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 SUMMARY 
 

 Lossless coding of audio signals attracts more and more interests as the broadband 

services emerge rapidly. In this thesis, we developed a CODEC, using adaptive linear 

prediction technique for lossless audio coding. We successfully designed a cascade 

structure with independently adapting FIR filter in each stage for multistage adaptive 

linear predictors, which outperform other techniques, such as linear prediction coding 

(LPC) used in the state-of-the-art lossless audio CODEC. With the adaptive linear 

prediction, the coefficients of the filter need not to be quantized and transferred as side 

information, which is obviously an advantage of saving bits compared to LPC. 

Furthermore, due to the non-stationary of audio signals, it is necessary that the predictor 

should be adaptive so as to track the local statistics of the signals. Thus adaptive linear 

prediction technique is an attractive candidate for lossless audio coding. 

Meanwhile, we analyze the characteristics and performance of the proposed 

predictor in theory and get the conclusion that this adaptive linear prediction outperforms 

the LPC in mean square error (MSE) performance. This is consistent with the simulation 

results that the prediction gain of the proposed predictor is better than the prediction gain 

of LPC. The challenge of using adaptive linear predictor is that the convergence speed of 

the adaptive algorithm must be fast enough so that the average prediction performance is 

promised.  

Moreover, we also provide random access feature in the CODEC while the 

performance is still guaranteed, although the performance is much dropped by supporting 

random access due to the transient phase in adaptive linear prediction. In every random 
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access frame, separate entropy coding scheme is used for transient phase and steady state 

errors to solve the problem.  

With the successful application of adaptive linear prediction for lossless audio 

coding, by now our CODEC outperforms most of the state-of-the-art lossless audio 

CODECs for most digital audio signals with different resolutions and different sampling 

rates. 
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Chapter1: Introduction 

CHAPTER 1 

 INTRODUCTION 
 

 

1.1  Motivation and Objectives 

  

During many years, audio in digital format has played an important role in 

numerous applications. However with the constrained bandwidth and storage resources, 

such as internet music streaming and portable audio players, uncompressed audio signals 

must be a heavy burden. For example CD quality stereo digital audio with 44.1 kHz 

sampling rate and 16 bit quantization, will consume 1.41 Mbps bandwidth easily.   

  

In response to the need of compression, much work has been done in the area of 

lossy compression of audio signals. Such as the MPEG Advanced Audio Coding (AAC) 

technology, can allow compression ratios to range up to 13:1 and higher. However, lossy 

audio coding algorithms get the high compression at the cost of quality degradation.  

  

Obviously, the lossy audio coding technology is not suitable for applications which 

require lossless quality. These applications can be in recording and distribution of audio, 

such as distribution of high quality audio, audio data archiving, studio operations and 

collaborative work in professional environment. For these applications, lossless audio 

coding, which enables the compression of audio data without any loss, is the choice. For 
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example, with the lossless audio coding technology, the Internet distribution of exact CD 

quality music becomes possible. It may not be accepted for customers to use their high-

fidelity stereo system to play the AAC or MP3 music.  

  

With the continuing growth of capacities of storage devices, bandwidth of internet 

and emergence of broadband wireless networks, it can be expected that lossless 

compression technology will be used much wider in the future. Therefore, recent years 

more and more interests have been focused on this technology. However, compared with 

the area of lossy coding, much less work has been done for lossless audio coding. And to 

make an international standard also becomes necessary. 

 

The standardization body ISO/IEC JTC 1/SC29/WG11, known as the Moving 

Pictures Experts Group (MPEG) has started to work on defining lossless audio coding 

technology for ISO/IEC 14496-3:2001 (MPEG-4 Audio) standard [1]. They have issued a 

Call for Proposal (CfP) on lossless audio compression [2] in July 2002. The CfP requires 

high lossless compression efficiency for PCM audio signals at sampling rates from 44.1 

kHz to 192 kHz and word lengths of 16, 20 and 24 bits. Moreover, the CODEC is also 

required to provide means for editing, manipulations and random access to the 

compressed audio data.  

  

Considering the increasing application and MPEG’s CfP of lossless audio coding, 

this project is to develop an efficient lossless audio CODEC which should outperform 

most of the state-of-the-art CODECs and make contributions to MPEG-4 standardization 

activities. 
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1.2  Major Contributions of the Thesis 

 

 In this project, we developed a lossless audio CODEC, with high compression 

performance for audio signals with sampling rates up to 192 kHz and resolutions up to 24 

bits. Moreover, the proposal has been submitted to MPEG for evaluation in Oct. 2004.  

  

 The major contributions of this thesis are as follows: 

1) Digital audio signal (low and high sampling rate) modeling techniques with 

adaptive filters in cascade structure; 

2) Theoretical study of the characteristics of the cascaded adaptive linear predictor for 

audio signals; 

3) Theoretical study of the performance bound of the cascaded adaptive linear 

predictors; 

4) Successful application of the novel cascaded adaptive linear prediction technique 

in lossless audio coding;  

5) Techniques to improve the compression performance in Random Access coding 

with the adaptive linear prediction technique. 

  

 With above efforts, the proposed CODEC can obtain higher compression ratio than 

most of the state-of-the-art CODECs for MPEG-4 test audio signals by now. 
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1.3  Organization of the Thesis 

  

 The following chapter reviews the background of lossless audio coding, including 

fundamentals of source compression, basic principles of audio coding, the entropy coding 

algorithms (Rice and Block Gilbert-Moore Coding) and linear prediction technique which 

is widely used in audio and speech coding. Two state-of-the-art lossless audio coding 

systems will be reviewed as well.  

  

 The structure overview of the proposed lossless audio coding system will be 

described in Chapter 3. Among all of the parts in the structure, this thesis focuses on the 

predictor mainly, which is discussed in Chapter 4. We propose the adaptive linear 

prediction technique which will be discussed in detail. The adaptive prediction filters in 

cascade structure will be used as the adaptive linear predictor for audio signals.  

 

 For wider and more practical applications, the feature of random access to the 

compressed audio signals is required by the CfP of MPEG. In Chapter 5, random access 

(RA) will be discussed in detail and implemented successfully in the proposed audio 

CODEC. With the adaptive linear prediction, we make the pioneer contribution to this 

topic in lossless audio coding. Finally, a conclusion of the thesis is given in Chapter 6, 

with recommendations for future work.  
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CHAPTER 2  

BACKGROUND 

 

  

 This chapter will review the background of lossless audio coding, including some 

fundamentals of source coding, basic principles of audio coding, linear prediction coding 

techniques and several entropy coding algorithms.  

 

 At the end of this chapter, two state-of-the-art lossless audio coding systems will 

be briefly discussed. One is Monkey’s audio coding [3], which is taken as a benchmark in 

MPEG’s CfP [2]. Another is from Technical University of Berlin (TUB) [4], which is 

chosen as a reference model for MPEG-4 Audio Lossless Coding (ALS), attaining 

working draft status in July 2003.  

 

2.1  Digital Audio Signals 

  

 In this thesis, the source signals discussed are the audio signals in digital format. 

During the last decades, analog signal processing has been replaced by digital signal 

processing (DSP) in many areas of engineering due to the development of digital 

techniques. In the real world, the physical audio signal is in analog format. Therefore the 

real signal must be converted to digital data format before processing, which is called 

analog-to-digital (A/D) conversion.  
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 Fortunately, Claude Shannon had developed a theory which points out that a signal 

band limited to w  Hertz can be exactly reconstructed from its samples when it is 

periodically sampled at a rate 2sf w≥  [5].  

 

 Human hearing’s sensitive range is between 20 Hz and 20 kHz. That is why the 

sampling rate 44.1 kHz and 48 kHz are most commonly used currently as the sampling 

rate in high fidelity audio applications, e.g. the CD quality music is sampled at 44.1 kHz. 

However, with the requirement increasing for digital audio quality MPEG’s CfP requires 

that the proposed CODEC should be able to compress high quality audio data which is 

sampled at rate from 44.1 kHz to 192 kHz.  

 

 During the process of A/D conversion, sampling is the first step. Meanwhile, the 

amplitude of each sample must be presented with a number of bits. This process is called 

quantization. Clearly, the number of bits used for each sample determines the quality of 

digital audio. The more bits are used, the better quality. The quantization resolutions 

considered are 16, 20 and 24 bits.  

 

 In practice, Pulse Code Modulation (PCM) is always used with quantization. That 

is to present each pulse with a number of bits after normalizing the amplitude.  For 

example, the wave format audio is the PCM data converted from physical audio source.  
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 In conclusion, the source data concerned is the PCM digital audio signal, with 

sampling rate from 44.1 kHz to 192 kHz, resolution 16, 20 and 24 bits. In general, the 

mathematical model of digital audio signal ( )x n  can be given by  

 

( ) ( ) ( ) ( )cosi i i
i

x n A n w n ϕ ε= + n+∑     (2.1) 

 

where  is the amplitude envelope, iA iϕ  is the phase of each frequency  and iw ( )nε  is the 

noise.  

 

2.2  Lossless Data Compression 

  

 Lossless Data Compression, however, is not a new topic. There are many excellent 

algorithms in this area, such as Huffman Coding, Arithmetic Coding and Lempel-Ziv 

Coding [6]. These algorithms are widely used to compress text files, and proved to be very 

effective for text data.  

  

 Shannon’s entropy theorem in [5] shows the smallest number of bits needed to 

encode the information. Let Q  be the set of the symbols output by an n  bit quantization. 

The entropy of this source is defined as  

 

( ) 2logi
i

H Q p p= − ⋅ i∑      (2.2) 
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where ip  is the probability of symbol , ii Q∈ .  

 

 The entropy theorem gives the bound for data compression. The problem of data 

compression is to encode information with as few bits as possible, e.g. to associate shorter 

codewords to messages of higher probability. In section 2.3.3, we will discuss an example 

of entropy coding, namely, Rice Coding, because it is widely used in lossless audio coding.  

 

 However, applying entropy coding methods directly to the audio signal is not 

efficient due to the long time correlations in audio signal. Therefore, it is necessary to 

design coding algorithms specifically for digital audio signals.  

 

2.3  Lossless Audio Coding 

 

2.3.1  Basic Principles 

  

 It is well known that conventional lossless compression algorithms (e.g. Huffman 

Coding) always fail to compress audio signal effectively, because of the large source 

alphabet and long term correlation of the audio samples. In recent years, a number of new 

algorithms have been developed for lossless audio coding [7]. All of the techniques are 

based on the principle of first losslessly reducing the long term correlation between audio 

samples and then encoding the residual error with an efficient entropy code. Fig. 2.1 

shows the scheme for compressing audio signal.  
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Compressed 
Data 

Audio Signal  
( )x n  ( )e n  

Decorrelation Entropy Coding 

 

Fig. 2.1: The principle of lossless audio coding 
 

 For intra-channel de-correlation, there are two basic approaches, which remove 

redundancy by de-correlating the samples. The most popular method is to exploit the 

correlation between samples by using some type of linear predictor [3, 4, 8-12]. Another 

approach is to use linear transform, where the audio input sequence is transformed into the 

frequency domain. This method always plays a role as a bridge between lossless and lossy 

audio coding. The idea is to obtain the lossy representation of the signal, then losslessly 

compress the difference between the lossy data and the original signal [13-16]. In this 

thesis, we will only focus on the first approach, i.e. linear prediction for de-correlation. 

The concept will be discussed in section 2.3.2.  

 

 After de-correlation, some proper entropy coding is applied to further reduce the 

redundancy of the residual signal. Entropy coding is a process to convert symbols into bit 

streams according to a probability distribution function (pdf). Good compression 

performance will be expected if the estimated mathematical pdf is close to the true pdf of 

the signal. In section 2.3.3, Rice coding will be introduced. 

  

2.3.2  Linear Prediction 
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 It is well known that linear prediction is widely used in speech and audio 

processing [17] [18]. It is used to predict a value using the preceding samples in the time 

domain. For example, the signal sequence is ( ) ( ) ( ) (, 1 , 2 , , )x n x n x n x n N− − − , the 

linear prediction of ( )x n  which is at instance n, can be given as  

 

( ) ( ) ( )
1

ˆ
N

k

x n w k x n
=

k= −∑      (2.3) 

 

where  is the coefficient of the linear predictor, which is always determined by the 

criterion of Minimum Mean Square Error (MMSE). Then we get the residual error 

( )w k

( )e n  

as 

 

( ) ( ) ( )ˆe n x n x n= −       (2.4) 

 

 It has been found that most speech and audio signals are Laplacian distributed [19] 

[20]. Therefore the residual signal of the linear predictor is still Laplacian distributed, i.e. 

residual signal ( )e n  can be approximately modeled with a Laplacian distribution. The 

probability density function (pdf) of Laplacian distribution is given as 

 

( ) (
2

fp f e λ )λ −=       (2.5) 
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2.3.3  Entropy Coding 

  

 We discuss a widely used entropy coding, Rice coding in this section. Rice coding 

[21] is a special case of Golomb coding [22] for data with a Laplacian probability 

distribution function. As the prediction residual signal ( )e n  is Laplacian distributed, Rice 

coding is efficient, thus it is widely used in this application [3, 4, 8, 9, 14, 23, 24].  

 

 The idea of Rice coding is to decompose the code (the signed integer residual in 

lossless audio coding) into 3 parts:  

1. One sign bit.  

2. Lower part with length  bits. L

3. Higher part presented with a series of 0s and terminated by 1.  

 

We note that Rice coding is characterized by one parameter L . The sign bit can be 1 for 

negative, 0 for positive. If the code value is , the lower part is the  least significant bits 

of . In the higher part, the number of 0s is equal to the result by truncating the  least 

significant bits from n . Denote the number of 0s by , which can be calculated as 

follows 

n L

n L

hN

 

hN n L=       (2.6) 

 

where operator  is the operation of bit shift. The parameter L  is found by means of a 

full search, or estimated by the following equation, first given in [23] 
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( ) ( )( )( )2log ln 2L E e= n       (2.7) 

 

where ( )(E e n )  is the expectation of the absolute value of ( )e n .  

 

 Table 2.1 gives the examples of Rice coding with 4L = .  

 

Table 2.1  Rice Coding Example for 4L =  

Number 
 ( )e n

( )e n  in 
binary 

Sign bit L  lower 
bits 

Number of 
0s 

Full code 

0 0 0 0000 0 00001 

-20 10100 1 0100 1 1010001 

50 110010 0 0010 3 000100001 

 

 

2.4 State-of-the-art Lossless Audio Coding 

 

2.4.1  Monkey’s Audio Coding 

  

 Monkey’s Audio Coding has high compression ratio, which is therefore taken as a 

benchmark in MPEG’s CfP. In its extra high mode, it adopts 3-stage predictor [3]. The 

first stage is a simple first-order linear predictor. Stage 2 is an adaptive offset filter. Stage 

3 uses neural network filters. To reduce the redundancy of residual error further, Rice 

coding is used for entropy coding.  
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 Because the neural network algorithm is used to adapt the coefficients, a long input 

sequence is needed to complete the learning process while encoding. This results in high 

complexity, moreover random access feature is not supported.  

  

2.4.2  TUB ALS 

  

 This coder developed by TUB, chosen as the reference model for MPEG-4 ALS, is 

based on the Linear Prediction Coding (LPC) technique and Rice coding [4] [25].  

 

 In the current version, two alternative entropy coding schemes are available to 

process the prediction residual. The first scheme uses simple and fast Rice codes, while 

the second one employs block Gilbert-Moore codes (BGMC) [26] together with Rice 

coding, which offers an improvement in compression at the expense of increased 

processing time. Similar to TUB’s CODEC, the proposed coding system provides the two 

alternative coding schemes as well. We use the latter coding scheme for our simulations, 

since it gives better compression performance.  

 

  As for the LPC predictor, the Durbin-Levinson algorithm is used for coefficients 

calculation [27] and decoding is straightforward with the coefficients quantized and 

transmitted. In general, it processes high compression and moderate complexity.  
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 However, we find that LPC technique is not the optimal prediction solution in 

lossless audio coding. Moreover, using LPC the bit-stream must contain quantized LPC 

coefficients. Therefore we propose an adaptive linear predictor to replace LPC in lossless 

audio coding.  
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CHAPTER 3 

OVERVIEW OF THE PROPOSED ALS SYSTEM 

 

 

In the current MPEG-4 ALS CODEC, LPC is used to reduce the bit rate of audio 

clips in PCM format [2] and the Levinson-Durbin algorithm is used to find the optimal 

linear predictor according to the MMSE criteria. It is well known that the longer the linear 

predictor, the smaller the mean square error (MSE) of the predictor. However, the 

estimated optimum predictor coefficients for each block of input sequence should be 

quantized and transmitted as side information. Thus, the performance of this kind of 

CODECs in terms of compression ratio is trade-off between the prediction order and the 

MSE.  

 

To overcome the drawback of LPC, an adaptive linear predictor is used because 

this sort of CODEC need not transmit the prediction coefficients, thus they can construct a 

high-order FIR filter to model more accurately the ample and harmonic components of 

general audio signals than the relative low-order linear prediction coding technique. In this 

thesis, we propose a stable adaptive linear predictor, which leads to a better compression 

ratio compared to that of the TUB optimal CODEC which is with high predictor order.  

 

3.1  Big Picture 

 

 - 15 -



Chapter3: Overview of the Proposed System 

An overview of the proposed encoder is depicted in Fig. 3.1 and each part is 

described in the following sections. Fig. 3.2 is the overview of the corresponding decoder, 

which reconstructs the original signal perfectly using the same adaptive prediction 

algorithm as in the encoder. Therefore, the complexity of the adaptive predictors in both 

encoder and decoder are identical. 

 

Original
Signal

Buffer
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Predictor

Entropy
Coding

Code Indices M
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Fig. 3.1: Lossless audio coding encoder 
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Fig. 3.2: Lossless audio coding decoder 
 

3.2  Framing 

  

 First of all, the input signal of adaptive linear predictor is operated by framing, i.e. 

the input sequence is processed block by block. The framing operation is an important 
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property for audio CODECs and necessary for most applications where it is required to 

quickly and simply access or edit the compressed audio bit stream. For example, the 

framing is required for random access, which will be discussed in detail in Chapter 5.  

 

3.3  Adaptive Linear Predictor 

 

 Many audio signals, like music which is of the most interesting in lossless audio 

coding, contain abundant tonal and harmonic components. It requires a large predictor 

order to reduce the energy and correlation of the signal effectively. The adaptive linear 

predictor should be an ideal candidate for this requirement because its coefficients need 

not to be contained and transmitted in bit stream.  

 

 Moreover, considering the non-stationary property of audio signals, an ideal 

predictor should be adaptive and possess tracking capabilities to capture the local statistics 

of the signal, so that high prediction gain can be obtained.  

 

 Therefore we propose the adaptive linear predictor in the system for audio lossless 

coding. However lots of methods are available to design the adaptive predictor. In this 

thesis, we will discuss some adaptive filter algorithms, such as Least Mean Square (LMS) 

and Recursive Least Square (RLS) algorithms.  
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 While designing and implementing the adaptive linear predictor, the random 

access function is also considered. We will discuss some solutions for this issue in a 

separate chapter focused on Random Access (RA).  

 

3.4  Entropy Coding 

  

 In almost all of the coding systems, some kind of entropy coding is employed to 

reduce the redundancy and energy of residual signals after prediction. As discussed in 

Chapter 2, Rice coding is a popular entropy coding algorithm for this application.  

 

 However, a more efficient and complex entropy coding scheme is applied in the 

proposed coding system, namely, Block Gilbert-Moore Codes (BGMC), which works 

together with Rice coding [25].  

 

 

 

 - 18 -



Chapter4: Adaptive Linear Predictor 

CHAPTER 4  

ADAPTIVE LINEAR PREDICTOR 

 

  

 We will study and design an optimal adaptive linear predictor, which outperforms 

the LPC predictor for lossless audio coding.  

 

 It is well known that the original digital audio signal is generally compressible 

because it possesses considerably high redundancy between samples. That is, the samples 

are highly correlated and non-uniformly distributed. Most lossless audio coding 

algorithms employ a pre-processor to exploit and remove the redundancy between signal 

samples, and then code the output or residual signal with an efficient entropy coding 

scheme [7]. In such a coding approach, the pre-processor is a predictor, which plays a 

dominant role in lossless audio coding. In general, better prediction results in higher 

compression performance.  

 

 Obviously, to achieve optimal compression performance, the predictor should be 

designed to remove correlation of the signal as much as possible so that the resulting 

prediction residual error can be coded at the lowest possible rate. We have discussed that 

in most coding systems, the digital audio signals are described by some sort of 

parametrical model, e.g. the Laplacian distribution. For such a model, the optimal 

predictor can be designed based on the least mean square criterion, so that the output 

generated has the smallest variance. The low complexity solution, which is already widely 
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used in this area, is LPC technique based on Levinson-Durbin algorithm. However, the 

coefficients of LPC have to be quantized and transmitted as side information. For bit 

savings, a trade-off must be made between predictor order and mean square error (MSE), 

i.e. the length of order is limited in LPC. However, considering the characteristics of audio 

signals, a high-order predictor is always needed to reduce the large energy effectively.  

 

 Therefore, instead of LPC, adaptive linear predictor seems a good alternative, 

which does not need to transfer coefficients, promising potential bit savings and high 

predictor order. Furthermore, as the audio signals are non-stationary, it is necessary that 

the predictor should be adaptive and is capable to track the local statistics of the signals. A 

number of adaptive algorithms can be used to design an adaptive linear predictor such as 

the Least Mean Square (LMS) algorithm and the Recursive Least Square (RLS) algorithm. 

The LMS is widely used in practical application due to its robustness, efficiency and low 

complexity. However, the LMS suffers from slow convergence speed for highly correlated 

input signals with large eigenvalue spread, which leads to poor prediction performance. 

Although the RLS is much less sensitive to the eigenvalue spread of the input, its 

considerable complexity makes it impractical to be applied in a high-order predictor.  

 

 The LMS algorithm is an attractive candidate for the adaptive linear predictor. 

Several methods have been proposed to improve the convergence performance of the 

LMS algorithm. Most of them adopt a two-step approach, where the input is de-correlated 

using either a suitable transform or an adaptive pre-whitener before the LMS filter. 

Examples include the frequency domain based FFT-LMS and DCT-LMS adaptive filters 

[27], improving the convergence at the cost of large misadjustment of the filter 
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coefficients and complexity. In the time domain, an FIR cascade structure with 

independently adapting and low-order LMS filter in each stage, has been reported for 

speech prediction [28].  

 

 In this chapter, we present a cascade structure, with an independently adapting FIR 

filter in each stage, to counteract the slow convergence problem. Moreover, the proposed 

structure exhibits lower overall MSE which results in better prediction gain than LPC. 

Although any adaptive FIR can be applied in each stage, e.g. the RLS can be used in low-

order stage, for simplicity and stability, we use the LMS in every stage in our study. 

 

4.1  Review of Adaptive Filter Algorithms 

 

Before we study the adaptive linear predictor, let us review the widely used RLS 

and LMS algorithms in this section. With ( )x n  denoting the input to the predictor, the 

residual error  of the RLS or LMS predictor is given by ( )e n

 

( ) ( ) ( ) ( )Te n x n n n= −w x      (4.1) 

  

where T  denotes matrix transposition, ( ) ( ) ( ) ( )1 , 2 , ,
T

n x n x n x n N= − − −⎡ ⎤⎣ ⎦x , and the 

filter tap weights .   ( ) ( ) ( ) ( )1 2, , ,
T

Nn w n w n w n= ⎡ ⎤⎣ ⎦w

 

With the RLS algorithm, the filter weights ( )nw  are updated as follows, 
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( ) ( ) ( )
( ) ( ) ( )

1

1

1
1 1T

n n
n

n n n
λ

λ

−

−

−
=

+ −
Q x

K
x Q x

     (4.2) 

( ) ( ) ( ) ( )1 Tn n n e+ = +w w K n      (4.3) 

and 

( ) ( ) ( ) ( ) ( ){ }1 11 Tn Tri n n n nλ λ− −= − −Q Q K x Q 1−     (4.4) 

 

where λ is a positive real-valued constant that is slightly smaller than 1, and the operator 

{ }Tri  signifies the calculation of the upper or lower triangular part of the matrix ( )nQ  

to improve the computational efficiency of this algorithm. Initialize the algorithm by 

setting ( ) 10 δ −=Q I  and ( )0 =w 0 , where δ is a small positive real-valued constant.  

 

With the LMS algorithm, the filter weights ( )nw  are updated as follows, 

 

( 1) ( ) ( ) ( )
1 ( ) ( )Tn n n e

n n
nµ

+ = +
+

w w x
x x

    (4.5) 

 

where 0 2µ< <  is the adaptation step size of the LMS algorithm. 

 

When we use the RLS or LMS algorithm in audio signal de-correlation, we need to 

choose the proper parameters, µ for LMS, λ and δ for RLS. According to the principles of 

LMS and RLS algorithm, these parameters should be selected properly, based on the 

statistical properties of audio signals.  
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4.2  The Cascade Structure 

 

In this thesis, we study a cascade structure for the adaptive linear predictor, with an 

independently adapting filter, e.g. an LMS filter, in each stage. 

 

 

Fig. 4.1:  Structure of cascaded predictor 
 

The general structure of the cascade for the linear prediction can be shown in Fig. 

4.1. In the cascade structure, each stage of the M sections uses an independently adapting 

FIR predictor of order , kl 1,...,k M= . Let ( )kx n  and ( )ke n  be the input and 

corresponding prediction error sample of stage , respectively, with the latter being given 

by  

k

 

( ) ( ) ( ) ( ) ( )
1

kl
m

k k k k
m

e n x n h n x n m
=

= − −∑     (4.6) 

 

where ( ) ( ) ( ) ( )1 ,..., kl
k kh n h n  are the time-varying taps of the k th predictor. Each stage of the 

cascade structure satisfies ( ) ( )1k kx n e n+ = ; ( )1x x n= , where ( )x n  is the input audio 
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signal. The error of the last stage, ( )Me n  is the final prediction error of the cascade 

structure. After convergence, ( ) ( ) ( )m
kh n h= m

k , where ( )m
kh  is a constant. The overall transfer 

function of the cascaded predictor can be expressed as 

 

( ) ( )
1

ˆ
M

k
k

H z H z
=

=∏       (4.7) 

 

where 

 

( ) ( )

1
1

kl
m m

k k
m

H z h z−

=

= −∑      (4.8) 

 

 

 In fact, the FIR predictor in such a cascade structure is inadequate for general input 

signals since the resulting prediction filter has only strictly real zeros. Craven et al and C. 

Montgomery have shown that an Infinite Impulse Response (IIR) predictor may 

potentially perform better [29] [30]. However, IIR predictors have not been widely used in 

lossless audio coding because the general solution for the MSE predictor is much more 

complicated in this case. Recently, there is a report that the speed of convergence of the 

cascaded FIR filter with LMS adaptation is faster and its initial MSE is usually smaller 

than those of equivalent-order LMS and lattice LMS predictors [28]. For each stage, the 

cost function is defined as 
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( ) ( )2 2
1k k kJ E e n E x n+⎡ ⎤ ⎡= = ⎤⎣ ⎦ ⎣ ⎦     (4.9) 

 

 In the experiments, the most successful experiments employed long filters in the 

middle stage and low-order filters in the preceding and subsequent stages. We will discuss 

it in follows. 

 

4.3  Characterization of a Cascaded Linear Predictor 

 

4.3.1  The Performance of LMS Predictor with Independence 

Assumption 

  

 Before developing a theoretical characterization of the cascade structure, we need 

to review the MSE performance of the LMS predictor. In the cascade structure, each stage 

performs prediction by passing past values through an -tap FIR filter, where the filter 

weights are updated through the LMS weight update equation 

kl

 

( ) ( ) ( ) ( )1
kk k k ln n e nµ+ = +h h x n

k ⎤⎦

     (4.10) 

 

where , and 

. 

( ) ( ) ( ) ( )1 , 2 , ,
k

T
l n x n x n x n l= − − −⎡⎣x

( ) ( ) ( ) ( ) ( ) ( ) ( )1 2, , , i
Tl

k k k kn h n h n h n⎡ ⎤= ⎣ ⎦h
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 The weight update equation is derived through a minimization of the mean-square 

error (MSE) between the desired signal and the LMS estimate, namely, 

 

( ) ( ) ( )( 22 ˆk k kE e n E x n x n )⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦
    (4.11) 

 

For simplicity, the performance of the LMS predictor can be analyzed with the 

independence assumption [27] which is described as follows,  

1. the composite (desired signal and input vector) vectors ( ) ( )ˆ
i

TT
i lx n n⎡ ⎤⎣ ⎦x , and 

 are independent of each other; ( ) ( ) ( ) ( )ˆ ˆ, ,
i i

TTT T
i l i lx n n x⎡ ⎤⎡ ⎤ ⎡ −∞ −∞⎣ ⎦ ⎣⎢ ⎥⎣ ⎦

x x
T
⎤⎦

2. ( )ˆix n  is dependent on ( )
i

T
l nx ; 

3.  and ( )
i

T
l nx ( )ˆix n  are mutually Gaussian. 

 

The performance of the LMS predictor can be bounded by that of the finite Wiener filter, 

where the filter weights are given in terms of the autocorrelation matrix of the reference 

signal , and the cross-correlation vector between the past value and desired signals r . 

Explicitly, the weights are 

kR

 

( ) 1
k n −=h Rk kr      (4.12) 

 

where  , ( ) ( )
k k

H
k l lE n n⎡ ⎤= ⎣ ⎦R X X ( ) ( )

k kk l lE n x n⎡ ⎤= ⎣ ⎦r X  and  denotes the conjugate 

transpose operator. 

H
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 The MSE of the LMS predictor under these assumptions is therefore bounded by 

the MSE of the finite Wiener filter, which is 

 

( ) ( ) ( )( ) ( ) ( )
2

2 2 T
kk k k kE e n E x n x n E x n −⎡ ⎤⎡ ⎤ ⎡ ⎤= − = −⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

R r r1
k k    (4.13) 

 

Referring to Equation (4.9), we are able to write the above equation in terms of the power 

spectral density function of ( ){ }kh n  as 

 

( ) ( ) ( )2

opt k k k kk x x k x xJ S d H S
π π

π π
dλ λ λ λ

− −
= −∫ ∫ λ     (4.14) 

 

Obviously, with the independence assumption the performance bound of the LMS 

predictor is the infinite Wiener filter. Actually, we will discuss it further without this 

assumption and obtain a lower performance bound in section 4.4. 

 

4.3.2  Characterization of the Cascade Structure 

  

 In this section, we try to prove that the cascaded adaptive FIR filter operates as a 

linear prediction in terms of successive refinements. The cascaded adaptive FIR operation 

can be described in the following theorem. 

 

Theorem 1:  
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In the cascaded FIR filter structure, each stage attempts to cancel the dominant mode of its 

input signal, i.e. to place its zeros close to the dominant poles of the Autoregressive (AR) 

model. It performs linear prediction with a progressive refinement strategy, i.e.  

 

( ) ( ) ( )1 1 1 1M M M MJ h J h J h− −≤ ≤ ≤      (4.15) 

 

Proof:  Assuming N  to be the minimum description length (MDL) of the AR model, the 

time series ( ) ( ) ( ), 1 , ,x n x n x n N− −  can be realized by an AR model of order N  as it 

satisfies the difference equation 

 

( ) ( ) ( ) ( )* *
1 1 Nx n a x n a x n N v n+ − + + − =     (4.16) 

 

where  are complex-valued constants, * denotes the conjugate operator and 1, Na a ( )v n  

is white noise. The corresponding system generates ( )x n  with  as input, whose 

transfer function is  

( )v n

 

( )
*

0

1
N

i
i

i

H z
a z−

=

=

∑
      (4.17) 

 

This function is completely defined by specifying the location of its poles, as shown by 
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( ) ( )( ) ( )1 1
1 2

1
1 1 1 N

H z
1p z p z p z− −

=
− − − −

    (4.18) 

 

The parameters 1 2, , , Np p p  are the poles of ( )H z ; they are defined by the roots of the 

characteristic equation 

 

* 1 *
11 N

Na z a z− − 0+ + + =      (4.19) 

 

 For the system to be stable, the roots of the characteristic Equation (4.19) must all 

lie inside the unit circle in the -plane, e.g., z 1kp < , for all 1, ,k N= . The FIR filter of 

order in each stage contributes to estimate weights  in the linear prediction 

problem 

N *
1 , , Nw w*

 

( ) ( ) ( ) ( )* *
1 1 Nx n w x n w x n N v n= − + + − +     (4.20) 

 

such that . The analyzer function kw = − ka ( )H z  can be expressed in cascade form 

 

( )
( ) ( ) ( )

1 2

* 1 * 2 *
0 1

1 2
1 1 1

1

1 1

N
N

l l M
m mm m

k
m m k

H z w z w z w z

h z h z H z

− − −

− −

= = =

= − − − −

⎛ ⎞⎛ ⎞
= − − =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑ ∏    (4.21) 

where . We have the output 
1

M

k
k

l N
=

=∑ ( )1e n  of the first stage of the cascaded FIR 

structure when the LMS predictor converges to its steady-state value,  
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( ) ( ) ( ) ( ) ( ) ( )

( )( )( )
( )

( ) ( )

1

1

1

0

*
1 1

1 1

* *
1

1

lM
m

m
m m

l M
m

m m
m m l

e n

e n w x n m v n h n x n m

w h n m w x n m v n

= =

= =

= − + −

= − − + − +

∑ ∑

∑ ∑

−

   (4.22) 

 

The cost function at the first stage becomes 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )( )

( )

1

1

2
1 1

2 2
0 0

*
0

2

*

2

2
N

m
m l

N

m
m l

J n E e n

e n v n e n v n

E w x n m e n v n

w x n m

=

=

⎡ ⎤=
⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥+ +
⎢
⎢= + − +⎢ ⎥
⎢ ⎥
⎢ ⎥⎛ ⎞⎢ ⎥+ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑

∑

⎥
⎥

    (4.23) 

 

According to the principle of orthogonality, in the steady-state, ( ) ( )0 0E e n v n =⎡ ⎤⎣ ⎦  and 

. The cost function becomes ( ) ( ) ( )( )0 0E x n m e n v n⎡ − +⎣ ⎤ =⎦

 

( ) ( ) ( ) ( )
1

2
2 2 *

1 0

M

v m
m l

J n E e n n w x n mσ
=

⎡ ⎤
⎢ ⎥= + + −
⎢ ⎥⎣ ⎦

∑    (4.24) 

 

where  is the variance of the white noise ( )2
v nσ ( )v n . We see that  achieves its 

minimum, if and only if, the following two terms are minimal  

( )1J n
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( ) ( )
0

2
1 0e

J n E e n⎡ ⎤=
⎣ ⎦

     (4.25) 

and 

( ) ( )
1

2

*
1w

M

m
m l

J n E w x n m
=

⎡ ⎤
⎢ ⎥= −
⎢ ⎥⎣ ⎦
∑     (4.26) 

 

It means that the first stage attempts to cancel the dominant mode of its input signal, i.e. to 

place its zeros close to the dominant poles of the AR model. 

 

 Let us look at the sufficient condition. If ( )
01e

J n  and  are minimal, the 

dominant component of the input signal is removed. In fact, 

( )1w
J n

( )1H z  can be decomposed as 

 

( ) ( )( ) ( )1

1 1
1 1 2

ˆ ˆ ˆ ˆ1 1 1 lH z p z p z p z− −= − − − 1−     (4.27) 

 

The zeros 1ˆ 1, 1, ,kp k< = l  are close to the poles 1, 1, ,kp k l=  in Equation (4.18), 

which dominates the main component of the input. The remaining poles 

1, 1,k ,p k l N= +  contributes to the minor components of the input, resulting in the 

minimum . ( )1w
J n

 

 For necessary condition, only if, we can assume that the zeros 1ˆ 1, 1, ,kp k l< =  

are close to the poles 1, 1, ,kp k l=  in Equation (4.18), which are not the dominant 
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component of the input. There are poles among the , 1, ,kp k M= , which give the 

dominant component of the input. Therefore, there is a subset of  such that ˆ kw

 

( ) ( )
1 1

2 2

* *ˆ
N N

m m
m l m li i

w x n m w x n m
= =

− > −∑ ∑      (4.28) 

 

The  is not minimum. This is contradictory to the initial assumption, i.e. the cost 

function  achieves its minimum, resulting in the minimum . Thus the first 

stage will attempt to cancel the dominant mode of its input signal, i.e. to place its zeros 

close to the dominant poles of the AR model. The proof for the second stage is done in 

same way, and so on. 

( )1w
J n

( )1J n ( )1w
J n

 

 Referring to Equation (4.9) and Equation (4.14), it is easy to verify that  

 

( ) ( ) ( ) ( )

( ) ( )
2

2
2

1

2
1 1 1 1

k kk k k k x x

a

k k k k

J h E e n H S d

J h a J h

λ λ λ−

− − − −

⎡ ⎤= −⎣ ⎦

= − ≤

∫
   (4.29) 

 

where . Therefore, ( )2 2
1ka E e n−⎡< ⎣ ⎤⎦ ( ) ( )1 1 1 1M M M MJ h J h J h− −< < < ( ) , the theorem is 

proved. 

■ 
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 With Theorem 1, we can derive the following property of the cascaded LMS 

predictor. 

Lemma 1: 

If each stage of the cascade LMS predictor converges to its steady-state value, the 

cascaded FIR filter structure possesses the following property: 

 

( ) ( ) ( )1M M 1R Rχ χ χ−< < < R     (4.30) 

 

where the eigenvalue spread ( ) max

min

k
k

k

R
λ

χ
λ

= .  

 

Proof: The condition given in Lemma 1 means that the optimum cascaded FIR filter 

structure satisfies Theorem 1. The output of the first stage ( )1e n  can be characterized by a 

-tap input vector. In other words, after the first stage’s adaptation and 

convergence, the input signal’s dynamic range to the second stage is reduced. The ratio 

between the peak and average of the power spectral density of the input signal is 

decreased. Thus 

( 1N l− )

 

( ) ( )2 1R Rχ χ<      (4.31) 
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For the output of the second stage ( )2e n , by the same reason, it can be estimated using a 

-tap input vector. Therefore, the eigenvalue spread of the input to the third 

stage satisfies 

( 1 2N l l− − )

 

( ) ( )3 2R Rχ χ<      (4.32) 

 

and so on until the last stage, the input can be estimated using a -tap input vector and 

satisfies 

kl

 

( ) ( )1M MR Rχ χ −<      (4.33) 

 

The lemma is proved. 

■ 

4.3.3  Simulation Results 

 

In the demonstration of the theorem and lemma above, we assume that each stage 

of the cascaded LMS predictor converges to its steady-state value. However, LMS 

convergence speed suffers from both the length of the filter and the eigenvalue spread of 

the input covariance matrix. In this simulation, the first stage uses a low-order filter as a 

pre-whitening adaptive filter to reduce the eigenvalue spread. The second stage adopts a 

long LMS predictor, which works well for general signals and it is different from the 

cascaded low-order filters [28].  
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(a) 

 

(b) 
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(c) 

Fig. 4.2: Frequency response of a 3-stage cascaded LMS predictor: (a) First stage 
x1(n) and e1(n); (b) Second stage x2(n) and e2(n); (c) Third stage x3(n) and e3(n) 

 

We carried out the simulation for real audio signals to evaluate the behavior of the 

cascaded LMS predictor. To support the theoretical analysis, the prediction results of the 

3-stage cascaded LMS predictor are shown in Fig.4.2, from which it can be observed that 

the cascaded LMS predictor removes the dominant component of input by successive 

refinements at each stage. 

  

 We gave a formal proof that the cascaded adaptive linear predictor performs linear 

prediction in terms of successive refinement, under the assumption that each stage of the 

cascade predictor converges to its steady state. Because of the successive refinement, i.e. 
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the lower MSE and faster convergence stage by stage, the adaptive linear predictor may 

lead to better predictive gain than LPC technique [31]. We will study the performance 

bound of this structure in the next section.  

 

4.4  A Performance Bound for a Cascaded Linear Predictor 

 

4.4.1  Performance Bound 

  

 As discussed in section 4.3.1, the performance of the LMS predictor can be 

bounded by that of the finite Wiener filter with the independence assumption [27] for 

simplicity. In this section we will discuss it further without the independence assumption.  

 

 Assuming that the initial weight vector at time n = −∞  is the all-zero vector, we 

can write the LMS predictor as a nonlinear function ( )f  of semi-infinite set of input 

signal, as well as of past values of the desired signal,  

 

( ) ( ) ( ) ( )

( ) ( ) ( )( )

1

ˆ

ˆ, 1 , , 1 ,

k k

n
T

k l l
i

k k k

x n e i x n x n

f x n x n x n

µ
−

=−∞

=

= − −

∑
    (4.34) 

 

 

 The performance of any predictor can be bounded by that of the optimal predictor. 

The optimal MSE predictor is given by the mean of the desired signal, conditioned on the 
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knowledge of all information available to the predictor. Examining Equation (4.34) for the 

LMS predictor, the optimal predictor is given by 

 

( ) ( ) ( ) ( ) ( ){ }ˆ ˆ, 1 , , 1 , ,k k k k kx n E x n x n x n x= − − ˆ −∞    (4.35) 

 

Actually, to solve the problem it is required to know the statistics of the signals ( )ˆkx n  and 

( )kx n . In the analysis, the third assumption is kept. The mutually Gaussian assumption is 

similar to that for the optimal LMS estimator in [32]. Including the entirety of both 

processes, the optimal predictor of th stage is given by k

 

( ) ( ) ( ) ( ) (
1 1

ˆˆ ˆ
n n

k x k x
i i

)kx n h n i x i h n i x
− −

=−∞ =−∞

= − + −∑ ∑ i     (4.36) 

 

where the impulse responses of the causal linear predictor for ( )kx n  and causal linear 

predictor for ( )ˆkx n  are given as ( )xh n  and ( )x̂h n , respectively. The MSE of the optimal 

predictor, and thus a bound on the LMS predictor’s performance is  

 

( ) ( ) 22 ˆ
optk k kE e E x n x n⎡ ⎤⎡ ⎤ = −⎣ ⎦ ⎣ ⎦

    (4.37) 

 

As the same analysis process in [32], we are able to write above equation in terms of the 

spectral density functions as 
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( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

22
ˆ ˆ ˆ

*
ˆ ˆ

2

2

opt k k k k k

k k k k

k k k

k x x x x x

k
x x x x

x x x

E e S d H S d

R e H H S d

H S d

π π

π π

π λ

π

π

π

λ λ λ λ

λ λ λ λ

λ λ λ

− −

−

−

−

⎡ ⎤ = −⎣ ⎦

−

−

∫ ∫

∫

∫

λ

   (4.38) 

 

Equation (4.38) is a bound on the performance of the LMS predictor under a mild set of 

assumptions which does not exclude data contributions available to the predictor. 

Therefore, the performance bound of a cascaded LMS predictor can be described in the 

following theorem. 

 
Theorem 2:  

In an M-stage cascaded LMS predictor, each stage attempts to cancel the dominant mode 

of its input signal in a successive refinement strategy. The performance of such predictor 

is bounded by,  

 

( ) ( ) ( )

( ) ( ) ( )( )
( ) ( )

2

ˆ ˆ ˆ

*
ˆ ˆ

2

2

M M M M M

M M M M

M M M

opt M x x x x x

M
x x x x

x x x

J J S d H S d

R e H H S d

H S d

π π

π π

π λ

π

π

π

λ λ λ λ

λ λ λ λ

λ λ λ

− −

−

−

−

≤ = −

−

−

∫ ∫

∫

∫

λ

   (4.39) 

 

 

4.4.2  Simulation Results 

 

The performance of the cascaded LMS predictor has been bounded with Equation 

(4.39) for the class of signals satisfying assumptions in [32]. In this section, we desire to 
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demonstrate this bound for the example where the LMS as well as the cascaded LMS 

predictor outperform the finite Wiener filter. To do this, we use stable Autoregressive 

Moving Average (ARMA) processes generated by the following system whose poles are 

restricted to be close to the unit circle meeting assumptions in [32], 

 

poles ,  zeros     (4.40) 
0.3

0.75 0.5809
0.5 0.8307

j
j

−⎧
⎪ ±⎨
⎪− ±⎩

1.05
0.2

0.9 0.4472j

⎧
⎪−⎨
⎪ ±⎩

 

when driven by white noise, normalized to yield 0 1r = . 

 

The MSE performance of the LMS predictor was evaluated through Monte Carlo 

simulations. The performance of the finite Wiener filter using Levinson-Durbin algorithm 

was evaluated numerically. 

 

Fig. 4.3 shows the learning curve, the average MSE of LMS predictor and the 

MSE of the finite Wiener filter using Levinson-Durbin algorithm. In this case, the average 

MSE of LMS predictor and the MSE of Wiener predictor are 5.2892dB and 6.4265dB, 

respectively. The LMS predictor performs better than Wiener predictor. 
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Fig. 4.3: MSE of the LMS predictor and the LPC based predictor 
 

Fig. 4.4 shows the learning curves of an LMS predictor and a three-stage cascaded 

LMS predictor for the above ARMA process. We observe that the cascaded LMS 

predictor behaves faster convergence than the single stage LMS predictor. It means that 

the cascade FIR structure using LMS algorithm leads to better prediction than the 

traditional LPC technique. 
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Fig. 4.4: The learning curves of the LMS predictor and the cascaded LMS predictor 
 

Fig. 4.5 shows the learning curves of each stage in a three-stage cascaded LMS 

predictor. The three stages’ average MSE are 5.39 dB, 4.30 dB, and 4.20 dB, respectively, 

calculated after 400 iterations. The results confirm Theorem 1, while each stage converges 

to its optimal value, and the cascaded LMS predictor behaves in a successive refinement, 

i.e. 

 

3 2J J J1< <       (4.41) 
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Fig. 4.5: The leaning curves of each stage in three-stage cascaded LMS predictor 
 

We bounded the performance of the cascaded LMS predictor without using the 

independence assumption where the cascaded LMS predictor outperforms the finite 

Wiener predictor, which has been known as a bound of the LMS predictor under 

independence assumption. The conclusion is that the performance of the cascaded LMS 

predictor can be better than the traditional LPC technique for synthetic or real audio 

signals [33].  

 

4.4.3  Challenge 
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 In section 4.3 and 4.4, we analyzed the characteristics and performance bound of 

the cascaded adaptive linear predictor in theory. It is pointed out that this cascaded 

predictor can perform better than LPC technique. In [28], Prandoni and Vetterli have 

proposed a second-order cascaded predictor, which gives a good performance for speech 

signal prediction. However, can this low-order cascade structure still work well for audio 

signal prediction? Although we proved the advantage of cascade structure in theory, we 

face the challenging task in practical application. For example, for audio signal prediction, 

what kind of the cascade structure should be to surpass the LPC technique? We will study 

this in following sections. 

 

4.5  An Adaptive Cascade Structure for Audio Signals Modeling 

 

4.5.1  Signal Models 

  

 The prediction efficiency of an adaptive linear predictor requires fast convergence 

as well as low MSE. In order to design a structure suitable for modeling all signals, we 

investigate the transient behaviour and the MSE performance of the cascaded LMS 

predictor for three classes of signals through simulations. The three models we chose are 

described as follows, 

(a) Signals with well separate poles; 

 (b) Signals with frequency spectra symmetric around 
2
π ; 

 (c) Signals with clustered poles. 
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 It is well known that most signals can be modeled by model (a), i.e. with well 

separate poles. Therefore, the basic requirement is that the good predictor should give a 

superior performance for such signals. However, the challenging task is to get the uniform 

cascade structure to model any audio signal efficiently. We find that even if the structure 

can work perfectly for signals with well separate poles, it is possible that such structure 

would still fail in general audio signal modeling. That is because the models for audio 

signals, normally composed of abundant poles and zeros, are always complex and 

diversified. Therefore, to get the universal structure for audio signal modeling, other 

typical signal models must be considered as well, such as model (b) and (c). The optimal 

structure should work well for all classes of signals in average sense. We will discuss it in 

details in following sections. 

 

 In simulation, the zero-pole positions for different models are shown in Fig. 4.6 

respectively. We use an ARMA model (with 5 poles and 4 zeros) for signals with well 

separate poles, an AR model (with 6 poles and without zero) for signals with frequency 

spectra symmetric around 2π  (whose autocorrelation is zero at odd lags), and an ARMA 

model (with 9 poles and 4 zeros) for signals with clustered poles. The input simulation 

signals are obtained by filtering unit variance Gaussian white noise through the ARMA or 

AR modeling filter. 
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   (b)       (c) 

Fig. 4.6: Zero-pole position diagram: (a) ARMA (5 poles and 4 zeros); (b) AR (6 
poles); (c) ARMA (9 poles and 4 zeros) 

 

 

4.5.2  A Cascade Structure for Signals Modelling 

 

 In the experimentation, we compare the performance of standard LMS predictor, 

one-tap, two-tap cascaded LMS predictors [28] and the proposed cascaded LMS predictor, 

in which low-order LMS predictors are preceding and subsequent to a long LMS predictor. 
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 The standard LMS filter, i.e. one stage LMS filter will be labelled as ”LMS”. The 

one-tap cascaded LMS filter which contains  stages, will be labelled as ”CLMS1”. And 

a  stages second-tap cascaded LMS filter will be labelled as ”CLMS2”. For 

simplicity, the length of the standard LMS filter is selected as 8 taps, i.e. 

N

/ 2N

8N = , for 

simulation. In such case, the proposed cascaded LMS predictor can be designed as 2-tap 

filter for first stage, 4-tap filter for second stage and 2-tap filter for third stage, which is 

labelled as ”CLMS”. Now these four predictors have the equivalent order length. 

 

 The results for three classes of signals are shown in Fig. 4.7(a), (b) and (c) 

respectively. In Fig. 4.7(a), it can be seen that the best to the worst performance order is 

CLMS, CLMS2, LMS, and CLMS1, which confirms our analysis. In fact, for signals with 

well separate poles, 2-tap cascaded LMS filter is enough to successfully model it. 

However the proposed cascade structure can get better performance than two-tap cascade 

structure. Because most signals are in such model, both of the proposed structure and the 

two-tap cascade structure can be the candidates. However, the one stage LMS is not the 

good choice because it fails in modelling such signals well.  
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(c) 

Fig. 4.7: MSE performance comparison between LMS (dotted line), one-tap cascade 
LMS (dash-dot), two-tap cascade LMS (dashed) and variant length cascade LMS 

(solid) in predicting signal in (a) model a; (b) model b; (c) model c 
 

 

 From Fig. 4.7(b) and (c) it can be seen that the proposed structure and the one-

stage filter behave the best and get the similar performance. It is also seen that the one-tap 

cascaded LMS predictor cannot get good performance as expected, and the two-tap 

cascaded LMS predictor cannot behave better than the standard LMS predictor for these 

two cases. These simulation results are consistent with the theory. It is well known that the 

small autocorrelation matrix would not allow the low-order filter to cancel the separate 
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modes of input signal which is generated by the signals with frequency spectra symmetric 

around 2π  or with clustered poles. It means each stage of the predictor cannot place its 

zeros close to the dominant poles of input signal. Therefore the dominant modes cannot be 

cancelled or weakened much as in predicting signals with well separate poles. As a result, 

the output error of each low-order stage is unchanged almost compared to the input signal. 

It is one of reasons for which the low-order cascade structure fails to work well in these 

two classes of signals. However, the proposed cascaded LMS predictor, with short filters 

and long filters, still gets the satisfied performance for these classes of signals. 

  

 Obviously, from the simulation results, the optimal cascaded filter is CLMS. It is 

well known that LMS predictor’s convergence speed suffers from the big eigenvalue 

spread of the high correlated input signals. In the experiment, we have not discussed such 

structure in which a long filter is used as the first stage. Using a long filter in first stage is 

not recommended, because convergence performance of such structure is heavily affected 

by high correlated input. In the proposed structure, the first low-order stage can be used as 

a pre-whitening adaptive filter to reduce the eigenvalue spread. The second stage adopts a 

long LMS filter, which is required for most audio signals modeled with abundant poles 

and zeroes.  

 

 In this section, we studied the cascaded adaptive linear prediction for audio signal 

modelling [34]. The simulation results and analysis show that low-order cascade structure, 

which is good for speech coding, is not applicable for audio signal modelling. It comes to 

propose the optimal and uniform cascade structure as follows: the optimal cascade 
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structure is composed of high-order filter in middle and low-order filters in previous and 

followed.  

 

 

4.6  High Sampling Rate Audio Signal Modeling 

 

4.6.1  Motivation 

 

 As mentioned before, the proposed adaptive linear predictor should work well for 

all of the audio signals with different sampling rates, i.e. not only 48 kHz but also 96 kHz 

and 192 kHz. If we got the predictor with an optimal cascade structure for audio signals 

with 48 kHz sampling rate, will the predictor still be applicable for corresponding audio 

signals with 96 kHz or 192 kHz sampling rate? 

 

 In section 4.5, we have already successfully designed and proposed an optimal and 

universal cascade structure for audio signal modelling. However, the optimal predictor 

cannot be applicable for signals which are generated by up sampling the corresponding 

original audio signals. It means that the optimal predictor for audio signals with 48 kHz 

sampling rate is always not optimal for the signals with 96 kHz or 192 kHz sampling rate. 

That is because the bandwidth of high sampling rate signals is larger than that of low 

sampling rate signals. Therefore the wider bandwidth, low pass filter is necessary to get 

better modelling for high sampling rate signals. Meanwhile, it also raises the challenging 
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task. In this section, the purpose is to propose a uniform cascade structure for high 

sampling rate audio signal prediction with minimum description length FIR filters [27]. 

 

 Similarly, we study such cascade structure for high sampling rate audio signals’ 

modeling based on different zero-pole positions of signals such that the stability of the 

cascade LMS structure can be guaranteed. We will present the cascade LMS structure and 

the experimental results which are generated by applying this proposed LMS structure in 

modeling some typical signal models.  

 

4.6.2  Study for High Sampling Rate Audio Signal Modeling 

 

 In order to get the high prediction gain, fast convergence and low MSE are 

required. In this part, we use three typical signal models to study the behaviours of the 

cascaded LMS predictor. The purpose is to design a suitable cascade structure for 

modeling most audio signals. 

 

 The three models are same with the models in section 4.5. As discussed, the 

optimal structure should perform the best for all classes of signals in average sense. In 

simulation, the zero-pole positions for different models are shown in Fig. 4.6 respectively. 

The input simulation signals are obtained by filtering unit variance Gaussian white noise 

through the ARMA or AR modeling filter. 
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 With the same signal models as that in section 4.5 we have discussed and proposed 

a cascade structure for modeling audio signals with low sampling rate, i.e. 48 kHz. The 

proposed structure is composed of long filter in middle and low-order filters in previous 

and followed. Importantly, such structure outperforms other cascade LMS structure and 

LPC technique. However, the structure proposed in section 4.5 may not give good 

performance for high sampling rate because the designed low pass filter behaves as a 

relative narrow band filter. For the purpose of studying the modeling of high sampling rate 

signal, the corresponding signals are operated by up sampling. 

 

 The simulation results are shown in Fig. 4.8 for the behaviours of different 

structures for above three typical signal models. These figures show the transient phase 

and the steady-state mean-square errors, which are averaged over an ensemble of 50 trials. 

We can observe the performance of different cascade structures for signal modeling. The 

standard LMS predictor with 8 taps is labelled as "LMS8". The learning curves for three 

different cascade structures are illustrated. One labelled as "CLMS242" is with 2-tap filter 

at first, 4-tap filter in middle, and 2-tap filter at last. Another is labelled as "CLMS442" 

with two 4-tap and one 2-tap filters in order. The third one is labelled as "CLMS2" with 4 

stage 2-tap filters. Clearly, the one stage LMS performs the worst among them. 
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(c) 

Fig. 4.8: MSE performance comparison between conventional LMS (dash-dot), 
CLMS2 (dash), CLMS242 (dotted) and CLMS442 (solid) for (a) model a; (b) model b; 

(c) model c 
 

 

 In Fig. 4.8(b), it can be seen that the performance of low-order cascaded LMS 

predictor [28] is very poor. This result is consistent with the fact that low-order cascaded 

predictor cannot perform effectively in audio signal modeling, as discussed in section 4.5. 

Although it works well in Fig. 4.8(c), it cannot be the good structure because it fails to be 

applied for some signals with certain models, especially the model (b) studied. For audio 

signal modeling, it is essential to get the uniform structure to model all classes of audio 

signals well so as to get the best performance on average. Therefore, it is necessary to use 
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other typical models (b) and (c) to study the cascade structure besides the model with well 

separate poles. 

 

 Since low-order stages cascade structure is improper, let us look at the structures 

CLMS242 and CLMS442. In this simulation, the high sampling rate signal is obtained by 

up sampling the original signal by four times. The CLMS242 is the optimal structure for 

signal modeling when the simulation signal is not processed by up sampling. It can be 

seen that such structure still works well to modelling signals with up sampling. However, 

CLMS442 behaves faster convergence speed in Fig. 4.8(a) than CLMS242 which is the 

optimal cascade structure for original signal modeling. As mentioned above, because most 

signals are modeled with well separate poles, the structure CLMS442 obviously has an 

advantage in high sampling rate signals' modeling since it performs the best for such 

signals. Moreover, its performances in Fig. 4.8(b) and Fig. 4.8(c) are still acceptable and 

similar with CLMS242. 

 

 Importantly, the optimal structure is the structure which performs the best for all 

the signal models on average. From the analysis above, among the structures the optimal 

one obviously should be CLMS442, which is different but related with the structure 

CLMS242. From the simulation results and analysis, for high sampling rate audio signal 

modeling, we come to propose the uniform cascade structure as follows: similar with the 

low sampling rate signal modeling, the optimal cascade structure is composed of high-

order filter in middle and low-order filters in previous and followed. The difference is that, 

for high sampling rate, the signals can be better modeled by increasing the order length in 

the low-order stage filters properly and purposely. 
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 It is well known that LMS predictor convergence speed suffers from the big 

eigenvalue spread of the high correlated input signals. Long filter in first stage is not 

recommended, because convergence performance of such structure is heavily affected by 

high colored input. In our proposed structure, the first low-order stage can be used as a 

pre-whitening adaptive filter to reduce the eigenvalue spread. The second stage adopts a 

long LMS filter, which is required for most audio signals modeled with abundant poles 

and zeroes. In this section, we concern the high sampling rate audio signals mainly. 

Clearly, by up-sampling the correlation between signal samples is much increased 

compared with the correlation of the original signal. Therefore, to increase the order of 

low-order filters properly is reasonable for better modeling purpose, since the low-order 

filters act as the whitening filters to reduce the eigenvalue spread. 

 

 Moreover, it is proved that in cascaded FIR predictor, each stage attempts to cancel 

the dominant mode of its input and performs a linear prediction with a successive 

refinement strategy. Consequently, the eigenvalue spread becomes smaller in each stage, 

which results in the faster convergence. Basically, the simulation results confirm the 

analysis in theory. 

 

 In this section, we studied the cascaded adaptive linear predictor for high sampling 

rate audio modeling [35]. For lossless audio coding purpose, we proposed a uniform 

cascade LMS structure which can model all high sampling rate audio signals well. As 

similar as the low sampling rate signal modeling, the optimal cascade structure is 

composed of high-order filter in middle and low-order filters in previous and followed. 
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However, the signals with high sampling rate can be better modeled by increasing the 

order length in the low-order filters properly and purposely. 

 

 

4.7  Application for Prediction of Audio Signals 

 

 Based on the theoretical and experimental study, we apply the proposed cascade 

LMS structure to audio signals sampled at different rates (48 kHz, 96 kHz and 192 kHz). 

We tested 51 audio clips provided by MPEG-4 with different predictors of lossless audio 

CODEC, which are Monkey’s 3.97, cascaded LMS and TUB LPC predictor. The cascaded 

LMS predictor is designed with low-order and high-order adaptive filters, while using 

longer filters in the low-order filter stages for high sampling rate audio signals.  

 

Table 4.1  SNR for Different Lossless Predictors 

Monkey 3.97 (dB) Cascade LMS (dB) TUB LPC (dB) Track 
L R L R L R 

48kHz/16bit 28.8 29.3 29.5 30.1 28.1 28.6 
48kHz/24bit 28.9 29.5 30.0 30.6 28.6 29.1 
96kHz/24bit 51.5 52.0 53.9 54.8 53.5 54.2 
192kHz/24bit 63.4 63.0 65.4 64.9 65.3 64.7 

 
 
 

 The average results of Signal to Noise Ratio (SNR) for different predictors are 

shown in the Table 4.1. From the Table 4.1, it can be seen that the SNR of the cascaded 

LMS is about 1dB over that of LPC used by TUB for 48 kHz. For 96 kHz and 192 kHz, 

the SNR of the cascaded LMS predictor is about 0.1~0.4dB over LPC of TUB. It shows 

 - 58 -



Chapter4: Adaptive Linear Predictor 

that the proposed predictor in such cascade structure gives the best predictive gain among 

them for both low and high sampling rate audio signals. It supports our theoretical 

analysis that cascaded LMS predictor can outperform the LPC technique which is using 

Levinson-Durbin algorithm.  

 

 In fact, experimental study above gave us the guideline to design optimal cascaded 

LMS predictor. The principle of structure selection is to design the structure with short 

filters and long filters for audio signals’ modeling. The number of filters and the step size 

selection depend on the input signals. To study the design of cascade structure, e.g. the 

order selection in each stage in theory should be the future work. 

 

4.8  Summary 

 

In this chapter, we studied theoretically an adaptive linear predictor in detail. 

Furthermore, according to the experimental study and theoretical analysis, we proposed a 

cascade structure to design the optimal adaptive linear predictor. The adaptive linear 

predictor with a cascade structure performs a linear prediction in terms of successive 

refinement in each stage, which results in fast convergence and low final MSE. Most 

importantly, it is given out that the MSE performance of adaptive filter, e.g. LMS, can 

surpass the performance of LPC, which is always considered as the performance bound of 

LMS.  

 

In practical application, it has been seen the proposed predictor with cascade 
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structure can work better than the single stage adaptive predictor and maybe the predictors 

in other cascade structures. Most importantly, it is observed that the adaptive linear 

predictor outperforms the LPC predictor on average for the prediction of audio signals 

sampled in different sampling rates.  
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CHAPTER 5  

RANDOM ACCESS FUNCTION IN ALS 

 

5.1  Introduction 

 

 Random access (RA) enables random and fast access to any part of the encoded 

audio signal without costly decoding of previous parts. Obviously, this is an important and 

practical function for audio CODEC. For example, RA enables customers to edit and play 

back the compressed audio signals. This function is also required in MPEG-4’s CfP of 

lossless audio coding [2]. Therefore, in this chapter, we will discuss and implement the 

random access function in our CODEC.  

  

 In general, to allow random access the encoder inserts random access frames at 

intervals of several frames. The number of frames between two random access frames is 

given by  

 

_
s RA

RA RA
f

f tN
N

⎢ ⎥⋅
= ⎢ ⎥
⎢ ⎥⎣ ⎦

      (5.1) 

 

where sf  is the sampling rate of PCM wave, such as 48kHz,  is the random access 

interval in second,  is the frame length and operator 

RAt

fN ⎢ ⎥⎣ ⎦  is the integer operation. The 

random access frame can be decoded without decoding previous frames. In other words, in 
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those random access frames, no samples and no information from previous frames are 

used for prediction. Moreover, at the start of each random access frame the encoder also 

need insert several bytes field which specifies the distance to the next random access 

frame, thus enabling a fast search inside the compressed file. An example for the general 

bit stream structure of a compressed file with random access is shown in Fig. 5.1. The 

field “R” appears only at the beginning of random access frames (e.g. Frame 1, Frame 4 

and each third frame) and specifies the distance (in bytes) to the next random access frame. 

 

Header R Frame 1 Frame 2 Frame 3 Frame 4 Frame 5R Frame X Non-audio... CRC

 

Fig. 5.1: General bit stream structure of a compressed file with random access 
 

 It is well known that samples of most audio signals have strong correlation which 

can be reduced considerably by linear predictor. Then the output residual error of 

predictor is coded by an entropy coding technique, such as Rice coding. In order to get the 

satisfied compression performance, the correlation must be reduced as much as possible. 

However, to support the random access function, the CODEC has to reconstruct perfect 

signals from a random access point without using any of the previous signal information. 

It means that to support random access for linear prediction, the loss of prediction gain has 

to be introduced because a number of samples at the beginning cannot be predicted 

sufficiently without the information of previous frame. In such case, for the traditional 

LPC technique, a method called “progressive prediction” has been proposed in order to 

enhance the compression performance in [36].  
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 In previous chapter, we have provided an adaptive linear predictor for lossless 

audio coding, which can get better prediction gain than LPC technique. Therefore, we will 

see that with the adaptive linear prediction, the audio CODEC can get a satisfied 

compression performance without supporting random access. However, in random access 

mode, the compression performance is dropped heavily because the adaptive linear 

prediction suffers from more loss of performance than LPC technique in this case. The 

method progressive prediction which works well for LPC predictor, is not applicable for 

adaptive linear predictor due to the special properties of the adaptive filter, which will be 

discussed in following section.  

 

 In random access frame, the initial values of the adaptive linear predictor should be 

reset such that the decoder can reconstruct the signal without any extra information from 

previous frames. As the cascaded adaptive predictor does instance-based analysis and its 

convergence behaviour depends tightly on the initial values, e.g. the previous samples 

values which are used to predict the first samples of RA frames and the initial weight 

information of the adaptive filter, if the initial values are reset to zeros, the adaptive linear 

predictor need a transition period to converge to its steady state. In other words, there is 

existing a transition period which always contains the large errors in each RA frame, 

which degrades the performance of the adaptive linear predictor heavily. The proposed 

adaptive linear predictor is designed with a cascade structure in order to increase the 

convergence speed, i.e. to reduce the transition period. However, in RA mode, the 

problem resulting from the transition period becomes more vital for the performance. 

Therefore, although we have proposed an optimal adaptive linear predictor, we still have 

 - 63 -



Chapter5: Random Access 

to do more to improve the compression performance while realizing the random access 

because of the unavoidable transition period of adaptive linear predictor.  

 
 
5.2  Basic Ideas 

 

5.2.1  Improvement of Adaptive Linear Predictor for RA mode 

 

 In Chapter 4, we have proposed an adaptive linear predictor. Meanwhile, it is also 

pointed out that most adaptive algorithms can be used for the single stages. For simplicity 

and stability, LMS algorithm is adopted in each stage in Chapter 4. However, it is well 

known that LMS filter suffers slow convergence for inputs with large eigenvalue spread.  

 

In RA mode, to increase the convergence speed becomes more important since this 

problem exists in each RA frame. Considering RLS algorithm is less sensitive to the 

eigenvalue spread of input, in this section, we use the low-order RLS filter in the first 

stage, thus the slow convergence problem can be mitigated.  

 

5.2.2  Separate Entropy Coding Scheme 
 
 

 The separate entropy coding scheme is proposed to improve the compression 

efficiency for RA frames in lossless audio coding with the proposed adaptive linear 

predictor.  
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 In general, the error values in transient phase are always larger than the error 

values in steady state. The residual error of predictor will be coded by an entropy coding 

scheme, which is an improved Rice coding technique in our CODEC system. In section 

2.3.3, it has been discussed that Rice coding is the most efficient algorithm for the signals 

which are Laplacian distributed. Because the error signals in steady state can be modeled 

with Laplacian distribution function, Rice coding technique is widely used in this 

application. Obviously, the error signals which are larger in transient phase can distort the 

probability distribution, which results in less efficiency of Rice coding. In other words, if 

we code the output signals of the predictor as a whole, the efficiency of Rice coding 

should be reduced because the supposed Laplacian distribution is distorted. Therefore, to 

separate the output signals as transient phase and steady state, and coding them 

respectively is a reasonable method to improve the compression performance for RA 

frames.  

 
 
5.3  Separate Entropy Coding Scheme 
 
 

5.3.1  A Simplified DPCM Prediction Filter 

 

 For some audio signals, except for the larger values in transient phase, an 

explosive divergence may happen in some RA frames at the beginning of transient phase 

due to the adaptive iterations [27]. It leads to the higher bit rate than in the case of 

continuous prediction even a separate entropy coding is used for transient phase and the 

steady-state residual error. Therefore, we propose a simplified DPCM prediction filter for 
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the signals in transient phase. The purpose is to use forward prediction method to reduce 

the error values so as to reduce the variance and energy level of the error signals in 

transient phase. The prediction is given as  

 

( ) ( ) ( )1ee n e n a e n= − ⋅ −      (5.2) 

 

where  is the error signal in transient phase, ( )e n ( )ee n  is the output of DPCM filter and 

 is the coefficient. For simplicity, we set a 1a =  in application.  

 

            

(a)

(b)

random access point

peak point  transient phase steady-state error

(c)

first k samples

transient phase steady-state error
 

  

Fig. 5.2: Prediction in random access frames: (a) original signal; (b) residual for an 
adaptive linear prediction; (c) residual for DPCM and residual for adaptive linear 

prediction from k+1th sample 
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Figure 5.2 illustrates the basic concept of separate entropy coding scheme. In (b) it 

can be seen that the simplified DPCM filter may not process all of the signal samples in 

transient phase. We suppose the length of the samples which are processed is k . In 

practical application,  for simplicity, where K  is the order of the adaptive filter 

in the first stage.  

1k K= +

 

From the experimentations, the proposed DPCM filter does reduce the residual 

values at the beginning of random access frames as expected. However, since only a few 

samples are engaged in this method, it can be excepted that the performance improvement 

is severely limited. Table 5.1 shows the compressed file size with DPCM and without 

DPCM in RA mode. We also calculate the relative improvement which is about 0.004% 

on average. The relative improvement is calculated by 

 

100%rel
OldCompressedSize NewCompressedSizec

OldCompressedSize
−

= ⋅     (5.3) 

 

where  is the compressed file size without DPCM, while 

 is the compressed file size with DPCM. For a simple demonstration 

purpose, we just set  and 

OldCompressedSize

NewCompressedSize

1k K= + 1a =  to get the results. It is believed that there can be 

further improvement if the optimal values of   and  a  are used.  k
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Table 5.1  Relative Improvement with DPCM 

RA without DPCM RA with DPCM Test Set 
Size Size Rel. 

48k16b 38,648,069 38,645,724 0.006%
48k24b 81,325,468 81,323,111 0.003%
96k24b 119,519,614 119,514,351 0.004%
192k24b 77,948,128 77,946,745 0.002%
Total 317,441,279 317,429,931 0.004%

 

 

5.3.2  Separate Entropy Coding 
 

 

In the current random access scheme, as seen in Fig. 5.2, the residual error for the 

first K samples as well as that in transient phase have larger values, compared to the 

steady-state error, thus separate entropy coding is required. 

 

We propose to use Rice coding with coding index (length of low part bits) 

to code the first Kes r s c= − b+ samples, while the remaining residual values 

 to are coded with another optimal Rice coding index 

which is calculated automatically based on Equation (2.7). Here  is the resolution of 

the PCM audio signals, e.g. 16 or 24bits. A summary of all Rice coding indices is given in 

Table 5.2, where  is the residual error of the adaptive 

linear predictor.  

( )1d K b+ + (d frameLength)

1−

er s

( ) , 0, ,d n n frameLength=
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Table 5.2  Code Parameters for Different Sample Positions 

Sample / Residual Coding Index 

( ) ( ) ( )0 , 1 , , 1d d d K b+ −  er s c−  

( ) ( ), , 1d K b d frameLength+ −  Optimal coding index 

 

 

5.3.3  Compression Performance 

 

 In the following tests, compression performance is evaluated for the test set, 

51 audio clips which are provided by MPEG. All compression results are given in terms of 

total compressed file size in bytes and total compression rate. The total compression rate 

is given by,  

 

sizeoriginaltotal
sizecompressedtotalC

_
_%100 ⋅=      (5.4) 

 

 

In RA mode, the interval between RA frames is set to be 0.5 second, which is 

required in MPEG-4’s CfP as the coarsest granularity [2]. In such case, if the frame length 

is 4096 the numbers of interval frames between two RA frames  can be calculated 

from Equation (5.1) and shown in Table 5.2. For example, for the PCM audio data 

sampled with 48 kHz, there is a RA frame every 5 consecutive frames. The original file 

size of each wave clip and the total original file size are also given in Table 5.2. Thus the 

total number of RA frames for each wave clip can be calculated by  

_RA RAN
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_

frames
RA

RA RA

N
N

N
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎢ ⎥

      (5.5) 

 

where operator  is the integer operation which is to get the integer lager or equal than ⎡ ⎤⎢ ⎥

_

frames

RA RA

N
N

. framesN  is the number of frames in each wave clip which is given by 

 

samples
frames

f

N
N

N
⎡ ⎤

= ⎢ ⎥
⎢ ⎥⎢ ⎥

      (5.6) 

 

where the number of samples samplesN  is given by  

 

44

8

samples
filesizeN reschannel

−
=

⋅
     (5.7) 

 

where  is the resolution and channe  is the channels of wave clip. All of the wave 

clips used in test are dual-channel, i.e. 

res l

2channel = . Because the header size of wave 

format file uses 44 bytes, number 44 is subtracted from the file size at first. Clearly, 

samplesN  is the number of samples in each channel. From Equations (5.5), (5.6) and (5.7), 

the number of RA frames  can be calculated and shown in Table 5.2 as well.  RAN
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Table 5.2  Descriptions of the Test Set 

Test Set Files Size of Each 
File (bytes) 

Total File 
Size (bytes) 

Interval 
Frames 

 _RA RAN

Frames 
of Each 

File 
 

RA Frames  
RAN  

48k16b 15 5760048 86400720 5 352 1065 
48k24b 15 8640050 129600750 5 352 1065 
96k24b 15 17280044 

/17280050 * 259200696
11 704 960 

192k24b 6 34560044 207360264 23 1407 372 
Total 51 - 682562430 - - 3462 
 

* All together 15 files, 9 of them each has a file size of 17280044 bytes, another 6 files 

each has a file size of 17280050 bytes.  

 

Table 5.3  Compression Comparison between No RA and RA without Separate 
Entropy Coding 

Continuous Coding (no RA) RA without Separate 
Entropy Coding 

Test Set Original 

Size Ratio Size Ratio 
48k16b 86400720 38,469,974 44.53% 38,742,820 44.84%
48k24b 129600750 81,103,855 62.58% 81,430,228 62.83%
96k24b 259200696 119,084,965 45.94% 120,016,633 46.30%
192k24b 207360264 77,884,516 37.56% 78,287,224 37.75%
Total 682562430 316,543,310 46.38% 318,476,905 46.66%
 

 

Table 5.3 illustrates the compression performance of continuous coding (no RA 

mode) and RA mode without separate entropy coding scheme. It can be seen that about 

0.3% performance drop is suffered for RA mode. The performance of RA mode with 

separate entropy coding scheme is shown in Table 5.4, from which it can be seen that the 

compression performance is improved about 0.15% compared to the coding scheme 

without separate entropy coding. Compared with the original performance drop of 0.3% 
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the relative improvement 0.15% is rather significant because the performance is improved 

by two times. Moreover, the number of residual values affected by the method of coding 

scheme in RA mode is quite small. Therefore the performance improvement should be 

quite limited.  

  

Table 5.4  Compression Comparison among No RA and RA without/with 
Separate Entropy Coding 

Continuous 
Coding (no 

RA) 

RA without 
Separate 

Entropy Coding 

RA with Separate 
Entropy Coding 

Test Set Original 

Ratio Ratio Size Ratio 
48k16b 86400720 44.53% 44.84% 38,648,069 44.73%
48k24b 129600750 62.58% 62.83% 81,325,468 62.75%
96k24b 259200696 45.94% 46.30% 119,519,614 46.11%
192k24b 207360264 37.56% 37.75% 77,948,128 37.59%
Total 682562430 46.38% 46.66% 317,441,279 46.51%
 

 

Table 5.5  Compression Comparison between TUB Encoder and the Proposed 
Encoder 

TUB optimal encoder 
(RA mode) 

RA with Separate Entropy Coding Test Set Original 

Size Ratio Size Ratio Rel. vs. 
TUB 

48k16b 86400720 39,079,276 45.23% 38,648,069 44.73% 1.10%
48k24b 129600750 81,774,080 63.1% 81,325,468 62.75% 0.55%
96k24b 259200696 120,264,328 46.4% 119,519,614 46.11% 0.62%
192k24b 207360264 78,211,226 37.72% 77,948,128 37.59% 0.34%
Total 682562430 319,328,910 46.78% 317,441,279 46.51% 0.59%
 

 

Table 5.5 compares the compression performance of TUB optimal encoder and our 

proposed encoder for 0.5 second random access. The performance of TUB optimal 
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encoder, which is reported in [37], is regarded as the benchmark. Our proposed encoder 

achieves 0.27% better compression ratio performance than TUB optimal encoder which 

uses LPC technique. In table 5.5, we also give out the relative improvement according to 

Equation (5.3). Here OldCompressedSize  is the compressed file size from TUB encoder, 

while  is the compressed file size from our encoder. The relative 

improvement is about 0.59% on average.  

NewCompressedSize

 

5.3.4  Discussion 

 

In this section, we propose a separate entropy coding scheme for adaptive linear 

prediction in order to counteract the performance drop in RA mode. With the proposed 

scheme, the performance improvement is significant. Most importantly, the proposed 

encoder outperforms TUB optimal encoder which is regarded as the benchmark not only 

in continuous coding but also in RA mode.  

 

Basically, the proposed separate entropy coding scheme does not lead to an 

increase in computational complexity, since the length of the samples processed by Rice 

coding or BGMC is same. Moreover, the parameters b  and  are preset in encoder and 

decoder respectively. Therefore, the bits are saved without transferring these parameters.  

c

 

However, since the parameters b  and  are preset, it means that they are same in 

every RA frame. It is obvious that the preset values of the parameters are not accuracy or 

optimal for separate entropy coding scheme because the convergence behavior is always 

c
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different in every RA frame. Therefore, we try to choose the optimal b  and  in each RA 

frame, which will be discussed in following section.  

c

 
 
5.4  An Improvement of Separate Entropy Coding Scheme 
 
 
 In this section, we propose an improvement method based on the separate entropy 

coding scheme which is discussed in last section. Considering the different behavior of 

convergence in every RA frame, we try to choose the optimal b  and  in order to get 

better compression performance. However, in such case, the parameters b  and  have to 

be transferred in bit stream for each RA frame since they could be in different values. The 

more bits are needed if the value range of b  or c is wider. Therefore, the trade-off should 

be made between the range of the parameters and the corresponding compression ratio so 

that the optimal performance is reached with this method.  

c

c

 

 In the following test, we use 6 bits for b  and 4 bits for c . It means that b  is an 

integer from 0 to 63 and c  is an integer from 0 to 15. The compression ratio and the 

relative improvement (about 0.011% on average) are shown in Table 5.6. However, in this 

test the values of parameters b  and  are suboptimal because they are not chosen by full 

search scheme, i.e. the adaptive process will be terminated when worse performance is 

met in search path. Obviously, the purpose of partial search scheme is to save the 

encoding time in encoder. In fact, in such case the computational complexity increased in 

encoder can almost be neglected, while no computational complexity is increased in 

decoder.  

c
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 When the optimal values of parameters b  and are chosen with full search 

method, Table 5.7 shows the corresponding compression ratio and relative improvement 

(about 0.021% on average) are improved as expected. Of course, the computational 

complexity is increased inevitably in encoder. The wider the ranges of parameters b  and 

are, the longer the encoding time will be. However, still no computational complexity is 

increased in decoder.  

c

c

 

Table 5.6  Compression Comparison between Encoders with and without 
Improvement (partial search) 

RA with Separate 
Entropy Coding 

RA with improved Separate 
Entropy Coding 

Test Set Original 

Size Ratio Size Ratio Rel. 
48k16b 86400720 38,648,069 44.73% 38,644,590 44.73% 0.01%
48k24b 129600750 81,325,468 62.75% 81,320,958 62.75% 0.0056%
96k24b 259200696 119,519,614 46.11% 119,498,642 46.10% 0.018%
192k24b 207360264 77,948,128 37.59% 77,940,684 37.59% 0.01%
Total 682562430 317,441,279 46.51% 317,404,874 46.50% 0.011%
 

Table 5.7  Compression Comparison between Encoders with and without 
Improvement (full search) 

RA with Separate 
Entropy Coding 

RA with improved Separate 
Entropy Coding (full search) 

Test Set Original 

Size Ratio Size Ratio Rel. 
48k16b 86400720 38,648,069 44.73% 38,639,924 44.72% 0.02%
48k24b 129600750 81,325,468 62.75% 81,313,300 62.74% 0.015%
96k24b 259200696 119,519,614 46.11% 119,489,652 46.10% 0.025%
192k24b 207360264 77,948,128 37.59% 77,932,183 37.58% 0.02%
Total 682562430 317,441,279 46.51% 317,375,059 46.50% 0.021%
 

 

 In this section, we did a fundamental survey for the improvement of separate 

entropy coding scheme. The method proposed in this section, which is to search the 
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suboptimal or optimal values of b  and , is proved to be efficient to improve the 

compression ratio in RA mode. Although the improvement in our experiments is not 

significant, the method is valuable considering that a little and no computational 

complexity is increased in encoder and decoder respectively. Moreover, the test results 

above are not optimal. It is expected that better results can be gained with this improved 

separate entropy coding scheme.  

c

 

5.5  Summary 
 
  

In this chapter, we implement successfully the random access function in the 

proposed CODEC for lossless audio coding, which uses the adaptive linear prediction 

instead of LCP technique.  

 

Since the proposed adaptive linear predictor gets the higher prediction gain than 

the predictor used in LPC technique, it is no doubt that the former outperforms the latter in 

compression performance. In continuous coding (no RA mode), the advantage of the 

proposed prediction technique is outstanding compared with LPC technique. However, in 

RA mode this advantage in compression performance is much weakened. It is inevitable 

that the prediction gain is actually decreased mainly because of the transient phase of the 

adaptive linear predictor in each RA frame.  

 

In order to improve the performance of the proposed CODEC in RA mode, we 

discuss and propose the separate entropy coding scheme, which is proved as a promised 
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method. The basic idea is to code residual errors in transient phase and steady state with 

different codes. Several optional methods and their performances are also discussed. In 

addition to the separate coding with different codes, the compression performance can get 

more improvement by introducing a simplified DPCM prediction filter.  

 

 The random access function is implemented successfully in the proposed CODEC. 

No matter in continuous coding or RA mode, its compression performance surpasses that 

of the state-of-the-art TUB optimal encoder which uses the LPC technique.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

 

 This chapter makes the summary and conclusion of this thesis and recommends for 

future work. The subject of this project is to propose the lossless coding techniques for 

digital audio data.  

 

6.1  Conclusion 

 

 In the beginning we have previewed the background of data compression and 

lossless audio coding. Because of the high correlation among the audio signals, some kind 

of predictor must be applied before entropy coding. We discussed the LPC technique and 

Rice coding which are used widely and efficiently in this application. As a benchmark of 

performance, we have introduced the state-of-the-art lossless audio CODECs, Monkey’s 

Audio Coding and ALS CODEC from TUB.  

 

 The overview structure of the CODEC system we proposed has been discussed in 

Chapter 3. Among the structure the predictor is the main part discussed in this thesis. 

Instead of the LPC technique, we proposed adaptive linear prediction technique in audio 

coding. In Chapter 4 we successfully designed the linear predictor with adaptive linear 

filters which work together in a cascade structure. The proposed cascade structure is found 

by lots of experiments and analysis in audio signal modeling. With such a cascade 
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structure, the experimental data shows that the proposed adaptive linear predictor can 

obtain higher prediction gain than LPC technique for audio signals. Meanwhile, we gave 

out the MSE performance bound of the applied adaptive filter without the independence 

assumption, which shows that the MSE of adaptive filter may be lower than that of LPC. 

Furthermore, the detailed theoretical analysis is given out to prove that the cascaded 

adaptive predictor can perform a linear prediction with a successive refinement strategy, 

which means that if each stage converges to its steady-state value, lower MSE and faster 

convergence speed is possible with the increasing of stages.  

 

 In Chapter 5, we have implemented the RA feature in the proposed audio coding 

system. In each RA frame, the transient phase can be reduced by increasing the 

convergence speed, but is inevitable. Since the transient phase of adaptive predictor 

degrades the compression ratio, to guarantee the compression performance is more 

difficult in the proposed system. We have proposed separate entropy coding scheme while 

implementing the RA function. The basic idea is to coding the residuals of transient phase 

and steady-state phase with different code words. Moreover, the DPCM filter is proved to 

be effective to be applied in transient phase.  

 

  

6.2  Future Work 
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 Despite achieving significant results with the proposed cascaded adaptive linear 

prediction technique, there is still much room for improvement. Moreover, based on this 

project many interesting ideas can be investigated.  

 

1. Adaptive Prediction Algorithm 

 

In the proposed framework, any adaptive prediction filter can be applied in each 

stage. It is possible that some other adaptive algorithm can obtain better performance than 

what we get. For high compression performance, fast convergence and low MSE are 

required. Moreover, the algorithm should be stable and simple so that it is suitable for 

practical application. Therefore, other prediction algorithms can be investigated in lossless 

audio coding.  

 

2. The Cascade Structure 

 

According to the audio signal modeling, we proposed a cascade structure which 

outperforms the LPC. However, much work has not been done in this area. For example, 

how many stages can be the optimal for audio signals? How about the precise order 

selection in each stage? Is there any precise guidance to design the cascaded predictor?  

 

3. Random Access 
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 We have proposed some ideas in this thesis to improve the compression 

performance for RA implementation. However, we have some other interesting ideas to 

get the further improvement, e.g. transferring the coefficients of predictor in RA frame.  

 

4. Inter-channel De-correlation 

 

 It is well known that most audio applications deal with the multi-channel audio 

data streams [38]. Therefore, inter-channel de-correlation is an important topic in lossless 

audio coding. With a good de-correlation method implemented into the proposed system, 

the compression performance can be further improved.  

 

5. The Complexity and Speed 

 

 The complexity of the proposed CODEC system mainly depends on the 

complexity of the adaptive algorithms applied and the length of the predictor. In this thesis, 

the analysis of complexity has not been discussed. However, it is well known that most of 

the adaptive algorithms require a lot of calculations and an efficient audio prediction 

requires a high order predictor. Therefore, to design a fast lossless audio coding CODEC 

with adaptive linear prediction technique is a challenging task in the future.  
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