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Summary

This dissertation is mainly focused on the study of Statistical Process Control

(SPC) techniques for high yield processes, and includes some topics on high relia-

bility systems. It deals with the statistical aspects of establishing SPC in high yield

processing, and providing insight and promising opportunity for future research on

high reliability systems.

The objective is to study the theory and practice of SPC for its use in the

modern manufacturing environment, and establish a new research area on the topic

of high reliability systems.

Chapter 1 is an introduction to the background and the motivations of this

research. It presents some basics of control charting, including the development

and operation of the control chart and the assessments of the control chart perfor-

mance. Brief introductions on control charts for high yield processes, particularly

based on Cumulative Conformance Count (CCC) and high performance systems

are presented. This chapter also defines the scope of the study of this dissertation.

Chapter 2 gives a literature review on the topics of high yield process monitoring,

including the statistical properties and the recent studies of CCC chart. In addi-
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tion, the use of p-chart in monitoring the high yield processes is studied and the

high performance system is defined.

The second part of the dissertation ‘Some New Results in CCC Analyses’ con-

tains 2 chapters. Chapter 3 presents the CCC chart with sequentially estimated

parameters. The effects of parameter estimation in implementing CCC chart are

substantially investigated. The parameter estimation is presented and the run

length distributions of the CCC Charts with sequentially estimated parameter are

derived in order to assess the performances of the charts together with the pro-

posed scheme for Phase I CCC Chart. Chapter 4 compliments the results from

Chapter 3. The guidelines in establishing the CCC charts for both cases where

process parameters are known or estimated are presented.

In the third part of this dissertation, the high yield process with sampling

inspection is considered. The statistical properties for the sampling inspection are

studied, considering the correlation between items within a sample. A chain control

scheme is proposed in order to monitor the process fraction nonconforming.

In Part IV of this dissertation ‘Studies of High Performance Systems,’ the term

High Performance System (HPmS) is defined and the role of reliability tests in

reliability improvement programs are highlighted. Besides, quality and reliability

issues for high performance systems are discussed, paving the way for future re-

search. Chapter 7 presents a screening scheme for high performance systems, with

the computer hard disk drive (HDD) as the application example.
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Nomenclature

α type I error

β type II error

γ adjustment factor

ρ correlation coefficient

σ population standard deviation

(̂·) estimate of (̂·)

ADT accelerated degradation test

AFR average failure rate

ALT accelerated life test

ANOM analysis of mean

ARL average run length

ARLm ARL of sequentially estimated parameter CCC chart given m

ARLn ARL for different n under the binomial scheme

ARL0 in-control ARL

AT Accelerated tests

CCI consecutive conformance items

CCC Cumulative Conformance Count
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CCCS Cumulative Chain Conforming Sample

CDF cumulative distribution function

CL center line

CRL cumulative run length

CUSUM cumulative sum

dpmo defects per million opportunities

E the event when the ith plotting point is either above UCL or below LCL

ESS environment stress screening

EWMA exponentially weighted moving average

F the event when a point on is either above ÛCL or below L̂CL

FA failure analysis

HDD Hard disk drive

HPmS high performance systems

i.i.d. independently identical distributed

LCL Lower Control Limit

LDL Lower Decision Line

m the number of nonconforming items to be observed in sequential estimation

Mn the nonconforming count in conventional binomial estimate

n sample size used for conventional binomial estimation

NDF Not Defect-free

NPF No Problem Found

Nm the total number of samples to be inspected in sequential estimation

vi



OC operating characteristic

OOBA out-of-box audit

p fraction nonconforming

p0 in-control fraction nonconforming

p̄ estimated p using sequential estimator

pmf probability mass function

ppm parts per million

RDE robust-design experiment

Rm run length of the sequentially estimated parameter CCC chart given m

S2 sample variance

SDRL standard deviation of a run length

SDRLm standard deviation of Rm

SDRLn standard deviation of run length under binomial scheme

SPC statistical process control

U the number of points plotted until an out-of-control signal is given

UCL Upper Control Limit

UDL Upper Decision Line

UMVU uniform minimum variance unbiased

xα the maximum number of nonconformities allowable during the test

Yi:r the i-th occurrence of the r nonconforming items
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Chapter 1

Introduction

The quest for solutions to problems plaguing the Western industries in the 80s

has brought renewed interest in quality and productivity. As a result, a large

amount of research work in almost all aspects of quality, reliability, and productivity

improvement had been produced during that period. One of the major topics that

elicited great attention was statistical process control (SPC) introduced in the 1930s

by Dr. Walter A. Shewhart.

It is well-known that one cannot inspect or test quality into a product; the

product must be built right at the first time. This implies that the manufacturing

process must be stable and that all individuals involved with the process must

continuously seek to improve process performance and reduce variability on key

parameters. On-line SPC is a primary tool for achieving this objective. Control

charts are the simplest type of on-line SPC procedure. As a fundamental SPC tool,

control charts are widely used for maintaining stability of the process, establishing

2



process capability, and estimating process parameters. Deming [21] stressed that

the control chart is a useful tool for discriminating the effects of assignable causes

versus the effects of chance causes. The chance causes of variation are defined as

the cumulative effect of many small, essentially unavoidable causes, whereas the

assignable causes are generally large compared to the chance causes, and usually

representing the unacceptable level of process performance. The general theory

of control chart was first proposed by Dr. Walter A. Shewhart [79]. Shewhart’s

idea is based on the postulate that there exists a constant system of chance causes.

This is supported by the result of Brown’s experiment concerning the behaviour

of suspended particles (now popularly known as the Brownian motion). Brown’s

experiment shows that as long as the ambient temperature remains constant, there

will not be any change in the particles’s behaviour which is in accordance with the

normal law. Shewhart [79] observed that this result applies to many production

systems; as long as the common cause system remains, the process will continue

producing products with characteristics forming independent and identical distri-

butions (i.i.d.) over time. When an external factor (i.e., a special cause) starts to

affect the process, one can expect deviation from i.i.d. behaviour of the sequence

of process measurements {yt, t = 1, 2, . . .}. This leads to the idea of tracking down

special causes by observing changes in the i.i.d. behaviour of {yt} and thus, the

control chart is introduced. The control charts developed according to this idea

are often called Shewhart control charts.
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Figure 1.1: The typical control chart

A typical control chart as shown in Figure 1.1 is a graphical display of a quality

characteristic that has been measured or computed from a sample versus the sample

number or time. The chart normally contains a center line (CL) that represents

the average value of the quality characteristic corresponding to the in-control state,

i.e., only chance causes are present. The other two horizontal lines, namely upper

control limit (UCL) and lower control limit (LCL) are also shown in the chart.

These control limits are used so that if the process is in control, nearly all of the

sample points will fall between them. As long as the points plotted are within

the control limits, the process is said to be in statistical control, and no action is

necessary. However, if a point is plotted outside the control limits, it is interpreted

as an evidence that the process is out of control, and investigation and corrective
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actions are required to find and eliminate the assignable cause or causes responsible

for this behaviour. It is a common practice to connect the sample points on the

control chart with straight-line segments, so that it is easier to visualize how the

sequence of points has evolved over time.

Control charts can be used to determine if a process (e.g., a manufacturing

process) has been in a state of statistical control. There are two distinct phases

of control chart usage. In Phase I, we plot a group of points all at once in a

retrospective analysis, constructing trial control limits to determine if the process

has been in control over the period of time where the data were collected, and

to see if reliable control limits can be established to monitor future production.

In other words, besides checking the statistical control state, one estimates the

process parameters which are to be used to determine the control limits for process

monitoring phase (Phase II). In Phase II, we use the control limits to monitor the

process by comparing the sample statistic for each sample as it is drawn from the

process to the control limits. Thus, the recent data can be used to determine control

limits that would apply to future data obtained from a process. (Note: Some writers

have referred to these two phases as Stage 1 and Stage 2, respectively.) The details

of Phase I will be discussed in the following Chapter.
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1.1 Control Charts for Variable and Attribute

Control charts can be generally classified into variable control charts and attribute

control charts. The former ones require quality characteristics that can be measured

and expressed in a continuous scale. Thus, these control charts are limited only

to a small fraction of the quality characteristics specified to products and services.

The typical example for variable control charts are X̄ charts and R charts, one for

the measure of process central tendency and another for process variability. Both

of the charts are powerful tools for diagnosis of quality problems, and serve as a

mean of routine detection of sources of trouble.

The other type of chart, namely attribute control charts are constructed to

monitor the process level by plotting the attribute data (also often referred to as

count data), as many quality characteristics are not measured on a continuous scale

or even a quantitative scale. In these cases, each unit of product can only be cat-

egorized as either conforming or nonconforming based on the attributes possessed

or the number of nonconformities (defects) appearing on a unit.

The attribute data are used where, for example, the number of nonconforming

parts for a given time period may be charted instead of the measurements being

charted for one or more quality characteristics. Although automation has greatly

simplified the measurement process, it is still often easier to classify a unit of

production as conforming or nonconforming than to obtain the measurement for

each of many quality characteristics. Furthermore, attribute control charts can be

used in many applications, such as clerical operations, for which count data occur
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naturally, not measurement data. The most frequently used attribute control charts

are:

1. p chart, the chart for monitoring the fraction nonconforming of the sample;

2. np chart, the chart for monitoring the number of nonconforming items in the

sample;

3. c chart, the chart for monitoring the number of nonconformities of the sample;

and

4. u chart, the chart for monitoring the number of nonconformities per unit

sample.

1.1.1 Development and Operation of Control Charts

A control chart plots the data collected and then compare with the control limits.

When the process is operating at a desired level, the plotted statistics are within

the control limits. When an unexpected process change occurs, some plotted points

will be plotted outside the control limits and thus, the alarm signal is issued. In the

control charting process, the control chart can indicate whether or not statistical

control is being maintained and provide users with other signals from the data.

The conventional Shewhart control charting techniques have been widely used

in the process control, these techniques work best if the data are at least approx-

imately normally distributed and there are enough data available for parameter

estimation.
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For variable control charts, let w be a quality characteristic of interest, and

suppose that the mean of w is µw and the standard deviation of w is σw. Then the

center line, the upper control limit, and the lower control limit become

UCL = µw + kσw

CL = µw

LCL = µw − kσw

(1.1)

where k is the “distance” of the control limits from the center line, which is called

the control limit coefficient, expressed in standard deviation units. Conventionally,

k is set at 3, and the limits are called 3-sigma (3 σ) limits.

By making some normality approximations, the control limits for the attribute

control charts can be obtained similarly. For example, the control limits for the

p and np chart can be derived in the following manner. It is well known that

the number of nonconforming items in a subgroup of size n follows the binomial

distribution with parameter p. The mean of such numbers is np and the variance

is np(1− p). Hence the control chart for p can be constructed from Equation (1.1)

with

UCL = p + k
√

p(1 − p)/n

CL = p

LCL = p − k
√

p(1 − p)/n

(1.2)

where the adequacy of the normal approximation to the binomial distribution is

assumed. Only when the normal approximation is satisfied, the Shewhart attribute

control chart can then be used. Otherwise, the analysis based on the assumption
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of normal distribution will not be able to provide correct information for deci-

sion making in process monitoring. The details will be discussed in the following

sections.

1.1.2 Assessments of the Control Chart Performance

In order to evaluate the performance of control charts, some assessments can be

used. The effectiveness of a control chart can usually be evaluated by the following

criteria:

1. average run length (ARL),

2. type I (α) and type II (β) errors, and

3. operating characteristic (OC).

These criteria are highly related to each other and will be discussed accordingly in

the following.

1.1.2.1 Average Run Length (ARL)

The performance of control charts can be measured in terms of how fast it can

detect changes in distributional characteristics (i.e., in an applied sense, how fast

it can detect the onset of assignable causes). Quantitatively, it is usually measured

in terms of the average run length (ARL), which is defined as the average number

of points that must be plotted before a point indicates an out-of-control condition
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(from the starting point of previous out-of-control state). There are two different

ARL being used to evaluate the control chart performance.

• In-control ARL, ARL0, the expected number of points plotted before a point

indicates an out-of-control signal while the process is in the state of statistical

control.

• Out-of-control ARL, the expected number of points plotted before a point

indicates an out-of-control signal when the process is out of control.

It is desirable for the ARL to be reasonably large when the process is in control,

so that false alarm will rarely occur. On the other hand, when the process is out of

control, early detection is preferable, thus the ARL of the control chart should be

as low as possible. A good control charting scheme must provide high in-control

ARL and low out-of-control ARL. With 3-sigma limits, the in-control ARL (of the

X̄ chart) has the value of 370.

1.1.2.2 Type I and Type II Errors

The concept of type I (α) and type II (β) errors in control chart is very similar to

the types of errors defined in hypothesis testing. The type I error of the control

chart is defined as the chart indicates an out-of-control signal when it is really in

control. On the other hand, the type II error of the control chart is defined as the

chart fails to issue an out-of-control signal when it is really out of control.

For an effective control chart, both type I and type II errors are expected to be

reasonably small. Small type I error means that the process is seldom interrupted
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by unpleasant false alarm; the popular 3-sigma limits have the type I error as low as

0.0027. While small type II error means that the control chart is sensitive enough

to unusual changes in the process.

1.1.2.3 Operating characteristic (OC)

The operating characteristic (OC) function of the control chart is the probability

of incorrectly accepting the hypothesis of statistical control (i.e., a type II error)

against the quality characteristic of interest. The OC curve, which is a graphical

display of the probability, provides a measure of the sensitivity of the control chart,

that is, its ability to detect a change in the process from the desired state to the

out-of-control state.

Figure 1.2: OC Curve for an x̄ chart

11



Figure 1.2 is the OC curve for a typical x̄ chart. In general, it is desirable for the

OC function to have a large value when the shift is zero, and to have small OC

function when the shift is non zero, as shown in the figure.

1.2 Control Charts for High Yield Processes

Just as its name implies, a high yield process means that the quality level of the

process is very high, i.e., the probability of observing nonconforming products is

very small. The fraction of nonconforming items, p, for such process is usually on

the order of parts-per-million (ppm). (Note: Some authors have referred to such

process as High Quality Process.) Here, the high yield process is be defined as:

Definition 1 High Yield Process is the process with in-control fraction non-

conforming, p0, of at most 0.001, or 1000 ppm.

1.2.1 Problems with Traditional Control Charts

Due to the increasing effort of process improvement and rapidly improving technol-

ogy, more and more industrial processes have been improved to high yield processes

where many traditional control charts would face practical problems. The situa-

tion is more serious with attribute control charts which, at the same time, are of

increasing importance because of the possibility of obtaining count data quickly

enabling processes to be monitored at a low cost.
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Goh [28] showed that the use of p chart for high yield processes results in high

false alarm rates and inability to detect process improvement by illustrating the

following example. Consider a production process that has been improved to such

an extent that there is only an average of 400 ppm nonconforming, and suppose

that each inspection sample contains 200 items. Then, from Equations (1.2) with

k = 3, the control limits used are

UCL = p̄ + 3

√
p̄(1 − p̄)

n

= 0.0046

CL = p̄

= 0.0004

LCL = p̄ − 3

√
p̄(1 − p̄)

n

= 0.0004 − 0.0042

= −0.0038.

Since a negative value has no physical meaning, LCL is set equal to 0.

The application of the p chart for this very low p process is awkward in several

respects. First, as stated before, the zero LCL is meaningless, as it is impossible to

detect any process improvement. Process improvement detection is also important

so that the reasons for process improvement can be further studied and the quality

improvement can then be sustained. As the continuous improvement is the corner-

stone of modern quality management, such meaningless LCL should be avoided in

practice. Secondly, the control chart will give an out-of-control signal as long as a

single nonconforming item is observed, from the example, one nonconforming item
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in a sample will raise p to 0.0050, which exceeds the UCL. This is tantamount to an

absolutely zero nonconformity requirement which not only is virtually impossible

to meet in practice but also contradicts the concept of statistical control, namely

elimination of systematic shifts, but tolerance of random fluctuations. A control

chart like this does not provide much information and is far from useful.

For high yield processes, in order for the traditional p-chart or np-chart to

perform effectively, the sample size used has to be relatively large. To overcome

these deficiencies, it can be shown that the sample size, n should be large enough

such that np is at least 8.9. Table 1.1 gives the values of sample sizes for different

in-control fraction nonconforming, p0, such that np = 8.9. It can be seen that for

p0 < 0.0005, n is prohibitively large and thus other control scheme is needed.

Table 1.1: Values of n such that np = 8.9 for different p0, type I risks for np-charts
with different p0.

n p0 P (X > UCL) P (X < LCL)
8900 0.001 0.00092 0.00135
9889 0.0009 0.00092 0.00135
11125 0.0008 0.00092 0.00135
12714 0.0007 0.00092 0.00135
14833 0.0006 0.00092 0.00135
17800 0.0005 0.00092 0.00135
22250 0.0004 0.00092 0.00135
29667 0.0003 0.00092 0.00135
44500 0.0002 0.00093 0.00135
89000 0.0001 0.00093 0.00135

Setting the sum of probability of type I risks for both control limits as close to

0.0027 as possible, the corresponding LCLs and the UCLs for the np-charts above

are 1 and 19 respectively. Other details and examples of the inadequacies of the

p-chart or np-chart can be found in Goh [28] and Goh and Xie [29].
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1.2.2 Control Charts based on Cumulative Conformance

Count (CCC)

The cumulative conformance count (CCC) chart, which has gained much attention

in the industry, was first introduced by Calvin [6] and popularized by Goh [28], is

primarily designed for processes with sequential inspection carried out automati-

cally one at a time. This chart, instead of counting the nonconforming ones, tracks

the number of conforming items produced between successive nonconforming ones.

It has been hailed for its ability in detecting improvement under high yield produc-

tion while overcoming the problem of possible false alarm experienced by Shewhart

chart when a defective item sporadically occurs. In addition, this chart has being

introduced as a Six Sigma tool in dealing with high yield processes (see Goh and

Xie [29]). The use of CCC chart was further studied by Xie and Goh [103], [104];

Glushkovsky [26]; Xie, et al. [105]; and Ohta et al. [67]. The detailed statistical

properties of CCC chart will be presented in the following chapter.

1.3 High Performance Systems

Besides having high quality outputs, for many mission-critical systems, building in

redundancies has become a standard practice in ensuring the system performance

during the design phase. For some products, redundancies are also used to cater

for process variation and to maintain high process yield. The concept of redun-

dancy in reliability engineering can be found in most of the reliability engineering
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books such as those by Elsayed [23], and Tobias and Trindade [92]. Built-in re-

dundancies improve not only process yield and system reliability but also their

overall performance. Thus, systems having this feature with low defects per mil-

lion opportunities (dpmo) quality level can be termed as high performance systems

(HPmS). This is because their intended functions will not be compromised even

if there exists nonconformities within each item; as long as the number of such

nonconformities is below a critical threshold.

For example, a simple telecommunications component such as copper trans-

mission line or optical cable, the occurrence of failure in transmitting signal is

extremely low, as there are numerous small wires in pair or quad within the core of

the cable (see Thorsen [91]). Minor breakage within a pair or quad would definitely

not affect the effectiveness of the current or signal transmission of the cable. Con-

sequently, these systems are still conforming when the number of nonconformities

within an item is below the critical threshold. Another example of high perfor-

mance system is computer hard disk. The occurrence of nonconformities within

the system is sporadic and rare (see Hughes et al. [43]), and a reasonable amount

of faulty bits, bad sectors or bad tracks are acceptable and can be marked resulting

in usable drives. A small number of sectors are reserved as substitutes for any bad

sectors discovered in the main data storage area. During testing, any bad sectors

that are found on the disk are programmed into the controller. When the controller

receives a read or write for one of these sectors, it uses its designated substitute

instead, taken from the pool of extra reserves. This spare sectoring process will
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replace the amount of ‘lost’ capacity. Thus, as long as the occurrence of faulty bits

is not too frequent, the performance and the total capacity of the disk drive will

not be affected.

A high performance system is considered to be failure-prone when the number

of nonconformities exceeds a critical threshold. In order to ensure the number of

nonconformities does not exceed the threshold, some screening tests are needed to

eliminate products that are out-of-specifications and/or failure-prone.

1.4 Scope of the Research / Organization of the

Dissertation

This dissertation focuses mainly on the problems related to statistical analysis of

high yield processes and also high performance systems. As shown in Figure 1.3,

this dissertation addresses several problems related to high yield process monitoring

and high performance systems. Part I contains the Introduction (Chapter 1) and

Literature Review (Chapter 2), the statistical properties and the recent develop-

ments of the high yield (CCC) chart are reviewed, and some problems in monitoring

the high yield processes as well as topics on high reliability systems are highlighted.

The second part of the dissertation, ‘Some New Results in CCC Analyses,’ presents

the guidelines in establishing the CCC charts. A sequential sampling scheme for

CCC chart is first examined and the performance of the chart constructed using

an unbiased estimator of the fraction nonconforming, p is investigated. The run
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length distributions of the CCC Charts are then derived in order to assess the per-

formances of the charts and the parameter estimation is presented together with

the proposed scheme for Phase I CCC Chart. A systematic treatment for establish-

ing the chart particularly when the parameter is estimated will be provided, so the

users are able to construct the CCC chart under different sampling and estimation

conditions. New insights on the behaviours of CCC chart when the parameter is

estimated will be given and some procedures for constructing the CCC chart when

the process fraction nonconforming is given, when it is estimated sequentially, and

when it is estimated with a fixed sample size are presented. Part III - High Yield

Process with Sampling Inspection - deals with high yield process under sampling

inspection. The statistical properties for the sampling inspection are studied. A

control scheme that is effective in detecting changes in fraction nonconforming for

high yield processes with correlation within each inspection group is presented. A

Markov model is used to analyze the characteristics of the proposed scheme. In

Part IV, the high performance system is coined to pave the way for future research

in this area. The importance of reliability tests in reliability improvement programs

are highlighted. In addition, a screening scheme for such system is presented.
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Figure 1.3: Organization of this dissertation.
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Chapter 2

Literature Review

As stated in previous chapter (see Section 1.2.1), the traditional control techniques

are not adequate in a high yield manufacturing environment. It is necessary to use

some new techniques to monitor the high yield processes, which are very common

in modern electronics industries. This area of research has attracted increasing

interest recently with numerous publications have appeared and several alternative

of control schemes designated for high yield processes have been proposed. In

the following sections, we first review the phase I control charts together with

the statistical properties of CCC charts as well as some recent studies on the

related issues. In addition, we also investigate some of the issues regarding high

performance systems. These high performance systems not only have a very high

quality level, but are also highly reliable under normal usage.
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2.1 Phase I Control Charts

The usual approach in setting up a control chart entails collecting m subgroups

of size n (preliminary samples) and using these values to obtain the estimate of

the process mean and process variability. The control limits are constructed based

on these estimated process parameters. When preliminary samples are used to

construct limits for control charts, these limits are customarily treated as trial

control limis. Therefore, the m trial values should be plotted on the appropriate

chart, and any points that exceed the trial control limits should be investigated.

On the other hand, if assignable causes for these points are discovered, they should

be eliminated and new limits for the control chart is determined. If all the trial

values obtained from the m subgroups are plotted within the control limits, the

process is said to be in control and these control limits will be used in Phase II. In

this way, the process may be eventually brought into statistical control.

Typical approach to the phase I problem of a control chart is to address two

pertinent issues:

One is to investigate the performance of the control chart in terms of its run

length distribution and false alarm rate when the control limits are derived from

the estimates of the parameters involved; such as those of Ghosh et al. [24], Que-

senberry [71], Del Castillo [19], [20], Chen [15], and more recently Chakraborti [8],

and Champ and Jones [9] for X̄ chart; Chen [16] for R, s, and s2 charts, Braun [5]

for c and p charts and Jones et al. [45] for EWMA chart. Such study will help de-

termine the appropriate number of subgroups and the corresponding subgroup size
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for the desired level of performance. This guideline for the sampling scheme should

be independent of the parameters involved. For example, the number of subgroups

needed to establish an X̄ chart should not depend on the mean or variance of the

quality characteristic.

The other issue is to examine homogeneity of the samples such as the analysis of

mean (ANOM) for X̄ chart to ensure that the estimates are obtained from samples

of the same population.

2.2 Basic Properties of CCC Charts

The CCC chart is a powerful technique for process control when a large number

of consecutive conforming items are observed between two nonconforming ones.

CCC chart is set up to monitor the CCC and decisions are made based on whether

this number is too large or too small. The chart is very useful for one-at-a-time

sequential inspections or tests which are common in automated manufacturing

process. It is generally a technique for high yield processes when nonconforming

items are rarely observed.

2.2.1 Control Limits

In CCC chart, the control limits are determined based on the probability limits

(see Xie and Goh [104]). During the inspection, the probability of the nth item
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being the first nonconforming item to be discovered is given by

P{X = n} = (1 − p)n−1p where n = 1, 2, . . . (2.1)

which is a geometric distribution with parameter p. Tacitly, it is envisaged that

inspections are carried out sequentially and the above random variables (CCC)

are independently and identically distributed (i.i.d.). The cumulative distribution

function (CDF) of Equation (2.1) is given by

P{X < k} = p

k∑

i=1

(1 − p)i−1

= 1 − (1 − p)k−1.

(2.2)

Thus,

P{X > UCL} = p0

∞∑

i=UCL+1

(1 − p0)
i−1

=
p0(1 − p0)

UCL

1 − (1 − p0)

= (1 − p0)
UCL

(2.3)

and from Equation (2.2),

P{X < LCL} = 1 − (1 − p0)
LCL−1 (2.4)

where p0 is the in-control fraction nonconforming.

Given a type I error, α, and p0, from the above equations, the upper control

limit (UCL) and the lower control limit (LCL) are respectively,

UCL =
ln α/2

ln(1 − p0)
(2.5)

LCL =
ln(1 − α/2)

ln(1 − p0)
+ 1. (2.6)
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Unlike the control limits we normally see in Shewhart charts, it is clear that

the control limits for CCC chart are highly asymmetric. Hence, it is recommenced

that the log-scale be used on Y-axis for the plotting. A typical CCC chart is shown

in Figure 2.1.

Figure 2.1: The typical CCC chart

2.2.2 Decision Making Related to CCC Charts

Decision making based on a CCC chart is very straightforward. When the chart

shows an out-of-control signal in form of a value smaller than the LCL, the process

has probably deteriorated. Process improvement should be signaled at values that

are larger than the UCL, this is different from p chart, where value larger than

the UCL is concluded as process deterioration (increase in p). Therefore, the CCC
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chart can detect not only process deterioration but also process improvement of

high yield processes.

The CCC chart has been devised much along the same line as the traditional

Shewhart control charts. It assumes a fairly reliable knowledge of the steady-state

fraction nonconforming p0, and the control limits are associated with a predeter-

mined α.

2.3 Review of Recent Studies

Here, some of the recent works related to high yield process control chart, partic-

ularly CCC chart, are investigated. Besides CCC chart, other high yield process

control charts are studied and presented in the following sections.

2.3.1 Developments and Refinements for CCC Charts

Xie and Goh [103] presented that when p is extremely low, the p and α would be

sensitive to short term drifts in process parameters, it is better to focus more on the

current p value in determining whether the process is out of control. Thus, α need

not be fixed, since it is in fact a confidence level parameter. A reference graph is

developed in judging the state of control of a process via the p−α relationship. In

order to hitherto gather information about the process as far as possible, a non-zero

restarting point procedure is developed. Thus, fuller use is made of the information

contained in the observed data during the application of the CCC control chart.

Similar to the traditional implementation of Shewhart chart, a decision when
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using the typical CCC chart is based on a single count value. This could be rela-

tively insensitive in detecting small process shift. Kuralmani et al. [49] proposed

a conditional procedure to improve the sensitivity in detecting the moderate to

large process shifts in either direction. The idea of a conditional procedure is to

incorporate some run rules into the regular CCC control scheme.

Besides, some economic studies were done on the CCC charts such as those by

Xie et al. [111], [113]. Xie et al. [113] developed an economic model for CCC chart;

a simplified algorithm was used to search the optimal setting of the sampling and

control parameters.

2.3.1.1 Shewhart-like CCC Charts

The layout of the original CCC Chart which is shown in Figure 2.1 can be difficult to

interpret and confusing to non-statisticians who are used to the format of Shewhart

control chart. Xie et al. [114] proposed a Shewhart-like CCC charting technique

which has a more traditional layout as other Shewhart charts. The proposed layout

which is also recommended by Xie et al. [106] (see Xie et al. [106], Chapter 3,

page 55-57) is shown in Figure 2.2 (Note: Some writers preferred naming this

Shewhart-like CCC as conforming run length (CRL) control chart).
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Figure 2.2: The Shewhart-like CCC chart

2.3.1.2 Control Limits Based on Probability Limits

Xie and Goh [104] studied the use of probability limits instead of the traditional

limit based on mean ± 3 σ. They pointed out the use of 3 σ limits for geometric

distribution should not be used due to the distribution is always skewed and normal

approximation is not valid. They also showed that for geometric distribution, the

control limits based on k times standard deviation which has been used traditionally

will cause a frequent false alarm and cannot provide any reasonable lower control

limits for further process improvement detection without introducing complicated

run rules.

2.3.1.3 Adjusted Control Limits for CCC Charts

As discussed in Section 1.1.2.1, the ARL of a control chart should have relatively

large in-control ARL compared to the out-of-control ARL, i.e., the in-control ARL,
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ARL0, should have the maximum value compared to the out-of-control ones. How-

ever, in CCC chart, the ARL will initially increase when the process is deteriorated

(p increased), which is in fact a common problem for data having a skewed distrib-

ution (see Xie and Goh [104] and Xie et al. [105]), it renders the CCC chart rather

insensitive in detecting minor increase in p and may lead to the misinterpretation

that the process is well in control, or has improved.

Table 2.1: ARL values at in-control p0 = 100 ppm for various α.

p α = 0.0027 α = 0.005 α = 0.01
1 1.07 1.06 1.05

10 1.94 1.82 1.70
20 3.75 3.31 2.88
30 7.24 6.01 4.87
40 13.95 10.87 8.19
50 26.72 19.51 13.66
60 50.54 34.52 22.40
70 93.06 59.39 35.70
80 162.82 97.21 54.26
90 261.16 147.02 76.96

100 370.37 200.00 100.00
110 458.27 242.55 118.45
120 505.09 266.42 129.37
130 515.30 272.99 133.06
140 503.64 268.40 131.69
150 482.17 258.22 127.48
160 457.71 245.96 122.01
170 433.42 233.42 116.17
180 410.57 221.42 110.44
190 389.55 210.25 105.03
200 370.35 199.99 100.00
210 352.86 190.60 95.36
220 336.90 182.02 91.11

For illustration, Table 2.1 shows some ARL values for p0 = 100 ppm and α =

0.0027, 0.005 and 0.01. From the table, the ARLs are clearly lower at p = 100

ppm irrespective of false alarm probabilities. However, the highest ARL values
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are not at p0, this is undesirable. Figure 2.3 is the graphical representation of

the ARL values. From the graph, this can also be seen that at p0, the ARL for

different values of α are not at the peak of the curve. Such behaviour will affect

the sensitivity of the control chart in detecting minor increase in p.

In addressing this problem, Xie et al. [105] developed a new procedure for

determination of control limits for geometric distribution and derived the control

limits which provides maximum ARL when the process is in control by introducing

an adjustment factor.

Figure 2.3: ARL curves at in-control p0 = 100 ppm for various α.

For CCC chart, the ARL is given in Equation (3.8) and the maximum ARL at

p = p0 can be obtained by differentiating them and then solve for p, which is,

(1 − p0)
LCL−1 ln(1 − p0)

dLCL

dp
− (1 − p0)

UCL−1 ln(1 − p0)
dUCL

dp
= 0. (2.7)
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Solving this equation, the p value, where ARL reaches the maximum, is given as

p = 1 − exp




ln(1 − p0) ln

[
(α/2)

(1−α/2)

]

ln

[
ln(1−α/2)
ln(α/2)

]


 . (2.8)

Substituting this function into Equations (2.3) and (2.4) (by replacing p0 by p),

the new control limits can be obtained as

UCL =

ln
(
α/2) ln

[
ln(1−α/2)
ln(α/2)

]

ln(1 − p0) ln

[
(α/2)

(1−α/2)

] (2.9)

LCL =

ln
(
1 − α/2) ln

[
ln(1−α/2)
ln(α/2)

]

ln(1 − p0) ln

[
(α/2)

(1−α/2)

] + 1 (2.10)

Xie et al. [105] presented that, for a given p0 and specified α, by using the

control limits derived using Equations (2.9) and (2.10), the ARL is maximized at

p = p0.

The control limits above (Equations (2.9) and (2.10)) do not have a direct prob-

ability interpretation. However, these control limits can be derived by multiplying

the probability limits (control limits derived based on probability limits and shown

in Equations (2.5) and (2.6)) with a constant. This constant is called adjustment

factor by Xie et al. [105] and denoted by γα. By comparing Equations (2.5) and

(2.6) with Equations (2.9) and (2.10), it can be seen that the adjustment factor is

given by

γα =

ln

[
ln(1−α/2)
ln(α/2)

]

ln

[
(α/2)

(1−α/2)

] . (2.11)
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Notably, this adjustment simply shifts the existing control limits by a factor of γα.

The advantage of using the adjustment factor is that the ARL of the chart

will always decrease when the process is shifted from the in-control value. The

false alarm probability is thus, further reduced. Figure 2.4 is the ARL curves at

p0 = 100 ppm for α = 0.0027 with non-adjusted and adjusted control limits. From

the ARL curves, it is clear that with the adjustment factor, the performance of the

CCC chart is much satisfactory as the ARL peaks at in-control p.

Figure 2.4: ARL curves at p0 = 100 ppm for α = 0.0027 with non-adjusted and

adjusted control limits.

Recently, Zhang et al. [119] defined a nearly ARL-unbiased design by setting

the in-control ARL as near as possible to the peak of the ARL curve. However, their
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proposed procedure involve several iterations in choosing different sets of control

limits, and the results are similar to those using the adjustment factor.

2.3.2 Some Extensions to the CCC Model

The idea of CCC chart is extended to process monitoring by considering the number

of items inspected until a fixed number of nonconforming items are observed by

several writers. The control chart based on this count of items inspected until r

nonconforming items are called CCC-r chart. The idea of CCC-r control chart is

presented by Xie et al. [107], [112] and further discussed in Sun and Zhang [82]

and Ohta et al. [67].

Lai et al. [51] investigated the Markov model for a serially dependent process

in the context of CCC related data. Lai et al. [50], on the other hand, studied

the effects of correlation of the CCC chart. They shown that the process control

procedures based on the conforming run lengths or based on random samples taken

from the production processes are seriously affected if the production processes

exhibit a serial correlation. They derived the control limits using a correlation

binomial model.

2.3.3 Other High Yield Process Monitoring Methods

Besides the CCC chart, which popularized by Goh [28] and has being introduced

as a Six Sigma tool (see Goh and Xie [29]), there are other control chart techniques

being developed for monitoring high yield processes.
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2.3.3.1 Pattern Recognition Approach

An alternative charting technique given by Thomas et al. [89] which is based on ex-

act probability calculations had not been commonly understood or adopted. Goh

[27] explained in detail the rationale and procedures of this alternative ‘pattern

recognition’ charting technique. This method has been found appropriate for con-

trolling processes producing less than 1% defective and is more reliable than the

conventional p chart because there is no loss of reaction to out-of-control situa-

tions, yet there is no overreaction to very short runs of defectives. This ‘pattern

recognition’ approach is similar to the Western Electric decision rules.

2.3.3.2 G-charts

The use of c and u charts are based upon the underlying assumption that the

Poisson distribution is an appropriate model for the outcomes. But some of the

processes are best described by a geometric distribution. If the process is best de-

scribed by a geometric distributed events, wrong management is commonly made

if the traditional c charts are used. A shifted geometric distribution is used by

Kaminsky et al. [46] as the basic model for the number of occurrences of a given

event per unit of process output. They developed the Geometric charts (G-charts)

for monitoring the total number of occurrences and the average numbers of the

occurrences found in a fixed number of units of process output. However, prob-

ability of false alarm is higher than expected and the lower control limits will

often be meaningless. Glushkovsky [26] studied the G-charts and described the use
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of the control-charts, besides high yield processes, G-charts can be also used for

monitoring low volume manufacturing, short runs and ‘stepped’ processes.

2.3.3.3 Data Transformation Methods

Most of the charts in monitoring high yield processes are based on geometric

counts/transformed geometric counts, the main argument for using a transforma-

tion of geometric counts is to obtain an approximate normal distribution. Nelson

[63] proposed a Shewhart chart based on X
1

3.6 where X is a geometric count.

Quensenberry [72] proposed the geometric Q Charts for high yield processes, the

Q charts are based on transforming the data into standard normal random vari-

able. This Q-statistics is based on the geometric distribution, which can be used

for high yield processes. The proposed geometric Q charts are for both the cases

when p is assumed known or unknown. However, for the p unknown case which the

estimate is based on the uniform minimum variance unbiased (UMVU) estimator,

the calculations are complicated and not straightforward. McCool and Motley [56]

considered Shewhart and exponentially weighted moving average (EWMA) chart

based on Y = X
1

3.6 and Z = ln(X). Xie et al. [110] proposed a double square root

transformation where Y = X
1
4 .

However, the disadvantage in implementing a chart based on transformed mea-

surements is the difficulty in interpretation as some transformations involve com-

plicated calculations which are not easily done without the use of a computer.
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2.3.3.4 Cumulative Sum Charts

Cumulative sum (CUSUM) chart is well-known to be sensitive in detecting small

and moderate parameter changes. Lucas [54] and Bourke [3] investigate the use

of CUSUM in high yield processes, in particular, Bourke [3] presented a design

procedures for the geometric CUSUM charts, but it is only meant for an in-control

p0 of at least 0.002. Bourke [3] noted that for very small in-control p0, the use

of Markov chain approach in determining ARL results in a very large matrix for

inversion and is computationally prohibited.

Chang and Gan [14] proposed the CUSUM chart for monitoring a high yield

process. They introduced the procedures for designing optimal CUSUM charts

for monitoring a high yield process and CUSUM charts based on non-transformed

geometric and Bernoulli counts were developed. Although the CUSUM is more

sensitive in detecting the process shift, the implementation and the physical inter-

pretation of the chart is rather complicated.

2.4 Use of p-chart in Monitoring High Yield Processes

The implicit assumption in using p-chart (or np-chart) is that the inspection is

carried out in sample (normally with constant sample size). As stated in Section

1.2.1, for high yield processes with sampling inspection, in order for the traditional

p-chart or np-chart to perform effectively, the sample size has to be relatively large

(at least np > 8.9). Otherwise, as the UCL of the np-chart is less than 1, once
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a nonconforming item is detected, the np-chart will raise an out-of-control signal.

This often results in unnecessary disruptions. Moreover, the corresponding LCL is

zero and often results in loss of opportunity in identifying process improvement.

Figure 2.5 shows the ARL curve for the np-chart with in-control p0 = 0.0005,

n = 17800, and α = 0.0027 (from Table 1.1). From the ARL curve, it is clear that

with np set to be at least 8.9, the np-chart and p-chart could raise an out-of-control

signal when the fraction nonconforming deviates from the initial in-control value.

Thus, for high yield processes with sample inspection, if Shewhart p-chart or

np-chart with probability limits were to be used to monitor the process, the batch

size should be large enough such that np is at least 8.9. However, if np is less than

8.9, which is common for high yield processes, other control scheme is needed.

Figure 2.5: ARL curve for np-chart with in-control p0 = 0.0005, α = 0.0027
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2.5 High Reliability Systems

Due to the rapid advances in technology and increasing consumer expectations,

continuous improvement of a product’s quality or reliability has become necessary

for manufacturers to compete with others. In achieving such task, more and more

highly reliable products have been introduced to the market.

For a highly reliable product, it is difficult or nearly impossible to assess it’s

reliability by using traditional life tests or accelerated life tests (ALT). If there exist

some product characteristics whose degradation over time can be related to reliabil-

ity, then conducting a degradation test or an accelerated degradation test (ADT)

to collect the degradation data of whose characteristics can provide information

about the product’s reliability. As the degradation measurements contain credi-

ble, accurate, and useful information about product reliability, thus, the studies of

performance degradation have attracted many interests and efforts. For example,

Yu and Tseng [118] investigate the optimal design for a fractional factorial exper-

iment with a degradation model of a highly reliable product; and Whitmore and

Schenkelberg [97] model the degradation paths using Wiener diffusion. However,

as stated before, degradation models can only be used for the systems or product

whose degradation data can be measured and related to reliability.

Besides degradation models, some writers focus on other aspects of high reli-

able systems such as Sentler [77] studies particularly on the reliability of the high

performance fibre reinforced plastics; and Tseng et. al. [93] propose a decision rule

for classifying a unit as normal or weak, and give an economic model for determin-
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ing the optimal termination time and other parameters of a burn-in test for highly

reliable products.

As stated in Section 1.3, in order to maintain the high performance of a system,

some of the manufacturers employ the built-in redundancy. Redundant structure

named Daniels System has frequently been used as a demonstration example in

structural system reliability studies. Gollwitzer and Rackwitz [30] review the the-

oretical results on time-invariant and time-variant Daniels systems with emphasis

on asymptotic solutions. Grigoriu [31], [32], [33], [34], [35] contributes greatly in

the area of reliability of Daniels systems by investigating the reliability of Daniels

systems subject to quasistatic and dynamic nonstationary Gaussian load processes,

analyzing the reliability of dynamic Daniels systems with local load-sharing rule

and with applications of diffusion models. On the other hand, some other re-

searchers such as Taylor [88], Sentler [77], and Phoenix [68], [69], [70] study the

reliability of the fiber bundle, which is one of the Daniel systems. However, the

studies mentioned above are restricted to structural system reliability, redundancy

on other systems reliability is still not well-covered.
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PART II

SOME NEW RESULTS IN CCC ANALYSES
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Chapter 3

CCC Chart with Sequentially

Updated Parameters

In this chapter, a sequential sampling scheme is introduced to provide an almost

“self-starting” version of the CCC chart. The proposed scheme uses the actual

sequence of observations, i.e., every successive observation accumulated to date,

adaptively updates the estimate and revises the control limits, at the same time, the

results are used for monitoring the process. This means that it is not necessary to

assemble a huge number of initial samples before the control begins. Nevertheless,

the scheme can only start after two nonconforming items have been observed and

a substantial sample size is still expected for small p. This adaptive operation

ensures that the control chart incorporates more and more data into the estimation

of process parameter, so that the estimate of p0 would get closer and closer to the

true value. As a result, the performance of the CCC chart improves steadily as more
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data become available. To prevent using data from a drifted process in updating

the estimate of p0, some decision rules could be implemented, this issue will be

dealt with in the following chapter.

Here, we propose a sequential sampling scheme for CCC chart, in which both

issues of the phase I problem discussed in previous chapter can be addressed si-

multaneously. Moreover, unlike the binomial sampling scheme considered in Yang

et al. [115], the performance of the chart under the sequential sampling scheme is

independent of the parameter, p.

In the following, the phase I problem of CCC charts is first presented, followed

by a sequential sampling scheme and the estimate of p0 under this scheme. The

expressions for the alarm rate and the distribution of the run length are shown.

This is followed by computing the average and standard deviation of the run length

and detailed comparison with those of Yang et al. [115]. Then a description of the

construction of the proposed CCC chart with estimated parameter is given.

3.1 Phase I Problem of CCC Charts

As stated in Section 2.2, CCC chart is very useful for one-at-a-time sequential

inspections. However, while much has been done in enhancing the applicability

of the CCC chart, the important phase I problem of the chart (See Woodall and

Montgomery [100]) has not been fully addressed. If there is no previous/past data

available for estimating the process fraction nonconforming, p, estimation using

the current/future data has to be done. However, the common problem faced by
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practitioners when doing so is that the initial data set from a sample for estimating

p may not contain any nonconforming items. As a result, there are instances where

sample size needs to be increased without a specific guideline. A logical solution

is to specify the number of nonconforming items to be observed as this is the

key parameter in determining the accuracy of the estimate for p. This provides

the motivation on our studies in investigating different inspection schemes for high

yield processes. Recently, Yang et al. [115] investigated the sample size effect when

the proportion nonconforming p is estimated using the conventional estimate. In

their recent work on Phase I problem of the CCC chart, the implicit assumption

was that the inspection is carried out in large samples, which might not be the

case for some processes. Furthermore, the performance of the chart under their

proposed scheme is not independent of the parameter, p.

3.2 Sequential Sampling Scheme

Consider an industry setting where, in order to estimate the parameter p for estab-

lishing a CCC chart, a prescribed value for the number of nonconforming items to

be observed is given, say, m. The total number of samples to be inspected is then

a random variable, Nm, such that

Nm =
m∑

i=1

Xi

where Xi are independently and identically distributed (i.i.d.) geometric random

variables with parameter p. It then follows that Nm is a negative binomial random

42



variate with parameter (m, p); i.e.

P (Nm = n) = pm(1 − p)n−m

(
n − 1

m − 1

)
n = m, m + 1, . . .

Usually p is estimated by its maximum likelihood estimate (see Yang et al.

[115])

p̂ =
m

Nm

(3.1)

However, this estimate is biased under sequential sampling (see Girshick et al. [25])

and this problem can be quite serious for small m, which is always the case during

the establishment of CCC chart. Here, the unbiased estimate p̄ given by Haldane

[37] is used:

p̄ =
m − 1

Nm − 1
(3.2)

This bias-correction is crucial as it is well known that CCC chart is less sensi-

tive in picking up process deterioration (see Section 3.4). This problem is further

aggravated by the use of the conventional estimate given in Equation (3.1) which

tends to over-estimate p, giving a higher in-control p, especially for small m; mak-

ing it harder to detect process deterioration. Table 3.1 gives the comparison of the

two estimates using 1000 simulation runs with p = 0.0005. From the table, it can

be seen that for small m, while p̄ is unbiased, p̂ tends to over-estimate p.

From Equation (3.2), it is clear that the minimum value for m is 2 such that p

could be estimated. If there is no previous data or history on the similar process

and the process parameter has to be estimated using the current observations, a
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simple way to start using the CCC chart is to establish the chart with m = 2.

As long as the cumulative number of conforming items for the next occurrence

of nonconforming is within the control limits, the estimate and the control limits

are updated. In this way, two problems are simultaneously solved. First, the

homogeneity of samples is ensured. Second, the chart can be put in place within a

reasonable time frame without the usual problem that a random sample may not

consist of any nonconforming items. Details of the proposed scheme for setting up

CCC chart will be presented in the following sections.

Table 3.1: The Comparisons of the estimates using p̄ and p̂ on 1000 simulation
runs with p = 0.0005 for different m.

m p̄ p̂
2 0.000498 0.000911
3 0.000505 0.000742
4 0.000501 0.000661
5 0.000497 0.000616
6 0.000494 0.000590
7 0.000496 0.000576
8 0.000499 0.000568

3.3 Run Length Distribution

A control chart may indicate an out-of-control condition either when one point falls

beyond the control limits or when the plotted points exhibit some nonrandom pat-

tern of behaviours. When the chart signals an out-of-control alarm, this indicates

that a shift has occured and actions will be taken to diagnose the shift. Generally,

the control charting will then be restarted. The whole sequence going from the
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starting point to the plotting point going beyond the control limits is called a run.

The number of observations from the starting point up to the point which is beyond

the control limits is called the run length. The run length is a random variable,

having a mean, a variance and a distribution. Its mean is called the average run

length (ARL), which had been described in Section 1.1.2.1, and is usually used to

measure the performance of the control chart.

3.3.1 Run Length Distribution of CCC Chart with Known

Parameter (Phase II)

When the process parameter, p0 is known, i.e., Phase II on the implementation of

a control chart. The run length distribution of the CCC chart can be obtained

easily.

Let E be the signaling event, i.e., the event when the ith plotting point is either

above UCL or below LCL. This event can be expressed as

E = {Xi > UCL or Xi < LCL} (3.3)

where Xi is the geometric random variable with parameter p when this event occurs.

Then, P (E) is the alarm rate for a CCC chart

P (E) = P (Xi > UCL) + P (Xi < LCL)

= (1 − p)UCL + 1 − (1 − p)LCL−1

= 1 − {(1 − p)LCL−1 − (1 − p)UCL}.

(3.4)

When the process is in control, p = p0, the probability of a signal or the false alarm
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rate is equal to

1 − {(1 − p0)
LCL−1 − (1 − p0)

UCL} = α (3.5)

where {(1 − p)LCL−1 − (1 − p)UCL} denoted as β is the operating characteristic

(OC) function, which defined as the probability that the count will fall within the

control limits. For different value of p, the OC curve provides a measure of the

sensitivity of the control chart, as stated in Chapter 1, that is, its ability to detect

process shift.

As X is geometrically distributed, Xi and Xj are independent for i 6= j, the

sequence of trials of determining if X exceeds the known constant control limits

would be a sequence of Bernoulli trials. Thus, the events E are independent. If U

is defined as the number of points plotted until an out-of-control signal is given,

i.e., until the first E occurs, then U is known as the run length of the chart and

comes from another geometric distribution with parameter p = P (E). Therefore,

the mean of the distribution of E or the ARL is given by

ARL =
1

1 − β
(3.6)

and the standard deviation, SDRL, is given by

SDRL =

√
β

1 − β

=
√

ARL(ARL − 1)

(3.7)

For the CCC chart, the ARL for a given fraction nonconforming p is

ARL =
1

1 − β
=

1

1 − ({(1 − p)LCL−1 − (1 − p)UCL}) (3.8)

46



3.4 Performance of CCC chart with p̄

Using p̄ as the estimate of p, it follows from Equations (2.5), (2.6) and (3.2) that

the estimated control limits are:

ÛCL =
ln(α/2)

ln(1 − (m − 1)/(Nm − 1))
(3.9)

L̂CL =
ln(1 − α/2)

ln(1 − (m − 1)/(Nm − 1))
+ 1 (3.10)

Analogously to what had been presented in Section 3.3, define F to be the event

that a particular point on the CCC chart constructed with p̄, plots above ÛCL or

below L̂CL. This event can be expressed as

F = {X > ÛCL or X < L̂CL}

where X is the geometric random variable with parameter p when this event occurs.

Then, P (F |m) is the alarm rate for a CCC chart constructed given a prescribed

value for m. For large m(→ ∞), this would become the true false alarm rate as

p̄ → p0. From the law of total probability, P (F |m) can be written as

P (F |m) =

∞∑

n=m

P (F |m, Nm)P (Nm = n|m)

=
∞∑

n=m

(
P{X > ÛCL|m, Nm = n} + P{X < L̂CL|m, Nm = n}

)

(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

=

∞∑

n=m

(
(1 − p)

ln(α/2)
ln(1−(m−1)/(n−1)) − (1 − p)

ln(1−α/2)
ln(1−(m−1)/(n−1)) + 1

)(n − 1

m − 1

)
pm

0 (1 − p0)
n−m

(3.11)

The equation above gives the alarm rate under the sequential sampling scheme.
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Note that when p = p0, Equation (3.11) gives the false alarm probability, which

would have the value of α/2, for two-sided chart.

Since p0 is a small number as the high yield manufacturing process involves

only with very low percent nonconforming level, from Equation (3.11), both the

conditional probability and the negative binomial probability for very large values

of n are negligible. Hence, to simplify the computation, a truncation procedure

is used. Based on Chebyshev’s Inequality, the truncation is applied in Equation

(3.11) such that

P (F |m) ≤
c′∑

n=m

((
P{X > ÛCL|m, Nm = n} + P{X < L̂CL|m, Nm = n}

)

(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

)
+
∑

m≥c′

(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

where c′ =
cm

p0
. The second term is bounded using the Chebyshev’s Inequality,

where

P{|X − µ| ≥ c′ − µ} ≤ σ2

(c′ − µ)2

=
m(1 − p0)/p

2
0

(c′ − m
p0

)2

=
m(1 − p0)

p2
0(c

′ − m
p0

)2

Thus, the probability mass beyond c′ is bounded by

m(1 − p0)

p2
0

(
(c − 1)(m/p0)

)2 .

The values of c can be chosen so that this bound is arbitrary small. Here, in this

study, the c value is used so that the bound is smaller than 10−3.

Table 3.2 provides the values of false alarm rate for different combinations of p0

and m, ranging from p0 = 0.0001 to 0.001 and m = 2(1)15, to 350 with α = 0.0027.
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From this table, it is noted that the actual false alarm rate deviates significantly

from its desired value, α, when the chart is constructed using the estimated value

of p0. The false alarm rate decreases and approaches α as m increases, regardless

of p0; in other words, the probability of false signal is not affected by the in-control

percent nonconforming, p0, but it does depend on the number of nonconforming

items, m, and in turns, Nm, the total number of samples.

Table 3.2: The false alarm rates with estimated control limits, α = 0.0027.

m \ p0 0.00005 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001
2 0.01998 0.01998 0.0200 0.01999 0.02000 0.02000 0.02000 0.02001 0.02001 0.02002 0.02002
3 0.01457 0.01457 0.01458 0.01457 0.01458 0.01458 0.01458 0.01458 0.01458 0.01458 0.01458
4 0.01131 0.01131 0.01131 0.01131 0.01131 0.01131 0.01131 0.01131 0.01131 0.01131 0.01132
5 0.00931 0.00931 0.00931 0.00931 0.00931 0.00931 0.00931 0.00931 0.00931 0.00931 0.00931
6 0.00801 0.00801 0.00801 0.00801 0.00801 0.00801 0.00801 0.00801 0.00801 0.00801 0.00801
7 0.00710 0.00710 0.0071 0.00710 0.00710 0.00710 0.00710 0.00710 0.00711 0.00711 0.00711
8 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645 0.00645
9 0.00595 0.00595 0.00595 0.00595 0.00595 0.00595 0.00595 0.00595 0.00595 0.00595 0.00595
10 0.00556 0.00556 0.00557 0.00557 0.00557 0.00557 0.00557 0.00557 0.00557 0.00557 0.00557
11 0.00526 0.00526 0.00526 0.00526 0.00526 0.00526 0.00526 0.00526 0.00526 0.00526 0.00526
12 0.00501 0.00501 0.00501 0.00501 0.00501 0.00501 0.00501 0.00501 0.00501 0.00501 0.00501
13 0.00480 0.00480 0.0048 0.00480 0.00480 0.00480 0.00480 0.00480 0.00480 0.00480 0.00480
14 0.00463 0.00463 0.00463 0.00463 0.00463 0.00463 0.00463 0.00463 0.00463 0.00463 0.00463
15 0.00448 0.00448 0.00448 0.00448 0.00448 0.00448 0.00448 0.00448 0.00448 0.00448 0.00448
20 0.00398 0.00398 0.00398 0.00398 0.00398 0.00398 0.00398 0.00398 0.00398 0.00398 0.00398
25 0.00369 0.00369 0.00369 0.00369 0.00369 0.00369 0.00369 0.00369 0.00369 0.00369 0.00369
30 0.00351 0.00351 0.00351 0.00351 0.00351 0.00351 0.00351 0.00351 0.00351 0.00351 0.00351
35 0.00339 0.00339 0.00339 0.00339 0.00339 0.00339 0.00339 0.00339 0.00339 0.00339 0.00339
40 0.00329 0.00329 0.00329 0.00329 0.00329 0.00329 0.00329 0.00329 0.00329 0.00329 0.00329
50 0.00317 0.00317 0.00317 0.00317 0.00317 0.00317 0.00317 0.00317 0.00317 0.00317 0.00317
60 0.00309 0.00309 0.00309 0.00309 0.00309 0.00309 0.00309 0.00309 0.00309 0.00309 0.00309
70 0.00303 0.00303 0.00303 0.00303 0.00303 0.00303 0.00303 0.00303 0.00303 0.00303 0.00303
80 0.00299 0.00299 0.00299 0.00299 0.00299 0.00299 0.00299 0.00299 0.00299 0.00299 0.00299
90 0.00295 0.00295 0.00295 0.00295 0.00295 0.00295 0.00295 0.00295 0.00295 0.00295 0.00295
100 0.00293 0.00293 0.00293 0.00293 0.00293 0.00293 0.00293 0.00293 0.00293 0.00293 0.00293
150 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285 0.00285
200 0.00281 0.00281 0.00281 0.00281 0.00281 0.00281 0.00281 0.00281 0.00281 0.00281 0.00281
250 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279
300 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277 0.00277
350 0.00276 0.00276 0.00276 0.00276 0.00276 0.00276 0.00276 0.00276 0.00276 0.00276 0.00276
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3.4.1 The Run Length Distribution with p̄

Denote P (F |m, Nm = n) by pm,n, and the run length of the constructed chart with

a given m by Rm. That is,

P (F |m, Nm = n) = P{X > ÛCL|m, Nm = n} + P{X < L̂CL|m, Nm = n}

= (1 − p)
ln(α/2)

ln(1−(m−1)/(n−1)) − (1 − p)
ln(1−α/2)

ln(1−(m−1)/(n−1)) + 1

= pm,n

The conditional distribution of Rm, given Nm = n is geometric with parameter

pm,n as

PRm|Nm(r|Nm = n) = (1 − pm,n)r−1pm,n (3.12)

The expectation of Rm for a given m can be expressed as

E(Rm) = E[E(Rm|Nm)]

From Equation (3.12), we have E(Rm) = E[1/pm,n]. Thus, the ARLm, which is

the expectation of Rm, would be

ARLm = E[1/pm,n]

=

∞∑

n=m

1

pm,n

(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

(3.13)

Hence, the unconditional distribution of Rm, which is the run length distribution,

is given by

PRm(r; p0, p) =

∞∑

n=m

(
1 − pm,n

)r−1
pm,nP (Nm = n|m)

=
∞∑

n=m

(
1 − pm,n

)r−1
pm,n

(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

(3.14)
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From the usual conditional expectation property,

E
[
var[Rm|N ]

]
= E

[
E[R2

m|N ]
]
− E

[
(E[Rm|N ])2

]

= E[R2
m] − (E[Rm])2 − E

[
(E[Rm|N ])2

]
+ (E[Rm])2

= var[Rm] − E
[
(E[Rm|N ])2

]
+
(
E
[
E[Rm|N ]

])2

= var[Rm] − var
[
E[Rm|N ]

]

(3.15)

It follows that, the variance of Rm is

var[Rm] = E
[
var[Rm|N ]

]
+ var

[
E[Rm|N ]

]

= E
[
(1 − pm,n)/(pm,n)

2
]
+ var[1/pm,n]

=

∞∑

n=m

(
1 − pm,n

(pm,n)2

)(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

+

( ∞∑

n=m

(
1

pm,n

)2(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

)

−
( ∞∑

n=m

(
1

pm,n

)(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

)2

=

∞∑

n=m

(
2 − pm,n

(pm,n)2

)(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

−
( ∞∑

n=m

1

pm,n

(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

)2

(3.16)

The standard deviation of the run length, Rm, SDRLm is then given by the square

root of Equation (3.16) as

SDRLm =
√

E
[
(1 − pm,n)/(pm,n)2

]
+ var[1/pm,n]

=

(
∞∑

n=m

(
2 − pm,n

(pm,n)2

)(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

−
( ∞∑

n=m

1

pm,n

(
n − 1

m − 1

)
pm

0 (1 − p0)
n−m

)2
)1/2

(3.17)

Values of ARLm and SDRLm are computed from Equations (3.13) and (3.17)

for a range of m and p with p0 = 0.0005 and tabulated in Table 3.3. For each
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combination of m and p, the first value shown is the ARLm and the second is

the SDRLm, followed by the coefficient of variation of the run length, the values

in bracket under each value of m are the expected number of samples with m

nonconforming items when p = p0, E(Nm); the ARL and SDRL of the CCC chart

using the known p0 are given in the last row.

It is noted that, as m gets larger, ARLm and SDRLm approach to those of the

known parameter. It is also noted that, as p decreases, both ARLm and SDRLm

decrease, and when p increases, both ARLm and SDRLm first increase then de-

crease. This implies that CCC chart is better in detecting quality improvement

and is not effective in detecting process deterioration unless the amount of increase

in p is large. This is in fact a common problem for data having a skewed distrib-

ution, regardless of whether the parameter is known or estimated (see discussions

in Section 2.3.1.3). This problem will be addressed in the proposed scheme given

in the next section. Figure 3.1 shows the ARLs for known p0 and the ARLs using

p̄ for different m. It can be seen that, as m increases, the behavior of the chart is

getting closer to the known value chart.

3.4.2 Comparison with CCC chart under p̂

The conventional estimate of p, given in Equation (3.1), is obtained by sampling a

large number of items so that there are at least one nonconforming item. In this

case, the nonconforming count, Mn is a binomial random variable with parameter
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Table 3.3: The Average Run Length (ARLm), Standard Deviation Run Length
(SDRLm) and the coefficient of variation of the run length with estimated control
limits, α = 0.0027, p0 = 0.0005. The number in the parenthesis below each m is
the expected sample size.

m \ p 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001
2 49.83 178.82 250.09 275.68 279.16 272.74 262.16 250.11 237.86 226.02

(4000) 154.92 321.57 363.61 365.99 356.70 344.06 330.76 317.78 305.45 293.89
3.11 1.80 1.45 1.33 1.28 1.26 1.26 1.27 1.28 1.30

3 16.36 112.95 220.04 282.83 309.57 315.24 309.86 299.07 285.95 272.12
(6000) 56.85 246.16 349.15 382.50 386.53 379.08 367.16 353.63 339.76 326.13

3.48 2.18 1.59 1.35 1.25 1.20 1.18 1.18 1.19 1.20
4 9.55 78.60 193.41 279.22 323.55 338.82 337.37 327.23 313.04 297.34

(8000) 26.44 187.90 324.30 383.21 399.53 397.11 386.67 372.82 357.70 342.34
2.77 2.39 1.68 1.37 1.23 1.17 1.15 1.14 1.14 1.15

5 7.28 59.33 172.59 273.66 331.97 355.09 356.63 346.64 331.18 313.66
(10000) 15.49 146.57 299.69 379.19 406.54 408.77 399.69 385.55 369.29 352.38

2.13 2.47 1.74 1.39 1.22 1.15 1.12 1.11 1.12 1.12
6 6.20 47.51 156.19 267.82 337.67 367.42 371.27 361.09 344.29 325.04

(12000) 10.19 116.67 277.26 373.44 373.44 417.19 409.35 394.91 377.56 359.21
1.64 2.46 1.78 1.39 1.11 1.14 1.10 1.09 1.10 1.11

7 5.66 40.09 143.29 262.38 341.94 377.38 383.05 372.45 354.28 333.42
(14000) 8.36 95.77 257.44 367.04 413.22 423.64 416.92 402.15 383.76 364.07

1.48 2.39 1.80 1.40 1.21 1.12 1.09 1.08 1.08 1.09
8 5.30 35.03 132.83 257.31 345.22 385.65 392.77 381.61 362.09 339.75

(16000) 7.22 80.37 239.97 360.51 414.77 428.83 423.12 408.01 388.60 367.66
1.36 2.29 1.81 1.40 1.20 1.11 1.08 1.07 1.07 1.08

9 5.06 31.43 124.24 252.64 347.83 392.68 400.97 389.16 368.34 344.65
(18000) 6.46 68.81 224.60 354.07 415.70 433.13 428.35 412.86 392.48 370.37

1.28 2.19 1.81 1.40 1.20 1.10 1.07 1.06 1.07 1.07
10 4.88 28.78 117.08 248.36 349.96 398.77 408.01 395.50 373.44 348.51

(20000) 5.93 59.99 211.03 347.83 416.20 436.80 432.84 416.96 395.65 372.44
1.22 2.08 1.80 1.40 1.19 1.10 1.06 1.05 1.06 1.07

15 4.42 22.12 94.35 231.66 356.66 420.53 432.43 416.19 388.89 359.33
(30000) 4.69 37.18 162.81 320.65 415.66 449.48 448.68 430.70 405.19 377.53

1.06 1.68 1.73 1.38 1.17 1.07 1.04 1.03 1.04 1.05
20 4.22 19.45 82.50 220.20 360.14 434.25 447.03 427.38 396.26 363.83

(40000) 4.21 28.19 134.12 299.58 413.38 457.37 458.61 438.49 409.59 378.82
1.00 1.45 1.63 1.36 1.15 1.05 1.03 1.03 1.03 1.04

50 3.92 15.81 62.18 191.36 366.79 468.33 479.09 447.61 407.02 369.13
(100000) 3.55 17.86 80.20 236.94 400.49 477.70 482.54 452.96 413.98 376.49

0.91 1.13 1.29 1.24 1.09 1.02 1.01 1.01 1.02 1.02
60 3.89 15.47 60.09 187.22 367.50 473.32 483.12 449.63 407.84 369.43

(120000) 3.49 17.01 74.54 226.82 397.60 480.95 485.89 454.34 413.90 375.73
0.90 1.10 1.24 1.21 1.08 1.02 1.01 1.01 1.01 1.02

70 3.87 15.23 58.62 184.11 368.00 477.10 486.05 451.00 408.36 369.62
(140000) 3.45 16.43 70.63 219.07 395.21 483.49 488.37 455.24 413.74 375.14

0.89 1.08 1.20 1.19 1.07 1.01 1.00 1.01 1.01 1.01
80 3.85 15.06 57.55 181.70 368.36 480.07 488.26 451.99 408.73 369.74

(160000) 3.42 16.01 67.78 212.94 393.20 485.54 490.28 455.85 413.56 374.66
0.89 1.06 1.18 1.17 1.07 1.01 1.00 1.01 1.01 1.01

90 3.84 14.93 56.72 179.78 368.63 482.47 489.99 452.74 408.99 369.83
(180000) 3.39 15.69 65.61 207.99 391.49 487.23 491.79 456.29 413.39 374.27

0.88 1.05 1.16 1.16 1.06 1.01 1.00 1.01 1.01 1.01
100 3.83 14.83 56.07 178.21 368.85 484.44 491.37 453.31 409.19 369.89

(200000) 3.37 15.45 63.91 203.91 390.01 488.65 493.02 456.62 413.23 373.95
0.88 1.04 1.14 1.14 1.06 1.01 1.00 1.01 1.01 1.01

150 3.80 14.52 54.15 173.32 369.45 490.71 495.53 454.94 409.72 370.06
(300000) 3.32 14.74 58.99 191.01 384.93 493.34 496.74 457.42 412.64 372.95

0.87 1.01 1.09 1.10 1.04 1.01 1.00 1.01 1.01 1.01
200 3.79 14.37 53.22 170.78 369.72 494.06 497.59 455.69 409.95 370.12

(400000) 3.29 14.40 56.64 184.20 381.94 495.97 498.61 457.72 412.29 372.42
0.87 1.00 1.06 1.08 1.03 1.00 1.00 1.00 1.01 1.01

250 3.78 14.29 52.67 169.23 369.88 496.14 498.82 456.12 410.07 370.16
(500000) 3.27 14.20 55.27 180.00 379.97 497.66 499.73 457.87 412.06 372.10

0.87 0.99 1.05 1.06 1.03 1.00 1.00 1.00 1.00 1.01
- 3.74 13.94 50.52 162.79 370.37 505.10 503.62 457.66 410.51 370.28

3.21 13.44 50.02 162.29 369.87 504.60 503.12 457.16 410.01 369.78
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Figure 3.1: ARL for the exact value, and m = 3, 5, and 10, with p0 = 0.0005.

(n, p). Recently, Yang et al. [115] presented the performance of this chart using

this binomial sampling scheme.

For comparison, corresponding results to those in Tables 3.2 and 3.3 are re-

produced in Tables 3.4 and 3.5. It can be seen that the false alarm rate for the

binomial sampling scheme is dependent on the true percent nonconforming p0.

This is undesirable in practice as p0 needs to be estimated and there may be no

defective / nonconforming item in the initial sample. As a result, practitioners /

engineers cannot be sure of the risk when they need to decide on the sample size n.

In practice, this often leads to a situation where n is increased incrementally until

some arbitrary number of defective / nonconforming items are observed which, in

turn, induces bias in the estimate of p.

From Table 3.5, it is clear that the values of ARL for different n under the
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Table 3.4: Values of false alarm rate with estimated control limits, under binomial
sampling scheme, α = 0.0027 (from Yang et al. [115] Table 1).

n \ p0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001
10000 0.38651 0.14718 0.05911 0.02623 0.01371 0.00878 0.00671 0.00575 0.00524 0.00492
20000 0.14719 0.02623 0.00878 0.00575 0.00492 0.00452 0.00425 0.00406 0.00391 0.00379
50000 0.01372 0.00492 0.00415 0.00379 0.00357 0.00343 0.00332 0.00325 0.00319 0.00314
100000 0.00492 0.00379 0.00343 0.00325 0.00314 0.00306 0.00301 0.00297 0.00294 0.00292
200000 0.00378 0.00324 0.00306 0.00297 0.00291 0.00288 0.00286 0.00283 0.00282 0.00281
300000 0.00343 0.00306 0.00294 0.00288 0.00284 0.00282 0.00281 0.00279 0.00278 0.00277
400000 0.00324 0.00297 0.00288 0.00283 0.00281 0.00279 0.00278 0.00277 0.00276 0.00276
500000 0.00314 0.00292 0.00285 0.00281 0.00279 0.00277 0.00276 0.00276 0.00275 0.00275
600000 0.00306 0.00288 0.00282 0.00279 0.00279 0.00277 0.00276 0.00275 0.00274 0.00274
700000 0.00301 0.00286 0.0028 0.00278 0.00276 0.00275 0.00275 0.00274 0.00274 0.00273
800000 0.00297 0.00284 0.00279 0.00277 0.00276 0.00275 0.00274 0.00274 0.00273 0.00273
900000 0.00294 0.00282 0.00278 0.00276 0.00274 0.00274 0.00274 0.00273 0.00273 0.00273
1000000 0.00292 0.00281 0.00277 0.00276 0.00274 0.00273 0.00273 0.00273 0.00273 0.00272
2000000 0.00281 0.00276 0.00274 0.00273 0.00272 0.00272 0.00272 0.00272 0.00271 0.00271

∞ 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027

binomial scheme, ARLn, are larger than the exact value (370.37) when the process

is in control. This is counter-intuitive, as the performance of the estimated chart

is normally weaker than the known parameters chart. This could be due to the

positive biased in estimating p and the inherent problem of CCC chart having a

larger ARL when the true proportion nonconforming is larger than the in-control

value. The performance of the chart using the unbiased estimate, as shown in Table

3.3, shows that the in-control ARLm, is smaller than the exact value; and as m

increases, the ARLm increases towards the exact ARL.

3.5 The Proposed Scheme for CCC Chart with

Sequentially Estimated p

From the previous section, it is noted that the ARL for CCC chart behaves differ-

ently from the conventional chart in that the ARL is larger when process begins

to deteriorate. Moreover, due to the use of an estimated p, the in-control ARL,

ARL0 is dependent on m and is smaller than the nominal value with known p. In
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Table 3.5: Values of ARLn and SDRLn with estimated control limits, under bino-
mial sampling scheme, α = 0.0027, p0 = 0.0005 (from Yang et al. [115] Table 3 ).

n \ p0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001
10000 95.05 173.62 262.73 331.30 374.10 397.50 406.90 406.00 397.1 382.70

18.55 64.10 138.51 221.40 291.80 339.10 362.30 366.00 356.7 340.10
20000 29.42 108.72 221.54 323.80 391.60 426.20 436.40 429.00 410.1 385.40

6.56 37.08 114.24 224.10 326.20 391.00 414.40 408.40 386.7 359.50
50000 4.50 34.67 134.84 281.30 398.80 457.40 467.60 447.90 415.1 380.20

4.18 19.38 78.43 206.80 353.00 442.00 460.80 439.00 403.6 367.90
100000 3.61 19.18 87.26 239.50 394.80 474.90 483.40 454.00 414.0 375.80

3.93 16.02 63.25 190.40 362.90 467.80 480.90 449.10 407.8 369.40
200000 3.38 15.65 65.55 205.60 387.60 487.10 492.80 456.20 412.4 373.00

3.83 14.87 56.33 178.10 367.50 484.30 492.00 453.70 409.3 370.00
300000 3.32 14.81 59.63 191.90 383.40 492.20 496.20 456.70 411.7 372.00

3.80 14.54 54.26 173.30 368.70 490.70 495.80 455.10 409.8 370.10
400000 3.29 14.43 56.96 184.70 380.80 494.90 497.90 456.90 411.3 371.40

3.79 14.38 53.27 170.80 369.20 494.00 497.80 455.80 410.0 370.10
500000 3.27 14.22 55.45 180.30 379.00 496.70 498.90 457.00 411.1 371.30

3.78 14.29 52.70 169.20 369.50 496.10 498.90 456.20 410.1 370.20
600000 3.26 14.08 54.47 177.30 377.70 497.90 499.60 457.00 410.9 370.90

3.77 14.23 52.32 168.20 369.70 497.50 499.70 456.40 410.2 370.20
700000 3.25 13.98 53.79 175.10 376.70 498.80 500.10 457.10 410.8 370.70

3.77 14.19 52.05 167.40 369.80 498.60 500.30 456.60 410.2 370.20
800000 3.25 13.91 53.29 173.50 376.00 499.50 500.50 457.10 410.7 370.60

3.77 14.16 51.85 166.80 369.90 499.30 500.70 456.70 410.3 370.20
900000 3.24 13.86 52.91 172.30 375.40 500.00 500.80 457.10 410.6 370.50

3.76 14.13 51.70 166.40 369.90 500.00 501.00 456.90 410.3 370.20
1000000 3.24 13.81 52.61 171.30 374.90 500.40 501.00 457.10 410.6 370.50

3.76 14.11 51.58 166.00 370.00 500.40 501.30 456.90 410.3 370.20
2000000 3.75 14.03 51.04 164.40 370.20 502.70 502.40 457.30 410.4 370.30

3.22 13.62 51.28 166.80 372.50 502.40 502.10 457.10 410.3 370.10
∞ 3.74 13.95 50.52 162.80 370.40 505.10 503.10 457.70 410.5 370.30

3.21 13.44 50.02 162.30 369.90 504.60 503.10 457.20 410.0 369.80

the following, a construction scheme of CCC chart is proposed, this scheme results

in a consistently large τ which is also the maximum point on the ARL curve.

To ensure that the ARL of the CCC chart will always decrease whenever there

is a process shift, the adjustment factor, γ given in Equation (2.11) which discussed

in Section 2.3.1.3 is used.

In order to maintain a consistently large τ for each m, the parameter φm,

satisfying

∞∑

n=m

(
(1−p̄)

ln(φm/2)γφm
ln(1−p̄) −(1−p̄)

ln(1−φm/2)γφm
ln(1−p̄) +1

)−1
(

n − 1

m − 1

)
p̄m(1−p̄)n−m = τ. (3.18)

should be used for computing the adjustment factor and the corresponding control
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limits; where τ is the desired ARL0. Given an estimate, p̄, and m with the desired

ARL0, τ , the value of φm could be obtained from Equation (3.18). Note that due

to random Nm, p̄ varies from run to run even when m is fixed. Table 3.6 shows the

values of φm for different m and for p̄ ranging from 0.0001 to 0.001 with the desired

in-control ARL, τ set at 370. Not only that p̄ has no effect on φm, φm converges to

that of the known value chart as m increases; which takes place for m more than

50. Figure 3.2 is the graphical representation of φm. The exact value, φ∞, could

be obtained by solving

1

τ
= 1 + (1 − p0)

ln φ/2
ln(1−p0)

ln

[
ln(1−φ∞/2)
ln(φ∞/2)

]

ln

[
(φ∞/2)

(1−φ∞/2)

]
− (1 − p0)

ln(1−φ/2)
ln(1−p0)

ln

[
ln(1−φ∞/2)
ln(φ∞/2)

]

ln

[
(φ∞/2)

(1−φ∞/2)

]
. (3.19)

The details of the above equation will be discussed in the following chapter.

Table 3.6: The parameter φm with different m, p̄, and τ = 370.

m \ p̄ 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010
2 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196 0.00196
3 0.00229 0.00229 0.00229 0.00229 0.00229 0.00229 0.00229 0.00229 0.00229 0.00229
4 0.00248 0.00248 0.00248 0.00248 0.00248 0.00248 0.00248 0.00248 0.00248 0.00248
5 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261 0.00261
6 0.00271 0.00271 0.00271 0.00271 0.00271 0.00271 0.00271 0.00271 0.00271 0.00271
7 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279 0.00279
8 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286 0.00286
9 0.00292 0.00292 0.00292 0.00292 0.00292 0.00292 0.00292 0.00292 0.00292 0.00292
10 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296 0.00296
15 0.00314 0.00314 0.00314 0.00314 0.00314 0.00314 0.00314 0.00314 0.00314 0.00314
20 0.00324 0.00324 0.00324 0.00324 0.00324 0.00324 0.00324 0.00324 0.00324 0.00324
50 0.00350 0.00350 0.00350 0.00350 0.00350 0.00350 0.00350 0.00350 0.00350 0.00350

As shown in previous section, the false alarm rate using p̄ as the estimate is

independent of p0; this implies that φm obtained from the above equation should

also be independent of p̄ and can be used for any high yield processes. The control
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Figure 3.2: Values of φm for τ = 370.

limits are thus given by

UCLφm =
ln(φm/2)

ln(1 − (m − 1)/(Nm − 1))
× γφm (3.20)

LCLφm =

(
ln(1 − φm/2)

ln(1 − (m − 1)/(Nm − 1))

)
γφm + 1 (3.21)

By using the proposed adaptive adjustment factor, the CCC scheme becomes

more effective in detecting the shift in p. To obtain the ARL curves for different

m using this proposed sequential estimation scheme, the Equation (3.18) can be

re-written as

∞∑

n=m

(
(1−p̄)

ln(φm/2)γφm
ln(1−p̄) −(1−p̄)

ln(1−φm/2)γφm
ln(1−p̄) +1

)−1
(

n − 1

m − 1

)
pm(1−p)n−m = τm (3.22)

where τm is the desired in-control ARL with p̄ estimated after observing m non-

conforming items.
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Table 3.7 shows the ARL as well as the SDRL of the CCC chart with the

adjustment factor for m ranging from m = 2 to 10, p0 = 0.0005, and the in-control

ARL = 370. For ease of comparison, the last row of the table gives the ARL and

SDRL with known parameter. The general behaviour of ARL is depicted in Figure

3.3 for m = 3, 5, and 10, with p0 = 0.0005.

Figure 3.3: ARL for the exact value, and m = 3, 5, and 10, using φm with p0 =
0.0005.
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Table 3.7: The Average Run Length, Standard Deviation Run Length and the
coefficient of variation of the run length with estimated control limits and φm,
constant τ = 370, and p0 = 0.0005.

m \ p 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001
2 117.34 309.28 375.61 383.36 369.93 349.70 328.17 307.44 288.24 270.75

304.91 489.09 507.74 491.55 468.41 444.90 422.72 402.29 383.62 366.58
2.60 1.58 1.35 1.28 1.27 1.27 1.29 1.31 1.33 1.35

3 39.84 208.47 324.63 366.62 370.04 356.87 337.50 316.61 296.24 277.19
129.88 373.76 449.40 456.33 442.54 422.72 401.62 380.98 361.44 343.22

3.26 1.79 1.38 1.24 1.20 1.18 1.19 1.20 1.22 1.24
4 21.14 156.33 292.76 355.88 369.80 360.19 341.04 319.03 297.13 276.57

66.46 301.06 412.24 436.12 428.79 411.00 389.96 368.47 347.70 328.15
3.14 1.93 1.41 1.23 1.16 1.14 1.14 1.15 1.17 1.19

5 14.54 124.99 270.41 348.59 370.05 362.41 342.71 319.31 295.94 274.09
39.41 250.30 384.83 422.28 420.03 403.58 382.23 359.72 337.71 316.93
2.71 2.00 1.42 1.21 1.14 1.11 1.12 1.13 1.14 1.16

6 11.54 104.32 253.31 342.89 370.12 363.60 343.03 318.26 293.60 270.75
26.42 212.68 362.71 411.43 413.41 397.92 376.11 352.59 329.43 307.60
2.29 2.04 1.43 1.20 1.12 1.09 1.10 1.11 1.12 1.14

7 9.92 89.91 239.74 338.38 370.22 364.29 342.71 316.65 290.91 267.29
19.56 183.98 344.36 402.67 408.29 393.51 371.15 346.63 322.45 299.73
1.97 2.05 1.44 1.19 1.10 1.08 1.08 1.09 1.11 1.12

8 8.93 79.35 228.37 334.24 369.83 364.17 341.56 314.36 287.76 263.58
15.60 161.33 328.32 394.83 403.64 389.40 366.48 341.05 315.98 292.56
1.75 2.03 1.44 1.18 1.09 1.07 1.07 1.08 1.10 1.11

9 8.26 71.40 218.85 330.71 369.43 363.82 340.19 311.98 284.67 260.08
13.14 143.30 314.42 388.09 399.73 385.91 362.39 336.11 310.27 286.29
1.59 2.01 1.44 1.17 1.08 1.06 1.07 1.08 1.09 1.10

10 7.80 65.46 211.54 328.99 370.59 364.85 340.15 310.92 282.91 257.93
11.54 129.19 303.48 383.83 398.07 384.50 360.29 333.09 306.47 281.93
1.48 1.97 1.43 1.17 1.07 1.05 1.06 1.07 1.08 1.09

- 5.12 25.77 113.48 296.72 370.03 337.51 293.82 257.80 229.30 206.42
4.60 25.26 112.98 296.22 369.53 337.01 293.32 257.30 228.80 205.92

3.6 Numerical Examples

Here, two examples are presented to demonstrate the usage and efficiency of the

proposed charting technique. A set of 60 simulated process observations with

percent nonconforming, p = 0.0005, i.e., 500 parts-per-million (ppm), is shown in

Table 3.8. Besides the simulated data, Table 3.8 also shows the updates of the

cumulative conformance counts, x, the estimates, p̄ and the control limits for m

ranging from 2 to 60.

From Table 3.8, the 60 observations are listed and the control limits are com-

puted with the proposed scheme. The results are depicted in Figure 3.4 where the
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Table 3.8: The simulated data from geometric distribution for m = 60 with p =
0.0005.

m x
∑

x p̄ LCLφm UCLφm m x
∑

x p̄ LCLφm UCLφm

1 3779 3779 - - - 31 261 67290 0.00045 6 18579
2 1885 5664 0.00018 9 50196 32 4099 71389 0.00043 7 19075
3 494 6158 0.00032 6 26735 33 2428 73817 0.00043 7 19108
4 3591 9749 0.00031 7 27925 34 675 74492 0.00044 7 18698
5 1063 10812 0.00037 6 23067 35 203 74695 0.00046 6 18197
6 266 11078 0.00045 6 18810 36 1883 76578 0.00046 6 18123
7 1030 12108 0.00050 5 17065 37 527 77105 0.00047 6 17741
8 4075 16183 0.00043 6 19486 38 530 77635 0.00048 6 17380
9 1935 18118 0.00044 6 19038 39 1835 79470 0.00048 6 17322

10 262 18380 0.00049 6 17128 40 2994 82464 0.00047 6 17514
11 1166 19546 0.00051 6 16393 41 5816 88280 0.00045 6 18281
12 107 19653 0.00056 5 14984 42 1475 89755 0.00046 6 18133
13 887 20540 0.00058 5 14355 43 1649 91404 0.00046 6 18026
14 1303 21843 0.00060 5 14091 44 1458 92862 0.00046 6 17888
15 3021 24864 0.00056 5 14778 45 839 93701 0.00047 6 17639
16 1616 26480 0.00057 5 14690 46 631 94332 0.00048 6 17364
17 5739 32219 0.00050 6 16757 47 937 95269 0.00048 6 17155
18 10498 42717 0.00040 7 20911 48 1861 97130 0.00048 6 17118
19 2099 44816 0.00040 7 20720 49 1095 98225 0.00049 6 16950
20 5051 49867 0.00038 7 21740 50 2009 100234 0.00049 6 16768
21 501 50368 0.00040 7 20861 51 2992 103226 0.00048 6 16923
22 2221 52589 0.00040 7 20743 52 3810 107036 0.00048 7 17204
23 2162 54751 0.00040 7 20615 53 296 107332 0.00048 6 16919
24 914 55665 0.00041 7 20047 54 980 108312 0.00049 6 16752
25 2351 58016 0.00041 7 20023 55 625 108937 0.00050 6 16536
26 414 58430 0.00043 7 19360 56 901 109838 0.00050 6 16370
27 998 59428 0.00044 7 18933 57 10171 120009 0.00047 7 17567
28 920 60348 0.00045 6 18514 58 614 120623 0.00047 7 17347
29 2937 63285 0.00044 7 18721 59 296 120919 0.00048 6 17089
30 3744 67029 0.00043 7 19145 60 1097 122016 0.00048 7 16930

dotted lines are the estimated control limits; the two straight lines are the control

limits (after using the adjustment factor) with p0 = 0.0005 and α = 0.0027. From

the CCC chart shown in Figure 3.4, it is clear that the process is in control and

both the control limits and p̄ converges to the true values.

In order to see the effectiveness of the chart in detecting process deterioration,

the last 30 data in Table 3.8 are replaced with another 30 process observations

simulated with p = 0.005 as shown in Table 3.9. These ‘deteriorated’ process

observations are plotted in Figure 3.5.
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Figure 3.4: CCC chart with estimated control limits, using the simulated data
(dotted lines: control limits from proposed scheme; solid straight lines: control
limits with known parameters).

From Figure 3.5, the 41st observation is plotted below LCL as well as the

estimated LCL, LCLφm , indicating that the process is out of control; both sets of

control limits (known parameter and estimated) detect the process deterioration

at the same time.

Table 3.9: The simulated data from geometric distribution for m = 31 to 60 with
p = 0.005.

m x
∑

x p̄ LCLφm UCLφm m x
∑

x p̄ LCLφm UCLφm

31 143 67172 0.00045 6 18547 46 37 69628 0.00065 5 12815
32 206 67378 0.00046 6 18003 47 829 70457 0.00065 5 12686
33 258 67636 0.00047 6 17507 48 458 70915 0.00066 5 12497
34 8 67644 0.00049 6 16979 49 148 71063 0.00068 5 12262
35 34 67678 0.00050 6 16487 50 831 71894 0.00068 5 12026
36 394 68072 0.00051 6 16110 51 25 71919 0.00070 5 11789
37 189 68261 0.00053 6 15705 52 315 72234 0.00071 5 11609
38 491 68752 0.00054 6 15391 53 119 72353 0.00072 5 11404
39 116 68868 0.00055 6 15011 54 35 72388 0.00073 5 11194
40 20 68888 0.00057 5 14630 55 9 72397 0.00075 5 10988
41 3 68891 0.00058 5 14265 56 301 72698 0.00076 5 10833
42 218 69109 0.00059 5 13961 57 78 72776 0.00077 5 10651
43 327 69436 0.00060 5 13693 58 347 73123 0.00078 5 10514
44 68 69504 0.00062 5 13388 59 42 73165 0.00079 5 10339
45 87 69591 0.00063 5 13100 60 482 73647 0.00080 5 10217
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Figure 3.5: CCC chart with estimated control limits, using the out-of-control sim-
ulated data from Table 3.9.

3.7 Conclusion

In this Chapter, we propose a CCC scheme in which the estimate as well as the

control limits are sequentially updated according to the number of nonconforming

items observed, m. The performance of the chart in terms of its false alarm rate

and the run length properties is investigated. The strength of the proposed scheme

is that the behaviour of ARL is identical to other known-parameter Shewhart chart

in that the in-control ARL is tuned to 370 (or other preferred values) and decreases

monotonically whenever there is a change in process parameter. Numerical results

suggest that the performance of the chart is comparable with that of the known

value CCC chart.
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Chapter 4

Establishing CCC Charts

Current work on CCC chart (see Chapter 2), including the scheme presented in

previous chapter, has yet to provide a systematic treatment for establishing the

chart particularly when the parameter is estimated. Though Yang et al. [115]

studied the effects of parameter estimation on the CCC chart and previous chap-

ter has proposed a sequential estimation scheme, which performs well even when

compared to the known value CCC chart, a systematic framework for establishing

the CCC chart under different ways of estimating p has not been presented. For

example, to implement the CCC chart using the scheme presented in Chapter 3,

one must know when to stop updating the estimate of p so that the control limits

are not affected by data from drifted processes. If p is estimated using Yang et al.’s

[115] scheme, the initial sample size must also be specified.

In this chapter, the results from previous chapter and by Yang et al. [115]

are extended, so that engineers are able to construct the CCC chart under dif-

ferent sampling and estimation conditions. Some procedures for constructing the

CCC chart when the process fraction nonconforming is given, when it is estimated
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sequentially, and when it is estimated with a fixed sample size are proposed.

In the following, the statistical properties for some of the recent studies on CCC

charts are revisited. This is followed by guidelines for establishing CCC charts for

schemes presented in previous chapter as well as the scheme proposed by Yang et

al. [115]. Numerical examples and simulation studies for designing CCC charts

are presented for both cases when process fraction nonconforming, p, is given or

unknown to illustrate the applicability of the proposed guidelines.

4.1 Recent Studies on CCC Chart - Revisited

Here, some of the recent studies on CCC chart such as the adjustment factor

proposed by Xie et al. [105] which discussed in Section 2.3.1.3, the effects on

parameter estimation studied by Yang et al. [115] and the control scheme presented

in previous chapter are revisited.

4.1.1 Adjustment Factor, γ

In CCC charts, the control limits are determined based on the probability limits

from the geometric model given in Equation (2.1). For a given probability of type

I error, α, the two-sided control limits are given by Equations (3.20) and (3.21),

UCL =
ln α/2

ln(1 − p0)

LCL =
ln(1 − α/2)

ln(1 − p0)
+ 1

where p0 is the in-control fraction nonconforming (see Section 2.2.1). The resulting

ARL initially increases when the process starts to deteriorate (p increases) and
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decreases after attaining a maximum point at p > p0. It renders the CCC chart

rather insensitive in detecting increase in p and may lead to the misinterpretation

that the process is well in control, or has been improved (see discussions Section

2.3.1.3).

Xie et al. [105] showed that, for a given p0 and the initial type I error rate φ,

adjustment factor, γφ, shown in Equation (2.11) is

γφ =
ln
[ ln(1−φ/2)

ln(φ/2)

]

ln
[

(φ/2)
(1−φ/2)

]

can be applied on the control limits; i.e.,

UCLγφ
=

ln φ/2

ln(1 − p0)
γφ (4.1)

LCLγφ
=

(
ln(1 − φ/2)

ln(1 − p0)

)
γφ + 1 (4.2)

so that the ARL is maximized at p = p0. It should be noted that the above control

limits do not have a direct probability interpretation; i.e., they do not always give

the same probability content within the control limits. Notably, even though the

control limits are shifted by the same factor of γφ, the type I risk of the chart

is no longer given by the initial value φ. Moreover, the false alarm probabilities

beyond both sides of the control limits are no longer the same. The adjusted control

limits with equal probabilities are considered by Zhang et al. [119]. However, their

proposed procedure involves several iterations and only considers known p.

The actual type I risk α0 needs to be re-computed by summing up the tail

probabilities αu = P{X > UCLγφ
} and αl = P{X < LCLγφ

}, where X is the

number of conforming items between two adjacent nonconforming items. From
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Equations (4.1) and (4.2), we have

αu = (1 − p0)
ln(φ/2)γφ
ln(1−p0) and αl = 1 − (1 − p0)

ln(1−φ/2)γφ
ln(1−p0) .

which by using some algebraic manipulations, can be simplified as

αu = (φ/2)γφ and αl = 1 − (1 − φ/2)γφ (4.3)

respectively. It follows that

α0 = αu + αl = (φ/2)γφ − (1 − φ/2)γφ + 1. (4.4)

As a result, the actual type I risk, α0 is a non-linear function of φ and despite

apparent relation between φ and p0 in Equations (4.1) and (4.2), they are in fact

independent of each other.

4.1.2 CCC Scheme with Estimated Parameter

In most circumstances, p0 is not likely to be known and needs to be estimated. A

sequential estimation scheme is presented in previous chapter, while the conven-

tional binomial estimator of p used for the CCC scheme is considered by Yang et

al. [115].

4.1.2.1 Sequential Estimation Scheme

The scheme presented in previous chapter use the unbiased estimator of p given in

Equation (3.2)

p̄ =
m − 1

Nm − 1
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which the number of nonconforming items to be observed, m, is fixed a priori and

the total number of samples to be inspected, Nm, is a random variable.

In the proposed scheme in Chapter 3, p̄ is updated sequentially and the control

limits are revised so that not only the in-control ARL of the chart can be kept to

the desired value, but it is also the peak of the ARL curve. The control limits are

given in Equations (3.20) and (3.21) as:

UCLφm =
ln(φm/2)

ln(1 − (m − 1)/(Nm − 1))
× γφm

LCLφm =

(
ln(1 − φm/2)

ln(1 − (m − 1)/(Nm − 1))

)
γφm + 1

where φm can be obtained by solving Equation (3.18):

∞∑

n=m

(
(1− p̄)

ln(φm/2)γφm
ln(1−p̄) − (1− p̄)

ln(1−φm/2)γφm
ln(1−p̄) + 1

)−1
(

n − 1

m − 1

)
p̄m(1− p̄)n−m = τ

with p̄ given by Equation (3.2) and γφm given by Equation (2.11).

Using similar steps proceeding Equation (4.4), it can be further prove that φm

is independent of p̄. In addition, in Chapter 3, by using an example of ARL0 = 370,

it has been shown that as m increases, the sensitivity of the chart improves and

approaches that with known process parameter. For convenience, we use an index,

ρ, which is a factor reflecting the shift in process parameter; i.e., p = ρp0. If ρ = 1,

then the process is statistically in-control; otherwise, when ρ > 1, the process is

deteriorating, while ρ < 1 indicates that the process is improving.

Using the Equation (3.22) given in previous chapter, Figure 4.1 depicts the ARL

curves of the CCC scheme under sequential estimation, using m = 5, 10, 30 and 50,

for τ = 370 and p0 = 500ppm.
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Figure 4.1: ARL under sequential estimation with m = 5, 10, 30 and 50, given
τ = 370 and p0 (500ppm).

4.1.2.2 Conventional Estimation Scheme

On the other hand, Yang et al. [115] considered using the conventional estimator

of p, given in Equation (3.1):

p̂ =
Dn

n

where n is the initial sample size that is fixed a priori and Dn is the number of

nonconforming items among n items sampled.

Yang et al. [115] investigated the sample size effect and presented the exact false

alarm probability equation when p0 needs to be estimated using the conventional

estimator. By using the exact false alarm probability equation given by Yang et al.

[115], a similar adjustment scheme proposed in Chapter 3 for sequential estimation

can also be applied so that the τ is maximum point of the ARL curve. With the
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adjustment, the equation becomes

n∑

d=0

(
(1 − p̂)

ln(φn/2)γφn
ln(1−p̂) − (1 − p̂)

ln(1−φn/2)γφn
ln(1−p̂) + 1

)−1
(

n

d

)
p̂d(1 − p̂)n−d = τ (4.5)

and the control limits become

UCLφn =
ln(φn/2)

ln(1 − (Dn/n))
× γφn (4.6)

LCLφn =

(
ln(1 − φn/2)

ln(1 − (Dn/n))

)
γφn + 1 (4.7)

where φn could be obtained from solving Equation (4.5), with p̂ given in Equation

(3.1), and γφn from Equation (2.11), after specifying τ .

Figure 4.2: ARL for known p (500ppm), n = 10000, 20000, 50000, and 100000,
using conventional estimator with τ set at 370 and p̂ = 0.0005.

From the study of Yang et al. [115], the larger the sample size used in estimating

p0, the closer the chart performs to the one with known parameter. Thus, it is

expected that the performance of the scheme proposed here approaches the one with

known p0, as the sample size used to estimate p0 increases. For illustration, Figure
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4.2 shows the ARL curves for known p0, n = 10000, 20000, 50000, and 100000,

using the proposed scheme, with τ set at 370 and p̂ = 0.0005, for the case where

the conventional estimator is used.

4.2 Constructing CCC Chart

When monitoring a process with given p0, the control limits can easily be computed

from Equations (4.1) and (4.2).

The ARL0 of the CCC chart is the average number of points plotted within

the control limits while the process is indeed in statistical control, which is the

reciprocal of α0, and independent of p0 (from the derivation of Equation (4.4)).

After specifying the preferred ARL0 of the control scheme, the parameter φ can be

obtained by solving

1(
(φ/2)γφ − (1 − φ/2)γφ + 1

) = τ. (4.8)

where γφ is a function of φ given by Equation (2.11). The corresponding control

limits can then be easily computed. Table 4.1 gives the values of φ and the re-

spective γφ with different ARL0 when p0 is given. These values of φ and γφ can be

substituted into Equations (4.1) and (4.2) to determine the control limits for the

CCC chart.
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Table 4.1: The values of φ and respective adjustment factor γφ, with different
ARL0.

τ φ γφ

200 0.00675 1.30603
370 0.00373 1.29269
500 0.00278 1.28653
750 0.00188 1.27864

1000 0.00142 1.27327

4.2.1 Establishing CCC Chart with Sequential Estimator

In an industrial setting where inspections are carried out sequentially, parameter

estimation as well as process monitoring can be started once there are two noncon-

forming items observed (m = 2). Control limits can be calculated from Equations

(3.20) and (3.21) with φm based on the required ARL0 from Equation (3.18). The

adjustment factor, γφm can be obtained from Equation (2.11).

Table 4.2 gives the values of φm and the respective adjustment factor γφm, for

different values of m ranging from 2 to 100 and τ(= 200, 370, 500, 750, 1000). The

last row of the table (m = ∞) is the value where p0 is given, which is φ from Table

4.1. Similar to the case when p0 is given, it has been noted in Section 3.5 that

when p is estimated sequentially, it has no effect on φm, and φm converges to that

of the known value chart as m increases.

To start using the CCC chart without undue delay, it is recommended that p0 be

estimated using m = 2 and be sequentially updated as long as the process is deemed

to be in statistical control. Two associated problems are that the ARL performance

in detecting process shift is poor for small m, and that excessive updating increases

the risk of including data from drifted processes. To mitigate these problems, we
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Table 4.2: The values of φm and γφ for different m and preferred τ for CCC scheme
with sequential sampling plan.

ARL 200 370 500 750 1000
m φm γφm φm γφm φm γφm φm γφm φm γφm

2 0.00363 1.2921 0.00196 1.2795 0.00145 1.2737 0.00097 1.2663 0.00073 1.2613
3 0.00424 1.2955 0.00229 1.2826 0.00169 1.2767 0.00113 1.2691 0.00085 1.2640
4 0.00459 1.2972 0.00248 1.2842 0.00183 1.2782 0.00122 1.2705 0.00092 1.2654
5 0.00483 1.2984 0.00261 1.2852 0.00193 1.2792 0.00129 1.2715 0.00097 1.2663
6 0.00501 1.2992 0.00271 1.2860 0.00201 1.2800 0.00134 1.2722 0.00100 1.2669
7 0.00516 1.2998 0.00279 1.2866 0.00207 1.2805 0.00138 1.2728 0.00103 1.2675
8 0.00528 1.3004 0.00286 1.2871 0.00212 1.2810 0.00141 1.2732 0.00106 1.2679
9 0.00538 1.3008 0.00292 1.2875 0.00216 1.2814 0.00144 1.2736 0.00108 1.2683
10 0.00547 1.3012 0.00297 1.2879 0.00220 1.2818 0.00147 1.2739 0.00110 1.2686
20 0.00595 1.3031 0.00325 1.2897 0.00241 1.2836 0.00161 1.2757 0.00121 1.2704
30 0.00617 1.3039 0.00337 1.2906 0.00251 1.2844 0.00168 1.2765 0.00127 1.2712
50 0.00638 1.3047 0.00349 1.2913 0.00260 1.2852 0.00175 1.2773 0.00132 1.2719
70 0.00647 1.3050 0.00355 1.2917 0.00265 1.2855 0.00178 1.2776 0.00134 1.2723
100 0.00655 1.3053 0.00360 1.2920 0.00269 1.2858 0.00181 1.2779 0.00136 1.2725
∞ 0.00675 1.3060 0.00373 1.2927 0.00278 1.2865 0.00188 1.2786 0.00142 1.2733

propose a two-prong approach. First, a target ARL performance for a given change

in p is specified, so that the updating is terminated at a particular m; and more

stringent criteria are used to decide whether updating should be suspended, which

will be discussed in the following.

4.2.1.1 Termination of Sequential Updating

For a given change in p, which can be indexed by ρ = p/p0, define Rs as the ratio

between a desired ARL, ARLm, and the ARL with known parameter ARL∞. In

other words,

Rs =
ARLm

ARL∞
(4.9)

where the values of ARLm can be calculated from Equation (3.22) with respective

values of ρ and m, and ARL∞ is the out-of-control ARL with respect to ρ for a
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given p0, given by

ARL∞ =
1(

(1 − ρp0)UCL + 1 − (1 − ρp0)LCL−1
) (4.10)

The choice of Rs reflects the user’s desirability of having a CCC chart that performs

close to the ideal case. When the ratio Rs → 1, the performance of the scheme is

comparable with that of a known parameter CCC chart.

For a given ρ and ARL0, Table 4.3 gives the corresponding m required, m∗, in

achieving the desired Rs. For example, if the user would like to establish a CCC

chart with ARL0 set at 200, and the required ARL performance at ρ ≥ 2 is given

by Rs = 1.150, then, from Table 4.3, one should keep updating the estimate of p

and the control limits up to m = 19, as long as the following suspension rule is not

violated.

4.2.1.2 Suspension of Sequential Update

The updating must be done judiciously to avoid using the contaminated data from

drifted processes, which will affect the sensitivity of the control scheme. To mitigate

this problem, we impose a more stringent criterion than the usual out-of-control

rule for the suspension of sequential estimation.

Two decision lines correspond to the 5th and 95th percentile points are used to

create a warning zone. Figure 4.3 shows the warning zones of the CCC chart (the

unshaded areas in the chart). The center line of the graph is the 50th percentile of

the cumulative distribution function (CDF) and is given by

CL =
ln 0.5

ln(1 − p̄)
+ 1 = − 0.693

ln(1 − p̄)
+ 1. (4.11)
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Table 4.3: The values of m∗ for different ρ and ARL0= 200, 370, 500, 750, and
1000

ARL0 = 200
Rs ρ = 0.25 ρ = 0.50 ρ = 0.75 ρ = 1.50 ρ = 2.00 ρ = 2.50

1.100 50 105 29 25 27 29
1.125 48 84 21 18 23 23
1.150 40 71 17 14 19 19
1.175 30 61 14 6 16 16
1.200 27 61 10 2 13 14
1.225 24 49 9 2 10 11
1.250 22 44 7 2 8 9

ARL0 = 370
1.100 55 126 40 29 35 35
1.125 45 104 28 20 26 27
1.150 39 87 22 17 20 20
1.175 33 75 18 10 17 18
1.200 30 66 16 2 15 16
1.225 27 60 14 2 12 13
1.250 25 54 10 2 10 11

ARL0 = 500
1.100 58 130 43 30 34 36
1.125 48 110 31 23 27 27
1.150 40 93 25 18 21 22
1.175 35 81 20 14 18 19
1.200 31 72 17 7 16 16
1.225 28 64 15 6 13 14
1.250 26 59 13 6 10 12

ARL0 = 750
1.100 63 141 49 35 37 13
1.125 51 123 40 27 30 15
1.150 44 106 30 20 24 17
1.175 38 92 25 17 19 20
1.200 34 81 21 10 17 24
1.225 33 73 18 7 14 30
1.250 28 66 16 7 12 40

ARL0 = 1000
1.100 66 145 55 36 39 40
1.125 54 131 44 26 30 30
1.150 46 115 32 21 25 25
1.175 40 99 28 17 20 21
1.200 36 88 23 14 18 18
1.225 32 78 20 8 15 16
1.250 30 71 18 8 14 14

and the two decision lines are given by

UDL =
ln(0.05)

ln(1 − p̄)
and LDL =

ln(1 − 0.05)

ln(1 − p̄)
+ 1
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Figure 4.3: Warning zones of the CCC chart.

The updating is suspended after observing any one of the following:

1. One point beyond the shaded area which will occur with probability 0.05

(alternatively, a points with probability a × 0.05).

2. Four consecutive points plot on one side of center line (CL) which will occur

with probability 0.0625 (alternatively, b consecutive points with probability

b × 0.5).

These rules are simple to implement and provide adequate protection against using

contaminated data for updating. The number of points used in the suspension

rules can be change accordingly with the probability given above. Following the

suspension, process monitoring should be continued without revising the control

limits. A new sequential estimate of p is then initiated until the same value of

m before suspension occurs. If there is no significant difference (< 10%) between

76



the two estimates, all data can then be combined to give the estimate of p and

updating is continued until m = m∗ provided that the process remains in control.

If another suspension criterion is observed during this period, the same decision

process is repeated.

4.2.2 Establishing CCC Chart with Conventional Estima-
tor

When the conventional estimator of p is used, the control limits of the CCC chart

can be obtained from Equations (4.6) and (4.7) after estimating p0 from the initial

sample. Similarly, to achieve the desired ARL0, φn and γn can be obtained from

Equations (4.5) and (2.11) respectively, given the sample size n and p̂.

Table 4.4: The values of φn for different n and p̂ with ARL0 = 370 for CCC scheme
using Binomial sampling plan.

n \ p̂ 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.0010
10000 0.00148 0.00192 0.00222 0.00242 0.00257 0.00268 0.00277 0.00284 0.00291 0.00296
20000 0.00192 0.00242 0.00268 0.00284 0.00296 0.00305 0.00311 0.00317 0.00321 0.00325
50000 0.00257 0.00296 0.00314 0.00325 0.00333 0.00338 0.00342 0.00345 0.00348 0.00350
100000 0.00296 0.00325 0.00338 0.00345 0.00350 0.00353 0.00356 0.00358 0.00359 0.00360
200000 0.00325 0.00345 0.00353 0.00358 0.00360 0.00362 0.00364 0.00364 0.00366 0.00366
300000 0.00338 0.00353 0.00359 0.00362 0.00364 0.00366 0.00367 0.00367 0.00368 0.00368
400000 0.00345 0.00358 0.00362 0.00365 0.00366 0.00367 0.00368 0.00369 0.00369 0.00369
500000 0.00350 0.00360 0.00364 0.00366 0.00367 0.00368 0.00369 0.00369 0.00370 0.00370
600000 0.00353 0.00362 0.00366 0.00367 0.00368 0.00369 0.00369 0.00370 0.00370 0.00370
700000 0.00356 0.00364 0.00367 0.00368 0.00369 0.00369 0.00370 0.00370 0.00370 0.00371
800000 0.00358 0.00365 0.00367 0.00369 0.00369 0.00370 0.00370 0.00370 0.00371 0.00371
900000 0.00359 0.00366 0.00368 0.00369 0.00370 0.00370 0.00370 0.00371 0.00371 0.00371
1000000 0.00360 0.00366 0.00368 0.00369 0.00370 0.00370 0.00371 0.00371 0.00371 0.00371
2000000 0.00366 0.00369 0.00369 0.00371 0.00371 0.00371 0.00372 0.00372 0.00372 0.00372

∞ 0.00373 0.00373 0.00373 0.00373 0.00373 0.00373 0.00373 0.00373 0.00373 0.00373

To facilitate the construction of the CCC chart, Table 4.4 gives the values of

φn for different n and p̂ ranging from 0.0001 to 0.001, with ARL0 = 370, when p0

is estimated using the conventional estimator. The last row of the table (n = ∞)

is the value where p0 is given, which is φ from Table 4.1. As expected, the value

of φn approaches φ as the sample size increases. The values given in this table can

77



be used as the input for constructing the CCC chart if the desired ARL0 is 370.

Unlike Tables 4.1 and 4.2, these φn values are dependent on p̂.

It also worth noting that in adopting the conventional estimation there can be

no nonconforming items in the initial sample. This will lead to a situation where

sample size is increased incrementally until some arbitrary number of nonconform-

ing items are observed. In doing so, the resulting estimate of p0 will be biased

(see Girshick [25]). A simple way of avoiding this problem is to ensure that the

probability of having at least one nonconforming item is sufficiently large in the

initial sample. For example, the sample size for a preliminary guess value of p0 =

100 ppm and a 90% chance of observing at least one non-conforming item can be

obtained as the following:

n =
ln(0.1)

ln(1 − p0)
≈ 23, 000

Nevertheless, Yang et al. [115] concluded that the sample size used for estima-

tion should be large enough for better performance of the chart which is evident

from Figure 4.2. An updating scheme similar to that of the sequential estimate

can be adopted.

Define the ratio of the ARL, Rc as

Rc =
ARLn

ARL∞
(4.12)

where ARLn is the ARL in detecting process shift by a factor of ρ, when a total

sample of size n is used for estimating p, and the ARL∞ is the ARL with known

parameter.
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Once ARL0 is specified, for a given p̂ (from initial estimate) and a process shift

of interest indexed by ρ, the minimum sample size needed, n∗ to achieve a certain

Rc requirement can be determined. Table 4.5 gives the values of Rc for different

ρ and n, with ARL0= 370 for p̂ = 0.0005. For example, given the estimated

value p̂ = 0.0005, for ARL0 specified at 370, and assuming that the required ARL

performance at ρ ≤ 0.25 is given by Rc = 1.150, the updating of estimate as well

as the control limits is continued until the total number of sample inspected equals

to n∗, which is 100,000 for this case, provided that the process remains in control.

Table 4.5: The values of Rc for different ρ, and n, with ARL0= 370 for p̂ = 0.0005.

ρ
n 0.25 0.50 0.75 1.50 2.00 2.50

10000 5.446 3.021 1.198 1.319 1.433 1.455
20000 2.529 2.323 1.156 1.217 1.26 1.264
50000 1.293 1.584 1.098 1.112 1.122 1.122
100000 1.118 1.279 1.064 1.063 1.067 1.067
1000000 1.011 1.025 1.01 1.008 1.008 1.008

4.3 An Illustrative Example

To illustrate the applicability of the proposed guidelines, numerical examples are

presented here. In addition, the simulation studies are carried out to compare the

effectiveness of the schemes with those known parameter scheme.

Here, the examples based on data in Table 4.6 taken from Table 1 in Xie et.

al. [114] are presented. From the table, the first 20 data points are simulated from

p = 500 ppm, after which the data is from p = 50 ppm.

Assuming that p0 is given, the control limits of the chart can then be calculated
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Table 4.6: A Set of Data for a Simulated Process (from Table 1, Xie et. al. [114]).

Nonconforming No. CCC Simulation legend Nonconforming No. CCC Simulation legend
1 3706 p = 500 ppm 16 753 p = 500 ppm
2 9179 p = 500 ppm 17 3345 p = 500 ppm
3 78 p = 500 ppm 18 217 p = 500 ppm
4 1442 p = 500 ppm 19 3008 p = 500 ppm
5 409 p = 500 ppm 20 3270 p = 500 ppm
6 3812 p = 500 ppm 21 5074 Shift, p = 50 ppm
7 7302 p = 500 ppm 22 3910 p = 50 ppm
8 726 p = 500 ppm 23 23310 p = 50 ppm
9 2971 p = 500 ppm 24 11690 p = 50 ppm
10 42 p = 500 ppm 25 19807 p = 50 ppm
11 3134 p = 500 ppm 26 14703 p = 50 ppm
12 1583 p = 500 ppm 27 4084 p = 50 ppm
13 3917 p = 500 ppm 28 826 p = 50 ppm
14 3496 p = 500 ppm 29 9484 p = 50 ppm
15 2424 p = 500 ppm 30 66782 p = 50 ppm

Figure 4.4: CCC chart when p0 is known (= 500 ppm) and in-control ARL = 200.

directly, using φ = 0.00675 and γφ = 1.30603 (from Table 4.1). Figure 4.4 is the

CCC chart plotted, given p0 = 500 ppm. From the chart, it is observed that the

chart signals at the 23rd observation, indicating the decrease in the process fraction

nonconforming, p.
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Table 4.7: The values of p̄ and the control limits with sequential estimator from
Table 4.6.

No. CCC p̄ LCLφm UCLφm No. CCC p̄ LCLφm UCLφm

1 3706 - - - 16 753 303 ppm 12 23023
2 9179 78 ppm 31 105092 17 3345 303 ppm 12 23189
3 78 154 ppm 19 51689 18 217 303 ppm 12 21923
4 1442 154 ppm 19 51689 19 3008 303 ppm 12 21988
5 409 154 ppm 19 51689 20 3270 347 ppm 11 21864
6 3812 268 ppm 12 29410 21 5074 334 ppm 12 22693
7 7302 231 ppm 15 33847 22 3910 329 ppm 13 23024
8 726 263 ppm 13 29651 23 23310 329 ppm 13 23024
9 2971 270 ppm 13 28709 24 11690 329 ppm 13 23024
10 42 303 ppm 12 25462 25 19807 329 ppm 13 23024
11 3134 303 ppm 12 25462 26 14703 329 ppm 13 23024
12 1583 303 ppm 12 25462 27 4084 329 ppm 13 23024
13 3917 303 ppm 12 25462 28 826 329 ppm 13 23024
14 3496 303 ppm 12 25462 29 9484 329 ppm 13 23024
15 2424 303 ppm 12 25462 30 66782 329 ppm 13 22897

On the other hand, when p0 is not given, by using the proposed scheme with

sequential estimation, the estimation starts after m reaches 2 and the control limits

can be obtained accordingly, with the values of φm and γφm given in Table 4.2. With

ARL0 specified at 200 (i.e., α0 = 0.005), ρ ≥ 2.5, and R = 1.1250, m∗ is 23 (from

Table 4.3). Figure 4.5 gives the flow for constructing the CCC chart with sequential

estimation scheme.

Table 4.7 shows the estimated p together with the control limits for sequential

estimation. The CCC scheme is depicted in Figure 4.6 where the two dashed lines

are the decision lines. From the chart, estimation is suspended at the third point

as it is in the warning zone (beyond LDL). However, since there is no significant

difference between the new sequential estimate from the subsequent data with

m = 3 (104 ppm) and the estimate before suspension (154 ppm), all data are

combined. Estimation is suspended again at No.10 and for similar reason, the
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Figure 4.5: Flow Chart for Constructing CCC Control Chart with Sequential Es-
timation.

estimation is resumed at No.20. At No.22, as there are four consecutive points

plotted above the center line, estimation is suspended again. The 23rd observation

is plotted above the UCL, indicating possible process improvement. Thus, by using

the proposed sequential estimation scheme with the guidelines given, the CCC chart

with estimated parameter is as effective as that constructed assuming known p in
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detecting a change in p.

Figure 4.6: CCC chart under sequential estimation scheme simulated from initial
p0 = 500 ppm and ARL0 = 200.

If conventional estimate is used, p̂ is 300 ppm, for an initial sample size, n =

20, 000. With ARL0 specified at 200, ρ ≥ 2.5, and Rc = 1.170, n∗ = 50, 000

(obtained by using Equations (4.5) and (4.12)). Table 4.8 gives the values of the

estimates together with the control limits. The estimate is updated once when the

sample size collected reaches 50,000, which is 18th observation in Table 4.8, as there

is no out of control signal observed between the 7th and 18th plotted points. The

flow chart for constructing the CCC chart with conventional estimation is shown

in Figure 4.8 in the following section.

This CCC scheme is depicted in Figure 4.7. The 23rd observation is plotted

above the UCL, indicating a possible process improvement. Thus, by using this

proposed scheme, the CCC chart is also able to detect a change in p.
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Table 4.8: The values of p̂ and the control limits with conventional estimator from
Table 4.6.

No. CCC p̂ LCLφn UCLφn No. CCC p̂ LCLφn UCLφn

1 3706 - 12 25965 16 753 300 ppm 12 25965
2 9179 - 12 25965 17 3345 300 ppm 12 25965
3 78 - 12 25965 18 217 360 ppm 12 21081
4 1442 - 12 25965 19 3008 360 ppm 12 21081
5 409 - 12 25965 20 3270 360 ppm 12 21081
6 3812 300 ppm 12 25965 21 5074 360 ppm 12 21081
7 7302 300 ppm 12 25965 22 3910 360 ppm 12 21081
8 726 300 ppm 12 25965 23 23310 360 ppm 12 21081
9 2971 300 ppm 12 25965 24 11690 360 ppm 12 21081
10 42 300 ppm 12 25965 25 19807 360 ppm 12 21081
11 3134 300 ppm 12 25965 26 14703 360 ppm 12 21081
12 1583 300 ppm 12 25965 27 4084 360 ppm 12 21081
13 3917 300 ppm 12 25965 28 826 360 ppm 12 21081
14 3496 300 ppm 12 25965 29 9484 360 ppm 12 21081
15 2424 300 ppm 12 25965 30 66782 360 ppm 12 21081

Figure 4.7: CCC chart conventional estimation scheme simulated from p0 = 500
ppm, and in-control ARL = 200.

The simulation studies are carried out, replicating the above numerical exam-

ples. 100 sets of simulated data (first 20 data points are from 500 ppm, followed

by 10 data points from 50 ppm) are used in three control schemes, known p, se-

quential estimation, and conventional estimation. Table 4.9 shows the results of

84



the studies. Signal within 1st and 20th data point is the false alarm as the first 20

data points are simulated from 500 ppm (in-control); whereas nondetection after

30th point shows that the change in p has not been detected yet.

Table 4.9: The simulation studies for the proposed CCC control schemes.

Scheme
Known p Sequential Conventional

Signal at 1st - 20th point 0 1 1
21st point 45 31 39
22nd point 29 18 28
23rd point 13 12 15
24th point 6 11 6
25th point 3 8 5
26th point 2 3 2
27th point 1 5 2
28th point 1 1 0
29th point 0 3 1

Nondetection after 30th point 0 7 1

From the table, the CCC scheme with known p is able to detect the change

in p within the range of first changing point and eighth point (21st point to 28th

point in scheme). On the other hand, there are some false alarms as well as failures

in detection in the schemes with estimated p. For sequential estimation scheme,

the scheme produces 1 false alarm out of 100 simulation runs. In addition to

that, due to the effects of estimation, there are 7 nondetection out of the total

of 100 simulation runs. For the conventional estimation scheme, there is 1 false

alarm observed as well as 1 nondetection of the change in p out of the total of 100

simulation runs. Thus, although the sequential estimation scheme is much easier to

implement comparing to the conventional estimation, as all the parameters involved

in establishing the control scheme is independent on the estimated p, the robustness

of the conventional estimation scheme is more satisfactory.
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4.4 Conclusion

In this chapter, the basic properties of CCC charts as well as CCC schemes with

estimated parameters are revisited. A set of comprehensive guidelines is given for

the construction of CCC charts, when p0 is known and when p0 is estimated by

two different schemes. In addition, the associated parameters for constructing CCC

charts with the most commonly used in-control ARLs are given in Tables 4.1 and

4.2. Termination and suspension rules are introduced for the CCC scheme with

sequentially estimated parameter to enhance the sensitivity of the CCC scheme.

An example together with the simulation studies are presented, illustrates the

proposed scheme for constructing CCC charts. In summary, Figure 4.8 gives the

flow in constructing CCC charts for high yield process monitoring when p0 is known

and when p0 is estimated. Before plotting the control chart, the prefered ARL0 is

specified. For the case when p0 is given, the control limits can be obtained from

Equations (4.1) and (4.2) by using the respective φ and γφ. If there is no previous

data and p has to be estimated, two estimation method can be used, depending

on the nature of the initial data collection and also the availability of the initial

production output. If the data available is limited, the sequential estimation scheme

can be deployed. On the other hand, both estimation schemes can be used if the

initial data set is substantial.
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Figure 4.8: Flow Chart for Implementing CCC Control Chart.
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PART III

HIGH YIELD PROCESSES WITH SAMPLING

INSPECTION
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Chapter 5

Control Scheme for High Yield
Correlated Production with
Sampling Inspection

Besides the Phase I problem, less attention is being paid to the situation where

100% inspection is prohibitively laborious due to large production volume, and sam-

pling inspection from production batches with a pre-determined constant sample

size is therefore preferred. This is also common for processes with slower inspection

rate than their production rate and/or limited testing facility. This presents a new

practical issue as the use of the cumulative conformance count for process moni-

toring has yet to be investigated under sampling inspection in which the natural

ordering of production output is lost. This problem is further intricate by the fact

the production outputs are usually correlated under batch processes.

Conventionally, for sampling inspection, the process is monitored using the well-

known Shewhart p-chart or np-chart. However, for high yield processes, typical

Shewhart attribute charts are inadequate (see discussions in Sections 1.2.1). The

problem of these inadequacies of the p-chart and np-chart in detecting the high yield
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process with sampling inspection is still remain unsolved as the control scheme

based on cumulative conformance count is also not effective in monitoring such

process. This will be further discussed in Section 5.2.

This issue is further compounded with the presence of correlation within pro-

duction batches. In particular, correlation will take a different form within a sample

due to loss of ordering (this will be discussed in the following section). The unmit-

igated presence of correlation under sampling inspection will have an effect on the

performance of CCC chart (see Lai et al. [50], [51]).

In the following, the effects of correlation within a sample on the performance

of the CCC chart are examined, this is followed by the investigations of sampling

inspection in high yield processes. The study of the proposed chart based on the

Cumulative Chain Conforming Sample (CCCS) is then presented. The proposed

scheme extends the idea of chain inspection procedure (see Dogde [22]) to enhance

the sensitivity in detecting a process shift. The characteristic of the plotting vari-

able, CCCS, is analyzed using a Markov model from which the performance of the

proposed scheme can be analyzed. Subsequently, a numerical example and simula-

tion studies are presented to illustrate the applicability of the proposed chart and

its advantage over the existing CCC chart. Finally, a conclusion is given.

5.1 Effects of Correlation

As the production outputs are usually correlated and the ordering of the items

within a sample is lost, any pair of the production outputs within the same produc-
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tion batch is correlated. A common way to represent such intra-sample correlation

is by the notion of exchangeability given by Madsen [55] as follows. Suppose D is

the total number of nonconforming items observed within a sample of size n, for a

process having p0 fraction nonconforming with correlation coefficient, ρ. Then the

probability of r nonconforming items is

P (D = r) =





ρ(1 − p0) + (1 − ρ)(1 − p0)
n r = 0

(1 − ρ)
(

n
r

)
pr

0(1 − p0)
n−r 1 ≤ r < n − 1

ρp0 + (1 − ρ)pr
0 r = n.

(5.1)

For a given p0, the method of moment estimator for ρ is given by (see Madsen [55])

ρ̂ =
S2 − np0(1 − p0)

n(n − 1)p0(1 − p0)
(5.2)

where S2 denotes the sample variance for the observed data (using a divisor of n).

When ρ = 0, the probability mass function (pmf) reduces to

P (D = r) =

(
n

r

)
px

0(1 − p0)
n−r (5.3)

which is the typical Binomial distribution.

Suppose the first sample of size n from a process with correlation coefficient

ρ, is sequentially inspected. The probability of getting a cumulative conformance

count less than LCL (signaling probability) is given by
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P
(
x < LCL

)
=

n∑

r=1

P (x < LCL, D = r)

=
n∑

r=1

P (x < LCL|D = r)P (D = r)

=

n∑

r=1




r
n

+

(
n−r

n
× r

n−1

)
+

(
n−r

n
× n−r−1

n−1
× r

n−2

)
+ · · ·

+

(
n−r

n
× n−r−1

n−1
× · · · × n−r−(LCL−3)

n−(LCL−3)
× r

n−(LCL−2)

)




× (1 − ρ)

(
n

r

)
pr
(
1 − p

)n−r

=
n∑

r=1

(
LCL−1∑

i=1

(
(n − i)!

(r − 1)!(n − r − i + 1)!

)
(1 − ρ)pr(1 − p)n−r

)
.

(5.4)

When p = p0, the above probability is the false alarm probability, which is presented

in Table 5.1 for different values of ρ where the LCL is set with α/2 = 0.00135. From

the table, the false alarm probability decreases monotonically as ρ increases.

Table 5.1: The false alarm probabilities obtained from Equation (5.4) with different
p0 and ρ

ρ p0 = 50 ppm 100 ppm 200 ppm 300 ppm 400 ppm 500 ppm
0 0.001399 0.001399 0.001399 0.001499 0.001599 0.001499

0.1 0.001259 0.001259 0.001259 0.001349 0.001439 0.001349
0.5 0.000700 0.000700 0.000700 0.000750 0.000800 0.000750
0.9 0.000140 0.000140 0.000140 0.000150 0.000160 0.000150

The out-of-control signaling probabilities for various values of p and ρ are tab-

ulated in Table 5.4 for a chart designed for p0 = 0.0005, using α/2 = 0.00135 and

various ρ values. From the table, as expected, for all values of ρ, signaling prob-

abilities increase as the fraction nonconforming increases. However, when there is

strong correlation within a sample, the signaling probability is decreased so that
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the conventional CCC chart is not effective in detecting process deterioration in

the presence of correlation. This is further supported by the one-sided operating

characteristic (OC) curves for p0 = 100 ppm with different values of ρ in Figure 5.1.

This clearly demonstrates the need to check against correlation to avoid having a

false sense of security.

Table 5.2: The one-sided signaling probabilities for CCC with p0 = 0.0001, using
α/2 = 0.00135.

ρ p =0.0001 0.0002 0.0003 0.0004 0.0005 0.001
0 0.001399 0.002796 0.004192 0.005585 0.006977 0.013909

0.1 0.001259 0.002517 0.003773 0.005027 0.006280 0.012518
0.5 0.000700 0.001398 0.002096 0.002793 0.003489 0.006955
0.9 0.000140 0.000280 0.000419 0.000559 0.000698 0.001391

Figure 5.1: OC Curve with p0 = 0.0001 and α/2 = 0.00135 with different values of
ρ.
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5.2 Sampling Inspection in High Yield Processes

For sampling inspection, the conventional way to monitor the process is to use the

well-known Shewhart p-chart or np-chart. However, Goh [28] has shown that, for

high yield processes, these typical Shewhart attribute charts are in fact, inadequate.

As the control limits of these charts which obtained from significantly low p will

result in high false alarm rates and inability to detect process improvement (see

discussions in Section 1.2.1).

On the other hand, the CCC control scheme is tracking only the total number

of conforming items produced before a nonconforming item is detected. Implic-

itly, for CCC control scheme, the inspection process is assumed to be carried out

sequentially, i.e., items are inspected one at a time and the CCC before a non-

conforming item surfaces follows a geometric distribution. Thus, given p0, the

in-control process fraction nonconforming, and the type I error, α, the LCL of the

CCC chart can be obtained from Equation (2.6):

LCL =
ln(1 − α/2)

ln(1 − p0)
+ 1

which is typically much less than the usual sample size when the inspection is

carried out sample by sample. For example, if α used is 0.0027 for a process with

p0 = 500 ppm, the LCL is

LCL =
ln(1 − 0.0027/2)

ln(1 − 0.0005)
+ 1

= 3.7 ≈ 4.

In addition, the CCC chart is no longer effective as the ‘exact cumulative order-
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ing’ of an item within a sample is indeterminable, i.e., when a nonconforming item

is detected within a sample of size n, the order of the nonconforming item could be

in the range of (1,n). For example, if the sample size for each inspection, n is 500,

and there have been two conforming samples and a nonconforming item is found in

the third sample; the possible cumulative count would be from 1001 to 1500, as the

order of the nonconforming items from each sample is uniform over (1,500). These

provide the motivations of our studies. In this chapter, we will propose a control

scheme not only able to monitor the high yield processes with sampling inspection,

but also consider the corelation within samples.

5.3 A Chain Inspection Scheme for High Yield

Processes Under Sampling Inspection

To address the problems of sampling inspection and the effect of correlation which

have stated above, we introduce the concept of cumulative conforming sample.

The resulting control scheme categorizes samples as conforming or nonconforming

by the total number of nonconforming items in a sample and those of previous

i samples by adopting the idea of chain inspection scheme in acceptance sample

introduced by Dodge [22].

Chain-sampling plans (or chain inspection plans), which was introduced by

Dodge [22], make use of the cumulative results of several preceding lots in accep-

tance sampling practices. The general procedure for the Chain-sampling plans is

as follows:

1. For each lot, select the sample of size n and observe the number of defectives.
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2. If the sample has zero defectives, accept the lot; if the sample has two or

more defectives, reject the lot; and if the sample has one defectiveaccept the

lot provided there have been no defectives in the previous i lots.

(see Montgomery [61] and Schilling [76] for the details of Chain-sampling plans)

5.4 The Proposed Scheme: Cumulative Chain

Conforming Sample (CCCS)

Here, we consider a special case of a chain inspection procedure in which a sample

with zero nonconforming item is passed and a sample with 2 or more nonconform-

ing items is deemed to be nonconforming. But when a single nonconforming item is

found in a sample, information from the previous i samples will be used for decision

making. This leads to the following definition:

Definition 2 Chain Conforming Sample

A sample is categorized as chain conforming sample when it contains:

1. zero nonconforming items, or

2. one nonconforming item and there were no nonconforming items in the pre-
vious i samples.

The proposed control chart plots the cumulative number of chain conforming

samples before a non-chain conforming sample surfaces. Figure 5.2 gives an illus-

tration of how samples are classified until a point is plotted under the proposed

control scheme. In essence, whenever a non-chain conforming sample is detected,

the Cumulative Chain Conforming Sample (CCCS) is plotted on a control chart
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with the above control limits. Similar to the traditional CCC chart, when a point is

plotted above the UCL of the chart, it indicates process improvement. On the other

hand, if a point is plotted below the LCL of the chart, the process is deemed to be

out-of-control with an increase in p. To characterize the distribution of CCCS, the

model underlying the plotting procedure is needed.

Figure 5.2: The decision rules for chain inspection procedure.
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5.4.1 Distribution of CCCS

Let pjk be the probability that there are j nonconforming items in the previous

i samples and k nonconforming items in the current inspection sample. We also

denote by p0+0 the probability of having more than zero nonconforming item(s) in

the previous i samples and zero nonconforming item in the current sample. As a

result, the probability of observing zero nonconforming item in a sample of size n,

regardless of the outcome of previous i samples is given by,

p00 + p0+0 = [P (D = 0)]iP (D = 0) +
(
1 − [P (D = 0)]i

)
P (D = 0)

= P (D = 0).

Similarly, the probability of observing a nonconforming item in current sample and

zero nonconforming item in the previous i samples is

P01 = [P (D = 0)]iP (D = 1)

From the above definition, the probability of observing a Chain Conforming Sample

(CCS) can be obtained by summing up the above probabilities as

P
(
Chain Conforming Sample

)
= P (D = 0) + [P (D = 0)]iP (D = 1). (5.5)

In the same way, the probability of obtaining a Non-chain Conforming Sample

(NCCS) is the sum of the following:

i. p01+ = [P (D = 0)]iP (D > 1)

ii. p0+1 =
(
1 − [P (D = 0)]i

)
P (D = 1)

iii. p0+1+ =
(
1 − [P (D = 0)]i

)
P (D > 1)
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It follows that

P
(
Non-chain Conforming Sample

)
= 1−{P (D = 0)+ [P (D = 0)]iP (D = 1)}.

(5.6)

Thus, the probability of obtaining an NCCS given that the preceding sample is a

CCS, P
(
NCCS|CCS

)
, is given by

P
(
NCCS|CCS

)
=




{p00×P (D>1)}+{p01×P (D=1)}+{p01×P (D>1)}+{p0+0×
1
i
P (D>1)}

+{p0+0×
i−1

i
P (D=1)}+{p0+0×

i−1
i

P (D>1)}

P (D = 0) + [P (D = 0)]iP (D = 1)




and the probability of observing a CCS given that the preceding sample is an

NCCS, is given by

P (CCS|NCCS) =

(
{p01+ × P (D = 0)} + {p0+1 × P (D = 0)} + {p0+1+ × P (D = 0)}

1 − {P (D = 0) + [P (D = 0)]iP (D = 1)}

)
.

The evolution of the outcomes of the inspection can then be modeled by a Markov

Chain with states CCS and NCCS. The transition matrix of the Markov Chain is

given by

P =




1 − P (NCCS|CCS) P (NCCS|CCS)

P (CCS|NCCS) 1 − P (CCS|NCCS)


 (5.7)

As a result, the limiting probability in state NCCS (long run fraction of NCCS)

is given by

pnccs =
P (NCCS|CCS)

P (NCCS|CCS) + P (CCS|NCCS)
(5.8)

and the serial correlation of the samples is given by

r = 1 − (P (NCCS|CCS) + P (CCS|NCCS)) (5.9)
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The Cumulative Chain Conforming Sample (CCCS) is the number of visits to state

CCS in the above Markov Chain which begins with an NCCS and ends with an

NCCS; i.e., the recurrence time to state NCCS. Thus, we have

P (CCCS = 0) = 1 − P (CCS|NCCS) = r + pnccs(1 − r)

P (CCCS = y) = P (CCS|NCCS) (1 − P (NCCS|CCS))y−1 P (NCCS|CCS)

= pnccs(1 − pnccs)(1 − r)2 (1 − pnccs(1 − r))y−1 , y ≥ 1.

(5.10)

The distribution function of CCCS is found as

P (CCCS < y) = 1 − (1 − Pnccs)(1 − r) (1 − pnccs(1 − r))y−1 . (5.11)

Note that when the serial correlation r is zero (i = 0), the above distribution

function reduces to the geometric distribution.

5.4.2 The Control Limits

From the distribution function of CCCS given in Equation (5.11), the control limits

for the proposed scheme are obtained as

UCL =
ln(α/2) − ln[(1 − pnccs)(1 − r)]

ln[1 − pnccs(1 − r)]
+ 1 (5.12)

LCL =
ln(1 − α/2) − ln[(1 − pnccs)(1 − r)]

ln[1 − pnccs(1 − r)]
+ 1 (5.13)

where α is the type I risk (false alarm probability). Table 5.3 gives the control

limits for pnccs = 0.000197 and r = 0.00483 (p0 = 100 ppm, n =, ρ = 0.5 and

i = 5).

From Table 5.3, when the value of r is greater than α/2, there is no solution for

the LCL, because, from Equation (5.11), P (CCCS = 0) = r + pnccs(1 − r) > α/2.
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Table 5.3: Lower and upper control limits for pnccs = 0.000197 and r = 0.00483.

α LCL UCL
0.0010 - 38645
0.0027 - 33592
0.0050 - 30457
0.0100 1 26931
0.0150 14 24868
0.0200 27 23404
0.0250 39 22269
0.0500 104 18743

5.4.3 Average Run Length and Average Time to Signal

The average run length (ARL) is the average number of points plotted within the

control limits before an out of control signal is plotted. As the plotted points are the

recurrence times, of the Markov Chain in Equation (5.7), the signaling probability

is given by

P (E) = P (CCCS < LCL) + P (CCCS > UCL).

Since successive values of CCCS are independent, the ARL is given by the

reciprocal of P (E). In particular, the ARL for a two-sided scheme is

ARL = 1/P (E)

where

P (E) =1 − (1 − pnccs)(1 − r) (1 − pnccs(1 − r))LCL−1

+ 1 − [1 − (1 − pnccs)(1 − r) (1 − pnccs(1 − r))UCL−1]

=1 − (1 − pnccs)(1 − r) (1 − pnccs(1 − r))LCL−1

+ (1 − pnccs)(1 − r) (1 − pnccs(1 − r))UCL−1 .

(5.14)

Table 5.4 gives the signaling probability for p0 = 0.0001, n = 100, α = 0.02, and

i = 5 for different values of ρ. From the table, for all values of ρ, the signaling
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probability increases as the fraction of nonconforming, p, changes from p0 to any

other values.

Table 5.4: The signaling probability for p0 = 0.0001, n = 100, α = 0.02, and i =
5 for different values of ρ.

ρ p = 0.00001 0.00005 0.0001 0.0005 0.001 0.005 0.01
0 0.95333 0.31238 0.02000 0.04979 0.09841 0.41572 0.66129

0.1 0.94461 0.30505 0.02000 0.06477 0.15133 0.70326 0.91761
0.5 0.85906 0.23698 0.02000 0.10888 0.30166 0.97917 0.99975
0.9 0.65898 0.11711 0.02000 0.06505 0.15839 0.82843 0.98553

The performance of the control scheme can also be expressed in terms of its

average time to signal (ATS) (see Montgomery [61]). Due to the difference of the

inspection schemes for the conventional CCC chart and the proposed CCCS chart,

the ATS, which is the average number of items inspected before a signaling event,

is better for comparison than is the ARL or P (E). For a constant sample size, n,

the ATS of the proposed scheme is given by

ATSCCCS =
n

pnccs

× ARLCCCS

=
n

pnccs × α
;

(5.15)

whereas the ATS for the CCC scheme with sequential inspection is given by

ATSCCC =
ARLCCC

p

=
1

p × αCCC
.

(5.16)

From the above equations, the probability of a type I error, α, is adjusted so that

the resulting ATS is equivalent to that of the conventional CCC chart. To achieve

this, the value of α used in the proposed scheme is set to be

α =
n × p0 × αCCC

pnccs
, (5.17)
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where αCCC is the type I risk used in conventional CCC charts.

Table 5.5 gives the one-sided ATS of CCC and CCCS charts with p0 = 0.0005,

n = 100, i = 5, αCCC = 0.0027 and the corresponding α for CCCS from Equation

(5.17), for different values of ρ. The values shown in the parenthesis are the out-

of-control ATS values expressed as a percentage of the in-control ATS. Table 5.5

shows the superior performance of the proposed CCCS chart in this way. Keeping

constant αCCC , and the in-control ATS of the CCCS chart, the out-of-control ATS

of the CCC chart always exceeds that of the CCCS chat, the ratio of ATS values

increases with correlation. This is because, for the CCC chart with a designated

αCCC , the false alarm probability decreases as ρ increases (see column 1 of Table

5.4). In addition, as p increases, the ATS for CCCS decreases drastically compared

to that of the CCC chart. For ρ= 0.1 and 0.5, the ATS curves for the CCCS and

CCC control charts are plotted in Figure 5.3. It is clear from Figure 5.3 that the

proposed CCCS control chart is more effective in detecting a process shift and its

performance is not affected by the presence of correlation.

Table 5.5: The one-sided ATS of CCC and CCCS charts with p0 = 0.0001, n =
100, αCCC = 0.0027, and i = 5, for different values of ρ.

ρ = 0 ρ = 0.1 ρ = 0.5 ρ = 0.9
p CCC CCCS CCC CCCS CCC CCCS CCC CCCS

0.0001 7147503 7407407 7941676 7407407 14295006 7407407 71475030 7407407
0.0002 1788039 631682 1986705 611946 3576077 707777 17880387 1665765

(25.02%) (8.53%) (25.02%) (8.26%) (25.02%) (9.55%) (25.02%) (22.49%)
0.0003 795200 151613 883555 145581 1590399 184181 7951995 686543

(11.13%) (2.05%) (11.13%) (1.97%) (11.13%) (2.49%) (11.13%) (9.27%)
0.0004 447591 56644 497322 54478 895181 74989 4475907 367207

(6.26%) (0.76%) (6.26%) (0.74%) (6.26%) (1.01%) (6.26%) (4.96%)
0.0005 286644 27145 318493 26308 573288 39449 2866438 228097

(4.01%) (0.37%) (4.01%) (0.36%) (4.01%) (0.53%) (4.01%) (3.08%)
0.001 71894 3633 79882 3786 143788 8117 718938 59206

(1.01%) (0.05%) (1.01%) (0.05%) (1.01%) (0.11%) (1.01%) (0.80%)
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Figure 5.3: The ATS curves of CCC and CCCS charts with p0 = 0.0001, n = 100,
αCCC = 0.0027, i = 5 for ρ = 0 and 0.5.

5.4.4 Selection of i

The role of the parameter i, the number of previous samples to be reviewed when a

nonconforming item is found in the current sample, is to augment information from

previous samples so that the performance of the chart improves. This is particularly

so when intra-sample correlation, which reduces the amount of information in a

sample, exists.

However, it is impractical to use information that is too remote, as the marginal

benefits derived are diminishing with increasing i. To illustrate, Figure 5.4 gives

the ARL curves for CCCS charts with p0 = 0.0001, ρ = 0.9, α = 0.01, and i = 0,

3, 5, 10, and 20. From the figure, the performances of CCCS charts improve as i

increases. However, there is only a slight improvement of sensitivity of the chart
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as i increases from i = 5 onwards. Hence, using i between 3 to 5 is appropriate.

Figure 5.4: The ARL curves for CCCS charts with p0 = 0.0001, n = 100, α = 0.01,
ρ = 0.9 and i = 0, 3, 5, 10 and 20.

5.4.5 Effects of Sample Size

One of the main motivations of this paper is to address the issue of sampling in-

spection in which the natural sequence of production within an inspection sample

is lost. In addition, the effect of correlation, which renders conventional CCC chart

ineffective in detecting process deterioration, is evaluated and addressed appropri-

ately under the proposed scheme.

Here, we investigate the performance of the proposed scheme under different

sample sizes and correlation coefficients, ρ. For illustration, the out-of-control

ARL for some settings are plotted. Figure 5.5 depicts the out-of-control ARL for

p increases from 100 ppm to 500 ppm for different values of ρ and n. From the
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figure, it can be seen that when there is no correlation, the ideal group size for

detecting a shift of this size is one to obtain the minimum ARL. This is intuitively

clear as the sample size should be as small as possible so that changes in p can

be detected promptly. When the correlation is weak, (0 < ρ ≤ 0.1), the sample

size for inspection should be small (< 50) to achieve the minimum out-of-control

ARL. For ρ ranging from 0.1 to 0.7, the group size used should range from 100 to

250 as the effectiveness of the scheme deteriorates as sample size increases beyond

250. This further reaffirms the intuition of having smaller sample size in order to

detect an out-of-control situation promptly. However, for ρ > 0.7, a larger sample

size can be used. Thus, an appropriate group size for monitoring high yield process

with weakly correlated output is about 100; while that for monitoring strongly

correlated output can be much higher.

Figure 5.5: The out-of-control ARL for CCCS charts when p0 = 0.0001, p = 0.0005,
i = 5, and α = 0.05, with different ρ and n.
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5.5 Numerical Example

Here we give an example to illustrate the use of proposed CCCS chart and demon-

strate its effectiveness through a simulation study.

A set of 5000 samples each with n = 100, ρ = 0.5, p = p0 = 100 ppm is

simulated. Subsequently 500 samples is also simulated with p = 500 ppm under

the same setting. By using i = 5, values of CCCSs are obtained from the simulated

data and tabulated in Table 5.6. From the table, the first 3 entries are from the

in-control process, the 4th entry is a result of a mixture of p = 100 ppm and 500

ppm, and the 5th entry is obtained from out-of-control process (p = 500 ppm).

Table 5.6: Values of CCCS plotted with i = 5 from the simulated data.

Plotting point 1 2 3 4 5
Values of CCCS 2966 568 579 1370 5

For comparison with the conventional CCC chart, the value of α used in the

proposed scheme is obtained from Equation (5.17). For the above simulation set-

ting, the value of α is 0.137 for αCCC . Thus, from Equations (5.12) and (5.12), the

control limits of the proposed scheme are

UCL = 13625

LCL = 336.

The CCCS control chart is plotted with the data in Table 5.6 and the above control

limits in Figure 5.6, and in which the shift in p is detected at the fifth observation.

For comparison, the simulated data is used to construct the conventional CCC

chart with α = 0.0027. When there is/are nonconforming item(s) within a sample,
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Figure 5.6: The CCCS Chart with α = 0.137, using the simulated data from Table
5.6

the ‘location’ of the item(s) will be distributed evenly within the sample, each

nonconforming item found in the data is treated as a plotting point in CCC chart

and is tabulated in Table 5.7. The first 15 entries are from p0 = 100 ppm, followed

by the mixture of p0 and p = 500 ppm for the 16th entry, and all entries after

the 17th are from p = 500 ppm. With the control limits set at 15 and 66073, the

conventional CCC chart is shown in Figure 5.7.

Table 5.7: The CCCs with α = 0.0027, from the simulated data.

No CCC No CCC
1 582 13 27128
2 10982 14 7924
3 39580 15 6663
4 192 16 16682
5 56620 17 9239
6 177 18 4469
7 43577 19 3460
8 14206 20 9154
9 178 21 8482
10 12264 22 8930
11 2798 23 34
12 19739 24 499
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Figure 5.7: The CCC Chart with α = 0.0027 from Table 5.7

From the chart, there is no out-of-control signal, even though later entries are

from p = 500 ppm.

To establish the superiority of the proposed CCCS scheme over that of the

CCC chart, further simulation runs were carried out with 100 replicates of the

above setting (first 5000 samples with p = p0 = 100 ppm, followed by 500 samples

with p = 500 ppm). Table 5.8 shows the results of the simulation. “Number of

out-of-control detected” gives the number of runs in which the control scheme gave

an out-of-control signal within the 500 samples when p shifted from 100 ppm to 500

ppm. “Number of false alarm at LCL (UCL)” gives the number of runs in which

false alarms occurred below LCL (or above UCL) during the first 5000 samples.

It is clear from the comparison in Table 5.8 that the conventional CCC chart

is not effective in monitoring high yield processes under sampling inspection in

that it is not able to detect the out-of-control situation promptly and that it pro-
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Table 5.8: Comparison of the simulation results for the CCCS and CCC.

CCCS CCC
Number of out-of-control detected 41 2
Number of false alarm at LCL 10 0
Number of false alarm at UCL 0 63
Number “in-control after 5500 groups 49 35
Total 100 100

duces significantly more false alarms at UCL, misleading users that the process

has improved. On the other hand, the proposed CCCS scheme is more effective in

detecting process shift and tends to err on the conservative end. The non-detection

situations are common to both as, for high yield processes, there are insufficient

number of nonconforming items produced to trigger an out-of-control signal within

the next 500 samples.

5.6 Conclusion

In this chapter, we propose a control scheme, the CCCS chart for monitoring high

yield high volume production/process under sampling inspection with consideration

of correlation within each sample. Circumstances that lead to sampling inspection

include slower inspection rate than production rate, economy of scale in sampling

inspections, and strong correlation in the output characteristic. The performance

of the chart in terms of its run length properties is investigated. To achieve better

sensitivity in detecting a process shift, the recommended sample size is about 100.

Numerical results reveal that the performance of the chart is much better than the

existing CCC charting scheme under the stated condition.

In summary, a basic guideline for monitoring high yield processes under sam-
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Figure 5.8: The Basic Guideline for Monitoring High Yield Production with sam-
pling Inspection

pling inspection can be summarized in Figure 5.8.
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PART IV

STUDIES OF HIGH PERFORMANCE SYSTEMS
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Chapter 6

High Performance Systems

6.1 Introduction

Due to the rapid advances in technology, development of highly sophisticated prod-

ucts, intense global competition, and increasing consumer expectations, it is in-

evitable for today’s manufacturers to face strong pressure to design, develop, and

manufacture products of high quality and reliability in ever-shorter times while im-

proving productivity at low or minimum cost. Besides having very low defects per

million opportunities (dpmo) quality level, some of the products are also required

to be highly reliable. The products involve not only those used in mission-critical

systems, but also some domestic products. Customers expect purchased product to

be reliable and safe. The purchased products should, with high probability, be able

to perform their intended function under encountered operating conditions, for a

certain period of time. These products are also expected to have not only highly

reliable life expectancy, but also well-maintained, degradation-free performance.

In the near future, most likely there will be more and more products having such

criteria in the market.
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Systems/products with high performance criteria stated above can be achieved

by significant level of building-in redundancies, such that their intended functions

will not be compromised even if there are nonconformities within each item. In

addition to being highly reliable, these systems usually have a very high quality

level. Here, we define such systems as high performance systems (HPmS). HPmS

can be as simple as an electronic component such as memory (see Huang et al.

[42]) or as complicated as a computer hard disk drive.

The system performance level is well-maintained with the significant level of

build-in redundancies. Redundancy is a technique whereby the system is provided

with redundant (replicate) resources, more than what is required to maintain the

overall reliability of the system (see Blischke and Murthy [2], and Elsayed [23]).

Redundancy can ensure that if a failure occurs there are enough extra resources

available to maintain satisfactory system operation.

The redundant resources within the system are usually the key elements that

would lead to performance deficiency or system failure if the key component fails.

Such key elements could be the components or subsystems of the HPmS. System

failure occurs only when some or all of the replicates fail.

By having a highly significant level of redundancies (far beyond the minimum

required), any element-level-failure that occurs within the system would not affect

the overall performance. Thus, the performance of the HPmS is expected to be

non-degrading, unless the amount of element-level-failure is more than the critical

threshold. By possessing a degradation-free period, the systems are also expected
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to have a certain age of failure-free life - the age of a system below which no failure

should occur.

6.2 Reliability Tests

Among the most important information sources for reliability improvement/assurance

programs are reliability tests. Testing can be treated as the application of some

form of stimulation to a system so that the resulting performance can be measured

and compared to design requirements. Reliability tests can be categorized into two

groups: upstream tests and downstream tests (see Meeker and Hamada [59]).

Figure 6.1: Reliability Tests in a System/Product Development Cycle.

Figure 6.1 shows an example of the role of reliability tests in the system/product

development cycle. The arrows between processes represent information sources
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and information flow paths.

6.2.1 Upstream Tests

Upstream tests, also known as developmental tests, are those tests used in the

early stages of the system design cycle. These tests focus on discovering unan-

ticipated failure modes and improving interactions and interfaces among system

components/elements and subsystems; they also estimate system reliability. Ex-

amples of upstream tests are accelerated tests (AT), which include the accelerated

life test (ALT) and the accelerated degradation test (ADT); robust-design experi-

ments (RDE); and stress-life tests.

6.2.1.1 Accelerated Tests

Accelerated tests (AT) consist of a variety of test methods for shortening the life of

systems or hastening the degradation of their performance (see Nelson [65]). The

aim is to quickly obtain data, which can be used in design-for-reliability processes

to assess or demonstrate component and subsystem reliability, certify components,

detect and identify failure modes, and compare different manufacturers. This data

yield desired information on system life or performance under normal use, if mod-

eled and analyzed properly. Besides eliminating potential reliability problems early

in the system design stage, such testing saves much time and money.

In ALT, units are subjected to a more severe environment than the normal

operating environment –for example, higher levels of accelerating variables such as

elevated use rate, temperature, and voltage – so that failures can be induced in
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short periods of time. Inferences about the reliability of units at normal conditions

can then be made from the results obtained under the ALT conditions.

However, for most of the highly reliable systems, determining the reliability

information via life testing is difficult because no failures are likely to occur during

the test, even if the technique of censoring and/or testing at accelerated level is

used (see Yu and Tseng [117]). Thus, for some highly reliable systems degradation

over time can be related to reliability, ADT is used for reliability assessment instead

of life testing (see Meeker et al. [58]).

6.2.1.2 Robust Design Experiments

Robust design is an experimental strategy in making a quality characteristic robust

to various noise factors and thus enhance the overall system reliability. Empirically,

robust design experiments identify the important ones, and find levels of system-

design factors that yield quality and reliability improvements.

By using robust design experiments, the optimal combinations of system-design

factors can be obtained. In particular, it is possible to minimize the variation and

maximize system quality and reliability and thus improve the interactions and

interfaces among system components/elements and subsystems within the system.

6.2.1.3 Stress-life Tests

Besides using ALT to identify failure modes, the alternative way of identifying

failure modes is the stress-life test. The purpose of such test is to identify and

eliminate potential reliability problems early in the system design stage. The idea

is to stress and test the prototype of early production units aggressively to force
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failures.

6.2.2 Downstream Tests

Downstream tests, on the other hand, are normally executed during manufactur-

ing. The purpose of such a tests is to eliminate manufacturing defects and early

part failures. The testing requirements can change over the period of production.

Usually, for a new system, in the early stages of production, considerable testing is

required to establish the process characteristics and the effect of process parameters

on the reliability of the system. As the system matures, the testing requirements

are reduced. Examples of such tests are environment stress screening (ESS), burn-

in tests, and screening test. In addition, these tests are also used to verify or

demonstrate final output reliability or used as a screen to remove defective ones

before shipping.

Both ESS and burn-in tests have the same goal, which is to reduce the occur-

rence of early failures. While ESS exposes the units to excessive environmental

extremes outside specification limits over a time interval from several minutes to a

few hours, burn-in subjects a unit to stress levels within specifications over a time

interval from several hours to a few days.

On the other hand, screening tests expose the units to normal usage conditions

over a short period of time, usually at the end of production, to ensure there are

no dead-on-delivery occurences. Tang and Tang [87] give a detailed review of the

downstream tests mentioned here.
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6.3 Quality and Reliability Issues for High Per-

formance Systems

With highly redundant elements built into a system, the performance of the sys-

tem can be restored to the required level of performance instantly, whenever an

element-level-failure occurs during the operation. The performance of HPmS would

degrade only when the cumulative number of element-level-failures reaches a crit-

ical threshold. In other words, the degradation of the system performance would

only be observed when the total number of element-level-failures exceeds the above

mentioned critical threshold. The system would then be treated as failure-prone

system, as depicted in Figure 6.2.

Figure 6.2: Cumulative element-level-failures for HPmS

Rapid technological changes have significantly reduced the life cycles of many

systems (or products) and hence amplified the need for new and efficient methods
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for reliability assessment. For HPmS, a few or even no failures are expected at

ALT conditions, even there might not be significant degradation of performance at

ADT conditions. Thus, information prior to the degradation will be the area of

interest in future reliability studies. Due to the high-performance capability, besides

there is a smaller likelihood of getting meaningful failure data from accelerated life

testing (ALT), there would also be difficulties for HPmS in producing degradation

data from accelerated degradation test (ADT). As stated in a previous section,

a highly significant level of redundancy not only could increase the reliability of

the product, but also might mask the element-level-failure occurences within the

product. Thus, there would be difficulties in predicting the reliability of high

performance products from existing test plans. Alternative tests for assessing the

reliability of the system are indeed needed. Similar to the degradation models, if

the performance measurement or the failure rate of the key element of the HPmS

can be related to the system reliability, such information can be used as a surrogate

to the ALT and ADT.

In order to ensure a certain guaranteed top performance age of the HPmS, i.e.,

to maintain the performance of the HPmS at the required level for a specific period

of usage time, the failure rate of the key redundant elements within the HPmS

should be stringently kept within the specifications. In addition, manufacturers

may be expected to demonstrate to customers that their products have a specified

reliability. Thus, those systems with infant mortality behavior or having higher

failure rate should be identified at the earliest possible stage in the system design
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/ product-development cycle (upstream), as there can be serious economic and

noneconomic consequences when a failure mode is discovered first in downstream

tests or in service. However, some downstream reliability tests / quality screening

tests are still required at some critical stages of production, or after some stress-

testings, so as to ensure high quality and field reliability of the system. In addition,

the out-of-box audit (OOBA) should be used at the end of the production.

After going through stringent production process monitoring, the final output

of the HPmS should have almost 100% yield on system performance, and the oc-

curences of the defects/errors should be uncommon and sporadic. This is again,

due to the high performance capability of the system, even for those relatively weak,

failure-prone ones could also perform satisfactory under operating conditions. This

would make it relatively difficult for planning screening tests if the tests to be car-

ried out are based on measuring on system performance. Other measurements such

as number of element-level-failures should be taken into account when planning for

any downstream reliability tests/quality screening tests for such systems.

In addition, from the aspect of process monitoring, it is not easy or not possible

to detect the number of element-level-failures or the degradation in performance

for some of these products. Thus, the quality characteristics needed for process

monitoring are not easy to obtain, especially for final products. This is because

most of the statistical methodologies for monitoring the characteristics of a process,

such as control charts, require quality characteristics that can be measured and

expressed on a continuous scale (variable control charts) or at least a quantitative
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scale (attribute control charts).

6.4 Conclusion

In this chapter, the term High Performance Systems (HPmS) is coined for systems

with built-in redundancies. In addition, reliability tests and reliability improvement

programs are summarized. The quality and reliability issues related to HPmS

are discussed. As the name implies, the performance level of the system is well-

maintained, because any element-level-failure that occurs within the system does

not affect the overall performance. Thus, the performance of high performance

products is expected to be nondegrading, unless the amount of element-level-failure

is more than the critical threshold. Due to the nondegrading performance, the

usual reliability assessments cannot be applied on such a system easily. Thus,

further research on the planning of the corresponding reliability (stress) tests and

the optimality of the decision variables of HPmS tests is much needed.
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Chapter 7

Screening Scheme for High
Performance Systems

In this chapter, an inspection scheme for high performance systems (HPmS)(as dis-

cussed in Section 1.3 and Chapter 6); i.e. outputs from near-to-zero defect processes

with built-in redundancies, is investigated. These high performance systems not

only have a very high quality level, but are also highly reliable under normal usage.

Under normal production, most of these products are conforming with occasional

nonconformities within each item. The high performance system (HPmS) is con-

sidered to be failure-prone when the number of nonconformities exceeds a critical

threshold. Here, we propose a decision rule for detecting these failure-prone sys-

tems under a screening scheme. The screening test can be applied either at the

end of the production or after some stress-testing, or both; so as to minimize field

failures. The decision rule is derived from a model based on modified binomial

distribution that is used for fitting real life data from the test. The performance

of the test can be evaluated by plotting the corresponding operating-characteristic

(OC) curve.
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The screening test can be applied at some critical stages of production, or

after some stress-testings so as to ensure high quality level and field reliability of

the system, as well as used as the out-of-box audit (OOBA - inspection before

the shipment, stimulating the costumer receipt) at the end of the production. The

objective is to realize the economic benefits of not having “dead-on-delivery”, lower

warranty claims and field repairs, and the profits of repeat business from satisfied

customers. Here, a decision rule for the screening test is introduced to dispose

of nonconforming or potentially nonconforming systems and failure-prone systems.

It may also be used as a process control rule for monitoring the process if the

screening test can be done quickly.

In the following, we present a model for defects occurrence for HPmS. Then

the reliability screening scheme and its associated decision rules are presented. A

numerical example will be given as illustration.

7.1 A Model for Occurrence of Defects

Here, the production outputs for HPmS are modeled by two subpopulations, one

major population with proportion of ω, which is defect-free, and the other popula-

tion, with proportion of 1 − ω is not defect-free (NDF). If k units of measurement

of a HPmS are tested, there would be k opportunities of nonconforming in the

test. Such test is carried out to examine the occurrence rate of the nonconformities

within a system, the probability of obtaining x nonconformities in each system is
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thus given by

P (X = x)





ω + (1 − ω)(1 − p)k x = 0

(1 − ω)
(

k
x

)
px(1 − p)k−x x > 0

(7.1)

This modified binomial distribution shown in Equation (7.1) is referred to as

one of the Zero-Modified Distributions and named as binomial-with-added-

zeros distribution by Johnson et al. [44]. The mean and variance for the model

(see Johnson et al. [44]) are given by

µ = (1 − ω)kp (7.2)

σ2 = (1 − ω)kp{1 − p + ωkp} (7.3)

An example of such testing is the read-write error testing of the computer

hard disk drives (HDD). The opportunities of nonconforming, k, for such test is

interpreted as the total number of bits tested during the test. The parameter, p,

is the fraction of error bits within each drive and is expected to be very small.

In the context of reliability screening, this model can be interpreted as having

(1-ω) weak subpopulation which will precipitate an expected fraction of noncon-

formities within each product after some stress screenings. For example, if a time

censored test is planned and products are screened at the end of the test. The

fraction of nonconformities, p under exponential assumption is given by

p = 1 − e−λAt (7.4)

where λ is the average failure rate (AFR) of each defect opportunity and A is the
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acceleration factor of the stress-test. Other models such as Weibull and lognormal

can also be used if it is deemed more appropriate (see Tobias and Trindade [92]).

The planning of this type of stress-test will be dealt with in future research.

Here, we focus on decision rule and the model.

7.2 Screening Scheme

From Equation (7.1), it is clear that the two critical aspects that need to be mon-

itored are the proportion of the NDF populations as well as the fraction of non-

conformities within each item in the NDF; the respective parameters are ω and p.

The frequency of observing the NDF ones is normally not frequent as the overall

quality of the product should always be well-maintained at a substantially high

level. Thus, the proportion of the NDF population, 1 − ω is expected to be small

and usually ranging between 1% to 10%. With the appropriate rational subgroup

size and inspection scheme, this minor population can be well-monitored using the

idea of Shewhart p or np chart (the p is referred to 1− ω in this case, which is the

subpopulation of NDF), which will be discussed in the later section.

On the other hand, among the NDF ones, the fraction of nonconformities within

each item, p, should be as small as possible, so that the performance of the NDF

ones conforms to the requirement. This is another parameter of interest. The

screening scheme introduced here is different from the existing process monitoring

schemes for high yield processes, such as the Cumulative Counts of Conforming

(CCC) chart discussed in previous chapters, which considers only conforming and
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nonconforming items. Here, we consider cases where the classification of non-

conforming products are done based on observing the number of nonconformi-

ties/errors occurs within a system/product. Moreover, NDF ones are generally

more failure-prone especially when the number of nonconformities is approaching

the threshold.

Besides for reliability screening purpose, the proposed scheme can be used for

discriminating the failure-prone ones among the NDF populations.

7.2.1 The Decision Rules

The screening scheme presenting here is mainly focused on the fraction of noncon-

formities, which will affect the reliability and performance of the NDF population

if the value of p is larger than expected. Suppose that at the end of the produc-

tion, in order to ensure the performance of the system/product conforms to the

requirements, the reliability screening is carried out. For illustration, the example

of the read-write error testing of the HDD is used here.

After taking into the consideration of the testing cost and cycle time constraint,

the number of bits used, k, in the test is normally set by the product designer. If

there are read errors (nonconformities) found in the test and the number of errors

(nonconformities) found exceeds a critical value xα, the HDD fails the test and

labeled as failure-prone. The rate of observing one nonconformity of the failure-

prone drive is considered much higher than the specification. The critical threshold,

xα is determined by obtaining the exact probability limits, which will be discussed

in the following. When there are nonconformities found in the product and the
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number of nonconformities are less than xα, with a confidence level of 1 − α, the

product will not be categorized as failure-prone.

Failure analysis (FA) should be carried out on each of the failure-prone product

to identify the root cause of the nonconformities for continuous improvement; this

will provide the start of a closed loop FA and corrective action program for all

nonconformities found in the test. If no problem is found (NPF) during FA, for

products with high processing cost, it is recommended that a re-test be carried

out. If the NPF item passes the test, then it could resume to the production and

shipped. This would reduce the wastage of scraping a conforming item. From the

production point of view, the rate of NPF product should be as low as possible.

Figure 7.1 presents a simple decision making procedure for the screening scheme.

7.2.2 The Critical Value, xα

The critical xα can be defined as the maximum number of nonconformities allowable

during the test. If the number of nonconformities exceeds xα, it is very likely the

fraction of nonconformities of the product is higher than the specifications, i.e.,

the reliability of the product could not meet the requirements. After deciding the

value of k used in the test, the critical value xα can then be obtained by using the

exact probability limits. Let α be the type I error for the screening test,

P (X ≥ xα) = α (7.5)
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Figure 7.1: The Decision Rules of the Screening Scheme.

the critical value xα, can thus be obtained by solving the equation as closely as

possible

P (X ≥ xα) = 1 − P (X < xα)

= 1 −
xα−1∑

x=0

(
k

x

)
px(1 − p)k−x

= α

(7.6)
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The reciprocal of α is the NPF rate, which means that if α = 0.001, there

will only be one NPF product in 1000 failed products in this screening scheme, on

average.

Due to discontinuity in discrete data, for a specific α value the xα value is the

largest integer value so that the exact α value is less than the desired level. Figure

7.2 shows some xα values with different combinations of p and k with the desired

α value closed to 0.001. From the graph, it is clear that the xα value increases

as p increases for the same α and k. Figure 7.3 is the xα values with different

combinations of α and k for p = 10 ppm.

As for the case of the HDDs, k is usually in the order of 100 millions (1006) bits

and above; and the fraction of nonconformities, p is in the order of parts-per-million

(ppm) or even smaller.

7.2.3 Numerical Example

Here, a numerical example is presented to illustrate the usage of the proposed

screening scheme. Consider a screening test of HDD production, using the oppor-

tunities of nonconforming k = 109 and desired α is preferred to be close to 0.005,

having the fraction of error bits within each drive is p = 0.01ppm. The value of p

here is very low because in the case of HDD, which is a highly reliable data storage

device, the fraction of error bits found at the end of the production is very low as
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Figure 7.2: xα values for different combinations of p and k with α ≈ 0.001.

most of the error ones have already been picked up during the numerous online

testings. The suitable critical value xα is 19, which provides the exact α value of

0.00345, is the closest to the desired α (α for x = 18 is 0.00719 whereas for x = 20

is 0.00159).

Thus, a product fails the test if the number of nonconformities found in the

test is more than 19. The NPF rate for this test is

NPF rate =
1

α

=
1

0.00345

≈ 290,

(7.7)

which means that the chance of getting a NPF drive is once every 290 fail drives.
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Figure 7.3: xα values for different combinations of α and k with p = 10 ppm.

Since HDD is usually produced in large volume, α is typically very small.

Table 7.1 shows some of the exact α values for p = 0.01 ppm with different

values of defect opportunities, k and 3 different desired levels of α. As discussed

before, due to the discontinuity behavior of the discrete data, some of the xα values

are the same for different desired α level. Figure 7.4 is the α curves with different

values of k with p = 0.01 ppm. From the curves, it is clear that the α value

decreases as xα increases for the same values of p and k.

The operating characteristic (OC) curve of the test is calculated from Equation
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Figure 7.4: α values for different values of xα with k = 1006, 5006, and 109; p =
0.01ppm.

Table 7.1: The exact α values for p = 0.01 ppm with different combinations of k
and desired α.

desired α = 0.001 desired α = 0.005 desired α = 0.01
k xα exact α xα exact α xα exact α

100000000 5 0.0006 4 0.0037 4 0.0037
200000000 8 0.0002 6 0.0045 6 0.0045
300000000 10 0.0003 8 0.0038 8 0.0038
400000000 11 0.0009 10 0.0028 9 0.0081
500000000 13 0.0007 12 0.0020 11 0.0055
600000000 15 0.0005 13 0.0036 12 0.0088
700000000 16 0.0010 15 0.0024 14 0.0057
800000000 18 0.0007 16 0.0037 15 0.0082
900000000 20 0.0004 18 0.0024 17 0.0053
1000000000 21 0.0007 19 0.0035 18 0.0072
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(7.5). The OC curve is plotted in Figure 7.5. From the graph, it is clear that

the test can detect the increase in p effectively, i.e., the probability of getting a

failure-prone product increased when p increased from the intended value (0.01

ppm).

Figure 7.5: The OC curve for the screening test with p = 0.01ppm and desired
α = 0.005.
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7.3 Monitoring the Subpopulations

As given in Equation (7.1) from Section 7.1, the production outputs for high perfor-

mance product consist of two subpopulations. Besides screening the failure-prone

ones among the NDF population, the proportion of the two subpopulations, ω is

another parameter which would affect the overall product quality. As stated in pre-

vious section, by using appropriate rational subgroup size and inspection scheme,

the minor population (NDF) can be well-monitored.

From Equation (7.1), the probability of observing a defect-free product is

P (X = 0) = ω + (1 − ω)(1 − p)k.

Thus, the probability of observing a non defect-free item is given by

Pk = 1 − P (X = 0)

= 1 −
(
ω + (1 − ω)(1 − p)k

) (7.8)

Let N be number of items produced in a production batch. Within the pro-

duction batch, the probability of observing y number of non defect-free products

is given by

P (Y = y) =

(
N

Pk

)
Pk

y(1 − Pk)
N−y (7.9)

which is the Binomial distribution with parameters N and Pk.

For high performance product production, the NDF population can be moni-

tored by using a modified Shewhart np-chart using the parameters N and Pk.
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7.4 Conclusion

In this chapter, a modified binomial distribution is used in describing the two

subpopulations of the HPmS. The screening scheme introduced here focuses on

detecting the failure-prone ones within the minor population of non defect-free

(NDF) product. The NDF product with unacceptable failure rate can be detected

effectively by implementing the screening scheme in the inspection procedure. Un-

like the process monitoring scheme which monitoring the process performance, the

proposed screening scheme operates within a system/product, isolating the failure-

prone ones from the defect-free subpopulation among the HPmS. A numerical ex-

ample is given and it shows that the scheme is effective in detecting failure-prone

items.

For future research, the frequency of observing a NDF product should be con-

sidered in the scheme, as producing too many NDF products will also affect the

overall quality level of the product. In addition, planning of the corresponding

stress test and the optimality of the decision variables of the screening test (k, and

α) can also be investigated.
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Chapter 8

Conclusions

Due to the increasing effort of process improvement and rapidly improving technol-

ogy, more and more industrial processes have been improved to high yield processes,

where the process quality level is very high. The fraction of nonconforming items,

p for such process is usually on the order of parts-per-million (ppm). On the other

hand, the intense global competition and high expectation of consumers have made

today’s manufacturer inevitable to face strong pressure to design, develop, and

manufacture products of high quality and reliability in ever-shorter times while

improving productivity at low or minimum cost. The products involved are not

only for those mission-critical products, but also for some domestic products. These

products have not only highly reliable life expectancy, but also well-maintained,

degradation-free performance.

In this dissertation, we explored the area of Statistical Process Control (SPC)

techniques for high yield processes, and some topics in high reliability systems.

It comprises a thorough study of Cumulative Conformance Count (CCC) chart,

guidelines in establishing the CCC chart, a control scheme for high yield correlated
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production with sampling inspection, and the studies of high performance systems.

The contributions in the high yield process monitoring and high performance sys-

tems are summarized in the following sections.

8.1 Contributions In High Yield Process Moni-

toring

The Cumulative Conformance Count (CCC) chart has been used for monitoring

processes with low ppm. However, previous work has yet to address the problems of

establishing the chart when the parameter is either given or estimated. In Chapter

3, we examined a sequential sampling scheme for CCC chart that arises naturally in

practice and investigate the performance of the chart constructed using an unbiased

estimator of the fraction nonconforming, p. In particular, the false alarm rate and

its intended target as well as deriving the mean and standard deviation of the run

length are examined; and compare the performance with that established under

a conventional binomial sampling scheme. A scheme is proposed for constructing

the CCC chart in which the estimated p can be updated and the control limits are

revised so that not only the in-control average run length (ARL) of the chart is

always a constant but it is also the largest which is not the case for conventional

CCC chart even when the p is known.

Current work on CCC charts has yet to provide a systematic treatment for

establishing the chart particularly when the parameter is estimated. In Chapter

4, results from Chapter 3 and recent studies by Yang et al. [115] are extended

so that engineers are able to construct the CCC chart under different sampling
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and estimation conditions. New insights on the behaviours of CCC chart when

the parameter is estimated are given and some procedures for constructing the

CCC chart when the process fraction nonconforming is given, when it is estimated

sequentially, and when it is estimated with a fixed sample size are presented.

It is shown that the proposed scheme performs well in detecting process changes,

even in comparison with the often utopian situation in which the process parame-

ter, p, is given exactly prior to the start of the CCC chart. The proposed steps

are implemented using data from a high yield process, which, in some degree,

demonstrate the effectiveness of the scheme.

In Chapter 5 (third part of this dissertation), we proposed a chain control

scheme, the Cumulative Chain Conforming Sample (CCCS) chart, with adjusted

control limits for monitoring high yield high volume production/process under sam-

pling inspection with consideration of correlation within each sample. The perfor-

mance of the chart in terms of its run length properties is investigated. Numerical

results have shown that the performance of the chart is much better than the

existing CCC charting scheme under the stated condition.

8.2 Contributions In High Performance Systems

In Chapter 6, the High Performance System (HPmS) is defined and the importance

of reliability tests in reliability improvement programs are highlighted. Besides,

quality and reliability issues for high performance systems are discussed. This

provides insight and promising opportunity for future research on high reliability
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systems. As the name implies, the performance level of the system is well main-

tained, with the significant level of build-in redundancies. The resources provided

redundantly in the system are usually the key elements - could be just the compo-

nent or some sub-assemblies - that would lead to performance deficiency or product

failure. System failure occurs only when some or all of the replicates fail. By hav-

ing highly significant level of redundancies, any element-level-failure occurs within

the system would not affect the overall performance. Thus, the performance of the

high performance products is expected to be nondegrading, unless the amount of

element-level-failure is more than the critical threshold.

Following with the introduction on HPmS, Chapter 7 presents a screening

scheme for such systems, with the computer hard disk drive (HDD) as the ap-

plication example. The scheme introduced focused on detecting the failure-prone

ones within the minor population of non defect-free (NDF) product. The NDF

product with unacceptable failure rate can be detected effectively by implementing

the scheme in the inspection procedure.

Due to the nondegrading performances on the HPmS, the usual reliability as-

sessments could not be applied on such system easily. Thus, further researches in

this area are much needed. For example, the frequency of observing a Not Defect-

free (NDF) product should be studied and monitored, as producing too many NDF

products will affect the overall quality level of the product. In addition, planning

of the corresponding reliability (stress) tests and the optimality of the decision

variables of the tests on HPmS can also be investigated.
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8.3 Future Research Recommendations

The statistical process control for high quality products involves a wide range of

research scope. This dissertation covers some important aspects under the umbrella

of this topic as summarized above. However, there are some other areas where

future research should be carried out.

Chapters 3 and 4 of this dissertation focused merely on the CCC chart, due to

time and cost constraints, the in-depth analysis on the extension of the CCC model

has not been done. Similar extentions can be done on the CCC-r chart presented

by Xie et. al. [107], considering the case when p is estimated.

Chapter 5 deals with the high yield process monitoring with sampling inspec-

tion, considering the intra-sample correlation. However, it is assumed that the

process parameters are known, the future research could focus on the effects of es-

timated parameters used in the proposed scheme. In addition, some enhancements

could be developed to improve the sensitivity of the proposed scheme.

The final part of the thesis is an introductory study of the HPmS. Detailed

analysis is needed to strengthen concept of HPmS. As discussed in Chapter 6

(particularly Section 6.3), further investigations on quality and reliability issues of

HPmS are much needed.
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Appendix A

Order Statistics Analysis

Here, the first order statistics of the cumulative conformance count within a sample

is investigated. Consider a sample of size n of which r nonconforming items are

detected, thus, there would be r sequence of CCCs within that sample. Let Yi:r be

the i-th occurrence of the r nonconforming items, i.e. Y1:r is the first occurrence,

Y2:r is the second, and so on. Assuming constant rate of occurrence (constant p

within each sample), Y1:r, . . . , Yr:r are the order statistics from discrete uniform

distribution (1, n) with the CDF given as F (y) =
y

n
. Figure A.1 is the graphical

representation of this order statistics.

The pmf of the i-th order statistic Yi:r can be obtained by direct reasoning: for

Yi:r to equal y, preceeding i− 1 values of Yj:r, j ≤ i− 1 should be less than y, r − i

succeeding Yj:r; j ≥ i + 1, . . . , r should be greater than y. This probability is given

by

(
y

n

)i−1(
1 − y

n

)r−i
y

n

Whereas, as there are

(
r

i − 1, r − i, 1

)
=

n!

(r − i)!(i − 1)!
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different partitions of the r random variables Yi:r; i = 1 . . . , r into the three groups.

The conditional pmf of Yi:r given r nonconforming items, is given by

FYi:r
(y|r) =

n!

(r − i)!(i − 1)!

(
y

n

)i−1(
1 − y

n

)r−i
y

n
(A.1)

In general, the CDF of Yi:r can be obtained by realizing that

Fi:r(y|r) = P (Yi:r ≤ y|r)

= P
(
at least i of Y1, Y2, . . . , Yr are at most y|there are r Y s

)

=

r∑

k=i

P
(
exactly k of Y1, Y2, . . . , Yr are at most y|there are r Y s

)

=

r∑

k=i

(
r

k

)(
y

n

)k(
1 − y

n

)r−k

.

(A.2)

Note that Yi:r will be less than or equals to y if and only if at least i of the r random

variables are less than or equals to y.

Figure A.1: Graphical Representation of the Order statistics

Thus, the probability for the first occurrence of the nonconforming item from

the r nonconforming items found in a sample of size n, Y1:r < l is given by

P (Y1:r < l|r) =
r∑

k=1

(
r

k

)(
l − 1

n

)k(
n − l − 1

n

)r−k

(A.3)
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For high yield process with sample inspection, when there are r(≥ 2) noncon-

forming items found within a sample of size n, we have to consider the joint pmf

of Yi:r and Yj:r. The joint pmf of Yi:r and Yj:r for i < j is given by

FYi:r,Yj:r
(yi, yj|r) = P

(
Yi:r = yi, Yj:r = yj|r

)

=
r!

(i − 1)!(j − i − 1)!(r − j)!
×
(

yi

n

)i−1

×
(

yj

n
− yi

n

)j−i−1

×
(

1 − yj

n

)r−j(
1

n

)2

(A.4)

For j = i + 1, the above equation become

FYi:r ,Yi+1:r
(yi, yi+1|r) =

r!

(i − 1)!(r − i − 1)!
×
(

yi

n

)i−1

×
(

1−yi+1

n

)r−i−1(
1

n

)2

(A.5)

Let Wi = Yi+1:r − Yi:r, where W0 = Y1:r, we can write

P (Wi:r = w) =
∑

y∈S

P (Yi:r = y, Yi+1:r = y + w) (A.6)

As the distribution of Yi is discrete uniform ranging from S{1, n}, for r noncon-

forming items detected, the maximum of the least consecutive conforming items

would be
n

r + 1
. Thus, y from the above equation would be ranging from 1 to

n

r + 1

and the above probability can thus be written as

P (Wi:r = w|r) =

n/(r+1)∑

y=1

P (Yi:r = y, Yi+1:r = y + w)

=

n/(r+1)∑

y=1

r−1∑

i=1

r!

(i − 1)!(r − i − 1)!

(
y

n

)i−1(
n − y − w

n

)r−i−1(
1

n

)2

(A.7)

The probability of the first order statistics given r nonconforming items (Y1:r)

within the first sample of size n is less than the LCL of the chart can be obtained
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based on Equation (A.3) as

P (Y1:r < LCL|r) =

r∑

k=1

(
r

k

)(
LCL − 1

n

)k(
n − LCL − 1

n

)r−k

(A.8)

For the rest of the orders statistics for Yi:r, the probability that the CCC is smaller

than the LCL of the conventional CCC chart given r nonconforming items is given

by

P (Wi:r < LCL|r) =
LCL−1∑

l=1

n/(r+1)∑

y=1

r−1∑

i=1

r!

(i − 1)!(r − i − 1)!

(
y

n

)i−1(
n − y − w

n

)r−i−1(
1

n

)2

for i = 2, . . . , r; 1 < r ≤ n

(A.9)

Thus, the probability for any CCC within the first sample to be smaller than

LCL of the CCC chart can be obtained from the above derivations and be written

as

P (Wi:r < LCL)

=
∑

r∈n

r∑

i=1

P (Wi:r < LCL)

=
∑

r∈n




∑r
k=1

(
r
k

)(
LCL−1

n

)k(
n−LCL−1

n

)r−k

+
∑LCL−1

l=1

∑n/(r+1)
y=1

∑r−1
i=2

r!
(i−1)!(r−i−1)!

(
y
n

)i−1(
n−y−l

n

)r−i−1(
1
n

)2




×
(

n

r

)
pr
(
1 − p

)n−r
.

(A.10)

To simplify the computation, the number of nonconforming items, r is truncated

up to the number such that the probability of observing more than ru items is
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smaller than 10−6.

P (d > r) = 1 − P (d ≤ ru)

= 1 −
(

n

ru

)
pru(1 − p)n−ru < 0.000001

(A.11)

Table A.1 gives the probabilities for any group of consecutive conformance

items (CCI) within the first sample of inspection to be smaller than LCL of the

conventional CCC chart with α/2 = 0.00135, which obtained from Equation (A.10),

for different in-control ppm with sample sizes, n ranging from 100 to 20000. The last

row in the table shows the false alarm probabilities for the conventional CCC charts.

From the table, it is clear that as sample size increases, the probability deviates

from the conventional CCC chart false alarm probability. The inconsistency of the

probability become more obvious as p increases from 50 ppm to 500 ppm.

Table A.1: The probabilities for any group of CCI within the first sample of in-
spection is smaller than LCL of the CCC chart with α/2 = 0.00135 for different
in-control ppm with sample sizes, n ranging from 100 to 20000

n ppm= 50 100 200 300 400 500
100 0.001399 0.001399 0.001398 0.001498 0.001598 0.001497
500 0.001399 0.001399 0.001399 0.001499 0.001599 0.001500
1000 0.001399 0.001399 0.001400 0.001502 0.001604 0.001507
5000 0.001401 0.001408 0.001428 0.001558 0.001694 0.001618
10000 0.001408 0.001429 0.001483 0.001647 0.001811 0.001740
20000 0.001429 0.001483 0.001585 0.001775 0.001949 0.001863

0.001399 0.001399 0.001399 0.001499 0.001599 0.001499

Hence, if the high yield process is inspected based on samples, a control scheme

different from the CCC chart is needed in order to monitor the process effectively.

In addition, as mentioned before, when the inspection is carried out in samples,

CCC chart could not be implemented at all in monitoring the process. This is

due to the observation of the inspection is the number of nonconforming detected,
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instead of the exact ordering for every items, which is needed in implementing

conventional CCC chart.
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