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Summary

Recently the bio-stimulus responsive hydrogels have been attracting much

attention because of their scientific interest and technological importance. In this

dissertation, two mathematical models are presented for simulation of the hydrogels.

One is a steady-state model for responsive behaviors of thermo-sensitive hydrogels,

and the other is a transient model for drug release from microgels. These developed

models, consisting of linear/nonlinear partial differential equations coupled with a

transcendental equation, are solved by the novel true meshless Hermite-cloud method.

For simulation of swelling equilibrium of temperature-stimulus-responsive

hydrogels, a novel multiphysical steady-state model, termed the Multi-Effect-

Coupling thermal-stimulus (MECtherm) model, has been developed to simulate and

predict the volume phase transition of the neutral and ionized thermo-sensitive

hydrogels when they are immersed in bathing solution. The developed MECtherm

model is based on the Flory’s mean field theory and includes the steady-state Nernst-

Planck equations simulating the distributions of diffusive ionic species, the Poisson

equation simulating the electric potential, and a transcendental equation for swelling

equilibrium. The MECtherm model is validated by comparing the numerical results

with the experimental data published in open literature. Variations of volume phase

transition with temperature are simulated and discussed under different initial fixed

charge densities, bathing solution concentrations, effective crosslink densities and

initial polymer volume fractions, respectively. The distributions of several key

physical parameters in both internal hydrogels and external bathing solution before

and after the volume phase transition are compared and investigated, which include
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the mobile cation and anion concentrations, fixed charge density and electrical

potential.

For study of microgel-based drug delivery system, a transient mathematical

model is presented to simulate the controlled nifedipine release from chitosan

spherical micro gels, in which both the drug dissolution and diffusion are taken into

account through the continuous matrices of spherical microgels. Using this model, the

drug diffusion coefficient and drug dissolution rate constant are identified

numerically. The effects of several important physical parameters on drug release are

simulated and discussed in details, which include the microgel radius, drug saturation

concentration, drug diffusion coefficient and drug dissolution rate constant. The

present studies and discussions are useful for practical designers to analyze and

optimize the controlled drug release process.
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Nomenclature

A  area of microgels

b  empirical parameter

C concentration of solute dissolved in microgels

C0 initial solute loading in microgels

Cs drug saturation concentration in microgels

C non-dimensional concentration of solute dissolved in microgels

fc  fixed-charge density

jc  the jth mobile ion concentration in the interior hydrogels

*
jc  the jth mobile ion concentration in the exterior bathing solution

refc  reference parameter

jc  non-dimensional concentration of the jth ion

fc  non-dimensional fixed charge concentration

d total drug content

D drug diffusion coefficient

jD  diffusion coefficient of the jth ion

F  Faraday constant

J  drug diffuse flux
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gelG∆  total free energy change within the hydrogels

MixingG∆  free energy change by the mixing contribution

ElasticG∆  free energy change by the elastic deformation contribution

IonG∆ free energy change by the ionic contribution

k dissolution rate constant

Bk  Boltzmann constant

m mass of drug-loaded microgels

refL  reference parameter

Mt absolute cumulative amount of drug released at time t

M∞ absolute cumulative amount of drug released at time t=∞

R mean radius of dry microgels, cm

0R  radius of cylindrical hydrogel at the reference state

12s  degeneracy ratio

r radial position in hydrogels

T  absolute temperature

t release time

u  displacement vector

z  lattice coordination number

fz  valence of fixed charge
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jz  valence of jth mobile ion

α  linear volume swelling ratio

β non-dimensional dissolution/diffusion number

hδ  change of enthalpy per monomeric unit of the network

sδ  change of entropy per monomeric unit of the network

sCε equivalent drug saturation concentration

ζ  interchange energy

12ζ  difference of the segmental interaction energy

λ a weighted coefficient ( 10 ≤≤ λ )

gelµ∆ change of chemical potential of the solvent within the hydrogel

*
Ionµ∆ change of chemical potential of the solvent in the external solution.

ξ non-dimensional radius

τ non-dimensional Fourier time

υ  molar volume of the solvent

φ  polymer-network volume fraction at swelling equilibrium state

0φ  initial polymer-network volume fraction in the pregel solution

χ  polymer-solvent interaction parameter

2χ  experiment-based adjustable parameter

ev  effective crosslink density
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ψ  electric potential.

ψ  non-dimensional electrical potential

refψ  reference parameter
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Chapter 1

Introduction

This chapter provides the background of the present studies. The formation

and characteristics of the hydrogels are briefly described first. They are followed by a

literature survey on the research history and application of the hydrogel, especially

focusing on the temperature sensitive hydrogels and microgel-based drug delivery

systems. Then the objectives and scopes of the present work are presented, and lastly

the layout of the dissertation is given.

1.1 Definition of environment stimuli responsive hydrogels

Hydrogels are three-dimensional crosslinked macromolecular networks that

typically embody three phases, namely solid matrix network, interstitial fluid and

ionic species. Individual molecules called monomers, such as amino acids, can be

chemically chained together to make polymers. Replacing some of these monomers

by the crosslinks, which can make multiple bonds or strong physical forces, allows

these polymers to connect each other to form a network, as illustrated in Figure 1.1.

Hydrogels are interesting materials with both solid-like and liquid-like

properties. The solid-like properties result from crosslinked polymeric network, which

make the hydrogels have a shear modulus. As such, the hydrogels can retain

geometric shape when they are deformed. The liquid-like properties are owing to the

fact that the hydrogel networks can absorb enough solution, in which the major

constituent of hydrogels is usually liquid. In the mechanical properties, the hydrogels

have high deformability and nearly complete recoverability, which are the most
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important property of swelling degree or swelling ratio for the hydrogels. For

example, some hydrogels can reversibly swell and shrink by as much as several times

of their original size in response to small changes in environmental conditions (Onuki,

1993). The polymer chains can either attract each other and be very compact, or repel

each other and be swollen, depending on different environmental conditions. Figure

1.2 shows schematically the two states of hydrogels (Shibayama, 1993), namely the

collapsed and swollen states, which correspond to the liquid and the gas states of

fluids, respectively. These changes may occur discontinuously at a specific stimulus

level, which is called a volume phase transition, or gradually over a range of stimulus

values (Wang et al. 1993). The specific environmental stimuli that make polymeric

hydrogels change their solvent-swollen volumes include the temperature (Roberto et

al., 1987), solution pH (Gehrke, 1989), externally applied electric field (Grimshaw,

1990), solvent quality (Ohmine et al., 1982), light intensity and wavelength (Mamada

et al., 1990), pressure (Kato, 2000), ionic strength (Hirotsu et al., 1987), ion identity

(Annaka et al., 2000) and specific chemical triggers like glucose (Gehrke, 1993). For

example, the temperature-sensitive hydrogels perform the sudden volume changes

with small changes in temperature. From this perspective, these hydrogels are also

termed as “actuated”, “stimuli sensitive”, and “smart” materials.

As described by Shibayama (1993), extensive progress has been made in the

technological applications of hydrogels. For example, disposable diapers and sanitary

napkins use hydrogels as super water-absorbents. Hydrogel sheets are developed to

keep fish and meat fresh. Hydrogels are indispensable materials as a molecular sieve

for molecular separation, such as hydrogel permeation chromatography and

electrophosphoresis. Temperature and/or pH sensitive hydrogels are developed as

drug delivery systems in the human body, where the hydrogel releases drug gradually
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or suddenly at a particular location in the body in response to the changes of

temperature and/or pH around the hydrogel. As illustrated previously, an enormous

change in hydrogel volume can be induced by a small change of the stimuli and this is

of great importance in its application, such as actuator, sensor, switching device and

so on (Tanaka, 1981).

1.2 Literature survey

Katchalsky (1949) is the first who created the responsive polymeric hydrogels

by crosslinking water-soluble poly-electrolytes to form hydrogels which can swell and

shrink in response to changes in solution pH. Later studies include the work of Dusek

et al. (1968), postulating that the swollen and shrunken phases of hydrogel could

coexist and the transition between the two states would occur at a fixed value of

surrounding environment. Tanaka (1978) observed such a phase transition in the

ionized poly-acrylamide hydrogels at specific concentrations of acetone in water.

Tanaka’s research group and others also demonstrated that the discontinuous phase

transition should be observable in all hydrogel/solvent systems. Since mid-1980s,

study of responsive polymeric hydrogels has attracted the attention of numerous

researchers worldwide.

Due to the scientific and technological importance of the hydrogels, extensive

research efforts have been made recently. In this dissertation however, only two kinds

of the hydrogels are investigated. One is thermo-sensitive hydrogels, in which the

temperature stimulus is the main source for their volume phase transition. The other is

microspheric hydrogels that are called microgels and are used as drug delivery



Chapter 1 Introduction

- 4 -

carriers, in which the drug concentration is the main driving force for the drug

delivery process.

1.2.1 Temperature-stimulus-responsive hydrogels

In the various responsive hydrogels to environment stimuli, the temperature-

stimulus-responsive hydrogels have been extensively studied since they have wide-

range applications such as in drug delivery systems (Onuki, 1993), sensor and

actuators (Li and Tanaka, 1992). For the temperature-sensitive hydrogels, the volume

phase transitions are generally classified into three categories, thermo-swelling,

thermo-shrinking, and convexo (Otake et al., 1990). The thermo-swelling hydrogel

expands with increasing temperature (Tanaka, 1978), the thermo-shrinking one

contracts with temperature (Hirokawa, 1984) and the convexo one expands or

contracts depending upon conditions (Katayama et al., 1984). According to the work

of Otake et al. (1990), the types of volume phase transition are greatly affected by the

affinity between solvent and monomer units within the hydrogel. For example,

thermo-swelling hydrogels contain mostly hydrophilic monomers. Thermo-shrinking

hydrogels are composed of monomers that contain hydrophobic substituents. The

phenomenon of volume phase collapse transitions were firstly observed by Tanaka

(1978). For convenience of studying the transition characteristics, a Lower Critical

Solution Temperature (LCST) is defined for the temperature of the surrounding

solution of the hydrogels. When the solution temperature is below LCST, the

hydrogels perform in a hydrophilic and soluble state. If the temperature is above

LCST, the polymer chains become hydrophobic, and the hydrogels collapse, expel

water and shrink in volume. For example, aqueous crosslinked poly(N-
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isopropylacrylamide) (PNIPA) hydrogels exhibit its own LCST at approximate 33°C

(Beltran et al., 1990).

Many potential applications of the temperature-stimulus-responsive hydrogels

require the incorporation of fixed charges attached on the polymeric chains of the

hydrogel network, which are also called the ionic hydrogels. Ionic groups may be

used for imparting to a specific solute binding or exclusion properties, or for

increasing the water absorption capacity of the hydrogel. Obviously, the fixed charges

in hydrogels have significant influence on the temperature induced phase transitions.

Hirotsu et al. (1987) and Beltran et al. (1990) further showed that the temperature-

dependent swelling equilibrium of the hydrogel in water or in electrolyte is highly

dependent on the degree of hydrogel ionization.

Since Katchalsky (1949) first found the responsive polymeric hydrogels, many

researchers have made their efforts on the theoretical study of the swelling

equilibrium of hydrogels. In 1953, Flory proposed a thermodynamic framework for

interpreting the swelling equilibrium of hydrogel and solution properties. However,

the framework is often unsuitable for hydrogels, which are characterized by

orientation-dependent strong interactions. A lattice fluid theory with consideration of

the holes in the lattice as a component was developed by Sanchez and Lacombe

(1976) to describe the effects of volume changes on polymers, polymer solutions and

mixtures, but it has been criticized since it does not afford a satisfactory description of

polymer melts over a wide range of pressures (Zoller, 1980). Tanaka et al. (1978,

1980) also attempted to explore the theoretical studies on volume phase transitions by

the Flory-Huggins theory (Flory, 1953), which is a mean field theory to qualitatively

describe the phase transition (Li and Tanaka, 1992).
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In the study of the temperature-stimulus-responsive hydrogels, the first

recorded work was done by Ilavsky (1982). Later works include several phase-

transition investigations based on different theories, instead of the Flory-Huggins

theory. Otake et al. (1989) proposed a theoretical model with the hydrophobic

interaction for explaining the thermally induced discontinuous volume collapse of

hydrogels. Prange et al. (1989) incorporated the influence of hydrogen bonding and

described the phase behavior of these systems, in which three energy parameters were

obtained from liquid-liquid equilibrium (LLE) for a swelling equilibrium linear

PNIPA/water system using an oriented quasi-chemical model. The resulting model is

able to present the major features of LCST behavior in aqueous solutions of linear

polymer and polymer hydrogels. Painter et al. (1990) also attempted to consider the

effects of hydrogen bonding on the hydrogel thermodynamic properties. The extent of

the hydrogen bonding is quantified by an equilibrium constant, which must be

determined from experimental data. Beltran et al. (1990) and Hooper et al. (1990)

investigated the swelling behaviors of hydrogels prepared by copolymerizing PNIPA

with strong electrolyte, and predicted the swelling behaviors of positively ionized

hydrogels in sodium chloride solution using the quasi-chemical model combining the

ideal Donnan theory (Flory, 1953) with Flory and Erman’s (1986) elastic model.

Hooper et al. (1990) studied the effects of total monomer concentration and crosslink

density on swelling capacity. Marchetti et al. (1990) introduced Sanchez and

Lacombe’s lattice-fluid model that considered voids to be a component in lattice for

the free energy of mixing.

Recently, many scientists continuously make their efforts on the volume phase

transition of temperature-sensitive hydrogels. In the model proposed by Sasaki and

Maeda (1996), the influence of polymer-water interactions on the hydrogel phase
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transition was included through a function of experimentally determined chemical

potential for water molecules. Lele et al. (1995, 1997) used an extended version of

Sanchez and Lacombe’s (1978) theory with the hydrogen-bonding effects. Different

from the approach of Prausnitz and co-workers (1989), a temperature-dependent

interaction parameter is used to describe the volume transition of PNIPA hydrogels

with increasing temperature. Hino and Prausnitz (1998) presented a model that

extends Flory-Huggins theory by considering Flory’s interaction parameter as a

product of temperature and composition dependent term, in which the temperature-

dependent contribution includes the effects of specific interactions such as hydrogen

bonding. One of the advantages of this model is its similarity with the classical Flory-

Rehner theory (Flory, 1953) for hydrogels but the specific oriented interactions are

bundled into a pair of interaction dependent parameters.

Although many theoretical models were developed, it is still difficult to

predict well the phenomena of volume phase transition, when compared with

experimental swelling data, especially in high degree of swelling. Furthermore, most

theoretical models are unable to analyse the swelling behaviors of ionized hydrogels.

In order to overcome the difficulty, a novel multiphasic model has been developed in

this dissertation for simulation of the swelling equilibrium of temperature-sensitive

hydrogels with fixed charges.

1.2.2 Microgel-based drug delivery system

In development of bioengineering and biotechnology, one of studies attracting

the attention of most researchers is microgel-based controlled drug delivery system, as

reviewed by Tanaka (1981), Hoffman (1987), Li and Tanaka (1992) and Gehrke

(1993). The controlled drug delivery systems investigated include various polymer-
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based microgels, such as spherical chitosan microgels (Chandy and Sharma, 1992;

Filipovic et al., 1996), Eudragit microgels (Hombreiro et al. 2003) and poly(DL-

lactide-co-glycolide acid) microgels (Soppimath and Aminabhavi, 2002; Dhawan

2003). Compared with conventional methods, the microgel-based drug delivery

system can reduce the total administration frequency to the patient.  It can also be

cycled over a long period, or triggered by specific environment or external events.

Microgel-based drug release maintains the drug at desired levels over a long period

and thus eliminates the potential for both under- and overdosing. Consequently, it

decreases the possible adverse effects of immediate drug release. Additional

advantages of microgel-based drug delivery include optimal dosage administration,

better patient compliance and improved drug efficacy. In general, when drug-loaded

polymeric microgels are placed in contact with release medium, the drug release

process is divided into four consecutive steps (Hombreiro et al., 2003): (1) the

imbibition of release medium into the microspherical system driven by osmotic

pressure arising from concentration gradients; (2) drug dissolution; (3) drug diffusion

through the continuous matrices of microgels due to concentration gradients; and (4)

drug diffusional and convective transport within the release medium. One or more of

these steps can control the drug release process.

Currently the theoretical understanding of underlying drug release

mechanisms by polymer-based microgels is still at beginning stage, since most works

are experimental-based. Few efforts have been made on the theoretical understanding

and model development. For example, Varshosaz and Falamarzian (2001) claimed

that drug release process could be via the diffusion through the continuous matrices or

drug dissolution mechanism. In the diffusion mechanism, drug diffusion through the

continuous matrices of microgels controls the drug release process, whereas in the
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dissolution mechanism the drug release is controlled by the process involving drug

dissolution within the microgels followed by drug diffusion through the continuous

matrices of microgels.  However, the drug release process is usually modeled with the

classical Fick’s diffusion equation integrating with appropriate boundary conditions

or with the simplified expressions developed by Higuchi T. (1961) and Higuchi W.

(1962, 1970). A mathematical theory with simultaneous consideration of drug

dissolution and diffusion in the continuous matrices of microgels was put forward by

Grassi et al. (2000) and well fitted to the experimentally measured temazeoan and

medroxyprogesterone acetate release data. Recently, Hombreiro-Perez et al. (2003)

pointed out that an adequate description of nifedipine release from microgels must

consider drug dissolution, drug diffusion in the continuous matrices of microgels and

the limited solubility of nifedipine in the release medium. Unfortunately, no effort is

made to model the nifedipine release process due to the complexity.

1.3 Objectives and scopes

As mentioned above, majority of previously published studies on the

hydrogels are experimentally-based, and few theoretical efforts have been made.

Sometimes in experimental analysis it is not convenient to measure the hydrogels with

more complex shapes and the accurate dimensional change of their volume transition

behaviors. The prediction of hydrogel performance by modeling and simulation will

thus be critical for understanding the characteristics of hydrogels. In a situation where

hydrogel characteristics have to be optimized for a particular application, a ready

modeling and simulation will prove indispensable.
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The aims of this dissertation are composed of two parts. The first is to develop

a steady-state mathematical model for simulation of the volume phase transition of

neutral/ionic thermo-sensitive hydrogels immersed in water or electrolyte solution,

respectively. The second is to enhance a transient mathematic model for simulation of

the drug delivery from the microgels. Both the mathematic models, consisting of

nonlinear/linear partial differential equations, are solved numerically by the novel true

meshless Hermite-Cloud method provided by Li et al. (2003).

In the steady-state analysis of volume phase transition of thermo-sensitive

hydrogels, poly(N-isopropylacrylamide) (PNIPA) hydrogel is chosen and studied here

since it is a typical example of the hydrogels which show a thermo-shrinking phase

transition in aqueous or electrolyte solutions, where an increasing temperature causes

the hydrogel to shrink geometrically by one order of magnitude. The neutral hydrogel

is a relatively simple system, and can undergo a volume phase transition in pure water

in response to temperature change. In the present study, a coupled chemo-electro-

thermo-mechanical multiphysical model, termed the Multi-Effect-Coupling thermal-

stimulus (MECtherm) model, is developed mathematically to simulate and predict the

volume phase transition of the neutral and ionized thermo-sensitive hydrogels when

they are immersed in bathing solution. The developed MECtherm model is based on

the Flory’s mean field theory, and includes the steady-state Nernst-Planck equations

simulating the distribution of diffusive ionic species, the Poisson equation simulating

the electric potential and a transcendental equation for swelling equilibrium. In

evaluating the mathematic model, Hirotsu’s (1987) experimental data are used for

comparison with the numerical simulation results. Variations of volume phase

transition with temperature are simulated and discussed under different initial fixed

charge densities, bathing solution concentrations, effective crosslink densities and
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initial polymer volume fractions, respectively. The distributions of several important

physical parameters in both internal hydrogels and external bathing solution before

and after the volume phase transition are compared and investigated, which include

the mobile cation and anion concentration, fixed charge density and electrical

potential.

In the transient analysis of microgel-based drug delivery system, the

nifedipine release from the spherical chitosan microgels is investigated numerically

with a relatively simple mathematical model in this dissertation. The mathematical

model takes into account both the drug dissolution and diffusion through the

continuous matrices of the spherical microgels. Meshless Hermite-cloud method is

employed to solve the formulated partial differential equations. The numerical

simulating investigations of the drug delivery provide deeper insight into the drug

release mechanisms and elucidate efficiently the influences of various physical

parameters. Using this model, the drug diffusion coefficient and drug dissolution rate

constant are identified numerically. The effects of several physical parameters on drug

release are simulated and discussed in details, which include the microgel radius, drug

saturation concentration, drug diffusion coefficient and drug dissolution rate constant.

1.4 Layout of dissertation

This dissertation is organized with six chapters, and a brief summary for each

chapter is given as follows.

Chapter 1, Introduction, briefly gives the background of the present studies.

The hydrogel is defined first with description of the formation and distinctive

characteristics of hydrogels. Then a literature survey is made on the research history
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and the applications, in which more attentions are centered on the temperature-

stimulus-responsive hydrogels and the microgel-based drug delivery systems. Finally,

the objectives and scopes of the present work are presented, followed by the layout of

the dissertation.

Chapter 2, A Steady-State Model for Swelling Equilibrium of Thermo-

Sensitive Hydrogels, develops a Multi-Effect-Coupling thermal-stimulus (MECtherm)

model, based on the overview of the existing mathematic models and several

theoretical considerations, for simulations of volume phase transition of the thermal-

stimulus-responsive hydrogels immersed in solution with varying temperature. Then,

non-dimensional implementation is produced to facilitate numerical computations.

Chapter 3, A Novel Meshless Technique: Hermite-Cloud Method, provides a

numerical tool to solve the presently developed models consisting of linear/nonlinear

partial differential equations, which includes a brief overview of meshless numerical

techniques and numerical examinations.

Chapter 4, Numerical Simulation for Swelling Equilibrium of Thermo-

Sensitive Hydrogels, uses the Hermite-cloud method to discretize and solve the

developed MECtherm governing equations, and then compares the computational

results with the experimental data. After validation of the MECtherm model, several

parameter studies are made to discuss their effects on the swelling equilibrium of the

thermo-sensitive hydrogels, including the fixed charge density, bathing solution

concentration, effective crosslink density and initial polymer volume fraction.

Chapter 5, Transient Model Development for Simulation of Drug Delivery

from Microgels, makes the study of drug delivery system. The controlled nifedipine

release from microgels is simulated numerically with a mathematical model, which

takes into account both the drug dissolution and diffusion through the continuous
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matrices of the spherical microgels. The effects of several important physical

parameters on drug release are evaluated in this chapter.

In Chapter 6, Conclusions and Future Works, several important conclusions

are drawn from the present discussions and studies mentioned above, followed by the

briefly recommended studies for future works.



Chapter 1 Introduction

- 14 -

Figure 1.1 The forming process of hydrogels. The open circles denote monomers,

solid lines denote polymer chains, and closed ellipses represent crosslink.
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Two States of Hydrogels

Crosslink

Polymer chain

SwollenCollapsed

Figure 1.2 Schematic representation of hydrogels in collapsed and swollen states.
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Chapter 2

A Steady-State Model for Swelling Equilibrium of Thermo-

Sensitive Hydrogels

In this chapter, after a brief survey of the existing mathematic models and

analysis of the fundamental interactions during the swelling and shrinking of the

ionized hydrogels, a novel multiphysical mathematical model, consisting of a

transcendental equation and the nonlinear coupled Poisson-Nernst-Planck partial

differential equations, termed the Multi-Effect-Coupling thermal-stimulus

(MECtherm) model, is developed for simulation of the volume phase transition of

ionized temperature-sensitive hydrogels in swelling equilibrium state. Then non-

dimensional implementation is presented to facilitate the computational performance,

and followed by an illustration of the computational flow chart.

2.1 A brief background of existing mathematical models

As mentioned above, many studies were carried out in past decades for the

thermal-stimulus-responsive hydrogels. However, most of them are experiment-based,

few works involve mathematically modeling and simulation of the responsive

behavior of the hydrogels, especially for the ionized hydrogels. They include the Lele

et al.’s (1995) statistical thermodynamic model with consideration of hydrogen bond

interaction for prediction of the swelling equilibrium of PNIPA hydrogel-water

system. Otake et al. (1989) presented their model with effects of hydrophobic

hydration and interaction for the thermally induced discontinuous shrinkage of

ionized hydrogels. For the discontinuous volume phase transition, Erman and Flory
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(1986) made the assumption that the polymer-solvent interaction parameter depends

on the volume fraction of solid-phase polymer network. Recently, Hino and Prausnitz

(1998) proposed a molecular thermodynamic model with combination of the

impressible lattice-gas model (Birshtein and Pryamitsyn, 1991) and the interpolated

affine model (Wolf, 1984) for simulation of the volume phase transition of PNIPA

hydrogels. However, it is still difficult for these models to fit well with experimental

data, and they provided only the qualitative prediction of volume phase transition of

temperature sensitive hydrogels.

2.2 Development of Multi-Effect-Coupling thermal-stimulus

(MECtherm) model

In this section, a multi-physic model with chemo-electro-thermo-mechanical

coupling, called the Multi-Effect-Coupling thermal-stimulus (MECtherm) model, is

developed mathematically to simulate the variations of volume phase transition with

the temperature, mobile ion concentrations and electric potential for the swelling

equilibrium of thermal-stimulus responsive hydrogels when immersed in solution.

The present model incorporates the steady-state Nernst-Planck equation simulating

the distribution of diffusive ionic species and the Poisson equation simulating the

electric potential.

2.2.1 Theoretical considerations

In order to determine the volume phase transition of ionized temperature-

sensitive hydrogels, usually we need to investigate four fundamental interactions,

namely hydrogen bond, hydrophobic, electrostatic and the van der Waals interactions
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(Shirota, 1998). The competitive balance between the repulsive and attractive

interactions results in the volume phase transition (Li and Tanaka, 1992). According

to the Flory’s mean field theory (Flory, 1953) for swelling equilibrium of hydrogels,

the above interactions for the volume phase transition of temperature-sensitive

hydrogels can be presented mathematically in the form of three contributions to the

change of free energy, namely polymer-solvent mixing, elastic deformation of the

solid-phase polymer network and the osmotic pressure due to the gradients of ionic

concentrations. Polymer-solvent mixing contributes to either attractive or repulsive

forces, depending upon the relation between entropy change and the heat associated

with the mixing. The elastic deformation of hydrogels is balanced by the mechanical

elastic restoring force of solid-phase network due to the polymer elasticity. As one of

driving expansion forces, the osmotic pressure is generated by the concentration

difference of mobile ions between interior hydrogels and exterior solution. It is noted

that the charged groups attached to the polymer chains play an essential role in the

volume phase transition of the ionized hydrogels (Tanaka et al., 1980). When the

hydrogels are immersed in the electrolyte solution, as illustrated in Figure 2.1 (Flory,

1953), the negatively charged groups attached to the polymer chains are compensated

by the diffusive cations from the solution into the hydrogels, and consequently the

cation concentration increases within the hydrogel prior to the volume change. This

unequal distribution of the solute induces the osmotic pressure to drive the swelling of

the ionic hydrogels. As a result, the volume phase transition of thermal-stimulus

responsive hydrogels can be generally predicted by the thermodynamic equilibrium

theorem. In the developed mathematic model, these three fundamental contribution

forces to the swelling equilibrium are considered, and two forms of the polymer-

solvent interaction parameters are employed.
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2.2.2 Formulation of MECtherm governing equations

2.2.2.1 Free energy

From the thermodynamic viewpoint, the swelling equilibrium of ionized

temperature-stimulus-responsive PNIPA hydrogels is determined by the final

temperature field and the initial conditions including initial temperature, fixed charge

density, the effective crosslink density, and the polymer-network volume fraction.

Based on the Flory’s mean field theory (Flory, 1953), the total change gelG∆  of free

energy within the ionized thermal-sensitive hydrogels may be expressed as

IonElasticMixinggel GGGG ∆+∆+∆=∆ , (2.1)

where MixingG∆ , ElasticG∆  and IonG∆  represent the mixing, elastic deformation and

ionic contributions to the change of free energy, respectively. By differentiating

equation (2.1) with respect to the number of solvent molecules, the chemical potential

of the solvent within the swollen hydrogels is obtained as

IonElasticMixinggel µµµµ ∆+∆+∆=∆ . (2.2)

When swelling equilibrium is reached, the chemical potential of the solvent within the

hydrogels equals to that of the solvent in the surrounding solution, namely

0* =∆−∆+∆+∆ IonIonElasticMixing µµµµ , (2.3)

where *
Ionµ∆  represents the chemical potential of solvent in the external solution.

By the Flory-Huggins lattice theory (Flory, 1953), the change of mixing

chemical potential induced by changing the solvent-solvent contact into solvent-

polymer contact may be written as

))1ln(( 21 χφφφυµ +−+=∆ −TkBMixing , (2.4)
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where Bk  is Boltzmann constant, T  is the absolute temperature, υ  is the molar

volume of the solvent, φ  is the polymer-network volume fraction at swelling

equilibrium state, and χ  is the polymer-solvent interaction parameter.

It is known that the interaction parameter χ  depends not only on the absolute

temperature T , but also on the polymer-network volume fraction φ  (Moerkerke et al.,

1995; Shirota et al., 1998; Hino and Prausnitz, 1998). In the case of swollen hydrogels

with lower polymer-network volume fraction below the lower critical solution

temperature (LCST), we employ the polymer-solvent interaction parameter in the

following form as

φχδδφχχχ 221 )/()()( +−=+= TksThT B , (2.5)

in which 2χ  is an experimentally adjustable parameter. sδ  and hδ  are the changes of

entropy and enthalpy per monomeric unit of the network, respectively. The numerical

studies in this dissertation will validate that the parameter χ  expressed by equation

(2.5) is suitable for simulation of the PNIPA hydrogels at swelling state. Furthermore,

in the case of shrunken hydrogels with higher volume fraction of polymer-network

above LCST, the interaction parameter χ  is defined by

)()( φχ PTF= ,  (2.6)

where )(TF  and )(φP  are the functions of absolute temperature and polymer-

network volume fraction, respectively. )(φP  given by Bae et al. (1993) is

1)1()( −−= φφ bP , (2.7)

in which b  is an empirical parameter, and it is taken to be 0.65 in this dissertation.

For )(TF , we have the expression given by Hino and Prausnitz (1998)
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where z  is the lattice coordination number ( z =6), ζ  is the interchange energy, 12ζ

is the difference between the segmental interaction energy for specific interactions

and that for non-specific interactions, R  is the gas constant, and 12s  is the degeneracy

ratio of non-specific interactions to that of specific interactions. In addition, it is also

noted that, in numerical implementation, the transformation between equations (2.5)

and (2.6) is determined by detecting the volume phase transition, when the difference

of polymer volume fractions between the previous and current iterating steps is much

larger than the specified convergence region.

In order to present the contribution of elastic deformation to the change of

chemical potential, the affine model is given by Flory (1953) as

))2/()/(( 0
3/1

0 φφφφµ −=∆ eBElastic Tvk , (2.9)

where ev  is the effective crosslink density, 0φ  is the initial polymer-network volume

fraction in the pregel solution, and φφ /0  is the volume swelling ratio.

For the ionic contribution to the change of chemical potential, usually it is

determined by the concentration difference between the mobile ions inside and

outside the hydrogels (Flory, 1953) as

∑
=

−−=∆−∆
N

j
jjBIonIon ccTk

1

** )(µµ , (2.10)

where n  denotes the number of different mobile ion species, jc  and *
jc  are the jth

mobile ion concentrations in the interior hydrogels and exterior bathing solution,

respectively.
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By substituting equations (2.4), (2.9) and (2.10) into equation (2.3), the

swelling equilibrium governing equation is obtained in the following transcendental

equation form

0)())2/()/(())1ln((
1

*
0

3/1
0

21 =−−−++−+ ∑
=

−
N

j
jje ccv φφφφχφφφυ . (2.11)

When the hydrogels are immersed into pure water, where the mobile ion

concentrations of the external solution are equal to zero, equation (2.11) can be

simplified into the transcendental equation as

02/))2/()/(())1ln(( 0
0

0
3/1

0
21 =−−++−+− φφφφφφχφφφυ fe cv . (2.12)

where 0
fc  is the fixed-charge density at the reference state ( 0φφ = ).

2.2.2.2 Poisson-Nernst-Planck theory

In order to couple the effects of mobile ion concentrations and electric

potentials in simulation of temperature-sensitive hydrogels, Poisson-Nernst-Planck

formulation is required. If the contributions of migration and diffusion to the transport

of mobile ions are considered only during the thermal swelling of hydrogels, the

steady-state Nernst-Planck equation for the jth ion can be expressed by (Samson et al.,

1999)

 ( ) 022 =∇+∇∇+∇ ψψ jj
jj

jj cc
RT

zFD
cD ),2,1( Nj L= (2.13)

where F  is the Faraday constant, jD  is the diffusive coefficient, jz  is the valence of

the jth mobile ion, jc  is the concentration of the jth mobile ion, and ψ  is the electric

potential.
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For the relation between the mobile ion concentration and the electric

potential, the Poisson equation (Samson et al., 1999) is required as

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=∇ ∑

=

N

j
jjff czczF

10

2 )(
εε

ψ , (2.14)

where 0ε  is the permittivity for vacuum, ε  is the dielectric constant of medium

relative to vacuum (e.g. ε =80 for water), fz  is the valence of fixed charges, and fc

is the fixed-charge density.

In the simulation of ionized thermal-stimulus-responsive hydrogels, it is

generally assumed that the fixed charges attached to the solid-phase polymer

networks distribute uniformly within the hydrogel during thermal swelling, and the

total amount of fixed charges is invariable. In other words, the fixed-charge density

0
0 /φφff cc =  in the swelling equilibrium state.

2.3 Numerical implementation

2.3.1 Reduced 1-D governing equations

For the isotropic swelling of the hydrogels, the elongation ratios along three

principal axes are equal to each other, in which the displacement vector u  may be

expressed by the difference between the deformed position ),( 000 zyx αααx  (here α  is

the linear volume swelling ratio, and ( ) ( ) 3/1
0

3/1
0 // φφα == VV ) and original position

),( 000 zyx0x , namely

00 xxxu )1)/(( 3/1
0 −=−= φφ . (2.15)
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In this dissertation, only the cylindrical hydrogels (Figure 2.2) are simulated

numerically. Due to axis-symmetry therefore, it is reasonable to use one-dimensional

computational domain along the radial direction covering both the hydrogel radius

and bathing solution, as shown in Figure 2.3. The steady-state Nerst-Planck equation

in the polar coordinates is thus simplified as

01
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2

2
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and the Poisson Equation is rewritten as

⎟⎟
⎠

⎞
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⎝

⎛
+−=

∂
∂

+
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rrr 10
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2

)(1
εε

ψψ . (2.17)

The radial displacement of the deformed hydrogel is given as

0
3/1

0 )1)/(( Rur −= φφ , (2.18)

where 0R  is the radius of cylindrical hydrogel at the reference state.

Correspondingly, the required boundary conditions are applied at both the

ends of 1-D computational domain, as shown in Figure 2.3. Due to axisymmetry of

the present problem, the boundary conditions at the end point O of the circle centre

are given as

0=
∂
∂

r
ψ  and 0=

∂

∂

r
c j     ),2,1( Nj L= at 0=r (2.19)

The boundary conditions at the end point B of the solution region are given by

0=ψ  and *cc j =      ),2,1( Nj L= at Lr = (2.20)

2.3.2 Non-dimensional implementation

To facilitate the numerical implementation of the models developed above, a

set of non-dimensional variables is defined. They are non-dimensional radius
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refLr=ξ , non-dimensional concentration of the jth ionic species refjj ccc = , non-

dimensional fixed charge density refff ccc = , and non-dimensional electrical

potential )()( RTF ηψψ = , in which refL , refc  and refψ  are the given reference

parameters.

After substituting the above non-dimensional formulations to equations (2.16)

and (2.17), the non-dimensional steady-state Poisson-Nernst-Planck system is finally

obtained as
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2.3.3 Computational flow chart

For simulation of response behavior of the ionized thermo-sensitive hydrogels

when immersed in univalent electrolyte solution, we need solve iteratively a set of

coupled nonlinear partial differential governing equations, consisting of the swelling

equilibrium equation (2.11), Nernst-Plank equation (2.21) and Poisson equation

(2.22). Firstly, a guessed value of polymer-network volume fraction *φ  at a given

temperature T  is provided. Using the Newton’s iterative technique for solution of the

coupled nonlinear partial differential equations (2.21) and (2.22), the distributions of

the electric potential and mobile ion concentrations are computed at this temperature.

Subsequently, substituting the computed ionic concentrations into the swelling

equilibrium equation (2.11), the corresponding volume fraction φ  of the polymer

network is obtained, and then used as the guessed value *φ  in next iterative step. In
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this way, the iterative recurrence is conducted until the convergence of polymer

network volume fraction. A corresponding computational flow chart is illustrated in

Figure 2.4.

In summary, the multiphysical model with chemo-electro-thermo-mechanical

coupling has been developed, and termed the Multi-Effect-Coupling thermal-stimulus

(MECtherm) model. It consists of the nonlinear coupled Poisson-Nernst-Planck

partial differential equations (2.13) and (2.14) and the transcendental equation (2.11)

of the swelling equilibrium based on the Flory’s mean field theory. The model has the

capability of simulating the volume phase transition of the ionized temperature-

stimulus-responsive hydrogels when they are immersed in the bathing solution with

temperature change. This model will be validated in Chapter 4, and the influences of

several important physical parameters and material properties will also be simulated

and discussed in detail.
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Figure 2.1 A schematic diagram of the microscopic structure of the thermo-sensitive

ionized PNIPA hydrogel in electrolyte solution (Flory, 1953).
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Hydrogel

Electrolyte solution

Figure 2.2 Schematic diagram of a thermo-sensitive ionized cylindrical PNIPA

hydrogel immersed in electrolyte solution.

Interface

Solution regionHydrogel radius

Hydrogel circular section Computational domain

O r
B

Figure 2.3 One-dimensional computational domain along the radial direction covers

both the hydrogel and bathing solution.
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Figure 2.4 Computational flow chart.
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Chapter 3

A Novel Meshless Technique: Hermite-Cloud Method

In this chapter, as a novel true meshless numerical technique, Hermite-cloud

method is presented, which will be employed as numerical tool to solve the present

differential boundary value problems. This method uses the Hermite interpolation

theorem for construction of the interpolation functions, and the point collocation

technique for discretization of the partial differential equations. Numerical

examinations show that the computational accuracy of Hermite-cloud method is quite

acceptable.

3.1 A brief overview of meshless numerical techniques

A growing interest has emerged in the development of meshless methods for

numerical solution of partial differential equations (PDEs) in recent years. Meshless

methods use only a set of scattered nodes representing the problem domain, and don’t

require the connectivity information among the scattered nodes. This makes the

methods be different from the traditional numerical approaches such as the finite

element method (FEM). Using the FEM, a problem domain is required to be divided

into small elements and the field function is approximated within each element

through simple interpolation functions. Although FEM has wide range of engineering

and science applications, it still has some inherent shortcomings. First, large distortion

of element is not allowed. If the element is heavily distorted, shape functions for this

element are of poor quality and thus the numerical results may not be acceptable
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(Belytschko et al., 1996). Second, the computational cost is very high in creating

meshes. The cost of mesh generation for complex geometry is very significant and

could be more expensive than solving the problem. In addition, it is difficult to

implement adaptive scheme, where remeshing process is required for the FEM to

ensure the nodal connectivity properly defined at each adaptive step. This inevitable

process becomes the burden of computation as mesh generation could be very

expensive. In order to overcome the shortcomings, the meshless methods are

developed. Usually they save computation time because the mesh generation is not

required. Relatively, they can easily solve large deformation and strong nonlinear

problems, since the connectivity among the nodes is generated as part of the

computation and can change with time. Moreover, they can easily solve problems

with multi-domains and multi-physics requirement. Thus, meshless methods have

potential applications in adaptive techniques, especially in emerging technologies

such as micro-electro-mechanical-systems (MEMS). The presently developed

Hermite-cloud method, which constructs the shape functions corresponding to the

unknown functions and their first-order derivatives respectively, improves the

computational accuracy at the scattered discrete points in the domain not only for

approximate solutions but also for their first-order derivatives. It is a very efficient

numerical technique for solutions of the partial differential boundary value (PDBV)

problems with high gradient solution field (Li et al., 2003). Therefore, it is used here

for solving the hydrogel problems discussed in previous chapters, where the iteration

implementation for solving the nonlinear coupled partial differential governing

equations requires the remeshing process in both the domains of the hydrogels and

surrounding solution, and high concentration gradient always occurs at the interfaces

between the hydrogels and surrounding solution.
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So far many meshless methods have been proposed (Liu GR, 2002). One can

generally classify these meshless approaches into two groups, depending on the

requirement of integration or not (Liu GR, 2002), or depending on computational

modeling (Li and Liu WK, 2002). The first is based on the PDEs with strong-form,

and the second is based on the PDEs with weak-form. Furthermore, the meshless

weak-strong (MWS) form method has also been developed, which combines the

strong-form with weak-form of partial differential boundary value problems.

In the first group of strong-form meshless methods, the collocation technique

is usually used to discretize the PDEs at nodes. This group includes the generalized

finite difference method (Perrone and Kao, 1975; Liszka, 1984), the smooth particle

hydrodynamics (SPH) (Gingold and Monaghan, 1977; Monaghan, 1985; Benz, 1990),

the finite point method (Onate et al., 1996), the hp-meshless cloud method (Liszka et

al., 1996) and the collocation method (Franke and Schaback, 1997; Liu Xin et al.,

2002; Zhang et al., 2001). These methods do not use any mesh for both field variable

approximation and integration, and are simple to implement and computationally

efficient (Liu GR and Gu, 2004). They have been successfully applied in

computational mechanics, particularly in fluid mechanics. Nevertheless, these

methods have the shortcomings, such as, the unstable computation and less accuracy,

especially for PDEs with Neumann boundary conditions.

The second group of weak-form meshless methods includes the use of global

weak-form and local weak-form of PDEs. The examples based on the global weak-

form include the diffuse element method (Nayroles et al., 1992), the element-free

Garlerkin (EFG) method (Belytschko et al., 1994-1997), the reproducing particle

method (RKPM) (Liu WK et al., 1995-1997) and the point interpolation method
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(PIM) (Liu GR and Gu, 2001a, 2004; Gu and Liu GR, 2002, 2003a). The examples

based on the local weak-form include the meshless Petrov-Galerkin method (MLPG)

(Atluri and Zhu, 1998, 2000; Atluri and Shen, 2002; Atluri et al., 1999a, b; Gu and

Liu GR, 2001a, b) and the family of local point interpolation method (LPIM) (Gu and

Liu GR, 2001c; Liu GR and Gu, 2001b, c, 2002). These weak-form meshless

techniques have many advantages, such as good computational stability and excellent

accuracy, since the weak form can minish the error over the integral domain and

control the error level. Furthermore, the weak form can naturally satisfy the Neumann

boundary conditions. As such, they have been successfully used in solid mechanics.

However, these methods are not “truly” meshless, when compared with the common

finite element method, they are only “meshless” in terms of the interpolation of the

field variables.

Moreover, some other types of meshless methods have also been proposed.

For example, there are the boundary node method (BNM) (Mukherjee YX and

Mukherjee S, 1997), the boundary point interpolation method (Gu and Liu GR, 2002,

2003a), and so on. Some methods with combination of two meshless methods, or

combing a meshless method with a conventional method, have also been developed,

such as, the EFG/FEM, EFG/BEM/HBEM, MLPG/BEM/FEM (Hegen, 1996; Liu GR

and Gu, 2000b; Gu and Liu GR, 2001d; Gu and Liu GR, 2003b).

In brief, the meshless numerical methods are able to avoid the disadvantages

of traditional numerical techniques, e.g. the finite element method. Therefore, they

have very good potential applications in simulations of multiphysical problems.
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3.2 Hermite-cloud method

The numerical technique employed in this dissertation is the true meshless

Hermite-cloud method (Li et al., 2003). This method uses the Hermite interpolation

theorem for the construction of the interpolation functions, and the point collocation

technique for discretization of the partial differential equations. This technique is

based on the classical reproducing kernel particle method except that a fixed

reproducing kernel approximation is employed instead. As a true meshless technique,

the present method constructs the Hermite-type interpolation functions to directly

compute the approximate solutions of both the unknown functions and the first-order

derivatives. The necessary auxiliary conditions are also constructed to generate a

complete set of partial differential equations with mixed Dirichlet and Neumann

boundary conditions. The point collocation technique is then used for discretization of

the governing partial differential equations.

Using the Hermite-cloud method, the approximation )(~ xf  of a one-

dimensional unknown real function )(xf  can be constructed by

xmm

N

m
n

N

n
nn

N

n
n gxMxxNxfxNxf

S TT

)())(()()(~
1 11
∑ ∑∑
= ==

−+= , (3.1)

where TN  and )( TS NN ≤  are the total numbers of scattered points, covering both the

interior computational domain and the surrounding edges, for the point values nf  and

xmg  respectively. nf  is the point value of unknown real function )(xf  at the nth

point, and xmg  is the point value of the first-order differential, dxxdfxg x /)()( = , at

the mth point. The corresponding discrete approximation is written as

∑
=

=
SN

m
xmmx gxMxg

1
)()(~ , (3.2)
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In equation (3.1), the shape function )(xNn  and )(xM m  for the respective

functions )(xf  and )(xg x  are defined as (Ng et al., 2003)

nnk
T

knn LuxKxxuxN ∆−= − )()()()()( 1 BAB , TNn ,,2,1 K= (3.3)

mmk
T

kmm LuxKxxuxM ∆−= − )()(~)(~)(~)( 1 BAB , SNm ,,2,1 K= (3.4)

in which nL∆  and mL∆  are defined as the cloud sizes of the nth and mth points

respectively, i.e. the dilation parameters as defined by Liu et al (1995). The increase

of the cloud sizes of the kernel function typically increases the number of points that

contribute to the unknown value at the interest point n (Ohs and Aluru, 2001). It is

also noted that generally the increase of node density definitely improve the

computational accuracy. However, we can not blindly increase the radius of influence

domain or support size of nodal shape function. Otherwise, computational cost

increases evidently (Liu et al., 2003) and computational instability may occur (Tang et

al., 2003). Furthermore, when a few points are used, the solution may be sensitive to

the number of points included in each cloud and this may cause distortion of the

results, especially in the boundary areas (Ohs and Aluru, 2001). The selection of the

dilation parameters should correspond to some local information to match the

resolution of the given sampling points (Liu et al., 1995). According to our computing

experience, usually xLL mn ∆=∆=∆ 17.1  is good enough for equidistance point

distributions in the present simulations of the responsive hydrogels, in which x∆

refers to the spacing between points in x-direction.

)(uB  and )(~ uB  are the linearly independent basis-function vectors which are

given by

},,1{)}(),(),({)( 2
321 uuubububu ==B , (3.5)
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},1{)}(),({)(~
21 uububu ==B , (3.6)

and )( kxA  and )(~
kxA  are symmetric constant matrices associated with the central

point kx  of the fixed cloud,
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where )( uxK k −  is a kernel function constructed by cubic spline function as,

⎪
⎩

⎪
⎨

⎧

≤≤−−
≤≤−

<

∆
=−

10)2/1()3/2(
216/)2(

20
1)(

2

3

zzz
zz
z

L
uxK

k
k , (3.9)

where kk Luxz ∆−= /)( .

Due to the additionally introduced unknown function )(xg x , the auxiliary

condition is required in order to implement the Hermite-cloud method. Imposing the

first-order partial differential with respect to x  on the approximation )(~ xf  expressed

by equation (3.1), and noting equation (3.2), the auxiliary condition is derived as

0)())(()(
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,
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= ==
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xnn
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where )(, xN xn  denotes the first derivative of )(xNn  with respect to the variable x .

3.3 Numerical implementation

The formulation of the present Hermite-cloud method has been completed in

the previous section, and it is able to solve generic engineering partial differential

boundary value (PDBV) problems, such as,
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)()( xPxLf = , PDEs in computational domain Ω (3.11)

)()( xQxf = , Dirichlet boundary condition on DΓ (3.12)

)(/)( xRnxf =∂∂ , Neumann boundary condition on NΓ (3.13)

where L  is differential operator and )(xf  an unknown real function. By using the

point collocation technique, the approximation of the above PDBV problem can be

expressed in the follow discrete forms as

)()(~
jj xPxfL = , ),,2,1( Ω= Nj K (3.14)

)()(~
jj xQxf = , ),,2,1( DNj K= (3.15)

)(/)(~
jj xRnxf =∂∂ , ),,2,1( NNj K= (3.16)

where ΩN , DN  and NN  are the numbers of scattered points in the interior

computational domain and along the Dirichlet and Neumann edges, respectively. Thus

total number of scattered points NDT NNNN ++= Ω .

Substituting equations (3.1) and (3.2) into equations (3.14)-(3.16) and

considering the auxiliary condition (3.10), a set of discrete algebraic equations with

respect to unknown point values if  and xig  is derived in the following matrix form as

1)(1)()()( }{}{][ ×+×++×+ =
STSTSTST NNiNNiNNNNij dFH , (3.17)

where }{ id  and }{ iF  are )( ST NN + -order column vectors

T
NxiNiNNi STST

gfF }}{,}{{}{ 111)( ×××+ = , (3.18)

T
NNiNiNiNNi SNDST

xRxQxPd }}0{,)}({,)}({,)}({{}{ 11111)( ×××××+ Ω
= , (3.19)

and ][ ijH  is a )()( STST NNNN +×+  coefficient matrix



Chapter 3 A Novel Meshless Technique: Hermite-Cloud Method

- 38 -

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=

×
=

×

××

××

×
=

×

∑

∑ ΩΩ

SS

T

TS

SNTN

SDTD

S

T

T

NNij

N

n
nixnNNixj

NNijNN

NNNNij

NNij

N

n
niniNNij

ij

xMxxNxN

xM
xN

xMxxNxLxLN

H

)]())([()]([

)]([]0[
]0[)]([

))]())((([)]([

][

1
,,

1

. (3.20)

By solving numerically the set of linear algebraic equations (3.17), )( ST NN +

point values { }iF  are obtained. Accordingly, the approximate solutions )(~ xf  and the

first-order differential )(~ xg x  can be computed through equations (3.1) and (3.2),

respectively.

3.4 Numerical Validation

For examination of the Hermite-cloud method, two examples of differential

boundary value problems with exact solutions are taken below.

The first example is a Poisson equation with a forcing term as a function of x .

The governing equation and boundary conditions are written as

2
15

2
105 2

2

2

−=
∂
∂ x
x
u , )11( <<− x  (3.21)

11 −== xatu ,  (3.22)

110 ==
∂
∂ xat

x
u .  (3.23)

The exact solution of this Poisson problem is given as

8
3

4
15

8
35 24 +−= xxu .  (3.24)

A comparison of the numerical results by the Hermite-cloud method with the

exact solution (3.24) is illustrated in Figure 3.1 for the Poisson boundary value
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problem (3.21) to (3.23). It is observed that a very good agreement between the

Hermite-cloud and exact results is achieved, in which the maximum relative

discrepancy is 2.63% at x =0.66.

The second example with a high gradient in a local area is taken to see how

the Hermite-cloud method performs. The corresponding differential governing

equation and boundary conditions are written as
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The exact solution of this differential boundary value problem with local high

gradient is given as
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In the present numerical comparison, 5.0=β  and 05.0=α  are taken. As

shown in Figure 3.2, a high local gradient is generated near 5.0=x , and the

numerical results of the Hermite-cloud method match well with the exact solution, in

which the maximum relative discrepancy is 5.65% at x =0.56.



Chapter 3 A Novel Meshless Technique: Hermite-Cloud Method

- 40 -

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

NP=100
Exact

Figure 3.1 Comparison of computed Hermite-cloud results with the exact solution for
the 1-D Poisson equation.
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Figure 3.2 Comparison of computed Hermite-cloud results with the exact solution for

the 1-D differential boundary value problem with a high local gradient.
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Chapter 4

Numerical Simulation for Swelling Equilibrium of Thermo-

Sensitive Hydrogels

In this chapter, the developed MECtherm governing equations are discretized

and solved by the Hermite-cloud method for simulation of swelling equilibrium of

temperature-sensitive hydrogels. The numerically computed results are compared

with the experimental data from open literature to examine the present MECtherm

model. Simulations are made for prediction of the influences of several physical

parameters on the response behaviors of the hydrogels in the swelling equilibrium

state when immersed in the solution with varying temperature. Detailed discussions

are also carried out for the effect of temperature on the volume phase transition and

the distributions of ionic concentrations, fixed charge density and electric potential.

4.1 Discretization of Poisson-Nernst-Plank equations

In order to simulate the steady-state swelling equilibrium of temperature-

sensitive hydrogels, the non-dimensional Nernst-Plank equations (2.21) and Poisson

equation (2.22) are discretized in spatial domain and then solved by the Hermite-

cloud method.

According to the Hermite-cloud method, the approximations of non-

dimensional unknown variables, jc  and ψ , and their derivatives are given as
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Substituting equations (4.1)-(4.6) into governing equations (2.21) and (2.22),

the approximations of Poisson-Nernst-Planck system are written as
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The corresponding auxiliary equations are obtained as
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As described in the computational flow chart shown in Figure 2.3, after

discretization of the Poisson-Nernst-Planck governing equations, the MECtherm
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model, consisting of the transcendental equation (2.11) and nonlinear coupled

Poisson-Nernst-Planck partial differential equations (2.21) and (2.22), will be solved

by a hierarchical Newton iteration technique. In the inner iteration, the ionic

concentrations jc  and electric potential ψ  are computed simultaneously by the

coupled equations (2.21) and (2.22). Then, substituting the coupled results into the

outer iteration, the polymer-network volume fraction φ  is obtained by the

transcendental equation (2.11). Subsequently, the computed φ  is substituted into the

inner iteration again for the next iterative step until all the ionic concentrations jc ,

electric potential ψ  and polymer-network volume fraction φ  converge to the required

accuracy.

4.2 Experimental comparisons

For examination of the present MECtherm model, a numerical comparison is

conducted with the experimentally measured swelling data found in a published

literature, where Hirotsu et al. (1987) carried out the experiment of the temperature

sensitive ionized poly(N-isopropylacrylamide) (PNIPA) hydrogels immersed in pure

water subject to a changing temperature. The PNIPA hydrogel is a typical thermo-

shrinking material, and it is well known due to its distinctive property of unique

alteration between hydrophilicity and hydrophobicity upon external temperature

stimulation. When surrounding temperature is lower than the corresponding lower

critical solution temperature (LCST), the PNIPA hydrogel behaves hydrophilic

characteristic alluring more water since the hydrogen bonds form a stable shell around

the hydrophobic groups. With increasing the external temperature, the hydrophobic

characteristic unveils to free the entrapped water molecules from the network as the
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hydrogen bond interactions become weakened or destroyed. When the temperature

reaches to or is higher than the LCST, the hydrophobic interactions become fully

dominant and the hydrogel is thoroughly dehydrated. As the water releases, the

polymer chains in the hydrogel collapse abruptly and the phase separation of the

PNIPA hydrogel occurs, which is often termed the volume phase transition.

In the simulation of the ionized PNIPA hydrogels immersed in pure water,

only the governing equation (2.12) is required and solved independently. For the

simulation to compare with the experimental data, several parameters from the

experiment of the ionized PNIPA hydrogels are taken as the input data of the

simulations. They are the initial fixed-charge density =0
fc 8mM with the

corresponding valence 1−=fz  and the initial polymer volume fraction at the

reference configuration =0φ 0.07. In the presently simulated temperature region,

obviously it is reasonable that the change of the water density is negligibly small, and

then the effect of the change on the volume phase transition of PNIPA hydrogels is

negligible. As such, one can take the water molar volume as the popularly specified

constant =ν 18.0cm3/mol. In addition, the effective crosslink densities

=eν
3-5 cm/mol101.4×  and 3-5 cm/mol101.0×  are taken for the hydrogels without

and with the fixed charges, respectively. The polymer-network interaction parameter

χ  is calculated by equations (2.5) to (2.8) based on the given data (Hirotsu, 1987;

Hino, 1998), in which 2310717.4 −×−=sδ J/K, 2010246.1 −×−=hδ J,

698.0=ζ kcal/mol and 7/12 −=ζζ .

The comparison of the simulated results with the experimental data is shown

in Figure 4.1 for the swelling equilibrium of the PNIPA hydrogels with and without

fixed charges immersed in the pure water within the temperature range of 20-50°C. It
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is observed from the figure that the simulated results agree well with the experimental

data. It is also known that the fixed charges attached onto the polymer network

enhance the swelling capability of ionized hydrogels, and also increase the lower

critical solution temperature (LCST), as compared with the case of the hydrogels

without fixed charges. At about temperature =T 34.3°C, the unionized PNIPA

hydrogels undergo a continuous volume change, while the ionized PNIPA hydrogels

exhibit a discontinuous volume phase transition at about temperature 35.6°C. The

temperature of volume phase transition of the ionized PNIPA hydrogel is about 1°C

higher than that of the unionized hydrogel. As the temperature increases, the volume

swelling ratios of both the hydrogels decrease due to the shrinking properties.

Furthermore, the swelling equilibrium curves of the hydrogels tend to be merged

together at the temperature above 40.0°C, where the hydrogels are almost fully

dehydrated.

4.3 Parameter Studies on swelling equilibrium

In this section, several parameter studies are carried out for analysis of

swelling equilibrium behavior of the responsive PNIPA hydrogels with fixed charges

immersed in univalent electrolyte solution, instead of pure water. The effects of

several important physical parameters on volume phase transition of PNIPA

hydrogels in swelling equilibrium state are discussed in details, including the initial

fixed charge density 0
fc , bathing solution concentration ∗c , effective crosslink density

eν  and initial polymer volume fraction 0φ .

4.3.1 Effect of initial fixed charge density
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For discussion of the influence of the initial fixed charge density 0
fc  on the

swell equilibrium of the PNIPA hydrogels, Figures 4.2 to 4.6 are plotted for the

variation of the swelling ratio 0/VV  with the temperature and the distributions of the

mobile ionic concentrations jc , fixed charge density fc , as well as electric potential

ψ  at different 0
fc  and T . In the view of theoretical analysis, when the thermo-

sensitive ionized PNIPA hydrogels are immersed in the electrolyte bathing solution,

the hydrogels will experience a dynamic process of volume change before the

swelling equilibrium is finally achieved. After the hydrogels are placed into in the

electrolyte solution, the negatively charged groups attached to the polymer chains are

compensated by the cations diffusing into the hydrogel from the external solution,

which results in the increase of the cation concentration within the hydrogel prior to

the volume change. Here it is reasonably assumed that the ionic concentration in the

external solution remains constant because of much more solution provided. The

diffusion of the cations generates a concentration gradient between the hydrogel and

the bathing solution, which is the source to generate the osmotic pressure to drive the

dynamic swelling of hydrogel. The initial fixed charge density 0
fc  has significant

influence on this process since a higher concentration increases the number of cations

that need to diffuse into the hydrogels to compensate the ionized polymer chains, and

enhance the magnitude of the concentration gradient. Thus, as initial fixed charge

density 0
fc  increases, the concentration gradient increases. This will generate higher

osmotic pressure, resulting in larger swelling of the hydrogels.

In order to investigate the influence of initial fixed charge density 0
fc  on the

swelling equilibrium behavior, three thermo-sensitive ionized PNIPA hydrogels with
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different initial fixed charge densities are simulated when they are immersed in

univalent electrolyte solution, as shown in Figure 4.2, where the case corresponding

to the initial fixed charge density 0
fc =1mM is represented by the dashed line,

0
fc =5mM by the solid line and 0

fc =10mM by the dotted line, and the univalent

electrolyte bathing solution ∗c =20mM. It can be seen from the figure that the

computed LCST at the initial fixed charge density 0
fc =5mM is higher than that at

0
fc =1mM, and lower than that at 0

fc =10mM. Also, the temperature range of volume

phase transition for the ionized hydrogels with higher fixed charge density is broader

than that of the hydrogels with lower density.

To investigate the influences of the temperature T  and the initial fixed charge

density 0
fc  on the distributions of mobile ion concentrations jc  and fixed charge

density fc  as well as electric potentials ψ  in swelling equilibrium state. Figures 4.3

to 4.6 are presented for the cylindrical ionized PNIPA hydrogels with different initial

fixed charge densities 0
fc =1mM, 5mM and 10mM, and the concentration of univalent

electrolyte bathing solution *c =20mM.

Figure 4.3(a) shows the concentration distributions of the mobile cation and

anion in both the interior hydrogels and exterior bathing solution at temperature

T =30°C, and Figure 4.4(a) shows those at temperature T =40°C. The distributions of

fixed charge density fc  in the interior hydrogels and exterior bathing solution in

swelling state are plotted in Figure 4.3(b) at temperature T =30°C and in Figure 4.4(b)

at temperature T =40°C. Figures 4.3(a) and 4.4(a) predict that, for a given initial fixed

charge density 0
fc , the mobile cation concentration within the PNIPA hydrogels at
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temperature T =40°C is larger than that at T =30°C, but the opposite conclusion is

drawn for the mobile anion concentration. Similarly, at a given temperature, the

mobile cation concentration within the PNIPA hydrogels with larger initial fixed

charge density is higher, while the opposite results are obtained for the mobile anion

concentration. The higher the fixed charge density is, the larger the difference of

mobile ion concentrations between interior and exterior hydrogel is. From Figures

4.3(a) and 4.3(b), it is seen that the total concentrations of all the mobile ions (cation

and anion) and fixed charge are just compensated despite the individual concentration

differences of the mobile ions and fixed charge density. Similar phenomena at

T =40°C are also observed in Figures 4.4(a) and 4.4(b).

The distributions of the electric potentials of both the interior hydrogels and

exterior bathing solution at temperature 30°C are plotted in Figure 4.5, and those at

temperature 40°C in Figure 4.6. For a given initial fixed charge density 0
fc , the

electric potential within the PNIPA hydrogels at temperature T =30°C is much higher

than that at T =40°C. In the same manner, at a given temperature, the electric

potential within the PNIPA hydrogels decreases with the increase of the initial fixed

charge density 0
fc .

In addition, after comparison of the case at T =30°C with the corresponding

case at T =40°C in Figures 4.3 to 4.6, it is noted that the hydrogel-solution interfaces

move with the temperature. Thus they also demonstrate evidently that the polymer

network volume fraction at temperature T =40°C is higher than that at T =30°C, due

to the thermal shrinking characteristics of the ionized PNIPA hydrogels.
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4.3.2 Effect of bathing solution concentration

For analysis of the influence of bathing solution concentration *c  on the

response behavior of the PNIPA hydrogels in swelling equilibrium, Figures 4.7 to

4.11 are presented for the relationship between the swelling ratio 0/VV  and the

temperature T , and the variation of the mobile ions and fixed charge as well as

electric potential along the radial coordinates under different *c  and T . Theoretically,

for a thermo-sensitive ionized PNIPA hydrogel immersed in pure water, the swelling

equilibrium state is achieved when the total osmotic pressure is equal to zero.

However, this equilibrium state can be simply destroyed by introducing the electrolyte

into the pure water, and accordingly a dynamic volume change process will undergo

until a new equilibrium is reached. At lower electrolyte concentration or the special

case of pure water, the negative charges of the PNIPA hydrogel network are

neutralized by counter hydrogen ions. As the electrolyte concentration increases, the

hydrogen ions within the PNIPA hydrogel are replaced by the diffusive mobile

cations from the bathing solution. If we further increase the electrolyte concentration

in the system, more cations and anions would like to diffuse into the hydrogel from

the external solution and then the overall concentration of mobile ions within the

hydrogel is getting higher. However, the concentration difference between the interior

hydrogel and exterior bathing solution is reduced, and consequently the driving force

of swelling decreases gradually, which means that the swelling ratio becomes low.

For the present discussions, the thermo-sensitive ionized PNIPA hydrogels

with invariable initial fixed charge density, 0
fc =5mM, are simulated for the effects of

ionic concentration of bathing solution on swelling behavior. Figure 4.7 shows the

variation of the swelling ratio 0/VV  of the hydrogels with temperature T  subject to
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different bathing solution concentrations *c , namely pure water represented by a

doted dash line, 5mM by a dotted line, 20mM by a solid line and 100mM by a dashed

line, respectively. It is observed from the figure that simulating results verify the

above theoretical analysis, in which the PNIPA hydrogels placed in pure water have

the larger swelling ratio than those in electrolyte solution. With the increase of the

ionic concentration of bathing solution, the swelling ratio decreases, and the

temperature of volume phase transition also decreases. After the temperature

increases above 40°C, they become completely dehydrated regardless of the ionic

concentration of bathing solution.

In order to analyse the influences of the bathing solution concentration and

temperature on the distributions of mobile ion concentrations, fixed charge density

and electric potentials in swelling equilibrium, Figures 4.8 to 4.11 are generated for

the ionized cylindrical PNIPA hydrogels immersed in different univalent electrolyte

bathing solution.

Figure 4.8(a) shows the concentration distributions of the mobile cation and

anion of the interior hydrogels and exterior bathing solution at temperature T =30°C,

and Figure 4.9(a) shows those at temperature T =40°C. The distributions of fixed

charge density in swelling equilibrium are plotted in Figure 4.8(b) at T =30°C and

4.9(b) at T =40°C, respectively. It is observed from Figures 4.8(a) and 4.9(a) that, for

a given electrolyte bathing solution, the mobile cation concentration in the PNIPA

hydrogels at temperature T =40°C is higher than that at T =30°C, but the opposite

trend is for the mobile anion concentration. At a given temperature, with increasing

the concentration *c  of bathing solution, the mobile cation concentration in the

PNIPA hydrogels increases, while the mobile anion concentration decreases. As the
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ionic concentration of bathing solution increases, the difference of mobile ion

concentrations decreases between interior and exterior hydrogel. Figures 4.8 and 4.9

also demonstrate the phenomena where all the concentrations of mobile ions and fixed

charge are compensated.

The distributions of the electric potentials of the interior hydrogels and the

exterior bathing solution are shown in Figure 4.10 at T =30°C and Figure 4.11 at

T =40°C, respectively. For a given electrolyte bathing solution, the electric potential

within the PNIPA hydrogels at temperature T =30°C is much higher than that at

T =40°C. Similarly, for a given temperature T , the electric potential within the

PNIPA hydrogels increases with the increase of the ionic concentration of electrolyte

bathing solution, which is different from the case in study on the effects of initial

fixed charge 0
fc .

4.3.3 Effect of effective crosslink density

In order to study the influence of crosslink density, the relations between the

temperature T  and swelling ratio 0/VV  are illustrated in Figure 4.12, subjected to

different crosslink densities eν . Distributions of the ionic concentrations, fixed charge

density and electric potential with different eν  and T  are also illustrated in Figures

4.13 to 4.16. As well known, the crosslinking induces the formation of chemical

bonds between linear polymer molecules, and it also leads to form infinite networks.

The formed crosslinking divides a long chain into the connected short chains and thus

forms numerous pores inside the hydrogels. Usually the hydrogels in state of large

expansion contain a large amount of water in the pores. At swelling equilibrium state,

the water uptake mostly depends on the crosslink density. As the crosslink density
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increases, the network becomes stiffer, the pore size becomes smaller, and the water

uptake decreases. Therefore, the increase of the crosslink density will reduce the

porous volume within the hydrogel network structure, and provide smaller space for

water uptake, which leads to a lower swelling ratio in equilibrium state.

In the present simulations for the effects of effective crosslink density eν  on

the swelling ratio 0/VV  in equilibrium state, three thermo-sensitive ionized PNIPA

hydrogels are considered with different crosslink densities when immersed in

univalent electrolyte bathing solution, in which the initial fixed charge density

0
fc =5mM, and the concentration of univalent electrolyte bathing solution =∗c 20mM.

The hydrogel swelling ratio 0/VV  in equilibrium state versus temperature is shown in

Figure 4.12, where hydrogel with the effective crosslink density eν =0.006mM is

represented by dotted line, eν =0.01mM by solid line and eν =0.014mM by dashed

line. It is seen from the figure that, regardless of crosslink densities, the swelling

ratios 0/VV  of equilibrium thermo-sensitive PNIPA hydrogels have similar profiles as

a function of temperature. Their LCSTs or the volume phase transition temperatures

have nearly no shift for the hydrogels, in which all lie in the vicinity of 34.6°C. Figure

4.12 also shows that, at the temperature below LCST, the volume swelling ratio 0/VV

of the equilibrium PNIPA hydrogel with the effective crosslink density eν =0.010mM

is larger than that with larger eν =0.014mM, and smaller than that with lower

eν =0.006mM. The equilibrium volume changes of low crosslink density hydrogels

are greater than those with high crosslink density at temperature below LCST.

To demonstrate the influence of the temperature T  and effective crosslink

density eν  on the distributions of the mobile ion concentrations, fixed charge density



Chapter 4 Numerical Simulation for Swelling Equilibrium of Thermo-Sensitive Hydrogels

- 53 -

and electric potential along the radial coordinate in swelling equilibrium state, Figures

4.13 to 4.16 are generated for the ionized cylindrical PNIPA hydrogels immersed in

the univalent electrolyte bathing solution.

Concentration distributions of the mobile cation and anion in both the interior

hydrogels and exterior bathing solution are shown in Figure 4.13(a) at temperature

T =30°C and Figure 4.14(a) at temperature T =40°C. Correspondingly, the

distributions of fixed charge density fc  in equilibrium state are plotted in Figure

4.13(b) at T =30°C and Figure 4.14(b) at T =40°C. Figures 4.13(a) and 4.14(a) show

that, for a given effective crosslink density eν , the mobile cation concentration in the

interior PNIPA hydrogels at temperature T =40°C is higher than that at T =30°C,

which is caused by depleting water from the hydrogels due to the collapse. At

temperature T =30°C, the mobile cation concentration in the interior PNIPA

hydrogels is higher with increasing the effective crosslink density eν . The opposite

trends are observed for the mobile anion concentration. As the effective crosslink

density eν  increases, the mobile anion concentration decreases. Additionally, the

increase of the effective crosslink density eν  makes the larger difference of ionic

concentrations between interior hydrogel and exterior solution. At temperature

T =40°C, all mobile ion concentrations in both the hydrogels and solution are equal to

each other for different crosslink densities eν  because of the same swelling ratio, as

portrayed in Figure 4.12. Figures 4.13 and 4.14 demonstrate similar phenomena to

those in Figures 4.3, where all the concentrations of mobile cation and anion, and

fixed charge are compensated.
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Distributions of the electric potential in both the interior hydrogels and

exterior bathing solution are plotted in Figure 4.15 at temperature T =30°C and in

Figure 4.16 at temperature T =40°C. For a given effective crosslink density eν , the

electric potential in the PNIPA hydrogel at temperature T =30°C is much higher than

that at T =40°C. At the temperature T  below the volume phase transition temperature

such as T =30°C, the electric potential in the PNIPA hydrogels decreases with

increasing the effective crosslink density eν . At the temperature above the volume

phase transition temperature such as T =40°C, the electrical potentials under different

effective crosslink densities eν  are equal in both the hydrogels and solution because

of the same swelling ratio 0/VV .

4.3.4 Effect of initial polymer volume fraction

Initial polymer volume fraction 0φ  is defined at the reference state by the

product of the molar volume and concentration of the monomeric unit at the

preparation of hydrogels. Crosslinking agent induces the connection of these

monomeric units to form networks. Initially a hydrogel is in the dry state, solvent has

to diffuse into the networks to fulfill the free-volume, which is not occupied by the

polymer chains in the hydrogels. Influence of the initial polymer volume fraction 0φ

at a constant crosslink density is different from that of the effective crosslink density

in the hydrogels.

In order to examine the effects of initial polymer volume fraction 0φ  on the

volume swelling ratio 0/VV  in equilibrium state, three thermo-sensitive ionized

PNIPA hydrogels with different initial polymer volume fractions 0φ  are simulated
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when immersed in univalent electrolyte solution, where the initial fixed charge

density 0
fc =5mM, and the univalent electrolyte bathing solution =∗c 20mM. Figure

4.17 shows the response behavior of the hydrogels with different initial polymer

volume fractions, 0φ =0.05 represented by dotted line, 0φ =0.07 by solid line and

0φ =0.09 by dashed line. It is seen from the figure that the profiles of volume swelling

ratio 0/VV  of equilibrium thermo-sensitive PNIPA hydrogels are quite different for

different initial polymer volume fractions. At the temperature below LCST, the

volume swelling ratio 0/VV  of the equilibrium PNIPA hydrogel with 0φ =0.07 is

larger than that with smaller 0φ =0.05, and is smaller than that with bigger 0φ =0.09. In

the contrast, the computed LCST for the initial polymer volume fraction 0φ =0.07 is

greater than that for 0φ =0.09, and is lower than that for 0φ =0.05, namely, the

computed LCST decreases with increasing the initial polymer volume fraction 0φ .

Obviously, the volume change of equilibrium hydrogel with larger initial polymer

volume fraction 0φ  is greater than that with smaller 0φ  at the temperatures below

LCST. At temperature above LCST, the volume swelling ratio for the equilibrium

hydrogels with larger initial polymer volume fraction 0φ  is smaller than that with

lower 0φ .

For analysis of the influence of the temperature T  and initial polymer volume

fraction 0φ  on the distributions of mobile ion concentrations, fixed charge density and

electric potential in swelling equilibrium state, Figures 4.18 to 4.21 are plotted for the

ionized cylindrical PNIPA hydrogels immersed in the univalent electrolyte bathing

solution.
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The concentration distributions of the mobile cation and anion in both the

interior hydrogels and exterior bathing solution are demonstrated in Figure 4.18(a) at

temperature T =30°C and Figure 4.19(a) at temperature T =40°C. Distributions of

fixed charge density in swelling state are plotted in Figure 4.18(b) at T =30°C and

Figure 4.19(b) at T =40°C. Figures 4.18(a) and 4.19(a) show that, for a given initial

polymer volume fraction 0φ , the mobile cation concentration in the interior PNIPA

hydrogels at temperature T =40°C is higher than that at T =30°C. At a given

temperature T , the mobile cation concentration in the interior PNIPA hydrogels is

higher for smaller initial polymer volume fraction 0φ . The opposite trends are

observed for the mobile anion concentration, namely as the initial polymer volume

fraction 0φ  increases, the mobile anion concentration increases, and the difference of

mobile ion concentrations decrease between interior hydrogel and exterior bathing

solution.

Distributions of the electric potential in both the interior hydrogels and

exterior bathing solution are plotted in Figure 4.20 at temperature T =30°C and in

Figure 4.21 at temperature T =40°C. For a given initial polymer volume fraction 0φ ,

the electric potential in the interior PNIPA hydrogel at temperature T =30°C is much

higher than that at T =40°C. At a given temperature, the electric potential in the

interior PNIPA hydrogels increases accordingly with increasing the initial polymer

volume fraction 0φ .
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Figure 4.1 Comparison of numerical simulations with the experimental swelling data

for temperature-sensitive PNIPA hydrogels in pure water.
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Figure 4.2 Relation between the temperature and swelling ratio V/V0 of equilibrium

volume for the ionized hydrogels with different initial fixed charge densities 0
fc

immersed in the univalent electrolyte solution 20* =c mM.



Chapter 4 Numerical Simulation for Swelling Equilibrium of Thermo-Sensitive Hydrogels

- 58 -

0 2 4 6 8 10
14

16

18

20

22

24

 cf
0=1mM

 cf
0=5mM

 cf
0=10mM

 

 

Radial coordinate (mm)

M
ob

ile
 io

n 
co

nc
en

tra
tio

n 
(m

M
)

 

 

 

 

(a)

0 2 4 6 8 10
0

2

4

6

8

0 2 4 6 8 10
0

2

4

6

8

 

 

Fi
xe

d 
ch

ar
ge

 d
en

si
ty

 (m
M

)

Radial coordinate (mm)

 cf
0=1mM

 cf
0=5mM

 cf
0=10mM

  

 

 

(b)

Figure 4.3 Distributions of the mobile cation (solid line) and anion (dash line)

concentrations (a), and the fixed charge densities (b) versus radial coordinate for the

ionized hydrogels with different initial fixed charge densities 0
fc  at temperature

T =30°C prior to volume phase transition.
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Figure 4.4 Distributions of the mobile cation (solid line) and anion (dash line)

concentrations (a), and the fixed charge densities (b) versus radial coordinate for the

ionized hydrogels with different initial fixed charge densities 0
fc  at temperature

T =40°C posterior to volume phase transition.
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Figure 4.5 Distributions of electric potentials versus radial coordinate for the ionized

hydrogels with different initial fixed charge densities 0
fc  at temperature T =30°C

prior to volume phase transition.
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Figure 4.6 Distributions of electric potentials versus radial coordinate for the ionized

hydrogels with different initial fixed charge densities 0
fc  at temperature T =40°C

posterior to volume phase transition.
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Figure 4.7 Relation between the temperature and swelling ratio V/V0 of equilibrium

volume for the ionized PNIPA hydrogels with initial fixed charge density 0
fc =5mM

immersed in pure water and different bathing solution concentrations ∗c =5, 20 and

100mM, respectively.
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Figure 4.8 Distributions of the mobile cation (solid line) and anion (dash line)

concentrations (a) , and the fixed charge densities (b) versus radial coordinate for the

ionized PNIPA hydrogels with initial fixed charge density 50 =fc mM immersed in

different bathing solution concentrations ∗c  at temperature T =30°C.
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Figure 4.9 Distributions of the mobile cation (solid line) and anion (dash line)

concentrations and the fixed charge densities (b) versus radial coordinate for the

ionized PNIPA hydrogels with initial fixed charge density 50 =fc mM immersed in

different bathing solution concentrations ∗c  at temperature T =40°C.
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Figure 4.10 Distributions of electric potentials versus radial coordinate for the ionized

PNIPA hydrogels with initial fixed charge density 50 =fc mM immersed in different

bathing solution concentrations ∗c  at temperature T =30°C.
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Figure 4.11 Distributions of electric potentials versus radial coordinate for the ionized

PNIPA hydrogels with initial fixed charge density 50 =fc mM immersed in different

bathing solution concentrations ∗c  at temperature T =40°C.
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Figure 4.12 Relation between the temperature and swelling ratio V/V0 of equilibrium

volume for the ionized hydrogels with initial fixed charge density 50 =fc mM and

different crosslink densities eν  immersed in the univalent electrolyte solution

=∗c 20mM.
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Figure 4.13 Distributions of the mobile cation (solid line) and anion (dash line)

concentrations (a) and the fixed charge densities (b) versus radial coordinate for the

ionized PNIPA hydrogels with initial fixed charge density 50 =fc mM and different

crosslink densities eν  immersed in the univalent electrolyte solution =∗c 20mM at

temperature T =30°C.
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Figure 4.14 Distributions of the mobile cation (solid line) and anion (dash line)

concentrations (a), and the fixed charge densities (b) versus radial coordinate for the

ionized PNIPA hydrogels with initial fixed charge density 50 =fc mM and different

crosslink densities eν  immersed in the univalent electrolyte solution =∗c 20mM at

temperature T =40°C.
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Figure 4.15 Distributions of electric potentials versus radial coordinate for the ionized

PNIPA hydrogels with initial fixed charge density 50 =fc mM and different crosslink

densities eν  immersed in the univalent electrolyte solutions =∗c 20mM at

temperature T =30°C.
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Figure 4.16 Distributions of electric potentials versus radial coordinate for the ionized

PNIPA hydrogels with initial fixed charge density 50 =fc mM and different crosslink

densities eν  immersed in the univalent electrolyte solution =∗c 20mM at temperature

T =40°C.
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Figure 4.17 Relation between the temperature and swelling ratio V/V0 of equilibrium

volume for the ionized hydrogels with initial fixed charge density =0
fc 5mM and

different initial polymer volume fractions 0φ  immersed in the univalent electrolyte

solution =∗c 20mM.
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Figure 4.18 Distributions of the mobile cation (solid line) and anion (dash line)

concentrations (a) and the fixed charge densities (b) versus radial coordinate for the

ionized PNIPA hydrogels with initial fixed charge density 50 =fc mM and different

initial polymer volume fractions 0φ  immersed in the univalent electrolyte solution

=∗c 20mM at temperature T =30°C.



Chapter 4 Numerical Simulation for Swelling Equilibrium of Thermo-Sensitive Hydrogels

- 71 -

0 2 4 6 8 10
0

20

40

60

80

100

 φ0=0.05
 φ0=0.07
 φ0=0.09

 

 

Radial coordinate (mm)

M
ob

ile
 io

n 
co

nc
en

tra
tio

n 
(m

M
)

 

 

 

 

 

(a)

0 2 4 6 8 10
0

20

40

60

80

100

0 2 4 6 8 10
0

20

40

60

80

100

 φ0=0.05
 φ0=0.07
 φ0=0.09

 

 

Fi
xe

d 
ch

ar
ge

 d
en

si
ty

 (m
M

)

Radial coordinate (mm)

  

 

 

(b)

Figure 4.19 Distributions of the mobile cation (solid line) and anion (dash line)

concentrations (a) and the fixed charge densities (b) versus radial coordinate for the

ionized PNIPA hydrogels with initial fixed charge density 50 =fc mM and different

initial polymer volume fractions 0φ  immersed in the univalent electrolyte solution

=∗c 20mM at temperature T =40°C.
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Figure 4.20 Distributions of electric potentials versus radial coordinate for the ionized

PNIPA hydrogels with initial fixed charge density 50 =fc mM and different initial

polymer volume fractions 0φ  immersed in the univalent electrolyte solution

=∗c 20mM at temperature T =30°C.
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Figure 4.21 Distributions of electric potentials versus radial coordinate for the ionized

PNIPA hydrogels with initial fixed charge density 50 =fc mM and different initial

polymer volume fractions 0φ  immersed in the univalent electrolyte solution

=∗c 20mM at temperature T =40°C.
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Chapter 5

Transient Model Development for Simulation of Drug

Delivery from Microgels

In this chapter, a transient model is provided for simulation of drug delivery

from microgels, where the controlled nifedipine release from the spherical chitosan

microgels is investigated numerically. The mathematical model takes into account

both drug dissolution and drug diffusion through the continuous matrices of spherical

microgels. The effects of several important physical parameters on drug release are

evaluated, including the microsphere radius, equivalent drug saturation concentration,

drug diffusion coefficient, and drug dissolution rate constant.

5.1 Formulation of mathematical model

Nifedipine is a poorly water-soluble drug with solubility less than 10 mg/L

(Liu et al., 2000). As a well-known calcium channel blocker, nifedipine is most

commonly used for the treatment of hypertension, a chronic disease that affects

10~20% of the world population and induces cardiovascular complications

(Hombreiro et al., 2003). However, many serious adverse effects associated with

immediate nifedipine release have been revealed, such as hypotension, myocardial

ischemia or infarction, ventricular fibrillation, and cerebral ischemia (Mansoor et al.,

2002). Given the seriousness of the reported adverse events and the lack of any

clinical documentation attesting to a benefit, Food and Drug Administration (FDA) of

USA concluded that the use of immediately released nifedipine for hypertensive
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emergencies is neither safe nor effective and therefore it should not be used

(Grossman et al., 1996).

Microspheric drug release system has attracted increasing attention recently.

Controlled nifedipine release was investigated experimentally by using various

polymer-based microgels, such as spherical chitosan microgels, Eudragit

microcapsules, and poly(DL lactide-co-glycolide acid) microspheres. However, no

effort is made to develop mathematical model for simulation of the nifedipine release

process due to the complexity. The objective of the present work is to present a model

with consideration of dissolution and diffusion mechanisms for numerical

investigation of the nifedipine release from chitosan microgels.

In general, the initial drug loading concentration 0C  in spherical microgels is

greater than the drug saturation concentration sC . This can be achieved either by

preparation of a solution and total evaporation of the solvent, or by partial evaporation

or phase inversion (Harland et al., 1988). When the polymeric microgels are put into a

well stirred release medium, the following four mass transfer steps take place

consequently (Hombreiro et al., 2003): (1) drug dissolution within the microgels; (2)

drug diffusion within the matrices of microgels; (3) drug diffusion through the

unstirred liquid boundary layers on the surfaces of the microgels; and (4) drug

diffusion and convection within the release medium.  Since the convective transport

within the medium is usually fast compared with that of the diffusive mass, the

convective transport can be neglected when calculating the overall rate of drug release

from the polymeric microgels. Therefore, it is reasonable to assume that drug

dissolution and diffusion from the continuous matrices of spherical microgels control

the drug release in a well-stirred release medium.
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The kinetics of drug release from the microgels with radius R  can be

simulated mathematically by the following partial differential governing equation

(Harland et al., 1988), 

)),(()),(2),((),(
2

2

trCCk
r

trC
rr

trCD
t

trC
s −+

∂
∂

+
∂

∂
=

∂
∂ ε , (5.1)

and the following initial and boundary conditions for the drug release process in a

well stirred release medium,

sCtrCRrt ε=<<= ),(00 , (5.2-a)

0),(00 =
∂

∂
=>

r
trCrt , (5.2-b)

0),(0 ==> trCRrt , (5.2-c)

where ),( trC  (g/cm3) is the drug concentration at the radial position r  (cm) of the

microgel system at the release time t  (s), D (cm2/s) is the drug diffusion coefficient,

k  (s-1) is the first-order drug dissolution rate constant, ε  is a parameter for the

polymeric network meshes of microgels and it is directly related to the cross-linking

density of the polymeric microspheres. If sC  (g/cm3) is defined as drug saturation

concentration in the system, sCε  (g/cm3) refers to the equivalent drug saturation

concentration in microgels with a network mesh parameterε .

The first term of the right-hand side in equation (5.1) is the well-known Fick’s

second law of diffusion for a spherical system (Crank, 1975), which describes the

diffusion drug release process in the microgels due to the continuous dissolution of

the drug.  The second term of the right-hand side in equation (5.1) corresponds to the

potential rate-limiting drug dissolution process (Harland et al., 1988). It is observed

that, when the drug loading concentration 0C  is smaller than the drug saturation
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concentration sC , the equation (5.1) is reduced to the classic Fick’s diffusion equation.

Although the drug diffusion coefficient D  in the polymeric microgels may be

solvent-concentration dependent, usually it is reasonable to assume approximately a

constant D  for simplicity.

It is also assumed that the drug is uniformly distributed throughout the

microgels with equivalent drug saturation concentration sCε  initially.  Under perfect

sink conditions, the release medium can be considered to be well stirred, thus the drug

concentration outside of microgels is further assumed to be constant and equal to zero.

By defining dimensionless parameters (Harland et al., 1988), Rr /=ξ  for

dimensionless radius, 2/ RDt=τ  for dimensionless Fourier time, DkR /2=β  called

dimensionless dissolution/diffusion number, and dimensionless concentration

sCtrCC ετξ /),(1),( −= , which indicates the non-dimensional drug concentration

additionally required to reach saturation dissolution, the partial differential governing

equation (5.1) and initial and boundary conditions (5.2) are thus rewritten in the

dimensionless forms as,
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0),(100 =<<= τξξτ C , (5.4)

0),(0 =
∂

∂
>

ξ
τξτ C  at 0=ξ , and 1),( =τξC  at 1=ξ . (5.5)

After solving the set of above governing equation and conditions, ),( τξC  is

obtained and then the drug concentration ),( trC  is computed. According to Fick’s

first law (Robert, 1996), the flux ),( trJJ = , the rate of drug transfer per unit area of

section, is considered as,
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The rate of drug release from the microgels is thus calculated by (Robert,

1996)

Rr
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t
M

==
∂
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),( , (5.7)

where A  is the area of microgels with radius R , tM  represents the amount of drug

released after time t  and it can be calculated by integrating equation (5.7),
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5.2 Model implementations

To simulate the kinetics of drug release, the non-dimensional partial

differential governing equation (5.3) at time τ  is discretized in spatial domain by the

Hermite-cloud method and discretized in time domain by linear interpolation

technique as
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Using Hermite-cloud method for spatial discretization, we have,
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Substituting equations (5.10) to (5.12) into equation (5.9), the drug release

governing equation is discretized at iξ  of spatial domain in the following form,
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By the linear interpolation technique, a weighted average of the time

derivative τ∂∂ /C  can be approximated at two consecutive time steps as follows

(Reddy, 1993),
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where λ  is a weighted coefficient ( 10 ≤≤ λ ).

Substituting equations (5.10) and (5.13) into equation (5.14) and considering

the auxiliary condition (3.10), the drug release governing equation with time iteration

is finally discretized in both spatial and time domains and reduced to a set of discrete

algebraic equations in the following matrix form,
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where
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5.3 Numerical simulations and discussions

The experimentally measured nifedipine release data for the spherical

nifedipine-loaded chitosan microgels exposed to phosphate buffer (pH 7.4), achieved

by Filipovic et al. (1996) through the chitosan microgel preparation and

characterization and nifedipine release determination, are simulated numerically by

the present mathematical model. A series of B samples (B1~B5) are selected and the

corresponding microgel radii R are listed in Table 5.1 (Filipovic et al., 1996). The

totally loaded drug mass ∞M  listed in Table 5.1 are calculated based on the mass of

drug-loaded microgels m(g), total drug content d(%), the mean radius of dry

microgels R(cm) and the volume of the dissolution medium V(cm3) obtained from the

experimental data. Assuming that all drug is released and dissolved in the dissolution

medium, )/()3/4( 3 VmdRM ×=∞ π . It is reminded that such an assumption will

bring about unpredictable error in ∞M . However, since the ratio, ∞MM t , is

concerned here, this inaccuracy would not affect the prediction.

5.3.1 Identification of physical parameters

Figure 5.1 shows the kinetics of in vitro drug release from the microgels with

different microsphere radii and total initially loaded drug amounts. As the time
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increases, the initial drug release amount increases rapidly, followed by a gradual

drug release. B5 has larger microspheric radius R and higher total loaded drug amount

∞M  (see Table 5.1). It is observed that nifedipine from B5 is released a little faster

than that from B1. Good agreement between numerically fitted results and

experimental data is obtained for both B1 and B5 with the present mathematical

model. It is seen that the model successfully captures the effect of micro spherical

radius R. The values of the diffusion coefficient D , drug dissolution rate constant k

and equivalent drug saturation concentration sCε  are identified by best-fitting the

computed results to the experimental data. The identified D , k and sCε  are

summarized in Table 5.1. The D value is found to be smaller than the reported value

of nifedipine in cross-linked hydrogels of polyacrylamide-grafted guar gum

(Soppimath et al., 2001). Generally the D values for various drugs in polymeric

hydrogels range from 10-6 to 10-9 (cm2/s).  Several factors may contribute to the

extremely low D value of nifedipine in the studied microgels. First, the solubility of

nifedipine in the release medium is very low about 11 (µg/ml), which implies

relatively large partition coefficient of nifedipine between the polymeric hydrogels

and the release medium. Second, the microgels that are loaded with a high content of

drug tend to absorb less water than those containing a lower content of drug so that

the diffusion processed are retarded. Last, it is reported that an increase in drug

content will also increase the crystallinity of the drug and thus slow down the release

of such a crystalline drug (Soppimath et al., 2000).

Figure 5.2 illustrates the kinetics of nifedipine release from chitosan microgels

with different network mesh parameters ε . These microgels are formed with the same

nifedipine amount but different glutaraldehyde reaction times. With an increase in the
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glutaraldehyde reaction time, the cross-linking degree of the microgels increases,

which brings about a decrease in the network mesh parameterε  of the microgels. This

results in the decrease of the equivalent saturation concentration sCε . The fitting well

represents the experimental results. The corresponding D  and sCε  are identified by

best-fitting the calculating results to the experimental data, and they are summarized

in Table 5.1. The diffusion coefficient D is observed to be dependent on the cross-

linking density, and thus on the network mesh parameterε . The increase of sCε  from

0.823 to 1.225 increases the D value from 0.30×10-11 to 0.40×10-11 (cm2/s). The

increased network mesh parameter ε  increases the drug diffusion coefficient D,

which is in consistence with the findings by Pillay and Fassihi (1999).

Figures 5.1 and 5.2 validate that the present mathematical model is able to

describe well the nifedipine release from chitosan microgels with different micro

sphere conditions. It successfully captures the characteristics of the various important

physical parameters affecting the kinetics of nifedipine release. Therefore, it is

concluded that this model provides a suitable simulating approach to obtain deeper

insight into the effects of the important physical parameters on drug release from the

microgels.

5.3.2 Effect of physical parameters on drug release

In order to study the effect of the physical parameters on the kinetics of drug

release, including the micro sphere radius R, drug diffusion coefficient D, drug

dissolution rate constant k, and equivalent saturation concentration sCε , the

mathematical model is employed to simulate drug release kinetics. When the

sensitivity study on one of the parameters is carried out, other parameters are
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remained the same. In Figures 5.3 to 5.6, the experimental data of drug release from

B5 sample are taken as a comparative example.

Figure 5.3 shows the effect of micro spherical mean radius R on the controlled

drug release, where the drug diffusion coefficient D =0.4×10-11(cm2/s), drug

dissolution rate constant k =7.0×10-7 (s-1), and drug equivalent saturation

concentration sCε =1.225×10-6 (g/cm3). The micro sphere radius R in the figure

ranges from 9.5×10-4 to 17.0×10-4 (cm). With increasing the micro sphere radius R,

the overall drug release rate becomes slower. It is noted that a slight change of micro

sphere radius R results in remarkable alteration of nifedipine release rate. A smaller

microgel has larger specific surface area of contact with the release medium, and

facilitate the drug diffusion through the continuous matrices of microgels into the

release medium in comparison with a larger microgel. A decrease in micro sphere

radius R increases both the initial fast release rate and the following gradual release

rate. This implicates that variation of micro spheric radius R affects both drug

dissolution and diffusion process.

The effect of equivalent drug saturation concentration sCε  on drug release

kinetics is shown in Figure 5.4, where the equivalent drug saturation concentration

sCε  changes from 0.5×10-6 to 1.7×10-6 (g/cm3). The drug release remarkably

increases with increasing porosity. An increase of the network mesh parameter ε  of

microgels, i.e. a decrease of the cross-linking density of microgels, simultaneously

increases the drug equivalent saturation concentration sCε  and the drug diffusion

coefficient D, which results in an increase in both drug dissolution and diffusion rates.

These synergically lead to the increased nifedipine release rate.



Chapter 5 Transient Model Development for Simulation of Drug Delivery from Microgels

- 83 -

Figure 5.5 is obtained for discussion about the effect of drug diffusion

coefficient D on the drug release, where the value of D varies from 0.012×10-11 to

4.0×10-11 (cm2/s). It is observed that the diffusion process controls significantly the

initial drug release stage. As the diffusion coefficient D increases, the initial drug

release rate increases distinctly, and the drug release amount becomes a linear

function of time at relatively shorter times. However, after a certain period of release

time, the drug release arrives at a constant level. This indicates that the release of drug

with lower diffusion coefficient D is via diffusion mechanism, whereas the diffusion

process does not solely control the release of drug with higher diffusion coefficient D.

Figure 5.6 illustrates the effect of the drug dissolution rate constant k on drug

release, where the dissolution rate constant k varies from 0.70×10-7 to 24.0×10-7 (s-1)

It is manifest that alteration of drug dissolution rate constant k has insignificant effects

on initial drug release rate. However, after a period of release time, the drug release

rate increases with increasing dissolution rate constant k. This indicates that different

mechanisms control different drug release stages. At the initial stage, diffusion

through continuous matrices of microgels predominantly affects the drug release.

After a period of drug release, drug dissolution starts to significantly affect the drug

release rate.

5.4 A brief remark

The present mathematical model based on both drug dissolution and diffusion

through the continuous matrices of microgels is well validated by comparison with the

experimental nifedipine release from the spherical chitosan microgels. It provides a

better understanding of the underlying mechanisms in micro spheric drug release

system, and represents a highly efficient tool to study the roles played by important
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parameters of the drug and the microgels such as the diffusion coefficient, the micro

spherical radius and the network mesh parameter. Consequently, it can be used to

analyze and optimize the design of the controlled drug release process.
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Table 5.1  Experimental and identified parameters of nifedipine microgels.

Experimental data
(Filipovic et al., 1996) Identified parameters

Type
R

(×10-4cm)
M∞

(×10-13g)
D

(×10-11cm2/s)
k

(×10-7s-1)
sCε

(×10-6 g/cm3)

B1 12.10 0.20 0.40 7.0 1.225

B2 13.90 0.24 0.40 7.0 1.225

B3 13.05 0.20 0.35 7.0 1.033

B4 12.20 0.16 0.30 7.0 0.823

B5 14.50 0.32 0.40 7.0 1.225
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Figure 5.1 Rate of nifedipine release from chitosan microgels with different radii R.

Figure 5.2 Rate of nifedipine release from chitosan microgels with different network

mesh parameter ε.
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Figure 5.3 Effect of the microsphere radius R on the rate of nifedipine release from

chitosan microgels when D=0.4×10-11 cm2/s, k=7.0×10-7 s-1, sCε =1.225×10-6 g/cm3.

Figure 5.4 Effect of the equivalent drug saturation concentration sCε  on the rate of

nifedipine release from chitosan microgels when D=0.4×10-11 cm2/s, R=14.5×10-4 cm,

k=7.0×10-7 s-1.
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Figure 5.5 Effect of the diffusion coefficient D on the rate of nifedipine release from

chitosan microgels when R=14.5×10-4 cm, k=7.0×10-7 s-1, sCε =1.225×10-6 g/cm3.

Figure 5.6 Effect of the dissolution rate constant k on the rate of nifedipine release

from chitosan microgels for R=14.5×10-4 cm, D=0.4×10-11 cm2/s, sCε =1.225×10-6

g/cm3.
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Chapter 6

Conclusions and Future Works

A summation of the conclusions based on the present studies and discussions

is presented in this chapter. This is followed by a brief presentation of recommendable

studies for future works.

6.1 Conclusions

In this dissertation, two mathematical models are presented for simulation of

hydrogel behaviors. One is the steady-state MECtherm model to simulate the swelling

equilibrium of thermo-sensitive hydrogels, and the other is the transient model to

investigate the drug delivery from microgels.

In the study of swelling equilibrium of thermo-sensitive hydrogels, a novel

multiphysical steady-state model, termed the Multi-Effect-Coupling thermal-stimulus

(MECtherm) model, has been developed to simulate and predict the swelling

equilibrium for neutral and ionized thermo-sensitive hydrogels with the volume phase

transition. The developed mathematical model consists of the steady-state Nernst-

Planck equations, Poisson equation and swelling equilibrium governing equation. In

order to solve the multi-field coupling system with both nonlinear partial differential

equations and transcendental equation, a hierarchical Newton iteration strategy is

implemented in the computational flow chart, and the meshless Hermite-cloud

method is employed for numerical simulation of the responsive hydrogels subject to

an environmental temperature change. The simulated relations between temperature

and volume swelling ratio are in good agreement with experimental data. In parameter
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studies, the influence of various physical parameters, including the initial fixed charge

density, electrolyte solution concentration, crosslink density and initial volume

fraction, on the responsive behaviors of the thermal-sensitive hydrogels are

investigated in details. Distributions of mobile ion concentrations, fixed charge

densities as well as the electric potentials in both interior hydrogels and exterior

bathing solution are also simulated and discussed. It should be noted that the degree

of swelling can be improved by increasing the initial fixed charge density, or by

decreasing the electrolyte solution concentration. The present studies and discussions

provide useful information for the BioMEMS designers to enhance the performance

of the responsive hydrogels in BioMEMS as critically active sensing/actuating

elements, such as micro actuators, micro valves, chemical sensors and other

components.

In the study of microgel-based drug delivery system, the controlled nifedipine

release from chitosan spherical microgels is simulated numerically with a

mathematical model. The numerically simulating investigations provide deeper

insight into the drug release mechanisms, and elucidate efficiently the influences of

various physical parameters. The present mathematical model takes into account both

drug dissolution and diffusion through the continuous matrices of the spherical

microgels. Meshless Hermite-cloud method is also employed to solve the formulated

governing partial differential equations. It is seen that the model describes well the

kinetics of nifedipine release process from the spherical chitosan microgels. The

numerical investigation provides a better understanding of the underlying mechanisms

in microspheric drug release system and a high-efficient tool to study the roles played

by important characteristics of the drug and the microgels. The effects of several

physical parameters, such as microsphere radius, equivalent drug saturation
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concentration, drug diffusion coefficient, and drug dissolution rate constant on drug

release are evaluated in details. They are useful for practical designers to analyze and

optimize the controlled drug release process.

6.2 Suggestion for future works

Currently, the present work focuses on the temperature sensitive hydrogels. It

is highly desirable to make further investigations of phase transitions incorporating

with other environmental stimuli, such as pH, electric field, glucose and so on. The

studies on these coupling stimuli may lead to possibilities to create new kinds of

responsive hydrogels.

In the present work, the model simulating the drug delivery from microgels

assumes that the drug diffusivity in the membrane remains constant during

transportation. A recommended study is development of mathematical models with

incorporation of time-dependent diffusivities that reflect the effect of drug

concentration on the drug transportation rate through membrane.
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