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SUMMARY 
 
 

The mechanical behavior and interface adhesion properties of thin film systems 

during indentation tests have been investigated by finite element method (FEM) and 

indentation experiments using a micro-wedge-tip indenter. Special attention is paid to 

the onset and propagation of interface delaminations, as well as their effects on the 

indentation response.  

In the FEM simulations, a traction separation law (TSL) instead of conventional 

crack growth criterion is employed to describe the interface adhesion due to the 

presence of large-scale yielding condition during delaminations. The effects of 

dominant parameters of TSL, i.e., interface strength and interface energy, on the 

initiation of interface delamination, have been investigated by parametric studies. A 

methodology, which is capable of determining the interface adhesion properties of 

thin-film/substrate systems, has been proposed based on the results of parametric 

studies. 

Indentation tests using a micro-wedge-tip indenter have been performed to 

investigate the delamination process and the mechanical properties of selected 

thin-film/substrate systems. An indentation range, in which the experimentally- 

measured properties are less affected by the substrate, is determined by re-arranging 

the load-penetration curves and defining an effective stiffness. Thus, the film-only 

reduced modulus and yield strength can be derived, which are further used to perform 

numerical simulations to extract the interface adhesion properties of the 

thin-film/substrate systems tested. 
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It is found that the simulation results agree well with the experimental ones: 

similar characteristics of the load-penetration curves corresponding to the interface 

delaminations have been observed in both the simulation and experimental results. 

Furthermore, the values of the interface adhesion properties of the 500nm BD/Si 

system are extracted by fitting the load-penetration curve obtained by experiment with 

the one obtained by simulations. 

 

Keywords: 

nanoindentation, traction separation law, interface delamination, effective 

stiffness, interface strength, interface energy 
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Chapter 1 Introduction 

 

1.1. Motivations and Objectives 

In recent years, a wide range of applications of thin-film/substrate systems have 

been found in micro-electronic and optoelectronic devices. Driven by these 

applications, various techniques, such as sputtering, vapor deposition, ion 

implantation and laser glazing, etc., have been developed to fabricate 

thin-film/substrate systems. An important feature of these thin-film/substrate systems 

is that, the interfaces between different components or materials are ubiquitous. Even 

though the films and the substrates fully meet the requirements of the applications, the 

delaminations of the films from the substrates often lead to the failure of the entire 

systems. Thus, the interface adhesion quality between the film and substrate, which 

often plays a dominant role in the reliability and stability of the devices, has drawn 

much attention [1-8].  

Indentation experiments, which have been performed to measure material 

hardness for more than one hundred years, are now rekindled by the development of 

new indentation instruments and techniques, as well as the improved theories. Many 

attempts have been made to use indentation to measure the mechanical properties of 

hybrid materials, including thin film structures and nanomaterials. Due to the 

difficulties in interpreting experimental data, it is still a challenging issue to extract 

interface adhesion properties by indentation tests directly [5-8]. 

A finite element method (FEM) [9] based on cohesive zone model has recently 
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been developed to correlate the interface adhesion of a thin film bonded to a substrate 

with the indentation load-penetration characteristics. In this model, thin-film/substrate 

systems are subjected to wedge indentations, which generate interface delamination of 

the thin film from its substrate. FEM simulations are then used to determine the 

load-penetration relationship and the critical state of the onset of the interface 

delamination of the systems during the indentation process, with the interface 

adhesion properties as initial input data. This approach, known as forward analysis, 

provides a direct relationship between the interface adhesion properties and 

experimentally-measured load-penetration curves. 

In real application situations, however, indentation load-penetration curves can be 

readily measured through experiments, whereas interface adhesion properties are to 

be determined. Therefore, to derive interface adhesion properties, i.e., interface 

strength and interface energy, from experimentally-measured load-penetration 

relationship, known as reverse analysis, may be practically more interesting and 

important in applications. 

The main objectives of this project are: 1) to gain fundamental understanding of 

the interface adhesion properties and the initiation of the delamination of thin film 

systems during indentation process using finite element modeling and indentation 

experiments by means of forward analysis; 2) to establish the relationships between 

the experimentally-measured information (i.e., the load-penetration curves) and the 

interface adhesion properties of thin film systems by means of reverse analysis; and 3) 

to develop a general methodology to characterize the interface adhesion properties by 
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using indentation technique combining with FEM simulations. 

 

1.2. Nanoindentation Test 

Indentation technique is a basic tool to characterize the mechanical properties of 

the surface of bulk materials and thin films [10-21].  

It was Moh who first performed a hardness test in 1822 wherein a permanent 

scratch was left on the material of interest by a harder one. Following the definition of 

Moh’s hardness, i.e., the capability of material resistance against the penetration by 

another, other tests, such as Brinell, Knoop, Vickers and Rockwell tests, were 

established by refining the method of indenting one material with another [22]. 

For so-called nanoindentation tests, the penetration depth during the test is in the 

order of nanometers, which make it possible to characterize the mechanical properties 

of thin film systems. The load-penetration curve, which is recorded continuously 

during indentation experiments, can be used to derive many important mechanical 

properties, such as hardness and elastic modulus [12-14]. The elastic modulus 

obtained by this technique is consistent with that obtained by the conventional 

standard tensile testing for many materials [23-25]. Nanoindentation experiments are 

now attempted to characterize the interface adhesion properties and the onset of 

delamination process of the thin-film/substrate systems. In this project, we therefore 

use the nanoindentaion technique to experimentally investigate the characteristics of 

the interface delaminations of thin-film/substrate systems.  
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1.3. Finite Element Modeling 

FEM has been well established nowadays and it can be used for solving a wide 

variety of practical problems. The method may be dated back to the analysis of 

aircraft structural problems presented by Turner et al. [26] in 1956, in which simple 

finite elements (pin-jointed bars and triangular plates) were used. In 1968, 

Przemieniecki [27] applied FEM to stress analysis problems. Zienkiewicz and Cheung 

[28] gave a broad interpretation of FEM and its applicability to any general field 

problem in 1967, which gave an impulse to a wider range of applications of FEM to 

solutions to linear and non-linear differential equations. Over the years, FEM has been 

used to solve different types of applied science and engineering problems with the 

improvement of the speed and accuracy of computers.  

The basic idea of FEM is to find the solution to a complicated problem by 

replacing it with a simpler one [29]. The discretization of the solution region, which is 

considered as a build-up of many small, interconnected subregions called finite 

element, is the first step in the FEM. This is equivalent to approximating the original 

problem that has an infinite number of degrees of freedom by a simpler one that has a 

finite number of degrees of freedom. The shapes, sizes, number and configurations of 

the elements should be chosen to simulate the original body or domain as closely as 

possible with respect to the computational time involved for the solution. Thus, it 

becomes possible to find an approximate solution in the absence of mathematical tool 

for the exact one to the practical problem. Generally, it is possible to improve or 

refine the approximate solution by spending more computational effort.  
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1.4. Scope 

This thesis is divided into five chapters and two appendices. Chapter 2 gives a 

brief introduction to the theories of indentation tests. The basic theories and 

formulations involved in finite element modeling are presented in Chapter 3, together 

with the discussions of the simulation results. Chapter 4 deals with the experimental 

results and discussions. Conclusions and future work are presented in Chapter 5. 
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Chapter 2 Theories of Indentation 

 

2.1. Basic Theories of Indentation 

2.1.1. Hardness 

Hardness is an old concept for characterizing the mechanical properties of a 

material. Historically, it can be divided into three main categories by different 

measuring methods: scratch hardness, indentation hardness and dynamic hardness [1].  

Scratch hardness is the oldest form, which indicates the ability of one solid to be 

scratched by another. Though the scratch tests are convenient and simple, they involve 

complicated functions of elasticity, plasticity, and surface friction, which make it 

difficult to provide a scientific definition [2]. Indentation hardness is determined by 

the load and the corresponding size of the permanent impression formed in static 

indentations, while dynamic hardness is expressed in terms of either the height of 

rebound of the indenter, or the energy of impact and the size of the remaining 

indentation, which makes the number of the test variables beyond manageable level. 

In 1881, Hertz [3] first postulated that an absolute value of hardness was the least 

value of the pressure beneath a spherical indenter, which was necessary to produce a 

permanent deformation at the center of the area of contact. Later, Auerbach [4], 

Meyer [5], and Hoyt [6] developed various measurements to remove some practical 

difficulties involved in Hertz’s proposal. Now the generally accepted definition of 

hardness is expressed as: 

 maxPH
A

=  (2.1.1) 
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where H  is the hardness; maxP  is the maximum load applied to the indenter; and 

A  is the projected contact area between the specimen and the indenter at maxP . 

 

2.1.2. Depth Sensing Indentation 

In conventional macro-indentation tests, the applied loads range from one to 

several hundred newtons. For micro-hardness testing, the applied loads are usually 

within a 10N order. Due to the increasing interests in the properties of thin film 

systems, nanoindentations are more commonly used nowadays since the typical loads 

are in a millinewton range and are measured with a resolution of several nanonewtons 

[2], whereas conventional indentation tests are inadequate to characterize the 

properties of thin film systems.  

In the conventional macro/micro-indentation tests, the contact area is measured 

by using optical microscope after the load is removed. If this method is employed in 

nanoindentation tests, it would cause pronounced inaccuracy due to the following two 

reasons: 1) the contact areas (or the projections of them) are usually too small to be 

measured by normal optical microscope, or even, by scanning electron microscope 

(SEM); and 2) the recoveries of elastic deformation for some materials, at least for 

hard metals and ceramics, lead to the changes of contact areas during unloading. 

However, for depth sensing indentation (DSI), the load and the corresponding 

penetration depth are recorded throughout the whole indentation procedure with high 

resolution. This technique not only ensures a more accurate measurement of contact 

area but also provides information about elastic properties, plastic properties, and 
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time-dependent properties of the material tested.  

The nanoindentation test procedure usually contains a few segments, including 

loading to a maximum load, holding at the maximum load, unloading to a pre-set load 

and another holding at a lower load for thermal drift correction, etc. The sequence for 

these segments can be programmed to meet the requirements of specific experiments. 

By using appropriate analysis methods, the elastic modulus and hardness of the 

specimen can be obtained through the interpretations of the load-penetration curves.  

 

2.1.3. Interpretation of Load-Penetration Curves 

A schematic representation of load-penetration curve during an indentation test is 

shown in Figure 2-1. The whole indentation process consists of a loading part (A B) 

and an unloading one (B C). maxP  is the maximum load and maxh  is the 

corresponding penetration depth of the indenter tip; 0h  is the final depth of the 

A B: Loading 

B C: Unloading 

Penetration, h 

Load, P 

A C 

B
maxP

S 

maxhch0h

Fig. 2-1 Schematic representation of load versus penetration during indentation [2]. 
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contact impression after unloading; ch  is the contact depth defined as the intercept of 

the initial unloading curve tangent at maxP ; and S  represents the contact stiffness 

defined as PS
h

∂
=
∂

 at the maximum load. 

In most cases the loading part involves plastic deformation as well as elastic 

deformation, while the initial part of unloading is usually considered elastic, which 

makes it possible to model the contact problem between the indenter and the 

specimen as a rigid punch indenting an elastic half-space.  

This problem can be dated back to Boussinesq [7] and Hertz [3] in late 19th 

century. Hertz proposed a relationship between the load and the penetration depth in 

view of a semi-infinite elastic half-space indented by a rigid sphere as follows: 

 3/ 2
2

8
3 1
R EP h

ν
=

−
 (2.1.2) 

where P  is the load applied; h  is the penetration depth; R  is the sphere radius; 

E  and ν  are the Young’s modulus and Poisson’s ratio of the material indented, 

respectively.  

In 1939, based on Boussinesq’s potential function method, Love [8] related the 

load to the penetration depth of an elastic half-space indented by a rigid cone: 

 2
2

2 tan
(1 )
EP hθ

π ν
=

−
 (2.1.3) 

where θ  is the semi-included angle of the cone. 

Later on, Sneddon proposed more generalized relations between the load and the 

penetration depth for the cases of elastic indentation with different geometries of 

indenter tips [9-11]. Generally, for many simple geometries of the indenters, the 

relation can be expressed as: 
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 0
mP hα=  (2.1.4) 

where P  is the load applied; h  is the elastic displacement of the indenter; 0α  is a 

constant related to the indenter geometry, elastic modulus and Poisson’s ratio of both 

the indenter and the specimen; and m  is a constant only related to the geometry of 

the indenter and usually varies from 1 for a flat-ended cylindrical punch to 2 for a 

conical tip. 

 

2.2. DSI Analysis Method  

The fundamentals for interpreting the DSI data were first proposed by Bulychev 

and Alekhin [12]. They developed a DSI instrument operated in Vickers 

micro-hardness regime and established the basic assumptions that are generally 

employed to analyze the DSI data as follows: 

1) The deformation upon unloading is predominantly elastic. 

2) The elastic compliances of the indenter and specimens can be considered to be 

isotropic and can be linearly combined to produce a ‘reduced modulus’ of the contact, 

rE : 

 
2 2(1 ) (1 )1 s i

r s iE E E
ν ν− −

= +  (2.2.1) 

where ν  is the Poisson’s ratio; and the subscripts s  and i  represent the specimen 

and the indenter, respectively. 

3) The two assumptions above lead to the contact stiffness derived by using 

elasticity theory: 
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 2
r

PS E A
h π
∂

= =
∂

 (2.2.2) 

where rE  is the reduced modulus mentioned above; and A  is the contact area. 

Though originally derived for an elastic isotropic half-space indented by a conical 

indenter, this method can also be applied to spherical and cylindrical indenters [14]. 

Moreover, this method can be generalized to any indenter that can be described as a 

body of revolution of a smooth function [15]. Since the method is independent of 

indenter geometry, it is effective for deriving the elastic modulus of materials by 

non-flat punch tips. For Vickers and Berkovich indenters, finite element analysis 

showed that the deviations from their flat-ended equivalents were only about 1.2% 

and 3.4%, respectively [16]. 

 

2.2.1. Derivation of Young’s Modulus 

Based on indentation experiments and the model of Bulychev and Alekhin [12], 

Doerner and Nix [13] proposed the first comprehensive method to derive contact area 

A  and reduced modulus rE  from DSI data.  

They noticed that the initial portions of the unloading curves were linear for some 

materials, especially for metallic materials, leading to their assumption that the 

contact area remained constant during initial unloading. Thus, the elastic behavior of 

the unloading part could be modeled as an elastic solid indented by a flat punch and 

the contact stiffness can be derived from the slope of the initial portion of the 

unloading curve. Practically, a linear fitting to the upper one third of the unloading 

curve is used. 
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In addition, they postulated that the deformation was plastic in the region where 

materials were in contact with the indenter, while elastic deformation happened only 

outside the contact region during unloading. Therefore, they obtained the plastic 

deformation ph  by fitting a straight line to the upper portion of the unloading curve 

and extrapolating this line to the depth axis. Thus, contact area A  can be derived to 

replace the final displacement 0h  shown in Figure 2-1 to improve accuracy. 

Later, Oliver and Pharr [14] tested many materials and found that unloading 

curves followed a power law relationship: 

 0 0( )mP h hβ= −  (2.2.3) 

where 0β  and m  are constants; m  ranges from about 1.2 to 1.6; and 0h  is 

residual depth shown in Figure 2-1. Their observation indicated that the contact area 

changed during unloading, even in the initial part. Taking into consideration the 

changing contact area during unloading, Oliver and Pharr [14] revised Doerner and 

Nix’s method [13] by defining a contact depth: 

 max
maxc

Ph h
S

ε= −  (2.2.4) 

where S  is determined by analytically differentiating Eq.(2.2.3) and evaluating its 

value at the maximum indentation depth; and ε  is a constant that equals 0.72 for a 

conical tip, 1.0 for a flat-ended punch and 0.75 for other tips that can be described as a 

parabolic revolution. It can be seen that Oliver and Pharr’s model is identical to that 

of Doerner and Nix for the case of a flat ended punch ( 1ε = ); for any other cases, the 

contact depth based on Oliver and Pharr’s approach will be larger than that of Doerner 

and Nix’s approach. This is because Oliver and Pharr’s method takes into account the 
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elastic recovery not only outside, but also inside the indentation contact area, whereas 

Doerner and Nix’s method only considers the elastic recovery outside the contact area 

as shown in Figure 2-2 [17].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oliver and Pharr’s method gives a more reasonable explanation on the unloading 

curve and is now widely used for deriving elastic modulus and hardness of materials 

by using nanoindentation techniques.  

 

Fig. 2-2 Comparison of indentation penetration deformation between (a) Doerner 

and Nix’s model, and (b) Oliver and Pharr’s model. 
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2.2.2. Theory of Wedge Indentation 

Hill et al. [18] proposed a theoretical solution for a plastic material penetrated by 

a rigid frictionless wedge. This solution determines the deformation in the material 

squeezed out towards the surface, as well as the form of the lip. The basic 

assumptions of the theory are that: 1) the material is incompressible; and 2) the 

material is rigid until the yield strength is reached. They found that the average strain 

correlates with an equivalent reduction of area in a tensile test and increases with the 

angle of wedge indenter. For a semi-angle of 90º, the mean indentation pressure is 

about 2.6 times the pressure at 0º angle. They tested with lead indented by sharp steel 

indenters up to the largest semi-angle of 30º. Within this value, their theory works 

well. Furthermore, Dugdale [19] supported their theory by examining the impressions 

made in cold worked metals by wedge indenters of various angles. 

Grunzweig et al. [20] presented a solution for a rough wedge following Hill’s 

theory. The major difference is that the slip lines no longer meet the wedge face at 45º 

when the wedge is rough and the effect of friction is to raise the apparent indentation 

pressure by an amount that depends on the angle of the wedge and the coefficient of 

friction. 

Based on the theory of indentation of a rigid perfectly-plastic solid, Tabor [21] 

showed that for ductile metals, the mean contact pressure was related to the yield 

strength of the material as: 

 mp CY=  (2.2.5) 

where mp  is the mean contact pressure; Y  is the yield strength of the material 
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indented; and C  is a constant whose value is about 3. 

Mulhearn [22] subsequently showed that the mechanism of the indentation 

depends on the angle of the indenter. When the semi-angle of the indenter is less than 

30º, the Hill’s mechanism is obeyed well. However, in excess of 30º, a different 

mechanism sets in and becomes more and more important with increasing indenter 

angle. At large angles, the deformation can be approximated as a radial compression 

centered at or slightly below the bottom of the indenter. The dependence of different 

deformation mechanisms on the angle of a wedge indenter is probably due to the 

increasing importance of elastic deformation. 

Later, based on the earlier work of Bishop et al. [23], Marsh [24] linked 

Mulhearn’s mechanism of deformation at large angles to that of a cavity in an 

elastic-plastic material being expanded by an internal pressure, which was solved by 

Hill in 1950 [25]. Marsh [24] pointed out that the elastic modulus of the material was 

an important factor affecting the deformation mechanism. Highly elastic materials, i.e., 

the materials with a high value of the ratio of the elastic modulus to the yield strength 

/E Y , would be more amenable to radial compression and change more easily to a 

radial flow mechanism of deformation.  

Using the same approach, Hirst and Howse [26] measured the indentation 

pressure for a range of materials by wedge indenters of different angles. They 

concluded that there were four main types of deformation and the regions as shown in 

Figure 2-3. Hill’s mechanism for a plastic rigid solid can be applied only when the 

angle of the wedge is acute and the ratio of /E Y  of the materials indented is high. 
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For less acute wedges or relatively more elastic materials, the mechanism is similar to 

that observed by Marsh and the indentation pressure follows the relation:  

 ln( / )mp M N E Y
Y

= +  (2.2.6) 

where M  varies with wedge angle but N  is approximately constant for a wedge 

whose angle exceeds 120º. For blunt wedges and highly elastic materials, elastic               

deformation predominates and the process can be modeled as an elastic solid indented 

by a rigid wedge. Thus, the pressure on the wedge at a point x  is given by [27]: 

 1
2

cot cosh ( / )
(1 )
Ep a xθ
π ν

−=
−

 (2.2.7) 

where x  is the distance from the center of wedge indenter; a  is the half-width of 

the indentation; and θ  is the semi-angle of the wedge. The mean pressure, mp , is 

given by: 

 2

cot
2(1 )m
Ep θ

ν
=

−
 (2.2.8) 

Fig. 2-3 Regions of operation of the different indentation mechanisms [26]. 
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This elastic theory predicts the distribution of pressure and its mean value 

satisfactorily, except that the pressure within a narrow central band under the indenter 

falls below the infinite values predicted theoretically.  

For blunt wedge indenters and materials having a low ratio of elastic modulus to 

yield strength, Johnson [28] suggested that the indentation pressure correlates with the 

single parameter ( / ) tanE Y β . Here β  is the angle of inclination of the indenter to 

the surface at the edge of the indentation. He then modified the expanding cavity 

model by replacing the cavity with an incompressible hemispherical core expended by 

an internal pressure as shown in Figure 2-4 and Figure 2-5. 

 

 

 

 

 

 

 

 

O 

a

h

a

x

β

Fig. 2-4 Indentation of a surface by a rigid wedge [28]. 
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In this model, there is assumed to be a hydrostatic pressure within the core 

(Figure 2-5). The stresses and displacements outside the core are assumed to be radial 

symmetric, similar to that in an infinite elastic perfectly-plastic body with a 

cylindrical or spherical cavity under pressure. The elastic-plastic boundary lies at a 

radius of c, and the radial stress and displacement are given by Hill [25]: 

 2 1 ln( )
23

r

r a

p c
Y Y a

σ

=

⎡ ⎤ ⎡ ⎤= − = +⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦
 (2.2.9) 

 ( ) 2 5 4 3(1 2 )
2 23

du r Y c r
dc E r c

ν ν− −⎡ ⎤= −⎢ ⎥⎣ ⎦
 (2.2.10) 

Neglecting the compressibility of the core, we have: 

 ( ) 2 2 tanadu a adh a daπ β= =  (2.2.11) 

Put r a=  into Eq.(2.2.10) and notice / / constantdc da c a= = , thus we have: 

 24 tan (5 4 )( / ) 3(1 2 )E c a
Y

β ν ν
π

= − − −  (2.2.12) 

 

a ada  

a dh
β  c

dc

d ( )u r  

r

Core

Plastic
ElasticElastic

Fig. 2-5 Idealized model of a hemispherical plastic ‘core’ attached to the 

indenter surrounded by a symmetrically deformed region [28]. 
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From Eq.(2.2.9) and Eq.(2.2.12), we obtain: 

 1 41 ln(5 4 ) ln tan 3(1 2 )
3

p E
Y Y

ν β ν
π

⎧ ⎫⎡ ⎤= − − + + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
 (2.2.13) 

Although the relation was originally obtained within small strain and small value 

of β , it agrees with experimental results well up to 30β = . Therefore, this relation 

becomes one of the most widely accepted methods to the analysis of wedge 

indentation experiments. 

 

 

 



                                                                 Chapter 2 Theories of Indentation 

  - 22 -

References 

[1]. H. O’Neill, Hardness Measurement of Metals and Alloys, Chapman & Hall,  

London, 1967. 

[2]. A. C. Fischer-Cripps, Nanoindentation, Springer-Verlag, New York, 2002. 

[3]. H. Hertz, J. Reine Angew. Math. 92 (1881) 156.  

[4]. F. Auerbach, Ann. Phys. Chem. 43 (1891) 61. 

[5]. E. Meyer, Phys. Z. 9 (1908) 66. 

[6]. S. L. Hoyt, Trans. Am. Soc. Steel Treat. 6 (1924) 396. 

[7]. J. Boussinesq, Applications des Potentiels a l’etude de Equilibre et du 

Mouvement des Solides Elastiques, Gauthier-Villars, Paris, 1885. 

[8]. A. E. H. Love, Quart. J. Math. 10 (1939) 161. 

[9]. I. N. Sneddon, Proc. Camb. Philo. Soc. 42 (1946) 29. 

[10]. I. N. Sneddon, Proc. Camb. Philo. Soc. 44 (1948) 492. 

[11]. I. N. Sneddon, Int. J. Eng. Sci. 3 (1965) 47. 

[12]. S. I. Bulychev and V. P. Alekhin, Zavod. Lab. 53 (1987) 76. 

[13]. M. F. Doerner and W. D. Nix, J. Mater. Res. 1 (1986) 601. 

[14]. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7 (1992) 1564.  

[15]. G. M. Pharr, W. C. Oliver and F. R. Brotzen, J. Mater. Res. 7 (1992) 613. 

[16]. R. B. King, Int. J. Solids Struct. 23 (1987) 1657. 

[17]. S. P. Baker, Mater. Res. Soc. Symp. Proc. 308, 209 (1993). 

[18]. R. Hill, E. H. Lee and S. J. Tupper, Proc. R. Soc. London A188 (1947) 273. 

[19]. D. S. Dugdale, J. Mech. Phys. Solids 2 (1953) 14. 



                                                                 Chapter 2 Theories of Indentation 

  - 23 -

[20]. J. Grunzweig, I. M. Longman and N. J. Petch, J. Mech. Phys. Solids 2 (1954) 81. 

[21]. D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, 1951. 

[22]. T. O. Mulhearn, J. Mech. Phys. Solids 7 (1959) 85. 

[23]. R. F. Bishop, R. Hill and N. F. Mott, Proc. Phys. Soc. 57 (1945) 147. 

[24]. D. M. Marsh, Proc. R. Soc. Lond. A, Math. Phys. Sci. 279 (1964) 420. 

[25]. R. Hill, The Mathematical Theory of Plasticity, Clarendon Press, Oxford, 1950. 

[26]. W. Hirst and M. G. J. W. Howse, Proc. R. Soc. Lond. A, Math. Phys. Sci. 311 

(1969) 429. 

[27]. I. N. Sneddon, Fourier Transforms, McGraw-Hill, New York, 1951. 

[28]. K. L. Johnson, J. Mech. Phys. Solids 18 (1970) 115. 

 



                                                                            Chapter 3 Modeling 

 - 24 - 

Chapter 3 Modeling 

 

3.1. Methodology 

The onset of delamination in a thin-film/substrate system generated by wedge 

indentation is of main interest. FEM is employed to understand the initiation and 

propagation of the interface delamination. Parametric studies are performed to show 

the effect of the interface adhesion properties on the initiation of the interface 

delamination. A method, which is capable of determining the interface adhesion 

properties, i.e., interface strength and interface energy, is proposed based on the 

results of the parametric studies and the limitation of this method is discussed. 

 

3.2. Problem Formulation 

The thin-film/substrate system is assumed to be subjected to wedge indentation. 

For simplicity, the wedge indenter is considered to be rigid and frictionless. In 

addition, it is assumed that the length to width ratio of the indenter is large, so that the 

plane-strain condition is applied. 

Due to the symmetry of the system geometry, together with the assumption that 

the materials are isotropic, only half of the system is taken into consideration. Both 

the thin film and the substrate are assumed to be ductile enough so that the interface is 

the only site where delamination is allowed to occur. Besides, both the thin film and 

the substrate are modeled as elasto-plastic materials based on the 2J  theory, and the 

stress-strain relation is: 
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 1/

/
( / )( / )

y
N

y y y

E
E

σ σ σ
ε

σ σ σ σ σ
≤⎧

= ⎨ >⎩
 (3.2.1) 

where yσ  is the yield strength; and N  is the strain-hardening exponent. In addition, 

the viscosity of the substrate is included by using a power-law visco-plastic 

relationship: 

 ( ) 1p m

e

D σε
σ

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
 (3.2.2) 

where pε  is the effective plastic strain rate; σ  is the effective stress; eσ  is the 

inviscid equivalent stress; D  is a reference strain rate; and m  is the strain rate 

sensitivity exponent. 

During the interface delamination, the system is likely to undergo extensive 

plastic deformation; thus, the plastic zone can be considerably large. As a result, 

traditional criteria for crack growth based on a singular field become questionable 

when the crack tip is near or in the plastic zones [1-2]. Therefore, a traction-separation 

law (TSL) proposed by Tvergaard and Hutchinson is employed to describe the 

behavior of the interface [3-6]. The general idea is to describe fracture and damage 

process by a local stress-displacement dependent relationship [7]. 

Following the notation introduced by Tvergaard and Hutchinson [5], a typical 

form of TSL is shown in Figure 3-1, where tδ , nδ  are the separations in tangential 

and normal directions, respectively; c
tδ , c

nδ  are two constants that represent the 

critical separations in these two directions; 1λ  and 2λ  are the parameters to adjust 

the shape of TSL. The interface strength σ̂  is the maximum separation stress under 

normal stressing, and the interface energy 0Γ  is the energy consumed by interface 
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separation per unit area in the delamination. 

 

 

A single dimensionless separation measure can be defined as: 

 2 2( ) ( )n t
c c
n t

δ δλ
δ δ

= +  (3.2.3) 

so that 1λ =  is the condition for the onset of delamination. The potential that 

dictates the interface behaviors is given by: 

 
0

( , ) ( )c
t n n d

λ

φ φ δ δ δ σ λ λ= = ∫  (3.2.4) 

The stress can be expressed as:  

 

1
1

1 2

2
2

ˆ
, 0

ˆ( ) ,
ˆ

(1 ), 1
1

σ λ λ λ
λ

σ λ σ λ λ λ
σ λ λ λ
λ

⎧ ≤ ≤⎪
⎪⎪= ≤ ≤⎨
⎪
⎪ − ≤ ≤
−⎪⎩

 (3.2.5) 

so that the derivative of stress to λ  can be deducted: 

Fig. 3-1 Traction separation law. 

1

σ

λ
2λ1λ

σ̂

0Γ

nδ

tδ
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2
2

ˆ
, 0

( ) 0,
ˆ

, 1
1

σ λ λ
λ

σ λ λ λ λ
σ λ λ
λ

⎧ ≤ ≤⎪
⎪⎪′ = ≤ ≤⎨
⎪
⎪− ≤ ≤

−⎪⎩

 (3.2.6) 

Then the normal and tangential components of the surface traction are given by:  

 2

21( )
2 ( )

c n n
n n n c c

n n n n

T δ σδφ φ λφ δ σ λ
δ λ δ λ δ λδ
∂ ∂ ∂

= = = = =
∂ ∂ ∂

 (3.2.7) 

 2 2

21( )
2 ( ) ( )

c
c t n t

t t n c c
t t t t

T δ σδ δφ φ λφ δ σ λ
δ λ δ λ δ λ δ
∂ ∂ ∂

= = = = =
∂ ∂ ∂

 (3.2.8) 

The interface energy can be expressed as: 

 0 1 2ˆ (1 ) / 2c
nσδ λ λΓ = − +  (3.2.9) 

Among all the parameters governing TSL, usually, the shape of TSL is relatively 

unimportant [8]. Thus, the interface strength σ̂  and interface energy 0Γ  are the two 

most important parameters characterizing TSL, on which we focus in our parametric 

studies.  

The advantage of using TSL is that one need not assume whether the thin film 

system is fully-bonded, fully-debonded or pre-cracked since it has been included in 

the interface delamination criterion inherently [1]. 

 

3.3. Finite Element Method 

A fully implicit FEM is employed to analyze the onset of interface delamination 

in thin-film/substrate system during indentation tests. The whole thin-film/substrate 

system is divided into three substructures to be analyzed respectively: film, substrate 

and interface [1], as shown in Figure 3-2. 
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Film substructure 

Substrate substructure 

Interface substructure 

Y

X

Film element 

Interface element

Substrate element

+l +r
−l −r

 

 

3.3.1. Governing Equation of Interface Substructure 

For any element in the interface substructure (e.g. element ‘l-r’ in Figure 3-2), we 

define the relative nodal displacement vector as: 

 
{ , , , }

{ , , , }

e l l r r T
t n t n

T
xl xl yl yl xr xr yr yr

w

u u u u u u u u

δ δ δ δ
+ − + − + − + −

=

= − − − −
 (3.3.1) 

Correspondingly, we have the nodal force vector: 

 { , , , }e T
xl yl xr yrf f f f f=  (3.3.2) 

From the Principle of Virtual Work (Plane strain), we have: 

 ( ) ( )11 n TTn e e e

l

T u ds f wδ δ
++ =∫  (3.3.3) 

where { , } { , }e T T
x x y y t nu u u u u δ δ+ − + −= − − = ; and e eu N wδ δ= , in which N  is the 

shape function of the interface element; ew  is the relative nodal displacement; euδ  

is the possible displacement of any point in the element. Substituting Eq.(3.3.1) and 

Eq.(3.3.2) into Eq.(3.3.3), we have: 

Fig. 3-2 Substructures of the thin-film/substrate system. 
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( ) ( )1

1

1

1

n

n

TTn e e e

l

T n e

l

T N w ds f w

N T ds f

δ δ
+

+

+

+

=

=

∫

∫
 

For a small time step τ∆  and small deformation: 

  ( )
nT n e

e

N T T ds f f+ ∆ = + ∆∫  (3.3.4) 

Notice that: 

 

{ , } { , }

[ ( ) , ( )] { , }

T T
t n t n

T T
t n tt t tn n tn t nn n

ttt tn

tn nn n

e

T T T

T T
d dT
d d

u

φ φ

τ

φ φ φ δ φ δ φ δ φ δ
τ τ

δφ φ
φ φ δ

φ

= =

∆ = ∆

= = + +

⎧ ⎫⎡ ⎤ ⎪ ⎪= ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎪ ⎪⎩ ⎭

 

where e eu Nw= ; and 
e

e e wu Nw N
τ

∆
= =

∆
. Thus, 

ewT Nφ
τ

∆
=

∆
, in which nnφ , 

ttφ  and ntφ  can be calculated from Eq.(3.2.7) and Eq.(3.2.8):  

 

2

2

2 2

2
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1 1[ ( ) ]
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n n
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δ δ δ δ δ δ λ

δσ σ σδ
δ λ λ λ δ λ

δ σσ σ
λδ λ δ λ

∂ ∂ ∂ ∂ ∂
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′
= − +

= + −

 (3.3.5) 
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2 2

2 2 2
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( )( ) ( ) ( )
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1 ( )
( )
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n t
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δ δσ σ
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 (3.3.7) 

Plugging all the relations above into Eq.(3.3.4), we have: 

 
( )

n

n

e
T n T e e

l

T e e e T n

l

wN T N N ds f f

N Nds w f f N T ds

φ τ
τ

φ

∆
+ ∆ = + ∆

∆

∆ = + ∆ −

∫

∫ ∫
 

Using 
1n ne e ef f f
+

∆ = − , we have: 

 
1nT e e T n

e

N Nds w f N T dsφ
+

∆ = −∫ ∫  (3.3.8) 

Rewriting in matrix form, we have the governing equation of the interface 

substructure: 

 
+

= − ∫
n 1e e T n

δδK ∆w f N T ds  (3.3.9) 

Therefore during the iteration, with the initial data of nδ  and tδ , the stiffness matrix 

δδK  and force vector 
+n 1ef can be obtained. 

 , , , , , , , ,e
n t n t nn tt ntw T T Tδ δ λ σ σ φ φ φ′⇒ ⇒ ⇒ ⇒ ⇒δδK  

+

= − ∫
n 1e e T n

δδf K ∆w N T ds  

However, a special treatment is needed when 0n tδ δ= = , that is: 

 0 0 0n t n tT Tδ δ λ= = ⇒ = ⇒ = = ⇒  

 

1

2
1

ˆ 1

ˆ
( )

0

nn c
n
c
n

tt c
t

nt

σφ
λ δ

δσφ
λ δ

φ

⎧ =⎪
⎪
⎪⎪ =⎨
⎪
⎪
⎪

=⎪⎩

 (3.3.10) 
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3.3.2. Governing Equation of Film and Substrate Substructures 

Four-node linear elements are used with a finer mesh at the region near the 

indenter in both the film and substrate substructures. 

From the Principle of the Virtual Work, we have: 

 1 1T n T n

e e

dV u T dsδε σ δ+ +

∂

=∫ ∫  (3.3.11) 

for each element, where eB uδε δ= ; eu N uδ δ= ; eu  is the displacement of nodes; 

N  is the shape function; and uδ  is the possible displacement of any point in the 

element, so that: 

 1 1eT T n eT T n

e e

u B dV u N T dsδ σ δ+ +

∂

=∫ ∫  (3.3.12) 

 1 1T n T n

e e

B dV N T dsσ + +

∂

=∫ ∫  (3.3.13) 

For a small deformation step, we have: 

 1n nσ σ σ+ = + ∆  

 epDσ ε∆ = ∆  

 eB uε∆ = ∆  

Plugging above equations into Eq.(3.3.13), we have: 

 1( )T n T n

e e

B dV N T dsσ σ +

∂

+ ∆ =∫ ∫  

 1T e T n T n
ep

e e e

B D B u dV N T ds B dVσ+

∂

∆ = −∫ ∫ ∫  

 1ep e T n T n

e e

K u N T ds B dVσ+

∂

∆ = −∫ ∫  

Considering all the elements in the substructure, we have: 

 1( )ep e T n T n

e e

K u N T ds B dVσ+

∂

∆ = −∑ ∑ ∫ ∫  (3.3.14) 

Rewriting in matrix form, we have: 

 += −n 1 nK∆u f f  (3.3.15) 
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To use interface boundary condition, we make the following classification on the 

degrees of freedom (DOFs) for the film and the substrate: 

I) For the film, all the DOFs are divided into 3 types: 

i) DOFs belonging to the interface substructure are designated with subscript 

‘if’; 

ii) DOFs belonging to the loading area (i.e., those will contact with the indenter 

during indentation process) are designated with subscript ‘lf’; 

iii) All the other DOFs are designated with subscript ‘nf’; 

II) For the substrate, all the DOFs are divided into 2 types: 

i) DOFs belonging to the interface substructure are designated with subscript 

‘is’; 

ii) All the other DOFs are designated with subscript ‘ns’. 

Then Eq.(3.3.15) becomes: 

 

1

1

1

n n
nn ni nl nf n n

n n
ni ii il if i i

n n
nl il ll lf l lf f f

K K K u f f
K K K u f f
K K K u f f

+

+

+

⎧ ⎫ ⎧ ⎫⎧ ⎫∆⎡ ⎤
⎪ ⎪ ⎪ ⎪⎪ ⎪⎢ ⎥ ∆ = −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ∆⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (3.3.16) 

for the film substructure, and becomes: 

 
1

1

n n
nn ni ns n n

n n
in ii is i is s s

K K u f f
K K u f f

+

+

∆ ⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎧ ⎫
= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ∆⎣ ⎦ ⎩ ⎭ ⎩ ⎭ ⎩ ⎭

 (3.3.17) 

for the substrate substructure. Through the condensation of the degree of freedom, we 

have: 

 
1

11 12
1

21 22

n n
if n n

n n
ls i if f

uK K f f
uK K f f

+

+

∆ ⎧ ⎫−⎧ ⎫⎡ ⎤
=⎨ ⎬ ⎨ ⎬⎢ ⎥ ∆ −⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 (3.3.18) 

for the film substructure, and: 
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 [ ] 1
11 { } { }n n

is i i ss
K u f f+∆ = −  (3.3.19) 

for the substrate substructure. 

Taking the force balance and compatible conditions into consideration, we have: 

 1 1, n n n n
if is if isf f f f+ += − = −  

 
2

2
if m

if is
is m

u u
u u

u u

δ
δ

δ

∆ = ∆ + ∆⎧⎪∆ −∆ = ∆ ⇒ ⎨
∆ = ∆ −∆⎪⎩

 (3.3.20) 

where mu∆  is the average of ifu∆  and isu∆ . Substituting the force balance and 

compatible conditions into Eq.(3.3.18) and Eq.(3.3.19), we have: 

 11 12 11

21 22 21

0 / 2
0 0

m i

l lff ff

u fK K K
u fK K K

δ∆ ∆∆⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤ ⎧ ⎫
+ =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥∆ ∆⎩ ⎭⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

 

 [ ] [ ]11 11{ } { 2} { }m is s
K u K fδ∆ − ∆ = ∆  

Namely: 

 
11 12 11

21 22 12

11 11

/ 2
/ 2

/ 2

f m f l f if

f m f l f lf

s m s is if

K u K u K f
K u K u K f
K u K f f

δ
δ

δ

⎧ ∆ + ∆ + ∆ = ∆
⎪ ∆ + ∆ + ∆ = ∆⎨
⎪ ∆ − ∆ = ∆ = −∆⎩

 

 
11 11 11 11 12

12 21 12

11 11 11 11 12

( ) ( ) / 2 0

/ 2

( ) ( ) / 2 2

f s m f s f l

n
f m f l f l

f s m f s f l if

K K u K K K u

K u K u K f

K K u K K K u f

δ

δ

δ

+ ∆ + − ∆ + ∆ =⎧
⎪

⇒ ∆ + ∆ + ∆ = ∆⎨
⎪ − ∆ + + ∆ + ∆ = ∆⎩

 

Rewriting in matrix form, we have: 

 
11 11 12 11 11

12 22 12

11 11 12 11 11

0

/ 2 2

f s f f s m
n

f f f l l

f s f f s if

K K K K K u
K K K u f

K K K K K fδ

⎡ ⎤ ⎧ ⎫+ − ∆⎧ ⎫
⎢ ⎥ ⎪ ⎪⎪ ⎪∆ =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥− + ∆ ∆⎩ ⎭⎣ ⎦ ⎩ ⎭

 (3.3.21) 

Notice that is ifK f fδδ δ∆ = ∆ = −∆  in the interface substructure, we have: 

 2 4 / 2iff Kδδ δ∆ = − ∆  (3.3.22) 

so that we can obtain the final governing equation by substituting Eq.(3.3.22) into 

Eq.(3.3.21): 
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11 11 12 11 11

12 22 12

11 11 12 11 11

0

4 / 2 0

f s f f s m
n

f f f l l

f s f f s

K K K K K u
K K K u f

K K K K K Kδδ δ

⎡ ⎤+ − ∆⎧ ⎫ ⎧ ⎫
⎢ ⎥ ⎪ ⎪ ⎪ ⎪∆ = ∆⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥− + + ∆⎩ ⎭ ⎩ ⎭⎣ ⎦

 (3.3.23) 

 

3.3.3. Boundary Conditions 

The Y-Axis of the mesh (see Figure 3-2) is fixed in horizontal direction but free 

to move vertically. The nodes in the contact region between the indenter and the 

thin-film/substrate system are constrained to move with the indenter, but free to move 

along the surface of the indenter. Thus the boundary conditions can be summarized as: 

 ( ) 0 0u y x= =  (3.3.24) 

 ( ) 0 0v x y= =  (3.3.25) 

 ( ) in the contact region
tan
xv x δ
θ

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (3.3.26) 

where δ  is the indentation depth; and θ  is the included semi-angle of the indenter, 

which is taken to be 60º in the simulations. 

 

3.4. Algorithm for Numerical Integration of Constitutive Relation 

FEM has been successfully used to analyze structures and processes exhibiting 

non-linear, inelastic behavior, which has been defined in terms of stress and a set of 

state variables in most inelastic constitutive models. Typically, the solutions to these 

non-linear problems are performed incrementally and those to the inelastic 

constitutive equations are obtained by numerical integration. Several methods have 

been proposed to integrate the elastoplastic constitutive equations [9-12]. In this 

section, we will briefly illustrate the algorithm proposed by Aravas [13] with respect 
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to our special case. 

In our case, strain increments are several times the size of the yield surface in 

strain space. Therefore, the backward Euler method for the integration of elastoplastic 

constitutive equations leads to better accuracy [10]. 

In this method, strains and rotations of finite size are considered and Newton’s 

method is employed to solve the equation. The stiffness matrix used in the solution of 

the overall equations is gained by consistent linearization of the elastoplastic 

equations so that the quadratic convergence of the iterative solution schemes can be 

obtained [14-15]. 

 

3.4.1. Constitutive Equations and Backward Euler Method 

The integration of the constitutive equations is carried out at the integration 

points, where the strain increment ∆ε  is given. Our task is to calculate the stress and 

state variables at the end of the increment with the assumption that the solution is 

known at the start of each increment. 

 

3.4.1.1. Strain Rate Decomposition 

Following the algorithm proposed by Aravas [13], we assume the following strain 

rate decomposition: 

 e pd d d= +ε ε ε  (3.4.1) 

where dε  is a differential change in the total strain; edε  is a differential change in 

the elastic strain; and pdε  is a differential change in the inelastic (plastic) strain. 
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The integrated form of Eq.(3.4.1) is: 

 e p= +ε ε ε  (3.4.2) 

where ε , eε , and pε  are summations of corresponding values at the start of the 

increment and the incremental values associated with that increment.  

For case of linear elasticity, we have: 

 := eσ C ε  (3.4.3) 

where σ  is the Cauchy (true) stress; and eC  is the fourth-order elasticity tensor. For 

isotropic case: 

 22 ( )
3

e
ijkl ik jl ij klC G K Gδ δ δ δ= + −  (3.4.4) 

where G  and K  are the elastic shear modulus and bulk modulus, respectively; and 

ijδ  is the Kronecker delta. 

During the integration of the elastoplastic equations, if the total elastic strain 

e
t t+∆ε  is known, the total stress is updated by: 

 : e
t t t t+∆ +∆= eσ C ε  (3.4.5) 

If we introduce an elastic predictor, : ( )e e
t= + ∆eσ C ε ε  as proposed by Aravas 

[13], Eq.(3.4.5) becomes: 

 :e p
t t+∆ = − ∆eσ σ C ε  (3.4.6) 

The subscript t  is the time at the start of the increment and t t+ ∆  is the time at the 

end of the increment. e
tε  is the elastic strain at the start of the increment. 

 

3.4.1.2. Basic Assumptions 

The basic variables used are: p , q , and H α , where p  is the hydrostatic 
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stress (the first invariant of the stress tensor) 1
3

p = − σ : I ; q  is the equivalent stress 

(the second invariant of the stress tensor) 1/ 23( )
2

q = s : s ; and ,H α α =1, 2, 3 n  is 

a set of scalar state variables. Here I  is the second-order identity tensor, and s  is 

the stress deviator, ij ij ijs pσ δ= + . The basic assumptions used are: 

Assumption 1: Based on 2J  theory, the yield function only involves p , q , 

and H α  and is given by: 

 ( , ) ( , , ) 0t t t t t tΦ H Φ p q Hα α
+∆ +∆ +∆= =σ  (3.4.7) 

Assumption 2: The flow rule can be given by: 

 p gd d ∂
= Λ

∂
ε

σ
 (3.4.8) 

where dΛ  is a positive scalar; and ( , , )g g p q H α=  is the flow potential. 

Assumption 3: The evolution of the state variables is given by: 

 ( , , )p
t t t tH h H

αα β
+∆ +∆∆ = ∆ε σ  (3.4.9) 

where h
α

 should be homogeneous of degree one in Pdε  for rate independent 

materials. 

 

3.4.1.3. Derivation of Governing Equations 

Notice that 1( )
3ij ij

ij

p p δ
σ σ
∂ ∂

= = −
∂ ∂

 and
1/ 21

3( ) 3( )
2

ij ij ij
ij

ij ij

s s sq q
qσ σ σ

∂∂ ∂
= = =

∂ ∂ ∂
, 

Eq.(3.4.8) can be written as: 

 1 2[ ( ) ( ) ( ) ]
3 3

p
t t t t t t

g gd d
p q q+∆ +∆ +∆
∂ ∂

= Λ − +
∂ ∂

sε I  

Introduce ( )p t t
gd
p

ε +∆
∂

∆ = − Λ
∂

 and ( )q t t
gd
q

ε +∆
∂

∆ = Λ
∂

 and notice 3
2 q

=
sn , thus we 

obtain: 
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( ) ( ) [( )( )] [( )( )] 0p t t q t t t t t t
g g g g g gd d
q p p q q p

ε ε+∆ +∆ +∆ +∆
∂ ∂ ∂ ∂ ∂ ∂

∆ + ∆ = − Λ + Λ =
∂ ∂ ∂ ∂ ∂ ∂

 (3.4.10) 

 
The flow rule Eq.(3.4.8) can be written as: 

 1
3

p
p q t tε ε +∆∆ = ∆ + ∆ε I n  (3.4.11) 

Substituting Eq.(3.4.11) into Eq.(3.4.4), we obtain: 

 : 2p
p q t tK Gε ε +∆∆ = ∆ + ∆eC ε I n  (3.4.12) 

Meanwhile, from the definition of the stress deviator s , stress can be written as: 

 2
3t t t t t t t t t t t tp p q+∆ +∆ +∆ +∆ +∆ +∆= − + = − +σ I s I n  (3.4.13) 

Thus, Eq.(3.4.6) can be rewritten as: 

 : 2e p e
t t p q t tK Gε ε+∆ +∆= − ∆ = − ∆ − ∆eσ σ C ε σ I n  (3.4.14) 

Projecting the predictor eσ  on to I  and t t+∆n , e e e
t tp q +∆= − +σ I n , we obtain: 

 2e e
t t t t p q t tp q K Gε ε+∆ +∆ +∆= − + − ∆ − ∆σ I n I n  (3.4.15) 

Compare Eq.(3.4.15) with Eq.(3.4.13), and notice that 3
2

e
t t eq+∆ =n s , thus we have: 

 e
t t pp p K ε+∆ = + ∆  (3.4.16) 

 3e
t t qq q G ε+∆ = − ∆  (3.4.17) 

Then the evolution of the state variables can be expressed as: 

 ( , , , , )p q t t t t t tH h p q Hα α βε ε +∆ +∆ +∆∆ = ∆ ∆  (3.4.18) 

where 1 2( , , , , ) ( , , )
3 3p q t t t t t t p q t t t t t t t t t th p q H h p q Hα β α βε ε ε ε+∆ +∆ +∆ +∆ +∆ +∆ +∆ +∆∆ ∆ = ∆ +∆ − +I n I n . 

Therefore, the problem of integrating the elastoplastic equations reduces to the 

solution of the following set of non-linear equations: 

 ( ) ( ) 0p t t q t t
g g
q p

ε ε+∆ +∆
∂ ∂

∆ + ∆ =
∂ ∂

 

 ( , , ) 0t t t t t tΦ p q H α
+∆ +∆ +∆ =  
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 e
t t pp p K ε+∆ = + ∆  

 3e
t t qq q G ε+∆ = − ∆  

 ( , , , , )p q t t t t t tH h p q Hα α βε ε +∆ +∆ +∆∆ = ∆ ∆  

For simplicity, we neglect subscript t t+ ∆  in the following subsections. 

  

3.4.2. Newton’s Method for Non-Linear System 

3.4.2.1. Newton’s Equation 

Newton’s method is employed to solve the non-linear equations mentioned above. 

There are five unknowns, , , , , , p q p q H
βε ε∆ ∆ and five equations. It is noted that 

, , and p q H β can be explicitly expressed by pε∆  and qε∆ . Thus, there are only two 

primary unknowns, pε∆  and qε∆  and two basic equations Eq.(3.4.10) and 

Eq.(3.4.7).  

Taking pc  and qc  as the corrections for pε∆  and qε∆ , the Newton’s 

equations for Eq.(3.4.10) and Eq.(3.4.7) can be expressed as: 

 11 12 1p qA c A c b+ =  (3.4.19) 

 21 22 2p qA c A c b+ =  (3.4.20) 

The values of the coefficients of Eq.(3.4.19) and Eq.(3.4.20) are given in Appendix 1. 

At the beginning of the integration, we take the initial data of pε∆  and qε∆ , 

then pc  and qc  can be obtained by solving Eq.(3.4.19) and Eq.(3.4.20). Afterwards, 

pε∆  and qε∆  are updated through: 

 1 1,k k k k
p p p q q qc cε ε ε ε+ +∆ → ∆ + ∆ → ∆ +  
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3.4.2.2. Properties of Linearization Moduli 

In the above Newton’s iteration, the size of the linear system is very important for 

high resolution. The efficiency of the solution solvers depends much on the symmetric 

property of the matrix of coefficients. In order to explore the property, we need to 

calculate the ‘linearization moduli’ ( )t t+∆
∂

=
∂
σD
ε

. 

By using Eq.(3.4.11), Eq.(3.4.5) can be written as: 

 1: : ( )
3

e e e p
t t t t t p qε ε+∆ +∆= = − − ∆ −∆σ C ε C ε ε I n  (3.4.21) 

where p
tε  is the plastic strain at the start of the increment. Taking derivative at both 

sides of above equations, we obtain: 

 1: ( : )
3

e
p q qε ε ε ∂

∂ = ∂ − ∂∆ −∂∆ −∆ ∂
∂
nσ C ε I n σ
σ

 (3.4.22) 

in which 2

3 3 3 1 1 3 1( ) ( )
2 2 2 2 2

q
q q q q

∂ ∂ ∂ ∂
= = − = − ⊗ − ⊗

∂ ∂ ∂ ∂
n ss s J I I n n
σ σ σ σ

, where 

ijkl ik jlJ δ δ=  is the fourth-order identity tensor with Cartesian components. Taking 

derivative of Eq.(3.4.10) and Eq.(3.4.7), we obtain: 

 
2 2 2

2
1

[( ) : ]
n

p p q
g g p g q g gH
q p q q q H p

α
α

α

ε ε ε
=

∂ ∂ ∂ ∂ ∂ ∂ ∂
∂∆ + ∆ + ∂ + ∂ + ∂∆

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑σ
σ σ

 

 
2 2 2

2
1

[( ) : ] 0
n

q
g p g q g H
p p q p H

α
α

α

ε
=

∂ ∂ ∂ ∂ ∂
+∆ + ∂ + ∂ =

∂ ∂ ∂ ∂ ∂ ∂ ∂∑σ
σ σ

 (3.4.23) 

 
1

( ) : 0
nΦ p Φ q Φ H

p q H
α

α
α=

∂ ∂ ∂ ∂ ∂
+ ∂ + ∂ =

∂ ∂ ∂ ∂ ∂∑σ
σ σ

 (3.4.24) 

Using Eq.(3.4.18), the above equations can be expressed in terms of ∂σ : 

 11 12 11 12( ) :p qA A B Bε ε∂∆ + ∂∆ = + ∂I n σ  (3.4.25) 

 21 22 21 22( ) :p qA A B Bε ε∂∆ + ∂∆ = + ∂I n σ  (3.4.26) 

Solving the above two equations gives: 
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Fig. 3-3 Schematic description of the geometric and material properties. 

 ( ) :p pI pnm mε∂∆ = + ∂I n σ  (3.4.27) 

 ( ) :q qI qnm mε∂∆ = + ∂I n σ  (3.4.28) 

The values of the coefficients of Eq.(3.4.25) to Eq.(3.4.28) are given in Appendix 2. 

Substituting above equations into Eq.(3.4.22), we obtain: 

 1 1 1( : ) : : ( ) :e e e− − −∂ = + ∂ = + ∂σ J C M C ε C M ε  (3.4.29) 

Thus, we have: 

 1 1( ) ( )e
t t

− −
+∆

∂
= = +

∂
σD M C
ε

 (3.4.30)                

where D  is symmetric when 1
3 pn qIm m= . 

 

3.5. A Typical Case 

In the present simulations, all the parameters involved in governing equations and 

constitutive relations are normalized by the yield strength of the film, 200MPayfσ = , 

Y

X

Film: fffyf NE ,,, νσ

Substrate: sssssys mDNE ,,,,, νσ

fh

sh

L

Indenter 

0 
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and a convenient length of 0∆ =1µm. For the typical values of interface adhesion 

properties: 1 0.15λ = , 2 0.5λ = , / 1c c
n tδ δ = , ˆ 0.4 yfσ σ= , and 0 00.0039 yfσΓ = ∆ . 

For the typical geometric data: the thicknesses of the film and the substrate are 

06fh = ∆  and 060sh = ∆ , respectively; the length of the system is 0120L = ∆ . For 

the typical material properties: the Young’s moduli of the film and substrate are 

350f yfE σ=  and 700s yfE σ= , respectively; the Poisson ratios are 0.3f sν ν= = ; 

the strain hardening exponents are 0.1f sN N= = ; the yield strength of substrate is 

2.0ys yfσ σ= , and the reference strain rate and strain rate sensitivity exponent of the 

substrate are respectively -14.0ssD =  and 5.0sm = . 

With the initial data given, the following information can be obtained from 

simulations: the load-penetration curve, the critical state (include the critical load, the 

critical displacement, etc.) at the onset of delamination, and the distribution of the 

stress and strain in the system and so on. 

 

3.5.1. Interpretation of Load-Penetration Curve 

The load-penetration curve obtained for the typical case described above is shown 

in Figure 3-4. The small fluctuations of the raw simulation data points are due to the 

discrete nature of finite elements along the contact interface between the wedge 

indenter and the thin film surface. Five-Point Fast Fourier Transform (FFT) is used to 

smoothen the curve. The initial part of the curve (A B) is almost linear, indicating 

that the substrate effect is negligible. With the increase of the penetration depth, the 

curve becomes superlinear due to the increasing effect from the harder substrate. The 
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sudden load decrease at point C in the curve corresponding to the onset of the 

interface delamination, gives the critical load cP . After delamination, the stiffness of 

the whole system decreases significantly, which can be seen from the change of the 

slope of the curve. 

 
 

3.5.2. Evolution of Traction and Separation along Interface 

Before interface delamination, the normal traction along the interface is negative, 

indicating that the film and substrate are in contact with each other. Correspondingly, 

the normal separation is zero along the interface. Hence the interface loading 

condition is in a pure shear mode. 

However, after the interface delamination and further propagation, the interface 

loading condition transits into a mixed mode. As can be clearly seen from Figure 3-5, 

Fig. 3-4 Load versus penetration curve obtained by simulation for the typical case. 
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the normal separation is no longer zero (the coordinate system is the same as that 

shown in Figure 3-2). 
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The changes in shear traction and shear separation shed light on the process of 

interface delamination. Figure 3-6(a) shows the shear separation profile just before the 

interface delamination. The maximum shear separation is approximately 0.01 0∆ , 

smaller than the critical shear separation, 0.014 0∆ . The corresponding shear traction 

distribution is shown in Figure 3-7(a). It is seen that the traction at the maximum 

separation is lower than its surroundings, indicating the shear traction has already 

exceeded the maximum stress level, 0.4 yfσ . The constant stress level, which equals to 

0.4 yfσ , is determined by the shape of TSL as shown in Figure 3-1. When the shear 

separation increases further and exceeds the critical separation as shown in Figure 

3-6(b), the interface delamination occurs. The traction drops to zero at the positions 

Fig. 3-5 Normal separation along the interface long after the critical moment. 
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where the shear separation exceeds the critical one as shown in Figure 3-7(b). With 

further increase of the indentation depth, the shear separation increases further as 

shown in Figure 3-6(c), and the range in which the shear traction drops to zero also 

increases due to the propagation of the delamination as shown in Figure 3-7(c) (the 

coordinate system is the same as that shown in Figure 3-2).  
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(Fig. 3-6 to be continued) 
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Fig. 3-6 Shear separation along the interface: (a) before the critical moment, 

(b) near the critical moment, and (c) after the critical moment. 

c
tδ  is the pre-set critical separation. 
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(Fig. 3-7 to be continued) 
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 The evolution of the traction and the separation along the interface shows 

clearly that the interface delamination initiates in pure shear (mode II), and 

subsequently transits into a mode II-dominated mixed mode upon further propagation. 

This result is consistent with that obtained by Li and Siegmund [19]. 

 

3.6. Effect of Interface Adhesion Properties 

In order to develop an approach to extract the interface adhesion properties from 

the experimentally-measured information such as load-penetration curves, it is 

necessary to investigate their effects on the initiation of interface delamination. Many 

previous studies show that interface strength and interface energy are the two most 

Fig. 3-7 Shear traction along the interface: (a) before the critical moment,  

(b) near the critical moment, and (c) after the critical moment. 

        (c) 
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important parameters that govern the interface adhesion quality [8]. Therefore, we 

only focus on these two parameters. Their effects are investigated by parametric 

studies, during which the values of parameters of interest vary while all the other 

dimensionless parameters are fixed at typical values as given in the previous 

subsection. During the parametric studies, the interface strength varies from 

ˆ 0.20 yfσ σ=  to ˆ 0.80 yfσ σ=  while the interface energy varies from 

0 00.0020 yfσΓ = ∆  to 0 00.0100 yfσΓ = ∆ . 

 

3.6.1. Effect of Interface Energy  

With the variation of interface strength from ˆ 0.20 yfσ σ=  to ˆ 0.80 yfσ σ= , the 

critical load /c yfP σ  corresponding to the onset of the interface delamination 

Fig. 3-8 Critical load versus interface energy at different levels of interface strength. 

The solid lines are the linear fit of the data points. 
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increases approximately linearly with an increase in interface energies as shown in 

Figure 3-8. This increase can be attributed to the increase in plastic dissipation. When 

the interface strength is fixed, the plastic zones in the film increase gradually with an 

increase in interface energy. This is evidenced by the size change of plastic zones 

colored by red as shown in Figure 3-9 to Figure 3-11 at different levels of interface 

energy when the interface strength is kept at ˆ 0.20 yfσ σ= (the coordinate system is 

the same as that shown in Figure 3-2). 
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Fig. 3-9 Plastic zone in the film right before delamination when 

0 0 ˆ0.0020  and 0.20yf yfσ σ σΓ = ∆ = . 
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Fig. 3-10 Plastic zone in the film right before delamination when 

0 0 ˆ0.0065  and 0.20yf yfσ σ σΓ = ∆ = . 
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3.6.2. Effect of Interface Strength  

When interface energy 0Γ  is fixed, the critical load generally increases 

superlinearly with increasing interface strength as shown in Figure 3-12 to Figure 

3-14. However, it is noticed that at a low interface strength level, the critical load is 

approximately insensitive to the change of interface strength when the value of 
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Fig. 3-11 Plastic zone in the film right before delamination when 

0 0 ˆ0.0100  and 0.20yf yfσ σ σΓ = ∆ = . 
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Fig. 3-12 Critical load versus interface strength when interface energy 0 00.0020 yfσΓ = ∆ . 
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Fig. 3-13 Critical load versus interface strength when interface energy 0 00.0050 yfσΓ = ∆ . 

 

Fig. 3-14 Critical load versus interface strength when interface energy 0 00.0100 yfσΓ = ∆ . 
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interface energy is fixed at a large value as shown in Figure 3-14. This may be 

explained by the competition between two factors, i.e., interface strength σ̂  and 

critical separation c
tδ = c

nδ . Referring to Eq.(3.2.9):  

 0 1 2ˆ (1 ) / 2c
nσδ λ λΓ = − +  

we can see that the increase in interface strength σ̂  will cause a decrease in the 

critical separation c
nδ  since interface energy 0Γ  is fixed. Meanwhile, the increase 

in interface strength σ̂  will increase the critical load to initiate interface 

delamination, whereas the decrease of the critical separation c
nδ = c

tδ  will cause the 

critical load to decrease. In this region, our simulation results show that the plastic 

zones are of similar size (refer to Figure 3-15 to Figure 3-16, the coordinate system is 

the same as that shown in Figure 3-2) so that the plastic dissipation is approximately 

at the same level. Since the interface energy is fixed, the total energy dissipation 

should also be approximately at the same level, leading to the similar critical loads. 
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Fig. 3-15 Plastic zone in the film right before delamination when 

0 0ˆ 0.20  and 0.0100yf yfσ σ σ= Γ = ∆ . 
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When ˆ / yfσ σ  is larger than 0.4, it is seen that the critical load cP  increases 

superlinearly with increasing interface strength σ̂ , while it only increases 

approximately linearly with increasing interface energy 0Γ  as discussed in previous 

subsection. This suggests that in this range, the effect of interface strength σ̂  on the 

critical load cP  is more significant than that of interface energy 0Γ . The reason for 

this is that the change in the plastic zone size with interface strength at a fixed 

interface energy is more significant than that with increasing interface energy at a 

fixed interface strength (refer to Figure 3-9 to Figure 3-11). For example, when 

interface energy is kept at 0 00.0039 yfσΓ = ∆ , the plastic zone size just before the 

delamination increases significantly with increasing interface strength as shown in 

Figure 3-17 to Figure 3-19 (the coordinate system is the same as that shown in Figure 

3-2). 

 

Fig. 3-16 Plastic zone in the film right before delamination when 

0 0ˆ 0.30  and 0.0100yf yfσ σ σ= Γ = ∆ . 
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In summary, the present simulation results clearly show that the initiation of 

interface delamination is closely related to the interface adhesion properties. An 

Fig. 3-17 Plastic zone in the film before delamination when 

0 0ˆ 0.20  and 0.0039yf yfσ σ σ= Γ = ∆ . 
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Fig. 3-18 Plastic zone in the film before delamination when 

0 0ˆ 0.55  and 0.0039yf yfσ σ σ= Γ = ∆ . 
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Fig. 3-19 Plastic zone in the film before delamination when 

0 0ˆ 0.80  and 0.0039yf yfσ σ σ= Γ = ∆ . 
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increase in either the interface strength σ̂  or the interface energy 0Γ  will result in 

an increase in the critical load cP  to initiate interface delamination. However, the 

effect of the interface strength σ̂  on the critical load cP  is more significant than 

that of the interface energy 0Γ . This may be due to the fact that during indentation, 

the total energy dissipation is closely related to the plastic energy dissipation arising 

from the plastic deformation and surface energy arising from interface delamination. 

It appears that when ˆ / yfσ σ  is larger than 0.4, an increase in interface strength is 

more effective to increase the plastic deformation than an increase in interface energy, 

resulting in a more effective increase in the critical load. 

 

3.7. Determination of Interface Adhesion Properties  

For thin-film/substrate systems with weak interfaces, buckling may occur during 

indentation. As a result, interface toughness and interface adhesion properties may be 

determined by fracture mechanics since the plastic deformation is negligible [16-18]. 

However, for thin-film/substrate systems with strong interfaces, plastic zone size may 

be large compared with the characteristic length of the thin film systems. Thus the 

determination of the interface adhesion properties becomes a challenging issue. In the 

present work, a scheme based on the work of Li and Siegmund [19] is developed to 

determine the interface adhesion properties regardless of the plastic zone size.  

Our parametric studies have shown that an increase in either interface strength σ̂  

or interface energy 0Γ  will cause an increase in the critical load cP  to initiate 

interface delamination, and their relationships can be described approximately by a 
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Fig. 3-20 Dependence on the interface adhesion properties of (a) Pc, and (b) Pd. 

 

(a) 

(b) 
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linear or superlinear fitting function. Thus a quadratic polynomial function is chosen 

to depict the dependence of the critical load cP  on interface strength σ̂  and 

interface energy 0Γ  as shown in Figure 3-20 (a).  

To determine the interface adhesion properties, i.e., interface strength σ̂  and 

interface energy 0Γ , two characteristic parameters in the experimentally-measured 

load-penetration curves are needed. Other than the critical load cP  at the onset of the 

interface delamination, the load dP  at an additional penetration depth d  after the 

interface delamination is used as the other characteristic parameter. Here 00.3d = ∆  

is chosen. The dependence of dP  on the interface strength σ̂  and interface energy 

0Γ  is depicted in Figure 3-20 (b). By replotting the data, we obtain a contour plot 

shown in Figure 3-21. 

 

 Fig. 3-21 Contour plots of the variation of Pc and Pd with interface adhesion properties. 

Solid line: 0/( )c yfP σ ∆ , and dashed line: 0/( )d yfP σ ∆ . 
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Therefore, the following scheme is proposed to determine the interface adhesion 

properties from the experimentally-measured information: 1) experiments are 

performed to measure the parameters of the thin film and substrate required for the 

simulations; 2) a series of basic simulations are performed to obtain the dependence 

of cP  and dP  on the interface strength σ̂  and interface energy 0Γ ; 3) a wedge 

indentation test is carried out to obtain e
cP  and e

dP  for the thin film system of 

interest; and finally 4) the interface strength σ̂  and interface energy 0Γ  can be 

extracted by using  e
cP  and e

dP  measured by the indentation test. The experiments 

to obtain the parameters for simulations will be presented in detail in the next chapter. 

Several tests have been performed to check the accuracy of the proposed method. 

First, we select different intersections of cP  and dP  in the contour plot and 

determine the corresponding interface strength σ̂  and interface energy 0Γ . Next, 

we perform FEM simulations with σ̂  and 0Γ  as input data to obtain cP ′  and dP ′ . 

Finally, the relative errors between cP  and cP ′ , dP  and dP ′  are calculated and 

listed in Table 3-1. All the values listed in Table 3-1 are normalized. 
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Table 3-1 Accuracy of the method. 

0( )
c

yf

P
σ ∆  

0( )
d

yf

P
σ ∆  ˆ

yf

σ
σ  0

0( )yfσ
Γ

∆
0( )

c

yf

P
σ

′
∆ 0( )

d

yf

P
σ

′
∆

c c

c

P P

P

′ −
 

d d

d

P P

P

′ −

6.0  8.0  0.2695 0.002676 5.5848  8.2091  6.92% 2.61% 

7.0  9.0  0.3193 0.00 4196 6.2018  9.0806  11.40% 0.90% 

8.0  8.0  0.4793 0.002443 7.9850  7.9850  0.19% 0.19% 

8.0  11.0  0.3374 0.007885 7.9819  10.3801 0.23% 5.64% 

11.0  11.0  0.6284 0.003422 11.2514 11.2514 2.29% 2.29% 

11.0  13.0  0.5343 0.007792 10.0539 12.9243 8.60% 0.58% 

14.0  15.0  0.6442 0.007569 14.2815 14.2815 2.01% 4.79% 

12.0  12.0  0.6692 0.003629 10.9218 10.9218 8.99% 8.99% 

12.0  12.0  0.7679 0.002409 11.3087 11.3087 5.76% 5.76% 

17.0  17.0  0.7386 0.006987 14.4983 14.4983 14.72% 14.72%

20.0  19.0  0.7822 0.009738 17.2099 17.2099 13.95% 9.42% 

 

It seems that the predictions agree well with the simulation results since the 

relative errors are within 15% for all the cases tested. However, there are still some 

limitations for this method: 

I) Certain inaccuracy may arise from the simple quadratic polynomial fitting 

function, which may not be a perfect representation for the real dependence of 

cP  and dP  on the interface strength σ̂  and interface energy 0Γ .  

II) For interfaces with large values of the interface strength σ̂  and interface 

energy 0Γ , unstable crack propagation immediately follows the occurrence of 

interface delamination. Hence, it is impossible to measure the value of dP  and 

we take d cP P=  for these cases. As a consequence, the interface adhesion 
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quality may be overestimated.  

III) For the region in the contour plot (Figure 3-20) with large values of interface 

strength σ̂  and interface energy 0Γ , the two families of curves are almost 

parallel to each other, which makes it difficult to determine the values of σ̂  

and 0Γ . This phenomenon was also observed in Li and Siegmund’s work [19], 

although their basic series of simulations were different from ours.  

IV) Under certain circumstances, two curves may intersect with each other at two 

different positions, giving two pairs of σ̂  and 0Γ . This may be caused by the 

inaccuracy of interpolations. From the cases tested, the relative errors at the two 

positions (see Table 3-1, the eighth and ninth cases) are in the same order. This 

suggests that the two systems with two pairs of interface strength σ̂  and 

interface energy 0Γ  may have the same cP  and dP . Thus, more information 

is needed to determine the interface adhesion properties when the 

experimentally-measured e
cP  and e

dP  fall in this range. 

 

3.8. Summary 

Based on the results discussed above, the following conclusions can be reached: 

I) The approach using TSL and FEM provides an effective way to investigate the 

interface delamination in a thin-film/substrate system induced by indentation. 

II) The critical load to initiate interface delamination in a thin-film/substrate system 

increases with either increasing interface strength or increasing interface energy. 

However, the effect of the former on interface adhesion properties is more 
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significant than that of the latter when ˆ / yfσ σ  is larger than 0.4. 

III) A scheme combining simulations and experiments is proposed to determine 

interface strength σ̂  and interface energy 0Γ  from indentation 

load-penetration curves. 
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Chapter 4 Experiments and Discussions 

 

4.1. Methodology 

In the experiment part of this project, we use wedge indentation technique to 

investigate mechanical properties of thin films, interface adhesion properties and 

interface delamination processes. The experiments are performed using a 

conventional nanoindenter (UMIS-2000H, CSIRO, Australia) with a wedge tip made 

of diamond. The tip length is 4.206µm and the included-angle is 120°. The advantage 

of using a wedge indenter is that the thin-film/substrate systems are under plain-strain 

conditions, which alleviates the tensile stresses that usually cause radial cracks. In 

addition, the driving force for delamination is the largest among all indenter 

geometries so that systems with strong adherent interfaces can be tested and 

characterized [1]. 

Numerical analysis is then applied to obtain the hardness, Young’s modulus of the 

film, and if applicable, together with the yield strength of the film by using the 

method derived by Johnson [2]. Furthermore, FEM simulations are conducted to 

derive the interface adhesion properties, i.e., interface strength and interface energy, 

based on the experimental data. 

Scanning electron microscope (SEM, JSM-5400, JEOL, Japan) is used to observe 

surface morphology, width and length of indentation impression, pattern of 

delamination failure and so on. These features are then correlated with various 

characteristics of the load-penetration curves measured from the indentation tests. 
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4.2. Indentation Equipment 

Ultra-Micro Indentation System (UMIS-2000H, CSIRO, Australia) is used to 

perform indentation experiments on the thin-film systems. The indenter is driven into 

the surface by a piezo-ceramic loading system until a resistance equal to a pre-set 

force is met [3]. The penetration depth is measured under the conditions of force 

equilibrium at each step. Load is transmitted to the indenter shaft through a spring 

system as illustrated in Figure 4-1, whose deflection is measured by a Force-LVDT 

(linear variable differential transformer). The relative displacement of the indenter 

shaft is measured correspondingly by a Depth-LVDT when the indenter contacts the 

sample [4]. 

  

 

 

 

 

 

  

  

 

 

The system allows two independent settings of depth and force measurement 

shown in Table 4-1 [3]. 

Load 
actuator 

Leaf 
springs 

Carriage 

Indenter 
shaft 

Sample 

Force-LVDT 

Depth-LVDT 

Fig. 4-1 Schematic description of UMIS nanoindenter [3]. 
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Table 4-1 UMIS-2000H nanoindenter specifications [3]. 

Depth setting A B 

Range of penetration 0-2µm 0-40µm 

Displacement resolution  0.05nm 

Force setting A B 

Range of maximum force 0-50mN 0-500mN 

Force resolution  0.75µN 

 

4.3. Experimental Procedure 

Two types of experimental procedures are carried out in this project:  

Procedure A illustrated in Figure 4-2 consists of the following steps: 1) the 

indenter approaches the surface until a pre-set initial contact force (usually 0.1mN) is 

reached; 2) it is then followed by a loading segment until the pre-set maximum load is 

reached; 3) the indenter is held at the maximum load for 5 seconds; 4) afterwards, the 

indenter is withdrawn from the sample at the same rate as that in the loading segment; 

and 5) the indenter is held in contact with the surface at 10% of the maximum load for 

30 seconds to correct the thermal drift. 
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Fig. 4-2 Typical experimental data of Procedure A. 

Fig. 4-3 Typical experimental data of Procedure B. 
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Procedure B is a multi-loading/partial-unloading procedure. In this procedure, the 

indenter undergoes unloading at each increment until 50% of the current load is 

approached, as illustrated in Figure 4-3. For homogeneous materials, the penetration 

increment between each load step is evenly distributed due to the linear relation 

between the load and displacement for wedge indentation. 

The indentation experiments are under load-control and the load-penetration data 

are recorded at each increment during loading/unloading sections. A typical 

impression of a wedge indentation is illustrated in Figure 4-4, and the dimensions of 

the indentation impression are shown in the figure. 

      

 

 

 

 

 

 

θ

β  h

aa

0l  

       (a)                                (b) 

Fig. 4-4 Schematic illustration of wedge indentation on a thin film system: (a) 

side view, and (b) top view of the indentation impression. 

h is the penetration depth of the indenter; hf is the thickness of the film; θ is the 

semi-included angle of the indenter; l0 is the length of the impression, which is 

equal to that of the indenter tip; and a is the half-width of the impression. 

fh
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4.4. Analysis Scheme 

4.4.1. Reduced Modulus and Hardness from Experimental Data 

As discussed previously in Chapter 2, the initial portion of the unloading curve 

can be modeled as an elastic solid indented by a rigid wedge tip. Thus, the mean 

pressure mp  is given by [5]: 

 2

cot
2(1 )

r
m

Ep θ
ν

=
−

 (4.4.1) 

where rE  and ν  are the reduced modulus and Poisson’s ratio of the material 

indented; and θ  is the semi-included angle of the wedge indenter.  

The hardness is defined as: 

 m
Pp
A

=  (4.4.2) 

where the projected contact area 2 2 / tanoA al hl β= = . Here, 4.206 mol µ=  is the 

length of the wedge indenter and 30β =  is the inclination angle of the wedge face 

to the surface of the solid ( 90β θ= − ). Thus, we have: 

 0
2 2

cot
2(1 ) (1 )

r
r

lEP A E hθ
ν ν

= =
− −

 (4.4.3) 

By linearly fitting the initial part of unloading curve, we obtain P Ch=  and the 

slope is: 

 0
2(1 ) r

lC E
ν

=
−

 (4.4.4) 

Therefore, the reduced modulus (defined in Chapter 2, Eq.(2.2.1)) of the whole 

system can be obtained as: 

 
2

0

(1 )
rE C

l
ν−

=  (4.4.5) 
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Meanwhile, the hardness (i.e., mean pressure) can be calculated by: 

 tan
2m

o

P Pp
A hl

β
= =  (4.4.6) 

 

4.4.2. Indentation Tip Area Correction 

The analytical methods described above are based on the assumption that the 

indentation tip is geometrically perfect and in full contact with the specimen during 

the whole indentation procedure. However, the tip is never perfect in real cases and 

for a wedge indenter, misaligment always exists, especially during the initial contact 

of the indentation. All of these factors will affect the true contact area, and thus, the 

determination of the elastic modulus, hardness, and yield strength, etc. Inspired by the 

standard method [4] used to calibrate the indenter area function during normal 

nanoindentation tests with a Berkovich tip, we calibrate the effective projected contact 

area of wedge indentation as follows: 

We first choose a reference material, a bulk aluminum (Al) block. The reason to 

use this material rather than fused silica, the commonly-used reference material for 

nanoindenter, is that fused silica may be too hard and may damage the wedge 

indenter. 

Then we indent the Al bulk with the multi-loading/partial-unloading process 

(Procedure B). By fitting the initial part of the unloading curve at each step, we obtain 

the reduced modulus at different indentation depths: 

 
2

0

(1 )( ) ( )rE h C h
l
ν−

=  (4.4.7) 

where ( )C h  is the slope of the initial part of unloading curve at each step; and 
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1/ 3ν =  is the Poisson’s ratio. 
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Figure 4-5 shows the uncorrected reduced modulus 0E  versus the penetration 

depth, it is clear that the reduced modulus increases with the penetration depth. 

However, for a bulk material, the reduced modulus should be independent of 

penetration depth.  In the case of aluminum, the Young’s modulus and Poisson’s ratio 

are 68.3GPa and 0.33, respectively [6]. Thus the reduced modulus can be calculated 

from Eq.(2.2.1), with the Young’s modulus and Poisson’s ratio for diamond being 

1140GPa and 0.07, respectively: 

 ( ) 2 2
( )

( )

1 72.0
(1 ) (1 )r AL

s AL i

s AL i

E GPa

E E
ν ν

= =
− −

+
 

Therefore, we derive the correction factor as a function of the indentation depth as: 

Fig. 4-5 Uncorrected reduced modulus E0 versus penetration for bulk Al. 
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 ( )

0

( ) r ALE
h

E
α =  (4.4.8) 

The reduced modulus calculated directly from fitting the initial unloading curve 

should be corrected by this factor α  according to the penetration depth so that the 

effects of imperfection in the tip geometry and contact area are taken into account. 

This procedure was proposed when performing standard nanoindentation tests by 

using UMIS nanoindenter [3]. We hereby adopt the same procedure for the correction 

of the wedge indentation test. 

    The average Young’s modulus of the bulk aluminum of ten indentation sites after 

calibration is 66.91±7.13GPa. Table 4-2 gives the corrected Young’s modulus of other 

bulk materials tested (average of 10 indentation sites). However, we do not have 

enough data to make comparison with those in literatures at this stage. 

 

Table 4-2 Young’s modulus (GPa) of bulk materials after calibration. 

Cu Cu (annealed) Ni 

101.49±13.37 74.82±14.38 154.15±26.47 

 

With the confidence obtained from the wedge indentation of the bulk materials, 

we can now turn our attention to thin film systems. For the thin film systems tested, 

the same correction method is applied. However, the Young’s modulus is still found to 

vary with penetration depth after calibration due to the substrate effect. This issue will 

be presented and discussed in more details in the next section. 
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4.4.3. Substrate Effect 

By substituting the calibrated reduced modulus into Eq.(2.2.1), we can determine 

the modulus of the specimen. However, for the thin film system, the modulus is 

naturally affected by the substrate during the indentation test. To obtain the properties 

of the film, we have to separate the substrate effects. 

By re-arranging Eq.(4.4.3), we have 0
2(1 ) r

lP E
h ν
=

−
. Since rE  is a constant for 

a homogeneous material, the value of /P h  should be a constant and independent of 

penetration depth as well. Therefore, by re-plotting the load-penetration curve as 

/P h  versus h , we can determine how the substrate affects the measured properties 

during indentation. When the value of /P h  is approximately a constant in certain 

shallow indentation range, the values of the reduced moduli derived from the 

load-penetration curve within this range are insignificantly affected by the substrate. 

Therefore, the measured moduli should mainly reflect the properties of the film only. 

The parameter /P h  can be defined as effective stiffness, similar to that of the 

stiffness in tensile testing. 

During the analysis of the indentation data, we first determine the range of 

penetration depth in which the value of /P h  is approximately a constant. Then, we 

calculate the average Young’s modulus (calibrated) and hardness within this range as 

the properties of the thin film.  

This approach has been approved effective in the analysis of normal Berkovich 

indentation of low-k films [7-8]. The validity of applying this approach for wedge 

indentation will be confirmed by the simulation and the experimental results 
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presented later. 

 

4.4.4. Yield Strength of Thin Film 

With the Young’s modulus and hardness of the film obtained by the procedures 

described above, we then employ Johnson’s model [2] discussed in Chapter 2 to 

calculate the yield strength of the film. Johnson [2] proposed a relation between 

Young’s modulus, hardness and yield strength stated as equation (2.2.12): 

 1 41 ln(5 4 ) ln tan 3(1 2 )
3

p E
Y Y

ν β ν
π

⎧ ⎫⎡ ⎤= − − + + −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
 

for a blunt wedge indenter and materials having a low ratio of elastic modulus to yield 

strength. The model was originally proposed for bulk materials based on Hill’s 

solution [9] for the problem of a cavity in an elastic-plastic material being expanded 

by an internal pressure. In addition to the blunt wedge indenter and materials having a 

low ratio of elastic modulus to yield strength required by the model itself, we apply 

this method to derive yield strength of the thin film when another two conditions are 

met: 1) the indentation depth is shallow so that the effects from the substrate are 

negligible; and 2) the elastic-plastic boundary of deformation lies at a radius of c  

within the film so that Hill’s solution is valid, i.e., fc h< , where fh  is the film 

thickness. 

After obtaining the Young’s modulus, hardness and yield strength of the film, we 

can perform simulations for the system to determine the interface adhesion properties. 
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4.5. Results and Discussions of Single Layer Thin Film System 

4.5.1. Sample Fabrication 

SiOC low-k films (BD) are deposited on Si by a parallel plate PECVD system [7]. 

The source gases are 3 3((CH ) SiH, 3MS) ) and 2O , of which the flow rate ratio 

3MS/ 2O  is fixed at 6. The total pressure is maintained at 4 Torr while ratio-frequency 

power at 600W. The film thicknesses estimated from the deposition time and the 

deposition rate are 200nm and 500nm. The Si substrates, which have an oxide layer of 

approximately 5nm thick on the surface, are heated at 350ºC during the deposition. 

 

4.5.2. 200nm BD Film Deposited on Silicon 

4.5.2.1. Indentation Response  

Since our primary interest focuses on the interface adhesion properties and 

delamination process, we firstly investigate the influence of interface delamination on 

the load-penetration curve, as well as on the effective stiffness of the system. 

Indentation tests with different maximum loads have been performed. The data 

obtained from Procedure B have been used to monitor the changes of the effective 

stiffness continuously.  

A typical load versus penetration curve is shown in Figure 4-6. The test was 

performed under load control and is applied in 50 steps to a maximum load of 15mN. 

Each step contains a loading and a partial unloading section as well as a dwell time of 

0.5 second between each step. There are several interesting features in Figure 4-6, 

which will be discussed in association with the corresponding effective stiffness and 
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SEM observations. 
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At the initial stage of the test (A B), the penetration depth increases almost 

linearly with increasing load of each step and the effective stiffness of the system 

remains approximately a constant as shown in Figure 4-7. From the discussion 

presented in Section 4.4.3, we therefore believe that within this range, the indentation 

response is insignificantly affected by the hard substrate (silicon), thus mainly reflects 

the property of the film. When the penetration depth increases further (B C), the 

load-penetration curve becomes superlinear, and the reduced modulus of the system 

increases with increasing penetration depth. The increase is mainly due to the 

increasing substrate effect when penetration proceeds. At these stages (A B C), no 

A B 

C 

D 

Fig. 4-6 Load versus penetration with a maximum load of 15mN. 

 The letters present several characteristics that will be discussed in the text. 

E 
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permanent damage such as an indent has been incurred to the thin film system. Hence 

no indentation impression has been observed under SEM. 
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When the indenter penetrates beyond 0.104µm (point C), the increment of the 

penetration depth becomes larger and unevenly distributed (C D). However, the 

increment of the load of each step remains the same as that of the previous stage 

(B C), indicating a dramatic decrease at point C in the effective stiffness of the 

system. Undoubtedly, this sudden decrease reflects the irreversible failure induced in 

the thin film system by the indentation. However, from the SEM images (as shown in 

Figure 4-8) obtained within this stage at the penetration depth of approximately 

0.15µm, no surface crack outside indentation impression is observed. This implies 

that the possible failure most likely occurs at the interface. The cracks observed at the 

B 

C 

D 

A 

Fig. 4-7 Effective stiffness versus penetration. 

 The letters present several characteristics that will be discussed in the text. 
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center of the impression are probably the film cracks at the indenter tip during the 

unloading process. 

 

 

  

 
 

With further increase in penetration depth, surface crack occurs at a large area 

surrounding the indenter and the film begins to spall off as shown in Figure 4-9. With 

respect to the argument of the occurrence of interface delamination, it is reasonable to 

conclude that the formation of the two spalling patches is the consequence of the 

propagation of the interface delamination and its interception with the surface.   

(a)                               (b) 

Fig. 4-8 SEM images of the indentation impressions when the penetration depth is 

within the film at (a) 0.147µm, and (b) 0.155µm. 
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When the penetration depth reaches 0.2µm (point D), the penetration depth 

increment at each step decreases (Figure 4-6, D E) and the effective stiffness of the 

system increases (Figure 4-7, D E). It is noticed that the thickness of the film is 

200nm, the indenter has penetrated through the film and reached the substrate. Thus, 

the increase in the effective stiffness is probably due to the increasing contribution of 

the relatively harder substrate, silicon. 

There is another sudden shift in penetration depth when the load is approximately 

13.478mN (Figure 4-6, point E), which is probably the result of the total spalling off 

of the film from the substrate as shown in Figure 4-10. 

Fig. 4-9 SEM image of the indentation impression when the penetration depth is 

within the film at approximately 0.175µm. 
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Therefore, the influence of the initiation and propagation of the interface 

delamination on load-penetration curve and the effective stiffness can be summarized 

as follows: 1) the sudden increase and uneven distribution of penetration increment 

indicate the onset of interface delamination; 2) further propagation of the interface 

delamination leads to a decrease in the effective stiffness of the system; and 3) the 

effective stiffness increases again when the indenter penetrates through the film and 

into the substrate due to the increasing substrate effect, when the substrate is relatively 

harder. 

 

4.5.2.2. Properties of the 200nm BD Thin Film 

In order to study the substrate effect and determine the properties of the BD film, 

Fig. 4-10 SEM image of the indentation impression when the penetration depth 

is approximately 0.27µm. 
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we perform shallow indentations with a maximum load of 5mN. 
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From the /P h  versus h  curve shown in Figure 4-11, we can identify a small 

range between the third and the fifth indentation step, in which the values of effective 

stiffness /P h  are approximately a constant of 20.77mN/µm. Based on the analysis 

presented in Section 4.4.3, it is concluded that the properties derived from the data 

within this range should reflect the properties of the 200nm BD film. We neglect the 

first two points here since they are not reliable due to the limitation of the machine 

resolution. This range is less than 12.5% of film thickness, which meets one of the 

requirements mentioned in Section 4.4.4 for the application of Johnson’s model [2]. In 

absence of the technique for measuring the plastic zone during indentation, we can 

assume that the plastic zone is a semicircle within the film due to the shallow 

Fig. 4-11 Effective stiffness versus penetration. 

The region marked by the dashed lines is used to determine the properties of the film.
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penetration depth and the symmetry of the system. The properties of the film derived 

from the experimental data of ten indentation sites are listed in Table 4-3. 

 

Table 4-3 Properties of the 200nm BD film. 

Reduced modulus 13.30 ± 0.84 GPa 

Young’s modulus 11.97 ± 0.76 GPa 

Hardness 1.90 ± 0.05 GPa 

Yield strength 1.24 ± 0.08 GPa 

  

4.5.3. 500nm BD Deposited on Silicon 

4.5.3.1. Indentation Response: Corner Crack 

For 500nm BD film deposited on silicon, we first observe cracks at the corner of 

the indentation impression as shown in Figure 4-12. From the corresponding 

load-penetration curves in Figure 4-13 and Figure 4-14, we find that the development 

of the corner crack has little influence on the load-penetration curve. As a 

consequence, there is little effect on the effective stiffness as shown in Figure 4-15 

and Figure 4-16. Probably, there is no interface delamination at this stage. 
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(a) 

 

(b) 

 
Fig. 4-12 SEM images of indentation impressions when the penetration depth is 

at (a) 0.179µm, and (b) 0.174µm. 
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Fig. 4-13 Load versus penetration curve corresponding to Figure 4-12 (a). 

Fig. 4-14 Load versus penetration curve corresponding to Figure 4-12 (b). 
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Fig. 4-15 Effective stiffness versus penetration curve corresponding to Figure 4-12 (a). 

Range [A, B] is discussed in Section 4.5.3.3.  

Fig. 4-16 Effective stiffness versus penetration curve corresponding to Figure 4-12 (b). 

Range [A, B] is discussed in Section 4.5.3.3.  

A B 

A B 
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4.5.3.2. Indentation Response: Interface Delamination 

When we increase the indentation load, the characteristics of the P - h  curve 

change significantly. Figure 4-17 shows the P - h  curve obtained with a maximum 

load of 20mN, and Figure 4-18 shows the corresponding effective stiffness of the 

specimen. 

Comparing with that of the 200nm BD/Si system, we find similar tendencies: an 

initial linear range (A B) reflects the properties of the thin film; no permanent 

damage has been incurred to the system during stage A C; the effective stiffness 

increases due to the substrate effect in this stage, and then decreases dramatically at a 

penetration depth of 0.246µm (C D) due to the initiation and propagation of the 

interface delamination, which can be observed by SEM as shown in Figure 4-19 (a). 

When the indenter penetrates into the substrate and beyond the depth of 0.549µm 

(D E), the stiffness increases again, reflecting the increasing influence of the harder 

substrate, silicon. The sudden increase in penetration increment at about 0.624µm 

(point E) is probably the result of spalling off the film as shown in Figure 4-19 (b). 
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Fig. 4-17 Load versus penetration with a maximum load of 20mN. 
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Fig. 4-18 Effective stiffness versus penetration corresponding to Figure 4-17. 
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From the above discussion, it may be concluded that: 1) the sudden increase and 

the uneven distribution of the penetration increment indicate the onset of interface 

delamination; 2) further propagation of the interface delamination leads to a decrease 

in the effective stiffness of the system; and 3) the effective stiffness increases again 

when indenter penetrates through the film and into the substrate due to the increasing 

substrate effect, when the substrate is relatively harder. 

 

4.5.3.3. Properties of the 500nm BD Thin Film 

Similar to the case of 200nm BD/Si, we perform shallow indentations with a 

maximum load of 5mN to study the substrate effect. We choose the constant stiffness 

range (refer to range A B in Figure 4-15 and Figure 4-16) to calculate the properties 

of the thin film listed in Table 4-4. The range is less than 10% of the film thickness. 

The assumption that the plastic zone is a semicircle within the film is made to apply 

(a)                               (b) 

Fig. 4-19 SEM images of indentation impressions when the penetration depth is 

within the film at (a) 0.555µm, and (b) 0.695µm. 
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Johnson’s model [2]. 

 

Table 4-4 Properties of the 500nm BD film. 

Reduced modulus 10.23 ± 0.52 GPa 

Young’s modulus 9.18± 0.48 GPa 

Hardness 1.62 ± 0.06 GPa 

Yield strength 1.13 ± 0.06 GPa 

 

These values are slightly lower than those of the 200nm BD film discussed 

previously (refer to Table 4-3), which is probably due to: 1) the different film 

thickness, grain size, etc; and 2) the 200nm BD film may be affected more by the 

substrate due to the thinner film thickness. 

 

4.5.3.4. Simulation of the 500nm BD/Si System  

The BD/Si system is chosen due to the increasing interests in low-k dielectric 

material and the universal application of silicon substrate, especially in electronic 

devices.  

With the properties such as Young’s modulus and yield strength of the 500nm BD 

film obtained from indentation experiments above, we can perform simulations for 

this thin-film/substrate system to determine the interface adhesion properties of the 

system and make comparison with the experimental results.  

The simulations are performed with initial parameters obtained from experiments 
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as listed in Table 4-4. For the Si substrate, 112.4GPa [6]sE =  and 3.10GPaysσ =  

are used. 0sD =  so that the Si substrate is treated as an elastic-plastic material. All 

these parameters in the simulations are normalized by 1.13MPayfσ =  and a length 

of 0∆ =0.1µm since we are interested thin film structures in micrometer levels. The 

experimental data are normalized following the same scheme for the sake of 

comparison between the simulation and experimental results.  

By directly varying the pre-set interface strength and interface energy in the 

simulations, we can make the critical moment as close to that of the experiment as 

possible. The simulation results suggest that if the interface strength ˆ 0.045 yfσ σ=  

and interface energy 0 00.0016 yfσΓ = ∆  are chosen for the interface adhesion 

properties of the 500nm BD/Si system, the relative error of the critical penetration 

Fig. 4-20 Simulation of the 500nm BD/Si system. 

The arrows correspond to the critical moments. A B reflects the properties of the film.
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depths between the simulation and experiment is within 5%. Figure 4-20 shows the 

good agreement between the simulation and experimental results. The initial linear 

part (A B), which is insignificantly affected by the hard substrate, reflects the 

properties of the BD film. With further indentation, the stiffness of the system 

increases due to the increasing influence from the substrate and the load-penetration 

curve becomes superlinear, which has been discussed in previous subsections. The 

interface delamination occurs when the penetration depth reaches approximately 

2.005 0∆  in the simulation, or 2.098 0∆  in the experiment. The critical value in the 

simulation is determined by the stress and strain states of the system, whereas in the 

experiment, the critical value is determined by the shift of the load-penetration curve, 

together with SEM observations. We notice that the shape of the simulation curve 

agrees well with that of the experiment before delamination. However, after 

delamination, the slope of the simulation curve is slightly higher than that of the 

experimental one. This is probably due to the overestimation of the effects of 

strain-hardening in the simulation. The deviation of the simulation curve from the 

experimental one when the penetration depth is beyond 3.097 0∆  is probably due to 

the fracture of the film, which is not considered in the simulation model. The good 

agreement between the simulation and the experiment validates the analysis scheme 

used to obtain the properties of the thin film, especially the Young’s modulus and 

yield strength. 

Alternatively, we can obtain the interface adhesion properties of the system by 

using the methodology presented in Chapter 3 as well. We can perform a series of 
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basic simulations of which the critical moments are close to that of the experiment, 

and then predict the dependence of cP  and dP  on the interface strength σ̂  and 

interface energy 0Γ , and finally σ̂  and 0Γ  can be determined with e
cP  and e

dP  

measured in experiment. However, due to the limitation of time, this work will be 

carried out in future studies. 

Figure 4-20 presents one of the most important results of this project. It reveals 

several important features and implications for characterizing interface adhesion 

properties by using wedge indentation technique and simulations. Firstly, the 

traction-separation law is capable of describing the interface adhesion properties. 

Secondly, there exist clear relationships between indentation measurable quantities 

and interface adhesion properties. Thirdly, it indicates that the interface adhesion 

properties, i.e., interface strength and interface energy, can be determined by 

combining wedge indentation tests and FEM simulations. Although the results are still 

preliminary, they are very promising and important. With further studies, the proposed 

method should be improved and applied more widely. 

 

4.6. Results and Discussions of Multi-Layer Thin Film System 

4.6.1. Sample Fabrication 

Multi-layer thin film systems with four 

different top layers (50nm barrier low-k films) 

deposited by PECVD, are investigated. The thin 

films between the top layer and the Si substrate are 

Top layer 
Cu 

Ta
USG 

Si 

Fig. 4-21 Schematic illustration of the 

structures of the multi-layer systems. 
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600nm Cu, 25nm Ta, and 300nm undoped silicate glass (USG). The structures are 

shown schematically in Figure 4-21 and the deposition parameters of the top layers 

are listed in Table 4-5 [10].  

 

Table 4-5 Deposition parameters of the barrier low-k films. 

Dielectric-cap 

 

Relative 

dielectric 

constant 

Gases/flow 

(sccm) 

HFRF 

(watt) 

LFRF 

(watt) 

Pressure 

(Torr) 

SiN 7 (±0.2) 

4SiH /500 

3NH /400 

2N /1600 

570 430 2.6 

SiCO 4.4 (±0.2) 
2CO /3000 

4MS/500 
500 400 2.5 

BLOkTM-1 4.6 (±0.2) 

He/200 

3MS/80 

3NH /160 

300 - 3 

BLOkTM-2 4.9 (±0.2) 
He/400 

3MS/150 
460 - 8.7 

 

4.6.2. Indentation Response  

The experiments are performed under load control with multi-loading/ 

partial-unloading procedures until the pre-set maximum load is achieved. The four 

multi-layer specimens display similar indentation responses. Conclusions similar to 
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those of BD/Si systems can be drawn from the analysis of indentation 

load-penetration curves. 

Figure 4-22 shows a load-penetration curve of the multilayer system with SiN as 

the top layer. There is no significant disturbance in the curve during the initial 

penetration within 50nm, indicating that no delamination happens within this range. 

In addtion, there is no surface crack observed by SEM at this stage.  
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With further increasing penetration depth up to 0.079µm (point A), a disturbance 

occurs and it is probably due to the cracking at the edge of the indentation impression 

as shown in Figure 4-23.  

Fig. 4-22 Load versus penetration curve of the SiN system. 

A 

B 
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The second shift in the penetration curve at 0.239µm (point B) is probably due to 

the bending of the top layer. Since the material for the second layer, copper, is very 

ductile, it is almost impossible to induce interface delamination between the top layer 

and the copper layer by the wedge indenter with an included-angle of 120° at the load 

applied. Thus, it is reasonable to believe that the disturbance in the load-penetration 

curve is due to the cracking or fracture of the top layer by bending.  

Similarly, no delamination happens during the initial penetration within the top 

layer in the other three systems since no disturbance can be observed in the 

load-penetration curves shown in Figure 4-24 to Figure 4-26. When the wedge 

indenter penetrates into the copper layer (refer to Figure 4-27 to Figure 4-29), there 

are possible cracks of the top layer at the edge of indentation impression at 

Fig. 4-23 SEM image of the indentation impression  

when the load level is 5mN. 
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penetration depth of 0.081µm, 0.127µm, and 0.185µm for SiCO, BLOkTM-1, and 

BLOkTM-2, respectively. 
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Fig. 4-24 Load versus penetration curve of the SiCO system. 
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Fig. 4-25 Load versus penetration curve of the BLOkTM-1 system. 

A 

B 

Fig. 4-26 Load versus penetration curve of the BLOkTM-2 system. 

A 

B 
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Fig. 4-27 SEM image of the indentation impression of the SiCO system  

when the load level is 4mN. 

Fig. 4-28 SEM image of the indentation impression of the BLOkTM-1 system 

when the load level is 5mN. 
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The bending of the top layers occurs in all the three systems when the indenter 

penetrates further due to the severe pile-up in the underlayer, copper. It seems that the 

BLOkTM-1 system has a higher critical load of failure than those of the SiN and SiCO 

systems. When the BLOkTM-1 system is treated with nitrogen gas to remove the 

oxygen in the top layer/copper interface thus form the BLOkTM-2 system, the 

maximum critical load of the system is increased.  

From the above discussion, we can conclude that 1) there is no interface 

delamination between the top layer and copper layer when the indentation penetration 

is within the top layer; and 2) the top layer fractures when the penetration reaches 

about 1/2 of the Cu layer, probably due to the bending effects. 

 

Fig. 4-29 SEM image of the indentation impression of the BLOkTM-2 system when 

the load level is 5mN. 
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4.6.3. Properties of the Top Layer  

Theoretically, the scheme that we use to analyze the properties of the single-layer 

systems can also be applied to these multi-layer systems. However, due to the ultra- 

thin thickness of the top layer and the resolution limitation of the testing equipment, it 

is impossible to obtain the film only information. As we can see in the single-layer 

system, the range in which the substrate effect can be neglected is usually within 

10%-15% of the film thickness. Thus, for these multi-layer systems, we need to obtain 

load-penetration information during the initial 5nm to 7.5nm of penetration, which is 

beyond the machine resolution. Therefore, it is impossible to derive the mechanical 

properties of the top layer at this stage. However, it may be possible in the future 

when equipments with higher resolutions are available, which allows us to conduct 

simulations of these systems to investigate their adhesion properties. 

In summary, wedge indentation can introduce interface delamination in 

soft-film/hard-substrate systems (e.g. 500nm BD/Si). The interface adhesion 

properties can be therefore derived by FEM simulations in combination with 

experiments. However, for hard-film/soft-substrate systems (e.g. SiN/Cu), due to the 

compliance of the soft substrate (or underlayer), wedge indentation may hardly induce 

interface delamination, instead, the film fractures due to bending effect. Obviously, to 

characterize the interface adhesion properties of such systems is still a challenge 

issue. 
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Chapter 5 Conclusions and Future Work 

 

5.1. Conclusions 

In this project, the mechanical behavior of interface during wedge indentation 

experiments has been investigated by numerical simulations and experiments. The 

interface delamination is found to initiate in pure shear (mode II), and subsequently 

transits into a mixed mode with further propagation. The onset of interface 

delamination will cause a sudden decrease in the load-penetration curve and the 

stiffness of the whole system will decrease after the delamination. 

The effects of interface adhesion properties, i.e., interface strength and interface 

energy, on the initiation of interface delamination have been investigated by 

parametric studies. Increasing either the interface strength σ̂  or the interface energy 

0Γ  will cause an increase in the critical load cP  to initiate interface delamination. 

The effect of interface strength σ̂  on the critical load cP  seems to be more 

significant than that of interface energy 0Γ  when ˆ / yfσ σ  is larger than 0.4.  

Based on the results of parametric studies, the following methodology has been 

proposed to determine the interface adhesion properties of a thin-film/substrate 

system: 1) collect basic data of the thin-film/substrate system for numerical 

simulations either by indentation test or other mechanical tests; 2) perform a series of 

simulations with different values of the interface adhesion properties to establish the 

dependence of the critical load cP  and the characteristic load dP  on interface 

strength σ̂  and interface energy 0Γ ; 3) replot the data to obtain a contour plot, from 
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which the interface strength σ̂  and interface energy 0Γ  of a certain system can be 

extracted once e
cP  and e

dP  are measured by indentation test.  

In parallel with simulations, the mechanical properties of thin films have been 

investigated by wedge indentation experiments. By re-arranging the load-penetration 

curves and defining the effective stiffness /P h , we identify a range with negligible 

substrate effect when the indentation depth is shallow. Thus, the mechanical 

properties of the film can be derived from the load-penetration curve measured within 

this range. These properties can be used to perform FEM simulations to determine the 

interface adhesion properties of the thin-film/substrate system tested. 

The indentation response shows that the onset of the interface delamination will 

cause a sudden shift and an uneven distribution of the penetration depth while the 

development of the corner cracks does not affect the indentation response. Meanwhile, 

the initiation and propagation of interface delamination will cause a decrease in the 

effective stiffness of the system. 

The simulation results agree well with the experimental ones. Similar 

characteristics of the load-penetration curves in response to the onset and propagation 

of interface delamination have been observed. With the mechanical properties such as 

Young’s modulus and yield strength of the thin film obtained from indentation 

experiments, FEM simulation can be performed for the thin-film/substrate system of 

interest. The consistency of the simulation and experimental result of the 500nm 

BD/Si system validates the analysis scheme applied to characterize mechanical 

properties of the thin film. Furthermore, the values of the interface adhesion 
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properties, i.e., interface strength and interface energy, of the 500nm BD/Si system are 

derived. 

The results presented here suggest that wedge indentation is a useful tool to 

characterize the mechanical properties of thin films. The interface adhesion properties 

of thin-film/substrate system can be determined by FEM simulations in combination 

with experimentally-measured information. 

 

5.2. Future Work 

In view of the results discussed above, some future work may be recommended.  

The methodology, which is proposed to determine the interface adhesion 

properties from experimentally-measured information, should be applied to the single 

layer systems we tested, i.e., 200nm BD/Si and 500nm BD/Si systems. With the 

mechanical properties of the thin film obtained from the indentation tests, one can 

perform a series of FEM simulations for the system and predict the dependence of cP  

and dP  on the interface adhesion properties. Then the interface strength σ̂  and 

interface energy 0Γ  for the system can be determined from the contour plot and 

compared with the values derived in this project. 

For the multi-layer systems, little work can be done without improvement of the 

indentation equipment. Once the resolution of the machine is improved, one may 

obtain the mechanical properties of the ultra thin top layer and observe the indentation 

response within the top film. However, large amount of work has to be done to 

simulate the multi-layer systems due to their complexity. 
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Appendix 1. The values of the coefficients in § 3.4.2.1. 
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Appendix 2. The values of the coefficients in § 3.4.2.2. 
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