, the entire edifice will collapse, buried under the weight of its
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internal inconsistencies and contradictions.

1.1 Program Reasoning

Throughout this work, we coin “program reasoning” as a general term to stand

for a wealth of techniques and approaches that are concerned with either certifying

that certain desirable properties hold, or automatically deriving such properties for

sequential programs. In either case, the properties of interest are guaranteed to

hold, as opposed to software testing, which offers no guarantees about the program

being tested.

When talking about program reasoning we have to consider two main aspects:

the desirable properties we wish programs to have, and the techniques involved in

certifying or detecting such properties. In what follows, we shall briefly turn our

attention to each of these aspects.

Before defining what program properties are, we first need to understand what

we mean by ”program execution”, or ”program behavior”. These notions are usu-

ally specified formally by means of a program semantics. Program semantics is a

mathematical instrument that assigns a more or less abstract meaning to a program

of a given programming language. By saying that a program has a certain property

P, we actually understand that the meaning of the ”program”, as defined by the

semantics at hand, has the property P. The classic program reasoning approaches

would focus on the following categories of properties:

• partial correctness, that is, properties that state that whenever a result is

delivered, it is correct;

• termination, which states that the execution of a program reaches its final

program point;
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• non-failure, which states that undesirable properties, like segmentation viola-

tion, do not happen.

In recent years, however, the uses of sequential programs go beyond computa-

tionally intensive problems that exhibit an input-compute-output behavior. The

increasingly wider use of embedded systems, and the need to certify sequential pro-

grams that operate under strict behavioral policies have placed new requirements on

program reasoning methods. For example, software drivers operate in a concurrent

environment and need to exclusively acquire resources (e.q. semaphores) that must

be released eventually. Hence, a common requirement for the certification of soft-

ware drivers is that all acquired resources are eventually released. Another example

is a program on a system with a limited amount of memory cache, for which we

want to prove that the set of values assigned to a pointer does not exceed a certain

size. Such a property would ensure a low frequency of cache misses and a higher

execution speed. It is clear that such properties do not fit into the classic range of

properties listed above.

In order to deal with such requirements, we adopt a more general view of what

the desirable properties of a program are. Throughout this work we shall distin-

guish between safety and liveness properties 3. While this categorization does not

cover all the types of properties that we shall encounter throughout this work, the

distinction is important from a theoretical point of view, since safety and liveness

properties require different kinds of reasoning techniques. One of the contributions

of the present work is a unified framework that provides a uniform treatment of

safety, liveness, and sequence-based properties, that is, properties that capture (an

abstraction of) the sequence of events occurring during the execution of the program

3The definition of safety and liveness properties are borrowed from the concurrent programming

community.
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— we call such properties progressive properties.

There is a wealth of methods and techniques for proving or discovering properties

of programs. The area of program reasoning has started with the seminal work

of Floyd and Hoare, who have devised a calculus for proving partial correctness

properties of programs. This calculus adopted the input-compute-output view of

software, but had the advantage of being compositional, in an assume-guarantee

fashion. The calculus has later been extended to handle termination, and has been

the basis for propagation-based reasoning algorithms, which would operate either in

a forward manner (strongest postcondition propagation), or in a backward manner

(weakest precondition propagation). The power of the Hoare calculus extends to

proving safety properties; it requires user-provided assertions and invariants, which

makes automation rather difficult to achieve.

Verification condition generators represent an attempt to automate program

correctness proofs as much as possible. They are tools that construct significant

parts of the correctness proofs of a program, outputting a set of lemmas called

verification conditions, as a remainder that is left for the user to prove. The truth of

these is intended to imply the correctness of the program. However, most verification

condition generators that have been built so far have not themselves been verified,

making that support unreliable.

Another program reasoning approach is program analysis, which has been for-

malized in a semantics driven manner in the abstract interpretation framework. As

a program analysis methodology, abstract interpretation relies on simulating the

execution of the program on an abstract domain which is Galois connected with the

concrete semantic domain. As a result, a set of concrete states of the program can

be approximated by an abstract state, and the execution of the program in the con-

crete domain can be approximated by an abstract execution in the abstract domain.
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If the abstract domain is a finite height lattice, the abstract computation will reach

a fixpoint in a finite amount of time, thus providing a conservative approximation

of the set of concrete states that occur during the execution of the program. Since

the approximation specifies a superset of the semantics, it acts as an upper bound,

and thus becomes a guaranteed property. Program analysis has the advantage of

being completely automatic, but it lacks the flexibility of the Hoare-calculus-based

methods, where the user can help along by specifying assertions and invariants. As

a result, the outcome of a program analysis method is, in general, not necessarily

”interesting”. Moreover, it is usually difficult to produce analyses that are com-

positional in nature. In its classic form, abstract interpretation can only discover

safety properties; however, this framework has been extended to handle termination

properties and debugging.

A recent development in program reasoning is the predicate abstraction frame-

work. This framework is tightly connected with abstract interpretation, in the

sense that predicate abstraction uses as an abstract domain a set of user defined

predicates that depend on program variables (for example, x < y, could be such a

predicate, where x and y are program variables). However, the abstraction will be

performed by specializing the program at hand into a (possibly non-deterministic)

boolean program, that is, a program whose variables can only have the values true,

false, and undefined. Intuitively, each variable in the boolean program corresponds

to a user-defined predicate in the abstract domain. The execution of the boolean

program would reach a fixpoint in finite time. There are two important advantages

to this framework. First, it exhibits a high level of flexibility by allowing the user to

choose the abstract domain. Second, since all execution paths are finite, the execu-

tion of the boolean program could record all abstract traces and discover properties

about the sequences of events generated by the execution of the concrete program
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(an example of such a property would be that x is assigned 1 before y is less than

2 for all possible executions of a given program).

Model checking is a verification technique that has been applied with tremendous

success to hardware and other finite state systems in recent years. It has several

advantages over classic program verification methods, the most important being that

it is completely automatic. Typically, the user provides a high level representation

of the model and the specification to be checked. The model checking algorithm

will either terminate with the answer true, indicating that the model satisfies the

specification, or give a counterexample execution that shows why the specification

is not satisfied. The counterexamples are particularly important in finding subtle

errors in complex transition systems. The procedure is also quite fast and can check

partial specifications. Yet, when it comes to verifying software systems, which are

(at least theoretically) infinite state systems, the restriction to a finite state space

that model checking has seems to be a major disadvantage. In this case, abstraction

techniques can be used to produce a finite state approximation of the system4. The

downside of using abstraction is that spurious errors will be detected as a result

of the approximation. To deal with this, recent techniques have been developed to

refine the abstraction mechanism on the fly to help distinguish between spurious

and real errors.

1.2 This Work

Each of the program reasoning approaches described in the previous section has

specific trade-offs between the level of automation, the compositionality, and the

4Abstraction is also a useful technique for reducing the state explosion of concurrent finite

systems.
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complexity of program properties that can be derived. The motivation for this

work has been to create a general, unifying program reasoning framework, that

retains as much as possible of the desirable features of the approaches mentioned

above. In our view, these features are:

• Ability to express a wide range of properties of programs, including but not

limited to safety, liveness, and behavioral properties (i.e. properties related

to the sequence of events or states occurring during the execution of the pro-

gram.)

• Compositionality, in a Hoare-logic, assume-guarantee fashion.

• Ability to use assertions, as a means of allowing the user to guide the proof

along.

• Potential for combining automated methods with user-provided information.

• Incrementality, in the sense that it is not needed for the reasoning process

to complete in order to derive useful information about the program; rather,

useful information can be derived after every reasoning step.

At this point, a short comment on reasoning about behavior is in order. It has

been argued [Bur72b, Lam77] that all the properties one would find of interest about

a sequential program can be proved by adding new variables, whose values would

capture an abstraction of the program execution’s history, and then prove some

safety property of the program, and also termination. This may lead to thinking

that reasoning about program behavior is only useful in a concurrent/reactive/real-

time setting. While we agree that most sequential programs that are intended to

run in a sequential environment exhibit an input-compute-output-and-terminate

behavior that justifies the above statement, we would like to emphasize that we
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often need to reason about sequential programs that were intended to run in a

non-sequential setting. Such situations arise when, by applying compositional proof

methods [MC81, Jon83] to a concurrent program, the process of reasoning about

the entire program is decomposed into behavioral proof obligations for its sequential

components. Therefore, the ability to reason (in a compositional manner) about a

sequential program’s behavior is, in our opinion, particularly important, and has

been included as one of the desirable properties of our framework.

The object of this thesis is the formalization of the type of reasoning presented

in this example, and the rest of this section is devoted to outlining this process.

Lets us first take a look at some of the shortcomings of classic program reasoning

approaches, and understand why liveness and termination cannot be handled in a

straightforward manner. Reasoning about program behavior relies on two important

steps:

• Defining ”program behavior” as a compositional semantics of the language at

hand (the typical way of defining the behavior of a program is via the trace

semantics [Sch98a, Col96, CL96], which is not compositional.)

• Defining the meaning (interpretation) of program properties we are interested

in as approximations of the semantics.

For the reasoning process to expose the desired property of a program, we need

that the program semantics capture a not-too-abstract level of information, and

that the means of approximation carry that level of information through.

Classic program reasoning approaches rely on the collecting semantics as a def-

inition of program behavior. The collecting semantics represents the set of states

that occur during the execution of a program. In this setting, program properties

are expressed as formulas whose interpretation are sets of states as well. Usually,
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we say that a program has a certain property if the collecting semantics of the pro-

gram is a subset of the interpretation of the corresponding formula. What usually

happens is that the collecting semantics CS is unknown and the interpretation of

the property at hand acts as an upper bound for CS. In other words, any subset

of the interpretation, including the empty set, is a possible value of the semantics.

For this reason, we cannot infer any liveness or termination information from a

collecting-semantics-, subset-approximation-based type of reasoning. Indeed, since

the empty set is a possible value, it is possible that the program does not perform

any computation at all!

In contrast to this approach, we base our work on a less abstract semantics and

a more flexible approximation scheme. Our semantics, called the progressive seman-

tics, captures an abstraction of the sequence of events in a program, as opposed to

a flat set of states. Moreover, our approximation scheme uses a set of sets of states

(or family) to approximate a set of states. Given a set of states S, denote by S ′ one

of its supersets. The set S ′ should be a valid approximation of S in a subset-based

approximation scheme.

Our more general setting uses a family F ⊆ 2S′

. We say that F approximates

S if S ∈ F . This is a more flexible scheme, as it allows the choice of restricting

the range of possible values for S. In particular, we may choose an approximation

F such that ∅ 6∈ F . In this case, F may not specify precisely the computation

the program performs, but it at least specifies that the program performs ”some”

computation (as opposed to no computation at all.)

The progressive semantics attaches some sort of sequence of sets to each program

point5, and each set in the sequence shall be approximated by a family. Thus,

an approximation of the progressive semantics at a program point is a sequence

5We call such sequence of sets an indexed set
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of families. The next step, is to define assertion languages whose formulas are

interpreted as families. At this point, we have the means to reason symbolically

about program behavior, and develop a program reasoning framework that treats

liveness and safety properties in a unified manner.

Finally, we present the entire framework centered around a propagation oper-

ator, computing the strongest-postcondition of assertions across program points,

and various correctness criteria, thus forming the foundations of the entire program

reasoning calculus. An underlying philosophy is that assertions are freely associated

with any program points. Further, an assertion is not just a specification of proper-

ties which are to be proved, but an assertion may also be used as an assumption in

order to prove other assertions, including itself. We thus introduce a notion of con-

ditional correctness, which makes the entire framework incremental. Each assertion

is initially assumed, and may, in the verification process, become proved. In the

end, a proved program is correct on the proviso that its (hopefully few) unproven

assertions are correct. Thus, we do not need to wait for the reasoning process to

complete; the fact that the already proved assertions are conditionally correct is

useful information available before the completion of the program reasoning proce-

dure.

1.3 Introductory Examples

In this section, we provide a motivation to our work with the aid of two examples,

one that proves the termination of a program and illustrates the basic principle

of reasoning within our framework, and a second one, which proves behavioral

properties. Consider first the program fragment given in Figure 1.2, which is part

of a larger program computing the greatest common divisor of two numbers. Since
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Figure 1.1: Liveness Information Propagated through an If Statement

it is well-known that Euclid’s algorithm terminates, we would expect that once

the first program point of the fragment is reached, the last program point of the

fragment shall be eventually reached as well. This example discusses the challenges

of inferring this information formally, and presents a solution. Based on this, we

then discuss the formal road-map that we follow throughout this work.

Guaranteeing that once a program point has been reached, another shall be

reached eventually is akin to proving total correctness in the classic program ver-

ification setting. In our work, however, we shall focus, among other things, on

compositional aspects of program reasoning, and for this reason we see each piece

of code as a fragment that could be nested within a larger program, and we aim at

providing ”reasonings” that are generic in that context. To this purpose, we shall

prefer the term liveness of a program point as a means of expressing the certainty
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of a program point being reached.

The program uses Euclid’s algorithm to compute the greatest common divisor

of two natural numbers. The informal argument for the liveness of the last point in

the program is that at each iteration through the loop, the value max(a, b) grows

smaller and smaller, and therefore either of the variables a or b will hit the value

0 after same finite amount of time. To see that the value max(a, b) grows smaller

and smaller, we have to look at the if statement in the program fragment. Indeed,

the variable with the larger value is assigned the remainder of dividing the larger

value by the smaller value, and therefore what was the smaller value before the if

statement becomes the larger of the two values after its execution. Since neither of

the branches of the if statement contains loops, there is no doubt that once the

program point at the beginning of the if statement is reached, the program point at

the end of the if statement will eventually be reached as well. While this intuition

is very simple and straightforward, when reasoning formally about a program in

a semantic-based manner, carrying liveness information through an if statement

may not be equally straightforward.

Before explaining the program in Figure 1.2, we shall digress into analyzing a few

aspects of reasoning about liveness. Program reasoning frameworks are typically

based on a semantics that is defined hierarchically and compositionally, that is,

in a manner in which the meaning of the program is made up from the meaning

of its components, while the meanings of two distinct components are completely

independent of each other. Assume now that we have a semantics that carries

through liveness information, and imagine a scenario where we reason about an

if statement. Based on the semantics at hand, our reasoning framework should

be able to infer for a program point information of the form “live”, “dead” or

“maybe”. This setting is depicted in Figure 1.1. Assume we are certain to reach
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program point 1. Depending on the state in which this happens, execution could

move either to program point 2 or program point 4. We are not certain to reach

either of these two program points, and therefore the liveness information that could

be inferred is ”maybe” at best.

Since the semantic meanings of the program fragments Pc and Pa are indepen-

dent, propagating liveness information through Pc and Pa shall produce a ”maybe”

for both program points 3 and 5. Neither of these two program points are guaran-

teed to be reached, and as a result, the only liveness information we can propagate

to program point 6 is ”maybe”, which contradicts the intuition that program point 6

is definitely reached once program point 1 is reached. This argument shows that

one of the challenges in reasoning about liveness is correlating information coming

from independent program fragments. A solution to this problem is presented in the

example given in Figure 1.2. The table beside the program in Figure 1.2 annotates

each program point with a formula which states a property that holds each time the

respective program point is reached. In contrast with the classic program reasoning

setting, where properties are specified as flat, first-order formulas on program vari-

ables, our example employs parameterized formulas that provide a certain structure

to the collection of states occurring at that program point, and make the correla-

tion of liveness information between independent program fragments possible. The

parameters to our formulas are natural numbers and provide information about the

order in which states occur at a program point or, more abstractly, provide a way

of enumerating the states occurring at a program point. Lets take, for example the

formula attached to program point 1. This formula has two parameters, ν1 and ν2.

For each pair of values ν1 and ν2 we get sets of possible values for variables a and

b. This is a way of saying that the values of a and b specific to a pair of values

for ν1 and ν2 occur separately, or in isolation of other values of a and b, specific to



C
H

A
P

T
E

R
1
.

IN
T

R
O

D
U

C
T

IO
N

19

while a 6= 0 and b 6= 0 do

if a ≤ b then

b := b%a

else

a := a%b

endif

endwhile

q

q

q

q

q

q

q

q

-

-

-

-

-

-

-

-

1
λ〈ν1ν2〉.( (ν1%2 = 0 → 0 ≤ a ≤ b) ∧ (ν1%2 6= 0 → a > b ≥ 0)∧

(max(a, b) ≤ ν2) )∗

2
λ〈ν1ν2ν3〉.( ((ν1 + ν3)%2 = 0 → 0 < a ≤ b)∧

((ν1 + ν3)%2 6= 0 → a > b > 0) ∧ (max(a, b) ≤ (ν2 − ν3)) )∗

3 λ〈ν1ν2ν3〉.( (ν1 + ν3)%2 = 0 ∧ 0 < a ≤ b ≤ ν2 − ν3 )∗

4
λ〈ν1ν2ν3〉.( (ν1 + ν3)%2 = 0 ∧ (0 ≤ b < a ≤ ν2 − ν3 − 1) )∗

5
λ〈ν1ν2ν3〉.( (ν1 + ν3)%2 6= 0 ∧ 0 < b < a ≤ ν2 − ν3 )∗

6 λ〈ν1ν2ν3〉.( (ν1 + ν3)%2 6= 0 ∧ 0 ≤ a < b ≤ ν2 − ν3 − 1 )∗

7
λ〈ν1ν2ν3〉.( ((ν1 + ν3)%2 = 0 → 0 ≤ b < a ≤ ν2 − ν3 − 1)∧

((ν1 + ν3)%2 6= 0 → 0 ≤ a < b ≤ ν2 − ν3 − 1) )∗

8
λ〈ν1ν2〉.( a = 0 ∨ b = 0)∗

Figure 1.2: Greatest Common Divisor Program
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different pairs of values of ν1 and ν2. A more concrete interpretation of parameters

ν1 and ν2 would be that the program fragment is in fact part of a larger program,

and is nested inside two while loops. Then ν1, could be regarded as the number of

iterations in the outer loop, and ν2 as the number of iterations in the inner loop.

This intuition becomes more apparent in the formula attached to program point 2,

which has three parameters. Program point 2 is inside a loop, and we regard ν3

as a counter which is initialized to 0 before entering the loop, and is incremented

every time around the loop. Such formulas, when used as invariants, allow the

specification of more detailed properties. For example, this will help to carry live-

ness information through the if statements. As argued above, we cannot infer that

program points 3 and 5 are definitely reached. However, using the ν3 parameter,

we can prove that when a ≤ b at the beginning of the program, program point 3

will definitely be reached during the even iterations through the while loop body,

whereas program point 5 will be reached during the odd iterations. Propagating

this information through the branches of the if statement, we get that program

point 4 is reached during the even rounds through the loop and program point 6 is

reached during the odd rounds. As a result, we can infer that program point 7, at

the end of the if statement, is reached during all rounds. A similar argument can

be made for the case when a > b at the beginning of the program, with the odd

and even rounds switching roles. Thus, we can correlate information collected from

independent program fragments. In order for this to be achieved, we need to:

• Distinguish between two cases at the beginning of the program : either a ≤ b,

or a > b — this is the role of parameter ν1.

• Record the value max(a, b) at the beginning of the program, to be able to

show that this value grows smaller with every iteration through the loop; this
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is the role of parameter ν2.

• Model the passage of time and record some abstraction of the sequence of

events that happen during the execution of the while loop; this is the role of

parameter ν3 — we can show that max(a, b) ≤ ν2 − ν3, and that as ν3 grows,

max(a, b) grows smaller.

Using parameterized assertions is not enough to prove liveness. We need for-

mulas that are able to express how precise our knowledge about liveness is. In this

respect, we shall regard the “live” and “dead” information as more precise than the

“maybe” information. To express the fact that we have precise knowledge about

the liveness of a program point, we use formulas annotated by the “∗” symbol.

Liveness-wise, a starred formula has the meaning of either “live” or “dead”, but not

“maybe”, whereas a non-starred formula always has the meaning of “maybe.”

Our formulas are of the form λ〈ν1, . . . , νk〉.ϕ, or λ〈ν1, . . . , νk〉.ϕ
∗, where ϕ is a

first order formula in which variables ν1, . . . , νk, and program variables like a and b

appear free. Whether starred formulas are interpreted as “live” or “dead” depends

on the satisfiability of ϕ; for some values of the parameters ν1, . . . , νk there may be

a valuation assigning values to program variables that satisfies ϕ, for some other

values of the parameters such valuation may not exist. For these values of the

ν1, . . . , νk parameters for which ϕ is satisfiable, the program point at hand is “live”,

whereas for those values of the parameters for which ϕ is unsatisfiable, the program

point at hand is “dead.”

We shall now take a look at some of the formulas attached to program points in

our example, and explain their meaning and role in the liveness proof. The formula

attached to program point 1 acts as a precondition to the entire program fragment

— all other formulas are meaningful only if the formula at program point 1 has been
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satisfied upon entry into the program fragment. For a given valuation of ν1 and ν2,

this formula specifies a particular set of values for variables a and b. The intuition

behind ν1 and ν2 is that all other formulas will be true of the current values of a

and b for the same valuation6. On the other hand, as ν1 and ν2 sweep the entire set

of natural numbers, there are no positive values of a and b left out. In other words,

the formula at program point 1 specifies all natural numbers as possible values for

a and b. The parameters ν1 and ν2 act as means of providing structure for the set

of initial values of a and b. The formula at program point 1 is starred, and since

the first order formula

(ν1%2 = 0 → a ≤ b) ∧ (ν1%2 6= 0 → a > b) ∧ (max(a, b) ≤ ν2)

is satisfiable, for each valuation assigning values to ν1 and ν2 we have that program

point 1 is “live”. This is in fact an assumption under which the entire reasoning

process is performed. In order to explain our choice for structuring the initial values

of a and b in this way, we need to take a look at the if statement in our program.

For a fixed valuation of ν1 and ν2, the values of a and b throughout the entire run of

the program are such that every time we are at program point 2, we know precisely

whether program execution will advance to program point 3, or program point 5.

Thus, we can infer that program point 3 is definitely reached in the even iterations

through the while loop, whereas program point 5 is reached in the odd iterations.

As argued above, this information can be propagated to program points 4 and 6,

and then to program point 7, to show that program point 7 is ”live”. Had we not

started with the initial values of a and b structured in the way they are, we would

have only inferred “maybe” for program points 3, 4, 5, 6 and 7.

6The reader may wonder how straightforward such an intuition is. More detailed explanations

on choosing parameters ν1 and ν2 are provided in Chapter 15 and in Section 16.2.
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Looking at the formula attached to program point 2, we notice a new parameter

ν3. This parameter acts as a counter inside the loop — we can think of it as being

initialized to 0 just before entering the loop, and then incremented by 1 every time

around the loop. Based on this parameter, we can differentiate between even and

odd iterations through the loop. The formula states that during the even iterations,

if ν1 is even as well, we have that a ≤ b, while during the odd iterations we have

a > b. Since the formula at program point 3 is starred, and its embedded first order

formula

((ν1 + ν3)%2 = 0 → a ≤ b) ∧ ((ν1 + ν3)%2 6= 0 → a > b) ∧ (max(a, b) ≤ (ν2 − ν3))

if satisfiable for all valuations assigning values to ν1, ν2 and ν3, it follows that

program point 2 is reached in every iteration through the loop. The formula at

program point 3 results from propagating the formula at program point 2 through

the if condition. This formula is still starred. Taking a look at the first order

formula embedded at program point 3.

(ν1 + ν3)%2 = 0 ∧ a ≤ b ≤ ν2 − ν3

We see that it is satisfiable only for valuations of ν1, ν2 and ν3 such that (ν1 + ν3)

is even. The star annotation means in this case that program point 3 is “live” only

during the even iterations through the loop, and “dead” during the odd iterations.

However, since we know exactly when the program point is “live” or “dead,” this

formula retains the ”∗” annotation.

The formula at program point 7 comes from bringing together the formulas

at program points 4 and 6, since program point 4 is “live” on one parity of ν3,

while program point 6 is “live” on the other parity or ν3, it follows that program

point 7 is always “live”. Propagation through the branches of the if statement has
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also brought down the upper bound of max(a, b). As ν3 increases, iteration after

iteration, the upper bound on max(a, b) shall get closer and closer to 0.

Finally, we turn our attention to the formula at program point 8. This formula

is produced by existentially quantifying the parameters ν3 in the first order formula

at program point 7, and then conjoining it with the negation of the while condition.

As a result, for every valuation assigning values to ν1 and ν2, there exists a value

of ν3 such that

((ν1 + ν3)%2 = 0 → b < a ≤ ν2 − ν3 − 1)∧

((ν1 + ν3)%2 6= 0 → a < b ≤ ν2 − ν3 − 1)

∨b = 0 → a = 0 ∨ b = 0.

For this reason, the formula, at program point 8 retains its star annotation. We

notice now that the formula at program point 8 is satisfiable for every valuation

assigning values to ν1 and ν2, which entails that program point 8 is live.

Our second example uses Stenning’s protocol [Ste76] to illustrate the fact that

reasoning about the behavior of sequential programs can be useful in verifying con-

current systems. In Stenning’s protocol a sender transmits a message to a receiver

over unreliable channels. By “unreliable” we mean a channel that may lose, dupli-

cate, or reorder packets, though if a packet is sent repeatedly over the channel, that

packet cannot be lost forever. The purpose of the protocol is to achieve reliable

communication, that is, to transmit all packets exactly once, such that they would

reach the destination in the order in which they were transmitted.

The communication system has a sender and a receiver, both sender and receiver

have interfaces to the unreliable channels. Each interface consists of two processes

S1, S2, and R1, R2, respectively, each pair of processes being linked by a reliable

channel. Reliable channels are represented by thin lines in Figure 1.3. For the

sending interface, process S1 receives a datum from the sender, and creates a packet
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Figure 1.3: Communication Over Unreliable Channels Using Stenning’s Proto-

col

by pairing it up with a tag, which is an integer, distinct for every packet that is sent.

Then, S1 sends the packet across the unreliable link until it receives confirmation

from S2 that the packet has arrived to its destination. The confirmation is in the

form of the same message being received from S2. Each new packet sent by S1

will have a new tag, whose value is equal to the value of the previous tag plus

1. Thus, the tags establish the order in which the messages must be received at

the destination. An unreliable channel cannot lose the same packet forever, and

thus at least one of the packets with a given tag makes its way to R1. Process R1

reads packets from the unreliable channel, expecting for the “next” packet, that is

a packet whose tag is one greater than the previously-received-and-not-discarded

packet. Due to duplication and reordering, R1 may discard packets repeatedly
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〈1〉
nextread := 0

〈2〉
nextwrite := 0

〈3〉
recvtag := − 1

〈4〉
exptag := 0

〈5〉
while true do

〈6〉
while recvtag 6= exptag do

〈7〉
recvtag := input [nextread ]

〈8〉
nextread := nextread + 1

〈9〉
endwhile

〈10〉
exptag := exptag + 1

〈11〉
output [nextwrite ] := recvtag

〈12〉
nextwrite := nextwrite + 1

〈13〉
endwhile

〈14〉

Figure 1.4: The Receiver Process in Stenning’s Protocol

before receiving the “expected” one. Once an expected packet has been received,

that packet shall be sent to the receiver, as well as to process R2, which will confirm

the receipt of the packet to the sender by repeatedly sending it over the unreliable

channel until a new packet is received from R1. Since the unreliable link cannot

lose the same packet forever, the confirmation packet will eventually make its way

to S2, which will relay the confirmation to S1. Upon receipt of confirmation for a

given packet, S1 can engage in sending the next packet. It is rather easy to prove
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[Lyn96] that this protocol achieves reliable communication.

Our example shall focus only on the (sequential) code of process R1 (in fact, a

simplified version of R1, where the datum to be sent is always nil.) The code is

given in Figure 1.4. We note that this program fragment does not exhibit the input-

compute-output-and-terminate behavior that is typical of sequential programs. The

program fragment does not terminate, and input and output operations are spread

throughout the entire execution of the program. However, the basic principles of

verifying sequential code still do apply. As argued previously, one of the desirable

properties of verifying (sequential or concurrent) programs is compositionality, and

in the case of concurrent programs, this is achieved in an assume-guarantee fashion.

That is, for each sequential process, we assume a pattern of interaction between

processes, and we prove that, as long as all the other processes obey this pattern,

the process at hand also does. In such a case, even though input and output

operations occur throughout the entire execution of the program, we may assume

that the desired sequences of inputs and outputs are known before the program

execution starts, and then prove that the program indeed realizes the desired output

for a given input. For this reason, without any loss of expressive power, input

and output operations can be modeled as reading and writing elements from or

into consecutive positions of input/output arrays, called input and output in our

example, respectively. The program fragment starts with an expected tag of 0,

and executes forever. The inner while loop reads a packet from the input channel

(which is unreliable) and checks whether it has the expected tag. If it doesn’t, then

it discards the packet; otherwise, it outputs the packet (i.e. it sends it to R2 via the

reliable channel), and increases the expected tag by one. Using progressive program

reasoning, we can prove that, under the assumption that the input array contains

an infinite substring of all positive integers in increasing order, the output of the
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program is the sequence of all positive integers in increasing order, which establishes

the correctness of the program.

1.4 Outline of the Thesis

The thesis is structured into 16 chapters, divided into 4 parts. In Part I, Chap-

ter 2 covers the basic concepts used throughout the thesis. Chapter 3 is a survey

of related work. In Part II, we cover various programming language semantics.

Chapter 4 introduces a simple programming language, and the notion of annotated

program, which is a data structure that captures both the program, and the infor-

mation derived in the process of reasoning about the program. In Chapter 5 we

define the structural operational semantics of our language and based on this, we

introduce the trace and collecting semantics. In Chapter 6, we show that semantics

can be expressed as annotated programs, which we call configurations, and we show

that this approach fosters compositionality. In Chapters 7 and 8 we provide the

details of representing the trace and collecting semantics as configurations. Chap-

ter 9 introduces the progressive semantics as a middle-ground between the trace

and the collecting semantics, and Chapter 10, shows the semantics hierarchy of the

trace, progressive, and collecting semantics. Part III discusses progressive reason-

ing. In Chapter 11, we introduce families of sets of states as a means of semantic

approximation. Chapter 12, shows how a Hoare calculus can be built on top of

the progressive semantics. Such a calculus is parameterized by a family description

language, which is a formal-system-type language whose formulas are interpreted

as families. Chapter 13, shows an example of a family description language, and

the resulting progressive Hoare calculus. Chapter 14 introduces symbolic configu-

ration as means of organizing the information produced throughout the program
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reasoning process and shows how to perform strongest post-condition propagation.

Chapter 15 introduces conditional reasoning as a means to realize an incremental

and compositional program reasoning framework. In Part IV, Chapter 16 discusses

future work and concludes.



Chapter 2

Underlying Technologies

During the past decade, a lot of progress has been made, both in methodological

tools that enhance the intellectual ability of coping with complex software systems,

and mechanical tools to help the programmer to reason about programs. Mechanical

tools for program verification started by executing or simulating the program in as

many environments as possible. However, debugging of compiled code or simulation

of a model of the source program hardly scale up, and often offer a low coverage

of dynamic program behavior. Formal program verification methods attempt to

mechanically prove that program execution is correct in all specified environments.

This includes program verification methods, program analysis, and model checking.

Since program verification is undecidable, program reasoning methods are either

partial or incomplete. The undecidability or complexity is always handled using

some form of approximation. This means that the mechanical tool will sometimes

suffer from practical time and space complexity limitations, rely on finiteness hy-

pothesis, or provide only semi-algorithms, require user interaction, or be able to

consider restricted forms of specification or programs only.

In this chapter we provide a succinct coverage of the underlying program rea-

30
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soning technologies: program verification and abstract interpretation.

2.1 Program Verification

The area of program verification has started with the publication of [Flo67]. A

formal foundation to this field has been given by the publication of Hoare logic

in [Hoa69]. Hoare logic is a formal system for reasoning about formulas called

Hoare triples, which are able to express the correctness of programs. The formal

system consisted of a set of axioms for proving the partial correctness of programs

constructed using assignments, sequential composition, conditional and while state-

ments. Soundness and relative completeness proofs for this logic were given for the

first time in [Coo81].

Hoare’s approach has received a great deal of attention ever since its intro-

duction, and has had a significant impact on methods both for designing and for

verifying programs. It owes its success to three factors. Firstly, it is state-based,

that is, characterizes programming constructs as state transformers, and therefore,

applies in principle to every such construct. Secondly, it is syntax-directed, and

can, therefore, also be regarded as a design calculus. Thirdly, it has a very simple

way of characterizing sequential composition and iteration.

Hoare logics have been formulated for a wide range of, sometimes application-

specific, languages, ranging from pattern matching to graphical languages, and with

the ability to express properties ranging from fault tolerance to real time. Exhaus-

tive reviews of this topic are presented in [Apt81, Dah92].

Closely related to Hoare logics are calculi for predicate transformers. In this

approach, one characterizes the semantics of a programming language by functions

mapping predicates to predicates. This approach was introduced by Dijkstra in
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[Dij75].

A more compact way of expressing Hoare logic proofs are the proof outlines

introduced in [Owi75], and formalized in [Apt83].

The set of rules for the classic (partial correctness) Hoare logic for a simple im-

perative language are given in Figure 2.1. Each formula of the form {F} P {F ′}

has three components: a precondition F , a program fragment P, and a postcon-

dition F ′. The pre- and post-conditions are typically first order formulas in which

program variables appear free. Then, these conditions are satisfied by a program

state σ if by substituting the values of the program variables in a formula, the for-

mula becomes true. The formula {F} P {F ′} is called a Hoare triple, and has the

following partial correctness interpretation: if the program fragment P is started

in a state that satisfies F , then, if and when the program fragment terminates,

the terminating state of P satisfies F ′. This calculus makes it possible to verify

safety properties, that is, properties that are guaranteed to be satisfied if and when

execution reaches that program point. Safety properties do not guarantee that the

program will perform any useful computation, since they cannot guarantee that a

program point is reached at all. Safety properties, however, guarantee that “nothing

bad” will happen, in the sense that the negation of the safety formula F cannot be

satisfied by any state during the execution of the program.

In order to prove total correctness, the Hoare rules have been augmented such

that termination of a program fragment could be inferred. The augmented rules are

given in Figure 2.2. The while rule (t-while) is augmented with measure t, whose

value before the execution of the loop is equal to that of the logical variable z, which

is a variable that does not appear in the program fragment at hand, and therefore

cannot be modified during execution. One execution of the while loop body is

guaranteed to decrease the measure. This is ensured by imposing the condition
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{F1} P {F2}

{F ′
1} P {F ′

2}

F ′
1 → F1

F2 → F ′
2

(p-conseq)

{F} skip {F}
(p-skip)

{F [E/x]} x := E {F}
(p-assign)

{F} P1 {F ′} {F ′} P2 {F ′′}

{F} P1 # P2 {F ′′}
(p-seq)

{F ∧ C} Pc {F1} {F ∧ ¬C} Pa {F2}

{F} if C then Pc else Pa endif {F1 ∨ F2}
(p-if)

{F ∧ C} P {F}

{F} while C then P endwhile {F ∧ ¬C}
(p-while)

Figure 2.1: Classic Hoare Logic for Partial Correctness

{F} P {F ′} t < z at the end of the while loop body. However, the loop invariant

F implies that t is always positive, and therefore, the loop cannot run forever. The

ability to infer termination makes it possible to prove liveness properties, which

guarantee that a program point is definitely reached.

As far as sequential programs are concerned, most often the properties one would

be interested in are related to total correctness. Most sequential programs are ex-

pected to terminate, and upon termination, to deliver a certain result that can be

expressed as a safety property. However, recent embedded and reactive systems

related works [HR98, AHH93, HTZ96] are dealing with the verification of sequen-

tial programs that operate in a concurrent context. Such programs access shared

resources and are expected to follow a certain policy in order to operate correctly.
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In such a context, it is usually sufficient to verify that each sequential program in

the system complies with the given policy, without regard to the concurrent con-

text in which the program executes. However, since such programs do not usually

terminate, and since the policy is expressed in a trace-based manner, rather than

a state based manner, the usual total correctness approach to verification is not

very useful in this context. The concepts of safety, liveness and progress, typical of

concurrent program verification, must now be brought into the realm of sequential

program reasoning, which is the topic of this work.

When speaking about liveness the typical understanding is that, once a live-

ness property is specified, the correctness of that property entails that at least one

instance of the behaviors or states satisfying the property occurs during program

execution. In this work, we shall also deal with a different kind of liveness proper-

ties, which we call explicit liveness. The correctness of an explicit liveness property

implies that all behaviors or states satisfying the property are encountered during

program execution. An example of such a property is that, given a variable x in

a program P, the number of distinct values that this variable takes at a specific

program point is a number k. Since the program may not terminate, proving such

a property may not be done by proving some safety property, and then termina-

tion. Proving explicit liveness properties is, throughout this work, the vehicle we

use to prove weaker liveness properties in a parameterized manner; such parame-

tericity will ensure that the proofs we produce are generic and allow their use in a

compositional framework.

In conclusion, program verification has the main advantage that the verifier or

checker employed avoids fixpoint computations. So the constraints or equations

corresponding to the verification conditions are not solved. This means that an

inductive argument has to be provided, typically by the user. Since the implication



CHAPTER 2. UNDERLYING TECHNOLOGIES 35

[F1] P [F2]

[F ′
1] P [F ′

2]

F ′
1 → F1

F2 → F ′
2

(t-conseq)

[F ] skip [F ]
(t-skip)

[F [E/x]] x := E [F ]
(t-assign)

[F ] P1 [F ′] [F ′] P2 [F ′′]

[F ] P1 # P2 [F ′′]
(t-seq)

[F ∧ C] Pc [F1] [F ∧ ¬C] Pa [F2]

[F ] if C then Pc else Pa endif [F1 ∨ F2]
(t-if)

[F ∧ C ∧ t = z] P [F ∧ t < z]

[F ] while C then P endwhile [F ∧ ¬C]
F → t ≥ 0 (t-while)

Figure 2.2: Hoare Logic for Total Correctness

involved in the verification condition is itself undecidable, the proof verification can

only be partially automated, even though the solution to the equations or constraints

is provided. Therefore interaction of the programmer with the prover is ultimately

needed, and that is somewhat a shortcoming, in particular because the size of the

proof is often exponential in the program size.

An alternative [LN98] consists in restricting the form of predicates considered by

the prover. This can cause unsound verification condition simplifications, essentially

to make the verifier simpler. Because theorem provers are driven by unformalized

heuristics, and these heuristics and their interactions are changed over time for

improving proof strategies, theorem provers are often unstable over time, in the

sense that proof strategies get changed so that old proofs no longer work. Another
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weakness which makes interaction with other formal methods somewhat difficult is

the uniform encoding of properties as syntactical terms or formulas. It follows that

the theorem prover has ultimately to be extended with program analyzers, model

checkers, typing, among others [Sha96, SSJ+96], in particular for mechanizing and

combining abstractions. We hope that the present work makes a contribution in

that direction as well.

2.2 Abstract Interpretation

Since program verification deals with properties, or more precisely, sets of objects

with these properties, abstract interpretation can be formulated in an application-

independent setting, as a theory for approximating sets and set operations. A

more restricted understanding of abstract interpretation is to view it as a theory of

approximation of the behavior of a dynamic discrete system. Since such behaviors

can be characterized by fixpoints [CC79a, Tar55], an essential part of the theory

provides constructive and effective methods for fixpoint approximation and checking

by abstraction [CC79b, CC92c].

The semantics of a programming language defines the semantics of any program

written in this language. The semantics of a program provides a formal mathemat-

ical model of all possible behaviors of a computer system executing this program

in interaction with any possible environment. We typically express (abstractions

of) a computation by means of a monotonic mapping, typically called a semantic

transformer, whose application represents (an abstraction of) a computation step.

We shall first introduce the requisite concepts and results concerning monotonic

mappings and their fixed points, as they are given in [Llo84].

A relation ≤ on a set S is a partial order if it is reflexive, transitive and antisym-
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metric. If a partial order ≤ is defined on a set S, we say that (S,≤) is a partially

ordered set, or a poset. We will also lift partial orders to mappings. Given two

mappings T1 : S 7→ S and T2 : S 7→ S, we say that T1 ≤ T2 if T1(x) ≤ T2(x) for all

x ∈ S.

If (S,≤) is a poset, we say that a ∈ S is an upper bound of a set X ⊆ S if x ≤ a

for all x ∈ X. We also say that b ∈ S is a lower bound of a set X ⊆ S if b ≤ x

for all x ∈ X. Moreover, we say that an element M ∈ S is the least upper bound

of a subset X of S if for all upper bounds a we have M ≤ a. If such an element

M exists, we denote it by lub(X). Similarly, we say that an element m ∈ S is the

greatest lower bound of a subset X of S if for all lower bounds b we have b ≤ m. If

such an element m exists, we denote it by glb(X).

A poset L is a complete lattice if lub(X) and glb(X) exist for every subset X

of L. We let > denote the top element lub(L), and ⊥ denote the bottom element

glb(L). We also say that a subset X of a complete lattice L is directed if every finite

subset of X has an upper bound in X.

If L is a complete lattice, a mapping T : L 7→ L is monotonic if T (x) ≤ T (y)

whenever x ≤ y. We say that T is continuous if T (lub(X)) = lub(T (X)), for every

directed subset X of L. It is immediate to prove that a continuous mapping is also

monotonic.

Let L be a complete lattice and T : L 7→ L be a mapping. We say that a ∈ L

is the least fixed point of T if a is a fixed point (that is, T (a) = a) and for all fixed

points b of T , we have a ≤ b. An element c ∈ L is a postfixpoint of the operator T

if T (c) ≤ c.

2.1 Proposition Let L be a complete lattice and T : L 7→ L be a monotone

mapping. Then, lfp(T ) exists and is equal to glb({X |T (X) ⊆ X})
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Proof: A proof can be found in [NNH99]. �

We also require the concept of ordinal powers of T . First we recall some elemen-

tary properties of ordinal numbers. The number 0 is represented by ∅. Then we

define 1 = {∅} = {0}, 2 = {∅, {∅}} = {0, 1}, 3 = {∅, {∅}, {∅, {∅}}} = {0, 1, 2}, and

so on. The first infinite ordinal is ω = {0, 1, 2, · · ·}, the set of all natural numbers.

We will denote finite ordinals by the letters n,m, · · ·, while arbitrary ordinals will

be denoted by the Greek letter β, possibly subscripted. We can specify an ordering

< on the collection of all ordinals by defining n < m if n ∈ m. For example, n < ω,

for all finite ordinals. We will normally write n ∈ ω rather than n < ω. If β is an

ordinal, the successor of β is the ordinal β + 1 = β ∪ {β}, which is the least ordinal

greater than β. The ordinal β + 1 is then said to be a successor ordinal. If β is a

successor ordinal, say β = β ′ + 1, we denote β ′ by β − 1. An ordinal β is a limit

ordinal if it is not the successor of any ordinal. The smallest limit ordinal, apart

from 0, is ω.

We will also require the principle of transfinite induction, which is as follows.

Let P(β) be a property of ordinals. Assume that for all ordinals β0, if P(β1) holds

for all β1 < β0, then P(β0) holds. Then P(β) holds for all ordinals β.

We now define the ordinal powers of T .

2.2 Definition Let L be a complete lattice and T : L 7→ L a mapping. Then we

define:

T ↑ 0 = ⊥.

T ↑ β = T (T ↑ (β − 1)), if β is a successor ordinal.

T ↑ β = lub({T ↑ β ′ |β′ < β}), if β is a limit ordinal.

�
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2.3 Proposition Let L be a complete lattice and T : L 7→ L be continuous. Then

lfp(T ) = T ↑ ω.

Proof: A proof can be found in [Llo84]. �

Let S be a set, T : 2S 7→ 2S a continuous mapping defined on the complete lattice

(2S ,⊆), and A a subset of 2S . We denote by T ∪ A the mapping λX . T (X) ∪ A.

2.4 Proposition Consider a set S, a subset A of S, and a continuous mapping

T : 2S 7→ 2S . The mapping T ∪ A is continuous.

Proof: It is easy to prove that the composition of two continuous mappings

is continuous, and that for any A ⊆ S, the mapping λX .X ∪ A is continuous.

Therefore, if T is continuous, so is T ∪ A. �

It is often very convenient to express the semantics of a programming language as

the fixed point of some operator. Program reasoning techniques either compute an

element of the lattice that is larger than the semantics (analysis), or attempt to prove

that a given element is larger than the semantics (verification). Proposition 2.1

shows that post-fixpoints are larger than the least fixed point for a continuous

operator, and therefore it is often convenient to prove that a desired approximation

of the semantics is a postfixpoint.

2.5 Remark Given a complete lattice L, a continuous operator T : L 7→ L and

a set A ⊆ L, it can be easily proved that (T ∪ A) ↑ n = T n(A). It also follows

immediately that lfp(T ∪ A) = T ω(A), and that lfp(T ∪ A) is a fixpoint of T . �

2.6 Proposition Let L be a complete lattice and T1, T2 two continuous mappings

on L such that T1 ⊆ T2. Then, any post-fixpoint of T2 is a post-fixpoint of T1.
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Proof: Let X be a postfixpoint of T2. Then, T2(X) ⊆ X. Also, from the hypothesis

we have T1(X) ⊆ T2(X). The transitivity of the ⊆ relation entails T1(X) ⊆ X,

which proves that X is a postfixpoint of T1. �

The following remark shall be useful in Section 14.3, where we discuss propaga-

tion for program reasoning.

2.7 Remark Let L be a complete lattice, and T : L 7→ L a monotone operator.

Then, any element X ∈ L is a postfixpoint of the operator T ∩ I. �

Next we discuss Galois connections. A Galois connection is a particular corre-

spondence between two partially ordered sets, originally invented by Galois [Bir40]

for the study of symmetry groups. In program reasoning, whose object of study

could be summarized as “approximating program properties”, Galois connections

are useful in designing sets of approximations, or abstract domains, and provid-

ing an interpretation to every approximation. The theory of abstract interpreta-

tion [CC77a, CC92c] provides a framework for the design of program analyzers

whose abstract domain is Galois connected with the concrete domain of discourse.

Cousot [Cou02] has also shown that all semantics can be hierarchized using a Galois-

connection-based partial order.

2.8 Definition Two complete lattices (L,⊆
L

) and (M,⊆
M

) are Galois connected

iff there exist two monotone mappings α : L 7→ M and γ : M 7→ L such that

λx . x ⊆
L

γ ◦ α and α ◦ γ ⊆
M

λy . y. �

We call α the abstraction function, and γ the concretization function. We rep-

resent the fact that the lattices (L,⊆
L

) and (M,⊆
M

) are Galois connected via the

mappings α and γ by (L,⊆
L

)
γ

�
α

(M,⊆
M

).
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2.9 Definition A Galois connection (L,⊆
L

)
γ

�
α

(M,⊆
M

) is a Galois insertion if

λx . x ⊆
L

γ ◦ α and α ◦ γ = λy . y. �

2.10 Proposition Let (L,⊆
L

)
γ

�
α

(M,⊆
M

) be a Galois connection, and f : L 7→ L

and g : M 7→ M two monotone mappings such that α ◦f ◦γ ⊆
M

g. Then, lfp(f) ⊆
L

γ(lfp(g)) and α(lfp(f)) ⊆
M

lfp(g).

Proof: A proof can be found in [NNH99]. �

Given two lattices (L,⊆L) and (M,⊆M ), and a mapping α : L 7→ M , we say

that α is strict if α(⊥L) = ⊥M . The following proposition states the Kleenian

fixpoint transfer theorem.

2.11 Proposition Let (L,⊆
L

)
γ

�
α

(M,⊆
M

) be a Galois connection, such that α

is strict, and consider two continuous mappings f : L 7→ M and g : M 7→ L that

satisfy the commutation condition g ◦ α = α ◦ f . Then, lfpM (g) = α(lfpL(f).

Proof: A proof can be found in [Cou02]. �

A fixpoint semantics specification is a pair (L, T ), where L is a complete lattice

called the semantic domain, and T : L 7→ L is a continuous mapping called the

semantic transformer. The semantic transformer captures (an abstraction of) a

single computation step of that machine or automaton. Therefore, we shall be able

to express any of the semantics of a programming language as the least fixpoint of

some semantic transformer T . This property is very important, because by further

abstracting the semantic transformer we can create means of analyzing or verifying

programs in finite time.
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A programming language semantics is more or less precise according to the

considered observation level of program execution [AP81]. This intuitive idea

can be formalized by abstract interpretation [Cou02] and applied to different

languages [Gia96], including for proof methods [Cou90, CGLV03]. The the-

ory of abstract interpretation formalizes this notion of approximation and ab-

straction in a mathematical setting which is independent of particular applica-

tions. In particular, abstractions must be provided for all mathematical con-

structions used in semantic definitions of programming and specification languages

[CC79b, Mar90, Nie82, RK92, Sch95, CC92c].

An abstract domain is an abstraction of the concrete semantics in the form

of abstract properties and abstract operations. Abstract domains for complex ap-

proximations are designed by composing abstract domains for simpler components

[CC79b]. If the approximation is coarse enough, the abstraction of a concrete se-

mantics can lead to an abstract semantics which is less precise, but is effectively

computable. By effective computation of the abstract semantics, the computer is

able to analyze the behavior of programs and of software before and without execut-

ing them [CC77c]. Abstract interpretation algorithms provide approximate methods

for computing this abstract semantics. The most important algorithms in abstract

interpretation are those providing effective methods for the exact or approximate

iterative resolution of fixpoint equations [CC77a].

The abstraction idea and its formalization are equally applicable in other areas

of computer science such as proof checking [GV96], automated deduction, theorem

proving [FT89], etc.

There is a wealth of program semantics that have been used to express various

aspects of the behavior of the program during its execution. Our finer grain of

observation of program execution, that is the most precise of the semantics that
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we will consider, is that of a trace semantics [Cou01, Cou02]. An execution of

a program for a given specific interaction with its environment is a sequence of

states, observed at discrete intervals of time, starting from an initial state, then

moving from one state to the next state by executing an atomic program step or

transition and either ending in a final regular or erroneous state or non-terminating,

in which case the trace is infinite. The relational semantics [HL74a, MT91] can be

obtained from the trace semantics by replacing every trace by a pair of the initial

and final state of the trace. For infinite trace, the final state is denoted by ⊥.

The denotational semantics [Ten76] can be obtained from the relational semantics

by defining a partial mapping that returns the final state for every initial state.

Of course, the mapping is partial since a program does not necessarily terminate

for every initial state. The abstraction from relational to big-step operational, or

natural semantics simply consists in forgetting everything about non-termination.

The small-step operational, or transition semantics consists of collecting the set

of all pairs of states that appear consecutively in a trace. A further abstraction

consists in collecting all states appearing along some finite or infinite trace. This

is the partial correctness semantics [Nau66, Cou90, Flo67, Hoa69, HW72] or the

static/collecting semantics [CC77a] for proving invariance properties of programs.

There is a wide range of effective abstractions used in practice. We mention

the following categories: non-relational, relational, and symbolic abstractions. The

non-relational, attribute-independent, or Cartesian abstractions [CC79b] consist in

ignoring the possible relationships between the values of program variables. It

follows that a set of pairs is approximated through projection by a pair of sets. Each

such set may still be infinite, and in general, not exactly computer representable,

and therefore, further abstractions may be needed. The sign abstraction [CC79b]

consists in replacing integers by their signs, thus ignoring their absolute value. The
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interval abstraction [CC77c, CC77a] is more precise, since it approximates a set of

integers by its minimal and maximal values. The congruence abstraction [Gra97]

maps an integer into its remainder modulo n.

Relational abstractions are more precise than non-relational ones [JM80] in that

some of the relationships between values of the program states are preserved by the

abstraction. For example, the polyhedral abstraction [CH78] approximates a set of

tuples of integers by their convex hull.

Symbolic abstractions approximate the symbolic structures manipulated by pro-

grams. Among such structures, we mention control structures (control graphs), data

structures (search trees, pointers) [Ven99], communication structures [Ven98, Fer00,

HJNN99], etc.

A compromise between semantic expressibility and algorithmic efficiency was

recently introduced by [Mau00], using Binary Decision Graphs and Tree Schemata

to abstract infinite sets of infinite trees.



Chapter 3

Related Work

The work in this thesis has been influenced by concepts, techniques, algorithms,

and calculi developed in the areas of program analysis, model checking, verification

condition generators, proof carrying code, and higher order logic. In this chapter

we review related work that had a more or less direct impact on the development

of this research.

3.1 Program Analysis

Program analysis is a termed coined to represent a wealth of techniques for predict-

ing computable approximations to the set of values or behaviors arising dynamically

at run-time during the execution of a program. The initial application of program

analysis was to allow compilers to generate optimized code, for example, by avoid-

ing redundant computations, or reusing available results, or performing constant

propagation, that is, replacing expressions by their value if that value is constant

and known at compile time. Among the more recent applications are various kinds

of code certification, for example, to detect bugs, or to reduce the likelihood of

malicious, or unintended behavior.

45
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The literature on program analysis is quite extensive. In this section, we shall

provide a short review of various approaches, without aiming to be exhaustive. In

the previous chapter we have given a more detailed overview of abstract interpre-

tation, which is one of the multitude of program analysis approaches.

There are two main themes behind all approaches to program analysis. The

first one is that in order to remain computable, one can only provide approximate

answers. The other one is that all program analyzes are semantics-based; this

means that the information obtained from the analysis can be proved to be correct

with respect to a semantics of the programming language. In practice, the program

analyzer contains a generator reading the program text and producing equations

or constraints whose solution is a computer representation of the program abstract

semantics. A solver is then used to produce solutions to these abstract equations

or constraints. A popular resolution method is to use iteration. If the iteration

doesn’t reach a fixpoint in a finite number of steps, or if the number of steps is

too large to be afforded, the convergence may have to be ensured or accelerated

using a widening operator that overestimates the solution in finitely many steps,

followed by the application of a narrowing operator, to improve the approximation

[CC77a, CC92a]. In abstract compilation, the generator and solver are directly

compiled into a program which directly yields the approximate solution [MRB98].

This solution is an approximation of the abstract semantics which is then used by a

diagnoser to check the specification. Because of the loss of information, the answer

given by the diagnosis process is on of yes, no, unknown or irrelevant. Besides

diagnosis, program analysis is also used for other applications in which case the

diagnoser may be replaced by an optimizer, in the case of compile-time optimization,

a program transformer, in the case of partial evaluation [Jon97], and so on.

The main advantage of program analysis is that it is completely automatic: It
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has been applied to pieces of code comprising more than one million lines with-

out user interaction. The abstractions are chosen to be of wide scope without

specialization to a particular program. Abstract domains can be designed and im-

plemented into libraries which are reusable for different programming languages.

The objective is to discover invariants that are likely to appear in many programs

so that the abstraction would be widely reusable and the program analyzer be of

economic interest. The drawback of this general scope is that the considered ab-

stract specifications and properties are often simple, mainly concerning elementary

safety properties such as absence of run-time errors. For example non-linear ab-

stractions of sets of points are very difficult and very few mathematical results are

of practical interest and directly applicable to program analysis [YcFG+00]. Check-

ing termination and similar liveness properties is trivial with finite state systems,

at least from a theoretical if not algorithmic point of view (e.g. finding loops in

finite graphs). The same problem is much more difficult for infinite state systems

because of fairness or of potentially infinite data structures, as considered in partial

evaluation [JGS93]. The existence of data structures of unbounded size may lead

to infinite cycles and hence termination or inevitability proofs require the discovery

of variant functions on well-founded sets, which is very difficult in full generality

[CC94]. Even when considering restricted simple abstract properties, the semantics

of real-life programming languages is very complex, due to aspects like recursion,

concurrency, modularity, etc., and as a result, so is the corresponding abstract in-

terpreter. The abstraction of such a semantics, and therefore the design of the

analyzer is mostly manual, and typically beyond the ability of casual programmers

or theorem provers. The considered abstractions must have a large scope of appli-

cation and must be easily reusable to be of economic interest. From a user point of

view, the results of the analysis have to be presented in a simple way, for example by
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pointing at errors only or by providing abstract counter-examples, or less frequently

concrete ones.

There are four main approaches to program analysis: data flow analysis [CC79b,

CC00b, Sch98a]; constraint-based analysis [CC95, Aik99, FA97, Hei92a, Hei92b,

Hei94, Hei95], type inference [Cou97], and abstract interpretation [CC77a]. It has

been applied to procedural languages [Bou90, Bou92], object-oriented languages

[HT98a], functional languages [Hen91, HS95, NS95, NN88, Pal93] logic engages

including Prolog [CC92b, Deb94, BGL93, BCM95, CGS89, CDG93a], constraint

logic languages [GDL93, Han93, Han95, MS94], and concurrent constraint logic

languages [CFMW93].

There is a very extensive range of applications of program analysis, among which

we mention program optimization [CGS94, CS92] and transformation [Nie85], alias

analysis [DMW98], abstract debugging, testing and verification [CGLV99, Cou81,

CC00a, FFK+96], cache and pipeline behavior prediction [FMWA99], dependency

analysis [Blu99], path/trace analysis [CL96], closure analysis [Pal95], control flow

analysis [DP97], compile-time garbage collection [Hug92], binding time analysis

[Hen91, HS95, NN88], strictness analysis [CC93b, Con94, DW90, Hen94, HY86,

Myc80, Nie87, NN93], occurs check reduction [Søn86], groundness analysis [MS93],

sharing analysis [CS98].

3.2 Model Checking

Model checking [CE81, MOSS99] has been very successful for the verification

of hardware [BCRZ99], communication protocols [CJM00, BG99], and real-time

[HNSY92] [CCMM95] processes. As far as software systems are concerned, the

question for the next decade is whether model checking can be extended to the veri-
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fication of very large real-life programs. The idea behind software model-checking is

that first a model of the program must be designed, typically as a manually designed

abstraction of the program semantics, which could be in the form of a transition

system similar to a small step operational semantics. Then a specification of the pro-

gram must be provided by the user in a very expressive temporal logic [BAMP83],

A model checker can then check the specification by exhaustive search or symbolic

exploration of the state space. The spectacular success of model checking followed

from the clever design of data structures as BDDs [Ake78] or QDDs [BGWW97],

and algorithms as minimal state graph generation [BFH91], fixpoint computation

or SAT [BCCZ99, BCC+99], for representing very large sets of booleans and their

transformations. The approximation is that the model must be finite-state or some

form of abstraction must be used [PDD97] to reduce the verification problem to

finite state. Another trend in finite-state model checking is to consider safety prop-

erties only and polyhedra abstractions, with variants (e.g.Presburger arithmetic

[GBP97]). This is a direct application of polyhedra static program analysis [CH78],

including the use of widenings.

Although model checking gained a factor of 100 in 10 years, it is very difficult

to scale up because of the state explosion problem. So, the necessary restriction to

available computer resources often reduces the model checker from formal verifica-

tion to debugging on part of the state space. Since the model must ultimately be

finite to allow for exhaustive search/symbolic exploration, abstraction is mandatory,

which is a very difficult task to do manually. Moreover, some forms of abstractions

— such as interval [CC77a] or polyhedra [CH78] abstractions — do not abstract con-

crete transition systems into abstract transition systems so that the model checker

may not be reusable in the abstract [CC99]. It follows that abstractions are difficult

and not reusable, hence not cost effective.
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3.3 Verification Condition Generators

Given a Hoare logic for a particular programming language, it is possible to par-

tially automate the process of applying the rules of the logic to prove the correctness

of a program. Generally this process is guided by the structure of the program,

applying in each case the Hoare logic rule for the command which is the major

structure of the phrase under consideration. A verification condition generator

[ILL73, Rag73, Gra87, Gor88, Age92, Mel94, CM92, CRR+93, HM98, HM94] takes

a suitably annotated program and its specification, and traces a proof of its correct-

ness, according to the rules of the language’s axiomatic semantics. Each command

has its own appropriate rule which is applied when that command is the major struc-

ture of the current proof goal. This replaces the current goal by the antecedents

of the Hoare rule. These antecedents then become the subgoals to be resolved by

further applications of the rules of the logic. Verification condition generators were

hailed, in their very beginning, as an answer to the difficulty of proving programs

correct. This hope waned over time, however. First of all, it was discovered that for

many simple programming languages, the work done by the verification condition

generator was mostly trivial and not hard to do by hand. Then, even after the ver-

ification condition generator had done its work and reduced the problem of proving

the program to the problem of proving the verification conditions, those verification

conditions were not always easy to prove, and could contain the bulk of the neces-

sary effort of the entire proof. An additional feature that was not discussed as much

was the fact that for the most part, these verification condition generators were not

themselves verified. This meant that any proof using and relying on these tools

might not be sound, even if all the verification conditions were correctly proved.

[Rag73] is a notable exception to this, far ahead of its time. Finally, a verification
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condition generator is usually based on an axiomatic semantics for the programming

language. When these programming languages were extended to include procedure

calls (an obvious necessity), a disturbing number of the rules proposed for procedure

calls turned out to be unsound. It became evident that the area of procedure calls

was more complicated than had originally appeared. In recent years, there have

been several shallow embeddings of programming languages in the theorem prov-

ing environment, including the creation of verification condition generators. These

have taken the form of tactics, which in general reduce a current goal to be proved

to a sufficient set of subgoals. In contrast to the traditional verification condition

generators created as stand-alone programs, these verification condition generators

had their soundness secured by the inherent security of the system itself. This was

a very significant advantage. No verification of the verification condition generator

itself was necessary, as every application of the tactic would prove all necessary

subsidiary theorems as part of the process. However, this also was a weakness of

the verification condition generator, because it required that every proof be carried

out at the semantic level, instead of the syntactic manipulations that were simpler

and that were the traditional work of verification condition generators. Also, these

semantic verification condition generators required an additional degree of annota-

tion and specification from the user beyond what had been required by the syntactic

verification condition generator.

3.4 Extended Static Checking

The extended static checking system [Lei01, FLL+02] is a checker aimed at statically

detecting simple errors in programs written in Modula-3 and Java: null dereferences,

out-of-bounds array indices, or simple deadlocks or race conditions in concurrent
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programs. The checker attempts to achieve these goals using a quite general pro-

gram verification framework. The user annotates the program being checked with

specifications, and a verification condition generator transforms the program and

specification into a logical formula whose validity ensures the absence of the errors

being considered. This formula is passed to the automatic theorem prover “Sim-

plify,” developed expressly for the extended static checker. If the prover is unable

to prove that the errors do not occur, it returns an assignment of values to pro-

gram variables that falsifies the formula. This information can be presented to the

programmer, giving information about the error. The aim of the authors of this

system is that this kind of limited verification will be seen in the future much as

type-checking is viewed today.

The specification language of the checking system allows several kinds of invari-

ants. The methodology for generating verification conditions requires the program-

mer to annotate most loops with loop invariants. Users may enter assertions that a

predicate must hold at a particular point in a program. The programmer may also

direct the checker to assume without proof that a predicate holds at some point.

Finally, an invariant expresses a predicate about some state variables that must be

preserved by all procedures that modify those variables. The more novel aspects

of the specification language deal with abstraction. Modula-3 and Java are modu-

lar languages; their interfaces are supposed to hide implementation details, allow-

ing a range of implementation choices and protecting clients from implementation

changes. The interface allows the declaration of abstract variables that represent

the manipulated state, and the specification of procedures in terms of these ab-

stract variables. The implementation specification will give an abstraction function

to connect the abstract variables with the concrete implementation.



CHAPTER 3. RELATED WORK 53

3.5 Proof Carrying Code

Proof-carrying code [Nec97a] is a technique for safe execution of untrusted code.

The basic idea is to require the code producer to generate a formal proof that the

code meets the safety requirements set by the code receiver. The code receiver can

easily check the proof by using a simple and easy-to-trust proof checker.

PCC has many uses in systems whose trusted computing base is dynamic, either

because of mobile code or because or regular bug fixes or updates. Examples include,

but are not limited, to extensible operating systems, Internet browsers capable of

downloading code, active network nodes and safety-critical embedded controllers.

3.6 Higher Order Logic

The family description and assertion languages we use in the later chapters of this

thesis have been largely inspired by Higher Order Logic [GM93]. Higher Order

Logic (HOL) is a mechanical proof assistant that mechanizes higher order logic, and

provides an environment for defining systems and proving statements about them.

It is secure in that only true theorems may be proved, and this security is ensured

at each point that a theorem is constructed. HOL has been applied in many areas.

The first and still most prevalent use is in the area of hardware verification, where

it has been used to verify the correctness of several microprocessors. In the area of

software, has been applied to Lamport’s Temporal Logic of Actions (TLA), Chandy

and Misra’s UNITY language, Hoare’s CSP, and Milner’s CCS and π-calculus. HOL

is one of the oldest and most mature mechanical proof assistants available, roughly

comparable in maturity and degree of use with the Boyer-Moore Theorem Prover

[BM90]. Many other proof assistants have been introduced more recently that in

some ways surpass HOL, but HOL has one of the largest user communities and
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history of experience.

Higher Order Logic is a version of predicate calculus which allows quantification

over predicate and function symbols of any order. It is therefore an ω-order logic,

according to Andrews [And86]. In such a type theory, all variables are given types,

and quantification is over the values of a type. Type theory differs from set theory in

that functions, not sets, are taken as the most elementary objects. Some researchers

have commented that type theory seems to more closely and naturally parallel the

computations of a program than set theory. A formulation of type theory was

presented by Church in [Chu40]. Andrews presents a modern version in [And86]

which he names Q0. The logic implemented in the Higher Order Logic system is

very close to Andrews’ Q0. This logic has the power of classical logic, with an

intuitionistic style. The logic has the ability to be extended by several means,

including the definition of new types and type constructors, the definition of new

constants (including new functions and predicates), and even the assertion of new

axioms.

The HOL logic is based on eight rules of inference and five axioms. These are

the core of the logical system. Each rule is sound, so one can only derive true results

from applying them to true theorems. As the system is built up, each new inference

rule consists of calls to previously defined inference rules, ultimately devolving to

sequences of these eight primitive inference rules. Therefore the proof system is

fundamentally sound, in that only true results can be proved. HOL provides the

ability to assert new axioms; this is done at the user’s discretion, and he then bears

any responsibility for possible inconsistencies which may be introduced.

As a mechanical proof assistant, the HOL system provides the user a logic that

can easily be extended, by the definition of new functions, relations, and types.

These extensions are organized into units called theories. Each theory is similar to
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a traditional theory of logic, in that it contains definitions of new types and con-

stants, and theorems which follow from the definitions. It differs from a traditional

theory in that a traditional theory is considered to contain the infinite set of all

possible theorems which could be proved from the definitions , whereas a theory in

HOL contains only the subset which have been actually proved using the given rules

of inference and other tools of the system. When the system it started, it presents to

the user an interactive programming environment using the programming language

ML. The user types expressions in ML, which are then executed by the system, per-

forming any side effects and printing the value yielded. The language contains the

data types term and thm, which represent terms and theorems in the logic. These

terms represent a second language, called the object language. ML functions are

provided to construct and deconstruct terms of the language. Theorems, however,

may not be so freely manipulated. Of central importance is the fact that theorems,

objects of type thm, can only be constructed by means of the eight standard rules

of inference. Each rule is represented as a function. Thus the security of HOL is

maintained by implementing thm as an abstract data type. Additional rules, called

derived rules of inference, can be written as new functions. A derived rule of infer-

ence could involve thousands of individual calls to the eight standard rules. Each

rule typically takes a number of theorems as arguments and produces a theorem as

a result. This methodology of producing new theorems by calling functions is called

forward proof. One of the strengths of is that in addition to supporting forward

proof, it also supports backwards proof, where one establishes a goal to be proved,

and then breaks that goal into a number of subgoals, each of which is refined further,

until every subgoal is resolved, at which point the original goal is established as a

theorem. At each refinement step, the operation that is applied is called in HOL a

tactic, which is a function of a particular type. The effect of applying a tactic is to
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replace a current goal with a set of subgoals which, if proved, are sufficient to prove

the original goal. The effect of a tactic is essentially the inversion of an inference

rule. Tactics may be composed by functions called tacticals, allowing a complex

tactic to be built to prove a particular theorem. Functions in are provided to create

new types, make new definitions, prove new theorems, and store the results into

theories on disk. These may then be used to support further extensions. In this

incremental way a large system may be constructed.

3.7 Relevance to Our Work

An early version of this work appeared in [HJV00]. When building our framework,

we have focused on accommodating four main directions of research in program rea-

soning: Hoare-style program verification, automated program reasoning methods,

reasoning about behavior, and (assertion) languages to express program properties.

In bringing in concepts related to these directions into our framework, our main con-

cern was to keep the framework compositional and to make the reasoning program

point-based. To us, the ESC and verification condition generators are realizations

of Hoare style reasoning, program analysis methods are automated tools to perform

program reasoning, and model checking is the realization of reasoning about behav-

ior. We have been greatly influenced by ESC and verification condition generators

in building our propagation-based reasoning, which, in its abstracted form can also

realize program analysis methods.

Model checking has also contributed two useful ideas to our framework, namely,

reasoning about behavior, and the ability to reason about finite-state programs by

iterative application of a transfer function that reaches a fixpoint in finite time. As

it shall be shown in Chapter 9 the progressive transfer function that we define has
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a unique fixpoint, and computes the projection of a program’s behavior for every

program point. When applied to assertions, the propagation operator would refine

them, and possibly prove them, as stated by Theorem 15.6. However, in the case

of finite state systems, the fixpoint of the propagation operator would be computed

simultaneously with refining the assertions, providing exact information about the

program.

The Higher Order Logic framework has influenced the description and assertion

languages that we use throughout this thesis.

In the next chapter, we start the concrete development of our framework by

introducing a simple imperative language and a structural induction principle.



Chapter 4

Syntax

We introduce a simple imperative language over integers and arrays of integers, with

assignment, conditional and iteration statements. This language allows the use of

program point annotations as means of gathering information about the program

in the process of verifying, analyzing or reasoning about it. We then define a small-

step operational semantics for our language, and continue on with the definitions

of trace semantics and a collecting semantics, and we show that these semantics

can be represented as annotated programs. The contribution of this chapter is the

progressive semantics, which is also defined as an annotated program. We show

that the progressive semantics is hierarchically between the trace semantics and

the collecting semantics by defining appropriate Galois connections. We also argue

that the progressive semantics induces a more informative kind of reasoning, which

supports verifying or reasoning about liveness and safety properties within the same

framework.

58
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4.1 A Simple Programming Language

We consider a simple imperative language over integers and arrays of integers, with

assignment, conditional and iteration statements. The definition of the language

allows for annotations that can be added at each program point. There are several

kinds of annotations that would be of interest. On one hand, we need to uniquely

identify each program point, and for this purpose we will use annotations from a set

of labels, in such a way that each label appears only once in the annotated program.

Apart from labels, it would be useful to attach assertions and program properties to

every program point. Such assertions and program properties would be expressed

as formulas, sets, or various kinds of mappings. Therefore, in general, an annotation

would be a pair between a label and either a set, a formula, or a mapping.

The syntax of an annotated program is given in Figure 4.1. The definition is

parameterized by a set of annotations Annot, whose specialization will produce

various structures of interest. An annotated program is either a single annota-

tion, or an annotated statement placed between two annotations1. The basic an-

notated statements are the null command skip and the assignment x := E. Two

annotated statements Stmt1 and Stmt2 can be composed sequentially via the con-

struct Stmt1 〈A〉 Stmt2, where A is an annotation, while two programs P1 and P2

can be composed conditionally, via the construct if C then P1 else P2 endif.

An annotated program P can also be iterated sequentially via the construct

while C do P endwhile, while C holds. In Figure 4.1 AProg denotes the non-

terminal that generates annotated programs, AStmt denotes the non-terminal that

generates annotated statements, Var denotes the non-terminal that generates the

1Having a single annotation as an annotated program is a notational convenience that would

simplify certain definitions and proofs.
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language of variables and Expr represents the non-terminal that generates the lan-

guage of program expressions. Program variables can be either scalar, or array

variables. Scalar variables are generated by the SVar non-terminal, whereas array

variables are generated by the AVar non-terminal. Similarly, expressions can be

either scalar expressions, generated by SExpr, or array expressions, generated by

AExpr. Scalar expressions are the usual ones, either integer constants, or scalar

expressions connected via the usual arithmetic operators, or an array element. Ar-

ray expressions are of the form a[E1 7→ E2], where a is an array variable, E1 is

a scalar expression that denotes the subscript, and E2 is a scalar expression that

denotes the new value of the array element a[E1]. The value of such an expression

is an array that is identical to a, with the exception of the element subscripted by

E1, whose value becomes E2. The syntax of array expressions is useful in describ-

ing the assignment of array elements, and is different from the usual one, which

is a[E1] = E2. We prefer this syntax since it allows for a uniform treatment of

scalar and array assignment. Finally, Constr is the non-terminal that generates

the language of constraints (boolean conditions). By abuse of language, we will also

use the non-terminal symbols AProg(Annot), Var, Expr, and Constr to refer to

the languages (sets) that these non-terminals generate. Moreover, we shall denote

annotated programs by the letter P , expressions by E and constraints by C. We

will denote variables by the letters x, y, z, possibly subscripted. Whenever we want

to distinguish between scalar variables and array variables, we shall denote array

variables by a, b, c.

We note that the syntax of the language defined in Figure 4.1 may allow assign-

ments that are not well-typed, in the form of a scalar variable being assigned an

array expression, or an array variable being assigned a scalar expression. We could

easily correct this problem at the expense of introducing two rules for assignment,
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AStmt(Annot) ::= Var := Expr

| skip

| if Constr then AProg1

else AProg2 endif

| while Constr do AProg1 endwhile

| AProg1 〈Annot〉 AProg2

AProg(Annot) ::= 〈Annot〉 | 〈Annot1〉 AStmt 〈Annot2〉

Var ::= SVar | AVar

SVar ::= x | y | z . . .

AVar ::= a | b . . .

Expr ::= SExpr | AExpr

SExpr ::= SVar | 0 | 1 | − 1 | 2 | − 2 | . . .

| SExpr1 + SExpr2 | SExpr1 − SExpr2

| SExpr1 ∗ SExpr2 | SExpr1/SExpr2

| SExpr1 % SExpr2 | + SExpr1 | − SExpr1

| AVar [SExpr1 ]

AExpr ::= AVar | AExpr1[SExpr1 7→ SExpr2]

Constr ::= SExpr1 < SExpr2 | SExpr1 ≤ SExpr2

| SExpr1 > SExpr2 | SExpr1 ≥ SExpr 2

| SExpr1 = SExpr2 | SExpr1 6= SExpr2

| ¬Constr 1

| Constr1 ∧Constr2 | Constr1 ∨Constr2

| Constr1 ⇒ Constr2

Figure 4.1: The Syntax of Annotated Programs

one for scalars, and the other for arrays. However, having two assignment rules

will make many of the proofs in this thesis more complicated. For this reason, we

shall keep the current definition and assume in what follows that all assignments

are well-typed.

Figure 4.2 presents two examples of annotated programs. In program (a), the

annotations are simply labels (in this case natural numbers) that would allow us to

uniquely identify the program points. We call such a program a labeled program.

In example (b) we have as annotations pairs of labels and sets of values. The set
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〈1〉
x := 0

〈2〉
while x < n do

〈3〉
x := x + 1

〈4〉
endwhile

〈5〉

(a)

〈1, {· · · ,−2,−1, 0, 1, 2, · · ·}〉
x := 0

〈2, {0}〉
while x < n do

〈3, {0, 1, . . . , n − 1}〉
x := x + 1

〈4, {1, 2, . . . , n}〉
endwhile

〈5, {0, n, n + 1, n + 2, · · ·}〉

(b)

Figure 4.2: Example of Annotated Programs

of integers associated with each label represents the values of variable x at each

program point during the execution of the program. Such an annotated program,

whose annotations are pairs of labels and sets, or pairs of labels and mappings, is

called a configuration. We shall define several kinds of configurations later in the

thesis.

Annotated programs are the central structure of this thesis. They are versatile

enough to represent programs as well as to support the process of analyzing, verify-

ing or reasoning about a program. An important attribute that adds to this versa-

tility is the ability to reason inductively over annotated programs. We note however

that the definition of the annotated programming language, while rigorous, leads to

an unnecessarily complicated induction principle due to the mutually recursive non-

terminals AProg and AStmt. The induction principle can be greatly simplified by

defining the concatenation of two annotated programs P1 = 〈A1s〉Stmt1 〈A1f 〉 and

P2 = 〈A2s〉 Stmt2 〈A2f 〉 to be the program P1 # P2 = 〈A1s〉 Stmt1 〈A1f 〉 Stmt2 〈A2f 〉.

The equality sign used above stands for syntactic identity.
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4.1 Remark We note that exactly one of the following statements is true of an

annotated program P .

a) There exist an annotation A such that P = 〈A〉.

b) There exist unique As, Af ∈ Annot such that P = 〈As〉 skip 〈Af 〉.

c) There exist unique As, Af ∈ Annot, x ∈ Var and E ∈ Expr such that

P = 〈As〉x := E 〈Af 〉.

d) There exist unique As, Af ∈ Annot, C ∈ Constr and P1, P2 ∈

AProg(Annot) such that P = 〈As〉 if C then P1 else P2 endif 〈Af 〉.

e) There exist unique As, Af ∈ Annot, C ∈ Constr and P ′ ∈ AProg(Annot)

such that P = 〈As〉 while C do P ′ endwhile〈Af 〉.

f) There exist unique P1, P2 ∈ AProg(Annot) with the last annotation of P1

being the same as the first annotation of P2 such that P = P1 # P2.

�

Condition (e) in Remark 4.1 leads to performing pattern matching using the

concatenation operator. Therefore, we should add the assumption that the con-

catenation operator be left associative. In practice, however, this is unimportant

since (P1 # P2) # P3 = P1 # (P2 # P3).

4.2 Structural Induction Principle

We can now formulate a structural induction principle for annotated programs that

does not refer to annotated statements.

4.2 Induction Principle for Annotated Programs Let P(P ) be a property

of annotated programs and assume that the following five conditions are satisfied.
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a) P(〈A〉) is true for all A ∈ Annot.

b) P(〈As〉 skip 〈Af 〉) is true, for all As, Af ∈ Annot.

c) P(〈As〉 x := E 〈Af 〉) is true, for all variables x ∈ Var, expressions E ∈ Expr,

and As, Af ∈ Annot.

d) P(〈As〉 if C then P1 else P2 endif 〈Af 〉) is true, for all C ∈ Constr,

As, Af ∈ Annot, and P1, P2 ∈ AProg(Annot) such that P(P1) and P(P2)

both hold.

e) P(〈As〉 while C do P ′ endwhile〈Af 〉) is true for all C ∈ Constr, As, Af ∈

Annot, and P ′ ∈ AProg(Annot) such that P(P ′) holds.

f) P(P1 #P2) is true, for all P1, P2 ∈ AProg(Annot) such that the last annota-

tion of P1 and the first annotation of P2 are the same, and P(P1) and P(P2)

both hold.

Then, P(P ) holds for every annotated program P . �

4.3 Annotations and Labels

Given a distinguished set Labels of labels, we represent imperative programs as

annotated programs from AProg(Labels)\{〈l〉 | l ∈ Labels} 2. That is, we use

labels as annotations in order to identify program points. The set of labels could

be the set of natural numbers, as illustrated in Figure 4.2. We shall call annotated

programs whose annotations are labels labeled programs, or simply programs. Given

a labeled program P , we denote by labels(P ) the set of labels occurring in P . Also,

2Single annotations are simply a notational convenience and do not represent real programs
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we denote by first(P ) the label associated with the first program point in P , and

by last(P ) the label associated with the last program point.

In order for the labeling to uniquely identify program points, the labels in a

labeled program need to be distinct. We shall call a program with this property

a properly labeled program. Formally, this property is expressed by the following

conditions.

4.3 Proper Labeling Property If ls, lf ∈ Labels and ls 6= lf , then 〈ls〉 skip 〈lf 〉

and 〈ls〉x := E 〈lf 〉 are properly labeled. Moreover, if P1, P2 ∈ AProg(Labels)

such that labels(P1) ∩ labels(P2) = ∅ and ls, lf 6∈ labels(P1) ∪ labels(P2), then

〈ls〉 if C then P1 else P2 endif 〈lf 〉 and 〈ls〉 while C do P1endwhile〈lf 〉 are prop-

erly labeled, for all C ∈ Constr. Also, if labels(P1) ∩ labels(P2) = {last(P1)} =

{first(P2)}, then P1 # P2 is properly labeled. �

The proper labeling is a supplementary condition that needs to be added to the

induction principle for labeled programs.

4.4 Induction Principle for Properly Labeled Programs Let P(P ) be a

property of labeled programs and assume that the following five conditions are

satisfied simultaneously.

a) P(〈ls〉 skip 〈lf 〉) is true, for all ls, lf ∈ Labels such that ls 6= lf .

b) P(〈ls〉x := E 〈lf 〉) is true, for all variables x ∈ Var, expressions E ∈ Expr, and

ls, lf ∈ Labels such that ls 6= lf .

c) P(〈ls〉 if C then P1 else P2 endif 〈lf 〉) is true, for all C ∈ Constr, ls, lf ∈

Labels, and P1, P2 ∈ AProg(Labels) such that P1, P2 are properly labeled,

labels(P1)∩ labels(P2) = ∅, {ls, lf} ∩ (labels(P1) ∪ labels(P2)) = ∅, and P(P1) and

P(P2) both hold.
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d) P(〈ls〉 while C do P ′ endwhile〈lf 〉) is true for all C ∈ Constr, ls, lf ∈ Labels,

and P ′ ∈ AProg(Labels) such that P ′ is properly labeled, {ls, lf}∩ labels(P ′) =

∅, and P(P ′) holds.

e) P(P1 # P2) is true, for all P1, P2 ∈ AProg(Labels) such that P1 and P2 are

properly labeled, labels(P1) ∩ labels(P2) = {last(P1)} = {first(P2)}, and P(P1)

and P(P2) both hold.

Then, P(P ) holds for every labeled program P . �

In what follows we shall be concerned only with properly labeled programs, and

whenever we consider a labeled program, we shall assume that it is properly labeled.

Finally, we introduce some more terminology for labeled programs. Let P be a

labeled program. Remark 4.1 allows the distinction between the following categories

of annotated programs.

a) P is a skip statement if there exist ls, lf ∈ Labels such that P = 〈ls〉 skip 〈lf 〉.

b) P is an assignment if there exist ls, lf ∈ Labels, x ∈ Var and E ∈ Expr such

that P = 〈ls〉 x := E 〈lf 〉.

c) P is a sequence program if there exist P1, P2 ∈ AProg(Labels) such that

last(P1) = first(P2) and P = P1 # P2. We call P1 and P2 the first component

and the second component of the sequence program P , respectively.

d) P is an if program if there exist ls, lf ∈ Labels, C ∈ Constr and P1, P2 ∈

AProg(Labels) such that P = 〈ls〉 if C then P1 else P2 endif〈lf 〉. We call

P1 and P2 the consequent and the alternative of the if program, respectively.

Also, we call C the if condition.
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e) P is a while program if there exist ls, lf ∈ Labels, C ∈ Constr and P ′ ∈

AProg(Labels) such that P = 〈ls〉 while C do P ′ endwhile 〈lf 〉. We call P ′

the body of the while program P . Also, we call C the while condition.

Finally, we introduce the notion of program fragment of a program P . If P is a

sequence program, then both components of P are program fragments of P . Also,

if P is an if program, then both the consequent and the alternative are program

fragments of P , and if P is while program, the body of P is a program fragment of

P . Finally, a program fragment of a program fragment of P is a program fragment

of P .



Chapter 5

Operational, Trace, and

Collecting Semantics

In this chapter we provide a brief overview of the operational, trace, and collecting

semantics.

5.1 Operational Semantics

We present here an approach that is a slight variation of the small step (or struc-

tured) operational semantics proposed by Hennessy and Plotkin [HP79] and further

developed by Plotkin [Plo81, AO97, Rey98]. The idea of Hennessy and Plotkin is

to specify a transition relation
P

−−−→, by induction on the structure of the program

P using a formal proof system, called a transition system, and which consists of

rules about transitions between states (called configurations in [Plo81]). Plotkin’s

configuration1 is a pair 〈P, σ〉, consisting of a program P and an environment σ.

Intuitively, a transition 〈P1, σ1〉 −−−→ 〈P2, σ2〉 means: executing P1 one step in an

environment σ1 can lead to an environment σ2, with P2 being the remainder of P1

1In this thesis the word configuration has a different meaning

68
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still to be executed.

We alter the transition system defined in [Plo81] by replacing the program com-

ponent of a state with a label. The label has a role similar to the program counter

of a processor, in the sense that it stores in a state the program point that has been

reached after the last execution step. The advantage of using this approach shall

become apparent when we introduce conditional reasoning in Chapter 15. There,

the program point labels become part of the assertion language in order to allow

tracking program point dependencies during propagation.

Before presenting the operational semantics of our language, we introduce some

terminology. An environment is a mapping from variables to values. We distinguish

between scalar values, which are integers, and array values, which are mappings

from natural numbers to integers. We denote environments by the Greek letter σ,

possibly subscripted, and the set of all environments by Env, i.e. Env = {σ |σ :

Var 7→ Values}. We denote sets of environments by the symbol Σ.

A state is a pair 〈l, σ〉 ∈ Labels × Env. The set of all states Labels × Env

is denoted by States, and the set labels(P ) × Env of all states of a program P is

denoted States(P ). Moreover, we denote states by the letter s, and sets of states by

the letter S, possibly subscripted. If s = 〈l, σ〉 is a state, we say that l is the label

of s and σ is the environment of s.

A transition system is a pair (S, τ), where S is a non-empty set of states and

τ ⊆ S×S is a binary transition relation between a state and its possible successors.

If s τ s′ holds for some s, s′ ∈ S, we say that there exists a transition from s to s′. If

for every state s ∈ S there exists at most one state s′ such that s τ s′, we say that

the transition system (S, τ) is deterministic. We also denote by τ ∗ the transitive

and reflexive closure of a relation τ .

In order to define a semantics for our programming language, we need to inter-
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pret expressions and constraints of the language as values. We shall regard expres-

sions E ∈ Expr as mappings from environments to values, and we shall write E(σ)

as the value of expression E in the environment σ. Similarly, we regard constraints

C ∈ Constr as mappings from environments to truth values. We write σ |= C to

denote that the constraint C is true in environment σ.

Syntax-Directed Transition Relations

We shall now proceed with defining the operational semantics as a transition system

TP = (States(P ),
P

−−−→) whose transitions describe the operational behavior of a

program P . The
P

−−−→ relation provides the transitions from the current state of

executing the program to the next state and shall be defined inductively on the

structure of the program P . For convenience, we shall express the relation
P

−−−→

as the union of several sub-relations, that we define below. First, let P be an if

program, and denote by C the if condition, and by Pc and Pa the consequent and

the alternative of P , respectively. We define:

P↙
−−−→

∆
= {(〈first(P ), σ〉, 〈first(Pc), σ〉) |σ ∈ Σ and σ |= C}

P↗
−−−→

∆
= {(〈last(Pc), σ〉, 〈last(P ), σ〉) |σ ∈ Σ}

P↘
−−−→

∆
= {(〈first(P ), σ〉, 〈first(Pa), σ〉) |σ ∈ Σ and σ |= ¬C}

P↖
−−−→

∆
= {(〈last(Pa), σ〉, 〈last(P ), σ〉) |σ ∈ Σ}

Next, let P be a while program, and denote by C the while condition, and by Pb

the body of P . We define:

P↘
−−−→

∆
= {(〈first(P ), σ〉, 〈first(Pb), σ〉) |σ ∈ Σ and σ |= C}

P↖
−−−→

∆
= {(〈first(Pb), σ〉, 〈first(P ), σ〉) |σ ∈ Σ and σ |= ¬C}

P	

−−−→
∆
= {(〈last(Pb), σ〉, 〈first(Pb), σ〉) |σ ∈ Σ and σ |= C}

Py

−−−→
∆
= {(〈first(P ), σ〉, 〈last(P ), σ〉) |σ ∈ Σ and σ |= ¬C}
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Figure 5.1 depicts a representation of these relations. For an if program, as shown

in Figure 5.1b,
P↙

−−−→ represents transitions between the start program point of the

if construct and the start program point of its consequent,
P↗

−−−→ represents transi-

tions between the program point at the end of the consequent and the last program

point of the if construct,
P↘

−−−→ represents transitions between the start program

point of the if construct and the start program point of its alternative, while
P↖

−−−→

represents transitions between the program point at the end of the consequent and

the last program point of the if construct. The four sub-relations for a while pro-

gram are depicted in Figure 5.1c.
P↘

−−−→ represents transitions between the start of

the while construct and the start of its body,
P↖

−−−→ represents transitions between

the end of the body and the end of the while construct,
P	

−−−→ represents transi-

tions between the end and the beginning of the body (around-the-loop transition),

while
Py

−−−→ represent transitions between the beginning and the end of the while

construct.

We define now the relation
P

−−−→ recursively as follows:

a) If P is the skip statement 〈ls〉 skip 〈lf 〉, where ls, lf ∈ Labels, then
P

−−−→

= {(〈ls, σ〉, 〈lf , σ〉) |σ ∈ Env} .

b) If P is the assignment 〈ls〉x := E 〈lf 〉, where ls, lf ∈ Labels, x ∈ Var

and E ∈ Expr, then
P

−−−→ = {(〈ls, σs〉, 〈lf , σf 〉) |σs, σf ∈ Env and σf =

σs[x 7→ E(σs)]}.

c) If P is an if statement, with P1 and P2 being the consequent and the

alternative, then
P

−−−→ =
P↙

−−−→ ∪
P↗

−−−→ ∪
P↘

−−−→ ∪
P↖

−−−→ ∪
P1

−−−→ ∪
P2

−−−→.

d) If P is a while statement, with P ′ being the body, then
P

−−−→ =
P↘

−−−→

∪
P↖

−−−→ ∪
P	

−−−→ ∪
Py

−−−→ ∪
P ′

−−−→.
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P1

P2

P
−−−→

P1

−−−→

P2

−−−→
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Pa

Pc

if C then

else

endif

P
−−−→

Pa

−−−→

Pc

−−−→

P↙
−−−→

P↘
−−−→

P↗
−−−→

P↖
−−−→

������

������

����

����

Pb

while C do

endwhile

P
−−−→ Pb

−−−→

P↖
−−−→

P↘
−−−→

P	

−−−→
Py

−−−→

a) Sequence programs

b) if programs

c) while programs

Figure 5.1: Relationship between transition system and syntax
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e) If P is the sequence statement P1 # P2, then
P

−−−→ =
P1

−−−→ ∪
P2

−−−→.

Figure 5.1 shows a graphic representation of this definition for sequence, if, and

while programs.

Transition System

5.1 Definition The operational semantics of a labeled program P is the transition

system (labels(P ) × Σ,
P

−−−→). �

The operational semantics defined above is a high level semantics, in the sense

that the skip statement, assignments and evaluations of boolean expressions are

all executed in one step and thus it abstracts from all details of the evaluation of

expressions in the execution of assignments.

Given a state s of a labeled program P , if there is no state s′ of P such that

s′
P

−−−→ s, we say that s is an initial state of P . If there exists no state s′ of P such

that s
P

−−−→ s′, then we say that s is a terminal state of P .

Determinism

The following proposition shows that programs are deterministic, and have single

entry and exit points, and will be useful in proving properties that relate traces to

the syntax of the program.

5.2 Proposition Let P be a labeled program. The following statements hold.

a) 〈first(P ), σ〉 is an initial state of P , for all environments σ ∈ Σ.

b) 〈last(P ), σ〉 is a terminal state of P , for all environments σ ∈ Σ.

c) (States(P ),
P

−−−→) is a deterministic transition system.
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Proof: Relegated to Appendix A, on page 270.

5.2 Trace Semantics

In the previous section we have introduced a small step operational semantics for our

programming language. The operational semantics is given as a transition system

which specifies transitions from the current state to the next state of the program at

hand. In what follows we shall define several more semantics, with various levels of

abstraction, and argue that each of these semantics favors a specific kind of program

reasoning. Since the reasoning framework that we develop is based on the notion of

propagation, it is useful to specify these semantics in a fixpoint manner, and then

define the propagation operator as an abstraction of the semantic transformer of

the semantics.

In this section we shall define the trace semantics, which is the set of all execution

sequences (i.e. sequences of states) that occur in all the possible executions of a

program with respect to a given set of start states. Traces have been used to specify

the semantics of both programming languages [Hoa78, AO97] and modal logics

[Kri63]. Cousot [Cou02] distinguishes between three kinds of trace semantics.

• The partial execution trace semantics is the set of all execution sequences that

may occur during the execution of the program.

• The maximal finite trace semantics is the set of all finite execution sequences

that are complete (i.e. that cannot be extended).

• The maximal trace semantics is the set of all (i.e. finite and infinite) complete

execution sequences.

Each of these definitions have specific advantages. The maximal trace semantics
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is able to capture non-termination and indicate the conditions under which infinite

computations may occur. Maximal finite trace semantics is amenable to composi-

tional reasoning. Partial execution trace semantics on the other hand, while being

polluted by execution sequences that only reflect partial computations, has the ad-

vantage of a fixpoint specification that has a rather simple semantic transformer.

This advantage, together with the fact that our program-point-based abstraction

method would allow us to eliminate the polluting execution sequences later, makes

the partial execution trace semantics the preferred one. For simplicity, in what fol-

lows we shall refer to a partial execution trace as simply a trace. We proceed now

with the definition of the trace semantics.

Traces

Let P be a labeled program. A trace of P starting in σ0 is a finite sequence of states

s0s1 · · · sk−1sk such that k > 0, s0 = 〈first(P ), σ0〉, and whenever k > 1 we have

si

P
−−−→ si+1, for all i, 0 ≤ i < k.

5.3 Definition Let P be a labeled program. Given a set of start environments

Σ0, the trace semantics of P w.r.t. Σ0 is the set of all traces 〈l0, σ0〉s1 · · · sk ∈
→
P such

that σ0 ∈ Σ0. �

We denote by
Σ0→
P the trace semantics of a labeled program P w.r.t. a set of

start environments Σ0. Whenever the set of start environments is Env, we write
→
P

instead of
Env→

P . We note that
Env→

P ⊆
→
P , for any set of start environments Σ0.

We denote traces by the symbol θ, and sets of traces by the symbol Θ, possibly

subscripted. Given a program P , a sequence of states s1s2 · · · sk with the property

that si

P
−−−→ si+1, 1 ≤ i < k, whenever k ≥ 2, is called a trace segment. The

empty sequence ε, and a singleton sequence s are also trace segments. We denote
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trace segments by the letter t. The concatenation of two trace segments t1 and t2

is denoted t1t2. If t1 = s1 · · · sm and t2 = s1 · · · sn, with m ≤ n, then we say that

t1 is a prefix of t2. If m < n, then t1 is a proper prefix of t2. In this case, sm+1 is

the state following t1 in t2. If m = n − 1, then t1 is the longest proper prefix of t2.

The empty sequence ε is a proper prefix of any non-empty trace segment. Given

two trace segments t1 and t2, we denote by t1
P

−−−→ t2 the fact that there exists a

transition from the last state of t1 to the first state of t2. Finally, we note that the

notions of trace and trace segment can be defined for any transition system, and not

only for programs. We shall take advantage of this observation in the next section.

Trace Pattern Matching

Trace pattern matching is a useful tool in representing the inductive structure of a

trace segment with respect to a program fragment.

Given a program P , a trace pattern matching expression is either

a) a state of P , or

b) an expression of the form t︸︷︷︸
P ′

, where t is a trace segment variable and P ′

is a program fragment of P , or

c) an expression of the form PM1 τ PM2, where PM1 and PM2 are trace

pattern matching expressions, and τ is a sub-relation of
P

−−−→.

Given a program P , a trace segment t, and a pattern matching expression PM ,

we say that t matches PM , and we write t ∼ PM if either of the following conditions

holds:

a) PM is a state s, and t is the same state s, or
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b) PM is the expression t′︸︷︷︸
P ′

, and t is a trace of program P ′ where P ′ is a

program fragment of P , and t′ is a trace segment variable that matches t,

or

c) PM is the expression PM1 τ PM2, and t can be written as t1t2, where

PM1 and PM2 are trace pattern matching expressions, t1 and t2 are trace

segments such that t1 ∼ PM1 and t2 ∼ PM2, τ is a sub-relation of
P

−−−→,

and there exists a transition s1 τ s2 between the last state s1 of t1 and the

first state s2 of t2.

For instance, consider an if program P whose condition is C and consequent

is Pc, and assume that θ ∈
→
P is a trace. Writing θ ∼ 〈first(P ), σs〉

P↙
−−−→ t︸︷︷︸

P1

P↗
−−−→

〈last(P ), σf 〉 means that there exist environments σs, σf ∈ Env and the trace seg-

ment t ∈
→
P1 such that the trace θ starts with the state 〈first(P ), σs〉, and via a

transition of
P↙

−−−→, continues with the trace segment t, which is in fact a trace of

P1. The trace segment t ends with a state whose label is last(Pc), and then follows

a the state 〈last(P ), σf 〉, via a transition of
P↗

−−−→. We note that the trace segment

variable t is uniquely matched with the sub-segment of θ whose transitions belong

to
Pc

−−−→. The definition of pattern-matching expressions does not ensure that trace

segment variables are uniquely matched. However, we shall always employ only

expressions that lead to unique matching of variables with trace segments.

The following proposition is the consequence of our programming language be-

ing deterministic and shall be useful in providing a syntax-based representation of

traces.

5.4 Proposition Let P be a labeled program and θ1, θ2 ∈
→
P two traces with the

same start states. Then, either θ1 is a prefix of θ2, or θ2 is a prefix of θ1.



CHAPTER 5. SEMANTICS 78

Proof: The proof is by induction on the length of both θ1 and θ2. The base case

is when both traces have a length that is equal to 1. Then, θ1 = θ2 = 〈l, σ〉, where

l = first(P ) and σ ∈ Env. In this case, the proposition is trivially true.

For the induction case, assume that θ1 and θ2 have lengths that are less than

or equal to n. We have that θ1 = θ′1〈l1, σ1〉 and θ2 = θ′2〈l2, σ2〉, where θ′1, θ
′
2 ∈

→
P are

traces of length less than n, l1, l2 ∈ labels(P ) and σ1, σ2 ∈ Env. From the induction

hypothesis, θ′1 is a prefix of θ′2, or θ′2 is a prefix of θ′1. Assume that θ′1 is a prefix of

θ′2 (the case when θ′2 is a prefix of θ′1 is proved in a similar way). Since θ′1 is a prefix

of θ′2, θ′1 is a prefix of θ2. From θ1 = θ′1〈l1, σ1〉 ∈
→
P we have that θ′1

P
−−−→ 〈l1, σ1〉.

According to Proposition 5.2, given θ1, 〈l1, σ1〉 is unique. Therefore, 〈l1, σ1〉 is the

state following θ′1 in θ2. As a result, θ′1〈l1, σ1〉 is a prefix of θ2, which proves the

inductive case. �

We shall now provide a fixed point characterization of the trace semantics.

5.3 The Trace Progress Operator

Following [Cou02] we will provide a fixpoint characterization of the trace semantics.

First we remark that 2(Labels×Env)∗ , which is the domain of the trace semantics, is

a complete lattice. We now introduce a semantic transformer that takes each trace

of a set and extends it by exactly one state.

5.5 Definition Given a labeled program P , we define the trace progress operator

~TP as follows:

~TP (Θ) = {s1s2 · · · sksk+1 | s1s2 · · · sk ∈ Θ and sk

P
−−−→ sk+1}

�
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We intend to prove that the least fixed point of ~TP is the trace semantics for

all labeled programs P . The following proposition shows that ~TP has a least fixed

point.

5.6 Proposition For any labeled program P , ~TP is continuous.

Proof: We need to prove that for any directed subset X ⊆ 2(Labels×Env)∗ ,

~TP (lub(X)) = lub({~TP (A) |A ∈ X}). We will prove in fact a stronger condition, that

the above equality holds for all X ⊆ 2(Labels×Env)∗ , and not only for the directed

ones.

Assume we have a trace s1s2 · · · sisi+1 ∈ ~TP (lub(X)), for some i ≥ 0. This is

equivalent to s0s1 · · · si ∈ lub(X) and si

P
−−−→ si+1, which is in turn equivalent

to the fact that there exists some A ∈ X such that s0s1 · · · si ∈ A. Therefore,

s0s1 · · · sisi+1 ∈ ~TP (A). This entails that s0s1 · · · sisi+1 ∈ lub({~TP (A) |A ∈ X}). �

Fixpoint Characterization

We can now provide a fixed point characterization of the trace semantics.

5.7 Proposition Let P be a program, and Σ0 a set of start environments. Let

Θ0 = {〈first(P ), σ0〉 |σ0 ∈ Σ0}. Then, lfp(~TP ∪ Θ0) =
Σ0→
P .

Proof: We first prove that
Σ0→
P ⊆ lfp(~TP ∪ Θ0).

Since lfp(~TP ∪S0) = (~TP ∪S0) ↑ ω =
⋃

n≥0(~TP ∪S0) ↑ n, we need to show that for

every trace t in the trace semantics, there exists n ∈ N such that t ∈ ( ~TP ∪ S0) ↑ n.

We prove by induction that every trace of length n is a member of ( ~TP ∪S0) ↑ n.

The base case is trivially true. For the induction case, assume we have a trace

t = s1s2 · · · snsn+1 and we want to prove that t ∈ (~TP ∪ S0) ↑ (n + 1). Since t
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is a trace, s1s2 · · · sn is also a trace, and according to the induction hypothesis,

s1s2 · · · sn ∈ (~TP ∪ S0) ↑ n. The fact that s1s2 · · · snsn+1 is a trace implies sn

P
−−−→

sn+1, which entails that s1s2 · · · snsn+1 ∈ (~TP ∪ S0)({s1s2 · · · sn}). Due to the

monotonicity of ~TP ∪ S0, it follows that s1s2 · · · snsn+1 ∈ (~TP ∪ S0)((~TP ∪ S0) ↑ n).

We now show that lfp(~TP ∪Θ0) ⊆
Σ0→
P . We prove by induction that (~TP ∪Θ0) ↑

n ⊆
Σ0→
P for all n ∈ N. For n = 0 the statement is trivially true. For the induction

case, consider a trace θ ∈ (~TP ∪ Θ0) ↑ n. If θ = ε, then the statement is trivially

true. Otherwise, denote by θ′ and by s the longest proper prefix and the last

state of θ, respectively. By the definition of ~TP given in Definition 5.5, θ′ must be in

(~TP ∪Θ0) ↑ (n−1) and θ′
P

−−−→ s must hold. According to the induction hypothesis,

θ′ ∈
Σ0→
P . This entails that θ = θ′s ∈

Σ0→
P . Since θ has been chosen arbitrarily as a

member of (~TP ∪ Θ0) ↑ n, then (~TP ∪ Θ0) ↑ n ⊆
Σ0→
P , which proves the induction

case. �

Next, we focus our attention to the collecting semantics, which is the basis for

most classic program analysis frameworks.

5.4 Collecting Semantics

The trace semantics defined in Section 5.2 provides the behavior of a program

in terms of the set of sequences of states that occur during the execution of the

program. However, due to its high level of detail, this view of the trace semantics

dilutes meaningful properties that are true of the execution of the program. For

example, it does not describe the values a program variable may take at a specific

program point during execution, or whether the execution terminates or not. Such

information is clearly central to program reasoning. What is required, therefore, is

a semantics that exposes interesting properties about the execution of the program.
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One way to achieve this is to collect in a set the environments encountered at each

program point (label) during program execution. This set is called the collecting

semantics.

The notion of collecting semantics is the starting point of many formal treat-

ments of program reasoning techniques, including program analysis and program

verification. The concept has been introduced by Cousot [CC79b]. Our definition

of the collecting semantics is just an explication of information already implicit in

the trace semantics. In essence, the trace semantics is projected onto the notion

of program point. As an aside, we note that since a collecting semantics describes

what happens part way through a computation (including computations that lead

to an error or do not terminate), a natural semantics style presentation of the op-

erational semantics [Kah87, Mel85] would be significantly less convenient than the

transition system style we have employed.

Abstraction by Sets of States

Before presenting the definition of the collecting semantics, we address the issue

of starting environments. In the operational semantics, it was appropriate to de-

fine program execution from some given starting environment σ0. However, when

reasoning about a program, the initial environment may not be known. This issue

may be addressed in a number of ways. First, program execution could be defined

to start in a fixed initial environment (which, say, maps all variables to 0). Sec-

ond, programs could be defined to begin with a sequence of assignment statements

that initialize all program variables, and then the initial environment is essentially

irrelevant. Third, collecting semantics could be defined to be the environments

encountered over executions from all possible starting environments. Fourth, the

collecting semantics could be defined with respect to a set Σ0 of starting environ-
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ments. Of these four possibilities, the last two are the most reasonable. We choose

the last one, since it also enjoys the property of being compositional, i.e. of allowing

the collecting semantics of several program fragments to be combined in a syntax-

based manner in order to produce the collecting semantics of a larger program.

The definition of the collecting semantics of an imperative program P can now be

presented.

5.8 Definition Let P be a labeled program and Σ0 a set of start environments,

and denote by S0 the set {〈first(P ), σ0〉 |σ0 ∈ Σ0} The collecting semantics of P

w.r.t. Σ0 is the set

{s | there exists s′ ∈ S0 such that s′
P

−−−→∗ s}

�

Figure 5.2 shows a labeled program and its collecting semantics.

A definition of collecting semantics is the starting point of classical program

analysis. In particular it provides the primary definition of correctness: an (approx-

imate) analysis is correct if it yields a conservative approximation of the collecting

semantics. In other words, an analysis is correct if, for each program point, the set

of environments described by the analysis for that point is a superset of the set of

environments described by the collecting semantics. As we will show later, this defi-

nition of correctness conceals properties like termination and liveness. To overcome

this, we shall introduce the progressive semantics of an imperative program and a

new definition of correctness that would be amenable to proving liveness and ter-

mination properties, in addition to the conservative properties that are supported

by the collecting semantics.
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〈1〉
x := 0

〈2〉
y := 0

〈3〉
while x < 10 do

〈4〉
x := x + 1

〈5〉
y := y + x

〈6〉
endwhile

〈7〉

(a) A labeled program

{ 〈1, [x 7→ 0, y 7→ 0]〉, 〈1, [x 7→ 1, y 7→ 0]〉, 〈1, [x 7→ 0, y 7→ 1]〉, . . . ,

〈2, [x 7→ 0, y 7→ 0]〉, 〈2, [x 7→ 0, y 7→ −1]〉, 〈2, [x 7→ 0, y 7→ 1]〉, . . . ,

〈3, [x 7→ 0, y 7→ 0]〉,

〈4, [x 7→ 0, y 7→ 0]〉, 〈4, [x 7→ 1, y 7→ 1]〉, · · · , 〈4, [x 7→ 9, y 7→ 45]〉,

〈5, [x 7→ 1, y 7→ 0]〉, 〈5, [x 7→ 2, y 7→ 1]〉, · · · , 〈5, [x 7→ 10, y 7→ 45]〉,

〈6, [x 7→ 1, y 7→ 1]〉, 〈6, [x 7→ 2, y 7→ 3]〉, · · · , 〈6, [x 7→ 10, y 7→ 55]〉,

〈7, [x 7→ 10, y 7→ 55]〉 }

(b) The collecting semantics represented as a set of states

Figure 5.2: The Collecting Semantics of a Program
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Transfer Function

We introduce a semantic transformer which, given a set of “current” states, com-

putes a set of “next” states.

5.9 Definition Given a program P , the transfer function TP : 2labels(P )×Env 7→

2labels(P )×Env is defined as

TP (Σ) = {〈n, σ〉 | there exists 〈n′, σ′〉 ∈ Σ such that 〈n′, σ′〉
P

−−−→ 〈n, σ〉}

�

The structure (2labels(P )×Env,⊆) is clearly a lattice. In order to show that the

transfer function provides a fixpoint semantic specification, we need to prove the

following two propositions.

5.10 Proposition For all labeled programs P the operator TP is continuous.

Proof: We need to prove that for every directed set X ⊆ 2Labels×Env,

TP (lub(X)) = lub({TP (A) |A ∈ X}). We will prove in fact a stronger condition,

that the above equality holds for any X ⊆ 2Labels×Env. We proceed by proving

that for all s, s ∈ TP (lub(X)) is equivalent to s ∈ lub({TP (A) |A ∈ X}).

Let s ∈ TP (lub(X)). This is equivalent with the fact that there exists a state

s′ ∈ lub(X) such that s ∈ TP ({s′}). The fact that s′ ∈ lub(X) is equivalent with the

fact that there exists a set of states A ∈ X such that s′ ∈ A. It follows immediately

that s ∈ TP ({s′}) ⊆ TP (A), which is equivalent to s ∈ lub({TP (A) |A ∈ X}). �

5.5 Fixpoint Characterization

5.11 Proposition The collecting semantics of a program P and a set of start
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states S0 is the least fixpoint of TP ∪ S0.

Proof: Denote by CS the collecting semantics of program P . We first prove that

CS ⊆ lfp(TP ∪ S0).

Since lfp(TP ∪ S0) = (TP ∪ S0) ↑ ω =
⋃

n≥0(TP ∪ S0) ↑ n, we need to show

that for every state s in the collecting semantics, there exists n ∈ N such that

s ∈ (TP ∪ S0) ↑ n.

We prove by induction that, given a start state s1 ∈ S0, every state s at the

end of a trace s1s2 · · · sn−1s of length n is a member of (TP ∪ S0) ↑ n. The base

case is trivially true. For the induction case, assume we have a state s which is

at the end of a trace s1s2 · · · sn−1s. According to the induction hypothesis, sn−1 ∈

(TP ∪ S0) ↑ (n − 1). Also, from the fact that s1s2 · · · sn−1s is a trace we have that

s ∈ (TP ∪S0)({sn−1}). Since TP ∪S0 is monotonic, we have that s ∈ (TP ∪S0)((TP ∪

S0) ↑ (n − 1)) = (TP ∪ S0) ↑ n.

Now, we prove that lfp(TP ∪ S0) ⊆ CS. It is sufficient to prove that (TP ∪ S0) ↑

n ⊆ CS for all n ∈ N. The base case is again trivially true. For the induction case,

consider a state s ∈ (TP ∪S0) ↑ n. There must exist a state s′ ∈ (TP ∪S0) ↑ (n− 1)

such that s′
P

−−−→ s. From the induction hypothesis, we have that there must exist

a state s0 ∈ S0 such that s0

P
−−−→ ∗ s′, which in turn entails that s0

P
−−−→ ∗ s.

Therefore, s ∈ CS, and since s is arbitrarily chosen, it results that (TP ∪ S0) ↑ n ⊆

CS. �

In what follows, we shall provide syntactic structure to the trace and collecting

semantics and introduce the progressive semantics in a syntax-directed manner as

well. The first step in adding syntactic structure to the trace semantics is to abstract

the sequencing information contained in a trace by projecting it on the labels of a
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program, and this shall be achieved by means of indexed sets, which are merely

mappings from indices to sets of environments.



Part II

Progressive Semantics
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Chapter 6

Syntax-Based Semantic

Representation

6.1 Indices and Indexed Sets

In this section we shall introduce the notion of indexed set of environments (or

indexed sets for short), which provides a way to structure the information given by

the collecting semantics such that it exposes a wider range of program properties,

for instance liveness and progress. Essentially, an indexed set is a mapping from

a set of ordered indices to the powerset of environments. The ordering of the

indices will help us capture an abstraction of the sequence of environments that

occur at a program point during the execution of the program, which in turn will

allow us to prove inevitability properties inductively. Indexed sets shall be used as

annotations in annotated programs, and the resulting structure, called a progressive

configuration shall be used to express the progressive semantics of a labeled program.

An index is a sequence of natural numbers. We denote indices by µ̃ = µ1µ2 · · ·µp,

where µi ∈ N, 1 ≤ i ≤ p. We denote the set of indices by Idx. Indices will be

88
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denoted by µ̃, possibly subscripted, while components of an index will be denoted

by µi, where i ∈ N. If µ̃1 = µ1µ2 · · ·µk and µ̃2 = µ1µ2 · · ·µkµk+1 are two indices, we

say that µ̃1 is the longest proper prefix of µ̃2, and we denote that by µ̃1 = lpp(µ̃2).

We also write µ̃2 = µ̃1µk+1. We define the successor of µ̃2 as µ̃1(µk+1 + 1), and we

denote it by succ(µ̃2). The size k of µ̃1 is denoted by size(µ̃1). Indices in Idx are

ordered lexicographically.

An indexed set is a mapping from indices in Idx to sets of environments. Indexed

sets shall be denoted by the Greek letter Ψ, and the set of all indexed sets shall be

denoted by IdxEnv. Given an indexed set Ψ and an index µ̃, we call Ψ(µ̃) a slice

of Ψ. An indexed set that maps every index into either a singleton or the empty

set is called an indexed singleton. The set of all indexed singletons is denoted by

IdxSingleton. A cpo over the domain of indexed sets can be easily defined by

Ψ1 ⊆ Ψ2 if Ψ1(µ̃) ⊆ Ψ2(µ̃) for all µ̃ ∈ Idx.

A special class of indexed sets deserves special attention. It is the class of all

indexed sets Ψ for which there exists a natural number k such that Ψ(µ̃) = ∅ for

all µ̃ such that size(µ̃) 6= k. Such indexed sets shall be represented by formulas of

the form λ〈µ1 · · ·µk〉 . ϕ(µ1, . . . , µk), where µ1, · · · µk are index variables, and ϕ is a

set expression that depends on µ1, . . . , µk. The indexed set Ψ represented by this

formula is defined by

Ψ(µ̃) =





∅ , if size(µ̃) 6= k

ϕ(µ1, . . . , µk) , if size(µ̃) = k and µ̃ = µ1 · · ·µk

For example, the formula Ψ = λ〈µ1µ2〉 . {σ |σ(x) = µ1 and σ(y) = µ2} denotes an

indexed set such that, on one hand Ψ(µ̃) = ∅ for all µ̃ whose size is not equal to 2,

and on the other hand, Ψ(µ1µ2) is the set of environments that map variable x into

µ1 and variable y into µ2. The indexed set that maps all indices into the empty set

shall be denoted by λ〈〉 . ∅.



CHAPTER 6. SYNTAX-BASED SEMANTIC REPRESENTATION 90

6.2 Configurations

Configurations are a syntax-directed means of expressing information about pro-

grams. We will show that both the trace semantics and the collecting semantics of

a program can be expressed as configurations. Moreover, the progressive semantics

that we introduce later in this chapter is also represented as a configuration. The

main advantages of configurations are, on one hand, that they project traces or sets

of states on labels in a natural way, thus making explicit what properties hold at a

program point, and on the second hand, that they are compositional, due to their

syntax directed definition. We implement configurations as annotated programs, by

specializing the annotation set to be the cross-product between a set of labels and

either the set of environments, or the set of indexed sets, or a set of formulas, as it

shall be the case in the next chapter. In this chapter, we shall distinguish between

three kinds of configurations:

a) singleton configurations, which are members of AProg(Labels ×

IdxSingleton);

b) progressive configurations, which are members of AProg(Labels×IdxEnv);

c) collective configurations, which are members of AProg(Labels × 2Σ).

We denote configurations with the letter K, possibly subscripted. To distinguish

between singleton, progressive and collecting configurations, we denote singleton

configurations by ~K, progressive configurations by K, and collective configurations

by K. Whenever the type of configuration is not important, we shall simply use the

letter K to denote it. Given a configuration K, we denote by |K| the underlying

labeled program of K. We also extend the notation labels to configurations, in the

form labels(K) = labels(|K|). We also extend the notations first and last in the
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same manner, that is, first(K) = first(|K|) and last(K) = last(|K|). Moreover,

given a label l ∈ labels(K), we denote by K|l the program point property P in

the annotation 〈l,P〉 that occurs in configuration K at program point l. Finally,

sub-configuration K ′ of a configuration K is a configuration that occurs inside K.

Formally, K ′ is a sub-configuration of K if K is a sequence configuration and K ′ is

one of its components, or if K is an if configuration and K ′ is either its consequent

or its alternative, or if K is a while configuration and K ′ is its body, or if there

exists a configuration K ′′ such that K ′′ is a sub-configuration of K and K ′ is a

sub-configuration of K ′′.

6.1 Remark Let K be a configuration and K ′ a sub-configuration of K. If

l ∈ labels(K ′), then K|l = K ′|l. �

Assuming that there exists a partial order ≤ on the domain of program point

properties, we can easily define a partial order 4 over the a set of configurations

with the same skeleton, by simply stating that for any two configurations K1 and

K2, K1 4 K2 holds whenever |K1| = |K2|, and K1|l ≤ K2|l, for all l ∈ labels(K1).

The next proposition shows that a set of configurations can be made into a

lattice whenever the annotations are members of a lattice. This property shall be

useful in arguing that configurations can be used in fixpoint semantic specifications.

6.2 Proposition Given a labeled program P and a complete lattice (L,≤), denote

by Γ the set {K |K ∈ AProg(Labels×L) and |K| = P}, and by 4 the cpo induced

by the ≤ relation on AProg(Labels× L). Then (Γ,4) is a complete lattice.

Proof: We have to show that for every set X ⊆ Γ of configurations, lub(X)

and glb(X) exist in Γ. Let X be an arbitrary subset of Γ and l ∈ labels(P ) an

arbitrary label of P , and denote by Xl the set {(K|l) |K ∈ X}. Clearly, Xl ⊆ L,
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and since (L,≤) is a lattice, lub(Xl) and glb(Xl) exist in L. Denote now by Klub

a configuration such that |Klub| = P and for every label l ∈ labels(P ) we have

Klub|l = lub({(K|l) |K ∈ X}). Also, denote by Kglb a configuration such that

|Kglb| = P and for every label l ∈ labels(P ) we have Kglb|l = glb({(K|l) |K ∈ X}).

It is immediate to prove that Klub = lub(X) and Kglb = glb(X). Indeed, Klub is an

upper bound of X since Klub|l ≤ K|lK, for all K ∈ X and l ∈ labels(P ). Moreover,

given an upper bound K ′ of X, we have that K 4 K ′ for all K ∈ X, which entails

K|l ≤ K ′|l, for all K ∈ X and l ∈ labels(P ). Now, Klub|l is the least upper bound

for {(K|l) |K ∈ X}, and therefore Klub|l ≤ K ′|l for all l ∈ labels(P ). It results that

K ′ 4 Klub, which proves that Klub = lub(X). A similar argument can be made to

prove that Kglb = glb(X). �



Chapter 7

Traces as Configurations

In what follows, we shall define a way to represent traces, the trace semantics and the

collecting semantics as configurations. The first step is to establish a link between

the syntactic structure of a program and its traces.

7.1 Compositional Traces

In this section we show that traces of a program are made up from the traces of its

fragments. The following three propositions will help accomplishing this goal.

7.1 Proposition Let P = P1 # P2 be a sequence program and θ ∈
→
P be a trace.

Exactly one of the following statements holds:

a) θ ∼ t︸︷︷︸
P1

b) θ ∼ t1︸︷︷︸
P1

P1

−−−→ 〈last(P1), σ〉t2︸ ︷︷ ︸
P2

Proof: Relegated to Appendix A, on page 272.

93
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7.2 Proposition Let P be an if program whose condition is C and consequent

and alternative are Pc and Pa. Consider a trace θ ∈
→
P . Exactly one of the following

statements is true:

a) θ = 〈first(P ), σ〉 for some environment σ ∈ Env.

b) θ ∼ 〈first(P ), σs〉
P↙

−−−→ t︸︷︷︸
Pc

, for some environment σs ∈ Env such that

σs |= C, and trace segment t ∈
→
Pc.

c) θ ∼ 〈first(P ), σs〉
P↙

−−−→ t︸︷︷︸
Pc

P↗
−−−→ 〈last(P ), σf 〉 , where σs, σf ∈ Env, with

σs |= C, and t ∈
→
Pc.

d) θ ∼ 〈first(P ), σs〉
P↘

−−−→ t︸︷︷︸
Pa

, for some environment σs ∈ Env such that

σs |= ¬C, and trace segment t ∈
→
Pa.

e) θ ∼ 〈first(P ), σs〉
P↘

−−−→ t︸︷︷︸
Pa

P↖
−−−→ 〈last(P ), σf 〉 , where σs, σf ∈ Env, with

σs |= ¬C, and t ∈
→
Pc.

Proof: Relegated to Appendix A, on page 273.

7.3 Proposition Let P be a while program whose condition is C and body is Pb.

Consider a trace θ ∈
→
P . Exactly one of the following statements is true:

a) θ = 〈first(P ), σ〉 for some environment σ ∈ Env.

b) θ ∼ 〈first(P ), σ〉
Py

−−−→ 〈last(P ), σ〉 for some environment σ ∈ Env, such that

σ |= ¬C.

c) θ ∼ 〈first(P ), σ〉
P↘

−−−→ t1︸︷︷︸
Pb

P	

−−−→ t2︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ tk︸︷︷︸
Pb

, for some k > 0

and some environment σ ∈ Env such that σ |= C.
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d) θ ∼ 〈first(P ), σs〉
P↘

−−−→ t1︸︷︷︸
Pb

P	

−−−→ t2︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ tk︸︷︷︸
Pb

P↖
−−−→

〈last(P ), σf 〉, for some k > 0 and some environments σs, σf ∈ Env such

that σs |= C and σf |= ¬C.

Proof: Relegated to Appendix A, on page 274.

7.2 Progressive Segmentation

In this subsection we show that traces can be represented as singleton configurations.

This shall provide a tighter link between trace semantics and the syntax of the

program.

We start by defining nesting relations between labels. Let P be a labeled pro-

gram and consider two labels ls, lf ∈ labels(P ). We say that ls leads to and is on

the same level as lf , denoted ls = lf , if there exists a program fragment P ′ of P

such that either ls = first(P ′) and lf = last(P ′), or, if P ′ is an if program whose

consequent and alternative are P1 and P2, and ls = first(P ′) and lf is either first(P1)

or first(P2). Moreover, we say that lf is deeper that ls (or, alternatively, that ls is

shallower than lf ), denoted ls 6 lf , if either there exists a while program fragment

P ′ of P whose body is P ′′ such that ls = first(P ′) and lf = first(P ′′), or if there

exists a label l ∈ labels(P ) such that ls 6 l and l = lf .

For instance, in the program given in Figure 7.2, the following relations hold:

2 = 4, 2 = 8, 4 6 5, 4 6 7, 1 6 8. The following relations do not hold: 3 = 5, 3 6 5,

1 6 5.

Given a trace θ and a set of trace segments t1, t2 · · · , tk such that θ = t1t2 · · · tk,

we say that the sequence t1t2 · · · tk is a segmentation of θ.
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7.4 Definition Consider a labeled program P and a set of start environments Σ0,

and let θ be a trace of P starting from Σ0. The progressive segmentation of the

trace θ is a segmentation θ = t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk〈lk, σk〉, such that li 6 li+1 for

all i, 1 ≤ i < k. �

Figure 7.2 represents the trace of a program as a sequence of environments

attached to program points. Figure 7.1 shows the same trace, represented as a

sequence of states on different levels of nesting. The program given in Figure 7.2

has three levels of nesting, the one outside the while loops, the one inside the outer

while loop, and the one inside the inner loop. These three levels of nesting are

represented by horizontal dotted lines in Figure 7.1. Each state is placed on its

corresponding line, in order to emphasize the nesting relations between the labels

of states in the trace. In order to produce a progressive segmentation of this trace

we shall start by identifying the segment t3s3 as the segment at the end of the

trace made up of states on a level not higher than the level of s3 (the last state

in the trace). To continue, we consider the segment t3s3 removed, and we repeat

the process until there are no more states left in the trace. That is, we identify

the segment t2s2 as the segment made up of states on a level not higher than the

level of s2, and after removing this segment, we identify the segment t1s1 as the

segment made up of states on a level not higher than the level of s1 (note that t1

is empty). Given now this segmentations, we need to identify the progressive pairs;

they are pairs of consecutive states in the trace that represent a going-around-the-

loop transition on the highest level of nesting for that particular segment. For

instance, transitions from program point 7 to program point 5 are progressive in

segment t3, but are not progressive in segment t2. On the other hand, transitions

from program point 8 to program point 2 are progressive in segment t2.
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1

2 3 4

5 6 7

8 3 4

5 6 7 5 6 7

8 3 4

5 6 7 5 6 7 5 6 7

not progressive

progressive
2 2

t2 t3

t1 = ε

s1 = 〈1, [x 7→ 0, y 7→ 0, z 7→ 0]〉 s2 = 〈4, [x 7→ 3, y 7→ 3, z 7→ 0]〉 s3 = 〈7, [x 7→ 3, y 7→ 6, z 7→ 3]〉

progressive segmentation: t1s1t2s2t3s3

outer while

inner while

Figure 7.1: Progressive segmentation of a trace
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We remark the following: assume θ is a trace of a program P starting from a set

of start environments Σ0, and let t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk−1〈lk−1, σk−1〉tk〈lk, σk〉 be a

segmentation of θ. Denote by θ′ the sequence t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk−1〈lk−1, σk−1〉.

If t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk−1〈lk−1, σk−1〉tk〈lk, σk〉 is a progressive segmentation for θ,

then t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk−1〈lk−1, σk−1〉 is a progressive segmentation for θ ′.

7.3 Uniqueness

Obviously, every trace has at least one progressive segmentation. The following

proposition proves that the progressive segmentation of a trace is unique.

7.5 Proposition Given a program P , every trace in
→
P has a unique progressive

segmentation.

Proof: We prove the proposition by induction on the number k of segments in

the progressive segmentation. That is, we prove that if a trace has a progressive

segmentation with k segments, that progressive segmentation is unique.

For the base case, let k = 1 and assume that the trace θ has a progressive

segmentation t1〈l1, σ1〉. We prove the base case by reductio ad absurdum and we

assume that the progressive segmentation is not unique. Then, there must exist

another progressive segmentation t′1〈l
′
1, σ

′
1〉 · · · t

′
p〈l

′
p, σ

′
p〉, where p ≥ 1. Obviously,

l1 = l′p, and t1〈l1, σ1〉 = t′1〈l
′
1, σ

′
1〉 · · · t

′
p〈l

′
p, σ

′
p〉, and therefore l′p−1 occurs in t1. Now,

from the fact that t′1〈l
′
1, σ

′
1〉 · · · t

′
p〈l

′
p, σ

′
p〉 is a progressive segmentation, it follows that

l′p−1 6 l′p = l1. However, from l′p−1 occurs in t1, it follows that l′p−1 6 l1 cannot be

true. Contradiction.

For the induction case, assume that the trace θ has a progressive segmenta-

tion t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk−1〈lk−1, σk−1〉tk〈lk, σk〉, and that this progressive seg-
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mentation is not unique. Then, there exists another progressive segmentation

t′1〈l
′
1, σ

′
1〉 · · · t

′
p〈l

′
p, σ

′
p〉 of θ, where p ≥ 1. First we prove that t′p = tk. As-

sume, by way of contradiction, that this does not happen. From Definition 7.4

we have l′p−1 6 l′p = lk. Without loss of generality, assume that t′p is a proper

sub-segment of tk (the case when tk is a sub-segment of t′p is proved in the same

way). Then, it must be the case that l′p−1 occurs in tk, which contradicts the

fact that l′p−1 6 lk. Therefore, it must be the case that t′p = tk. It follows

that t1〈l1, σ1〉t2〈l2, σ2〉 · · ·tk−1〈lk−1, σk−1〉 = t′1〈l
′
1, σ

′
1〉 · · ·t

′
p−1〈l

′
p−1, σ

′
p−1〉. But since

t1〈l1, σ1〉t2〈l2, σ2〉 · · ·tk−1〈lk−1, σk−1〉 has a progressive segmentation with k − 1 seg-

ments, it follows from the inductive hypothesis that this progressive segmenta-

tion is unique. Since both t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk−1〈lk−1, σk−1〉 and tk〈lk, σk〉 are

unique, it follows that the entire progressive segmentation t1〈l1, σ1〉t2〈l2, σ2〉 · · ·

tk−1〈lk−1, σk−1〉tk〈lk, σk〉 is unique. �

7.4 Progressive Index

Given a program P , consider a trace θ and its progressive segmentation

t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk−1〈lk−1, σk−1〉tk〈lk, σk〉. A progressive pair is a sequence of

two consecutive states 〈l′, σ′〉〈l′′, σ′′〉 occurring in a segment ti〈li, σi〉, 1 ≤ i ≤ k,

such that l′′ = l′ and l′′ = li.

7.6 Definition Given a program P , let θ be a trace of P , and

t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk−1〈lk−1, σk−1〉tk〈lk, σk〉 its progressive segmentation. The

progressive index of the trace θ is an index µ̃ = µ2µ3 · · ·µk, where µi is the number

of progressive pairs in ti〈li, σi〉, for all i, 2 ≤ i ≤ k. �

We note that in the case when k = 1 in the definition above, the progressive
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〈1〉

while x < 5 do

〈2〉

x := x + 1

〈3〉

z := 0

〈4〉

while z < x do

〈5〉

y := y + 1

〈6〉

z := z + 1

〈7〉

endwhile

〈8〉

endwhile

〈9〉

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

? ?

(0, 0, 0)

(0, 0, 0) (1, 1, 1) (2, 3, 2)

(1, 0, 0) (2, 1, 1) (3, 3, 2)

(1, 0, 0) (2, 1, 0) (3, 3, 0)

(1, 0, 0) (2, 1, 0) (2, 2, 1) (3, 3, 0) (3, 4, 1) (3, 5, 2)

(1, 1, 0) (2, 2, 0) (2, 3, 1) (3, 4, 0) (3, 5, 1) (3, 6, 2)

(1, 1, 1) (2, 2, 1) (2, 3, 2) (3, 4, 1) (3, 5, 2) (3, 6, 3)

(1, 1, 1) (2, 3, 2)

Figure 7.2: Progressive Index
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index of the trace θ is ε.

The following proposition shows the relation between progressive indices and

the length of the computation.

7.7 Proposition Given a program P , let θ1 = t1〈l, σ1〉 and θ2 = t2〈l, σ2〉 be two

traces of P ending at the same program point. Assume that θ1 is a proper prefix

of θ2, and denote by µ̃1 and µ̃2 the progressive indices of θ1 and θ2, respectively.

Then, µ̃1 < µ̃2.

Proof: Relegated to Appendix A, on page 276.

The following four propositions establish a link between the syntax of a program

and the progressive segmentation of a trace of that program, and shall be useful in

defining a configuration based semantic transformer and proving that the semantic

transformer is well defined.

7.8 Proposition The following three statements hold.

a) Given a sequence program P = P1 # P2 and a trace θ ∼ t1︸︷︷︸
P1

P1

−−−→ t2︸︷︷︸
P2

, the

progressive index of θ w.r.t. P is the same as the progressive index of t2 w.r.t.

P2.

b) Given an if program P , let P ′ be either its consequent or its alternative.

Consider a trace θ ∼ 〈first(P ), σ〉
P

−−−→ t︸︷︷︸
P ′

. Then, the progressive index of

θ w.r.t. P is the same as the progressive index of t w.r.t. P ′.

c) Consider a while program P whose body is P ′. Consider a trace θ ∼

〈first(P ), σ〉
P↘

−−−→ t1︸︷︷︸
P ′

P	

−−−→ t2︸︷︷︸
P ′

P	

−−−→ · · ·
P	

−−−→ tk︸︷︷︸
P ′

, for some k > 0.

Denote by µ̃ the progressive index of tk w.r.t. P ′. Then, the progressive

index of θ w.r.t. P is (k − 1)µ̃.
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Proof: Relegated to Appendix A, on page 277.

7.9 Proposition Let P = P1 # P2 be a sequence program and θ ∈
→
P a trace. The

following two statements are true.

a) If θ ∼ t1︸︷︷︸
P1

and repP1
(t1) = ~K1 for some singleton configuration ~K1 such that

| ~K1| = P1, then repP (θ) = ~K1 # ~KP2,⊥.

b) If θ ∼ t1︸︷︷︸
P1

P1

−−−→ 〈last(P1), σ〉
P2

−−−→ t2︸︷︷︸
P2

such that repP1
(t1〈last(P1), σ〉) =

~K1 and repP2
(〈last(P1), σ〉t2) = ~K2 for some singleton configurations ~K1 and

~K2 with | ~K1| = P1 and | ~K2| = P2, then repP (θ) = ~K1 # ~K2.

Proof: Relegated to Appendix A, on page 279.

7.10 Proposition Let P be an if program whose condition is C and consequent

and alternative are Pc and Pa, respectively. Given a trace θ ∈
→
P , the following

statements are true.

a) If θ = 〈first(P ), σ〉 for some environment σ ∈ Env, then repP (θ) =

〈first(P ), λ〈〉 . {σ}〉 if C then ~KPc,⊥ else ~KPa,⊥ endif 〈last(P ), λ〈〉 . ∅〉.

b) If θ ∼ 〈first(P ), σs〉
P↙

−−−→ t︸︷︷︸
Pc

, for some environment σs ∈ Env such that

σs |= C, and trace segment t ∈
→
Pc, and if repPc

(t) = ~Kc, where ~Kc is a

configuration such that | ~Kc| = Pc, then repP (θ) =

〈first(P ), λ〈〉 . {σs}〉 if C then ~Kc else ~KPa,⊥ endif 〈last(P ), λ〈〉 . ∅〉.

c) If θ ∼ 〈first(P ), σs〉
P↙

−−−→ t︸︷︷︸
Pc

P↗
−−−→ 〈last(P ), σf 〉 , where σs, σf ∈ Env,

with σs |= C, and t ∈
→
Pc, and if repPc

(t) = ~Kc, where ~Kc is a configuration

such that | ~Kc| = Pc, then repP (θ) =

〈first(P ), λ〈〉 . {σs}〉 if C then ~Kc else ~KPa,⊥ endif 〈last(P ), λ〈〉 . {σf }〉.
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d) If θ ∼ 〈first(P ), σs〉
P↘

−−−→ t︸︷︷︸
Pa

, for some environment σs ∈ Env such that

σs |= ¬C, and trace segment t ∈
→
Pa, and if repPa

(t) = ~Ka, where ~Ka is a

configuration such that | ~Ka| = Pa, then repP (θ) =

〈first(P ), λ〈〉 . {σs}〉 if C then ~KPc,⊥ else ~Ka endif 〈last(P ), λ〈〉 . ∅〉.

e) If θ ∼ 〈first(P ), σs〉
P↘

−−−→ t︸︷︷︸
Pa

P↖
−−−→ 〈last(P ), σf 〉 , where σs, σf ∈ Env,

with σs |= ¬C, and t ∈
→
Pa, and if repPa

(t) = ~Ka, where ~Ka is a

configuration such that | ~Ka| = Pa, then

repP (θ)〈first(P ), λ〈〉 . {σs}〉 if C then ~KPc,⊥ else ~Ka endif 〈last(P ), λ〈〉 . {σf }〉.

Proof: Relegated to Appendix A, on page 280.

We now introduce the operator seq for progressive configurations, as a means

to combine configurations representing traces of the body of a loop into a single

configuration. First we define the operator for annotations, and then we extend it

to general progressive configurations.

Formally, given a (possibly infinite) sequence of indexed sets Ψ1, Ψ2, . . . , Ψn, . . .,

we denote by seq(Ψ1, Ψ2, . . . , Ψn, . . .) the indexed set Ψ defined by

Ψ(µ̃) =





∅, if µ̃ = ε

Ψi(µ̃
′) if µ̃ = iµ̃′

Also, given an indexed set Ψ, and a natural number i, we denote by extr(Ψ, i) the

indexed set Ψ′ such that Ψ′(µ̃) = Ψ(iµ̃), for all µ ∈ Idx. The operators seq and extr

can be extended to progressive configurations in the following way. Given a (possibly

infinite) sequence of progressive configurations K1,K2, . . . ,Kn, . . ., such that |K1| =

|K2| = · · · = |Kn| = · · ·, we denote by seq(K1,K2, . . . ,Kn, . . .) the progressive

configuration K such that |K| = |K1| and K|l = seq(K1|l,K2|l, . . . ,Kn|l, . . .), for

all labels l ∈ labels(K1). Similarly, given a progressive configuration K, and a
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natural number i, we denote by extr(K, i) the progressive configuration K ′, such

that |K ′| = |K| and K ′|l = extr(K|l, i), for all labels l ∈ labels(K).

7.11 Proposition Let P be a while program whose condition and body are C

and Pb, respectively. Given a trace θ ∈
→
P , the following statements are true.

a) If θ = 〈first(P ), σ〉 for some environment σ ∈ Env then repP (θ) =

〈first(P ), λ〈〉 . {σ}〉 while C do ~KPb,⊥ endwhile 〈last(P ), λ〈〉 . ∅〉.

b) If θ ∼ 〈first(P ), σ〉
Py

−−−→ 〈last(P ), σ〉 for some environ-

ment σ ∈ Env, such that σ |= ¬C then repP (θ) =

〈first(P ), λ〈〉 . {σ}〉 while C do ~KPb,⊥ endwhile 〈last(P ), λ〈〉 . {σ}〉.

c) If θ ∼ 〈first(P ), σs〉
P↘

−−−→ t0︸︷︷︸
Pb

P	

−−−→ t1︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ tk︸︷︷︸
Pb

, for some

k ≥ 0 and some environment σ ∈ Env such that σ |= C, and if repPb
(ti) = ~Ki,

1 ≤ i ≤ k, where ~Ki is a configuration such that | ~Ki| = Pc, then repP (θ) =

〈first(P ), λ〈〉 . {σs}〉 while C do seq( ~K1, . . . , ~Kk) endwhile 〈last(P ), λ〈〉 . ∅〉.

d) If θ ∼ 〈first(P ), σs〉
P↘

−−−→ t0︸︷︷︸
Pb

P	

−−−→ t1︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ tk︸︷︷︸
Pb

P↖
−−−→

〈last(P ), σf 〉, for some k ≥ 0 and some environments σs, σf ∈ Env such

that σs |= C and σf |= ¬C, and if repPb
(ti) = ~Ki, 1 ≤ i ≤ k, where ~Ki is a

configuration such that | ~Ki| = Pc, then repP (θ) = 〈first(P ), λ〈〉 . {σs}〉 while

C do seq( ~K1, . . . , ~Kk) endwhile 〈last(P ), λ〈〉 . {σf }〉.

Proof: Relegated to Appendix A, on page 283.

7.5 Representing Traces

We can now represent traces as singleton configurations.
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7.12 Definition Consider a trace θ of a program P starting at a set of start en-

vironments Σ0. Let ~K be singleton configuration with | ~K| = P , whose annotations

are given by:

~K|l(µ̃) =





{σ} , if there exists a prefix 〈l0, σ0〉 · · · 〈l, σ〉
of θ whose progressive index is µ̃

∅ , otherwise

We say that ~K represents the trace θ, and we denote this by repP (θ) = ~K. �

According to Proposition 7.7, configuration K above is well defined. Indeed,

given a prefix θ′ of θ ending at program point l, if µ̃ is the progressive index of θ ′,

then the mapping θ′ 7→ (l, µ̃) is injective. This justifies the fact that ~K|l(µ̃) is either

a singleton or an empty set. In what follows, we shall prove that the representation

relation is well defined. The first step is proving that the relation defines in fact an

injective mapping.

7.13 Proposition Given a program P , the mapping θ 7→ repP (θ) is injective.

Proof: Assume that the mapping is not injective. Then there are two traces

θ1, θ2 ∈
→
P that are mapped into the same configuration ~K. Let l = first( ~K) and

assume that ~K|l = {σ}. Then, 〈l, σ〉 is the start state of both θ1 and θ2. According

to Proposition 5.4, either θ1 is a prefix of θ2 or θ2 is a prefix of θ1. Without loss

of generality, we may assume that θ1 is a prefix of θ2. Let now 〈l′, σ′〉 be the state

following θ1 in θ2, and denote by µ̃ the progressive index of trace θ1〈l
′, σ′〉. Since

〈l′, σ′〉 does not occur in θ1, we have ~K|l′(µ̃) = ∅. On the other hand, 〈l′, σ′〉 occurs

in θ2, and therefore ~K|l′(µ̃) = {σ′}. Contradiction. �
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assign : Var×Expr× Idx 7→ Idx

assign(x,E, Ψ) = λµ̃ . {σ | exists σ′ ∈ Ψ(µ̃) s.t. σ = σ′[x 7→ E(σ)]}

filter : Constr× Idx 7→ Idx

filter(C, Ψ) = λµ̃ . {σ |σ ∈ Ψ(µ̃) and σ |= C}

∪ : Idx× Idx 7→ Idx

Ψ1 ∪ Ψ2 = λµ̃ . Ψ1(µ̃) ∪ Ψ2(µ̃)

before : Idx× Idx 7→ Idx

before(Ψ1, Ψ2) = λµ̃ .





∅ , if µ̃ = ε

Ψ1(µ̃′) , if µ̃ = µ̃′0

Ψ2(µ̃′(µ − 1)) , if µ̃ = µ̃′µ and µ > 0

collect : Idx 7→ Idx

collect(Ψ) = λµ̃ .
⋃

µ≥0

Ψ(µ̃µ)

Figure 7.3: Indexed Set Operators

7.6 Transition Relation for Singleton Configurations

Figure 7.3 introduces several operators for indexed sets. These operators shall be

useful in defining a semantic transformer for the configuration-based trace seman-

tics, as well as the progressive semantics.

The operator assign models the effect of assignment statements in the progressive
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��

��

��

��

while C do

endwhile

P

Σ1

Σ2

before(Σ1, Σ2)

collect(Σ2)

Figure 7.4: The before and collect operators explained

semantics. The operator filter models the effect of branching in if and while

statements. We also overload the union operator ∪ to model the effect of two

if branches being joined at the end of an if statement. The operators before

and collect are essential in capturing the sequences of environments that occur at

program points inside while loops. Figure 7.4 explains how these operators work.

The before operator builds the sequence of environments at the first program point

of the body of a while loop. The first environment in the sequence comes from the

program point outside the loop, while all the subsequent environments come from

the bottom of the loop. The collect operator builds the sequence of states that are

transferred from the last program point of the body of a while loop to the program

point outside the while loop.

The following two remarks show the relationship between the configuration se-



CHAPTER 7. TRACES AS CONFIGURATIONS 108

〈ls, Ψs〉 skip 〈lf , Ψf 〉 −−−→ 〈ls, Ψs〉 skip 〈lf , Ψs〉

〈ls, Ψs〉 x := E 〈lf , Ψf 〉 −−−→ 〈ls, Ψs〉 x := E 〈lf , assign(x,E, Ψs)〉

〈ls, Ψs〉
if C
then

K1

else

K2

endif

〈lf , Ψf 〉

−−−→

〈ls, Ψs〉
if C
then

〈first(K1),filter(C, Ψs)〉 # K ′
1

else

〈first(K2),filter(¬C, Ψs)〉 # K ′
2

endif

〈lf ,K1|last(K1) ∪ K2|last(K2)〉

where K1 −−−→ K ′
1 and K2 −−−→ K ′

2

〈ls, Ψs〉
while C do

K
endwhile

〈lf , Ψf 〉

−−−→

〈ls, Ψs〉
while C do

〈first(K), Ψ′〉 # K ′

endwhile

〈lf , Ψ′′〉

where K −−−→ K ′

Ψ′ = filter(C, before(Ψs,K|last(K)))
Ψ′′ = filter(¬C, Ψs ∪ collect(K|last(K)))

K1 # K2 −−−→ K ′
1 # K ′

2

where K1 −−−→ K ′
1

K2 −−−→ K ′
2

Figure 7.5: Transition Relation for Configurations

quencing operator seq, the operators in Figure 7.4 and the syntax of our program-

ming language.

7.14 Remark The sequencing operator distributes over the operators defined in

Figure 7.3. Indeed, we have

a) seq(before(Ψ11, Ψ12), . . . , before(Ψk1, Ψk2)) =

before(seq(Ψ11, . . . , Ψk1), seq(Ψ12, . . . , Ψk2)), k > 0 ;
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b) seq(assign(x,E, Ψ1), . . . , assign(x,E, Ψk)) = assign(x,E, seq(Ψ1, . . . , Ψk)) ;

c) seq(filter(C, Ψ1), . . . ,filter(C, Ψk)) = filter(C, seq(Ψ1, . . . , Ψk)) ;

d) seq(Ψ11 ∪ Ψ12, . . . , Ψk1 ∪ Ψk2) = seq(Ψ11, . . . , Ψk1) ∪ seq(Ψ12, . . . , Ψk2) ;

e) seq(collect(Ψ1), . . . , collect(Ψk)) = collect(seq(Ψ1, . . . , Ψk)) .

�

7.15 Remark The seq operator distributes over skip statements and assignments,

as well as over the sequence, if, and while constructs.

a) Let P = 〈ls〉 skip 〈lf 〉 be a skip program, and K1, . . . ,Kn a set of

configurations such that |Ki| = P , for all i, 1 ≤ i ≤ n. Each Ki can be

written as 〈ls, Σi〉 skip 〈lf , Σi〉. Then,

seq(K1, . . . ,Kn) = seq(〈ls, Σ1〉, . . . , 〈ls, Σn〉) skip seq(〈lf , Σ1〉, . . . , 〈lf , Σn〉).

b) Let P = 〈ls〉 x := E 〈lf 〉 be an assignment, and K1, . . . ,Kn a set of

configurations such that |Ki| = P , for all i, 1 ≤ i ≤ n. Each Ki can be

written as 〈ls, Σi〉 x := E 〈lf , Σ′
i〉, where Σ′

i = assign(x,E, Σi). Then,

seq(K1, . . . ,Kn) = seq(〈ls, Σ1〉, . . . , 〈ls, Σn〉) x :=

E seq(〈lf , Σ′
1〉, . . . , 〈lf , Σ′

n〉).

c) Let P = P1 # P2 be a sequence program, and K1, . . . ,Kn a set of

configurations such that |Ki| = P , for all i, 1 ≤ i ≤ n. Each Ki can be

written as K ′
i # K ′′

i . Then,

seq(K1, . . . ,Kn) = seq(K ′
1, . . . ,K

′
n) # seq(K ′′

1 , . . . ,K ′′
n).
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d) Let P = 〈ls〉 if C then Pc else Pa endif 〈lf 〉 be an if program and

K1, . . . ,Kn a set of configurations such that |Ki| = P , for all i, 1 ≤ i ≤ n.

Each Ki can be written as 〈ls, Σsi〉 if C then Kci else Kai endif 〈lf , Σfi〉.

Then, seq(K1, . . . ,Kn) = seq(〈ls, Σs1〉, . . . , 〈ls, Σsn〉) if C then

seq(Kc1, . . . ,Kcn) else seq(Ka1, . . . ,Kan) endif

seq(〈lf , Σf1〉, . . . , 〈lf , Σfn〉).

e) Let P = 〈ls〉 while C do Pb endwhile 〈lf 〉 be a while program and

K1, . . . ,Kn a set of configurations such that |Ki| = P , for all i, 1 ≤ i ≤ n.

Each Ki can be written as 〈ls, Σsi〉 while C do Kbi endwhile〈lf , Σfi〉.

Then, seq(K1, . . . ,Kn) = seq(〈ls, Σs1〉, . . . , 〈ls, Σsn〉) while C do

seq(Kb1, . . . ,Kbn) endwhile seq(〈lf , Σf1〉, . . . , 〈lf , Σfn〉).

�

Singleton configurations capture the history of the program’s execution in a

syntax-based manner. With every transition performed during the execution of the

program, a new environment must be added to the singleton configuration that

captures the execution’s history. This process can be modeled using the transition

relation for singleton and progressive configurations given in Figure 7.5.

7.7 Correctness

In what follows, we shall prove that the transition relation introduced above is well

defined, that is, given two traces θ1 and θ2 of a program P such that θ1 is the longest

proper prefix of θ2, we have repP (θ1) −−−→ repP (θ2). We start with the following

two propositions which prove several simple properties of the transition relation.

7.16 Proposition Let P be a program and ~K1, . . . , ~Kk and ~K ′
1, . . . ,

~K ′
k two sets

of singleton configurations such that | ~Ki| = | ~K ′
i| = P , for all i, 1 ≤ i ≤ k. Assume
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that ~Ki −−−→ ~K ′
i. Then, seq( ~K1, . . . , ~Ki) −−−→ seq( ~K ′

1, . . . ,
~K ′

i), k > 0 .

Proof: Relegated to Appendix A, on page 286.

7.17 Proposition Let P be a program. The following two statements hold.

a) Denote by ~KP,⊥ the empty configuration corresponding to P . Then,

~KP,⊥ −−−→ ~KP,⊥.

b) Let θ be a terminal trace w.r.t P , and denote by ~K the configuration such

that repP (θ) = ~K. Then K −−−→ K.

Proof: Relegated to Appendix A, on page 288.

The following proposition shows that the transition relation defined in Figure 7.5

is well-defined.

7.18 Proposition Consider a labeled program P and let θ1, θ2 ∈
→
P be two traces

such that θ1 is the longest proper prefix of θ2. Let ~K1 and ~K2 be two singleton

configurations such that repP (θ1) = ~K1 and repP (θ2) = ~K2. Then, ~K1 −−−→ ~K2.

Proof: Relegated to Appendix A, on page 291.

Proposition 7.18 shows that Equation 7.12 defines a sound representation of

traces as configurations. In what follows, we will consistently use singleton configu-

rations instead of traces. As a result, the trace semantics becomes a set of singleton

configurations.



Chapter 8

Sets of States as Configurations

In the previous chapter we have shown that program traces can be expressed as

singleton configurations, and argued that singleton configurations are a composi-

tional, syntax directed means of representing program behavior. In what follows,

we shall continue our quest of making configurations a pervasive and uniform means

of expressing program semantics. In this chapter, we show that sets of states can

be expressed as configurations, and we re-express some of the collecting-semantics-

related results in a configuration-based setting.

8.1 Collecting Configurations

Given a program P , let S be a set of states of P . The collecting configuration that

represents S is a configuration K such that |K| = P and K|l = {σ | 〈l, σ〉 ∈ S}. We

note that if K ′ is a sub-configuration of K, then K ′ represents the subset of S whose

states have labels in labels(K ′). We also note that if S1 and S2 are two sets of states

represented by K1 and K2, respectively, then S1 ⊆ S2 is equivalent to K1 4 K2

We also extend the union operator to collective configurations in the following way.

Given two collective configurations K1 and K2 such that |K1| = |K2|, the union

112
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〈1,>〉

x := 0

〈2, {[x 7→ 0, y 7→ 0], [x 7→ 0, y 7→ −1], [x 7→ 0, y 7→ 1], · · ·}〉

y := 0

〈3, {[x 7→ 0, y 7→ 0]}〉

while x < 10 do

〈4, {[x 7→ 0, y 7→ 0], [x 7→ 1, y 7→ 1], · · · , [x 7→ 9, y 7→ 45]}〉

x := x + 1

〈5, {[x 7→ 1, y 7→ 0], [x 7→ 2, y 7→ 1], · · · , [x 7→ 10, y 7→ 45]}〉

y := y + x

〈6, {[x 7→ 1, y 7→ 1], [x 7→ 2, y 7→ 3], · · · , [x 7→ 10, y 7→ 55]}〉

endwhile

〈7, {[x 7→ 10, y 7→ 55]}〉

Figure 8.1: Example of Collecting Configuration

K1 ∪ K2 is defined by (K1 ∪ K2)|l = K1|l ∪ K2|l, for all labels l ∈ labels(K1). We

note now that, given a program P , ({K | |K | = P},4) is a complete lattice.

Figure 8.1 shows an example of a collecting configuration which represents the

collecting semantics of its underlying program.

8.1 Proposition The mapping S 7→ K, where K is the collecting configuration

that represents the set of states S, is bijective.

Proof: We will prove that the mapping is both injective and surjective. Assume

the mapping were not injective. Then, there would be two distinct sets of states S1

and S2 that would be mapped into the same configuration K. Let 〈l, σ〉 ∈ S1\S2 (if

S1\S2 is empty, we could choose a state in S2\S1 and obtain a similar proof). From

〈l, σ〉 ∈ S1 we have that σ ∈ K|l. From 〈l, σ〉 6∈ S2 we have σ 6∈ K|l. Contradiction.

This proves that the mapping is injective. In order to prove that the mapping is
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surjective, we note that given a configuration K, the set S = ∪l∈labels(K)K|l is

represented by K, and therefore, for every collecting configuration, there exists a

set of states represented by it. �

8.2 Transfer Function

Given a program P , the collecting semantics has been defined as the fixpoint of the

semantic transformer TP . A similar semantic transformer for semantic configura-

tions is defined in Figure 8.2. We note here that |K| = |T(K)|, for all collecting

configurations K. The following proposition shows that collecting configurations

are a sound way of representing the collecting semantics and that the semantic

transformer T is well-defined.

8.2 Proposition Let P be a labeled program, and S a set of states of P . Denote

by S0 the set {〈l, σ〉 | 〈l, σ〉 ∈ S and l = first(P )}. Assume that the representation

of S is a configuration K. Then (TP ∪ S0)(S) is represented by T(K).

Proof: Relegated to Appendix A, on page 292.

8.3 Fixpoint Characterization

Given a program P , according to Proposition 6.2, the set ΓP of all collecting con-

figurations whose skeleton is P , together with the induced partial order 4, is a

complete lattice. It easy to prove that the restriction T ′ of the operator T to ΓP is

continuous. From Proposition 2.1, it follows that T ′ has a least fixpoint in ΓP . The

following proposition shows that the collecting semantics of P is a fixed point of T ′.

8.3 Proposition Let P be a program, Σ0 a set of start environments, and denote

by K0 the configuration such that |K0| = P , K0|first(P ) = Σ0, and K0|l = ∅ for all
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T




〈ls, Σs〉
skip

〈lf , Σf 〉


 =

〈ls, Σs〉
skip

〈lf , Σs〉

T




〈ls, Σs〉
x := E
〈lf , Σf 〉


 =

〈ls, Σs〉
x := E
〈lf , {σ[x 7→ E] |σ ∈ Σs}〉

T




〈ls, Σs〉
if C
then

Kc

else

Ka

endif

〈lf , Σf 〉




=

〈ls, Σs〉
if C
then

〈first(Kc), Σs ∩ {σ |σ |= C}〉 # T(Kc)
else

〈first(Ka), Σs ∩ {σ |σ |= ¬C}〉 # T(Ka)
endif

〈lf ,Kc|last(Kc)
∪ Ka|last(Ka)〉

T




〈ls, Σs〉
while C do

Kb

endwhile

〈lf , Σf 〉




=

〈ls, Σs〉
while C do

〈first(Kb), Σ〉 # T(Kb)
endwhile

〈lf , {σ |σ |= C} ∩ (Σs ∪ Kb|last(Kb)
)〉

where Σ = {σ |σ |= C} ∩ (Σs ∪ Kb|last(Kb)
)

T
(
K1 # K2

)
= T

(
K1

)
# T
(
K2

)

Figure 8.2: Transfer Function for Collecting Configurations
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labels l ∈ labels(P )\{first(P )}. Then, T ω(K0) represents the collecting semantics

of P w.r.t. Σ0.

Proof: Relegated to Appendix A, on page 295.

8.4 Properties

From Proposition 8.3 and Remark 2.5 it follows that the collecting semantics of

a program P is lfp(T ′ ∪ K0), where K0 is the start configuration, as defined in

Proposition 8.3.

The following proposition shows that the transfer operator T distributes over a

union of collective configurations and will be useful in establishing a relationship

between the configuration-based collecting semantics and the progressive semantics.

8.4 Proposition Given a set of collective configurations with the same skeleton

Γ, we have that T(
⋃

K∈Γ K) =
⋃

K∈Γ T(K).

Proof: Relegated to Appendix A, on page 295.

8.5 Discussion

Proposition 8.3 proves that the collecting semantics of a program P w.r.t. a set

of start environments Σ0 is the least fixpoint of the T operator over the lattice

L = ({K | |K | = P and K|first(P ) = Σ0},4). Typically, classic program reason-

ing methods would either compute or verify that a set of states is a superset of

the collecting semantics. The fixpoint characterization that we provided induces

a very convenient means of performing such verification. Since a postfixpoint of

T w.r.t. the lattice given above is necessarily a superset of the least fixpoint, one

sufficient condition for a collecting configuration K to be a superset of the collecting



CHAPTER 8. SETS OF STATES AS CONFIGURATIONS 117

〈1, {σ |σ ∈ Env}〉

x := 0

〈2, {σ |σ(x) = 0}〉

y := 0

〈3, {σ |σ(x) = 0 and σ(y) = 0}〉

while x < 10 do

〈4, {σ | 0 ≤ σ(x) < 10 and σ(y) ∈ {0, 1, 3, 6, 10, 15, 21, 28, 36, 45}}〉

if x 6= −1 then

〈5, {σ | 0 ≤ σ(x) < 10 and σ(y) ∈ {0, 1, 3, 6, 10, 15, 21, 28, 36, 45}}〉

x := x + 1

〈6, {σ | 1 ≤ σ(x) < 11 and σ(y) ∈ {0, 1, 3, 6, 10, 15, 21, 28, 36, 45}}〉

y := y + x

〈7, {σ | 1 ≤ σ(x) < 11 and σ(y) ∈ {1, 3, 6, 10, 15, 21, 28, 36, 45, 55}}〉

else

〈8, ∅〉

skip

〈9, ∅〉

endif

〈10, {σ | 1 ≤ σ(x) < 11 and σ(y) ∈ {1, 3, 6, 10, 15, 21, 28, 36, 45, 55}}〉

endwhile

〈11, {σ |σ(x) = 10 and σ(y) = 55}〉

Figure 8.3: Collecting Semantics as the Least Fixpoint

semantics is to have T(K) 4 K. Once we have found a collective configuration K

that satisfies this condition, we can take advantage of the fact that the T operator

is monotone, and harness it to produce more refined approximations of the collect-

ing semantics. This can be achieved by computing the sequence (T k(K))k≥0. This

sequence is monotonically decreasing, and shall produce increasingly more precise

approximations of the collecting semantics. However, since the T operator does

not necessarily have a unique fixpoint, the sequence of approximations does not
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〈1, {σ |σ ∈ Env}〉

x := 0

〈2, {σ |σ(x) = 0}〉

y := 0

〈3, {σ |σ(x) = 0 and σ(y) = 0}〉

while x < 10 do

〈4, {σ |σ(x) < 10}〉

if x 6= −1 then

〈5, {σ |σ(x) < 10 and σ(x) 6= −1}〉

x := x + 1

〈6, {σ |σ(x) < 11 and σ(x) 6= 0}〉

y := y + x

〈7, {σ |σ(x) < 11 and σ(x) 6= 0}〉

else

〈8, {σ |σ(x) = −1}〉

skip

〈9, {σ |σ(x) = −1}〉

endif

〈10, {σ |σ(x) < 11 and σ(x) 6= 0}〉

endwhile

〈11, {σ |σ(x) = 10}〉

Figure 8.4: Greatest Fixpoint

get arbitrarily close to the least fixpoint of T. We illustrate this situation with an

example. Figures 8.3 and 8.4 show a collecting semantics of a program, and an ap-

proximation K of that collecting semantics that happens to be the greatest fixpoint

of T on the lattice L. since the configuration given in Figure 8.4 is a fixpoint of T,

the sequence (T k(K))k≥0 will not improve the precision of K. As it can be seen

from Figure 8.3, program points 8 and 9 are not live, while the values of x and y

are positive throughout the entire execution of the program fragment. However,
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the approximation given in Figure 8.4 shows non-empty sets of environments for

program points 8 and 9, and negative integers as possible values for variable x at

all program points inside the loop. For this reason, the collecting semantics and T

operator cannot be the basis for a reasoning framework that would infer or verify

liveness properties.



Chapter 9

The Progressive Middle-Ground

In the previous two chapters we have introduced configurations as a uniform, syntax-

directed means of expressing semantics, and showed that both the trace and the

collecting semantics can be represented as configurations. However, each of these

semantics has its own shortcomings. One one hand, the trace semantics, while

capturing the behavior of the program in full detail, is too low level to be amenable

to program reasoning. On the other hand, collecting semantics abstracts away

all the sequencing information, becoming unable to deal with liveness and progress

properties. However, collecting semantics brings in a very useful feature, that is, the

ability to reason about programs in a compositional manner, with (safety) properties

expressed as formulas attached to program points. Such degree of locality fosters

the modular development of software and is a feature that we would like to retain

in our framework.

What we need is a middle-ground, a semantics whose level of abstraction lies

in-between the trace and collecting semantics, such that it allows reasoning about

liveness and progress properties, while retaining the very useful feature of having

properties about programs expressed as formulas attached to program points. We

120
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shall argue in this chapter that the progressive semantics is such a middle ground,

exhibiting a level of abstraction that makes it amenable to reasoning about both

liveness and safety properties in a unified compositional framework.

9.1 Progressive Semantics

We start with a configuration-based definition of the progressive semantics.

9.1 Definition The progression of an annotated program P and a set of start

states Σ0 is a progressive configuration K such that |K| = P and K|l(µ̃) is the set

of all environments σ for which there is a trace starting in Σ0, ending with state

〈l, σ〉 and whose progressive index is µ̃. �

Figure 9.2 shows a progression of the program introduced in Figure 7.2. Fig-

ure 9.3 shows a progression of the same program, using the indexed set language

introduced in Section 6.1.

In what follows, we present a fixed point specification of the progressive se-

mantics. As argued in Section 2.2 such a specification relies on a semantic do-

main which must be a complete lattice, and on a semantic transformer, which

must be a monotone mapping over the semantic domain. For a given program P ,

our semantic domain is the set Progressive(P ) and Proposition 6.2 shows that

(Progressive(P ),4) is a complete lattice. In order to define a semantic trans-

former, we first need to introduce a set of operators over indexed sets. These

operators are defined in Figure 7.3. We define the operator ~T :
⋃

P 2Singletons(P ) 7→

⋃
P 2Singletons(P ) by ~T(Γ) = { ~K | there exists a configuration ~K ′ ∈ Γ such that

~K ′ −−−→ ~K}.

9.2 Remark From Propositions 5.7 and 7.18 it follows that, given a program P and
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a set of start environments Σ0, the configuration-based trace semantics is lfp( ~T ′∪~Γ0),

where ~T ′ is the restriction of ~T to the set 2
~ΓP , where ~Γ = { ~K | | ~K | = P}, and ~Γ0 is the

set of singleton configurations { ~K | | ~K| = P, ~K0|first(P ) = λ〈〉 . {σ}, σ ∈ Σ0, ~K0|l =

λ〈〉 . ∅ for all l ∈ labels(P )\{l}}. �

We define the operator T p : AProg(Labels × IdxEnv) 7→ AProg(Labels ×

IdxEnv) by T p(K1) = K2 if K1 −−−→ K2. Figure 9.1 presents an alternative

syntax-based definition of the T p operator. T p is monotone.

9.3 Proposition Given a set of progressive configurations with the same skeleton

Γ, we have that

T p

(⋃

K∈Γ

K

)
=
⋃

K∈Γ

T p(K) .

Proof: The proof is similar to the one of Proposition 8.4 as the T p operator has a

syntax-directed definition that is similar to T, and the ∪ operator for indexed sets

is distributive over configurations and other indexed set operators. �

9.2 Fixpoint Characterization

In this section we show that the T p operator has a unique fixpoint w.r.t. a given

program and a set of start environments. It is also true that this fixpoint is the

progression of P w.r.t. Σ0, but this result, given in Theorem 10.5, shall be postponed

till Section 10.1. We start with a set of helper propositions that shall be useful

in constructing an inductive proof. The main result of this section is given in

Theorem 9.7.
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T p




〈ls, Ψs〉
skip

〈lf , Ψf 〉


 =

〈ls, Ψs〉
skip

〈lf , Ψs〉

T p




〈ls, Ψs〉
x := E

〈lf , Ψf 〉


 =

〈ls, Ψs〉
x := E

〈lf , assign(x, e, Ψs)〉

T p




〈ls, Ψs〉
if C
then

K1

else

K2

endif

〈lf , Ψf 〉




=

〈ls, Ψs〉
if C
then

〈l1s,filter(C,K1|l1s
)〉 # T p(K1)

else

〈l2s,filter(¬C,K2|l2s
)〉 # T p(K2)

endif

〈lf ,K1|l1f
∪ K2|l2f

〉

where lis = first(Ki), lif = last(Ki), i ∈ {1, 2}

T p




〈ls, Ψs〉
while C do

K
endwhile

〈lf , Ψf 〉




=

〈ls, Ψs〉
while C do

〈l′s,filter(C, before(Ψs,K|l′
f
))〉 # T p(K)

endwhile

〈lf ,filter(¬C, Ψs ∪ collect(K|l′
f
))〉

where ls = first(K), lf = last(K)

T p (K1 # K2) = T p (K1) # T p (K2)

Figure 9.1: Progressive Transfer Function
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while x < 5 do

x := x + 1

z := 0

while z < x do

y := y + 1

z := z + 1

endwhile

endwhile

q

q

q

q

q

q

q

q

q

-

-

-

-

-

-

-

-

-

b
b

bblabels
µ̃

ε 0 1 00 01 10 11

1
{(0, 0, 0),
(0, 10, 0)} ∅ ∅ ∅ ∅ ∅ ∅

2 ∅
{(0, 0, 0),
(0, 10, 0)}

{(1, 1, 1),
(1, 11, 1)} ∅ ∅ ∅ ∅

3 ∅
{(1, 0, 0),
(1, 10, 0)}

{(2, 1, 1),
(2, 11, 1)} ∅ ∅ ∅ ∅

4 ∅
{(1, 0, 0),
(1, 10, 0)}

{(2, 1, 0),
(2, 11, 0)} ∅ ∅ ∅ ∅

5 ∅ ∅ ∅
{(1, 0, 0),
(1, 10, 0)} ∅

{(2, 1, 0),
(2, 11, 0)}

{(2, 2, 1),
(2, 12, 1)}

6 ∅ ∅ ∅
{(1, 1, 0),
(1, 11, 0)} ∅

{(2, 2, 0),
(2, 12, 0)}

{(2, 3, 1),
(2, 13, 1)}

7 ∅ ∅ ∅
{(1, 1, 1),
(1, 11, 1)} ∅

{(2, 2, 1),
(2, 12, 1)}

{(2, 3, 2),
(2, 13, 2)}

8 ∅
{(1, 1, 1),
(1, 11, 1)}

{(2, 3, 2),
(2, 13, 2)} ∅ ∅ ∅ ∅

9
{(5, 15, 5),
(5, 25, 5)} ∅ ∅ ∅ ∅ ∅ ∅

Figure 9.2: Example of Progression
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while x < 5 do

x := x + 1

z := 0

while z < x do

y := y + 1

z := z + 1

endwhile

endwhile

q

q

q

q

q

q

q

q

q

-

-

-

-

-

-

-

-

- 1 λ〈〉 . {σ |σ(x) = 0, 0 ≤ σ(y) ≤ 10}

2 λ〈µ1〉 . {σ | σ(x) = µ1, µ1(µ1 + 1)/2 ≤ σ(y) ≤ µ1(µ1 + 1)/2 + 10}

3 λ〈µ1〉 . {σ | σ(x) = µ1 + 1, µ1(µ1 + 1)/2 ≤ σ(y) ≤ µ1(µ1 + 1)/2 + 10}

4 λ〈µ1〉 . {σ | σ(x) = µ1 + 1, µ1(µ1 + 1)/2 ≤ σ(y) ≤ µ1(µ1 + 1)/2 + 10, σ(z) = 0}

5 λ〈µ1µ2〉 . {σ | σ(x) = µ1 + 1, µ1(µ1 + 1)/2 + µ2 ≤ σ(y) ≤ µ1(µ1 + 1)/2 + µ2 + 10, σ(z) = µ2}

6 λ〈µ1µ2〉 . {σ | σ(x) = µ1 + 1, µ1(µ1 + 1)/2 + µ2 + 1 ≤ σ(y) ≤ µ1(µ1 + 1)/2 + µ2 + 11, σ(z) = µ2}

7 λ〈µ1µ2〉 . {σ | σ(x) = µ1 + 1, µ1(µ1 + 1)/2 + µ2 + 1 ≤ σ(y) ≤ µ1(µ1 + 1)/2 + µ2 + 11, σ(z) = µ2 + 1}

8 λ〈µ1〉 . {σ | σ(x) = µ1 + 1, (µ1 + 1)(µ1 + 2)/2 ≤ σ(y) ≤ (µ1 + 1)(µ1 + 2)/2 + 10, σ(z) = µ1 + 1}

9 λ〈〉 . {σ |σ(x) = 5, 15 ≤ σ(y) ≤ 25, σ(z) = 5}

Figure 9.3: Example of Progression Using the Indexed Set Language
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9.4 Proposition Let P be the sequence program P1 #P2, and let K be a progressive

configuration whose skeleton is P . Denote by K1 and K2 the sub-configurations of

K whose skeletons are P1 and P2, respectively. If T p(K) = K, then T p(K1) = K1

and T p(K2) = K2.

Proof: We have that T p(K1 # K2) = K1 # K2. According to the definition of T p,

T p(K1 # K2) = T p(K1) # T p(K2). Since |T p(K1)| = |K1| = |P1| and |T p(K2)| =

|K2| = |P2|, it follows that T p(K1) = K1 and T p(K2) = K2. �

9.5 Proposition Let P be the if program 〈ls〉 if C then Pc else Pa endif 〈lf 〉,

and let K be a progressive configuration whose skeleton is P . Denote by Kc and

Ka the sub-configurations of K whose skeletons are Pc and Pa, respectively. If

T p(K) = K, then T p(Kc) = Kc and T p(Ka) = Ka.

Proof: We have that T p(K) = 〈ls,K|ls〉 if C then 〈first(Pc),filter(C,K|ls)〉 #

T p(Kc) endif 〈first(Pa),filter(¬C,K|ls)〉#T p(Ka) endif 〈lf ,Kc|last(Pc)
∪ Ka|last(Pa)〉.

It follows that Kc = 〈first(Pc),filter(C,K|ls)〉 # T p(Kc) and Ka =

〈first(Pa),filter(¬C,K|ls)〉 # T p(Ka). Since T p(K ′)|first(K ′) = K ′|first(K ′), for

all progressive configurations K ′, this entails that T p(Kc) = Kc and T p(Ka) = Ka.

�

9.6 Proposition Let P be the while program 〈ls〉 while C do Pb endwhile 〈lf 〉,

and let K be a progressive configuration whose skeleton is P . Denote by Kb the

sub-configuration of K whose skeleton is Pb, respectively. If T p(K) = K, then

T p(Kb) = Kb.
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〈1, 〉 -

〈2, 〉 -

〈3, 〉 -

〈4, 〉 -

while x < 10 do

x := x + 1

endwhile

〈1, 〉 -

〈2, 〉-

〈3, 〉-

〈4, 〉 -

while x < 10 do

x := x + 1

endwhile

a) Refinement using T p b) Refinement using T

Figure 9.4: Unique Fixpoint of T p

Proof: We have that T p(K) = 〈ls,K|ls〉 whileC do 〈first(Pb),filter(C,K|ls ∪ Kb|last(Pb)
)〉#

T p(Kb) endwhile 〈lf ,filter(¬C,K|ls ∪ Ka|last(Pa))〉. It follows that Kb =

〈first(Pb),filter(C,K|ls ∪ Kb|last(Pb)
)〉#T p(Kb). Since T p(K ′)|first(K ′) = K ′|first(K ′),

for all progressive configurations K ′, this entails that T p(Kb) = Kb. �

9.7 Theorem Let P be a program and Σ0 a set of start environments. There

exists a unique progressive configuration K such that |K| = P , K|first(P ) = λ〈〉 . Σ0

and T p(K) = K.

Proof: The proof is by induction on the structure of the program P . Assume first

that P is the skip program 〈ls〉 skip 〈lf 〉. The progressive configuration w.r.t. Σ0

is K = 〈ls, λ〈〉 . Σ0〉 skip 〈lf , λ〈〉 . Σ0〉. Obviously, T p(K) = K and K is unique for

a given Σ0. Assume now that P is the assignment 〈ls〉 x := E 〈lf 〉. The progressive

configuration w.r.t. Σ0 is K = 〈ls, λ〈〉 . Σ0〉 x := E 〈lf , assign(x,E, λ〈〉 . Σ0)〉, which

is unique for a given Σ0.
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Assume now that P is the sequence program P1 #P2. Let K be a progressive con-

figuration such that |K| = P , K|first(P ) = λ〈〉 . Σ0 and T p(K) = K. From the con-

dition that |K| = P it follows that K can be written as K1 #K2, where |K1| = P1 and

|K2| = P2. According to Proposition 9.4 we have that T p(K1) = K1 and T p(K2) =

K2. According to the induction hypothesis, K1 and K2 are unique, and therefore so

is K. Assume now that P is the if program 〈ls〉 if C then Pc else Pa endif 〈lf 〉.

Let K be a progressive configuration such that |K| = P , K|first(P ) = λ〈〉 . Σ0 and

T p(K) = K. From the condition that |K| = P it follows that K can be writ-

ten as 〈ls, λ〈〉 . Σ0〉 if C then Kc else Ka endif 〈lf ,K|lf 〉. Since T p(K) = K,

it follows from Proposition 9.5 that T p(Kc) = Kc and T p(Ka) = Ka. According

to the induction hypothesis, Kc and Ka are unique, and therefore so is K. Fi-

nally, assume that P is the while program 〈ls〉 while C do Pb endwhile 〈lf 〉. Let

K be a progressive configuration such that |K| = P , K|first(P ) = λ〈〉 . Σ0 and

T p(K) = K. From the condition that |K| = P it follows that K can be written as

〈ls, λ〈〉 . Σ0〉 while C do Kb endwhile 〈lf ,K|lf 〉. Since T p(K) = K, it follows from

Proposition 9.6 that T p(Kb) = Kb. According to the induction hypothesis, Kb is

unique, and therefore so is K. �

This result shows that the progression K of a program P is a fixpoint of T p,

and is unique with respect to K|first(K). For this reason, whenever it is convenient,

we shall call progression of a program P any configuration K whose skeleton is

P , and which is a fixpoint of T p, taking the liberty to disregard the set of start

environments that makes K unique.

An intuitive justification this result can be provided by looking at the example

in Figure 9.4, which presents a simple program that increments the variable x up to

the value 10. Assume that the initial value of x at program point 1 is 0. Figure 9.4a
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〈1, λ〈〉 . {σ |σ ∈ Env}〉

x := 0

〈3, λ〈〉 . {σ |σ(x) = 0}〉

while x < 10 do

〈4, λ〈µ〉 . {σ |σ(x) = µ or σ(x) = 20}〉

if x < 10 then

〈5, λ〈µ〉 . {σ |σ(x) = µ}〉

x := x + 1

〈6, λ〈µ〉 . {σ |σ(x) = µ + 1}〉

else

〈7, λ〈µ〉 . {σ |σ(x) = 20}〉

skip

〈8, λ〈µ〉 . {σ |σ(x) = 20}〉

endif

〈9, λ〈µ〉 . {σ |σ(x) = µ + 1 or σ(x) = 20}〉

endwhile

〈10, λ〈〉 . {σ |σ(x) = 10 or σ(x) = 20}〉

Figure 9.5: A Post-Fixpoint K of T p

provides a graphic representation of the refinement process using the T p operator,

while Figure 9.4b represents the same process using the T operator. As argued in

the previous chapter, the T operator has, in general, multiple fixpoints. In the case

of this program, the greatest fixpoint is a configuration with the set of environments

{σ |σ(x) < 10} attached to program point 3. The process of refinement using the T

operator follows the flow graph of the program, which has a loop between program

points 1 and 2. for this reason, the set {σ |σ(x) ≤ 0}, which is not part of the

collecting semantics, cannot be eliminated in the process of refinement. However,

refinement using the T p operator applied to a progressive configuration has the

advantage of using indexed sets and effectively breaking the loop that appears in
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the flow graph of the program, as shown in Figure 9.4a. Indeed, in the refinement

process, the information in the first slice of the indexed set at program point 2

is propagated to the first slice of program point 3. However, that information is

further propagated into the second slice of program point 2. Every propagation from

program point 3 to program point 2 is shifted by one slice by the before operator.

Thus, at fixpoint, the information in every slice depends solely on the information

at the first program point, which explains why the fixpoint of T p w.r.t. a given set of

start environments is unique. It may be expected that repeated applications of the

T p operator to a progressive configuration shall produce a sequence of progressive

configurations that converges towards the least fixpoint. However, as we show in

the next section, T p ↓ ω is not always a fixpoint of T p.

9.3 Refinement

In the previous section we have shown that the progression of a program P w.r.t. a

set of start environments Σ0 is the unique fixpoint of the T p operator over the lattice

({K | |K| = P and K|first(P ) = λ〈〉 . Σ0},4). One may think that the absence of

other fixpoints allows the T p operator to be used in computing arbitrarily precise

approximations of progressions of a program P . However, repeated applications

of the T p (or any monotone operator) to one of its postfixpoints K will produce

approximations that cannot be more precise than (T p)ω(K). It turns out that

(T p)ω(K) is not necessarily a fixpoint of T p, and therefore the amount of refinement

one can do by repeated applications of the T p operator is limited and cannot produce

arbitrarily precise approximations.

The following proposition shows, however, that repeated applications of T p

monotonically increase the precision of an approximation. The proof provides an
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〈1, λ〈〉 . {σ |σ ∈ Env}〉

x := 0

〈3, λ〈〉 . {σ |σ(x) = 0}〉

while x < 10 do

〈4, λ〈µ〉 . {σ |σ(x) = µ}〉

if x < 10 then

〈5, λ〈µ〉 . {σ |σ(x) = µ}〉

x := x + 1

〈6, λ〈µ〉 . {σ |σ(x) = µ + 1}〉

else

〈7, λ〈µ〉 . ∅〉

skip

〈8, λ〈µ〉 . ∅〉

endif

〈9, λ〈µ〉 . {σ |σ(x) = µ + 1}〉

endwhile

〈10, λ〈〉 . {σ |σ(x) = 10 or σ(x) = 20}〉

Figure 9.6: (T p)ω(K) for the configuration K in Figure 9.5

insight of how information is propagated inside a progressive configuration by the

T p operator.

9.8 Proposition Given a program P and a set of start environments Σ0, denote

by KPS the progression of P w.r.t. Σ0, and let K be a progressive configuration

such that |K| = P , K|first(P ) = λ〈〉 . Σ0 and KPS 4 K. Then, for all k ≥ 0, there

exists a set A = {(l0, µ̃0), (l1, µ̃1), . . . , (lk, µ̃k)} of pairs of labels and indices such

that KCS |li(µ̃i) = (T p)k(K)|li(µ̃i), 0 ≤ i ≤ k.

Proof: The proof is by induction on k. For k = 0, we have that A is the set

{(first(P ), 0)}. Indeed, KCS |first(P )(0) = K|first(P )(0), Assume now that the propo-

sition holds for some natural number k. Denote by A the set {(l0, µ̃0), . . . , (lk, µ̃k)}
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such that KCS |li(µ̃i) = (T p)k(K)|li(µ̃i), 0 ≤ i ≤ k. Since A is a finite set, at least

one of the following situations will happen.

a) 〈ls, Ψs〉 skip 〈lf , Ψf 〉 is a sub-configuration of K and there exists an index µ̃

such that (ls, µ̃) ∈ A and (lf , µ̃) 6∈ A.

b) 〈ls, Ψs〉x := E 〈lf , Ψf 〉 is a sub-configuration of K and there exists an index

µ̃ such that (ls, µ̃) ∈ A and (lf , µ̃) 6∈ A.

c) There exist configurations Kc and Ka such that

〈ls, Ψs〉 if C then Kc else Ka endif 〈lf , Ψf 〉 is a sub-configuration of

K, and there exist an index µ̃ ∈ Idx such that either (ls, µ̃) ∈ A and

(first(Kc), µ̃) 6∈ A, or (ls, µ̃) ∈ A and (first(Ka), µ̃) 6∈ A, or (last(Kc), µ̃) ∈ A

and (lf , µ̃) 6∈ A or (last(Ka), µ̃) ∈ A and (lf , µ̃) 6∈ A.

d) There exists a configuration Kb such that

〈ls, Ψs〉 while C do Kb endwhile 〈lf , Ψf 〉 is a sub-configuration of K,

and there exists an index µ̃ ∈ Idx such that either (ls, µ̃) ∈ A and

(first(Kb), µ̃0) 6∈ A, or (ls, µ̃) ∈ A and (lf , µ̃) 6∈ A, or (last(Kb), µ̃) ∈ A and

(first(Kb), succ(µ̃)) 6∈ A, where succ(µ̃) is the successor of µ̃.

Applying the definition of T p, it is easy to verify that in each of the 4 cases given

above, T p((T p)k(K)) adds one more element to A. Therefore, for (T p)k+1(K) there

exist a set of at least k + 2 elements {(li, µ̃i) | 0 ≤ i ≤ k + 1} such that KCS |li(µ̃i) =

(T p)k(K)|li(µ̃i). �

To give more insight into refining configurations using the T p operator, consider

the configuration K given in Figure 9.5. This configuration is a postfixpoint of T p.

We note that the integer 20, which appears as a possible value of x at program

points 4, 7, 8, 9, and 10 does not really occur during the execution of the program.
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〈1, λ〈〉 . {σ |σ ∈ Env}〉

x := 0

〈3, λ〈〉 . {σ |σ(x) = 0}〉

while x < 10 do

〈4, λ〈µ〉 . {σ |σ(x) = µ}〉

if x < 10 then

〈5, λ〈µ〉 . {σ |σ(x) = µ}〉

x := x + 1

〈6, λ〈µ〉 . {σ |σ(x) = µ + 1}〉

else

〈7, λ〈µ〉 . ∅〉

skip

〈8, λ〈µ〉 . ∅〉

endif

〈9, λ〈µ〉 . {σ |σ(x) = µ + 1}〉

endwhile

〈10, λ〈〉 . {σ |σ(x) = 10}〉

Figure 9.7: Progression of Program in Figure 9.5

It might be expected that repeated applications of T p to this configuration would

remove 20 as a possible value of x from all program points and all indexed set slices.

However, this is not true. Figure 9.6 shows the configuration (T p)ω(K). We notice

the fact that, while the value 20 has disappeared from program points 4, 7, 8, and

9, it is still present at program point 10. Figure 9.7 represents the progression of

the program that is the skeleton of K, w.r.t. the set of start environments Env. We

also note the fact that the progression of |K| is in fact T p((T p)ω(K)).



Chapter 10

The Semantics Hierarchy

In this chapter we show formally that the progressive semantics’ level of abstrac-

tion is in between that of the trace semantics and that of the collecting semantics.

This result is achieved by proving that the progressive semantics is an abstract

interpretation of the trace semantics, while the collecting semantics is an abstract

interpretation of the progressive semantics. The idea of hierarchizing a set of se-

mantics using abstract interpretation has been introduced in [Cou02]. We proceed

by showing that the three domains we used for the three semantics presented so

far are Galois connected. We devise two abstraction mappings ~α and α and two

concretization mappings ~γ and γ such that the following Galois insertions exist:

2Singletons(P )
~γ

�
~α

Progressive(P )
γ

�
α

Collecting(P )

To complete the picture we also show that T p = ~α ◦ ~T ◦~γ, and T = α ◦T p ◦ γ. This

entails that, given a program P and a set of start environments Σ0, and denoting

by ~Γ, K, and K the trace, progressive and collecting semantics of P w.r.t. Σ0, we

have that K = ~α(~Γ) and K = α(K).

134



CHAPTER 10. THE SEMANTICS HIERARCHY 135

10.1 Progressive Semantics is Abstract Interpretation

of Trace Semantics

Let P be a labeled program. We define the abstraction mapping ~α :

⋃
P 2Singletons(P ) 7→

⋃
P Progressive(P ) as follows. Given a set of singleton config-

urations Γ, ~α(Γ) is a progressive configuration K such that K|l(µ̃) =
⋃

~K∈Γ
~K|l(µ̃),

for all l ∈ labels(P ) and µ̃ ∈ Idx. It’s worth noting that given a family of sets

of singleton configurations Γ̃, we have that ~α(
⋃

~Γ∈Γ̃
~Γ) =

⋃
~Γ∈Γ̃ ~α(~Γ), and that

~α({ ~K}) = ~K, for all singleton configurations ~K. We also define the concretiza-

tion mapping ~γ :
⋃

P Progressive(P ) 7→
⋃

P 2Singletons(P ) by ~γ(K) = { ~K | ~K ∈

Singletons(|K|) and ~K|l(µ̃) ⊆ K|l(µ̃), l ∈ labels(|K|), µ̃ ∈ Idx}. It is easy to verify

that, for a singleton configuration ~K, we have that ~γ( ~K) = { ~K}.

10.1 Proposition Given a program P , and a set of configurations Γ whose skeleton

is P , we have that
⋃

K∈Γ ~γ(K) ⊆ ~γ(
⋃

K∈Γ K).

Proof: Let ~K be a member of
⋃

K∈Γ ~γ(K). Then, there exists K ∈ Γ such that

~K ∈ ~γ(K). This actually means that for all labels l ∈ labels(P ) and indexes µ̃ ∈ Idx

we have ~K|l(µ̃) ⊆ K|l(µ̃), which in turn entails that ~K|l(µ̃) ⊆ (
⋃

K∈Γ K)|l(µ̃).

According to the definition of ~γ, it follows that ~K ∈ ~γ(
⋃

K∈Γ K). �

10.2 Proposition Given a program P , we have the Galois insertion:

2Singletons(P )
~γ

�
~α

Progressive(P ).

Proof: The mappings ~α and ~γ are clearly monotonic. First we prove that ~γ ◦ ~α ⊇

λx . x. This amounts to proving that ~Γ ⊆ ~γ(~α(~Γ)) for all sets of singleton configura-
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tions ~Γ. Indeed, using Proposition 10.1 we have that ~γ(~α(~Γ)) = ~γ(~α(
⋃

~K∈~Γ{
~K})) =

~γ(
⋃

~K∈~Γ ~α({ ~K})) = ~γ(
⋃

~K∈~Γ{
~K}) ⊇

⋃
~K∈~Γ ~γ({ ~K}) =

⋃
~K∈~Γ{

~K} = Γ.

Next we prove that ~α◦~γ = λy . y. This amounts to proving that for all progressive

configurations K ∈ Progressive(P ), labels l ∈ labels(P ), and indices µ̃ ∈ Idx, we

have ~α(~γ(K))|l(µ̃) = K|l(µ̃). Indeed, ~α(~γ(K))|l(µ̃) =
⋃

σ∈K|l(µ̃){σ} = K|l(µ̃). �

10.3 Remark The abstraction mapping ~α distributes over the syntactic structure

of a program. The following properties follow immediately from the definition of ~α:

a) ~α(
⋃

~K∈~Γ{〈ls,
~K|ls〉 skip 〈lf , ~K|lf 〉} = ~α(

⋃
~K∈~Γ{〈ls,

~K|ls〉}) skip ~α(
⋃

~K∈~Γ{〈ls,
~K|lf 〉}).

b) ~α(
⋃

~K∈~Γ{〈ls,
~K|ls〉 x := E 〈lf , ~K|lf 〉}) = ~α(

⋃
~K∈~Γ{〈ls,

~K|ls〉}) x := E ~α(
⋃

~K∈~Γ{〈ls,
~K|lf 〉}).

c) ~α(
⋃

~K∈~Γ{
~Kfst # ~Ksnd}) = ~α(

⋃
~K∈~Γ{

~Kfst}) # ~α(
⋃

~K∈~Γ{
~Ksnd}).

d) ~α(
⋃

~K∈~Γ{〈ls,
~K|ls〉 if C then ~Kc else ~Ka endif 〈lf , ~K|lf 〉}) =

~α(
⋃

~K∈~Γ{〈ls,
~K|ls〉}) if C then ~α(

⋃
~K∈~Γ{

~Kc}) else ~α(
⋃

~K∈~Γ{
~Ka}) endif

~α(
⋃

~K∈~Γ{〈lf , ~K|lf 〉}).

e) ~α(
⋃

~K∈~Γ{〈ls,
~K|ls〉 while C do ~Kb endwhile 〈lf , ~K|lf 〉}) =

~α(
⋃

~K∈~Γ{〈ls,
~K|ls〉}) while C do ~α(

⋃
~K∈~Γ{

~Kb}) endwhile ~α(
⋃

~K∈~Γ{〈lf , ~K|lf 〉}).

�

10.4 Remark The abstraction mapping ~α distributes over the indexed set oper-

ators defined in Figure 7.3. Let Ψ̃ be a family of indexed sets. Then, the following

properties follow immediately from the definition of ~α.

a) ~α({〈l, assign(x,E, Ψ)〉 |Ψ ∈ Ψ̃}) = 〈l, assign(x,E,
⋃

Ψ∈Ψ̃ Ψ)〉.

b) ~α({〈l,filter(C, Ψ)〉 |Ψ ∈ Ψ̃}) = 〈l,filter(C,
⋃

Ψ∈Ψ̃ Ψ)〉.
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c) ~α({〈l, before(Ψ, Ψ′)〉 | (Ψ, Ψ′) ∈ Υ̃}) = 〈l, before(
⋃

(Ψ,Ψ′)∈Υ̃ Ψ,
⋃

(Ψ,Ψ′)∈Υ̃ Ψ′)〉

d) ~α({〈l, collect(Ψ)〉 |Ψ ∈ Ψ̃}) = 〈l, collect(
⋃

Ψ∈Ψ̃ Ψ)〉

�

The following definition shows that T p has a sound definition w.r.t. the trace

progress operator ~T.

10.5 Proposition We have that T p ◦ ~α = ~α ◦ ~T.

Proof: Relegated to Appendix A, on page 300.

We are now finally able to provide a result announced in Section 9.2. The

following lemma states that the progression of a program P w.r.t. a set of start

environments Σ0 is the least fixpoint of the T p operator over the lattice ({K | |K| =

P and K|first(P ) = λ〈〉 . Σ0},4).

10.6 Lemma Consider a program P and a set of start environments Σ0, and

denote by K the progression of P w.r.t. Σ0. Then, K = lfp(T p′ ∪K0), where T p′ is

the restriction of T p to the set {K | |K| = P}, and K0 is the configuration defined

by K0|first(P ) = λ〈〉 . Σ0 and K0|l = λ〈〉 . ∅ for all l ∈ labels(P )\{l}.

Proof: Let ~Γ be the configuration-based trace semantics of P w.r.t. Σ0. From

the definition of ~α, we have that K = ~α(~Γ). It is also immediate to prove that if

T p ◦ ~α = ~α ◦ ~T, then (T p ∪ K0) ◦ ~α = ~α ◦ (~T ∪ ~Γ0), where ~Γ0 is the set of singleton

configurations { ~K | | ~K | = P, ~K0|first(P ) = λ〈〉 . {σ}, σ ∈ Σ0, ~K0|l = λ〈〉 . ∅ for all l ∈

labels(P )\{l}}. Remark 9.2 states that K is the fixpoint of the restriction T p′ of T p

to the set { ~K | | ~K | = P}. From Propositions 10.5 and 2.11 it follows immediately

that K = lfp(T p′ ∪ K0). �
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We now complete the picture by outlining the link between the trace and the

progressive semantics.

10.7 Lemma Consider a program P and a set of start environments Σ0, and denote

by ~Γ and K the trace semantics and the progression of P w.r.t. Σ0, respectively.

Then, K = ~α(~Γ).

Proof: From Propositions 5.7 and 7.13 we have that the trace semantics ~Γ is

a fixpoint of the ~T operator, and from Lemma 10.6 we have that K is a fixpoint

of the T p operator. Theorem 10.5 states that T p ◦ ~α = ~α ◦ ~T. This entails that

(~α ◦ ~T)(~Γ) = ~α~Γ = ~α(~T(~Γ)). It follows that ~α(~Γ) is a fixpoint of T p. According to

Theorem 9.7, the fixpoint of T p is unique for a given program P and a given set of

start environments Σ0, and therefore it follows that ~α(~Γ) = K. �

10.2 Collecting Semantics is Abstract Interpretation of

Progressive Semantics

We now define the abstraction mapping α : Progressive(P ) 7→ Collecting(P )

as follows. Given a progressive configuration K, α(K) is a collective configuration

K such that K|l(µ̃) =
⋃

µ̃ K|l(µ̃). We also define the concretization mapping γ :

Collecting(P ) 7→ Progressive(P ) as follows. Given a collective configuration K,

γ(K) is a progressive configuration K such that K|l(µ̃) = K|l for all l ∈ labels(P )

and µ̃ ∈ Idx.

10.8 Proposition Given a program P , we have the following Galois insertion:

Progressive(P )
γ

�
α

Collecting(P ).
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Proof: The mappings α and γ are clearly monotonic. First we prove that

γP ◦ α ⊇ λx . x. This amounts to proving that γP (α(K))|l ⊇ K|l, for all

K ∈ Progressive(P ), and l ∈ labels(P ). According to the definitions of α and

γ, we have that γP (α(K))|l =
⋃

µ̃ K|L(µ̃), which satisfies the above property. Next

we prove that α ◦ γP = λy . y. This amounts to proving that for all collective con-

figurations K, and all labels l ∈ labels(l) we have α(γ(K))|l = K|l, which follows

immediately from the definitions of α and γ. �

10.9 Remark The abstraction mapping α distributes over the syntactic structure

of a program. The following properties follow immediately from the definition of α:

a) α(〈ls, ~K|ls〉 skip 〈lf , ~K |lf 〉 = α(〈ls, ~K|ls〉) skip α(〈ls, ~K|lf 〉).

b) α(〈ls, ~K|ls〉 x := E 〈lf , ~K|lf 〉) = α(〈ls, ~K|ls〉) x := E α(〈ls, ~K|lf 〉).

c) α( ~Kfst # ~Ksnd) = α( ~Kfst) # α( ~Ksnd).

d) α(〈ls, ~K|ls〉 if C then ~Kc else ~Ka endif 〈lf , ~K|lf 〉) =

α(〈ls, ~K|ls〉) if C then α({ ~Kc) else α( ~Ka) endifα(〈lf , ~K|lf 〉).

e) α(〈ls, ~K|ls〉 while C do ~Kb endwhile 〈lf , ~K|lf 〉) =

α(〈ls, ~K|ls〉) while C do α( ~Kb) endwhileα(〈lf , ~K|lf 〉).

�

10.10 Remark The abstraction mapping α distributes over the indexed set oper-

ators defined in Figure 7.3. Let Ψ̃ be a family of indexed sets. Then, the following

properties follow immediately from the definition of α.
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a) α(〈l, assign(x,E, Ψ)〉) = 〈l, {σ[x 7→ E] |σ ∈
⋃

µ̃ Ψ(µ̃)}〉.

b) α(〈l,filter(C, Ψ)〉) = 〈l, {σ |σ |= C} ∩
⋃

µ̃ Ψ〉.

c) α(〈l, before(Ψ, Ψ′)〉) = 〈l,
⋃

µ̃ Ψ(µ̃) ∪
⋃

µ̃ Ψ′(µ̃)〉.

d) α(〈l, collect(Ψ)〉) = 〈l,
⋃

µ̃ Ψ(µ̃)〉.

�

10.11 Proposition Given a program P , we have that T ◦ α = α ◦ T p.

Proof: Relegated to Appendix A, on page 306.

We now complete the picture by outlining the link between the progressive and

collecting semantics.

10.12 Lemma Consider a program P and a set of start environments Σ0, and

denote by K and K the progression and the collective semantics of P w.r.t. Σ0,

respectively. Then, K = α(K).

Proof: Denote by K0 the progressive configuration defined by K0|first(P ) = λ〈〉 . Σ0

and K0|l = λ〈〉 . ∅ for all l ∈ labels(P )\{l}}, and by K0 the collective configuration

defined by K0|first(P ) = Σ0 and K0|l = ∅ for all l ∈ labels(P )\{l}}. It is immediate

to prove that (T∪K0)◦α = α◦(T p(K)∪K0), if T◦α = α◦T p. Using Propositions 8.3

and 10.11 and Remark 9.2 the result follows immediately. �

Throughout this chapter we have outlined the relationship between the trace,

progressive and collecting semantics, by defining appropriate abstraction and con-

cretization operators and showing that the progressive semantics can be seen as an

abstract interpretation of the trace semantics, while the collecting semantics can
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be seen as an abstract interpretation of the progressive semantics. However, this

formal argument does not emphasize the fact that the progressive semantics has

the right level of abstraction, making it possible to reason about liveness and safety

properties in a compositional, program-point-based manner. We shall outline these

features in the next part of this thesis, where we provide a treatment of progressive

program reasoning methods.



Part III

Progressive Program Reasoning
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Chapter 11

Family Configurations

The collecting semantics is a useful abstraction of a program’s behavior, as it ex-

presses a property of all states occurring during the program’s execution. Given a

program P , if one were able to compute its collecting semantics CS w.r.t. some set

of start states Σ0, then one could expose properties of the program; for instance, it

could be detected whether the program at hand satisfies a safety property, or even

if the program terminates, by inspecting whether the projection of the collecting

semantics CS on the last program point is the empty set. However, calculating

the collecting semantics of a program may require a great deal of effort and a high

level of expertise. In practice we usually resort to producing an approximation of

the collecting semantics, i.e. an object whose interpretation is in a well-defined

relationship with the collecting semantics CS. Classic program reasoning methods

typically produce as an approximation a superset RS of the collecting semantics

CS. The approximation RS is interpreted in the following way: any subset of RS,

including the empty set, could be the collecting semantics of the program P . Such

a relationship is strong enough for proving safety properties, since any property of

the states in the set RS is also a property of the states in CS. However, proving

143
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progress properties may require the ability to explicitly infer that a projection of CS

on a particular program point is not empty, or that some state in CS occurs before

another.

The superset relationship between RS and CS is too weak to capture such prop-

erties; on one hand, the collecting semantics abstracts away the sequence in which

the states occur, and on the other hand, the superset (conservative) approximation

allows too wide a range of possible values for the collecting semantics.

We can overcome the shortcomings mentioned above by using the following two

steps. First, we shall use the progressive semantics as the basis for our reasoning.

The progressive semantics captures an abstraction of the sequencing of the states

that is strong enough to capture progress properties. Second, given a set of envi-

ronments Σ, we shall approximate it by a family of sets of environments Φ, such

that Σ ∈ Φ. Approximating by this method allows more flexibility in specifying the

range of possible values for the environment Σ. In particular, if the family Φ does

not contain the empty set, it means that Σ cannot be empty, and therefore, the

program point to which the set of environments Σ is attached is live.

In this chapter, we introduce family configurations, which are essentially con-

figurations whose annotations are families of sets of environments, and then show

that such configurations are convenient means of approximating the progressive se-

mantics, leading to more expressive power than classic program reasoning methods.

In particular, safety, liveness and progress properties can be expressed and derived

within an unified framework. Moreover, richer properties can be expressed. For

example, given a setting where a computing system has a limited amount of cache,

it may be interesting to verify that a certain variable will only have a limited num-

ber of distinct values, irrespective of how long the program runs. Such a variable

may be used as the index of an array, and the limited number of values of the
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〈1, Φ1〉

while x < 100 do

〈2, Φ2〉

z := (z + a[x]) % 10

〈3, Φ3〉

x := x + 1

〈4, Φ4〉

endwhile

〈5, Φ5〉

Φ1(µ̃) =









Σ

Σ 6= ∅ and for all
σ ∈ Σ, there exists
δ ∈ {0, . . . , 99} s.t.
σ(a)[δ]%10 6= 0 and
σ(x) = 0





, if µ̃ = ε

{∅}, otherwise

Φ3(µ̃) =









Σ

Σ 6= ∅ and for all σ ∈ Σ,
0 ≤ σ < 10 and there ex-
ists σ1, σ2 ∈ Σ such that
σ1(z) 6= σ2(z)





, if µ̃ = ε

{∅}, otherwise

Φi(µ̃) = {Σ |Σ 6= ∅}, for all µ̃ ∈ Idx and i ∈ {2, 4, 5}

Figure 11.1: Example: number of distinct values for a variable

index guarantees that all the array elements that will ever be accessed fit entirely

in the cache. Such a situation is shown in the program given in Figure 11.1. This

program performs a modulo 10 summation of the elements between 0 and 99 of the

array a, and the sum is accumulated in the variable z. It follows that at program

point 〈3〉 variable z will definitely have at least two distinct values (and at most

ten), provided that at program point 〈1〉 the array a contains at least one value

that is not a multiple of 10, and that variable x has the value 0. These proper-

ties at program points 〈1〉 and 〈3〉 can be expressed by the families Φ1 and Φ3 in

Figure 11.1. We note that the property expressed by Φ3 could not be expressed in

classic, collecting-semantics-based program reasoning methods.
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11.1 Families and Family Configurations

This section defines families and family configurations as means of approximating

the progressive semantics. When we speak of approximating the progressive se-

mantics, we have to consider two somewhat independent directions: approximating

the sequencing of the states that occur during the execution of the program, and

approximating slices of indexed sets. The first direction is already embedded in the

definition of the progressive semantics.

As defined in Chapter 9, the progression of a program P is parameterized by

a set of start environments Σ0. The indexed set attached to the first program

point of P is λ〈〉 . Σ0. In a more general setting, however, keeping in mind that

the program P may in fact be a fragment of a larger program, it may be useful

to allow the progression to be parameterized by any indexed set. In other words,

we may want to assume that the program fragment P may be executed multiple

times as part of a loop that resides in a larger program P ′. Or, we may simply

wish to distinguish between several categories of start environments and provide

a more refined progression of the program. Such situation is illustrated by the

example given in Figure 11.2. This example shows three progressions of the same

program fragment. The program fragment simply increments a variable by 2 inside

a loop. Figure 11.2a shows the least refined progression K1. Due to the fact that

we did not provide a mechanism to distinguish between the various variables of

x, it is not possible to infer any information about, for instance, the parity of x,

or the sequence in which the values of x occur. The first attempt at providing

more refined information is done in Figure 11.2b, where the first program point of

configuration K2 has an indexed set annotation which distinguishes between odd

and even values of x. It is easy to check that collect(K1|first(P )) = K2|first(P ). In
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〈1, λ〈〉 . {σ | 0 ≤ σ(x) < σ(n)}〉

while x < n do

〈2, λ〈µ〉 . {σ | 2µ ≤ σ(x) < σ(n)}〉

x := x + 2

〈3, λ〈µ〉 . {σ | 2µ ≤ σ(x) − 2 < σ(n)}〉

endwhile

〈4, λ〈〉 . {σ |σ(n) ≤ σ(x) < σ(n) + 2}〉

a) Least refined progression K1.

〈1, λ〈µ〉 . {σ | 0 ≤ σ(x) < σ(n) and σ(x)%2 = µ%2}〉

while x < n do

〈2, λ〈µ1µ2〉 . {σ | 2µ2 ≤ σ(x) < σ(n) and σ(x)%2 = µ1%2}〉

x := x + 2

〈3, λ〈µ1µ2〉 . {σ | 2µ2 ≤ σ(x) − 2 < σ(n) and σ(x)%2 = µ1%2}〉

endwhile

〈4, λ〈µ〉 . {σ |σ(x) = σ(n) + (µ%2)}〉

b) More refined progression K2.

〈1, λ〈µ〉 . {σ | 0 ≤ σ(x) < σ(n) and σ(x) = µ}〉

while x < n do

〈2, λ〈µ1µ2〉 . {σ |σ(x) < σ(n) and σ(x) = µ1 + µ2}〉

x := x + 2

〈3, λ〈µ1µ2〉 . {σ |σ(x) − 2 < σ(n) and σ(x) = µ1 + µ2 + 2}〉

endwhile

〈4, λ〈µ〉 . {σ |σ(x) = σ(n) + (µ%2)}〉

c) Most refined progression K3.

Figure 11.2: Three Progressions of a Program
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other words, configuration K2 does not “compute” more environments, it just tracks

the same environments in a more precise way, leading to more refined information

being inferred. For example, from progression K2 it could be inferred that the

parity of x doesn’t change throughout the entire execution of the loop. However,

information about the sequence of values of x are still impossible to infer from K2.

In progression K3, we distinguish between the initial values of x by dividing up

the set of start environments into slices such that each slice contains environments

whose value for x is equal to the slice index. In this case, it can be inferred not

only that the parity of x doesn’t change, but also that the values of x inside the

loop are increasing. This example goes to show that the progressive semantics has

an in-built mechanism for adjusting the level of abstraction of the sequencing of

the states. However, this abstraction mechanism is not powerful enough. What

we need to add is a mechanism for approximating slices of indexed sets, in a way

that is more flexible than the superset relationship employed by Hoare logic. The

main flaw of collecting-semantics-based reasoning methods is that they provide a

superset AS of the semantics as its approximation. The given superset acts as a

upper bound of the semantics, entailing that the collecting semantics could be any

subset of AS, including the empty set. The range of possible values for the collecting

semantics is the entire 2AS , which is good enough for verifying safety properties,

for instance, but too large to allow the inference of liveness or progress properties.

To be able to handle such properties, we need a more flexible way to approximate

sets. In particular, we would like to be able to infer from the approximation of a

set S that the empty set is not a possible value of S. A simple means of achieving

that is to provide a subset F of 2AS as the approximation of S. The set of sets F

is called a family, and provides a more flexible way to express a range of possible

values for the set S. Since a possible choice for F is 2AS , the classic collecting-
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semantics-based means of abstraction becomes a special case of the approximation

mechanism that we introduce. In what follows, we shall define the refinement and

regression relations between progressive configurations, family configurations, and

coverage and approximation relations between family configurations and progressive

configurations.

Given two indexed sets Ψ and Ψ′, we say that Ψ is a refinement of Ψ′ (or Ψ′

is the regression of Ψ) if either Ψ ⊆ Ψ′, or if collect(Ψ) is a refinement of Ψ′. An

example of refinement can be seen in Figure 11.2. K2|2 is a refinement of K2|1,

while K2|3 is a refinement of K2|2.

Given a progressive configuration K, we denote by collect(K) the progressive

configuration K ′ such that |K ′| = |K| and K ′|l = collect(K|l) for all labels l ∈

labels(K). Given two progressive configurations K and K ′, we say that K is a

refinement of K ′ if either K 4 K ′, or if there exists a configuration K ′′ such that

K ′′ = collect(K) and K ′′ is a refinement of K ′. In Figure 11.2, K2 is a refinement

of K1, while K3 is a refinement of K2.

A a family is a set of sets of environments. An indexed family is a mapping from

indices to families. We denote the set of all indexed families by Fam. We denote

indexed families by the Greek letter Φ, possibly subscripted. Given an indexed

family Φ, we denote by bΦc the set {Ψ |Ψ(µ̃) ∈ Φ(µ̃) for all µ̃ ∈ Idx}. Given a set

of indexed sets Π, we denote by dΠe the family Φ defined by Φ(µ̃) = {Ψ(µ̃) |Ψ ∈ Π},

µ̃ ∈ Idx. We also extend the ⊆ operator to indexed families. Given two indexed

families Φ and Φ′, we say that Φ ⊆ Φ′ if for all indices µ̃, Φ(µ̃) ⊆ Φ′(µ̃).

A configuration whose annotations are indexed families is called a family con-

figuration. The set of family configurations is AProg(Labels × Fam). We denote

family configurations by K̂, possibly subscripted.

A family configuration K̂ can be interpreted as the set of progressive config-
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urations bK̂c = {K | |K| = |K̂| and K|l ∈ bK̂|lc, for all l ∈ labels(K̂)}. Family

configurations are intended to approximate the progressions; whenever a family

configuration K̂ approximates the progression of a program, we have that the pro-

gression is a member of bK̂c.

Given two indexed families Φ and Φ′, we say that Φ is a refinement of Φ′ if either

Φ ⊆ Φ′, or if collect(Φ) is a refinement of Φ′.

Given two family configurations K̂ and K̂ ′, we say that K̂ is a refinement of K̂ ′

if |K̂| = |K̂ ′| and K̂|l is a refinement of K̂ ′|l for all labels l ∈ labels(K̂). A family

configuration K̂ covers a progressive configuration K at label l, where l ∈ labels(K),

if |K̂| = |K|, and K|l ∈ bK̂|lc for all indices µ̃ ∈ Idx. A family configuration K̂

covers a progressive configuration K if K̂ covers K at all labels l ∈ labels(K). A

family configuration K̂ approximates a progressive configuration K if it covers some

regression of K.

The ⊆ relationship between families induces a partial order on family configu-

rations which we denote by 4̂. Formally, given two family configurations K̂1 and

K̂2, we say that K̂14̂K̂2 if |K̂1| = |K̂2| and K̂|l ⊆ K̂|l, for all labels l ∈ labels(K̂1).

Clearly, if K̂1 and K̂2 are approximations of some progression K, then K̂1 is a more

precise approximation than K̂2.

11.1 Remark Let K and K̂ be a progressive and a family configurations, respec-

tively, such that K̂ covers K. The following statements hold.

a) If K is the sequence configuration K1 # K2, then there exist the family config-

urations K̂1 and K̂2 such that K̂ = K̂1 # K̂2, and K̂i covers Ki, for i ∈ {1, 2}.

Conversely, if K̂1 covers K1 and K̂2 covers K2, then K̂1 # K̂2 covers K1 # K2.

b) If K is the if configuration 〈ls, Ψs〉 if C then Kc else Ka endif 〈lf , Ψf 〉,

then there exist the indexed families Φs, Φf , and family configurations K̂c
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and K̂a, such that K̂ = 〈ls, Φs〉 if C then K̂c else K̂a endif 〈lf , Φf 〉,

with Φs and Φf covering Ψs and Ψf , respectively, and K̂c and K̂a

covering Kc and Ka, respectively. Conversely, if Φs and Φf cover

Ψs and Ψf , respectively, and K̂c and K̂a cover Kc and Ka, re-

spectively, then 〈ls, Φs〉 if C then K̂c else K̂a endif 〈lf , Φf 〉 covers

〈ls, Ψs〉 if C then Kc else Ka endif 〈lf , Ψf 〉.

c) If K is the while configuration 〈ls, Ψs〉 while C do Kb endwhile 〈lf , Ψf 〉,

then there exist the indexed families Φs, Φf , and family configuration

K̂b, such that K̂ = 〈ls, Φs〉 while C do K̂b endwhile 〈lf , Φf 〉, with Φs

and Φf covering Ψs and Ψf , respectively, and K̂b covering Kb. Con-

versely, if Φs and Φf cover Ψs and Ψf , respectively, and K̂b covers

Kb, respectively, then 〈ls, Φs〉 while C do K̂b endwhile 〈lf , Φf 〉 covers

〈ls, Ψs〉 while C do Kb endwhile 〈lf , Ψf 〉.

�

For clarity and conciseness of examples, we shall describe indexed families using

a language similar to the one we defined for indexed sets in Section 6.1. We shall

represent a indexed family Φ by formulas of the form λ〈µ1 · · ·µk〉 . Υ(µ1, . . . , µk),

where µ1, . . . , µk are index variables, and and Υ(µ1, . . . , µk) is a set expression in

which the variables µ1, . . . , µk appear free. The indexed family Φ is defined as

Φ(µ̃) =





∅, if size(µ̃) 6= k

Υ(µ1, . . . , µk), if size(µ̃) = k and µ̃ = µ1 · · ·µk

For example, the expression λ〈µ〉 . {S |σ(x) = µ for all σ ∈ S} denotes the family Φ
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defined by

Φ(µ̃) =





∅, if size(µ̃) 6= 1

{∅, {σ |σ(x) = µ and σ(z) = 0},

{σ |σ(x) = µ and σ(z) = 1}, . . .} if size(µ̃) = 1 and µ̃ = µ

Figures 11.1 and 11.3 show an example of approximation. The family con-

figuration in Figure 11.1 is an approximation of the progressive configuration in

Figure 11.3. The interesting aspect of this example is that while the progressive

semantics captures the values of variables z and x as a function of the number of

times the loop has been executed, the family configuration abstracts this informa-

tion away. Even in such conditions, the family configuration is able to express the

fact that program point 3 is live 1 (i.e. definitely reached during execution), and

that variable z has at least 2 distinct values at program point 3.

11.2 The Family Progress Operator

In Section 9.1 we introduced the progressive transfer function T p, and showed that

the progressive semantics is the least fixpoint of this operator. The definition of T p

relies on the indexed set operators defined in Figure 7.3. In this section we shall lift

the indexed set operators and the progressive transfer function to indexed families

in a very straightforward manner. Assume f : Idxn 7→ Idx is an operator over

indexed sets, where n > 0. We can define the family lifting f̂ : Famn 7→ Fam of f

as

f̂(Φ1, . . . , Φn) = d{f(Ψ1, . . . , Ψn) |Ψ1 ∈ bΦ1c, . . . , Ψn ∈ bΦnc}e

1The fact that program point 3 is live comes from the condition ∅ 6∈ {α(Ψ) |Ψ ∈ bΦ3c}, where

Φ3 is the family attached to program point 3 in Figure 11.1.
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〈1, λ〈〉 .

{
σ

there exists δ ∈ {0, . . . , 99} s.t.
σ(a)[δ]%10 6= 0 and σ(x) = 0 and
σ(z) = 0

}
〉

while x < 100 do

〈2, λ〈µ〉 .



σ

there exists δ ∈ {0, . . . , 99} s.t.
σ(a)[δ]%10 6= 0 and σ(x) = µ and

σ(z) =
∑µ−1

δ′=0 σ(a)[δ′]



 〉

z := (z + a[x]) % 10

〈3, λ〈µ〉 .

{
σ

there exists δ ∈ {0, . . . , 99} s.t.
σ(a)[δ]%10 6= 0 and σ(x) = µ and
σ(z) =

∑µ
δ′=0 σ(a)[δ′]

}
〉

x := x + 1

〈4, λ〈µ〉 .

{
σ

there exists δ ∈ {0, . . . , 99} s.t.
σ(a)[δ]%10 6= 0 and σ(x) = µ + 1 and
σ(z) =

∑µ
δ′=0 σ(a)[δ′]

}
〉

endwhile

〈5, λ〈〉 .



σ

there exists δ ∈ {0, . . . , 99} s.t.
σ(a)[δ]%10 6= 0 and σ(x) = 100 and

σ(z) =
∑99

δ′=0 σ(a)[δ′]



 〉

Figure 11.3: Progression of Distinct Values Example

Figure 11.4 shows the definitions of the operators âssign, fîlter, b̂efore, ĉollect and

∪̂, which are the liftings of the corresponding indexed set operators defined in Fig-

ure 7.3.

11.2 Remark Given the indexed sets Ψ and Ψ′, and the indexed families Φ and

Φ′, such that Φ covers Ψ and Φ′ covers Ψ′, the following statements hold.

a) âssign(x,E, Φ) covers assign(x,E, Ψ), for all program variables x and program

expressions E.

b) fîlter(C, Φ) covers filter(C, Ψ), for all program constraints C.

c) b̂efore(Φ, Φ′) covers before(Ψ, Ψ′).
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âssign : Var ×Expr × Fam 7→ Fam

âssign(x,E, Φ) = d{assign(x,E, Ψ) |Ψ ∈ bΦc}e

fîlter : Constr× Fam 7→ Fam

fîlter(C, Φ) = d{filter(C, Ψ) |Ψ ∈ bΦc}e

∪̂ : Fam× Fam 7→ Fam

Φ ∪̂ Φ′ = d{Ψ ∪ Ψ′ |Ψ ∈ bΦc and Ψ′ ∈ bΦ′c}e

b̂efore : Fam ×Fam 7→ Fam

b̂efore(Φ, Φ′) = d{before(Ψ, Ψ′) |Ψ ∈ bΦc and Ψ′ ∈ bΦ′c}e

ĉollect : Fam 7→ Fam

ĉollect(Φ) = d{collect(Ψ) |Ψ ∈ bΦc}e

Figure 11.4: Family Operators

d) ĉollect(Φ) covers collect(Ψ).

e) Φ ∪̂Φ′ covers Ψ ∪ Ψ′.

�

Using the operators defined in Figure 7.3, we define the family transfer function

T̂ in Figure 11.5, as the lifting of the progressive transfer function T p to family

configurations.

The T̂ operator can be used both as a means to check whether a family config-

uration covers the progression of a program, and as a refinement operator, in the

sense that if K̂ covers the progression of a program, then T̂ (K̂) is a more precise

cover, that is, T̂ (K̂)4̂K̂.

One important property that the family transfer function T̂ inherits from the
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T̂




〈ls, Φs〉
skip

〈lf , Φf 〉


 =

〈ls, Φs〉
skip

〈lf , Φs〉

T̂




〈ls, Φs〉
x := E

〈lf , Φf 〉


 =

〈ls, Φs〉
x := E

〈lf , âssign(x, e, Φs)〉

T̂




〈ls, Φs〉
if C
then

K̂1

else

K̂2

endif

〈lf , Φf 〉




=

〈ls, Φs〉
if C
then

〈lcs, fîlter(C, K̂c|lcs
)〉 # T̂ (K̂c)

else

〈las, fîlter(¬C, K̂a|las
)〉 # T̂ (K̂a)

endif

〈lf , K̂c|lcf
∪̂ K̂a|laf

〉

where lis = first(K̂i), lif = last(K̂i), i ∈ {1, 2}

T̂




〈ls, Φs〉
while C do

K̂b
endwhile

〈lf , Φf 〉




=

〈ls, Φs〉
while C do

〈l′s, fîlter(C, b̂efore(Φs, K̂|l′
f
))〉 # T̂ (K̂)

endwhile

〈lf , fîlter(¬C, Φs ∪̂ ĉollect(K̂|l′
f
))〉

where ls = first(K̂), lf = last(K̂)

T̂
(
K̂1 # K̂2

)
= T̂

(
K̂1

)
# T̂
(
K̂2

)

Figure 11.5: Progressive Transfer Function for Family Configurations
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〈1, λ〈〉 . {σ | 0 ≤ σ(x) < 2}〉

if x%2 = 1 then

〈2, λ〈〉 . {σ |σ(x) = 1}〉

x := x + 1

〈3, λ〈〉 . {σ |σ(x) = 2}〉

else

〈4, λ〈〉 . {σ |σ(x) = 0}〉

skip

〈5, λ〈〉 . {σ |σ(x) = 0}〉

endif

〈6, λ〈〉 . {σ |σ(x) = 0 or σ(x) = 2}〉

〈1, λ〈〉 . {σ | 10 ≤ σ(x) < 12}〉

if x%2 = 1 then

〈2, λ〈〉 . {σ |σ(x) = 11}〉

x := x + 1

〈3, λ〈〉 . {σ |σ(x) = 12}〉

else

〈4, λ〈〉 . {σ |σ(x) = 10}〉

skip

〈5, λ〈〉 . {σ |σ(x) = 10}〉

endif

〈6, λ〈〉 . {σ |σ(x) = 10 or σ(x) = 12}〉

(a) Two progressions

〈1, λ〈〉 . {{σ | 0 ≤ σ(x) < 2}, {σ | 10 ≤ σ(x) < 12}}〉

if x%2 = 1 then

〈2, λ〈〉 . {{σ |σ(x) = 1}, {σ |σ(x) = 11}}〉

x := x + 1

〈3, λ〈〉 . {{σ |σ(x) = 2}, {σ |σ(x) = 12}}〉

else

〈4, λ〈〉 . {{σ |σ(x) = 0}, {σ |σ(x) = 10}}〉

skip

〈5, λ〈〉 . {{σ |σ(x) = 0}, {σ |σ(x) = 10}}〉

endif

〈6, λ〈〉 . {{σ |σ(x) = 0 or σ(x) = 2}, {σ |σ(x) = 10 or σ(x) = 12}}〉

(b) Family configuration that best approximates the two progressions

Figure 11.6: Two Progressions and Their Best Approximation
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〈1, λ〈〉 . {{σ | 0 ≤ σ(x) < 2}, {σ | 10 ≤ σ(x) < 12}}〉

if x%2 = 1 then

〈2, λ〈〉 . {{σ |σ(x) = 1}, {σ |σ(x) = 11}}〉

x := x + 1

〈3, λ〈〉 . {{σ |σ(x) = 2}, {σ |σ(x) = 12}}〉

else

〈4, λ〈〉 . {{σ |σ(x) = 0}, {σ |σ(x) = 10}}〉

skip

〈5, λ〈〉 . {{σ |σ(x) = 0}, {σ |σ(x) = 10}}〉

endif

〈6, λ.〈〉{{σ |σ(x) = 0 or σ(x) = 2}, {σ |σ(x) = 10 or σ(x) = 12},

{σ |σ(x) = 0 or σ(x) = 12}, {σ |σ(x) = 10 or σ(x) = 2}}〉

(a) Straightforward approximation of the Progression in Figure 11.6.

〈1, λ〈µ〉 . {Σ | 10µ ≤ σ(x) < 10µ + 2, for all σ ∈ Σ}〉

if x%2 = 1 then

〈2, λ〈µ〉 . {Σ |σ(x) = 10µ + 1, for all σ ∈ Σ}〉

x := x + 1

〈3, λ〈µ〉 . {Σ |σ(x) = 10µ + 2, for all σ ∈ Σ}〉

else

〈4, λ〈µ〉 . {Σ |σ(x) = 10µ, for all σ ∈ Σ}〉

skip

〈5, λ〈µ〉 . {Σ |σ(x) = 10µ, for all σ ∈ Σ}〉

endif

〈6, λ〈µ〉 . {Σ |σ(x) = 10µ or σ(x) = 10µ + 2, for all σ ∈ Σ}〉

(b) Refined approximation of the Progression in Figure 11.6.

Figure 11.7: Fixpoints of T̂
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progressive transfer function is the uniqueness of its fixpoint, for a fixed family

attached to the first program point. The reason for this property is very much the

same as for the uniqueness of the fixpoint of T p, and it can be intuitively explained

in a manner similar to the discussion given in Section 9.3. This property is also

captured by the following proposition.

11.3 Proposition Let K be a progressive configuration, and K̂ a family configu-

ration that covers K. Then, T̂ (K̂) covers T p(K).

Proof: Relegated to Appendix A, on page 310.

The T̂ operator resembles the strongest postcondition propagation employed by

Hoare-like reasoning. However, strongest postcondition propagation has a major

shortcoming, residing in the fact that the classical collective-semantics-based trans-

fer function T may have more than just one fixed point. Strongest postcondition

propagation is thus limited to being as precise as the greatest fixpoint of T. Since the

T̂ operator has a unique fixpoint, one may think that it could be possible to compute

an arbitrarily precise family-configuration-based approximation of the progressive

semantics. However, that is not true. The T̂ operator has limitations of a different

nature, which will be explained in what follows. Consider the two progressions given

in Figure 11.6a. They are progressions of the same program, but w.r.t. two different

sets of start environments. Figure 11.6b represents the desired family configuration

that covers both progressions of Figure 11.6a. This family configuration contains

only sets of states that appear in some of the progressions of Figure 11.6a, that is,

it contains no “garbage”. However, the family configuration given in Figure 11.6b

is not a fixpoint of T̂ . Figure 11.7a shows a family configuration with the same

annotation for the first program point as in Figure 11.6b, and which is a fixpoint of

T̂ . We note the fact that this family configuration is less precise than the ideal one,
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by having two sets of environments at the last program point that do not appear

in any of the progressions given in Figure 11.6a. These sets of environments are

{σ |σ(x) = 0 or σ(x) = 12} and {σ |σ(x) = 10 or σ(x) = 2}. They were added by

the operator ∪̂, which joins the information coming out of the two branches of the

if statement.

To overcome this flaw, we can refine the family attached to the first program

point, and compute the fixpoint of T̂ using the newly refined family. Figure 11.7b

shows the result of this process. We note that the “refined” family does not contain

any “garbage”.

11.3 A Sufficient Condition for Coverage

In this section we prove that a family configuration covers the progression of a

program if it covers it at the first program point and if the family configuration is

a post-fixpoint of the family progress operator. The proof is by induction on the

structure of the configuration, and has been split into several parts for readabil-

ity. The main result of this section is given by Theorem 11.13. Propositions 11.4,

11.5 and 11.6 show that if a family configuration is a postfixpoint of T̂ , then so

are its sub-configurations. This allows the use of the induction hypothesis on the

sub-configurations. Propositions 11.7, 11.8, 11.9, 11.12, and Remarks 11.10, and

11.11 show that whenever the family sub-configurations cover the progressive sub-

configurations, the same relationship holds between the family and the progressive

configurations. All these partial results are combined to produce the proof of The-

orem 11.13.

We start by defining the operators seq and extr for families and family config-

urations. The operator seq is useful in coalescing a (possibly infinite) sequence of
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families coming from repeated runs through the body of a while loop into one fam-

ily. The extr operator performs the dual operation, that is, extracts a configuration

that performs one run through the body of a while loop. These operators can be

extended to family configurations in a straightforward manner and will be useful in

applying an induction hypothesis to while programs.

Formally, given a (possibly infinite) sequence of families Φ1, Φ2, . . . , Φn, . . ., we

denote by seq(Φ1, Φ2, . . . , Φn, . . .) the family Φ defined by

Φ(µ̃) =





∅, if µ̃ = ε

Φi(µ̃
′) if µ̃ = iµ̃′

Also, given a family Φ, and a natural number i, we denote by extr(Φ, i) the family

Φ′ such that Φ′(µ̃) = Φ(iµ̃), for all µ ∈ Idx. The operators seq and extr can be

extended to family configurations in the following way. Given a (possibly infinite)

sequence of family configurations K̂1, K̂2, . . . , K̂n, . . ., such that |K̂1| = |K̂2| = · · · =

|K̂n| = · · ·, we denote by seq(K̂1, K̂2, . . . , K̂n, . . .) the family configuration K̂ such

that |K̂| = |K̂1| and K̂|l = seq(K̂1|l, K̂2|l, . . . , K̂n|l, . . .), for all labels l ∈ labels(K̂1).

Similarly, given a family configuration K̂, and a natural number i, we denote by

extr(K̂, i) the family configuration K̂ ′, such that |K̂ ′| = |K̂| and K̂ ′|l = extr(K̂ |l, i),

for all labels l ∈ labels(K̂).

11.4 Proposition Let P be the sequence program P1 # P2, and let K̂ be a family

configuration such that |K̂| = P . Denote by K̂1 and K̂2 the sub-configurations

of ~K such that |K̂1| = P1 and |K̂2| = P2. If T̂ (K̂) 4 K̂, then T̂ (K̂1) 4 K̂1 and

T̂ (K̂2) 4 K̂2.

Proof: Relegated to Appendix A, on page 311.

11.5 Proposition Let P be the if program 〈ls〉 if C then Pc else Pa endif 〈lf 〉,

and let K̂ be a family configuration such that |K̂| = P . Denote by K̂c and K̂a the
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sub-configurations of K̂ such that |K̂a| = Pa and |K̂c| = Pc. If T̂ (K̂) 4 K̂, then

T̂ (K̂a) 4 K̂a and T̂ (K̂c) 4 K̂c.

Proof: Relegated to Appendix A, on page 312.

11.6 Proposition Let P be the while program 〈ls〉 while C do Pb endwhile 〈lf 〉,

and let K̂ be a family configuration such that |K̂| = P . Denote by K̂b the sub-

configuration of K̂ such that |K̂b| = Pb. If T̂ (K̂) 4 K̂, then T̂ (K̂b) 4 K̂b.

Proof: Relegated to Appendix A, on page 312.

11.7 Proposition Assume P is the skip program 〈ls〉 skip 〈lf 〉, and let Σ0 be a

set of start environments. Denote by K the progression of P w.r.t. Σ0. Let K̂ be a

family configuration that covers K at ls. If T̂ (K̂) 4 K̂, then K̂ covers K at lf .

Proof: Relegated to Appendix A, on page 312.

11.8 Proposition Assume P is the skip program 〈ls〉 x := E 〈lf 〉, and let Σ0 be a

set of start environments. Denote by K the progression of P w.r.t. Σ0. Let K̂ be a

family configuration that covers K at ls. If T̂ (K̂) 4 K̂, then K̂ covers K at lf .

Proof: Relegated to Appendix A, on page 313.

11.9 Proposition Assume P is the if program

〈ls〉 if C then Pc else Pa endif 〈lf 〉, and let Σ0 be a set of start environ-

ments. Denote by K the progression of P w.r.t. Σ0. Let K̂ be a family

configuration such that T̂ (K̂) 4 K̂. The following statements hold.

a) If K̂ covers K at ls, then K̂ covers K at first(Pc) and first(Pa).

b) If K̂ covers K at last(Pc) and last(Pa), then K̂ covers K at lf .
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Proof: Relegated to Appendix A, on page 313.

11.10 Remark Given a progression K and a family configuration K̂, we have

that K̂ covers K if and only if extr(K̂, µ) covers extr(K,µ) for all µ ∈ N. Similarly,

given two family configurations K̂1 and K̂2, we have that K̂1 4 K̂2 if and only if

extr(K̂1, µ) 4 extr(K̂2, µ) for all µ ∈ N. �

11.11 Remark The following statements hold.

a) T̂ (seq(K̂1, . . . , K̂n)) = seq(T̂ (K̂1), . . . , T̂ (K̂n)).

b) T̂ (extr(K̂, µ)) = extr(T̂ (K̂), µ), for all µ ∈ N.

c) T̂ (K̂) 4 K̂ if and only if T̂ (extr(K̂, µ)) 4 extr(K̂, µ), for all µ ∈ N.

�

11.12 Proposition Assume P is the while program

〈ls〉 while C do Pb endwhile 〈lf 〉, and let Σ0 be a set of start environments.

Denote by K the progression of P w.r.t. Σ0. Let K̂ be a family configuration such

that K̂ covers K at ls, and T̂ (K̂) 4 K̂. The following statements hold.

a) extr(K̂|first(Pb)
, 0) covers extr(K|first(Pb)

, 0).

b) extr(K̂|last(Pb)
, µ) 4 extr(K̂|first(Pb)

, µ + 1).

c) If K̂|last(Pb)
covers K|last(Pb)

, then K̂|lf covers K|lf .

Proof: Relegated to Appendix A, on page 314.

The following theorem is the main result of this section. It proves that a family

configuration covers the progression of a program if it covers it at the first program
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point and if the family configuration is a post-fixpoint of the family progress opera-

tor. The result is significant in the sense that it induces a similar result for symbolic

configurations in Chapter 14, which in turn leads to a proof method for progressive

properties of programs.

11.13 Theorem Let P be a program and Σ0 a set of start environments. Denote

by K the progression of P w.r.t. Σ0. Let K̂ be a family configuration that covers

K at first(K). If T̂ (K̂) 4 K̂, then K̂ covers K.

Proof: The proof is by structural induction on P . Propositions 11.7 and 11.8

take care of the cases when P is either a skip statement or an assignment. Assume

now that P is the sequence program P1 # P2. Then, we have that K = K1 # K2 and

K̂ = K̂1 # K̂2, where |K1| = |K̂1| = P1 and |K2| = |K̂2| = P2. According to the

induction hypothesis, K̂1 covers K1. This entails that K̂1|last(P1)
covers K1|last(P1).

Now, we have that K̂1|last(P1) = K̂2|first(P2) and K1|last(P1) = K2|first(P2). Ap-

plying the induction hypothesis again, it follows that K̂2 covers K2. Since K̂|l

covers K|l for all labels l ∈ labels(P ), it follows that K̂ covers K. Assume now

that P is the if program 〈ls〉 if C then Pc else Pa endif 〈lf 〉. Then we have

that K = 〈ls, λ〈〉 . Σ0〉 if C then Kc else Ka endif 〈lf , Ψf 〉, and K̂ = 〈ls, Φs〉

if C then K̂c else K̂a endif 〈lf , Φf 〉, where |Kc| = |K̂c| = Pc, |Ka| = |K̂a| = Pa,

Ψf is an indexed set, and Φs and Φf are indexed families. According to Proposi-

tion 11.9 K̂c|first(Pc)
covers Kc|first(Pc)

, and K̂a|first(Pa) covers Ka|first(Pa). Us-

ing the inductive hypothesis, it follows that K̂c covers Kc, and K̂a covers Ka.

This entails that K̂ covers K at last(Pc) and last(Pa), and by using Proposi-

tion 11.9 again, it follows that K̂ covers K at lf . As a result, K̂ covers K.

Assume now that P is the while program 〈ls〉 while C do Pb endwhile 〈lf 〉.

Then, we have that K = 〈ls, λ〈〉 . Σ0〉 while C do Kb endwhile 〈lf , Ψs〉, and
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K̂ = 〈ls, Φs〉 while C do K̂b endwhile 〈lf , Φs〉, |Kb| = |K̂b| = Pb, Ψf is an indexed

set, and Φs and Φf are indexed families. We need to prove two things.

a) K̂b covers Kb.

b) K̂|lf covers K|lf .

Using Remark 11.10 we shall prove a) by proving by induction that extr(K̂, µ)

covers extr(K,µ). The base case follows from Proposition 11.12 and the induction

hypothesis. For the induction case, assume that the statement holds for µ. Then,

from Proposition 11.12 it follows that extr(K̂, µ + 1)|first(Pb)
covers extr(K,µ +

1)|first(Pb)
. Applying the induction hypothesis again, it follows that extr(K̂, µ + 1)

covers extr(K,µ + 1). Statement b) follows from a) by applying Proposition 11.12

again. �

11.4 Discussion

In this chapter we have established that indexed families, as means of abstracting

indexed sets, are capable of capturing an abstraction of the sequence of environments

that occur at a program point, as well as specifying in a flexible way a range of values

for the projection of the collecting semantics on a program point. In order to better

understand these features, let us consider the following indexed family, which might

be an approximation of a progression at a program point inside a while loop.

Φ = λ〈µ〉 . {{σ} |σ(x) ∈ {prime(δ) |µ ≤ δ ≤ µ + 2}}

where prime(i) is a mapping that returns the ith prime number. The variable

µ, which ranges over natural numbers, models the passage of time, in the sense

that environments corresponding to larger values of µ may appear later during the
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execution of the program. From the indexed family given above it can be inferred

that, while the prime numbers may not appear in increasing order, the prime number

2 will definitely occur before the prime number 7, if it is the case that both 2 and

7 would occur at all during the execution of the program.

Moreover, the expression collect(Φ), which evaluates to

Φ′ = λ〈〉 . {S | for all numbers n, there exists σ ∈ S s.t. σ(x) ∈ {prime(δ) |µ ≤ δ ≤ µ + 2}}

is an approximation for the collecting semantics of the program projected on the

label at hand. From Φ′, it can be inferred that this projection is not empty, that is,

the program point at hand is live.

It may appear that progressive semantics and family-configuration-based ap-

proximations abstract away the sequencing between events occurring at different

program points. It is however possible to infer such sequencing using the progres-

sive index of that event, together with the program label ordering introduced in

Section 7.2. Indeed, if we have a family configurations K̂, two program labels, l1

and l2, and two progressive indices µ̃1 and µ̃2, we can say that the property repre-

sented by the family K̂|l1(µ̃1) occurs before the property of the family K̂|l2(µ̃2) if

µ̃1 ≤ µ̃2, or if µ̃1 = µ̃2 and l1 = l2.

In the rest of this thesis we shall develop means of program reasoning that

would allow the inference and verification of progressive properties. We shall start

by defining family description languages, and based on that, a Hoare-like calculus

and a strongest postcondition propagation operator. Under these circumstances, it

is important to establish that the family transfer function has potential for refining

progressive information. The following lemmas contribute towards that goal, by

showing that repeated applications of the family progress operator on the cover of

a progression K would lead to more precise covers of K.
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11.14 Lemma Let P be a program, and K its progression w.r.t. some set of start

environments Σ0. Assume that the family configuration K̂ covers K. Then, T̂ (K̂)

covers K as well.

Proof: The proof follows immediately from Theorem 11.3. Indeed, since K̂ covers

K, it follows that T̂ (K̂) covers T p(K). Since K is a progression of P , we have that

K = T p(K), which entails that T̂ (K̂) covers K. �

11.15 Lemma Let P be a program and Σ0 a set of start environments. Denote

by K the progression of P w.r.t. Σ0. Let K̂ be a family configuration such that K̂

covers K at first(K) and T̂ (K̂)4̂K̂. Then, T̂ n(K̂) covers K, for all n ≥ 0.

Proof: The proof is by induction on n. The lemma is obviously true for n = 0. For

n > 0, we assume that T̂ n−1(K̂) covers K. According to Lemma 11.14, T̂ (T̂ n−1(K̂))

covers K as well, and this proves the induction case. �

Lemma 11.15 induces a mechanism for refining the cover K̂ of a progression K.

Indeed, once we have verified that T̂ (K̂)4̂K̂, we can produce a more precise cover

by computing T̂ n(K̂), for some n > 0.



Chapter 12

Progressive Hoare Calculi

In the previous chapter we argued in favor of the benefits of approximating the pro-

gressive semantics of a program using family configurations. In order to progress to-

wards a progressive reasoning framework, we shall introduce a “progressive” Hoare-

like calculus. Such a calculus would allow us to reason formally about programs and

explore the possibility of automating this task. In this chapter we start with defin-

ing family description languages as sets of formulas that are interpreted as indexed

families. We continue with defining a progressive Hoare-style calculus whose Hoare

triples are made up of programs sandwiched between family description language

formulas. We show that our progressive Hoare-style calculus is correct, and then we

introduce two concrete family description languages and investigate the progressive

Hoare calculi based on these two languages.

12.1 Hoare-Style Calculi

A family description language (FDL) is a language whose formulas are interpreted

as indexed families. Given a family description language L, and a formula F ∈ L, we

denote by JFK the interpretation of F . Since the manipulation of such formulas has

167
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to mimic the manipulation of families, it is also useful to define the meta-operators

Assign, Filter, Before, Collect, t, and Seq, which correspond to the âssign, fîlter,

b̂efore, ĉollect, ∪̂ and seq operators, respectively. More specifically, given a family

description language L, two families F ,F ′ ∈ L, a program variable x, a program

expression E, and a program constraint C, we assume that the following expressions

can be translated into formulas of L: Assign(x,E,F), Filter(C,F), Before(F ,F ′),

Collect(F), and F t F ′.

We also assume that, based on a family description language L, we can build a

formal system L∗, that can be used to establish the validity of formulas of the form

F ` F ′, where F ,F ′ ∈ L and ` is a symbol that is not part of L. Whenever we

have two formulas F1 and F2 such that both F1 ` F2 and F2 ` F1 are valid in L∗,

we write F1 ≡ F2.

12.1 Definition We say that a family description language L and its associated

formal system L∗ are well-defined if the following statements hold:

a) âssign(x,E, JFK) ⊆ JAssign(x,E,F)K.

b) fîlter(C, JFK) ⊆ JFilter(C,F)K.

c) b̂efore(JF1K, JF2K) ⊆ JBefore(F1,F2)K.

d) ĉollect(JFK) ⊆ JCollect(F)K.

e) JF1K ∪̂ JF2K ⊆ JF1 t F2K.

f) seq(JF1K, JF2K, . . .) ⊆ JSeq(F1,F2, . . .)K.

g) F ` F ′ is a theorem in L∗ only if JFK ⊆ JF ′K.

where F ,F ′,F1,F2, . . . ∈ L, x is a program variable, E is a program expression,

and C is a program constraint. �
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For the sole reason of introducing a Hoare-style calculus, we define a simpler,

imperative, non-annotated programming language in Figure 12.1. This language

follows the syntactic structure of annotated programs defined in Section 2.1 and has

the same expressive power. We shall denote non-annotated programs by P, possibly

subscripted or primed, and we shall simply refer to them as programs throughout

the rest of this chapter. The definitions of program variables, expressions and

constraints remain the same as given in Figure 4.1.

Given a program P and two formulas F1,F2 of some family description language

L, a progressive Hoare triple is a construct of the form {F1}P {F2}. The intended

interpretation of such a triple is that if the progressive behavior before the start of

the program fragment P is described by an indexed set Ψ1, covered by the indexed

family JF1K, then the progressive behavior at the end of the program fragment P is

described by an indexed set Ψ2 covered by the indexed family JF2K.

The progressive Hoare calculus PH (L∗), based on the formal system L∗, is de-

fined as the formal proof system given in Figure 12.2. The proof rules of this calculus

are very similar to the classic Hoare rules presented in Section 2.1 and shall be use-

ful in establishing the correctness of our propagation algorithm in the next chapter.

The proof rules are presented in a manner similar to [AO97]. Specifically, a proof

rule has the form

set of premises

conclusion
side condition

where the premises and the conclusion are progressive Hoare triples, and the side

conditions are a set of meta-conditions that have to hold in order for the rule to

be applied. Informally, the rules provide a means of establishing the correctness of

triples concerning some program P on the assumption that the triples concerned

with the components of P are correct. In what follows, we shall formalize this
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process by defining the notions of correctness of a progressive Hoare triple and

progressive Hoare proof. Before doing that, however, we proceed with a brief expla-

nation of the rules in Figure 12.2. The rules (precond) and (postcond) represent

precondition weakening and postcondition strengthening. They rely on the ability

to prove the statements F ′
1 ` F1 and F2 ` F ′

2 in the underlying formal system

L∗. The rule (disj) combines two triples into one that has the disjunction of the

preconditions as a precondition, and the disjunction of the postconditions as a post-

condition. The rules (skip) and (assig) are in fact axiom schemes that produce

elementary triples for skip statements and assignments. The sequencing rule (seq)

is identical to the equivalent one in Hoare logic. Finally, the (if) and (while) rules

deserve more attention. The intersection operation performed on sets of states in

the collecting semantics setting is now replaced by Filter, and the usual disjunc-

tion is replaced by the t operator which models the component-wise disjunction

of indexed families. For the (while) rule, we replace the union of sets of states

from before the while loop and the bottom of the body of the while loop by the

expression Before(F1,F2) which keeps the slices of the indexed families in sequence.

The effect of the slices at the bottom of the body of the while loop on the pro-

gram point outside the while loop is modeled by the Collect operator. This effect

must be augmented with the slices at the program point before the while loop,

and then filtered with respect to the negation of the while condition. In the rest

of this chapter we shall be concerned with proving the soundness of this calculus,

and then defining two family description languages together with their associated

formal systems, and investigating the concrete progressive Hoare calculi based on

the two languages.

We shall now define the notions of correctness of a progressive Hoare triple and

progressive Hoare proof.
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12.2 Definition Let P be a program. A progressive Hoare triple {F1}P {F2} is

correct if, for all progressions K of P w.r.t. some set of start environments, whenever

K|first(K) ∈ bJF1Kc it follows that K|last(K) ∈ bJF2Kc. �

Intuitively, a progressive Hoare triple {F1}P {F2} is correct if the interpreta-

tions of the two fromulas F1 and F2 cover the annotations of K at the first and last

program point.

The definition of a proof follows the classical definition of a proof in a formal

system, as a sequence of formulas, each of them following from some preceding rules

in the sequence by the application of a inference rule.

12.3 Definition A progressive Hoare proof is a sequence of Hoare triples

H1,H2, . . . ,Hk such that for every triple Hi, there exist a set of triples

{Hj1 , . . . ,Hjl
} that appear earlier in the sequence (that is, jp < i, for all p,

1 ≤ p ≤ l), such that

Hj1 , . . . ,Hjl

Hi

C

is an instance of a progressive Hoare rule with the side conditions C, where the

meta-conditions in C are true of Hj1 , . . . ,Hjl
and Hi. �

In other words, a progressive Hoare proof is a sequence of triples such that

every triple in the sequence follows from two preceding triples by applying one of

the progressive Hoare rules. We notice that the rules (skip) and (assig) have no

premises, and therefore may appear first in a progressive Hoare proof.

12.2 Correctness

In order to talk about the correctness of progressive Hoare logics defined in the

previous section, we need to establish, at least informally, a link between annotated
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Prog ::= Var := Expr

| skip

| if Constr then Prog1

else Prog2 endif

| while Constr do Prog1 endwhile

| Prog1 # Prog2

Figure 12.1: Simple Non-Annotated Programming Language

and non-annotated programs. We start by noticing that we can easily turn an

annotated program P into a non-annotated program P by simply removing its

annotations. Whenever it is the case that the non-annotated program P has been

obtained by removing the annotations from the annotated program P , we shall

write P  P. Obviously, the two languages have the same expressive power; we

shall not go into detail with proving that if P  P, then P and P have the same

trace semantics. Given a non-annotated program P, let P be an annotated program

such that P  P, and let K be a configuration such that |K| = P . By abuse of

language, we shall also say that |K| = P whenever it is convenient to do so. We

shall also say that a progressive configuration K is the progressive semantics of a

non-annotated program P w.r.t. a set of start environments Σ0 if there exists an

annotated program P such that P  P, and whose progression w.r.t. Σ0 is K.

We continue with a set of propositions that establish the soundness of every

progressive Hoare rule. More specifically, we show that if the preconditions of a rule

are correct w.r.t. some sets of start environments, and if the side conditions of that

rule hold, then the conclusion of the rule is correct w.r.t. some relevant set of start

environments.

The next proposition establishes the soundness of the rule (precond).
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{F1}P {F2}

{F ′
1}P {F2}

F ′
1 ` F1 (precond)

{F1}P {F2}

{F1}P {F ′
2}

F2 ` F ′
2 (postcond)

{F} skip {F}
(skip)

{F}x := E {Assign(x, e,F)}
(assig)

{F ′}P1 {F
′′} {F ′′}P2 {F

′′′}

{F ′}P1 # P2{F
′′′}

(seq)

{Filter(C,F)}Pc {F1} {Filter(¬C,F)}Pa {F2}

{F} ifC thenPc elsePa endif {F1 t F2}
(if)

{F ′
i}P {F ′′

i }, i = 0, 1, 2, . . .

{F1}
whileC do
P

endwhile
{Filter(¬C,F1 t Collect(F2))}

F2 ≡ Filter(C,Seq(F ′′
0 ,F ′′

1 , . . .))

Seq(F ′
1,F

′
2, . . .) ≡

Filter(C,Before(F1,F2))

(while)

Figure 12.2: Progressive Hoare Logic
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12.4 Proposition Let F1,F
′
1,F2 be formulas of a formal system L∗, and let

{F1}P {F2} be a progressive Hoare triple that is correct. If L∗ is well-defined, and

F ′
1 ` F1 holds in L∗, then {F ′

1}P {F2} is correct as well.

Proof: Let K be a progressive semantics of P such that K|first(K) ∈ bJF ′
1Kc.

Since F ′
1 ` F1 and L∗ is well-defined, bJF ′

1Kc ⊆ bJF1Kc. It follows that K|first(K) ∈

bJF ′
1Kc. Since {F1}P {F2} is correct, it follows that K|last(K) ∈ bJF2Kc. As a result,

{F ′
1}P {F2} is correct. �

The next proposition establishes the soundness of the rule (postcond).

12.5 Proposition Let F1,F2,F
′
2 be formulas of a formal system L∗, and let

{F1}P {F2} be a progressive Hoare triple that is correct w.r.t. some set of start

environments Σ0. If L∗ is well-defined, and F2 ` F ′
2 holds in L∗, then {F1}P {F ′

2}

is correct w.r.t. Σ0 as well.

Proof: Let K be a progressive semantics of P such that K|first(K) ∈ bJF1Kc. Since

{F1}P {F2} is correct, it follows that K|last(K) ∈ bJF2Kc. Since F2 ` F ′
2 and L∗

is well-defined, bJF2Kc ⊆ bJF ′
2Kc. It follows that K|last(K) ∈ bJF ′

2Kc. As a result,

{F1}P {F ′
2} is correct. �

The next proposition establishes the soundness of the rule (skip).

12.6 Proposition Let F be a formula of a well-defined formal system L∗. The

Hoare triple {F} skip {F} is correct.

Proof: Given the program P = skip, any progression K of P has the property

K|first(K) = K|last(K). It follows immediately that the proposition holds. �
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The next proposition establishes the soundness of the rule (assig).

12.7 Proposition Let Σ0 be a set of start environments and F a formula of a

formal system L∗, such that λ〈〉 . Σ0 ∈ bJFKc. If L∗ is well defined, and x and E

are a program variable and a program expression, respectively, then the progressive

Hoare triple {F}x := E {Assign(x,E,F)} is correct w.r.t. Σ0.

Proof: Given the program P = x := E, any progression K of P has the prop-

erty K|last(K) = assign(x,E,K|first(K)). Let K be a progression such that

K|first(K) ∈ bJFKc. Since L∗ is well-defined, we have that for every formula F ,

âssign(x,E, JFK) ⊆ JAssign(x,E,F)K, which is equivalent to bâssign(x,E, JFK)c ⊆

bJAssign(x,E,F)Kc. Since assign(x,E,K|first(K)) ∈ bâssign(x,E, JFK)c, it follows

immediately that the proposition holds. �

The next proposition establishes the soundness of the rule (seq).

12.8 Proposition Let P1 and P2 two programs, F ,F ′,F ′′ be formulas of a for-

mal system L∗, and assume that the progressive Hoare triples {F}P1 {F
′} and

{F ′}P2 {F
′′} are correct. Then, {F}P1 # P2 {F

′′} is correct.

Proof: Since {F}P1 {F
′} is correct, for all progressions K1 of P1 such that

K1|first(K1) ∈ bJFKc, we also have that K1|last(K1) ∈ bJF ′Kc. Let K2 be a pro-

gression of P2, such that K2|first(K2)
= K1|last(K1). Since {F ′}P2 {F

′′} is correct,

it follows that K2|last(K2)
∈ bJF ′′Kc. Now, K1 # K2 is a progression of the program

P1 #P2, and K1 #K2|first(K1#K2)
= K1|last(K1) and K1 #K2|last(K1#K2)

= K2|last(K2)
.

It follows that {F}P1 # P2 {F
′′} is correct. �

The next proposition establishes the soundness of the progressive Hoare rule (if).
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12.9 Proposition Let Pc and Pa be two programs, and let F ,F1,F2 be formulas

of a well-defined formal system L∗. Given a program constraint C, assume that

the progressive Hoare triples {Filter(C,F}Pc {F1} and {Filter(¬C,F}Pa {F2} are

correct. Then, the progressive Hoare triple {F} ifC thenPc elsePa endif{F1 t

F2} is correct.

Proof: Let Ψ ∈ bJFKc be an indexed set covered by the interpretation of

F . Denote by Kc and Ka the progressive semantics of Pc and Pa, respec-

tively, such that Kc|first(Kc)
= filter(C, Ψ) and Ka|first(Ka) = filter(¬C, Ψ).

Clearly, filter(C, Ψ) ∈ bJFilter(C,F)Kc and filter(¬C, Ψ) ∈ bJFilter(¬C,F)Kc,

and since {Filter(C,F}Pc {F1} and {Filter(¬C,F}Pa {F2} are correct, it fol-

lows that Kc|last(Kc)
∈ bJF1Kc and Ka|last(Ka) ∈ bJF2Kc. On the other

hand, 〈ls, Ψ〉 if C then Kc else Ka endif 〈lf ,Kc|last(Kc)
∪ Ka|last(Ka)〉, where

ls and lf are labels that do not appear in Kc and Ka, is a progres-

sion of ifC thenPc elsePa endif. Kc|last(Kc)
∪ Ka|last(Ka) ∈ bJF1 t F2Kc,

and since Ψ is an arbitrary element of bJFKc, it follows that the triple

{F} ifC thenPc elsePa endif {F1 t F2} is correct. �

The next proposition establishes the soundness of the progressive Hoare rule

(while).

12.10 Proposition Let Pb be a program, and let {F ′
i | i ≥ 0} and {F ′′

i | i ≥ 0} be

two sets of formulas of a well-defined formal system L∗. Assume that the progressive

Hoare triples {F ′
i}Pb {F

′′
i } are correct, for all i ≥ 0. Let now C be a program

constraint, F1 and F2 be two formulas of L∗, and assume the following statements

are theorems in L∗:

a) F2 ≡ Seq(F ′′
0 ,F ′′

1 , . . .)
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b) Seq(F ′
0,F

′
1, . . .) ≡ Filter(C,Before(F1,F2))

Then, the progressive Hoare triple {F1} whileC doPb endwhile{Filter(C,F1 t

Collect(F2))} is correct.

Proof: Let K be a progression of the program whileC doPb endwhile, such that

K|first(K) ∈ bJFKc. Then, K has the form 〈ls, Ψs〉 while C do Kb endwhile 〈lf , Ψf 〉,

where ls and lf are labels, and Ψs and Ψf are indexed sets. K is a fix-

point of T p, which entails that Kb|first(Kb)
= filter(C, before(Ψs,Kb|last(Kb)

)).

We shall now prove by induction that Kb|last(Kb)
(i) ∈ bJF ′′

i Kc. Since

Seq(F ′
1,F

′
2, . . .) ≡ Filter(C,Before(F1,F2)), it follows that Kb|first(Kb)

(0) ∈ bJF ′
0Kc.

Since {F ′
0}Pb {F

′′
0 } is a correct triple, it follows that Kb|last(Kb)

(0) ∈ bJF ′′
0 Kc, which

proves the base case. Assume now that Kb|last(Kb)
(i) ∈ bJF ′′

i Kc, for some i ≥ 0.

From the fact that Seq(F ′
1,F

′
2, . . .) ≡ Filter(C,Before(F1,F2)), and that Kb is a pro-

gression of P)b, it follows that Kb|first(Kb)
(i+1) ∈ bJF ′

i+1Kc. Since {F ′
i+1}Pb {F

′′
i+1}

is a correct triple, then Kb|last(Kb)
(i + 1) ∈ bJF ′′

i+1Kc, which proves the induction

case. As a result, Ψf = filter(C, collect(Kb|last(Kb)
)) ∈ bJFilter(C,Collect(F2))Kc. It

follows that {F1} whileC doPb endwhile{Filter(C,F1 t Collect(F2))} is a correct

triple. �

The following theorem is the highlight of this section, showing that the definition

of a progressive Hoare proof is sound.

12.11 Theorem Let P be a program and F , F ′ two formulas of a well-defined

formal system L∗. If there exists a progressive Hoare proof whose last triple is

H = {F}P {F ′}, then H is correct w.r.t. all sets of start environments Σ0 such

that λ〈〉 . Σ0 ∈ bJFKc.
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Proof: We prove this proposition by induction on the length of the progressive

Hoare proof. For a proof of length 1, the formula in the proof must be an instance

of either of the progressive Hoare rules (skip) and (assig), defined in Figure 12.2.

Propositions 12.6 and 12.7 show that such formulas are correct. If the length of

the progressive Hoare proof is longer than 1, then, by the induction hypothesis, all

the formulas in the proof, except possibly the last one, are correct. Then the last

formula in the proof must be either an instance of the (skip) and (assig) rules, in

which case Propositions 12.6 and 12.7 apply, or it is obtained by the application of

one of the rules (precond), (postcond), (seq), (if), or (while), in which case

Propositions 12.4, 12.5, 12.8, 12.9, 12.10 apply. It follows that the last formula in

the proof is correct, which proves the induction case and the proposition. �

In the following chapters, we shall introduce two family description languages and

explore the progressive Hoare calculi that are based on them.



Chapter 13

A Liveness-Aware Description

Language

In this chapter we introduce a family description language that is “liveness aware”,

in the sense that its interpretation is able to distinguish only between families that

contain the empty set and families that do not. As a result, this language is strong

enough to prove total correctness. The language uses first order formulas, employed

in a manner very similar to classic Hoare logic. Two important differences exist

though. On one hand, index variables play an active role, expressing an abstraction

of the sequencing of environments occurring at every program point, and the use

of the “∗” annotation, which indicates the fact that we have exact knowledge of

whether a program point will be reached or not. For example, consider the starred

formula F = λ〈ν〉 . (ν%2 = 0 ∧ x > 0)∗ that may be attached to a program point

l, inside an if statement, that is in turn nested inside a while loop. The formula

F states that during the even repetitions of the body of the while loop, program

point l will definitely be reached, and the variable x will be positive. However,

during the odd repetition of the while loop body, program point l is definitely

179
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CT ::= 0 | 1 | − 1 | 2 | − 2 | · · · (constants)

PV ::= x | y | z | · · · (program variables)

IV ::= ν0 | ν1 | ν2 | · · · (index variables)

AV ::= δ0 | δ1 | · · · | · · · (auxiliary variables)

FS ::= + | − | ∗ | / | f | g | · · · (function symbols)

PS ::= = | 6= | < | > | ≤ | ≥ | p | q | · · · (predicate symbols)

T ::= CT | PV | IV | AV | FS (T1, . . . , Tn) (terms)

SF ::= PS (T1, . . . , Tn) | SF 1 ∧ SF 2 | SF 1 ∨ SF 2 | ¬SF ′ |

SF 1 → SF 2 | SF 1 ↔ SF 2 | ∀AV .SF ′ | ∃AV .SF ′ (simple formulas)

LAL ::= λ〈IV 1, . . . , IV n〉 .SF | (only program variables may appear free in LAL)

λ〈IV 1, . . . , IV n〉 .SF ∗ |

Figure 13.1: Liveness Aware Family Description Language

not reached (possibly because the other branch of the if statement is taken.) In

contrast, consider the non-starred formula F ′ = λ〈ν〉 . ν%2 = 0 ∧ x > 0, attached to

the same program point l. This formula states that program point l may be reached

during the even repetitions of the while loop body and, if that happens, the value

of x will be positive. Clearly, F ′ is less precise than F . In order to facilitate the

definition of the progressive Hoare rules, the language also has operators similar to

the family progressive operators defined in Figure 11.4. In the formal system that

we define on top of the family description language, our main concern is to preserve

the “∗” annotation through these operators.
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13.1 Language

The liveness-aware family description language LAL is defined in Figure 13.1. The

terms of this language are defined by the non-terminal T , and are either constants,

variables, or functions applied to other terms. In this language we distinguish be-

tween program variables x, y, z, . . ., which are variables appearing in the program

at hand, index variables ν0, ν1, ν2, . . ., which model the indices used by families to

represent the sequencing of properties, and auxiliary variables δ0, δ1, δ2, . . ., which

are introduced for the sole purpose of increasing the expressive power of the lan-

guage. Using predicate symbols defined by the non-terminal PS, and terms, we can

define simple formulas, represented by the non-terminal SF. Such formulas resemble

first order logic formulas, with the only difference that we distinguish between types

of variables. The formulas defined by SF, where all the auxiliary variables appear

quantified, can be used in building formulas of LAL. Since ϕ resembles a first order

formula, we shall take advantage of this fact when defining the interpretation of

LAL formulas. To this purpose, we shall denote by ∀ϕ the first order closure of ϕ

in which all variables appear quantified, and we shall denote by |= ∀ϕ the fact that

∀ϕ is a theorem in first order logic. Also, it is convenient to define ∀νϕ the closure

of ϕ in which the index variables appear quantified, but in which program variables

are still free, and by σ |= ∀νϕ the fact that the first order formula ∀νϕ is true

w.r.t. the environment σ, which acts as a valuation for the program variables that

appear free in ∀νϕ. Similarly, it is convenient to define ∀xϕ the closure of ϕ in which

program variables appear quantified, but in which index variables are still free. We

also notice that program expressions and program constraints, as defined by the

non-terminals Expr and Constr in Figure 4.1, are terms and simple formulas of

LAL, respectively.
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A LAL formula is typically either an expression of the form λ〈ν1ν2 · · · νk〉 . ϕ

or an expression of the form λ〈ν1ν2 · · · νk〉 . ϕ∗, where ϕ is a simple formula in

which all auxiliary variables appear quantified. The number of index variables

k is called the arity of the formula. Given a formula F , we denote its arity by

arity(F). The first type of formulas, without a star superscript, shall be called

liveness-insensitive formulas, while the second type, which has a star superscript,

shall be called liveness-sensitive fromulas. Intuitively, in the family that represents

the interpretation of a liveness-sensitive formula, each slice either contains only the

empty set, or does not contain the empty set at all. For the liveness-insensitive

formulas, each slice of the interpretation is subset-closed, and includes the empty

set.

Finally, we need to define the progressive meta-operators used in the definition

of the progressive Hoare rules. These meta-operators appear in meta-formulas that

can be translated into formulas of LAL. When defining such operators, we have

to bear in mind that a LAL formula is either a liveness-sensitive formula, or a

liveness-insensitive formula. Whenever it is convenient, we shall provide case-based

definitions for our operators. Some of the operators, namely Before and t are only

defined for certain combinations of formulas. For example, the t operator can only

be used between formulas with the same arity. In what follows, we shall consider

only formulas where this operators can be applied. This assumption is also extended

to symbolic configurations in the next chapter.

We start with the Assign operator, defined by the following three expressions, in

which k ≥ 0, x is a program variable, and E is a program expression, ϕ is a simple

expression, and δ is an auxiliary variable that does not appear in ϕ.
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Assign(x,E, λ〈ν1 · · · νk〉 . ϕ) = λ〈ν1 · · · νk〉 .∃δ . (ϕ[δ/x] ∧ x = (E[δ/x]))

Assign(x,E, λ〈ν1 · · · νk〉 . ϕ∗) = λ〈ν1 · · · νk〉 . (∃δ . (ϕ[δ/x] ∧ x = (E[δ/x])))∗

We continue with the definition of Filter, defined by the following three expressions.

The symbol ϕ retains its role of representing a simple expression, C is a program

constraint, and k ≥ 0.

Filter(C, λ〈ν1 · · · νk〉 . ϕ) = λ〈ν1 · · · νk〉 . (ϕ ∧ C)

Filter(C, λ〈ν1 · · · νk〉 . ϕ∗) = λ〈ν1 · · · νk〉 . (ϕ ∧ C)∗, if |= (∀(C → ϕ)) ∨ (∀(C → ¬ϕ))

Filter(C, λ〈ν1 · · · νk〉 . ϕ∗) = λ〈ν1 · · · νk〉 . (ϕ ∧ C), if |= (¬∀(C → ϕ)) ∨ (∀(C → ¬ϕ))

Next, we define the Before meta-operator in a case-based manner. In this definition,

ϕ1 and ϕ2 are simple formulas, and k ≥ 0 is an integer. The Before(F1,F2) expres-

sion is defined only for formulas F1 and F2 such that arity(F1) = arity(F2) − 1.

Before(λ〈ν1 · · · νk〉 . ϕ1, λ〈ν1 · · · νkνk+1〉 . ϕ2) =

λ〈ν1 · · · νkνk+1〉 . ((νk+1 = 0 → ϕ1) ∧ (νk+1 > 0 → ϕ2[(νk+1 − 1)/νk+1]))

Before(λ〈ν1 · · · νk〉 . ϕ∗
1, λ〈ν1 · · · νkνk+1〉 . ϕ∗

2) =

λ〈ν1 · · · νkνk+1〉 . ((νk+1 = 0 → ϕ1) ∧ (νk+1 > 0 → ϕ2[(νk+1 − 1)/νk+1]))∗

Before(λ〈ν1 · · · νk〉 . ϕ1, λ〈ν1 · · · νkνk+1〉 . ϕ∗
2) =

λ〈ν1 · · · νkνk+1〉 . (νk+1 = 0 → ϕ1 ∧ νk+1 > 0 → ϕ2[(νk+1 − 1)/νk+1])

Before(λ〈ν1 · · · νk〉 . ϕ∗
1, λ〈ν1 · · · νkνk+1〉 . ϕ2) =
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We note that, in order to be useful, the Before operator must have as arguments

two formulas such that the second one has one extra index variable argument. We

continue with the definition of Collect, given in a case-based manner. The symbols

k, ν1, . . . , νk, ϕ and δ have the same meaning as above. The operator Collect is

defined only for formulas of arity strictly greater than 0.

Collect(λ〈ν1 · · · νkνk+1〉 . ϕ) = λ〈ν1 · · · νk〉 .∃δ . ϕ[δ/νk+1]

Collect(λ〈ν1 · · · νkνk+1〉 . ϕ∗) = λ〈ν1 · · · νk〉 . (∃δ . ϕ[δ/νk+1])∗

The last expression is useful to define the Collect operator for LAL formulas of

the form λ〈〉 . ϕ or λ〈〉 . ϕ∗. We continue with the definition of t, which requires

operands of the same arity.

λ〈ν1 · · · νk〉 . ϕ1 t λ〈ν1 · · · νk〉 . ϕ2 = λ〈ν1 · · · νk〉 . ϕ1 ∨ ϕ2

λ〈ν1 · · · νk〉 . ϕ∗
1 t λ〈ν1 · · · νk〉 . ϕ∗

2 = λ〈ν1 · · · νk〉 . (ϕ1 ∨ ϕ2)∗

λ〈ν1 · · · νk〉 . ϕ∗
1 t λ〈ν1 · · · νk〉 . ϕ2 = λ〈ν1 · · · νk〉 . ϕ1 ∨ ϕ2

λ〈ν1 · · · νk〉 . ϕ1 t λ〈ν1 · · · νk〉 . ϕ∗
2 = λ〈ν1 · · · νk〉 . ϕ1 ∨ ϕ2

Finally, we provide the definition of the Seq operator, which is defined only for

formulas of the same arity.

Seq(F0,F1, . . . ,Fm, . . .) = λ〈ν1 · · · νkνk+1〉 . ϕ, if there exists λ〈ν1 · · · νk〉 . ϕ ∈ LAL s.t.

Fi = λ〈ν1 · · · νk〉 . ϕ[νk+1/i], i ≥ 0

Seq(F0,F1, . . . ,Fm, . . .) = λ〈ν1 · · · νkνk+1〉 . ϕ∗, if there exists λ〈ν1 · · · νk〉 . ϕ∗ ∈ LAL s.t.

We continue with providing an interpretation for the liveness aware language.
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13.2 Interpretation

LAL formulas are interpreted as indexed families. Given a liveness insensitive for-

mula λ〈ν1 · · · νk〉 . ϕ, where ϕ is a simple formula in which index variables ν1, . . . , νk

appear free, no auxiliary variables appear free, and k ≥ 0, its interpretation is

defined as:

Jλ〈ν1 · · · νk〉 . ϕK = λ〈µ1 · · ·µk〉 . {Σ | forall σ ∈ Σ, σ |= (ϕ[µ1/ν1, . . . , µk/νk])}.

In the definition above, the notation ϕ[µ1/ν1, . . . , µk/νk] stands for the formula

obtained from ϕ by replacing the index variable νi by the natural number µi, for

all i, 1 ≤ i ≤ k. We call the expression [µ1/ν1, . . . , µk/νk] a substitution.

Given a liveness sensitive formula λ〈ν1 · · · νk〉 . ϕ∗, where ϕ is a simple formula in

which index variables ν1, . . . , νk appear free, and no auxiliary variables appear free,

and k ≥ 0 its interpretation is defined as:

Jλ〈ν1 · · · νk〉 . ϕ∗K = λ〈µ1 · · ·µk〉 .





{∅}, if |= ∀(¬ϕ[µ1/ν1, . . . µk/νk])

{Σ |Σ 6= ∅ and forall σ ∈ Σ, σ |= (ϕ[µ1/ν1, . . . , µk/νk])},

otherwise

Next, we define a formal system on top of the liveness aware language. The formal

system will help establishing the validity of formulas of the form F1 ` F2, which is

necessary in order to define a concrete progressive Hoare logic.

13.3 Formal System

We now define a formal system called LAL∗, on top of the liveness aware language.

This formal system deals with formulas of the type F1 ` F2, where F1,F2 ∈ LAL,

and ` is a new symbol. The purpose of this formal system is to be able to prove
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(LAL1) λ〈ν1 · · · νk〉 . ϕ∗ ` λ〈ν1 · · · νk〉 . ϕ

(LAL2) λ〈ν1 · · · νk〉 . ϕ1 ` λ〈ν1 · · · νk〉 . ϕ2

if |= ∀(ϕ1 → ϕ2)

(LAL3) λ〈ν1 · · · νk〉 . ϕ∗
1 ` λ〈ν1 · · · νk〉 . ϕ∗

2

if |= ∀(ϕ1 → ϕ2) and |= ∀((∀x¬ϕ1) → (∀x¬ϕ2))

Figure 13.2: LAL∗ Axioms

the F1 ` F2 formulas whenever JF1K ⊆ JF2K. The formal system consists of the

language LAL, an inference rule, and a set of axioms. The inference rule has the

form

F1 ` F2 F2 ` F3

F1 ` F3
,

being similar to the modus ponens rule in classic first order logic.

The set of axioms are given in Figure 13.2. They have the general form

F1 ` F2 if C

where F1,F2 are two LAL formulas. Typically, inside these two formulas there are

embedded several first order formulas ϕ1, ϕ2, . . . , ϕp. The meta-condition C is a first

order theorem about ϕ1, ϕ2, . . . , ϕp that needs to hold in first order logic, in order

for F1 ` F2 to be a valid axiom. The axioms are mainly concerned with manipu-

lating explicit formulas, or defining relationships between non-explicit formulas and

explicit ones. Axiom LAL1 formalizes the general intuition that starred formulas

are more precise than non-starred formulas. Indeed, starred formulas, whenever

attached to a program point, besides a conservative approximation of the set of

environments occurring at that point, express the knowledge of whether that pro-

gram point is reached or not. Axioms LAL2 and LAL3 show that the relationships
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between explicit LAL formulas rely on the relationships between the first order for-

mulas embedded within them. The LAL3 axiom deserves special attention, since

it is one case in which we have to be careful about preserving the star annotation.

As defined in the previous section, the interpretation of a starred formula F is a

indexed family F with the property that for all µ̃ ∈ Idx, F (µ̃) either contains

only the empty set, or does not contain the empty set at all. Consider two starred

formulas F1 and F2, and assume that F1 ` F2 holds. Denote by F1 and F2 the

interpretations of F1 and F2, respectively. It must be the case that F1(µ̃) ⊆ F2(µ̃)

for all µ̃ ∈ Idx. However, since F1 and F2 are starred formulas, the families F1 and

F2 must also have the following property: F2(µ̃) = {∅} whenever F1(µ̃) = {∅}. This

is tantamount to the first order formula ∀((∀x¬ϕ1) → (∀x¬ϕ2)) being a theorem of

first order logic.

Next, we define the concepts of proof and theorem for LAL∗, in the standard way.

A proof in LAL∗ is a sequence of formulas of the form F1 ` F ′
1,F2 ` F ′

2, . . . ,Fk ` F ′
k,

such that every Fi ` F ′
i , 1 ≤ i ≤ k is either an instance of an axiom, or it follows

from two previous formulas via the inference rule. The last formula of the sequence

representing the proof is a theorem of LAL∗.

At this point, we can prove that our formal system is well-defined. Since the

well-definedness definition specifies seven conditions, we shall prove that each of

these conditions holds in a separate proposition, and then, use these partial results

to prove the overall statement that the LAL∗ formal system is well defined. We

start by giving two remarks that shall be useful in the proofs.

13.1 Remark Let F be a LAL formula that is either liveness-insensitive, i.e. of the

form λ〈ν1 · · · νk〉 . ϕ, or liveness-sensitive, i.e. of the form λ〈ν1 · · · νk〉 . ϕ∗. Denote

by Ψ an indexed set such that Ψ ∈ bJFKc. The following two conditions hold:
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a) Ψ(µ̃) = ∅, if size(µ̃) 6= k.

b) For all σ ∈ Ψ(µ1 · · ·µk), σ |= ϕ[µ1/ν1, . . . , µk/νk].

If F is a liveness-sensitive formula, the following condition holds on top of the two

conditions above.

c) If for a given µ̃, there exists an environment σ such that σ |=

ϕ[µ1/ν1, . . . , µk/νk], then Ψ(µ̃) 6= ∅.

�

13.2 Remark Let ξ be a property of indexed sets such that {Ψ | ξ(Ψ)} is a

well-defined set. Denote by Φ the indexed family d{Ψ | ξ(Ψ)}e. Then, Φ(µ̃) =

{Ψ(µ̃) | ξ(Ψ)}, for all µ̃ ∈ Idx. Moreover, let η be a mapping from indexed sets,

such that {η(Ψ) | ξ(Ψ)} is a well-defined set, and denote by Φ the indexed set

d{η(Ψ) | ξ(Ψ)}e. Then Φ(µ̃) = {(η(Ψ))(µ̃) | ξ(Ψ)}, for all µ̃ ∈ Idx. �

We continue with proving condition (a) of Definition 12.1.

13.3 Proposition For all program variables x, program expressions E, and for-

mulas F ∈ LAL, we have âssign(x,E, JFK) ⊆ JAssign(x,E,F)K.

Proof: Relegated to Appendix A, on page 315.

We continue with proving condition (b) of Definition 12.1.

13.4 Proposition For all program constraints C, and formulas F ∈ LAL, we have

fîlter(C, JFK) ⊆ JFilter(C,F)K.

Proof: Relegated to Appendix A, on page 317.

Next, we prove condition (c) of Definition 12.1.
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13.5 Proposition For all formulas F1,F2 ∈ LAL, we have b̂efore(JF1K, JF2K) ⊆

JBefore(F1,F2)K.

Proof: Relegated to Appendix A, on page 321.

Now we prove condition (d) of Definition 12.1.

13.6 Proposition For all formulas F ∈ LAL, we have ĉollect(JFK) ⊆ JCollect(F)K.

Proof: Relegated to Appendix A, on page 324.

We continue with proving condition (e) of Definition 12.1.

13.7 Proposition For all formulas F1,F2 ∈ LAL, we have JF1K ∪̂ JF2K ⊆ JF1 tF2K.

Proof: Relegated to Appendix A, on page 326.

Next we prove condition (f) of Definition 12.1.

13.8 Proposition For all formulas F0,F1,F2, . . . ∈ LAL, we have

seq(JF0K, JF1K, JF2K, . . .) ⊆ JSeq(F0,F1,F2, . . .)K.

Proof: Relegated to Appendix A, on page 328.

We now prove condition (g) of Definition 12.1.

13.9 Proposition For all formulas F ,F ′ ∈ LAL, we have F ` F ′ is a theorem in

L∗ only if JFK ⊆ JF ′K.

Proof: Relegated to Appendix A, on page 329.

Finally, we are able to assemble the proofs in the previous seven propositions into

a result that states that the formal system LAL∗ is well-defined.
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while x > 1 do

if x % 2 = 0 then

x := x/2

then

x := x + 1

endif

endwhile

Figure 13.3: Program Subjected to Termination Proof

13.10 Theorem The LAL∗ formal system is well-defined.

Proof: Propositions 13.3 – 13.9 prove all the conditions in Definition 12.1 for the

formal system LAL∗. As a result, LAL∗ is well-defined. �

13.4 Liveness Aware Language Example

It is now the time to put the LAL-based progressive Hoare calculus to work. We

shall consider an example program whose termination is far from obvious, and show

how to construct a progressive Hoare proof from which it can be inferred not only

that the program terminates, but also the sequence of values that occur at every

program point for the variable used in the program.

Consider the program in Figure 13.3. The program executes a loop for as long

as variable x is greater than 1. Inside the loop, the variable is halved if it has an

even value, and it is incremented by 1 if it has an odd value. We shall assume that

the initial value of x is positive, but unknown, and this fact shall be reflected in the

precondition we infer for our program. Since the value of x is not monotonically
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decreasing, the termination of this program is not obvious. We shall first argue

informally that this program terminates, and then we shall construct a progressive

Hoare proof from which the termination of the program (and not only) can be

inferred. In order to prove termination, we resort to proving the following statement:

Denote by ones(z) the number of bits set to 1 in the binary representation

of the integer z. Assuming that the program starts with an initial value

x0 for the program variable x, the program terminates after dlog2 x0e − 1 +

ones(2dlog2 x0e+1 − x0).

The proof is based on the following easy to verify algebraic equalities:

if x0 is odd: dlog2 x0e = dlog2(x0 + 1)e and

ones(2dlog2 x0e+1 − x0) = ones(2dlog2(x0+1)e+1 − (x0 + 1)) − 1

if x0 is even: dlog2 x0e = dlog2(x0/2) − 1e and

ones(2dlog2 x0e+1 − x0) = ones(2dlog2(x0/2)e+1 − (x0/2)) − 1

Let us denote by ν0 = dlog2 x0e−1+ones(2dlog2 x0e+1−x0) the number of iterations

through the loop for a given x0.1 We prove the above claim by induction on ν0.

Assume ν0 is 0. This entails that x0 must be 0. When x0 is 0, there will be 0

iterations through the while loop body, which satisfies the claim. Assume now that

the claim holds for all ν0 ≥ 0 and consider the case for ν0 + 1. Let x0 be an initial

value of x such that the program terminates after ν0 + 1 iterations through the

loop. This means that ν0 + 1 = dlog2 x0e − 1 + ones(2dlog2 x0e+1 − x0) We have two

cases: x0 may be odd or even. In the case when x0 is odd, the value of x after one

iteration through the loop is x0 + 1. On the other hand, when x0 is even, the value

1The choice of the symbol ν0 for the number of iterations may seem strange at this point.

However, since ν0 is typically used as a index variable in LAL formulas, the notation will come in

handy when we give the progressive Hoare proof of the program.
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of x after one iteration through the loop is x0/2. Let us denote by x1 the value of

variable x after the first iteration through the loop. Using the algebraic equalities

given above, we have that dlog2 x1e − 1 + ones(2dlog2 x1e+1 − x1) = ν0, which proves

the induction case. Having understood the principle behind the termination of the

program, let us now build a progressive Hoare proof from which termination can

be inferred formally. For convenience, we denote by B(ν, x) the simple formula

dlog2 x0e− 1 + ones(2dlog2 x0e+1 −x0). Using the progressive Hoare rule (assig), we

produce the following two correct progressive Hoare triples.

{λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1 ∧ x % 2 = 0)∗}

x := x/2 (ph1)

{λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗}

{λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1 ∧ a % 2 6= 0)∗}

x := x + 1 (ph2)

{λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗}

Using the triples (ph1) and (ph2), and the (if) progressive Hoare rule, we produce

the following progressive Hoare triple.

{λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1)∗}

if x % 2 = 0 then

x := x/2

else (ph3)

x := x + 1

endif

{λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗}

Next, we shall produce the Hoare triple corresponding to the entire program, by

using the (while) progressive rule. We prepare the ground for applying the (while)
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rule by defining the following notations.

F ′
i = λ〈ν0〉 . (B(ν0 − i, x) ∧ x > 1)∗

F ′′
i = λ〈ν0〉 . (B(ν0 − i − 1, x) ∧ x > 1)∗

F2 = Seq(F ′
0,F

′
1,F

′
2, . . .)

We now note that

Filter(x > 1,Seq(F ′
0,F

′
1,F

′
2, . . .)) = Filter(x > 1,Before(λ〈ν0〉 . (B(ν0, x))∗,F2)).

As a result, we can use the (ph3) Hoare triple and apply the (while) progressive

Hoare rule in order to obtain the following triple.

{λ〈ν0〉 . (B(ν0, x))∗}

while x > 1 do

if x % 2 = 0 then

x := x/2

else

x := x + 1

endif

endwhile

{λ〈ν0〉 . (x = 1)∗}

From this Hoare triple we can infer that the program terminates and variable x

has value 1 at the end of the execution. One important thing to notice is the

LAL formula that acts as a precondition to this triple. It specifies that the first

point of the program is definitely reached, and that the value of x is positive.

This information is specified in a stratified way, each value of ν0 specifying values

of x for which the program terminates after executing ν0 iterations through the

loop. An alternative way of specifying this information would have been the LAL
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while x < 100 do

while a[x] 6= 1 do

x := x + 1

endwhile

y := x ∗ x /* output the value of x here */

while y ≤ 100 do

a := a[y 7→ 0]

y := y + x

endwhile

x := x + 1

endwhile

Figure 13.5: Primes Program

formula λ〈〉 . x > 0. However, using this precondition, we wouldn’t have achieved a

termination proof.

13.5 A Prime Number Program Example

In this section we present a more elaborate example which builds a progressive Hoare

proof for a program computing all the primes between 2 and 100. We shall show,

in the same proof, that the program computes all the primes in increasing order,

and that it terminates. This will show that the LAL language can be used not only

for proving liveness or termination, but also safety and sequence-based properties.

The program is presented in Figure 13.5, and it uses a version of Eratosthenes’ sieve

algorithm.

The program starts with variable x initialized to 2, and all the elements of the

array a initialized to 1. This initializations are not shown in the program, but

will be reflected in the final Hoare triple that constitutes the proof of the entire
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program. The array a represents the sieve; all its elements of non-prime rank shall

be turned to 0. Between the two inner loops, variable x is regarded as the output

of the program, we will show that the sequence of values assigned to this variable

at either of the program points between the two inner loops is the sequence of all

prime numbers between 2 and 100. Intuitively, the program works in the following

way. At the beginning of the outer while loop, the least rank δ such that a[δ] = 1 is

a prime number. For this reason, the first inner while loop will search for the next

element equal to 1 in the array. Thus, upon exit from the inner while loop, the

value of x is the “next” prime number. The second while loop will strike out the

multiples of x (i.e. set a[δ] to 0, where δ sweeps over the multiples of x), starting

with x2. The process continues until x hits the first prime greater than 100. One

deviation from the classic sieve algorithm is that we start striking out the multiples

of x starting with x2. The reason for this is that all multiples of x smaller than x2

are also multiples of prime numbers smaller than the value of x, and have already

been stricken out in the previous iterations through the outer loop.

To make the progressive Hoare triple easier to understand, it is convenient to

define the following notations.

prime(δ) ≡ ∀δ′ . 2 ≤ δ′ < δ → δ % δ′ 6= 0

prime rank(δ1, δ2) ≡ ∃η . (∀δ1 .∀δ2 . δ1 < δ2 → η(δ1) < η(δ2))

∧ (∀δ . prime(η(δ))

∧ (∀δ . prime(δ) → ∃δ′ . η(δ′) = δ)

∧ δ2 = η(δ1)

The LAL language does not allow for predicate definitions. For this reason, we shall

regard the two notations above as meta-predicates: whenever they are used in a

formula, we shall assume that the predicate definition is “in-lined” as a replacement

for the predicate expression, after the appropriate substitution has been applied.
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The predicate prime(δ) is true whenever its parameter is a prime number. Its

definition is very straightforward: δ is not a multiple of any number between 2 and

δ − 1. Another convenient notation is the prime rank (δ1, δ2) predicate, which is

true if δ2 is the prime number having rank δ1 in the increasing sequence of prime

numbers. To define this predicate, we need an extension to the LAL language, that

allows quantifiable functional variables. In the definition of prime rank, the symbol

η is such a functional variable. The definition of prime rank states that there exists

a function η that is strictly increasing (first line), and whose numbers are primes

(second line), and moreover, all primes are in the range of η (third line), and finally,

that δ2 is η(δ1) (fourth line).

We shall start our proof by putting a progressive Hoare triple around the first

x := x + 1 statement. Since this statement is nested inside two while loops, we

shall use formulas with two parameters, ν1 and ν2, one for each level of nesting. In

order to build these formulas, let us understand the configuration of the program

just before the statement is executed. At that point, the value of x is somewhere

between two primes. All the elements of array a and whose rank is smaller than x

and whose value is 1 are primes. Moreover, all the elements in the array whose rank

is a multiple of a prime smaller than x have the value 0. The smallest element of a

whose value is 1 and whose rank is greater than x is also a prime, and is in fact the

next prime that will be output. Since the outer loop outputs one prime number per

iteration, the rank of the next prime is ν1. Also, since the value of x at the bottom

of the outer while loop, in the previous iteration, was one greater than the prime

of rank ν1 − 1, the current value of x must be the prime of rank ν1 − 1 plus ν2 + 1.

All this information is encoded in the following progressive Hoare triple, which is

an instance of the (assig) rule.
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{λ〈ν1ν2〉 . ( a[x] 6= 1 ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ x = δ0 + ν2 + 1 ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0) ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0))∗}

x := x + 1

{λ〈ν1ν2〉 . ( a[x − 1] 6= 1 ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ x = δ0 + ν2 + 2 ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ ∃δ0.(prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0))∗}

PRIME-1

We now note that the following formula is a theorem in Higher Order Logic.

∀ν1 . (a[x] = 1 ∧ (∃ν2 . (∃δ0.prime rank(ν1 − 1, δ0) ∧ x = δ0 + ν2 + 2 ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ ∃δ0.(prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 .∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0)) ↔

(prime rank (ν1, x) ∧ (∃δ0.prime rank (ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 .∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0))

Using the triple PRIME-1 as a premise, we can apply the (while) rule, to obtain

the following triple.
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{λ〈ν1〉 . ( prime rank(ν1 − 1, x − 1) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0))∗}

while a[x] 6= 1 do

x := x + 1

endwhile

{λ〈ν1〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0))∗}

PRIME-2

The PRIME-2 triple has the following meaning. Whenever the beginning of the

program fragment is reached, the value of x is one greater than the last prime that

was computed, which is the prime of rank ν1−1. All the array elements whose ranks

are non-primes smaller than x are set to 0. Also, all the array elements whose ranks

are multiples of prime numbers smaller than x are set to 0. And obviously, since this

is the first program point inside the outer while loop, we must also have x < 100.

The formula at the end of the program fragment at hand states that the value of

x is the prime of rank ν1. All the other properties regarding array a still hold. We

now move on to the statement y := x ∗ x. The precondition of this statement is the

postcondition of the triple PRIME-2. Simply propagating the formula using the

(assign) rule, we get the triple PRIME-3.
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{λ〈ν1〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0))∗}

y := x ∗ x

{λ〈ν1〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ (∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0) ∧ y = δ2
0))∗}

PRIME-3

The PRIME-2 and PRIME-3 triples can now be combined with the (seq) rule, to

produce the triple PRIME-4.
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{λ〈ν1〉 . ( prime rank(ν1 − 1, x − 1) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0))∗}

while a[x] 6= 1 do

x := x + 1

endwhile

y := x ∗ x

{λ〈ν1〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ (∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0) ∧ y = δ2
0))∗}

PRIME-4

We now turn our attention to the second inner while loop. The first program point

inside the inner while loop has the following properties: the value of x is the prime

of rank ν1, all the elements of the array whose ranks are non-primes are set to 0,

all the elements of the array whose ranks are multiple of primes smaller than the

value of x have also been set to zero, and ν2 of the array elements whose ranks are

multiples of x greater than x2 have been set to 0 as well. The first statement in the

inner while loop is a := a[y 7→ 0]. We can now write the triple PRIME-5.
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{λ〈ν1ν2〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)∧

(∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ (∀δ1 . ∀δ2 . 2 ≤ δ1 < δ0 ∗ (δ0 + ν2)

∧ δ1δ2 ≥ δ0 ∗ δ0 + ν2)

→ a[δ1δ2] = 0) ∧ y = δ0 ∗ (δ0 + ν2))∗}

a := a[y 7→ 0]

{λ〈ν1ν2〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ (∀δ1 . ∀δ2 . 2 ≤ δ1 ≤ δ0 ∗ (δ0 + ν2)

∧ δ1δ2 ≥ δ0 ∗ (δ0 + ν2)

→ a[δ1δ2] = 0) ∧ y = (δ0) ∗ (δ0 + ν2)))∗}

PRIME-5

The postcondition of the triple PRIME-5 can be propagated through the next state-

ment. This results in the triple PRIME-6.
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{λ〈ν1ν2〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ (∀δ1 . ∀δ2 . 2 ≤ δ1 ≤ δ0 ∗ (δ0 + ν2)

∧ δ1δ2 ≥ δ0 ∗ (δ0 + ν2)

→ a[δ1δ2] = 0) ∧ y = (δ0) ∗ (δ0 + ν2)))∗}

y := y + x

{λ〈ν1ν2〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧(∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ (∀δ1 . ∀δ2 . 2 ≤ δ1 ≤ δ0 ∗ (δ0 + ν2)

∧ δ1δ2 ≥ δ0 ∗ (δ0 + ν2)

→ a[δ1δ2] = 0) ∧ y = δ0 ∗ (δ+ν2 + 1)))∗}

PRIME-6

Triples PRIME-5 and PRIME-6 can now be combined using the (seq) rule, resulting

in the triple PRIME-7.
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{λ〈ν1ν2〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)∧

(∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ (∀δ1 . ∀δ2 . 2 ≤ δ1 < δ0 ∗ (δ0 + ν2)

∧ δ1δ2 ≥ δ0 ∗ δ0 + ν2)

→ a[δ1δ2] = 0) ∧ y = δ0 ∗ (δ0 + ν2))∗}

a := a[y 7→ 0]

y := y + x

{λ〈ν1ν2〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧(∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ (∀δ1 . ∀δ2 . 2 ≤ δ1 ≤ δ0 ∗ (δ0 + ν2)

∧ δ1δ2 ≥ δ0 ∗ (δ0 + ν2)

→ a[δ1δ2] = 0) ∧ y = δ0 ∗ (δ+ν2 + 1)))∗}

PRIME-7

Let us look more closely at the postcondition of the PRIME-7 triple. The value

of x is still the prime of rank ν1. Since the second inner loop has been executed a

number of times equal to ν2, ν2+1 elements of the array a whose ranks are multiples

of x larger than or equal to x2 have been set to 0. The elements of non-prime ranks

smaller than x and the elements whose ranks are multiples of primes smaller than

x are still set to 0. We can now use the (while) rule to produce a triple for the

second while loop.
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{λ〈ν1〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ (∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0) ∧ y = δ2
0))∗}

while y ≤ 100 do

a := a[y 7→ 0]

y := y + x

endwhile

{λ〈ν1〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1 + 1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0)∗}

PRIME-8

First, we notice that the program outputs the value of x right after it exits the

first inner while loop. From the postcondition of triple PRIME-8 we infer that the

program will output all the primes, in increasing order. We also notice the fact that

the star annotation is retained in the postcondition of this triple. This means that

we know exactly whether the loop terminates or not. To uncover this information,

we look at the family of higher order logic formulas

prime rank (µ1, x) ∧ (∃δ0.prime rank (µ1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank (µ1 + 1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 .∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0 → a[δ1δ2] = 0)

where µ1 = 0, 1, 2, . . .. Since each of the formulas in the family are satisfiable for

some values of x and a, if follows that the loop terminates for each environment
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that satisfies the precondition. Next, we can combine the triples PRIME-4 and

PRIME-8 using the (seq) rule, resulting in the triple PRIME-9.

{λ〈ν1〉 . ( prime rank(ν1 − 1, x − 1) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0))∗}

while a[x] 6= 1 do

x := x + 1

endwhile

y := x ∗ x

while y ≤ 100 do

a := a[y 7→ 0]

y := y + x

endwhile

{λ〈ν1〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1 + 1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0)∗}

PRIME-9

We can propagate the postcondition of the triple PRIME-9 through the statement

x := x + 1, resulting in the triple PRIME-10.
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{λ〈ν1〉 . ( prime rank(ν1, x) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1 + 1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0)∗}

x := x + 1

{λ〈ν1〉 . ( prime rank(ν1, x − 1) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1 + 1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0)∗}

PRIME-10

Next, we combine the triples PRIME-9 and PRIME-10 using the (seq) rule. We

obtain the triple PRIME-11.
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{λ〈ν1〉 . ( prime rank(ν1 − 1, x − 1) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0))∗}

while a[x] 6= 1 do

x := x + 1

endwhile

y := x ∗ x

while y ≤ 100 do

a := a[y 7→ 0]

y := y + x

endwhile

x := x + 1

{λ〈ν1〉 . ( prime rank(ν1, x − 1) ∧ (∃δ0.prime rank(ν1 − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ . 2 ≤ δ ≤ 100 ∧ prime(δ) → a[δ] = 1)

∧ (∃δ0.prime rank(ν1 + 1, δ0) ∧ (∀δ . 2 ≤ δ < δ2
0 ∧ ¬prime(δ) → a[δ] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0)∗}

PRIME-11

The triple PRIME-11 describes every run through the body of the outer while loop.

We can now get a grasp of the effect of this body on the variables x and a. At the

beginning of this program fragment, x is one more than the prime of rank ν1 − 1,

and we also have that all array elements whose indices are either non-primes and are

smaller than x, or are multiples of primes smaller than x are set to 0. All the other

array elements are set to 1. At the end of the the program fragment, x is one more
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than the prime of rank ν1, and we also have that all array elements whose indices

are either non-primes and are smaller than x, or are multiples of primes smaller

than x are set to 0. We notice that what holds in terms of nu1 at the beginning of

the program fragment, holds in terms of ν1 + 1 at the end of the program fragment.

This provides an intuition of why the (while) loop can be applied next, to produce

the PRIME-12 triple.

{λ〈〉 . (∀δ . a[δ] = 1 ∧ x = 2)∗}

while x < 100 do

while a[x] 6= 1 do

x := x + 1

endwhile

y := x ∗ x

while y ≤ 100 do

a := a[y 7→ 0]

y := y + x

endwhile

x := x + 1

endwhile

{λ〈〉 . (∃δ . x ≥ 100 ∧ prime rank(δ, x − 1) ∧ (∃δ0.prime rank(δ − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ′ . 2 ≤ δ′ ≤ 100 ∧ prime(δ′) → a[δ′] = 1)

∧ (∃δ0.prime rank(δ + 1, δ0) ∧ (∀δ′ . 2 ≤ δ′ < δ2
0 ∧ ¬prime(δ′) → a[δ′] = 0)

∧ ∀δ1 . ∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0

→ a[δ1δ2] = 0)∗}

PRIME-12

We now have a proof for the entire program given in Figure 13.5. We notice, yet

again, that the postcondition of triple PRIME-12 has a star annotation. Since the
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higher order formula

∃δ .x ≥ 100 ∧ prime rank (δ, x − 1) ∧ (∃δ0.prime rank (δ − 1, δ0) ∧ δ0 + 1 < 100)

∧ (∀δ′ . 2 ≤ δ′ ≤ 100 ∧ prime(δ′) → a[δ′] = 1)

∧ (∃δ0.prime rank (δ + 1, δ0) ∧ (∀δ′ . 2 ≤ δ′ < δ2
0 ∧ ¬prime(δ′) → a[δ′] = 0)

∧ ∀δ1 .∀δ2 . 2 ≤ δ1 < δ2
0 ∧ δ1δ2 ≥ δ2

0 → a[δ1δ2] = 0)

is satisfiable for some environment assigning values to x and a, it follows that the

program terminates.



Chapter 14

Symbolic Configurations

In this chapter we continue the development of our framework by introducing a

generic algorithm for propagating family description formulas attached to program

points. The algorithm consists of a sequence of applications of a transform that

computes for each formula attached to a program point its “effect” at the adjoining

program points. The “effect” of a formula is defined in a manner similar to the

strongest postcondition propagation operator used in classic program verification.

Following the presentation style we used so far in the thesis, we introduce sym-

bolic configurations as means of attaching family description formulas to program

point, and then we define our transform in a syntax based manner, as an operator

T mapping from symbolic configurations to symbolic configurations.

The intended use of a symbolic configuration is to allow the inference of pro-

gram properties; in this respect we need to define an approximation relationship

between the symbolic configuration at hand, and a (set of) progressions of interest.

Given a symbolic configuration K, such an approximation can be readily defined

as JKK, which is the family configuration whose annotations are the interpretations

of the corresponding formulas appearing in K. In this context, it would be useful

211
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if the symbolic transform could play a role for symbolic configurations similar to

the role played by the T̂ operator for family configurations. We will show that this

relationship exists if the family description language is well-defined. Then, the use

of the symbolic transform T is twofold: it can be used, on one hand, for checking

the correctness of a symbolic configuration, and on the other hand, for refining a

given correct configuration, by applying a sequence of propagation steps to it. The

refinement process opens the door to automating program reasoning. Indeed, for

every program, there exists a default correct symbolic configuration, which has the

formula λ〈ν1 · · · νk〉 . true attached to every program point. Applying a sequence

of propagation steps to the default correct symbolic configuration would produce

correct information about the program without any user input, in a manner similar

to program analysis. However, unlike program analysis, this process is incremen-

tal, since each step produces correct, usable information, and we do not need to

wait until the completion of the algorithm before using its output. On the other

hand, a completely automated process is not guaranteed to produce “interesting”

information.

Therefore, the reasoning process realized by the algorithm described above could

benefit greatly if it could be combined with alternative means of reasoning, like

user-specified assertions, and program analysis algorithms. Using assertions in a

propagation-based reasoning framework is the object of the next chapter.

14.1 A Strongest Postcondition Operator

We proceed now with the formalization. A configuration whose annotations are

formulas is called a symbolic configuration. Symbolic configurations are denoted by

the symbol K, possibly subscripted. The interpretation of a symbolic configuration
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T




〈ls,Fs〉
skip

〈lf ,Ff 〉


 =

〈ls,Fs〉
skip

〈lf ,Fs〉

(propag-skip)

T




〈ls,Fs〉
x := E

〈lf ,Ff 〉


 =

〈ls,Fs〉
x := E

〈lf ,Assign(x, e,Fs)〉

(propag-assign)

T (K1 # K2) = T (K1) # T (K2) (propag-seq)

T




〈ls,Fs〉
if C
then

K1

else

K2

endif

〈lf ,Ff 〉




=

〈ls,Fs〉
if C
then

〈l1s,Filter(C,K1|l1s
)〉 # T (K1)

else

〈l2s,Filter(¬C,K2|l2s
)〉 # T (K2)

endif

〈lf ,K1|l1f
t K2|l2f

〉

(propag-if)

where lis = first(Ki), lif = last(Ki), i ∈ {1, 2}

T




〈ls,Fs〉
while C do

K
endwhile

〈lf ,Ff 〉




=

〈ls,Fs〉
while C do

〈l′s,Filter(C,Before(Fs,K|l′
f
))〉 # T̂ (K)

endwhile

〈lf ,Filter(¬C,Fs t Collect(K|l′
f
))〉

(propag-while)

where ls = first(K), lf = last(K)

Figure 14.1: Symbolic Propagation Operator
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〈1, λ〈ν0〉 . (B(ν0, x))∗〉

while x > 1 do

〈2, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1)∗〉

if x % 2 = 0 then

〈3, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1 ∧ x % 2 = 0)∗〉

x := x/2

〈4, λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x) ∧ x > 0)∗〉

else

〈5, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1 ∧ a % 2 6= 0)∗〉

x := x + 1

〈6, λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x) ∧ x > 2 ∧ x % 2 = 0)∗〉

endif

〈7, λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗〉

endwhile

〈8, λ〈ν0〉 . (x = 1)∗〉

Figure 14.2: Example of Symbolic Configuration

K is denoted JKK. That is, JKK is a family configuration K̂ such that K̂|l = JK|lK,

for all labels l ∈ labels(K). The strongest postcondition operator is defined in Fig-

ure 14.1. The definition relies on a well-defined family description language, as

defined in Definition 12.1. The next proposition shows that the definition of T is

sound, in the sense that T plays the same role for symbolic configurations as T̂ does

for family configurations.

14.1 Proposition Let K be a symbolic configuration over a well-defined language

L. Then T̂ (JKK) ⊆ JT (K)K.

Proof: Relegated to Appendix A, on page 329.



CHAPTER 14. SYMBOLIC CONFIGURATIONS 215

〈1, λ〈ν0〉 . (B(ν0, x))∗〉

while x > 1 do

〈2,Filter(x > 1,Before(λ〈ν0〉 . (B(ν0, x))∗, λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗))〉

if x % 2 = 0 then

〈3,Filter(x % 2 = 0, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1)∗)〉

x := x/2

〈4,Assign(x, x/2, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1 ∧ x % 2 = 0)∗)〉

else

〈5,Filter(x % 2 6= 0, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1)∗)〉

x := x + 1

〈6,Assign(x, x + 1, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1 ∧ x % 2 6= 0)∗)〉

endif

〈7, λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗ t λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗〉

endwhile

〈8,Filter(x ≤ 1, λ〈ν0〉 . (B(ν0, x))∗ t Collect(λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗)〉

Figure 14.3: Application of Stronger Postcondition Operator

14.2 Correctness

We extend the ` symbol to symbolic configurations. Given two configurations K1

and K2, such that |K1| = |K2|, we write K1 ` K2 if K1|l ` K2|l, for all labels

l ∈ labels(K1). Given a program P , and a symbolic configuration K such that

|K| = P , we say that a symbolic configuration is correct if JKK approximates all

progressions K such that K|first(P ) ∈ JKK|first(P ). The next lemma gives a sufficient

condition for correctness.

14.2 Lemma Let P be a labeled program, and K a symbolic configuration such

that |K| = P and T (K) ` K. Then, K is correct.

Proof: The condition T (K) ` K entails that JT (K)K 4 JKK. From Proposition 14.1
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(1) λ〈ν1 · · · νk〉 . ϕ∗
1 u λ〈ν1 · · · νk〉 . ϕ∗

2 = λ〈ν1 · · · νk〉 . (ϕ1 ∧ ϕ2)∗,

if |= ∀((ϕ1 → ϕ2) ∨ (ϕ2 → ϕ1))

(2) λ〈ν1 · · · νk〉 . ϕ∗
1 u λ〈ν1 · · · νk〉 . ϕ∗

2 = λ〈ν1 · · · νk〉 . ϕ1 ∧ ϕ2,

if |= ¬∀((ϕ1 → ϕ2) ∨ (ϕ2 → ϕ1))

(3) λ〈ν1 · · · νk〉 . ϕ1 u λ〈ν1 · · · νk〉 . ϕ2 = λ〈ν1 · · · νk〉 . ϕ1 ∧ ϕ2

(4) λ〈ν1 · · · νk〉 . ϕ∗
1 u λ〈ν1 · · · νk〉 . ϕ2 = λ〈ν1 · · · νk〉 . ϕ∗

1,

if |= ∀(ϕ1 → ϕ2)

(5) λ〈ν1 · · · νk〉 . ϕ1 u λ〈ν1 · · · νk〉 . ϕ∗
2 = λ〈ν1 · · · νk〉 . ϕ∗

2,

if |= ∀(ϕ2 → ϕ1)

(6) λ〈ν1 · · · νk〉 . ϕ∗
1 u λ〈ν1 · · · νk〉 . ϕ2 = λ〈ν1 · · · νk〉 . ϕ1 ∧ ϕ2,

if |= ¬∀(ϕ1 → ϕ2)

(7) λ〈ν1 · · · νk〉 . ϕ1 u λ〈ν1 · · · νk〉 . ϕ∗
2 = λ〈ν1 · · · νk〉 . ϕ ∧ ϕ2

if |= ¬∀(ϕ2 → ϕ1)

Figure 14.4: Definition of the u operator for LAL∗ Formulas

it follows that T̂ (JKK) 4 JKK. According to Theorem 11.13, JKK is an approximation

of some progression K, such that K|l ∈ JKK|l. �

Lemma 14.2 provides a way of checking whether a symbolic configuration is correct.

The typical way of doing that is to feed a relevant set of formulas of the form

T (K)|l ` K|l, where l ∈ labels(K) into a theorem prover like HOL or PVS [Age92,

OSR95]. This process will be described in more detail in the next chapter, where

we also consider the use of assertions.

14.3 Remark Let K be a correct symbolic configuration. Then, JKK must be a

superset of a fixpoint of T̂ . It follows that T̂ (JKK) is a superset of a fixpoint of T̂ .

According to Proposition 14.1, T̂ (JKK)4̂JT (K)K, which entails that T (K) is correct.

Reasoning inductively, it follows that T k(K) is correct, for all k ≥ 0. �
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〈1, λ〈〉 . x % 2 = 0 ∧ y % 2 = 0〉

while x < n do

〈2, λ〈ν〉 . true〉

if x % 2 = 0 then

〈3, λ〈ν〉 . true〉

y := y + 1

〈4, λ〈ν〉 . true〉

else

〈5, λ〈ν〉 . true〉

y := y − 1

〈6, λ〈ν〉 . true〉

endif

〈7, λ〈ν〉 . x % 2 = 0 → y % 2 = 1〉

x := x + 1

〈8, λ〈ν〉 . true〉

endwhile

〈9, λ〈〉 . true〉

Figure 14.5: Configuration Before Being Subjected to Propagation

The rest of this section is devoted to an example of applying the strongest

postcondition operator to a symbolic configuration and proving it correct. In this

example we shall use the program given in Figure 13.3, for which we have given

a progressive Hoare proof that showed termination in Section 13.4. Figure 14.2

shows a correct symbolic configuration for this program, and Figure 14.3 shows the

result of applying the strongest postcondition operator to this configuration. Let

us denote by K the configuration in Figure 14.2. Then, the configuration given in

Figure 14.3 is T (K). We shall prove the correctness of K by showing that T (K) ` K,

which in fact means that T (K)|l ` K|l, for all l ∈ labels(K). This translates into

proving that the following formulas are theorems of LAL∗.
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1. λ〈ν0〉 . (B(ν0, x))∗ ` λ〈ν0〉 . (B(ν0, x))∗

2. λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1)∗ `

Filter(x > 1,Before(λ〈ν0〉 . (B(ν0, x))∗, λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗))

3. λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1 ∧ x % 2 = 0)∗ `

Filter(x % 2 = 0, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 0)∗)

4. λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x) ∧ x > 1)∗ `

Assign(x, x/2, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1 ∧ x % 2 = 0)∗)

5. λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1 ∧ x % 2 6= 0)∗ `

Filter(x % 2 6= 0, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1)∗)

6. λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗ `

Assign(x, x + 1, λ〈ν0ν1〉 . (B(ν0 − ν1, x) ∧ x > 1 ∧ x % 2 6= 0)∗)

7. λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗ `

λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗ t λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗

8. λ〈ν0〉 . (x = 1)∗ `

Filter(x ≤ 1, λ〈ν0〉 . (B(ν0, x))∗ t Collect(λ〈ν0ν1〉 . (B(ν0 − ν1 − 1, x))∗)

The formulas are numbered by their labels in the program. Applying the definitions

of the Assign, Filter, Before, Collect and t given in Section 13.1, and the LAL∗

axioms given in Figure 13.2, we get the following first order proof obligations.

1. B(ν0, x) → B(ν0, x)

2. B(ν0 − ν1, x) ∧ x > 1 → x > 1 ∧ (ν1 = 0 → B(ν0, x)) ∧ (ν1 > 0 → B(ν0 − ν1, x))

3. B(ν0 − ν1, x) ∧ x > 1 ∧ x % 2 = 0 → x % 2 = 0 ∧ B(ν0 − ν1, x) ∧ x > 1
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4. B(ν0 − ν1 − 1, x) ∧ x > 0 → B(ν0 − ν1, 2 ∗ x) ∧ 2 ∗ x > 1 ∧ 2 ∗ x % 2 = 0

5. B(ν0 − ν1, x) ∧ x > 1 ∧ x % 2 6= 0 → x % 2 6= 0 ∧ B(ν0 − ν1, x) ∧ x > 1

6. B(ν0 − ν1 − 1, x) ∧ x > 2 ∧ x % 2 = 0 →

B(ν0 − ν1, x − 1) ∧ x − 1 > 1 ∧ x − 1 % 2 6= 0

7. B(ν0 − ν1 − 1, x) → B(ν0 − ν1 − 1, x) ∨ B(ν0 − ν1 − 1, x)

8. x = 1 → x ≤ 1 ∧ B(ν0, x) ∨ ∃δ .B(ν0 − δ − 1, x)

The proofs of theorems 1,2,3,5,7, and 8 are immediate. In order to prove theo-

rems 4 and 6, we note that ∀x δ .B(δ − 1, x) → B(δ, 2 ∗ x) and ∀x δ . x % 2 = 0 →

B(δ − 1, x) → B(δ, x − 1) are first-order theorems.

14.3 Propagation

When reasoning about programs, it is often useful to compute the effect of a for-

mula annotation being correct, while it may not yet be known whether the formula

is indeed correct. The concept behind such computation is called propagation, and

in our setting, when applied to a symbolic configuration K, it produces a symbolic

configuration K′ with the property that if K′ is correct, then so is K. In our frame-

work, propagation is based on a propagation operator, which works according to

the principle given in Remark 2.7. In other words, given a monotone operator T ,

we have a monotone and decreasing operator in T u I. Thus, on a lattice (L,⊆),

where ⊆ denotes an approximation relation, if we have a set X and we would like to

show that X approximates the least fixpoint of an operator T , then we can proceed

in the following way. First we check if T (X) ⊆ X. If that is true, then X is indeed

an approximation of lfp(T ). However, if T (X) 6⊆ X, then we compute an element
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〈1, λ〈〉 . x % 2 = 0 ∧ y % 2 = 0〉

while x < n do

〈2, λ〈ν〉 . true〉

if x % 2 = 0 then

〈3, λ〈ν〉 . x % 2 = 0〉

y := y + 1

〈4, λ〈ν〉 . true〉

else

〈5, λ〈ν〉 . x % 2 6= 0〉

y := y − 1

〈6, λ〈ν〉 . true〉

endif

〈7, λ〈ν〉 . true〉

x := x + 1

〈8, λ〈ν〉 . x % 2 = 1 → y % 2 = 1〉

endwhile

〈9, λ〈〉 . true〉

Figure 14.6: Application of Strongest Postcondition Operator

Y = (T ∩ I)k(X) for some k > 0, and then check whether T (Y ) ⊆ Y . If that hap-

pens, then Y is an approximation of lfp(T ), and so is X. In our case, the role of the

T operator is played by the strongest postcondition operator T . What is missing

from the picture is the meet operator. In this section we show how a meet operator

can be defined, and we define such an operator for the LAL∗ formal system. Then,

we present an example where we compute a provably correct symbolic configuration

using propagation.

The meet operator for formulas is denoted by u and must be defined as an

operator that computes the greatest lower bound of two formulas F1 and F2, with

the same arity. More specifically, for all formulas F1 and F2 of a language L,
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F1 ` F1 u F2 and F2 ` F1 u F2 are theorems in the corresponding formal system

L∗. Moreover, for all formulas F such that F ` F1 and F ` F2 are theorems of L∗,

we have that F ` F1 u F2 is also a theorem.

Figure 14.4 shows the definition of the u meta-operator for the LAL∗ formal

system. In this definition, ϕ1 and ϕ2 are simple formulas, k ≥ 0 is a natural

number, and ν1, . . . , νk are index variables that appear free in ϕ1 and ϕ2. The

definition is made up of seven cases. The first case sets the rule to be used with

starred formulas. In this case, the star annotation can be retained only if ϕ1 → ϕ2

or ϕ2 → ϕ1 are first-order theorems. If this is not the case, then the interpretation

of the intersection may contain the empty set, in which case, the star annotation

cannot be retained. This is expressed in the second case of the definition. Case

(3) sets the rule for non-starred formulas. Cases (4), (5), (6) and (7) define the u

operator for mixed operands. It is interesting to note that whenever the starred

formula implies the non-starred formula, the star annotation can be retained.

14.4 Remark Following Remark 14.3, given a correct symbolic configuration K,

since T (K) is correct, it follows that K u T (K) is correct, that is, (T u I)(K) is

correct. Reasoning inductively, it follows that (T u I)k(K) is correct for all k ≥ 0.

�

Figures 14.5, 14.6, and 14.7 present an example of propagation. In Figure 14.5

we present a configuration for a program which has a while loop that increments

a counter x, and operates on the variable y in such a way that the parities of x

and y are synchronized. Except for program point 7, the annotations attached

to all program points are λ〈ν〉 . true . Since λ〈ν〉 . ϕ ` λ〈ν〉 . true is a theorem

of LAL∗ for all simple formulas ϕ, the annotations are surely correct. For pro-

gram point 7, we have the annotation λ〈ν〉 . x % 2 = 0 → y % 2 = 1 ∧ x < n, which
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〈1, λ〈〉 . x % 2 = 0 ∧ y % 2 = 0〉

while x < n do

〈2, λ〈ν〉 . x % 2 = 1 ↔ y % 2 = 1 ∧ x < n〉

if x % 2 = 0 then

〈3, λ〈ν〉 . x % 2 = 0 ∧ y % 2 = 0 ∧ x < n〉

y := y + 1

〈4, λ〈ν〉 . x % 2 = 0 ∧ y % 2 = 1 ∧ x < n〉

else

〈5, λ〈ν〉 . x % 2 6= 0 ∧ y % 2 = 1 ∧ x < n〉

y := y − 1

〈6, λ〈ν〉 . x % 2 = 1 ∧ y % 2 = 0 ∧ x < n〉

endif

〈7, λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 1 ∧ x < n〉

x := x + 1

〈8, λ〈ν〉 . x % 2 = 1 ↔ y % 2 = 1 ∧ x < n + 1〉

endwhile

〈9, λ〈〉 . x % 2 = 1 ↔ y % 2 = 1 ∧ x = n〉

Figure 14.7: Example of Propagation

expresses only half of the synchrony between the two variables (by replacing the

implication with an equivalence, we would get both halves). Let us denote by K

the configuration in Figure 14.5. While being correct, K cannot be proved to be

correct. Figure 14.6 illustrates this fact by showing the configuration T (K). To

see that T (K) 6` K, we can look at program point (7) in the two figures: clearly

λ〈ν〉 . true 6` λ〈ν〉 . x % 2 = 0 → y % 2 = 1 ∧ x < n. Let us denote by I the iden-

tity operator for symbolic families. Figure 14.7 shows the symbolic configuration

K′ = (T uI)12(K). It can be easily verified that K′ is a fixpoint of T , and therefore

provably correct. Since K′ ` K, if follows that K is correct as well.



Chapter 15

Conditional Reasoning

As argued in the introduction, the desirable features of a program reasoning frame-

work are the ability to express a wide range of program properties, compositional-

ity, as well as the ability to use assertions, and incrementality. By introducing the

progressive semantics and defining a Hoare-like progressive calculus, we have cre-

ated the grounds for a compositional program reasoning framework. Moreover, the

liveness-aware language introduced in Chapter 13 allows for expressing safety, live-

ness and sequence-based properties in a unified manner. It is now time to complete

the picture by introducing an incremental program reasoning methodology that uses

propagation and user-provided assertions to verify program properties. Assertions

are simply formulas attached to program points whose role is twofold: on one hand,

we can see the effect of an assertion being correct propagated throughout the entire

program; on the other hand, using the result given in Proposition 14.2, we may be

able to show that assertions are correct, and thus be able to guarantee that certain

properties of interest hold. In order to ensure incrementality, instead of proving

assertions, we prove conditional relationships between assertions, with the meaning

that the correctness of an assertion depends on the correctness of a set of some

223
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other assertions whose proof may be attempted later. The concept behind building

conditional relationships is called conditional correctness, and is the topic discussed

in this chapter.

15.1 Assertions

In this section we introduce assertions, which are formula of the form assert {l}(F),

where l is a label, and F is a family description language formula. Intuitively, an

assertion states that the formula F is correct at program point with label l. Using

the propagation operator, we may compute the effect of the assertion being true.

As a result of propagation formulas of the form assert {l}(F ′) may appear at other

program point, say with label l′. Then F ′ can be interpreted as a property that

is correct at program point l′ if F is correct at l. Moreover, in the process of

reasoning, we may be able to prove that F is conditionally correct on the assertions

at program points l1, . . . , lk. In this case, we can replace the assert {l}(· · ·) construct

by assert{l1,...,lk}(· · ·) throughout the entire program. The intended outcome of the

reasoning process is to turn the {l1, . . . , lk} sets of labels into the empty set, that is,

to prove all assertions unconditionally. However, useful information can be derived

before the completion of the reasoning process, in the form of conditionally correct

assertions. We now proceed with the formalization.

Given a family description language L and a program P , the assertion language

LP based on L for P is defined as follows. If F is a formula in L, then assert Λ(F)

is a formula in LP , where Λ ⊆ labels(P ). If F and F ′ are formulas in LP , and x

is a program variable, E is a program expression, and C is a program constraint,

then F u F ′, Assign(x,E,F), Filter(C,F), Before(F ,F ′), Collect(F) and F t F ′

are formulas in LP . We call formulas in LP assertions. In order to manipulate
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assertions, we need to be able to turn them “on” and “off” selectively. This can be

achieved with the help of the assume operator. Given a program P , and a family

description language L, the assume operator is defined recursively as follows.

a) assumeΛ(F) = F where F ∈ L, and Λ ⊆ labels(P ).

b) assumeΛ1
(assertΛ2

(F)) = assumeΛ1
(F), if Λ2 ⊆ Λ1, where Λ1 ⊆ labels(P ),

and F ∈ L.

c) assumeΛ1
(assertΛ2

(F)) = λ〈ν1 · · · νk〉 . true, if Λ2\Λ1 6= ∅, where Λ1 ⊆

labels(P ), Λ2 ⊆ labels(P ) and F ∈ L such that arity(F) = k.

d) assumeΛ(F u F ′) = assumeΛ(F) u assumeΛ(F ′), where F ,F ′ ∈ LP , and

Λ ⊆ labels(P ).

e) assumeΛ(Assign(x,E,F)) = Assign(x,E, assumeΛ(F)), where x is a program

variable, E is a program expression, F ∈ LP , and Λ ⊆ labels(P ).

f) assumeΛ(Filter(C,F)) = Filter(C, assumeΛ(F)), where C is a program con-

straint, F ∈ LP , and Λ ⊆ labels(P ).

g) assumeΛ(Before(F ,F ′)) = Before(assumeΛ(F), assumeΛ(F ′)), where

F ,F ′ ∈ LP , and Λ ⊆ labels(P ).

h) assumeΛ(Collect(F)) = Collect(assumeΛ(F)), F ∈ LP , and Λ ⊆ labels(P ).

i) assumeΛ(F t F ′) = assumeΛ(F) t assumeΛ(F ′), where F ,F ′ ∈ LP , and

Λ ⊆ labels(P ).

15.1 Remark For all symbolic configurations K and sets of labels Λ1 and Λ2,

such that Λ1 ⊆ labels(K) and Λ2 ⊆ labels(K), we have that assumeΛ1∪Λ2
(K) =

assumeΛ1
(K) u assumeΛ2

(K). �
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A verification problem is a symbolic configuration K such that K|l is either of

the form assert {l}(F), for some F ∈ L, or λ〈ν1 · · · νk〉 . true, where k is a suitably

chosen arity. We extend the assume notation to verification problems. Given a

verification problem K, and a set of labels Λ ⊆ labels(K), assumeΛ(K) is a symbolic

configuration K′ such that |K| = |K′|, and K′|l = assumeΛ(K|l).

15.2 Proposition Let K be a verification problem and Λ1, Λ2 two sets of labels

such that Λ1 ⊆ Λ2 ⊆ labels(K). Then, assumeΛ2
(K) ` assumeΛ1

(K).

Proof: For all labels l ∈ Λ1 ∪ (labels(K)\Λ2), we have that assumeΛ2
(K)|l =

assumeΛ1
(K)|l, so then assumeΛ2

(K)|l ` assumeΛ1
(K)|l holds in L∗. For l ∈

Λ2\Λ1, we have that assumeΛ1
(K)|l = λ〈ν1 · · · νk〉 . true, where k is the arity of

assumeΛ2
(K)|l. Since F ` λ〈ν1 · · · νk〉 . true holds in L∗ for all formulas F of ar-

ity k ≥ 0, it follows that assumeΛ2
(K)|l ` assumeΛ1

(K)|l holds. We just proved

that assumeΛ2
(K)|l ` assumeΛ1

(K)|l holds for all l ∈ labels(K), which entails that

assumeΛ2
(K) ` assumeΛ1

(K). �

Since the T propagation operator is defined in terms of the Assign, Filter, Before,

Collect and t operators, T can also be applied to verification problems. Next, we

define the label replacement operator for assertions. The expression replace(F , l, Λ)

denotes the assertion obtained from F by replacing the label l by the labels in the

set Λ. Given a program P and a family description language L, the operator replace

is defined recursively as follows.

a) replace(F , l, Λ) = F , where F ∈ L, l ∈ labels(P ), and Λ ⊆ labels(P ).

b) replace(assertΛ(F), l, Λ′) = assert (Λ∪Λ′)\{l}(F), if l ∈ Λ, where Λ ⊆ labels(P ),

Λ′ ⊆ labels(P ), and F ∈ L.
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c) replace(assert {l}(F), l, ∅) = F , where l ∈ labels(P ), and F ∈ L.

d) replace(assertΛ(F), l, Λ′) = assertΛ(F), if l 6∈ Λ, where Λ ⊆ labels(P ), Λ′ ⊆

labels(P ), and F ∈ L.

e) replace(F uF ′, l, Λ) = replace(F , l, Λ)ureplace(F ′, l, Λ), where Λ ⊆ labels(P ),

l ∈ labels(P ), and F ,F ′ ∈ LP .

f) replace(Filter(C,F), l, Λ) = Filter(C, replace(F , l, Λ)), where C is a program

constraint, l ∈ labels(P ), Λ ⊆ labels(P ), and F ∈ LP .

g) replace(Before(F ,F ′), l, Λ) = Before(replace(F , l, Λ), replace(F ′, l, Λ)), where

Λ ⊆ labels(P ), l ∈ labels(P ), and F ,F ′ ∈ LP .

h) replace(F tF ′, l, Λ) = replace(F , l, Λ)treplace(F ′, l, Λ), where Λ ⊆ labels(P ),

l ∈ labels(P ), and F ,F ′ ∈ LP .

i) replace(Collect(F), l, Λ) = Collect(replace(F , l, Λ)), where Λ ⊆ labels(P ), l ∈

labels(P ), and F ∈ LP .

We also extend the replace operator to symbolic configurations, in the obvious way,

that is, replace(K, l, Λ) is a symbolic configuration K′ such that |K′| = |K| and

K′|l = replace(K|l, l, Λ).

15.2 Conditional Correctness

In this section, we introduce the concept of conditional correctness and prove a cou-

ple of properties that shall contribute to the development of a program reasoning

methodology. Before discussing conditional correctness, let us define the (uncon-

ditional) correctness of an assertion. Given a verification problem K, we say that

assertion at label l ∈ labels(K) is (unconditionally) correct if T (assume {l}(K) `
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assume{l}(K). Conditional correctness of assertions is defined as a relationship be-

tween assertions in such a way that once the relationship is established, the correct-

ness of one assertion entails the correctness of other assertions that are conditionally

correct on the first assertion. To provide a better understanding of this concept,

let us take a closer look at the role of assertions in program reasoning. The use

of assertions has been introduced as a means for the programmer to specify condi-

tions (properties) of the program that are expected to be correct, to help along in

the debugging process. In a modular software development environment, program

fragments may be developed and tested separately. However, since these program

fragments are intended to become parts of the same system, each of the fragments

operates under certain preconditions, that should be reflected in the set of start

environments for the respective fragment. Therefore, the assertions specified in-

side the program fragment hold only if upon entry into that program fragment,

its precondition held. In other words, the assertion is correct on condition that

the precondition be correct. Our definition of conditional correctness implements

exactly this relationship.

15.3 Definition Let K be a verification problem, l ∈ labels(K) a label, and

Λ ⊆ labels(K) a set of labels such that l 6∈ Λ. We say that assertion at program

point l is conditionally correct on assertions at program points in Λ if assume {l}(K)

is correct whenever assumeΛ(K) is correct. �

In other words, once we have established the conditional correctness of the as-

sertion at program point l on the assertions at program points in a set of labels Λ,

only the assertions in Λ remain as proof obligation. Establishing the conditional

correctness of an assertion can be seen as an incremental step in the process of

proving all the assertions.
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〈1, assert {1}(λ〈〉 . x = 0 ∧ y = 0)〉

while x < n do

〈2, λ〈ν〉 . true〉

if x % 2 = 0 then

〈3, λ〈ν〉 . true〉

y := y + 1

〈4, λ〈ν〉 . true〉

else

〈5, λ〈ν〉 . true〉

y := y − 1

〈6, λ〈ν〉 . true〉

endif

〈7, λ〈ν〉 . true〉

x := x + 1

〈8, assert {8}(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0)〉

endwhile

〈9, λ〈〉 . true〉

Figure 15.1: A Verification Problem

We now prepare the ground for the main result of this chapter. The following

two propositions shall be useful in proving Theorem 15.6.

15.4 Proposition Let K0 be a verification problem, l ∈ labels(K0) a label, and

Λ ⊆ labels(K0) a set of labels such that l 6∈ Λ. Denote by K the configuration

(T u I)k(K0), for some k ≥ 0. If assumeΛ∪{l}(T (K)) ` assume{l}(K) holds, then

assertion at program point l in the original configuration K0 is conditionally correct

on assertions at program points in Λ.

Proof: According to Remark 15.1, we have assumeΛ∪{l}(T (K)) =

assumeΛ(T (K)) u assume{l}(T (K)). Then, using the hypothesis, we have
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that assumeΛ(T (K)) u assume{l}(T (K)) ` assume{l}(K). Assume now that

assumeΛ(T (K)) is correct. Using Lemma 14.2, it follows that assumeΛ(T (K)) `

assumeΛ(K). Combining the two relations, we get assumeΛ∪{l}(T (K)) `

assumeΛ∪{l}(K), which entails that assumeΛ∪{l}(K) is correct. �

15.5 Proposition Let K be a symbolic configuration whose annotations contain

assert constructs whose subscripts may be labels not necessarily in labels(K). Let l

and Λ be a label, and a set of labels, respectively, not necessarily from labels(K), with

l 6∈ Λ. If assumeΛ∪{l}(T (K)|l′) ` assume{l}(K|l′) holds for some label l′ ∈ labels(K),

then assumeΛ∪{l}(T ((T u I)(K))|l′) ` assume{l}((T u I)(K)|l′) holds.

Proof: Relegated to Appendix A, on page 331.

The central result of this chapter is captured in the next theorem, which states

a simple condition for proving the conditional correctness of an assertion. It turns

out that it is sufficient to inspect only the formula annotations attached to a single

program point in order to determine the conditional correctness of an assertion.

15.6 Theorem Let K0 be a verification problem, l ∈ labels(K0) a label, and

Λ ⊆ labels(K0) a set of labels such that l 6∈ Λ. Denote by K the configuration

(T u I)k(K0), for some k ≥ 0. If assumeΛ∪{l}(T (K))|l ` assume{l}(K)|l, then

assertion at program point l in the original configuration K0 is conditionally correct

on assertions at program points in Λ.

Proof: Clearly, assumeΛ∪{l}(T (K0))|l′ ` assume{l}(K0)|l′ , for all labels l′ ∈

labels(K)\{l}. According to Proposition 15.5, This property is preserved by the

application of propagation steps, that is, assumeΛ∪{l}(T (K))|l′ ` assume{l}(K)|l′ ,

for all labels l′ ∈ labels(K)\{l}. Using the hypothesis, K also has the property
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assumeΛ∪{l}(T (K))|l ` assume{l}(K)|l, and if follows that assumeΛ∪{l}(T (K))|l′ `

assume{l}(K)|l′ , for all labels l′ ∈ labels(K). We now use Proposition 15.4, to prove

the theorem. �

The next theorem shall be useful in establishing a program reasoning methodol-

ogy. Once the assertion at program point l has been proved conditionally correct on

assertions at program points in the set Λ, we can replace l by labels in Λ throughout

the entire symbolic configuration, without losing the chance of proving the correct-

ness of all assertions.

15.7 Theorem Let K0 be a verification problem, l ∈ labels(K0) a label, and

Λ ⊆ labels(K0) a set of labels such that l 6∈ Λ. Assume that assertion at pro-

gram point l is conditionally correct on assertions at program points in Λ. If

assumelabels(K)\{l}(replace(K, l, Λ)) is correct, then so is assume labels(K)\{l}(K).

Proof: The replacement operation performs simply a syntactic transformation. It

is clear that

assumelabels(K)\{l}(replace(K, l, Λ)) = assumelabels(K)(K) (∗)

Also, given two sets of labels Λ1 and Λ2 such that Λ1 ⊆ Λ2 ⊆ labels(K), we have

that if assertion at program point l is conditionally correct on assertions at program

points in Λ1, then assertion at program point l is also conditionally correct on

assertions at program points in Λ2. Using the hypothesis, assertion at program

point l is conditionally correct on assertions at program points in labels(K)\{l}.

This means that assumelabels(K) is correct if assumelabels(K)\{l}(K) is correct. Using

relation (∗), the proof follows. �
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〈1, assert {1}(λ〈〉 . x = 0 ∧ y = 0)〉

while x < n do

〈2,Filter(x < n,Before(assert {1}(λ〈〉 . x = 0 ∧ y = 0),

assert {8}(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0)))〉

if x % 2 = 0 then

〈3,Filter(x % 2 = 0 ∧ x < n,Before(assert {1}(λ〈〉 . x = 0 ∧ y = 0),

assert {8}(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0))〉

y := y + 1

〈4,Filter(x % 2 = 0 ∧ x < n,Before(assert {1}(λ〈〉 . x = 0 ∧ y = 1),

assert {8}(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 1))〉

else

〈5,Filter(x % 2 6= 0 ∧ x < n,Before(assert {1}(λ〈〉 . x = 0 ∧ y = 0),

assert {8}(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0))〉

y := y − 1

〈6,Filter(x % 2 6= 0 ∧ x < n,Before(assert {1}(λ〈〉 . x = 0 ∧ y = −1),

assert {8}(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 1))〉

endif

〈7,Filter(x % 2 = 0 ∧ x < n,Before(assert {1}(λ〈〉 . x = 0 ∧ y = 1),

assert {8}(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 1))

t

Filter(x % 2 6= 0 ∧ x < n,Before(assert {1}(λ〈〉 . x = 0 ∧ y = −1),

assert {8}(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 1))〉

x := x + 1

〈8, assert {8}(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0)〉

endwhile

〈9,Filter(x ≥ n, assert {1}(λ〈〉 . x = 0 ∧ y = 0)t

Collect(assert {8}(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0)))〉

Figure 15.2: Application of Propagation Steps to a Verification Problem
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〈1, λ〈〉 . x = 0 ∧ y = 0〉

while x < n do

〈2,Filter(x < n,Before(λ〈〉 . x = 0 ∧ y = 0,

λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0))〉

if x % 2 = 0 then

〈3,Filter(x % 2 = 0 ∧ x < n,Before(λ〈〉 . x = 0 ∧ y = 0),

λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0))〉

y := y + 1

〈4,Filter(x % 2 = 0 ∧ x < n,Before(λ〈〉 . x = 0 ∧ y = 1,

λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 1))〉

else

〈5,Filter(x % 2 6= 0 ∧ x < n,Before(λ〈〉 . x = 0 ∧ y = 0,

λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0))〉

y := y − 1

〈6,Filter(x % 2 6= 0 ∧ x < n,Before(λ〈〉 . x = 0 ∧ y = −1,

λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 1))〉

endif

〈7,Before(λ〈〉 . x = 0 ∧ y = 1, λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 1)〉

x := x + 1

〈8,Before(λ〈〉 . x = 1 ∧ y = 1, λ〈ν〉 . x % 2 = 1 ↔ y % 2 = 1)〉

endwhile

〈9,Filter(x ≥ n, λ〈〉 . x = 0 ∧ y = 0t

Collect(λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0))〉

Figure 15.3: Proving Conditional Correctness

15.3 A Program Reasoning Methodology

In this section, we introduce a program reasoning methodology based on the results

of the previous section. The methodology attempts the proof of all program asser-

tions, one by one, in an incremental manner, and is based on the following informal

algorithm.
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Let K be a verification problem

While K has unproven assertions

Let K := (T u I)k(K) for some k ≥ 0

Pick a label l ∈ labels(K) such that assert {l}(· · ·) appears at l

Pick a (possibly empty) set of labels Λ ⊆ labels(K),

such that each l′ ∈ Λ appears in an assert construct

If assumeΛ∪{l}(T (K))|l ` assume l(K)|l holds, then let K := replace(K, l, Λ)

Endwhile

We start with a verification problem K. Throughout the reasoning process,

the configuration K will change, on one hand due to the propagation steps applied

to it, and on the other hand, due to the fact that the sets of labels appearing in

assertΛ(· · ·) constructs will be changed to reflect only those labels whose assertions

have not been proved yet. The while-loop condition in the informal algorithm

states that, for as long as we have assertΛ(· · ·) constructs with non-empty sets of

labels Λ in K, the reasoning process may continue. Before attempting a to prove

the conditional correctness, we may apply any number of propagation steps to

the symbolic configuration. As argued in the previous chapter, this may improve

the chances of achieving the proof. Then, we pick a program point l that has an

unproven assertion, and a (possibly empty) set of labels Λ, and we attempt to prove

that the assertion at l is conditionally correct on the assertions in Λ. If we succeed in

doing this, we let the configuration reflect this fact by replacing the label l with the

labels in Λ in all the assert constructs throughout the entire symbolic configuration

K. As a result, the set of labels appearing in assert constructs becomes smaller by

one. When this set becomes empty, all assertions are proved unconditionally.
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We illustrate this methodology with an example. Figure 15.1 shows a verification

problem for a program that we have also analyzed in the previous chapter. This

program manipulates the variables x and y in such a way that the parities of the

two variables are synchronized. We regard this as a program fragment that shall be

executed as part of a bigger program, and we are only interested in the executions

which have x and y assigned to 0 at the beginning of the program fragment. To

enforce this, we attach an assertion to the first program point stating the value

of interest for variables x and y. We also attach an assertion to program point 8,

stating the synchrony between the parities of x and y. First, we perform 4 steps of

propagation on this symbolic configuration. The resulting configuration is shown

in Figure 15.2. To make the configuration more readable, we have performed a few

simplifications. First, we have replaced all the formulas of the form F uλ〈· · ·〉 . true

by F . Second, we have simplified all the Assign expressions. Let us denote by K1 the

configuration in Figure 15.2. The next step is to compute K2 = assume{1,8}(T (K1))

and K3 = assume{8}(K1) and to check whether K2|8 ` K3|8 holds. If that happens,

we have proved that the assertion at program point 8 is conditionally correct on the

assertion at program point 1.

Figure 15.3 shows configuration K2, after some minor simplifications. Config-

uration K3 is obtained by simply replacing every assertΛ(F) construct by F . We

now focus on program point 8 in both K2 and K3. We produce the proof obligation

Before(λ〈〉 . x = 1 ∧ y = 1, λ〈ν〉 . x % 2 = 1 ↔ y % 2 = 1 ` λ〈ν〉 . x % 2 = 0 ↔ y % 2 = 0.

This translates into the following first-order proof obligation

(ν = 0 → x = 1∧y = 1)∧(ν > 0 → x % 2 = 1 ↔ y % 2 = 1) → x % 2 = 0 ↔ y % 2 = 0,

which obviously holds.
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Chapter 16

Conclusion and Further Work

This chapter concludes the thesis. We start with an itemized summary of the entire

work presented here, then we discuss future research in Section 16.2, and then we

give a few concluding remarks in Section 16.3.

16.1 Summary

We started our work by recognizing several desirable features of a program reason-

ing framework. First, we wanted to be able to express a wide range of properties

of programs, including but not limited to safety, liveness and behavioral properties.

The distinction between safety and liveness properties has been defined by Lamport

in [Lam77], who also argued that in reasoning about the correctness of sequential

programs, safety properties and proof of termination are sufficient. However, as

argued in Section 1.3, since we often need to reason about sequential programs

that are part of larger, concurrent systems, being able to reason about liveness

and behavioral properties of sequential programs is also important. Second, a pro-

gram reasoning framework has to be compositional, since this allows a hierarchical

decomposition of proofs in the case of large, complex systems. Third, since it is

237
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not expected that a reasoning framework be fully automatic, the use of assertions

should be permitted, as means of allowing the user to guide the proof along. Fourth,

the framework should accommodate automated reasoning methods and allow their

being combined with user-provided information. Finally, a reasoning framework

should be incremental, in the sense that all the objectives should be achieved one

by one, in separate phases, with the possibility of useful information being derived

after every phase.

In order to achieve these features, we took the following steps:

• We devised the configuration data structure, as a versatile and compositional

means of attaching information to program points. We then showed that the

trace and progressive semantics can be expressed in terms of configurations.

We also defined progressive configurations as configurations whose annotations

are indexed sets, that is mappings from strings of natural numbers to sets of

environments.

• We defined the progressive semantics, which is an abstraction of the trace se-

mantics in the way that it projects sets of traces on program points, attaching

to each program point a sequence of sets (i.e. an indexed set) of environments

which define localized behavior; abstracting by projection achieves a degree

of locality which contributes to the compositionality of the framework.

• We defined the progressive transfer function T p, and showed that the progres-

sive semantics of a program is the unique fixpoint of T p.

• We introduced family approximations, as a technicality. If classic, superset-

based approximations were used, the reasoning process would be too imprecise

to allow the possibility of reaching the conclusion that a certain state does in-

deed occur (which is required when proving liveness and behavioral properties).
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Families allow a more refined means of propagation, by which one could rule

out that a program point is dead.

• Family approximations are also partially ordered; Φ1 4 Φ2 expresses the fact

that the family Φ1 is a more precise approximation than the family Φ2.

• Next, we introduced family configurations, as means of approximating pro-

gressive configurations, and therefore, the progressive semantics of a program;

we also lifted the 4 partial order to family configurations.

• We defined family description languages as means of specifying families. A

family description language is accompanied by a formal system in which fam-

ily description formulas can be reasoned about. We defined a set of properties

that, if satisfied, would make a family description language useful in our frame-

work. One important property is that, given two family description language

formulas F1 and F2, F1 |= F2 holds (i.e. can be proved) in the formal system

whenever JF1K 4 JF2K, where JF1K and JF2K are the families that represent

the interpretations of the formulas F1 and F2, respectively.

• We then defined symbolic configurations as configurations whose annotations

are family description formulas. The interpretation of a symbolic configuration

is a family configuration, and a symbolic configuration is correct for a program

whenever its interpretation is an approximation of the progressive semantics

of the program.

• We then lifted the progressive operator to symbolic configurations. We showed

that the symbolic propagation operator T can be the basis of a propagation

calculus that would refine correct configurations, in the sense that, if the

symbolic configuration K is correct of a given program, then T (K) is also
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correct, and T (K) |= K.

• To show that family description languages are useful, we took a side trip and

showed that on top of a family description language we can define a progressive

Hoare calculus.

• The next step was to introduce LAL (Liveness Aware Language) as an example

of family description language. We showed that this language is powerful

enough to express liveness properties of sequential programs through examples

of propagation and Hoare-calculus proofs.

• Then, we introduced assertion languages. An assertion language can be de-

fined on top of a family description language, by introducing the construct

assert l(F), where l is a program point, and F is a family description formula.

This construct expresses the fact that the user believes F to be true of the

behavior of the program at l, while it has not proved it yet.

• In order to handle assertions, we introduce the concept of conditional cor-

rectness, and augment the propagation operator T such that it can handle

symbolic configurations with assertions.

• One of the most important results in the thesis is Theorem 15.6, which states

the condition under which an assertion can be derived from other assertions

in the current symbolic configuration. This means that the assertion at hand

is proved conditionally, under the assumption that other assertions that may

not be proved yet, are in fact true. As far as the propagation process is

concerned, the assertion at hand is redundant, and can be discarded. This

result is formalized by Theorem 15.7.

• Theorem 15.7. leads to a proof methodology in which assertions are condition-
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ally proved one by one, until no assertion is left. This realizes the incremen-

tality feature that we mentioned in the first bullet of this itemized list.

The result is a framework which uses symbolic configurations to express localized

behavioral properties of programs. The propagation operator T can serve as means

of refining configurations, and also conditionally proving assertions one by one, in an

incremental manner. The framework is clearly compositional, as configurations are

syntactic objects. Interestingly enough, during the propagation/refinement process,

useful information can be derived after every step; we do not need the process to

terminate (in fact it is not guaranteed to have that property) in order to obtain

useful information about the program. Furthermore, as argued in the next section,

the propagation operator could be abstracted, opening the door to realizing abstract

interpretation within our framework.

16.2 Future Work

In this section we consider possible future developments of the ideas presented in this

work. These fall into five major areas: integration of automated program reasoning

methods, assertion refinement, AND the development of more expressive assertion

languages. In what follows, we shall give a small description of each direction

mentioned above, and a few hints at a possible solution.

Integrating Abstract Interpretation

We have argued throughout the thesis about the benefits of integrating automated

program reasoning methods, like program analysis, into our framework. In this

section we shall argue informally that abstract interpretation can be realized inside

our framework by means of an abstract propagation operator. We start with a small
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〈1, λ〈〉 . x = 0〉

while x < n do

〈2, λ〈ν〉 . true〉

x := x + 2

〈3, λ〈ν〉 . true〉

endwhile

〈4, λ〈〉 . true〉

〈1, λ〈〉 . x = 0〉

while x < n do

〈2, λ〈ν〉 . ν < 3 → x = 2 ∗ ν〉

x := x + 2

〈3, λ〈ν〉 . ν < 3 → x = 2 ∗ (ν + 1)〉

endwhile

〈4, λ〈〉 . x ≥ n〉

(a) Initial configuration (b) After 6 propagation steps

Figure 16.1: Propagation Produces Definite Information

example. Consider the configurations given in Figure 16.1. The initial configuration

has a precondition stating that x = 0 at the beginning of the program, while the

rest of the program points have the default formula annotation λ〈ν1 · · · νk〉 . true,

where k is a suitably chosen arity. After applying 6 propagation steps, we get the

configuration in Figure 16.1b. We note that in the progressive reasoning setting,

propagation produces definite information. Indeed, for the first 3 rounds around the

loop, the values of x at program point 2 will be 0,2, and 4. This is in contrast with

program reasoning frameworks based on the collecting semantics, where definite

information is “polluted” by useless information that is part of the greatest fixpoint

of the propagation operator. However, the process of generating definite information

in our framework is infinite. After 10 propagation steps, program point 2 shall have

the formula annotation λ〈〉 . ν > 5 → x = 2 ∗ ν. While the upper limit of ν for which

definite information is computed shall continually increase, the propagation process

shall never compute the real invariant for program point 2, which is λ〈ν〉 . x = 2 ∗ ν.

This is where abstraction comes in. Instead of computing the sequence of values
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0, 2, 4, . . . that are assigned to x, it may be more useful to infer, for example, that x

is even throughout the execution of the program fragment. An abstract propagator

would abstract the expression 2∗ν to even and that would lead to reaching a fixpoint

in finite time.

Assertion Refinement

We have pointed out on several occasions that, in order to be able to prove what we

want, we need configurations that are “refined” enough to allow that information to

be inferred. To illustrate this situation, let us reprise the greatest common divisor

example given in Section 1.3.

The configuration shown in Figure 1.2 was used as an example to show that our

framework is able to prove termination. In order to come up with that configura-

tion, we relied on a rather subtle observation about if statements. To propagate

the star annotation through an if statement, the first order formula embedded in

the annotation must either be implied by the if condition, or be implied by the

negation of the if condition. In order to achieve annotations with this property, we

added the extra parameter ν2 to the configuration. The ν2 parameter separates the

environments occurring at program point 2 into those that have a ≤ b and those that

have a > b. Thus, every slice of the indexed family at program point 2 represents

an indexed set that goes entirely to program point 3 or entirely to program point 5

(that is, the slice is not split into two parts, one going to program point 3, and the

other going to program point 5). Understanding the need for this extra parameter

is not at all straightforward. So, whenever a proof of the greatest common divisor

program would be attempted, the first configuration that comes to mind would be

the one in Figure 16.2. In this configuration, the separation between environments

that have a ≤ b, and environments that have a > b is missing, and as a result, the
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while a 6= 0 and b 6= 0 do

if a ≤ b then

b := b%a

else

a := a%b

endif

endwhile

q

q

q

q

q

q

q

q

-

-

-

-

-

-

-

-

1
λ〈ν1〉.( a ≥ 0 ∧ b ≥ 0 ∧ max(a, b) ≤ ν1 )∗

2 λ〈ν1ν2〉.( a > 0 ∧ b > 0 ∧ max(a, b) ≤ ν1 − ν2 )

3
λ〈ν1ν2〉.( 0 < a ≤ b ≤ ν1 − ν2 )

4 λ〈ν1ν2〉.( 0 ≤ b < a ≤ ν1 − ν2 − 1 )

5 λ〈ν1ν2〉.( 0 < b < a ≤ ν1 − ν2 )

6
λ〈ν1ν2〉.( 0 ≤ a < b ≤ ν1 − ν2 − 1 )

7 λ〈ν1ν2〉.( 0 ≤ min(a, b) ∧ max(a, b) ≤ ν1 − ν2 − 1 )

8
λ〈ν1〉.( a = 0 ∨ b = 0 )

Figure 16.2: Assertion Refinement Example
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〈1, λ〈〉 . ∃∀σ .∃δ1 .∀δ2 . 0 ≤ δ2 < 5 → env(a)[δ1 + δ2] = 1∧

σ(x) = 0 ∧ σ(z) ≥ 0〉

while x < 100 do

〈2, λ〈〉 . true〉

z := (z + a[x]) % 10

〈3, λ〈〉 . true〉

x := x + 1

〈4, λ〈〉 . (∃f . (∀δ1 .∀δ2 . δ1 6= δ2 → f(δ1) 6= f(δ2))∧

∀δ . 0 ≤ δ < 5 → ∃σ . σ(z) = f(δ))∧

∀σ . 0 ≤ σ(z) < 5〉

endwhile

〈5, λ〈〉 . true〉

Figure 16.3: More Expressive Assertions

star annotation cannot be propagated through the if condition and termination

cannot be inferred. However, once we have the configuration in Figure 16.2, it is

possible to detect this propagation flaw, and attempt to correct it. This will result

in the refined configuration given in Figure 1.2. One future development of this

work would be to formalize the process of refining correct configurations such that

the star annotation is not lost in the propagation process, and understand to what

extent the process can be automated.

More Expressive Assertion Languages

In Chapter 11 we have argued that by using family configurations to approximate

the progressive semantics of programs, we open the door to expressing properties

that are much richer than liveness and safety. However, the ability to express

such properties depends mainly on an expressive family description language. The
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liveness aware language that we have introduced in Chapter 13, while expressive

enough to represent liveness and safety in the same formula, are still far away from

what families as means of approximation can do. An example of a more expressive

language is given in Figure 16.3. The formula attached to program point 4 has

several new elements, as compared to formulas in LAL. First, program variables are

treated as constants (strings). The value of a program variable can be retrieved from

an environment via an environment variable σ. Second, we note the fact that we

have a higher order language, that allows functions to be quantified. These two fea-

tures increase the expressive power of the family description language tremendously.

Having environment variables allows us to state relationships between environments

occurring at a given program point. For example, we could state that every time

we reach a fixpoint, a variable is assigned a value that has not been assigned to it

before, or that a variable has at least k distinct values throughout the execution of

the program. In order to understand better how such properties are stated, let us

take a closer look at the program in Figure 16.3. The program sums up modulo 10

the elements of an array into a variable z. The initial value of z is positive, and the

array has at least 5 consecutive elements that have the value 1. The ∃∀ quantifier

specifies that the environment σ is unique. In other words, this program fragment

is entered only once. The formula at program point 4 states that the variable z

has at least 5 distinct values. That is, there exist at least 5 distinct environments

whose values for the variable z are distinct. This is specified by stating that there

exists some injective function f that maps the interval [0, 4] into integers, and for

all values f(δ), 0 ≤ δ < 5, there exists an environment σ such that σ(z) = f(δ).

Expressing such properties is often of interest in verifying embedded systems soft-

ware, where programs do not typically terminate, and are required to comply with

various resource access policies. For example, in a system with limited amount of
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cache, the number of distinct values a variable has may be directly connected with

the number of cache misses, so we either want to keep the number of distinct values

small, so that it doesn’t exceed the cache capacity, or we want to measure that

number so as to determine the right size of the cache.

16.3 Concluding Remarks

To date, there is a wealth of techniques and methodologies for program reasoning,

ranging from Hoare-style program verification, which is entirely user-driven, to the

completely automatic, push-button program analysis and model-checking. Each of

these techniques has certain useful features, and certain shortcomings. For instance,

Hoare-style verification is compositional and allows proving the strongest properties

of a program. On the other hand, this technique is entirely user-driven, and that

makes it very difficult to apply Hoare-style verification to large programs. At the

other end of the spectrum, program analysis methods are completely automatic.

Most bottom-up program analysis methods, however, cannot derive correctness in-

formation about a program; they only derive certain general properties that may

be useful in compiler optimizations, on in guiding various program transformations.

Such method are also, in general, not incremental, that is, one has to wait until a

program analysis procedure terminates in order to obtain any useful information.

When reasoning about large pieces of code, it is often the case that a very large

portion of the code is concerned with error handling and the user interface, while

a much smaller portion of the scale is concerned with implementing sophisticated

algorithms. Reasoning about error handling and user interface code is often simple

and can be handled by automated reasoning methods, while reasoning about so-

phisticated algorithms typically requires user assistance. The material presented in
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this thesis has been centered around the belief that automated and non-automated

reasoning techniques need to be combined within a general framework that would

reduce the amount of user intervention and would allow reasoning about safety,

liveness and temporal properties in a unified way.

The motivation for our work has been to create a framework that retains most

of the desirable features of program reasoning techniques and methodologies in exis-

tence. Therefore, we have identified a set of desirable features of a program reasoning

framework. The most important, in our view, is the ability to reason about safety,

liveness, and temporal properties in a unified framework. Other important features

are the ability to combine reasoning methods within one framework, and the rea-

soning framework being compositional and incremental. The main contributions of

this thesis are:

• The progressive semantics, which is a programming language semantics which,

as far as its level of abstraction is concerned, is hierarchically situated between

the trace and collecting semantics. In our view, this semantics has the “right”

level of abstraction, bringing together the compositionality of the collecting

semantics and the ability to reason about liveness and (some abstraction of)

temporal properties that are characteristic of the trace semantics.

• The concept of family approximations, as a more precise way of specifying the

possible values of a set variable.

• The concept of progressive reasoning as a means of stating and verifying pro-

gram properties, and a compositional strongest postcondition propagation cal-

culus.

• A liveness-aware assertion language that is able to capture termination and
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liveness properties, as well as some abstraction of the sequence of events that

occur at a program point.

• The concept of conditional correctness, which allows a proof methodology that

verifies assertions one by one, in an incremental manner.

Throughout our work, we have tried to keep a practical perspective. The results

presented in this thesis are targeted at showing that it is possible to implement a

program reasoning system that is modular and incremental, and open to integrating

various program reasoning techniques. The configuration is the central data struc-

ture that we have used consistently throughout this work, and was devised with this

purpose in mind. In our view, such a system applies (possibly abstract) propagation

steps to a configuration that represents an approximation of the progressive seman-

tics of a program which may contain assertions as means for a user to guide the

reasoning along. By applying propagation steps, the configuration becomes more

and more precise, and in this process, some of the assertions may become condi-

tionally proved. Proving assertions may require the derivation of proof obligations

which may be passed on to theorem provers like HOL and PVS. Automated pro-

gram reasoning methods may be implemented as abstract propagation steps. One

important property of such a system is that useful information may be derived from

the configuration at hand after every propagation step.

This work has spawned several questions worth of being further investigated.

We have sketched several of these problems in the previous section. However, keep-

ing a practical perspective, we also need to extend the present framework to real

programming languages and integrate the use of theorem provers.
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Appendix A

Proofs in the thesis

5.2 Proposition Let P be a labeled program. The following statements hold.

a) 〈first(P ), σ〉 is an initial state of P , for all environments σ ∈ Σ.

b) 〈last(P ), σ〉 is a terminal state of P , for all environments σ ∈ Σ.

c) (States(P ),
P

−−−→) is a deterministic transition system.

Proof: Statements a) and b) are proved by structural induction, considering all

the five cases in Remark 4.1 In the base cases P is either a skip statement or

an assignment. From the definition of
P

−−−→, it results immediately that there

is no state s of P such that s
P

−−−→ 〈first(P ), σ〉 or 〈last(P ), σ〉
P

−−−→ s, for all

environments σ ∈ Σ.

If P a sequence program, then there exist programs P1 and P2 such that P =

P1 # P2, with last(P1) = first(P2). From the induction hypothesis we have that

statements a) and b) hold for both P1 and P2. Since first(P ) = first(P1) and

last(P ) = last(P2), it follows that statements a) and b) hold for P as well.

If P is an if program, then there exist a constraint C, labels ls, lf and programs

P1, P2 such that P = 〈ls〉 if C then P1 else P2 endif 〈lf 〉. From the proper labeling

270
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condition we have that ls, lf 6∈ labels(P1) ∪ labels(P2). Therefore,
P1

−−−→ ∪
P2

−−−→ do

not have transitions from and to states that have ls or lf as a label. In this case, the

only transitions left are in
P↙

−−−→ ∪
P↗

−−−→ ∪
P↘

−−−→ ∪
P↖

−−−→. None of these relations

have transitions with destination states that have ls as a label, or transitions with

source states that have lf as a label.

If P is a while program, then there exists a constraint C, labels ls, lf and a

program P ′ such that P = 〈ls〉 while C do P ′ endwhile 〈lf 〉. From the proper

labeling condition we have that ls, lf 6∈ labels(P ′). The only transitions concerning

labels ls and lf are in
P↘

−−−→ ∪
P↖

−−−→ ∪
P	

−−−→ ∪
Py

−−−→. None of these relations have

transitions with destination states that have ls as a label, or transitions with source

states that have lf as a label.

Statement c) shall be proved by structural induction as well. For the base cases,

if P is a skip statement or an assignment, it is clear from the definition of
P

−−−→ that

for all environments σ, there exists exactly one state s such that 〈first(P ), σ〉
P

−−−→ s.

For the induction cases, assume first that P is a sequence program. Then, there exist

programs P1, P2 such that P = P1 #P2. Since the statement holds inductively for P1

and P2 and labels(P )\{last(P )} = (labels(P1)\{last(P1)})∪(labels(P2)\{last(P2)}), it

follows that the statement holds for P . Assume now that P is an if program, whose

consequent and alternative are P1 and P2. We have that labels(P )\{last(P )} =

(labels(P1)\{last(P1)}) ∪ (labels(P2)\{last(P2)}) ∪ {first(P ), last(P1), last(P2)}. The

statement holds inductively for labels(P1)\{last(P1)} and labels(P2)\{last(P2)}, and

from the definitions of
P↙

−−−→,
P↘

−−−→,
P↗

−−−→, and
P↖

−−−→ it results that the state-

ment holds for the labels first(P ), last(P1), and last(P2)}. Finally, assume that

P is a while program, whose body is P ′. We have that labels(P )\{last(P )} =

(labels(P ′)\{last(P ′)}) ∪ {first(P ), last(P ′)}. The statement holds inductively for
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labels in labels(P ′)\{last(P ′)} and from the definitions of
P↘

−−−→,
P↖

−−−→,
Py

−−−→, and

P	

−−−→, the statement also holds for labels first(P ), and last(P ′). �

7.1 Proposition Let P = P1 # P2 be a sequence program and θ ∈
→
P be a trace.

Exactly one of the following statements holds:

a) θ ∼ t︸︷︷︸
P1

b) θ ∼ t1︸︷︷︸
P1

P1

−−−→ 〈last(P1), σ〉t2︸ ︷︷ ︸
P2

Proof: We need to show that, on one hand, for every trace θ, either a) or b) are

true, and, on the second hand, that a) and b) cannot be true simultaneously. The

fact that a) and b) cannot be true simultaneously is clearly true, since a) states that

θ is a trace of P1, and therefore has no states that would belong to P2, and on the

other hand, b) implies that θ does have states belonging to P2. Since θ cannot be in

the situation where it would both have and not have states of P2, it follows that a)

and b) cannot be true simultaneously. The proof of the fact that the trace θ satisfies

either a) or b) is by induction on the length of θ. For the base case, the length of

θ is 1, which means that θ = 〈first(P ), σ〉 = 〈first(P1), σ〉, for some environment

σ ∈ Env. Clearly, a) is satisfied in this case. For the induction case, assume we

have a trace θ ∈
→
P of length n > 1, such that θ = θ′s, where θ′ is the longest proper

prefix of θ, and s is its last state. Clearly, the transition θ ′
P

−−−→ s must be possible,

so according to Proposition 5.2, the last state of θ ′ cannot have the label last(P ).

From the induction hypothesis, we have that θ ′ satisfies either a) or b). Assume

first that it satisfies a), i.e. θ′ is a trace of P1. Here we have two sub-cases: either

the trace θ′ ends at label last(P1), or it doesn’t. If θ′ ends at label last(P1), since

last(P1) = first(P2), according to Proposition 5.2, the transition θ ′
P2

−−−→ s must
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be possible, and therefore θ satisfies b). For the second sub-case, assume that θ ′ is

a trace of P1, but it does not end at label last(P1). According to Proposition 5.2,

the transition θ′
P1

−−−→ s is possible, and therefore θ satisfies a). Assume now that

θ′ satisfies b), i.e. θ′ ∼ t1︸︷︷︸
P1

P1

−−−→ 〈last(P1), σ〉t2︸ ︷︷ ︸
P2

holds. As mentioned above, θ′

cannot end at label last(P ) = last(P2). According to Proposition 5.2, the transition

θ′
P2

−−−→ s is possible, and therefore θ′ ∼ t1︸︷︷︸
P1

P1

−−−→ 〈last(P1), σ〉t2s︸ ︷︷ ︸
P2

holds. holds. It

follows that θ satisfies b). �

7.2 Proposition Let P be an if program whose condition is C and consequent

and alternative are Pc and Pa. Consider a trace θ ∈
→
P . Exactly one of the following

statements is true:

a) θ = 〈first(P ), σ〉 for some environment σ ∈ Env.

b) θ ∼ 〈first(P ), σs〉
P↙

−−−→ t︸︷︷︸
Pc

, for some environment σs ∈ Env such that

σs |= C, and trace segment t ∈
→
Pc.

c) θ ∼ 〈first(P ), σs〉
P↙

−−−→ t︸︷︷︸
Pc

P↗
−−−→ 〈last(P ), σf 〉 , where σs, σf ∈ Env, with

σs |= C, and t ∈
→
Pc.

d) θ ∼ 〈first(P ), σs〉
P↘

−−−→ t︸︷︷︸
Pa

, for some environment σs ∈ Env such that

σs |= ¬C, and trace segment t ∈
→
Pa.

e) θ ∼ 〈first(P ), σs〉
P↘

−−−→ t︸︷︷︸
Pa

P↖
−−−→ 〈last(P ), σf 〉 , where σs, σf ∈ Env, with

σs |= ¬C, and t ∈
→
Pc.

Proof: A trace θ ∈
→
P cannot satisfy simultaneously the five conditions given above.

Condition a) requires that θ have exactly one state, while condition b) requires that

θ have at least two states, with suffixes that are traces of Pc. Condition c) requires
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that θ starts at label first(P ), ends at last(P ), and contains states of Pc. Conditions

d) and e) are symmetric to b) and c) in the sense that they contain states of Pa,

rather than Pc. It easy to see that no two conditions can be satisfied simultaneously

by the same trace.

We are left with proving that every trace of P satisfies (at least) one of the

conditions a) – e). This proof is by induction on the length of the trace. For the base

case, assume we have a trace of length equal to 1, θ = 〈first(P ), σ〉, where σ ∈ Env.

Such a trace clearly satisfies a). For the induction case, assume that trace θ has a

length greater than one. Denote by θ ′ the longest proper prefix of θ, that is θ = θ ′s,

where s is a state of P . From the induction hypothesis we have that θ ′ satisfies one

of the conditions a) – e). In fact, because the transition θ ′
P

−−−→ s must be possible,

θ′ cannot satisfy conditions c) or e). Assume θ ′ satisfies a), i.e. θ′ = 〈first(P ), σ〉,

for some environment σ ∈ Env. Here we have two sub-cases, either σ |= C, or

σ |= ¬C. If σ |= C, then θ ∼ 〈first(P ), σ〉
P↙

−−−→ s holds, and therefore θ satisfies

condition b). If σ |= ¬C, then θ ∼ 〈first(P ), σ〉
P↘

−−−→ s holds, and therefore θ

satisfies condition d). Assume now that θ ′ satisfies condition b). Again, we have

two sub-cases, either θ′ ends at label last(Pc) or it doesn’t. If θ′ ends at last(Pc), then

θ ∼ 〈first(P ), σ〉
P↙

−−−→ t︸︷︷︸
Pc

P↗
−−−→ s holds, and it follows that θ satisfies condition

c). If θ′ does not end at last(Pc), then θ ∼ 〈first(P ), σ〉
P↙

−−−→ t︸︷︷︸
Pc

Pc

−−−→ s holds,

and it follows that θ satisfies condition b). The case when θ ′ satisfies condition d)

has a similar proof with the case when θ ′ satisfies condition b). �

7.3 Proposition Let P be a while program whose condition is C and body is Pb.

Consider a trace θ ∈
→
P . Exactly one of the following statements is true:

a) θ = 〈first(P ), σ〉 for some environment σ ∈ Env.
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b) θ ∼ 〈first(P ), σ〉
Py

−−−→ 〈last(P ), σ〉 for some environment σ ∈ Env, such that

σ |= ¬C.

c) θ ∼ 〈first(P ), σ〉
P↘

−−−→ t1︸︷︷︸
Pb

P	

−−−→ t2︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ tk︸︷︷︸
Pb

, for some k > 0

and some environment σ ∈ Env such that σ |= C.

d) θ ∼ 〈first(P ), σs〉
P↘

−−−→ t1︸︷︷︸
Pb

P	

−−−→ t2︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ tk︸︷︷︸
Pb

P↖
−−−→

〈last(P ), σf 〉, for some k > 0 and some environments σs, σf ∈ Env such

that σs |= C and σf |= ¬C.

Proof: A trace θ ∈
→
P cannot satisfy simultaneously the five conditions given above.

Condition a) requires that θ have exactly one state, while condition b) requires that

θ have two states, none of which be a state of Pb. Condition c) requires that θ

ends with a state of Pb, while condition d) requires that θ ends at label last(P )

and contains states of Pb. It easy to see that no two conditions can be satisfied

simultaneously by the same trace.

We are left with proving that every trace of P satisfies (at least) one of the

conditions a) – e). This proof is by induction on the length of the trace. For the

base case, assume we have a trace of length equal to 1, θ = 〈first(P ), σ〉, where

σ ∈ Env. Such a trace clearly satisfies a). For the induction case, assume that

trace θ has a length greater than one. Denote by θ ′ the longest proper prefix of θ,

that is θ = θ′s, where s is a state of P . From the induction hypothesis we have that

θ′ satisfies one of the conditions a) – d). In fact, because the transition θ ′
P

−−−→ s

must be possible, θ′ cannot satisfy conditions b) and d). Assume θ ′ satisfies a), i.e.

θ′ = 〈first(P ), σ〉, for some environment σ ∈ Env. Here we have two sub-cases,

either σ |= C, or σ |= ¬C. If σ |= C, then θ ∼ 〈first(P ), σ〉
P↘

−−−→ s holds, and

therefore θ satisfies condition c). If σ |= ¬C, then θ ∼ 〈first(P ), σ〉
Py

−−−→ s holds,
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and therefore θ satisfies condition b). Assume now that θ ′ satisfies condition c).

Again, we have two sub-cases, either θ ′ ends at label last(Pb), or it doesn’t. If θ′

ends at label last(Pb), from the definition of
P

−−−→, the transition θ′
P↖

−−−→ s must

be possible, and then it follows that θ satisfies condition d). If θ ′ does not end at

label last(Pb), then the transition θ′
Pb

−−−→ s must be possible, and it follows that θ

satisfies condition c). �

7.7 Proposition Given a program P , let θ1 = t1〈l, σ1〉 and θ2 = t2〈l, σ2〉 be two

traces of P ending at the same program point. Assume that θ1 is a proper prefix

of θ2, and denote by µ̃1 and µ̃2 the progressive indices of θ1 and θ2, respectively.

Then, µ̃1 < µ̃2.

Proof: The proof is by induction on the number of segments in the progressive

segmentation of θ2. For the base case, there is only one segment. Obviously, there

will be only one segment in the progressive segmentation of θ1 as well. Since θ1 is

a proper prefix of θ2, and θ2 ends with an occurrence of the label l, the number of

occurrences of label l in θ1 and θ2 differ by at least 1. Therefore, µ̃1 < µ̃2.

For the inductive case, let t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk−1〈lk−1, σk−1〉tk〈lk, σk〉 be the

progressive segmentation of θ2, and t′1〈l
′
1, σ

′
1〉t

′
2〈l

′
2, σ

′
2〉 · · · t

′
j−1〈l

′
j−1, σ

′
j−1〉t

′
j〈l

′
j , σ

′
j〉

be the progressive segmentation of θ1. We can be in either of the following two

situations:

a) j = k, t1〈l1, σ1〉t2〈l2, σ2〉 · · ·tk−1〈lk−1, σk−1〉 = t′1〈l
′
1, σ

′
1〉t

′
2〈l

′
2, σ

′
2〉 · · ·t

′
j−1

〈l′j−1, σ
′
j−1〉, and t′j〈l

′
j , σ

′
j〉 is a prefix of tk〈lk, σk〉 ;

b) j < k and t′1〈l
′
1, σ

′
1〉t

′
2〈l

′
2, σ

′
2〉 · · · t

′
j−1〈l

′
j−1, σ

′
j−1〉 is a prefix of t1〈l1, σ1〉t2〈l2, σ2〉

· · ·tk−1〈lk−1, σk−1〉.
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In case a), let µ′
1 and µ′

2 be the last elements in the indices µ̃1 and µ̃2, re-

spectively. By a line of reasoning similar to the one we used for the base case, we

conclude µ′
1 < µ′

2, which entails µ̃1 < µ̃2

In case b), let µ̃′
1 and µ̃′

2 be the longest proper prefixes of µ̃1 and µ̃2. Clearly,

µ̃′
1 and µ̃′

2 are the progressive indices of t′1〈l
′
1, σ

′
1〉t

′
2〈l

′
2, σ

′
2〉 · · ·t

′
j−1〈l

′
j−1, σ

′
j−1〉 and

t1〈l1, σ1〉t2〈l2, σ2〉 · · ·tk−1〈lk−1, σk−1〉, respectively. Using the induction hypothesis,

µ̃′
1 < µ̃′

2, which again entails µ̃1 < µ̃2. �

7.8 Proposition The following three statements hold.

a) Given a sequence program P = P1 # P2 and a trace θ ∼ t1︸︷︷︸
P1

P1

−−−→ t2︸︷︷︸
P2

, the

progressive index of θ w.r.t. P is the same as the progressive index of t2 w.r.t.

P2.

b) Given an if program P , let P ′ be either its consequent or its alternative.

Consider a trace θ ∼ 〈first(P ), σ〉
P

−−−→ t︸︷︷︸
P ′

. Then, the progressive index of

θ w.r.t. P is the same as the progressive index of t w.r.t. P ′.

c) Consider a while program P whose body is P ′. Consider a trace θ ∼

〈first(P ), σ〉
P↘

−−−→ t1︸︷︷︸
P ′

P	

−−−→ t2︸︷︷︸
P ′

P	

−−−→ · · ·
P	

−−−→ tk︸︷︷︸
P ′

, for some k > 0.

Denote by µ̃ the progressive index of tk w.r.t. P ′. Then, the progressive

index of θ w.r.t. P is (k − 1)µ̃.

Proof: The proof of a) relies on the fact that t1 starts at label first(P1) and ends

at last(P1). Since first(P1) = last(P1), there is no label in P1 that would be shal-

lower than a label in P2. Assume now that the progressive segmentation of t2 is

t21〈l1, σ1〉t22〈l2, σ2〉 · · · t2k〈lk, σk〉. It is obvious that the progressive segmentation of

θ is t′21〈l1, σ1〉t22〈l2, σ2〉 · · · t2k〈lk, σk〉, where t′21 = t1t21. The sequence of segments
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t22〈l2, σ2〉 · · · t2k〈lk, σk〉 appears in the progressive segmentations of both θ and t2,

and therefore they have the same progressive index.

The proof of b) proceeds in a similar manner. First we note that first(P ) =

first(P ′). Therefore, if t1〈l1, σ1〉t2〈l2, σ2〉 · · · tk〈lk, σk〉 is the progressive segmenta-

tion of the trace segment t w.r.t. P ′, then t′1〈l1, σ1〉t2〈l2, σ2〉 · · · tk〈lk, σk〉 is the

progressive segmentation of θ w.r.t. P , where t′1 is 〈first(P ), σ〉t1. Since the seg-

ments t2〈l2, σ2〉 · · · tk〈lk, σk〉 appear in the progressive segmentations of both θ and

t, it follows that they have the same progressive index.

We provide only a proof outline for c) (a rigorous proof should be by induction

on the number k of segments in the trace). First we note that first(P )6first(P ′). As-

sume that the progressive segmentation of tk is tk1〈l1, σ1〉tk2〈l2, σ2〉 · · · tkm〈lm, σm〉,

and denote its progressive index by µ̃. The fact that first(P ) 6 first(P ′)

entails that first(P ) 6 l2. Therefore, θ has the progressive segmentation

ε〈first(P ), σ〉t′k1〈l1, σ1〉tk2〈l2, σ2〉 · · · tkm〈lm, σm〉, where t′k1 is t1 · · · tk−1tk1. We note

that the progressive segmentation of θ has an extra segment, perpended at the be-

ginning of the trace, when compared to the progressive segmentation of tk. This

results in a progressive index that is longer by one position than µ̃. The sequence of

segments k2〈l2, σ2〉 · · · tkm〈lm, σm〉 appears as a suffix in both progressive segmen-

tations, and the m − 1 segments in the suffix will produce the same numbers (i.e.

the numbers appearing in µ̃) in the progressive indices of θ and tk. However, the

extra segment t′k1〈l1, σ1〉 appearing in the progressive segmentation of θ will pro-

duce an extra number which has to be prepended to µ̃. The value of that number is

given by the number of progressive pairs in t′k1 = t1 · · · tk−1tk1. We note now that

t′k1 ∼ t1︸︷︷︸
P ′

P	

−−−→ · · ·
P	

−−−→ tk−1︸︷︷︸
P ′

P	

−−−→ tk1︸︷︷︸
P ′

. We have a progressive pair every time a

P	

−−−→ transition is performed, which means that we have k − 1 progressive pairs in
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t′k1. It follows that the progressive index of θ is (k − 1)µ̃. �

7.9 Proposition Let P = P1 # P2 be a sequence program and θ ∈
→
P a trace. The

following two statements are true.

a) If θ ∼ t1︸︷︷︸
P1

and repP1
(t1) = ~K1 for some singleton configuration ~K1 such that

| ~K1| = P1, then repP (θ) = ~K1 # ~KP2,⊥.

b) If θ ∼ t1︸︷︷︸
P1

P1

−−−→ 〈last(P1), σ〉
P2

−−−→ t2︸︷︷︸
P2

such that repP1
(t1〈last(P1), σ〉) =

~K1 and repP2
(〈last(P1), σ〉t2) = ~K2 for some singleton configurations ~K1 and

~K2 with | ~K1| = P1 and | ~K2| = P2, then repP (θ) = ~K1 # ~K2.

Proof: In order to prove a) we need to show that the following two conditions hold:

(1) for every prefix θ′ of θ ending in a state 〈l, σ〉 and whose progressive index

is µ̃, we have ( ~K1 # ~KP2,⊥)|l(µ̃) = {σ} ;

(2) for all labels l′ and progressive indices µ̃′ for which there exists no prefix

of θ ending at l′ and whose progressive index would be µ̃′, we have ( ~K1 #

~KP2,⊥)|l′(µ̃
′) = ∅.

First we note that every prefix of θ is a trace of both P and P1, and has the same

progressive index w.r.t both P and P1. Consider a prefix θ′ of θ ending with state

〈l, σ〉 and whose progressive index is µ̃. Since ~K1 is the representation of θ w.r.t. P1,

we have that ~K1|l(µ̃) = {σ}. According to Remark 6.1, ( ~K1 # ~KP2,⊥)|l(µ̃) = ~K1|l(µ̃),

which entails that ( ~K1 # ~KP2,⊥)|l(µ̃) = {σ} and proves condition (1). In or-

der to prove condition (2), we consider two cases: either l ′ ∈ labels(P1), or

l′ ∈ labels(P2)\{last(P1)}. If l′ ∈ labels(P1), since repP1
(θ) = ~K1, it follows that

~K1|l′(µ̃
′) = ∅. Now, according to Remark 6.1, ( ~K1 # ~KP2,⊥)|l′(µ̃

′) = ~K1|l′(µ̃
′), which
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entails that ( ~K1 # ~KP2,⊥)|l′(µ̃
′) = ∅. Assume now that l′ ∈ labels(P2)\{last(P1)}.

According to Remark 6.1, ( ~K1 # ~KP2,⊥)|l′(µ̃
′) = ~KP2,⊥|l′(µ̃

′) = ∅.

In order to prove b), we need to show that the following two conditions hold:

(1’) for every prefix θ′ of θ ending in a state 〈l, σ〉 and whose progressive index

is µ̃, we have ( ~K1 # ~K2)|l(µ̃) = {σ} ;

(2’) for all labels l′ and progressive indices µ̃′ for which there exists no prefix

of θ ending at l′ and whose progressive index would be µ̃′, we have ( ~K1 #

~K2)|l′(µ̃
′) = ∅.

We consider two cases: either l, l′ ∈ labels(P1), or l, l′ ∈ labels(P2)\{last(P1)}. The

proof for l, l′ ∈ labels(P1) is similar to the one for condition a) and will be omitted.

We first prove condition (1’) for l, l′ ∈ labels(P2)\{last(P1)}. In this case, θ′ ∼

t1︸︷︷︸
P1

P1

−−−→ 〈last(P1), σ〉
P2

−−−→ t′2︸︷︷︸
P2

. According to Proposition 7.8, the progressive

indices of θ w.r.t. P and t′2 w.r.t. P2 are the same, and therefore equal to µ̃. Since

〈last(P1), σ〉t′2 is a prefix of 〈last(P1), σ〉t2 and repP2
(〈last(P1), σ〉t2) = ~K2, it follows

that ~K2|l(µ̃) = {σ}. Now, since l ∈ labels(P2)\{last(P1)}, according to Remark 6.1,

( ~K1 # ~K2)|l(µ̃) = ~K2|l(µ̃) = {σ}, which proves condition (1’). Condition (2’) follows

from the fact that, since there exists no prefix of θ ending at l ′ and with progressive

index µ̃, there exists no prefix of 〈last(P1), σ〉t2 ending at l′ and with progressive

index µ̃. This entails that ~K2|l(µ̃) = ∅ which, according to Remark 6.1, leads to

( ~K1 # ~K2)|l(µ̃) = ∅. �

7.10 Proposition Let P be an if program whose condition is C and consequent

and alternative are Pc and Pa, respectively. Given a trace θ ∈
→
P , the following

statements are true.
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a) If θ = 〈first(P ), σ〉 for some environment σ ∈ Env, then repP (θ) =

〈first(P ), λ〈〉 . {σ}〉 if C then ~KPc,⊥ else ~KPa,⊥ endif 〈last(P ), λ〈〉 . ∅〉.

b) If θ ∼ 〈first(P ), σs〉
P↙

−−−→ t︸︷︷︸
Pc

, for some environment σs ∈ Env such that

σs |= C, and trace segment t ∈
→
Pc, and if repPc

(t) = ~Kc, where ~Kc is a

configuration such that | ~Kc| = Pc, then repP (θ) =

〈first(P ), λ〈〉 . {σs}〉 if C then ~Kc else ~KPa,⊥ endif 〈last(P ), λ〈〉 . ∅〉.

c) If θ ∼ 〈first(P ), σs〉
P↙

−−−→ t︸︷︷︸
Pc

P↗
−−−→ 〈last(P ), σf 〉 , where σs, σf ∈ Env,

with σs |= C, and t ∈
→
Pc, and if repPc

(t) = ~Kc, where ~Kc is a configuration

such that | ~Kc| = Pc, then repP (θ) =

〈first(P ), λ〈〉 . {σs}〉 if C then ~Kc else ~KPa,⊥ endif 〈last(P ), λ〈〉 . {σf }〉.

d) If θ ∼ 〈first(P ), σs〉
P↘

−−−→ t︸︷︷︸
Pa

, for some environment σs ∈ Env such that

σs |= ¬C, and trace segment t ∈
→
Pa, and if repPa

(t) = ~Ka, where ~Ka is a

configuration such that | ~Ka| = Pa, then repP (θ) =

〈first(P ), λ〈〉 . {σs}〉 if C then ~KPc,⊥ else ~Ka endif 〈last(P ), λ〈〉 . ∅〉.

e) If θ ∼ 〈first(P ), σs〉
P↘

−−−→ t︸︷︷︸
Pa

P↖
−−−→ 〈last(P ), σf 〉 , where σs, σf ∈ Env,

with σs |= ¬C, and t ∈
→
Pa, and if repPa

(t) = ~Ka, where ~Ka is a

configuration such that | ~Ka| = Pa, then

repP (θ)〈first(P ), λ〈〉 . {σs}〉 if C then ~KPc,⊥ else ~Ka endif 〈last(P ), λ〈〉 . {σf }〉.

Proof: The proof of a) is trivial, since for case the trace θ has only the state

〈first(P ), σ〉 whose progressive index is ε. Therefore, the configuration representing

the trace θ will have the indexed set λ〈〉 . {σ} as the annotation associated with the

label first(P ), and the empty indexed set for all the other labels. In what follows,

we shall present only the proofs for conditions b) and c). The proofs for conditions

d) and e) are similar to the proofs of conditions b) and c) and shall be omitted.
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Both conditions b) and c) claim that a certain trace θ is represented by a specific

singleton configuration ~K. In order to prove such a claim, we need to show that the

following two conditions hold.

(1) for every prefix θ′ of θ ending in a state 〈l, σ〉 and whose progressive index

is µ̃, we have ~K|l(µ̃) = {σ} ;

(2) for all labels l′ and progressive indices µ̃′ for which there exists no prefix of θ

ending at l′ and whose progressive index would be µ̃′, we have ~K|l′(µ̃
′) = ∅.

We proceed now with the proof of condition b).

For convenience, let us denote by ~K the configuration

〈first(P ), λ〈〉 . {σs}〉 if C then ~Kc else ~KPa,⊥ endif 〈last(P ), λ〈〉 . ∅〉. Let θ′

be a prefix of θ. Here we have two sub-cases. Either θ ′ = 〈first(P ), σs〉, or

θ′ ∼ 〈first(P ), σs〉
P↙

−−−→ t′︸︷︷︸
Pc

, where t′ is a prefix of t. If θ′ = 〈first(P ), σs〉,

then its progressive index is ε, and it is easy to verify that ~K|first(P )(ε) = {σs}.

If θ′ ∼ 〈first(P ), σs〉
P↙

−−−→ t′︸︷︷︸
Pc

, where t′ is a prefix of t, then according to

Proposition 7.8, the progressive index of θ ′ is equal to the progressive index of t′.

Denote this progressive index by µ̃, and denote by 〈l, σ〉 the last state of both θ ′

and t′. Since ~Kc is the representation of t, it must be the case that ~Kc|l(µ̃) = {σ}.

Remark 7.8 entails that ~K|l = ~Kc|l, and therefore we have ~K|l = {σ}. Thus,

condition (1) is satisfied. We are left with proving that for all labels l ′ ∈ labels(P ),

or indices µ̃′, such that there is no prefix of θ that would end at label l ′, or have

progressive index µ̃′, we have ~K|l′(µ̃
′) = ∅. Here we have four sub-cases: either

l′ = first(P ), or l′ ∈ labels(Pc), or l′ ∈ labels(Pa), or l′ = last(P ). The only

interesting sub-case is when l′ ∈ labels(Pc); all the other sub-cases are trivial. If

l′ ∈ labels(Pc), but there is no prefix of θ ending at l′, or whose progressive index

is µ̃′, it follows that there is no prefix of t ending at l′, or whose progressive index
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is µ̃′. Since ~Kc is the representation of t, it must be the case that ~Kc|l(µ̃) = ∅.

Remark 7.8 entails that ~K|l = ~Kc|l, and therefore we have ~K|l = ∅. This completes

the proof of condition b).

For the proof of condition c) we will again conveniently denote by ~K the config-

uration

〈first(P ), λ〈〉 . {σs}〉 if C then ~Kc else ~KPa,⊥ endif 〈last(P ), λ〈〉 . {σf }〉. Let θ′ be

a prefix of θ. First we prove that condition (1) given above holds. Here we have

three sub-cases. Either θ′ = 〈first(P ), σs〉, or θ′ ∼ 〈first(P ), σs〉
P↙

−−−→ t′︸︷︷︸
Pc

, where

t′ is a prefix of t, or θ′ = θ. The proofs of the first two sub-cases are identical to the

corresponding sub-cases in the proof of condition b). For the sub-case when θ ′ = θ,

the progressive index of θ is ε, and it is immediate to verify that ~K|last(P )(ε) = {σs}.

In order to show that condition (2) holds, we have four cases, identical to the ones

in the proof of condition b). �

7.11 Proposition Let P be a while program whose condition and body are C

and Pb, respectively. Given a trace θ ∈
→
P , the following statements are true.

a) If θ = 〈first(P ), σ〉 for some environment σ ∈ Env then repP (θ) =

〈first(P ), λ〈〉 . {σ}〉 while C do ~KPb,⊥ endwhile 〈last(P ), λ〈〉 . ∅〉.

b) If θ ∼ 〈first(P ), σ〉
Py

−−−→ 〈last(P ), σ〉 for some environ-

ment σ ∈ Env, such that σ |= ¬C then repP (θ) =

〈first(P ), λ〈〉 . {σ}〉 while C do ~KPb,⊥ endwhile 〈last(P ), λ〈〉 . {σ}〉.

c) If θ ∼ 〈first(P ), σs〉
P↘

−−−→ t0︸︷︷︸
Pb

P	

−−−→ t1︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ tk︸︷︷︸
Pb

, for some

k ≥ 0 and some environment σ ∈ Env such that σ |= C, and if repPb
(ti) = ~Ki,

1 ≤ i ≤ k, where ~Ki is a configuration such that | ~Ki| = Pc, then repP (θ) =

〈first(P ), λ〈〉 . {σs}〉 while C do seq( ~K1, . . . , ~Kk) endwhile 〈last(P ), λ〈〉 . ∅〉.
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d) If θ ∼ 〈first(P ), σs〉
P↘

−−−→ t0︸︷︷︸
Pb

P	

−−−→ t1︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ tk︸︷︷︸
Pb

P↖
−−−→

〈last(P ), σf 〉, for some k ≥ 0 and some environments σs, σf ∈ Env such

that σs |= C and σf |= ¬C, and if repPb
(ti) = ~Ki, 1 ≤ i ≤ k, where ~Ki is a

configuration such that | ~Ki| = Pc, then repP (θ) = 〈first(P ), λ〈〉 . {σs}〉 while

C do seq( ~K1, . . . , ~Kk) endwhile 〈last(P ), λ〈〉 . {σf }〉.

Proof: We have to prove that a trace θ is represented by a specific singleton

configuration ~K. In order to prove such a claim, we need to show that the following

two conditions hold.

(1) for every prefix θ′ of θ ending in a state 〈l, σ〉 and whose progressive index

is µ̃, we have ~K|l(µ̃) = {σ} ;

(2) for all labels l′ and progressive indices µ̃′ for which there exists no prefix of θ

ending at l′ and whose progressive index would be µ̃′, we have ~K|l′(µ̃
′) = ∅.

Conditions a) and b) assume that the trace θ has one state, and two states,

respectively. Verifying that the two conditions hold is similar with verifying that

condition a) in Proposition 7.10 holds. We shall focus on proving conditions c) and

d).

We proceed now with the proof of condition c). For convenience, let us denote

by ~K the configuration

〈first(P ), λ〈〉 . {σs}〉 while C do seq( ~K1, . . . , ~Kk) endwhile 〈last(P ), λ〈〉 . ∅〉.

Let θ′ be a prefix of θ. Here we have two sub-cases. Either θ ′ = 〈first(P ), σs〉, or

θ′ ∼ 〈first(P ), σs〉
P↘

−−−→ t0︸︷︷︸
Pb

P	

−−−→ t1︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ t′i︸︷︷︸
Pb

, where i ≤ k and

t′i is a prefix of ti. If θ′ = 〈first(P ), σs〉, then its progressive index is ε, and it is

easy to verify that ~K|first(P )(ε) = {σs}. Assume now that θ′ ∼ 〈first(P ), σs〉
P↘

−−−→
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t0︸︷︷︸
Pb

P	

−−−→ t1︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ t′i︸︷︷︸
Pb

, where i ≤ k and t′i is a prefix of ti. Denote by

µ̃ the progressive index of θ′ w.r.t. P , and by µ̃′ the progressive index of t′i w.r.t.

Pb. According to Proposition 7.8, we have µ̃ = iµ̃′. Denote by 〈l, σ〉 the state at

the end of both θ′ and t′i. Since ~Ki is the representation of ti w.r.t. Pb, it follows

that Ki|l(µ̃
′) = {σ}. According to Remark 6.1, ~K|l(µ̃) = seq( ~K1, . . . , ~Kk)|l(µ̃) =

~Ki|l(µ̃
′) = {σ}. Thus, condition (1) is satisfied. We are left with proving that for all

labels l′ ∈ labels(P ), or indices µ̃′, such that there is no prefix of θ that would end at

label l′, or have progressive index µ̃′, we have ~K|l′(µ̃
′) = ∅. We now have three cases:

either l′ = first(P ), or l′ ∈ labels(Pb), or l′ = last(P ). The cases when l′ = first(P )

or l′ = last(P ) are trivial, and we shall focus only on the case when l ′ ∈ labels(Pb).

Assume, by way of contradiction, that ~K|l′(µ̃
′) = {σ′}. Since l′ is in labels(Pb) and

first(P )6first(Pb), it follows that µ̃′ 6= ε. Assume that µ̃′ = iµ̃′′, where i ≥ 0. Then,

by Proposition 7.8, ~Ki|l′(µ̃
′′) = {σ}. Now, ~Ki is the representation of ti, and this

entails that there exists a prefix of ti, call it t′i, which ends with the state 〈l′, σ′〉,

and whose progressive index is µ̃′′. Then, 〈first(P ), σs〉t0t1 · · · ti−1t
′
i is a prefix of θ

that ends with the state 〈l′, σ′〉, and whose progressive index is µ̃′, and this leads to

a contradiction. It follows that condition (2) holds.

For the proof of condition d) we will conveniently denote by ~K the configuration

〈first(P ), λ〈〉 . {σs}〉 while C do seq( ~K1, . . . , ~Kk) endwhile 〈last(P ), λ〈〉 . {σf }〉. Let

θ′ be a prefix of θ. First we prove that condition (1) given above holds. Here we have

three sub-cases. Either θ′ = 〈first(P ), σs〉, or θ′ ∼ 〈first(P ), σs〉
P↘

−−−→ t0︸︷︷︸
Pb

P	

−−−→

t1︸︷︷︸
Pb

P	

−−−→ · · ·
P	

−−−→ t′i︸︷︷︸
Pb

, where i ≤ k and t′i is a prefix of ti, or θ′ = θ. The proofs

for the first two cases are identical to the corresponding cases of condition c). For

the sub-case when θ′ = θ, the progressive index of θ is ε, and it is immediate to

verify that ~K|last(P )(ε) = {σs}. In order to show that condition (2) holds, we have
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three cases, identical to the ones in the proof of condition c). �

7.16 Proposition Let P be a program and ~K1, . . . , ~Kk and ~K ′
1, . . . ,

~K ′
k two sets

of singleton configurations such that | ~Ki| = | ~K ′
i| = P , for all i, 1 ≤ i ≤ k. Assume

that ~Ki −−−→ ~K ′
i. Then, seq( ~K1, . . . , ~Ki) −−−→ seq( ~K ′

1, . . . ,
~K ′

i), k > 0 .

Proof: The proof is by structural induction on the program P . For convenience,

denote seq( ~K1, . . . , ~Ki) and seq( ~K ′
1, . . . ,

~K ′
i), by ~K and ~K ′, respectively. Assume

first that P is the skip program 〈ls〉 skip 〈lf 〉. Then, we can write ~Ki and ~K ′
i as

〈ls, Ψsi〉 skip 〈lf , Ψfi〉 and 〈ls, Ψsi〉 skip 〈lf , Ψsi〉, respectively, for all i, 1 ≤ i ≤ k.

According to Remarks 7.14 and 7.15, we have that

seq( ~K1, . . . , ~Ki) = 〈ls, seq(Ψs1, . . . , Ψsk)〉 skip 〈lf , seq(Ψf1, . . . , Ψfk)〉

and

seq( ~K ′
1, . . . ,

~K ′
i) = 〈ls, seq(Ψs1, . . . , Ψsk)〉 skip 〈lf , seq(Ψs1, . . . , Ψsk)〉,

from which it follows that ~K −−−→ ~K ′. Next, assume that P is the assignment

〈ls〉x := E 〈lf 〉. Then, we can write ~Ki and ~K ′
i as 〈ls, Ψsi〉 x := E 〈lf , Ψfi〉 and

〈ls, Ψsi〉x := E 〈lf , assign(x,E, Ψsi)〉, respectively, for all i, 1 ≤ i ≤ k. According to

Remarks 7.14 and 7.15 we have that

seq( ~K1, . . . , ~Kk) = 〈ls, seq(Ψs1, . . . , Ψsk)〉 x := E 〈lf , seq(Ψf1, . . . , Ψfk)〉

and

seq( ~K ′
1, . . . ,

~K ′
i) = 〈ls, seq(Ψs1, . . . , Ψsk)〉 x := E 〈lf , assign(x,E, seq(Ψs1, . . . , Ψsk))〉,

from which it follows that ~K −−−→ ~K ′. Assume now that P is the sequence program

P1 # P2. Then, we can write ~Ki and ~K ′
i as ~Ki1 # ~Ki2 and ~K ′

i1 # ~K ′
i2, respectively, for

all i, 1 ≤ i ≤ k. According to Remark 7.14 we have that

seq( ~K1, . . . , ~Kk) = seq( ~K11, . . . , ~Kk1) # seq( ~K12, . . . , ~Kk2)
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and

seq( ~K ′
1, . . . ,

~K ′
k) = seq( ~K ′

11, . . . ,
~K ′

k1) # seq( ~K ′
12, . . . ,

~K ′
k2).

Using the definition of the −−−→ relation given in Figure 7.5, and the in-

duction hypotheses, it follows that ~K −−−→ ~K ′. Next, assume that P is

the if program 〈ls〉 if C then Pc else Pa endif 〈lf 〉. Then, we can write

~Ki and ~K ′
i as 〈ls, Ψsi〉 if C then ~Kci else ~Kai endif 〈lf , Ψfi〉 and 〈ls, Ψsi〉

if C then 〈first(Pa),filter(C, Ψsi)〉# ~K ′
ci else 〈first(Pc),filter(¬C, Ψsi)〉# ~K ′

ai endif

〈lf , ~Kci|last(Pc)
∪ ~Kai|last(Pa)〉, respectively, with ~Kci −−−→ ~K ′

ci and ~Kai −−−→ ~K ′
ai,

for all i, 1 ≤ i ≤ k. According to Remarks 7.14 and 7.15, we have that

seq( ~K ′
1, . . . ,

~K ′
k) = seq(Ψs1, . . . , Ψsk)

if C then seq( ~Kc1, . . . , ~Kck)

else seq( ~Ka1, . . . , ~Kak)

endif

seq(Ψf1, . . . , Ψfk)

and

seq( ~K1, . . . , ~Kk) = 〈ls, seq(Ψs1, . . . , Ψsk)〉

if C then 〈first(Pa),filter(C, seq(Ψs1, . . . , Ψsk
))〉

#seq( ~K ′
c1, . . . ,

~K ′
ck)

else 〈first(Pc),filter(¬C, seq(Ψs1, . . . , Ψsk
))〉

#seq( ~K ′
a1, . . . ,

~K ′
ak)

endif

〈lf , seq( ~Kc1, . . . , ~Kck)|last(Pc)
∪ seq( ~Ka1, . . . , ~Kak)|last(Pa)〉.

Using the definition of the −−−→ relation given in Figure 7.5 and the induction hy-

potheses, it follows that ~K −−−→ ~K ′. Finally, assume that P is the while program

〈ls〉 whileC do Pb endwhile 〈lf 〉. Then, we can write ~Ki and ~K ′
i as 〈ls, Ψsi〉 while C
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do ~Kbi endwhile 〈lf , Ψfi〉 and 〈ls, Ψsi〉 while C do filter(C, before(Ψsi, ~Kbi|last(Pb)
))#

~K ′
bi endwhile 〈lf ,filter(¬C, Ψsi ∪ collect( ~Kbi|last(Pb)

))〉 , respectively, with

~Kbi −−−→ ~K ′
bi, for all i, 1 ≤ i ≤ k. According to Remarks 7.14 and 7.15, we

have that

seq( ~K1, . . . , ~Kk) = 〈ls, seq(Ψs1, . . . , Ψsk)〉

while C do

seq( ~Kb1, . . . , ~Kbk)

endwhile

〈lf , seq(Ψf1, . . . , Ψfk)〉

and

seq( ~K ′
1, . . . ,

~K ′
k) = 〈ls, seq(Ψs1, . . . , Ψsk)〉

while C do

filter(C, before(seq(Ψs1, . . . , Ψsk), seq( ~Kbi, . . . , ~Kbi)|last(Pb)
))

#seq( ~K ′
bi, . . . ,

~K ′
bi)

endwhile

〈lf ,filter(¬C, seq(Ψs1, . . . , Ψsk) ∪ collect(seq( ~Kb1, . . . , ~Kbk)|last(Pb)
))〉

.

Using the definition of the −−−→ relation given in Figure 7.5 and the induction

hypotheses, it follows that ~K −−−→ ~K ′. Using the definition of the −−−→ relation

given in Figure 7.5 and the induction hypotheses, it follows that ~K −−−→ ~K ′. �

7.17 Proposition Let P be a program. The following two statements hold.

a) Denote by ~KP,⊥ the empty configuration corresponding to P . Then,

~KP,⊥ −−−→ ~KP,⊥.

b) Let θ be a terminal trace w.r.t P , and denote by ~K the configuration such

that repP (θ) = ~K. Then K −−−→ K.
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Proof: The proof is by structural induction on program P . For the base

case, assume first that P is a skip program, and denote by ls and lf the first

and last labels of P , respectively. Then, ~KP,⊥ = 〈ls, λ〈〉 . ∅〉 skip 〈lf , λ〈〉 . ∅〉.

Also, given a terminal trace w.r.t. P , θ = 〈ls, σ〉〈lf , σ〉 for some environment

σ ∈ Env, according to Definition 5.1 the representation of θ is the configura-

tion ~K = 〈ls, λ〈〉 . {σ}〉 skip 〈lf , λ〈〉 . {σ}〉. It is easy to verify that the relations

~KP,⊥ −−−→ ~KP,⊥ and ~K −−−→ ~K, as defined in Figure 7.5, hold. Assume now

that P is the assignment 〈ls〉 x :=E 〈lf 〉, where ls and lf are labels, x ∈ Var, and

E ∈ Expr. In this case ~KP,⊥ = 〈ls, λ〈〉 . ∅〉 x := E 〈lf , λ〈〉 . ∅〉 and

~K = 〈ls, λ〈〉 . {σ}〉 skip 〈lf , λ〈〉 . {σ[x 7→ E(σ)]}〉. Again, it is easy to verify that the

two relations hold.

We continue with the proof of the inductive cases. Assume first that P =

P1 # P2 is a sequence program. Then, ~KP,⊥ = ~KP1,⊥ # ~KP2,⊥, where ~KP1,⊥ and

~KP2,⊥ are the empty configurations corresponding to programs P1 and P2, respec-

tively. Also, if θ is a terminal trace w.r.t P , then according to Proposition 7.1

θ ∼ t1︸︷︷︸
P1

P1

−−−→ 〈last(P1), σ〉t2︸ ︷︷ ︸
P2

. The trace t1〈last(P1), σ〉 is terminal w.r.t. P1, while

the trace 〈last(P1), σ〉t2 is terminal w.r.t. P2. Denote by ~K1 and ~K2 the configura-

tions that represent t1〈last(P1), σ〉 and 〈last(P1), σ〉t2, respectively. Proposition 7.9

entails that ~K = ~K1 # ~K2. According to the induction hypothesis, we have that

~KP1,⊥ −−−→ ~KP1,⊥, ~KP2,⊥ −−−→ ~KP2,⊥, ~K1 −−−→ ~K1, and ~K2 −−−→ ~K2. It follows

from the definition of the −−−→ relation given in Figure 7.5 that the two relations

hold.

Assume now that P is the if program 〈ls〉 if C then Pc else Pa endif 〈lf 〉.

Then, ~KP,⊥ = 〈ls, λ〈〉 . ∅〉 if C then ~KPc,⊥ else ~KPa,⊥ endif 〈lf , λ〈〉 . ∅〉. Ac-

cording to the induction hypothesis, ~KPc,⊥ −−−→ ~KPc,⊥ and ~KPa,⊥ −−−→ ~KPa,⊥.
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It follows from the definition of the −−−→ relation that ~KP,⊥ −−−→ ~KP,⊥. If

θ is a terminal trace w.r.t P , then, according to Proposition 7.2 we have two

sub-cases: either θ ∼ 〈ls, σs〉
P↙

−−−→ t︸︷︷︸
Pc

P↗
−−−→ 〈lf , σf 〉, where σs |= C and t

is a terminal trace w.r.t. Pc, or θ ∼ 〈ls, σs〉
P↘

−−−→ t︸︷︷︸
Pa

P↖
−−−→ 〈lf , σf 〉, where

σs |= ¬C and t is a terminal trace w.r.t. Pa. We shall prove only the first sub-

case, since the proof of the second one is similar. Denote by ~Kc the configuration

representing the trace t w.r.t. Pc. Then, according to Proposition 7.10 we have

~K = 〈ls, λ〈〉 . {σs}〉 if C then ~Kc else ~KPa,⊥ endif 〈lf , λ〈〉 . {σf }〉. The induc-

tion hypothesis states that ~Kc −−−→ ~Kc and ~KPa,⊥ −−−→ ~KPa,⊥. Moreover, since

σs |= C, we have that filter(C, λ〈〉 . {σs}) = λ〈〉 . {σs} and filter(¬C, λ〈〉 . {σs}) =

λ〈〉 . ∅. This entails that ~Kc = 〈first(K),filter(C, λ〈〉 . {σs})〉 # ~Kc and ~KPa,⊥ =

〈first(K),filter(¬C, λ〈〉 . {σs})〉 # ~KPa,⊥ from which it follows that ~K −−−→ ~K.

Finally, assume that P is the while program 〈ls〉 while C do Pb endwhile 〈lf 〉.

Then, ~KP,⊥ = 〈ls, λ〈〉 . ∅〉 while C do ~KPb,⊥ endwhile 〈lf , λ〈〉 . ∅〉. According

to the induction hypothesis, ~KPb,⊥ −−−→ ~KPb,⊥. It follows from the defini-

tion of the −−−→ relation that ~KP,⊥ −−−→ ~KP,⊥. If θ is a terminal trace

w.r.t P , then, according to Proposition 7.3 we have two sub-cases: either

θ ∼ 〈ls, σ〉
Py

−−−→ 〈lf , σ〉, where σ |= ¬C, or θ ∼ 〈ls, σs〉
P↘

−−−→ t1︸︷︷︸
Pb

P	

−−−→

· · ·
P	

−−−→ tk︸︷︷︸
Pb

P↖
−−−→ 〈lf , σf 〉, where trace segments t1, . . . , tk are terminal traces

w.r.t. Pb. For the first sub-case, according to Proposition 7.11 we have ~K =

〈ls, λ〈〉 . {σ}〉 while C do ~KPb,⊥ endwhile 〈lf , λ〈〉 . {σ}〉. The induction hypoth-

esis states that ~KPb,⊥ −−−→ ~KPb,⊥. Moreover, since σ |= ¬C, we have that

filter(C, before(λ〈〉 . {σ}, λ〈〉 . ∅)) = λ〈〉 . ∅ and by noting that ~KPb,⊥|last(Pb)
= λ〈〉 . ∅,

it follows that filter(C, before(λ〈〉 . {σ}, ~KPb,⊥|last(Pb)
)) # ~KPb,⊥ = ~KPb,⊥. We also

note that filter(¬C, λ〈〉 . {σ} ∪ collect( ~KPb,⊥|last(Pb)
)) = λ〈〉 . {σ}. By applying the
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definition of the transition relation given in Figure 7.5 it follows that ~K −−−→ ~K.

For the second sub-case, assume that we have θ ∼ 〈ls, σs〉
P↘

−−−→ t1︸︷︷︸
Pb

P	

−−−→

· · ·
P	

−−−→ tk︸︷︷︸
Pb

P↖
−−−→ 〈lf , σf 〉, where trace segments t1, . . . , tk are terminal traces

w.r.t. Pb. Given a rank i, 1 ≤ i < k, we have that the environment of the last

state of segment ti is the same as the environment of the first state of segment

ti+1. Also, the environment of the first state of t1 is σs, while the environment of

the last state of tk is σf . Denote by ~Ki the singleton configurations that represent

segments ti w.r.t. Pb, 1 ≤ i ≤ k, and by ~Kseq the sequencing seq( ~K1, . . . , ~Kk).

The above property entails that ~K1|first(Pb)
= λ〈〉 . {σs}, ~Kk|last(Pb)

= λ〈〉 . {σf},

and ~Ki|last(Pb)
= ~Ki+1|first(Pb)

, for all i, 1 ≤ i < k. From this it follows that

filter(C, before(λ〈〉 . {σs}, ~Kseq|last(Pb)
)) # ~Kseq = ~Kseq. Since all segments ti are

terminal, for all i, 1 ≤ i ≤ k, from the induction hypothesis we have that ~Ki −−−→

~Ki, which in turn entails, according to Proposition 7.16 that ~Kseq −−−→ ~Kseq. We

also have that filter(¬C, λ〈〉 . {σs}∪ collect( ~Kseq|last(Pb)
)) = λ〈〉 . {σf}. By applying

the definition of the transition relation given in Figure 7.5, it follows that ~K −−−→

~K. �

7.18 Proposition Consider a labeled program P and let θ1, θ2 ∈
→
P be two traces

such that θ1 is the longest proper prefix of θ2. Let ~K1 and ~K2 be two singleton

configurations such that repP (θ1) = ~K1 and repP (θ2) = ~K2. Then, ~K1 −−−→ ~K2.

Proof: The proof is by structural induction on the program P . We have two

base cases, when P is either a skip statement or an assignment. Assume first

that P is the skip statement 〈ls〉 skip 〈lf 〉. Then, Definition 5.1 entails that

θ1 = 〈ls, σ〉, and θ2 = 〈ls, σ〉〈lf , σ〉 for some environment σ ∈ Env. Accord-

ing to Relation 7.12 we have that repP (θ1) = 〈ls, λ〈〉 . {σ}〉 skip 〈lf , λ〈〉 . ∅〉 = ~K1,
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and repP (θ2) = 〈ls, λ〈〉 . {σ}〉 skip 〈lf , λ〈〉 . {σ}〉 = ~K2. It is easy to verify that

the relation ~K1 −−−→ ~K2, as defined in Figure 7.5 holds. Assume now that

P is the assignment 〈ls〉 x :=E 〈lf 〉, where ls and lf are labels, x ∈ Var, and

E ∈ Expr. Definition 5.1 entails that θ1 = 〈ls, σ〉, and θ2 = 〈ls, σ〉〈lf , σ[x 7→ E(σ)]〉

for some environment σ ∈ Env. According to Relation 7.12, we have that

repP (θ1) = 〈ls, λ〈〉 . {σ}〉 x := E 〈lf , λ〈〉 . ∅〉 = ~K1, and

repP (θ2) = 〈ls, λ〈〉 . {σ}〉 x := E 〈lf , λ〈〉 . {σ[x 7→ E(σ)]}〉 = ~K2. It is easy to verify

that the relation ~K1 −−−→ ~K2, as defined in Figure 7.5, holds.

We now proceed with the induction cases. Assume first that P = P1 # P2 is a

sequence program. According to Proposition 7.1, we have the following cases for

the traces θ1 and θ2. �

8.2 Proposition Let P be a labeled program, and S a set of states of P . Denote

by S0 the set {〈l, σ〉 | 〈l, σ〉 ∈ S and l = first(P )}. Assume that the representation

of S is a configuration K. Then (TP ∪ S0)(S) is represented by T(K).

Proof: We need to prove that for every label l ∈ labels(P ) we have T(K)|l =

{〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TP ∪ S0)(S) and l′ = l}. The proof is by induction on the

structure of P . Assume first that P is the skip program 〈ls〉 skip 〈lf 〉. Then,

(TP ∪ S0)(S) = S0 ∪ {〈lf , σ〉 | 〈ls, σ〉 ∈ S0}. On the other hand, T(K) =

〈ls, {σ | 〈ls, σ〉 ∈ S0}〉 skip 〈lf , {σ | 〈ls, σ〉 ∈ S0}〉 . Clearly, (TP ∪ S0)(S) is rep-

resented by T(K). Next, assume that P is the assignment 〈ls〉 x := E 〈lf 〉.

Then, (TP ∪ S0)(S) = S0 ∪ {〈lf , σ〉 | there exists σ′ s.t. 〈ls, σ
′〉 ∈ S0 and σ =

σ′[x 7→ E(σ′)]}. On the other hand, T(K) = 〈ls, {σ | 〈ls, σ〉 ∈ S0}〉 x := E

〈lf , {σ | there exists σ′ s.t. 〈ls, σ
′〉 ∈ S0 and σ = σ′[x 7→ E(σ′)]}〉. It can be easily

observed that (TP ∪ S0)(S) is represented by T(K).
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Assume now that P is the sequence program P1 # P2. In this case, configuration

K can be written as K1 # K2, where |K1| = P1 and |K2| = P2. Given a label

l ∈ labels(P ), we have that either l ∈ labels(P1), or l ∈ labels(P2)\{last(P1)}. Denote

by S1 and S2 the subsets of S that contain all the states with labels from P1 and

P2, respectively. Then, S1 is represented by K1 and S2 is represented by K2.

Denote by S20 the set of states whose label is first(P2). According to the induction

hypothesis, (TP1
∪S0)(S1) is represented by T(K1), and (TP2

∪S20)(S2) is represented

by T(K2). Moreover, according to the definition of TP (Definition 5.9) we have

that (TP ∪ S0)(S) = (TP1
∪ S0)(S1) ∪ ((TP2

∪ S20)(S2)\S20). Now, if the label

l is a member of labels(P1), we have that T(K)|l = T(K1)|l = {〈l′, σ′〉 | 〈l′, σ′〉 ∈

(TP1
∪ S0)(S1) and l′ = l} = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TP ∪ S0)(S) and l′ = l}. If, on

the other hand, l is a member of labels(P2)\{last(P1)}, we have that T(K)|l =

T(K2)|l = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ ((TP2
∪ S20)(S2)\S20) and l′ = l } = {〈l′, σ′〉 | 〈l′, σ′〉 ∈

(TP ∪ S0)(S) and l′ = l }.

Assume now that P is the if program 〈ls〉 if C then Pc else Pa endif 〈lf 〉.

For convenience, we introduce the following notations: Sc
not
= {〈l, σ〉 | 〈l, σ〉 ∈ S

and l ∈ labels(Pc)}, Sa
not
= {〈l, σ〉 | 〈l, σ〉 ∈ S and l ∈ labels(Pa)}, Sc0

not
=

{〈l, σ〉 | 〈l, σ〉 ∈ S and l = first(Pc)}, Sc1
not
= {〈l, σ〉 | 〈l, σ〉 ∈ S and l = last(Pc)},

Sa0
not
= {〈l, σ〉 | 〈l, σ〉 ∈ S and l = first(Pa)}, and Sa1

not
= {〈l, σ〉 | 〈l, σ〉 ∈ S and

l = last(Pa)}. Then we have (TP ∪ S0)(S) = S0 ∪ {〈first(Pc), σ〉 | 〈ls, σ〉 ∈ S0 and

σ |= C} ∪ {〈first(Pa), σ〉 | 〈ls, σ〉 ∈ S0 and σ |= ¬C} ∪ ((TPc ∪ S0c)(Sc)\S0c) ∪

((TPa ∪ S0a)(Sa)\S0a) ∪ {〈lf , σ〉 | 〈last(Pc), σ〉 ∈ S1c}∪ {〈lf , σ〉 | 〈last(Pa), σ〉 ∈ S1a}.

Consider now a label l ∈ labels(P ). We have six sub-cases: either l = ls, or l =

first(Pc), or l = first(Pa), or l ∈ labels(Pc)\{first(Pc)}, or l ∈ labels(Pa)\{first(Pa)},

or l = lf . If l = ls, then T(K)|l = S0 = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TP ∪ S0)(S) and

l′ = ls}. If l = first(Pc), then T(K)|l = {〈first(Pc), σ〉 | 〈ls, σ〉 ∈ S0 and σ |= C} =
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{〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TP ∪ S0)(S) and l′ = first(Pc)}. If l = first(Pa), then T(K)|l =

{〈first(Pa), σ〉 | 〈ls, σ〉 ∈ S0 and σ |= ¬C} = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TP ∪ S0)(S) and l′ =

first(Pa)}. If l ∈ labels(Pc)\{first(Pc)}, then T(K)|l = T(Kc)|l. According to the

induction hypothesis, T(Kc)|l = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TPc ∪Sc0)(Sc) and l′ = l}. It fol-

lows that T(K)|l = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TPc ∪Sc0)(S1) and l′ = l} = {〈l′, σ′〉 | 〈l′, σ′〉 ∈

(TP ∪ S0)(S) and l′ = l}. If l ∈ labels(Pa)\{first(Pa)}, then T(K)|l = T(Ka)|l.

According to the induction hypothesis, T(Ka)|l = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TPa ∪Sa0)(Sa)

and l′ = l}. It follows that T(K)|l = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TPa ∪ Sa0)(Sa) and

l′ = l} = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TP ∪ S0)(S) and l′ = l}. If l = lf , then T(K)|l =

{〈lf , σ〉 | 〈last(Pc), σ〉 ∈ S1c}∪ {〈lf , σ〉 | 〈last(Pa), σ〉 ∈ S1a} = {〈l′, σ′〉 | 〈l′, σ′〉 ∈

(TP ∪ S0)(S) and l′ = last(Pa)}.

Finally, assume that P is the while program 〈ls〉 while C then Pb endwhile 〈lf 〉.

For convenience, we introduce the following notations: Sb
not
= {〈l, σ〉 | 〈l, σ〉 ∈

S and l ∈ labels(Pb)}, Sb0
not
= {〈l, σ〉 | 〈l, σ〉 ∈ S and l = first(Pb)}, and

Sb1
not
= {〈l, σ〉 | 〈l, σ〉 ∈ S and l = last(Pb)}. Then we have (TP ∪ S0)(S) =

S0 ∪ ({〈first(Pb), σ〉 | 〈ls, σ〉 ∈ S0 and σ |= C} ∪ {〈first(Pb), σ〉 | 〈last(Pb), σ〉 ∈ Sb1

and σ |= C}) ∪ (TPb
∪ Sb0)(Sb) ∪ ({〈lf , σ〉 | 〈ls, σ〉 ∈ S0 and σ |= ¬C} ∪

{〈lf , σ〉 | 〈last(Pb), σ〉 ∈ Sb1 and σ |= ¬C}). Consider now a label l ∈ labels(P ).

We have four sub-cases: either l = ls, or l = first(Pb), or l ∈ labels(Pb)\{first(Pb)},

or l = lf . If l = ls, then T(K)|l = S0 = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TP ∪ S0)(S) and

l′ = ls}. If l = first(Pb), then T(K)|l = {〈first(Pb), σ〉 | 〈ls, σ〉 ∈ S0 and σ |= C}

∪ {〈first(Pb), σ〉 | 〈last(Pb), σ〉 ∈ Sb1 and σ |= C} = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TP ∪ S0)(S)

and l′ = first(Pb)}. If l ∈ labels(Pb)\{first(Pb)}, then T(K)|l = T(Kb)|l. Accord-

ing to the induction hypothesis, T(K b)|l = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TPb
∪ Sb0)(Sb) and

l′ = l}. It follows that T(K)|l = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TPb
∪ Sb0)(Sb) and l′ = l} =

{〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TP ∪ S0)(S) and l′ = l}. The last sub-case is l = lf . In this case
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we have T(K)|l = {〈lf , σ〉 | 〈ls, σ〉 ∈ S0 and σ |= ¬C} ∪ {〈lf , σ〉 | 〈last(Pb), σ〉 ∈ Sb1

and σ |= ¬C} = {〈l′, σ′〉 | 〈l′, σ′〉 ∈ (TP ∪ S0)(S) and l′ = last(P )}. �

8.3 Proposition Let P be a program, Σ0 a set of start environments, and denote

by K0 the configuration such that |K0| = P , K0|first(P ) = Σ0, and K0|l = ∅ for all

labels l ∈ labels(P )\{first(P )}. Then, T ω(K0) represents the collecting semantics

of P w.r.t. Σ0.

Proof: Let us denote by K
CS

the configuration that represents the set of states

CSP = lub{T n
P (S0) |n ∈ N}, and by S0 the set {〈first(P ), σ〉 |σ ∈ Σ0}. We need to

show that K
CS

is T ω(K0) = lub({T n(K0) |n ∈ N}). We first show by induction

that for all n we have that the configuration Kn = T n(K0) represents the set of

states T n
P (S0). The base case is trivially true. For the induction case, assume that

the property of Kn representing the set of states T n
P (S0) holds. Then, according to

Proposition 8.2 we have that Kn+1 = T(Kn) represents TP (T n
P (S0)) = T n+1

P (S0).

We now show that K
CS

is lub({T n(K0) |n ∈ N}), by first showing that K
CS

is

an upper bound, and then that it is the least one. Indeed, from T n
P (S0) ⊆ CSP ,

and T n
P (S0) and CSP being represented by Kn and K

CS
, respectively, we have that

Kn 4 K
CS

, for all n ∈ N. On the other hand, let K be an upper bound of the set

{T n(K0) |n ∈ N}, and denote by S the set of states represented by K (according

to Proposition 8.1 S is unique). From Kn 4 K it follows that T n
P (S0) ⊆ S, that is,

S is an upper bound of {T n(K0) |n ∈ N}. As a result, we have that T ω(K0) ⊆ S,

and it follows that K
CS
4 K. �

8.4 Proposition Given a set of collective configurations with the same skeleton

Γ, we have that T(
⋃

K∈Γ K) =
⋃

K∈Γ T(K).
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Proof: Let us denote by P the program that is the skeleton of configurations in

Γ. The proof is by induction on the structure of P . Assume first that P is the

skip program 〈ls〉skip〈lf 〉. Then we have that K = 〈ls,K|ls〉 skip 〈lf ,K|lf 〉, for all

K ∈ Γ. It follows that

T(
⋃

K∈Γ K) = T(
⋃

K∈Γ(〈ls,K|ls〉 skip 〈lf ,K|lf 〉))

= T(〈ls,
⋃

K∈Γ |ls〉skip〈lf ,
⋃

K∈Γ |lf 〉

=
⋃

K∈Γ(〈ls,K |ls〉 skip 〈lf ,K|ls〉)

=
⋃

K∈Γ T(〈ls,K|ls〉 skip 〈lf ,K|lf 〉)

= T(K),

for all K ∈ Γ. Assume now that P is the assignment 〈ls〉 x := E 〈lf 〉. Then we have

that K = 〈ls,K |ls〉 x := E 〈lf ,K |lf 〉, for all K ∈ Γ. It follows that

T(
⋃

K∈Γ K) = T(
⋃

K∈Γ(〈ls,K|ls〉x := E 〈lf ,K|lf 〉))

= T(〈ls,
⋃

K∈Γ K|ls〉x := E 〈lf ,
⋃

K∈Γ K|lf 〉)

= T(〈ls,
⋃

K∈Γ K|ls〉x := E 〈lf ,
⋃

K∈Γ K|lf 〉)

= 〈ls,
⋃

K∈Γ K|ls〉x := E 〈lf ,
⋃

K∈Γ K|ls [x 7→ E]〉

=
⋃

K∈Γ(〈ls,K|ls〉 x := E 〈lf ,K|ls [x 7→ E]〉)

=
⋃

K∈Γ T(〈ls,K|ls〉x := E 〈lf ,K|lf 〉)

=
⋃

K∈Γ T(K),

for all K ∈ Γ. Next, assume that P is the sequence program P1 # P2. Then, given

a K ∈ Γ, we denote by K
fst

and K
snd

the sub-configurations of K whose skeletons

are P1 and P2, respectively. Obviously, K = K
fst

# K
snd

, for all K ∈ Γ. Moreover,

from the induction hypothesis we have that T(
⋃

K∈Γ K
fst

) =
⋃

K∈Γ T(K
fst

) and



APPENDIX A. PROOFS IN THE THESIS 297

T(
⋃

K∈Γ K
snd

) =
⋃

K∈Γ T(K
snd

). It follows that

T(
⋃

K∈Γ K) = T(
⋃

K∈Γ(K
fst

# K
snd

))

= T((
⋃

K∈Γ K
fst

) # (
⋃

K∈Γ K
snd

))

= T(
⋃

K∈Γ K
fst

) # T(
⋃

K∈Γ K
snd

)

=
⋃

K∈Γ T(K
fst

) #
⋃

K∈Γ T(K
snd

)

=
⋃

K∈Γ(T(K
fst

) # T(K
snd

))

=
⋃

K∈Γ T(K),

for all K ∈ Γ. Now assume that P is the if program 〈ls〉 if C then Pc

else Pa endif 〈lf 〉. Then, given a K ∈ Γ, we denote by K
c

and K
a

the

sub-configurations of K whose skeletons are Pc and Pa, respectively. Obviously,

K = 〈ls,K|ls〉if C then K
c
else K

a
endif 〈lf ,K |lf 〉, for all K ∈ Γ. More-

over, from the induction hypothesis we have that T(
⋃

K∈Γ K
c
) =

⋃
K∈Γ T(K

c
) and

T(
⋃

K∈Γ K
a
) =

⋃
K∈Γ T(K

a
). It follows that

T(
⋃

K∈Γ K) = T(
⋃

K∈Γ(〈ls,K|ls〉if C then K
c
else K

a
endif 〈lf ,K |lf 〉))

= T(
⋃

K∈Γ(〈ls,K|ls〉 if C then K
c
else K

a
endif 〈lf ,K|lf 〉))

= T




〈ls,
⋃

K∈Γ K|ls〉

if C then
⋃

K∈Γ K
c

else
⋃

K∈Γ K
a

endif

〈lf ,
⋃

K∈Γ K|lf 〉



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= 〈ls,
⋃

K∈Γ K|ls〉

if C then 〈first(Pc), {σ |σ |= C} ∩
⋃

K∈Γ K|ls〉 # T(
⋃

K∈Γ K
c
)

else 〈first(Pa), {σ |σ |= ¬C} ∩
⋃

K∈Γ K|ls〉 # T(
⋃

K∈Γ K
a
)

endif

〈lf ,
⋃

K∈Γ K
c
|last(Pc)

∪
⋃

K∈Γ K
a
|last(Pa)〉

= 〈ls,
⋃

K∈Γ K|ls〉

if C then 〈first(Pc), {σ |σ |= C} ∩
⋃

K∈Γ K|ls〉 # T(
⋃

K∈Γ K
c
)

else 〈first(Pa), {σ |σ |= ¬C} ∩
⋃

K∈Γ K|ls〉 # T(
⋃

K∈Γ K
a
)

endif

〈lf ,
⋃

K∈Γ K
c
|last(Pc)

∪
⋃

K∈Γ K
a
|last(Pa)〉

= (
⋃

K∈Γ 〈ls,K|ls〉)

if C then (
⋃

K∈Γ 〈first(Pc), {σ |σ |= C} ∩ K|ls〉) # (
⋃

K∈Γ T(K
c
))

else (
⋃

K∈Γ 〈first(Pa), {σ |σ |= ¬C} ∩ K|ls〉) # (
⋃

K∈Γ T(K
a
))

endif

(
⋃

K∈Γ 〈lf ,K
c
|last(Pc)

∪ K
a
|last(Pa)〉)

=
⋃

K∈Γ




〈ls,K|ls〉

if C then 〈first(Pc), {σ |σ |= C} ∩ K|ls〉 # T(K
c
)

else 〈first(Pa), {σ |σ |= ¬C} ∩ K|ls〉 # T(K
a
)

endif

〈lf ,K
c
|last(Pc)

∪ K
a
|last(Pa)〉



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=
⋃

K∈Γ T(〈ls,K|ls〉 if C then K
c
else K

a
endif 〈lf ,K |lf 〉)

=
⋃

K∈Γ T(K).

Finally, assume that P is the while program 〈ls〉 while C do Pb endwhile

〈lf 〉. Then, given a configuration K ∈ Γ, we denote by K
b

the sub-

configuration of K whose skeleton is Pb, respectively. Obviously, K =

〈ls,K|ls〉 while C do K
b
endwhile 〈lf ,K|lf 〉, for all K ∈ Γ. Moreover, from the

induction hypothesis we have that T(
⋃

K∈Γ K
b
) =

⋃
K∈Γ T(K

b
). It follows that

T(
⋃

K∈Γ K) = T(
⋃

K∈Γ(〈ls,K|ls〉 while C do K
b
endwhile 〈lf ,K|lf 〉))

= T(
⋃

K∈Γ(〈ls,K|ls〉 while C do K
b
endwhile 〈lf ,K|lf 〉))

= T(〈ls,
⋃

K∈Γ K|ls〉 while C then
⋃

K∈Γ K
b
endwhile 〈lf ,

⋃
K∈Γ K|lf 〉)

= 〈ls,
⋃

K∈Γ K|ls〉

while C do

〈first(Pb), {σ |σ |= C} ∩ (
⋃

K∈Γ K|ls ∪
⋃

K∈Γ K
b
|last(Pb)

)〉

#T(
⋃

K∈Γ K
b
)

endwhile

〈lf , {σ |σ |= ¬C} ∩ (
⋃

K∈Γ K|ls ∪
⋃

K∈Γ K
b
|last(Pb)

)〉
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= (
⋃

K∈Γ 〈ls,K|ls〉)

while C do

(
⋃

K∈Γ 〈first(Pb), {σ |σ |= C} ∩ (K|ls ∪ K
b
|last(Pb)

))〉

#(
⋃

K∈Γ T(K
b
))

endwhile

(
⋃

K∈Γ 〈lf , {σ |σ |= ¬C} ∩ (K|ls ∪ K
b
|last(Pb)

)〉)

=
⋃

K∈Γ




〈ls,K|ls〉

while C do

〈first(Pb), {σ |σ |= C} ∩ (K|ls ∪ K
b
|last(Pb)

)〉 # T(K
b
)

endwhile

〈lf , {σ |σ |= ¬C} ∩ (K|ls ∪ K
b
|last(Pb)

)〉




=
⋃

K∈Γ T(〈ls,K|ls〉 while C do K
b
endwhile 〈lf ,K|lf 〉)

=
⋃

K∈Γ T(K).

which completes the proof by induction. �

10.5 Proposition We have that T p ◦ ~α = ~α ◦ ~T.

Proof: We will show that given a program P , (T p ◦ ~α)(~Γ) = (~α ◦ ~T)(~Γ), for all ~Γ ⊆

{ ~K | | ~K| = P}. The proof is by induction on the structure of program P . For the

purpose of this proof, we denote by b{a}c. Let ~Γ be a set of singleton configurations

whose skeleton is P . First, assume that P is the skip program 〈ls〉 skip 〈lf 〉. We

can express ~Γ as
⋃

~K∈~Γ{〈ls,
~K|ls〉 skip 〈lf , ~K|lf 〉}. Then, using Remarks 10.3 and
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10.4 we have that

T p(~α(~Γ)) = T p(〈ls,
⋃

~K∈~Γ
~K|ls〉 skip 〈lf ,

⋃
~K∈~Γ

~K|lf 〉) = 〈ls,
⋃

~K∈~Γ
~K|ls〉 skip 〈lf ,

⋃
~K∈~Γ

~K|ls〉.

We also have that

~α(~T(~Γ)) = ~α(
⋃

~K∈~Γ

{〈ls, ~K|ls〉 skip 〈lf , ~K|ls〉} = 〈ls,
⋃

~K∈~Γ
~K|ls〉 skip 〈lf ,

⋃
~K∈~Γ

~K|ls〉.

It follows that T p(~α(~Γ)) = ~α(~T(~Γ)). Next, assume that P is the assignment

〈ls〉x := E 〈lf 〉. Then, we can express the set ~Γ as
⋃

~K∈~Γ{〈ls,
~K|ls〉x := E 〈lf , ~K|lf 〉}.

We have that

T p(~α(~Γ)) = T p(〈ls,
⋃

~K∈~Γ
~K|ls〉 x := E 〈lf ,

⋃
~K∈~Γ

~K|lf 〉)

= 〈ls,
⋃

~K∈~Γ
~K|ls〉 x := E 〈lf ,

⋃
~K∈~Γ

~K|ls [x 7→ E]〉.

We also have

~α(~T(~Γ)) = ~α(
⋃

~K∈~Γ{〈ls,
~K|ls〉 x := E 〈lf , ~K |lf [x 7→ E]〉})

= 〈ls,
⋃

~K∈~Γ
~K|ls〉 x := E 〈lf ,

⋃
~K∈

~~Γ
~K|ls [x 7→ E]〉.

It follows that T p(~α(~Γ)) = ~α(~T(~Γ)). Assume now that P is the sequence program

P1 # P2. Given a configuration ~K ∈ ~Γ, we denote by ~Kfst and ~Ksnd the sub-

configurations of ~K whose skeletons are P1 and P2, respectively. We can express

the set ~Γ as
⋃

~K∈~Γ{
~Kfst # ~Ksnd}. Then, using Remarks 10.3 and 10.4, we have that

T p(~α(~Γ)) = T p(~α(
⋃

~K∈~Γ{
~Kfst}) # ~α(

⋃
~K∈~Γ{

~Ksnd}))

= T p(~α(
⋃

~K∈~Γ{
~Kfst})) # T p(~α(

⋃
~K∈~Γ{

~Ksnd})).

We also have

~α(~T(~Γ)) = ~α(
⋃

~K∈~T(~Γ)){
~Kfst # ~Ksnd}

=
⋃

~K∈~T(~Γ) ~α({ ~Kfst}) # ~α({ ~Ksnd})

= ~α(
⋃

~K∈~T(~Γ){
~Kfst}) # ~α(

⋃
~K∈~T(~Γ){

~Ksnd})

= ~α(~T(
⋃

~K∈~Γ{
~Kfst})) # ~α(~T(

⋃
~K∈~Γ{

~Ksnd})).
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From the induction hypothesis, we have that T p(~α(
⋃

~K∈~Γ{
~Kfst}) =

~α(~T(
⋃

~K∈~Γ{
~Kfst})) and T p(~α(

⋃
~K∈~Γ{

~Ksnd}) = ~α(~T(
⋃

~K∈~Γ{
~Ksnd})), from

which it follows that T p(~α(~Γ)) = ~α(~T(~Γ)). Assume now that P is the

if program 〈ls〉 if C then Pc else Pa endif 〈lf 〉. Given a configura-

tion ~K ∈ ~Γ, we denote by ~Kc and ~Ka the sub-configurations of ~K whose

skeletons are Pc and Pa, respectively. Then, we can write the set ~Γ as

⋃
~K∈~Γ{〈ls,

~K|ls〉 if C then ~Kc else ~Ka endif 〈lf , ~K|lf 〉}. Then, using Re-

marks 10.3 and 10.4, we have that

T p(~α(~Γ)) = T p




〈ls,
⋃

~K∈~Γ
~K|ls〉

if C then ~α(
⋃

~K∈~Γ{
~Kc})

else ~α(
⋃

~K∈~Γ{
~Ka})

endif 〈lf ,
⋃

~K∈~Γ
~K|lf 〉




= 〈ls,
⋃

~K∈~Γ
~K|ls〉

if C then 〈first(Pc),filter(C,
⋃

~K∈~Γ
~K|ls)〉 # T p(~α(

⋃
~K∈~Γ{

~Kc}))

else 〈first(Pa),filter(¬C,
⋃

~K∈~Γ
~K|ls)〉 # T p(~α(

⋃
~K∈~Γ{

~Ka}))

endif

〈lf , (
⋃

~K∈~Γ
~Kc|last(Pc)

) ∪ (
⋃

~K∈~Γ
~Ka|last(Pa))〉.
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We also have that

~α(~T(~Γ)) = ~α




⋃
~K∈~Γ





〈ls, ~K|ls〉

if C then〈first(Pc),filter(C, ~K |ls)〉 # ~K1

else 〈first(Pa),filter(¬C, ~K|ls)〉 # ~K2

endif

〈lf , ~Kc|last(Pc)
∪ ~Ka|last(Pa)〉 |

~K1 ∈ ~T({ ~Kc}), ~K2 ∈ ~T({ ~Ka})








=
⋃

~K∈~Γ ~α








〈ls, ~K|ls〉

if C then〈first(Pc),filter(C, ~K |ls)〉 # ~K1

else 〈first(Pa),filter(¬C, ~K|ls)〉 # ~K2

endif

〈lf , ~Kc|last(Pc)
∪ ~Ka|last(Pa)〉 |

~K1 ∈ ~T({ ~Kc}), ~K2 ∈ ~T({ ~Ka})








=
⋃

~K∈~Γ




〈ls, ~K|ls〉

if C then 〈first(Pc),filter(C, ~K |ls)〉 # ~α(~T({ ~Kc}))

else 〈first(Pa),filter(¬C, ~K |ls)〉 # ~α(~T({ ~Ka}))

endif

〈lf , ~Kc|last(Pc)
∪ ~Ka|last(Pa)〉




= 〈ls,
⋃

~K∈~Γ
~K|ls〉

if C then 〈first(Pc),filter(C,
⋃

~K∈~Γ
~K|ls)〉 #

⋃
~K∈~Γ ~α(~T({ ~Kc}))

else 〈first(Pa),filter(¬C,
⋃

~K∈~Γ
~K|ls)〉 #

⋃
~K∈~Γ ~α(~T({ ~Ka}))

endif

〈lf ,
⋃

~K∈~Γ( ~Kc|last(Pc)
∪ ~Ka|last(Pa))〉

= 〈ls,
⋃

~K∈~Γ
~K|ls〉

if C then 〈first(Pc),filter(C,
⋃

~K∈~Γ
~K|ls)〉 # ~α(~T(

⋃
~K∈~Γ{

~Kc}))

else 〈first(Pa),filter(¬C,
⋃

~K∈~Γ
~K|ls)〉 # ~α(~T(

⋃
~K∈~Γ{

~Ka}))

endif

〈lf ,
⋃

~K∈~Γ( ~Kc|last(Pc)
∪ ~Ka|last(Pa))〉.
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Since from the induction hypothesis we have that T p(~α(
⋃

~K∈~Γ{
~Kc})) =

~α(~T(
⋃

~K∈~Γ{
~Kc})) and T p(~α(

⋃
~K∈~Γ{

~Ka})) = ~α(~T(
⋃

~K∈~Γ{
~Ka})), it follows that

T p(~α(~Γ)) = ~α(~T(~Γ)). Finally, assume that P is the while program

〈ls〉 while C do Pb endwhile 〈lf 〉. Given a configuration ~K ∈ ~Γ, we denote by

~Kb the sub-configuration of ~K whose skeleton is Pb. Then, we can write the set ~Γ

as
⋃

~K∈~Γ{〈ls,
~K |ls〉 while C do ~Kb endwhile 〈lf , ~K|lf 〉}. Then, using Remarks 10.3

and 10.4, we have that

T p(~α(~Γ)) = T p




〈ls,
⋃

~K∈~Γ
~K|ls〉

while C do

~α(
⋃

~K∈~Γ{
~Kb})

endwhile

〈lf ,
⋃

~K∈~Γ
~K|lf 〉




= 〈ls,
⋃

~K∈~Γ
~K|ls〉

while C do

〈first(Pc),filter(C, before(
⋃

~K∈~Γ
~K|ls ,

⋃
~K∈~Γ

~Kb|last(Pb)
))〉

#T p(~α(
⋃

~K∈~Γ
{ ~Kb}))

endwhile

〈lf ,filter(¬C, (
⋃

~K∈~Γ
~K|ls) ∪ collect(

⋃
~K∈~Γ

~Kb|last(Pb)
))〉.

We also have that

~α(~T(~Γ)) = ~α




⋃
~K∈~Γ





〈ls, ~K|ls〉

while C do

〈first(Pb),filter(C, before( ~K|ls , ~Kb|last(Pb)
))〉 # ~K1

endwhile

〈lf ,filter(¬C, ~K |ls ∪ collect( ~Kb|last(Pb)
))〉 | ~K1 ∈ ~T({ ~Kb})







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=
⋃

~K∈~Γ ~α








〈ls, ~K|ls〉

while C do

〈first(Pb),filter(C, before( ~K|ls , ~Kb|last(Pb)
))〉 # ~K1

endwhile

〈lf ,filter(¬C, ~K |ls ∪ collect( ~Kb|last(Pb)
))〉 | ~K1 ∈ ~T({ ~Kb})








=
⋃

~K∈~Γ




〈ls, ~K|ls〉

while C do

〈first(Pb),filter(C, before( ~K|ls , ~Kb|last(Pb)
))〉 # ~α(~T({ ~Kb}))

endwhile

〈lf ,filter(¬C, ~K|ls ∪ collect( ~Kb|last(Pb)
))〉




= 〈ls,
⋃

~K∈~Γ
~K|ls〉

while C do

〈first(Pb),filter(C, before(
⋃

~K∈~Γ
~K|ls ,

⋃
~K∈~Γ

~Kb|last(Pb)
))〉 #

⋃
~K∈~Γ ~α(~T({ ~Kb}))

endwhile

〈lf ,filter(¬C, (
⋃

~K∈~Γ
~K|ls) ∪ collect(

⋃
~K∈~Γ

~Kb|last(Pb)
))〉

= 〈ls,
⋃

~K∈~Γ
~K|ls〉

while C do

〈first(Pb),filter(C, before(
⋃

~K∈~Γ
~K|ls ,

⋃
~K∈~Γ

~Kb|last(Pb)
))〉 # ~α(~T(

⋃
~K∈~Γ{

~Kb}))

endwhile

〈lf ,filter(¬C, (
⋃

~K∈~Γ
~K|ls) ∪ collect(

⋃
~K∈~Γ

~Kb|last(Pb)
))〉.



APPENDIX A. PROOFS IN THE THESIS 306

Since from the induction hypothesis we have that T p(~α(
⋃

~K∈~Γ{
~Kb})) =

~α(~T(
⋃

~K∈~Γ{
~Kb})), it follows that T p(~α(~Γ)) = ~α(~T(~Γ)). �

10.11 Proposition Given a program P , we have that T ◦ α = α ◦ T p.

Proof: We need to show that T(α(K)) = α(T p(K)), for all K ∈ Progressive(K).

The proof is by induction on the structure of the program P . Assume

first that P is the skip program 〈ls〉 skip 〈lf 〉. Then, K can be written as

〈first(P ),K|first(P )〉 skip 〈last(P ),K|last(P )〉. We have that

T(α(K)) = T(α(〈first(P ),K|first(P )〉) skipα(〈last(P ),K|last(P )〉))

= T(〈first(P ),
⋃

µ̃ K|first(P )(µ̃)〉 skip 〈last(P ),
⋃

µ̃ K|last(P )(µ̃)〉)

= 〈first(P ),
⋃

µ̃ K|first(P )(µ̃)〉 skip 〈last(P ),
⋃

µ̃ K|first(P )(µ̃)〉

We also have that

α(T p(K)) = α(〈first(P ),K|first(P )〉 skip 〈last(P ),K|first(P )〉)

= 〈first(P ),
⋃

µ̃ K|first(P )(µ̃)〉 skip 〈last(P ),
⋃

µ̃ K|first(P )(µ̃)〉.

It follows that T(α(K)) = α(T p(K)). Assume now that P

is the assignment 〈ls〉x := E 〈lf 〉. Then, K can be written as

〈first(P ),K|first(P )〉x := E 〈last(P ),K|last(P )〉. We have that

T(α(K)) = T(α(〈first(P ),K|first(P )〉) x := E α(〈last(P ),K|last(P )〉))

= T(〈first(P ),
⋃

µ̃ K|first(P )(µ̃)〉 x := E 〈last(P ),
⋃

µ̃ K|last(P )(µ̃)〉)

= T(〈first(P ),
⋃

µ̃ K|first(P )(µ̃)〉 x := E 〈last(P ), (
⋃

µ̃ K|first(P )(µ̃))[x 7→ E]〉).

We also have that

α(T p(K)) = α(〈first(P ),K|first(P )〉 x := E 〈last(P ), âssign(K|first(P ), x, E)〉)

= T(〈first(P ),
⋃

µ̃ K|first(P )(µ̃)〉x := E 〈last(P ), (
⋃

µ̃ K|first(P )(µ̃))[x 7→ E]〉).

It follows that T(α(K)) = α(T p(K)). Next, assume that P is the sequence program

P1 #P2. Given a configuration K whose skeleton is P , denote by K fst and Ksnd the
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sub-configurations of K whose skeleton are P1 and P2, respectively. Then, K can

be written as Kfst # Ksnd. We have that

T(α(K)) = T(α(Kfst # Ksnd))

= T(α(Kfst)) # T(α(Ksnd)).

We also have that

α(T p(K)) = α(T p(Kfst # Ksnd))

= α(T p(Kfst)) # α(T p(Ksnd)).

From the induction hypothesis we have that T(α(K fst)) = α(T p(Kfst)) and

T(α(Ksnd)) = α(T p(Ksnd)), from which it follows that T(α(K)) = α(T p(K)). Next,

assume that P is the if program 〈ls〉 if C then Pc else Pa endif 〈lf 〉. Given a

configuration K whose skeleton is P , denote by K c and Ka the sub-configurations

of K whose skeleton are Pc and Pa, respectively. Then, K can be written as

〈ls,K|ls〉 if C then Kc else Ka endif 〈lf ,K|lf 〉. We have that

T(α(K)) = T(α(〈ls,K|ls〉 if C then Kc else Ka endif 〈lf ,K|lf 〉))

= T(〈ls,
⋃

µ̃ K|ls(µ̃)〉 if C then α(Kc) else α(Ka) endif 〈lf ,
⋃

µ̃ K|lf (µ̃)〉)

= 〈ls,
⋃

µ̃ K|ls(µ̃)〉

if C then 〈first(Pc), {σ |C |= σ} ∩
⋃

µ̃ K|ls(µ̃)〉 # T(α(Kc))

else 〈first(Pc), {σ | ¬C |= σ} ∩
⋃

µ̃ K|ls(µ̃)〉 # T(α(Ka))

endif 〈lf , α(Kc|last(Pc)
) ∪ α(Ka|last(Pa))〉.
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We also have that

α(T p(K)) = α




〈ls,K|ls〉

if C then 〈first(Pc),filter(C,K|ls)〉 # T p(Kc)

else 〈first(Pa),filter(¬C,K|ls)〉 # T p(Ka)

endif

〈lf ,Kc|last(Pc)
∪ Ka|last(Pa)〉




= 〈ls,
⋃

µ̃ K|ls(µ̃)〉

if C then 〈first(Pc),
⋃

µ̃(filter(C,K|ls))(µ̃)〉 # α(T p(Kc))

else 〈first(Pa),
⋃

µ̃(filter(¬C,K|ls))(µ̃)〉 # α(T p(Ka))

endif 〈lf ,
⋃

µ̃(Kc|last(Pc)
∪ Ka|last(Pa))(µ̃)〉.

From the induction hypothesis we have α(T p(Kc)) = T(α(Kc)) and α(T p(Ka)) =

T(α(Ka)), and using Remarks 10.9 and 10.10 we obtain T(α(K)) = α(T p(K)).

Finally, assume that P is the while program 〈ls〉 while C do Pb endwhile 〈lf 〉.

Given a configuration K whose skeleton is P , denote by K b the sub-

configuration of K whose skeleton is Pb. Then, K can be written as
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〈ls,K|ls〉 while C do Kb endwhile 〈lf ,K|lf 〉. We have that

T(α(K)) = T(α(〈ls,K|ls〉 while C do Kb endwhile 〈lf ,K|lf 〉)

= T(〈ls,
⋃

µ̃ K|ls(µ̃)〉 while C do α(Kb) endwhile 〈lf ,
⋃

µ̃ K|lf (µ̃)〉)

= 〈ls,
⋃

µ̃ K|ls(µ̃)〉

while C do

〈first(Pb), {σ |σ |= C} ∩ (
⋃

µ̃ K|ls(µ̃) ∪ α(Kb)|last(Pb)
)〉 # T(α(Kb))

endwhile

〈last(Pb), {σ |σ |= ¬C} ∩ (
⋃

µ̃ K|ls(µ̃) ∪ α(Kb)|last(Pb)
)〉

= 〈ls,
⋃

µ̃ K|ls(µ̃)〉

while C do

〈first(Pb), {σ |σ |= C} ∩ (
⋃

µ̃ K|ls(µ̃) ∪
⋃

µ̃ Kb|last(Pb)
(µ̃))〉 # T(α(Kb))

endwhile

〈last(Pb), {σ |σ |= ¬C} ∩ (
⋃

µ̃ K|ls(µ̃) ∪
⋃

µ̃ Kb|last(Pb)
(µ̃))〉.

We also have that

α(T p(K)) = α




〈ls,K|ls〉

while C then

〈first(Pc),filter(C, before(K|ls ,K
b|last(Pb)

))〉 # T p(Kb)

endwhile

〈lf ,filter(¬C, collect(Kc|last(Pc)
) ∪ Ka|last(Pa))〉




= 〈ls,
⋃

µ̃ K|ls(µ̃)〉

while C then

〈first(Pc),
⋃

µ̃(filter(C, before(K|ls ,K
b|last(Pb)

)))(µ̃)〉 # α(T p(Kb))

endwhile

〈lf ,
⋃

µ̃(filter(¬C, collect(Kc|last(Pc)
) ∪ Ka|last(Pa)))(µ̃)〉

From the induction hypothesis we have α(T p(Kb)) = T(α(Kb)), and using Re-

marks 10.9 and 10.10 it follows that T(α(K)) = α(T p(K)). �
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11.3 Proposition Let K be a progressive configuration, and K̂ a family configu-

ration that covers K. Then, T̂ (K̂) covers T p(K).

Proof: The proof is by induction on the structure of the configuration K. Assume

first that K is the skip statement 〈ls, Ψs〉 skip 〈lf , Ψf 〉. Since K̂ covers K,

it must be of the form 〈ls, Φs〉 skip 〈lf , Φf 〉, with Φs and Φf covering Ψs and

Ψf , respectively. T p(K) is the progressive configuration 〈ls, Ψs〉 skip 〈lf , Ψs〉,

and T̂ (K̂) is the family configuration 〈ls, Φs〉 skip 〈lf , Φs〉. Clearly, T̂ (K̂)

covers T p(K). Assume now that K is the assignment 〈ls, Ψs〉x := E 〈lf , Ψf 〉.

Since K̂ covers K, it must be of the form 〈ls, Φs〉 x := E 〈lf , Φf 〉, with Φs and

Φf covering Ψs and Ψf , respectively. T p(K) is the progressive configura-

tion 〈ls, Ψs〉x := E 〈lf , assign(x,E, Ψf )〉, and T̂ (K̂) is the family configuration

〈ls, Φs〉 x := E 〈lf , âssign(x,E, Φf )〉. According to Remark 11.2, T̂ (K̂) covers

T p(K). Next, assume that K is the sequence K1 #K2. According to Remark 11.1 K̂

is a family configuration K̂1 # K̂2, where K̂1 covers K1 and K̂2 covers K2. Using the

induction hypothesis, we have that T̂ (K̂1) covers T p(K1) and T̂ (K̂2) covers T p(K2).

Using Remark 11.1 again, we have that T̂ (K̂1) # T̂ (K̂2) covers T p(K1) # T p(K2),

which entails that T̂ (K̂) covers T p(K). Assume now that K is the if state-

ment 〈ls, Ψs〉 if C then Kc else Ka endif 〈lf , Ψf 〉. According to Remark 11.1

K̂ is a family configuration 〈ls, Φs〉 if C then K̂c else K̂a endif 〈lf , Φf 〉,

with Φs and Φf covering Ψs and Ψf , respectively, and K̂c and K̂a cover-

ing Kc and Ka, respectively. Then, T p(K) is the progressive configuration

〈ls, Ψs〉 if C then 〈first(Kc),filter(C, Ψs)〉 # T p(Kc) else 〈first(Ka),filter(¬C, Ψs)〉 #

T p(Ka) endif 〈lf ,Kc|last(Kc)
∪ Ka|last(Ka)〉. On the other hand, T̂ (K̂)

is the family configuration 〈ls, Φs〉 if C then 〈first(K̂c), fîlter(C, Φs)〉 #

T̂ (K̂c) else 〈first(K̂a), fîlter(¬C, Φs)〉 # T̂ (K̂a) endif 〈lf , K̂c|last(K̂c)
∪̂K̂a|last(K̂a)〉.
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Using the induction hypothesis, we have that T̂ (K̂c) covers T p(Kc) and T̂ (K̂a)

covers T p(Ka). Using Remark 11.2, we also have that fîlter(C, Φs) covers

filter(C, Ψs), fîlter(¬C, Φs) covers filter(¬C, Ψs), and K̂c|last(K̂c)
∪̂K̂a|last(K̂a)

covers Kc|last(Kc)
∪ Ka|last(Ka). Using Remark 11.1 again, it follows that

T̂ (K̂) covers T p(K). Finally, assume that K is the while statement

〈ls, Ψs〉 while C do Kb endwhile 〈lf , Ψf 〉. According to Remark 11.1 K̂ is a

family configuration 〈ls, Φs〉 while C do K̂b endwhile 〈lf , Φf 〉, with Φs and Φf cov-

ering Ψs and Ψf , respectively, and K̂b covering Kb. Then, T p(K) is the progressive

configuration 〈ls, Ψs〉 while C do 〈first(Kb),filter(C, before(Ψs,Kb|last(Kb)
))〉 #

T p(Kc) endwhile 〈lf ,filter(¬C, Ψs ∪ collectKb|last(Kb)
)〉. On

the other hand, T̂ (K̂) is the family configuration

〈ls, Φs〉 while C do 〈first(K̂b), fîlter(C, b̂efore(Φs, K̂b|last(K̂b)
))〉 #

T̂ (K̂c) endwhile 〈lf ,filter(¬C, Φs ∪ collectK̂b|last(K̂b)
)〉. Using the induction

hypothesis, we have that T̂ (K̂b) covers T p(Kb). Using Remark 11.2, we also have

that fîlter(C, b̂efore(Φs, K̂b|last(K̂b)
)) covers filter(C, before(Ψs,Kb|last(Kb)

)) and

filter(¬C, Φs ∪ collectK̂b|last(K̂b)
) covers filter(¬C, Ψs ∪ collectKb|last(Kb)

). Using

Remark 11.1 again, it follows that T̂ (K̂) covers T p(K). �

11.4 Proposition Let P be the sequence program P1 # P2, and let K̂ be a family

configuration such that |K̂| = P . Denote by K̂1 and K̂2 the sub-configurations

of ~K such that |K̂1| = P1 and |K̂2| = P2. If T̂ (K̂) 4 K̂, then T̂ (K̂1) 4 K̂1 and

T̂ (K̂2) 4 K̂2.

Proof: We have that |T̂ (K̂)| = |K̂| = P , which entails that labels(T̂ (K̂)) =

labels(K̂) = labels(P ). Similarly, we have labels(T̂ (K̂1)) = labels(K̂1) = labels(P1)

and labels(T̂ (K̂2)) = labels(K̂2) = labels(P2). Since P1 and P2 are subprograms of

P , if follows that labels(P1) ⊆ labels(P ) and labels(P2) ⊆ labels(P ). Now, T̂ (K̂) 4 K̂
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entails that T̂ (K̂)|l 4 K̂|l, for all l ∈ labels(P ). Since labels(P1) ⊆ labels(P ) and

labels(P2) ⊆ labels(P ), we have that T̂ (K̂1) 4 K̂1 and T̂ (K̂2) 4 K̂2. �

11.5 Proposition Let P be the if program 〈ls〉 if C then Pc else Pa endif 〈lf 〉,

and let K̂ be a family configuration such that |K̂| = P . Denote by K̂c and K̂a the

sub-configurations of K̂ such that |K̂a| = Pa and |K̂c| = Pc. If T̂ (K̂) 4 K̂, then

T̂ (K̂a) 4 K̂a and T̂ (K̂c) 4 K̂c.

Proof: We have that |T̂ (K̂)| = |K̂| = P , which entails that labels(T̂ (K̂)) =

labels(K̂) = labels(P ). Similarly, we have labels(T̂ (K̂c)) = labels(K̂c) = labels(Pc)

and labels(T̂ (K̂a)) = labels(K̂a) = labels(Pa). Since Pc and Pa are subprograms of

P , if follows that labels(Pc) ⊆ labels(P ) and labels(Pa) ⊆ labels(P ). Now, T̂ (K̂) 4 K̂

entails that T̂ (K̂)|l 4 K̂|l, for all l ∈ labels(P ). Since labels(Pc) ⊆ labels(P ) and

labels(Pc) ⊆ labels(P ), we have that T̂ (K̂c) 4 K̂c and T̂ (K̂a) 4 K̂a. �

11.6 Proposition Let P be the while program 〈ls〉 while C do Pb endwhile 〈lf 〉,

and let K̂ be a family configuration such that |K̂| = P . Denote by K̂b the sub-

configuration of K̂ such that |K̂b| = Pb. If T̂ (K̂) 4 K̂, then T̂ (K̂b) 4 K̂b.

Proof: We have that |T̂ (K̂)| = |K̂| = P , which entails that labels(T̂ (K̂)) =

labels(K̂) = labels(P ). Similarly, we have labels(T̂ (K̂b)) = labels(K̂b) = labels(Pb).

Since Pb is a subprogram of P , if follows that labels(Pb) ⊆ labels(P ). Now, T̂ (K̂) 4

K̂ entails that T̂ (K̂)|l 4 K̂|l, for all l ∈ labels(P ). Since labels(Pb) ⊆ labels(P ), we

have that T̂ (K̂b) 4 K̂b. �

11.7 Proposition Assume P is the skip program 〈ls〉 skip 〈lf 〉, and let Σ0 be a

set of start environments. Denote by K the progression of P w.r.t. Σ0. Let K̂ be a

family configuration that covers K at ls. If T̂ (K̂) 4 K̂, then K̂ covers K at lf .
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Proof: The progression of P is K = 〈ls, λ〈〉 . Σ0〉 skip 〈lf , λ〈〉 . Σ0〉. Let K̂ =

〈ls, Φs〉 skip 〈lf , Φf 〉. We have that T̂ (K̂) = 〈ls, Φs〉 skip 〈lf , Φs〉 4 K̂, which entails

that Φs 4 Φf . Since Φs covers λ〈〉 . Σ0, it follows that Φf covers λ〈〉 . Σ0. �

11.8 Proposition Assume P is the skip program 〈ls〉 x := E 〈lf 〉, and let Σ0 be a

set of start environments. Denote by K the progression of P w.r.t. Σ0. Let K̂ be a

family configuration that covers K at ls. If T̂ (K̂) 4 K̂, then K̂ covers K at lf .

Proof: The progression of P is K = 〈ls, λ〈〉 . Σ0〉x := E 〈lf , assign(x,E, λ〈〉 . Σ0〉.

Let K̂ = 〈ls, Φs〉x := E 〈lf , Φf 〉. We have that T̂ (K̂) =

〈ls, Φs〉 x := E 〈lf , âssign(x,E, Φs)〉 4 K̂, which entails that âssign(x,E, Φs) 4 Φf .

Since âssign(x,E, Φs) covers âssign(x,E, λ〈〉 . Σ0), it follows that Φf covers

âssign(x,E, λ〈〉 . Σ0). �

11.9 Proposition Assume P is the if program

〈ls〉 if C then Pc else Pa endif 〈lf 〉, and let Σ0 be a set of start environ-

ments. Denote by K the progression of P w.r.t. Σ0. Let K̂ be a family

configuration such that T̂ (K̂) 4 K̂. The following statements hold.

a) If K̂ covers K at ls, then K̂ covers K at first(Pc) and first(Pa).

b) If K̂ covers K at last(Pc) and last(Pa), then K̂ covers K at lf .

Proof: We start by proving condition a). The progression of P is K = 〈ls, λ〈〉 . Σ0〉

if C then Kc else Ka endif 〈lf , Ψf 〉, where Kc is the progression of Pc

w.r.t. {σ |σ |= C} ∩ Σ0, Ka is the progression of Pa w.r.t. {σ |σ |= ¬C} ∩ Σ0,

and Ψf is an indexed set. It follows that Kc|first(Pc)
= filter(C, λ〈〉 . Σ0), and

Ka|first(Pa) = filter(¬C, λ〈〉 . Σ0). Now, since K̂ is a family configuration that

covers K, we have that K̂ = 〈ls, Φs〉 if C then K̂c else K̂ endif 〈lf , Φf 〉,
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where Φs covers λ〈〉 . Σ0, K̂c covers Kc, K̂a covers Ka, and Φf cov-

ers Ψf . We also have that T̂ (K̂) = 〈ls, Φs〉 if C then fîlter(C, Φs) #

T̂ (K̂c) else fîlter(¬C, Φs) # T̂ (K̂) endif 〈lf , K̂c|last(Pc)
∪̂ K̂a|last(Pa)〉. Obviously,

fîlter(C, Φs) covers filter(C, λ〈〉 . Σ0), and fîlter(¬C, Φs) covers filter(¬C, λ〈〉 . Σ0),

which proves a).

Assume now that K̂c|last(Pc)
covers Kc|last(Pc)

, and K̂a|last(Pa) covers

Ka|last(Pa). Obviously, K̂c|last(Pc)
∪̂ K̂a|last(Pa) covers Kc|last(Pc)

∪̂ Ka|last(Pa),

which proves b). �

11.12 Proposition Assume P is the while program

〈ls〉 while C do Pb endwhile 〈lf 〉, and let Σ0 be a set of start environments.

Denote by K the progression of P w.r.t. Σ0. Let K̂ be a family configuration such

that K̂ covers K at ls, and T̂ (K̂) 4 K̂. The following statements hold.

a) extr(K̂|first(Pb)
, 0) covers extr(K|first(Pb)

, 0).

b) extr(K̂|last(Pb)
, µ) 4 extr(K̂|first(Pb)

, µ + 1).

c) If K̂|last(Pb)
covers K|last(Pb)

, then K̂|lf covers K|lf .

Proof: The progression of P w.r.t. Σ0 is K =

〈ls, λ〈〉 . Σ0〉 while C do Kb endwhile 〈lf , Ψs〉, where extr(Kb, 0) is the

progression of Pb w.r.t. Σ0 ∩ {σ |σ |= C}, extr(Kb, µ) is the progres-

sion of Pb w.r.t. extr(Kb, µ − 1) ∩ {σ |σ |= C}, for all µ > 0, and Ψs

is filter(¬C, λ〈〉 . Σ0 ∪ collect(Kb|last(Pb)
)). Now, K̂ must be of the form

〈ls, Φs〉 while C do K̂b endwhile 〈lf , Φf 〉, where Φs covers λ〈〉 . Σ0. We

have that T̂ (K̂) = 〈ls, Φs〉 while C do fîlter(C, b̂efore(Φs, K̂b|last(Pb)
)) #

T̂ (K̂b) endwhile 〈lf , fîlter(¬C, Φs ∪̂ ĉollect(Kb|last(Pb)
)〉. Using Remarks 11.10 and

11.11 it follows immediately that extr(T̂ (K̂)|first(Pb)
, 0) covers extr(K|first(Pb)

, 0),
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and using the fact that T̂ (K̂) 4 K̂, we prove a). In order to prove b), we note that

extr(K̂|last(Pb)
, µ) = extr(T̂ (K̂)|first(Pb)

, µ+1), for all µ ∈ N. Then, from T̂ (K̂) 4 K̂

we infer b). Statement c) follows immediately from the fact that if K̂|last(Pb)
covers

K|last(Pb)
, then fîlter(C, ĉollect(K̂|last(Pb)

)) covers filter(C, collect(K|last(Pb)
)), for

all program constraints C. �

13.3 Proposition For all program variables x, program expressions E, and for-

mulas F ∈ LAL, we have âssign(x,E, JFK) ⊆ JAssign(x,E,F)K.

Proof: We show that the proposition holds for all the cases in which the Assign

meta-operator was defined.

Case 1: F = λ〈ν1 · · · νk〉 . ϕ, for some k ≥ 0. In this case we have

âssign(x,E, JFK) = d{assign(x,E, Ψ) |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc}e

JAssign(x,E,F)K = Jλ〈ν1 · · · νk〉 .∃δ . (ϕ[δ/x] ∧ x = (E[δ/x]))K

= λ〈µ1 · · · µk〉.{Σ | for all σ ∈ Σ,

σ |= ∃δ.ϕ[δ/x, µ1/ν1, . . . , µ1/ν1] ∧ x = (E[δ/x])}

By using Remarks 13.1 and 13.2, it follows that, for a given µ̃,

âssign(x,E, JFK)(µ̃) = d{assign(x,E, Ψ(µ̃)) |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc}e

= {{σ | exists σ′ ∈ Ψ(µ̃) s.t. σ = σ[x 7→ E(σ)]} |

Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc}

JAssign(x,E,F)K =





∅, if size(µ̃) 6= k

{Σ | for all σ ∈ Σ,

σ |= ∃δ.ϕ[δ/x, µ1/ν1, . . . , µ1/ν1] ∧ x = (E[δ/x])}

otherwise
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We now have two subcases: when size(µ̃) 6= k and when size(µ̃) = k. Assume first

that size(µ̃) 6= k. The constraint Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc implies Ψ(µ̃) = ∅, and as a

result, âssign(x,E, JFK)(µ̃) ⊆ JAssign(x,E,F)K(µ̃). Assume now that µ̃ = µ1 · · ·µk.

In this case, the constraint Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc implies that Ψ(µ1 · · · µk) =

{σ |σ |= ϕ[µ1/ν1, . . . , µk/νk]}. It follows that âssign(x,E, JFK)(µ̃) = {Σ | for all σ ∈

Σ, σ |= ∃δ.ϕ[δ/x, µ1/ν1, . . . , µ1/ν1] ∧ x = (E[δ/x])} ⊆ JAssign(x,E,F)K(µ̃). This

proves the first case.

Case 2: F = λ〈ν1 · · · νk〉 . ϕ∗, for some k ≥ 0. In this case we have

âssign(x,E, JFK) = d{assign(x,E, Ψ) |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc}e

JAssign(x,E,F)K = Jλ〈ν1 · · · νk〉 . (∃δ . (ϕ[δ/x] ∧ x = (E[δ/x])))∗K

= λ〈µ1 · · · µk〉.





∅, if |= ∀(¬∃δ.ϕ[δ/x, µ1/ν1, . . . , µk/νk]∧

x = (E[δ/x]))

{Σ |Σ 6= ∅ and for all σ ∈ Σ,

σ |= ∃δ.ϕ[δ/x, µ1/ν1, . . . , µk/νk] ∧ x = (E[δ/x])}

otherwise
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By using Remarks 13.1 and 13.2, it follows that, for a given µ̃,

âssign(x,E, JFK)(µ̃) = d{assign(x,E, Ψ(µ̃)) |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc}e

= {{σ | exists σ′ ∈ Ψ(µ̃) s.t. σ = σ[x 7→ E(σ)]} |

Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc}

JAssign(x,E,F)K =





∅, if size(µ̃) 6= k or

|= ∀(¬∃δ.ϕ[δ/x, µ1/ν1, . . . , µk/νk]∧

x = (E[δ/x]))

{Σ | for all σ ∈ Σ,

σ |= ∃δ.ϕ[δ/x, µ1/ν1, . . . , µk/νk] ∧ x = (E[δ/x])}

otherwise

We now have two subcases: when size(µ̃) 6= k and when size(µ̃) = k. As-

sume first that size(µ̃) 6= k. The constraint Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc implies

Ψ(µ̃) = ∅, and as a result, âssign(x,E, JFK)(µ̃) ⊆ JAssign(x,E,F)K(µ̃). Assume

now that µ̃ = µ1 · · ·µk. In this case, the constraint Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc im-

plies that Ψ(µ1 · · ·µk) = {σ |σ |= ϕ[µ1/ν1, . . . , µk/νk]} and Ψ 6= ∅. It follows that

âssign(x,E, JFK)(µ̃) = {Σ | for all σ ∈ Σ, σ |= ∃δ.ϕ[δ/x, µ1/ν1, . . . , µ1/ν1] ∧ x =

(E[δ/x])} ⊆ JAssign(x,E,F)K(µ̃). This proves the proposition. �

13.4 Proposition For all program constraints C, and formulas F ∈ LAL, we have

fîlter(C, JFK) ⊆ JFilter(C,F)K.

Proof: We show that the proposition holds for all the cases in which the Filter

meta-operator was defined.
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Case 1: F = λ〈ν1 · · · νk〉 . ϕ, for some k ≥ 0. In this case we have

fîlter(C, JFK) = d{filter(C, Ψ) |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc}e

JFilter(C,F)K = λ〈µ1 · · ·µk〉 . {Σ | for all σ ∈ Σ, σ |= ϕ[µ1/ν1, . . . , µk/νk]}

By applying Remark 13.2, it follows that, for a given µ,

fîlter(C, JFK)(µ̃) = {(filter(C, Ψ)(µ̃) |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc}

= {{σ |σ ∈ Ψ(µ̃) and σ |= C} |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc}

JFilter(C,F)K(µ̃) =





{∅}, if µ̃ 6= k

{Σ | for all σ ∈ Σ, σ |= ϕ[µ1/ν1, . . . , µk/νk] ∧ C,

for all µ̃ = µ1 · · ·µk

We now have two subcases: when size(µ̃) 6= k and when size(µ̃) = k. Assume first

that size(µ̃) 6= k. The constraint Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc implies Ψ(µ̃) = ∅, and as a

result, fîlter(C, JFK)(µ̃) = ∅. It follows that (fîlter(C, JFK))(µ̃) ⊆ JFilter(C,F)K(µ̃).

Assume now that size(µ̃) = k, and that µ̃ = µ1 · · ·µk. In this case the constraint

Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc entails that

Ψ(µ̃) ⊆ {σ |σ |= ϕ[µ1/ν1, . . . , µk/νk]}

From this, it follows that

filter(C, JFK)(µ1 · · · µk) = {{σ |σ ∈ Σ and σ |= C} |Σ ⊆ {σ |σ |= ϕ[µ1/ν1, . . . , µk/νk]}}

= {Σ | for all σ ∈ Σ, σ |= C and σ |= ϕ[µ1/ν1, . . . , µk/νk]}

From this we infer that (fîlter(C, JFK))(µ̃) ⊆ JFilter(C,F)K(µ̃). The two subcases

have proved that (fîlter(C, JFK))(µ̃) ⊆ JFilter(C,F)K(µ̃) for all µ̃ ∈ Idx, which

entails that fîlter(C, JFK) ⊆ JFilter(C,F)K.
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Case 2: F = λ〈ν1 · · · νk〉 . ϕ∗ and |= (∀(C → ϕ))∨ (∀(C → ¬ϕ)), for some k ≥ 0. In

this case we have

fîlter(C, JFK) = d{filter(C, Ψ) |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc}e

JFilter(C,F)K = λ〈µ1 · · · µk〉 .





{∅}, if |= ∀(¬(C ∧ ϕ[µ1/ν1, . . . µk/νk]))

{Σ |Σ 6= ∅ and forall σ ∈ Σ,

σ |= (C ∧ ϕ[µ1/ν1, . . . , µk/νk])},

otherwise

By applying Remark 13.2, it follows that, for a given µ,

fîlter(C, JFK)(µ̃) = {(filter(C, Ψ)(µ̃) |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc}

= {{σ |σ ∈ Ψ(µ̃) and σ |= C} |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc}

JFilter(C,F)K(µ̃) =





{∅}, if |= ∀(¬(C ∧ ϕ[µ1/ν1, . . . µk/νk])) and size(µ̃) 6= k

{Σ |Σ 6= ∅ and forall σ ∈ Σ,

σ |= (C ∧ ϕ[µ1/ν1, . . . , µk/νk])},

otherwise

Again, we have two subcases. The first one is when size(µ̃) 6= k or ∀(C → ¬ϕ).

In this case, it is easy to see that (fîlter(C, JFK))(µ̃) = JFilter(C,F)K(µ̃) = ∅. The

second sub-case is when size(µ̃) 6= k and ∀(C → ϕ). In this case we have

(fîlter(C, JFK))(µ̃) = JFilter(C,F)K(µ̃) = {Σ | for all σ ∈ Σ, σ |= ϕ[µ1/ν1, . . . , µk/νk]}.

From the two subcases it follows that fîlter(C, JFK) ⊆ JFilter(C,F)K.
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Case 3: F = λ〈ν1 · · · νk〉 . ϕ∗ and |= (¬∀(C → ϕ)) ∨ (∀(C → ¬ϕ)), for some k ≥ 0.

In this case we have

fîlter(C, JFK) = d{filter(C, Ψ) |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc}e

JFilter(C,F)K = λ〈µ1 · · ·µk〉 . {Σ | for all σ ∈ Σ, σ |= ϕ[µ1/ν1, . . . , µk/νk]}

By applying Remark 13.2, it follows that, for a given µ,

fîlter(C, JFK)(µ̃) = {(filter(C, Ψ)(µ̃) |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc}

= {{σ |σ ∈ Ψ(µ̃) and σ |= C} |Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc}

JFilter(C,F)K(µ̃) =





{∅}, if µ̃ 6= k

{Σ | for all σ ∈ Σ, σ |= ϕ[µ1/ν1, . . . , µk/νk] ∧ C,

for all µ̃ = µ1 · · ·µk

The constraint Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕ∗Kc may imply that Ψ is non-empty for certain

values of µ̃. However, since |= ¬∀(C → ϕ), filter(C, Ψ)(µ̃) may not necessarily be

non-empty. We now have two subcases: when size(µ̃) 6= k and when size(µ̃) =

k. Assume first that size(µ̃) 6= k. The constraint Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc implies

Ψ(µ̃) = ∅, and as a result, fîlter(C, JFK)(µ̃) = ∅. It follows that (fîlter(C, JFK))(µ̃) ⊆

JFilter(C,F)K(µ̃). Assume now that size(µ̃) = k, and that µ̃ = µ1 · · · µk. In this

case the constraint Ψ ∈ bJλ〈ν1 · · · νk〉 . ϕKc entails that

Ψ(µ̃) ⊆ {σ |σ |= ϕ[µ1/ν1, . . . , µk/νk]}

From this, it follows that

filter(C, JFK)(µ1 · · · µk) = {{σ |σ ∈ Σ and σ |= C} |Σ ⊆ {σ |σ |= ϕ[µ1/ν1, . . . , µk/νk]}}

= {Σ | for all σ ∈ Σ, σ |= C and σ |= ϕ[µ1/ν1, . . . , µk/νk]}

We infer that (fîlter(C, JFK))(µ̃) ⊆ JFilter(C,F)K(µ̃). The two subcases have proved

that (fîlter(C, JFK))(µ̃) ⊆ JFilter(C,F)K(µ̃) for all µ̃ ∈ Idx, which entails that

fîlter(C, JFK) ⊆ JFilter(C,F)K. �
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13.5 Proposition For all formulas F1,F2 ∈ LAL, we have b̂efore(JF1K, JF2K) ⊆

JBefore(F1,F2)K.

Proof: We prove that the proposition holds for each of the cases of the definition

of Before.

Case 1: F1 = λ〈ν1 · · · νk〉 . ϕ1 and F2 = λ〈ν1 · · · νkνk+1〉 . ϕ2, for some k ≥ 0. In this

case we have:

b̂efore(JF1K, JF2K) = d{before(Ψ1, Ψ2) |Ψ1 ∈ bJλ〈ν1 · · · νk〉 . ϕ1Kc and

Ψ2 ∈ bJλ〈ν1 · · · νkνk+1〉 . ϕ2Kc}e

JBefore(F1,F2)K = Jλ〈ν1 · · · νkνk+1〉.{((νk+1 = 0 → ϕ1)∧

((νk+1 > 0 → ϕ2[(νk+1 − 1)/νk+1]))}K

= λ〈ν1 · · · νkνk+1〉.

{Σ | for all σ ∈ Σ, σ |= ∀((µk+1 = 0 → ϕ1[µ1/ν1, . . . , µk/νk])∧

(µk+1 > 0 → ϕ2[µ1/ν1, . . . , µk/νk, (µk+1 − 1)/νk+1]))}

By applying Remarks 13.2 and 13.2, and the definition of the before operator given

in Figure 7.3. it follows that, for a given µ,

(b̂efore(JF1K, JF2K))(ε) = {∅}

(b̂efore(JF1K, JF2K))(µ̃0) = {Ψ1(µ̃) |Ψ1 ∈ bJλ〈ν1 · · · νk〉 . ϕ1Kc}

(b̂efore(F1,F2))(µ̃µ′) = {Ψ2(µ̃(µ′ − 1)) |Ψ2 ∈ bJλ〈ν1 · · · νk+1〉 . ϕ2Kc}
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JBefore(F1,F2)K(ε) = {∅}

JBefore(F1,F2)K(µ̃µ′) =





{∅}, if size(µ̃) 6= k

{Σ | for all σ ∈ Σ, σ |= ∀(ϕ1[µ1/ν1, . . . , µk/νk])},

if µ̃ = µ1 · · ·µk and µ′ = 0

{Σ | for all σ ∈ Σ,

σ |= ∀(ϕ2[µ1/ν1, . . . , µk/νk, (µk+1 − 1)/νk+1])},

if µ̃ = µ1 · · ·µk and µ′ > 0

We use the relations above to verify that (b̂efore(JF1K, JF2K))(µ̃) ⊆

JBefore(F1,F2)K(µ̃), for all µ̃ ∈ Idx. The statement clearly holds for

size(µ̃) 6= k + 1. In order to verify that (b̂efore(JF1K, JF2K))(µ̃0) ⊆

JBefore(F1,F2)K(µ̃0). we note that the constraint Ψ1 ∈ bJλ〈ν1 · · · νk〉 . ϕ1Kc

entails that Ψ1(µ1 · · ·µk) ⊆ {σ |σ |= ∀(ϕ1[µ1/ν1, . . . , µk/νk])}. We

also note that the constraint Ψ2 ∈ bJλ〈ν1 · · · νk+1〉 . ϕ2Kc entails that

Ψ2(µ1 · · ·µkµk+1) ⊆ {σ |σ |= ∀(ϕ2[µ1/ν1, . . . , µk/νk, µk+1/νk+1])}. This proves

that (b̂efore(JF1K, JF2K))(µ̃µ′) ⊆ JBefore(F1,F2)K(µ̃µ′), where size(µ̃) = k and

µ′ > 0.

Case 2: F1 = λ〈ν1 · · · νk〉 . ϕ∗
1 and F2 = λ〈ν1 · · · νkνk+1〉 . ϕ∗

2, for some k ≥ 0.

For convenience we denote by B(µ1 · · ·µk) the first-order formula ∀((µk+1 = 0 →

ϕ1[µ1/ν1, . . . , µk/νk]) ∧ (µk+1 > 0 → ϕ2[µ1/ν1, . . . , µk/νk, (µk+1 − 1)/νk+1])). In
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this case we have:

b̂efore(JF1K, JF2K) = d{before(Ψ1, Ψ2) |Ψ1 ∈ bJλ〈ν1 · · · νk〉 . ϕ∗
1Kc and

Ψ2 ∈ bJλ〈ν1 · · · νkνk+1〉 . ϕ∗
2Kc}e

JBefore(F1,F2)K = Jλ〈ν1 · · · νkνk+1〉.{((νk+1 = 0 → ϕ1)∧

((νk+1 > 0 → ϕ2[(νk+1 − 1)/νk+1]))∗}K

= λ〈µ1 · · · µkµk+1〉.





{∅}, if |= ¬B(µ1 · · ·µk)

{Σ |Σ 6= ∅ and for all σ ∈ Σ,

σ |= ∀((µk+1 = 0 →

ϕ1[µ1/ν1, . . . , µk/νk])∧

(µk+1 > 0 →

ϕ2[µ1/ν1, . . . , µk/νk, (µk+1 − 1)/νk+1]))},

otherwise

By applying Remarks 13.2 and 13.2, and the definition of the before operator given

in Figure 7.3. it follows that, for a given µ,

(b̂efore(JF1K, JF2K))(ε) = {∅}

(b̂efore(JF1K, JF2K))(µ̃0) = {Ψ1(µ̃) |Ψ1 ∈ bJλ〈ν1 · · · νk〉 . ϕ∗
1Kc}

(b̂efore(F1,F2))(µ̃µ′) = {Ψ2(µ̃(µ′ − 1)) |Ψ2 ∈ bJλ〈ν1 · · · νk+1〉 . ϕ∗
2Kc}
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JBefore(F1,F2)K(ε) = {∅}

JBefore(F1,F2)K(µ̃µ′) =





{∅}, if size(µ̃) 6= k and |= ¬B(µ̃)

{Σ |Σ 6= ∅ and for all σ ∈ Σ, σ |= ∀(ϕ1[µ1/ν1, . . . , µk/νk])},

if µ̃ = µ1 · · ·µk and µ′ = 0

{Σ |Σ 6= ∅ and for all σ ∈ Σ,

σ |= ∀(ϕ2[µ1/ν1, . . . , µk/νk, (µk+1 − 1)/νk+1])},

if µ̃ = µ1 · · ·µk and µ′ > 0

We use the relations above to verify that (b̂efore(JF1K, JF2K))(µ̃) ⊆

JBefore(F1,F2)K(µ̃), for all µ̃ ∈ Idx. The statement clearly holds for

size(µ̃) 6= k + 1. In order to verify that (b̂efore(JF1K, JF2K))(µ̃0) ⊆

JBefore(F1,F2)K(µ̃0). we note that the constraint Ψ1 ∈ bJλ〈ν1 · · · νk〉 . ϕ∗
1Kc

entails that Ψ1(µ1 · · ·µk) ⊆ {σ |σ |= ∀(ϕ1[µ1/ν1, . . . , µk/νk])}. We

also note that the constraint Ψ2 ∈ bJλ〈ν1 · · · νk+1〉 . ϕ∗
2Kc entails that

Ψ2(µ1 · · ·µkµk+1) ⊆ {σ |σ |= ∀(ϕ2[µ1/ν1, . . . , µk/νk, µk+1/νk+1])}. This proves that

(b̂efore(JF1K, JF2K))(µ̃µ′) ⊆ JBefore(F1,F2)K(µ̃µ′), where size(µ̃) = k and µ′ > 0.In

order to prove the last three cases, we note that Jλ〈ν1 · · · νk〉 . ϕ∗K ⊆ Jλ〈ν1 · · · νk〉 . ϕK,

for all k ≥ 0 and simple formula ϕ. It follows that

b̂efore(Jλ〈ν1 · · · νk〉 . ϕ∗
1K, Jλ〈ν1 · · · νkνk+1〉 . ϕ2K) ⊆

b̂efore(Jλ〈ν1 · · · νk〉 . ϕ1K, Jλ〈ν1 · · · νkνk+1〉 . ϕ2K)

and

b̂efore(Jλ〈ν1 · · · νk〉 . ϕ1K, Jλ〈ν1 · · · νkνk+1〉 . ϕ∗
2K) ⊆

b̂efore(Jλ〈ν1 · · · νk〉 . ϕ1K, Jλ〈ν1 · · · νkνk+1〉 . ϕ2K).

The result follows immediately. �

13.6 Proposition For all formulas F ∈ LAL, we have ĉollect(JFK) ⊆ JCollect(F)K.
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Proof: We prove that the proposition holds for each of the cases of the definition

of Collect.

Case 1: F = λ〈ν1 · · · νkνk+1〉 . ϕ. We have that

ĉollect(JFK) = d{collect(Ψ) |Ψ ∈ bJλ〈ν1 · · · νkνk+1〉 . ϕKc}e

JCollect(F)K = Jλ〈ν1 · · · νk〉 .∃δ.ϕ[δ/νk+1]K

= λ〈µ1 · · · µk〉 . .{Σ | for all σ ∈ Σ, σ |= ∃δ.ϕ[µ1/ν1, . . . , µk/νk, δ/νk+1]}

By applying Remarks 13.2 and 13.2, and the definition of the collect operator given

in Figure 7.3. it follows that, for a given µ,

(ĉollect(JFK))(µ̃) = {
⋃

µ′≥0 Ψ(µ̃µ′) |Ψ ∈ bJλ〈ν1 · · · νkνk+1〉 . ϕKc}

Jĉollect(F)K(µ̃) =





{∅}, if size(µ̃) 6= k

{Σ | for all σ ∈ Σ, σ |= ∃δ.(ϕ[µ1/ν1, . . . , µk/νk, δ/νk+1])}

otherwise

We now have two subcases: either size(µ̃) 6= k, or size(µ̃) = k. In case size(µ̃) 6= k,

we have that (ĉollect(JFK))(µ̃) = JCollect(F)K(µ̃) = {∅}. In case size(µ̃) = k,

from the constraint Ψ ∈ bJλ〈ν1 · · · νkνk+1〉 . ϕKc it follows that Ψ(µ̃µ′) ⊆ {σ |σ |=

ϕ[µ1/ν1, . . . , µk/νk, µk+1/νk+1]}. Using this, we get that (ĉollect(JFK))(µ̃) ⊆

{Σ | for all σ ∈ Σ, σ |= ∃δ.(ϕ[µ1/ν1, . . . , µk/νk, δ/νk+1])} = JCollect(F)K(µ̃).

Case 2: F = λ〈ν1 · · · νkνk+1〉 . ϕ∗. We have that

ĉollect(JFK) = d{collect(Ψ) |Ψ ∈ bJλ〈ν1 · · · νkνk+1〉 . ϕ∗Kc}e

JCollect(F)K = Jλ〈ν1 · · · νk〉 .∃δ.ϕ[δ/νk+1]K

= λ〈µ1 · · · µk〉.





{∅}, if |= ∀(¬∃δ.ϕ[µ1/ν1, . . . , µk/νk, δ/νk+1])

{Σ |Σ 6= ∅ and for all σ ∈ Σ,

σ |= ∃δ.ϕ[µ1/ν1, . . . , µk/νk, δ/νk+1]}

otherwise
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By applying Remarks 13.2 and 13.2, and the definition of the collect operator given

in Figure 7.3. it follows that, for a given µ,

(ĉollect(JFK))(µ̃) = {
⋃

µ′≥0 Ψ(µ̃µ′) |Ψ ∈ bJλ〈ν1 · · · νkνk+1〉 . ϕ∗Kc}

Jĉollect(F)K(µ̃) =





{∅}, if size(µ̃) 6= k or

|= ∀(¬∃δ.ϕ[µ1/ν1, . . . , µk/νk, δ/νk+1])

{Σ |Σ 6= ∅ and for all σ ∈ Σ,

σ |= ∃δ.(ϕ[µ1/ν1, . . . , µk/νk, δ/νk+1])}

otherwise

We now have two subcases. The first is when size(µ̃) 6= k, or

|= ∀(¬∃δ.ϕ[µ1/ν1, . . . , µk/νk, δ/νk+1]). In this case, we have that

(ĉollect(JFK))(µ̃) = JCollect(F)K(µ̃) = {∅}. In case size(µ̃) = k, from

the constraint Ψ ∈ bJλ〈ν1 · · · νkνk+1〉 . ϕKc it follows that Ψ(µ̃µ′) ⊆

{σ |σ |= ϕ[µ1/ν1, . . . , µk/νk, µk+1/νk+1]} and Ψ 6= ∅. Using this,

we get that (ĉollect(JFK))(µ̃) ⊆ {Σ |Σ 6= ∅ and for all σ ∈ Σ, σ |=

∃δ.(ϕ[µ1/ν1, . . . , µk/νk, δ/νk+1])} = JCollect(F)K(µ̃). �

13.7 Proposition For all formulas F1,F2 ∈ LAL, we have JF1K ∪̂ JF2K ⊆ JF1 tF2K.

Proof: We prove that the proposition holds for each of the cases of the definition

of t.

Case 1: F1 = λ〈ν1 · · · νk〉 . ϕ1 and F2 = λ〈ν1 · · · νk〉 . ϕ2. We have that

JF1K ∪̂ JF2K = d{Ψ1 ∪ Ψ2 |Ψ1 ∈ bJλ〈ν1 · · · νk〉 . ϕ1Kc and Ψ2 ∈ bJλ〈ν1 · · · νk〉 . ϕ2Kc}e

JF1 t F2K = Jλ〈ν1 · · · νk〉 . ϕ1 ∨ ϕ2K

= λ〈µ1 · · ·µk〉 . {Σ | for all σ ∈ Σ, σ |= (ϕ1 ∨ ϕ2)[µ1/ν1, . . . , µk/νk]}
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By applying Remarks 13.2 and 13.2, and the definition of the ∪ operator given in

Figure 7.3. it follows that, for a given µ,

(JF1 t F2K)(µ̃) = {Ψ1(µ̃) ∪ Ψ2(µ̃) |Ψ1 ∈ bJλ〈ν1 · · · νk〉 . ϕ1Kc and

Ψ2 ∈ bJλ〈ν1 · · · νk〉 . ϕ2Kc}

JF1 t F2K(µ̃) =





{∅}, if size(µ̃) 6= k

{Σ | for all σ ∈ Σ, σ |= (ϕ1 ∨ ϕ2)[µ1/ν1, . . . , µk/νk]},

otherwise

We now have two cases. If size(µ̃) 6= k, then JF1K ∪̂ JF2K = JF1 t F2K = {∅}.

In case size(µ̃) = k, from the constraints Ψ1 ∈ bJλ〈ν1 · · · νkνk+1〉 . ϕ1Kc and Ψ2 ∈

bJλ〈ν1 · · · νkνk+1〉 . ϕ2Kc it follows that Ψ1(µ̃) ⊆ {σ |σ |= ϕ1[µ1/ν1, . . . , µk/νk]} and

Ψ2(µ̃) ⊆ {σ |σ |= ϕ2[µ1/ν1, . . . , µk/νk]}. Using this, we get that (JF1K ∪̂ JF2K)(µ̃) ⊆

{Σ | for all σ ∈ Σ, σ |= (ϕ1 ∨ ϕ2)[µ1/ν1, . . . , µk/νk]} = JF1 t F2K(µ̃). From the two

subcases, it follows that (JF1K ∪̂ JF2K)(µ̃) ⊆ JF1 t F2K(µ̃), for all µ̃ ∈ Idx.

Case 2: F1 = λ〈ν1 · · · νk〉 . ϕ∗
1 and F2 = λ〈ν1 · · · νk〉 . ϕ∗

2. We have that

JF1K ∪̂ JF2K = d{Ψ1 ∪ Ψ2 |Ψ1 ∈ bJλ〈ν1 · · · νk〉 . ϕ∗
1Kc and Ψ2 ∈ bJλ〈ν1 · · · νk〉 . ϕ∗

2Kc}e

JF1 t F2K = Jλ〈ν1 · · · νk〉 . (ϕ1 ∨ ϕ2)∗K

= λ〈µ1 · · ·µk〉.





{∅}, if |= ∀(¬(ϕ1 ∨ ϕ2))

{Σ |Σ 6= ∅ and for all σ ∈ Σ,

σ |= (ϕ1 ∨ ϕ2)[µ1/ν1, . . . , µk/νk]},

otherwise
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By applying Remarks 13.2 and 13.2, and the definition of the ∪ operator given in

Figure 7.3. it follows that, for a given µ,

(JF1 t F2K)(µ̃) = {Ψ1(µ̃) ∪ Ψ2(µ̃) |Ψ1 ∈ bJλ〈ν1 · · · νk〉 . ϕ∗
1Kc and

Ψ2 ∈ bJλ〈ν1 · · · νk〉 . ϕ∗
2Kc}

JF1 t F2K(µ̃) =





{∅}, if size(µ̃) 6= k or |= ∀(¬(ϕ1 ∨ ϕ2))

{Σ |Σ 6= ∅ and for all σ ∈ Σ,

σ |= (ϕ1 ∨ ϕ2)[µ1/ν1, . . . , µk/νk]},

otherwise

We now have two cases. If size(µ̃) 6= k, or |= ∀(¬(ϕ1 ∨ ϕ2)), then JF1K ∪̂ JF2K =

JF1 t F2K = {∅}. In case size(µ̃) = k, and |= ∃(ϕ1 ∨ϕ2), from the constraints Ψ1 ∈

bJλ〈ν1 · · · νkνk+1〉 . ϕ∗
1Kc and Ψ2 ∈ bJλ〈ν1 · · · νkνk+1〉 . ϕ∗

2Kc it follows that Ψ1(µ̃) ⊆

{σ |σ |= ϕ1[µ1/ν1, . . . , µk/νk]} and Ψ2(µ̃) ⊆ {σ |σ |= ϕ2[µ1/ν1, . . . , µk/νk]}, and

also Ψ1 6= ∅ and Ψ2 6= ∅. From this, we get that (JF1K ∪̂ JF2K)(µ̃) ⊆ {Σ |Σ 6=

∅ and for all σ ∈ Σ, σ |= (ϕ1 ∨ ϕ2)[µ1/ν1, . . . , µk/νk]} = JF1 t F2K(µ̃). From the

two subcases, it follows that (JF1K ∪̂ JF2K)(µ̃) ⊆ JF1 t F2K(µ̃), for all µ̃ ∈ Idx.

In order to prove the last three cases, we note that Jλ〈ν1 · · · νk〉 . ϕ∗K ⊆

Jλ〈ν1 · · · νk〉 . ϕK, for all k ≥ 0 and simple formula ϕ. It follows that

Jλ〈ν1 · · · νk〉 . ϕ∗
1K t Jλ〈ν1 · · · νk〉 . ϕ2K) ⊆

Jλ〈ν1 · · · νk〉 . ϕ1K t Jλ〈ν1 · · · νk〉 . ϕ2K,

and

Jλ〈ν1 · · · νk〉 . ϕ1K t Jλ〈ν1 · · · νk〉 . ϕ∗
2K) ⊆

Jλ〈ν1 · · · νk〉 . ϕ1K t Jλ〈ν1 · · · νk〉 . ϕ2K.

The result follows immediately. �
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13.8 Proposition For all formulas F0,F1,F2, . . . ∈ LAL, we have

seq(JF0K, JF1K, JF2K, . . .) ⊆ JSeq(F0,F1,F2, . . .)K.

Proof: We first notice the following two properties.

Seq(F0,F1,F2, . . .) ≡ Before(F0,Seq(F1,F2, . . .))

for all sequences of formulas F0,F1,F2, . . ., where F0,F1,F2, . . . are either

all liveness-sensitive, or all liveness-insensitive. Also, for all indexed families

F0, F1, F2, . . ., the following holds.

seq(F0, F1, F2, . . .) = b̂efore(F0, seq(F1, F2, . . .))

The proposition is then proved by induction using Proposition 13.5. �

13.9 Proposition For all formulas F ,F ′ ∈ LAL, we have F ` F ′ is a theorem in

L∗ only if JFK ⊆ JF ′K.

Proof: Theorems of the form F ` F ′ can be obtained only using the axioms in

Figure 13.2, and the modus ponens inference rule. As a result, once we have proved

that the axioms have the property stated in the proposition, and that the inference

rule preserves the property, it is immediate to produce an inductive proof. We shall

limit ourselves to simply proving the that the proposition holds for the axioms and

that the inference rule preserves it. For axioms (lal1), (lal2) and (lal3), simply

using the definition of the interpretation for LAL formulas and comparing the two

indexed families will yield the result. In the case of the inference rule, we note that

if F ` F ′ and F ′ ` F ′′ are theorems, and JFK ⊆ JF ′K and JF ′K ⊆ JF ′′K, due to the

transitivity of the ⊆ relation, we have that JFK ⊆ JF ′′K. �

14.1 Proposition Let K be a symbolic configuration over a well-defined language

L. Then T̂ (JKK) ⊆ JT (K)K.
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Proof: The proof is by induction on the structure of K. Assume first that K =

〈ls,Fs〉 skip 〈lf ,Ff 〉. We have that JT (K)K = 〈ls, JFsK〉 skip 〈lf , JFsK〉 = T̂ (JKK).

Next, assume that K = 〈ls,Fs〉 x := E 〈lf ,Ff 〉. We have that

JT (K)K = 〈ls, JFsK〉x := E 〈lf , âssign(x,E, JFsK)〉, and

T̂ (JKK) = 〈ls, JFsK〉x := E 〈lf , JAssign(x,E,Fs)K〉. Since L is well defined, it

follows that T̂ (JKK) ⊆ JT (K)K.

Assume now that K = K1 #K2. Obviously, JKK = JK1K#JK2K. Using the induction

hypothesis, we have that T̂ (JK1K) ⊆ JT (K1)K and T̂ (JK2K) ⊆ JT (K2)K. We also have

that T̂ (JKK) = T̂ (JK1K) # T̂ (JK2K) and JT (K)K = JT (K2) # T (K2)K. From all these

conditions it follows that T̂ (JKK) ⊆ JT (K)K.

Next, assume that K = 〈ls,Fs〉 if C then Kc else Ka endif 〈lf ,Ff 〉. We have

that

T̂ (JKK) = 〈ls, JFsK〉

if C then 〈first(Kc), fîlter(C, JFsK)〉 # T̂ (JKcK)

else 〈first(Ka), fîlter(¬C, JFsK)〉 # T̂ (JKaK)

endif

〈lf , JKcK|last(Kc)
∪̂ JKaK|last(Ka)〉,

and

JT (K)K = 〈ls, JFsK〉

if C then 〈first(Kc), JFilter(C,Fs)K〉 # JT (Kc)K

else 〈first(Ka), JFilter(¬C,Fs)K〉 # JT (Ka)K

endif

〈lf , JKc|last(Kc)
t Ka|last(Ka)K〉.

According to the induction hypothesis, we have T̂ (JKcK) ⊆ JT (Kc)K, and T̂ (JKaK) ⊆

JT (Ka)K. Since L is well defined, it follows that T̂ (JKK) ⊆ JT (K)K.
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Finally, assume that K = 〈ls,Fs〉 while C do Kb endwhile 〈lf ,Ff 〉. We have

that

T̂ (JKK) = 〈ls, JFsK〉

while C do

〈first(Kb), fîlter(C, b̂efore(JFsK, JKbK|last(Kb)
))〉 # T̂ (JKbK)

endwhile

〈lf , fîlter(C, JFsK ∪̂ collectJKbK|last(Kb)
))〉,

and

JT (K)K = 〈ls, JFsK〉

while C do

〈first(Kc), JFilter(C,Before(Fs,Kb|last(Kb)
))K〉 # JT (Kb)K

endwhile

〈lf , JFs t Collect(Kb|last(Kb)
)K〉.

According to the induction hypothesis, we have T̂ (JKbK) ⊆ JT (Kb)K. Since L is well

defined, it follows that T̂ (JKK) ⊆ JT (K)K. �

15.5 Proposition Let K be a symbolic configuration whose annotations contain

assert constructs whose subscripts may be labels not necessarily in labels(K). Let l

and Λ be a label, and a set of labels, respectively, not necessarily from labels(K), with

l 6∈ Λ. If assumeΛ∪{l}(T (K)|l′) ` assume{l}(K|l′) holds for some label l′ ∈ labels(K),

then assumeΛ∪{l}(T ((T u I)(K))|l′) ` assume{l}((T u I)(K)|l′) holds.

Proof: The proof is by induction on the structure of K. First, assume that K is

the configuration 〈ls,Fs〉 skip 〈lf ,Ff 〉. Then, we have

T (K) = 〈ls,Fs〉 skip 〈lf ,Fs〉

(T u I)(K) = 〈ls,Fs〉 skip 〈lf ,Fs u Ff 〉

T ((T u I)(K)) = 〈ls,Fs〉 skip 〈lf ,Fs〉
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If l = ls, the proof is immediate. If l = lf , the the proof follows from the

fact that assumeΛ∪{l}(Fs) ` assume{l}(Ff ) holds implies that assumeΛ∪{l}(Fs) `

assume{l}(FsuFf ). Assume now that K is the configuration 〈ls,Fs〉 x := E 〈lf ,Ff 〉.

Then, we have

T (K) = 〈ls,Fs〉x := E 〈lf ,Assign(x,E,Fs)〉

(T u I)(K) = 〈ls,Fs〉x := E 〈lf ,Fs uAssign(x,E,Fs)〉

T ((T u I)(K)) = 〈ls,Fs〉x := E 〈lf ,Assign(x,E,Fs)〉

If l = ls, the proof is immediate. If l = lf , the the proof follows from

the fact that assumeΛ∪{l}(Assign(x,E,Fs)) ` assume{l}(Ff ) holds implies that

assumeΛ∪{l}(Assign(x,E,Fs)) ` assume{l}(Assign(x,E,Fs) u Ff ). Assume now

that K is the configuration K1 # K2. Then, we have

T (K) = T (K1) # T (K2)

(T u I)(K) = (T u I)(K1) # (T u I)(K2)

T ((T u I)(K)) = T ((T u I)(K1)) # T ((T u I)(K2))

The proof follows by direct application of the induction hypothesis. Assume now

that K is the configuration 〈ls,Fs〉 if C then Kc else Ka endif 〈lf ,Ff 〉. Then, we

have

T (K) = 〈ls,Fs〉

if C then 〈first(Kc),Filter(C,Fs)〉 # T (Kc)

else 〈first(Ka),Filter(¬C,Fs)〉 # T (Ka)

endif

〈lf ,Kc|last(Kc)
t Ka|last(Ka)〉



APPENDIX A. PROOFS IN THE THESIS 333

(T u I)(K) = 〈ls,Fs〉

if C then 〈first(Kc),Kc|first(Kc)
u Filter(C,Fs)〉

#(T u I)(Kc)

else 〈first(Ka),Ka|first(Ka) u Filter(¬C,Fs)〉

#(T u I)(Ka)

endif

〈lf ,Ff u (Kc|last(Kc)
t Ka|last(Ka))〉

T ((T u I)(K)) = 〈ls,Fs〉

if C then 〈first(Kc),Filter(C,Fs)〉#

T ((T u I)(Kc))

else 〈first(Ka),Filter(¬C,Fs)〉#

T ((T u I)(Ka))

endif

〈lf , (T u I)(Kc)|last(Kc)
t (T u I)(Ka)|last(Ka)〉

We now have six cases.

l = ls:

The proof here is immediate.

l = first(Kc):

The proof follows from the fact that

assumeΛ∪{l}(Filter(C,Fs)) ` assume{l}(Kc|first(Kc)
)

holding implies

assumeΛ∪{l}(Filter(C,Fs)) ` assume{l}(Filter(C,Fs) uKc|first(Kc)
)
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holds.

l = first(Ka):

The proof follows from the fact that

assumeΛ∪{l}(Filter(¬C,Fs)) ` assume{l}(Ka|first(Ka))

holding implies

assumeΛ∪{l}(Filter(¬C,Fs)) ` assume{l}(Filter(¬C,Fs) u Ka|first(Ka))

holds.

l ∈ labels(Kc)\{first(Kc)}:

The proof follows from the induction hypothesis.

l ∈ labels(Ka)\{first(Ka)}:

The proof follows from the induction hypothesis.

l = lf :

The proof follows from the fact that

assumeΛ∪{l}(Kc|last(Kc)
t Ka|last(Ka)) ` assume{l}(lf )

holding implies that

assumeΛ∪{l}((T u I)(Kc)|last(Kc)
t (T u I)(Ka)|last(Ka)) ` assume{l}(lf )

holds.
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Assume now that K is the configuration 〈ls,Fs〉 while C do Kb endwhile 〈lf ,Ff 〉.

Then, we have

T (K) = 〈ls,Fs〉

while C do

〈first(Kb),Filter(C,Before(Fs,Kb|last(Kb)
))〉

#T (Kb)

endwhile

〈lf ,Filter(¬C,Fs t Collect(Kb|last(Kb)
))〉

(T u I)(K) = 〈ls,Fs〉

while C do

〈first(Kb),Kb|first(Kb)
u Filter(C,Before(Fs,Kb|last(Kb)

))〉

#(T u I)(Kb)

endwhile

〈lf ,Ff u Filter(¬C,Fs t Collect(Kb|last(Kb)
))〉

T ((T u I)(K)) = 〈ls,Fs〉

while C do

〈first(Kb),Filter(C,Before(Fs,Kb|last(Kb)
))〉

#T ((T u I)(Kb))

endwhile

〈lf ,Filter(¬C,Fs t Collect((T u I)(Kb)|last(Kb)
))〉

We now have four cases
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l = ls:

The proof here is immediate.

l = first(Kb):

The proof follows from the fact that

Filter(C,Before(Fs,Kb|last(Kb)
)) ` Kb|first(Kb)

holding implies that

Filter(C,Before(Fs,Kb|last(Kb)
)) ` Kb|first(Kb)

u Before(Fs,Kb|last(Kb)
))

holds.

l ∈ labels(Kb)\{first(Kb)}:

The proof follows from the induction hypothesis.

l = lf :

The proof follows from the fact that

Filter(¬C,Fs tCollect(Kb|last(Kb)
)) ` Ff

holding implies that

Filter(¬C,FstCollect((T uI)(Kb)|last(Kb)
)) ` FfuFilter(¬C,FstCollect(Kb|last(Kb)

))

holds.
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