

THE DESIGN AND IMPLEMENTATION

OF A C COMPILER FOR SAFA

GAO YUGUANG

(B. Sci., Shanghai Jiao Tong University, China)

A THESIS SUBMITTED

FOR THE DEGREE OF MASTER OF SCIENCE

SCHOOL OF COMPUTING

NATIONAL UNIVERSITY OF SINGAPORE

2005

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarBank@NUS

https://core.ac.uk/display/48628089?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

Acknowledgements

I would like to express my gratitude to all those who gave me the

possibility to complete this thesis. Especially, I am deeply indebted to my

supervisor Professor Yuen Chung Kwong, whose help, stimulating

suggestions, guidance, knowledge and encouragement helped me in all

the time of research for and writing of the thesis.

I would like to thank Dr. Soo Yuen Jien, who gave me much knowledge

and advice on SAFA environment and operation mechanism. I have

furthermore to thank my friend, Mr. Ji Yong, who gave me much help on

the compiler related knowledge. I want to show my thanks to Dr. Wang

Haichen, Mr. Cheng Wenyuan, Ms. Wang Xiaoxue, Mr. Gao Yufeng and

Mr. Sun Jialei for all their help, support and valuable hints and suggestions

to my work.

My thanks also go to all the people who gave me help during the study.

Grateful thanks should also give to School of Computing and National

University of Singapore.

Finally, I am deeply grateful to my parents. They kept giving me their

constant love, understanding, support and encouragement.

ii

Table of Contents

Acknowledgements .. i
Summary .. v

Chapter 1 Introduction .. 1

1.1 Stack Architecture and Stack and Frame Architecture 1

1.1.1 Stack Architecture .. 1

1.1.2 Stack and Frame Architecture .. 2

1.2 Programming Language and Program .. 4

1.2.1 Programming Language ... 4

1.2.2 Program.. 4

1.3 Compiler .. 5

1.4 An Overview of Thesis... 7

Chapter 2 Concepts and C to SAFA Compiler Structure.................. 9

2.1 Stack and Frame Architecture and SAFA Program 9

2.1.1 Stack and Frame Architecture .. 9

2.1.2 SAFA Program ... 11

2.1.3 Structure of Global Frame .. 14

2.2 C Language ... 15

2.3 Structure of C to SAFA Compiler... 17

2.3.1 Compiler Structure.. 17

2.3.2 Survey of Compilation Techniques..................................... 20

iii

Chapter 3 Design and Implementation of Compiler Front End...... 22

3.1 Lexical Analysis ... 22

3.1.1 Lexical Analysis .. 22

3.1.2 Implementation Concerns... 23

3.2 Symbol Table Maintenance ... 25

3.3 Parsing .. 26

3.3.1 Expressions.. 26

3.3.2 Declarations ... 27

3.3.3 Statements ... 27

3.3.4 Implementation Concerns... 28

Chapter 4 Design and Implementation of Compiler Back End....... 30

4.1 Intermediate Code Generation .. 30

4.1.1 Representation and Maintenance of Code 31

4.1.2 Generating Intermediate Code ... 33

4.2 Setting up Frame for Procedures... 36

4.3 Allocating Frames and Dealing with Frame Registers 38

4.4 Array Generation ... 47

4.5 Sample of Intermediate Code .. 49

4.6 Intermediate Code Optimization .. 50

4.7 Assembly Code Generation and Target Code Generation 56

Chapter 5 Results on SAFA Design ... 57

5.1 Frame Register.. 57

5.1.1 Setting up and Changing Frame Register 57

5.1.2 Modifying Frame Register .. 59

5.1.3 Array... 60

5.2 Context-Sensitive Frame Register ... 61

iv

Chapter 6 Performance Evaluation of C to SAFA Compiler 66

6.1 A Practical Sample of C to SAFA Compiler 66

6.1.1 Source Program – C Language Program 66

6.1.2 Assembly Code .. 67

6.1.3 Target Program – SAFA Program 69

6.2 Applications ... 70

6.3 Evaluation Methodology .. 71

6.4 Evaluation of Target Code Size ... 72

6.5 Evaluation of Compilation Performance..................................... 74

6.6 Evaluation of Target Code Running Time.................................. 77

Chapter 7 Conclusion.. 80

7.1 Conclusion of C to SAFA Compiler.. 80

7.2 Future Work... 81

Bibliography... 83

Appendix A: SAFA Instruction Set ... 86

Appendix B: Applications ... 90

v

Summary

SAFA (Stack And Frame Architecture) is designed aiming to overcome

some of the disadvantages of a stack based architecture, e.g. array

manipulation support. SAFA program is composed of stack and frame

manipulation instructions. The thesis concerns the design and

implementation of a C to SAFA compiler to meet the need to execute C on

SAFA.

The design of C to SAFA compiler is the primary part of the thesis. We

researched the most significant differences between C to SAFA compiler

and common C compilers to develop a framework for compilation, and

gave solutions to various specific issues.

In the thesis, implementation of the compiler is also described. Working

most importantly for the compiler, where the greatest difference, compared

to common C compilers, lies in the implementation of the intermediate

code generation. The intermediate code generation and target code

generation are implemented according to the definition of SAFA instruction

set, which is composed of several self contained sections, and each

section can be loaded to the memory to be executed. Code samples and

performance data are also done in the thesis.

vi

List of Figures

Figure 1-1 SAFA Architecture .. 3

Figure 1-2 Compiler: High Level Language to Low Level Language.......... 5

Figure 1-3 Structure of a Language Processing System............................ 6

Figure 2-1 Sample Instructions of SAFA.. 11

Figure 2-2 Format of Frame Information .. 12

Figure 2-3 Structure of Global Frame .. 15

Figure 2-4 Structure of C to SAFA Compiler .. 19

Figure 3-1 Definition of Expression Tree.. 28

Figure 3-2 Parsing Statement .. 29

Figure 4-1 Code List .. 32

Figure 4-2 Algorithm for Code List ... 33

Figure 4-3 C Program for Symbol Table .. 34

Figure 4-4 Symbol Table for C Program .. 35

Figure 4-5 Partial Intermediate Code for C Program................................ 35

Figure 4-6 Syntax Tree and Abstract Intermediate Code......................... 36

Figure 4-7 Example of Strategy Used in Generation................................ 36

Figure 4-8 C Program for Setting up Procedures..................................... 37

Figure 4-9 SAFA Program for Setting up Procedures 37

Figure 4-10 Structure of Stack Frame in SAFA.. 41

Figure 4-11 Frame and Address Record List ... 43

Figure 4-12 Address Assignment Table... 44

Figure 4-13 C Program for Number Generation Program 49

Figure 4-14 Intermediate Code for Number Generation Program............ 50

vii

Figure 4-15 Intermediate Code Optimization with Stack Scheduling 52

Figure 4-16 Intermediate Code Optimization with Stack Scheduling II 55

Figure 4-17 Example for Stack Scheduling.. 55

Figure 4-18 IC before and after Implementing Stack Scheduling............. 56

Figure 5-1 Sample C Program for Context-Sensitive Frame Register 62

Figure 5-2 SAFA Assembly Code for Context-Sensitive Frame Register 64

Figure 5-3 Cost Comparison (milliseconds) ... 65

Figure 6-1 C Program for Sieve ... 67

Figure 6-2 SAFA Assembly Program for Sieve.. 69

Figure 6-3 SAFA Program for Sieve C Program 69

Figure 6-4 Code Size Comparison among Compilers (bytes).................. 72

Figure 6-5 Comparison of Code Size among Compilers (bytes).............. 72

Figure 6-6 Compilation Performance Comparison among Compilers
(milliseconds) ... 74

Figure 6-7 Compilation Performance Comparison among Compilers
(milliseconds) ... 75

Figure 6-8 Running Time Comparison (milliseconds) 78

Figure 6-9 Running time Comparison (milliseconds) 78

Chapter 1 Introduction 1

Chapter 1

Introduction

1.1 Stack Architecture and Stack and Frame Architecture

1.1.1 Stack Architecture

Hardware supported Last In First Out (LIFO) stacks have been used on

computers since the late 1950’s [1]. During the 1980’s, stack architecture was

one of the most popular alternative computer architectures to accumulator

architecture and general purpose register architecture. The addressing and

storing of the operands is the main differentiating feature for these

architectures. For stack machine, operands are implicitly on top of the stack,

in accumulator architecture one operand is implicitly the accumulator, i.e.

stored in the accumulator, and general purpose register architectures have

only explicit operands, either registers or memory locations, referred to

register numbers or memory addresses respectively.

The main strength of the stack machine can be summarized as below:

• A basic and natural tool that is used for processing well-structured code

• Can execute applications requiring stacks (like expression evaluation,

method/ function invocation, parameters passing in subroutine, etc.) much

faster than other architectures

• Compiler written for these machines tends to be simpler and more efficient

• More compact binary code size

Chapter 1 Introduction 2

A number of well known stack machines were designed and received

moderate market success, e.g. the Burroughs family, Eclipse, HP3000,

ICL2900, CRISP, Dragon, etc [3].

However, the success of stack machine was quite short lived. The market was

virtually flooded with variants of general purpose register architectures like

Intel 80x86, SPARC, MIPS, PowerPC, Alpha, etc in the 1990’s. Although

there are some differences between these architectures, it is clear that the

stack architecture is not employed within them. The main reasons for the

downfall of the stack architecture lie in the inherent weakness of the design:

• Super-scalar execution techniques like pipelining, out-of-order execution

can not be applied, because the lack of instructional level parallelism in a

stack program. This severely limits the execution speed of a stack

machine.

• Poor support for indexing memory access, e.g. element access in an array,

and records in files. These operations are frequently used in most high-

level programming languages. Cumbersome, inefficient supports for these

operations seriously handicap the stack architecture.

1.1.2 Stack and Frame Architecture

Stack and Frame Architecture (SAFA), which is devised by Yuen [2], and

simulated by Soo [3], as a stack machine architecture that can avoid some of

the disadvantages, have three major features [3]:

Chapter 1 Introduction 3

• Hardware stack structure that uses reservation stations and reorder buffer

to support instruction level parallelism

• Instructions as well as hardware support for stack and data frames, used

for procedure and function, entrance and exit, variables scoping and

accessing.

• Improved array support for high level programming

The following diagram (Figure 1-1) shows the hardware structure of a SAFA

CPU. However, the hardware details are peripheral to the issues of compiling

and will not be discussed in detail. SAFA at present exists only in emulated

form.

Figure 1-1 SAFA Architecture

Chapter 1 Introduction 4

1.2 Programming Language and Program

1.2.1 Programming Language

A Programming language is a formal notation for expressing algorithms.

Machines are driven by programs expressed in machine code, where each

instruction is just a bit string that is interpreted by machine to perform some

defined operation. In the early days, programs were written directly by

machine code.

Clearly, machine code programs are extremely difficult to write and modify,

and almost impossible to understand. The symbolic language, which is much

easier to understand and is prepared to run by manually translating each

instruction into machine code, is defined. The symbolic notation is formalized

and can be termed as an assembly language.

Today, the vast majority of programs are written in programming languages of

high level languages, by contrast with machine languages and assembly

languages which are low level languages. In this thesis, C Language is the

high level language of interest, while SAFA instructions provide the low level

language, but with intermediary abstract machine and SAFA assembler also

playing a part.

1.2.2 Program

A program is a notation for specifying algorithms in a form acceptable to a

computer. As such a program has two main purposes: formalization of the

problem to be solved and abstraction from machine specific implementation

Chapter 1 Introduction 5

details. Programs can be classified according to the formal model of

computation and they mimic most closely in two main groups: imperative and

functional. The two models are equivalent in computing power. Functional

programs have some structural connection to stack machines.

According to the level of abstraction, the implement programs can be

characterized as low level program or high level program. The former reveals

more of the machine’s hardware structure, allowing more efficient code to be

written, while the latter provides more hardware independent facilities.

1.3 Compiler

A translator which performs the translation of a high level language into an

intermediate language or a machine language can be defined as a compiler.

Figure 1-2 elaborates the relationships involved. The target program of a

compiler generally needs further processing before it can be executed.

Figure 1-2 Compiler: High Level Language to Low Level Language

 High Level Language - - - - C Language

.

 Low Level Language - - - - SAFA

Phase 1

Phase 2
Compiler

Phase 3

… …

Chapter 1 Introduction 6

Figure 1-3 shows a typical language processing system. The compiler

generates assembly code that is translated by an assembler into relocatable

machine code. The linker links the machine code with files of relocatable code

from libraries and adjusts addresses, so that the final code can actually run on

the machine. [4] In this thesis, we merely focus on the compiling phases.

C to SAFA compiler is implemented in C environment. It has the potential of

compiling itself so that SAFA can run the compiler for its own execution, but

this has not been achieved at present. A separate machine is used to provide

code for input to the SAFA emulator.

Figure 1-3 Structure of a Language Processing System

Compiler

Assembler

Linker

Source

Assembly

Relocatable Machine

Absolute Machine

Relocatable object
files from Libraries

Chapter 1 Introduction 7

1.4 An Overview of Thesis

The thesis consists of seven chapters:

Chapter 1 gives an overview of some concepts in stack architecture,

programming language, and compiler, as well as an overview of the thesis.

Chapter 2 is the starting point of the thesis work. The primary definition of C

Language and SAFA instruction set with the general description of SAFA and

its mechanism are proposed. Further more, we present some compiling

techniques with brief survey regarding the needs of C to SAFA compiler.

Based on the result of analysis, we design a compilation structure for C to

SAFA compiler. In addition, the details of the compiler are elaborated.

Chapter 3 is focused on the design and implementation details of the

compiler’s front end as addressed in the previous chapter. The design and

implementation method for the first phases of the compiler are presented.

Chapter 4 describes the back end of C to SAFA compiler. The details and the

special design of the intermediate code generation phase in the compiler is

given. Based on the stack scheduling method, the compiler optimizes the

intermediate code. Particularly, the setting-up of frame and the allocation of

frames, as well as the issues of dealing with frame registers and arrays are

taken into details for discussion. The generation of assembly code is also

referred.

Chapter 5 gives some samples, indications and results to show the features

of SAFA design helps C in the machine code section. Furthermore, the

Chapter 1 Introduction 8

influence that the design of context-sensitive frame register brings in SAFA is

also presented by the comparison to the ones without the mechanism of

context-sensitive frame register.

Chapter 6 shows a practical sample and performance of C to SAFA compiler.

We try to give a practical picture to show what the compiler does in each

compilation phase. We conduct some applications and performance analysis

of the compiler to show that we have attained the objective to compile the C

program into SAFA program, and the efficiency of the compiler is acceptable.

Chapter 7 is the conclusion of the thesis. It summarizes the earlier parts of

the thesis. Some possible improvements and future work are also proposed in

the chapter.

Chapter 2 Concepts and C to SAFA Compiler Structure 9

Chapter 2

Concepts and C to SAFA Compiler Structure

In this chapter, we give a general description of SAFA, and the details of

SAFA program. Additionally, we present some features of C Language

and C program briefly. At last, some compiling techniques with brief survey

regarding C to SAFA compiler are discussed.

2.1 Stack and Frame Architecture and SAFA Program

2.1.1 Stack and Frame Architecture

As referred in the previous chapter, Stack and Frame Architecture (SAFA)

has three major features:

• Hardware stack structure that uses an recorder buffer to support

instruction level parallelism

• Instructions as well as hardware support for high level programming

program execution, especially procedure, method, function, entrance

and exit, variables scoping and accessing.

• Improved array support for high level programming

To achieve the features above, some special mechanism is designed as

shown below [2] [3]:

• High Level Programming Languages Support

One of the most frequently used operations in high level programming

languages is to transfer the thread of control from one module to another,

Chapter 2 Concepts and C to SAFA Compiler Structure 10

e.g. function call, procedure transfer. Further more, the mechanism of

transferring and bookkeeping of threads of control, accessing scoped

variable is also considered important. In SAFA, the information needed for

activation of a procedure is usually collected in a record called a stack

frame. As a compromise between flexibility and hardware economic, SAFA

is designed to have some frame registers with more information stored in

each register as shown below:

Global Frame: describes global information

Caller Frame: describes the caller of the current procedure. Additionally,

the destination of return when current procedure finishes.

Host Frame: describes the host (enclosing block) of current procedures,

mostly used for accessing non local variables.

Current Stack Frame: describes the current running procedure.

Current Data Frame: describes the data frame where the data is stored

currently.

Previous Data Frame: the frame that previously stored in Current Data

Frame. It is automatically updated when the Current Data Frame is

changed.

• Array Indexing

The most commonly used data structure in high level programming

language - array is specially emphasized in SAFA. The frame register is

Chapter 2 Concepts and C to SAFA Compiler Structure 11

used to cope with the array indexing problem. The content of a frame

register comprises five fields:

• Base: Starting address of an array

• Interval: Number of elements skipped for each iteration

• Index: The position of the current element accessed

• Limit: Upper bound of array

• Size: Size of each element (bytes)

To collaborate with this structure, some operations are designed, e.g. load

current array element to stack, store element at top of the stack to the

current position, increase the index by on stride, decrease the index by

one stride, compare index to limit and leave result on stack.

2.1.2 SAFA Program

SAFA Program is composed of a set of SAFA instructions. Some of the

sample instructions are shown below as in Figure 2-1:

Figure 2-1 Sample Instructions of SAFA

A full list of SAFA instructions can be found in Appendix A. To help better

understanding the compilation process of C to SAFA compiler, we

describe some features of SAFA. The key elements and procedures in a

SAFA program are [3]:

OpCode Pop (operands) Push (result) Usage
<0x56> 1 1 0x56 Increment
<0x60> 2 1 0x60 Add Float Word
<0x28> 0 0 0x28 Set current to global

Chapter 2 Concepts and C to SAFA Compiler Structure 12

• Frame Information

The frame information of a SAFA program are composed by Base (4

bytes), Limit (2 bytes), Index (2 bytes), Size of Element (1 byte: currently

valid size 1,2,4,8), Interval (1 byte), and the information is stored in the

format shown in Figure 2-2. And all the instruction that interact with frame

information adheres to the format above.

Figure 2-2 Format of Frame Information

• Boot Up

1. When emulator started, the following frame registers are set:

a. Global Frame Pointer, the frame contains the addresses of various

procedure definitions in program.

b. Own Frame Pointer, a frame for main program is set up. 16 Memory

words are allocated for this frame.

c. Current Frame Pointer, points to Own Frame Pointer.

d. Both Host Frame Pointer and Caller Frame Pointer are set to zero.

2. Code for procedures is stored in respective segment (separated by

0xffffffff). The Global Frame serves as a Segment Directory that stores

starting address of all procedures.

3. Stack Segment (for running stack frames) are allocated.

• Procedure Entry

Base

Limit | Index

 | Size |

Chapter 2 Concepts and C to SAFA Compiler Structure 13

1. When the instruction 0xb0 (Enter) is reached, the following conditions

must be satisfied for a legal procedure entry:

a. Current Frame Pointer points to the newly set up stack frame for Callee.

b. Previous Frame Pointer points to the Host stack frame for Callee.

c. The topmost word in stack is the address of callee.

2. One possible way of setting up a legal procedure entry is as follows:

a. Switch to Global Frame and load destination procedure address.

a. Search for Host Frame for callee and set current to it.

b. Set up a new frame, and let current points to it.

c. Store the following information:

d. Dynamic/Static Links for callee

e. Parameters

f. Enter procedure.

3. Immediately after the Enter Instruction, the following conditions hold:

a. Current Frame Pointer now points to the newly entered procedure’s

frame

b. Own Frame Pointer, Caller Frame Pointer and Host Frame Pointer is

set up correctly.

c. PC of caller is saved in offset 0x20 in the caller’s frame.

• Procedure Exit

Chapter 2 Concepts and C to SAFA Compiler Structure 14

1. When the instruction 0xb8 (Exit) is reached, the following conditions

must be satisfied for a legal procedure exit:

a. Current Frame Pointer points to Caller’s caller stack frame.

b. Previous Frame Pointer points to Caller’s Host stack frame.

c. The topmost word in stack is the return address.

2. One possible way of setting up a legal procedure exit is as follows:

a. Store returns result in offset 0x00 and 0x04 if any.

b. Switch to Caller Frame and load return address.

c. Load Host frame info and store in current frame pointer.

d. Load Caller frame info and store in current frame pointer.

e. Exit procedure.

3. Immediately after the Exit Instruction, the following conditions hold:

a. Current Frame Pointer now points to the caller procedure’s frame

b. Own Frame Pointer, Caller Frame Pointer and Host Frame Pointer is

restored.

2.1.3 Structure of Global Frame

As in most of the platforms, a SAFA program is compiled into several self

contained segments according to the program structure. Each of the

resultant segments can be loaded into any portion of the memory without

causing any problem. The entry points to the segments are recorded in an

array (usually named segment directory in other platform). To enter a

Chapter 2 Concepts and C to SAFA Compiler Structure 15

particular procedure (segment), the corresponding index in the segment

directory and the offset to the starting of the segment are needed.

Since the segment directory can be considered as part of a global

environment of a program, it is included in the Global Frame on the

platform. This global frame also contains other bits and pieces of

contextual information like global data, command-prompt parameters etc.

For ease of access, a global frame pointer (a frame register) will always

points to the Global Frame during the execution of a SAFA program.

Figure 2-3 below is included to illustrate the relation between segments,

segment directory, global frame etc.

Figure 2-3 Structure of Global Frame

2.2 C Language

C Language is a high level programming language. It has proved to be a

powerful and flexible language that can be used for a variety of

applications. Although it is a high level language, C is much closer to

Index-1

Global Frame

Code Segment 1

Code Segment 2

Code Segment N-1

Index-2

… …

Index-N

Global Data

Index-N-1

Code Segment N

Chapter 2 Concepts and C to SAFA Compiler Structure 16

assembly language than most other high-level languages. It is close to the

underlying machine language and has low level nature.

All C programs consist of at least one function, but it is normally that a C

program comprises several functions. The only function that has to be

present is the function called main. For most programs the main function

act as a controlling function calling other functions. The main function is

the first function that is called when the program executes. It may also

contain global variables. Typically, the top of a program is a few boilerplate

lines, followed by the definitions of the functions. Each function is further

composed of declarations and statements. When a sequence of

statements should act as one, they can be enclosed in braces. The

simplest kind of statement is an expression statement, which is an

expression followed by a semicolon. Expressions are further composed of

operators, objects, and constants.

Regarding the lexical elements in a C program, some are words, which are

either keywords or identifiers. Also, there are both constants and operators

which introduce new values into the program and manipulate variables

and values. Punctuation characters indicate how the other elements of the

program are grouped. Furthermore, the preceding elements can be

separated by spaces, tabs characters, and the returns between lines. C

Language has several extensions, and each has some of its own

particulars, although they are all based on the standard of C Language. In

the thesis, we choose the ANSI C as the source program.

Chapter 2 Concepts and C to SAFA Compiler Structure 17

2.3 Structure of C to SAFA Compiler

2.3.1 Compiler Structure

Generally, a compiler consists several phases/ modules to fulfill the entire

compiling process. Being two different languages, C program and SAFA

program have relatively divergent differences, not only on the form of

codes, but on the mechanism. Compared to some regular C compilers

which generate machine code for the general purpose register architecture,

such as Intel X86, SPARC, etc, generating machine code for stack

architecture, such as Forth which is a stack architecture based language

or SAFA in the thesis, will be of high difference.

The front end of C to SAFA compiler performs lexical, syntactic, and

semantic analysis, and some simple optimizations. The back end of the

compiler is the intermediate code generation, assembly code generation

and target code generation. The premise of the classification is whether

the phases involved are machine dependant or machine independent.

Obviously, the phases that are involved in the front end are machine

independent, while the phased in the back end are machine dependent.

The design and implementation of the back end highly depends on the

target machine – SAFA. C to SAFA compiler is designed as shown in

Figure 2-4.

As shown in the structure of compiler (Figure 2-4), C to SAFA compiler

consists of four major phases, which are lexical and syntax analysis,

intermediate code generation, assembly code generation, and target code

Chapter 2 Concepts and C to SAFA Compiler Structure 18

generation. Within the four major phases, there are optimizations involved.

The details will be addressed in the subsequent parts in this chapter.

Between each phase of the compiler, the information that is transferred

among each phases is presented as the gray color rectangles. E.g. when

intermediate code generation phase finishes, the intermediate code will be

transferred to the target code generation phase for subsequent processing.

Between the front end and the back end of C to SAFA compiler is the

intermediate code that is generated as the output of the front end. The

back end of the compiler is completely based on the mechanism of SAFA;

therefore, we define the left phases in the compiler as the back end.

Chapter 2 Concepts and C to SAFA Compiler Structure 19

Figure 2-4 Structure of C to SAFA Compiler

SAFA
Program

C Program

Text

Process

Lexical

Analysis

Syntax

Analysis

Intermediate
Code

Generation

Assembly
Code

Generation

Target Code

Generation

Target Code

Optimization

Intermediate

Code

Characters
Flow

Tokens Flow

Abstract
Syntax Tree

Target Code

Assembly Code

Front End Back End

Intermediate
Code

Optimization

Optimized
Intermediate

Code

Chapter 2 Concepts and C to SAFA Compiler Structure 20

2.3.2 Survey of Compilation Techniques

Considering the functions and relationships between each phase, some

compiling techniques upon to each phase can be generally described:

• The text process phase receives the source program and processes it

into a flow of characters. It may also switch to other files, as in most of

high level language program may include some external files. This

function may require cooperation with the operating system on the one

hand and with the lexical analyzer on the other.

• The lexical analysis phase isolates tokens in the input stream and

determines their class and representation. In this phase, it is possible

to do some limited interpretation on some of the tokens.

• The syntax analysis phase converts the flow of tokens into an abstract

syntax tree. Normally, syntax analysis consists of two sub phases. The

first one reads the token flow and calls a function from the second sub

phase for each syntax construct. It recognizes; the functions in the

second module then construct the nodes of the abstract syntax tree

and link them. This has the advantage that one can replace the

abstract syntax tree generation module to obtain a different abstract

syntax tree from the same syntax analyzer.

• The intermediate code generation phase translates language-specific

constructs in the abstract syntax tree into more general constructs. The

general constructs then constitute the intermediate code. Deciding

what is a language-specific and what a more general construct is

Chapter 2 Concepts and C to SAFA Compiler Structure 21

reasonably straightforward up to the machine code depending on

various machines.

• The intermediate code optimization phase performs preprocessing on

the intermediate code, with the intention of improving the effectiveness

of the target code generation phase.

• The assembly code generation rewrites the abstract syntax tree into a

linear list of target machine instructions, in more or less symbolic form.

To this end, it selects instructions for segment of abstract syntax tree,

allocates registers to hold data and arranges the instructions in the

proper order.

• The target code generation phase converts the symbolic machine

instructions into the corresponding bit patterns. It determines machine

address of program code and data and produces tables of constants

and relocation tables.

Chapter 3 Design and Implementation of Compiler Front End 22

Chapter 3

Design and Implementation of Compiler Front End

3.1 Lexical Analysis

Lexical analysis and syntax analysis are the first two compulsory and most

common phases in a compiler. The lexical analysis and syntax analysis

were firstly deigned to use a lexical and syntax analyzer generator. The

advantage of this method is that it reduces the complexity of the lexical

and syntax analyzer; however, it costs nearly half of the compilation time

as we examined. Considering the situation, we design and implement the

lexical and syntax analyzer for C to SAFA compiler.

3.1.1 Lexical Analysis

As defined, the lexical analysis is to read the C program and produce

tokens. The lexical analyzer is the only part of the compiler that looks at

each character of the source text. It is not unusual for lexical analysis to

account for half of the execution time of a compiler.[7] This is the most

significant drive for us not to use a third party lexical analyzer generator,

such as Lex. The main activity of the lexical analysis is to move characters,

so minimizing the amount of character movement helps increase speed.

In C to SAFA compiler, the lexical analysis comprises two modules: The

input module and the recognition module.

The input module reads the source in blocks, usually more than one line in

source code, and it helps arrange for complete tokens to be present in the

Chapter 3 Design and Implementation of Compiler Front End 23

input buffer when they are being examined, except identifiers and string

literals. To minimize the overhead of accessing the input, the input module

exports points that permit direct access to the input buffer.

The recognition of tokens can be considered according to the number of

classes of tokens in C, which is keyword, identifier, constant, string-literal,

operator, and punctuator. Thus the recognition module can be divided into

for major parts: recognition of keywords, identifiers, numbers, character

constants and strings.

3.1.2 Implementation Concerns

We implement the lexical analysis and syntax analysis referring to some of

the implementation strategy of lexical analysis and syntax analysis in LCC

[7]. LCC’s hand-written lexical analyzer and parser are of sufficiently

effective based on ANSI C. To fulfill lexical analysis, several functions are

created according to the design strategy in the previous section.

• Input:

To minimize the overhead of accessing the input, the input module exports

pointer that permit direct access to the input buffer: extern unsigned char

*cp; extern unsigned char *limit;. cp points to the current input character,

limit points one character past the end of the characters in the input buffer,

and *limit is always a new-line character and acts as a sentinel. The

important sequence of this design is that most of the input characters are

accessed by *cp, and many characters are never moved. Only identifiers

Chapter 3 Design and Implementation of Compiler Front End 24

(excluding keywords) and string literals that appear in executable code are

copied out of the buffer into permanent storage. Function calls are

required only at line boundaries, which occur infrequently when compared

to the number of characters in the input. Specially, the lexical analyzer can

use *cp++ to read a character and increment cp. If *cp++ is a new line

character, however it must call next line, which might reset cp and limit.

After nextline, if cp is equal to limit, the end of the file has been reached.

• Recognition:

Tokens in C can be classified into six type excluding white spaces, tabs,

newlines, and comments: key words, indentifier, constant, string-literal,

operator, and punctuator. We referred the strategy in reference [7].

The lexical analysis exports two functions and four variables: Exported

functions: extern int getchar ARGS((void)); extern int getok((void)).

Exported data: extern int t; extern char *token; extern symbol tsym; extern

Coordiante src; getok returns the net token, get char returns, but not

consume, the next nonwhite-space character. The values returned by

getok are the characters themselves, enumeration constants for the key

words, etc.

To be summarized, the implementation strategy comprises: read the input

in large chunk into a buffer and examine the characters to recognize

tokens.

Chapter 3 Design and Implementation of Compiler Front End 25

3.2 Symbol Table Maintenance

The symbol tables are the central repository for all information within the C

to SAFA compiler. All parts of the compiler communicate via the symbol

tables and access the data in them. Symbol tables map names into sets of

symbols. The symbol table deals with the symbols themselves, as well as

handles the scope or visibility rules in ANSI C, e.g. declarations of

variables in a function make the identifiers visible until the end of the

function, which means each statement or parameter have their own scope.

To represent symbols, the name and all of other attributes of a symbol is

collected into a single symbol structure. Symbol tables are to implement

the name spaces in ANSI C. extern table constants; extern table externals;

extern table globals; table identifiers; extern table labels; extern table types.

The symbol table is presented as a list of hash table, each of which

represents one scope (function) in a C program.

A table value, e.g identifiers, points to a table structure that holds a hash

table for the symbols that are in one scope. Entries in the hash table lists

hold a symbol structure and a pointer to the next entry in the list.

The value of the global variable level and the corresponding tables

represent a scope. To change a scope, level is increased when entering a

new scope and decreased with removing the corresponding identifiers and

types when scope exits. To put variables in a table, function install l(name,

tpp, level, arena) fulfills the task, where tpp points to a table pointer. There

are also functions for dealing with labels and constants.

Chapter 3 Design and Implementation of Compiler Front End 26

This symbol table structure is also similarly employed in the maintenance

of the program, procedure and block information in the intermediate code

generation.

3.3 Parsing

The output of the lexical analysis is a sequence of tokens. The identifiers

in the sequence need some identification and further processing for the

benefit of macro processing and subsequent syntax analysis. Referred to

the parser in LCC, we build the parser in three major components, which

are parsing expressions, statements and declarations.

3.3.1 Expressions

According to the syntax for ANSI C, C has eleven types of expression

nonterminals in the grammar. C to SAFA compiler parses the expressions

in five major categories, which are assignment expressions, conditional

expressions, binary expressions, unary and postfix expressions and

primary expressions. Each is associated with a function, which builds a

tree to represent the expression and do type checking for the tree.

Expressions have to be correct in both syntax and semantic. It is

necessary to do the two basic analyses on semantic issues, which are

implicit conversions and type-checking. Implicit conversions are

conversions that do not appear in the source program and must be added

by the compiler in order to adhere to the semantic rules of the standard.

E.g. in a-b*c, if a, b, c are of the different types of variables, that a is float,

Chapter 3 Design and Implementation of Compiler Front End 27

b and c are integers. A conversion is done to b and c to convert them into

float. Type checking confirms that the types of an operator’s operands are

legal, determines the type of the result and computes the type-specific

operator that is used.

What is to be emphasized here is the analysis of the function calls, which

are easy to parse but difficult to analyze. [7] The semantic analysis for

function calls handle with calls to both new style and old style functions in

which the semantics imposed by the standard affect the conversions and

argument checking, the order of evaluation of the arguments, passing and

returning structures by values, and actual arguments that include other

calls.

3.3.2 Declarations

Declarations in a C program are to specify the types of identifiers, define

structure and union types, and give the code for functions [7]. The parsing

of declarations is mainly divided into five segments, which are the

translation units, declarations, declarators, functions declarations, and

structure specifiers.

3.3.3 Statements

Statements in C can be summarized as conditional statements, labels and

GoTos, loops, switch statements, return statements, and compound

statements according to the syntax of C statement.

Chapter 3 Design and Implementation of Compiler Front End 28

In C to SAFA compiler, an execution point will be assigned under the

following conditions: a compound statement’s entry and exit, and a

function’s entry and exit. The design here it to provide sufficient

information for the intermediate code generation to load and store the

stack frame or frame register information for each block of the program.

The details will be discussed in the subsequent chapter.

3.3.4 Implementation Concerns

The implementation of the parser consists of three stages according to the

design described above, which are parsing expressions, parsing

statements and parsing declarations.

3.3.4.1 Parsing Expressions

Parsing an expression is based on a tree, which is defined as the

algorithm shown in Figure 3-1.

Typedef struct tree *tree
Struct tree {
Int p;
Type type;
Tree children [2];
Union {
Symbol symbol;
} ;
};

Figure 3-1 Definition of Expression Tree

P holds a code for the operator, type points to a type for the type of the

result computed by the node, children point to the operands. Identifiers are

categorized by their scopes and lifetime and their types. The identifiers’

scope and storage class to determine its addressing operator, and then

Chapter 3 Design and Implementation of Compiler Front End 29

uses its type to determine the shape of the tree that accesses it, as well as

stores a pointer to the symbol table entry in the symbol in the tree.

3.3.4.2 Parsing Statements

The parsing function of statements employs the current token to identify

the kind of statement and switches to statement-specific code. Each type

of statements will be transferred to the corresponding handling function for

parsing.

Void statement (int loop, switch swp, int lev) {
If (aflag>=2 && lev ==15) exit; //too many levels of statements
Switch (t) {
Case if: <if statement> break;
Case do: <do statement> break;
…

Default: <expression statement>;
}

Figure 3-2 Parsing Statement

Chapter 4 Design and Implementation of Compiler Back End 30

Chapter 4

Design and Implementation of Compiler Back End

In this chapter, we describe the design and implementation of the most

significant phases in C to SAFA compiler, the compiler’s back end. SAFA

has some distinguishing specifications, such as stack frame, frame

register, support for high level programming and array indexing, which

leads the compilation to be specific. To discuss more clearly, we give

some of the details of SAFA’s parameters, and mechanisms. Particularly,

we emphasize on some special issues in these phases.

4.1 Intermediate Code Generation

An intermediate code in C to SAFA compiler is designed to represent a

kind of abstract machine language that can express the target machine

operation. The front end of the compiler as we discussed does lexical

analysis, and parsing with semantic analysis, as well as intermediate code

generation. Why we put the intermediate code generation in the back end

of the compiler to discuss is that it has very tight relationship with the

assembly code of SAFA in the compilation. Isolating it from the assembly

code generation will be difficult to address the ideas adhered. In fact, the

intermediate code and the assembly code of C to SAFA compiler have

great similarities to make it possible to generate the intermediate code into

assembly code directly. Meanwhile, before generating into assembly code,

we also do some optimizations for the intermediate code. There are

several representations of intermediate code, such as postfix

Chapter 4 Design and Implementation of Compiler Back End 31

representation, three-address code representation, XML representation,

etc. Because SAFA code is a stack machine based code, we select the

postfix representation which can work with the stack architecture more

easily.

4.1.1 Representation and Maintenance of Code

SAFA has an important feature that is the support for high level language.

SAFA program consists of several procedures and the procedure is the

basic components in it. The SAFA assembler is also designed to represent

the SAFA code as several chunks correspondingly. To fit in with the

assembler, we design a representation of the code to meet the

requirement. Further more, the maintenance of the representation

mechanism should also be taken into consideration.

We consider the statement is the smallest block in a program. The

semantic of statements consists of evaluation of expressions, sometimes

mixed with jump and label, which means transfer of control. Expressions

are compiled into trees and then converted to postfix representation of

intermediate code. For each function, these structures are strung together

in a code list, which represents the code for the function. In the front end of

the compiler, the code list is built, and in the back end of the compiler, the

code list will be generated into the intermediate code representation.

To give a clearer picture of the code list structure, the abstract structure of

a code list is shown in Figure 4-1.

Chapter 4 Design and Implementation of Compiler Back End 32

Figure 4-1 Code List

A program will be divided into several blocks, with each block representing

a function. The blocks are interconnected by a list structure. The details of

a function, such as the name, the caller, the host, the parameters and local

variables, etc is stored. This design is quite coincided with the structure of

the global frame in SAFA (The structure of a global frame can be seen in

Figure 2-3).

The code segments in the block are also divided into several chunks and

stored. An evaluation expression, e.g. a=b+c; can be a chunk. An if

statement can also be a chunk, e.g. if…else…The aiming of this structure

is to coincide with the design of SAFA assembler by storing sufficient and

structured information to make the generation from intermediate code to

Program

Block 1 Block N … … Block 2

Name

Caller

Parameters

Local Variables

Code Segments

… …

… …

Chunk 1

Chunk 2

Chunk 3

Chunk N

Host

Chapter 4 Design and Implementation of Compiler Back End 33

assembly code much easier. The implementation algorithm of the code list

can be presented as in Figure 4-2.

Typedef struct codelist *codelist
Struct code{
Codlist name;
Codelist previous, next;
<idx> caller;
<idx> host;
<Parameter> parameters;
<Variable> localvariables;
Code *code;
<other information>
}

Typedef struct code *code;
Struct code {
Enum {blockbegin, blockend, local ,address, definitionpoint, label, start, gen,
jump, switch}; kind;
Code previous, next;
Union {
<blockbegin>
<blockend>
<local><address>
<definition point>
<label>
<start>
<gen>
<jump>
 <switch> } u;
};

Figure 4-2 Algorithm for Code List

There are some special cases that need to be specially considered, such

as dealing with array, loop, etc in C. The details will be discussed in the

subsequent sections in this chapter.

4.1.2 Generating Intermediate Code

Before entering into the generation of intermediate code, we have to recall

and make the design of symbol table more specific for SAFA.

Chapter 4 Design and Implementation of Compiler Back End 34

We see that in order to generate target code correctly, the compiler must

keep track of all the identifiers introduced by the source code. For each

identifier, we must record what the identifier stands for in the source

language, and on which construct it is mapped in the target language. This

information is usually recorded in a “housekeeping” data structure called

symbol table. Whenever a new identifier is encountered in the source code

for the first time, the compiler adds its description to the table. Whenever

an identifier is encountered elsewhere in the program, the compiler

consults the symbol table to get all the information needed for generating

the equivalent code in the target language. Here is an example of the C

program (Figure 4-3), the corresponding symbol table and the intermediate

code for the main function.

Figure 4-3 C Program for Symbol Table

typedef BankAccount () {
 int nAccounts;
 int bankCommission;
 int id;
 String owner;
 int balance;

}
int commission(int x) {

if id<=1000 the acct owner is a bank employee so commission is 0
if (id>1000) return (x*bankCommission)/100;

else return 0;}
void main (int sum, bankAccount from) {
int i,j,k;
let balance=(balance+sum)-commission(sum*5); }

Chapter 4 Design and Implementation of Compiler Back End 35

Class-scope symbol table Method-scope (transfer) symbol table

Name type # name Type kind #

naccounts int 0 this BankAccount argument 0

bankCommission int 1 sum int argument 1

id int 0 from BankAccount argument 2

Owner String 1 when Date argument 3

balance int 2 i int var 0

j int var 1

k int var 2

d1 Date var 3

Figure 4-4 Symbol Table for C Program

Figure 4-5 Partial Intermediate Code for C Program

Expressions are the most important component in a C program. It can

appear in any part of the program. It can independently exist as a

statement, or be part of a condition statement, e.g if or switch, etc. To

evaluate an expression, the mechanism is to depth-first traverse the

syntax tree we generated from the syntax analysis and generate it into the

postfix representation of the intermediate code. Here’s an instance, an

push balance
push sum
add
push this
push sum
push 5
multiply
call
commission
sub
pop balance

Chapter 4 Design and Implementation of Compiler Back End 36

expression in a C program w=x+f(2,y,-z)*5, then the syntax tree and

abstract intermediate code will be (Figure 4-6):

Figure 4-6 Syntax Tree and Abstract Intermediate Code

An example for the strategy used in algorithm is like (Figure 4-7):

Code(exp):
if exp is a number n then output “push n”
if exp is a variable v then output “push v”
if exp = (exp1 op exp2) then Code(exp1); Code(exp2) ; output “op”
if exp = op(exp1) then Code(exp1) ; output “op”
if exp = f(exp1 … expN) then Code(exp1) … Code(expN); output “call f”

Figure 4-7 Example of Strategy Used in Generation

4.2 Setting up Frame for Procedures

In a SAFA program, the first procedure is always main procedure. If

there’s only one procedure (main procedure) in the program, there will be

no more operations for setting up frames. If there is more than one

procedure including main procedure, the frame that is used for running the

callee procedures have to be set up before entering the callee procedure

in the main procedure (caller procedure). Here’s an example to show the

process. Figure 4-8 shows a program for bubble sort, and we omit the

push x
push 2
push y
push z
unary
call f
push 5
multi
add
store

+

X *

f 5

2 Y -

z

Chapter 4 Design and Implementation of Compiler Back End 37

other functions (BubbleSort) in the program, other than LCG and main

functions, to simplify the discussion, because setting up frame for most

procedures are quite similar. Figure 4-9 shows the corresponding SAFA

program.

void LCG(int ia[], int n, int a, int c, int m)
{
 int i,seed=1;

 for (i = 0; i < n; i++){
 seed = (a*seed + c) % m;
 ia[i] = seed;
 }
}
void main()
{
 int array[100];
 int i;
 LCG(array,100,1277,0,131012);
 BubbleSort(array,100);
}

Figure 4-8 C Program for Setting up Procedures

Figure 4-9 SAFA Program for Setting up Procedures

From the last instruction “2B” (set current frame pointer to own) in Line 2 to

the instruction “B0” (enter procedure) in Line 5 are the instructions for

setting up frame for procedure LCG.

The instructions in Figure 4-9 fulfill the activities referred above. Here we

address some primary instructions. “2B” in Line 3 is to set the current

Chapter 4 Design and Implementation of Compiler Back End 38

frame to own frame and “3A” in Line 4 loads the current frame information

to stack. “28 3A” in Line 3 acts to set current frame to global frame and

load the current frame to stack. These four instructions load own frame

information and global frame information to stack. The instructions from

the first “2D” in Line 3 to the 7th instruction in Line 5 (“24”) are to store the

parameters and the local variables in procedure LCG. “28” which is next to

“24” in Line 5 is to set current frame to global frame. “B0” is to enter the

procedure LCG. This is the most common and compulsory process to

setting up frame for procedures.

The most common processes for setting up frame for procedures are:

• Set current frame to own frame

• Load current frame information to stack

• Set current frame to global frame

• Load current frame information to stack

• Set current frame to the frame used

• Stack a new frame

• Store parameters and local variables in the procedure

• Set current frame to global frame

• Set current frame to the frame used

• Enter procedure

4.3 Allocating Frames and Dealing with Frame Registers

SAFA has some specifications as a stack architecture. A very important

issue in generating intermediate code is to establish and calculate the

Chapter 4 Design and Implementation of Compiler Back End 39

essential information that is needed to transfer to the SAFA assembler to

generate the operations on stack frame and frame register. Before

presenting the strategies, we have to review some of specifications for

further discussion.

• To call a procedure， what should be delivered to the assembler is the

frame pointer that contains the callee’s frame and the name of the

procedure.

• To exit a procedure, the frame pointer that contains the host’s frame

and the frame pointer that contains the caller’s frame should be

delivered.

• To establish a procedure, the name of the procedure, the number of

parameters, and the number of local variables are required.

• When a procedure, except the main procedure, is involved, the frame

content that the procedure used must firstly be saved for backup.

When the procedure exits, the information will be restored from the

place it is saved.

To work with SAFA assembler better, we define three instructions in the

intermediate code:

• ENTER fnum, sub_name

fnum: The frame register number that contain the callee's frame

sub_name: The name of the procedure

• EXIT hfnum, cfnum

Chapter 4 Design and Implementation of Compiler Back End 40

hfnum: The frame register that contain the host's frame

cfnum: The frame register that contain the caller's frame

• PROCEDURE pname paranum localnum

pname: Name of the procedure

paranum: Number of paramters

localnum: Number of local variables

When the compiler wants to generate the actions above into intermediate

code, the compiler will produce the information required to make it ready

for assembly code generation.

• When the compiler is to establish a procedure, the intermediate code

carrying with name of the procedure, number of parameters, and

number of local variables will be prepared. All the information that is

adhered to the procedure will be pushed into the stack and stored in

stack frame. The intermediate code will help to fulfill the activities.

According to the design of SAFA program, procedures can be placed in

any order as long as callee should be placed before the caller. A main

function must be defined and placed as the first procedure.

• When call procedure is occurred, the frame pointer that contains the

callee’s frame and the name of the procedure will be produced and the

corresponding intermediate code will settle down for the generation of

assembly code.

Chapter 4 Design and Implementation of Compiler Back End 41

• When a procedure exits, the instructions for exit in the intermediate

code with the frame pointer that contains the host’s frame and the

frame pointer that contains the caller’s frame are produced. Similarly,

all addresses and information needed will be pushed into stack and

loaded into the frame register for further processing.

• When a procedure, except the main procedure, is involved, the stack

frame that the procedure uses should firstly be saved for backup.

When the procedure exits, the information will be restored from the

place it is saved. This produces the intermediate code “SAVEFRAME”

and “RESTOREFRAME” with the addresses to implement.

The structure of the stack frame is shown in Figure 4-10:

Figure 4-10 Structure of Stack Frame in SAFA

+0

+4

+8

+c

+10

+14

+18

+1C

+20 Program Counter

+24 Parameters

 Local Variables

 … …

Value

 Caller’s Frame

Host’s Frame

Chapter 4 Design and Implementation of Compiler Back End 42

The most common processes for generating the intermediate code for

frame registers that are adhered to the procedures (except main

procedure) are:

• Load the information of the procedure from code list, including the

name of the procedure, the number of parameters and the number of

local variables in the procedure, the caller of the procedure and the

host of the procedure.

• Load the procedure to the stack frame by loading the caller’s frame

register, host’s frame register, parameters, local variables, body of the

procedure, etc.

• Check availability of frame registers and set the current frame pointer

for the procedure. Normally, we assign a No. 3 to No. 7 frame register

to the procedure upon availability.

• Store the information on the stack to the current frame which is

allocated to the procedure.

• Set the current frame register to own.

• During the setup of the stack frame information for the procedures, all

the frame registers and address that are assigned will be stored in a

frame and address record list.

• The abstract structure for the frame and address record list is shown in

Figure 4-11. Before assigning frame and addresses, the compiler will

look up the frame and address record list to check the availability. For

stack frame, each frame is assigned a tag for availability. When the

frame is available, the value of the tag is 0. When the frame is not

Chapter 4 Design and Implementation of Compiler Back End 43

available, the value of the tag is the name of the procedure. After the

procedure exits the value of the tag will be 0 and wait for next usage.

For the addresses, the mechanism is similar to what it is for the frame

registers.

According to the definition, SAFA has eight frame registers which can be

assigned to the six different frame pointers. We also design the frame and

address record list to coincide with it, because the each of the frame

pointers may point to one stack frame.

Figure 4-11 Frame and Address Record List

After the execution of the procedure, the frame information that is saved

after the entering of the procedure is restored and the procedure will

execute exit.

7

 ……. … 80 24

0 0

1 0

2 0

3 0

4 samplearray

5

6

 1 0

Chapter 4 Design and Implementation of Compiler Back End 44

The storage of the stack frames and addresses which are assigned to the

variables and the blocks in the procedures is another significant issue to

be considered. After generating the syntax tree into intermediate code,

many of the elements in the blocks (serials of statements) should be

assigned with an address in the stack frame for execution purpose. We

design an address assignment table (Figure 4-12) for blocks, statements

or variables in procedure.

Figure 4-12 Address Assignment Table

There are several actions for this table:

• Look-up: To look up an item in table

0 3 4 5 6 7 1 2

24 Parameters

3C Local Variables

……

…… Value of Variables

……

80 ……

……
Caller
Host
Previous
……

28

Chapter 4 Design and Implementation of Compiler Back End 45

• Load: Normally, load action acts with look-up action, the load action is

to look up the table and load the item from the requested address.

• Store: Normally, store action acts with look up function. Store action

will lead to looking up the requested address and store the content in

the corresponding place. If the content area of the address is not empty

(normally it should be empty if the address is assigned by the compiler,

because the validation of the address is maintained by the frame and

address record list, and when an address is assigned, the distribution

of address will be avoided from distributing an address more than

once), a warning will be return to the compiler and the compiler will

assign a new address to it.

• Extension of Length of Item: Each of the content area in the table is

word based, if the content that should be stored needs a larger size

space than a word or an array requests space, the extension action will

look up the table and look for a contiguous and sufficient space for the

content, if the space is available the items will be stored and the

address of the beginning of the content and the length of the content

will be returned to the compiler, meanwhile the compiler will update

the frame and address record list concurrently. If the space is not

available, the situation will be more complicated. The extension action

will send warning information to the compiler. When receiving the

warning, the compiler will finish processing all the actions to the frame

and address record list and address assignment table before this

extension action, and send a request to the frame and address record

list for new frame register. After the new register is return to the

Chapter 4 Design and Implementation of Compiler Back End 46

compiler, the compiler will act the extension action once again. This

process will continue to act until the available space is assign.

• Kill: Kill action is to clear all the contents in the table. A kill action often

happens when a procedure exits.

Although the number of the stack frames in SAFA is not the same as the

frame registers in SAFA, the reason why we design the two structures for

storing information and assigning addresses can be summarized as below:

• Each frame register/ frame pointer may point to a stack frame

• The stack frames are assigned to an actual procedure in a SAFA

program

• Storing the information for each procedure can provide good efficiency

for the compiler to search, assign, load, modifying information.

• It provides a good channel for the compiler to allocate frame registers

To maintain the frame pointers in the program for the procedure, the global,

current, previous, host, caller, and own frame registers of the procedure

can be got by looking up the address assignment table, and frame and

address record list. All the information that needs to maintain the frame

pointers can be got and calculated. This is the significant reason why we

design the number of elements in frame and address record list and

address assignment table the same as the number of frame registers. The

mechanism here makes the correspondence straightforward.

Since SAFA has a unique feature on array accessing, we will concentrate

on generating intermediate code for array in the next section.

Chapter 4 Design and Implementation of Compiler Back End 47

4.4 Array Generation

SAFA has a specification on support for array, which is the most

commonly used data structure in high level programming language. Arrays

are frequently used for mathematical operation, such as matrix

manipulations, or as the building block for other data structures. Array

indexing that is actually accessing the elements in an array, requires

frequent operation of a particular value (the base of the array), which is not

suitable for a stack [3]. In SAFA, the frame register is used to solve the

problem. A frame register consists of five fields as presented in the early

chapter. To represent an array by a frame register, the information of an

array is:

• Base: Starting address of an array

• Interval: Number of elements skipped for each iteration

• Index: The position of the current element accessed

• Limit: Upper bound of the array

• Size: Size (in bytes) of each element

It is easy to see that the structure above keeps most of the important

information of an array. The operations when doing a create-array

instruction are:

• Load current array element into stack

• Store element at the top of the stack to current position

• Increase the index by one stride by using the formula: NewIndex =

Index + Interval + 1

Chapter 4 Design and Implementation of Compiler Back End 48

• Decrease the index by one stride

• Compare index to limit (upper bound) and leave result on stack

The support for array indexing is not available until the later phase of

SAFA emulator. When an array is employed in the source program, after

parsing, the name, the content of each element, and the size of the array

will be passed to the intermediate code generation phase for processing.

Without the support for array indexing, the strategy of implementing an

array is to consider the array as a series of local variables. The compiler

assigns a base which means the address of the first element in the array

to the array and the base of the array will be pushed into the stack and

loaded into the stack frame. Then the compiler pushes the elements in the

array and load into stack frame one by one. All the elements are

considered as local variables. This kind of mechanism will highly increase

the size of the target code and lower the performance of the compiler.

 After the simulation of the support for array indexing in SAFA, it is easier

to handle an array. What the machine needs are the base, the size, and

the limit to define an array. By pushing the size of the array into the stack

and load into the stack frame, the instruction “newarray” will perform the

related activities. A frame register will be assigned to carry out with the

array. To modify or access the elements in array, the information stored in

the frame register (base, interval, index, limit, and size) will be employed to

fulfill the corresponding activity. E.g. if we want to access an element in

the array, we can simply provide the base and the size of the array and the

index of the element that is requested to access.

Chapter 4 Design and Implementation of Compiler Back End 49

4.5 Sample of Intermediate Code

Here, we give an example of the C program with the corresponding

intermediate code, as well as the Code List, the frame and address record

list and the address assignment table for it.

The C program is shown in Figure 4-13. The program here is to procedure

100 numbers based on the seed.

void LCG(int ia[], int n, int a, int c, int m)
{
 int i,seed=1;
 for (i = 0; i < n; i++){
 seed = (a*seed + c) % m;
 ia[i] = seed;
 }
}
void main()
{
 int array[100];
 LCG(array,100,1277,0,131012);
}
}

Figure 4-13 C Program for Number Generation Program

The intermediate code that is generated is shown in Figure 4-14.

PROCEDURE LCG <7> <5> //function LCG
 SAVEFRAME 4 x48 //save stack frame
 ibload x24
 loadnextframe
 currentframeset4 //set current frame No 4.
 Currentframeinfostore
 currentframesetown
 ibload 1
 cfb_wstore x44
 ibload 0
 cfb_wstore x40
loop: //loop
 cfb_wload x40
 cfb_wload x30
 ige
 iftrue end
 cfb_wload x34

Chapter 4 Design and Implementation of Compiler Back End 50

 cfb_wload x44
 imul
 cfb_wload x38
 iadd
 cfb_wload x3c
 idiv
 dup
 cfb_wstore x44
 cfb_wload x40 //operations on arrary
 cfset4
 idxstore
 frstore4
 pop
 cfsetown
 cfb_wload x40
 inc
 cfb_wstore x40
 goto loop
end: RESTOREFRAME 4 x48 //restore stack frame
 EXIT 1,2 //exit the procedure

PROCEDURE main <0> <1> //function main
 ibload 100
 cfb_wstore x24 //store 100 in the address x24
 cfb_wload x24
 ibload 4
 newarray //create new arry
 cfset4 //set current frame No. 4
 currentframeinfostore //store current frame information
 currentframeinfoload //load current frame information
 currentframesetown //set current frame to own frame
 cfb_wload x24 load array information to stack
 ihwload 1277 //load 1277 to stack (hword)
 ibload 0 //load 0 to stack
 iwload 131012 //load 131012 to stack

ENTER <3>,LCG //enter function LCG
Halt //terminate the Program

Figure 4-14 Intermediate Code for Number Generation Program

4.6 Intermediate Code Optimization

Optimizing compilers for register machines usually employs a technique

called register allocation. Register allocation maps the variables used in a

section of code to the machine’s registers in order to reduce access times.

A similar optimization technique can be used for stack based processors.

Chapter 4 Design and Implementation of Compiler Back End 51

Most current stack processors make use of a “stack buffer” to cache the

topmost stack elements for improved performance [14]. In analogy to

register machines, this makes access to stack elements faster than access

to memory.

When compiling C to SAFA, local variables of a function are usually

located in the corresponding stack frame in main memory. This creates an

opportunity for optimization: instead of loading the contents of a variable

from main memory onto the stack each time it is used, the compiler can

keep a copy of the variable’s value on the stack and reuse this copy in the

subsequent operations in the same scope. An important property of SAFA

makes the optimization more difficult to implement than that in the register

machines, because instructions in SAFA most often use the elements at

the top of the stack, as most stack architectures do. If arguments to an

instruction already resides in the stack, the stack must be manipulated so

that they appear in the order the instruction expects them to be.

Consequently, an optimization technique must deal with that limitations

and nevertheless try to minimize the usage of stack manipulations.

Philip Koopman presented a technique for the optimization stack

architecture based machine in reference [14], the “intra-block stack

scheduling” methodology. Intra-block stack scheduling attempts to remove

local variables fetches and stores by maintaining copies of variables go on

the stack for each instruction [14]. The terminology “stack scheduling” is

quite similar to “register scheduling”, in which variables are assigned to

Chapter 4 Design and Implementation of Compiler Back End 52

registers in conventional compilers. Basically, stack scheduling substitutes

loads of local variables by stack copying and manipulation instructions.

Here we address the algorithm applied on SAFA intermediate code

optimization. Suppose we have a fragment of C program:

c=a+b;
a=b+d;

The intermediate code that is generated by C to SAFA compiler, with

annotations that can be inferred easily from the stack code by symbolically

executing it is shown in Figure 4-15.

No. 1 cfb_wload x38 (− −) a

No. 2 cfb_wload x3C (a − −) b

No. 3 iadd (a b − −) <+>

No. 4 cfb_wstore x40 (c − −) (c)

No. 5 cfb_wload x3c (− −) b

No. 6 cfb_wload 44 (b − −) d

No. 7 iadd (b d − −) <+>

No. 8 cfb_wstore x38 (a − −) (a)

Figure 4-15 Intermediate Code Optimization with Stack Scheduling

Stack scheduling starts by annotating each instruction of a basic block with

information about the stack elements present at run time before executing

the instruction (Stack Picture [15]). C to SAFA compiler determines

whether a stack element contains the values of a variable or not. This can

simply implement by looking up the Frame and Address Record list. Then,

the algorithm tries to pair each instruction that loads the contents of a local

Chapter 4 Design and Implementation of Compiler Back End 53

variable onto the stack with another instruction. Basically, the compiler

walks through the intermediate code searching for load instructions. When

such an instruction is found, the stack pictures of the preceding

instructions are searched for an occurrence of the variable referenced by

the load instruction. If such an instruction is found, it is inserted into a list

of pairs of instructions together with the load instruction, and the algorithm

continues to search for further pairs.

Considering what is shown in Figure 4-15, there are four load instructions.

The ones which are in No. 1 and No. 2 load a and b for the first time

respectively, and no pair instruction can be found to create a pair. The

same holds true for the load instruction at No. 6, where d is loaded for the

first and last time in the basic block. When b is reloaded at No.5, the

search for a pair instruction is successful, because the stack picture of the

iadd instruction at No. 3 includes b, and these two instructions can be

paired and inserted into the list of pairs. The list of pairs is maintained by

tables which are linked by a static list in C to SAFA compiler.

The following actions in the process of scheduling consist of sorting the

pairs found in the previous step according to the distance between the two

instructions. The idea behind sorting at all is that instructions closer to one

another are more likely to be scheduled successfully.

The last step tries to schedule each pair of the list prepared in the previous

steps, in which the pairs with a small distance will be processed first. A

pair of instructions can be scheduled with the following premises’

satisfaction:

Chapter 4 Design and Implementation of Compiler Back End 54

• The variable can be copied to the bottom of stack by a stack

manipulation in front of the first instruction (the one whose stack picture

includes the variable of interest).

• The copy can be moved from the bottom of stack to the top of stack at

the second instruction (the one loads the variable).

If a pair can be scheduled, the appropriate stack manipulation instruction

is inserted in front of the first instruction of the pair. Then the load

instruction can be replaced by another stack manipulation instruction to

move the copied stack element to the top of stack. After scheduling a pair,

the stack picture of all instructions lying in between the first and second

instruction of the pair must be updated to include the newly created stack

element.

As shown in Figure 4-16, the intermediate code is optimized by stack

scheduling. Obviously, the instruction duplicate has been inserted in front

of the first iadd instruction. The load instruction has been omitted, because

the copy created by instruction duplicate resides at the top of stack at that

point, there is no need for a further pairs to schedule. Until now, the

intermediate code is optimized by stack scheduling.

Chapter 4 Design and Implementation of Compiler Back End 55

No. 1 cfb_wload x38 (− −) a

No. 2 cfb_wload x3C (a − −) b

No. 3 duplicate (a b − −) dup

No. 4 Iadd (a b − −) <+>

No. 5 cfb_wstore x40 (c − −) (c)

No. 6 cfb_wload 44 (b − −) d

No. 7 iadd (b d − −) <+>

No. 8 cfb_wstore x38 (a − −) (a)

Figure 4-16 Intermediate Code Optimization with Stack Scheduling II

Now we can consider a more complicated example for further addressing.

The C function in the following is the function for resolving Fibonacci

problem (Figure 4-17).

 int fibonacci(int x)
{
 if (x == 0)
 return 0;

 if (x == 1)
 return 1;

 return fibonacci(x-1)+fibonacci(x-2);
}

Figure 4-17 Example for Stack Scheduling

As we can see, the variable x is used in the function for four times when

the function operates once. We can use the stack scheduling to optimize

the intermediate code. Figure 4-18 shows the intermediate code before

using stack scheduling optimization on the right side and the intermediate

code after using stack scheduling for optimization on the left side.

Chapter 4 Design and Implementation of Compiler Back End 56

Obviously, the cfb_load (a type of load instruction) instructions is highly

decreases, instead the duplication instruction keep the x in the topmost of

the stack and x is reuse for times to achieve the stack scheduling.

PROCEDURE fib <1> <0>
 cfb_wload x24
 ifeq return0
 cfb_wload x24
 dec
 ifeq return0
 cfb_wload x24
 dec
 PENTER (3),fib
 cfb_wload x24
 ibload 2
 isub
 penter 3,fib
 iadd
return0: exit (1),(2)

PROCEDURE fib <1> <0>
 cfb_wload x24
 duplicate
 ifeq return0
 dup
 dec
 ifeq return0
 dup
 dec
 PENTER (3),fib
 swap
 ibload 2
 isub
 penter 3,fib
 iadd
return0: exit (1),(2)

Figure 4-18 IC before and after Implementing Stack Scheduling

4.7 Assembly Code Generation and Target Code Generation

We design the structure of the C to SAFA compiler and generate the

SAFA assembly code from intermediate code instead of generating SAFA

target code. Generation of SAFA assembly code is straightforward. The

intermediate code is quite similar to the SAFA assembly code not only on

structure and contents, but also in mechanism. We generate the

instructions in intermediate code to the corresponding SAFA assembly

code and transfer the information which is compulsorily required by some

of the instructions on the same format. The allocation and establishment of

the stack frame information is fulfilled in the assembler.

SAFA assembler can generate SAFA program straightforward from SAFA

assembly code.

Chapter 5 Results on SAFA Design 57

Chapter 5

Results on SAFA Design

In this chapter, we give some samples, indications and results to show the

features of SAFA design help C in the machine code section. Furthermore,

the influence of the design of context-sensitive frame register in SAFA is

also presented compared to the machines without the design of context-

sensitive mechanism.

5.1 Frame Register

5.1.1 Setting up and Changing Frame Register

As any program of C/ SAFA must consist of one function/ procedure at

least, there must be one frame register used in every program. The first

few addresses in the frame register stores the basic information of

procedures and the subsequent stores the parameters and local variables

in the procedure.

When a “ENTER” in the intermediate code which means a procedure call

occurs, the frame register for the callee has to be set up immediately.

There are several steps to be fulfilled when setting up a frame register as

discussed in the earlier chapters. Normally, to set up a frame register, the

number instructions are consumed can be stated as: 32 + 2 * (number of

parameters + number of local variables). It means that to set up a frame

register for a procedure, at least 32 instructions (the procedure consists of

no parameters and local variables) are used in a SAFA program.

Chapter 5 Results on SAFA Design 58

To set up frame registers for procedures, a “penter” instruction is delivered

to the assembler, and the assembler generates the SAFA instructions that

are required. According to the definition of SAFA, for all procedures,

except main procedure, before entering to run the procedures, the

information of the frame registers that are used to store the procedures

must be created proactively in the main procedure.

The overheads for setting up frame registers are most related to

parameters and local variables that the procedures have. For each

parameter or local variable, two more instructions will be consumed in the

SAFA program.

Changing of frame register occurs when the program needs to switch from

one frame register to another, e.g. a function call occurs in the main

function in the C program, e.g. LCG(array,n,1277,0,131012);. It will lead to

a serial of activities and the current frame register will be modified to

LCG’s to continuing running. Typically, to modify frame register, several

instructions will be involved:

• Store the information on the stack to current frame

• Set current frame register to own frame register

These two activities are fulfilled by two instructions in SAFA program. The

overhead for changing frame register is two instructions.

Chapter 5 Results on SAFA Design 59

5.1.2 Modifying Frame Register

The most representative operation of modifying frame register is the

activities that happen on elements in array, e.g. insert element, modify

element, etc. As discussed in the previous chapter, the array in SAFA is

implemented by frame register. The frame register that is assigned to store

array information is set up in the procedure when it is defined. To insert

new elements into an array, the following activities will be involved:

• Set current frame number

• Store frame stack to current index

• Store element to memory

• Set current frame to own

Four SAFA instructions are consumed to achieve the activities above.

These instructions insert the element into the array, which will lead to

modify the frame register.

For comparison, Java’s stack is used to store parameters and results of

bytecode instructions, to transfer parameters to and return values from

methods, and to keep the state of each method invocation. The state of a

method invocation is called its stack frame. The vars, frame, and optop

registers point to different parts of the current stack frame.

There are three sections in a Java stack frame: the local variables, the

execution environment, and the operand stack. The local variables section

contains all the local variables being used by the current method

Chapter 5 Results on SAFA Design 60

invocation. It is pointed to by the vars register. The execution environment

section is used to maintain the operations of the stack itself. It is pointed to

by the frame register. The operand stack is used as a work space by

bytecode instructions. It is here that the parameters for bytecode

instructions are placed, and results of bytecode instructions are found. The

top of the operand stack is pointed to by the optop register [24].

Although there are some differences between Java bytecode and SAFA

instructions, some of the mechanism is still the same. Compared to those

in Java, setting-up, changing and modifying frame registers in SAFA

nearly need the same overheads.

5.1.3 Array

SAFA has a special mechanism to deal with array as described in the

previous chapter. The information that needs to store in the frame register

consists of index, interval, base, limit and size. When creating an array,

the information that should provide to the frame register is the base, size

and limit of the array which cost three words. Normally, array is stored as

just a pointer in the programming language in C, which consumes just 1

word.

Although the implementation of array in SAFA needs more hardware

space, it brings much benefit:

The hardware knows the upper bound of array. The limit sector in defining

an array in SAFA can tell how big the array can be. This is of a significant

Chapter 5 Results on SAFA Design 61

differentiation from C. In SAFA, the upper bound of an array is stored in

hardware level. When the upper bound of the array reaches, an overflow

warning feedback will be returned. Additionally, the enquiry of the size of

the array is also straightforward.

The size of the elements is stored in hardware level in SAFA machine. By

the mechanism, the frame register for storing the array information can

proactively assign enough space for the array. In C, the array is

represented as pointer and the space for storing array is created at

runtime, which means, unless an operation on the array comes, the array

will always be presented as a pointer, no matter the space for the array is

ready or not. If the memory of the machine is not big enough, the problem

of overflow will occurs if there is no enough space for storing the array. In

SAFA the problem is much easier to handle, because the space of the

array is set up when it is created.

5.2 Context-Sensitive Frame Register

Considering SAFA design, the objective of frame registers is to use frame

registers frequently with relatively wasting little effort in managing them,

which can also be stated as a context-sensitive frame register design.

Each current context is used for extended periods and resetting the

context occurs naturally [2]. A more practical statement of the idea is

when the operation which leads to the change of frame register for

processing, the change of frame register occurs, and when the operation

Chapter 5 Results on SAFA Design 62

is fulfilled the current frame register will automatically point back to the

original frame register.

The significant benefit of the context-sensitive design is that the cost of

switching from one frame register to another is highly decreased. An

obvious example is to multiply two arrays which are of the same size and

store the result in the first array. Suppose we have two arrays each of

which has 100 elements. The C program to solve the problem is shown

below (Figure 5-1).

void LCG(int ia[], int n, int a, int c, int m)
{
 int i,seed=1;

 for (i = 0; i < n; i++){
 seed = (a*seed + c) % m;
 ia[i] = seed;
 }}
void main()
{
 int array1[100], array2 [100], i;
 LCG(array1,100,16807,0,214748);
 LCG(array2,100,1277,0,131012);

for (i = 0; i < 100; i++) array1[i] =array[1]*array[2];

}

Figure 5-1 Sample C Program for Context-Sensitive Frame Register

To discuss the mechanism clearly, we use the SAFA assembly code

(Figure 5-2) for further discussion.

PROC LCG 5 2 //Procedure LCG
SAVEFRM 5 x58 //Save frame at address x58
ibload x24
loadnextfrm
cfset4
cfinfostore

Chapter 5 Results on SAFA Design 63

cfsetown
ibload 1
cfb_wstore x34
ibload 0
cfb_wstore x38
loop: cfb_wload x38
cfb_wload x30
ige
iftrue end
cfb_wload x34
cfb_wload x44
imul
cfb_wload x38
iadd
cfb_wload x3c
idiv
dup
cfb_wstore x34
cfb_wload x38
cfset5
idxstore
frstore5
pop
cfsetown
cfb_wload x38
inc
cfb_wstore x38
goto loop
end: RESTOREFRM 5 x58
exit 1,2

PROC main 0 3 //procedure main
ibload 100
cfb_wstore x24
cfb_wload x24
ibload 4
newarray //create array1
cfset4 //use frame register 4
cfinfostore
cfsetown
cfb_wload x24
ibload 4
newarray //create array2
cfset5 // use frame register 5
cfinfostore
cfsetown
iblod 0
cfb_wstore x50
ibload 1
cfb_wstore x54
cfset4 //array1
cfinfoload
cfbload x24
iwload 16807

Chapter 5 Results on SAFA Design 64

ibload 0
iwload 214748
penter 3,LCG //enter procedure LCG
cfset5 //array2
cfinfoload
cfb_wload x24
ihwload 1277
ibload 0
iwload 131012
penter 3,LCG //enter procedure LCG
loop: cfb_wload x40 //loop for multiplying array1 and array2
cfb_wload 24
dec
ige
iftrue end
cfbload x50
cfset5
idxstore
frload5
cfsetown
cfb_load x50
cfset4
idxstore
frload4
cfsetown
imul
idxstore
frstore4
pop
cfsetown
cfb_wload x50
inc
cfb_wstore x50
goto loop
end: halt

Figure 5-2 SAFA Assembly Code for Context-Sensitive Frame Register

As we can see from the example, in each iteration the elements in the two

arrays are multiplied and the result is stored in array1. There’s no need to

set the frame register back to array1 for preceding the actions. This

mechanism saves nearly half of the running cost of the program. To make

comparison to the program that with the context-sensitive frame register

mechanism, we put an instruction particularly to set the frame register

back. Further more, we compare the time with the same program that is

running in GCC and same function program in a static JVM (with javac

Chapter 5 Results on SAFA Design 65

execution). We have the result as shown in Figure 5-3. The result is based

on average.

Running Time

0
200
400
600
800

1000
1200
1400
1600
1800

Context-
Sensitive

Frame
Register
(SAFA)

Non Context
Sensitive

Frame
Register
(SAFA)

GCC JVM

Figure 5-3 Cost Comparison (milliseconds)

Clearly, without the context-sensitive frame register mechanism, the

operations among frame registers will cost much time on setting up,

loading, saving frame register information and switching among frame

registers. Comparing the two context we set for the comparison within

SAFA, the cost saving is distinguishably obvious.

The objective of SAFA that each current context is used for extended

periods and resetting the context occurs naturally is proved to be achieved.

Further discussion will be covered in the subsequent chapters.

The results we get here compared to JVM and GCC will be further

discussed in the next chapter.

Chapter 6 Performance Evaluation of C to SAFA Compiler 66

Chapter 6

Performance Evaluation of C to SAFA Compiler

In this chapter, we firstly give a sample of C to SAFA compiler by giving a

problem which is solved by a C Language program, and giving the

assembly code, as well as the SAFA program generated.

Regarding the performance evaluation, we give some programs that are

compiled by C to SAFA compiler, based on which the performance of the

compiler will be demonstrated.

6.1 A Practical Sample of C to SAFA Compiler

6.1.1 Source Program – C Language Program

The C program for solving the Sieve Algorithm is shown in Figure 6-1.

void Sieve(int ia[], int n)
{
 int i,curPrime,mul;
 for (i = 0; i < n; i++)
 ia[i] = 1;
 curPrime = 2;

while (curPrime < n)
{

 for (mul = curPrime*2; mul < n; mul+=curPrime)
 ia[mul] = 0;
 curPrime++;
 while (curPrime < n){
 if (ia[curPrime] != 0)
 break;
 curPrime++;}

}
}
void main()
{

int n,i;
n=10

 int ia [10];
 Sieve(ia,n);

for (i = 2; i < n; i++)

Chapter 6 Performance Evaluation of C to SAFA Compiler 67

{
 if (ia[i] != 0)
 printf (" %d",i," ");
 }
}

Figure 6-1 C Program for Sieve

The C program has two functions, which are main and sieve. The main

function is the compulsory function of a C program. The function sieve is

the implementation of the algorithm. Additionally, the sieve function is

called in the main function.

6.1.2 Assembly Code

Before generating the SAFA program, we get the assembly code as

shown in Figure 6-2. Clearly, we can see the two procedures in the

assembly code, which are corresponding to the two functions in the C

program.

 PROC Sieve 2 3 //Procedure Sieve with two parameters and three local
 variables
 SAVEFRM 4 x40 //save stack frame (address x40)
 RESTOREFRM 4 x24 restore frame stack (address x24)
 ibload 0 //load 0
 cfb_wstore x34 //store word (address x34)
 ibload 2 //load 2
 cfb_wstore x38 //store word (address x38)
forLoop: //for Loop
 cfb_wload x34 //load word (address x34, actually this is load the
 value of n in C)
 cfb_wload x30
 ige //greater or equal
 iftrue whileLoop //if true go to whileLoop
 cfb_wload x34
 cfset4 //set current frame No. 4
 idxstore store frame stack to current frame index
 ibload 1 //load 1

frstore4 //store element to memory, this is to put the value in the
 corresponding element in the array

 cfsetown //set current frame to own
 cfb_wload x34
 inc

Chapter 6 Performance Evaluation of C to SAFA Compiler 68

 cfb_wstore x34
 goto forLoop //go back to forLoop
whileLoop: cfb_wload x38 //while loop
 cfb_wload x34 //load (address x24, value is n)
 ige
 iftrue end
 cfb_wload x38
 ibload 2
 imul //multiply
 cfb_wstore x3c
innerFor: //for loop in the while loop
cfb_wload x3c
 cfb_wload x34
 ige
 iftrue innerForEnd
 cfb_wload x3c
 cfset4
 idxstore
 ibload 0
 frstore4
 cfsetown
 cfb_wload x3c
 cfb_wload x38
 iadd
 cfb_wstore x3c
 goto innerFor
innerForEnd: cfb_wload x38
 inc
 cfb_wstore x38
innerWhile: //while loop in the while loop
cfb_wload x38
 cfb_wload x24
 ige
 iftrue whileLoop
 cfb_wload x38
 cfset4
 idxstore
 frload4
 cfsetown
 ifne whileLoop
 cfb_wload x38
 inc
 cfb_wstore x38
 goto innerWhile
end: RESTOREFRM 4 x40 //restore the stack frame (address x40)

exit 1,2

PROC main 0 3 //main procedure
 ibload 10 //load 10
 dup //duplicate the element on the top of the stack
 cfb_wstore x24 //store word (address x24)
 ibload 1
 newarray //create new array
 cfset4 //set current frame No 4. (this is for storing the information of array)

Chapter 6 Performance Evaluation of C to SAFA Compiler 69

cfinfostore // Store information on stack into current frame
 cfinfoload //load information from frame addressed from stack
 cfsetown //set current frame to own
 cfb_wload x24 //load word (address x24)

penter 3,Sieve //enter procedure Sieve (the parameters for Sieve are array
 and n which are load in the last three instructions)

 halt //Terminate program

Figure 6-2 SAFA Assembly Program for Sieve

6.1.3 Target Program – SAFA Program

Processed by SAFA assembler, the assembly code is generated into

SAFA program (Figure 6-3).

The SAFA program consists of three procedures. “5A FA” represents it is a

SAFA program. There are “02” procedures in the program. The size of the

three procedures is “00 38”, and “00 89” respectively. The first procedure

is corresponding to the main function in the C program (the main

procedure is always put in the first place in a SAFA program), while the

second is corresponding to the sieve function in the C program.

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 6-3 SAFA Program for Sieve C Program

In the first procedure, the value of n (=10) is loaded by “42 0A”. “D0 2D 24”

is to duplicate the value of n and store it at address x24. “B1” is for

Chapter 6 Performance Evaluation of C to SAFA Compiler 70

creating a new array. Then the current frame is set to No. 4, the

information on the stack is stored to the current frame (No. 4) (“3C”. After

loading information from frame addressed from stack (“3E”), the current

frame is set to own frame (“2B”). The value of n is loaded by “2C 24” from

the address that is just stored. The two parameters that the procedure

Sieve need are ready now, which are the array and the value of n. Then

the stack frame for the procedure Sieve is established by the left

instructions before the entering of the procedure (“B0” in the 4th row”). “E0”

represents halting the program. From “00 89” in the 4th row are the

instructions for procedure Sieve in the C program. “B0” in Line 13 means

exit the procedure.

6.2 Applications

To measure floating-point and arithmetic performance, we select the C

version of the Linpack benchmark [29]. Linpack is a collection of

subroutines that analyze and solve linear equations and linear least-

squares problems. We employ a simplified Linpack to perform the test for

C to SAFA compiler. The source code for the applications is in Appendix B.

Referring the six tests which is widely used and is contained in the

CaffeineMark for Java, we do the same test for C to SAFA compiler.

However, the test is for Java, and we select four of them and develop the

C program for each test. The four tests include:

Sieve: The canonical sieve algorithm, which is to solve problem on prime

numbers.

Chapter 6 Performance Evaluation of C to SAFA Compiler 71

Loops: Uses sorting and sequence generation to measure compiler

optimization of loops. We select quick sort and bubble sort as the testing

program.

Method: Execute recursive function calls to evaluate method invocation

efficiency. We select Fibonacci and Hanoi problems as the test involved.

String: Performs basic string manipulations. We select the classical Knuth-

Morris-Pratt string matching algorithm to develop a C program to fulfill this

test.

6.3 Evaluation Methodology

The test is performed on a 1.8GHz Pentium 4 running Cygwin on Windows

XP with 512MB RAM. This platform allows us to run the gcc, lcc, java

runtime and C to SAFA compiler.

We obtain the test results by running the same C program in gcc and C to

SAFA compiler and the corresponding program in JVM. Although the

source program for running in JVM is Java program, we try to write the

programs in static form which are quite similar to the C program. JVM is a

stack architecture machine and Java byte code is relatively quite similar to

SAFA code, which is the reason why we select JVM as a candidate to

make comparison with C to SAFA compiler.

Chapter 6 Performance Evaluation of C to SAFA Compiler 72

6.4 Evaluation of Target Code Size

We run the seven test programs on the environment presented in the

previous section to gather the information for the target code size.

C to SAFA

Compiler
GCC JVM

Linpack 2065 13200 3800

Sieve 201 3670 1009

Bubble Sort 321 3510 949

Quick Sort 486 3660 1240

Fibonacci 151 2650 351

Hanoi 162 3580 987

KMP 277 4520 1578

Figure 6-4 Code Size Comparison among Compilers (bytes)

0

2000

4000

6000

8000

10000

12000

14000

Lin
pac

k
Siev

e

Bub
ble

 Sort

Quic
k S

ort

Fibo
nac

ci
Hano

i
KMP

C to SAFA Compiler GCC JVM

Figure 6-5 Comparison of Code Size among Compilers (bytes)

Chapter 6 Performance Evaluation of C to SAFA Compiler 73

From a generally view of the comparison figure (Figure 6-5) target code

size (in bytes) of gcc (without optimization), which can be a representative

of general purpose register machines, is of the worst code size. Among

the target code size of each machine, the target code size of gcc is of

much more code size than that in C to SAFA compiler and in JVM. The

result reflects the specialty of concise target code size of stack

architectures as referred in the early chapter.

However, compared to JVM, which generates Java bytecode as the target

code, C to SAFA compiler has a better performance which is generally,

one third of the target code size compared to the target code generated by

JVM. We have a promising result on the target code size, because the

comparison between two stack architecture based machine are more

reasonable. Compared to JVM, SAFA has some special features that help

it on its better performance on code size, such as the support for high level

programming, the design of frame register and context-sensitive. Anther

issues can be considered is that Java is relatively more complicated a

language compared to SAFA and the compilation produces some

additional codes for some of its special features, such as its methods,

objects, etc. Although the factors of differentiation on source program and

the including of libraries for Java programs have influences on the result,

the distinguished disparity is still presented.

Chapter 6 Performance Evaluation of C to SAFA Compiler 74

6.5 Evaluation of Compilation Performance

The time referred in Figure 6-6 represents the comparison of performance

of among C to SAFA compiler, GCC and JVM. The time which is tested on

JVM is based on javac command to compile the source code. The time (in

milliseconds) which is tested for C to SAFA compiler and gcc are all based

on a full compilation process. The time consists of system time and user

time. Since GCC, C to SAFA compiler and JVM generate target code for

different types of machines, we do comparison in two dimensions, which

are the comparison between general purpose register machines and stack

architecture based machines, and the comparison between JVM and C to

SAFA compiler, which are both stack based architecture based machines.

C to SAFA

Compiler
GCC JVM

Linpack 6200 3200 5800

Sieve 2500 540 3900

Bubble Sort 1000 600 1200

Quick Sort 1300 780 1600

Fibonacci 2800 370 2500

Hanoi 2900 680 3200

KMP 3800 900 3900

Figure 6-6 Compilation Performance Comparison among Compilers (milliseconds)

Chapter 6 Performance Evaluation of C to SAFA Compiler 75

0

1000

2000

3000

4000

5000

6000

7000

Linpack Sieve Bubble
Sort

Quick
Sort

Fibonacci Hanoi KMP

C to SAFA Compiler GCC JVM

Figure 6-7 Compilation Performance Comparison among Compilers (milliseconds)

Comparing the performance of GCC with C to SAFA compiler and java on

JVM, we have some indications on differentiation of the performance

between register machine and stack architecture based compilers:

1. Increased Memory Use

Stack Architecture based programs use much more memory of

comparable C++ programs to store the data. The transformation of

information between memory and stack is very frequent due to the

mechanism of the stack architecture. A larger memory footprint increases

the probability that parts of the program will be swapped out to the disk.

And swap file usage kills the speed like nothing else.

One of the significant benefits of GCC is memory locality. Newly allocated

memory is adjacent to the memory recently used, and it is more likely to

already be in the cache. One rather dated (1993) example shows that the

Chapter 6 Performance Evaluation of C to SAFA Compiler 76

cache missing can be big cost: changing an array size in small C program

from 1023 to 1024 results in 17 times slower. Although the effect is not

that bad normally, with processor speeds increasing faster than memory,

missing cache is probably an even bigger cost.

SAFA’s context-sensitive frame registers try to achieve better performance

by using frame registers frequently but waste little effort in managing them,

in the hope that each current context is used for extended periods and re-

setting the context occurs naturally.

2. Time Consumption in Compiling Processes

In the compilation process, the allocation of stack frames, the maintenance

of frame registers, as well as the cooperation with SAFA assembler cost

much time in C to SAFA complier. And regarding JVM, Java program’s

startup is rather slow. As a java program starts, it unzips the java libraries

and compiles parts of itself, so an interactive program can be sluggish for

the first couple seconds of use.

3. Lack of Optimization

Optimization of stack machine code received quite a little attention among

the techniques of compiler. Little work has been done upon the intra block

optimization. Global optimization is quite hard for a stack machine code

because modern stack architecture machines are designed to operate the

machine code based on procedures/ blocks, which makes it difficult to be

optimized globally.

Chapter 6 Performance Evaluation of C to SAFA Compiler 77

The comparison between C to SAFA compiler and JVM is more

reasonable on the compilation performance. Because GCC and the two

are of different architecture that the compilation processes are quite

different, the comparability is not that high. C to SAFA compiler and JVM

are both stack architecture based and the target codes of the both two are

bytecode format.

As we can get from Figure 6-6, the performance of C to SAFA compiler is

relatively higher than JVM in most cases. C to SAFA compiler has less

optimization processes than JVM, this may be one of the most important

reason why the performance is presented better than JVM, because more

processes of optimization lead to more analysis and checks of the codes

during the compilation, where SAFA does less than JVM. Anther issue that

can be considered is the source code. The JAVA source code is relatively

more complicated than C source code. Although we try to develop all the

functions in the programs for testing in Java static, the including of libraries,

etc and the initialization of the compilation cost more time.

6.6 Evaluation of Target Code Running Time

To evaluate the execution time of the target code size, we run the same

test for both SAFA code and Java byte code. Regarding the results we get

as shown in Figure 6-8 and Figure 6-9, it suggests that the execution time

of target code on emulated SAFA is slightly better that that of JVM. The

result shows the promising result of SAFA and SAFA code.

Chapter 6 Performance Evaluation of C to SAFA Compiler 78

 C to SAFA Compiler JVM

Linpack 2100 2250

Sieve 850 1050

Bubble Sort 200 300

Quick Sort 200 350

Fibonacci 450 600

Hanoi 550 550

KMP 750 800

Figure 6-8 Running Time Comparison (milliseconds)

0

500

1000

1500

2000

2500

Linpack Sieve Bubble
Sort

Quick
Sort

Fibonacci Hanoi KMP

C to SAFA Compiler JVM

Figure 6-9 Running time Comparison (milliseconds)

Consequently, the compilation performance of C to SAFA compiler is

promising. There are three issues that add value of the good performance:

• Hand-written lexical analyzer and syntax analyzer: The hand written

lexical analyzer and syntax analyzer which are based on LCC save

Chapter 6 Performance Evaluation of C to SAFA Compiler 79

much time for the compilation. A non-satisfactory lexical analyzer will

cost half of the compilation time of the compiler [7].

• The good intermediate code which is relatively the similar to the

assembly code: The intermediate code that is generated by C to SAFA

compiler is quite similar to the SAFA assembly code not only on

mechanism but also on format. This makes the generation from

intermediate code to assembly code straightforward. The cooperation

of the two phases has quite positive influence.

• The usage of special structures and mechanism within intermediate

code generation: The several special structures that are to recode the

necessary information for not only intermediate code generation but

also the transformation of necessary information to the assembler

makes the compiler more effective.

Chapter 7 Conclusion 80

Chapter 7

Conclusion

7.1 Conclusion of C to SAFA Compiler

With concentrating on various aspects of compilation related topics, our

work has ranged far and focused on design and implementation of C to

SAFA Compiler which is to compile C program to corresponding SAFA

program.

The thesis works is initiated with splitting the compiler into front end and

back end after considering the common compilation techniques and the

situation of C to SAFA compiler. However, we decided to put the

intermediate code in the back end of the compiler because of its high

dependency on the mechanism of target machine, SAFA. The front end of

C to SAFA compiler is designed and implemented based on LCC which is

presented in reference [7] after considering the performance of the

compiler. The back end of the compiler is designed and implemented

completely based on the requirement of SAFA instructions and program

operation mechanism. We demonstrate some structures that are specially

designed for C to SAFA compiler to serve for the compiler to fulfill the

intermediate code generation. Further more, the stack scheduling is

employed as the intermediate code optimization methodology and is

proved to improve the code quality. The correspondence of the

intermediate code and SAFA assembly code is very tight and drives us a

very good opportunity to generate the intermediate code into the assembly

code very sufficiently and conveniently. The SAFA program is

Chapter 7 Conclusion 81

consequently generated after processed by the SAFA assembler. The

SAFA program we generate is proved to be correct. The performance of

the compiler is presented in the last chapter of the thesis. Compared to a

Java compiler and a C compiler, the C to SAFA compiler shows a

promising performance.

7.2 Future Work

We have given a sufficient implementation of C to SAFA compiler.

Although we have acquired some achievements, we still need to

consummate it. In the future the following efforts may be further taken into

thoughts:

1. SAFA has a special design on dealing with record array. The idea is to

implementing the record array in the frame register and dealing with

special instructions. E.g., to visit a record in the array, it is can achieve

by visiting the base and interval of the index; to visit an element in a

special record, it is can achieve by loading the base, interval and offset

without changing any other information. This mechanism makes the

implementation of record array very convenient. However, it is hard to

use compiler to compile effective SAFA instructions for this mechanism.

2. The optimization methodology is based on the idea of stack scheduling.

An improved stack machine code optimization method, which is based

on the Optimal DAG scheduling [21], may be considered to employ.

However, there are some drawbacks in this method that is difficult to

be implemented on C to SAFA compiler.

Chapter 7 Conclusion 82

3. Another idea that can be considered is to compiler the Java code into

SAFA code. There are two alternatives:

Based on the structure in this paper to compile the Java code into SAFA

assembly code and let the SAFA assembler compile the target code.

However, there are some difficulties because Java is an object-oriented

language. If the Java program is static based, the compilation is very

similar to C to SAFA compiler. But, if the Java program has objects, further

consideration has to be taken.

Another idea is to write a cross-assembler to compile the Java assembly

code into SAFA assembly code. This can be seen as a better alternative,

because with Java compiler, it is easy to compiler the Java code into Java

assembly code, and with SAFA assembler, it is easy to compiler the SAFA

assembly code into SAFA code. To connect the serious of actions together,

it may be a better solution to compile the Java program into SAFA

program.

Bibliography
83

Bibliography

[1] Philip J. Koopman, Jr., Stack Computers: The New Wave, pages 15-

48, P. Koopman/ Ellis Horwood Limited, 1989

[2] Yuen Chung Kwong, The Virtual Register Mapping Problem: Can We

Combine Superscalar And EPIC Ideas?, National University of

Singapore, 2000, http://www.comp.nus.edu.sg/~yuenck/stack

[3] Soo Yuen Jien, PhD Dissertation, National University of Singapore,

2004

[4] Henk Alblas and Albert Nymeyer, Practice and Principles of Compiler

Building with C, pages 4-5, Prentice Hall, 1996

[5] Daniel L. Miller, Stack Machines and Compiler Design, Byte

Magazine, pages 177-185, April, 1987

[6] John L. Hennessy, David A. Patterson, David Goldberg, Computer

Architecture: A Quantitative Approach, 3rd Edition, pages 23-92, San

Francisco, Morgan Kaufmann Publishers, 2002

[7] Christopher Fraser, David Hanson, A Retargetable C Compiler for

ANSI C, ACM SIGPLAN Notices, Volume 26, No. 10, 1991

[8] Dick Grune, Henri E. Bal, Ceriel J.H., Jacobs & Koen G. Langendoen,

Modern Compiler Design, pages 79-98, John Wiley &Sons, 2000

[9] Christopher Fraser, David Hanson, A Retargetable C Compiler:

Design and Implementation, The Benjamin/Cummings Publishing

Company, Inc., 1995

[10] W. M. Waite, The Cost of Lexical Analysis, Software: Practice &

Experience, 16 (5): pages 473-488, 1986

http://www.comp.nus.edu.sg/~yuenck/stack

Bibliography
84

[11] C. W. Fraser, D.R. Hanson, A Code Generation Interface for ANSI C,

Software: Practice & Experience, 1991

[12] Martine Maierhofer, M. Anton Ertl, Optimizing Stack Code, Forth-

Tagung 1997, Ludwigshafen, 1997

[13] Kyle Hayes, Parrot Virtual Machine and Register vs. Stack Machines,

http://lists.tunes/org, 2002

[14] Philip Koopman, Jr., A Preliminary Exploration of Optimized Stack

Code Generation, Journal of Forth Applications and Research, 6(3)

pages 241-251, 1994

[15] J. L. Bruno, T. Lassagne, The Generation of Optimal Code for Stack

Machines, Journal of the Association for Computing Machinery, Vol.

22, No. 3, pages 382-396, July 1975

[16] John Aycock, Converting Python Virtual Machine Code to C,

University of Victoria, 2000,

http://www.foretec.com/python/workshops/1998-

11/proceedings/papers/aycock-211/aycock211.html

[17] Nisan, Schocken, The Elements of Computing Systems, pages 128-

134, MIT Press, 2003

[18] M. Anton Ertl, Christian Pirker, The Structure of a Forth Native Code

Compiler, EuroForth’97 Conference Proceedings, pages 107-116,

1997

[19] M. Anton Ertl, Martin Maierhofer, Translating Forth to Efficient C,

EuroForth’95 Conference Proceedings, 1995

[20] Philip Koopman, Usenet Nuggets, Why Stack Machines?, Computer

Architecture News, Vol. 21, No.1, March 1993

http://lists.tunes/org
http://www.foretec.com/python/workshops/1998

Bibliography
85

[21] Mark Smotherman, Sanjay Krishnamurthy, P.S. Aravind,, David

Hunnicutt, Efficient DAG Construction and Heuristic Calculation for

Instruction Scheduling, Proceedings of the 24th Annual International

Symposium on Microarchitecture, ACM Press, pages 93-102,

Albuquerque, New Mexico, Puerto Rico, 1991

[22] Hayes J., An Interpreter and Object Code Optimizer for a 32 Bit Forth

Chip, 1986 FORMAL Conference Proceedings, pages 211-221, 1986

[23] Sun Micosystem Computer Company, The Java Virtual Machine

Specification, 1995

[24] Bill Venners, The Lean, Mean Virtual Machine: The Basic Structure

and Functionality of the Java Virtual Machine, Java World Magazine,

May, 1996

[25] Andreas Krall, Efficient JavaVM Just-in-Time Compilation,

International Conference on Parallel Architectures and Compilation

Techniques, 1998

[26] Bruno J., Lassage T., The Generation of Optimal Code for Stack

Machines, JACM, July 1975, pages 382-396, 1975

[27] Couch J., Hamm T., Semantic Structures for Efficient Code

Generation on a Stack Machine, Computer, May 1977, 10(5), pages

42-48, 1977

[28] Performance of Various Computers Using Standard Linear Equations

Software”, Jack Dongarra, University of Tennessee, Knoxville TN,

37996, Computer Science Technical Report Number CS - 89 – 85,

2005

Appendix A: SAFA Instruction Set 86

Appendix A: SAFA Instruction Set

OpCode Pop Push Usage
************************** Frame Registers Instruction ******************************
<0x00> + 0 0 0 0x00 - 0x07 Set Current Frm No.
....
<0x07> + 0 0 0
<0x08> + 0 0 0 0x08 - 0x0f Compare current idx with idx
....
<0x0f> + 0 0 0
<0x10> + 0 0 1 0x10 - 0x17 Load Element to Stack
(base+idx*size)
....
<0x17> + 0 0 1
<0x18> + 0 1 0 0x18 - 0x1f Store Element to Memory (frm xxx)
....
<0x1f> + 0 1 0
<0x20> + 0 0 0 0x20 Add curent frma inc to idx
<0x21> + 0 0 1 0x21 cmp idx to limit (idx -limit)
<0x22> + 0 0 0 0x22 subtract cur frame inc frm idx
<0x23> + 0 1 0 0x23 store frm stack to current idx
<0x24> + 0 0 1 0x24 load current frm idx to stack
<0x25> + 0 0 1 0x25 load current frm no to stack
<0x26> + 0 0 1 0x26 load previos frm no.
<0x27> + 0 0 0 0x27 switch current and prev frm no.
<0x28> + 0 0 0 0x28 set cur to global
<0x29> + 0 0 0 0x29 set cur to caller
<0x2a> + 0 0 0 0x2a set cur to host
<0x2b> + 0 0 0 0x2b
<0x2c> + 1 0 1 0x2c load word to stack, cur base+byte
<0x2d> + 1 1 0 0x2d store word, cur base+ byte
<0x2e> + 2 0 1 0x2e load word to stack, cur base+hword
<0x2f> + 2 1 0 0x2f store word, cur base+hword
<0x30> + 4 0 0 0x30 change to new base, clear idx
<0x31> + 4 0 0 0x31 change to new base, idx = limit
<0x32> + 2 0 0 0x32 add halfword to cur base
<0x33> + 1 0 0 0x33 add byte to cur base
<0x34> + 0 2 0 0x34 stack a new frame
<0x35> + 0 0 0 0x35 pop frm
<0x36> + 0 0 0 0x36 chain frm (get new base frm base+B)
<0x37> + 0 0 0 0x37 chain frm (get new base frm base+H)
<0x38> + 0 0 0 0x38 load next frm base to stack
<0x39> + 0 0 0 0x39 load new frm base (current frm to stack)
<0x3a> + 0 0 3 0x3a Load cur frm info to stack
<0x3b> + 0 0 0 0x3b "", set idx = 0
<0x3c> + 0 3 0 0x3c Store info on stack into cur frm
<0x3d> + 0 2 0 0x3d ", idx = limit
<0x3e> + 0 0 0 0x3e load info from frm addressed from stack
<0x3f> + 0 0 0 0x3f make frm using frm info on stack
************************** Load/Store to Stack Instruction *****************************
<0x40> + 0 0 1 0x40 LDI False
<0x41> + 0 0 1 0x41 LDI True
<0x42> + 1 0 1 0x42 LDI B, leading 0

Appendix A: SAFA Instruction Set 87

<0x43> + 1 1 1 0x43 LDI B, no change
<0x44> + 2 0 1 0x44 LDI H, leading 0
<0x45> + 2 1 1 0x45 LDI H, no change
<0x46> + 4 0 1 0x46 LDI W
<0x47> + 8 0 2 0x47 LDI DW
************************** Load/Store to Memory Instruction ***************************
<0x48> + 4 0 1 0x48 - 0x4b Load from full address
<0x49> + 4 0 1 Size : B,H,W,DW
<0x4a> + 4 0 1
<0x4b> + 4 0 1
<0x4c> + 4 1 0 0x4c - 0x4f Store to full address
<0x4d> + 4 1 0 Size : B,H,W,DW
<0x4e> + 4 1 0
<0x4f> + 4 1 0
************************** Integer Arithmetic Instruction ********************************
<0x50> + 0 2 1 0x50 Add Integer Word
<0x51> + 0 4 2 0x51 Add Integer Double Word
<0x52> + 0 2 1 0x52 Sub Integer Word
<0x53> + 0 4 2 0x53 Sub Ingeger Double Word
<0x54> + 0 2 2 0x54 Mul Word => Double Word
<0x55> + 0 2 2 0x55 Div Word => quotient,remainder
<0x56> + 0 1 1 0x56 Increment
<0x57> + 0 1 1 0x57 Decrement
************************** Integer Comparison Instruction ******************************
<0x58> + 0 2 1 0x58 EQUAL
<0x59> + 0 2 1 0x59 NT EQUAL
<0x5a> + 0 2 1 0x5a GREATER
<0x5b> + 0 2 1 0x5b LESSER
<0x5c> + 0 2 1 0x5c GREATER R EQUAL
<0x5d> + 0 2 1 0x5d LESSER R EQUAL
<0x5e> + 0 2 1 0x5e SAME SIGN
<0x5f> + 0 2 1 0x5f DIFF SIGN
************************** Float Arithmetic Instruction **********************************
<0x60> + 0 2 1 0x60 Add Float Word
<0x61> + 0 4 2 0x61 Add Float DWord
<0x62> + 0 2 1 0x62 Sub Float Word
<0x63> + 0 4 2 0x63 Sub Float Dword
<0x64> + 0 2 1 0x64 Mul Float Word
<0x65> + 0 4 2 0x65 Mul Float DWord
<0x66> + 0 2 2 0x66 Div Float Word
<0x67> + 0 4 2 0x67 Div Float DWord
************************** Float Comparison Instruction ********************************
<0x68> + 0 2 1 0x68 EQUAL
<0x69> + 0 2 1 0x69 NT EQUAL
<0x6a> + 0 2 1 0x6a GREATER
<0x6b> + 0 2 1 0x6b LESSER
<0x6c> + 0 2 1 0x6c GREATER R EQUAL
<0x6d> + 0 2 1 0x6d LESSER R EQUAL
<0x6e> + 0 2 1 0x6e SAME SIGN
<0x6f> + 0 2 1 0x6f DIFF SIGN
<0x70> + 0 4 1 0x70 DW Equal
<0x71> + 0 4 1 0x71 DW Not Equal
<0x72> + 0 4 1 0x72 DW Greater
<0x73> + 0 4 1 0x73 DW Lesser

Appendix A: SAFA Instruction Set 88

<0x74> + 0 4 1 0x74 DW Greater or Equal
<0x75> + 0 4 1 0x75 DW Lesser or Equal
<0x76> + 0 4 1 0x76 DW Same Sign
<0x77> + 0 4 1 0x77 DW Diff Sign
<0x78> + 0 4 2 0x78 DW integer divide
************************** Boolean peration Instruction *******************************
<0x79> + 0 1 1 0x79 NEG INT (2s Complement)
<0x7a> + 0 2 1 0x7a AND
<0x7b> + 0 2 1 0x7b R
<0x7c> + 0 2 1 0x7c R
<0x7d> + 0 2 1 0x7d EQ
<0x7e> + 0 1 1 0x7e INVERT
<0x7f> + 0 2 1 0x7f MASK
************************** Branch/Flow Control Instruction *****************************
<0x80> + 1 1 0 0x80 BR F + byte offset
<0x81> + 1 1 0 0x81 BR T + byte offset
<0x82> + 2 1 0 0x82 BR F + halfword offset
<0x83> + 2 1 0 0x83 BR F + halfword offset
<0x84> + 1 1 0 0x84 BGT int
<0x85> + 1 1 0 0x85 BGT double int
<0x86> + 1 1 0 0x86 BLT int
<0x87> + 1 1 0 0x87 BLT double int
<0x88> + 1 1 0 0x88 BGE int
<0x89> + 1 1 0 0x89 BGE double int
<0x8a> + 1 1 0 0x8a BLE int
<0x8b> + 1 1 0 0x8b BLE double int
<0x8c> + 1 1 0 0x8c BEQ int
<0x8d> + 1 1 0 0x8d BEQ double int
<0x8e> + 1 1 0 0x8e BNE int
<0x8f> + 1 1 0 0x8f BNE double int
<0x90> + 0 0 0 0x90
<0x91> + 0 0 0 0x91
<0x92> + 0 0 0 0x92
<0x93> + 0 0 0 0x93
<0x94> + 0 0 0 0x94
<0x95> + 0 0 0 0x95
<0x96> + 0 0 0 0x96
<0x97> + 0 0 0 0x97
<0x98> + 0 0 0 0x98
<0x99> + 0 0 0 0x99
<0x9a> + 0 0 0 0x9a
<0x9b> + 0 0 0 0x9b
<0x9c> + 0 0 0 0x9c
<0x9d> + 0 0 0 0x9d
<0x9e> + 1 0 0 0x9e BR byte offset
<0x9f> + 4 0 0 0x9f BR word offset
************************** Datatype Conversion Instruction ****************************
<0xa0> + 0 0 0 0xa0
<0xa1> + 0 0 0 0xa1
<0xa2> + 0 0 0 0xa2
<0xa3> + 0 0 0 0xa3
<0xa4> + 0 0 0 0xa4
<0xa5> + 0 0 0 0xa5
<0xa6> + 0 0 0 0xa6

Appendix A: SAFA Instruction Set 89

<0xa7> + 0 0 0 0xa7
<0xa8> + 0 0 0 0xa8
<0xa9> + 0 0 0 0xa9
<0xaa> + 0 0 0 0xaa
<0xab> + 0 0 0 0xab
<0xac> + 0 0 0 0xac
<0xad> + 0 0 0 0xad
<0xae> + 0 0 0 0xae
<0xaf> + 0 0 0 0xaf
************************** Subroutine Instruction **
<0xb0> + 0 1 0 0xb0 Enter (take addr from stack)
<0xb1> + 0 0 0 0xb1
<0xb2> + 0 0 0 0xb2
<0xb3> + 0 0 0 0xb3
<0xb4> + 0 0 0 0xb4
<0xb5> + 0 0 0 0xb5
<0xb6> + 0 0 0 0xb6
<0xb7> + 0 0 0 0xb7
<0xb8> + 0 0 0 0xb8
<0xb9> + 0 0 0 0xb9
<0xba> + 0 0 0 0xba
<0xbb> + 0 0 0 0xbb
<0xbc> + 0 0 0 0xbc
<0xbd> + 0 0 0 0xbd
<0xbe> + 0 0 0 0xbe
<0xbf> + 0 0 0 0xbf
************************** Special Stack Instruction *************************************
<0xc0> + B + 0 1 1 0xc0 shift/arithmetic shift
<0xc1> + B + 0 1 1 0xc1 rotate/rotate with carry
<0xc2> + 0 0 0 0xc2 - 0xc7 Erase Word
....
<0xc7> + 0 0 0 0xc7
<0xc8> + 0 0 0 0xc8 Reverse Top 2 words
<0xc9> + 0 0 0 0xc9 Reverse Top 2 dwords
<0xca> + 0 0 0 0xca Cycle Top 3 dwords B to T
<0xcb> + 0 0 0 0xcb "" Top to Bottom
<0xcc> + 0 0 0 0xcc Cycle Top 3 words B to T
<0xcd> + 0 0 0 0xcd "" Top to Bottom
<0xce> + 0 0 0 0xce Cycle Top 4 words B to T
<0xcf> + 0 0 0 0xcf "" Top to Bottom
<0xd0> + 0 0 0 0xd0 - 0xd3 Replicate Top Word xx+1
....
<0xd3> + 0 0 0 0xd3
<0xd4> + 0 0 0 0xd4 - 0xd7 Replicate Top DWord xx+1
....
<0xd7> + 0 0 0 0xd7
<0xd8> + 0 1 1 0xd8 duplicate hw within 1 word
<0xd9> + 0 1 1 0xd9 quadruplicate byte within 1 word
<0xda> + 0 1 4 0xda split w into 4 bytes
<0xdb> + 0 1 2 0xdb split w into 2 halfwords
<0xdc> + 0 1 1 0xdc count 1 bits in byte
<0xdd> + 0 1 1 0xdd " in hw
<0xde> + 0 1 1 0xde " in w
<0xdf> + 0 1 1 0 0xdf " in dw

Appendix B: Applications 90

Appendix B: Applications

1. Simplified Linpack

 double abs (double d) {
 return (d >= 0) ? d : -d;
 }

 double matgen (double a[10][11], int n, double b[10])
 {
 double norma;
 int init, i, j;

 init = 1325;
 norma = 0.0;

 for (i = 0; i < n; i++) {
 for (j = 0; j < n; j++) {

 init = 3125*init % 65536;
 a[j][i] = (init - 32768.0)/16384.0;
 norma = (a[j][i] > norma) ? a[j][i] : norma;
 }
 }

 for (i = 0; i < n; i++) {
 b[i] = 0.0;
 }
 for (j = 0; j < n; j++) {
 for (i = 0; i < n; i++) {
 b[i] += a[j][i];
 }
 }
 return norma;
 }

 void daxpy(int n, double da, double dx[], int dx_off, int incx,
 double dy[], int dy_off, int incy)
 {
 int i,ix,iy;

 if ((n > 0) && (da != 0)) {
 if (incx != 1 || incy != 1) {

 // code for unequal increments or equal increments not equal to 1

 ix = 0;
 iy = 0;

 if (incx < 0)

Appendix B: Applications 91

 ix = (-n+1)*incx;
 if (incy < 0)
 iy = (-n+1)*incy;
 for (i = 0;i < n; i++) {
 dy[iy +dy_off] += da*dx[ix +dx_off];
 ix += incx;
 iy += incy;
 }
 return;

 } else {

 // code for both increments equal to 1

 for (i=0; i < n; i++)
 dy[i +dy_off] += da*dx[i +dx_off];
 }
 }
 }

 double ddot(int n, double dx[], int dx_off, int incx, double dy[],
 int dy_off, int incy)
 {
 double dtemp;
 int i,ix,iy;

 dtemp = 0;

 if (n > 0) {

 if (incx != 1 || incy != 1) {

 // code for unequal increments or equal increments not equal to 1

 ix = 0;
 iy = 0;
 if (incx < 0) ix = (-n+1)*incx;
 if (incy < 0) iy = (-n+1)*incy;
 for (i = 0;i < n; i++) {
 dtemp += dx[ix +dx_off]*dy[iy +dy_off];
 ix += incx;
 iy += incy;
 }
 } else {

 // code for both increments equal to 1

 for (i=0;i < n; i++)
 dtemp += dx[i +dx_off]*dy[i +dy_off];
 }
 }
 return(dtemp);
 }

Appendix B: Applications 92

 /*
 scales a vector by a constant.
 jack dongarra, linpack, 3/11/78.
 */
 void dscal(int n, double da, double dx[], int dx_off, int incx)
 {
 int i,nincx;

 if (n > 0) {
 if (incx != 1) {

 // code for increment not equal to 1

 nincx = n*incx;
 for (i = 0; i < nincx; i += incx)
 dx[i +dx_off] *= da;
 } else {

 // code for increment equal to 1

 for (i = 0; i < n; i++)
 dx[i +dx_off] *= da;
 }
 }
 }

 /*
 finds the index of element having max. absolute value.
 jack dongarra, linpack, 3/11/78.
 */
 int idamax(int n, double dx[], int dx_off, int incx)
 {
 double dmax, dtemp;
 int i, ix, itemp=0;

 if (n < 1) {
 itemp = -1;
 } else if (n ==1) {
 itemp = 0;
 } else if (incx != 1) {

 // code for increment not equal to 1

 dmax = abs(dx[0 +dx_off]);
 ix = 1 + incx;
 for (i = 1; i < n; i++) {
 dtemp = abs(dx[ix + dx_off]);
 if (dtemp > dmax) {
 itemp = i;
 dmax = dtemp;
 }
 ix += incx;
 }
 } else {

Appendix B: Applications 93

 // code for increment equal to 1

 itemp = 0;
 dmax = abs(dx[0 +dx_off]);
 for (i = 1; i < n; i++) {
 dtemp = abs(dx[i + dx_off]);
 if (dtemp > dmax) {
 itemp = i;
 dmax = dtemp;
 }
 }
 }
 return (itemp);
 }

 double epslon (double x)
 {
 double a,b,c,eps;
 a = 4.0e0/3.0e0;
 eps = 0;
 while (eps == 0) {
 b = a - 1.0;
 c = b + b + b;
 eps = abs(c-1.0);
 }
 return(eps*abs(x));
 }

 void dmxpy (int n1, double y[10], int n2, double x [10], double m [10][11])
 {
 int j,i;

 // cleanup odd vector
 for (j = 0; j < n2; j++) {
 for (i = 0; i < n1; i++) {
 y[i] += x[j]*m[j][i];
 }
 }
 }

 void dgesl(double a [10][11], int n, int ipvt [10], double b [10])
 {
 double t;
 int k,kb,l,nm1,kp1;
 nm1 = n - 1;
 if (nm1 >= 1) {
 for (k = 0; k < nm1; k++) {
 l = ipvt[k];
 t = b[l];
 if (l != k){
 b[l] = b[k];
 b[k] = t;
 }
 kp1 = k + 1;

Appendix B: Applications 94

 daxpy(n-(kp1),t,a[k],kp1,1,b,kp1,1);
 }
 }

 // now solve u*x = y

 for (kb = 0; kb < n; kb++) {
 k = n - (kb + 1);
 b[k] /= a[k][k];
 t = -b[k];
 daxpy(k,t,a[k],0,1,b,0,1);
 }
 }

 int dgefa(double a [10][11], int n, int ipvt [10])
 {
 double col_k[10], col_j[10];
 double t;
 int j,k,kp1,l,nm1;
 int info;

 // gaussian elimination with partial pivoting

 info = 0;
 nm1 = n - 1;
 if (nm1 >= 0) {
 for (k = 0; k < nm1; k++) {
 col_k[k] = a[k][k];
 kp1 = k + 1;

 // find l = pivot index

 l = idamax(n-k,col_k,k,1) + k;
 ipvt[k] = l;

 // zero pivot implies this column already triangularized

 if (col_k[l] != 0) {

 // interchange if necessary

 if (l != k) {
 t = col_k[l];
 col_k[l] = col_k[k];
 col_k[k] = t;
 }

 // compute multipliers

 t = -1.0/col_k[k];
 dscal(n-(kp1),t,col_k,kp1,1);

 // row elimination with column indexing

Appendix B: Applications 95

 for (j = kp1; j < n; j++) {
 col_j[j] = a[j][j];
 t = col_j[l];
 if (l != k) {
 col_j[l] = col_j[k];
 col_j[k] = t;
 }
 daxpy(n-(kp1),t,col_k,kp1,1,
 col_j,kp1,1);
 }
 }
 else {
 info = k;
 }
 }
 }
 ipvt[n-1] = n-1;
 if (a[(n-1)][(n-1)] == 0)
 info = n-1;

 return info;
 }
 void run_benchmark()
 {
 double residn_result = 0.0;
 double eps_result = 0.0;
 double a[10][11];
 double b[10];
 double x[10];
 double norma,normx;
 double resid,time;
 int n,i,info;
 int ipvt[10];
 n = 10;
 norma = matgen(a,n,b);
 info = dgefa(a,n,ipvt);
 dgesl(a,n,ipvt,b);
 for (i = 0; i < n; i++) {
 x[i] = b[i];
 }
 norma = matgen(a,n,b);
 for (i = 0; i < n; i++) {
 b[i] = -b[i];
 }
 dmxpy(n,b,n,x,a);
}

 void main()
 { run_benchmark(); }

2. Sieve

void Sieve(int ia[], int n)

Appendix B: Applications 96

{
 int i,curPrime,mul;
 for (i = 0; i < n; i++)
 ia[i] = 1;
 curPrime = 2;
 while (curPrime < n){
 for (mul = curPrime*2; mul < n; mul+=curPrime)
 ia[mul] = 0;
 curPrime++;
 while (curPrime < n){
 if (ia[curPrime] != 0)
 break;
 curPrime++;}

}
}

void main()
{
 int n,i;
 int ia [22500];
 scanf ("%d", &n);
 printf("Sieving Array of Size ", n);
 printf;
 Sieve(ia,n);
 for (i = 2; i < n; i++){
 if (ia[i] != 0)
 printf (" %d",i," ");
 }}

3. Bubble Sort

void LCG(int ia[], int n, int a, int c, int m)
{
 int i,seed=1;

 for (i = 0; i < n; i++){
 seed = (a*seed + c) % m;
 ia[i] = seed;
 }
}
void BubbleSort(int ia[], int n)
{
 int change,i,tmp;
 do{
 change = 0;
 for (i = 0; i < n-1; i++){
 if (ia[i] > ia [i+1]){
 tmp = ia[i];
 ia[i] = ia[i+1];
 ia[i+1] = tmp;
 change = 1;
 }
 }
 } while (change != 0);

Appendix B: Applications 97

}
void main()
{
 int array[100];
 int i;
 LCG(array,100,1277,0,131012);
 BubbleSort(array,100);
}

4. Hanoi

move(char a,char c ,int *count)
{
 (*count)++;
 printf("%6d:%c-->%c\n",*count,a,c);
}

hanoi(int n, int a, int b, int c, int *count)
{
 if(n==1) move(a,c,count);
 else
 {
 hanoi(n-1,a,c,b,count);
 move(a,c,count);
 hanoi(n-1,b,a,c,count);
}
}
main()
{
 int n,count=0;
 n=10;
 hanoi(n,1,2,3 ,&count);
}

5. Quick Sort

void LCG(int ia[], int n, int a, int c, int m)
{
 int i,seed=1;
 for (i = 0; i < n; i++){
 seed = (a*seed + c) % m;
 ia[i] = seed;
 }
}
void QuickSort(int ia[], int start, int end)
{
 int i,j,tmp,midValue;
 i = start;
 j = end;
 midValue = ia[(start+end)/2];

Appendix B: Applications 98

 while (i <= j){
 while (ia[i] < midValue)
 i++;
 while (ia[j] > midValue)
 j--;
 if (i <= j){
 tmp = ia[i];
 ia[i] = ia[j];
 ia[j] = tmp;
 i++;
 j--;
 }
 }
 if (start < j)
 QuickSort(ia,start,j);

 if (i < end)
 QuickSort(ia,i,end);
}
void main()
{
 int array[100];
 int i,n;
 LCG(array,100,1277,0,131012);
 QuickSort(array,0,99);
 }

6. Fibonacci

int fibonacci(int x)
 {
 if (x == 0)
 return 0;
 if (x == 1)
 return 1;
 return fibonacci(x-1)+fibonacci(x-2);
 }

void main()
{
 int result, f;
 f = 10;
 result = fibonacci(f);
 }

