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SUMMARY 
    

  In this study, iterative identification procedures for generalized single-input 

single-output (SISO) and multi-input multi-output (MIMO) Hammerstein models are 

developed. By incorporating generalized Hammerstein model into controller design, 

adaptive IMC design method and adaptive PID control strategy are developed. The main 

contributions of this thesis are as follows.  

 (1) A generalized Hammerstein model consisting of a static nonlinear part in 

series with time-varying linear model is proposed. The generalized Hammerstein model 

is identified by updating the parameters of linear model and nonlinear part in an iterative 

manner. This method is applied to the identification of both SISO and MIMO generalized 

Hammerstein models. Simulation results demonstrate that generalized Hammerstein 

model has better predictive performance than the conventional Hammerstein model. 

 (2) Adaptive controller design methods for nonlinear processes using generalized 

Hammerstein model are proposed. For SISO processes, adaptive IMC design and 

adaptive PID controller are developed, while an adaptive decentralized PID controller is 

devised for MIMO processes. The proposed methods employ the reciprocal of static 

nonlinear part in order to remove the nonlinearity of the processes so that the resulting 

controller design is amenable to linear control design techniques. Parameter updating 

equations are developed by the gradient descent method and are used to adjust the 

controller parameters online. Simulation results show that the proposed adaptive 

controllers give better performance than their conventional counterparts. 
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     NOMENCLATURE 

1A   =  cross-sectional area of tank 1 

2A   =  cross-sectional area of tank 2 

wA   =  heat exchange area 

BC   =  concentration of component B 

inIC ,   =  inlet concentration of initiator 

inmC ,   =  inlet concentration of monomer 

pC   =  average heat capacity 

wpC ,   =  coolant heat capacity 

1vC   =  constant valve coefficient 

id   = distance between and  ix qx

F   =  inlet flow rate of monomer 

IF   =  inlet initiator flow rate 

f   =  low-pass filter 

G   =  process 

G~   =  model of the process 

−G~   =  minimum phase of G~  

H∆   =  heat of reaction 

1h   =  level of tank 1 

2h   =  level of tank 2 

wk   =  coolant conductivity 
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mM   =  molecular weight of monomer 

pM   =  number average molecular weight 

wm   =  coolant mass 

N   =  number of input and output data 

Q   = IMC controller 

Qw   =  external heat exchanger duty 

1q   =  base stream  

2q   =  buffer stream 

3q   =  acid stream 

r   =  set-point 

is   = similarity number 

T   =  reactor temperature 

Tw   =  coolant temperature 

0T   =  inlet temperature 

u  =  process input 

V   =  Reactor volume 

aiW   =  charge related quantity 

biW   =  concentration of the  ion −2
3CO

kkk www 321 ,,  =  parameters of adaptive PID controller 

qi xx ,    =  past values of both process input and process output 

y   =  process output 
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Greek Letters 

γβα ,,   =  parameters of Hammerstein model 

ε   =  model approximation error 

τ   =  closed-loop time constant 

Ω   =  weight parameter 

iϑ   =  angle between ix∆ and qx∆  

ρ   =  average density    

λ   =  IMC filter time constant 

η   =  user-specified learning rate 

 

Abbreviations 

JITL  =  just-in-time learning 

IMC  =  internal model control 

MAE  =  mean absolute error 

MIMO  =  multi-input multi-output 

PID  =  proportional-integral-derivative 

SISO  =  single-input single-output 
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                 CHAPTER 
                  1 
                                                                                                                
 
              Introduction 
 
 
1.1 Motivation 

 A chemical plant is a complex of many sub-unit processes and each sub-unit 

process may possess severe nonlinearity due to inherent features such as reaction kinetics 

and transport phenomena. Due to this complexity and nonlinearity, conventional linear 

controllers commonly used in industrial chemical plants show very different control 

performances depending on operating conditions.  Many advanced control schemes have 

been developed to efficiently control nonlinear chemical process based on their 

mathematical models. However, it is very costly and time consuming procedure to 

rigorously develop and validate nonlinear models of chemical processes. To overcome 

these difficulties, the construction of models directly from the observed behavior of 

processes has attracted much attention in the recent past.  

 Nonlinear system identification from input-output data can be performed using 

general types of nonlinear models such as neuro-fuzzy networks, neural networks, 

Volterra series or other various orthogonal series to describe nonlinear dynamics. 

However, when dealing with large sets of data, this approach becomes less attractive 

because of the difficulties in specifying model structure and the complexity of the 

associated optimization problem, which is usually highly non-convex. To simplify the 

aforementioned problems of identifying a nonlinear model from input-output data, the 
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other alternative is to use block-oriented nonlinear models consisting of static nonlinear 

function and linear dynamics subsystem such as Hammerstein model, Wiener model and 

feedback block-oriented model (Pearson and Pottmann, 2000). When the nonlinear 

function precedes the linear dynamic subsystem, it is called the Hammerstein model, 

whereas if it follows the linear dynamic subsystem, it is called the Wiener model. A less 

common class of feedback block-oriented model structures is static nonlinearities in the 

feedback path around a linear model.  

 It has been shown that Hammerstein models can effectively model a number of 

chemical processes, e.g. pH neutralization processes (Lakshminarayanan et al., 1995; 

Fruzzetti et al., 1997) and polymerization reactor (Su and McAvoy, 1993; Ling and 

Rivera, 1998). The Hammerstein structure is useful in situations where the process gain 

changes with the operating conditions while the dynamics remain fairly constant. 

However, when both process gain and dynamics change over the region of process 

operation, the modeling accuracy of Hammerstein model may deteriorate significantly 

(Lakshminarayanan et al., 1997).  Thus control system designs based on Hammerstein 

model may not deliver acceptable performance in this situation. The problem caused by 

the restriction of Hammerstein model consequently motivates the proposed research to 

investigate a new model called generalized Hammerstein model and its associated 

identification and controller design problems. 

 

1.2 Contributions 

 In this thesis, iterative identification procedures for generalized single-input 

single-output (SISO) and multi-input multi-output (MIMO) Hammerstein models are 
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developed. By incorporating generalized Hammerstein model into controller design, 

adaptive IMC design method and adaptive PID control strategy are developed. The main 

contributions of this thesis are as follows.  

 Firstly, a generalized Hammerstein model consisting of a static nonlinear part in 

series with time-varying linear model is proposed. The generalized Hammerstein model 

is identified by updating the parameters of linear model and nonlinear part in an iterative 

manner. This method is applied to the identification of both SISO and MIMO generalized 

Hammerstein models. Simulation results demonstrate that generalized Hammerstein 

model has better predictive performance than the conventional Hammerstein model. 

 Secondly, adaptive controller design methods for nonlinear processes using 

generalized Hammerstein model are proposed. For SISO processes, adaptive IMC design 

and adaptive PID controller are developed, while an adaptive decentralized PID 

controller is devised for MIMO processes. The proposed methods employ the reciprocal 

of static nonlinear part in order to remove the nonlinearity of the processes so that the 

resulting controller design is amenable to linear control design techniques. Parameter 

updating equations are developed by the gradient descent method and are used to on-line 

adjust the controller parameters. Simulation results show that the proposed adaptive 

controllers give better performance than their conventional counterparts. 

  

1.3 Thesis Organization 

 The thesis is organized as follows.  Chapter 2 will review the concept of Just-in-

Time learning algorithm and Narendra-Gallman method for iterative identification of 

Hammerstein model. The proposed identification methods for SISO and MIMO 

 3



generalized Hammerstein are developed in Chapter 3. Adaptive IMC design and adaptive 

PID controller for SISO generalized Hammerstein processes are developed in Chapter 4, 

while adaptive decentralized PID controller for MIMO generalized Hammerstein 

processes are presented in Chapter 5.  The general conclusion and suggestions for future 

work are given in Chapter 6.   
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                  CHAPTER 
                  2 
           
 
             Literature Survey 
 
 

This chapter will give a brief overview of the Hammerstein model and previous 

results on the identification of Hammerstein model. Also the concept of Just-in-Time 

learning (JITL) algorithm which is employed in the proposed modeling and controller 

design methods is briefly reviewed. Some relevant background will also be presented for 

further development of this thesis.  

 

2.1 Hammerstein Model  

Many chemical processes have been modeled with Hammerstein model, for 

example pH neutralization processes (Lakshminarayanan et al., 1995; Fruzzetti et al., 

1997), distillation columns (Eskinat et al., 1991; Pearson and Pottmann, 2000), heat 

exchangers (Eskinat et al., 1991; Lakshminarayanan et al., 1995) and polymerization 

reactor (Su and McAvoy, 1993; Ling and Rivera, 1998). Various system identification 

methods have been proposed to identify the Hammerstein model as depicted in Figure 2.1, 

which consists of a static nonlinear part (NL) and a linear dynamics  where the 

former is modeled in different manners such as using polynomials or a multilayer 

feedforward neural network (MFNN). Narendra and Gallman (1966) developed an 

iterative procedure to identify the nonlinear and linear parts, which is referred as 

),(zG
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Narendra-Gallman method in this thesis.  A number of papers extended linear 

identification method to identify Hammerstein model by treating such model as a multi-

input single-output (MISO) linear model. For example, Chang and Luus (1971) used a 

simple least squares technique to estimate the system parameters. A comparison of the 

simple least squares estimation with the Narendra-Gallman method is given by Gallman 

(1976). Several approaches have been proposed to identify complex static nonlinear 

functions without iterative optimization. For example, Pottman et al. (1993) used 

Kolmogorov-Gabor polynomials to describe highly nonlinear dynamics. An optimal two-

stage identification algorithm was proposed to extract the model parameters using 

singular value decomposition after estimating an adjustable parameter vector. 

Identification of discrete Hammerstein systems using kernel regression estimate was 

considered by Greblicki and Pawlak (1986). A nonparametric polynomial identification 

algorithm for the Hammerstein system was proposed by Lang (1997). Identification of 

Hammerstein models using multivariate statistical tools was proposed by 

Lakshminarayanan et al. (1995). Al-Duwaish and Karim (1997) used a hybrid model 

which consists of a MFNN to identify the static nonlinear part in series with 

autoregressive moving average (ARMA) model for identification of single-input single-

output (SISO) and multi-input multi-output (MIMO) Hammerstein model with separate 

or combined nonlinearities.  

     

   

          

            Figure 2.1 Hammerstein model 

         NL 
 

       G  )(z)(ku  )(kv )(ky  
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 Because the modeling method to be developed in this thesis is based on the 

dv nnk −−

iterative identification procedure employed in the Narendra-Gallman method, a review of 

this method is given in what follows. In Narendra-Gallman method, the static nonlinear 

function is assumed to be approximated by a finite polynomial and therefore the 

Hammerstein model can be described by the following equation: 

)1()()1()( 11 ndyn vnkvnkykyky
vy

)(++−−+−++−= ββαα KK  (2.1) 

       

 is 

 )()()()( 2
21 kukukukv m

mγγγ +++= K (2.2) 

where )(ky  and )(ku  denote the process output and input at the k-th sampling instant, 

respect , (kv unmeasurable internal variable, iively ) α )~1( yni =  and iβ )~1( vni =  

are the param rs of linear dynamics, iete γ )~1( mi =  are the parame  

nonlinear part, yn  and vn  are integers related  order, and dn  is process time-

delay. 

ters of static

 to the model

Although the intermediate variable cannot be measured, it can be eliminated 

from the output equation readily as given by: 

1

1

dv
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md
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nkunk

vv
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γβ
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For brevity, Eq. (2.3) can be conveniently expressed by: 
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∑
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The identification procedure proposed by Narendra and Gallman (1966) 

essentially obtains the parameters of the Hammerstein model by separating the estimation 

problem of the linear dynamics from that of static nonlinear part. When the parameters 

iγ )~1( mi =  are known, the intermediate variable )(kv can be obtained from Eq. (2.2). 

Therefore, the process output can be predicted as: 

 εVy  += ψ        (2.6) 

where ε  is the approximation error and 

   

N
N

nnkvnkvnkykyk

y

v

)](,(2),(1),[
)(,),2(),1(
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where 
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[ ]
[ ]

T

T

T
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T

n

iα̂ )~1( yni =  and iβ̂ )~1( vni =  are the linear model parameters to be estimated, 

and N is the number of input and output data.  

Subsequently, the parameters of

     

en the parameters of the linear dynamics are available, the 

near part can be obtained by solving the llowi g obje ive fu

  the linear dynamics )(zG  of the Hammerstein 

model can be computed from 

                              yVV)(V - TT 1ψ =      (2.8)       

 On the other hand, wh

parameters of nonli fo n ct nction: 
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=Nθ

where 

−=
N

k
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);(ˆ θky is the output of Hammerstein model: 
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and iγ̂ )~1( mi =  are entified.  the parameters of static nonlinear part to be id

 By differentiating the objective function )(θE  given in Eq. (2.9) obtains (Eskinat 

et al., 1991): 

                                  ⎟
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1
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2.13) to zero, the solution of By setting Eq. (  θ  can be solved by: 
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rendra-Gallman 

method can be summarized as follows: 

1. Given the process data 

 To conclude this section, the identification procedure of Na

{ } Nkkuky ~1)(),( =  and the parameters of static nonlinear 

part are initialized as 1ˆ1 =γ  and 0ˆ =iγ  )1( ≠i ; 

2. Compute )(kv  from Eq. (2.2) and calculate the parameters of linear dynamics by 

Eq. (2.8); 
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3. Solve the static nonlinear part based on the result obtained in step 2 and Eq. 

(2.16) ; 

4. When the convergence criterion is met, stop; otherwise, go to step 2 by using the 

updated parameters iγ̂  obtained in step 3. 

 

2.2 Ju

Aha et al. (1991) developed Instant-based learning algorithms for modeling the 

eas from local modeling and machine 

imilarity criterion was developed by Cheng and Chiu (2004). This algorithm 

ill be

st-in-Time Learning Methodology 

 

nonlinear systems.  This approach is inspired by id

learning techniques. Subsequent to Aha’s work, different variants of instance-base 

learning are developed, e.g. locally weight learning (Atkeson et al., 1997) and just-in-

time learning (JITL) (Bontempi et al., 1999).  Standard methods like neural networks and 

neuro-fuzzy are typically trained offline. Thus, all learning data is processed a priori in a 

batch-like manner. This can become computationally expensive for huge amounts of data. 

In contrast, JITL has no standard learning phase.  It merely gathers the data and stores in 

the database and the computation is not performed until a query data arrives.  It should be 

noted that JITL is only locally valid for the operating condition characterized by the 

current query data.  In this sense, JITL constructs local approximation of the dynamic 

systems.     

 Recently, a refined JITL algorithm by using both distance measure and angle 

measure as s

w  employed in this research and therefore it is described in the remaining of this 

section.  

 10



Step 1: Given the database Niiiy ~1)},{( =x  where the vector ix  is formed by the past values 

of both process input and eters , and weight parameter  process output, the param mink , maxk

Ω . 

Step 2: Given a query data ,qx  compute the distance and le asures as follows: ang  me

   2|||| iqid xx −=       (2.17) 

   
22 |||||| ix∆ ||

)cos(
q

iq
i x

xx
∆

∆∆
=ϑ      (2.18) 

 where  xxx  and 

T

1−−=∆ iii 1−−=∆ qqq xxx . 

 If ,0)cos( ≥iϑ compute the similarity number  : 

   

is

)cos()1(
2

i
d

i
ies ϑ⋅Ω−+⋅Ω= −     (2.19) 

 If )cos( iϑ < 0, the data is discarded. )},{( iiy x

Step 3: Arrange all s  k  to k , the relevant data set i in the descending order. For l min= max

 { }, where n×∈Φ 1 , are constructed by selecting ),( ll Φy 1×∈ l
l Ry  and  most 

 to

W a diagonal matrix with diagonal elem

late: 

l R l

 relevant data ( ){ }  corresponding to the largest  the l-th largest .       

 Denote ll×∈  ents being the first l  

 largest , and calcu

   

iiy x, is is

l R

is

lll Φ= W        (2.20) 

   =

P

       (2.21) 

l paramete

PP(=

lll yWv

 The local mode rs are then computed by: 

   l
T
l vP1)−μ       (2.22) l

T
ll
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 Next, the leave ation test is conducted and the validation error -one-out cross  valid

 is calculated by (Myers, 1990): 

   
2

1
1

1

1

2 )(1
)(1 ∑⎜

⎛
=

l

se
∑ =

−

−

=

⎟
⎟
⎠

⎞
⎜
⎝ −

−

j jl
T
l

T
j

l
T
ll

T
l

T
jj

jl

j
j

l

y

s pPPp
vPPPφ

   (2.23) 

 where  is the -th element of  and  are the -th row vector of jy j ly , T
jφ

T
jp j lΦ  

 and lP , respectiv ly.   e

Step 4: Acco ding to validatior n errors, the optimal  is determined by: 

 (2.24) 

 l

   )(Min arg l
l

opt el =      

Step 5: Verify the stab del built by the optimal model parameters μ . ility of local mo

ces

rst-order model:  

optl

Because both first-order and second-order models are adequate to describe pro s 

dynamics by using JITL algorithm, their respective stability constrains are given as 

follows: 

 Fi

   1ˆ1 1 <<− µ        (2.25) 

odel:  

⎢
⎣

⎡
⎥
⎦

⎢
⎣ 2ˆ1   1- µ 1

      (2.26) 

<

 Second-order m

   
⎤⎤⎡ 1ˆ1     1 µ

<
⎡1

⎥
⎦

⎥
⎦

⎤
⎢
⎣

   1− 2µ̂ <1       (

p

t l
T
qμx=       (2.28) 

2.27) 

 If 
optlμ  satisfies the stability constraint, the predicted output for query data is 

 com uted as: 

   
oplqy )ˆ(

opt
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  Otherwise, 
optlμ initial value in the following optimization problem  is used as the 

pro subject to ap priate stability constraint. 

   2||||Min
optopt llµ

vP −μ       (2.29) 

al solution obta

tep 6

 With the optim ined from Eq. (2.29), the predicted output for ∗
optlμ  

 query data is then calculated as ∗
optl

T
qμx  .    

S :

.3 Adaptive Control 

depicted in Figure 2.2 covers a set of techniques for automatic 

 When the next query data comes, go to step 2. 

 

2

 Adaptive control as 

adjustment of controller parameters in real time in order to achieve or to maintain a 

desired level for the performance of control systems when the dynamic parameters of the 

process are unknown or vary in time. Three schemes for adaptive control are gain 

scheduling, model reference control, and self-tuning regulators. The key problem is to 

find a convenient way of changing the regulator parameters in response to change in 

process and disturbance dynamics. The schemes differ only in the way the parameters of 

the regulator are adjusted. Gain scheduling has been successfully applied to problems in 

chemical process control (Astrom and Wittenmark, 1989). It is one of most widely and 

successfully applied techniques for the design of nonlinear controller. One drawback of 

gain scheduling is that it is open-loop compensation. There is no feedback which 

compensates for an incorrect schedule. Another drawback of gain scheduling is that the 

design is time consuming. A further major difficulty in the gain scheduling approach is 

the selection of appropriate scheduling variables. Model reference control is another way 

 13



to adjust the parameters of the regulator. The specifications are given in terms of a 

reference model which tells how the process output ideally should respond to the 

command signal. A third method for adjusting the regulator parameters is to use the self-

tuning regulator (Astrom, 1983). Model identification adaptive controllers are sometimes 

also called self-optimizing controllers or self-tuning controllers. They perform three basic 

tasks: information gathering of the present process behavior; control performance 

criterion optimization; and adjustment of the controller. Information gathering of the 

process implies the continuous determination of the actual condition of the process to be 

controlled based on measurable process input and output. Suitable ways are identification 

and parameter estimation of process model. Various types of model identification 

adaptive controller can be distinguished, depending on the information gathered and the 

method  of  estimation.  Performance criterion optimization implies the calculation of  the  

 

    Figure 2.2 Adaptive control 
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control loop performance and the decision as to how the controller will be adjusted or 

.4 Internal Model Control 

l (IMC) design procedure (Morari and Zafiriou, 1989) 

adapted. Adjustment of the controller implies the calculation of the new controller 

parameter set and replacement of the old parameters in the control loop.  

 

2

 The Internal Model Contro

utilizes the structure shown in Figure 2.3, in which G represents the process, G~  

represents a model of the process, and Q  represents the IMC controller. The effect of the 

parallel path with the model is to subtract the effect of the manipulated variables from the 

process output. If the model is perfect representation of the process, then feedback is 

equal to the influence of disturbances and is not affected by the action of the manipulated 

variables. Thus, the system is effectively open-loop and the usual stability problems 

associated with feedback have disappeared.  The overall system is stable simply if and 

only if both the process and IMC controller are stable. 

 

 
          Figure 2.3 Internal model control 

 

       G 

       G

In delternal Mo

~

ProcessController

-

-

Disturbances

+

+

+
+       Q Output  Setpoint 

 15



 The IMC controller  can be designed by the following equation: Q

    fGQ -1~
−

=       (2.30) 

where G−
~  is the minimum phase part of G~ and f is a low-pass filter: 

( )rs
f

1
1

=       (    
+τ

2.31) 

where τ  is the desired closed-loop time constant and the parameter r  is a positive 

.5 Decentralized Control 

 structure as shown in Figure 2.4 have been commonly 

entioned adaptation procedure can be applied to the 

integer that is selected so that Q  is either a strictly proper or proper transfer function. 

  

2

 The decentralized control

used in the chemical process industries. The advantage is that fewer controller parameters 

need to be chosen than those for a centralized controller. This is particularly relevant in 

process control where often thousands of variables have to be controlled, which could 

lead to an enormously complex controller. It is also important that stability as well as 

performance is preserved to some degree when individual sensors or actuators fail. This 

failure tolerance is generally easier to achieve with decentralized control systems, where 

parts can be turned off without significantly affecting the rest of the system (Morari and 

Zafiriou, 1989). 

 It is evident that the aforem

decentralized control scheme as well. An adaptive decentralized control system based on 

the on-line adaptation of PID parameters will be developed in this research. 

 

 16



Decentralized 

 

   Figure 2.4 Decentralized control system 
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                CHAPTER 
                  3 
 

 

        Identification of Generalized Hammerstein Model 

 

3.1 Introduction 

 Hammerstein model structure can effectively represent and approximate many 

industrial processes. For example, the nonlinear dynamics of chemical processes, such as 

pH neutralization processes (Lakshminarayanan et al., 1995; Fruzzetti et al., 1997), 

distillation columns (Eskinat et al., 1991; Pearson and Pottmann, 2000), heat exchangers 

(Eskinat et al., 1991; Lakshminarayanan et al., 1995) and polymerization reactor (Su and 

McAvoy, 1993; Ling and Rivera, 1998), have been modeled with Hammerstein model. 

However, Hammerstein model is restricted to the situations where the process gain 

changes with the operating conditions while the linear systems remain fairly constant 

over the operating space under consideration. As a result, the conventional Hammerstein 

model is not adequate for modeling the process when both the process gain and linear 

dynamics change over the region of plant operation (Lakshminarayanan et al., 1997). To 

overcome this drawback, a generalized Hammerstein model that consists of varying 

linear dynamics preceded by a static nonlinear part is proposed and its associated 

identification problem is considered in this chapter.   
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 Obviously, the aforementioned generalized Hammerstein model is an extension of 

the conventional Hammerstein model by replacing the fixed linear model by the time-

varying linear models. Thus, the generalized Hammerstein model is expressed by: 

)()1()()1()( 11 dv
k
nd

k
y

k
n

k nnkvnkvnkykyky
vy

−−++−−+−++−= ββαα KK  (3.1) 

    )()()()( 2
21 kukukukv m

mγγγ +++= K    (3.2) 

where )(ky  and )(ku  denote the process output and input at the k-th sampling instant 

respectively, )(kv  is unmeasurable internal variable, k
iα )~1( yni =  and k

iβ )~1( vni =  

are the parameters of linear dynamics at the k-th sampling instant, iγ )~1( mi =  are the 

parameters of static nonlinear part, yn  and vn  are integers related to the model order, and 

dn  denotes the process time-delay. 

 Motivated by the Narendra-Gallman method (1966), an iterative procedure by 

incorporating JITL algorithm is developed to identify SISO and MIMO generalized 

Hammerstein models in the next two sections.  

 

3.2 Identification of SISO Generalized Hammerstein Model 

 During the off-line identification phase, a dataset consisting of N process data 

Nkkuky ~1)}(),({ =  is collected. Because JITL is employed to identify the time-varying 

models in the proposed method, a low-order model )2and�2( ≤≤ vy n�n  is adequate to 

describe the linear dynamics of generalized Hammerstein model. Thus the generalized 

Hammerstein model to be identified by the proposed identification procedure has the 

following form: 

 )2()1()2()1()( 2121 d
k

d
kkk nkvnkvkykyky −−+−−+−+−= ββαα   (3.3) 
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    )()()()( 2
21 kukukukv m

mγγγ +++= K    (3.4) 

 The proposed iterative identification procedure obtains the parameters of the 

generalized Hammerstein model by separating the estimation problem of the static 

nonlinear part from that of the linear dynamics. When the parameters of the linear 

dynamics are available, the parameters of static nonlinear part are obtained by solving the 

following objective function:           

  ∑
=

−=
N

k
mm kyky

N
E

m 1

2
2121ˆ,,ˆ,ˆ

))ˆ,,ˆ,ˆ;(ˆ)((1)ˆ,,ˆ,ˆ(Min
21

γγγγγγ
γγγ

KK
K

 (3.5) 

where )(ˆ ky  is the predicted output of generalized Hammerstein model: 

   ∑
=

−

−

=
m

j

j
jk

k

m ku
qA
qBky

1
1

1

21 )(ˆ
)(ˆ
)(ˆ

)ˆ,,ˆ,ˆ;(ˆ γγγγ K    (3.6)   

  dd nknkkkkk qqqB�qqqA −−−−−−−− +=−−= 2
2

1
1

12
2

1
1

1 ˆˆ)(ˆ,ˆˆ1)(ˆ ββαα  (3.7) 

where kkkk
2121

ˆ,ˆ,ˆ,ˆ ββαα  are the known linear model parameters and )~1(ˆ mi��i =γ  are the 

nonlinear parameters to be determined. 

 By differentiating the objective function E  with respect to iγ̂  obtains: 

   ( ) k
N

k
m �bkyky

N
E

1
1

21
1

)ˆ,,ˆ,ˆ;(ˆ)(2
ˆ ∑

=

×−−=
∂
∂ γγγ
γ

K    (3.8) 

   ( ) k
N

k
m bkyky

N
E

2
1

21
2

)ˆ,,ˆ,ˆ;(ˆ)(2
ˆ

×−−=
∂
∂ ∑

=

γγγ
γ

K   (3.9) 

      M  

   ( ) k
m

N

k
m

m

b�kyky
N

E ∑
=

×−−=
∂
∂

1
21 )ˆ,,ˆ,ˆ;(ˆ)(2

ˆ
γγγ

γ
K                     (3.10) 

where .~1,~1),2(ˆ)1(ˆ
21 N�km�jkukub jkjkk

j ==−+−= ββ      
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 By setting Eqs. (3.8) to (3.10) to zero, the nonlinear parameters are solved by: 

   [ ] [ ]Tm
T

m ccc ,,,ˆ,,ˆ,ˆ 21
1

21 KK −= Aγγγ     (3.11) 

where 
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   (3.12) 

          ( ) m�jbkykykyc
N

k

k
�j

kk
j ~1,)2(ˆ)1(ˆ)(

1
21 =×−−−−= ∑

=

αα   (3.13) 

 On the other hand, when the nonlinear parameters iγ̂ )~1( mi =  are known, the 

intermediate variable )(kv can be obtained from Eq. (3.4). Therefore, the dataset 

Nkkky ~1))}(),({( =x  where )(kx  is the regression vector pertaining to the local model 

chosen for the JITL algorithm can be constructed. For example, { })1(),1()( −−= kvkykx  

for a first-order linear model, i.e. 1== vy nn  and 0=dn . Using Nkkky ~1))}(),({( =x  as 

the reference dataset, the parameters of N local models corresponding to N query data 

{ })(),( kvky , i.e. k
iα̂  and k

jβ̂  (i,j = 1 or 2), can be obtained by using JITL algorithm given 

in Chapter 2. 

 The following summarizes the proposed off-line iterative identification procedure 

for the generalized Hammerstein model: 

1. Given the data set Nkkuky ~1)}(),({ =  and the parameters of static nonlinear part are 

initialized as 1ˆ1 =γ  and 0ˆ =iγ  )1( ≠i ; 
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2. Compute )(kv  from Eq. (3.4) and construct the reference dataset 

Nkkky ~1))}(),({( =x  for JITL algorithm, followed by the computation of the 

parameters of a set of linear models, k
iα̂  and k

jβ̂  )~1,2or  1,( N�kji == , by 

using the JITL algorithm; 

3. The parameters of the static nonlinear part are calculated by using Eq. (3.11) and  

the result obtained in step 2; 

4. When the convergence criterion is met, stop; otherwise, go to step 2 by using the 

updated parameters iγ̂  obtained in step 3. 

 To conclude this section, it is worth pointing out one major difference in the 

identification and application of the conventional and generalized Hammerstein models. 

In the former case, both static nonlinear part and linear model obtained during the off-line 

identification phase naturally complete the construction of Hammerstein model and are 

subsequently used in the on-line application of such a model, e.g. model-based controller 

design. In contrast, only the parameters of static nonlinear part of generalized 

Hammerstein model obtained in the off-line identification procedure are fixed as part of 

the model parameters, while those of linear dynamics are calculated at the instant when 

model prediction is required. This main departure from the conventional Hammerstein 

model is due to the time-varying linear models employed in the generalized Hammerstein 

model. As a result, only the most up-to-data linear model relevant to the current process 

data will be computed at each sampling instant by the JITL algorithm for modeling and 

controller design purposes, after which these model parameters will then be discarded. 

 The following summarizes how to calculate the predicted output of generalized 

Hammerstein model: 
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1. Given the identical dataset Nkkuky ~1)}(),({ =  previously obtained in the off-line 

identification phase and the static nonlinear part obtained by the aforementioned 

iterative identification procedure; 

2. Compute )(kv  from Eq. (3.4) and construct the reference dataset 

Nkkky ~1))}(),({( =x  for the JITL algorithm; 

3. Given the on-line process data )}(),({ jujy pp  at the j-th sampling instant, 

compute )( jv p  from Eq. (3.4) and subsequently obtain the predicted output 

)1(ˆ +jy p  of generalized Hammerstein model by the JITL algorithm. 

 

3.3 Identification of MIMO Generalized Hammerstein Model 

Two possible structures as depicted Figures 3.1 and 3.2 can be used to describe a 

MIMO Hammerstein model depending on whether the nonlinearities are separate or 

combined (Lakshminnarayana et al., 1995; Al-Duwaish and Karim, 1997).  The 

combined nonlinearity case is more general, but it can cause a very challenging parameter 

estimation problem because of the large number of parameters to be estimated.  Therefore, 

the MIMO generalized Hammerstein model with separate nonlinearities will be 

considered in this research.  

Without loss of generality, a multivariable process with two inputs and two 

outputs will be utilized to detail the proposed identification procedure. For a 22×  

generalized Hammerstein model with separate nonlinearities, it can be described by the 

following equation:  
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 (3.14) 

where k
11α , k

12α , k
21α , k

22α , k
1β  and k

2β  are the parameters of linear dynamics of MIMO 

Hammerstein model at the k-th sampling instant and the nonlinearities are represented by: 

   kukukukv m
m ()()()( 1

1 11
2
1121111 γγγ +++= L )   (3.15) 

   kukukukv m
m ()()()( 2

2 22
2
2222212 γγγ +++= L )  (3.16) 

where i1γ  )~1( 1mi = , j2γ  )~1( 2mj = , 1m and 2m  are parameters of static 

nonlinearities. 

  

 

 

               

 

 

       Figure 3.1. MIMO Hammerstein model with combined non-linearities. 

 

 

 

   

       

 

       Figure 3.2. MIMO Hammerstein model with separate non-linearities. 
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Equations (3.14) to (3.16) can be rewritten as follows:      

   
)()()()(

)1()1()1()(
1

1 11
2
1121111

112121111

kukukukv

kvkykyky
m

m

kkk

γγγ
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  (3.17) 
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kvkykyky
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kkk

γγγ

βαα

+++=
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L
  (3.18) 

As can be seen from Eqs. (3.17) and (3.18), identification of  a 22×  generalized 

Hammerstein model is reduced to the identification of two individual SISO generalized 

Hammerstein models. Therefore, the iterative identification procedure developed in 

section 3.2 can be extended in a straight forward manner to identify the 22×  generalized 

Hammerstein model as described by Eqs (3.17) and (3.18), as will be discussed in detail 

in what follows. 

 Given the process data { } Nkkukukyky ~12121 )(),(),(),( =  and parameters of the 

linear dynamics in Eq. (3.17), the parameters of static nonlinear part in Eq. (3.17) are 

obtained by solving the following objective function:    

 ∑
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 (3.19) 

where )(ˆ1 ky is the first predicted output of generalized Hammerstein model: 

   
)(ˆ)(ˆ)(ˆ)(ˆ

)1(ˆˆ)1(ˆ)1(ˆ)(ˆ
1

1 11
2
1121111

112121111

kukukukv

kvkykyky
m

m

kkk

γγγ

βαα

+++=

−+−+−=

L
  (3.20)  

where k
11α̂ , k

12α̂ , k
1β̂  are the known linear model parameters and i1γ̂ )~1( 1mi =  are the 

nonlinear parameters to be determined. 

 By differentiating the objective function 1E  with respect to i1γ̂  obtains: 
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where )1(ˆ
111 −= kub ikk

i β , .~1,~1 1 N�kmi ==  

 By setting Eqs. (3.21) to (3.23) to zero, the nonlinear parameters are solved by: 
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    (3.25) 

and 

         ( ) k
i

N
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i b�kykykyc 1

1
21211111 )1(ˆ)1(ˆ)(∑

=

×−−−−= αα , 1~1 mi =    (3.26) 

 Similarly, when parameters of the linear dynamics in Eq. (3.18) are available, the 

parameters of static nonlinear part in Eq. (3.18) are obtained by solving the following 

objective function:  
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where )(ˆ 2 ky is the second predicted output of generalized Hammerstein model: 
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where k
21α̂ , k

22α̂ , k
2β̂  are the known linear model parameters and j2γ̂ )~1( 2mj =  are the 

nonlinear parameters to be determined. 

 By differentiating the objective function 2E  with respect to j2γ̂  obtains: 
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where )1(ˆ
222 −= kub jkk

j β , .~1,~1 2 N�kmj ==  

 By setting Eqs. (3.29) to (3.31) to zero, the nonlinear parameters are solved by: 
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and 

          ( ) k
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On the other hand, given the parameters of static nonlinear parts, 

i1γ̂ )~1( 1mi = and j2γ̂ ),~1( 2mj =  both intermediate variables )(1 kv  and )(2 kv  can be 

obtained from Eqs. (3.17) and (3.18). Subsequently, two reference datasets 

Nkkky ~111 ))}(),({( =x  and Nkkky ~122 ))}(),({( =x  where { })(),(),()( 21 kvkykyk ii =x  

)2,1( =i  are constructed for JITL algorithm. Consequently, the parameters of N×2  local 

models corresponding to N query data for predicting 1y  and 2y  can be obtained. 

 To conclude this section, the following summarizes the proposed off-line iterative 

identification for a 22×  generalized Hammerstein model: 

1. Given the data set { } Nkkukukyky ~12121 )(),(),(),( = , the parameters of static 

nonlinear parts are initialized as zero except that 1ˆˆ 2111 == γγ ; 

2. Compute )(1 kv and )(2 kv  from Eqs. (3.17) and (3.18) and construct the reference 

datasets Nkkky ~111 ))}(),({( =x  and Nkkky ~122 ))}(),({( =x  for JITL algorithm, 

followed by the computation of the parameters of linear models, ,ˆ,ˆ 1211
kk αα  

kkk
12221

ˆ,ˆ,ˆ βαα  and ,ˆ
2
kβ  by using the JITL algorithm; 

3. The parameters of the static nonlinear parts are calculated by using Eqs. (3.24) 

and (3.32) and the result obtained in step 2; 

4. When the convergence criterion is met, stop; otherwise, go to step 2 by using the 

updated parameters )~1(ˆ 11 mi�i =γ  and )~1(ˆ 22 mj�j =γ  obtained in step 3. 

With the identification result obtained above, the predicted outputs of the 22×  

generalized Hammerstein model is obtained as follows: 

1. Given the identical dataset { } Nkkukukyky ~12121 )(),(),(),( =  and the static nonlinear 

parameters obtained in the aforementioned iterative identification procedure; 
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2. Compute )(1 kv and )(2 kv  from Eqs. (3.17) and (3.18) and construct the reference 

datasets Nkkky ~111 ))}(),({( =x  and Nkkky ~122 ))}(),({( =x  for JITL algorithm; 

3. Given the on-line process data )}(),(),(),({ 2,1,2,1, jujujyjy pppp  at the j-th 

sampling instant, compute )(1, jv p  and )(2, jv p  from Eqs. (3.17) and (3.18) and 

subsequently obtain the predicted outputs of generalized Hammerstein model by 

using )}(),(),({ 1,2,1, jvjyjy ppp  and )}(),(),({ 2,2,1, jvjyjy ppp as the query data for 

JITL algorithm, respectively. 

 

3.4 Examples 

 Example 1 Consider the free radical polymerization of methyl methacrylate in the 

CSTR reactor with azo-bis-isobutyronitrile as initiator and toluene as solvent. This 

process was modeled as a Hammerstein model in the previous study by Ling and Rivera 

(1998). The model of this process is represented by the following equations (Doyle et al., 

1995; Ling and Rivera, 1998; Harris and Palazoglu, 1998):  

  
V

FC
V

Fxxxkx inm,1
2111 +−−=&        (3.35)  

  
V
CF

V
Fx

xkx inII ,2
222 +−−=&      (3.36)  

  
V

Fx
xxkxkx 3

214233 −+=&      (3.37)  

  
V

FxxxkMx m
4

2154 −=&      (3.38)  

  
3

4

x
xM p =        (3.39)  
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where the dimensionless state variables ix )4~1( =i  correspond to the concentration of 

the monomer, concentration of the initiator, molar concentration of the dead polymer 

chains, and mass concentration of the dead polymer chains, respectively,  process output 

is the number average molecular weight ,pM  and process input is the inlet initiator flow 

rate, IF . The relevant model parameters and the nominal operating condition are given in 

Tables 3.1 and 3.2 respectively. The sample time is chosen as 0.05 hr and the operating 

space under consideration is ].104101[ 44 ××∈ ��M p  

 

  Table 3.1 Model parameters for polymerization reactor 

 

 V   Reactor volume   0.1  m3 

 F   Inlet flow rate of monomer   1.0  m3 
 inIC ,   Inlet concentration of initiator 8.0  kmol/m3 

 inmC ,   Inlet concentration of monomer 6.0  kmol/m3   
 mM   Molecular weight of monomer 100.12  kg/kmol 
 1k   Kinetic parameter   2.457  m3/2/kmol1/2/hr 
 2k   Kinetic parameter   0.102  L/hr 
 3k   Kinetic parameter   0.122  L/hr 
 4k   Kinetic parameter    102.412 -3× m3/2/kmol1/2/hr 
 5k   Kinetic parameter   2.4568  m3/2/kmol1/2/hr 
 
 
 
 
  Table 3.2 Nominal operating condition for polymerization reactor 
 
 
 0,1x   5.507  kmol/m3  0,4x   49.38  kmol/m3 
 0,2x   0.133  kmol/m3  

0,IF   0.01673  m3/hr 

 0,3x   -3101.975× kmol/m3  0,pM   25000.5 
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 To identify the generalized Hammerstein model, eight hundred input-output data 

as shown in Figure 3.3 are collected for model identification and construction of database 

for JITL algorithm, where the parameters 25min =k , 90max =k  and Ω=0.95 are chosen in 

the simulation study. By using a third-order polynomial as static nonlinear part and a 

first-order linear model to construct the generalized Hammerstein model, the proposed 

iterative identification procedure obtains 1γ = 0.9037, 2γ = -0.2875, 3γ = 0.0304. For 

comparison purpose, conventional Hammerstein model consisting of a third-order 

polynomial and first-order linear model is also identified by using the identical process 

data shown in Figure 3.3. Applying Narendra-Gallman method, the following model 

parameters are obtained 1α = 0.7658, 1β = -0.0436, 1γ = 2.5848, 2γ = -1.0734 and 3γ = 

0.1593. 
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Figure 3.3 Input-output data for polymerization reactor 
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 To evaluate the predictive performance of these two identified models, their 

respective predicted open-loop responses for 150% and -50% step changes in the initiator 

flow rate IF  are compared in Figure 3.4. The Mean Absolute Errors (MAE) of 

generalized Hammerstein model are 33.89% and 32.50% of those obtained by 

Hammerstein model, respectively. It is apparent that generalized Hammerstein model has 

better prediction accuracy than the conventional Hammerstein model. 
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Figure 3.4 Open-loop response for 150% and -50% changes in FI. Solid line: process;   
      dotted line: generalized Hammerstein model; dash-dot line: Hammerstein   
      model  
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Example 2  Consider the following van de Vusse reaction kinetic scheme: 

   CBA →→        (3.40) 

   DA2 →        (3.41) 

which is carried out in an isothermal CSTR.  The mass balances for components A and B 

are given by (Doyle et al., 1995): 

   )(2
31 AAfAAA CC

V
FCkCkC −+−−=&     (3.42) 

    BBAB C
V
FCkCkC −−= 21

&      (3.43) 

where the concentration of component B, BC , is the process output and the inlet flow rate, 

F, is the process input. The model parameters used in the simulation study are: 1k = 50  

hr-1, 2k = 100 hr-1, 3k = 10 L/(mol hr), AfC = 10 mol/L and V = 1 L and the nominal 

operation condition is AoC = 3.0 mol/L, 0BC = 1.12 mol/L and oF = 34.3 L/hr. This 

process was previously described as Hammerstein-like process (Hahn and Edgar, 2001). 

 A salient feature of this reactor is that the sign of its steady state gain may change 

according to the operating condition (see Figure 3.5). In our simulation study, the 

operating space under consideration is [ ]558��F ∈ . To apply the proposed identification 

procedure, one thousand input-output data as shown in Figure 3.6 are collected. The 

generalized Hammerstein model to be identified consists of a third-order polynomial as 

static nonlinear part and a second-order linear model. With parameters 12min =k , 

90max =k  and Ω= 0.9 chosen for JITL algorithm, the identified nonlinear parameters are 

1γ =1.0237, 2γ = -0.0004 and 3γ = 0.0051. Again, for comparison purpose, a conventional  
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Hammerstein model with 1.79221 =α ,  -0.8033,2 =α 0.00611 =β , 1γ = 0.6034, 

 0.3855- 2 =γ and 3γ = 0.5109 are identified by using the Narendra-Gallman method. 
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Figure 3.5 Steady-state curve of van de Vusse reactor 

 

 Figure 3.7 compares the predictive capability of the generalized Hammerstein and 

Hammerstein models when F is subject to step change of 15 L/hr, while the prediction 

performance of these two models for open-loop response subject to step change of -25 

L/hr in F is compared in Figure 3.8. The resulting MAEs of the generalized Hammerstein 

model are 5.7% and 17.9% of those obtained by Hammerstein model, respectively. 

Evidently, the former has better prediction accuracy over its conventional counterpart in 

modeling a process with a wide range of operating space. 
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Figure 3.6 Input-output data for van de Vusse reactor 
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Figure 3.7 Open-loop response for L/hr15� change in F . Solid line: process; dotted line:        
       generalized Hammerstein model; dash-dot line: Hammerstein model 
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Figure 3.8 Open-loop response for -25 L/hr change in F . Solid line: process; dotted line:   
       generalized Hammerstein model; dash-dot line: Hammerstein model 
  

 Example 3 The control of pH is common in the chemical process and 

biotechnological industries. This process can exhibit severe static nonlinear behavior 

because the process gain can vary by several orders of magnitude over a modest range of 

pH values. Moreover, the titration curve may be time varying due to unmeasured change 

in the buffering capacity. 

 A simplified schematic diagram of a bench-scale pH neutralization system studied 

by Henson and Seborg (1994) is shown in Figure 3.9. The process uses NaOH  with 

concentration 0.003 M as the base stream )( 1q , 3NaHNO  with concentration 0.03 M as 

the buffer stream )( 2q  and 3HNO  with concentration 0.003 M as the acid stream )( 3q . 

The acid stream enters tank 2 which introduces additional flow dynamics. The acid and 
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base flow rates are regulated with flow control valves, while the buffer flow rate is 

controlled manually with a rotameter.  

 The chemical equilibria is modeled by defining two reaction invariants for each 

inlet stream:  

  4~1,]CO[2]HCO[]OH[]H[ 2
3

-
3

- =−−−= −+ ��iW iiiiai   (3.44) 

  4~1,]CO[]HCO[]COH[ 2
3332 =++= −− �������iW iiibi   (3.45) 

where the invariant aiW  is a charge related quantity, while biW  represents the 

concentration of the −2
3CO  ion. Unlike pH, these invariants are conserved quantities. The 

pH can be determined from 
4aW  and 

4bW  using the following relations: 

   0][H
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   ])([H log- pH +=       (3.47) 

 The dynamic model of the neutralization process is developed as follows. A mass 

balance on tank 2 yields, 

   eqq
dt

dh
A 33

2
2 −=       (3.48) 

where 2h  and 2A  are the level and cross-sectional area of tank 2, respectively. The exit 

flow rate eq3 is modeled with the following flow-head relation: 

   5.0
213 hCq ve =        (3.49) 

where 1vC  is a constant valve coefficient. An overall mass balance on tank 1 yields: 

   4321
1

1 qqqq
dt
dh

A e −++=      (3.50) 
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where 1h  and 1A  are the level and cross-sectional area of tank 1. The exit flow rate 4q  is 

model as: 

   n
v zhCq )( 144 +=       (3.51) 

where 4vC  is a constant valve coefficient, n  is constant valve exponent, and z is the 

vertical distance between the bottom of tank 1 and the outlet for 4q . By combining mass 

balances on each of the ionic species in the system, the following differential equations 

for the effluent reaction invariants, 4aW  and ,4bW can be derived (Henson and Seborg 

1994):            

  )()()( 433422411
4

11 aaeaaaa
a WWqWWqWWq

dt
dW

hA −+−+−=   (3.52) 

  )()()( 433422411
4

22 bbebbbb
b WWqWWqWWq

dt
dW

hA −+−+−=  (3.53) 

 

Table 3.3 Model parameters and nominal operating condition for the pH system 

 

  7
1 1047.4 −×=aK   6.151 =q ml/s  3

1 1005.3 −×−=aW M 
 10

2 1062.5 −×=aK   55.02 =q ml/s  5
1 1000.5 −×=bW M 

 141000.1 −×=wK   6.163 =q ml/s  03.02 −=aW M 
 2071 =A cm2   75.324 =q ml/s 03.02 =bW M 
 422 =A cm2   0.141 =h cm  3

3 1000.3 −×=aW M 
 5.11=z cm   0.32 =h cm  03 =bW M 
 9.581 =vC    7.0 pH =   4

4 1032.4 −×−=aW M 
 4.584 =vC    607.0=n   4

4 1028.5 −×=bW M 
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Figure 3.9 The pH neutralization process 

 

 This process was previously modeled as a 22×  Hammerstein model by 

Lakshminarayanan et al. (1995). Two outputs of this process are 1h  and pH, which will 

be denoted by 1y  and 2y  in the following development, while the process inputs are 1q  

and 3q , which are denoted by 1u  and 2u , respectively. The operating space considered 

for process modeling is [ ]5.165.101 ��y ∈  and [ ]5.95.42 ��y ∈ . 

 To proceed with the proposed identification procedure, one thousand independent 

random signals are collected from input and corresponding process output as shown in 

Figure 3.10. By using 25min =k , 90max =k  and Ω=0.98 for JITL algorithm, the static 

nonlinear part of generalized Hammerstein model is identified as: 
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 For comparison purpose, the following Hammerstein model is obtained by using 

Narendra-Gallman method and the identical input and output data given in Figure 3.10: 
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 The predictive performance of these two models is compared in Figure 3.11 for 

step changes of 1.5 ml/s and -2.5 ml/s in base flow rate )( 1u , respectively, and the 

corresponding MAEs for prediction error are given in Table 3.4. It is clear that 

generalized Hammerstein model has superior predictive performance than the 

conventional Hammerstein model. Likewise, generalized Hammerstein model gives a 

marked improvement in predicting the open-loop response corresponding to 3±  ml/s 

step changes in acid flow rate ),( 2u  as illustrated in Figure 3.12 and Table 3.4.  

 

Table 3.4 Prediction error for open-loop responses in Figures 3.11 and 3.12 

 
Hammerstein model 

 

Generalized Hammerstein 
model  

 

1y  2y  1y  2y  

 
+1.5 ml/s change in 1u  
 

1.38×10-1 1.50×10-1 1.12×10-3 5.76×10-3 

-2.5 ml/s change in 1u  
 

3.89×10-2 1.99×10-2 1.74×10-3 1.91×10-3 

+3 ml/s change in 2u   
 

9.19×10-2 1.57×10-2 3.51×10-3 4.37×10-4 

-3 ml/s change in 2u  
 

6.52×10-2 1.28×10-1 3.21×10-3 9.75×10-3 
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   Figure 3.10 Input-output data for pH neutralization process 
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Figure 3.11 Open-loop response for 1.5 ml/s and -2.5 ml/s changes in 1q  (a) level, (b)   
         pH. Solid line: process; dotted line: generalized Hammerstein model;           
         dash-dot line: Hammerstein model 
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Figure 3.12 Open-loop response for ml/s 3± changes in 3q : (a) level, (b) pH. Solid line:  
         process; dotted line: generalized Hammerstein model; dash-dot line:       
         Hammerstein model  
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 Example 4 Considering the following chemical reactions that produce 

cyclopentanol (B) from cyclopentadiene (A) and the side products are cyclopentanediol 

(C) and dicyclopentadiene (D) (Stack and Doyle, 1997; Harris and Palazoglu, 1998): 

   CBA 21 kk ⎯→⎯⎯→⎯       (3.54) 

   D2A 3k⎯→⎯        (3.55) 

   The above reaction takes place in a jacket-cooled CSTR, where the coolant is 

introduced by an external heat exchanger.  This system can be described by the following 

equations:    

  2/
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A
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dt
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where iC  is the concentration of species ),( BAi = , F  is the reactor flow rate, T is the 

reactor temperature, Tw is the coolant temperature and Qw is the external heat exchanger 

duty. The model parameters and nominal operating condition are given in Tables 3.5 and 

3.6 respectively. For this 22×  system, the process outputs are CB and T (denoted by 1y  

and 2y  respectively) and process inputs are F and Qw (denoted by 1u  and 2u  

respectively).  The  sample  time of the system is chosen as 0.001 hr. The operating space  

considered  for  process  modeling  is  [ ]5.012.11 ��y ∈  and [ ]4123972 ��y ∈ .  This process  
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Table 3.5 Model parameters for cyclopentanol reactor 

 

 V   Reactor volume    10 L 
 0T   Inlet temperature    403.15 K 
 AfC   Feed concentration of component A  5.1 mol/L 
 pC   Average heat capacity    30.1 kJ/kg/L 
 ρ   Average density    0.9342 kg/L 
 wk   Coolant conductivity                 4032 kJ/h/m2/K 
 wpC ,   Coolant heat capacity     2.0 kJ/kg/K 
 wm   Coolant mass     5.0 kg 
 wA   Heat exchange area     2m 0.215  
 0,1k   Arrhenius constant    1210  1.287×  l/hr 

 0,2k   Arrhenius constant     10 1.287 12× l/hr 

 0,3k   Arrhenius constant     10 9.043 9× L/mol/hr 
 1E   Normalized activation energy   -9758.3 K 
 2E   Normalized activation energy   -9758.3 K 
 3E   Normalized activation energy   -8560 K 
 1H∆   Heat of reaction    4.3 kJ/mol 
 2H∆   Heat of reaction    -11 kJ/mol 
 3H∆   Heat of reaction    -41.85 kJ/mol 
 
 

 

Table 3.6 Nominal operating condition for cyclopentanol reactor 
 

  
 AC   1.235 mol/L   wT   402.1 K 

     BC   0.900 mol/L   F   188.3 L/hr 
 T   407.3 K   wQ   -4496 kJ/hr 
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was previously modeled as Hammerstein-like process (Hahn and Edgar, 2001). 

To proceed with the proposed identification procedure, one thousand independent 

random signals are collected from input and corresponding process output as shown in 

Figure 3.13. By using 12min =k , 90max =k  and Ω=0.9 for JITL algorithm, the static 

nonlinear part of generalized Hammerstein model is identified as: 
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2
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 For comparison purpose, the following Hammerstein model is obtained by using 

Narendra-Gallman method and the identical input and output data given in Figure 3.13:  
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 Figures 3.14 and 3.15 compare the predictive performance of these two models 

for 100 L/hr and -180 L/hr step changes in reactor flow rate )( 1u , respectively. Likewise, 

their respective predictive performance for open-loop response corresponding to 1.9 

MJ/hr and -1.5 MJ/hr step changes in external heat exchanger duty )( 2u is illustrated in 

Figures 3.16 and 3.17. The MAEs of prediction errors for the aforementioned open-loop 

responses are summarized in Table 3.7. Evidently, generalized Hammerstein model has 

better accuracy than its conventional counterpart. 
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      Figure 3.13 Input-output data for cyclopentanol reactor 
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Figure 3.14 Open-loop response for 100 L/hr change in F 
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Figure 3.15 Open-loop response for -180 L/hr change in F 
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Figure 3.16 Open-loop response for 1.9 MJ/hr change in Qw 
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Figure 3.17 Open-loop response for -1.5 MJ/hr change in Qw 
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Table 3.7 Prediction error for open-loop responses in Figures 3.14 to 3.17 

 
Hammerstein model 

 

Generalized Hammerstein 
model  

 

1y  2y  1y  2y  

 
+100 L/hr change in 1u   
 

8.81×10-4 1.89×10-2 2.77×10-4 1.46×10-3 

-180 L/hr change in 1u  
 

7.14×10-2 7.26×10-1 1.50×10-4 3.79×10-4 

+1.9 MJ/hr change in 2u  
 

1.06×10-3 5.41×10-3 4.73×10-6 8.86×10-4 

-1.5 MJ/hr change in 2u  1.10×10-3 2.31×10-3 7.32×10-6 7.35×10-4 

  

 

3.5 Conclusions 

 Generalized Hammerstein model is proposed for modeling the Hammerstein-like 

processes whose linear dynamics vary over the operating space. Iterative identification 

procedures for generalized SISO and MIMO Hammerstein models are developed. Unlike 

the identification of conventional Hammerstein model, only the polynomial function 

obtained by the proposed identification method will be retained as the static nonlinear 

part of the generalized Hammerstein model. As a result, on-line application of 

generalized Hammerstein model requires the computation of linear model by using the 

JITL technique. Simulations results show that generalized Hammerstein model gives 

better predictive performance than its conventional counterpart. 

 

 



 
 
 
                CHAPTER 
                  4 
 

 
 
   Control of Generalized Hammerstein Processes - SISO Cases 

  

 The control of Hammerstein processes has been previously studied (Hwang and 

Hsu, 1995; Ling and Rivera, 2001; Fruzzetti et al., 1997; Lakshminarayana et al., 1997; 

Sung, 2002) by employing the nonlinear control scheme as depicted in Figure 4.1 (a). 

Owing to the nonlinear block NL-1, the reciprocal of the static nonlinear part of the 

Hammerstein model, which is used to cancel the static nonlinearity (NL) of the process, 

the advantage of this control strategy is that the design of feedback controller is 

simplified as a linear controller design problem as shown in Figure 4.1 (b). In the same 

spirit of aforementioned nonlinear control strategy, a nonlinear IMC control system as 

shown in Figure 4.2 was investigated for Hammerstein processes (Fruzzetti et al., 1997; 

Ling and Rivera, 2001). In contrast to one static nonlinear block employed in Figure 4.1, 

two static nonlinear blocks, NL and NL-1, are required for nonlinear IMC design so that 

linear IMC design procedure can be applied directly to design IMC controller  

based on the linear process model 

)(zQ

).(~ zG  In this chapter, the aforementioned control 

strategies for Hammerstein processes will be extended to develop adaptive control 

strategies for generalized Hammerstein processes. 
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(a) 

 

 

(b) 

 Figure 4.1 (a) Nonlinear controller design for Hammerstein processes, and  
                  (b) equivalent linear control system 
 
 
 

 

Figure 4.2 Internal model control for Hammerstein processes 
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4.1 Adaptive IMC Controller Design  

erstein 

21 d
k

d
k nkvnkv −−+−−+− ββ   (4.1) 

In other words, linear IMC model is given by: 

 In this section, an adaptive IMC control strategy for generalized Hamm

processes will be developed. Recall that the linear model of generalized Hammerstein 

processes has the following form: 

 ()1()( 21
kk kykyky +−= αα )2()1()2

 

   2
2

1
1

11
21 )()(~ −−−+

=
zzzG

nkk
k

dββ   
1 −− −− zz kk αα

   (4.2) 

eters  and are identified b

 extension

ontro

where the model param y JITL algorithm at each kkk
121 ,, βαα k

2β  

sampling instant. As such, an  of IMC strategy for Hammerstein processes to 

generalized Hammerstein processes can be implemented in connection with JITL 

technique as depicted in Figure 4.3. As can be seen, JITL is employed not only to update 

the model parameters but also to adjust the parameters of IMC controller )(zQk  as well. 

This is because )(zQk  is designed based on the inversion of process m )(~ zk  as 

dictated by the IMC design procedure discussed in Chapter 2. As a result, those c ller 

parameters pertaining to the model parameters of )(

odel G

~ zG k  need to be updated by JITL 

algorithm at each sampling instant. For illustration purpose, consider the following first-

order process model: 
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ilter,  Using a first-order IMC f )(z  is designed by Qk
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 The control law resulting from Eq. (4.4) is then given by 

   ))1()((1)1()( 1
1
kβ

−−
−

+−= kekekvkv k
k

k αλλ    (4.5)  

obtained from JITL algorithm, e(k) is the

output and its set-point at the k-th sampling instant, and  is the IMC filter time constant 

 

       (4.6)  

here

where 1α  and 1β  are  error between process k k

kλ

adjusted on-line by the gradient descent algorithm to be discussed below. 

 

 

Figure 4.3 Adaptive IMC control system for generalized Hammerstein processes 

 

The following objective function is used to update :kλ  

 2))1(ˆ)1((Min +−+= kykrJ

w )1( +kr  is the set-point and )1(ˆ +ky  is the predicted tp ou ut of JITL algorithm. 

y 
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Becaus  is 

introdu

 

e kλ  is constrained between 0 and 1, the following mapping function

ced, 

  )(1
1

k
k

e ϕλ −+
=       (4.7) 

where )(kϕ  is a real djust the IMC parameter on-line, )1( +knumber. To a ϕ  will be 

calculated by the updating equation (4.8) and the corresponding 1+kλ  can t btained 

by Eq. (4.7).  

 Inspire

hen be o

d by the neural network learning strategy, backpropogation method is 

   

applied to tune the controller parameter at every sampling time as following: 

)(1
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where η  is a user-specified learning rate and  

   ))(1(~ 2 kz+=ηη       (4.9) 
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 The convergence property of the parameter updating equation (4.8) was studied 

by Chen (2001), who proved that the parameter )(kϕ  converges to its local optimum 

asymptotically provided  20 <<η  holds. This explains why the new learning rate η  is 

introduced in Eq. (4.8) to r e original learning rate .eplace th ~η  

 The implementation of the proposed adaptive IMC al gorithm is summarized as 

follows: 
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1. Initialize kλ  (and )(kϕ  for that matter) and ;η  

2. Given the current error e(k), compute v(k) from Eq. (4.5) and calculate 

ed le u

st

manipulat  variab );(k   

3. Update linear model by using the most current process data and JITL algorithm 

and subsequently adju k )(ϕ  according to Eq. (4.8); 

 

4.2 Ex

Example 1

4. Obtain IMC filter time constant for the next sampling instant by Eq. (4.7) and go 

to step 2. 

amples 

  Consider the polymerization of methyl methacrylate in a jacketed 

arlier in Chapter 3, where the control objective is to control the number 

sed f d 

CSTR discussed e

average molecular weight )( pM by manipulating the inlet initiator concentration, IF . To 

proceed with the proposed controller design, the generalized Hammerstein model and the 

same reference data set u or JITL algorithm in Chapter 3 are incorporate into 

adaptive IMC control system as depicted in Figure 4.3. For comparison purpose, IMC 

control system as shown in Figure 4.2 is also designed based on the Hammerstein model 

identified in Chapter 3. 

 To evaluate the servo performance of two controllers, %50±  step changes in the 

set-point as indicated by the dashed line in Figure 4.4 are red. The controller 

arame   a

 conside

p ters employed for adaptive IMC design are 00 =λ nd 1.0=55. η  and for 

Hammerstein model based IMC design 75.0=λ . As can be seen from Figure 4.4, 

adaptive IMC controller has better control performance t chieved C design, 

as also evidenced by comparing their respe AEs given in Table 4.1.  Figures 4.5 

han that a  by IM

ctive M
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and 4.6 compare the disturbance rejection capabilities of two controllers when %10±  

step changes in CI,in occur at three operating conditions, i.e. ,5.25000,38000 �M p =  and 

12000. It is apparent that the proposed IMC design has consistent and superior control 

performance over the operating space than its conventional lting 

MAEs of load response are summarized in Table 4.1. 

 Lastly, to test the robustness of the proposed adaptive IMC controller, both 

process input and output are corrupted by 1% Gaussia

counterpart. The resu

n white noise. As shown in Figure 

4.7, the proposed IMC design can yield reasonably good control performance in the 

presence of process noise. 
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Figure 4.4 Closed-loop response for 50± % set-point changes. Solid line: adaptive IMC  
      design; dotted line: Hammerstein model based IMC design 
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Figure 4.5 Closed-loop response for 10% change in CI,in.  Solid line: adaptive IMC design; 
       dotted line: Hammerstein model based IMC design 
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Figure 4.6 Closed-loop response for -10% change in CI,in.. Solid line: adaptive IMC   
       design; dotted line: Hammerstein model based IMC design 
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Figure 4.7 Closed-loop response for 50± % set-point changes (with process noise) 

 
 

 Ha merstein model Adaptive IMC 

Table 4.1 Summary of MAEs for closed-loop responses in Figures 4.4 to 4.6 

m
based IMC design design 

 
+50% set-point change 
 

1.47×103 1.39×103

-50% set-point change 8.24
 

×102 6.16 102

10% in C M  5.71

×

+ I,in p

 
at 38000= ×101 3.27 101

n

×

+10% in CI,i  at 5.25000=pM  
 

1.10×102 1

n

2.49 10×

+10% in CI,i  at 12000=pM  
 

1.19×102 1

in 

2.67 10×

-10% in CI, at 38000  =pM
 

6.83×101 14.01 10×

-10% in CI,in at 5.25000=pM  
 

1.24×102 13.85 10×

-10% in CI,in at 12000=pM  
 

2.08×102 12.89 10×
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Example 2 g  Considerin the van de Vu e r discussed in , where 

the con

or 10% and -50% 

sse r acto  Chapter 3

 trol problem focuses on regulating the concentration of component B, BC , by 

manipulating the inlet flow rate F . Again, the generalized Hammerstein model and the 

same reference data set used for JITL algorithm in Chapter 3 are incorporated into the 

proposed adaptive IMC control system. For comparison purpose, IMC control system is 

also designed based on the Hammerstein model obtained in Chapter 3. 

 Figure 4.8 compares the servo performance of two controllers f

step changes in the set-point, respectively. The controller parameters employed for 

adaptive IMC design are 0.920 =λ  and 5.0=η  and for Hammerstein model based IMC 

design a value of 93.0=λ  is used. As can be seen from Figure 4.8 and Table 4.2, 

adaptive IMC controller outperforms the IMC design. Figures 4.9 and 4.10 compare the 

disturbance rejection capabilities of two controllers when  %10±   step changes in AfC  

occur at two operating  conditions, i.e.  1.23=BC and 0.56. E tly, the proposed I  

design has faster and smoother contro ance over the operating space than its 

counterpart based on Hammerstein model. The resulting MAEs of load response are 

summarized in Table 4.2. 

 

viden MC

l perform

.3 Adaptive PID Controller Design 
 

 still the most adopted controllers in the 

4

 The well-known PID controllers are

process industries. However, its performance may deteriorate when processes exhibit 

nonlinear behaviour or are operated for a wide range of operating condition. For 

nonlinear processes that can be described by Hammerstein model, Ling and Rivera (2001)  
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Figure 4.8 Closed-loop response for 10% and -50% set-point changes. Solid line:    
       adaptive IMC design; dotted line: Hammerstein model based IMC design 

0 0.05 0.1 0.15

1.12

1.13

1.14

1.15

1.16

Time (hr)

C
B

0 0.05 0.1 0.15
26

28

30

32

34

36

Time (hr)

F

0 0.05 0.1 0.15

0.56

0.565

0.57

0.575

0.58

Time (hr)

C
B

0 0.05 0.1 0.15
7.5

8

8.5

9

Time (hr)

F

 

Figure 4.9 Closed-loop response for 10% change in . Solid line: adaptive IMC design; 
       dotted line: Hammerstein model based IMC design 
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Figure 4.10 Closed-loop response for -10% change in . Solid line: adaptive IMC  
         design; dotted line: Hammerstein model based IMC design 

AfC

 
 
 

Table 4.2 Summary of MAEs for closed-loop responses in Figures 4.8 to 4.10. 

 Hammerstein model 
based IMC design 

Adaptive IMC 
design 

 
10% set-point change 
 

1.38×10-2 1.35×10-2

-50% set-point change 
 

7.35×10-2 6.11×10-2

+10% in  at  AfC 1.12=BC
 

7.43×10-3 4.97×10-3

+10% in  at  AfC 0.56=BC
 

3.25×10-3 1.60×10-3

-10% in  at  AfC 1.12=BC
 

1.26×10-2 1.09×10-2

-10% in  at  AfC 0.56=BC
 

3.40×10-3 2.30×10-3
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and Sung (2002)  designed  nonlinear  PID  control  system  as  that depicted in Figure 

4.2 for controlling a polymerization reactor and a thermal microsystem. 

 Figure 4.11 illustrates the proposed adaptive PID control system, which is an 

extension of nonlinear control system in Figure 4.2 to generalized Hammerstein 

processes. Again, the nonlinear block NL-1 in Figure 4.11 is used to remove the static 

nonlinear part of the process so that the design of PID controller can focus on the linear 

dynamics part of the process. As a result of time-varying nature of linear dynamics in the 

generalized Hammerstein processes, JITL is employed as an on-line estimator to provide 

necessary information to update PID parameters. In this sense, the resulting control 

system is an adaptive PID control system. 

 Considering the following PID control algorithm: 

   )()1()( kvkvkv ∆+−=      (4.11) 

    (4.12) ))2()1(2)(()()()( 321 −+−−+∆+=∆ kekekewkewkewkv kkk

where  and  are the tuning parameters to be 

determined online by the updating formula derived in the sequel. 

),1()()( −−=∆ kekeke kkk www 321  and ,

     JITL 

Figure 4.11 Adaptive PID control system for generalized Hammerstein processes 

  PID  Process   r e v y 
   NL-1 u

+
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 Similar to adaptive IMC design, the following objective function is used to update 

PID parameters:    

        (4.13)  2))1(ˆ)1((Min +−+= kykrJ

 Since the parameter  is constrained to be positive or negative, the following 

mapping function is introduced: 
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where iς  is real number. Henceforth, )(kiς  will be adjusted by the following updating 

equation and the respective PID parameters are obtained by Eq. (4.14). 
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where η  is a user-specified learning rate and 
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 The implementation of the proposed adaptive PID algorithm is summarized as 

follows: 

1. Initialize  ( and k
iw )(kiς  for that matter) and η ; 
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2. Given the current error  compute  from Eq. (4.11) and calculate 

manipulated variable ; 

),(ke )(kv

)(ku

3. Update linear model by using the most current process data and JITL algorithm 

and subsequently adjust )(kiς  according to Eq. (4.15); 

4. Obtain PID parameters for the next sampling instant using Eq. (4.14) and go back 

to step 2. 

 

4.4 Examples 

Example 1 The first example considered is the control of polymerization reaction 

studied in section 4.2. The proposed PID design is based on the generalized Hammerstein 

model and the same reference data set used for JITL algorithm in Chapter 3. In addition, 

IMC design based on Hammerstein model as given in section 4.2 will serve as a 

benchmark design for comparison purposes. 

With initial controller parameters , ,  and learning 

rate 

6.10
1 −=w 20

2 −=w 01.00
3 −=w

8.1=η  chosen for the proposed adaptive PID controller, Figure 4.12 compares servo 

performance of two controllers for %50±  step changes in the set-point. As can be seen 

from Figure 4.12 and corresponding tracking errors given in Table 4.3, adaptive PID 

controller has better control performance than that achieved by IMC design. Figures 4.13 

and 4.14 compare the disturbance rejection capabilities of two controllers when %10±  

step changes in CI,in occur at operating conditions ,5.25000,38000 �M p =  and 12000. The 

MAEs of these load responses are also summarized in Table 4.3. It is apparent that the 
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proposed IMC design has superior control performance over the operating space than its 

conventional counterpart. 

To test the robustness of the proposed adaptive PID controller method, both 

process input and output are corrupted by 1% Gaussian white noise. As shown in Figure 

4.15, the proposed adaptive PID controller can yield reasonably good control 

performance in the presence of process noise. 

 

 

Table 4.3 Summary of MAEs for closed-loop responses in Figures 4.12 to 4.14 

 Hammerstein model 
based IMC design 

Adaptive PID 
 design 

 
+50% set-point change 
 

1.47×103 1.39×103

-50% set-point change 
 

8.24×102 7.82×102

+10% in CI,in at  38000=pM
 

5.71×101 3.31×101

+10% in CI,in at  5.25000=pM
 

1.10×102 7.38×101

+10% in CI,in at  12000=pM
 

1.19×102 7.18×101

-10% in CI,in at  38000=pM
 

6.83×101 4.02×101

-10% in CI,in at  5.25000=pM
 

1.24×102 8.39×101

-10% in CI,in at  12000=pM
 

2.08×102 5.63×101

 
 

 66



0 0.5 1 1.5 2
2

2.5

3

3.5

4

4.5
x 104

Time (hr)

M
p

0 0.5 1 1.5 2
0

0.005

0.01

0.015

0.02

F I

Time (hr)

0 0.5 1 1.5 2
1

1.5

2

2.5

3
x 104

M
p

Time (hr)
0 0.5 1 1.5 2

0

0.05

0.1

F I
Time (hr)

      

 Figure 4.12 Closed-loop response for 50± % set-point changes. Solid line: adaptive PID          
          design; dotted line: Hammerstein model based IMC design 
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Figure 4.13 Closed-loop response for 10% change in CI,in.  Solid line: adaptive PID  
         design; dotted line: Hammerstein model based IMC design 
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Figure 4.14 Closed-loop response for -10% change in CI,in.. Solid line: adaptive PID   
         design; dotted line: Hammerstein model based IMC design . 
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Figure 4.15  Closed-loop response for 50± % set-point changes (with process noise) 
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 Example 2 Consider again the control of van de Vusse reactor as studied in 

section 4.2. With initial controller parameters , ,  and learning 

rate 

25.00
1 =w 3.50

2 =w 150
3 =w

5.1=η  chosen for adaptive PID controller, Figure 4.16 compares the resulting servo 

response and that by Hammerstein model based IMC controller for 10% and -50% set-

point changes. The corresponding tracking errors are given in Table 4.4. The disturbance 

rejection capabilities of these two controllers are illustrated in Figures 4.17 and 4.18 and 

their respective MAEs are summarized in Table 4.4. It is evident that adaptive PID 

controller outperforms IMC controller designed based on Hammerstein model. 

 

 

Table 4.4 Summary of MAEs for closed-loop responses in Figures 4.16 to 4.18 

 Hammerstein model 
based IMC controller 

Adaptive PID 
controller 

 
+10% set-point change 
 

1.38×10-2 1.36×10-2

 
-50% set-point change 
 

 
7.35×10-2

 
3.00×10-2

 
10% increase in at AfC 1.12=BC  
 

 
7.43×10-3

 
5.60×10-3

 
10% increase in at AfC 0.56=BC  
 

 
3.25×10-3

 
8.26×10-4

 
10% decrease in at AfC 1.12=BC  
 

 
1.26×10-2

 
9.14×10-3

 
10% decrease in at AfC 0.56=BC  
 

3.40×10-3 1.08×10-3
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Figure 4.16 Closed-loop response for 10% and -50% set-point changes. Solid line:          
         adaptive PID design; dotted line: Hammerstein model based IMC design 
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Figure 4.17 Closed-loop response for 10% change in . Solid line: adaptive PID  
         design; dotted line: Hammerstein model based IMC design 
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Figure 4.18 Closed-loop response for -10% change in . Solid line: adaptive PID  
         design; dotted line: Hammerstein model based IMC design 
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4.5 Conclusions 

 By incorporating generalized Hammerstein model into controller design, adaptive 

IMC design method and adaptive PID control strategy are developed in this chapter. The 

IMC and PID parameters are adjusted adaptively by their respective parameter updating 

equations derived from steepest descent gradient method. Simulation results are 

presented to demonstrate the advantages of the proposed adaptive IMC and PID designs 

over the conventional Hammerstein model based IMC design. 
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                CHAPTER 
                  5 
 

 

Control of Generalized Hammerstein Processes - MIMO Cases  

 

5.1 Introduction 

 Multi-loop SISO controllers or decentralized controllers are often used to control 

multivariate chemical processes. The simple controller structure and the easiness to 

handle loop failure are the most attractive advantages of the decentralized control system.  

In contrast, the control of multivariable processes using full multivariable controllers 

involves a formidable cost in the development and maintenance of these controllers. In 

this chapter, adaptive PID controller design developed in Chapter 4 is extended to the 

control of multivariable system. In the proposed decentralized adaptive control strategy, 

controller parameters of individual control loops can be adjusted on-line according to 

their respective parameter updating equations and information provided by JITL 

algorithm. In the decentralized control context, an important issue is how process inputs 

and outputs are paired, i.e. control structure selection problem. In this research, control 

structure selection is tackled by the relative gain array (RGA) (Bristol, 1966) criterion 

prior to the proposed adaptive PID control design. The application of this strategy to two 

literature examples is undertaken to elucidate the design procedure. 
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5.2 Decentralized Adaptive PID Controller Design 

 For brevity of the notation used, the proposed controller design method will be 

presented for  generalized Hammerstein processes as depicted in Figure 5.1. 

Because the generalized Hammerstein model considered in Chapter 3 has separate 

nonlinearities as depicted in Figure 3.2, their respective reciprocals,  and , are 

used in Figure 5.1 to remove the effect of static nonlinear part of the process so that the 

design of decentralized PID controller can be simply based on the linear dynamics of the 

process. Because on-line adaptation of PID controller parameters relies on their 

respective linear models, two JITL algorithms as indicated in Figure 5.1 are needed to 

provide necessary information for on-line tuning the PID parameters. This point will 

become clear in the following development.    

22×

-1
1NL -1

2NL

 It is noted that the static nonlinear functions of 22×  generalized Hammerstein 

model can be obtained by the iterative identification procedure developed in Chapter 3. In 

addition, the linear dynamics part of 22×  generalized Hammerstein model are described 

by: 

     (5.1) )1()1()1()( 112121111 −+−+−= kvkykyky kkk βαα

     (5.2) )

)

1()1()1()( 222221212 −+−+−= kvkykyky kkk βαα

The control laws of two PID controllers are given by:    

   ()1()( kvkvkv iii ∆+−=      (5.3) 

       (5.4) 

for 1, 2.  is the error between i-th process output and its set-point at the k-th 

))2()1(2)()(()()()()()( 3,2,1, −+−−+∆+=∆ kekekekwkekwkekwkv iii
k
ii

k
ii

k
ii

=i )(kei
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sampling instant, and ).1()()( −−=∆ kekeke iii  The PID parameters  are 

tuned online by updating formula to be derived in the sequel. 

k
i

k
i

k
i www 3,2,1,  and ,

 

      Figure 5.1 Decentralized adaptive PID control system for 22×  generalized      
            Hammerstein processes 
  

 The following objective function is used to update PID parameters: 

   Min  (5.5) 2
22

2
11 ))1(ˆ)1(())1(ˆ)1(( +−+++−+= kykrkykrJ

where  and  are the set-points, )1(1 +kr )1(2 +kr )1(ˆ1 +ky  and are the predicted 

outputs of generalized Hammerstein model.  

)1(ˆ2 +ky

 Since controller parameters are constrained to be positive or negative, the 

mapping function used in Chapter 4 are also employed here. 

    PID1

    PID2

  
   

      

Process 

JITL1 

v1

v2

y1e1r1

 
JITL2 

y2e2r2

    NL-1
1

    NL-1
2

u1

u2

- 
+ 

+ 
- 
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where ji,ς  is real number.  In the same fashion of adaptive PID design discussed in 

Chapter 4, )(,1 kjς  and )(,2 kjς  will be adjusted on-line according to their respective 

updating equations and the informations provided by the JITL algorithms. Subsequently, 

PID parameters can be obtained by Eq. (5.6). 

 The updating equation for PID parameters are given as follows: 
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for 2 and . The parameters ,1=i 3~1=j 1η  and 2η  are the learning rates and 
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where  and  are the model parameters of two linear models identified by the 

identification method developed in Chapter 3. 

1
1
+kβ 1

2
+kβ

  The implementation of the proposed decentralized adaptive PID controller is 

summarized as follows: 

1. Initialize  and  )k
jw ,1

k
jw ,2 3~1( =j  and learning rate parameters 1η  and 2η ; 
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2. Given the current errors  and  compute  and  from Eq. 

(5.3) and calculate manipulated variables  and ; 

)(1 ke ),(2 ke )(1 kv )(2 kv

)(1 ku )(2 ku

3. Update two linear models by using the most current process data and JITL 

algorithms and subsequently adjust )(,1 kjς  and )(,2 kjς  according to Eq. (5.7);  

4. Obtain PID parameters for the next sampling instant using Eq. (5.6) and go to step 

2. 

 

5.3 Examples 

Example 1 Considering the pH neutralization process previously studied in 

Chapter 3, where the control objective is to control the tank level h1 and effluent pH by 

manipulating the base flow rate and acid flow rate. Prior to the proposed decentralized 

controller design, the pairing between process outputs and inputs needs to be considered. 

After performing the RGA analysis, tank level h1 )( 1y  is controlled by base flow rate 

 and effluent pH  is controlled by acid flow rate   )( 1u )( 2y ).( 2u

To evaluate the servo performance of two controllers, 1±  step change in the set-

point of  as indicated by the dashed lines in Figure 5.2 and 1y 2±  set-point changes in 

 as shown in Figure 5.3 are considered. To design the proposed adaptive decentralized 

PID controller, the initial controller parameters for the first control loop are , 

 and  and for the second control loop , and 

, respectively, whereas the respective learning rates are fixed as 

2y

6.00
1,1 =w

4.5,0
2,1 =w ,20

3,1 =w 09.00
1,2 −=w ,10

2,2 −=w

-0.50
3,2 =w 6.11 =η  and 

85.12 =η . For comparison purposes, a decentralized PID controller is also design based 

on the  Hammerstein model identified in Chapter 3. The controller parameters for 22×
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the first control loop are 15.01,1 =w , 1.1,2,1 =w  and ,5.03,1 =w  and for the second 

control loop , 08.01,2 −=w ,8.02,2 −=w  and -0.13,2 =w . As can be seen from Figures 5.2 

and 5.3, decentralized adaptive PID controller has superior control performance than that 

achieved by Hammerstein model based PID design, as also verified by comparing their 

respective MAEs given in Table 5.1. In addition, their respective load performance for 

the step change in buffer flow rate from 0.55 to 0.2 is compared in Figure 5.4 and Table 

5.1. It is evident that the proposed decentralized PID controller outperforms its 

counterpart designed based on the Hammerstein model. 

 

 

Table 5.1 Summary of MAEs for closed-loop responses in Figures 5.2 to 5.4 

Hammerstein model based 
PID design 

Adaptive PID 
design 

  

1y  2y  1y  2y  
 
+1 set-point change in  1y
 

8.94×10-2 3.85×10-2 5.56×10-2 4.39×10-2

 
-1 set-point change in  1y
 

 
9.55×10-2

 
4.42×10-2

 
5.72×10-2

 
3.66×10-2

 
+2 set-point change in  2y
 

 
6.83×10-2

 
1.14×10-1

 
7.13×10-2

 
9.15×10-2

 
-2 set-point change in  2y
 

 
1.81×10-1

 
1.93×10-1

 
1.19×10-1

 
1.63×10-1

 
-0.35 step change in buffer 
flow rate 
 

 
3.50×10-2

 
1.73×10-2

 
2.37×10-2

 

 
1.54×10-2
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Figure 5.2 Closed-loop response for set-point changes in : (a) 14 to 15, (b) 14 to 13. 
Solid line: adaptive PID design; dotted line: Hammerstein model based PID 
design 
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(b) 

Figure 5.3 Closed-loop response for set-point changes in : (a) 7 to 9, (b) 7 to 5. Solid   
       line: adaptive PID design; dotted line: Hammerstein model based PID design 
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Figure 5.4 Closed-loop response for step disturbance in buffer stream. Solid line:     
       adaptive PID design; dotted line: Hammerstein model based PID design 

 

Example 2 The second example focuses on the control of the non-isothermal van 

de Vusse reactor as described in Chapter 3. The process outputs are the outlet 

concentration of component B )( BC  and reactor temperature  and process inputs are 

the reactor flow rate F and and the external heat exchanger duty . After conducting 

the RGA analysis,  is controlled by F  and T  is controlled by  

in the decentralized control system to be designed in what follows. 

)(T

wQ

BC )( 1y )( 1u )( 2y wQ )( 2u

In the simulation studies given in Figure 5.5 to 5.7, the controller parameters for 

adaptive PID controller are initialized as: , , , , 

, , and learning rates are specified as 

05.00
1,1 =w 01.00

2,1 =w 5.00
3,1 =w 7.00

1,2 =w

01.00
2,2 =w 7.00

3,2 =w 11 =η  and 5.12 =η . For PID 

design based on the Hammerstein model, the controller parameters are designed as: 

, , 013.01,1 =w 01.02,1 =w 05.03,1 =w , 3.01,2 =w , 5.12,2 =w , . Figures 5.5 and 1.03,2 =w
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5.6 show that the adaptive PID controller has superior servo response than the PID design 

based on the Hammerstein model. To evaluate their disturbance rejection capabilities, a 

step change in the inlet concentration  from its nominal value of 5.1 to 6.6 is 

considered. As can be seen from Figure 5.7, adaptive PID controller has better 

performance than its conventional counterpart. Table 5.2 summarizes the MAEs of the 

aforementioned simulation studies.  

AfC

 

 

Table 5.2 Summary of MAEs for closed-loop responses in Figures 5.5 to 5.7 

Hammerstein model 
based PID design 

Adaptive PID 
design 

 

1y  2y  1y  2y  
 
+0.22 set-point change in   1y
 

3.81 ×10-2 7.64 ×10-1 1.15×10-2 3.05×10-1

 
-0.4 set-point change in   1y
 

4.61 ×10-2
 

8.23 ×10-1
 

4.67×10-2
 

2.87×10-1

+10 set-point change in  2y
 

1.68 ×10-2
 

1.19 ×100
 

7.49×10-3
 

5.17×10-1

 
-10 set-point change in   2y
 

 
3.66 ×10-2

 
1.74 ×100

 
3.27×10-2

 
7.99×10-1

 
+1.5 step change in  AfC
 

 
2.65 ×10-2

 
8.22 ×10-1

 
1.78×10-2

 
3.72×10-1
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(b) 

Figure 5.5 Closed-loop response for set-point changes in  (a) 0.9 to 1.12, (b) 0.9 to      
      0.5.   Solid line: adaptive PID design; dotted line: Hammerstein model based  

:y1

      PID design 
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(b) 

Figure 5.6 Closed-loop response for set-point changes in (a) 407.3 to 417.3, (b)     
      407.3 to 397.3. Solid line: adaptive PID design; dotted line: Hammerstein     
       model based PID design 
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Figure 5.11 Closed-loop responses for step disturbance in  Solid line: adaptive PID 
design; dotted line: Hammerstein model based PID design 
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5.4 Conclusions 

 In this chapter, the previously developed SISO adaptive PID control strategy is 

extended for adaptive decentralized PID design. Similar to the earlier study in Chapter 4, 

the inversion of static nonlinear functions is employed to simplify the resulting controller 

design. By using the parameter updating equation derived and information provided by 

JITL algorithm, the proposed controller design is evaluated through simulation studies to 

show better control performance than its counterpart designed based on the Hammerstein 

model.  
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                CHAPTER 
                  6 
 

 
                      Conclusions 

 

 In this research work, generalized SISO and MIMO Hammerstein models are 

proposed. These new models consist of a static nonlinear function in series with time-

varying linear dynamics. Consequently, generalized Hammerstein model can be used for 

modeling the Hammerstein-like processes whose linear dynamics vary over the operating 

space. Iterative identification procedures for generalized SISO and MIMO Hammerstein 

models are developed. Unlike the identification of conventional Hammerstein model, 

only the polynomial function obtained by the proposed identification method will be 

retained as the static nonlinear part of generalized Hammerstein model. As a result, on-

line application of generalized Hammerstein model requires the computation of linear 

model by using the JITL technique and current process information. Simulation results 

show that generalized Hammerstein model has better modeling accuracy than the 

conventional Hammerstein model. 

 By using the generalized Hammerstein model as the process model, an adaptive 

IMC control strategy is developed.  In the proposed adaptive IMC control design, two 

static nonlinear blocks, NL and NL-1, are employed to make the resulting IMC design 

problem amenable to linear IMC analysis. The controller parameters are adjusted on-line 
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by using gradient descent learning algorithm and the information provided by JITL. 

Simulation results show that the proposed adaptive IMC design can provide better 

performance over that designed based on conventional Hammerstein model. Following 

the design concept of adaptive IMC design, adaptive PID control strategies are developed 

for both SISO and MIMO generalized Hammerstein processes. Again, PID parameters 

are adjusted on-line by their respective parameter updating equations developed in 

Chapters 4 and 5. Simulation results illustrate that the proposed adaptive PID design has 

better set-point tracking and disturbance rejection performance than its counterpart based 

on the Hammerstein model. 

 The suggested future work includes the following points. Firstly, static nonlinear 

part of the generalized Hammerstein model can be identified by the neural network 

owing to its ability to model a nonlinear function to any arbitrary accuracy. Furthermore, 

neural network can be applied straightforwardly to the MIMO generalized Hammerstein 

processes whose nonlinear part is better described by the combined nonlinear function as 

illustrated in Figure 3.1. Lastly, the control strategies developed in this thesis does not 

address the input saturation problem. One remedy to overcome this problem would be to 

develop a model predictive controller (MPC) based on the generalized Hammerstein 

model because MPC is one of the few methods for handling constraints and other issues 

like process interaction in a systematic design framework. Consequently, the resulting 

MPC has potential to give better control performance than the adaptive decentralized PID 

controller developed in this thesis. 
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