
DESIGN AND ANALYSIS OF LOAD

BALANCING/SCHEDULING STRATEGIES

ON DISTRIBUTED COMPUTER NETWORKS

USING VIRTUAL ROUTING APPROACH

ZENG ZENG

(M. Eng., Huazhong University of Science and Technology, PRC )

A THESIS SUBMITTED

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

DEPARTMENT OF ELECTRICAL & COMPUTER ENGINEERING

NATIONAL UNIVERSITY OF SINGAPORE

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


i

Acknowledgements

Firstly of all, I would like to express my deepest gratitude and appreciation to my supervisor,

Assistant Professor Bharadwaj Veeravalli, for his continuous guidance, constant encourage-

ment and rigorous research attitude during the course of my research. It is a pleasant time

to work with him during the past three year and he has made my research experience at the

National University of Singapore (NUS) an invaluable treasure for my whole life.

My special thanks to my devoted parents for their love, encouragement and support

throughout my life. They always stand by my side and provide me the safest harbor in

the world. As the only child of the family, I have done little for them and own them too

much.

My thanks also go to all my friends in Open Source Software Lab, in NUS, for their help

and support to solve the technical and analytical problems. The friendship with them makes

my study and life in NUS fruitful and unforgettable.

Finally, I would like to thank NUS for granting me the research scholarship and providing

me the facilities that make the research a success.



ii

Contents

Acknowledgements i

Contents ii

List of Figures v

List of Tables viii

Summary ix

1 Introduction 1

1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Issues to Be Studied and Main Contributions . . . . . . . . . . . . . . . . . . . 7

1.3 Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 System Modelling 13

2.1 Models for Processing Loads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Arbitrary Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Mathematical Models and Some Definitions . . . . . . . . . . . . . . . . . . . 15

2.3.1 Processor models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Communication link models . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.3 Some notations and definitions . . . . . . . . . . . . . . . . . . . . . . 18



iii

2.3.4 Correspondence between routing and load balancing . . . . . . . . . . . 19

2.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Distributed Static Load Balancing Strategies for Multi-class jobs 21

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Proposed solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Proposed Algorithm and An Optimal Solution . . . . . . . . . . . . . . . . . . 29

3.3.1 Optimal solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Design of the proposed algorithm . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Rate of convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Experimental Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . 40

3.4.1 LK algorithm in brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4.2 Demonstration of LBVR algorithm: An example of load balancing . . . 42

3.4.3 Studies on more network topologies . . . . . . . . . . . . . . . . . . . . 49

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Distributed Dynamic Load Balancing Strategies 55

4.1 System Model and Classification of Dynamic Load Balancing Algorithms . . . 57

4.2 Comparative Study on the Algorithms . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 ELISA: Estimated Load Information Scheduling algorithm . . . . . . . 61

4.2.2 The proposed algorithm: RLBVR . . . . . . . . . . . . . . . . . . . . . 61

4.2.3 The proposed algorithm: QLBVR . . . . . . . . . . . . . . . . . . . . . 67

4.3 Performance Evaluation and Discussions . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Two-processor system model and some important issues . . . . . . . . 70

4.3.2 Effect of system loading . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Effect of Ts: Length of status exchange interval . . . . . . . . . . . . . 74

4.4 Extensions to Large Scale Multiprocessors System . . . . . . . . . . . . . . . . 77



iv

4.4.1 Static or slowly varying system loading . . . . . . . . . . . . . . . . . . 80

4.4.2 Experiments when arrival of loads is varying rapidly . . . . . . . . . . . 82

4.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Extensions to Divisible Loads Scheduling on Arbitrary Networks 86

5.1 Mathematical Model and Problem Formulation . . . . . . . . . . . . . . . . . 88

5.1.1 Description of system, assumptions and notations . . . . . . . . . . . . 88

5.1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Proposed Strategy for Optimal Solution . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Sub-algorithm for a node and optimal sequence . . . . . . . . . . . . . 93

5.2.2 Scheduling strategy for an arbitrary topology . . . . . . . . . . . . . . 98

5.2.3 Convergence and complexity of the algorithm . . . . . . . . . . . . . . 106

5.3 Simulation Results and Some Discussions . . . . . . . . . . . . . . . . . . . . . 111

5.3.1 Demonstration: An example of optimal scheduling . . . . . . . . . . . . 112

5.3.2 Performance comparison of algorithms . . . . . . . . . . . . . . . . . . 114

5.3.3 Divisible loads originating from multiple sites . . . . . . . . . . . . . . 119

5.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6 Conclusions and Future Work 124

Bibliography 129

Author’s Publications 140

Appendix: Queue Length Estimation 141



v

List of Figures

1.1 A distributed/parallel computer system. . . . . . . . . . . . . . . . . . . . . . 2

2.1 A distributed/parallel computer system. . . . . . . . . . . . . . . . . . . . . . 15

2.2 Server model of node i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Job flows in node i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Example of job flows and the delays. . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Job flows in a system with a virtual node. . . . . . . . . . . . . . . . . . . . . 27

3.4 Routing paths for each node. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Operation of the proposed algorithm. . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 An example of a 9-node distributed computer system. . . . . . . . . . . . . . . 43

3.7 A distributed computer system with a virtual node d. . . . . . . . . . . . . . . 47

3.8 Comparison of the algorithms with respect to computational time. . . . . . . . 47

3.9 An example of a 9-node Ring computer system. . . . . . . . . . . . . . . . . . 50

3.10 Comparison of algorithms on Ring network. . . . . . . . . . . . . . . . . . . . 50

3.11 An example of a 9-node arbitrary network. . . . . . . . . . . . . . . . . . . . . 51

3.12 Comparison of algorithms on an arbitrary network. . . . . . . . . . . . . . . . 52

4.1 Node model for queue adjustment policy. . . . . . . . . . . . . . . . . . . . . . 58

4.2 Node model for rate adjustment policy. . . . . . . . . . . . . . . . . . . . . . . 59

4.3 Node model for the combination of queue and rate adjustment policy. . . . . . 60



vi

4.4 Intervals of estimation and status exchange. . . . . . . . . . . . . . . . . . . . 61

4.5 Model of a 2-processor system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.6 Job arrival rate pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Effect of system loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Effect of Ts: System loading is light. . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 Effect of Ts: System loading is moderate. . . . . . . . . . . . . . . . . . . . . . 76

4.10 Effect of Ts: system loading is high. . . . . . . . . . . . . . . . . . . . . . . . . 77

4.11 A mesh-connected multiprocessor M [8, 8] system. . . . . . . . . . . . . . . . . 78

4.12 Mean response time of jobs for 5 different algorithms under different system

utilization: System utilization is light or moderate (ρ < 0.75). . . . . . . . . . 81

4.13 Mean response time of jobs for 5 different algorithms under different system

utilization: System utilization is high (ρ > 0.75). . . . . . . . . . . . . . . . . . 81

4.14 An example of the job pattern. . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1 An arbitrary computer network system with multiple loads. . . . . . . . . . . . 89

5.2 Single-level tree topology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Single-level tree with virtual node and virtual links. . . . . . . . . . . . . . . . 96

5.4 Results of Example 5.1: dmax
1 and dmax

1 − dmin
1 in each iteration r. . . . . . . . 96

5.5 The iteration procedure of the proposed algorithm. . . . . . . . . . . . . . . . 109

5.6 Experiment 5.1: (a) An arbitrary network; (b) Optimal sequence of node 1; (c)

Optimal sequence of node 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 Results of Experiment 5.1: Tmax(r) and Tmax(r) − Tmin(r) in each iteration r. . 114

5.8 Results of Experiment 5.1: Timing diagram. . . . . . . . . . . . . . . . . . . . 115

5.9 Experiment 5.2: An arbitrary network with 10 nodes. . . . . . . . . . . . . . . 116

5.10 Results of Experiment 5.2: Timing diagram of the proposed algorithm when

divisible loads originating from node 10. . . . . . . . . . . . . . . . . . . . . . 117



vii

5.11 Example 5.2, load flow: (a) A simple example with three nodes; (b) MST with

root node 1; (c) The single-level tree; (d) Our proposed algorithm. . . . . . . . 118

5.12 Experiment 3, a 9 nodes system: (a) A sparse connection; (b) A medium dense

connection; (c) A dense connection. . . . . . . . . . . . . . . . . . . . . . . . . 120

5.13 The timing diagram of the 9-node system when the connection is medium dense.121



viii

List of Tables

3.1 Proposed Load Balancing Algorithm (LBVR) . . . . . . . . . . . . . . . . . . 39

3.2 Parameter values of node model . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Average external job arrival rates for class-1 and class-2 jobs . . . . . . . . . . 46

3.4 Completed job rate (βk
i ) in node i . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Parameters of each node in the system . . . . . . . . . . . . . . . . . . . . . . 52

4.1 Main structure of ELISA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Procedure for Node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 MRT of 5 algorithms in the 8× 8 mesh multiprocessor system (sec.) . . . . . . 84

5.1 Brute-force search results for optimal sequence of Example 5.1 . . . . . . . . . 98

5.2 Proposed Scheduling Strategy for Loads Originating from Multiple Sites (Step

1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Proposed Scheduling Strategy for Loads Originating from Multiple Sites (Step

2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Proposed Scheduling Strategy for Loads Originating from Multiple Sites (Step

3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.5 Computational results for load distribution with different load origination . . . 116

5.6 Computational results of Experiment 5.3 (unit load) . . . . . . . . . . . . . . . 120



ix

Summary

Parallel and distributed heterogeneous computing has been proven to be an efficient and

successful way for various applications. There are several performance metrics to quantify the

performances of a distributed system. In this thesis, we consider the problem of load balancing

in distributed systems. Specifically, we consider balancing indivisible loads across the network

nodes so as to achieve an optimal response time. We first present the underlying mathematical

model that takes into account several complex and influencing real-time scenarios of load

balancing and scheduling. In this thesis, we attempt to employ a novel idea in which we use

the concept of virtual routing for balancing the work loads among the nodes. This is the first

time in this domain such an attempt is made. For each of the real-life scenarios considered,

the problem is carefully decomposed into sub-problems and distributed strategies by virtual

routing approach are derived systematically.

For indivisible jobs, minimizing the mean response time of the jobs submitted for process-

ing is a critical performance metric to be considered for improving the overall performance of

the distributed computer system. In this thesis, we propose both the static and dynamic load

balancing algorithms for handling single-class or multi-class jobs in the distributed network

system for minimizing the mean response time of the jobs, using the concept of virtual rout-

ing. We employ a novel approach to transform the load balancing problem into an equivalent

routing problem and propose a static algorithm, referred to as Load Balancing via Virtual

Routing (LBVR). We show that the design of LBVR subsumes several interesting properties



x

and guarantees to deliver a super-linear rate of convergence in obtaining an optimal solution,

whenever it exists.

We classify the distributed, dynamic load balancing algorithms into three policies: queue

adjustment policy (QAP), rate adjustment policy (RAP) and Queue and Rate Adjustment Pol-

icy (QRAP). On the basis of LBVR, we propose two efficient dynamic algorithms, referred to

as Rate based Load Balancing via Virtual Routing (RLBVR) and Queue based Load Balancing

via Virtual Routing (QLBVR), which belong to the above RAP and QRAP policies, respec-

tively. Our focus is to analyze and understand the behaviors of these algorithms in terms of

their load balancing abilities under varying load conditions (light, moderate, or high) and the

minimization of mean response time of the jobs. We compare the above classes of algorithms

by a number of rigorous simulation experiments to elicit their behavior under some influencing

parameters such as, load on the system and status exchange intervals. We also extend our

experimental verification to large scale multiprocessor systems such as Mesh architecture that

is widely used in real-life situations. Recommendations are drawn to prescribe the suitability

of the algorithms under various situations.

Finally, we extend our analysis and design of algorithms to the case of scheduling large vol-

ume computational loads (divisible loads) originating from single or multiple sites on arbitrary

networks. It is first time in divisible load theory (DLT) that such a generalized mathematical

model is presented and the scheduling problem is formulated as an optimization problem with

an objective to minimize the processing time of the loads. We present a number of theoretical

results on the solution of the optimization problem. On the basis of these results, we propose

an efficient algorithm for scheduling divisible loads using the concept of load balancing via

virtual routing for an arbitrary network configuration. When divisible loads originate from

single node, we compare the proposed algorithm with a recently proposed RAOLD algorithm

in the literature which is based on minimum cost spanning tree. When divisible loads origi-

nate from multiple sites, we testify the performance on sparse, medium and densely connected



xi

networks. Detailed performance analysis and comparison are conducted.

Further study in the research areas of indivisible load balancing and divisible load schedul-

ing are quite promising. Several possible extensions of our research are addressed at the end

of this thesis.
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Chapter 1

Introduction

Distributed computer systems have emerged as a powerful computing means for real-time

applications, such as nuclear plant control and avionic control [1], image feature extraction [2]

and biological sequence alignment [3], etc. We consider a generic distributed/parallel com-

puter system shown in Fig. 1.1. The system consists of n heterogeneous nodes, which represent

host computers, interconnected by a generally configured communication/intercommunication

network. Each processor in the system may receive one or more classes of jobs independently

and each node consists of one or more resources (such as CPU, I/O devices, etc), contended

for by the jobs processed at that node. Further, these nodes may differ in configurations

such as, speed characteristics, buffer sizes, and number of resources. However, we assume

that they have the same processing capabilities. For instance, a job can be processed at any

node without interruption. Compared to a single computer system, a distributed computer

system generally provides significant advantages, such as better performance, better scalabil-

ity, better reliability and better resource sharing [4], and distributed computer systems have

attracted more and more research efforts in the past two decades [5–11].

Balancing or scheduling the work loads over a distributed computer network system is im-

portant to improve the overall performance. In such a system, if some hosts remain idle while

others are extremely busy, system performance will be affected drastically. To prevent this,
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Figure 1.1: A distributed/parallel computer system.

load balancing and load scheduling are often used to distribute the loads and improve perfor-

mance measures such as the mean response time (MRT) of a job, which is the time difference

between the time instant at which a job arrives at the system and the time instant at which

the job gets processed [12,13], the total time of processing all the loads [14,15]. The design of

such load balancing and load scheduling algorithms, in general, considers several influencing

factors, such as the underlying network topology, communication network bandwidth at each

processor in the system, etc. The computers in the system are also considered and they can

be classified as either homogeneous with the same computing characteristics or heterogeneous

with different processing capabilities, buffer sizes limited or infinite, etc. Furthermore, while

considering job characteristics, there may exist several variations, such as priority assignment

for jobs in processing, jobs with or without deadlines, etc. For convenience, in the rest of this

thesis, we use load and job interchangeably.

Based on the types of loads under processing, load balancing or scheduling problems can

be classified into two categories: indivisible load balancing and divisible load scheduling.

Indivisible loads are atomic and cannot be divided into smaller sub-tasks, and have to be

processed in its entirety on a processor. The indivisible jobs are assumed to arrive at each

node according to an ergodic process (e.g., Poisson process). Each node determines whether

jobs will be processed locally or transferred to another node for processing. Load balancing
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strategies attempt to distribute the indivisible jobs to be processed, according to some op-

timal solutions, to make the whole system balanced. Divisible loads are data parallel loads

that are arbitrarily partitionable amongst nodes of the network. In contrast to the indivisible

loads model, divisible loads are assumed to be very large in size, homogeneous, and arbi-

trarily divisible in the sense that, each partitioned portion of the loads can be independently

processed on any processor in the system [15, 16]. The theory of scheduling and processing

of divisible loads, referred to as Divisible Load Theory (DLT), has stimulated considerable

interest among researchers in the field of parallel and distributed systems since its origin in

1988 [17, 18]. Hence, load scheduling is the study of how to obtain an optimal fraction of a

large divisible load for each node in a distributed computer system.

Load balancing algorithms can be classified as either dynamic or static, based on the

information that can be used. A dynamic algorithm [19–23] makes its decision according to

the current status of the system, where the status could refer to some types of information

such as the number of jobs waiting in the queue, the current job arrival rate, the job processing

rate, etc, at each processor. On the other hand, a static algorithm [5, 12, 24, 25] is carried

out by a predetermined policy, without considering the status of the system. The primary

concern in the research of DLT is to determine the optimal fractions of the entire loads to be

assigned to each of the processors in such a way that the total processing time of the entire

loads is a minimum. Compilation of all the research contributions in DLT until 1995 can be

found in monographs [1, 15]. Two recent survey articles [16, 26] consolidate all the results

until 2002.

Below, we shall discuss some related work in both load balancing and scheduling research

areas.
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1.1 Related Work

For studying the load balancing problems, many models of computer networks, processors and

jobs have been developed. For example, the models of networks can be classified according

to the topologies of the networks [27], such as star, ring and bus. The processors can be

modelled as M/M/1 queuing systems with a single or several queues to hold the jobs waiting for

processing [28]. In the existing literature, several combinations of different models of computer

network, processor and jobs are discussed and other issues such as sender-initiated strategies,

receiver-initiated strategies are proposed for load balancing [29]. In sender-initiated policies,

congested processors attempt to transfer jobs to lightly loaded processors. In receiver-initiated

policies, lightly loaded processors search for congested processors from which jobs may be

transferred. In [30, 31], the authors compared the performance of the two policies and found

that in most situations, sender-initiated policies provided generally better performance than

receiver-initiated policies [7]. An excellent compilation of most of the load balancing/sharing

algorithms until 1992 can be found in [8].

Static load balancing algorithms are widely used in large-scale simulations [1], parallel

program [32], etc. For static algorithms, there are some differences among the network con-

figurations. In [5,33], Tantawi and Towsley studied optimal static load balancing in star and

bus network configurations [34]. On the basis of their work, Kim and Kameda [35] proposed

two improved algorithms for load balancing in star and bus network configurations, respec-

tively. Load balancing problems in star and tree network configurations with two-way traffic

were studied in [36,37]. In [5,38], the algorithms proposed were concerned about an arbitrary

network configuration and hence, became more applicable in a practical distributed computer

system. However, the contributions mentioned above considered only a single class of jobs.

In practice [25], the jobs in the system were divided into several classes and each class of

jobs had its own priority. Kim and Kameda studied the optimal load balancing problem for

multi-class jobs in bus configured distributed computer system [39]. In [12], Li and Kameda
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proposed a load balancing algorithm for multi-class jobs in an arbitrary network. It is an

important work to analyze the load balancing problems for multi-class jobs. The study of

multi-class jobs makes the system more flexible to handle different classes of jobs and is a

right step in generalizing the study.

Dynamic load balancing algorithms offer the possibility of improving load distribution

at the expense of additional communication and computation overheads. In [23, 40], it was

pointed out that the overheads of dynamic load balancing may be large, especially for a

large heterogeneous distributed system. Hence, most of the research works in the literature

focused on centralized dynamic load balancing [23,41], in which an Management Station (M-

Station)/Balancer kept checking the system status and balanced the arriving jobs among the

processors by some strategies, such as Backfilling [42], Gang-Scheduling, and Migration [81],

etc. By centralization, the M-Station/Balancer can handle most of the communication and

computation overheads efficiently, and improve the system performance. However, the central-

ization limits the scalability of the parallel system and the trend of larger distributed computer

system makes M-Station/Balancer to become the system bottleneck. Because of its scalabil-

ity, flexibility and reliability, distributed dynamic load balancing offers more advantages than

the centralized strategies, and thus has obtained more and more focuses recently [19,43].

To realize a distributed working style, each processor in the system shall handle its own

communication and computation overheads independently [10,12]. In order to reduce the com-

munication overheads, Anand et. al., [19] proposed an estimated load information scheduling

algorithm (ELISA) and Michael [44] analyzed the usefulness of the extent to which old infor-

mation can be used to estimate the status of the system. In [45–47], the authors have proven

the correctness using randomization techniques, leading to an exponential improvement in

balancing the loads. To obtain optimal solutions among the system, the computation over-

heads remain still high. For example, Jie-Kameda algorithm needs more than 400 seconds

(approx) and even a well-known FD algorithm [48] needs more than 105 seconds to solve a
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generic case [12]. However, in this thesis, we propose an algorithm named load balancing via

virtual routing (LBVR) and prove that the convergence rate of LBVR is super-linear. High

convergence rate can reduce the computation overheads significantly.

Numerous studies have been conducted in the DLT literature and a criterion that is used

to derive optimal solution is as follows. It states that in order to obtain an optimal processing

time, it is necessary and sufficient that all the processors participating in the processing must

stop at the same time instance. This condition is referred to as an optimality principle in the

DLT literature and analytic proof can be found in [15, 49, 50]. In 1998, Barlas [51] presented

an important result concerning an optimal sequencing in a tree network and it is one of

the important studies that demonstrates the performance of the load distribution algorithm

when result collection phase is included in the problem formulation. In [52], a multi-level

tree is considered and it is assumed that the load distribution takes place concurrently from

a source processor to all its immediate child processors. This is one of the earliest attempts

in using a multi-port model of communication, in which all the incident links on a processor

are concurrently used. The advantage of the multi-port model was also demonstrated in a

two-dimensional mesh network [53]. In [54], load partitioning of intensive computations of

large matrix-vector products in a multi-cast bus network was investigated.

To determine the ultimate speedup using DLT analysis, Li [55] conducted an asymptotic

analysis for partitionable network topologies. Here speedup is the ratio of solution time on

one processor to solution time on N processors and is thus a measure of achievable parallel

processing advantage. Most recent studies focus on system dependent constraints such as,

scheduling under finite buffer capacity constraints [56], estimating the processor and link

speeds by some methods of probing and estimating [57], scheduling divisible loads on Mesh

multiprocessor architectures [58], to quote a few. Also, the applicability of DLT concepts to

schedule and process loads generated from large scale physics experiments (RHIC at BNL,

USA) on computational grids were investigated in [59]. Finally, use of affine delay models for
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communication and computation components for scheduling divisible loads were extensively

studied in [60,61], etc.

We observe that the evolution of indivisible load balancing begins from static situations,

evolves to dynamic situations, and the evolution of indivisible load balancing and divisible load

scheduling begin from particular network topology, evolve to arbitrary network configurations

and now flourish to retrieval strategies in a variety of practical areas with real-life constraints.

This thesis is an attempt to contribute proactive efforts and interesting research results to

the prosperous and active research areas.

1.2 Issues to Be Studied and Main Contributions

The contributions in the thesis are multi-fold. We will discuss the main contributions sys-

tematically below. From the review of the existing literature in load balancing and DLT

highlighted above, we observe that, up to now, most works in these research areas attempt to

obtain closed-form solutions of the problems under consideration. In load balancing field, the

researchers propose their system models and formulate the problems as optimization prob-

lems with constraints. In order to solve the optimization problems, Lagrangian functions are

constructed according to the original functions and very complex mathematical closed-form

equations are derived [12,38]. In order to solve the lagrangian functions, the Lagrangian mul-

tipliers become the keys and some research methods, such as Golden Section Search [62], are

used to obtain the exact values of the multipliers. It is a time-consuming procedure. In DLT,

the closed-form solutions are obtained in various network topologies. For example, in [63],

the authors considered the linear daisy chain networks with the constraints of the arbitrary

processor release time, and proposed different solutions for different situations. However, in

some real-life situations, such as scheduling of divisible loads originating from multiply sites,

it is very hard to obtain the closed-form solutions. In the literature, some search methods



Chapter 1 Introduction 8

such as Genetic Algorithms (GA) [64, 65], Ant Algorithms [66], Tubo Search [67], etc., have

been proposed and it has been proven that the search methods can solve some complex prob-

lems efficiently. This thesis attempts to transfer the load balancing and scheduling problems

into equivalent virtual routing problems first and then, use some search methods to obtain

the optimal solutions to these problems, if they exist. Detailed analysis and discussions on

studying the strategies are conducted with the consideration of practical constraints. In the

following, the main contributions of this thesis on indivisible load balancing and divisible load

scheduling are discussed respectively.

For static load balancing problem, we assume that the network configurations are arbitrary

and there are several classes of jobs. The problem addressed here is closely related to the earlier

works reported in [5,12,38], however, the key differences are as explained below. In [5,38], the

formulated non-linear constrained optimization problem considered only one class of jobs and

showed that the delay functions were indeed convex and increasing functions. Whereas, in [12]

the delay functions were assumed to be convex and the proposed algorithm was proven to

be faster than the standard FD algorithm [48], consuming larger amount of computations in

carrying out certain inverse functions. Also, the formulated problem in this work considered

the process of load distribution in a different manner. For instance, for each class of jobs and

for each processor, say i, the neighboring processors were categorized into four different sets

such that, processors in each set sent the jobs of this class to a processor i based on certain

rules. The rationale for this may be driven from application needs.

In our formulation, we relax this assumption and we consider all the jobs of a class that

arrive at node i as a cumulative amount regardless of their origin. Thus, in our model, each

processor is considered as an unbiased resource capable of processing the submitted jobs.

Also, the delay functions are considered as arbitrary non-linear functions for the analysis to

be more generic. Of course, as a possible extension, we also analyze the performance when

convexities of the delay functions are to be considered. As a solution approach, we propose a
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novel methodology for the posed problem. We transform the problem into a routing problem

and derive an optimal solution to the transformed problem. The correspondence between

the load balancing problem and the routing problem is also discussed. Thus, in this thesis,

we propose a static, distributed load balancing algorithm for multi-class jobs in distributed

network system for minimizing the mean response time of the jobs, using the concept of virtual

routing. Extensive simulations are conducted to demonstrate the significant advantages of

our proposed algorithm.

In this thesis, according to the job assignment methods, we classify the distributed, dy-

namic load balancing algorithms into three policies: Queue Adjustment Policy (QAP), Rate

Adjustment Policy (RAP) and Combination of Queue and Rate Adjustment Policy (QRAP).

Based on LBVR, we propose two efficient algorithms referred to as Rate based Load Balancing

via Virtual Routing (RLBVR) and Queue based Load Balancing via Virtual Routing (QL-

BVR). It is the first time in the literature that a distributed system can adjust its scheduling

according to optimal solutions dynamically using RLBVR algorithm. We introduce an algo-

rithm called Estimated Load Information Scheduling Algorithm (ELISA) and an algorithm

named Perfect Information Algorithm (PIA) reported in the literature [19], for the purpose

of continuity.

The algorithms ELISA and PIA belong to QAP whereas RLBVR and QLBVR belong

to RAP and QRAP, respectively. We carry out large number of rigorous simulation exper-

iments to capture and analyze the effect of time-varying loads and different lengths of time

intervals on the algorithms. As our focus is to analyze and understand the behaviors of the

algorithms in terms of their load balancing abilities, minimization of mean response time, in

our rigorous simulation experiments, we consider a single-class of jobs for processing. One of

our added considerations in this study is to gain an intuition regarding the relative metrics of

the different approaches under consideration. We extend our simulations to a large scale mul-

tiprocessor system such as Mesh architecture that is of practical use in real-life applications.
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Based on the mesh topology, many prototype and commercial multiprocessor systems, such

as Paragon [85], have been built. Our contribution elicits certain important behaviors of the

distributed dynamic load balancing algorithms that serve to quantify the performances under

different situations. From the simulations, we observe that when system utilization is light

or medium, RAP performs much better than QAP and QRAP with relatively longer status

exchange interval, which means less communication overheads. When system utilization is

very high (ρ > 0.9), QAP performs the best among the three load balancing policies with high

communication overheads. When the system utilization changes rapidly, QRAP is suitable

and can achieve good performance with moderate communication overheads.

For processing arbitrary divisible loads, we formulate the scheduling problem with di-

visible loads originating from single or multiple sites on arbitrary networks as a real-valued

constrained optimization problem. We design a distributed scheduling strategy to achieve the

optimal processing time of all loads in the system. In our proposed algorithm, each processor

can determine the amount of loads that should be transferred to other processors and the

amount of loads that should be processed locally, according to some local information. It

is the first time that a distributed algorithm is attempted and proposed in the DLT liter-

ature. In all the earlier DLT literature, timing diagrams were used to precisely define the

load distribution process. This timing diagram representation would be meaningful if one

could easily conceive of strategies that address scheduling loads from single site, regardless

of the underlying topology. However, when one needs to schedule multiple divisible loads

originating from several sites, it is rather impossible to capture the load distribution process

by a single timing diagram. The main difficulty lies in this approach would be to explicitly

schedule several timing components such as computation and communication from one site to

other sites, identifying which processor-link pairs are redundant [15], etc. Thus, in this thesis,

we take a radically different approach to address this complex problem by carefully formu-

lating as a generalized minimization problem, thus avoiding the need for a timing diagram
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representation.

We derive a number of theoretical results on the solution of the optimization problem.

In case divisible loads originate from single site, we compare our proposed algorithm with a

recently proposed RAOLD algorithm [14]. It is demonstrated that the proposed algorithm

performs better than RAOLD in terms of the processing time. We analyze the difference be-

tween the divisible loads originating from single and multiple sites in our proposed algorithm.

When divisible loads originate from multiple sites on arbitrary networks, we prove that our

proposed algorithm also can solve the scheduling problem efficiently by numerous simulation

experiments.

The above contributions are novel to the load balancing and scheduling literature. Thus,

the scope of this thesis is essentially in addressing all the above-mentioned issues by develop-

ing a strong theoretical framework and to evaluate the performance via rigorous simulation

experiments.

1.3 Organization of the Thesis

The rest of the thesis is organized as follows.

In Chapter 2, we introduce the basic system models adopted in load balancing and schedul-

ing fields, and the general definitions and notations used throughout this thesis.

In Chapter 3, we analyze the static load balancing problem for multi-class jobs on arbitrary

networks. We design and conduct a distributed strategy via virtual routing to minimize the

mean response time of all the jobs arriving at the system. We also demonstrate that the

convergence rate of our proposed algorithm is super-linear.

In Chapter 4, we classify the distributed, dynamic load balancing algorithms in the litera-

ture into three categories. We propose two efficient distributed, dynamic algorithms. Through

extensive simulation experiments, certain important behaviors of dynamic load balancing al-
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gorithms are elicited.

In Chapter 5, we consider the scheduling problems of divisible loads originating from single

or multiple sites. We present a generic mathematical model for this problem and formulated

it as a real-valued constrained optimization problem. The necessary and sufficient conditions

for the optimal solution are derived and a novel distributed strategy is proposed.

In Chapter 6, we conclude our research work up to now and envision the prospect exten-

sions.
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Chapter 2

System Modelling

A distributed computer system consists of a comprehensive set of components, such as pro-

cessors, communication links, storage units, etc. In general, while modelling the system we

consider only the essential components in order to understand and analyze the system per-

formance. In this chapter, we shall give a brief introduction of our system models that are

used in solving the problems concerned. The models are widely used and details can be

found in [12, 15, 19, 68]. We present the terminology, definitions, and notations that are used

throughout of the thesis. We use a novel approach – virtual routing, to solve the problems

discussed in this thesis. We shall also discuss the correspondence between the routing and

load balancing/scheduling problems.

2.1 Models for Processing Loads

As we mentioned before, computation data or loads (jobs), in general, can be classified into

two categories, namely indivisible and divisible loads. Indivisible loads are independent loads,

of different sizes, which cannot be further subdivided, and hence must be processed by a single

processor. Balancing these loads are known to be NP-complete problems in the literature [12].

According to the jobs arrival patterns, indivisible load balancing can be classified into static
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and dynamic situations. In static situation, the job arriving rates are constant and according

to some ergodic processes, such as homogeneous Poisson process. The static load balancing

strategies can be determined before the systems start processing and the optimal solutions can

be obtained by the off-line calculations [35, 36]. In dynamic situation, the job arriving rates

are changed rapidly and the load balancing strategies must change the balancing according

to the current system information [22, 23]. These on-line strategies only yield sub-optimal

solutions with some communication and computation overheads.

On the other hand, divisible loads are loads that can be divided into smaller portions

and hence they can be distributed to more than one processors to achieve a faster overall

processing time. Some large linear data files, such as those found in image processing, large

experimental processing, and cryptography, to quote a few, are considered as divisible loads.

Divisible loads can be further categorized into modularly and arbitrary divisible loads, based

on the characteristic of the loads. Modularly divisible loads can only be divided into smaller

fixed size loads, while arbitrary divisible loads can be divided into any smaller size loads.

In the real-life system, there are several classes of loads and each class of loads has its own

priority. We assume there are m (m ≥ 1) classes of jobs that can arrive to the distributed

computer system for processing and we use J to denote the set of jobs. For convenience,

we define class-1 has the highest priority, class-2 has the second highest priority, and, so

on. Due to the homogeneous characteristic of the divisible loads, when divisible loads are

considered, we assume m = 1 that means there is only one class of loads in field of DLT.

For indivisible jobs, we assume that each class of jobs demands different processing rate,

depending on the nature of the jobs. Further, In our model, we consider the non-preemptive

priority rule whereby a job undergoing process in the node is allowed to complete process

without interruption even if a job of higher priority arrives in the mean time.
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Figure 2.1: A distributed/parallel computer system.

2.2 Arbitrary Network Topology

Loads in the system can be transferred from one node to another through the communication

links, according to the load balancing or scheduling strategies. As shown in Fig. 2.1, the pro-

cessors in the system may be equipped with front-ends. Front-ends are actually co-processors

which can handle the communication duties for the processors. Thus, a processor that has a

front-end can communicate and compute at the same time. The communication links my be

specified as some standard interconnection architecture, such as tree, bus, linear daisy chain,

etc. In this thesis, we consider an arbitrary network configuration and attempt to obtain

generic solutions for the different underlying network topologies.

2.3 Mathematical Models and Some Definitions

In general, the system models contain the essential components that we need to consider to the

problems under studies. A system model shall clarify our objective, include the main entities

in the system and model their characteristics [69]. In our model, we assume that there is a

communication delay incurred when a class-k job is transferred from one node to the other

through the communication link and there is a processing delay incurred when a class-k job
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Figure 2.2: Server model of node i.

is processed on one node in the system. In DLT, the above two kinds of delay functions are

assumed to be linear, increasing functions [15, 16, 70]. We adopt this model in solving the

problems of divisible load scheduling concerned in this thesis. For the indivisible jobs, the

processing delay and communication delay functions may be very complex and there are many

delay models proposed for network and processor. Without loss of generality, we choose the

queueing models which are widely used in the literature for the network and processor [12,27].

In the following, we will discuss the mathematical models of processor and communication

links for the divisible and indivisible loads, respectively.

2.3.1 Processor models

The central server queuing model [28] is the common model for a host computer. In this

thesis, the central server model is used as the node model as shown in Fig. 2.2. This model

includes a queue that holds the incoming jobs, and a CPU that processes jobs according to

FCFS discipline. Here, we use N to denote the set of nodes, i.e., n = |N |.

For indivisible job, for ease of simplicity, here we only present the node delay model of

the system where there is only one class of jobs. The expected node delay of a job in such a

node i model is given as:

Ti =
1

µi − βi

, (2.1)

where, µi is the processing rate of node i and βi is the current processing rate at node
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i. For multi-class jobs, the node model is more complex and it will be discussed in detail in

Chapter 3.

For divisible loads, the processors in the system are of different speeds. We denote the

speed of a node i by Ei defined as:

Ei = Time taken by node i to process a unit load. (2.2)

Assume that the total divisible load in the system is L and the amount of loads is assigned

to node i is li, then, the processing time for node i to process the assigned units loads is

proportional to the amount of loads, which is Ei × li.

2.3.2 Communication link models

For the communication link models, we use E to denote a set whose elements are unordered

pairs of distinct elements of N . Each unordered pair e = < i, j > in E is called an edge. For

each edge < i, j >, we define two ordered pairs (i, j) and (j, i) which are called links and we

denote C as the set of links. A node i is said to be a neighboring node of j, if i is connected

to j by an edge. For a node j, let Vj = {i, | (i, j) ∈ C} denote a set of neighboring nodes of

node j.

Because the different characteristics of indivisible jobs and divisible load, for the commu-

nication link models, we consider the two cases respectively.

For indivisible jobs, in our model, we assume that there is a communication delay in-

curred when a class-k job is transferred from one node to the other in the system. For

ease of simplicity, we assume that there is no difference among the classes of jobs as far as

link model is concerned. Let xk
ij be the class-k job flow rate from node i to node j, and

xij =
m∑

k=1

xk
ij, m = |J |, which is called the total traffic of jobs on link (i, j). For a job, the

communication delay includes the time delay when the job is sent from node i to node j and

the time delay when node j sends back a response to node i after the job has been processed.
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For divisible load, communication link speed is modelled by the time taken for the indi-

vidual link (i, j) to communicate a unit load. To describe the time performance of link (i, j),

we shall define the time delay for communication, as:

Cij = Time taken to transmit a unit load through link (i, j). (2.3)

Now assume that the amount of total loads is L and the time delay of the loads transmitted

through link (i, j) is proportional to the amount of loads lij, (lij ≤ L), i.e., Cij × lij. Such

kind of linear models of processor speed and link speed is experimentally well supported by

researchers in industry and academia [34,51].

2.3.3 Some notations and definitions

We shall introduce some notations and definitions that are used throughout of this thesis.

N : The set of processors in the system.

n: The number of the processors.

Vi: The neighboring nodes of node i, where i = 1, 2, . . . , n.

J : The set of jobs in the system and m = |J |.

k: Indicator of class-k jobs, where k = 1, 2, . . . , m.

βk
i : The job processing rate of class-k indivisible jobs at node i.

xk
ij: The transfer rate of class-k indivisible jobs on link (i, j).

xij: The rate of indivisible loads or the amount of divisible loads transferred on link (i, j).

µk
i : The processing rate for class-k indivisible jobs at node i.

li: The amount of divisible load processed at node i.

Ei: Time taken by node i to process a unit divisible load.

Cij: Time taken by link (i, j) to transfer a unit divisible load.
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2.3.4 Correspondence between routing and load balancing

Below, we identify certain key equivalences between the two problems of routing and load

balancing/scheduling in a systematic fashion.

Firstly, routing decisions can be made depending on whether the network uses datagrams

or virtual circuits. In a datagram network, two successive packets of the same S-D pair (source

and destination nodes) may travel along different routes, and a routing decision is necessary

for each individual packet. In a virtual circuit network, a routing decision is made at the time

of setting up a virtual circuit. The routing algorithm is used to choose the communication

path for the virtual circuit. All packets of the virtual circuit subsequently use this path up

to the time that the virtual circuit is terminated. There are two main performance measures

that are substantially affected by a routing algorithm - throughput and average packet delay.

In the routing context, the throughput is simply the amount of traffic from a source node to

the destination node. In the load balancing problem, throughput is equivalent to amount of

processed load by the system and an average packet delay is equivalent to the mean response

time of jobs in the system. Thus, in our transformed problem defined by (3.4), a routing

decision may aid to balance the loads that traverse via different nodes before reaching the

destination d. Hence, a set of nodes in each path generated by a node i to reach d will be

considered as potential receivers in our load balancing problem.

Secondly, another classification of routing algorithm relates to whether there is any route

change in response to the traffic input patterns. In static routing algorithms [71], the path

used by the sessions of each S-D pair is fixed regardless of traffic conditions. Further, in

adaptive or dynamic routing [72, 73], the paths used to route new traffic between S-D pairs

change occasionally in response to network congestion. For load balancing, static algorithms

do not depend on the current state of the nodes in the system, and dynamic policies offer

the possibility of improving load distribution at the expense of additional communication and

processing overheads [40,74].
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In our problem context, by adding a virtual destination node d into our system, we combine

the problems of routing and load balancing together as explained by the above correspondence.

2.4 Concluding Remarks

In this chapter, we introduced the mathematical models in load balancing and scheduling

research domain. Some important notations and definitions that will be used frequently in

the rest of this thesis were introduced.
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Chapter 3

Distributed Static Load Balancing

Strategies for Multi-class jobs

Minimizing the mean response time (MRT) of the jobs submitted for processing in a dis-

tributed computer system is a critical performance metric to be considered for improving the

overall performance of the system. Load balancing algorithms thrive to meet this objective

of minimizing the mean response time, the average time interval between the time instant

at which a job is submitted and the time instant at which the job leaves the system after

processing. Further, while considering job characteristics, there may exist several variations,

such as priority assignment for jobs in processing, jobs with or without deadlines, etc. In

this chapter, we consider static load balancing problems for multi-class indivisible jobs on

arbitrary network configurations. Our objective is to design efficient static load balancing

strategies that can minimize the mean response time of all classes of jobs arriving at the

system for processing.

We attempt to formulate a static load balancing algorithm as a non-linear constrained

optimization problem. Specifically, we consider the following real-life situation in our problem

setting/definition. We consider a network of processors to which several classes of jobs arrive

with a constant flow-rate for processing. Each processor may receive one or more classes
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of jobs and considers the entire set of jobs submitted for processing to it as its total input

loads. As with the principle of load balancing, jobs are allowed to migrate from heavily loaded

processors to lightly loaded processors for minimizing the mean response time [36,38]. For each

class of jobs, the communication delay is modelled as a non-linear function that depend on the

network traffic, and the delays of jobs are different on different links [27, 75]. Consequently,

the nature of this function, either as a convex or a non-convex, influences the optimality

of the solution. Also, we assume that each class of jobs demands different processing rate,

depending on the nature of the jobs [12, 25, 76]. All these influencing factors are captured

as constraints in our optimization problem. Further, we consider a non-preemptive style of

processing of the jobs at a processor, i.e., a job that is currently being processed cannot be

interrupted by any other class of job for processing [28].

As a solution approach, we propose a novel methodology for the posed problem. We trans-

form the problem into a routing problem and derive an optimal solution to the transformed

problem. The correspondence between the load balancing problem and the routing problem

is discussed. In our strategy, each node in the system will calculate the local optimal solutions

independently, according to some information of its neighboring nodes and links. Thus, in

this thesis, we propose a static, distributed load balancing algorithm for multi-class jobs in

distributed network systems for minimizing the mean response time of a job, using the con-

cept of virtual routing. We also prove that the convergence rate of our proposed algorithm is

2, super-linear.

The organization of the chapter is as follows. In Chapter 3.1, we formulate the problem.

In Chapter 3.2, we discuss the solution via virtual routing approach. In Chapter 3.3, we

propose our algorithm and derive conditions for obtaining an optimal solution. In Chapter

3.4, we report all our experimental results and present a detailed illustrative example to show

the complete workings of our proposed algorithm for ease of understanding. We shall also

present simulation study to quantify the performance in terms of rate of convergence and
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solution quality. Finally, in Chapter 3.5, we conclude this work.

3.1 Problem Formulation

We consider a generic distributed/parallel computer system and we assume that there are m

classes of jobs that can arrive to the system for processing as shown in Fig. 2.1. In our model,

we consider the non-preemptive priority rule whereby a job undergoing process in the node is

allowed to complete process without interruption even if a job of higher priority arrives in the

mean time. When the node becomes free, the first job of the highest priority is considered

for processing. Further, we assume that Class-k jobs arrive at node i, i ∈ N , according to

an ergodic process, such as Poisson process, with the average external job arrival rate of φk
i .

A class-k job arriving at node i may either be processed locally or transferred through the

network to another node for remote processing. We denote βk
i as the rate at which class-k

jobs are processed at node i.

In general, computing on a network based environment incurs additional overheads such as

communication delays due to the underlying links. In a generic treatment of a load balancing

problem, it is imperative to account such additional overheads that influence the overall

performance. We assume that each link (i, j) can transfer the load at its own transmission

capability (otherwise referred to as transmission rate, commonly expressed as bytes/sec). We

denote cij as the transmission capability of a link (i, j). In [27], there are many delay models

proposed for data networks. Here, we choose M/M/1 model for the network. Let xk
ij be the

class-k job flow rate from node i to node j, and xij =
m∑

k=1

xk
ij, m = |J |, which is called the

total traffic of the jobs on link (i, j).

Note that in Jie Li and Hisao Kameda’s model of multi-class jobs distributed computer

system [12], the class-k jobs transferred from the neighboring nodes and external arriving

class-k jobs are treated differently. In their model, for class−k jobs and for each processor,
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Figure 3.1: Job flows in node i.

the neighboring processors are divided into four different sets such that, processors in each set

send the class−k jobs to a processor i based on certain rules. However, in our model, we relax

this assumption and consider all the jobs of class−k that arrive at node i as a cumulative

amount of class−k type, regardless of their origin. Our model for a node is as shown in Fig.

3.1. From this figure, the following conservation equations hold:

γk
i = φk

i +
∑

j∈Vi

xk
ji = βk

i +
∑

j∈Vi

xk
ij, (3.1)

where, γk
i is the total class-k jobs arriving rate at node i. Thus, we can say that in order to

obtain load balancing, each node i must determine βk
i and each xk

ij (j ∈ Vi), according to γk
i ,

satisfying the above equation (3.1). The mean response time (MRT) of a job in the system

is also influenced by the mean nodal delay at the processing node in addition to a (possible)

mean communication delay incurred during job transfer phase. Hence, the load balancing

policy should determine the values of β and x, the job processing rate vector and the job

transferring rate vector.

Further, we denote P k
i (βi) as the mean node delay for a class-k job at node i and Gk

ij(x)

as the mean communication delay for a job transfer from node i to j. Some generic models

of Gk
ij(x) include the delay of sending a class-k job from node i to node j and the delay of

sending the response back from node j to node i. In general, the path taken in each of the
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above mentioned transfers (job and response transfers) may be different. Note that the profile

of functions P k
i (βi) and Gk

ij(x) may be very complicated. In practice, for analytical ease, it is

often assumed that the functions P k
i (βi) and Gk

ij(x) are differentiable, increasing and convex

functions [5, 27,62].

Let D(β, x) denote the mean response time (MRT) of jobs averaged over all classes, which

is the mean time a job spends in our system from the time of its arrival. As in [38], we obtain:

D(β, x) =
1

Φ

∑

k∈J

{∑

i∈N

βk
i P k

i (βk
i ) +

∑

(i,j)∈L

xk
ijG

k
ij(x

k
ij)}, (3.2)

where, Φ =
∑

i∈N

∑
k∈J φk

i , β = [β1, ..., βi, ..., βn], x = [xij] with βi = [β1
i , ..., β

m
i ], and xij =

[x1
ij, ..., x

m
ij ], m = |J |.

Our objective is to balance the loads that arrive to our system such that the MRT (perfor-

mance measure) is minimized. Note that the MRT is influenced by βk
i and the transfer rates

xk
ij, in order to minimize the mean response time. Load balancing is done by transferring loads

from heavily loaded nodes to lightly loaded nodes. However, in doing so a number of factors,

such as job arrival rates, processing capability of a node, transmission capability of a link, etc

must be taken into account. Also, one must avoid a situation wherein a load simply traverses

across several nodes without getting processed. Other performance measures of interest, such

as a weighted sum of mean response times relative to jobs entering at different nodes, can

also be considered in a similar fashion. A simple example of a three-node system is shown in

Fig. 3.2.

It may be noted that, although we only use MRT as the main objective in this chapter,

one can consider other metrics to quantify the performance in our problem formulation. For

example, if we consider a min-max metric besides MRT, we can keep track of the number of

times a job has been transferred. Thus, if it exceeds a pre-defined maximum, the job will not

be transferred any more. Hence, we can limit the number of transfers of the jobs within some

scale. It is beyond the scope of this chapter to consider this metric. In this chapter, we shall

formally define the problem that we want to address. In essence, we formulate the problem
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Figure 3.2: Example of job flows and the delays.

as a real-valued optimization problem with the objective of minimizing the MRT defined in

(3.2). We state the following.

Minimize : D(β, x) =
1

Φ

∑

k∈J

{∑

i∈N

βk
i P k

i (βk
i ) +

∑

(i,j)∈L

xk
ijG

k
ij(x

k
ij)}, (3.3)

Subject to : φk
i +

∑

j∈Vi

xk
ji = βk

i +
∑

j∈Vi

xk
ij, k ∈ J, i ∈ N,

φk
i ≥ 0, k ∈ J, i ∈ N,

xk
ij ≥ 0, (i, j) ∈ L, k ∈ J.

Thus, the solution to our problem lies in determining the optimal values of β and x, respec-

tively. In all the earlier studies [5, 12, 62, 77], the solution to (3.3) is obtained by using the

method of Lagrangian multipliers and key idea is to determine the set of Lagrangian mul-

tipliers to obtain an optimal solution. In order to find the Lagrangian multipliers, linear

section searches are used, such as Golden Section Search [77], which needs fairly very long

computational time. Below we shall present our solution approach.
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Figure 3.3: Job flows in a system with a virtual node.

3.2 Proposed solution

In this section, we propose our solution approach to the problem defined in (3.3). As a first

step, we add a virtual node, which is referred to as the destination node (node d), into our

network system. Also, we connect node d with each node i, i ∈ N , by a direct link (i, d).

Note the virtual node d and each direct link (i, d) do not exist in the real system. The job

flow in our “new” system is shown in Fig. 3.3. According to this modification, we redefine

the set of links C in the system as C = {(i, j), | i, j ∈ N} ∪ {(i, d), | i ∈ N} and denote

xk
id as the class-k job flowing on link (i, d), which is equal to βk

i . After these modifications,

we introduce another function F k
ij to unite the two different delay functions of P k

i , the mean

node delay of class-k jobs, and Gk
ij, the mean communication delay of class-k jobs. Function

F k
ij is expressed as the mean link delay of class-k jobs on link (i, j) as follows:

F k
ij(x

k
ij) =





P k
i (xk

ij), (i, j) ∈ L and j = d,

Gk
ij(x

k
ij), (i, j) ∈ L and j 6= d,

where, d is the virtual destination node. Then, (3.2) can be rewritten as:

D(β, x) =
1

Φ

∑

k∈J

{∑

i∈N

βk
i P k

i (βk
i ) +

∑

(i,j)∈L,j 6=d

xk
ijG

k
ij(x

k
ij)}

=
1

Φ

∑

k∈J

{∑

i∈N

xk
idF

k
id(x

k
id) +

∑

(i,j)∈L,j 6=d

xk
ijF

k
ij(x

k
ij)}
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=
1

Φ

∑

k∈J

{ ∑

(i,j)∈L

xk
ijF

k
ij(x

k
ij)}. (3.4)

Thus, from (3.4), we can describe the process of load balancing in another way. As shown

in Fig. 3.3, the three-node system has been transformed into a datagram network, in which

node i, i ∈ N , basically acts as a router. The way in which the loads are shared by the nodes

can be described as follows. Class-k jobs that arrive at node i according to a Poisson process

with an average external job arrival rate of φk
i are routed to destination node d via every node

j 6= i. This can be understood from Fig. 3.3. Referring to this figure, we observe that for

each node i, i = 1, 2, 3, there exist five paths to reach node d. For example, from node 1 to

node d, the paths are: 1 → 2 → d, 1 → 3 → d, 1 → 2 → 3 → d, 1 → 3 → 2 → d, 1 → d,

respectively. Thus, node i must determine a set of paths independently for the class-k jobs

arriving at it via every other node to node d. Also, note that the class-k jobs may spend

some time in the system due to the link delays through the path from node i to node d. In

practice, it is reasonable to assume that the mean link delay F k
ij(x) of link (i, j) depends only

on the job flow rates xij on link (i, j), where xij = [x1
ij, ..., x

m
ij ], m = |J |. Thus, our goal of

load balancing can be alternatively (and equivalently) stated as a problem which attempts to

minimize the mean link delay for each job in the system and our method basically transforms

the load balancing problem into a routing problem with all the jobs in the system having the

same destination of node d. At the same time, we treat the job as a single entity travelling

on the links. Notice that if function D(x) is strictly convex, we have the unique solution to

problem (3.4). Since we do not assume that D(x) is strictly convex, the solution may not

be unique. However, we can get an optimal solution that minimizes the mean response time

D(x) although it may not be a unique solution.



Chapter 3 Distributed Static Load Balancing Strategies for Multi-class jobs 29

3.3 Proposed Algorithm and An Optimal Solution

Once the load balancing problem has been transformed into a routing problem, there are

several algorithms proposed in the literature to solve such problems [27,75,78,80]. However,

in our problem context, it is important to establish the correspondence between the problems

of routing and load balancing. Since our solution methodology proposes to use routing to

balance the load in the network, we refer to our algorithm as load balancing via virtual routing

(LBVR). As discussed in Chapter 2, we can clearly take advantage of the routing algorithms

for load balancing. We shall first present the optimal solution below.

3.3.1 Optimal solution

Here we propose our algorithm by using some concepts underlying a routing problem.

When a class-k job arrives at node i, it has many routing paths to choose to reach the

destination node d (as can be seen from Fig. 3.3). We can observe that if the number of nodes

increases, the potential routing paths for node 1 will increase dramatically. However, when we

consider the decentralized policy, each node i in the system only knows about the flow status

of link (i, j), j ∈ Vi, its own load xk
id and the loads of its neighboring nodes xk

jd, respectively.

Hence, the number of routing paths for node i can be reduced to (v +1) where v = |Vj|. This

means that a job arriving at a node i can reach node d directly through link (i, d), or it can go

to node d via node j, j ∈ Vi, through link (i, j) and link (j, d). An example of paths for each

node in a three-node system is shown in Fig. 3.4, where p(i)l means the l-th path of node

i. Because of the distributed working style, each node in the system determines the routing

paths according to its neighboring nodes and calculates its transfer rates and processing rate

by itself. When node j receives some jobs from node i, node j may retransfer some jobs to

another node, and so on. Eventually, the jobs come from node i may be processed in one

node which is unknown to node i. However, it may be noted that this does not mean that
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Figure 3.4: Routing paths for each node.

the search of eligible paths is restricted to the neighboring nodes, since some other routing

paths with two or more hops can also be added according to the situations.

We denote P k
i as the set of paths from node i to destination node d for class-k job and

hence, we obtain |P k
i | = v + 1, v = |Vi|. Further, let xk

i be class-k job path flow vector of

node i, where xk
i = {xk

p, | p ∈ P k
i , i ∈ N}. Here, xk

p is the job flow of path p for class-k job.

We define Dk
ij(x

k
ij) = xk

ijF
k
ij(x

k
ij) and refer to this as a delay function. Substituting this

delay function in (3.4), we obtain:

D(x) =
1

Φ

∑

k∈J

{ ∑

(i,j)∈L

Dk
ij(x

k
ij)}, (3.5)

where, xk
ij is the total amount of class-k job flow carried by link (i, j) and is given by:

xk
ij =

∑
all paths p

containing (i,j)

xk
p. (3.6)

From (3.5), it is easy to observe that the function D is an increasing function. Now, we can

completely rewrite the optimization problem as follows:

Minimize : D(x) =
1

Φ

∑

k∈J

{ ∑

(i,j)∈L

Dk
ij(

∑
all paths p

containing (i,j)

xk
p)}. (3.7)

Subject to :
∑

p∈P k
i

xk
p = γk

i , i ∈ N, k ∈ J (3.8)
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γk
i = φk

i +
∑

j∈Vi

xk
ji, i ∈ N

xk
p ≥ 0, p ∈ P k

i , i ∈ N.

In the following, we will characterize the proposed algorithm in terms of the first derivatives

(Dk
ij)
′ of the functions Dk

ij. We denote D(x) as the mean response time function of (3.7) and

∂D(x)/∂xk
p as the partial derivative of D with respect to xk

p. Then:

∂D(x)

∂xk
p

=
1

Φ

∑

k∈J

∑
all links

(i,j) on path p

(Dk
ij)
′

=
1

Φ
{ ∑

all links (i,j)
on path p

∂D1
ij(x

1
ij)

∂xk
ij

+ · · ·+ ∑
all links (i,j)

on path p

∂Dm
ij (x

m
ij )

∂xk
ij

}, (3.9)

where, the first derivatives (Dk
ij)
′ are evaluated at a value equal to the total amount of class-k

job flows corresponding to xk and m = |J |. It is seen that ∂D/∂xk
p is the length of path p

when the length of each link (i, j) is taken to be the first derivative (Dk
ij)
′ evaluated at xk

p.

Consequently, in what follows ∂D/∂xk
p is called the first derivative length of path p.

Theorem 3.1. The set of values of x̄ is an optimal solution to problem (3.7) only if job flow

travels along minimum first derivative length (MFDL) paths for each S-D pair of class-k job,

k ∈ J . In addition, if Dk
ij are assumed to be convex, then x̄ is optimal if and only if job flow

travels along MFDL for each S-D pair of class-k jobs, k ∈ J .

Proof. We shall first prove the first part of the above theorem. Let x̄ = {x̄1, ..., x̄k}, k ∈ J, be

an optimal path flow vector. Then, for class-k job flow, if x̄k
p > 0 for some path p of an S-D

pair P k
i , we must be able to transfer a small amount δ > 0 from path p to any other path p′

of the same S-D pair without decreasing the mean response time; Other wise, the optimality

of x̄ would be violated. For the first derivative, the change in mean response time from this

transfer is:

δ
∂D(x̄)

∂xk
p′

− δ
∂D(x̄)

∂xk
p

,
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and since this change must be non-negative, we obtain:

x̄k
p > 0 ⇒ ∂D(x̄)

∂xk
p′

≥ ∂D(x̄)

∂xk
p

, for all p′ ∈ P k
i . (3.10)

In other words, optimal path flow is positive only on paths with a minimum first derivative

length. Furthermore, at an optimum, the paths along which the input flow γk
i of a S-D pair

(i, d), i ∈ N , that are different must have equal lengths (and less than or equal to the length

of all other paths of S-D pair (i, d)).

Thus, the condition (3.10) is a necessary condition for optimality of x̄. The above proof

is also valid for the only if part of the second part of the theorem for convex functions. Now,

the above proof can be back tracked to prove the second part of the theorem when we assume

that the functions Dk
ij are convex. For example, when the second derivatives (Dk

ij)
′′ exist and

are positive in the domain of definition of Dk
ij. Q.E.D

Having shown the optimality of the solution, we will now show that the flow on path p is

indeed identical to the flow on a link (i, j), when (i, j) ∈ p. This intermediate result will be

useful for us later.

Lemma 3.1. The class-k job flow on link (i, j), j ∈ Vi, is equal to the class-k job flow on

path p, p ∈ P k
i and (i, j) ∈ p.

Proof. Recall the definition of path at the beginning of this section and refer to Fig. 3.4.

We can observe that there is only one path passing through link (i, j), j ∈ Vi, which is

(i → j → d). From (3.6):

xk
ij =

∑
all paths p

containing (i,j)

xk
p

⇒ xk
ij = xk

p, (i, j) ∈ p and p ∈ P k
i .

Hence the proof. Q.E.D

Lemma 3.2. In an optimal solution to problem (3.7), one or both of the class-k job flows on

link (i, j) and (j, i) are zero. That is, xk
ijx

k
ji = 0, where i ∈ N and j ∈ Vi.
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Proof. This can be proved by contradiction. Assume there exists class-k link traffic in an

optimal solution, such as xk
ij > 0 and xk

ji > 0, where i, j ∈ N and j ∈ Vi. From Lemma 3.1,

we have:

xk
ij = xk

p > 0, (i, j) ∈ p and p ∈ P k
i ,

xk
ji = xk

p′ > 0, (j, i) ∈ p′ and p′ ∈ P k
j .

From Theorem 3.1, we can deduce that path p is a MFDL path for a S-D pair (i, d) and path

p′ is the MFDL path for S-D pair (j, d), where p is the path given by (i → j → d) and p′ is

the path given by (j → i → d).

Consider node i first. Let pi be the path (i, d) and pi ∈ P k
i . Since path p is a MFDL path

in P k
i and x̄ is an optimal solution, we obtain:

∂D(x̄)

∂xpi

≥ ∂D(x̄)

∂xp

⇒ ∂D(x̄)

∂xk
id

≥ ∂D(x̄)

∂xk
ij

+
∂D(x̄)

∂xk
jd

. (3.11)

Similarly, for node j we obtain:

∂D(x̄)

∂xpj

≥ ∂D(x̄)

∂xp′

⇒ ∂D(x̄)

∂xk
jd

≥ ∂D(x̄)

∂xk
ji

+
∂D(x̄)

∂xk
id

. (3.12)

where pj is the path (j, d) and path (j, d) ∈ P k
j . Since function D is an increasing function,

then ∂D(x̄)/∂xk
ij > 0 and ∂D(x̄)/∂xk

ji > 0. From (3.11) and (3.12), we have:

∂D(x̄)

∂xk
id

>
∂D(x̄)

∂xk
jd

and
∂D(x̄)

∂xk
jd

>
∂D(x̄)

∂xk
id

,

which is a clear contradiction and hence, the lemma. Q.E.D

Lemma 3.3. An optimal solution to problem (3.7) is cycle free, i.e., there exists no class-k

link traffic such that xk
i1i2

> 0, xk
i2i3

> 0, ..., xk
imi1

> 0, where i1, i2, ..., im ∈ N .

Proof. We again prove this by contradiction. Assume that there is a class-k link traffic in
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an optimal solution, such as xk
i1i2

> 0, xk
i2i3

> 0, ..., xk
imi1

> 0, where i1, i2, ..., im are indices

of distinct nodes. Considering xk
i1i2

and xk
i2i3

, since function D is an increasing function and

according to Theorem 3.1 and Lemma 3.1, for links (i1, d) and (i2, d), we obtain:

∂D(x̄)

∂xk
i1d

>
∂D(x̄)

∂xk
i2d

.

Recursively applying the proof technique used in Lemma 3.2 using (3.11), we obtain:

∂D(x̄)

∂xk
i1d

>
∂D(x̄)

∂xk
i2d

,

... ,

∂D(x̄)

∂xk
imd

>
∂D(x̄)

∂xk
i1d

.

which is a clear contradiction and hence the lemma. Q.E.D

Lemma 3.2 and Lemma 3.3 signify the fact that, in an optimal solution, the class-k job

flow rate from the node i to node j can not be transferred back to node i directly from node

j or through other nodes. This is indeed an important result: it is guaranteed that no job

that entered the system shall leave without getting processed.

3.3.2 Design of the proposed algorithm

In Chapter 3.3.1, it was shown that an optimal solution results only if job flow travels along

MFDL paths for each S-D pair. Equivalently, a set of path flows is strictly suboptimal only

if there is a positive amount of flow that travels on a non-MFDL path. This suggests that a

suboptimal solution can be improved by transferring some flow to an MFDL path from other

paths for each S-D path. However, by transferring all the flow of each S-D pair to the MFDL

path will lead to an oscillatory behavior. Thus, it is more appropriate to transfer only part of

the flow from other paths to the MFDL path. Below, we shall determine the amount of these

flows from each of the other paths, between an S-D pair, to be transferred to MFDL to seek

an optimal solution. To do this, we propose our algorithm based on Newton’s method [79],



Chapter 3 Distributed Static Load Balancing Strategies for Multi-class jobs 35

which is:

x(r+1) = x(r) − α(r)[
∂2D(x(r))

(∂xi)2
]−1∂D(x(r))

∂xi

, r = 0, 1, . . . , and i = 1, ..., n, (3.13)

where α(r) is a positive scalar step-size at iteration r, determined according to some rule [62].

Consider the optimization problem (3.7). Assume that the second derivatives of Dk
ij,

denoted by Dk
ij
′′(xk

ij), are positive for all xk
ij. Let (xk)(r) = {(xk

p)
(r)} be the class-k job path

flow vector obtained after r iterations, and let {(xk
ij)

(r)} be the corresponding set of total

amount of class-k job link flows. For each S-D pair (i, d), let p̄k
i be an MFDL path for class-k

job, k ∈ J .

The optimization problem (3.7) can be converted (for the purpose of the next iteration) to

a problem involving only active (positive) constraints by expressing the flows of MFDL paths

p̄k
i in terms of the other path flows, while eliminating the passive (equality) constraints (3.8).

∑

p∈P k
i

xk
p = γk

i , i ∈ N, k ∈ J,

in the process. For each S-D pair (i, d), xk
p̄k

i
is substituted in the cost function D(xk) using

the equation:

xk
p̄k

i
= γk

i −
∑

p∈Pk
i

p6=p̄k
i

xk
p, (3.14)

thereby obtaining a redefined problem of the form:

Minimum : D̃(x̃),

subject to : xk
p ≥ 0, for all p ∈ P k

i , p 6= p̄k
i , i ∈ N, (3.15)

where x̃ is the vector of all class-k job path flows which are not MFDL paths.

We calculate the derivatives that will be needed to apply the iteration (3.13) to the problem

defined by (3.15). Using (3.14) and the definition of D̃(x̃), we get:

∂D̃(x̃k(r))

∂xk
p

=
∂D(xk(r))

∂xk
p

− ∂D(xk(r))

∂xk
p̄i

, (3.16)
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for all p ∈ P k
i , p 6= p̄k

i , i ∈ N , where xk(r) is the vector xk in the r−th iteration and ∂D(x)/∂xp

is the first derivative length of path p, that is given by (3.9). Regarding second derivatives, a

straightforward differentiation of the first derivative expressions (3.16) and (3.9) shows that:

∂2D̃(x̃k(r))

(∂xk
p)

2
=

1

Φ

∑

l∈J

∑

(i,j)∈ Lp

Dl
ij
′′(xk(r)

ij )

=
1

Φ
{ ∑

(i,j)∈Lp

∂2D1
ij(x

1
ij)

(∂xk
ij)

2
+ · · ·+ ∑

(i,j)∈Lp

∂2Dm
ij (x

m
ij )

(∂xk
ij)

2
},

m = |J |, and for all p ∈ P k
i , p 6= p̄k

i , i ∈ N , where, for each p, Lp is a set of links belonging to

either p or to the corresponding MFDL path p̄k
i , but not in both. This can be realized from

(3.16).

Expressions for both the first and second derivatives of the “reduced” cost D̃(x̃), are

available and thus the scaled projection method given by (3.13) can be applied. The iteration

takes the form:

xk(r+1)
p = max{0, (xk(r)

p − αrH−1
p (dp − dp̄k

i
))}, for p ∈ P k

i , p 6= p̄k
i , i ∈ N, (3.17)

where dp and dp̄k
i

are the first derivative lengths of the paths p and p̄k
i and can be rewritten

using (3.9) as:

dp =
1

Φ

∑

l∈J

∑
all links

(i,j) on path p

Dl
ij
′(xk(r)

ij ), dp̄k
i

=
1

Φ

∑

l∈J

∑
all links

(i,j) on path p̄k
i

Dl
ij
′(xk(r)

ij ), (3.18)

and Hp is the “second derivative length” given by:

Hp =
1

Φ

∑

l∈J

∑

(i,j)∈Lp

Dl
ij
′′(xk(r)

ij ), (3.19)

used in (3.17). The step-size αr is some positive scalar which may be chosen by a variety of

methods. From our rigorous simulation test runs, we choose αr to be a constant from the

range [0.5, 1] for all r, which is shown to work well in our method.

The proposed algorithm LBVR transforms the basic load balancing problem into a routing

problem and it is based on Newton’s method (3.13). Notice that the class-k jobs at node i,
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γ
k(r)
i may vary in every iteration. We choose Newton’s method, because using this method, an

optimal solution can be implemented naturally when the input rates are time varying, as dis-

cussed in [27]. Further, Newton’s method becomes an obvious choice for our problem context

owing to the style adopted in our problem formulation. As it is important to investigate on the

rate of convergence for such an optimization problem, we will discuss the complexity of con-

vergence of our algorithm in the following section. Due to the varying input conditions (γ
k(r)
i ,

in every iteration), it may be possible that in some iteration, x
k(r)

p̄k
i

= γ
k(r)
i −∑

xk(r)
p < 0,

where p ∈ P k
i and p 6= p̄

k(r)
i . If this happens, then this will violate the constraint x̄k

pk
i
≥ 0

and may be detrimental in the next iteration. To circumvent this problem, we iterate Step 2

without changing the values of k and i, till the constraint x̄k
pk

i
≥ 0 is satisfied and then carry

out the next iteration.

Our algorithm has some interesting and important features. The first one is due to its

simple and feasible implementable design structure. Though the paths of each S-D pair (i, d)

are recomputed before the main calculation phase, we can add or delete some paths according

to the current status of the system during the course of main iteration. The algorithm can

be implemented in a decentralized fashion in the sense that each node can use the algorithm

independently and depends only on local information collected from neighboring nodes. The

second important feature is that it can be applied in a dynamic load balancing environment

with little modification. Finally, the computational time of our algorithm is significantly

small. Note the complexity of the algorithm for each node is O(v + 1) ≈ O(v), (v = |Vi|). To

implement this algorithm, we only need to compute the first and second derivative functions

of D(x), which can be easily obtained. The distributed working style is discussed as following.

Any one of the processors in the system works as a core processor whose role is to trigger

computations among the set of processors in the system. At initial time, the core processor

starts to compute an optimal solution and also informs the rest of the nodes to compute

one-by-one in a pre-defined sequence. The objective of the core processor is to avoid the time
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asynchrony among the processors in the system. When node i finishes computing and obtains

a solution, it broadcasts the solution to its neighboring nodes. After some iterations, when

the stopping rule is satisfied, all the nodes stop computing and obtain an optimal solution, if

it exists. It may be noted that if the core processor fails in some situation, any other processor

in the system can assume the role of a core processor. A pseudo-code of LBVR algorithm is

also shown in Table 3.1.

3.3.3 Rate of convergence

We denote h(xr) = D′(xr). If an optimal solution is at point x̄, then we have h(x̄) = 0.

Alternatively, from (3.17), we have:

φ(xr) = xr − αr h(xr)

h′(xr)
, (3.20)

where xr is the solution vector x in r-th iteration. By the mean value theorem, we obtain:

xr+1 − x̄ = φ(xr)− φ(x̄) = φ′(ξr)(xr − x̄), (3.21)

where ξr lies between xr and x̄. Then, from (3.20) and (3.21), we obtain:

|xr+1 − x̄| = |h′′(ξr)h(ξr)|
[h′(ξr)]2

|xr − x̄|. (3.22)

Because h(x̄) = 0, from (3.22), we can obtain:

|h(ξr)| = |h(ξr)− h(x̄)| = |h′(ηr)||ξr − x̄| ≤ |h′(ηr)||xr − x̄|,

where ηr lies between ξr and x̄. Hence, (3.22) can be further transformed to be:

|xr+1 − x̄| ≤ |h′′(ξr)h′(ηr)|
[h′(ξr)]2

|xr − x̄|2. (3.23)

Let

β = sup
|h′′(ξr)h′(ηr)|

[h′(ξr)]2
,
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Table 3.1: Proposed Load Balancing Algorithm (LBVR)

Step 1: Initialization

r = 0. (r: iteration index)

For k = 1 to m, m = |J |.
For i = 1 to n, n = |N |.

Determine P k
i , the set of class-k job flow paths of node i.

Calculate the rate of class-k jobs at node i, that is, γ
k(0)
i = φk

i +
∑

j∈Vi

x
k(0)
ji ,

where x
k(0)
ji = 0, j ∈ Vi.

Find a feasible (xk(0)
p ) as an initial feasible solution, which satisfies∑

p∈P k
i

xk(0)
p = γ

k(0)
i . Here, we choose x

k(0)

pk
i

= γ
k(0)
i and xk(0)

p = 0, where

p ∈ P k
i and p 6= pk

i , pk
i is the path (i → d) for class-k job.

End For.

End For.

Step 2: Solution Procedure

Let r = r + 1.

For k = 1 to m, m = |J | do the following for class-k jobs.

For i = 1 to n, n = |N | do the following for node i.

Let xk(r) = xk(r−1).

Calculate the class-k jobs at node i, i.e., determine γ
k(r)
i .

For j = 1 to v + 1, v = |Vi|.
Calculate the first derivative lengths of the paths p, that is d(r)

p , p ∈ P k
i .

End For.

Find the minimum first derivative length (MFDL) paths p̄
k(r)
i among P k

i .

For j = 1 to v, v = |Vi|.
To path pj, pj ∈ P k

i , pj 6= p̄
k(r)
i , calculate the second derivative length:

Hpj
=

1

Φ

∑

l∈J

∑

(i,j)∈Lp

Dl
ij
′′(xk(r)

ij ).

Let xk(r)
pj

= max{0, xk(r−1)
pj

− α(r−1)H−1
pj

(d(r−1)
pj

− d
(r−1)

p̄
k(r−1)
i

)}.

Let x
k(r)
ij = xk(r)

pj
, link (i, j) ∈ pj.

End For.

Let x
k(r)

p̄
k(r)
i

= γ
k(r)
i − ∑

p∈P k
i ,p6=p̄

k(r)
i

xk(r)
p and x

k(r)
ij = x

k(r)

p̄
k(r)
i

, link (i, j) ∈ p̄
k(r)
i .

End For.

End For.

Step 3: Stopping rule

If |D(x(r)) − D(x(r−1))|/D(x(r)) < ε, then stop, where ε is a desired

acceptable tolerance for solution quality; otherwise, go to Step 2.
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Figure 3.5: Operation of the proposed algorithm.

then from (3.23), we obtain:

|xr+1 − x̄| ≤ β|xr − x̄|2.

Hence the convergence of our algorithm is 2, which exhibits a super-linear convergence [62].

The workings of the proposed algorithm are shown in Fig. 3.5.

3.4 Experimental Results and Discussions

Our algorithm LBVR retains two important features of practical interest: one is its decen-

tralized style of working and the other is its simple structure, in terms of implementation

ease. To appreciate one of the strengths of our algorithm, consider Fig. 3.2. In this figure, if

the heavily loaded node 1 wants to send some jobs to lightly loaded node 3, when the failure

of link (1, 3) is occurred. In this case, our proposed algorithm LBVR considers adding a

multi-hop routing path (1 → 2 → 3) for node 1 to take advantage of additional information

on link (2, 3). Hence, LBVR algorithm is more robust in its working style (implementation).

As a matter of fact, with the approach proposed in [12] node 1 still cannot send jobs to node

3 directly via node 2 due to the link failure. At the same time, based on Golden Section
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Search, LK algorithm obtains a local optimal solution in each iteration and it is proven that

by carrying such iterations, the global optimal solution can be eventually obtained. However,

in [27, 62], it is pointed out that to obtain a faster convergence rate, it is better to reach

a solution between the original starting point and the local optimal point in each iteration

instead of reaching the local optimal point directly.

The work reported in [12] proposes an algorithm (LK) and compares with well-known FD

(Flow Deviation) algorithm [48]. The FD algorithm is a standard steepest-descent algorithm,

which evaluates from a feasible solution in the steepest descent direction and chooses a step-

size that minimizes the mean job flow time along such a direction to form a new feasible

solution in each iteration. It was proven that LK algorithm performs much better than

FD algorithm in terms of its computational time (faster convergence). Thus, it is wiser to

compare the performance with LK algorithm in terms of algorithmic convergence rate and

basic design. Secondly, we use our proposed algorithm LBVR to study an optimal multi-

class job load balancing problem in a distributed Mesh-connected network system, with a

detailed illustrative example showing the complete workings. We present a detailed discussion

on the performance of our algorithm. We also conduct experiments in Ring network and

Ethernet network to compare the performances of LBVR and LK algorithms in different

network topologies. For the purpose of continuity, we give a brief introduction of LK algorithm

bellow.

3.4.1 LK algorithm in brief

To obtain an optimal solution to problem (3.3) with its constraints, LK algorithm basically

forms the Lagrangian functions as follows:

H(β, x, α) = ΦD(β, x) +
∑

k∈J

∑

i∈N

αk
i (φ

k
i +

∑

j∈Vi

xk
ji −

∑

j∈Vi

xk
ij − βk

i ),
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where αk
i (i ∈ N, k ∈ J) are the Lagrangian multipliers. The solution to the problem is to

determine the values of αk
i . The set of neighboring nodes of node i (Vi) are divided into the

following four sets for each class-k in the optimal solution:

1) Class-k active source nodes (Ak
i ): Node j in this set sends a part of class-k arriving jobs

to node i and also processes the other part of class-k jobs locally.

2) Class-k idle source nodes (Idk
i ): Node j in this set sends all class-k arriving jobs to node i.

3) Class-k neutral nodes (Nuk
i ): Node j in this set does not send (or receive) any class-k jobs

to (or from) node i.

4) Class-k sink nodes (Sk
i ): Node j in this set receives some class-k jobs from node i.

In LK Algorithm, in each iteration, the algorithm uses the Golden section search (e.g., [77])

to find the values of αk
i . Once αk

i are determined, the values of βk
j , xk

ji, x
k
ij and βj

i , j ∈ Vi can

be directly obtained by the equations deduced in [12]. The stopping rule is similar with our

algorithm.

In addition, the authors compare their algorithm with the well-know FD (Flow Deviation)

algorithm. The FD algorithm is a standard steepest-descent algorithm, which evaluates from

a feasible solution in the steepest descent direction and chooses a step-size that minimizes the

mean job flow time along such a direction to form a new feasible solution in each iteration.

Then, they show that their algorithm has much faster convergence to the minimum response

time than FD algorithm. We omit further details.

3.4.2 Demonstration of LBVR algorithm: An example of load bal-

ancing

We shall now show an illustrative example which demonstrates the details of the workings of

our LBVR algorithm.
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Figure 3.6: An example of a 9-node distributed computer system.

Consider a distributed computer system with 9 Mesh-connected computers as shown in

Fig. 3.6. In such a system, we assume that there are two classes of jobs (k = 1, 2) which arrive

at node i according to a time-invariant Poisson process. The inter-arrival times of jobs of each

class are mutually independent. A job of class-1 is always served prior to a job of class-2.

Within each class the queue discipline is first-come-first- served. A class-1 job arriving when

no other jobs of its class are present will wait until the job (if any) of class-2 being served

completes its service. The arrival processes of all classes are assumed independent, Poisson,

and independent of service times. We assume node i is an M/G/1 system with one CPU

and one queue. The first two moments of service time of each class-k at node i are denoted

X̄k
i = 1/µk

i and X̄k2
i = 2/(µk

i )
2 respectively, where µk

i is the average service time of class-k

job of node i.

For node i, we will derive an equation for average delay for each priority class, which is

similar to the P −K formula [28]. We denote Nk
i as the average number of jobs in queue for

priority k, W k
i as the average queuing time for priority k, ρk

i = βk
i /µk

i as the system utilization

for priority k, and R as mean residual service time, respectively. We assume that the overall

system utilization is less than 1, that is,

ρ1
i + ρ2

i + ... + ρm
i < 1.
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When this assumption is not satisfied, there will be some priority class-k such that the average

delay of customers of priority k and lower will be infinite while the average delay of customers

of priority higher than k will be finite.

As in the derivation of the P −K formula, we have, for the highest priority class:

W 1
i = R +

1

µ1
i

N1
i .

Eliminating N1
i from this equation using Little’s Theorem [27], N1

i = β1
i W

1
i , we obtain:

W 1
i = R + ρ1

i W
1
i ,

and finally,

W 1
i =

R

1− ρ1
i

.

For class-2 job, we have a similar expression for the queuing delay W 2
i except that we have

to count the additional queuing delay due to jobs of class-1 that arrive while a job is waiting

in queue. This is the meaning of the last term in the above formula.

W 2
i = R +

1

µ1
i

N1
i +

1

µ2
i

N2
i +

1

µ1
i

β1
i W

2
i .

Using Little’s Theorem (Nk
i = βk

i W k
i ), we finally obtain:

W 2
i =

R

(1− ρ1
i )(1− ρ1

i − ρ2
i )

.

The mean residual service time R can be derived from P −K formula as:

R =
1

2

m∑

k=1

βk
i X̄k2

i .

The average delay per job of class-k in node i is then given by:

T k
i =

1

µk
i

+ W k
i .

Finally, we obtain

T 1
i =

1

µ1
i

+

∑2
k=1 βk

i X̄k2
i

2(1− ρ1
i )

, (3.24)

T 2
i =

1

µ2
i

+

∑2
k=1 βk

i X̄k2
i

2(1− ρ1
i )(1− ρ1

i − ρ2
i )

, (3.25)
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Node(i) µ1
i (jobs/sec) X̄12

i =
2

(µ1
i )

2
µ2

i (jobs/sec) X̄22
i =

2

(µ2
i )

2

1 6 1/18 6 1/18

2 5 2/25 5 2/25

3 7 2/49 5 2/25

4 6 1/18 4 1/8

5 5 2/25 6 1/18

6 5 2/25 4 1/8

7 6 1/18 5 2/25

8 5 2/25 4 1/8

9 5 2/25 6 1/18

Table 3.2: Parameter values of node model

as the mean node delays per job of class-1 and class-2, respectively, in node i.

Table 3.2 gives the values of the parameters of the node models we used in this numerical

example. Using (3.24), (3.25) and the values of the parameters, we obtain the functions of

total delay for the class-1 and 2 job rates. For example, for node 1

β1
1F

1
1 (β1

1) = D1
1d(x

1
1d) = x1

1d(
1

6
+

x1
1d/18 + x2

1d/18

2(1− x1
1d/6)

),

β2
1F

2
1 (β2

1) = D2
1d(x

2
1d) = x2

1d(
1

6
+

x1
1d/18 + x2

1d/18

2(1− x1
1d/6)(1− x1

1d/6− x2
1d/6)

),

where, 1 − x0
1d/6 − x1

1d/6 > 0. For the communication links, we use the M/M/1 model. For

the sake of simplicity, we assume that there is no difference between class-1 and class-2 jobs as

far as link model is concerned. Hence, the job flow rate for link (i, j), j 6= d is xij = x0
ij + x1

ij.

Assume that the transmission capacity of the link (i, j) is cij (packets/sec). Assume that, on

an average, Q1 packets are required to describe a job and that, on average, Q2 packets are

required in sending back a response for a job. Here, we choose Q1 = Q2 = Q = 100. Hence:

xijGij(xij) =
Qxij

cij −Qxij −Qxji

+
Qxij

cji −Qxji −Qxij

. (3.26)
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Node(i) φ1
i (packets per min) φ2

i (packets per min)

1 40 60

2 50 40

3 20 30

4 50 80

5 70 60

6 60 70

7 10 50

8 60 65

9 30 40

Table 3.3: Average external job arrival rates for class-1 and class-2 jobs

The first part of (3.26) signifies the communication delay of job flow on link (i, j) and the

second part signifies the communication delay of the responses sent back from node j to i.

The capacities of each link in packets-per-second are shown in Fig. 3.6. The average external

job arrival rate φk
i for class-1 and class-2 job are shown in Table 3.3.

By adding a virtual node d into the system and connecting node i and node d with link

(i, d), we obtain Fig. 3.7. Using the node delay model (3.24), the communication delay model

(3.26), and the loads of two classes of jobs for each node shown in Table 3.3, we obtain the

experimental results for LK algorithm and our algorithm LBVR, as shown in Fig. 3.8. Table

3.4 shows the processing rates at node i for both LK algorithm and the proposed algorithm.

In this experiment, we set ε, the desired acceptable tolerance to be 10−9.

From Table 3.4, we observe that both the LK and LBVR algorithms deliver more-or-less

identical performance in terms of balancing the load (processing rate). However, Fig. 3.8

elicits a significant advantage of LBVR over LK in terms of rate of convergence. From this

figure, we can observe that to obtain the similar mean response time of each job (as exemplified
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Figure 3.7: A distributed computer system with a virtual node d.
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Figure 3.8: Comparison of the algorithms with respect to computational time.
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LK Algorithm LBVR Algorithm

Node(i) Class-1(jobs/sec) Class-2(jobs/sec) Class-1(jobs/sec) Class-2(jobs/sec)

1 0.000000 2.064288 0.000000 2.063941

2 0.000000 1.262917 0.000000 1.219627

3 2.463605 0.000000 2.480405 0.000000

4 1.695861 0.000000 1.683883 0.000000

5 0.000000 2.108337 0.000000 2.062730

6 0.815314 0.000000 0.837796 0.000000

7 0.684354 0.833333 0.672499 0.833333

8 0.840866 0.000000 0.825417 0.000000

9 0.000000 1.981124 0.000000 2.070368

Table 3.4: Completed job rate (βk
i ) in node i

in Table 3.4), the computational time of LK algorithm is more than 500 seconds and the

system iteration number is 207, whereas LBVR consumes less than 1 second and the system

iteration number is only 53. In every system iteration, each node in the system calculates

according to its local information and broadcasts its local optimal solution to the neighboring

nodes. Hence, less iteration number means faster convergence rate and less computational

and communication overheads. This clearly shows that the proposed algorithm has much

faster convergence rate. This significant improvement in performance mainly comes due to

the computational nature of LBVR algorithm, the convergence rate of which is 2, super-linear.

In LK algorithm, much of the time (close to 90%) is spent in Golden-section search phase and

the remaining time is spent in determining certain inverse functions by means of recursive

computations (as these do not have closed-form solutions). Further, a close scrutiny on the

behavior of LBVR from Fig. 3.8, identified by an arrow A, reveals the following information.

It may be observed that close to this interval, there is a little fluctuation in the mean response
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time. The reason for this fluctuation is that, in some cases, the LBVR algorithm goes out

of feasible solution space due to the choice of step size α. The algorithm, then has to take

some time (consuming certain iterations) to re-enter the feasible solution space and to become

normal. As the step-size choice affects the computational time, based on several rigorous test

runs, we fixed the value of α to be within the range [0.5, 1] for better accurate results.

3.4.3 Studies on more network topologies

In this section, we conduct more experiments on different network topologies. Firstly, we

consider a homogeneous system with 9 nodes connected by a Ring network, as shown in Fig.

3.9. In this system, all 9 nodes are homogeneous and all the transmission capabilities of the

links are the same. We assume there are two classes of jobs (k = 1, 2) and the nodes are

M/G/1 systems. The first two moments of service time of each class-k job at node i are

X̄k
i = 1/µk

i and X̄k2
i = 2/(µk

i )
2, respectively, where µ1

i = 7 and µ2
i = 4 jobs per sec., for all the

nodes in the system. cij, the transmission capability of link (i, j), is fixed to 80, 000 packets

per sec in this system. Again, we use (3.24), (3.25) as the nodal delay model for class-1 and

class-2 jobs, respectively, for node i. We also use (3.26) as the communication delay model for

link (i, j). The average external job arrival rates φk
i for class 1 and class-2 jobs are randomly

generated with uniform distributions on [10, 200] and [20, 100] jobs per min., respectively.

In this experiment, we loose the stopping rule and increase ε, the desired acceptable

tolerance, to 10−4. The experimental results are shown in Fig. 3.10, from which we can

observe that with a higher ε, the iteration number of LK and LBVR algorithms are both

reduced. The accuracies of both algorithms are nearly same, as that the optimal MRT of LK

algorithm is 0.28695497 seconds and that of LBVR algorithm is 0.28695482 seconds. But for

LK algorithm, it still needs more than 100 seconds to solve the optimal problem, whereas,

LBVR algorithm only needs less than 0.05 seconds to obtain the optimal solution.

Now we conduct another experiment on a heterogeneous arbitrary network, as shown



Chapter 3 Distributed Static Load Balancing Strategies for Multi-class jobs 50

�

�
�

�

�

�
�

�

	

Figure 3.9: An example of a 9-node Ring computer system.
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Figure 3.10: Comparison of algorithms on Ring network.
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Figure 3.11: An example of a 9-node arbitrary network.

in Fig. 3.11. The topology of the network is randomly generated and the transmission

capabilities of links are generated according to uniform distribution on [50000, 80000] packets

per sec. Here, we consider only one single class jobs. As we mentioned before, the computer

model can be very complicated [4]. For convenience, we choose the central server models for

the computers as in [12], which have the following mean nodal delay functions:

Fi(βi) =
ai

bi − βi

,

where βi < bi and ai, bi are constants for each computer i. Again, we use (3.26) as the

communication delay functions for each link (i, j). Table 3.5 gives the parameters of the

nodal models we use in this numerical experiment, where φi is the job arrival rate for each

node i.

The numerical results are shown in Fig. 3.12. In this experiment, we only think single

class job and use a simple nodal model. Hence, the computational time of both algorithms

becomes much shorter. However, it still spends LK algorithm more than 30 seconds to solve

the optimal problem while it only spends LBVR algorithm less than 0.02 seconds to obtain

the similar optimal solution.

From those experiments, we can draw a conclusion that LBVR algorithm has much faster

convergence to the mean response time than LK algorithm.

Note: the platform of all the experiments is P4 1.5G, 256M RAM.
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Figure 3.12: Comparison of algorithms on an arbitrary network.

Node i Node i

node i ai bi φi jobs/min. node i ai bi φi jobs/min.

1 4 50 25 6 1 40 20

2 5 100 8 7 5 80 50

3 3 120 20 8 7 100 15

4 1 70 30 9 3 90 30

5 5 150 6

Table 3.5: Parameters of each node in the system
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3.5 Concluding Remarks

A novel super-linear static load balancing algorithm, referred to as load balancing via virtual

routing (LBVR), using the concept of data routing in computer networks, has been proposed

in this chapter. The objective is to minimize the mean response time of the jobs that arrive to

a distributed system for processing. Our formulation considers a multi-class jobs that arrive

at processors of a distributed network system for processing. The jobs are considered for

processing in a non-preemptive manner. In this chapter, we have proposed a novel solution

to the load balancing problem defined by (3.3). Several constraints such as, job flow rate,

communication delays due to the underlying network, processing delays at the processors,

are considered in the problem formulation. We formulated the problem of load balancing as

a constrained non-linear minimization problem, and as a solution approach, we have trans-

formed the problem into an equivalent problem of routing under the above set of constraints.

The solution approach that was proposed is conclusively proven to yield an optimal solution,

when the delay function defined in Chapter 3.1 is assumed to be a convex function. Whereas,

when the delay function is a non-convex function, a necessary condition has been derived

to obtain an optimal solution to the problem. Further, the design of the algorithm involves

a systematic application of routing technique, through which a set of potential receivers, of

an unbalanced quantum of load, is identified. This routing technique is shown to deliver a

super-linear rate of convergence. The rate of convergence to optimal solution by our algorithm

when compared with [12] was experimented and the results are shown to testify the theoret-

ical findings. Finally, we have also shown that our algorithm guarantees that no job is left

unprocessed once it enters the system for processing and the solution approach is cycle-free

(Lemma 3.3).

Although the studies attempted in [12, 38] are the ones that are considered close to our

modelling, there exist some key differences. In [38], while the formulation was generic, only one

class of jobs was considered. In [12] multi-class of jobs were considered under a more-or-less
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similar formulation. However, in the latter case, the underlying node model was different, in

the sense that, each node i treated its neighboring nodes differently according to the transfer

vector of class-k jobs. Whereas, in our model, we relax this constraint and handle a generic

situation in which the entire set of class-k jobs arriving at node i (from other nodes and also

externally at node i), are considered as a whole while balancing the entire load.

The current problem context poses the following challenges to be considered as possible

future extensions. First attempt can be in tuning the formulation to handle the dynamic case

of load balancing, wherein network routes and established paths may dynamically change.

Secondly, additional constraints such as limited resources availability, such as buffer capacity

at a node, bandwidth availability of channels, etc, can be considered in the problem formula-

tion. Lastly, problem formulation and solution for handling jobs with time critical constraints

(jobs having deadlines) can also be considered.
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Chapter 4

Distributed Dynamic Load Balancing

Strategies

Dynamic load balancing algorithms offer the possibility of improving load distribution at

the expense of additional communication and computation overheads. In [23, 40], it was

pointed out that the overheads of dynamic load balancing may be large, especially for a large

heterogeneous distributed system. Hence, most of the research works in the literature focused

on centralized dynamic load balancing [23, 41, 81, 82], in which an Management Station (M-

Station)/Scheduler kept checking the system state and scheduled the arriving jobs among

the processors by some strategies, such as Backfilling, Gang-Scheduling, and Migration [81],

etc. Because of its scalability, flexibility and reliability, distributed dynamic load balancing

offers more advantages than the centralized strategies, and thus has obtained more and more

focuses recently [19,43].

To the best of our knowledge, there is no work in the literature that systematically analyzes

and compares the performance of the distributed dynamic load balancing algorithms. In this

chapter, according to the job assignment methods, we classify the distributed dynamic load

balancing algorithms into three policies: Queue Adjustment Policy (QAP), Rate Adjustment

Policy (RAP) and Combination of Queue and Rate Adjustment Policy (QRAP). Based on
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LBVR, we propose two efficient algorithms referred to as Rate based Load Balancing via

Virtual Routing (RLBVR) and Queue based Load Balancing via Virtual Routing (QLBVR).

It is the first time in the literature that a distributed system can adjust its scheduling according

to optimal solutions dynamically using RLBVR algorithm. We introduce an algorithm called

Estimated Load Information Scheduling Algorithm (ELISA) and an algorithm named Perfect

Information Algorithm (PIA) reported in the literature [19], for the purpose of continuity.

The algorithms ELISA and PIA belong to QAP whereas RLBVR and QLBVR belong

to RAP and QRAP, respectively. We carry out large number of rigorous simulation exper-

iments to capture and analyze the effect of time-varying loads and different lengths of time

intervals on the algorithms. As our focus is to analyze and understand the behaviors of the

algorithms in terms of their load balancing abilities, minimization of mean response time, in

our rigorous simulation experiments, we consider a single-class of jobs for processing. One

of our added considerations in this study is to gain an intuition regarding the relative met-

rics of the different approaches under consideration. We extend our simulations to a large

scale multiprocessor system such as Mesh architecture that is of practical use in real-life ap-

plications. Our contribution elicits certain important behaviors of the distributed dynamic

load balancing algorithms that serve to quantify the performances under different situations.

From rigorous experiments, recommendations are drawn to prescribe the suitability of the

algorithms under various situations.

This chapter is organized as follows. Chapter 4.1 describes in detail the system model

and the classification of the distributed dynamic load balancing algorithms. In Section 4.2,

we propose RLBVR and QLBVR, and give a brief introduction of ELISA. In Section 4.3,

we present the results of simulations carried out in a 2-processor system to illustrate certain

salient features of the algorithms under consideration. In Section 4.4, we extend our work to

large scale multiprocessor system, give a brief description of PIA and compare the algorithms

of the three policies. We highlight our work in Section 4.5.
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4.1 System Model and Classification of Dynamic Load

Balancing Algorithms

We first present a general system model in the design of the algorithms. For convenience, we

use “node” and “processor” interchangeably in the rest of this chapter. We consider a generic

parallel/distributed system shown in Fig. 2.1. The system consists of n heterogeneous nodes,

which represent host computers having different processing capabilities, interconnected by an

underlying arbitrary communication network. Here, we only consider one class of jobs and

hence we obtain a simple distributed computer system as shown in Fig. 1.1. We assume that

jobs arrive at node i (i ∈ N) according to an ergodic process, such as inhomogeneous Poisson

process with intensity function λi(t) [83]. A job arriving at node i may either be processed

locally or transferred through the network to another node j (j ∈ N) for remote processing.

The service time of a job is a random variable that follows an exponentially distribution with

mean 1/µi, where µi denotes the average job service rate of node i and represents the rate

(in jobs served per unit time) at which node i operates when busy. The queue discipline of

the jobs in each node is FCFS and the buffer size is infinite. We denote βi(t) as the rate at

which the jobs are processed at node i at time t. Once a job starts to undergo processing in

a node, it is allowed to complete processing without interruption and cannot be transferred

to another node in the meanwhile.

In this model, we assume that there is a communication delay incurred when a job is

transferred from one node to another before the job can be processed in the system and denote

xij(t) as the job flow rate from node i to node j (j ∈ Vi) at time t. Further, we assume that each

link (i, j) can transfer the loads at its own transmission capability (otherwise referred to as

transmission rate, commonly expressed as bytes/sec). We denote C as the set of transmission

capacities of all the links and cij as the transmission capacity of a link (i, j), cij ∈ C. There

are many communication delay models proposed for data networks in the literature and here
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we choose M/M/1 [12,27].

For load balancing algorithms, the model for a node comprises a scheduler, an infinite

buffer to hold the jobs and a processor. The scheduler is to schedule the jobs arriving at

the node such that the mean response time of the jobs is a minimum. In the absence of a

scheduler in a node, the job flow takes the following sequence of actions: a job enters the

buffer, waits in the queue for processing, leaves the queue and gets processed in the processor

and then leaves the node (system). However, when a scheduler is present, depending on where

a scheduler resides in a node to exercise its control on the job flow, we classify the distributed

dynamic load balancing algorithms into three policies:

1. Queue Adjustment Policy (QAP): As shown in Fig. 4.1, the scheduler is placed immediately

after the queue. Algorithms of this policy [19,22,45] attempt to balance the jobs in the queues

of the nodes. When a job arrives at node i, if the queue is empty, the job will be sent to

processor directly; Otherwise, the job will have to wait in the queue. The scheduler of node

i periodically detects the queue lengths of other nodes that node i is concerned. When an

imbalance exists, the scheduler will decide how many jobs in the queue should be transferred

and where each of the jobs should be sent to. By queue adjustment, the algorithms could

balance the load in the system.

2. Rate Adjustment Policy (RAP): As shown in Fig. 4.2, the scheduler is immediately placed
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Figure 4.1: Node model for queue adjustment policy.

before the queue. When a job arrives at node i, the scheduler decides where the job should be
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sent, whether it is to be sent to the queue of node i or to other nodes under consideration. Once

the job has entered the queue, it will be processed by processor and will not be transferred

to other nodes. Using this policy, the static algorithms [12, 47], can attempt to control the

job processing rate on each node in the system and eventually obtain an optimal (or near

optimal) solution for load balancing. Because of high the computation overheads, till now

no dynamic algorithm in the literature uses this policy. In this chapter, we will propose a

dynamic algorithm, which belongs to this policy.
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Figure 4.2: Node model for rate adjustment policy.

3. Combination of Queue and Rate Adjustment Policy (QRAP): As shown in Fig. 4.3, the

scheduler is allowed to adjust the incoming job rate and also allowed to adjust the queue size

of node i in some situations. Because we consider a dynamic situation, especially when we

use RAP, in some cases, the queue size may exceed a predefined threshold and load imbalance

may result. Once this happens, QAP starts to work and guarantees that the jobs in the

queues are balanced in the entire system. In this policy, we can consider the rate adjustment

as a “coarse” adjustment and the queue adjustment as “fine” adjustment. To the best of our

surveys till date, there is no algorithm in the published literature that falls into this class

of policies. In this chapter, we will propose an algorithm, which belongs to this policy that

considers realizing a dynamic load balancing in distributed networks.
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Figure 4.3: Node model for the combination of queue and rate adjustment policy.

4.2 Comparative Study on the Algorithms

In this section, we will introduce the algorithm named ELISA [19] which will be used as a

benchmark algorithm, which qualifies under QAP category and we will propose two algorithms

based on LBVR, referred to as Rate based Load Balancing via Virtual Routing (RLBVR) based

on RAP and Queue based Load Balancing via Virtual Routing (QLBVR) based on QRAP,

respectively. First, we give some notations which will be used throughout this chapter.

In distributed dynamic load balancing algorithms, the nodes in the system exchange their

status information at periodic interval of time Ts, which is called the status exchange interval.

The status information consists of the queue length at the instance of information exchange, an

estimate of the job arrival rate and the processing rate. The instant at which this information

exchange takes place is called a status exchange epoch. Each status exchange interval is further

divided into equal subintervals denoted as estimation intervals Te. The points of division

are called estimation epochs. In order to keep the communication overheads minimal, the

exchange of status information is restricted only to the neighboring nodes. In Fig. 4.4, Tn, Tn−1

denote the status exchange epochs and t1, t2 represent the estimation epochs. Normally, the

job arrival rate in a distributed computing system is not constant with respect to time and

no node in the system is aware of the arrival rates of jobs. Each node estimates the job

arrival rate by considering the number of arrivals in a certain fixed interval of time (called a

window). The size of this window depends on how rapidly the arrival rate varies with time.
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Figure 4.4: Intervals of estimation and status exchange.

Here, we consider the window to be an integer w multiple of Ts, i.e., window size = wTs.

Also, Ts = m× Te time units from the last status exchange instant and λ̂n
i is denoted as the

estimated arrival rate of node i in the n-th Ts. This estimate is made at starting of the interval

Ts at time t = Tn−1 in Fig. 4.4. Now, we introduce the algorithms of the three policies.

4.2.1 ELISA: Estimated Load Information Scheduling algorithm

We describe ELISA [19] in brief for the purpose of continuity. In ELISA, the load scheduling

decision is taken as follows: from the estimated queue lengths of the nodes in its neighboring

nodes and the accurate knowledge of its own queue length, each node computes the average

load on itself and its neighboring nodes. Nodes in the neighboring set, whose estimated queue

length is less than the estimated average queue length by more than a threshold θ, form an

active set. The nodes under consideration transfers jobs to the nodes in the active set until

its queue length is not greater than θ and more than the estimated average queue length.

The value of θ, which is predefined, is a sensitive parameter and it is of importance to the

performance of ELISA. Here, the threshold θ is fixed in such a way that the average response

time of the system is a minimum. We present more details on ELISA in Table 4.1.

4.2.2 The proposed algorithm: RLBVR

Although LBVR is a static load balancing algorithm, due to its super-linear convergence rate,

LBVR can be tuned to handle dynamic situations. Thus we attempt to design a dynamic

load balancing algorithm RLBVR based on the working style of LBVR. The main structure
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Table 4.1: Main structure of ELISA

Procedure. Transfer. (Computation of transfer probabilities and transfer of jobs)

1. Find average queue length of the neighboring set

2. If queue length of a node is greater than the average queue length (computed

in 1), then:

(a) construct the active set as follows: if a node in the neighboring set has a

queue length less than the average queue length, include the node in the

active set;

(b) compute the probability of transferring from the node (source) to each

node (destination) in the active set such that the source node load in excess

of average queue length is distributed among nodes of active set.

3. Transfer the jobs as per the probabilities computed in 2(b).

Main Algorithm.

At the status exchange epoch, for each node:

1. estimate arrival rate by averaging the number of arrivals over the previous w

status exchange intervals.

2. communicate status (queue length and estimate of arrival rate) to all nodes

in the neighboring set.

3. call transfer.

At the estimation epoch, for each node:

1. estimate the queue length for each node in the neighboring set.

2. call transfer.
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of this algorithm is:

First, we Add a virtual node, which is referred to as the destination node (node d), into

the network system. Connect node d with each node i (i ∈ N) by a virtual direct link (i, d).

Let the nodal delay of node i be treated as the communication delay on link (i, d). After these

modifications, the process of load balancing can be described in an alternative way. As shown

in Fig. 3.4, a three-node system has been transformed into a datagram network, in which

node i basically acts as a router. The way in which the loads are shared by the nodes can be

described as follows. The jobs that arrive at node i according to a Poisson process with an

average external job arrival rate of λi are routed to destination node d via every node j 6= i.

The goal of load balancing now can be alternatively stated as a problem which attempts to

minimize the mean link delay for each job in the system. Then, each node i in the system

only considers the routing paths of (i, d) and (i, j) → (j, d), j ∈ Vi. Use Newton’s method [79]

to obtain the optimal job routing rate of each path of node i. Eventually, obtain an optimal

job transferring rate xij and job processing rate βi, which are equal to job flow rates on paths

(i, j) → (j, d) and path (i, d) respectively.

Each node i in the system monitors its external job arrival rate and obtains an estimate

of the job arrival rate λ̂n
i , which will be used as the job arrival rate of node i during the time

interval between Tn−1 and Tn for computing. Before node i starts computing the optimal

processing rate and transfer rates, node i broadcasts a request message to its neighboring

nodes. When node j (j ∈ Vi) receives this message, it will send xn
ji and βn

j to node i

immediately. If node i does not receive the response message from node j, it will consider

node j has been shut down or the edge < i, j > is broken down, and will not send jobs to

node j until it receives some message from node j some time later. Once node i obtains all

local information, it can start computing to obtain an optimal solution, following which, node

i sends some jobs to its neighboring nodes and processes some jobs locally during this time

interval. In the following, we will give more details on how to compute the optimal solution
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in each node.

Procedure for a node

For node i in the system, we denote Pi(βi) as the mean nodal delay function for a job and

Gij(xij) as the mean communication delay function for a job transferred from node i to j.

Some generic models of Gij(xij) include the delay of sending a job from node i to node j and

the delay of sending the response back from node j to node i. In general, the path taken in

each of the above mentioned transfers (job and response transfers) may be different. Note

that the profile of functions Pi(βi) and Gij(xij) may be very complicated. In practice, for

analytical ease, it is often assumed that the functions Pi(βi) and Gij(xij) are differentiable,

increasing and convex functions [5, 27]. Here, we introduce another function Fij to unite the

two different delay functions of Pi and Gij as follows:

Fij(xij) =





Pi(xij), (i, j) ∈ L and j = d;

Gij(xij), (i, j) ∈ L and j 6= d.

Then node i obtains xn
ji and βn

j for the time interval between Tn−1 and Tn. When node i

starts to compute, it calculates the total job arrival rate γn
i , which is:

γn
i = λ̂n

i +
∑

j∈Vi

xn
ji.

Referring to Fig. 3.4 again, we can see that node i has Pi, a set of routing paths. Hence node

i must determine the job flow rate xn
p on each path p, (p ∈ Pi) and the objective function of

node i is

Minimize : D(x) =
1

γn
i

∑

p∈Pi

[ xn
p

∑
all links (i,j)

on path p

Fij(x
n
ij) ], (4.1)

Subject to :
∑

p∈Pi

xn
p = γn

i ,

xn
p ≥ 0, p ∈ Pi.
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We denote dp as the first derivative length of path p with respect to xn
p :

dp =
∑

all links (i,j)
on path p

∂[ xn
pFij(x

n
ij) ]

∂xn
p

.

We now show that the flow on path p is indeed identical to the flow on a link (i, j),

when(i, j) ∈ p. This intermediate result will be useful for us later.

Lemma 4.1: The job flow on link (i, j), j ∈ Vi is equal to the job flow on path p, p ∈

Pi and (i, j) ∈ p.

Proof. Recall the definition of path at the beginning of this section and refer to Fig. 3.4.

We can observe that there is only one path passing through link (i, j), j ∈ Vi, which is

(i → j → d). We have:

xn
ij =

∑
all paths p

containing (i,j)

xn
p

⇒ xn
ij = xn

p , (i, j) ∈ p and p ∈ Pi.

Hence the proof. Q.E.D

We state the following theorem.

Theorem 4.1. The set of values of x̄ is an optimal solution to problem (4.1) only if job flow

travels along minimum first derivative length (MFDL) paths for each S-D pair. In addition,

if Fij are assumed to be convex, then x̄ is optimal if and only if job flow travels along MFDL

for each S-D pair.

Proof. We shall first prove the first part of the above theorem. Let x̄ be an optimal path

flow vector. Then, if x̄p > 0 for some path p of an S-D pair Pi, we must be able to transfer a

small amount δ > 0 from path p to any other path p′ of the same S-D pair without decreasing

the mean response time; Other wise, the optimality of x̄ would be violated. For the first

derivative, the change in mean response time from this transfer is:

δ
∂D(x̄)

∂xp′
− δ

∂D(x̄)

∂xp

,
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and since this change must be non-negative, we obtain:

x̄p > 0 ⇒ ∂D(x̄)

∂xp′
≥ ∂D(x̄)

∂xp

, for all p′ ∈ Pi. (4.2)

In other words, optimal path flow is positive only on paths with a minimum first derivative

length. Furthermore, at an optimum, the paths along which the input flow γi of a S-D pair

(i, d), i ∈ N that are different must have equal lengths (and less than or equal to the length

of all other paths of S-D pair (i, d)).

Thus, the condition (4.2) is a necessary condition for optimality of x̄. The above proof is

also valid for the only if part of the second part of the theorem for convex functions. Now,

the above proof can be back tracked to prove the second part of the theorem when we assume

that the functions Fij are convex. For example, when the second derivatives (Fij)
′′ exist and

are positive in the domain of definition of Fij. Q.E.D

From Theorem 4.1, we can observe that an optimal solution results only if job flow travels

along MFDL paths for each S-D pair. However, by transferring all the flow of each S-D pair to

the MFDL path will lead to an oscillatory behavior. Thus, it is more appropriate to transfer

only part of the flow from other paths to the MFDL path. We shall determine the amount of

these flows from each of the other paths, between an S-D pair, to be transferred to MFDL in

each iteration r, to seek an optimal solution.

Assume that the second derivatives of D(xn
ij), denoted by D′′(xn

ij), are positive for all xn
ij.

Let (xn)(r) = {(xn
p )(r)} be the job path flow vector obtained after r iterations in node i, and

let {(xn
ij)

(r)} be the corresponding set the job link flow rate. For each S-D pair (i, d), let p̄i be

an MFDL path and Lp be a set of links belonging to either p or to the corresponding MFDL

path p̄i, but not in both. From Fig. 3.4, we can observe that there is no link belonging

to any two different paths in Pi. The minimization problem (4.1) can be converted to a

problem involving only active (strictly positive) constraints by expressing the flows of MFDL

paths p̄i in terms of the other path flows, while eliminating the passive (equality) constraints.
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From [27] and [79], we can obtain that a basic iteration takes the form:

xn(r+1)
p = max{0, (xn(r)

p − αrH−1
p (dp − dp̄i

))}, (4.3)

x
n(r+1)
p̄i

= γn+1
i − ∑

p∈Pi, p 6=p̄
(r)
i

xn(r)
p , (4.4)

where p ∈ Pi, p 6= p̄i, i ∈ N , dp and dp̄i
are the first derivative lengths of the paths p and p̄i.

Hp is the “second derivative length” given by:

Hp =
∑

(i,j)∈Lp

D
′′
(xn(r))

=
∑

(i,j)∈p

∂[xn(r)
p Fij(x

n(r)
ij )]

′′

∂2x
n(r)
p

+
∑

(i,j)∈p̄

∂[x
n(r)
p̄ Fij(x

n(r)
ij )]

′′

∂2x
n(r)
p̄

.

Once we obtain the optimal job flow rates x̄n
p , we obtain the optimal job processing rate

β̄n
i and the optimal job transfer rates x̄n

ij immediately, which are:

β̄n
i = x̄n

p , link (i, d) ∈ p,

x̄n
ij = x̄n

p , link (i, j) ∈ p.

A pseudo-code of the sub-algorithm for node is also shown in Table 4.2.

Once an optimal solution is obtained by node i, the probability of job transferring from

node i to node j (j ∈ Vi) is determined by pn
ij =

x̄n
ij

γn
i

and the probability of job processing

rate in node i is determined by pn
i =

β̄n
i

γn
i
. Obviously,

∑
j∈Vi

pn
ij + pn

i = 1 holds. In the next Ts,

when a job arrives at node i, node i transfers the job to its neighboring node j according to

the probability pn
ij or processes the job according to the probability pn

i .

At the next time instant Tn, node i obtains an estimate of the job arrival rate λ̂n+1
i and

the system starts to compute the optimal solution again. Thus the computation (and hence,

the system) enters into the next time interval Ts and continues recursively.

4.2.3 The proposed algorithm: QLBVR

Now, we propose another dynamic load balancing algorithm referred to as “Queue based

Load Balancing via Virtual Routing” (QLBVR), which belongs to QRAP category, namely
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Table 4.2: Procedure for Node

Step 1: Initialization

r = 0 (r: iteration index).

Determine γn
i .

Find a feasible solution x to satisfy
∑

p∈Pi
xn(r)

p = γn
i .

Step 2: Solution Procedure

Let r = r + 1.

For j = 1 to v + 1, v = |Vi|

Calculate the first derivative lengths of the paths p, that is d(r)
p , p ∈ P k

i .

End For.

Find the minimum first derivative length (MFDL) paths p̄
(r)
i among Pi.

For j = 1 to v, v = |Vi|

To path pj, pj ∈ Pi, pj 6= p̄
(r)
i , calculate the second derivative length: Hpj

.

Let xn(r)
pj

= max{0, xn(r−1)
pj

− α(r−1)H−1
pj

(d(r−1)
pj

− d
(r−1)

p̄
(r−1)
i

)}.

Let x
n(r)
ij = xn(r)

pj
, link (i, j) ∈ pj.

End For.

Let x
n(r)

p̄
(r)
i

= γn
i −

∑
p∈Pi, p6=p̄

(r)
i

xn(r)
p .

Step 3: Stopping Rule

If |D(xn(r))−D(xn(r−1))|/D(xn(r)) < ε, then stop, where ε is a desired acceptable

tolerance for solution quality; otherwise, go to Step 2.



Chapter 4 Distributed Dynamic Load Balancing Strategies 69

by combining queue and rate adjustment policies. As mentioned earlier, QLBVR carries out

coarse adjustments on job transferring and processing rates and fine adjustments on queue

lengths (number of jobs in the queue). These are as described below.

1. Coarse adjustment (on transfer and processing rates): The working style is similar to

RLBVR. At every time instant Tn (n = 0, 1, . . .), nodes in the system use the procedure for

node to obtain an optimal solution. In the next time interval Ts, each node adjusts its job

transferring rates and job processing rate according to the computed optimal solution.

2. Fine adjustment (on queue lengths): The working style is similar to ELISA. Each status

exchange interval Ts is divided into equal subintervals denoted as estimation intervals Te. At

time instant Te, node i estimates and adjusts the earlier estimate of the queue lengths of its

neighboring nodes and has an accurate knowledge of its own queue length. It then calls the

transfer procedure in ELISA for load balancing.

Remarks: Note that in distributed dynamic load balancing algorithms, there may exist a

non-zero probability that a job would shuttle between processors. There are various ways to

alleviate this problem. One of the ways is to allow the job to join at the position where it

should have been if the job had arrived at this queue, instead of adding it at the end of the

queue. This means that we keep track of the time at which it arrived at the system. This can

considerably reduce the probability of the job being transferred once again and can guarantee

minimizing the response time of that job.

4.3 Performance Evaluation and Discussions

We have conducted extensive simulation tests to quantify the performance of the three types

of load-balancing algorithms discussed above. As mentioned earlier, one of our added con-

siderations in this study is to gain an intuition regarding the relative metrics of the different

approaches under consideration. Our simulations focus on two main aspects of dynamic sit-
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Figure 4.5: Model of a 2-processor system.

uation. One is the effect of the load on the nodes and the other is the effect of the status

exchange interval lengths, which is indeed a crucial parameter that reflects the sensitivity of

the algorithms. Here we consider the mean response time (MRT) of a job as the main metric

in our simulations. First, we give the introduction of our simulation model.

4.3.1 Two-processor system model and some important issues

In order to illustrate the salient features of the algorithms in discussion, first we consider the

simplest case when a multiprocessor system is limited to two processors, as shown in Fig.

4.5. But we do not imply any limitation on the size and parameters of the load-balancing

algorithms. It is possible that this model could also be considered equivalent to a situation

in which an isolated processor communicates to a (single) processor that represent the rest

of the network. Another reason why a 2-processor network is used as a test case is that an

algorithm that does not work for 2 processors is unlikely to perform well for a multi-processor

case. It is relevant to mention that the two processors model considered could also represent

a particular kind of multiprocessor model in which an isolated processor communicates to a

single processor that represent the rest of the network.

In Fig. 4.5, we assume that jobs arrive at node 1 and node 2 according to Poisson processes

with rates λ1 and λ2, respectively. We also assume that the average service times of a job at

node 1 and node 2 are 1/µ1 and 1/µ2, respectively. From [28], we obtain that the average
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Figure 4.6: Job arrival rate pattern.

nodal delay of a job in node i (i = 1, 2) is:

Si =
1

µi − λi

, (4.5)

where µ1 = 0.25 jobs/sec and µ2 = 0.5 jobs/sec, in our simulation tests.

In Fig. 4.5, jobs arrive at node 2 according to a homogeneous Poisson process with

λ2 = 0.12 jobs/sec, which will be held constant throughout our simulations. Without load

balancing, the system utilization of node 2 is ρ2 = λ2

µ2
= 0.12

0.5
= 0.24 and the system is at a low

utilization level. In order to consider dynamic situations, the job arrival rate at a node must

be a time-varying quantity. Thus, the job arrival rate at node 1 is an inhomogeneous Poisson

process with intensity function λ1(t) [83]. The pattern of λ1(t) is shown in Fig. 4.6. At time

0, λ1(t) starts from the lowest point l1. As time elapses, λ1(t) increases linearly. At time

t = 1, 000 second, λ1(t) reaches the peak h1 and afterwards, λ1(t) decreases linearly. Finally,

at time t = 2, 000 second it reaches the lowest point l1. After this point, λ1(t) increases again.

For the sake of simplicity, we fix the difference between h1 and l1 to 0.2 jobs/sec. In order

to describe the job arrival pattern quantitatively, we denote λ̄1 = h1+l1
2

as the load of the

dynamic job arrival rate. For example, we use λ̄ = 0.3 to consider the λ(t) shown in Fig. 4.6.

For the communication links, we use M/M/1 model [27]. Assume that the transmission

capacities of link (1, 2) and link (2, 1) are c12 and c21, respectively. Assume that, on an

average, A1 packets are required to describe a job and that, on an average, A2 packets are
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required in sending back a response for a job. Here, we choose A1 = A2 = A = 10. From [12],

we obtain the average communication delay of a job on link (i, j) is:

Fij(xij) =
Axij

cij − Axij − Axji

+
Axji

cji − Axji − Axij

. (4.6)

The first part of (4.6) signifies the communication delay of job flow on link (i, j) and the

second part signifies the communication delay of the responses sent back from node j to node

i. Here, we choose c12 = c21 = 5, 000 (packets/sec).

For QAP and QRAP policies, the threshold θ is an important parameter. For a 2-processor

system considered here, if θ is a threshold chosen and qi is the queue length in node i (i = 1, 2),

then jobs are transferred from node 1 to node 2 if

q1 − q2 > θ. (4.7)

Hence, for a 2-processor system, the decision to transfer is taken if the difference in the queue

lengths (estimated or actual) exceeds the specified threshold θ. In our simulations, a value

of θ = 2 seems more appropriate as we set both the queue lengths identical initially, as

done in [19]. As we mentioned before, the status exchange interval Ts is divided into equal

subintervals Te and Ts = m × Te. In our simulations, we fix m = 3. The window used to

estimate the job arrival rate is an integer w multiple of Ts. Here, we choose w = 6.

In the following experiments, we choose ELISA to present QAP policy in order to test the

performances of the algorithms in the three policies with the same estimation method.

4.3.2 Effect of system loading

In this section, we will analyze the performances of the three policies with respect to the

load on the system. First, in our simulation, we set λ̄1 = 0.1 jobs/sec and then increase the

value of λ̄1 by 0.005 jobs per step. Also, we set Ts = 60 seconds and Te = 20 seconds in our

experiments. For each value of λ̄1, the simulation time is set to 20, 000 seconds to obtain a

statistical mean response time of the jobs arriving at the system. When the average system
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Figure 4.7: Effect of system loading.

utilization ρ̄ is greater than 0.95, we terminate the simulation, where ρ̄ is defined as the ratio

of average total arrival rate to aggregate processing rate of the system: ρ̄ =
λn
1 +λn

2

µ1+µ2
.

The results of our experiments are shown in Fig. 4.7. From this figure, we can observe that

when the load of the system is light or moderate (λ̄1 < 0.4 or the average system utilization

ρ̄ is below 0.75), RLBVR and QLBVR have a better performance than ELISA. For QAP

policy, jobs in the queues can be transferred only at the time instant Tn or tm. During the

time interval Te, even if the queue of node 1 is empty and the queue of node 2 is very long,

the jobs in node 2 have to wait till the next time instant Tn or tm to be transferred to node 1.

Hence, in this situation, it is hard for QAP policy to obtain the optimal load balancing in the

system. For RAP policy, each node in the system assigns the job arriving at it according to an

optimal solution. Therefore, the probability that the queues in the system are kept balanced

is fairly large and RAP policy can obtain a minimum (or near minimum) mean response time

of the jobs. For QRAP policy, the coarse adjustment (rate adjustment) plays a crucial role

and fine adjustment (queue adjustment) makes little influence on the mean response time of

the jobs. This can be proven by the fact that when the system utilization is light or moderate,

there is little difference between the MRT of RLBVR and QLBVR.
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As shown in Fig. 4.7, when the load of job becomes high (λ̄1 > 0.4 or ρ̄ > 0.75), the MRT

of RLBVR rises rapidly with severe fluctuations. With λ̄1 increases, when the utilization

of the system is more than 90%, the system of RLBVR becomes more and more unstable.

Because of RAP’s random nature of job transferring, it is possible that in some cases, many

jobs have been sent to node i and in the meanwhile, fewer jobs have been transferred to node

j. This makes the queue of node i to grow rapidly and the queue of node j deplete quickly

and even may become empty. Due to the high load, the utilizations of node 1 and 2 are nearly

equal to 1 (ρ1 =
λn
1

µ1
≈ 1, ρ2 =

λn
2

µ2
≈ 1), which means that for node i or node j, its service rate

is nearly equal to the job arrival rate. Hence, it is hard for node i to shorten the length of its

queue and the MRT of jobs in the system becomes high. From this behavior, we can conclude

that the performance of RLBVR is unanticipated when the system load is high. But, clearly

this is never a problem for the algorithms of QAP and QRAP policies since balancing the

queue lengths of the nodes in the system are effective. As shown in Fig. 4.7, ELISA and

QLBVR have a much better performance than RLBVR when the load on the system is high.

From these simulation experiments, we can conclude that when the system load is light

or moderate, the algorithms of RAP policy are preferable to obtain a minimum(or near

minimum) mean response time of the jobs. If the load of system is high, the algorithms of

QAP policy can achieve a better performance. The algorithms of QRAP policy are suitable

in the cases when the system load is fluctuating.

4.3.3 Effect of Ts: Length of status exchange interval

The status exchange interval Ts is also an important parameter that decides the performance

of dynamic load balancing algorithms. A large Ts indicates lower communication and com-

putation overheads. Here, we will conduct some simulation experiments to analyze the effect

of Ts on the three algorithms in the situations that system load is light, moderate and high,

respectively. For each situation, we initiate Ts to be 2.1 seconds and in each step, we increase
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Ts by 0.9. After 60 experiments, we terminate the simulation. The simulation time for each

step is also set to 20, 000 seconds.

We set λ̄1 = 0.11 jobs/sec to capture the behavior when the load on the system is light. In

this case, the system utilization ρ̄ < 0.35. The simulation results are shown in Fig. 4.8. From

this figure, we can point out that among the three algorithms, MRT of ELISA is much higher

than those of RLBVR and QLBVR. There is only a little difference between the performances

of RLBVR and QLBVR. As one would expect, with the status exchange interval Ts increasing,

MRT of ELISA also increases. It is also interesting to observe that when Ts becomes longer,

MRT of RLBVR and QLBVR slightly decreases. Because the window time to estimate job

arrival rate λ̂ is fixed (set to 6×Ts), a large Ts value means longer window time for job arrival

rate estimation and we can obtain more accurate λ̂ for the pattern of job arrival rate, as

shown in Fig. 4.6. If the job arrival rate changes more rapidly, we can expect that relatively

shorter Ts will deliver a better result, when the loading on the system is light.
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Figure 4.8: Effect of Ts: System loading is light.

We set λ̄1 = 0.3 jobs/sec to understand the behavior when the load on the system is

moderate and the system utilization 0.35 < ρ̄ < 0.75. The simulation results are shown in

Fig. 4.9. From this figure, we can point out that ELISA is more sensitive to Ts than RLBVR
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and QLBVR. With Ts getting larger, MRT of ELISA becomes higher quickly than that of

RLBVR. Also, MRT of QLBVR is little higher than that of RLBVR. This is because of the fact

that for QLBVR, it is possible that node i sends a job to node j due to its coarse adjustment,

however node j may be sending another job back to node i due to its fine adjustment. The

job shuttles between the nodes and increase the response time of the jobs. A small value of Ts

means that more job shuttles between the nodes and the higher MRT of the jobs. From these

simulation experiments, we can conclude that when the loading on the system is moderate,

RLBVR has a much better performance than ELISA and QLBVR.
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Figure 4.9: Effect of Ts: System loading is moderate.

Now when the load is high, i.e., we set λ̄1 to 0.45 jobs/sec. In this case, the system

utilization ρ̄ is nearly equal to 1. The simulation results are shown in Fig. 4.10. From

this figure, we can observe that when the load of the system is high, the best performer

is ELISA, the second best one is QLBVR, and the worst performance is by RLBVR. For

RLBVR, because of the high load situation, it may be possible that many jobs may “jam” in

one node and there is no mechanism to balance the queue sizes of the nodes in the system.

Because of the characteristic of RLBVR, MRT of RLBVR is high and fluctuates rapidly with

increasing Ts. For QLBVR, when the load is high, the fine adjustment play a crucial role than
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coarse adjustment. Due to the shuttling of jobs, MRT of QLBVR is little higher than that

of ELISA. As reported in [19], here too we observe that the lengths of Ts have a great effect

on the performance of ELISA. We can see when Ts is 60 seconds, MRT of ELISA is nearly

three times than that when Ts is 3 seconds. From these experiments, we also can observe

that Ts is an important factor which can effect the system performance significantly. Due to

the varying patterns of job incoming rates, it is hard to give a confidential interval of Ts here.

However, if the job incoming rates change rapidly, we can choose a shorter Ts to capture a

better knowledge of the job rates, whereas, if the job incoming rates change slowly, we can

choose a longer Ts in order to reduce the communication overheads.
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Figure 4.10: Effect of Ts: system loading is high.

4.4 Extensions to Large Scale Multiprocessors System

Now we shall consider a large scale multiprocessor system to capture and understand the

behavior of our algorithms. This is an important study as it reflects a real-life scenario.

In our study, we considered a mesh architecture. Mesh-connected multiprocessor is one of

the most suitable architectures for multiprocessor systems of small or moderate size. As
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Figure 4.11: A mesh-connected multiprocessor M [8, 8] system.

mentioned earlier, based on the mesh topology, many prototype and commercial systems

delete the sentence. such as Dash [84], Paragon [85], and Intel Touch-stone Delta have been

built and these architectures are able to handle data intensive computations. Hence, in this

section, we extend our simulation experiments to a mesh multiprocessor system, as shown

in Fig. 4.11. We will compare the performances of the three policies under different system

workload in a mesh-connected multiprocessor system.

A two-dimensional mesh, denoted by M [X, Y ], comprises X × Y processors arranged in a

X × Y two-dimensional grid, where each node represents a processor and each edge denotes

a two-way communication link. The processor located in row x and column y is identified

by coordinate (x, y). In these simulations, we use the same nodal model and link model

described in Chapter 4.3. The processing capability of the processors in the mesh M [X, Y ]

can be represented by the “processing rate” array denoted as µ[X, Y ], in which element

µ(x, y) has the value of jobs processed per second. In our simulations, we set X = Y = 8

(a 64-processor system) and the job processing rate of each node in the system is randomly

generated with uniform distribution between 4 and 10, as shown in (4.8). For convenience,

we still use node i, node j to denote the node in the system. The capacities of links in the

system are also randomly generated with a uniform distribution between 50, 000 and 150, 000

packets per second.
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µ =




7 5 7 6 10 5 9 8

9 8 5 4 6 5 5 10

7 6 8 8 7 4 5 6

4 6 9 10 5 5 4 6

4 5 10 5 4 5 8 8

5 7 6 5 5 10 7 10

5 5 6 4 5 6 10 5

4 7 6 10 10 8 7 9




. (4.8)

Again, we use (4.6) as the function of the average communication delay of a job on the

links. In this section, we choose Perfect Information Algorithm (PIA) to present QAP, instead

of ELISA. PIA is similar to ELISA, but it is assumed that at the transfer epochs, each node

has perfect information about the state of every other neighboring node. In [19], it has been

proven that PIA has better performances than ELISA at the expense of more communication

overheads and PIA can present the best performance of QAP algorithms when the MRT is

the only metric. Let PIA(1) to denote the PIA algorithm whose status exchange interval

is 1 second, and PIA(3) and PIA(10) to denote the PIA algorithms whose status exchange

interval are 3 and 10 seconds, respectively. Again, we use RLBVR(30) to present RAP, which

is RLBVR algorithm with Ts = 30 seconds. We use QLBVR(30) to present QRAP which is

QLBVR algorithm with Ts = 30 seconds. In QLBVR(30) algorithm, every node in the system

balances its queue with its neighboring nodes once in each status exchange interval by the

mechanism similar to ELISA. In the following, we will conduct some simulations for all the

5 algorithms under 2 types of jobs loads: (a) arrival of loads are static or slowly varying; (b)

arrival of loads is varying rapidly.
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4.4.1 Static or slowly varying system loading

Here, we assume that jobs arrive at node (i, j) according to a homogeneous Poisson process

with λ(i, j) jobs/sec. Under a given set of λ[X, Y ], the system utilization is:

ρ =

∑7
i=0

∑7
j=0 λ(x, y)

∑7
i=0

∑7
j=0 µ(x, y)

. (4.9)

We carry out a series of simulations for the M [8, 8] mesh-connected multiprocessor system

with the 5 algorithms described above, under different system utilization parameter ρ. The

simulation conditions are kept identical for all the 5 algorithms for a given ρ. For each

simulation run, the simulation time is set to 20, 000 seconds, during which, the first 5, 000

seconds are considered as “warm time”. After the warm time, we trace the jobs arriving at

each node and record their arriving time, processing time and leaving time. We average 10, 000

jobs’ response time as the mean response time for this simulation. In the first simulation,

the job arriving rates λ[X, Y ] are randomly generated. Then, each node (x, y) increases its

λ(x, y) by 0.25 jobs per second in each step. When the system utilization exceeds 0.9, we

terminate the simulations.

Fig. 4.12 and Fig. 4.13 show the simulation results of the mean response time of jobs for

the 5 algorithms. We observe that when the system utilization is light or moderate (less than

ρ = 0.75), PIA (QAP policy) results in much higher mean response time than QLBVR(30)

(QRAP policy) and RLBVR(30) (RAP policy). Also, a small Ts can improve the performance

of PIA only when the system utilization becomes moderate (greater than ρ = 0.3), because

when the system utilization is light, the queue length of each node is very short and the

queue adjustment makes little effect on the MRT of the jobs no matter how large the value

of Ts is set. Due to the slow varying nature of the job pattern, QLBVR(30) and RLBVR(30)

exhibit much better performances with a relatively longer Ts = 30 and there is little difference

between the MRTs of the two algorithms. When the system utilization becomes high (greater

than ρ = 0.75), PIA(1) has the best performance of all the 5 algorithms. QLBVR(30) renders
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Figure 4.12: Mean response time of jobs for 5 different algorithms under different system

utilization: System utilization is light or moderate (ρ < 0.75).
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Figure 4.13: Mean response time of jobs for 5 different algorithms under different system

utilization: System utilization is high (ρ > 0.75).
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the second best performance, whose MRT is little higher than that of PIA(1). The worst

performer is PIA(10). However, if we consider the communication overheads, we recommend

QRAP instead of QAP, because QLBVR(30) has nearly the same performance as PIA(1),

with much longer Ts than PIA(1) (which indicates much lower communication overheads).

4.4.2 Experiments when arrival of loads is varying rapidly

We construct another job pattern to simulate the situation when the job arriving rate of

each node changes rapidly. We assume that for each node, the time interval for a batch of

jobs is 10 seconds, during which jobs arrive at the node according to a homogeneous Poisson

process. In each 10 seconds time interval, the probability that the arrival rate will be same as

in its previous interval is 0.1, otherwise, the job arriving rates are generated randomly with

uniform distribution between λmin and λmax. We assume that, in each node, the maximum

job arriving rate cannot exceed its maximum job processing rate. For node (x, y), we use rmin

to denote the ratio λmin

µ(x,y)
and rmax to denote the ratio λmax

µ(x,y)
. Hence, we can use [rmin, rmax](x,y)

to denote this job pattern for node (x, y) in the system. For example, the job pattern shown

in Fig. 4.14 can be denoted as [0.3, 0.7](7,7) for node (7, 7) whose job processing rate is 9 jobs

per sec. Again, let ρ̄ be the average system utilization for our simulations, which is:

ρ̄ =
number of jobs arriving / simulation time

∑7
i=0

∑7
j=0 µ(x, y)

. (4.10)

We conducted 4 kinds of simulation tests indicated as S.N. (simulation number), shown in

the following.

A: System utilization is light. In this case, the job pattern of each node (x, y) in the system

is [0.1, 0.4](x,y) and E(ρ̄) = 0.1+0.4
2

= 0.25.

B: System utilization is moderate. In this case, the job pattern is [0.3, 0.7](x,y) for node (x, y)

and E(ρ̄) = 0.3+0.7
2

= 0.5.
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Figure 4.14: An example of the job pattern.

C: System utilization is high. In this case, the job pattern is [0.7, 1](x,y) for each node (x, y)

in the system and E(ρ̄) = 0.7+1
2

= 0.85.

D: We randomly choose 1
3

of the nodes as lightly-loaded nodes ([0.1, 0.4]), 1
3

of nodes as

moderately-loaded nodes ([0.3, 0.7]) and the rest 1
3

of nodes as highly-loaded nodes ([0.7, 1])

and E(ρ̄) = 0.25+0.5+0.85
3

= 0.533.

In each kind of simulations, for all the 5 algorithms, we generate a set of job arriving

rate sequences to ensure that the simulation conditions remain identical. The jobs recording

method is same as that described in Chapter 4.1. The simulation results of jobs’ MRT are

shown in Table 4.3.

From these simulations, we can observe that when ρ̄ is light (A), the best performers are

RLBVR(30) and QLBVR(30) and the performances of PIA(1), PIA(3) and PIA(10) are nearly

the same. However, when ρ̄ is moderate (B), the best performer is still RLBVR(30) and the

second best one is PIA(1). The performances of the rest algorithms are nearly the same.

When ρ̄ is high (C), PIA(1) is much better than RLBVR(30) and QLBVR(30). But if Ts

increases, the performance of PIA also decreases. We can observe that the difference between

PIA(10) and QLBVR(30) is very little (within 10%). In D, the best ones are RLBVR(30)
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and QLBVR(30) and the worst one is PIA(10).

Table 4.3: MRT of 5 algorithms in the 8× 8 mesh multiprocessor system (sec.)

S.N. ρ̄ PIA(1) PIA(3) PIA(10) RLBVR(30) QLBVR(30)

A 0.253 0.2045 0.2083 0.2080 0.1789 0.1865

B 0.500 0.3067 0.3119 0.3203 0.2962 0.3282

C 0.851 0.4800 0.6243 0.8342 1.0266 0.9063

D 0.541 0.3420 0.4051 0.4511 0.3266 0.3353

4.5 Concluding Remarks

In this chapter, we classified the distributed dynamic load balancing algorithms into three

policies: QAP policy: queue adjustment policy, RAP policy: rate adjustment policy, and

QRAP policy: combination of queue and rate adjustment policy. We proposed two algorithms

named Rate based Load Balancing via Virtual Routing (RLBVR) and Queue based Load

Balancing via Virtual Routing (QLBVR), which belong to RAP and QRAP, respectively.

These two algorithms are based on LBVR and hence the computation overheads are small. We

have used Estimated Load Information Scheduling Algorithm (ELISA) [19] to present QAP

policy, the main idea of which is to carry our estimation of load by reducing the frequency of

status exchange, thereby reduces the communication overheads.

We constructed a dynamic job arrival rate pattern and carried out rigorous simulation

experiments to compare the performance of the three algorithms under different system loads,

with different status exchange intervals Ts. With our rigorous experiments, we have shown

that when the system loads are light or moderate, algorithms of RAP policy are preferable

with longer Ts. When the system loads are fairly high, QAP policy and QRAP policy have

better performances than RAP policy. In this situation, QAP and QRAP policies can obtain
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smaller mean response time of jobs with shorter Ts. We also demonstrated that QRAP has

relatively good performance in most of the situations and it is suitable when the system

loads are fluctuating. We have also extended our rigorous simulation tests for a large scale

multiprocessor system assuming a mesh-architecture. In this case, we used Perfect Information

Algorithm (PIA) to study the QAP policy, which delivered the best performance of QAP with

respect to MRT metric [19]. From our experiments, we have clearly identified the relative

metrics of the performance of the proposed algorithms and we are able to recommend the use

of suitable algorithms for different loading situations. Our system model and experimental

study can be directly extended to large size networks such as multidimensional hypercubes

networks to test their performances. Finally, in this chapter, we have rigorously demonstrated

the performance of the algorithms for a single class of jobs.

In our future works, we can divide the jobs in the system into several classes and assign

each class of jobs its own priority. It would be interesting to consider multi-class jobs system

as well and analyze the performance of these algorithms. We only consider infinite buffer size

in this chapter. We can study the performance of the algorithms with limited buffer size.

Job’s slow-down [81], which is the ratio of the response time to the processing time of a job,

is an important fairness index for distributed systems. We also can do more research work on

this metric for the proposed algorithms.
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Chapter 5

Extensions to Divisible Loads

Scheduling on Arbitrary Networks

We have extensively studied the indivisible load balancing problems on arbitrary network

configurations in both static and dynamic situations. We also have proven that the distributed

strategies via virtual routing are efficient to solve the load balancing problems. Now, we extend

our research work on divisible load theory (DLT) [14,15,63]. In this chapter, we consider the

problem of scheduling divisible load originating from single or multiple sites on heterogenous

arbitrary networks. Our objective is to design efficient distributed load distribution strategies

so as to minimize the total processing time of all the loads given to the distributed computer

system for processing. In 1998, Barlas [51] presented an important result concerning an

optimal sequencing in a tree network and it is one of the important studies that demonstrates

the performance of the load distribution algorithm when result collection phase is included in

the problem formulation. In [52], a multi-level tree is considered and it is assumed that the

load distribution takes place concurrently from a source processor to all its immediate child

processors. This is one of the earliest attempts in using a multi-port model of communication,

in which all the incident links on a processor are concurrently used. The advantage of the

multi-port model was also demonstrated in a two-dimensional mesh network [53]. In [54],
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load partitioning of intensive computations of large matrix-vector products in a multi-cast

bus network was investigated.

Scheduling the input loads which comprise of both divisible and indivisible loads was

also considered in the literature and heuristic algorithms were proposed in [76]. In [90],

the authors introduced simultaneous use of links to expedite the communication and the

concept of fractal hypercube on the basis of processor isomorphism to obtain the optimal

solution with fewer processors. Most recent studies focus on system dependent constraints

such as, scheduling under finite buffer capacity constraints and processor release times [56],

estimating the processor and link speeds by some methods of probing and estimating [57],

scheduling divisible loads on Mesh multiprocessor architectures [58], to quote a few. Also,

the applicability of DLT concepts to schedule and process loads generated from large scale

physics experiments (RHIC at BNL, USA) on computational grids are investigated in [59].

Some other studies in the domain of DLT include scheduling divisible loads with arbitrary

processor release times in bus networks [86], use of affine delay models for communication

and computation for scheduling divisible loads [61], etc.

Finally, use of affine delay models for communication and computation components for

scheduling divisible loads are extensively studied in [60,61], etc.

All the above studies focussed their attention in designing load distribution strategies un-

der the assumption that all loads originate at one processor. For the solution approaches,

the algorithms proposed in the literature were centralized. That is, according to the network

topology and the node where the loads originate, one processor in the system will determine

the strategy of scheduling. In this chapter, we will consider a distributed load scheduling prob-

lem with divisible loads originating from single or multiple processors on arbitrary networks.

This scenario happens commonly in realistic situations, such as applications in distributed

real-time systems.

The organization of the chapter is as follows. In Chapter 5.1, we present a mathematical
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model, the problem definition and we formulate the problem. In Chapter 5.2, we propose

our strategy and derive conditions for obtaining an optimal solution. We prove several im-

portant properties used in the design of the proposed algorithm and prove its convergence

and complexity. In Chapter 5.3, we present a detailed illustrative example to show the com-

plete workings of our proposed algorithm for ease of understanding. We shall also present

numerical studies to quantify the performance in the cases that when divisible loads originate

from single and multiple sites. We highlight our contributions and discuss on possible future

extensions in Section 5.4.

5.1 Mathematical Model and Problem Formulation

In this section, we shall formally introduce the problem we are tackling and propose a mathe-

matical model used in our analysis. We will also introduce the required terminology, notations

and definitions that will be used throughout this chapter. In the following, we shall first de-

scribe the characteristics of the system, the resource constraints, and some assumptions that

are considered in the problem context.

5.1.1 Description of system, assumptions and notations

We consider the problem of scheduling and processing divisible loads on an arbitrary com-

puter network system as shown in Fig. 5.1. The system consists of n heterogeneous nodes,

which represent host computers, interconnected by a generally configured communication or

intercommunication network.

We assume that all nodes in the system have front-end. We only adopt uni-port model,

which means each node can take care of transferring the load to its neighboring nodes one-

at-a-time. The assumption is reasonable, because the buffer size of node is limited and it has

not enough load to send to all of its neighboring nodes simultaneously. If node i has no load
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Figure 5.1: An arbitrary computer network system with multiple loads.

to be processed initially, node i cannot start processing until it receives all the loads. This

assumption is also reasonable, because when the node is receiving the loads, it doesn’t know

which part of the loads should be processed locally and which part should be transferred to

which neighboring node [14, 15, 59]. When node i receives all the loads, it can start sending

the loads to its neighboring nodes one by one and processing at the same time. Note that

in [14], the authors assumed that each node can receive loads from only one neighboring node

at a time. In our model, we relax this constrain and assume that each node is provided with

such a facility, which is capable of receiving (gathering) all the load fractions simultaneously

over all the incident links on it.

We consider the divisible loads originating from single or multiple nodes in the network

and denote Li as the amount of loads originating at node i for processing, where Li ≥ 0 holds.

Let li denote the amount of loads assigned to node i according to a scheduling strategy and

xij denote the amount of loads should be transferred from node i to node j, j ∈ Vi. Hence,

the following conservation equations hold:

γi = Li +
∑

j∈Vi

xji = li +
∑

j∈Vi

xij, (5.1)

where γi is the total amount of loads at node i. In general, there is a node delay incurred

when li jobs are processed at node i and a communication delay incurred when xij jobs are

transferred on link (i, j). In DLT, the above two kinds of delay functions are assumed to be
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linear, increasing functions [14–16, 70]. Without loss of generality, we shall denote Pi(li) =

Ei × li as the node delay function for node i and Gij(xij) = Cij × xij as the communication

delay function on link (i, j), where, Ei is the time it takes to compute a unit load by node i

and Cij is the time it takes to transfer a unit load on link (i, j), respectively.

Our objective is to obtain an optimal load distribution such that the processing time of

the entire loads is a minimum. For each node i, the processing time Ti is dependent on li and

tmax
i , where tmax

i is the time instance at which the last job is received by node i. Obviously,

if no job is sent to node i by its neighboring nodes, tmax
i = 0 holds. Now, we can obtain:

Ti = tmax
i + Ei × li. (5.2)

We denote tmax
i (j) as the time instance at which the last job coming from node j is received

by node i. According to the definition of tmax
i , we obtain the following equation:

tmax
i = max {tmax

i (j), | ∀j ∈ Vi}. (5.3)

We can observe that tmax
i may be determined by node j. Let tmax

i−j denote the time instance

at which the last job coming from Vi, except node j, is received by node i.

As we mentioned before, when node i receives all the loads, it can start processing and

transferring some loads to one of its neighboring nodes simultaneously according to the

scheduling. In the DLT literature [14, 15], it has been shown that the processing time can

be improved if we follow a sequence in which link speeds decrease (referred to as, optimal

sequence). Thus, we can observe that it is important for node i to obtain such an optimal

sequence, following which node i should send loads to its neighboring nodes one by one. We

will discuss the optimal sequence in Chapter 5.2 in detail. Now, we use Si to re-index the

nodes of Vi, the global number of the neighboring nodes, as Si = {1, 2, . . . , vi}, vi = |Vi|, for

ease of mathematical representation. Thus, we can conceive an inverse function that maps the

nodes of Si to Vi and we denote such an inverse function of Si(j) as S−1
i (k). Thus, Si(j) = k

and S−1
i (k) = j imply k ∈ Si and j ∈ Vi, respectively. For example, referring to Fig. 5.1, node
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1 has three neighboring nodes and V1 = {2, 4, 6}. For any sequence of node 1, S1 = {1, 2, 3}.

If node 1 send load to node 2 first, then node 6, and send load to node 4 last. We can obtain

that S−1
1 (1) = 2, S−1

1 (2) = 6, S−1
1 (3) = 4. If we know node 2 is in V1, we also can obtain the

position of node 2 in S1 by S1(2) = 1. Hence, if node j, j ∈ Vi, sends loads to node i, the

following equations hold:

tmax
i (j) = tmax

j +
Sj(i)∑

k=1

Cjm × xjm, m = S−1
j (k). (5.4)

From (5.3), (5.4) and from the definition of tmax
i−j , we obtain:

tmax
i = max {tmax

i (j), tmax
i−j }

= max {tmax
j +

Sj(i)∑

k=1

Cjm × xjm, | ∀j ∈ Vi, xji > 0, m = S−1
j (k)}.

Note that the processing time of the system is influenced by li and the transfer amount xij.

Now we shall present a formal definition of the problem addressed in this Chapter.

5.1.2 Problem formulation

Now, we shall formally define the problem that we want to address. In essence, we formu-

late the problem as a real-valued optimization problem with the objective of minimizing the

processing time of the system according to (5.2). We state the following:

Minimize : D(l, x) = max {Ti = tmax
i + Ei × li, | ∀i ∈ N}, (5.5)

where, tmax
i = max {tmax

j +
Sj(i)∑

k=1

Cjm × xjm, | ∀j ∈ Vi, xji > 0, m = S−1
j (k)}.

Subject to : Li +
∑

j∈Vi

xji = li +
∑

j∈Vi

xij, (5.6)

∑

i∈N

Li =
∑

i∈N

li, (5.7)

li ≥ 0, i ∈ N, (5.8)

xij ≥ 0, (i, j) ∈ C. (5.9)
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The equation (5.6) defines load balancing constraints, each of which equates the amount

of loads in and out of node i. To the best of our knowledge, it is the first time in DLT

literature that the scheduling problem is formulated as an optimal function. In order to

obtain an optimal solution to the problem defined by (5.5), each node i can determine li and

xij, j ∈ Vi, according to the total amount jobs γi. For node i, another important parameter

tmax
i (independent on node i) is only determined by the incoming amount loads xji, j ∈ Vi.

Hence, the load scheduling strategy should determine the values of l, x, and the optimal

sequence of each node sending jobs to its neighboring nodes, where, l = [l1, l2, . . . , ln] and

x = [xij], (i, j) ∈ C.

We shall now introduce the main idea we used to attack the problem. In [10], the authors

proposed a distributed Load Balancing algorithm via virtual routing. In [87], the divisible

load scheduling problem on single-level tree topology was analyzed. Note that, if we use

a distributed method to solve the problem addressed in this chapter, each node will only

consider itself and its neighboring nodes. If node i has loads to send to its neighboring nodes,

we can obtain a reduced single-level tree (star) graph with node i as the root processor. For

example, referring to Fig. 5.1, if node 1 has loads to send to node 2, 4, 6, we can obtain a

sub-graph as shown in Fig. 5.2. Then, node 1 can calculate l1, and x12, x14, x16 by virtual

routing method proposed in [10], which has been proven to be an efficient distributed search

method. All the nodes in the system construct their own single-level tree and then calculate

the l and x according to the optimal sequences one by one. After some iterations, an optimal

solution can be found, if it exists. Thus, all main procedures of our proposed strategy has

been so far described.

In the following section, we will present our solution approach, discuss the optimal sequence

and prove the convergence of our strategy.
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Figure 5.2: Single-level tree topology.

5.2 Proposed Strategy for Optimal Solution

In this section, we will propose our solution approach the problem defined in (5.5). We shall

first present the sub-algorithm for each node to search for an optimal solution in each iteration

and then discuss the optimal sequence, based on which we construct our scheduling strategy.

After that, we will present the scheduling strategy for divisible load originating from single

site first and discuss the difference between divisible load originating from single and multiple

sites, for ease of simplicity. After that, we will present the scheduling strategy for divisible

loads originating from multiple sites. At the end of this section, we will prove the convergence

of our strategy and deduce the complexity of the proposed algorithm.

5.2.1 Sub-algorithm for a node and optimal sequence

As proved in [14, 15], a set of l and x is an optimal solution to problem (5.5) if and only if

all the nodes in the system stop processing at the same time. For our distributed scheduling

strategy, each node considers its neighboring nodes and constructs a star sub-graph. Each

node will try to obtain a local optimal solution among the sub-graph. As a first step, we

present our sub-algorithm of a node to make all the nodes in the sub-graph stop processing

at the same time.

Our sub-algorithm of node is based on the virtual routing method proposed in [10]. In

our sub-algorithm, each node i in the system will attempt to obtain a local optimal solution
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to make node i and node j, j ∈ Vi, to stop processing at the same time. At first, we assume

that Li > 0 and Lj = 0, and besides node i, no other node will send jobs to node j. Now we

obtain the sub-problem of problem (5.5) for an optimal sequence S̄i as follows:

Minimize : Di(li, xi) = max{Ti, Tj, | ∀j ∈ Vi}. (5.10)

Ti = Ei × li,

Tj =
Si(j)∑

k=1

Cim × xim + Ej × lj, | ∀j ∈ Vi, xim > 0, m = S̄−1
i (k).

Subject to : Li = li +
∑

j∈Vi

lj, with (5.6), (5.8), (5.9).

The sub-algorithm will then search for the solution of li, lj (= xij) to make all the nodes

among the sub-graph stop processing at the same time. Now we add a virtual node, which is

referred to as the destination node (node d), into our network system. Further, we connect

node d with node i and j, j ∈ Vi, by direct virtual links (i, d) and (j, d). We use functions

Gid(xid) = Ei × xid and Gjd(xjd) = Ej × lj as the delay functions of links (i, d) and (j, d),

respectively. Note that node i has a set of routing paths Pi, through which node i can send

jobs to node d. Let p0
i denote the routing path of i → d directly and pk

i denote the routing

path of i → j → d, where j = S̄−1
i (k). We denote xk

i as the amount jobs that are transferred

on path pk
i and denote dk

i as the time delays on paths pk
i . Obviously, x0

i = li, xk
i = xij, and

d0
i = Ti, dk

i = Tj hold, where k = 1, 2, . . . , vi, j = S̄−1
i (k). After this transformation, we can

describe the process of scheduling problem in another way. To obtain an optimal solution to

the sub-problem (5.10), node i shall determine the amount jobs which are transferred on each

path pk
i ∈ Pi and make the time delays of all the routing paths to be the same, which is:

d̄0
i = d̄1

i = . . . = d̄vi
i . (5.11)

Let dmin
i denote the Minimum Delay Routing Path (MDRP) of node i, which is min {dk

i , | k =

0, 1, . . . , vi}. Clearly, an optimal solution of problem (5.10) results only if amount loads travel

along MDRP paths in Pi. The amount of loads is strictly suboptimal only if there is a positive
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amount loads that travel on a non-MDRP path. This suggests that a suboptimal solution

can be improved by transferring some amount loads to an MDRP path from other paths in

Pi (evident from (5.11) above). However, by transferring all the loads to the MDRP path

will lead to an oscillatory behavior. Thus, it would be better to transfer only part of the

loads from other paths via MDRP path. Below, we shall determine the amount loads from

each of the non-MDRP paths in Pi to be transferred via MDRP to seek an optimal solution.

From [10,27], we obtain that the iteration takes the form:

x
k(r+1)
i = max{0, x

k(r)
i − α(r)d

k(r)
i − d

min(r)
i

Hk
i

}, k = 0, . . . , vi, k 6= min, (5.12)

x
min(r+1)
i = γ

(r+1)
i −

vi∑

k=0,k 6=min

(x
k(r+1)
i ), (5.13)

where, α(r) is a positive scalar step-size in r-th iteration, according to some rule [62], min

presents the MDRP path in set d
(r)
i and

Hk
i =

∂d
k(r)
i

∂x
k(r)
i

+
∂d

min(r)
i

∂x
min(r)
i

.

We use the linear section search method in this chapter. One can also choose other linear

section search such as Golden Section Search or find a closed-form equation [14] to solve the

problem (5.10) for a given sequence. However, these methods may be good for the single-level

network, however may be not suitable for the arbitrary topology discussed in this chapter due

to slow convergence rate. It is beyond the scope of this thesis to discuss these.

Example 5.1: For ease of understanding, we consider an example as shown in Fig. 5.2,

in which L1 = 100 units loads and L2 = L4 = L6 = 0 and node 1 tries to send some jobs

to its neighboring nodes. The processor speed parameters are E1 = 2.0, E2 = 4.0, E4 = 1.0,

E6 = 1.5 and the respective link speed parameters are marked in the graph. At first we choose

a random sequence for node 1, as sending loads to node 2 first, and then node 4, 6 one by

one. We obtain S1(2) = 1, S1(4) = 2 and S1(6) = 3. After adding the virtual destination

node d and the virtual links (1, d) and (j, d), j ∈ V1, we obtain Fig. 5.3, where P indicate

the routing paths of node 1. In order to obtain (5.11), we first set an initial feasible solution
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Figure 5.3: Single-level tree with virtual node and virtual links.
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that is x
(1)
1 = [x

0(0)
1 , x

1(0)
1 , x

2(0)
1 , x

3(0)
1 ] = [100, 0, 0, 0], r = 0 firstly. Then use (5.12) and (5.13)

to search for the optimal solution. We obtain the results as shown in Fig. 5.4, in which max

processing time is dmax
1 and max−min processing time is the difference between the maximum

and minimum processing time among the paths of node 1. After 11 iterations, we can observe

that the time delay on each path becomes the same that is d̄0
1 = d̄1

1 = d̄2
1 = d̄3

1 = 97.86 seconds,

which means all the nodes in this sub-graph will stop processing at time 97.86 seconds. The

solution for this example is l1 = 48.93, x12 = 15.06, x14 = 30.11 and x16 = 5.90 units loads.

Theorem 5.1 (Optimal Sequence). In a single-level tree network, in order to achieve min-

imum processing time, the sequence of load distribution by the root node i should follow the

order in which the link speeds ( 1
Cij

, j ∈ Vi) decrease [15, 87].

Theorem 5.1 and equation (5.11) together provide a necessary and sufficient condition for

solving the problem (5.10). According to this condition, the loads should be distributed first

through the fastest link, then through the second fastest link, and so on until the slowest

link is assigned the last load fraction and all the nodes should stop processing loads at the

same time. Thus, by adopting such a sequence of load distribution according to the speeds

of the links and finding a solution to make all the nodes stop processing at the same time, an

optimal processing time will be achieved.

Now we consider Example 5.1 to prove the optimal sequence. We use brute-force method

to find a sequence following which the processing time is minimum. Because node 1 has three

neighboring nodes, the number of possible sequences that should be searched is 3! = 6. For

each sequence, we use the search method (5.12) and (5.13) to find the solution that all the

nodes will stop processing loads together. The search results are shown in Table 5.1, in which

we can observe that the minimum processing time happened in number 4, the sequence of

which is S1(4) = 1, S1(2) = 2 and S1(6) = 3. This sequence just follows the order in which the

link speeds 1
C14

, 1
C12

, 1
C16

decrease, and Theorem 5.1 holds. Following the optimal sequence, we



Chapter 5 Extensions to Divisible Loads Scheduling on Arbitrary Networks 98

Table 5.1: Brute-force search results for optimal sequence of Example 5.1

Number sequence Max processing time (Sec.)

1 2 −→ 4 −→ 6 97.86

2 2 −→ 6 −→ 4 115.60

3 4 −→ 6 −→ 2 89.23

4 4 −→ 2 −→ 6 87.93∗

5 6 −→ 2 −→ 4 120.22

6 6 −→ 4 −→ 2 115.50

obtain the optimal processing time of this example, which is 87.93 seconds as indicated by a

star in Table 5.1.

Thus, we have provided a necessary and sufficient condition for the optimal solution of

the sub-problem (5.10) and a search method (5.12) and (5.13) which is a building block of the

proposed scheduling strategy. In the following section, we will present our scheduling strategy

for divisible jobs originating from single and multiple sites on arbitrary networks.

5.2.2 Scheduling strategy for an arbitrary topology

In this section, using the sub-algorithm for each node in the system described above, we shall

derive our scheduling strategy systematically. Though the basic idea of the solutions for the

scheduling problem of divisible jobs originating from single and multiple sites is the same,

there are some difference between the two cases. Hence, we will present the strategy for loads

originating from single site first and then discuss the main difference of the two cases. Lastly,

we will propose the strategy for loads originating from multiple sites on arbitrary networks.

From Theorem 5.1, we can observe that for node i, the optimal sequence is independent of

lj, the amount of loads to be processed at node j, and Ej, the processing capability of node j,
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where j ∈ Vi. For a given lj, the time instance at which node j starts processing may be later

than the time when node j receives the jobs coming from node i, if we increase the processing

speed ( 1
Ej

) to a higher value. Hence, we can draw a conclusion that the optimal sequence

of node i is also independent of tmax
j , when node j receives all the jobs from its neighboring

nodes. We obtain the following lemma:

Lemma 5.1. For a node i in the system, in case tmax
j ≥ tmax

j (i), j ∈ Vi, an optimal sequence

for node i exists.

Now, we shall make little modification of sub-problem (5.10) as following:

Minimize : Di(li, xi) = max{Ti, Tj, | ∀j ∈ Vi}, (5.14)

where, Ti = tmax
i + Ei × li, Tj = tmax

j + Ej × lj,

with the same constraints in (5.5). According to Lemma 5.1, we can observe that the optimal

sequence and optimal condition (5.11) still hold. Hence, (5.12) and (5.13) can also be used

to seek an optimal solution for the sub-problem (5.14).

We consider Fig. 5.1 to discuss the scheduling strategy for divisible loads originating from

single site. In this example, we assume L1 = 100 and L2 = L3 = . . . = Ln = 0. Each node i

in the system will try to find an optimal solution for the single-level tree sub-graph, the root

processor of which is node i itself. In each iteration, the nodes calculate one by one, according

to their total amount jobs γi defined by (5.1), till all the nodes have finished calculating. In the

first iteration, node 1 sends some loads to its neighboring nodes 2, 4, 6. Then, the neighboring

nodes of node 1 also send some loads to their own neighboring nodes except node 1, and so

on. Eventually, after some iterations, all the nodes in the system will have some loads to

process and these loads are originating from node 1. For some nodes in the system, they may

receive some loads from two or more neighboring nodes (maybe simultaneously or orderly).

However, Lemma 5.1 guarantees that the optimal sequence still holds in this case. Hence,

each node can obtain a local optimal solution by (5.12) and (5.13), following its own optimal
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sequence. Below we continue with this example to discuss the search method in detail.

Similar to Fig. 5.3, by adding a virtual node d and virtual links (i, d) and (j, d), we can

obtain a set of routing paths of node i in Fig. 5.1. The optimal sequence of each node i, S̄i,

can be pre-defined before the calculation. In r-th iteration, node i has its own total amount of

loads γ
(r)
i = Li +

∑
j∈Vi

x
(r)
ji , (Li = 0, i 6= 1). In order to avoid job shuttles within the system,

node i will not calculate load amount to be transferred on the link (i, j), if x
(r)
ji > 0. Node i

calculates x
k(r)
i on each routing path one by one and skips the path (i → j → d) if x

(r)
ji > 0.

Obviously, t
max(r)
j−i , t

max(r)
i , and x

(r)
ji , x(r)

mn, for m 6= i, n 6= i, (m,n) ∈ C, are independent of

node i in r-th iteration. Before node i starts calculating l
(r+1)
i and x

(r+1)
ij , (x

(r)
ji = 0), node i

can obtain t
max(r)
i and t

max(r)
j−i by following equations:

t
max(r)
i = max {tmax(r)

j +
S̄j(i)∑

k=1

Cjm × x
(r)
jm, | ∀j ∈ Vi, x

(r)
ji > 0, m = S̄−1

j (k)},

t
max(r)
j−i = max{tmax(r)

n +
S̄n(j)∑

k=1

Cnm × x(r)
nm, | ∀n ∈ Vj, n 6= i, x

(r)
nj > 0,

m = S̄−1
n (k)}.

However, node i can determine t
max(r)
j (i) as:

t
max(r)
j (i) = t

max(r)
i +

S̄i(j)∑

k=1

Cim × x
(r)
im, j ∈ Vi, m = S̄−1

i (k),

by the transfer vector x
(r)
i in r-th iteration. Thus, we can obtain the time instance at which

node j finishes receiving loads from its neighboring nodes, which is:

t
max(r)
j = max {tmax(r)

j (i), t
max(r)
j−i }. (5.15)

From (5.15), we can obtain the time delay on each path in Pi of node i in r-th iteration:

d
0(r)
i = t

max(r)
i + Ei × x

0(r)
i ,

d
k(r)
i = t

max(r)
j + Ej × l

(r)
j , k = 1, 2, . . . , vi, j = S̄−1

i (k), (5.16)

where, l
(r)
j = Lj +

∑
m∈Vj

x
(r)
mj −

∑
m∈Vj

x
(r)
jm. We can also obtain the first derivative of the time
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delay on each path as shown in the following:

∂d
0(r)
i

∂x
0(r)
i

= Ei,

∂d
k(r)
i

∂x
k(r)
i

=





Ej, if t
max(r)
j (i) < t

max(r)
j−i ,

Ej + Cij, if t
max(r)
j (i) ≥ t

max(r)
j−i , (5.17)

where, k = 1, 2, . . . , vi, j = S̄−1
i (k).

Thus we have obtained all the variants needed to carry out next calculation by using (5.12)

and (5.13). As we mentioned before, the step-size α(r) in (5.12) is some positive scalar which

may be chosen by a variety of methods available in the literature [62]. We choose α(r) to be

a constant from the range [0.5, 1] for all α, which is shown to work well in our method. The

distributed working style of the proposed scheduling strategy is as follows.

Any one of the processors in the system works as a core processor whose role is to trigger

computations among the set of processors. At initial time, the core processor starts to compute

an optimal solution for its sub-graph and also informs the rest of the nodes to compute one

by one in a pre-defined sequence. The objective of the core processor is to avoid the time

asynchrony among the processors in the system. When node i finishes computing and obtains

a solution it broadcasts the solution to its neighboring nodes. After some iterations, when

the stopping rule is satisfied, all the nodes stop computing and obtain an optimal solution of

the system, if it exists. It may be noted that if the core processor fails in some situation, any

other node can assume the role of a core processor.

Though our strategy has the distributed characteristic, it can be also implemented in a

centralized method. If a processor has all the information about the topology of the system

and about the processors and links, such as Ei, Cij, etc., it can simulate the working style of

each node and search for an optimal solution of the system. Once the key node obtains the

optimal solution, it can informs the rest nodes to transfer the loads according to the optimal

scheduling. Thus, our scheduling strategy is flexible for both distributed situation, when a

node in the system has knowledge only about its local topology, and centralized situation,
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when one key node has the information about the entire topology and other information about

the system.

With the distributed working style, we present an important theorem, which essentially

highlights some important properties of our scheduling strategy.

Theorem 5.2 (Cycle Free): An optimal solution to problem (5.5) is cycle free, i.e., there

exists no load transfer such that xi1i2 > 0, xi2i3 > 0,. . ., ximi1 > 0, where i1, i2, . . . , im ∈ N .

Proof. We assume that in r-th iteration, i1 has some loads to send to its neighboring nodes.

Node i uses (5.12) and (5.13) to search an optimal solution for its sub-graph. If x
(r)
i1i2 > 0,

the path (i1 → i2 → d) must be the MDRP in Pi0 and d
0(r−1)
i1 > d

0(r−1)
i2 holds that is,

T
(r−1)
i1 > T

(r−1)
i2 . Similarly, if x

(r)
i2i3 > 0, we can also obtain d

0(r−1)
i2 > d

0(r−1)
i3 . Recursively, we

observe that the following inequalities hold:

d
0(r−1)
i1 > d

0(r−1)
i2 > . . . > d

0(r−1)
im .

For node im, if it should send some loads to node i1, the inequality d
0(r−1)
im > d

0(r−1)
i1 must

hold, which is a clear contradiction. Hence, in each iteration, it is impossible that a load cycle

x
(r)
i1i2 > 0, x

(r)
i2i3 > 0,· · ·, x

(r)
imi1 > 0 exists. Our optimal solution is approached by the iterations

and it can be deduced that Theorem 5.2 holds. Q.E.D

Though each node i can calculate the local optimal solution according to γ
(r)
i in r-th

iteration, where γ
(r)
i = Li +

∑
j∈Vi

x
(r)
ji and node i also can handle the situation when Li > 0,

up to now we only assume that one of the nodes in the system has some loads to be scheduled

initially. Because of the assumption that each node can start processing loads only after it

receives all loads coming from its neighboring nodes, we may meet an interesting problem

when we use the search method for the divisible loads originating from two or more sites.

In some cases, some node may not receive or send loads to its neighboring nodes at all

and the optimal solution will never be achieved. For example, we only consider two nodes in

a system, i and j, which are connected by links (i, j) and (j, i), and Li > 0, Lj > 0. Node
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i may have other neighboring nodes and node j has only one neighboring node. Initially we

assume Ei × Li > Ej × Lj, and for the optimal solution, some loads shall be transferred

from node i to j. However node j cannot start processing jobs until it receives all loads from

node i. For node i, it has many routing paths including (i → d) and (i → j → d) and the

time delays of the two paths should be d0
i = Ei × li and dm

i = tmax
j + Ej × (Lj + xij), where

tmax
j =

∑m
k=1(Cin×xin), n = S

(−1)
i (k),m = Si(j). Due to tmax

j , the time instance at which the

last job arrives at node j, and Lj, dm
i may be greater than d0

i . Hence node i will not send

loads to node j. For node j, needless to mention that it will not send loads to node i, because

of d0
j < d1

j , where path 1 is (j → i → d).

We refer to this problem as “Trap” problem. In order to solve “Trap” problem, we shall

make little modification of the assumption that each node cannot start processing until it

receives all loads from its neighboring nodes. We assume that, for node i, if Li > 0, it can

start processing its loads at t = 0. When the first load arrives at node i, it will stop processing

and start to receive loads. Node i can resume the processing after the last job arrives at node

i. According to this modification, we must determine the time instance at which the first job

arrives at each node. After the last job is received by each node, we obtain the following:

tmin
i = min {tmax

j +
S̄j(i)−1∑

k=1

Cjm × xjm, | ∀j ∈ Vi, xji > 0, m = S̄−1
j (k)}, (5.18)

tmin
i−j = min{tmax

m +
S̄m(i)−1∑

k=1

Cmn × xmn, | ∀m ∈ Vi,m 6= j, xmi > 0,

n = S̄−1
m (k)}.

When node i resumes processing, it has some unprocessed loads, which is given by:

L∗i = max{0, Li − tmin
i

Ei

}.

Then, in each iteration, the total amount of loads γ
(r)
i should be changed to:

γ
(r)
i = L

∗(r)
i +

∑

∈Vi

x
(r)
ji , L

∗(r)
i = max{0, Li − t

min(r)
i

Ei

}. (5.19)
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Table 5.2: Proposed Scheduling Strategy for Loads Originating from Multiple Sites (Step 1)

Step 1: Initialization

r = 0 (r: iteration index)

For i = 1 to n, n = |N |

1. Determine Pi, according to the optimal sequency Si.

2. Calculate the total amount loads at node i, which is γ
(0)
i = Li +

∑
j∈Vi

x
(0)
ji .

3. Find a feasible set x
(0)
i as an initial feasible solution, which satisfies

∑vi
k=0 x

k(0)
i = γ

(0)
i . Here, we choose x

(0)
i = γ

(0)
i , x

k(0)
i = 0, k = 1, . . . , vi.

End For

After this modification, each node i can calculate the time delay of all the routing paths

according to L∗(r) and the “Trap” problem has been solved. Thus, we have proposed our

scheduling strategy for divisible loads originating from single and multiple site. A pseudo-

code of our proposed algorithm is also shown in Table 5.2, Table 5.3, Table 5.4, which are

three steps of this algorithm, respectively.

Note that, for each node searching for a local solution, there is little difference between the

sub-algorithm proposed in Chapter 3.1 and the search method used in our strategy. In [27,62],

it is pointed out that to obtain a faster convergence rate, it is better to reach a solution between

the original starting point and the local optimal point in each iteration instead of reaching

the local optimal point directly. Hence, in our strategy, in each system iteration r, every node

calculates the amount loads on every feasible routing path only once, instead of several times

as shown in Chapter 5.2.1.
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Table 5.3: Proposed Scheduling Strategy for Loads Originating from Multiple Sites (Step 2)

Step 2: Solution Procedure

Let r = r + 1

For i = 1 to n, n = |N |, do the following for node i.

1. If Li > 0, calculate t
min(r)
i by (5.18) and γ

(r)
i by (5.19).

Else, γ
(r)
i =

∑
j∈Vi

x
(r)
ji .

2. Determine t
max(r)
i according to the incoming loads x

(r−1)
ji , and d

0(r)
i .

3. For k = 1 to vi, do the following for each neighboring node j = S−1
i (k).

If x
(r−1)
ji > 0, do the next loop.

Calculate t
max(r)
j , t

max(r)
j−i , and t

min(r)
j , t

min(r)
j−i if Lj > 0.

Calculate dk
i and

∂dk
i

∂x
(r−1)
ij

, by (5.16) and (5.17), respectively.

Find MDRP dmin
i = min{dk

i }.

End For.

4. For k = 0 to vi, do the following for each routing path.

Let x
k(r)
i = max{0, xk(r−1)

i − α(r)(dk
i − dmin

i )/Hk
i }, k 6= min, and

x
min(r)
i = γ

(r)
i −∑vi

k=0,k 6=min(x
k(r)
i ).

End For.

End For.
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Table 5.4: Proposed Scheduling Strategy for Loads Originating from Multiple Sites (Step 3)

Step 3: Stopping Rule

If |Tmax(r) − Tmin(r))| < ε, then stop, where, Tmax(r) = max{T (r)
i , | ∀i ∈ N},

Tmin(r) = min{T (r)
i , | ∀i ∈ N}, and ε is a desired acceptable tolerance for

solution quality; otherwise, go to Step 2.

5.2.3 Convergence and complexity of the algorithm

In this section, we prove the convergence of the proposed algorithm and present the derivation

of its complexity. Note that the algorithm executes the sub-algorithm iteratively for node i,

i = 1, 2, . . . , n. That is, the sub-algorithm is a building block of our proposed algorithm. Let

the sub-algorithm for node i denote as an operator Zi : FS 7→ FS where FS is the set of

all feasible solutions. In turn, denote the proposed algorithm by an operator Z, which is a

composition of operators Zi, i = 1, 2, . . . , n.

Z = Z1 ◦ Z2 ◦ . . . ◦ Zn.

As we discussed in Chapter 3.2, for the sub-problem (5.14), we obtain the following lemma:

Lemma 5.2. The operator Zi generates an optimal solution to sub-problem (5.14), i =

1, 2, . . . , n.

Dafermos and Sparrow [88] have derived some elegant results showing some general conditions

for the convergence of an algorithm. Here, we apply their results to prove the convergence of

the proposed algorithm. Note that l is determined if x is given. Hence we use D(x) instead

of D(l, x) for the sake of convenience. From Theorem 2.1 and Theorem 2.2 in [88], we have

the following lemma:

Lemma 5.3. The set of feasible solutions to problem (5.5) FS is closed and convex. Further,

if the operator Z has the following properties, then the proposed algorithm gives an optimal
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solution to problem (5.5).

1) Zx = x for some x ∈ FS implies that x satisfies the condition that all the nodes will stop

processing at the same time.

2) Z is a continuous mapping from FS to FS.

3) D(x) ≥ D(Zx) for all x ∈ FS.

4) D(x) = D(Zx) for some x ∈ FS implies that Zx = x.

The fact that the set of feasible solutions space is closed and convex is evident from the

linearity of the problem and can be argued as follows. Our sub-algorithm, for node i constructs

a single-level tree. In each iteration r, xmj, m 6= i and Lj, j ∈ Vi is independent of node i

and we can consider them as constants. Hence the set of feasible solutions to sub-problem

(5.14) is also closed and convex. Because Z = Z1 ◦ Z2 ◦ . . . ◦ Zn, if the solutions to each Zi

is closed and convex, we can realize that the set of feasible solutions to problem (5.5) is also

closed and convex.

Theorem 5.3. The proposed algorithm Z generates a sequence {x(r)} which converges to an

optimal solution to the optimization problem defined by (5.5).

Proof. The proof of the theorem can be completed if the proposed algorithm Z satisfies the

properties required in Lemma 5.3. Above, we proved that the feasible solutions to problem

(5.5) is closed and convex. Now, we prove that Z has the four properties given in Lemma 5.3.

1). Zx = x implies Z1x1 ◦Z2x2 ◦ · · · ◦Znxn = {x1, x2, . . . , xn}. We can deduce that Zixi = xi

for all i ∈ N , which implies that T1 = T2 = . . . = Tn. Hence, Property 1 in Lemma 5.3 holds.

2). In [15], the authors have given the solutions for single-level tree from which it is easy to

see that Zi is a continuous mapping from FS to FS. Then, from the definition of Z we can

obtain that Z is also a continuous mapping from FS to FS.
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3). According to Lemma 2, we have D(xi) ≥ D(Zixi). Notice that Z is a composition of

operators Zi. Thus, we have D(x) ≥ D(Z1x1 ◦Z2x2 ◦ · · · ◦ Znxn) ⇒ D(x) ≥ D(Zx). That is,

Property 3 in Lemma 5.3 holds.

4). If D(x) = D(Zx), we obtain T1 = T2 = . . . = Tn. For each node i ∈ N , if Ti = Tj, j ∈ Vi,

we can obtain Zixi = xi. Then, we have Zx = x.

Hence, the theorem holds. Q.E.D

We shall now quantify the complexity of the algorithm proposed in this chapter. As a first

step of our algorithm, we sort the neighboring nodes of node i in the system according to

optimal sequence. We use Quicksort algorithm [89] which takes us O(vi lg vi) steps for node

i, where vi is the number of node i’s neighboring nodes (vi = |Vi|). Thus, it consumes

O(max{vi lg vi, | ∀i ∈ N} × n) steps for the system to obtain the optimal sequence for each

node. Considering vi ≤ (n− 1), n = |N |, we can simplify this complexity to O(n2 lg n). Note

that, once the optimal sequence is determined, all the calculations can follow this sequence.

Further, in each iteration r, in our calculations, we shall compute the amount loads on each

possible routing path of node i which takes us O(vi +1) steps. The complexity to calculate in

one iteration should be O((v1+1)+. . .+(vn+1)) ≈ O(n2). If the number of iterations is R, the

complexity of the computation can be O(Rn2) steps, because our algorithm can converge to

an optimal solution after some iterations R. We can observe that R is important to determine

the complexity of our algorithm. In the following, we shall estimate the complexity of R.

To estimate the complexity of R, we consider a system with n nodes. Obviously, the

worst case is the linear daisy chain network with the load originating from node 1, as shown

in Fig. 5.5(a). Before we start our algorithm, we can observe that T
(0)
1 = L1 · E1 and

T
(0)
2 = T

(0)
3 = . . . = T (0)

n = 0, as shown in Fig. 5.5(b). In each iteration of our algorithm, we

let node 1 start computation first. When node 1 finishes, node 2 starts, and so on till node n

finishes its computation. Now, we denote 4(r)
i = T

(r)
i−1 − T

(r)
i as the time difference between
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Figure 5.5: The iteration procedure of the proposed algorithm.
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node i−1 and node i in iteration r, where 1 < i ≤ n and 4(r)
i ≥ 0 always holds. When r = 0,

we can obtain 4(0)
2 = E1 · L1 and 4(r)

i = 0, 2 < i ≤ n. After first iteration, we can obtain

the following equations:

4(1)
2 =

E1

C12 + E1 + E2

· E2

C23 + E2 + E3

· E2 · L1

=
E2

C12 + E1 + E2

· E2

C23 + E2 + E3

· 4(0)
2 ;

4(1)
3 =

E1

C12 + E1 + E2

· E2

C23 + E2 + E3

· E3

C34 + E3 + E4

· E3 · L1

=
E3

C34 + E3 + E4

· E3

E2

· 4(1)
2 ;

· · ·

4(1)
n−1 =

n−1∏

i=1

Ei

Ci(i+1) + Ei + Ei+1

· En−1 · L1

=
n−1∏

i=3

Ei

Ci(i+1) + Ei + Ei+1

· En−1

E2

· 4(1)
2 ;

4(1)
n = 0.

We define 4r = T
(r)
1 − T (r)

n as the Tmax(r) − Tmin(r), which can be deduced as:

4(r) =
n−1∑

i=2

4(r)
i = [1 +

n−1∑

i=3

(
i∏

j=3

Ej

Cj(j+1) + Ej + Ej+1

· Ei

E2

)] · 4(r)
2 = φ · 4(r)

2 , (5.20)

where φ is a fixed number according to the network settings. In iteration r, we can deduce

that 4(r)
2 is:

4(r)
2 = (

E2

C12 + E1 + E2

· 4(r−1)
2 +4(r−1)

3 ) · E2

C23 + E2 + E3

= (
E2

C12 + E1 + E2

· E2

C23 + E2 + E3

+
E3

C23 + E2 + E3

· E3

C34 + E3 + E4

) · 4(r−1)
2

= η · 4(r−1)
2 . (5.21)

Obviously, 0 < η < 1 holds. By (5.20) and (5.21), we obtain the following equation:

4(r) = φ · 4(r)
2 < lim

n→∞[1 +
n−1∑

i=3

(
i∏

j=3

Ej

Cj(j+1) + Ej + Ej+1

· Ei

E2

)] · 4(r)
2 = Φ · 4(r)

2

⇒4(r) < Φ · 4(r)
2 ≤ Φ · ηr−1 · E1 · L1. (5.22)
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From (5.22), we can see R is independent of n. Hence, if we determine the value of ε, we can

estimate the iteration number R by:

R >
ln ε− ln Φ− ln E1 − lnL1

ln η
+ 1. (5.23)

Hence, the total complexity of our algorithm is O(n2 lg n) + O(Rn2) ≈ O(n2 lg n).

5.3 Simulation Results and Some Discussions

Our proposed algorithm retains three important features of practical interest: Firstly, the

algorithm is simple to realize and can be implemented in a distributed fashion. The second

one is in its style of working by avoiding the need for generating a timing diagram explicitly

for any complex networks having an arbitrary network topology. The last one is its capability

of handling divisible loads originating from both single and multiple sites. To the best of

our knowledge, the studies attempted in [14] are closest to our work. In [14], the authors

proposed a centralized algorithm named “Resource-Aware Optimal Load Distribution Algo-

rithm” (RAOLD) to solve the scheduling problem of divisible load originating from single

site on arbitrary graphs. It will be interesting to compare the performance of RAOLD and

our algorithm and discuss the main difference of the two algorithms in the case that divisible

loads originating from single site on arbitrary networks. It is the first time in the literature

that an algorithm is proposed to solve the scheduling problem of divisible loads originating

from multiple sites on arbitrary networks. We shall study the performance of the proposed

algorithm for several situations by means of extensive simulations. We will highlight and

discuss all the important issues observed from our simulation results.

In the rest of this section, we will show an illustrative example which demonstrates the de-

tails of the workings of our proposed algorithm and then compare the performance of RAOLD

algorithm with ours. Further, we will consider divisible loads originating from multiple sites

on several types of networks such as sparse, medium-dense, and dense so as to capture the
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Figure 5.6: Experiment 5.1: (a) An arbitrary network; (b) Optimal sequence of node 1; (c)

Optimal sequence of node 5.

performance of our algorithm.

5.3.1 Demonstration: An example of optimal scheduling

Following example clarifies and illustrates the workings of our proposed algorithm in seeking

optimal solution, if it exists.

Experiment 5.1: Consider a distributed computer system that consists of five host computers

(nodes), as illustrated in Fig. 5.6(a). There are L = 100 units divisible loads originating from

node 1. The processor speed parameters are randomly generated and they are E1 = 2, E2 =

2.5, E3 = 2, E4 = 1.5, E5 = 1 seconds for unit load and the respective link speed parameters

are also randomly chosen and are marked in the graph. In this experiment, node 1 will try

to send some loads to the rest nodes to obtain a minimum processing time.

As a first step of our proposed algorithm, we determine an optimal sequence S̄i defined

in Theorem 1 for node i, i = 1, 2, . . . , 5. For example, the optimal sequence of node 1 and

node 5 are shown in Fig. 5.6(b) and Fig. 5.6(c), respectively. Then, we determine the
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routing path of each node i according to the optimal sequence S̄i one by one with the virtual

node d and the virtual links (i, d) and (j, d), j ∈ Vi. Each node i obtains a set of routing

paths Pi = [p0
i , p1

i , . . . , p
vi
i ], vi = |Vi|. For example, node 2 has three routing paths, which

are p0
2 = (2 → d), p1

2 = (2 → 1 → d) and p2
2 = (2 → 5 → d). From system setting,

we can obtain that γ
(0)
1 = L = 100 and γ

(0)
2 = γ

(0)
3 = γ

(0)
4 = γ

(0)
5 = 0. After this, we

set a feasible solution in the first iteration, which is x
(0)
1 = [x

0(0)
1 , . . . , x

3(0)
1 ] = [100, 0, 0, 0],

x
(0)
2 = [x

0(0)
2 , . . . , x

2(0)
2 ] = [0, 0, 0], and so on. This completes the Initialization step in our

proposed algorithm.

Then, in the Solution Procedure (second) step, each node i will calculate the amount of

loads on each path in Pi according to the equations discussed in Chapter 3.1 and 3.2. Note

that in each iteration r, node i will skip the calculation on path (i → j → d), if x
(r)
ji > 0,

j ∈ Vi. When the r-th iteration is completed, the algorithm will determine Tmax(r) and Tmin(r)

(the maximum processing time and the minimum processing time among all the processors,

respectively). If the difference between Tmax(r) and Tmin(r) is within an acceptable tolerance

ε, we stop the Solution Procedure and obtain a near-optimal solution 1 . Otherwise, continue

the procedure. In all experiments in this chapter, we set ε = 0.01 seconds.

In Fig. 5.7, we show the maximum processing time and the difference between the max-

imum and minimum processing time of each iteration r for Experiment 5.1. From this

figure, we can observe that in this experiment the maximum processing time converges to

83.41 seconds, and the difference between the maximum and minimum processing time con-

verges to 0. After 15 iterations, we obtain an optimal solution for this system, which is

l̄1 = 41.70, l̄2 = 18.53, l̄3 = 5.81, l̄4 = 15.42, l̄5 = 18.53. The timing diagram of the solution

is also shown in Fig. 5.8, from which we can observe that at t = 60.28, node 3 receives

1Note that the optimal solution is obtained when all nodes stop computing at the same time instant, as

shown in the literature [15] and in (5.11) above. However, in our iterative procedure, it is natural that we

strike a near-optimal solution due to the stopping rule with ε > 0.
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Figure 5.7: Results of Experiment 5.1: Tmax(r) and Tmax(r) − Tmin(r) in each iteration r.

loads from node 1 and node 4 simultaneously and the procedure lasts 0.12 seconds. By using

the proposed algorithm, it is shown that the optimal processing time of the system is 83.41

seconds, which is much shorter than the processing time 200 seconds in the case of no loads

scheduling, where only node 1 processes its own loads.

5.3.2 Performance comparison of algorithms

Notice that if divisible loads originating from single site, the RAOLD algorithm proposed

in [14] can also be applied directly to solve the scheduling problem. We shall first give a brief

introduction of RAOLD algorithm and then compare the proposed algorithm with RAOLD

algorithm in terms of processing time of the system.

Algorithm RAOLD [14]: In this work, the authors transformed the scheduling prob-

lem into a multi-level unbalanced tree network. For a given arbitrary network, RAOLD

algorithm first generates a minimum cost spanning tree (MST) by using Kruskal’s or Prim’s

algorithms [27,89]. The root node of the MST is the node at which a divisible load is assumed

to originate. Then, RAOLD algorithm applies Rule A in [15] systematically in a bottom-up

fashion to the MST, starting from the last level to the root, to obtain an optimal reduced tree,
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Figure 5.8: Results of Experiment 5.1: Timing diagram.

which is a single-level tree. Following the optimal sequence defined in Theorem 1, RAOLD

algorithm can deliver an optimal time performance. Interested readers can refer to [14] for

more details. Now we conduct the following experiment to compare the performance of the

proposed algorithm with RAOLD algorithm.

Experiment 5.2: Consider an distributed computer system that consists of ten host proces-

sors (nodes), as illustrated in Fig. 5.9. In this experiment, the processor speed parameters

are E1 = 4.93, E2 = 0.77, E3 = 0.55, E4 = 0.03, E5 = 9.22, E6 = 7.53, E7 = 4.68, E8 =

9.01, E9 = 9.05 and E10 = 9.90 seconds for unit load. The respective link speed parameters

are marked in this graph. The processor speed and the link speed parameters are chosen using

a uniform probability distribution in the range [0.01, 10]. We assume L = 100. Now, as per

our proposed algorithm, we construct ten sub-experiments, in which the divisible loads are

assumed to originate at node 1, 2, . . ., 10, respectively. The experimental results are shown

in Table 5.5.

From Table 5.5, we can observe that our proposed algorithm performs better than RAOLD

algorithm in terms of the processing time of the system. When the divisible load originating

from node 10, our proposed algorithm has the most gain over RAOLD algorithm, which is

19.9%. In Fig. 5.10, we present the timing diagram of the proposed algorithm when the
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Figure 5.9: Experiment 5.2: An arbitrary network with 10 nodes.

Table 5.5: Computational results for load distribution with different load origination

Root node (i) RAOLD (sec.) Proposed Algorithm (sec.) Gain

1 3.048× 102 2.797× 102 8.2%

2 5.951× 101 5.951× 101 0.0%

3 4.454× 101 4.451× 101 0.1%

4 2.969× 100 2.968× 100 0.0%

5 3.139× 102 2.966× 102 5.5%

6 1.671× 102 1.514× 102 9.4%

7 2.340× 102 2.319× 102 0.9%

8 1.234× 102 1.214× 102 1.6%

9 3.913× 102 3.253× 102 16.9%

10 4.300× 102 3.443× 102 19.9%
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Figure 5.10: Results of Experiment 5.2: Timing diagram of the proposed algorithm when

divisible loads originating from node 10.

divisible loads originating from node 10.

It would be of natural interest to investigate the mechanics behind the gain achieved by

our algorithm over RAOLD. The reason is as follows. RAOLD algorithm is based on the

minimum cost spanning tree generated from the original arbitrary topology. MST is only

determined by the cost of links in the network. However, the number of hops that the loads

shall be retransferred also significantly influences the processing time of the system. In some

cases, if we choose the minimum hops instead of minimum cost of links, we can improve the

system performance significantly. Now we consider an example to illustrate this fact.

Example 5.2: A simple system with three nodes is shown in Fig. 5.11(a), with L1 =

100, L2 = L3 = 0 and the processor speed and link speed parameters are also marked in this

graph.
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Figure 5.11: Example 5.2, load flow: (a) A simple example with three nodes; (b) MST with

root node 1; (c) The single-level tree; (d) Our proposed algorithm.

To solve this problem, RAOLD algorithm first generates MST as shown in Fig. 5.11(b) and

obtains an optimal solution which is l̄1 = 49.21, l̄2 = 31.75, l̄3 = 19.05 and the processing time

is 98.43 seconds. For RAOLD algorithm, the loads sent to node 3 must go via node 2 and take

two hops. However, if we construct a single-level tree as shown in Fig. 5.11(c), following an

optimal sequence, we can obtain an optimal solution which is l̄1 = 45.45, l̄2 = 36.37, l̄3 = 18.18

and the processing time is 90.91 seconds. Although the Fig. 5.11(c) is not the MST of this

system, node 1 can send loads to node 3 directly and takes only one hop and its processing

time is much shorter than that of RAOLD algorithm. Our proposed algorithm obtains the

shortest processing time which is 90.90 seconds. For the proposed algorithm, loads can be

transferred on all the three links in the system, as shown in 5.11(d). From this example, we

can observe that the processing time of the system is determined by both the cost of links

and the number of hops. Our algorithm is shown to take advantage of both the cost of links

and the number of hops, and hence performs much better than RAOLD which only considers
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the cost of links.

5.3.3 Divisible loads originating from multiple sites

In this section, we shall conduct some experiments on divisible loads originating from multiple

sites on arbitrary networks. Without loss of generality, we set the number of nodes in the

system to nine. By varying the link probability as 25%, 50% and 80%, we generate sparse,

medium-dense, and dense networks, respectively [14]. That is, the connectivity is varied from

25% to 80% to capture different types of graphs, which are shown in Fig. 5.12.

Experiment 5.3: Consider an arbitrary network system with nine nodes. The process speed

parameters of the nodes are randomly generated following a uniform probability distribution

as, E1 = 2.0, E2 = 3.0, E3 = 1.5, E4 = 1.2, E5 = 1.5, E6 = 1.0, E7 = 2.0, E8 = 1.0,

and E9 = 1.0. We assume that the divisible loads originate at node 3, 6 and 9 and we set

L3 = 40, L6 = 60 and L9 = 100 unit load throughout this experiment. We randomly generate

a sparse network, a medium dense network and a dense network, as shown in Fig. 5.12(a)-(c),

respectively. In each network, the link speed parameters are randomly chosen according to

a uniform distribution in the range [0.5, 10] and the values are marked in the graph. We

conduct three sub-experiments to test the performance of our proposed algorithm for these

networks and we show the results in Table 5.6, which presents the optimal solution l̄i in unit

load for each node i.

From Table 5.6, we observe that the system processing time decreases by increasing the

degree of connectivity. However, as in [14], we cannot guarantee the performance improvement

when degree of connectivity increases. When the degree of connectivity increases, in some

cases, due to the changes of link delays, the optimal sequence of each node may be changed

and thus, the optimal solution of the processing time may become even greater. In Fig. 5.13,

we show that the timing diagram of the system when the network connectivity is medium

dense. Through these experiments, we can draw a conclusion that our proposed algorithm
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Figure 5.12: Experiment 3, a 9 nodes system: (a) A sparse connection; (b) A medium dense

connection; (c) A dense connection.

Table 5.6: Computational results of Experiment 5.3 (unit load)

Node i Sparse Network Medium dense Network Dense Network

1 6.42 4.84 5.30

2 7.69 5.27 1.18

3 33.34 32.09 32.07

4 3.65 5.08 8.55

5 17.12 12.92 14.2

6 50.01 48.13 48.11

7 0.97 13.66 12.9

8 30.78 29.87 29.56

9 50.01 48.14 48.11

Processing time 50.01 sec. 48.14 sec. 48.11 sec.
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Figure 5.13: The timing diagram of the 9-node system when the connection is medium dense.

can also obtain the optimal solutions efficiently in the cases when divisible loads originate

from multiple sites.

Note that, in some situations, our proposed algorithm may sink into some local optimal

solutions (local minima) and the global optimal solution may be not achieved. In order to

avoid this problem, we can adjust the value of α(r) (the step size). As we mentioned before,

we set α(r) in the range of [0.5, 1], which works well in our experiments.

5.4 Concluding Remarks

In this chapter, we have studied an optimal scheduling problem of divisible loads originat-

ing from single or multiple sites in a distributed computer system with arbitrary network

configurations. We have presented a generic mathematical model for this problem and for-

mulated it as a real-valued constrained optimization problem. We decomposed the problem
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into sub-problems which could be solved by each processor in the system. We have derived

the necessary and sufficient conditions for the optimal solution of the sub-problems and we

have proven that after some iterations, our solution can converge to a global optimal solution

of the system. On the basis of this study, we have proposed a distributed algorithm to solve

the general divisible loads scheduling problem. We have adopted a load balancing approach

using the concept of virtual routing in the design of our distributed algorithm. We analyzed

the difference between the cases that divisible loads originate from single and multiple sites

in our proposed algorithm and proposed a simple model to solve the “Trap” problem in the

case of multiple sites. In case the load originates only from a single site, we compared the

proposed algorithm with recently proposed RAOLD algorithm and analyzed the main differ-

ence between the two algorithms. It is shown that the proposed algorithm performs much

better than RAOLD algorithm in terms of processing time. When divisible loads originated

from multiple sites, we constructed several networks with different degree of connectivity to

test the performance of the proposed algorithm. From the extensive simulations, we have

proven that our proposed algorithm can efficiently solve the scheduling problem of divisible

loads originating from single and multiple sites on arbitrary networks.

The approach followed in this chapter is a novel contribution to the domain of DLT. We

designed a distributed scheduling strategy to achieve the optimal processing time of all loads

in the system. It is the first time that a distributed algorithm is attempted and proposed in

the DLT literature. The main advantage of this approach comes from the fact that the need

for generating a timing diagram to develop recursive equations is altogether circumvented.

Thus, when one needs to schedule multiple divisible loads originating from several sites, it is

rather impossible to capture the load distribution process by a single timing diagram. The

main difficulty lies in this approach would be to explicitly schedule several timing compo-

nents such as computation and communication from one site to other sites, identifying which

processor-link pairs are redundant [15], etc. In this chapter, we have taken a radically different
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approach to address this complex problem by carefully formulating as a generalized minimiza-

tion problem, thus avoiding the need for a timing diagram representation. Extensions to this

work may consider applying the algorithm on large scale networks such as Intel Paragon sys-

tem and also using non-linear functions for delay components, taking more constraints such

as the release time of the processors in the system.
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Chapter 6

Conclusions and Future Work

The analysis and design of distributed indivisible load balancing and divisible load schedul-

ing strategies for arbitrary network configurations are considered in this thesis. The load

balancing problems for indivisible loads are long known as an NP -complete problems and

remain challenging tasks in the research field. In the divisible load theory (DLT) literature,

the divisible load distribution strategies are all centralized and the researchers attempt to

obtain the closed-form solutions for each network configuration with different constraints,

such as bus, linear daisy chain, multilevel tree networks, with or without front-end, etc. How-

ever, in some cases, when arbitrary networks are considered, it is very hard to obtain the

closed-form solutions for load balancing/scheduling problems. Furthermore, in a distributed

computer system, if there is no computer which has all information about the system, central-

ized strategies cannot be carried out and the load balancing/scheduling can only be achieved

by distributed strategies. In this thesis, we proposed novel distributed strategies via virtual

routing approach for both indivisible load balancing and divisible load scheduling problems

on arbitrary distributed computer networks. The comparison between the traditional equal

load balancing/scheduling strategies and our proposed strategies via virtual routing demon-

strated that our proposed strategies are much better in the quality of solutions and the time

performance.
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For the static load balancing problem, we considered several constraints such as, job flow

rate, communication delays due to the underlying network, processing delays at the processors

in the problem formulation. We formulated the problem of load balancing as a constrained

non-linear minimization problem to minimize the mean response time of the jobs that arrive

in a distributed system for processing, and as a solution approach, we have transformed the

problem into an equivalent problem of routing under the above set of constraints. An algo-

rithm named “Load Balancing via Virtual Routing” (LBVR) was proposed, the convergence

rate of which was proven to be 2, which is super-linear. The approach proposed is conclusively

to yield an optimal solution, when the delay functions defined in Chapter 3.1 are assumed

to be convex functions. When the delay functions were non-convex functions, a necessary

condition was derived to obtain an optimal solution to the problem. The rate of convergence

to the optimal solution obtained by LBVR algorithm when compared with that of LK algo-

rithm [12] was tested and the results are consistent with the theoretical findings. We have

also shown that LBVR algorithm guarantees that no job is left unprocessed once it enters

the system for processing and the solution approach is cycle-free (Lemma 3.3). Although the

studies attempted in [12, 38] are the ones that are considered close to our modelling, there

exist some key differences. In [38], while the formulation was generic, only one class of jobs

was considered. In [12] multi-class of jobs were considered under a more-or-less similar for-

mulation. However, in the latter case, the underlying node model was different, in the sense

that, each node i treats its neighboring nodes differently according to the transfer vector of

class-k jobs. In our model, we relax this constraint and consider a generic situation in which

the entire set of class-k jobs arriving at one node (from other nodes and also externally at the

node), are considered as a whole while balancing the entire load.

For the dynamic load balancing problem, we classified the dynamic load balancing algo-

rithms into three policies: QAP policy: queue adjustment policy, RAP policy: rate adjustment

policy, and QRAP policy: combination of queue and rate adjustment policy. We proposed
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two algorithms named Rate based Load Balancing via Virtual Routing (RLBVR) and Queue

based Load Balancing via Virtual Routing (QLBVR), which belong to RAP and QRAP, re-

spectively. These two algorithms are based on LBVR and hence the computation overheads

are small. We have used Estimated Load Information Scheduling Algorithm (ELISA) and

Perfect Information Algorithm (PIA) [19] to present QAP policy. We constructed several

dynamic job arrival rate patterns and carried out rigorous simulation experiments to compare

the performance of the algorithms under different system loads, with different status exchange

intervals Ts. Through the rigorous experiments, we have shown that when the system loads

are low or moderate, algorithms of RAP policy are preferable with longer Ts. When the

system loads are fairly high, QAP policy and QRAP policy performance much better than

RAP policy. In this situation, QAP and QRAP policies can obtain a smaller mean response

time of jobs with shorter Ts. We also demonstrated that QRAP performances relatively well

in most of the situations and it is suitable when the system loads are fluctuating. From our

experiments, we have clearly identified the relative metrics of the performance of the proposed

algorithms and we were able to recommend the use of suitable algorithms for different loading

situations. Our system model and experimental study can be directly extended to large size

networks such as multidimensional hypercubes networks to test their performance.

We extended an approach for scheduling divisible loads originating from single or mul-

tiple sites on arbitrary networks. We first proposed a generalized mathematical model and

formulated the scheduling problem as an optimization problem with an objective to mini-

mize the processing time of the loads. A number of theoretical results on the solution of the

optimization problem were derived. On the basis of these results, we proposed an efficient

algorithm for scheduling divisible loads using the concept of load balancing via virtual routing

for an arbitrary network configuration. The proposed algorithm has major three attractive

features. Firstly, the algorithm is simple to realize and can be implemented in a distributed

fashion. The second one is in its style of working by avoiding the need for generating a timing
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diagram explicitly for any complex networks having an arbitrary network topology. This is

one of the strengths of this algorithm, as the proposed solution approach can be applied even

to large scale cluster/grid computing networks. The last one is its capability of handling di-

visible loads originating from both single and multiple sites. Illustrative examples and several

rigorous numerical experiments were presented to capture the performance of the algorithm.

When divisible loads originated from single node, we compared the proposed algorithm with

a recently proposed RAOLD algorithm which is based on minimum cost spanning tree. When

divisible loads originated from multiple sites, we testified the performance on sparse, medium

and densely connected networks. From rigorous simulations, we proved that the proposed

algorithm is efficient to solve the scheduling problems on arbitrary networks. This is the first

time in the DLT literature that such an approach employing load balancing via virtual routing

is attempted.

There are several possible immediate future extensions for the work in this thesis. In our

research work, we assumed that each node in the system has infinite buffer size. Actually,

in the distributed systems, the buffer size of each node is finite. For example, in some cases,

more jobs will be sent to the nodes with higher processing capabilities according to some

optimal solutions. However, if the buffer of such node is limited and the node cannot hold all

the jobs, some of the incoming jobs will be dropped and then, error occurs. Hence, designing

efficient resource-aware strategies are crucial for distributed load balancing. Such constraints

can be considered in both static and dynamic situations.

As far as processing arbitrary divisible loads is concerned, the communication delay and

processing delay are assumed to be linear functions. Most of the algorithms and strategies

proposed in DLT cannot handle the situations where these delay functions are assumed to be

nonlinear with some kinds of start-up costs [90]. When these nonlinear functions are used in

DLT, there are several open questions, such as, “does Rule A (optimal sequence) still hold?”,

“what is the speedup?”, etc. Furthermore, in the divisible scheduling problems, we assume



Chapter 6 Conclusions and Future Work 128

that all the nodes and links in the network are free before we can start to obtain an optimal

solution. However, in the real distributed systems, when a divisible load arrives, some of the

nodes in the system may be occupied by other divisible load under processing. In this case,

we must consider the release time of each node and add some constraints in our problem

formulation. It would be interesting to propose some strategies to solve such problems on

arbitrary networks.
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Appendix: Queue Length Estimation

We model the arrivals and departures at node i as independent Poisson processes with means

λi and µi, respectively. When node i is to estimate the load on processor j as nj(T01) at a

time T01 = T0 + Te, and the actual load on j at T0 is nj(T0). Then

nj(T01) = nj(T0) + mj(Te), (A.1)

where mj(Te) is the actual number of jobs added to the queue at processor j in the time

interval Te. It is obvious that mj(Te) could be negative, zero, or positive, depending on

whether the number of arrivals is less, equal, or more, than the departures, respectively. But

nj(T01) cannot take negative values. So the smallest value that mj(Te) can take is −nj(T0).

Let us denote the estimate of nj(T01) as n̂j(T01). Then

n̂j(T01) = nj(T0) +
∞∑

mj(Te)=−nj(T0)

mj(Te)× p(mj(Te)), (A.2)

where p(mj(Te)) is the probability that mj(Te) number of jobs that have been added to the

queue in the interval Te, and is given by

p(mj(Te)) =
∞∑

k=mj(Te)

p(k arrivals in Te)× p([k −mj(Te)] departures in Te)

=
∞∑

k=mj(Te)

e−λjTe(λjTe)
k

k!
× e−µjTe(µjTe)

k−mj(Te)

(k −mj(Te))!
. (A.3)

Depending on the accuracy required, computations of p(mj(Te)) and n̂j(T01) can be termi-

nated after computing a sufficiently large number of terms in (A.2) and (A.3). Note that in

(A.3), instead of using the actual arrival rate λj, the estimated arrival rate λ̂j is used during

computation.


