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SUMMARY 

Proteome is the complete set of proteins produced by the genome. It is much more 

complex than either the genome or the transcriptome. Moreover, protein products can 

not be accurately predicted from genome by decoding genomic sequences. As a result, 

proteomics, the large-scale study of the proteome is a growing research area in the 

post genomic era. The determination of the amino acid sequence of a protein is the 

first step toward the structure and the function of the protein and it is a crucial 

requirement for the success of proteomics. In this thesis we study two problems 

related to protein sequencing via mass spectrum. 

First, we discuss the protein post translational modifications (PTMs) identification 

via “top-down” mass spectrometry. In literature, database searching method is used to 

identify the modification. In this thesis, we propose a dynamic programming 

algorithm to solve this problem. Compared with the widely used database searching 

method, our new algorithm has several advantages. First, our method can work 

without a protein database. Second, there is no prior knowledge of the modification 

sites in the protein needed. Last but not the least, it can identify the modifications in 

polynomial time, which is very efficient compared to the widely used database 

searching method.  

Second, we discuss the de novo peptide sequencing problem. There are two kinds of 

algorithms to automate peptide sequencing in literature. One is the database searching 

method and another is de novo peptide sequencing. Scoring function is an important 

component for both methods. In literature, not a lot has been done to incorporate the 
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intensity pattern into the scoring function. We propose a new de novo peptide 

sequencing algorithm DTseq, which uses an intensity-based scoring function. The 

scoring function is based on two competing models. One of them is a decision tree 

probability model which fully explores the factors that influence the intensity pattern 

in the spectrum. The decision tree model estimates the likelihood of certain observed 

intensity given the local chemical and physical attributes of the fragment. Besides, a 

random probability model is used to estimate the probability that certain peak is 

actually a noise peak in the spectrum. To test our algorithm, we compare DTSeq with 

two best de novo peptide sequencing algorithms: Peaks and PepNovo. The results 

show that DTSeq performs best among all the three algorithms. It can obtain the 

longest maximum subsequence of predicted peptide as well as the highest prediction 

accuracy. 
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Chapter 1  

INTRODUCTION 

1.1 Motivation 

Human genomeI contains the complete set of genes required to build a functional 

human being. Nowadays, large quantities of deoxyribonucleic acid (DNA) have been 

sequenced, cataloged, and annotated. However, this information is not enough to infer 

biological function because the genome is only one source of information [8, 24]. The 

transcription of genes is the first stage of gene expression and is followed by the 

translation of messenger RNA to produce proteins. 

Proteome is the complete set of proteins produced by the genome. It is much more 

complex than either the genome or the transcriptomeII. Moreover, protein products 

can not be accurately predicted from genome by decoding genomic sequences. This is 

because each protein can be chemically modified in different ways after synthesis, 

which cannot be deduced from gene sequence. The modifications add chemical state 

to the basic protein sequence and cause the change in the protein function and cell 

signaling. In addition, the proteome is also very dynamic. It varies considerably in 

different circumstances due to different patterns of gene expression and different 

patterns of protein modification. As a result, proteomics, the large-scale study of the 

proteome is a growing research area in the post genomic era.  

                                                 
I The entire complement of genetic material in a chromosome set.  
II The full complement of activated genes, mRNAs, or transcripts in a particular tissue at a particular 
time. 
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A key requirement for the success of proteomics is the ability to identify 

unambiguous proteins in complex mixtures. The determination of the amino acid 

sequence of a protein is the first step toward the studying of the structure and the 

function of this protein. Moreover, some proteins will undergo a process called post-

translational modifications (PTMs). This process modifies some amino acids in a 

protein and changes its function. One well-known example is the methylation of 

histones. This process changes the function of histones and affects the formation of 

chromatin[12, 23, 40]. It in turn affects the gene regulation activity. Hence, it is 

important to have some methods to get the protein sequence and identify the post-

translational modification of a protein. Recently, mass spectrometry (MS) has 

become the method of choice for the rapid identification of proteins and the 

characterization of post-translational modification[34].  

1.2 FTMS and LC/MS/MS 

1.2.1 Fragmentation 

Generally in mass spectrometry experiments, proteins or peptides break along their 

backbones between successive amino acids during the stage of fragmentation. A 

protein P is a sequence of n amino acids, naaaP L21= , the single breakage along 

the protein’s backbone results in a prefix fragment (N-terminal fragment) 

and suffix fragment  (C-terminal fragment). Since the fragments retain a 

charge, they are also called the fragment ions and they can be detected by a mass 

spectrometer. 

iaaa L21

nii aaa L21 ++
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The fragmentation results are shown in the mass spectrum (Figure 1.1). The spectrum 

consists of many peaks, each of which is generated by many copies of one fragment 

ion. The position of the peak represents the mass/charge ratio of the corresponding 

fragment ion, and the height of the peak indicates the relative intensity of the 

fragment ion. As a result, different peptides/proteins usually produce different spectra. 

Then the task is to use the spectrum to determine its sequence or to identify the post-

translational modifications. This step is an indispensable process and many researches 

have been done to automate it. 

 

Figure 1.1: Mass spectrum 

1.2.2 FTMS 

There are two kinds of mass spectrometry used in the thesis. The first is the Fourier 

transform MS (FTMS)[33, 48]. This kind of spectrum is used to solve the top-down 

post-translational modification identification in proteins. To reach the goal, generally 

capture dissociation (ECD)[16, 42, 51] is used to cleave the whole protein. The most 
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important property of ECD is that it can cleave any amino acid bonds except for the 

N-terminal side of proline in the protein sequence. Through nonergodic dissociation, 

ECD induces much more general backbones and derives extensive sequence 

information without loss of posttranslational modifications from proteins. In general, 

ECD can cut about 50% of the amino acid bonds of a protein sequence. Figure 1.2 

illustrates the 5 possible types of fragment ions got from ECD and the most 

frequently appearing types of ions are the c-ion and z-ion. Fourier transform mass 

spectrum (FTMS) is then used to show the fragmentation result of the protein. FTMS 

has high precision in measuring mass/charge ratio. Another advantage of FTMS is 

that it can measure the masses larger than 10kDa.  

 

Figure 1.2: Fragment ions of ECD 

1.2.3 LC/MS/MS 

Another kind of spectrum is the LC/MS/MS spectrum which is used to solve the 

peptide sequencing problem in the thesis. In an MS/MS experiment, a mixture of 

proteins is first digested into peptides by enzymes such as trypsin and the masses of 

the intact peptides are determined, producing a ‘peptide mass fingerprint’ of the 

zy

cb

a

                    || 
----CHR----C----- NH------ CHR----

b = c - 17.03 
a = b - 26.99 
y = z + 16.02 
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sample. Trypsin only cuts the amino acid bonds C-terminal to Lysine (K) or Arginine 

(R). Then a different procedure called tandem mass spectrometry is used to test the 

unknown peptide in the spectrum. In this step, the charged peptides are fragmented 

and ionized by methods such as collision induced dissociation (CID). During the CID 

process, peptide bonds are broken and one peptide is divided into two fragments. 

Fragments retaining the ionizing charge after CID have their mass/charge ratio 

measured by the mass spectrometer. There are usually six types of fragment ions 

(Figure 1.3) got by a single cleavage along the peptide’s backbone directly. Among 

them, the b-ion and y-ion are the most frequently appeared ions in the spectrum. 

Besides, by some neutral losses (chemical group such as  and ), , 

, and are produced. However, these types of ions are 

much less observed than the b-ion and y-ion.  

 

                                        Figure 1.3: Fragment ions of CID 

OH 2 3NH OHb 2−

3NHb − OHy 2− 3NHy −

b = c - 17 a b c

1.3 Organization of the thesis 

In this thesis, we consider two problems related to protein sequencing. In the first 

problem, we propose a dynamic programming algorithm to identify the post 

a = b - 28
y = z + 17
x = y + 26

                    || 
----CHR----C----- NH------ CHR----

yx z
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translational modifications (PTMs) with a “top-down” strategy using FTMS. In the 

second problem, we propose a new probability model which fully considers the 

chemical and physical factors that influence the intensity pattern for de novo peptide 

sequencing algorithm via LC/MS/MS spectrum. The rest of the thesis is organized as 

follows: In Chapter 2, we introduce the protein post translational modifications 

(PTMs) problem; In Chapter 3, we introduce the peptide sequencing problem; Then 

we go to the conclusion in Chapter 4.  
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Chapter 2 

PTMs  IDENTIFICATION BY TOP DOWN MASS 

SPECTROMETRY 

2.1 Related Work 

Generally, there are two classes of methods for locating post-translational 

modification. The first approach is based on the bottom-up spectrum[14, 49]. In this 

case, protein is first digested into a collection of peptides with about 10 amino acid 

residues. Then their peptide masses got from the experiment are matched against the 

list of peptide masses expected from the protein sequence. The non-matching masses 

could imply the post-translational modifications. Those peptides are further 

fragmented to generate the “tandem mass spectrum” which is then used to identify the 

peptide and localize its modification. Normally, peptides are identified by matching 

the experimental spectrum against the theoretical spectra corresponding to the 

peptides in a database. There are several different algorithms, such as Peptide 

Sequence Tag[32], Sequest[10], and Mascot[35]. Sequence Tag searches peptides in 

the database by allowing partial peptide mass unmatched. The latter two, which were 

originally used to identify unmodified peptides, can be used to identify modification 

by taking more than one possible amino acid molecular weight into account, 

depending on the modification considered[5, 30]. However, such approaches generate 

more answers and the modified peptides identified are less certain. Another algorithm 

is based on de novo peptide sequencing[37]. It uses a new notion of spectral 

similarity that allows one to identify related spectra considering the multiple 
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modifications. But the results show that this method is not successful due to the 

limitation of de novo sequencing. 

Although the bottom-up approach is widely used, it may miss some modifications 

since the coverage of peptide fragments got from the digestion is not 100%. Even 

worst, the bottom-up approach becomes more unreliable when we study large protein. 

When the protein size is big, the number of fragments increases. The common 

spurious peptide mass can be mistaken to be a modified peptide mass. In contrast, 

these problems can be solved by using top-down spectrum [39, 43, 46]. 

In top-down protein sequencing, instead of digesting the modified protein into 

peptides, the modified protein is analyzed directly by ECD-FTMS, theoretically 

allowing the entire sequence available for examination and giving a more complete 

characterization of the protein and the associated post-translational modifications.  

After the spectrum is constructed, some algorithms can be applied to identify the 

modification. The only previous work is by Pesavento et al. and they suggested 

identifying modifications using database-searching approach [36]. They first 

construct a protein database that contains the intact proteins with different 

combinations of modifications. However, there are exponential possible combinations 

of modifications. To reduce the database size, the included modifications need to 

satisfy some prior biology knowledge. Then, the database is searched to identify a 

modified protein that best matches the spectrum. 
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The limitation of the database-searching algorithm is that it is based on the prior 

knowledge of PTMs sites. If modifications occur at some unknown sites, their 

method may not work.  

Thus we propose a new way to solve the problem. the contributions of our algorithm 

are as follows: 

1. In the database searching method, first all possible modified protein forms are 

listed in the database. When the protein size and the number of possible 

modifications increase, the number of possible modified protein forms grows 

exponentially. By dynamic programming, our method can localize the 

modification sites and determine the modification types in polynomial time. 

2. The modification can be identified without any prior knowledge about PTMs 

sites. In database searching method putative modification sites are needed 

based on prior knowledge. Thus by using our method novel modification sites 

can be discovered. 

The rest of this chapter is organized as follows: Section2 details the PTMs problem. 

Section3 gives a dynamic programming algorithm to solve the problem. Lastly, 

Section4 shows the experimental results. 

2.2 Problem Definition  

Let mH be the possible post-translational modified protein form of certain protein H 

and M  be the spectrum got by the fragmentation of the sample of modified H. We 

use all the fragment masses of mH  to match the peaks in M. Intuitively, the more 
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high intensity peaks are matched the more likely mH  is the correct post-translational 

modified protein for H that generates spectrum M. In this section we will give a clear 

picture of this problem.  

2.2.1 The Ion Mass Calculation 

Amino acids consist of 20 different types. We use Α to denote the alphabet of the 20 

amino acids. For any amino acid ∈a Α, wt(a) is denoted to be its monoisotopic mass. 

The maximum and the minimum masses among all amino acid types are 186.08 

Dalton and 57.02 Dalton respectively. 

Suppose there are t possible types of modifications for a certain protein. Including the 

non-modification case, there are t+1 types of modifications in total. We use ∑  to 

denote the alphabet of the t+1 types of modifications. For any ,   is 

denoted as the mass of this modification. The maximum modification mass is  

Dalton and the minimum modification mass is 0. 

∑∈m )(mwt

maxm

In total, the maximum and the minimum masses of a modified amino acid are 

186.08+ Dalton and 57.02 Dalton, respectively.  maxm

In the experiment, every fragment cleaved from mH  can have different charged 

states and generate a few different peaks in the spectrum. Fortunately, each isotopic 

cluster in the FTMS can be assigned a charge (e) based on the one Dalton inter-peak 

spacing (1/e) [17]. We can preprocess the FTMS spectrum and convert all peaks of 

different charged states into single charged equivalents. Furthermore, every isotopic 

cluster is represented by a peak at the monoisotopic mass. Its intensity is the sum of 

the intensities of all peaks in the corresponding isotopic clusters. Therefore, from now 
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on, every ion is assumed to be single charged and its peak is at its monoisotopic mass. 

In other word, a spectrum can be represented by ( ){ }numiyxM ii ≤≤= 1|, where 

num is the total number of peaks in M. Below, we describe the calculation of mass for 

every fragment ion of a protein. 

Consider a protein sequence H = . We denote  

Because of the extra H

naaaa K321 ∑ ≤≤
=

ni iawtHwt
1

)()( .

2O, the actual mass of H  is +18.01. )(Hwt

As shown in Figure 1.2, ECD fragments the protein H  into five different types of 

ions. The ions can be classified into two groups: the N-terminal group and the C-

terminal group. The N-terminal group contains a-ion, b-ion and c-ion while the C-

terminal group contains y-ion and z-ion. 

Consider the ith prefix of H , which is . Let iaaaa K321 x  be . Then, 

the corresponding masses of the a-ion, b-ion and c-ion in the N-terminal group are 

)( 321 iaaaawt K

x -

26.99, x , and x +17.03 respectively. We denote ( )xN  as: 

( )xN  = { x - 26.99, x , x  + 17.03} 

Similarly, for the ith suffix of niii aaaa K21 ++ H , let )( 21 niii aaaawtx K++=  be its 

mass. The corresponding masses of the y-ion and z-ion in the C-terminal group 

are x +18.01 and x + 1.99 respectively. We denote ( )xC  as: 

( )xC  = { x +18.01, x +1.99} 

Based on the above equations, ideally, the spectrum of the protein H should have a 

list of peaks whose masses are belonging to 
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( )HL  = ( ) ( )( )U KK
11 2121 )()(
−≤≤ ++∪

ni niii aaawtCaaawtN                    (2.1) 

Now, H  is modified and let be the resultant modified protein 

where each  is the residue formed after  is modified by . Note that 

. Then,  can be defined similarly and the actual 

mass of 

n
m aaaH ''' 21 K=

ia' ia im

)()()'( iii mwtawtawt += )( mHwt

mH  equals +18.01. In addition, in the ideal case, the spectrum of 

the protein 

)( mHwt

mH should have a list of peaks whose masses are belonging to ( )mHL . 

Given a modified protein mH , after fragmentation, let ( ){ }numiyxM ii ≤≤= 1|, be 

the experimental corresponding FTMS spectrum of mH  with num peaks where, for 

the ith peak ,  is its mass (position) and is its intensity (height) in the 

spectrum.  

),( ii yx ix iy

Ideally, we expect M contains a list of peaks whose masses belong to ( )mHL . Since 

the experimental data is not accurate, the positions of the peaks may be shifted by a 

little bit. Let δ >0 be the error of the spectrometer. Due to the high accuracy of 

FTMS, we assume δ <0.5 in this chapter. For any peak ( )yx,  of M and ( )mHLw∈ , 

if δ≤− xw , we say that the peak ( )yx,  is explained by w. Denote ( )mHL  to be the 

set of all possible peaks in M that can be explained by some w in ( )mHL , that is: 

( ) ( ) ( ){ }.|, δ≤−∈∈= i
m

ii
m xwthatsuchHLwisthereMyxHL             (2.2) 
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2.2.2 Modification Identification Problem 

mW  is the tested mass of the modified protein and the unmodified protein mass W 

can be calculated since we know the protein sequence. Based on the information we 

will try to determine the types and locations of modifications whose masses are 

summed up to - W.  mW

It is obviously that the more and higher peaks in M are explained by ( )mHL , the 

higher  chance that M is the spectrum generated by mH . In another word, the more 

and higher peaks in ( )mHL , the more likely mH  is the expected modified protein for 

H. Here, we use a simple function to evaluate the matching, that is, for any L  as a list 

of matched peaks: 

( ) ∑
∈

=
Lyx

i

ii

yLG
),(

                                                     (2.3) 

Note that the bigger the value )(LG , the more likely that mH  is the correct modified 

protein for H.  

The problem is summarized as follows: 

Consider a protein sequence H = , The mass of H is W = wt(H) + 18.01. 

Let  be the mass after H is modified and 

naaaa K321

mW δ  is the error bound of the mass 

spectrometer. We would like to compute the modified peptide  n
m aaaH ''' 21 K=
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such that (1) every  is the residue formed after  is modified by some ,  (2) 

 and (3) 

ia' ia im

δ≤−+ |01.18)(| mm WHwt ( )⎟
⎠
⎞⎜

⎝
⎛ mHLG  is maximized.  

For example, consider histone H4, its unmodified mass W is 11229.34 Dalton. 

Moreover, after modification, experiment shows that its mass  is 11243.36 Dalton. 

Hence, by calculation, the total modification mass ( - W)=14.02 Dalton. Then the 

modified histone samples are fragmented by ECD and produce the FTMS spectrum. 

Given the FTMS spectrum, the algorithm described below found that the fifth amino 

acid (which is

mW

mW

K ) of H4 is methylated (the mass of methylation is 14.016 Dalton), 

which matches the ECD/FTMS best. Our founding matches with the known biology. 

2.3 Algorithm 

2.3.1 Dynamic Algorithm 

The purpose of our algorithm is to choose the best combination of modifications for 

the protein so that the number and the intensity of matched peaks of this modified 

protein are maximized. The difficulty is that we do not know the corresponding ion 

types of the peaks in the experimental spectrum and one peak could be matched by 

more than one fragment ions generated from the protein. We need to identify whether 

the peak has already been matched or not.  
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… … 

Fig 2.1 Complementary Pair 

Fortunately, the overlapping occurs only between the N-terminal ions of one prefix 

and the C-terminal ions of another suffix. All the N-terminal ion sets of prefixes do 

not overlap (the distance between two N-terminal ion sets is larger or equal to 57.02-

44.02). All the C-terminal ion sets of suffixes also do not overlap (the distance 

between two C-terminal ion sets is larger or equal to 57.02-16.02). Figure 2.1 shows 

the distribution of all the ions in a spectrum. The figure shows that the overlapping 

could occur between  and( )ksC ( )1+ipN  or between ( )knpN −  and .  Thus we 

can solve the overlapping problem by calculating the complement pairs from the 

outside to the middle gradually. That is to construct optimal prefixes and suffixes step 

by step together[29].  

( 1−−insC )

Let ( )xN  and ( )xC  denote the peaks matched by sets ( )xN and  in the 

spectrum. Besides we define  

( )xC

( ) ( ) ( ) ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛ −−∪⎟

⎠
⎞⎜

⎝
⎛ −−∪= yWNyCxWCxNGyxscore mm 01.18\01.18,      (2.4) 

… ……… 

( )1pN … ...C( )ipN ( )ks ( )1+ipN              ( )1−−insC ( )knpN − …C …C  ( )ins − ( )1−ns

…

)...( 21 jj aaawtp =  )...( 21 njnjnj aaawts +−+−= . 
)( jpN  andC  is a complementary pair  )( jns −
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( yxscore , )  is a simplified scoring function which sums up the intensities of all the 

peaks matched by the complement ion pairs of an x Dalton prefix excluding the peaks 

which are matched by another y Dalton suffix.  

Now let P be one prefix sequence and S be one suffix sequence in a modified protein. 

And max08.186|)(01.18)(| mPwtSwt +≤−+ . ( )SPL ,  denote the list of peaks which 

can be matched by ions corresponding to any prefix sequences of P (including P) and 

any suffix sequences of S(including S), 

When :  01.18)()( +< SwtPwt

( )( ) ( )( ) ( ) ( )( SwtPawtscoreSPLGSPaLG ,',,' += )                           (2.5) 

When  :01.18)()( +≥ SwtPwt

( )( ) ( )( ) ( ) ( )( )PwtWSawtWscoreSPLGSaPLG mm −−−−+= 01.18,'01.18,',     (2.6) 

Detail Algorithm: 

Based on the pervious part, it is obvious that by construction the modified sequence 

from both prefix and suffix we can solve the overlapping problem. In the following 

part we will describe the algorithm in detail. 

The protein sequence tested is  and . is the 

scoring function. As defined before,  

lenaaaa L321 DWW m =− ),( yxscore

∑  is the set of all the possible masses of 

modification types include 0 and Α is the set of the different masses of the 20 types of 

amino acids. 
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Let  be the total score for the first i amino acids and the last  j amino 

acids given that the total modification mass of the first i and last j amino acids equal 

to  and respectively. (

[ 21 ,,, qjqiT ]

1q 2q 1,0 −≤≤ lenji  and Dqq ≤≤ 21,0 ) 

[ 21 ,,, qjqiT ]  where max21 08.186 mqsqp ji +≤−−+  satisfies the following 

equations. 

Basis: 

[ ] 00,0,0,0 =T  

Recurrence:  

For 11 20,0,10,0 qDqqilenji −≤≤≥−−≤≤> we have the following recursive 

function: 

[ ]

[ ] ( )

[ ] ( )
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎪
⎪
⎩

⎪
⎪
⎨

⎧

+−+≥+
+++−−

++<−+
+++−−

∑∈=

−

−

01.18)(
,)(,1,,
01.18)(

,,),(,1

maxmax,,,

211

1221
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where  vWv m −= ; ; )...( 21 ii aaawtp = 01.18)...( 21 += +−+− njnjnj aaawts . The 

Pseudo Code is show in Figure 2.2. 
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Input: Total tested modification mass ; 
           A peak list of the spectrum; 
           Modification list ; 
           Sequence of the tested protein; 
           Mass of unmodified protein W by calculation; 
           Calibration of the spectrum

WWD m −=

∑

∆ ; 
           Error bound δ of the spectrum; 

Output: the maximum scored modification allocations of modification masses D’ 
such that δ≤−DD' . 

1. Initialize all [ ] −∞=lkjiT ,,, ; Let [ ] 00,0,0,0 =T  
2. for i from 0 to len-1 step 1 do 
3.     for j from 0 to D  step ∆  do 
4.         for k from 0 to len-i-1 step 1 do 
5.            for l from 0 to D – j  if max08.186 mlsjp ki +≤−−+  step   do ∆

6.               if lsjp ki +<+                                                                        
                           for ∑∈m such that Dljmwt ≤++)(   
7.                         

                                    [ ] [ ] (⎩
⎨
⎧

++++
++

=++
+ lsjmwtpscorelkjiT

lkjmwtiT
lkjmwtiT

ki ,)(,,,
],,)(,1[

max,,)(,1
1 )

                                 
8.              else    for ∑∈m such that Dljmwt ≤++)(   
9.               

[ ] [ ] ( )⎩
⎨
⎧

++++
++

=++
+ jpmwtlsscorelkjiT

mwtlkjiT
mwtlkjiT

ik ,)(,,,
)](,1,,[

max)(,1,,
1

  

                              
10. Compute the best  for all i, j, k, l and the [ lkjiT ,,, ] ∑∈m  satisfying 

1−−= kleni  and δ≤−++ Dmwtlj )(   
11.  Use backtracking to construct the best modification allocation 

 
Figure 2.2 PTMs Algorithm 

The algorithm can compute the optimal solution of the protein modification problem 

in ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆
×⎟

⎠
⎞

⎜
⎝
⎛×

×+
×

δ
δ

2
max )

02.57
2)08.186(

,min( Dm
lenlenO  time. 
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Proof. For any i,j,k,l such that [ ]lkjiT ,,, >0 and it is an optimal value, there is a 

prefix-suffix pair (  such that )SP, ( )Pwtjpi =+  and ( ) 01.18+=+ Swtlsk . Without 

loss of generality, assume that P’a = P and wt(P’) < wt(S)+18.01. Based on the 

above algorithm, there is some u such that [ ]lkuiT ,,,1−  corresponds to the 

pair . Line 8 shows that ( SP ,' ) [ ]lkuiT ,,,1−  must also be an optimal value if 

 is an optimal one. Thus [ lkjiT ,,, ] [ ]lkjiT ,,,  can be calculated from . 

The best modification allocation then can be got straightforwardly. 

[ ]lkuiT ,,,1−

Line 5 shows that only when max08.186 mlsjp ki +≤−−+ , the following part will 

be executed. Thus for the fixed i, j and l, there are at most 

02.57
2)08.186( max ×+ m

possible values for k. Thus there are 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛×

×+
×

2
max )

02.57
2)08.186(

,min(
δ
Dm

lenlenO  elements in T need to be considered. 

Since there are at most ⎟
⎠
⎞

⎜
⎝
⎛
∆
δO  peaks in the spectrum can be explained by one mass 

value. The time complexity of  is),( yxscore ⎟
⎠
⎞

⎜
⎝
⎛
∆
δO . Thus the time complexity of the 

algorithm is ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∆
×⎟

⎠
⎞

⎜
⎝
⎛×

×+
×

δ
δ

2
max )

02.57
2)08.186(

,min( Dm
lenlenO . 

In practice, there are still something can be done to improve the above algorithm. The 

following sections will introduce the several tips to accelerate the algorithm. 
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2.3.2 Change of Backtracking Algorithm 

As mentioned before, ECD normally breaks about 50% of the amino acid bonds of a 

protein, which means that there are still a lot of bonds not fragmented. However, 

cleaving the protein backbone between each modification site is critical to achieve 

complete modification identification and allocation[43]. If a lot of PTM sites are not 

broken from ECD, we cannot uniquely identify the locations of the PTM sites and 

many possible solutions can be generated. For example, consider a protein 

 and assume  is modified. Suppose ECD does not 

cleave at any site between  and . Since we have no knowledge on the amino 

acids between  and , a normal backtracking routine will report (k-i+1) possible 

solutions where the modification occurs at amino acid  for i≤x≤k. When there are 

more amino acids and more modifications occurring between  and , the possible 

cases will grow exponentially and it is inefficient to backtrack all possible solutions.  

nkji aaaaaaaH LLLL321= ja

ia ka

ia ka

xa

ia ka

To solve this problem we change the backtracking algorithm. Instead of tracing all 

the solutions, we just report that the modification occurs in a certain range. Using the 

above example, the modified backtracking algorithm will just output that there is a 

modification between  and . This is realized as follows: ia ka

Consider naaaH L21= and a spectrum M of the modified H. Let 

and )...( 21 ii aaawtp = 01.18)...( 21 += +−+− njnjnj aaawts . Let 

))01.18()((),( qpWCqpNLqiL i
m

i
p −−−∪+= and ))01.18()((),( −+∪−−= qsCqsWNLqjL jj

mS   

To help the modified backtracking, when we fill in the table T, we need to maintain 

the parent pointers using the following two steps. 
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1.  If  < ,  we set 1qpi + 2qs j +

[ ] [ ]
⎪⎩

⎪
⎨
⎧

=

≠=++
φ

φ

),(]',,,[

),(,,,',),(,1
121

121
21

qiLparentsqjqiT

qiLqjqiTparentsqjmwtqiT
p

p

 

2.  If  , we set 1qpi + ≥ 2qs j +

[ ] [ ]
⎪⎩

⎪
⎨
⎧

=

≠=++
φ

φ

),(]',,,[

),(,,,')(,1,,
221

221
21

qjLparentsqkqiT

qjLqjqiTparentsmwtqjqiT
S

S

 

The above parent pointers ensure that we only trace back to [ ]21 ,,, qjqiT  entry where 

the mass  or  can be explained by some peaks in the spectrum. Our 

modified backtracking algorithm will trace back based on these parent pointers. Thus, 

we can avoid generating many solutions through backtracking and improve the 

efficiency. 

1qpi + 2qs j +

2.3.3 Change the Modification Mass Storing Method in the Table Element  

In the above algorithm, we only constraint that Dqq ≤+≤ 210  in . 

However, in most cases, only several modification mass values in the range from 0 to 

D are feasible. So, it is waste of space and time to construct and fill a table 

 for all  such that 

[ ]21 ,,, qjqiT

[ ]21 ,,, qjqiT 21 , qq Dqq ≤+≤ 210 . 

Thus we change the way to store modification mass values such that  and  only 

represent the meaningful value. We do this through the following steps: 

1q 2q

1. Construct a mass array E such that, for any mass m, E[m] = 1 if m is equal to 

the sum of some modification masses; otherwise E[m] = 0. The E array can be 

constructed in ⎟
⎠
⎞

⎜
⎝
⎛
∆
DO  time. 
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2. Among all possible masses Dm ≤≤0 , let m1, m2, …, mn be masses such that 

E[mi]=1 and E[D-mi]=1. Let F be an array such that F[1]=m1, F[2]=m2, …, 

F[n]=mn. 

3. Now we can construct table [ ]21 ,,, qjqiT  with 1,0 21 −≤≤ nqq  and the 

modification masses can be got from  and . ][ 1qF ][ 2qF

For example, in histone, the possible modifications are methylation, phophorylation, 

ADP ribosylation, biotinylation and ubiquitination. So, the set of possible 

modification masses is {14.02, 42.01, 79.96, 541.06, 226.08, 8560.62}. If the total 

modification mass is 93.98 Dalton, we conclude that the only possible modification 

combination is methylation+phophorylation, which means that the possible values for 

 and  are either  93.98, 79.96, 14.02 or 0. If we use the original storing method, 

the table will have all the elements with  and  from 0 to 93.98. By using the new 

way to store modification masses, we have 

1q 2q

1q 2q

{ }98.93,96.79,02.14,0=F  and 4=n . 

Thus we can construct table [ ]21 ,,, qjqiT  with 3,0 21 ≤≤ qq . 

2.3.4 Scoring Function 

The scoring function we used is similar to which was stated in Bin Ma’s paper[26]. 

The difference is that in FTMS the most frequently appearing types of ions are c-ion 

and z-ion. Other types of ions are a, b and y.  

The main idea of the scoring function is that the more and higher peaks the ions of the 

sequence matches in the spectrum the higher score it will get. We choose c-ion and z-

ion as the main ions and other types of ions as the supporting ions.  

N-terminal ions: c, a and b, the main ion is c 
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                       ( ) ( ) ( ) ( )( )( ) hwwhhrhhruscon log/'exp// 2
21 ×−−××= δ                   (2.7) 

C-terminal ions: z and y, the main ion is z 

                               ( ) ( ) ( )( )( ) hwwhhruscoc log/'exp/ 2
1 ×−−×= δ                           (2.8) 

In the above formulas w is the theoretical mass of the main ion and w’ is the mass of 

the observed peak explained by w. In formula (2.7), u is a mass of prefix, w is the 

theoretical mass of u’s corresponding c-ion and w’ is the mass of the observed peak. 

While in formula (2.8) u is a mass of suffix, w and w’ are the theoretical mass and the 

observed mass of u’s corresponding z-ion respectively.  

In the formulas, h is the relative intensity of the peak corresponding to the main ion 

and   are the relative intensities of the peaks corresponding to the supporting 

ions. In formula (2.7), h is the relative intensity of c-ion and   are the relative 

intensities of a-ion and b-ion respectively. In formula (2.8), h is the relative intensity 

of z-ion and  is the relative intensity of the peak corresponding to y-ion. In the case 

when the main ion of the formula can not match any peak in the spectrum, we will 

give the formula a constant negative score. 

1h 2h

1h 2h

1h

In both formulas,  is a function whose value is always larger than one. It reflects 

the relationship between the main ions and supporting ions. When the ratio is in the 

reasonable range, the value of this function is big. On the other hand, when the ratio 

is too large or too small, the value of this function is small.  

( )xr

In total, we get the scoring function as follows: 
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( ) ( )xWscocxsconvxscore −+=),(                                    (2.9) 

Where x is a mass of prefix while v is a mass of suffix.  only considers the 

peaks which are matched by x’s corresponding ions but can not be explained by any 

corresponding ions of  v. This insures that the peaks in the spectrum will only be used 

once.  

),( vxscore

2.4 Experiment Result 

We use histones to test our algorithm. There are six types of modifications which can 

affect the amino acids in the histone sequences. They are methylation(14.02 Dalton), 

acetylation(42.01 Dalton), phophorylation(79.96 Dalton), ADP ribosylation(541.06 

Dalton), biotinylation(226.08 Dalton) and ubiquitination(8560.62 Dalton). Among 

them, methylation has three status, mino-, di-, or trimethylation.  Thus including zero 

there are 9 elements in .  ∑

To compare with the database searching method [36], we first construct an artificial 

data set which is similar to the experimental data stated in[36] to test our program. 

The tested histone is H4 with 112 Dalton above its unmodified mass and the known 

modification locations are positions 1, 16, and 20. Below figure graphically shows the 

modifications. 
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Figure 2.3 A Modified Histone H4. The numbers above the sequence show the 
positions of the modified amino acids in the histone and the modification type is 
remarked below the sequence. 

In [36], the authors did an ECD/FTMS experiment on H4 and they reported all 

matched peaks in their webpage. We generate an artificial ECD/FTMS spectrum by 

randomly introducing 100% noise peaks into the spectrum. By the algorithm, we 

discover there is  an acetylation at N-terminal, an acetylation at position 16 and two 

methylations (or one di-methylation) at positions 20-21. The uncertainty at positions 

20-21 is because of the loss of important peaks resulted from the modification site. 

Below figure visualizes the modifications. 

 

Figure 2.4 The PTMs Result Got by Our Algorithm 

                                                                
N--S G R G K G G K G L G K G G A K R H R K V L R D N I Q G I T K P A I R …

16
20,21

N-terminal 

Acetylation Acetylation Dimethylation 

                                                                
N--S G R G K G G K G L G K G G A K R H R K V L R D N I Q G I T K P A I R …

16 20N-terminal 

Acetylation Acetylation Dimethylation 
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To test the robustness of the algorithm, we gradually delete some matched peaks from 

the original spectrum. Table 2.1 shows the results. 

Deleted site i Modification allocation 
# of 

solutions  
# of solutions 

(original 
backtracking) 

19 N-terminal(Ac), 16(Ac), 19-21(2Me) 1 6 

19 to 18 N-terminal(Ac), 16(Ac), 18-21(2Me) 1 10 

19 to 17 N-terminal(Ac), 16(Ac), 17-21(2Me) 1 15 

19 to 16 N-terminal(Ac), 16-21(2Me+1Ac) 1 90 

19 to 15 N-terminal(Ac), 15-21(2Me+1Ac) 1 147 

Table 2.1. This table shows the modification allocation when we delete the peaks 
generated by the cleavage after ith amino acid from the spectrum. The 2nd last column 
shows the number of solutions reported by our algorithm. The final column shows the 
number of solutions reported if we use the original backtracking method. 

Table 2.1 shows that the algorithm can discover the modifications even when more 

important peaks are deleted. More importantly, our algorithm only report one solution. 

If we use the original backtracking method, many solutions are reported. Note that the 

number of solutions increases exponentially when more and more correct peaks are 

deleted. 

We should note that our algorithm does not require any prior knowledge of the 

modification site. If such knowledge is available, a better solution can be obtained. 

For example, in Figure 2.4, if we have the prior knowledge that V  could not be 

modified by methylation, we can conclude that the position 19 is not modified while 

position 20 is modified by a dimethylation. 

Besides, we got a real spectrum for histone H2A to test our algorithm. Based on the 

literature, the only known modification for H2A is acetylation and it occurs at the N-
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terminal. By running our program on the real spectrum, we report that there is an 

acetylation before the 6th amino acid. The following figure visualizes the result. 

 

Figure 2.5 The Modification Allocation of H2A 

We have investigated why the algorithm fails to find the exact location of the 

modification. After checking the spectrum, we found that the spectrum has no peak 

generated by the cleavage of the first five amino acids of H2A. 

However, there are several limitations of our method. First, the algorithm needs to 

know the set of modification types. We would like to explore if it is possible to detect 

PTM sites without knowing the modification types in advance. Second, the algorithm 

did not explore the intensity pattern of the FTMS such as the intensity relationship 

between different ions. We would like to utilize those intensity patterns to give a 

better scoring function to improve the performance of the algorithm. Finally, we hope 

to do further experiments to test the performance of our algorithm. 

 

 

 

                                                                

N-terminal, 
1-5

N--S G R G K Q G G K A R A K A K T R S S R A G L Q F P V G R … 

Acetylation 
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Chapter 3 

A DECISION - TREE PROBABILITY MODEL FOR DE 

NOVO PEPTIDE SEQUENCING 

3.1 Related work 

There are two classes of algorithms nowadays for solving the peptide sequencing 

problem. The first class is database searching method[1, 10, 35]. This approach is 

very popular and it can successfully identify some already-known proteins. The core 

of this approach contains three modules: (a) Interpret the tandem mass spectrum; (b) 

By using the interpreted spectrum and a protein database, some candidate peptides are 

identified; (c) Rank the candidate-peptides by a score function and output those high 

ranked peptides. Widely used algorithms such as Sequest[10] and Mascot[35] apply 

this approach. Although database search is a powerful tool for peptide identification, 

there are still some problems. A protein database is indispensable in this method and 

the peptides found by this method must already exist in the database. However, due to 

alternatively spliced genes, many peptides may not exist in the database [25]. Besides, 

because of the dynamic nature of peptides, database searching method may fail due to 

mutation and modification in the peptides.  

Because of the disadvantages of database searching method, a lot of researches have 

been focused on another class of algorithms, de novo peptide sequencing methods[2, 

4, 6, 13, 26-29, 32, 47]. De novo peptide sequencing problem is to derive the peptide 

sequence directly from the mass spectrum. Most popular algorithms use a spectrum 
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graph[4, 6, 26, 27] to solve the problem. A spectrum graph is formed by transforming 

the peaks in the tandem mass spectrum into an acyclic graph. Each peak in the 

spectrum is transformed to several vertices in the graph by assuming the peak is of 

different types of ions. Each edge in the graph links two vertices which are different 

by the mass of an amino acid. The de novo peptide sequencing problem is equivalent  

to finding the longest path in the spectrum graph. However, since every peak can be 

interpreted into several vertices, when a peak has a high intensity, there is a tendency 

that the longest path will include more than one vertex corresponding to the same 

peak. Although forbidding the simultaneous occurrences of pairs of nodes 

corresponding to the same peak can avoid the problem, when there are really different 

nodes corresponding to the same peak, this method will fail. Thus another algorithm 

Peaks[28, 29] is proposed which performs de novo peptide sequencing without using 

the spectrum graph. Peaks uses a dynamic programming to pick out the highest 

scored peptide from all possible peptides whose masses are equal or close to the 

experimental mass value. Basically, the algorithm gradually constructs optimal pairs 

of prefixes and suffixes in a carefully designated way, until the prefix and the suffix 

becomes long enough to form the optimal solution. 

For both de novo sequencing algorithms and database searching algorithms, the 

scoring function is critical to determine the accuracy of the methods. In general, there 

are two popular scoring functions. The first one is to correlate the experimental 

spectrum with the theoretical spectrum produced by candidate peptide[10]. 

Algorithms such as Sequest use this kind of scoring function. Another kind of scoring 

function uses probability value to evaluate the peaks in the experimental spectrum[1, 

6, 9, 15, 18]. Banfa and Edwards proposed a probabilistic model for database 
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searching method which considers the factors such as fragment ion probabilities and 

instrument measurement errors. Danick et al. designed a probability based scoring 

function for the de novo peptide sequencing algorithm, Sherenga[6]. However this 

scoring function does not fully exploit the factors that influence the intensities of the 

peaks in the spectrum. Since intensities are reproducible, some researches have 

focused on studying the chemical and physical properties of the peptides that will 

influence the intensity. Elias et al. used a probabilistic decision tree to model the 

probability of observing certain intensity for a given peak with certain particular 

chemical and physical properties. Then, they applied their intensity-based scoring 

function in database searching. Frank and Pevzner[15] proposed a scoring function 

using a probabilistic network which reflects the chemical and physical rules in 

peptide fragmentation. Then, they applied the score function in de novo peptide 

sequencing. 

In this thesis we proposes another way to use the probabilistic decision tree to model 

the peak’s intensity based on the chemical and physical properties of the fragment 

ions. Using our probabilistic decision tree model, we give an algorithm DTSeq that 

accurately solves the de novo peptide sequencing problem. Experimental results show 

that DTSeq has high accuracy. The rest of this chapter is organized as follows: 

Section 2 introduces some terminologies; Section 3 gives the scoring function and 

algorithm and Section 4 presents the experiment results.  

 

 30



3.2 Preliminary 

In this section, we will describe some basic terminologies and concepts. 

3.2.1 Amino acid property  

Amino acids are small biomolecules which are the principal building blocks of 

proteins. There are 20 common amino acids and we use Α to denote the alphabet of 

the 20 amino acids. In this chapter, each amino acid residue is characterized by four 

attributes: mass, gas-phase basicity, hydrophobicityIII  and helicityIV. (Table 3.1) The 

monoisotopic mass of each amino acid ∈a Α is denoted as wt(a). Note that 57.02 

Dalton ≤ wt(a) ≤ 186.08 Dalton. The gas-phase basicity[19] of an amino acid a is 

denoted as gb(a). It measures the tendency of a molecule to accept a proton in the 

reaction. Thus it is highly related to the proton affinity, which partially determines the 

site of proton attachment. A lot of evidence shows that the site of proton attachment 

influences the fragmentation reactions. Note that 202.7 ≤ gb(a) ≤ 237.0. 

Hydrophobicityand and helicity[7] of an amino acid a are denoted as hyd(a) and 

hlx(a), respectively. Hydrophobicity is an important factor to determine the protein 

stability while helicity is found to influence the folding of the nascent polypeptide 

chain. We have  –5.00 ≤ hyd(a) ≤ 5.00 and 0.57 ≤ hlx(a) ≤ 1.29. 

 

 

  

                                                 
III Scaled from high-pressure liquid chromatography (HPLC) retention times 
IV Scaled from circular dichroism measurements of peptides in n-butanol 
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Amino 
Acid Mass Basicity Hydrophobicity Helicity 

A 71.0 206.4 0.16 1.24 
C 103.0 206.2 2.50 0.79 
D 115.0 208.6         -2.49 0.89 
E 129.0 215.6         -1.50 0.85 
F 147.1 212.1 5.00 1.26 
G 57.0 202.7         -3.31 1.15 
H 137.1 223.7         -4.63 0.97 
I 113.1 210.8 4.41 1.29 
K 128.1 221.8         -5.00 0.88 
L 113.1 209.6 4.76 1.28 
M 131.0 213.3 3.23 1.22 
N 114.0 212.8         -3.79 0.94 
P 97.1 214.4         -4.92 0.57 
Q 128.1 214.2         -2.76 0.96 
R 156.1 237.0         -2.77 0.95 
S 87.0 207.6         -2.85 1.00 
T 101.0 211.7         -1.08 1.09 
V 99.1 208.7 3.02 1.27 
W 186.1 216.1 4.88 1.07 
Y 163.1 213.1 2.00 1.11 

Table 3.1 Amino Acid Properties 

3.2.2 Fragment Ions 

Consider a peptide sequence constructed by n amino acids P = . We 

denote . Because of the extra H

naaaa K321

∑ ≤≤
=

ni iawtPwt
1

)()( 2O, the actual mass of P is 

+18 and we denote it as Ma(P). In the mass spectrometry experiment, the 

original whole peptide is charged by some H

)(Pwt

+ ions which is called the precursor ion. 

In this chapter we only consider the doubly charged peptide. Thus the peptide 

precursor mass is Ma(P)+2. 

As mentioned in Chapter 1, peptides are then fragmented into pieces during the 

Collision Induced Dissociation (CID) process. For instance, suppose a peptide 

 is fragmented into two parts by the cleavage between  and nii aaaaaP LL 121 += ia
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1+ia . Then,  is called the N-terminal amino acid to the cleavage site while  is 

called the C-terminal amino acid to the cleavage site. The fragments are charged and 

only charged pieces can be detected by mass spectrometer. The charged fragments are 

called fragment ions. After  a single cleavage along the peptide backbone, there are 

six possible types of fragment ions (Figure 1.3). Among them, the b-ion and y-ion are 

the most frequently appeared ions in the spectrum. Besides, by some neutral losses of 

chemical group such as  and , 

ia 1+ia

OH 2 3NH OHb 2− , 3NHb − , and 

are produced. These types of ions are much less observed than the b-ion and 

y-ion.   

OHy 2−

3NHy −

Based on the discussion above, the ions can be classified into two groups: the N-

terminal group and the C-terminal group. The N-terminal group contains b-ion, a-ion, 

c-ion,  and  while the C-terminal group contains y-ion, x-ion, z-ion, 

 and . Consider an amino acid sequence 

OHb 2− 3NHb −

OHy 2− 3NHy − kaaaH L21= , we define 

1)()( += HwtHB  while 19)()( += HwtHY , be the masses of H when H are  b-ion 

and a y-ion, respectively. 

3.2.3 Spectrum of a peptide 

The LC/MS/MS spectrum of a peptide consists of many peaks. Each peak is 

generated by a large amount of copies of some fragment ion of the peptide. As we 

have mentioned, the mass position of the peak in the spectrum represents the mass 

over charge ratio of the corresponding fragment ion, while the height of the peak 

indicates the intensity of the fragment ion.  
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However, mass spectrum usually contains many other peaks which are not produced 

by any fragment ions of the peptide. They could be the results of chemical 

contaminants and machine error. All these peaks are treated as noise. Besides, in our 

experiment, we only consider b-ion and y-ion in the spectrum since they are the most 

abundant ions. Because the limitation of our model, peaks corresponding to other 

types of ions are also treated as noise. The appearance of noise peaks adds difficulty 

to the de novo sequencing problem, since they may be considered as real peaks 

produced by false fragment ions. 

Given a peptide P, after fragmentation, let }1|),{( numiyxS ii ≤≤= be the 

corresponding spectrum which shows the fragmentations results of P. num is the 

number of peaks in the spectrum,  is the position (i.e. the mass over charge ratio) of 

the ith peak in the spectrum and  is the intensity value of the ith peak. Since the 

experimental data is not accurate, the positions of the peaks may be shifted by a little 

bit. We denote 

ix

iy

0>δ  be the measurement error of the experiments, which is assumed 

to be 0.5 in this chapter. To simply the discussion, when we say that there exists a 

peak in S at position w, we refers it to be the peak (xii, yii) where 

}||,),(|{argmax δ≤−∈= iiiii xwSyxyii . 

3.2.4 Factors which affect the abundance of a peak 

The intensity of a fragment ion depends on many factors during the low-energy 

collision induced dissociation process. To develop a robust intensity-based scoring 

method, it is important to understand the factors influencing the gas-phase 

fragmentation of peptides. 
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It is known that, in general, the peak of a y-ion has higher intensity than that of a b-

ion [20, 44]. Although y ions are only slightly more often appearing in the spectrum 

than b ions, their peaks are usually much more intense. Moreover, there are other 

factors. First, an abundant y-ion usually has an abundant complementary b-ion. 

Second, fragmentation near the N termini or C termini of the peptide causes low 

intensity peaks while fragmentation in the middle of the peptide causes much higher 

intensity peaks[44]. Tabb et al. have shown that the peaks of y-ion and b-ion are most 

intense around ~60% and ~45% of the precursor mass, respectively. Third, the 

intensity of a fragment ion is also influenced by its mass since the mass spectrum has 

certain observed scan range. Fourth, it is widely known that the intensity of a 

fragment ion depends on the type of the amino acids. For example, the fragmentation 

at the N-terminal side of proline produces low intensity peaks while the 

fragmentation at the C-terminal side of proline produces high intensity peaks[3]. 

Besides, based on the ‘mobile protone’ hypothesisV[41, 45], some other information 

such as peptide length, precursor charge state and the presence of basic residues also 

influence the fragment intensity[21, 41].  

3.2.5 Normalization and discretization 

The intensity of every peak in a spectrum may change due to different experimental 

environment. It is necessary to normalize the intensities of the peaks before we use it. 

In our case, we transform the intensities of the peaks into 4 discrete levels as follows. 

First, for every spectrum, we transformed the raw intensity ( ) of each peak into 

normalized intensity ( ) by the following formula. 

rI

nI

                                                 
V ‘mobile protone’ hypothesis:  the cleavage in a peptide is generally thought to be initiated by 
migration of the charge from the initial site of protonation to an amide carbonyl oxygen along the 
peptide backbone. 
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i

r
n I

I
I =                                                           (3.1) 

where   is the average intensity of the one third of peaks in the spectrum which 

have the lowest intensities. Then, we discretize the normalized intensities of the peaks 

into 4 levels. The peaks with < 1 are included in Level 0. These peaks are treated as 

unobserved. For the remaining peaks, each of them is assigned to Level 1, 2, and 3, 

respectively, if , 

iI

nI

61 <≤ nI 166 <≤ nI  and .  16≥nI

Based on such normalization and discretization, for peaks corresponding to b-ion 

fragment or y-ion fragments, 15.5% of them are assigned to Level 1, 25.1% of them 

are assigned to Level 2 and 59.4% of them are assigned to Level 3. 

3.3 Score Function 

This section proposes an intensity-based scoring function that can be used to improve 

the accuracy of de novo peptide sequencing. The new scoring function is learnt from 

a training dataset of spectra and the corresponding peptide sequences. It is based on a 

probabilistic decision tree model which estimates the likelihood of observing certain 

intensity for a peak corresponding to a certain fragment ion. Below, we will first 

present the scoring function which is based on local peptide and fragment attributes. 

Then, given a training dataset of spectra and the corresponding peptide sequences, we 

describe how learn the probabilistic decision tree model from the training dataset. 

Finally, we will present the de novo peptide-sequencing algorithm based on such 

scoring function. Our algorithm is dynamic programming in nature and is similar to 

the one used in Peaks. 
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3.3.1 The likely scoring function 

Consider some spectrum S of peptide P. Let F be an fragment ion of the peptide P 

whose mass equals w. For I=0,1,2,3, the likely scoring function evaluates the 

likelihood of observing an intensity I for the peak at mass position w. Depending on 

whether F is b-ion or y-ion, the likely scoring functions or for b-ion or 

y-ion, respectively, are defined as follows.  

)(Bsco )(Ysco

)),(|(
)),(|(

ln)),(|(
SFInfoIp

SFInfoIp
SFInfoIsco

random

B
real

B =                                    (3.2) 

)),(|(
)),(|(

ln)),(|(
SFInfoIp

SFInfoIp
SFInfoIsco

random

Y
real

Y =                                    (3.3) 

where Info(F) is the local information related to the fragment F (defined below), 

 and are the probabilities of observing an 

intensity I at mass position w given that F are b-ion and y-ion fragments respectively; 

 is the probability of observing an intensity I at mass position w 

by random. We estimate  and  using a decision 

tree and the detail will be discussed below.  estimates the 

probability that the peak is in fact some noise or is the peak of other fragment ion. It 

is computed based on the density estimation model in [15].  

)),(|( SFInfoIp B
real )),(|( SFInfoIpY

real

)),(|( SFInfoIprandom

)),(|( SFInfoIp B
real )),(|( SFInfoIpY

real

)),(|( SFInfoIprandom

A positive score for or  means the intensity is more likely to be 

produced by the candidate fragment ion while a negative score means that the peak is 

randomly matched and is unlikely to be produced by the fragment ion. Since the 

scores of the fragment ions of the peptide are independent, for a spectrum S and a 

)(Bsco )(Ysco
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peptide P=a1a2…an, the score score(P,S) for the peptide P can be computed by 

summing up the individual scores for all fragment ions of P as follows: Let  and 

be the observed intensities at mass positions B(a

B
iI

Y
iI 1…ai) and Y(ai+1…an), 

respectively. 

),,(),( 11
11

SaaaascoreSPscore nii
ni

KK +
−≤≤

∑= ;   and                       (3.4) 

)),(|()),(|(),,( 1111 SaaInfoIscoSaaInfoIscoSaaaasco ni
Y
iYi

B
iBnii KKKK ++ +=  

(3.5) 

Note that the bigger the score, the more likely that the spectrum S represents the 

peptide P. To complete the discussion, the remaining subsections will discuss how to 

compute the probabilities , , and 

. 

)),(|( SFInfoIp B
real )),(|( SFInfoIpY

real

)),(|( SFInfoIprandom

3.3.2 Computing and  using decision tree )),(|( SFInfoIpreal
B Y )),(|( SFInfoIpreal

Consider a fragment ion F of a peptide P. Suppose its mass is w. This section 

proposes to use probabilistic decision tree to learn how the properties of F affecting 

its intensity level. 

Based on previous discussion, the intensity of a fragment ion F may be affected by 

many local attributes of F, including (1) fragment ion mass, (2) intensity of the 

complementary fragment ion, and (3) the gas-phase basicity, hydrophobicity and 

helicity of the terminal amino acid to the cleavage site. Table 3.2 summarizes the set 

of attributes for describing F when F is a y-ion. When F is a b-ion, it can be described 
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by the same set of attributes in Table 3.2 except that the attribute “BionInt” is 

replaced by “YionInt” which represent the intensity of y-ion. 

Attributes 
abbreviation 

Attribute description 

PosVI The position of the cleavage site along the peptide 
BionInt The intensity of b-ion 
Pmas Peptide precursor mass 
Mc Fragment mass/charge 
Masd Fragment mass minus peptide precursor mass 
Mcd Fragment mass/charge minus precursor mass/charge 
MdisnVII Mass distance from cleavage site to N-terminus 
MdiscVIII Mass distance from cleavage site to C-terminus 
Gbn Gas phase basicity of the N-terminal amino acid to fragmentation site 
Gbc Gas phase basicity of the C-terminal amino acid to fragmentation site 
Hlxn Helicity of the N-terminal amino acid to fragmentation site 
Hlxc Helicity of the C-terminal amino acid to fragmentation site 
Hydn Hydrophobicity of the N-terminal amino acid to fragmentation site 
Hydc Hydrophobicity of the C-terminal amino acid to fragmentation site 
Resn The N-terminal amino acid to fragmentation site 
Resc The C-terminal amino acid to fragmentation site 

Table 3.2 Training Attributes For Decision Tree 

Given the set of training peptides and their normalized spectra, then the probabilistic 

decision tree for y-ion can be generated as follows. First, from the training dataset, we 

generated all the y-ion fragment ions; for each y-ion fragment, a vector of its 

attributes and its intensity is generated to represent it. Then, the decision tree is 

trained using J4.8[27] based on the vectors. Furthermore, every leaf node of the 

decision trees is associated with a probability distribution of the 4 intensity levels. 

                                                 
Consider a peptide , the cleavage site between and  can creates the 
corresponding y-ion and b-ion.  

nii aaaaaP LL 121 += ia 1+ia

VI

)(
)()(

)(
)( 2121

Pwt
aaawtPwt

Pwt
aaawt

Pos niii LL ++−
==   

 
VII )()()( 2121 niii aaawtPwtaaawtMdisn LL ++−==  
VIII )()()( 2121 inii aaawtPwtaaawtMdisc LL −== ++  
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The probability of having intensity level I is estimated to be the proportion of the 

training fragment ions corresponding to this leaf node having intensity level equals I. 

By using a similar approach, we can get the probabilistic decision tree for b-ion. 

Figures 3.1 and 3.2 show the learned probabilistic decision trees for b-ion and y-ion 

fragments, respectively. Arrows pointing to the left indicate the fragments which 

satisfy the condition stated by the source node while arrows pointing to the right 

indicate fragments that do not. The histogram in every leaf node shows the intensity 

distribution of the peaks that assigned to it. The attribute in the root node shows the 

most important factor that will influence the fragment intensity. And the nodes closer 

to the root are more important. In the figures, the root node indicates that, in general, 

the fragmentation near the N-terminal (Pos≤ 0.14) produces low intensity peaks. This 

rule agrees with the known knowledge we have mentioned before. The decision tree 

also discovers other rules. For instance, the attributes of the N-terminal amino acid to 

the cleavage site have more influence on the fragment intensity and they appear in the 

decision tree while the attributes of the C-terminal amino acid to the cleavage site do 

not appear. Those identified rules prove the credibility of our method. In addition, it 

also increases our confident of the validity of the unknown rules discovered by the 

decision tree.  
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As a matter of fact, though the decision trees for the b-ion and the y-ion (see Figure 

3.1 and 3.2) depend on many attributes, the values of those attributes can be 

computed based on the fragment mass of F (w=B(F) or Y(F)) and the N-terminal 

amino acid to the cleavage site (ai) only. In other word, Info(F) = {w, ai} is sufficient 

to compute  and .  )),(|( SFInfoIp B
real )),(|( SFInfoIpY

real

Given the decision tree in Figure 3.1 and a b-ion fragment F,  is 

computed as follows. First, we search the decision tree for b-ion and find a leaf node 

corresponding to F. Such leaf node is associated with a probability distribution. Then, 

 equals the probability for intensity I of such distribution. For a y-

ion fragment F, by applying the same procedure on the decision tree for y-ion (Figure 

3.2),  can be computed similarly. 

)),(|( SFInfoIp B
real

)),(|( SFInfoIp B
real

)),(|( SFInfoIpY
real

3.3.3 Computing Random Probability  )),(|(random SFInfoIp

Consider a fragment ion F of mass w and a spectrum S. For I=0,1,2,3, this section 

would like to build a random probability model to compute , 

that is, the random chance that the peak in S at position w has an intensity I (that is, I 

is the highest intensity among the intensities of all the peaks in S within the range 

[

)),(|( SFInfoIprandom

δ−w .. δ+w ]). 

As the intensities of the peaks in the middle of the spectrum are much higher then the 

intensities in the two ends of the spectrum, we cannot assume the intensity of a noise 

peak follows a uniform distribution. Instead, we use the local density estimation 

model proposed by Frank and Pevzner. For completeness, we present their solution in 

this section. Consider a window of size u around w (the range from w-u/2 to w+u/2). 
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For i=1,2,3, Let  be the number of peaks in S whose intensity level is i within the 

size-u window. For a randomly chosen peak within the size-u window, the probability 

that the peak falls outside the range [

id

δ−w .. δ+w ] can be estimated as 
u
δγ 21−= . 

Thus, the probability that there is no peak within the range [ δ−w .. δ+w ] is as 

follows: 

∑
== =

3

1)),(|0( i
id

random SFInfoIp γ                         (3.6) 

The probability that the highest intensity level among all peaks within the range 

[ δ−w .. δ+w ] is as follows: 

                    (3.7) 
∑

⋅−== +=

3

1)1()),(|( li
i

l
d

d
random SFInfolIp γγ

The first factor  in the above equation calculates the probability there is at 

least one level-l peak within the range [

)1( ldγ−

δ−w .. δ+w ] while the other factor 

calculates the probability that all peaks that are in level higher than l fall outside the 

range [ δ−w .. δ+w ]. Thus the product of them is the probability that the highest 

peak is of level l.  

The above two equations imply that, in a dense region in S (region with many peaks), 

the probability is higher. This is reasonable since, in a dense 

region, it is more likely that the peak is matched by chance. Finally, note that 

Info(F)={w} is sufficient for the computation of . 

)),(|0( SFInfoIprandom >

)),(|( SFInfoIprandom
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3.3.4 Algorithm 

Given a spectrum S and an observed peptide mass M, this section describes a dynamic 

programming algorithm to compute a peptide P, where  |M-18-wt(P)|≤δ, which 

maximizes score(P, S). 

Our dynamic programming is based on DT[b, y, a], which is defined as 

⎭
⎬
⎫

⎩
⎨
⎧

=−=== −+
−≤≤−≤≤

∑ )(18,),(),(),,(max 11111
111

njnjinkk
nkjorik

xxwtMxaxxwtyxxwtbSxxxxscore KKKKK

                                                                                                                                   (3.8) 

Below lemma shows the usefulness of the table DT. 

Lemma: Suppose P=a1a2…an maximizes score(P,S). Then, for any 1≤i≤n, score(P, S) 

= DT[wt(a1a2…ai-1), wt(ai+1ai+2…an), ai].  In particular, there exists i such that 

 |wt (a1a2…ai-1) - wt(ai+1ai+2…an)-18| )1.186()(max iswhichawt
aa Σ∈≤ . 

Proof: Note that score(P,S)= ),,( 11
1

Saaaasco nkk
nk

KK +
≤≤
∑ . By definition of DT, 

score(P, S) = DT[wt(a1a2…ai-1), wt(ai+1ai+2…an), ai] for any 1≤i≤n. Since the weight 

of any amino acid is smaller than 186.1, there should exist i such that |wt(a1a2…ai-1) - 

wt(ai+1ai+2…an)| .                □ )1.186()(max iswhichawt
aa Σ∈≤

Consider a b-ion fragment F of mass v. Suppose F  is the complementary y-ion 

fragment of F and the rightmost amino acid of F is a. Note that Info(F)={v,a} and 

Info( F )={M-18-v,a}. Let  and  be the intensities of the peaks in the spectrum S B
vI Y

vI
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at mass B(v) and Y(M-18-v), respectively. Consider another y-ion fragment of mass v’. 

We define 

)),(|()),(|(),',( SFInfoIscoSFInfoIscoavvscore Y
vY

B
vB +=             (3.9) 

if  and are not peaks at mass Y(v’) and B(M – v’ – 18), respectively. Otherwise, 

we set . 

B
vI Y

vI

0),',( =avvscore

In the above formula,  equals ),',( avvscore ),( FFscore if and F F   but cannot be 

explained by Y(v’) and B(M – v’ – 18). This insures that the peaks in the spectrum 

will only be used once. 

Below recursive formula allows us to compute all entries DT[b,y,a], where 

 and b+y+wt(a)≤M-18+δ using dynamic programming. 1.186|| ≤− yb

Lemma: For and a∈Α, 1.186|| ≤− yb

[ ] [ ] ( )⎩
⎨
⎧

<−+−
≤−−−−−+−

= Σ∈ )2()'(',,,),'(
)1()'(),18,18(]'),'(,[

max,, ' yawtbifaybscoreayawtbDT
bawtyifabMyMscoreaawtybDT

aybDT
aa

 

 Basis: DT[0,0, a] = 0; 

Proof: Without loss of generality, we just prove case (1). DT[b, y-wt(a’), a’] 

corresponds to the score of a prefix-suffix pair ( ) such that , 

 and , 

', FF iaaaF L21=

)(Fwtb = njj aaaF L21' ++= )'()'( Fwtawty =− . Since 

and1.186|))'((| ≤−− awtyb bawty ≤− )'( , we have 1.186|| ≤− yb . Suppose 

, thus . From formula (1) and the definition of DT, the score '''' FaF = )''(Fwty =
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for a new prefix-suffix pair ( ) can be got, which is a candidate value for  DT[b, 

y, a]. Because DT[b, y-wt(a’), a’] and DT[b-wt(a’), y, a] are both optimal values, 

DT[b, y, a] thus must also be the optimal value for certain prefix-suffix pair.           □ 

'', FF

Note that . Hence, the target peptide P 

can be found as follows: First, we evaluate all entries DT[b,y,a], where 

 and |b+y+wt(a)+18-M|≤δ, based on the above recursive formula; Then, 

among all entries DT[b,y,a] such that |b+y+wt(a)+18-M|≤δ, we find the entry DT[b, y, 

a] with maximum value; Finally, by backtracking, we can recover the peptide P. The 

Pseudo Code is shown in Figure 3.3. 

],,[max),( |18)(| aybDTSPscore Mawtyb δ≤−+++=

1.186|| ≤− yb

Input: Observed peptide mass M; 
           A peak list of the spectrum S; 
           Error bound δ of the spectrum; 
           A calibration ∆ ; 
           Window size u for estimating the random hit probability. 
Output: A peptide such that its score is maximized and δ≤−+ |18)(| MPwt  

1. Initialize all [ ] −∞=ajiDT ,, ; Let [ ] 0,0,0 =aDT for all Α ∈a
2.   for i from 1 to  step )(max2/ awtM

aa ∑∈+ ∆  do 
3.   for j from  to )(max awti

aa ∑∈− )18),(maxmin( iMawti
aa −−+ ∑∈ step  do ∆

4.       for  Α do ∈a
5.          if i < j 
6.             for  Α such that ∈'a 18)'( −<++ Mawtji do                                                                   

7.                                                       [ ] [ ] (⎩
⎨
⎧

++
+

=+
',),'(,,

],),'([
max,),'(

ajawtiscoreajiDT
ajawtiDT

ajawtiDT )
                                 
8.          else 
9.              if   18)( −<++ Mawtji   

     10.                 for  Α ∈'a

     11.                                 [ ] [ ] ( )⎩
⎨
⎧

−−−−−+
+

=+
aiMawtjMscoreajiDT

aawtjiDT
aawtjiDT

,18,18)(,,
]'),(,[

max'),(,

     12. Find the best  for all i, j, a satisfying[ ajiDT ,, ] δ≤−+++ Mawtji 18)(   
     13.  Use backtracking to construct the peptide sequence 

 
Figure 3.3 De Novo Algorithm 
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Lemma: In lines 7 and 11, the score() function can be computed in )(
∆
uO  time 

Proof: The score() function is got by the sum of and )),(|( SFInfoIsco FB

)),(|( SFInfoIsco
FY . As we have mentioned before, (or )),(|( SFInfoIsco FB

)),(|( SFInfoIsco
FY ) is composed of two parts. The first part is 

( or )),(|( SFInfoIp F
B
real )),(|( SFInfoIp

F
Y
real ) and this part can be calculated by 

going through the decision tree. There are at most )(
∆
δO  peaks explained by a single 

fragment mass, thus this part can be computed in )(
∆
δO  time. The second part is 

 (or )),(|( SFInfoIp Frandom )),(|( SFInfoIp
Frandom ) and it is calculated by using a 

window u to calculate the local density. Because there are at most )(
∆
uO  peaks in the 

window, the time complexity of  this part is )(
∆
uO . Thus, in total, score() can be 

computed in )(
∆
uO  time.                                                                                             □ 

Lemma: The algorithm can compute the optimal solution of the peptide sequencing 

problem in ⎟
⎠
⎞

⎜
⎝
⎛

∆
×

∆
×

∆
Α∈ )(max awtuMO a  time. 

Proof: Since the scoring function can be calculated in )(
∆
uO time, besides, based on 

line 2 and line 3, we can proof that the algorithm can compute the optimal solution of 

the de novo peptide sequencing  problem in ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆

×
∆

×
∆

∑∈ )(max awtuMO aa  time.       □ 
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3.4 Experiment Result 

3.4.1 Data Set 

In Genome Institute of Singapore (GIS), we analyzed multiple Yeast Hormone 

protein sources using electrospray ion trap mass spectrometers and generated many 

MS/MS spectra. Then, a set of 1260 spectra of doubly charged tryptic peptides are 

selected, which were identified by Sequest with high score 

( and ).  These 1260 spectra are used as training set. Note that 

doubly charged tryptic peptides are selected since this class of peptides is the most 

common in mass spectrometry experiments. Besides, the fragment ion considered in 

the experiments are single charged b-ion and y-ion. This is because these two kinds of 

ions are most frequently appeared in the spectrum. 

0.2≥Xcorr 10.0≥∆Cn

For test set, we selected 400 spectra from Open Proteomics Database (OPD)[38]. 

These spectra were also identified by Sequest with high score (Xcorr > 2.5 and 

multiple hits). The peptides corresponding to these spectra contain 9 to 18 amino 

acids. The average length of these peptides is 13.7. 

3.4.2 Result 

Consider a predicted peptide from a particular de novo peptide sequencing algorithm. 

An amino acid of the predicted peptide is considered as correct if its mass position in 

the predicted sequence is within 1.5 Daltons from its expected mass position in the 

correct sequence. Then, the overall accuracy of the predicted peptide is defined as 

follows. 
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acidsnoamipredictedofnumber
acidsinomapredictedcorrectofnumberaccuracy =                  (3.10) 

Besides, as the mass difference between amino acids Isoleucine (I) and Leucine (L) 

and between Lysine (K) and Glutamine (E) are smaller than 0.05 Daltons, we do not 

distinguish them in our accuracy measurement. 

To test the performance of our algorithm, we compare our algorithm DTSeq with 

Peaks and another de novo peptide sequencing algorithm PepNovo based on the 

above measurement. (To the knowledge of the authors, PepNovo and Peaks are the 

most accurate de novo peptide sequencing algorithms in the literature.) The 

experiment is as follows. For all three algorithms, we supplied the 400 test spectra to 

them and computed the predicted peptides sequences. Then, the average accuracies of 

the three different algorithms are measured. Table 3.3 shows the results. 

Algorithm Average Accuracy #Predicted Amino Acids 
DTSeq 0.689 11.6 

PepNovo 0.617 12.8 
Peaks 0.550 13.7 

Table 3.3 Average Accuracy of  Three Algorithms 

Since the cleavage sites in the center of the peptide produce much more stronger 

peaks, while the peaks of terminal parts are weak. Our algorithm can avoid predict 

the unconfident terminal amino acids to improve the accuracy.  

From Table 3.3, the accuracy of our method for the test set is highest among all the 

three algorithms. Note that both our method and PepNovo use intensity-based scoring 

function. Thus intensity-based scoring function seems to be able to improve the 

accuracy.  
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As de novo sequencing algorithms are often used to predict partial, rather than 

complete peptides.  The capability of the algorithms to reconstruct correct 

consecutive amino acids subsequences is very important. We also compared the 

maximal length of correct subsequence of each predicted peptide generated by all 

three algorithms. 

          Ratio of maximal correct subsequence length  Algorithm 
3≥  4≥  ≥ 5 ≥ 6 ≥ 7 ≥ 8 ≥ 9 ≥ 10 

DTSeq 0.94 0.87 0.75 0.63 0.51 0.42 0.32 0.21 
PepNovo 0.92 0.83 0.72 0.60 0.51 0.41 0.30 0.21 
Peaks 0.86 0.80 0.65 0.53 0.43 0.33 0.25 0.17 

Table 3.4 Proportions of Subsequence Length longer than l ( ) 103 ≤≤ l

Table 3.4 shows that the proportions of the predicted sequences which have a 

maximal correct subsequence length longer than l ( 103 ≤≤ l ).The result implies that 

the predictions made by intensity-based scoring methods are consistently having 

longer correct subsequences. 

Although the experiment shows that our method performed the best, there are still 

several limitations. First in our decision tree model for DTSeq, only b-ion and y-ion 

are considered. In the future, we may train more types of ions such as a-ion and some 

neutral losses ions. Second, our model could only be applied to double charged 

peptides, we may expand the model to include additional charge states. Third, our 

method is not fast enough to get the results, we will try to modify the algorithm and 

make it more efficient. Last but not the least, we plan to do more tests in the future to 

validate the robustness of  our method. 
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Chapter 4 

CONCLUSION 

4.1 Conclusions 

Protein sequencing is an important problem in the post-genome era. In this thesis, we 

studied two problems related to protein sequencing.  

The first is the protein post translational modifications identification problem. We 

proposed a dynamic programming algorithm via a “top-down” mass spectrometry to 

solve this problem. There are many advantages of this new method. First, our method 

can work without a protein database. Second, there is no prior knowledge of the 

modification sites in the protein needed. Last but not the least, it can identify the 

modifications in polynomial time, which is very efficient compared to the widely 

used database searching method. The experiment shows that our algorithm can get the 

correct results while much more efficient. 

The second is the de novo peptide sequencing problem. A lot of research has been 

done to solve the peptide sequencing problem. Generally there are two kinds of 

algorithms. One is the database searching method and another is de novo peptide 

sequencing. However, little work has been done to utilize the intensities of the peaks 

in the mass spectrum to improve the accuracy of the peptide sequencing. We 

proposed a decision tree probability model which fully explores the factors that 

influence the intensity pattern. The scoring function of this algorithm is based on two 

models. First we introduced a decision tree probability model which estimates the 
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likelihood of certain observed intensity. Unlike Elias et al.[9] decision tree, our 

decision tree can model the dependence between y-ion and b-ion. Moreover, to avoid 

high computational complexity, our decision tree only utilizes the local chemical and 

physical attributes of the fragment. Besides, a random probability model is used to 

estimate the likelihood that a certain peak is a noise. In the experiment, we compared 

DTSeq with two de novo peptide sequencing algorithms: Peaks and PepNovo. The 

results showed that DTSeq performed better than the other two algorithms. It 

obtained the longest maximum subsequence of predicted peptide as well as the 

highest prediction accuracy. 

4.2 Future Work 

The results obtained for both problems in the thesis demonstrate the advantage of our 

new algorithms. There are still several possibilities for future work. In our PTMs -

identification method, we would like to explore if it is possible to detect PTM sites 

without knowing the modification types in advance. In our decision tree model for 

DTSeq, only b-ion and y-ion are considered. In the future, we may train models for 

more types of ions such as a-ion and some neutral losses ions. Peptide of other charge 

states will also be included into the models in future.  
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APPENDIX 

Mass Spectrometry 

Mass spectrometry in proteomics is used in three major areas [31]. First it is usually 

used for protein identification. Second, because mass spectrometry is able to measure 

the molecular weight of a protein, it is a tool for detection and characterization of post 

translational modifications (PTMs) in protein. Finally, mass spectrometry is a good 

technique for characterization and quality control of recombinant proteins and other 

macromolecules. In this thesis we discuss the first two usages of mass spectrometry.  

A mass spectrometer has three components: a source of ions, a mass analyzer and a 

detector. The sample is first evaporated in a vacuum and exposed to a high voltage, 

converting the molecules into gas phase ions. The ions are then accelerated through a 

mass analyzer towards a detector. The mass analyzer separates the ions according to 

their mass/charge ratio. The detector records the impact of individual ions, producing 

peaks on a mass spectrum. The mass of a molecule can then be calculated from the 

mass/charge ratio of its derivative ions.  

Matrix-assisted laser desorption ionization (MALDI) and Electrospray (ES) are the 

two important ionization techniques that should be credited most for the success of 

mass spectrometry in the life sciences. During the MALDI process[22], a matrix 

material is first coprecipitated with the analyte molecules. The resulting solid is then 

irradiated by nanosecond laser pulses. The amount of energy imparted to the 

biomolecules by the matrices during desorption and ionization are different, which 

causes the different degree of fragmentation. The precise nature of the ionization 
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process in MALDI is still largely unknown and it is difficult to relate peptide peak 

height with the quantity of sample present unless an internal standard is used. Besides, 

the mass range below 500 Daltons is often obscured by matrix-related ions in MALDI.  

During the ES process[11], liquid containing the analyte is pumped at low microliter-

per-minute flow rates through a hypodermic needle at high voltage to electrostatically 

disperse, or electrospray, small, micrometer-sized droplets, which rapidly evaporate 

and which impart their charge onto the analyte molecules. There is no upper mass 

limit to the analysis by ES mass spectrometry. Because large mass ions are typically 

multiple charge. Thus they can be into the certain range of mass/charge ratio of the 

mass spectrometers. ES mass spectrometry can analyze very complex mixtures. But 

when the molecular weight and the number of molecules increases, the spectra 

become increasingly difficult to interpret. ES is generally performed in three situation:  

the infusion mode; the nanoelectrospray format and in combination with high-

performance liquid chromatography (HPLC).  

There are three different principles [31] applied to achieve mass separation: 

separation on the basis of time-of-flight (TOF MS); sepration by quadrupole electric 

fields generated by metal rods (quadrupole MS) or separation by selective ejection of 

ions from a three-dimensional trapping field (ion trap MS or Fourier transform MS). 

The same separation principle or different separation principles can be used twice to 

perform the two step mass spectrometry (MS/MS), which is used for structural 

analysis such as peptide sequencing. These three separation methods can be coupled 

to either MALDI or ES. However, regards the special attributes of MALDI and ES, 
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MALDI is usually coupled with TOF MS while ES is usually coupled with 

quadrupole and ion-trapping MS. 
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