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SUMMARY

The Robust Header Compression (ROHC) is a technique which compresses

protocol headers robustly over wireless channels to improve bandwidth

efficiency and its specifications are being developed by the Internet Engineering

Task Force (IETF). Traditionally, header compression schemes are designed

based on qualitative descriptions of source headers. This is inadequate because

qualitative descriptions do not precisely describe the effect of different source

and deployment scenarios, and it is difficult to perform optimization using this

methodology. In addition, due to the use of qualitative descriptions, most studies

on header compression performance do not take into account the tradeoff

between performance metrics such as robustness and compression efficiency. In

this thesis, we present a modeling framework for header compression. For the

first time, a source model is developed to study header compression. Modeling

the way packets are generated from a source with multiple concurrent flows, the

source model captures the real-world behavior of the IP Identification header

field. By varying the parameters in the source and channel models of our

framework, different source and deployment scenarios can be modeled. We use

the framework to define and establish the relationship between performance

metrics, offering new perspectives to their current definitions. We then introduce

the objective of scheme design and the notion of optimal schemes. Based on this

new paradigm, we present a novel way to study the tradeoff dependencies

between performance metrics. We demonstrate how a scheme can be designed to

optimize tradeoffs based on the desired level of performance.
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Chapter 1  Introduction

1.1 Motivation

Header compression improves the bandwidth efficiency over bandwidth scarce

channels and is especially attractive in the presence of small packet payloads, which is

often the case in practice. Interactive real-time applications like IP telephony, multi-

player network gaming and online chats all generate disproportionately small payloads

in comparison to headers. In addition, non real-time applications like web browsing

predominantly carry payloads no more than a few hundred bytes.

The adoption of early header compression schemes over wireless links failed because

early schemes like Van Jacobson Header Compression (VJHC) [1] were designed to

operate over reliable wired links. Each loss of a compressed packet caused the

compressor-decompressor context synchronization to be lost, generating a series of

packets discards due to corrupted packets from decompression failures. The error

condition persisted till packet retransmission initiated by higher layers (e.g. TCP)

restored context synchronization. Over wireless links where high error rates and long

round trip times are common, this caused header compression performance to

deteriorate unacceptably. To deal with this, a number of schemes like IP Header

Compression (IPHC) [10] and TCP-Aware Robust Header Compression (TAROC) [9]

were proposed to offer robustness against packet loss in wireless channels. The ROHC

is currently the state-of-the-art header compression technique. A robust and extensible

scheme, the ROHC is being developed by the IETF [2], and is an integral part of the 3
rd

Generation Partnership Project-Universal Mobile Telephone System (3GPP-UMTS)

specification [3].
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The deployment scenarios for header compression have increased over the years.

Early header compression schemes like VJHC were first used over wired serial IP lines

[1]. Current efforts mainly focus on developing header compression over ‘last hop’

wireless links and cellular links like UMTS [2]. Some of the most recent proposals

explore header compression over multiple hops in a mobile ad hoc network [6], and

even for high-speed backbone networks [14].

With the expected deployment of ROHC in increasingly diverse types of networks,

the evaluation of Robust Header Compression performance in different scenarios

becomes crucial. A number of tools and studies related to header compression

performance can be found in the literature. The effect of ROHC on the subjective and

objective quality of video was evaluated in [12] from a test-bed. Other studies evaluate

header compression performance by simulation. Specialized ROHC simulators like the

Acticom ROHC Performance Evaluation Tool [8], the Effnet HC-Sim [7], and the

ROHC simulator-visualizer [13] have been developed for this purpose, though they are

not readily available in public domain. Most studies in literature focus on various issues

in header compression. An early study investigated the effect of inter-leaving at the

packet source on RTP header compression [11]. A proposal on header compression

over Multi-Protocol Layer Switching (MPLS) in high-speed networks investigated the

tradeoff between compression gains and implementation cost [18]. The cost and

performance due to the context establishment has been studied using an analytical

model in [15] and the handover aspect was analyzed in [16]. The notion of adaptive

header compression was introduced in [17], where it was suggested that scheme

parameters like the context window size and packet refresh rate be made adaptive to

link conditions and packet sizes. However, the issue of how these parameters can be

made adaptive was not addressed in the same thesis.
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While progress in several key aspects has been made in the above studies, we note

that the above studies on header compression performance typically assume some

particular network deployment scenario, i.e. over ‘last-hop’ wireless links. Moreover,

we find that with the exception of few studies [7], [11], the operating environment

influencing the content and sequence of headers arriving at the compressor has not

adequately addressed. The common setup used involves two nodes – the compressor

and decompressor, separated by a wireless channel (simulated or real) in between.

Indeed, this is a setup used in ROHC interoperability tests [8], [12]. In most studies, the

performance is evaluated by generating packets at the compressor (sometimes with real

application payloads) for performing header compression. We note that the header

contents generated in experimental conditions may be different from those in real

operating environments. Because most studies do not ensure their headers are generated

based on real-world behavior, they inadvertently assume idealized operating

environments (e.g. handling non-concurrent flows) at the source. Moreover, the effect

of packet loss between the source and compressor has not been studied in any existing

work. Due to these shortcomings, packet headers produced under experimental

conditions may become easily compressed at high efficiencies. Because this seems

easily achieved, the interaction and tradeoffs between ROHC performance metrics like

robustness and compression efficiency are often not examined in existing work.

The second issue deals with the design methodology of header compression schemes.

Since the proposal of the first TCP/IP header compression scheme, VJHC [1] in 1990,

it has been more or less a tradition for scheme design to be based on rules-of-thumb and

qualitative descriptions of source headers [2], [4]. Without a formal approach, the

effects of different source and deployment scenarios cannot be precisely described, and

optimization is difficult. As such, the notion of optimized schemes does not exist.
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1.2 Contributions

To deal with the issues highlighted in the previous section, our prior work started

with the quantification and analysis of TCP/IP inter-flow field behavior based on a

database of 2 million packet headers captured from real traffic. The details on the

behaviour of all TCP/IP header fields can be found in [22]. Based on this, we have

developed an approach to optimize inter-flow header compression (termed “context

replication” in ROHC terminology). In the same paper, we have shown that inter-flow

header compression gains can be improved by using a design methodology based on

the quantitative description of real-world field behaviour [21].

Our first contribution in this thesis is to propose a framework for modeling Robust

Header Compression in general. The framework has five stochastic processes as its

main components: the source, the source-compressor channel, the compressor, the

compressor-decompressor channel, and finally the decompressor. By including the

source process and source-compressor channel in the framework, a more complete

picture of the main components affecting the performance is obtained. The framework

is designed to be flexible enough to allow different scenarios to be modeled. For

example, different deployment scenarios can be modeled by tuning the parameters of

the channel models.

The ROHC has qualitatively defined three metrics for ascertaining the performance

of an ROHC scheme: compression efficiency, robustness and compression

transparency. We show that our modeling framework offers new perspectives to the

definition and understanding of header compression performance metrics, using which

we present a novel way to study the tradeoff dependencies between performance

metrics.
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Moving on from qualitative descriptions of header behavior to mathematical models,

we present a real-world source model for studying header compression. This is the first

time a source model is used for studying header compression. Built on a Markov model

of the packet source, our source model captures the real-world behavior of the IP

Identification header field in TCP flows. The effect of multiple concurrent flows on

field behavior is modeled using a chain of Markov states for each packet flow. Using

real traffic, we have built a real-world IPID source model for the average source.

Interestingly, the source model may have wider applications because it also models the

way packets are generated from a source with multiple concurrent flows. We also

obtain the models for a busy source and the non-concurrent source in idealized

operating environment. By plugging the desired source model into our modeling

framework, the effect of different source scenarios on the performance outcome is

investigated. Our results in Chapter 5 verify our intuition that the idealized operating

environment of non-concurrency coupled with a perfect source-compressor channel

leads to unrealistically high compression efficiencies almost independent of the

robustness configuration.

Using our framework, we formally introduce the notion of optimized schemes.

Presenting a tradeoff optimization procedure, we show, for the first time, that the

parameters of a ROHC scheme can be tradeoff optimized based on the desired level of

performance. This opens up the possibility of adaptively optimizing the entire set of

parameters in a ROHC scheme, instead of adapting two parameters as suggested in [17]

without optimization.

A short description of the work done based on the above key ideas can be found in

[23]. Important expansions and elaborations on the key ideas as well as new results are
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found in an extended version [24] as well as in the remaining of this thesis.

1.3 Thesis Layout and Notation

This thesis is organized in the following structure. In the next chapter, we present the

background and problem definition. Our framework for modeling header compression

will be developed in Chapter 3. In Chapter 4, we present the source model for studying

header compression. This is followed by our results and discussion from the

performance and tradeoff study in Chapter 5. We end this thesis with the significance

of our contributions in conclusion and discussion of future work.

The notation adopted in this thesis is as follows: random variables are in upper case

whilst values are in lower case. Vectors are assumed to be row vectors, and both

vectors and matrices are denoted in bold, while the former is in lower case and the

latter is in upper case. (·)
T
 is used to denote the transpose of a matrix or vector.
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Chapter 2 Background and Problem Definition

2.1 Overview of Robust Header Compression

Fig. 1 gives a pictorial overview of the ROHC system over a wireless channel. In

general, a number of packet flows pass through the system simultaneously. The

compressor compresses each packet by referring to previous headers of the same flow.

This is done by maintaining a window of w contexts per flow, where each nfth context

stores the nfth previous header. As will be elaborated upon, the window of w contexts

are required for robustness. The decompressor is only required to maintain a single

context per flow. This context stores the latest header which has been verified to be

successfully decompressed through passing the Cyclic Redundancy Check (CRC). The

decompressor may feedback the compressor upon verification success or failure. To

facilitate feedbacks, each packet is uniquely identified with a Sequence Number. In

ROHC-TCP, this is called the Master Sequence Number (MSN), which is maintained

as a flow-specific counter [5]. The MSN is part of the ROHC header in compressed

packets and is added by the Compressor.
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Fig. 1: Pictorial overview of Robust Header Compression system

The actions performed by the compressor and decompressor are state-dependent,

controlled by the compressor and decompressor state-machines respectively. Three

compressor states are defined in the ROHC framework: Initialization and Refresh (IR)

state, First Order (FO) state, and Second Order (SO) state [2]; the three states are

reduced to two in ROHC-TCP: IR state and Compressed (CO) state, for which the latter

state is synonymous to the FO state [5]. The name of the state is indicative of the

operation in that state: In IR state, the full header is sent uncompressed; In FO (SO)

state, the first (second) order differences between packets are used to perform

compression. Naturally, header compression is the most efficient in the SO state.

For the purpose of clarity, we will implicitly adopt the two-state compressor state

machine used in ROHC-TCP for our problem definition and analysis. However, it is

not too difficult to extend our analysis using the same approach for the three-state case.
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2.2 Redundancy in Packet Headers

Most header fields either do not change throughout a flow, or typically increase with

small deltas between consecutive packets of a flow. Header compression capitalizes on

the behavioral patterns of header fields and exploits the redundancy between header

fields of different packets belonging to the same packet flow. For ease of reference, the

header fields found in a typical TCP/IP header is shown in Fig. 2.

All header fields can fit into either one of the following general categories:

INFERRED, STATIC, STATIC-KNOWN and CHANGING [9]. These category names

indicate the behavioral pattern of that particular type of fields. Correspondingly, fields

in each category are encoded in a way unique to that category. INFERRED fields can

be inferred without requiring the sending of that field. An example is the IP Packet

Length field. STATIC fields like the IP Source and Destination Addresses do not

change throughout the entire packet flow. These fields need to be communicated only

at the beginning of each flow. STATIC-KNOWN fields are well-known values which

do not change throughout the entire connection, and thus need not be sent at all. Last of

all, CHANGING fields vary dynamically throughout a flow. Most CHANGING fields

share the common characteristic of small delta increases between packet headers.

Examples of CHANGING fields include the IP Identification (IPID), TCP Sequence

Number and TCP Acknowledgement Number.
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Fig. 2: A Typical TCP/IP Header

2.3 Encoding Methods

Most of the complexities required in header compression schemes are attributed to a

relatively small number of CHANGING fields. The type of encoding used for these

deltas makes the difference between a good and poor scheme. In this section, we will

introduce the two main ways of encoding CHANGING fields – delta encoding and

Least Significant Bit (LSB) encoding. We also briefly discuss the use of intermediate

encoding to further improve header compression gains.
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2.3.1 Delta Encoding

Delta encoding is a straightforward approach to reduce the redundancy between

headers. Due to the fact that many CHANGING header fields increase with small deltas

between consecutive headers, delta encoding simply encodes a field as the difference in

its value between two consecutive headers. For example, if the TCP Sequence Numbers

in two consecutive headers are 2900000 and 2900360, then the field in the second

header can be encoded into its delta, 360 instead. To facilitate encoding (decoding), the

previous packet header is stored in the context at the compressor (decompressor).

Though this approach is simple, the decompression of each header requires the

previous header to be received correctly. A single packet loss induces a series of further

packet discards due to decompression errors as the compressor-decompressor context

synchronization is lost. This phenomenon is known as damage propagation. The

avalanche of packet discards continues till higher layer (e.g. TCP) retransmission

mechanisms are activated. This approach is acceptable over wired channels due to low

residual error rates and short round-trip delay. Over error-prone wireless channels, this

solution is unsatisfactory because the higher layer recovery is achieved only after long

delay and high packet loss ratio. Thus over wireless channels delta encoding results in

extremely poor performance and is unsuitable.

2.3.2 Least Significant Bit Encoding

The Least Significant Bit encoding (LSB) is proposed in ROHC as an alternative to

delta encoding. A LSB code is defined by two parameters, (b,of). Instead of

compressing fields into deltas, it requires the b least significant bits of the field to be
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sent over the channel. A LSB encoded field can be decoded unambiguously if the

difference of the original value with respect to the reference value is within the

interpretation interval [ ,  2 1 ]b

f fo o− − − .

Using the previous example where we encode the value 2900360 using 2900000,

suppose we first define a LSB code (10, 0) known to both the compressor and

decompressor. With knowledge of the previous value, 2900000, and receiving only the

10 least significant bits, i.e. 0110001000 in binary, the decompressor simply locates the

binary sequence in the range [2900000, 2900000 + 2
10

 – 1] and thus is able to uniquely

identify the next value as 2900360.

Note that the field can be encoded only if the delta is within the interval. Using the

same example, if the LSB code (4, 0) is used instead, then only values in between

2900000 to 2900015 inclusive can be encoded without decoding ambiguity. In this

case, the LSB code defined by (4, 0) has failed to encode the field and the compressor

has to decide on other alternatives. Note that since the size of the interpretation interval

is 2
b
, only b bits are required to identify the position within the interval, and thus only b

bits are communicated in encoded form. The position of the interpretation interval

(with respect to the reference field) can be shifted through the pre-defined offset of. The

ROHC recommends defining of based on field behavior [2], i.e. if the field value only

increases, then of  should be -1. If the field value is non-decreasing, then of should be 0.

If it is strictly decreasing, then it should be 2
b
.

Note that LSB encoding by itself is not superior to delta encoding in the sense that it

just as vulnerable to damage propagation. However, the concept of LSB encoding

enables its enhanced form, Window-based LSB (WLSB) to be used. This is the key

robustness ingredient in ROHC, as will be elaborated in Section 2.4.
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2.3.3 Intermediate Encoding

The purpose of intermediate encoding is to improve header compression gains by

leveraging on the redundancy between header fields within the same header. In most

cases, such redundancy is limited between header fields. However, a degree of

inference is possible when two header fields are sufficiently similar. In fact, if a header

field can be completely described by another field within the same header, then it is

categorized as INFERRED and it need not even be sent at all (see Section 2.2).

Otherwise, if there is still significant redundancy with another field, then a form of

intermediate encoding can be performed before using LSB encoding.

The most common form of intermediate encoding comes from the ‘INFERRED-

OFFSET’ encoding method defined by ROHC. Given that there are two header fields

within the same header which are sufficiently similar, this encoding method simply

replaces one of the field by subtracting one field from the other to form a new field.

The new field then becomes the input to LSB encoding. Intuitively, intermediate

encoding causes the delta differences between consecutive headers to be reduced, thus

allowing higher gains.

In ROHC-TCP, the IPID field shares a similar characteristic to the Master Sequence

Number (MSN) field. The MSN is a ROHC header field introduced in Section 2.1. In

the ROHC-TCP specification, the IPID is specified to be encoded with respect to the

MSN via the ‘INFERRED-OFFSET’ encoding method before using LSB on the

resultant field [5]. Results on the improvement due to this intermediate encoding are

presented in this thesis.
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2.4  The Ingredients of Robustness

The ROHC is designed to operate over wireless error-prone channels because it has

mechanisms to prevent damage propagation and quickly recover from damage

propagation. Damage prevention is achieved by Window-based LSB encoding

(WLSB); fast recovery is achieved by either periodic context refreshes or feedback-

initiated context refreshes.

Unlike delta and LSB encoding, WLSB encoding does not require exact context

synchronization between the compressor and decompressor. This means that the

decompressor need not refer to the same context used by the compressor when

decompressing a packet.

In WLSB, the compressor keeps a sliding window of the last w contexts, but the

decompressor maintains only the last successfully decompressed context (see Fig. 1).

Thus, the LSB is in fact a specific case of WLSB with w = 1. For each packet, the

compressor ensures that the compressed packet can be decompressed using any context

within its sliding window. Thus, the decompressor’s context is valid as long as it is

identical to any one context inside the sliding window used at the compressor. We can

see that robustness is achieved: only one out of w contexts at the compressor need to be

synchronized with that at the decompressor and in the worst case, the scheme can

tolerate up to (w – 1) consecutive packet drops without damage propagation.

We now explain how “the compressor ensures the compressed packet can be

decompressed using any context within its sliding window”. Recall from our

explanation on the LSB code (b,of) that an encoded field can be decoded
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unambiguously if the difference of the original value with respect to the reference value

is within the interpretation interval [ ,  2 1 ]b

f fo o− − − . We now extend this reasoning to

the WLSB code (b,of) where there is a window of w contexts (and thus a window of w

reference values). If the compressor wants to ensure that the encoded field can be

decoded using any context within its sliding window, then it encodes the field only if

this condition is satisfied: The difference of the original value with respect to each

reference value in the window of contexts is within the interpretation interval

[ ,  2 1 ]b

f fo o− − − .

We illustrate the concept of robustness using the sequence of three values: 2899700,

2900000, and 2900360. Suppose the WLSB code (10, 0) is used and a sliding window

of size w = 2 is maintained at the compressor. We focus on the WLSB encoding of the

third value. In the same way as that in LSB encoding, the compressor transmits only the

10 least significant bits of 2900360, which is 0110001000 in binary. The decompressor

is able to locate this binary sequence uniquely within the range of both intervals

[2899700, 2899700 + 2
10

 – 1] and [2900000, 2900000 + 2
10

 – 1] (note that both

intervals have a size of 2
10

). Therefore, the decompressor requires the apriori error-free

reception of only either 2899700 or 2900000 to identify the third value as 2900360.

This means that with w = 2, a single packet loss is tolerated without causing damage

propagation. The penalty to pay for robustness is the stronger condition for encoding

success: the value to be encoded must be within the interpretation interval of all the

previous w values. It is easy to see that this condition is satisfied in the above example.

Changing the WLSB code to (9, 0) in the above example, the encoding attempt now

fails because 2900360 ∈  [2900000, 2900000 + 2
9
 – 1] but 2900360 ∉  [2899700,

2899700 + 2
9
 – 1].
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WLSB achieves robustness by preventing damage propagation. The ROHC uses 2

other mechanisms for fast recovery from damage propagation: periodic context

refreshes and optional feedbacks from the decompressor to compressor. Periodic

context refreshes simply means sending uncompressed packets at periodic intervals of r

packets. With this mechanism in place, damage propagation can no longer extend

beyond r packets easily. Feedbacks from the decompressor further accelerate recovery

through explicit retransmission requests at the header compression layer. However, this

is an optional feature and we assume the absence of feedbacks in this thesis.

2.5 Problem Definition

As mentioned in the previous sections on LSB and WLSB encoding, if the delta lies

outside the interpretation interval of a particular (W)LSB code (b,of), then this code has

failed to encode the field and the compressor has to decide on other alternatives. In

general, the alternatives involve either using another (W)LSB code, or sending the field

uncompressed.

When a WLSB code fails to encode a field, a series of WLSB codes are often used as

further attempts to WLSB encode the field. In ROHC specifications, the offset

parameters for a series of WLSB codes are held constant or relatively constant for a

given field. When all specified WLSB codes fail, the compressor falls back to sending

the field uncompressed. The latter can be seen as the final ‘code’.

The assumptions made leading to our problem definition are as follows:

• The compressor uses the two-state compressor state machine in ROHC-TCP.
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• The set of specified codes (codebook) is shared apriori between the

compressor and decompressor.

• The offset parameter of is held constant for a given field in all WLSB codes.

A set of K-1 WLSB codes and one uncompressed ‘code’ constitutes the codebook for

a single field, and can be defined as KΨ = { } }{ 1

1
( , ) ,

K

i f i
b o m

−

=
, where bj > bi if j > i, and

m is the length of the field in bits. The compressor shares the same codebook with the

decompressor, and the compressor signals the code used with up to 2log K  

‘discriminator bits’, which are incurred as overhead. In ROHC-TCP, the overhead may

be less than 2log K    bits due to the use of Huffman coding, and this is usually

necessary when K is large.

Finally, note that for a single field, we define the set of parameters denoting a Robust

Header Compression scheme as { , , }K w rΨ , where Ψ
K
 is the codebook such that

KΨ = { } }{ 1

1
( , ) ,

K

i f i
b o m

−

=
. Extending this to include all CHANGING fields in the header,

the entire set of parameters defining a Robust Header Compression scheme becomes

1 2

1 2{ , ,..., ,gKK K

gΨ Ψ Ψ , }w r  where g is the number of complicated CHANGING fields.

At this stage, the objective of scheme design is to determine suitable values for these

parameters given external conditions over which the designer has no control of. We

will see that our modeling framework enables a more formal and meaningful definition

of the objective of scheme design.
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2.6 Channel Model

We are interested in a model for the packet loss/survival process over a channel. A

variety of models attempting to model the packet loss/survival process exists in the

literature. We select a particular model which has been found to be relatively accurate

[19], and which can be easily adjusted to model wireless channels in high and low

speed mobility [20]. We outline an adapted version of this model and the interested

reader is referred to [19] for details.

Let {Z(j): j = 1, 2, …} be the packet loss/survival stochastic process over the channel,

with event space {1,0} denoting the events of packet survival and packet corruption

respectively. {Z(j)} can be defined from the lower-level bit error/error-free process.

The bit error/error-free process is modeled by the well-known Gilbert-Elliot model.

Let X(i)∈{good, bad} denote the channel state during the transmission of bit i. The

channel state process {X(i): i = 1, 2, …} is modeled by a two-state Markov chain as

shown in Fig. 3. In each state, a state-dependent bit error rate exists in the duration of

that bit transmission, denoted by BERg and BERb, where BERg < BERb. The effects of

Forward Error Correction (FEC) can be taken into consideration when defining the bit

error rates. Practical values of state transition probabilities and state-dependent bit error

rates due to different mobility speeds have been found in [20] and will be used in this

thesis.

Good Bad

P
gb

P
bg

1-Pgb 1-Pbg

Fig. 3: Markov model of channel state process
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Let {Y(i): i = 1, 2, …} be the bit error/error-free process with event space {1,0}

denoting the events of bit error-free and bit error respectively. Then the outcome of bit i

conditioned on the channel state is given by

( )
( )
( )
( )

( ) 0 ( ) ,

( ) 0 ( ) ,

( ) 1 ( ) 1 ,

( ) 1 ( ) 1 .

g

b

g

b

P Y i X i good BER

P Y i X i bad BER

P Y i X i good BER

P Y i X i bad BER

= = =

= = =

= = = −

= = = −

(2.1)

Let the jth packet start at bit βj and end at bit βj + λj – 1. The packet remains

uncorrupted when all bits in the range [βj, βj+1, … , βj+λj–1] are error-free. Therefore,

at each j, the packet loss probability of Z(j) can be defined as

( )
1

( ) 1 ( ) 1 .
j j

ji

P Z j P Y i

β λ

β

+ −

=

 
= = = 

 
 
∩ (2.2)

As a result of the above expression, the error-free probability of the jth packet given its

initial channel state can be evaluated as:

( )

[ ]
[ ]

1 1
( ) 1 ( )

where

1 0 ,

0 1 ,

(1 ) (1 )

(1 ) (1 )

(1 ) (1 ) .

j j

j
j j

j

j

x T

j jZ X

j

gg g gb g

bg b bb b

g b

P Z j X X P ,

x good

x bad

p BER p BER

p BER p BER

BER BER

β

β

λ

β

β

β

β
−

= = =

 =
=  =

− − 
=  − − 
 = − − 

� x M e

x

M

e

(2.3)

and ( ) 1

( ) 1 ( ) j

j
j j

x

j Z X
P Z j X x P

β

β
ββ= = ≡  is defined for compactness. For analyzing a group

of consecutive packets, a useful auxiliary result is the probability that the jth packet is

error-free and the (j+1)th packet starts at a particular channel state, given the initial

channel state at the start of the jth packet:
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( ) ( )1

1
1

1

1

1, 1

1 ,
( ) 1, ( ) ( ) ,

where

(1 ) (1 ) ,

(1 ) (1 ) , .

j j j

j j
j j j

j

j

x x

j j jZ X X

gg g bg b

gb g bb b

P Z j X x X x P

p BER p BER x good

p BER p BER x bad

β β

β β

λ

β β

β

β

β β +

+
+

+

+

−

+= = = =

 − − = = 
 − − = 

� x M
TTTT

e'e'e'e'

e'e'e'e'

(2.4)

Finally, it is not too difficult to derive similar expressions for variations of other packet

error probabilities given the initial channel state:

1 1 1

11 1

0 1

0, 1,

,,

1 ,

.

j j

j jj j

j j j j j j

j jj jj j jj

x x

Z X Z X

x x x x x x

Z X XZ X X X X

P P

P P P

β β

β β

β β β β β β

ββ β ββ
β

+ + +

++ +

= −

= −
(2.5)
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Chapter 3  A Framework for Modeling Robust

Header Compression

We begin this chapter with a high level presentation of our modeling framework in

terms of five stochastic processes - a source process, two channel processes, a

compression process and a decompression process. We give the initial broad definition

for the source process, and describe the channel processes based on existing channel

models. We then show how the compression and decompression processes can be

defined based on the source process and channel processes. Extending current

definitions, we offer new perspectives to the three performance metrics. We end this

chapter by showing how the framework can be used to model different source and

deployment scenarios.

3.1 Overview of Modeling Framework

Fig. 4 shows header compression deployment in a general scenario. The source node

is the generator of packet headers, transmitting packets to the remote compressor

through Channel A. The compressor compresses the packet headers and transmits

compressed packets through Channel B to the decompressor. The passage beyond the

decompressor has no effect on the header compression system. As illustrated in Fig. 4,

this can be modeled with five stochastic processes. Trivial and starkly simple, we will

show that this representation allows different source and deployment scenarios to be

modeled.
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Source Compressor Decompressor

Channel A

wired /

wireless /

hybrid

Channel B

wired /

wireless

Stochastic

Processes
S(n

A
) A(n

A
) C(n

B
) B(n

B
) D(n

B
)

Fig. 4: Header compression deployment in a general network scenario

3.2 The Source Process

Different protocol fields possess different and often independent behavior, making it

difficult to have a single source model describing all the fields in the entire header. As a

start, with the assumption of independence, the approach is to develop source models

for each field individually. To analyze different fields, we simply use different source

models.

For each field, the source of the flow under observation, fo, is a discrete-time

stochastic process, { ( ): 0,
of A AS n n =  1,...}, which takes values in the discrete space [0,

2
m
-1] for a field of m bits long. A convenient way of simplifying the process { ( )}

of AS n

is to view it as having an initial value (0)
of

s  and being generated from a ‘delta

process’, { ( ): 0,1,...}
of A An n∆ = , such that

( ) ( ) ( 1),

( ) ( ) ( 1).
o o o

o o o

f A f A f A

f A f A f A

n S n S n

n s n s nδ
∆ = − −

= − −
(3.1)

Thus, in general, the source of a flow of observation can be modeled by its delta

process { ( )}
of An∆  and an initial value (0)

of
s . Conversely, we can express the

difference between ( )
of As n  and ( )

of As n h−  in terms of deltas:
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1

1

( ) ( ) ( ) ( 1)

( ).

A

o o o o

A

A

o

A

n

f A f A f f

i n h

n

f

i n h

n ns s h s i s i

iδ

= − +

= − +

− − = − −

=

∑

∑
(3.2)

Note that during header compression operation, the compressor transmits a number of

least significant bits defined by bi due to its choice of code (bi,of) in its codebook KΨ .

The above delta process is a means to model the source process, and so should not be

confused as the output of the compressor.

Let us apply the concept of source and delta processes to the IPID field. The IPID is a

unique identifier for packets from a source. A predominant implementation is to use a

common counter shared by all flows, incremented for every packet sent from the

source. For a single flow, consecutive packets carry values with small sequential

offsets. This is known to account for the small IPID deltas characterization in literature

[4]. As an example, consider a source transmitting 2 flows (flows 1 and 2)

concurrently. Fig. 5 illustrates the sequence of values observed when either flow is

chosen to be the flow of observation.

IPID value: 1 2 3 4 5 6 7 8 9 10

Flow: 1 2 2 1 1 1 2 1 2 1

s1(nA): 1 - - 4 5 6 - 8 - 10
 fo=1 δ1 (nA): - - - +3 +1 +1 - +2 - +2

s2(nA): - 2 3 - - - 7 - 9 -
fo=2 δ2(nA): - - +1 - - - +4 - +2 -

Fig. 5: Observed sequences for different flows of observations

For the rest of this thesis, the notion of the chosen flow of observation is assumed to

apply for the source process, and the flow subscript fo will be dropped from ( )
of AS n  and

( )
of An∆ .
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3.3 The Channel Processes

Let Channel A be the channel between the source and compressor. To model the

packet loss in the passage through Channel A, we define a packet survival/loss discrete-

time stochastic process {A(nA): nA = 1, 2, ...}, such that

1,  th packet is not corrupted in Channel A
( )

0, th packet is corrupted in Channel A.

A

A

A

n
n

n
A


= 


(3.3)

Existing channel models like that presented in Section 2.6 can be used to model this

process. We also derive another stochastic process from {A(nA)}, called the Channel A

loss run process, {LA(jA): jA = 1, 2, ...}, where for a particular index jA, the number of

packets lost between two nearest loss-free packets is a random variable LA(jA). For

example, in the following sample sequence of {A(nA)}: 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0,

1, …, the sequence of loss run lengths would be: 0, 1, 0, 0, 0, 2, 3, … . The probability

of a loss run, P(LA(jA) = lA), can be expressed as:

( )

( )

( )

( 1) 0, ( 2) 0,..., ( ) 0, ( 1) 1 ( ) 1 ,

A A A

A A A A A A An n n n n

P L j l

P A A A l A l A

= =

− = − = − = − − = =
(3.4)

where the jAth run is defined in terms of the Channel A process as 
1

( ) 1
An

A

i

j a i
=

 
= − 
 
∑ .

Let Channel B be the channel between the compressor and decompressor. In the same

way,

{1,  th packet is not corrupted in Channel B
( )

0, th packet is corrupted in Channel B,
B

B
B

n
B n

n
= (3.5)

where 
1

( )
An

B

i

n a i
=

 
=  
 
∑  is the number of packets from the source successfully received
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by the compressor and

( )
( )

( )

( 1) 0, ( 2) 0,..., ( ) 0, ( 1) 1 ( ) 1
B B B

B B B B B B B

P L j l

P B n B n B n l B n l B n

= =

− = − = − = − − = =
, (3.6)

where the jBth run in Channel B is defined by 
1

( ) 1.
Bn

B

i

j b i
=

 
= − 
 
∑

Note that the stochastic process {B(nB): nB = 1, 2, ...} maintains a separate counter nB

due to the fact that B(nB) is defined only in the event A(nA) = 1. We make the

assumption that {A(nA)} and {B(nB)} are independent, which is reasonable in practice.

Then {B(nB)} is another channel process independently defined from the packet

loss/survival model in Section 2.6.

As nA → ∞, it is well-known that the Gilbert-Elliot channel state model converges to

a steady-state distribution:

( )

( )

( ) ,

( ) 1 .

A

A

bgg

X A n
gb bg

b g

X A Xn

P
P P X n g

P P

P P X n b P

→∞

→∞

= =
+

= = −

�

�

(3.7)

This allows the steady-state probability of the packet loss process and loss run process

to be formulated. Focusing on Channel A with results equally applicable to Channel B,

we know from Eq. (3.4) as nA → ∞, jA → ∞ that

( )
( )

( )
0 1 1

0

1, 0,..., 0, 1
,

1

A Al l

A A

P A A A A
P L l

P A

− − − −= = = =
= =

=
(3.8)

where ( ) .
A

l A n
nA A l− →∞

−�  We assume that all packets passing through Channel A are

of the same length, so that we need not be concerned with differences in packet lengths

at steady state. The denominator in Eq. (3.8) is the probability of packet survival in

Channel A. Using results in Section 2.3, the steady-state probability of the packet loss
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process can be evaluated as

( ) 1 1

0 1 .
g bg b

X XA X A X
P A P P P P= = + (3.9)

The numerator in Eq. (3.8) can be derived by considering, for each packet, the

probability for all combinations between (i) the initial channel state of the current

packet, (ii) the current packet loss/survival, and (iii) the channel state after the current

packet. These combinations were introduced in Eq.s (2.3) to (2.5), and the result can be

expressed in matrix form as:

( )

1 1 1 1

1 1 1 1

0 1 1

1, 1, 0, 0, 1

, , , ,

1, 1, 0, 0, 1

, , , ,

1, 0,..., 0, 1

.

A A

A

l l

l
g g b g g g b g g

g b A X X A X X A X X A X X A X

g b b b g b b b bX X

A X X A X X A X X A X X A X

P A A A A

P P P P P
P P

P P P P P
− − − −

− − − −

− − − −= = = = =

     
        

          

(3.10)

We will validate our steady-state analysis by comparison with simulation results in

Chapter 5.

3.4 The Compressor Process

Similar to {B(nB)}, the compressor process { ( ): 1, 2,...}B BC n n =  is defined only in the

events {A(nA) = 1∀ nA = 1, 2, ...}. We have found it convenient to represent the

compressor process with the following event space:

{1,  ( ) can be compressed
( )

0,  ( ) cannot be compressed.
A

B
A

n

n

s
C n

s
= (3.11)

Recall from Section 2.2 that the set of parameters defining a ROHC scheme for a single

field under study is { , , }K w rΨ where KΨ = { } }{ 1

1
( , ) ,

K

i f i
b o m

−

=
. The objective is to define
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the compressor process C(nB) given { , , }K w rΨ .

The compressibility of a field depends on a number of issues: (i) the size of the

context window, w, (ii) the parameters in the codebook Ψ
K
, (iii) presence of packet

losses in Channel A, and (iv) the use of intermediate encoding.

To focus on the effect of context window size, we first make the assumption of a

perfect Channel A and deal with the case of the simplest codebook (K = 2) without any

complicating intermediate encoding. The effect of the context window size on the

compressibility of a field can be seen from the requirements of robustness in Section

2.2. Note in particular that the compressor encodes the field only if this condition is

satisfied: The difference of the original value with respect to each reference value in the

window of contexts is within the interpretation interval [–of, 2
b
–1–of]. Given that the

compressor is using a single fixed WLSB code (b, of) and denoting the interpretation

interval [–of, 2
b
–1–of] as V(of, b), the event of compression success occurs when the

difference between s(nA) and each hth previous context lies within the interpretation

interval:

( )

1

( ) - ( ) ( , ),  1, 2,... ,

( ) ( , ),  1, 2,... , .
A

A

A A f

n

f

i n h

n ns s h V o b h w

i V o b h wδ
= − +

− ∈ ∀ =

 
∴ ∈ ∀ = 
 
∑

(3.12)

In practice, header field values increase monotonically in the duration of a flow except

when the occasional wraparound occurs. This means that the largest difference between

s(nA) and any s(nA – h) , h = 1, 2, … , w is given by s(nA) – s(nA – w). Thus, the

compression success probability can be evaluated as
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( )
1

( ) 1 , , ( ) ( , ) .
A

A

n

B f f

i n w

P C n o b w P i V o b
= − +

 
= = ∆ ∈ 

 
∑ (3.13)

Note that the compression success probability is not conditioned on r though it is part

of the set of parameters  { , , }K w rΨ  in the scheme because it has no effect on the

compressibility of a field. However, r determines the scheduling of uncompressed

packets. This is to be conditioned in the decompression process.

The significance of Eq. (3.13) is that the probability of compression success depends

on up to the (w-1)th order probabilities of the source delta process. As we will later

demonstrate, Eq. (3.13) can be used for studying and validating the high order

probabilities of a source model. Also, Eq. (3.13) requires a source model to remain

reasonably accurate at high orders.

We now discuss the effect of the issue (ii): the parameters in the codebook Ψ
K
. This

can be done by extending the above case of a single code to the codebook of K codes:

KΨ = { } }{ 1

1
( , ) ,

K

i f i
b o m

−

=
 where K = 2. Due to the presence of K-1 WLSB codes in the

codebook, a given field value is considered compressible if at least one of the K–1

codes encodes the field successfully, i.e. the event of compression success using the

codebook Ψ
K
 is the union of compression success events for each WLSB code in the

codebook KΨ = { } }{ 1

1
( , ) ,

K

i f i
b o m

−

=
 with the following result:

Lemma 1. Given the WLSB codebook KΨ = { } }{ 1

1
( , ) ,

K

i f i
b o m

−

=
 in the set of parameters

{ , , }K w rΨ  in the scheme, where bj > bi if j > i, the compression success probability of

the codebook is the same as that of the (K-1)th WLSB code (bK-1, of), i.e.
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1( ( ) 1 , ) ( ( ) 1 , , ).K

B B f KP C n w P C n o b w−= Ψ = = �

Proof.

The event C(nB) = 1 occurs when any of the K-1 WLSB codes in the codebook

encodes s(nA) successfully, i.e.

( )
1

1

( ) 1 , ( ) 1 , , .
K

K

B B f i

i

P C n w P C n o b w
−

=

 
= Ψ = = 

 
∪ �

From Eq. (3.13), we know that the compression success probability of a WLSB code

(b,of) depends on the size of its interpretation interval and we can modify the above

expression as:

( )
1

1 1

( ) 1 , ( ) ( , )
A

A

n K
K

B f i

i n w i

P C n w P i V o b
−

= − + =

 
= Ψ = ∆ ∈ 

 
∑ ∪

Due to the property that bi < bj if i < j, and recalling that V(of, b) � [–of, 2
b–1–of], then it

is straightforward to see that V(of,bi)⊂V(of,bj) if i < j. It follows by induction that that

V(of,bi) ⊂V(of,bK-1) i +∀ ∈Z  and i < K – 1. Therefore, the probability of compression

success of the codebook is the same as that of the last WLSB code (bK-1, of). □

Note that Lemma 1 makes no assumptions on Channel A and its result is equally

applicable to non-ideal Channel A conditions. We now consider the effect of packet

losses in Channel A by illustration. Suppose for w = 3, we have the following sequence

of values:  … , s(nA –  7), s(nA – 6), s(nA – 5), s(nA – 4), s(nA – 3), s(nA – 2), s(nA – 1),

s(nA), … , where the current value, s(nA), is to be compressed and values marked with

double strikethrough were corrupted in Channel A. We find that Eq. (3.13) is no longer
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correct since the wth previous value is s(nA –  7) instead of s(nA –  3). The number of

packets lost between two correctly received packets in the above example is given by

values from the loss run process, i.e. LA(jA – 2) = 2, LA(jA – 1) = 1 and LA(jA) = 1.

If we define lAT as the total number of packets lost since the wth previous context,

then the following result is evident from the above example:

( )

1

0 1 ' 1

( ) 1 ,

( ) ( , ) ( ') .
B A A A

AT A AT A

K

B

n n n j

f K A AT

l i n l w i j w

P C n w

P i V o b P L i l
−

−
= = − − + = − +

= Ψ =

    
∆ ∈ × =     

    
∑ ∑ ∑

(3.14)

Note that the difference (nB – nA) is used in Eq. (3.14) because for some particular nA

and nB, (nB – nA) is the total number of packets lost in Channel A.

Eq. (3.14) can be used readily if the compressor attempts to use the codebook Ψ
K
 on

the field directly. In ROHC specifications, it is common to find some fields being

processed with intermediate encoding before using the WLSB codebook to encode the

field into its final compressed form [5]. The motivation for using intermediate encoding

is to obtain better gains. Though intuitive, this is yet unproven in open literature. Here,

we show how intermediate encoding on the IP Identification (IPID) field can be studied

through some simple modification in our compressor process.

The Master Sequence Number (MSN) is a ROHC field which increments for every

ROHC packet transmitted to the decompressor within a flow (see Sections 2.1 and 2.3.3

). This characteristic is similar to the IPID field. As intermediate encoding it is

specified that the MSN field be subtracted from the IPID field (this is in fact performed

using an encoding method called ‘INFERRED-OFFSET’). Due to this intermediate
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step, the modified input to the WLSB codebook at the compressor becomes

'( ) ( ) ( ).A A As n s n msn n= −  The result of this is that

[ ]
'

1 1

'( ) '( ( )) ( ) ( ( ))

( ) ( )
A A

A AT A AT

A A AT A A AT

n n

i n l w i n l w

s n s n l w s n s n l w w

or i i wδ δ
= − − + = − − +

− − + = − − + −

 
= − 
 

∑ ∑
(3.15)

Note that we have used the result msn(nA) – msn(nA – (lAT + w)) = w to obtain the above

expression. Recall from Section 2.1 that the MSN is a ROHC field added at the

compressor, and that lAT  is the total number of packets lost in Channel A since the wth

previous context. Then due to the fact that the MSN field increments for each packet of

the same flow received (and transmitted) by the compressor, we yield the above

expression.

3.5 The Decompressor Process

The decompressor process { ( ): 1, 2,...}B BD n n =  is defined only in the events {A(nA) =

1∀ nA = 1, 2, ...}. We define it as a discrete-time stochastic process with the following

event space:

{1,  ( ) is decompressed successfully
( )

0, ( ) is not decompressed successfully.
A

B
A

n

n

s
D n

s
= (3.16)

Note that decompression failure arises when a packet fails its CRC integrity check. The

reason for this can be attributed to channel errors (corruptions), and/or when the

decompression context is invalid. In either case, the packet decodes erroneously. Thus,

failure occurs once a packet is corrupted in Channel B, i.e. D(nB) = 0 if B(nB) = 0, but

not the converse.



32

Two key factors determine whether s(nA) can be decompressed: (i) whether it has

been compressed, and if so, (ii) the number of packets between the current packet and

the last successfully decompressed packet.

We first consider the effect of whether s(nA) has been compressed. In the event that

s(nA) was uncompressed, then decompression fails only if the packet was corrupted in

Channel B. s(nA) can be uncompressed if C(nB)=0, or if the compressor schedules the

nBth packet to be uncompressed as part of the context refresh procedure. The

scheduling of periodic context refresh packets is deterministic. The second factor arises

from the fact that a WLSB encoded field can be decoded only if the number of

consecutive decompression failures (since the last decompression success) is less than

w. We summarize all the above considerations as:

( )
( )

( ) ( ) ( )
1

0

( ) 1 , ,

( ) 1 , {1, 1,2 1,...}

( ) 1 ( ( ) 0) ( ) 1 ( ) , ( 1) 1

,  otherwise.
B

K

B

B B

w

B B B B B B B B

l

P D n w r

P B n n r r

P B n P C n P C n P L j l D n l
−

=

= Ψ

= ∈ + +
  

= = = + = = − − = 
  



∑
(3.17)

We note that the expression ( ) ( )( ) , ( 1) 1 ( )B B B B B B B BP L j l D n l P L j l= − − = = =

( )( 1) 1 ( 1) 1B B B BP D n l B n l× − − = − − =  holds because the probability of decompression

success at the (nB–lB–1)th packet is independent of all future packet errors over Channel

B. Therefore, expressing Eq. (3.17) in conditional probability with further

simplification, we have a recursive definition

( )

( ) ( )

1

, , ,

1
1

, , ,
0

( ) ( ) 1 , , , ( ) 1

1, {1, 1,2 1,...}

1 ( ) 1 1 ( ) ( 1) ,  otherwise.

K

K

B

K

B B BD w r B

B

w

B B B B B BD w r B
l

P n P D n w r B n

n r r

P C n P L j l P n l

Ψ

−

Ψ
=

= Ψ =

∈ + +
 =  − = − = × − −  

 
∑

�

(3.18)
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3.6 Performance metrics in New Perspectives

We show that the modeling framework offers new perspectives on the three

performance metrics defined in ROHC [2].

3.6.1 Compression Efficiency

The compression efficiency, or CE, is determined by how much the header sizes are

reduced by the compression scheme. We show how it can be defined from our

modeling framework.

For the scheme defined by the set of parameters { , , }K w rΨ , the mean compression

success probability of the jth WLSB code (bj,of) is the time average of its compression

success probability:

1

1
lim ( ( ) 1 , , ), 1, 2,..., 1

 

1, .

B

B

n

f j
nj

iB

P C i o b w j K
C n

j K

→∞
=


 = = −

= 
 =

∑ (3.19)

where from Lemma 1, 1KC C− =  is also the mean probability of compression success

for the codebook KΨ , and 1KC =  due to the fact there are no conditions for leaving a

field uncompressed.

Note that we have defined the mean compression success probability in the form as

shown in Eq. (3.19) for flexibility. In simulation, Eq. (3.19) can be evaluated by using a

large number of samples (nA → ∞) and each ith term becomes an event with binary

outcome (1 or 0). If both source and channel processes are ergodic in the limit nA → ∞,

then Eq. (3.19) can also be evaluated from steady-state analytical expressions. It has
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already been shown that the channel process converges to steady-state probability, and

is thus ergodic in the limit nA → ∞. We will present in Section 4 an IPID source model

which also converges to ergodicity.

Due to the property that V(of,bi) ⊂  V(of,bj) if i < j, The compression success event of

each jth code is a superset of preceding codes. We thus obtain the probability of using

the jth code as:

1

,  1

,  2 .
j

j

j j

C j
U

C C j K−

 =
= 

− ≤ ≤
(3.20)

In the absence of context refreshes, the mean compressed size can be expressed as

1

1

' η
K

i i K

i

b U b U m
−

=

= + +∑ (3.21)

where η is the overhead incurred in discriminator bits. These are sometimes Huffman

coded as part of packet format discriminators in ROHC-TCP, and η can be

approximated by the entropy of discriminator bits, i.e. 2

1

log .
K

i i

i

U U
=

η ≅ −∑  In other

cases, these bits are simply sent as is, and so 2log .Kη =     We assume that Huffman

coding is used in all cases.

Factoring in the overhead incurred in the presence of context refreshes of period r,

the mean compressed outcome becomes

1 1
'

r
b b m

r r

−
= + (3.22)

and we can then define the compression efficiency of a scheme as
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1
1

1

( , , ) /

( 1)

K

K

i i K

i

CE w r m b

mr m r U b U m η

−
−

=

Ψ =

  
= + − + +  

  
∑

(3.23)

which takes on values in the range CE ≥ 1. We can see both from intuition and Eq.

(3.23) that ( , , )kCE w rΨ is a monotonically increasing function of r.

In the limit r → ∞, the asymptotic upper limit of CE is expressed as

1
1

1

( , ) lim ( , , )

.

K K

r

K

i i K

i

CE w CE w r

m U b U m η

∞
→∞

−−

=

Ψ = Ψ

 
= + + 

 
∑

(3.24)

The above result plays an important role in the optimization of the codebook

KΨ = { } }{ 1

1
( , ) ,

K

i f i
b o m

−

=
 in a scheme, as will be elaborated upon in Section 3.7. Finally,

the definition of CE is non-unique. For example, another definition would be the ratio

of the entropy to the mean compressed size.

3.6.2 Robustness

A robust scheme tolerates loss and residual errors on the link over which header

compression takes place without losing additional packets or introducing additional

errors in decompressed headers [2].

Because WLSB is the only mechanism in ROHC preventing damage propagation,

instead of helping recovery from it, the robustness of a scheme can be seen from its w:

a larger w indicates a more robust scheme.
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3.6.3 Compression Transparency

The compression transparency, CT, is the extent to which a scheme prevents extra

packet loss due to header compression, i.e. packet discards caused by invalid contexts.

This can be obtained from the time average of conditional decompression success

probability:

( )
1

1
( , , ) lim ( ) 1 , , , ( ) 1 .

B

B

n
K K

n
iB

CT w r P D i w r B i
n→∞

=

Ψ = = Ψ =∑ (3.25)

One disadvantage of the above expression and Eq. (3.18) is that it is dependent on the

probability of compression success, which is in turn dependent on the source model.

We can study a less complex relationship by finding the minimum compression

transparency CTmin. Let the compression success probability be 1, i.e. P(C(nB) = 1) = 1.

The conditional decompression success probability is no longer dependent on the

codebook, and Eq. (3.18) reduces to

( )1

, ,

1
1

, ,
0

( ) ( ) 1 , , ( ) 1

1, {1, 1,2 1,...}

( ( ) ) ( 1),  otherwise.
B

B B BD w r B

B
w

B B B B BD w r B
l

P n P D n w r B n

n r r

P L j l P n l
−

=

= =

∈ + +


=  = − −

∑

�

(3.26)

A result of this is that

1 1

, , , , ,
( ) ( )

( , ) ( , , ).

KB BD w r B D w r B

K

min

P n P n

CT w r CT w r

Ψ
≤

∴ ≤ Ψ
(3.27)

Note that CTmin becomes a close approximation of CT if the codebook is designed such

that high compression success probability is achieved, i.e. P(C(nB) = 1) ≈ 1 ∀  nB = 1,

2, … . In this case, the compression transparency can be approximated independently of

the source, Channel A and compressor processes. In most applications, a high CT is
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important because the cost of each extra packet loss is high. A high CE and low CT is

in fact detrimental to overall performance because it does not make sense to compress

packets into tiny sizes but lose most of them due to invalid contexts. We use CTmin to

guarantee the desired level of performance in our scheme optimization procedure.

3.7 The Optimization of a Scheme

3.7.1 The Goal of Optimization

Given the source process {S(nA)} and channel processes {A(nA)}, {B(nB)}, the goal of

optimization is to find the set of parameters { , , }optK

opt opt optw rΨ  used by the compressor

and decompressor processes {C(nB)}, {D(nB)} achieving at least the desired level of

compression transparency, CTdes, such that the compression efficiency is maximized.

We have used the notation optK

optΨ  to denote the optimum codebook at the optimum

size of Kopt codes. For any codebook of K codes in general,

where KΨ = { } }{ 1

1
( , ) ,

K

i f i
b o m

−

=
 and K – 1≤ m, there can be a total of

!

( 1)!( 1)!
K

m

K m K
θ =

− − +
 different codebooks each with a unique combination of

parameters. This is due to the fact that to have any compression gains, i.e. CE is in the

range CE ≥ 1, all bi’s must be in the range 0 ≤ bi ≤ m – 1. Furthermore, all bi’s are

unique in the codebook. For any particular fixed K, we denote the entire set codebooks

of K codes by { : 1,2,..., }K

j Kj θΨ = .
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3.7.2 The Optimization Procedure

We first derive a result which will be used as part of our optimization procedure:

Lemma 2. For any fixed w and r, the optimum codebook ( )optK

opt wΨ  maximizing the

asymptotic Compression Efficiency, ( , )KCE w∞ Ψ  also maximizes the Compression

Efficiency, ( , , )KCE w rΨ .

Proof.

The optimum codebook at a fixed w, ( )optK

opt wΨ , maximizes the asymptotic Compression

Efficiency, i.e. ( ( ), )optK

optCE w w∞ Ψ = }{
,

max ( , ) .K

j
j K

CE w∞ Ψ  We know from Eq. (3.22), Eq.

(3.23) and Eq. (3.24) that 
1 1 1

.
( , , ) ( , )K K

r m

CE w r r CE w r∞

− 
= + 

Ψ Ψ 
 This mapping from

1( , )KCE w−

∞ Ψ  to 1( , , )KCE w r− Ψ is affine when r is fixed and thus

}{

1

,

1 1
( ( ), , )

max ( , )

optK

opt K

j
j K

r m
CE w w r

r rCE w

−

∞

 
−  Ψ = +    Ψ

  

}{
,

max ( , , ) .K

j
j K

CE w r= Ψ □

We now explain the idea behind our optimization procedure. For each fixed w, we

can find the optimum codebook ( )optK

opt wΨ  which maximizes ( , )KCE w∞ Ψ . From

Lemma 2, we know that the resultant codebook at each w is also optimum for

( , , )KCE w rΨ . Next, if we know the set of (w, r) pairs ζ such that the condition

( , )min desCT w r CT≥  is satisfied, then regardless of the codebook used, the compression

transparency criterion in the goal of optimization will be satisfied in ζ, i.e.

( , , ) ( , )  ( , )K

min desCT w r CT w r CT w r ζΨ ≥ ≥ ∀ ∈ . Finally, by finding the optimum pair

(wopt,ropt) in ζ which maximizes ( ( ), , )optK

optCE w w rΨ , we will have achieved the goal of
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optimization since ( )optK

opt optwΨ , optw  and optr  are found. We therefore present a three-

step approach to achieve scheme optimization:

Step 1. For each given w, find the optimum codebook, { }
1

1
( ) ( , ),

optopt
KK

opt i f i
w b o m

−

=
Ψ =

such that ( ( ), )optK

optCE w w∞ Ψ = }{
,

max ( , ) .K

j
j K

CE w∞ Ψ

Step 2. Add all parameter pairs (w,r) that satisfies the condition ( , )min desCT w r CT≥  to

the set ζ, i.e. ( , )  if ( , ) .min desw r CT w r CTζ∈ ≥

Step 3. Find the optimum parameter pair (wopt,ropt) such that

}{
( , )

( ( ), , ) max ( ( ), , ) .opt optK K

opt opt opt opt opt
w r

CE w w r CE w w r
ζ∈

Ψ = Ψ

Note that we have presented a conceptual optimization procedure rather than an

algorithm. An efficient algorithm can be developed to achieve the same conceptual

outcome of our procedure. The design of an efficient algorithm is however outside the

scope of this thesis. Note also that we have substantially reduced the parameter space

by using a constant offset in our codebook KΨ = { } }{ 1

1
( , ) ,

K

i f i
b o m

−

=
. Thus, the optimum

codebook obtained in Step 1 is optimum only for a particular fixed offset.

3.8 Modeling  Different Source and Deployment Scenarios

Different deployment scenarios can be modeled by varying the channel processes

{A(nA)}, {B(nB)}. Note that (i) our modeling framework models the data flow in a

single direction, (ii) Channel A is the channel between the source and compressor and

(iii) Channel B is the channel between the compressor and decompressor.
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Internet

Compressor

Decompressor

Compressor

Decompressor

Compressor

Decompressor
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Decompressor

Access Point

Mobile Nodes

Corresponding Nodes

Wired Wired or Wireless

Outgoing

Incoming

Wireless

Channel B
(both directions)

Channel A
(incoming direction)

Fig. 6: Header compression deployment over the last hop

Fig. 6 illustrates the common ‘last hop’ deployment of header compression. We

define ‘incoming’ as the direction of packet flow towards the clients and ‘outgoing’ to

be in the opposite direction. Our modeling framework is easily adapted to this

deployment scenario. Regardless of the direction of flow, Channel B is wireless. In the

‘outgoing’ direction, Channel A is a perfect channel (because the source and

compressor are co-located); in the ‘incoming’ direction, we have a

wired/wireless/hybrid Channel A.

In another scenario where both the corresponding nodes are mobile, or when header

compression is deployed over an intermediate wireless hop, then both Channels A and

B are simply wireless channels.

Since wireless channels are affected by the effects of fading due to mobility, the
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effect of mobility speed can be studied by tuning the channel models for different

speeds. Different mobility speeds arise due to different deployment scenarios (e.g.

header compression nodes are on a moving vehicle versus a walking pedestrian).

Finally, different source scenarios can be modeled by tuning the model for the source

process, {S(nA)} or {∆(nA)}. We present such a model for IPID in the next section.
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Chapter 4 The IPID Source Model

The IPID field has been chosen to illustrate the concept of a source model, because it

is one of the few header fields with complicated behavior in header compression

schemes, and the only commonly used field with complicated behavior in the IP

protocol.

 We first present the structure of our source model in detail. We then show that it can

be built to model real-world traffic traces and validate its accuracy.

4.1 Structure of Source Model

 Our approach is to develop a model for the discrete stochastic process {∆(nA)}

generating IPID deltas {δ(nA)}.

Consider a source generating N flows concurrently. Let each flow f be represented by

a Markov chain {(f,1), (f,2), … , (f,j), …} where j is the number of consecutive packets

in flow f sent by the source without switching to another flow. In a state (f,j), the source

is in the process of transmitting the jth consecutive packet from flow f. To transmit the

next packet, it either makes a transition to the next state of the same flow (f,j+1) or to

the first state of another flow (f’,1), such that ' [1, ], 'f N f f∈ ≠ . At each transition, the

shared IPID is incremented. For the case of three flows, i.e. N = 3, we can visualize the

IPID model as shown in Fig. 7.

Let (f,j) and (f’,j’) be any two states in the model and ( ', ')

( , )

f j

f jq  denote the transition

probability from state (f,j) to (f’,j’). We can make the following general

characterizations for any outward transitions from (f,j):
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( , 1) ( , 1)

( , ) ( , )
( ', ') ( ',1) ( ',1)

( , ) ( , ) ( , )

 if ' ,  where  [0,1)       

 if  ' ,  where [0,1]         

 0,  otherwise                                   

f j f j

f j f j
f j f f

f j f j f j

q f f q

q q f f q

+ + = ∈


= ≠ ∈



(4.1)

(1,1) (1,2) (1,3) (1,4)

(2,1) (2,2) (2,3) (2,4)

(3,1) (3,2) (3,3) (3,4)

…

…

…

Flow of Observation

Flow 1

Flow 2

Flow 3

Fig. 7: IPID Markov Model for 3 concurrent connections (N=3) and flow 1 is the flow of

observation (fo=1)

The notion of N concurrent flows advocates that the transition to the next state of the

same flow cannot be made with certainty. Therefore, ( , 1)

( , )

f j

f jq +  is in the range [0,1) as

indicated in Eq. (4.1). We also adopt the following notations for compactness:

( , 1)

( , )

1

1, 0

( , )
,otherwise.

j
f i

f i

i

j

Q f j
q +

=

=



∏

� (4.2)

It can be seen from the structure of the model that it is indecomposable (there is only

one essential state set) and aperiodic. Thus, given sufficient time, it converges to a

stationary distribution.
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Define p(f,j) as the stationary probability of being in state (f,j). The stationary

probability of any state (f,j) which is not the head of its flow can be expressed as:

( , ) ( ,1) ( , 1),  1p f j p f Q f j j= − > (4.3)

Thus, we only need to know each p(f,1)∀ f=1,2,…,N. p(f,1) can be obtained from the

balance equation:

( ,1)

( , )
1 1

( ,1) ( , ) , [1, ]
N

f

k j
k j
k f

p f p k j q f N
∞

= =
≠

= ∀ ∈∑∑ (4.4)

Also, we know that all state probabilities must sum up to 1, which can be simply

expressed as:

1 1

( , ) 1
N

k j

p k j
∞

= =

=∑∑ (4.5)

Using Eq.s (4.3) - (4.5), we can easily solve the stationary state probabilities.

We are interested in deriving P(∆(nA) = δ(nA)) in terms of Markov state probabilities.

Upon convergence, as nA → ∞, the stationary state probabilities are fixed and the

problem reduces to determining the expression for P(∆ = δ) in terms of the stationary

state probabilities.

Defining bS  as the current state within the flow of observation, we can express P(∆ =

δ) in terms of its conditional probabilities:

( )

( )
( )

1

1

1
( ) ( , ) ( , )

( )

,1
              = ( , 1) ( , ) ,

( )

o o

io

o

o o

io

P P f i p f i
p f

p f
Q f i P f i

p f

δ δ

δ

∞

=

∞

=

∆ = = ∆ = =

 
− ∆ = = 

 

∑

∑

S

S

(4.6)
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where 
1

( ) ( , )o o

j

p f p f j
∞

=

=∑  is the probability that a packet belongs to the flow of

observation fo. The complexity of the problem lies in the expression

( )( , ) .oP f iδ∆ = =S

Note that δ is actually the number of transitions made between two observable states.

To the observer, an observation, δ is made only when there is a transition into any state

in fo. Furthermore, the first (δ – 1) transitions since the last observation must occur

outside fo. The remaining transition must be back to fo (so as to make the observation

δ).

The case of δ = 1 is a special case because there is no transition out of fo, i.e. the next

transition must be to the next state of the same flow. If (fo,i) is the current state, the next

state must be (fo,i+1). Therefore, we can see that

( ) ( , 1)

( , )( , ) ,  if 1.o

o

f i

o f iP f i qδ δ+∆ = = = =S (4.7)

For δ ≥ 2, we only know that the first transition is out of fo, and the last transition is

back to (fo,1). At high N and δ the number of possible paths increases tremendously and

it is difficult to obtain a general expression for ( )( , )oP f iδ∆ = =S  in closed form.

Instead, we can evaluate ( )( , )oP f iδ∆ = =S in the range δ ≥ 2 with the help of a

recursive function.

 We define the recursive function F((f, i),T, fo), described as “the probability of

making T-1 transitions outside fo before making the final transition back to (fo,1), given

the current state is (f, i)”. This function can thus be defined as:
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( ,1)

( , )

( ',1) ( , 1)

( , ) ( , )

' 1
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,  if 1

(( , ), , ) (( ',1), 1, ) (( , 1), 1, )

,otherwise

o

o
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f i

N
f f i

o f i o f i o
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f f f

q T

F f i T f q F f T f q F f i T f+

=
≠

 =
  = − + + −
  



∑ (4.8)

( )( , )oP f iδ∆ = =S can be obtained in terms of F as follows:

( ) ( )( ,1)

( , )
1

( , ) ( ,1), 1, , 2
o

o

N
f

o f i o
f
f f

P f i q F f fδ δ δ
=

≠

∆ = = = − ≥∑S (4.9)

Summarizing the above results, we can express P(∆ = δ) as:
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( , ) , 1
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( , 1) ( ,1), 1, , 2
( ) o

o

o

o

io

N
o f

o f i o
fio
f f

p f
Q f i

p f

P
p f

Q f i q F f f
p f

δ

δ

δ δ

∞

=

∞

==
≠
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  − − ≥
 
 

∑

∑ ∑
(4.10)

Eq. (4.10) can be plugged into the modeling framework at Eq. (3.14) for the analysis

of the performance of a scheme designed to compress the IPID. Since it also models the

way packets are generated from a source handling multiple concurrent flows, it can also

be used in other applications.

Note that different source scenarios can arise causing IPID source behavior to be

different. A busy source generating a large number of flows can be intuitively modeled

using a high N model. Conversely, a naive source generating only a single, non-

concurrent flow is easily modeled with N = 1. In Section 4.3, we build a 2-flow model

for an average source and a 10-flow model for the busy source.
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4.2 Validation  of Model

Our model validation approach is to generate from a source terminal a large number

of packets from a known number of concurrent flows in controlled environments and

capture them right at the source. This ensures that a large number of outgoing packet

samples is available for obtaining the Markov transition parameters of the model. Using

packet traces, we also verify our assumption in Section 3.4 that the occurrence of

wraparound is rare. Having built the model from the packet traces, the distribution P(∆

= δ) is then obtained analytically from the model for comparison with the histogram of

IPID deltas found in the traces.

Using source terminals running Microsoft Windows, different controlled

environments were explored, and our parameter space includes the number of

concurrent flows, type of channels, type of applications, type of protocol headers, and

the nature of payloads. These variations are tabulated in Table 1.

Table 1

Variations in Controlled Environments

Parameter Parameter Space

No. of concurrent flows 2 to 4

Type of channel wired (802.3) or wireless (802.11b)

User application web browser, remote terminal, LAN gaming, file downloads, file sharing

Protocol headers {HTTP1, SSH2, proprietary, FTP3, NetBIOS4} over TCP/IP

Nature of payload Data or Acknowledgments
1HyperText Transfer Protocol 2Secure SHell
3File Transfer Protocol 4Network Basic Input Output System

After converting the IPID values in the traces into network byte order, we find that

the distributions obtained from our IPID model nicely track the IPID distributions

obtained from traces in all of the above experiments. We show the distribution

comparisons for the case of FTP file download over wireless Ethernet in Fig. 8 and the

case of HTTP file download acknowledgments over wired Ethernet in Fig. 9.
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Fig. 8: P(∆ = δ) for 4 concurrent flows, generated by FTP file downloads over wireless

Ethernet. Flows of observation fo = 1 (a) and fo = 2 (b) are data flows. Distributions from

control flows are not obtained due to small numbers of control packets.
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Fig. 9: P(∆ = δ) for 2 concurrent flows, generated by HTTP file download ACKs over wired

Ethernet. Flows of observation are  fo = 1 (a) and fo = 2 (b).

We note from Fig. 8 that the distribution obtained from our model is almost identical

to that in the trace. The same level of resemblance is not found in Fig. 9. Examining

packets in that trace, we find that for HTTP especially, two consecutive packets

generated from the source may not carry an increment of +1. Furthermore, packets

exhibiting such behavior characteristically show unusually long timestamp lags. This

suggests that such packets were interrupted before they could be generated completely.

In spite of this, the assumption of +1 increment per packet is usually true and Fig. 9
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shows that the distribution obtained with this assumption closely tracks that from

traces.

4.3 Construct ing a Real-World Source Model

In the previous section we have only verified the concept of a source model in

controlled environments. We desire to build a model for the average source in the real

world. Based on the IPID delta probability distributions from packets in real traffic, our

objective is to find a model which approximates the source at the zeroth as well as

higher orders. To do this, we have obtained a trace, TCP080903out which captures

266831 outgoing TCP packet headers from the gateway router of the Institute of

Infocomm Research LAN over a half-hour interval.

Essentially, we are trying to obtain the Markov transition parameters from the

probability distribution, i.e. performing the reverse of what we did in the previous

section. We can see from Eq. (4.10) that this is a non-trivial task due to the infinite

number of states and the unknown (and furthermore non-constant) number of

concurrent flows, N.   Naturally, this requires some assumptions and approximations to

be made. We first reduce the search space by truncating the chain of states in each flow.

We further assume that the average source can be modeled with 2 concurrent flows, i.e.

N = 2. We then show how a real-world source model can be built.
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4.3.1 Truncating the Number of States

To reduce the complexity of the model, our aim is to truncate the number of states in

each flow to a small finite number with little sacrifice in accuracy. To avoid deriving all

our earlier source model equations again, we achieve this in two steps: We first

approximate the original infinite-states model with a simpler infinite-states model. The

approximated infinite-states model is then mapped to an equivalent finite-states model.

Using a single flow as an example, this is illustrated in Fig. 10.
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Fig. 10: Illustration of model truncation

For each chain of states representing a flow f, we first approximate the remaining

transition probabilities beyond a certain threshold state, hf, as an averaged constant, q.

Then the approximation of Q(f, j) defined in Eq. (4.2) is

1

( , ),
ˆ ( , )

( , 1),  f

f

j h

f f

Q f j j h
Q f j

q Q f h j h
− +

<
= 

− ≥
(4.11)
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and the approximation error can be defined as:

ˆ( , ) ( , ) ( , ) .f j Q f j Q f jε = − (4.12)

It can be easily shown that lim ( , )
j

f jε
→∞

0 .fh= ∀ , due to the fact that Q(f, j) is in the

range [0,1) 1, 2,...f N∀ = (see Eq. (4.1)). This means that the approximation error

decreases to zero if the approximated state is far from the head of its flow, regardless of

the threshold value hf. However, in general hf remains a tradeoff between model

complexity and approximation error.

As illustrated in Fig. 10, the approximated model of infinite states in Eq. (4.11) can

be mapped to an equivalent model with hf states in each flow f, such that the tail state of

the flow transits to itself with probability 
( , )

( , ) .f

f

f h

f hq q=   To continue using our earlier

results, the following corollary is useful for mapping between the approximated model

of infinite states and its equivalent model of finite states:

Corollary 1. If the approximated model of infinite states has an equivalent model of

finite states, the following mapping holds:  

( , )

( , )

( , )

( , )

( , 1)
ˆ ( , ) .

1

f

f

f

f f

f h

f f h

f h
j h f h

Q f h q
Q f j

q

∞

=

−
=

−
∑

Proof.

This result follows from Eq. (4.11) and can be proved easily.

4.3.2 Two-flow Assumption

For the case of 2 concurrent flows, i.e. N = 2, Eq. (4.10) can be reduced into a

simpler closed form. This is due to the fact that there are only 2 paths out of each state



52

(see Eq. (4.1)). Furthermore, given any δ ≥ 2 there is only a single deterministic path to

follow. As such, there is no need to express ( )( , )oP f iδ∆ = =S  in terms of the

recursive function F. Let the two flows be fo and f1 where fo is the flow of observation.

We obtain a simpler form of Eq. (4.10):

( ) 1

1

( , )

1 ( , 1),1 ( , 2)(1 )
( ) , 2

( )

f

o f

o

p f Q f q
P

p f

δ
δδ

δ δ
−− −

∆ = = ≥ (4.13)

The derivation of Eq. (4.13) is shown in Appendix A.

4.3.3 Resultant Real-World Source Model

We now apply our two-flow assumption and truncation technique and show how the

model parameters can be obtained from the probability distribution in the trace. Let the

unknown number of states in each flow be ho and h1 respectively. Applying the

truncation approximation to the two-flow result in Eq. (4.13), we can isolate flow f1

transition probabilities by obtaining the ratios of consecutive delta probabilities:

1 1

1 1
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 −
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(4.14)

Estimating delta probability ratios from the trace, all flow f1 transition probabilities can

be obtained by solving the set of equations in Eq. (4.14) recursively.

Fig. 11 shows the delta probability ratios obtained from the trace, as well as the

number of packets available at each delta value. We observe that the probability ratio

gets increasingly jittery as delta increases. The reason for that is attributed to the
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decreasing number of packet samples available as delta increases, as shown in the

bottom portion of Fig. 11. Fig. 11 also reveals that the probability ratio increases

quickly at small deltas and remains relatively constant thereafter. This agrees well with

Eq. (4.14) where the probability ratio remains constant at 1 1

1 1

( , )

( , )

f h

f hq  for δ ≥ h1 + 1. We

choose h1 = 19 and obtain 1 1

1 1

( , )

( , )

f h

f hq  from the ratio mean for δ ≥ h1 + 1. Solving Eq. (4.14)

recursively, we then obtain the entire set of transition probabilities in flow f1. The

values obtained are shown in Table 2.
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Fig. 11: Estimates of delta probability ratios obtained from trace (top) and corresponding

number of packet samples (bottom).

We also exploit another statistical characteristic of the trace to obtain flow fo

transition parameters. Recall from the comments on Eq. (3.13) that a good source

model should also approximate the high-order behavior of real sources, as this affects
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the compressibility. Therefore, our approach is to obtain flow fo transition parameters

from the high order probability distributions in the trace.

At steady state, the nth order probability distribution can be defined and expressed in

the following form:
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The derivation of Eq. (4.15) is shown in Appendix B. By estimating each γn from the

trace and solving Eq. (4.15) recursively, we can obtain all 
( , 1)

( , )
o

o

f i

f iq
+

 in the range 2 ≤ i ≤

ho–1. The remaining transition probability at i = 1, 
( ,2)

( ,1)
o

o

f

fq , can be found using the

following relationship:
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The result 
( , )

( , ) ,  1o o

o o

f h

f h n oq n hγ= ≥ −  in Eq. (4.15) requires high order statistics beyond the

nth order in the trace to be constant. From Fig. 12, we verify that this is indeed the case

as n → 20
-
 and n ≥ 21. In the region n ≤ 20, the probability that the next packet

generated comes from the same flow (given that the last n packets also came from the

same flow) increases asymptotically to 1. The lack of an uninterrupted series of 22 or

more packets of the same flow causes the abrupt drop to a constant zero for m ≥ 21.
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Fig. 12: The estimate of the nth order probability distribution γn obtained from packet trace.

Based on the above characteristic, we can either model flow fo with around 10 states

with 
( , )

( , ) 1o o

o o

f h

f hq ≈ , or obtain an exact 22-state model for flow fo where 
( , )

( , ) 0.o o

o o

f h

f hq =

However, we adopt the 10-states model because we find that the abrupt drop to zero in

the 22-state model coupled with the two-flow (N = 2) assumption produces a worse fit

to the trace distribution compared to the 10-state model.

Table 2 shows the resultant parameters of the entire model with the transition

probabilities in fo and f1 combined. The zeroth order probability distribution obtained

from this model is almost identical to the trace distribution as shown in Fig. 13.

Table 2

Markov Model Parameters for state (f,j)

j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

f = fo 0.263 0.3082 0.5783 0.6554 0.7124 0.7665 0.8209 0.8397 0.8297 0.96

f = f1 0.7912 0.8005 0.8606 0.8813 0.8891 0.8893 0.8958 0.9086 0.9208 0.9281
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j = 11 j = 12 j = 13 j = 14 j = 15 j = 16 j = 17 j =18 j = 19 j = 20

f = fo - - - - - - - - - -

f = f1 0.9338 0.9361 0.9403 0.9446 0.9486 0.9518 0.9532 0.956 0.96 -
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Fig. 13: Comparison of IPID delta distribution between model and trace. The trace distribution

is heavy tailed and is truncated to show the fit at small deltas

Fig. 13 shows that the trace distribution is essentially heavy-tailed and has been

truncated to show the fit at small deltas. To observe the closeness-of-fit at high deltas,

we show the cumulative probabilities on a log scale in Fig. 14. The same figure also

shows the distribution comparison at high orders using Eq. (3.13) and Eq. (3.19)

(setting of = -1, since IPID is increasing). Note that this is possible because the nth

order cumulative probability of compression success can be obtained using a window

size of (w–1) at the compressor with perfect Channel A.  Fig. 14 shows that the model

distributions track the high order distributions and heavy tail characteristic of the trace

rather well. In fact, the probability density function of the source model remains

reasonably accurate even at high orders with deviations no more than 0.12. However,

the trace distribution is slightly more heavy-tailed. This limit is imposed by our 2-flow
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assumption and truncation approximation. However, given the model simplicity, we

consider this a good tradeoff.
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Fig. 14: Comparison of IPID delta cumulative distributions between trace and model on log

scale from the zeroth order to the forth order.

Fig. 15 shows the number of instantaneous concurrent flows generated from a real

source. Interestingly, the case of 2 concurrent flows seems to be rather common. We

note also that a source may experience short periods of extreme business, seen in the

form of spikes, where large numbers of flows are generated.
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Fig. 15: Number of concurrent flows generated

Our 2-flow model cannot match the heavy tail of the trace distribution exactly mainly

because the number of concurrent flows at the source in real life is a non-constant. The

heavy tail portion is therefore contributed by busy sources generating large numbers of

concurrent flows. To verify that this concept is sound, we extended our 2-flow model to

a 10-flow model. This is achieved by duplicating 5 copies of each chain of Markov

states in the 2-flow model and retaining the transition probabilities down each chain. In

Fig. 16, we compare the distribution from the 10-flow model with a particularly heavy-

tailed flow in the trace. Note that small spikes are observed from the trace distribution

due to limited resolution from small number of packet samples in a single flow.

Regardless of this, both distributions share the characteristics of a single large spike at δ

= 1 which diminishes to near zero at δ = 2, and an extremely heavy tail. This suggests

that the heavy-tail portion unaccounted for by the 2-flow model is in fact contributed by
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busy sources with large numbers of concurrent connections. However, the accuracy of

the 10-flow model is only weakly justified.
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Fig. 16: Comparison of delta distribution from 10-flow model with a heavy-tailed flow in trace.

Spikes are seen in the trace distribution due to limited resolution from in limited number of

samples for a single flow.
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Chapter 5  Results and Discussions

We now use our source model in our modeling framework to study the performance

of Robust Header Compression schemes defined by a set of parameters { , , }K w rΨ .

Using both analysis and simulation, we evaluate the performance of current ROHC-

TCP specifications under different source and deployment scenarios. We then compare

the performance of optimized codebooks with and without intermediate encoding,

benchmarked against the (unoptimized) ROHC performance. Using numerical

examples, we illustrate the concept of tradeoff optimization at the desired level of

performance. The optimized schemes obtained are then used in the performance

tradeoff study.  To illustrate the usefulness and flexibility of our framework and source

model, our study involves different source scenarios and different deployment

scenarios.

Three source scenarios are studied: the non-concurrent source (1-flow model)

representing an idealized source, an average source (2-flow model) or a busy source

(10-flow model). We also study different deployment scenarios by varying the Channel

A and Channel B models, examining the scenario of source-compressor co-location

(perfect Channel A) or non co-location (wireless Channel A). Channel B deployment

scenarios are varied at high speed or low speed mobility in wireless Channel B. We

study encoding variations based on whether the WLSB codebook is directly applied on

uncompressed fields, or with INFERRED-OFFSET as a prior intermediate step.

Using results from literature [20], two sets of parameters are used to model different

mobility speeds as shown in Table 3. We set the uncompressed packet size to 300 bytes

(in Channel A) and compressed packet size to 265 bytes (in Channel B). This comes
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from the fact that the mean size of data packets is near 300 bytes in the trace, and that

header compression typically reduces the 40 bytes TCP/IP header to 5 bytes
‡
.

Table 3

Channel Model Parameters

Low speed  (2 km/h) High speed (50 km/h)

Pgb 1.67x10-5 5.35x10-5

Pbg 1.66x10-3 4.96x10-4

BERg 10-5 10-5

BERb 0.1 0.1

Table 4 shows an extract from the current ROHC specifications for compressing

TCP/IP headers (ROHC-TCP). Note that the WLSB offset parameter, of, changes from

0 to 1 for the third and forth code in the codebook. This change is made to

accommodate the case of single packet re-ordering in either Channel A or Channel B.

Since this change has almost no effect on the interpretation intervals, and our channel

processes do not model packet re-ordering, we use a constant of = 0 in our study. Note

also that the context window size and context refresh period are left as implementation

parameters with unspecified values in ROHC. We will illustrate the process of

obtaining tradeoff optimized values for these parameters.

Table 4

Current ROHC-TCP Specifications

Parameter Specification

IPID WLSB Codebook, ΨK {(0,0), (6,0), (8,0), (11,1), (12,1), 16},

with intermediate encoding using MSN

Context Window Size, w Up to Implementation

Context Refresh Period, r Up to Implementation

Using our modeling framework and source models, we obtain numerical values for

the three performance metrics. We validate our framework by comparing the results

from the average source model with those from trace-based simulation. To do this, we

obtained a separate trace, TCP180903out, consisting of 285571 packets captured over a

                                                
‡ These are based on data payloads. Per packet gains from real-time applications like Voice over IP (VoIP) are typically much

higher due to smaller payloads.
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half-hour interval on a different day from the previous trace.

Fig. 17 depicts the encoding performance of ROHC-TCP specifications under the

three source types (non-concurrent, average and busy) and the two Channel A types

(perfect or wireless). This is measured using the inverse of the asymptotic (r → ∞)

Compression Efficiency, 1/CE∞, which gives the ratio of the asymptotic mean

compressed length over the uncompressed length (see Eq. (3.24)). Naturally, smaller

ratios are indicative of higher compression efficiency and better performance. We first

note that the performance obtained from trace-based simulation agree well with

analytical results from the average source model, which was built from a different

trace. Second, we observe that the compression efficiency is dependent on the nature of

the source scenario and Channel A. A busier source deteriorates the compression

efficiency, and packet drops in Channel A cause further degradation of performance,

though to a lesser extent. Note in particular that the idealized operating environment of

non-concurrent source with perfect Channel A gives unrealistically good and constant

performance regardless of the context window size, which is far from actual cases

found in real world. Thus, over-optimistic conclusions drawn from performance

evaluations making this assumption might inadvertently prompt implementations to use

large context window sizes for high robustness without clear understanding of its

tradeoffs. Third, with the exception of the aforementioned case, the compression

efficiency generally decreases with increasing context window size (robustness). This

agrees with intuition that there is tradeoff involved between compression efficiency and

robustness.
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Fig. 17: The encoding performance of ROHC-TCP IPID codebook in the face of various source

and Channel A types. The plot shows the inverse of the Asymptotic Compression Efficiency,

1/CE∞ versus the context window size, w. 1/CE∞ is a ratio of the asymptotic mean compressed

length over the uncompressed length. The context window size is also a measure of robustness.

Examine next Fig. 18, which shows the compression transparencies, CT, over

wireless Channel B at two different extents of mobility, after compression using the

ROHC codebook. Each single curve denotes a fixed context refresh period, r. We

observe that for each fixed r, the CT curve obtained from trace-based simulation is

mostly close to and above the analytical CTmin bound. It is clear from Fig. 18 that CT

can be increased by increasing the context window size to improve the robustness of

the scheme. However, the choice of (w,r) parameters depends greatly on the extent of

mobility in wireless Channel B. Evidently, high speed mobility requires greater

robustness in terms of higher w values and/or more frequent context refreshes (lower r

values) to achieve the same compression transparency. The significance of this is that

these two parameters should be made adaptive if the extent of node mobility is not
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expected to be fixed in deployment scenarios.
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Fig. 18: Compression Transparency in wireless Channel B versus context window size at high

speed or low speed mobility. The Compression Transparency, CT, is almost identical to the

minimum Compression Transparency, CTmin.

The following results demonstrate the 3 steps involved in our optimization procedure

in Section 3.7.2. Applying Step 1 of our optimization procedure, we examine the

asymptotic compression efficiencies of optimized codebooks ( )optK

opt wΨ using (i) direct

WLSB encoding and (ii) with intermediate encoding using the MSN field as described

in Sections 2.3.3  and 3.4. Both data sets are benchmarked against the (unoptimized)

ROHC codebook in Fig. 19. The case of an average source and perfect Channel A is

assumed. As expected, the use of prior offset against the MSN field, as prescribed in

ROHC-TCP, increases the compression efficiency. We note that the optimized

codebook is non-constant and may change incrementally as w increases. On the other

hand, the ROHC codebook remains constant for all context window size w, and it can
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be seen that its asymptotic compression efficiencies fall below that from the optimum

codebook at all w. In the range w ≥ 3, the ROHC codebook is not far from optimum.

Therefore, the ROHC codebook may be used as a reasonable approximation to optK

optΨ ,

which is constant for all w. It will be demonstrated later how the remaining two

parameters wopt and ropt in the optimized scheme { ( ), , }optK

opt opt opt optw w rΨ  may be found.

Fig. 19: Asymptotic Compression Efficiencies of optimized codebooks for direct WLSB

encoding compared to WLSB with prior offset against the MSN. This is benchmarked against

the ROHC codebook. The case of the average source with perfect Channel A is assumed. The

set of b-parameters { }
1

1

K

i i
b

−

=
 is shown as a vector for each point.

We examine the reason for the compression efficiency improvement due to

intermediate encoding in Fig. 20, which compares the IPID delta cumulative

distributions for the two encoding variations on a log scale. Notice the key difference

that the set of distributions with intermediate encoding starts from non-zero

probabilities at the vertical axis where b = 0. This allows WLSB encoded fields to be

efficiently encoded into zero bits (i.e. which is also known as STATIC encoding) with

significant probabilities, lowering the mean encoded size. The choice of the MSN field
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as the offset base field achieves this remarkably well as it shares the incrementing

characteristic with the IPID field.
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Fig. 20: IPID delta cumulative distribution at high orders, without intermediate encoding

(direct), compared to that with intermediate encoding (MSN).

We now illustrate the concept of meeting the desired level of compression

transparency guarantee CTdes using CTmin. Fig. 21 shows two sets of CTmin curves, at

high speed and low speed mobility in wireless Channel B. The context refresh period, r

is fixed in each single curve. We observe that higher context refresh periods result in

lower CTmin curves. A horizontal line is drawn at desired CTmin = CTdes = 0.96 as an

example of indicating the desired level of (minimum compression transparency)

performance. Given the extent of Channel B mobility, the points above the form the set

of (w,r) combinations guaranteeing that level of compression transparency. In Step 2 of

our optimization procedure, all combination pairs satisfying this criterion are put into

the set ζ.
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Fig. 21: Variation of minimum Compression Transparency, CTmin with context window size or

robustness, w.

Having obtained the set of (w,r) combination pairs providing transparency guarantee

(for a given channel mobility), the next question arises on which is the best pair to use.

This is determined by choosing the pair with the highest compression efficiency in Step

3 of the optimization procedure. We now consider the spectrum of CE curves for the

case of average source and perfect Channel A in Fig. 22. We note that the asymptotic

compression efficiency, CE∞ is the highest curve at which r → ∞. A horizontal desired

CTmin line in Fig. 21 indicating the desired level of transparency transforms into a

dotted curve in Fig. 22. Agreeing with intuition, curves at higher transparencies suffer

slides in compression efficiencies. Another result is that the same desired level of

transparency is achieved at different compression efficiencies depending on the extent

of mobility in wireless Channel B. Finally, the optimum set of parameters

{ ( ), , }optK

opt opt opt optw w rΨ at a desired level of transparency CTmin can be found at the
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maxima of the desired CTmin dotted curve in Fig. 22. For example, suppose CTdes = 0.96

in high speed mobility. In this case, the optimum (w,r) pair, (wopt,ropt) = (7, 48), can be

found at the maxima of the CTmin = 0.96 curve for high speed mobility as shown in Fig.

22. Since wopt is known, the optimum codebook ( )optK

opt optwΨ  for this scenario is obtained

by referring to Fig. 19, i.e. }{( ) (0,0),(7,0),(8,0),(9,0),16 .optK

opt optwΨ =

Fig. 22: Compression Efficiencies, CE at various context window size, w and context refresh

periods, r for the average source and perfect Channel A.

Fig. 23 shows the tradeoff involved between the optimum compression efficiencies

(from optimized schemes) and the desired levels of minimum compression

transparency. Note that we have not shown the non-concurrent source results in Fig. 23

because it is simply a horizontal line at CE∞ = 40, which is out of scale. Otherwise, due

to relatively gentle slopes, we note that the compression transparency improves greatly

with relatively little sacrifice in compression efficiency. This is good news for

optimized robust schemes. We can see that the tradeoff curve obtained is heavily

dependent on the nature of the source and extent of mobility in Channel B. Thus, the
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effects of different source and deployment scenarios on header compression are too

significant to be ignored.
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Chapter 6  Conclus ion and Future Work

6.1 Conclusion

We have presented some novel contributions in this thesis. For the first time, a source

model has been developed for studying header compression. We have shown that the

probability density function of our average source model matches that from real-world

traces and remains reasonably accurate even at high orders with deviations no more

than 0.12. Since it also models the way packets are generated from a source handling

multiple concurrent flows, the source model can also be used for more general

applications. We have presented a modeling framework allowing the study of header

compression performance in different scenarios. Analytical results obtained using the

modeling framework agreed well with that obtained via trace-based simulation using a

different trace, for the entire practical range of context window sizes. Using our

framework, we have offered new perspectives to the definition of performance metrics

and studied tradeoffs in a novel way. We have shown, for the first time that header

compression schemes can be optimized at desired levels of performance. Our results

reveal that the common assumption of non-concurrent sources and perfect Channel A

leads to unrealistic asymptotic compression efficiencies which remain high even when

the context window size is increased. We have also shown that achieved performance

and tradeoffs are heavily dependent on the source and deployment scenarios, and these

should not be ignored in both scheme design and performance evaluation.



71

6.2 Future Work

By proposing our source model, we have taken the first step towards the modeling of

real-world operating environments. We acknowledge that the current source model

requires further work for improvement. We have seen from Section 4.3.3 that the

number of concurrent flows generated by real sources is non-constant and stochastic in

nature, posing limitations to the accuracy of our source model. Moreover, we have seen

from Section 2.2 that the IPID is not the only CHANGING header field in a TCP/IP

header. Future work involves extending the source model to cover multiple

CHANGING fields with inter-dependency, and the development of a more accurate

model with a non-constant number of concurrent flows.

We have also opened up the possibility of performing adaptive scheme optimization.

Though we have demonstrated scheme optimization using the source model in this

thesis, the source model is not mandatory for this purpose. A header compression

system in deployment can also use its trace sequence to compute performance metrics

online, based on which it can adaptively optimize its parameters following the

principles developed in this thesis.
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APPENDIX A Derivati on of Eq. (4.13)

When N = 2, we know from Eq. (4.1) that there are only 2 paths out of each state. For

any δ in ( )( , )oP f iδ∆ = =S , the first δ – 1 transitions must occur to a state outside the

flow of observation, fo; the last transition is back to fo. Because there is only a single

flow outside fo, there is only a single deterministic path to follow. For δ = 1, the result

of Eq. (4.10) remains unchanged. For δ ≥ 2, using the same logic for evaluating

( )( , )oP f iδ∆ = =S  in Section 4.1, it is straightforward to obtain the following

expression by following the deterministic path:
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Substituting into Eq. (4.6), we have for N = 2 and δ ≥ 2:
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The expression inside the square parentheses of the above expression is shown to be 1:
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APPENDIX B Derivati on of Eq. (4.15)

The nth order delta probability at steady state can be expressed as a fraction of nth and

(n-1)th order joint probabilities:
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Consider first the approximated model with infinite states per flow. We can then find

the expression for any nth order joint probability as:
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A fraction of the nth and (n-1)th order joint probabilities would yield
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We now adapt Corollary 1 to a more general scenario required in Eq. (B.3) where

mapping occurs from state (f,n+1) onwards:
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Substituting Eq. (B.4) into Eq. (B.3) in the same form as Eq. (4.15) and noting that:
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we obtain Eq. (4.15).


