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Summary

This thesis studies several problems related to clustering on spatial data. It roughly

divides into two parts based on data types. Chapters 2 and 3 concentrate on mixture

models for regressing and clustering spatial geographic data, for which the attributes

under consideration are explicitly divided into non-spatial normal attributes and spatial

attributes that describe the object’s location. The second part continues to examine

clustering from another two perspectives on general spatial data, for which the distinc-

tion between spatial and non-spatial attributes is dropped. At a higher level we explore

consensus clustering in Chapter 4. At a finer level we study outlier detection in Chapter

5. These topics are discussed in some detail below.

In Chapter 2, we investigate data fusion in radial basis function (RBF) networks for

spatial regression. Regression is linked to clustering via classification. That is, clustering

can be regarded as an unsupervised type of classification, which, in turn, is a special-

ized form of regression with the discrete target variable. Ignoring spatial information,

conventional RBF networks usually fail to give satisfactory results on spatial data. In

contrast to input fusion, we incorporate spatial information further into RBF networks

by fusing output from hidden and output layers. Empirical studies demonstrate the

advantage of hidden fusion over others in terms of regression quality. Furthermore,

compared to conventional RBF networks, hidden fusion does not entail much extra

computation.

In Chapter 3, we propose a Hybrid Expectation-Maximization (HEM) approach for

spatial clustering using Gaussian mixture. The goal is to efficiently incorporate spa-

tial information while avoiding much additional computation incurred by Neighborhood

Expectation-Maximization (NEM) for E-step. In HEM, early training is performed via

a selective hard EM till the penalized likelihood criterion no longer increases. Then
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training is turned to NEM, which runs only one iteration of E-step. Thus spatial infor-

mation is incorporated throughout HEM, which achieves better clustering results than

EM and comparable results to NEM. Its complexity is retained between EM and NEM.

In Chapter 4, we continue to study clustering at a higher level. Consensus clustering

aims to combine a given set of multiple candidate partitions into a single consolidated

partition that is compatible to them. We first propose a series of entropy-based functions

for measuring distance among partitions. Then we develop two combining methods for

the global optimal partition based on the new similarity between objects determined by

the whole candidate set. Given a set of candidate clusterings, under certain conditions,

the local/global centroid clustering will be top/middle-ranked in terms of closeness to

the true clustering.

In Chapter 5, we turn our attention away from the majority of the data inside clusters

to those rare outliers who cannot be assigned to any cluster. Most algorithms target

outliers with exceptionally low density, compared to nearby clusters of high density.

Besides the pattern of high density clustering, however, we show that there is another

pattern, low density regularity. Thus, there are at least two types of corresponding

outliers w.r.t. them. We propose two techniques, one used to identify the two patterns

and the other used to simultaneously detect outliers w.r.t. them.
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Chapter 1

INTRODUCTION

1.1 Data Analysis

The terms data analysis and data mining are sometimes used interchangeably. They can

be defined as the non-trivial extraction of implicit, previously unknown and potentially

useful information and knowledge from data. Data mining is a relatively new jargon

used by database researchers, who emphasize the sheer volume of data and provide

algorithms that are scalable in terms of both data size and dimensionality.

The entire data analysis/mining process may be illustrated with the following ex-

ample, where the domain expert, say, a social scientist, consults the data analyst to

solve a problem. The social scientist is interested in the explanation of the unusually

low voting rate for presidential election in some cities. The ball is now in the court of

the data analyst who must decide which techniques to use to address the problem. For

instance, he may decide that the problem is best addressed in the framework of regres-

sion where voting rate is modeled as a function of relevant demographic variables. He

then must choose an appropriate algorithm for implementation, which typically outputs

a set of hypotheses (estimated parameters in the regression model). Thus the output

is a pattern, which undergoes verification and visualization in the next step. The final

part in the process is to interprete the pattern and possibly to make a recommendation

for action.

1
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In the following, we distinguish two types of data, spatial geographic data and general

spatial data.

1.2 Spatial Geographic Data

Spatial geographic data, sometimes abbreviated as geo-spatial data, distinguish them-

selves from general data in that associated with each object, the attributes under consid-

eration include not only non-spatial normal attributes that also exist in other database,

but also spatial attributes that are often unique or emphasized in spatial database.

Spatial attributes usually describe the object’s spatial information such as location and

shape in the physical space.

Thus the analysis on geo-spatial data aims to extract implicit interesting knowledge

such as spatial relations and patterns that are not explicitly stored in spatial databases.

Such tools are crucial to organizations who make decisions based on large spatial data

sets. These organizations spread across many domains including public transportation,

public health, geology, resource and environmental management, agriculture, etc.

A historic spatial pattern relates to the 1855 epidemic of Asiatic cholera in London,

England [44]. An epidemiologist marked all locations where the disease had struck and

discovered that the locations formed a cluster whose centroid turned out to be a water-

pump. When the government authorities turned off the water-pump, the cholera began

to subside. Later scientists confirmed the water-borne nature of the disease.

Current approaches to spatial problems tend to use classical data mining tools af-

ter materializing the spatial relationships. Take the epidemic of cholera for example.

Materializing the distances of cholera patients to the nearest water-pump would allow

the classical regression tools to identify the distance to the water-pump as an important

explanatory attribute. Since independent and identical distribution (iid) is usually im-
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plied in classical regression models, it means the data about one patient is independent

of data describing other patients. However, this is not true for spatial attributes, e.g.,

distance to pumps, because spatial autocorrelation states that the properties of one

sample affect the properties of other samples in its neighborhood.

In this thesis, we study regression and clustering on geo-spatial data using mixture

models. Regression is linked to clustering via classification. That is, clustering can

be regarded as an unsupervised type of classification, which, in turn, is a specialized

form of regression with the discrete target variable. The focus is on how to efficiently

incorporate spatial information into the model.

1.3 General Spatial Data

Geo-spatial data become general spatial data if we no longer differentiate spatial at-

tribute from normal attribute and treat all equally. Since every object is treated as a

point in the high dimensional space, they are usually still called spatial database, as done

by many researchers in spatial data mining, especially in clustering [25, 53, 100, 116, 126].

In this case, they lend themselves to classical data mining techniques that have a wide

range of application, including marketing, predicting stock market and foreign exchange

rate, determining commonalities and anomalies in patients, modeling proteins, finding

genes in DNA sequence, etc [28].

In this thesis, on general spatial data we continue to examine clustering from another

two perspectives. We concentrate on two problems, consensus clustering and outlier

detection.

Like usual clustering, consensus clustering still aims to produce a good clustering for

some dataset, but it operates at a higher level. It is motivated by the following examples

in reality. (1) Knowledge reuse: A company wants to cluster its customers database for
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marketing campaign. A variety of legacy customer segmentations have been already

manually constructed based on demographics, purchasing patterns, etc. As the data

size keeps increasing, the company has to employ computer techniques to automatically

cluster data. However, it is reluctant to throw out all this domain knowledge, and instead

wants to reuse such pre-existing knowledge to create a single consolidated clustering.

(2) Distributed clustering: In practice, due to some reasons such as privacy, the whole

dataset may be partitioned and allocated into different sites. For instance, every site

contains all data but with a fraction of attributes, i.e., a particular view/subspace of the

original data. With one subspace clustering from each site, we need to combine them to

form a consolidated clustering. From above examples, we can extract the mathematical

model. The input for consensus clustering is a set of partitions, rather than the original

dataset as in usual clustering. The output of consensus clustering is another clustering,

which is expected to be as compatible as possible with the input set.

As a complement operation to clustering, outlier detection targets those exceptional

data whose pattern is rare and different from the general pattern shown by the ma-

jority of the data. It is known to all that the job of clustering is finding the general

patterns/structures in the data. How about outliers, those exceptional data that cannot

be put in any pigeon holes? They are usually treated as noise or error and discarded in

standard clustering. It is most likely that outliers are often the results of recording error

or data entry error, but they may also be legitimate data. In some situations, however,

outliers bear implicit information that cannot be discovered from those canonical data.

In areas like credit card fraud, telephone calling card fraud and network intrusion de-

tection, it is those outliers that are of interest and deserve special attention. There are

many definitions for outliers. Here we focus on those outliers w.r.t. both high density

pattern clustering and low density pattern regularity, whose definitions will be explained
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later in the thesis.

1.4 Organization of the Thesis

The rest of the thesis roughly divides into two parts based on the data type. We deal

with geo-spatial data using mixture models in the first part. Chapter 2 discusses spatial

regression using radial basis function networks, concentrating on incorporating spatial

information by modifying model structure. Chapter 3 is devoted to spatial clustering,

focusing on designing efficient Expectation-Maximization style training algorithms for

Gaussian mixture. The second part handles general spatial data. Chapter 4 continues to

study clustering problem at a higher level, consensus clustering, which aims to combine

a given set of partitions to form a consolidated one that is most compatible with that

set. Chapter 5 addresses detecting outliers. As a complement to cluster analysis, it

targets the finding of those exceptional and rare data that cannot be assigned to any

general pattern or cluster. Chapter 6 summarizes major results and discusses future

research.

Part of this thesis has been published or accepted for publication [62, 61, 67, 64, 63,

65, 66].

Finally, it is worth noticing that all algorithms proposed in this thesis have their own

limitations. They may work well on some datasets but loose to competing algorithms

on other data. It is more appropriate to view them from a statistical viewpoint, which

enables us to better understand different aspects of data analysis and learning:

There is no true interpretation of anything; interpretation is a vehicle in the

service of human comprehension. The values of interpretation is in enabling

others to fruitfully think about an idea.

-Andreas Buja



Chapter 2

SPATIAL REGRESSION USING
RBF NETWORKS

2.1 Introduction

Conventional RBF networks for spatial regression assume independent and identical

distribution (iid) and ignore spatial information. In this chapter, we study how to

incorporate spatial content, e.g., spatial autocorrelation, into the framework of RBF

networks for spatial regression.

The following is the outline of this chapter. In the rest of this section, we describe the

characteristics of geo-spatial data and spatial regression problem. Then we introduce

related work in Section 2.2. After reviewing RBF network for regression in Section 2.3,

we present our extension of fusing data at various levels of RBF networks to incorporate

spatial information in Section 2.4. Experimental evaluation is reported in Section 2.5

where we compare various fusions on real demographic datasets and investigate the

effect of autocorrelation coefficient in hidden fusion. Section 2.6 concludes this chapter

with a summary.

2.1.1 Geo-Spatial Data Characteristics

Geo-spatial data often exhibit two unique characteristics: spatial trend and spatial

dependence [20]. Spatial trend denotes the large scale variance computed at a coarse

6
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resolution. Spatial dependence, also called spatial autocorrelation, denotes small scale

variance and has two types: positive and negative. Positive correlation means nearby

sites tend to have similar characteristics and thus exhibit spatial continuity. In remote

sensing images, close pixels usually belong to the same land cover type: soil, forest, etc.

Negative correlation denotes nearby sites have very different characteristics.

Because of these two characteristics, iid, a fundamental assumption often made in

data sampling, is no longer valid in geo-spatial data. Let us first examine independence.

In practice, almost every datum is related to each other to a varying degree. For example,

houses in nearby neighborhoods tend to have similar prices. This property has long ago

been found by geographers who described it as the first law of geography: everything is

related to everything else, but nearby things are more related than distant things [122].

As for identical assumption, there are cases of spatial data where different regions seem

to have different distribution, which is referred to as spatial heterogeneity.

Let us see a real spatial dataset that clearly shows the spatial characteristics dis-

cussed above. Fig. 2.1(a) depicts crime rate information in 49 neighborhoods in Colum-

bus Ohio, USA [6], where a site is labeled class 1 if its crime rate is higher than the

mean value and labeled class 0 otherwise. We can see that in this map, most high crime

sites are in the central region and low crime sites are scattered outside. Spatial trend is

obvious in east-west direction, along which it shows the trend of low-high-low in crime.

The data also show positive spatial autocorrelation, that is, most sites are surrounded

by sites from the same class.

2.1.2 Spatial Framework

Compared to classical pattern recognition problems whose input can be usually repre-

sented by a set of feature vectors, spatial problems have an additional input, spatial

framework. In this thesis, we only consider lattice data whose site index is countable
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Figure 2.1: Crime rate in 49 neighborhoods (a) and its contiguity matrix (b) with a
total of 270 nonzero elements W (i, j) > 0.

[11]. In detail, a spatial framework of n sites can be characterized by a pair (S,N),

where S = {si}n
i=1 denotes a set of n sites si, and N ⊆ S ×S denotes the neighborhood

relation. For example, S could be the set of triple (index, latitude, longitude). Two

sites si and sj are neighbors iff (if and only if) (si, sj) ∈ N, i �= j. For convenience, let

N(si) ≡ {sj : (si, sj) ∈ N} denote the neighborhood of si.

Neighborhood relation N can be given by a n × n contiguity matrix W , where

W (i, j) > 0 iff (si, sj) ∈ N and W (i, j) = 0 otherwise. Although each site is actually an

area, for simplicity, it is often denoted by a center point. Thus the contiguity matrix W

can be computed from center points’ latitude-longitude pairs. Two sites are neighbors

if they are natural neighbor in Voronoi diagram (Fig. 2.2(a)) or equivalently, they are

linked in the dual Delaunay triangulation (Fig. 2.2(b)). As shown in Eq. (2.1), from

Voronoi diagram or Delaunay triangulation, the symmetric binary contiguity matrix Wb

can be constructed, where Wb(i, j) = 1 iff (si, sj) ∈ N and Wb(i, j) = 0 otherwise. The

row-normalized contiguity matrix Wn is obtained from Wb by dividing each element

with the sum of its row. Consequently, Wn is also symmetric in terms of positive/zero.

For example, assuming first order neighborhood, site s1 in Fig. 2.2 has three neighbors
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Figure 2.2: Voronoi diagram (a) and its counterpart of Delaunay triangulation (b).

s2, s3 and s4, so the nonzero elements in the first row of Wb and their counterparts in

Wn are Wb(1, j) = 1, and Wn(1, j) = 1/3, j = 2, 3, 4, respectively.

Wb =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0

1 0 1 0 1

1 1 0 1 1

1 0 1 0 1

0 1 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

normalize−→ Wn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
3

1
3

1
3 0

1
3 0 1

3 0 1
3

1
4

1
4 0 1

4
1
4

1
3 0 1

3 0 1
3

0 1
3

1
3

1
3 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.1)

With neighbors defined by Voronoi diagram, the contiguity matrix of the crime data

is given in Fig. 2.1(b), where a dot denotes a nonzero element. We can see that such

matrices are usually sparse, that is, most of their elements are zeros. So even for a large

dataset which leads to a large contiguity matrix, the storage requirement is reduced to a

large extent if we only store those few nonzero elements (values and positions). Besides,

some operations, like inverse, are expensive on large matrices, but there are efficient

algorithms specialized for sparse matrices.

2.1.3 Problem Formulation

The problem of spatial regression can be formulated as follows:

• Given
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1. A spatial framework of n sites,S = {si}n
i=1. We assume that neighbor relation

N is given by a row-normalized contiguity matrix W .

2. Associated with each si, there is a d-D feature vector of explanatory attributes

xi ≡ x(si) ∈ �d and a dependent variable yi ≡ y(si) ∈ � to be predicted.

Let y ≡ [y1, ..., yn]T .

• Find

A function f : �d → �. Let ŷi ≡ f(xi), ŷ ≡ [ŷ1, ..., ŷn]T . Here f is constrained

to the model of RBF networks.

• Objective

Maximize similarity between y and ŷ. We use mean squared error (MSE): ‖y −

ŷ‖2/n.

• Constraint

Spatial autocorrelation exists,i.e., yi is not only affected by xi, but also by xj and

yj of its neighbors sj ∈ N(si).

2.2 Related Work

Generally speaking, current work on geo-spatial data can be divided into two fields:

database and statistics. The former focuses on efficient techniques, such as storage and

query, for large spatial databases [86, 26, 110, 117], and its major application includes

the various geographic information systems. The latter concentrates on constructing

statistical model to describe the spatial data [20, 89, 102, 121], and it is mainly applied

to processing and modeling various geo-spatial data, such as demographic data and

remote sensing images, etc.
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Methods for incorporating spatial information roughly come in the following cate-

gories:

• Adding spatial information into dataset [71, 101, 47].

• Modifying existing algorithms, e.g., allowing an object assigned to a class iff this

class already contains its neighbor [88].

• Selecting a model that encompasses spatial information [4]. This can be achieved

by modifying a criterion function that includes spatial constraints [107], which

mainly comes from the image analysis where Markov random field is intensively

used [38].

Another category, where our approach falls, is to directly modify the structure of

the model.

Compared to a lot of work in spatial contextual classification [121, 13, 59, 118],

spatial regression receives less attention, not to mention application of RBF-like local

expert network methods. In [40], different machine learning algorithms are applied to

non-stationary spatial data analysis: using spatial coordinates to predict the rainfall.

Local models, like local version of support vector regression and mixture of experts,

which take into account local variability of the data (spatial heterogeneity), are found

to be better than their global counterparts which are trained globally on the whole

dataset. In [91], RBF coupled map lattice is used as the spatial temporal predictor to

model the chaotic dynamic of radar echoes from a sea surface, and to detect embedded

targets. The input is fused by weighted averaging each site and its neighbors.
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Figure 2.3: RBF network structure.

2.3 Conventional RBF Network

Conventional RBF network for regression or function approximation has been studied

extensively in the literature [104, 103, 12]. It can be described mathematically as a linear

combination of nonlinear radially symmetric basis functions, as shown in Eq. (2.2) and

Fig. 2.3, where the basis function φm(z) often takes the popular Gaussian kernel in Eq.

(2.3). It is proved in [55] that, given a sufficiently large number M of Gaussian kernels

and the freedom to adjust center µm and width hm separately for each kernel, RBF

networks can achieve arbitrarily small error.

f(x) = w0 +
M∑

m=1

wmφm

(‖x − µm‖
hm

)
(2.2)

φm(z) = exp(−z2) (2.3)

In fact, the choice of basis function is less crucial compared to the number of centers

M and the width hm. M is a hyper-parameter which determines the network structure

and its estimation is costly. We select M by trial and error based on a range of values

determined by the cross validation. At each iteration the input vector that results in

lowering the network error the most, is used to create a hidden neuron (kernel) and it is

removed from the training set [19]. This efficient process is repeated until the validation
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error begins increasing. Once M is determined, centers µm are chosen with K-means

algorithm [82].

As for width, too small width would cause underlapping and entail a large number

of kernels that lead to overfitting. On the other hand, too large width would cause

overlapping and cannot give satisfactory performance. We try three ways to set constant

width for all kernels: (1) The average of distance to 10th nearest neighbor (in the input

vector space), which is suggested in [52]. (2) The maximum distance between centers

divided by 2M , which is used in [91]. (3) The value h that, for density estimation,

minimizes the MSE between the density and the approximation [120]. It has the form

in Eq. (2.4), where σ2 = trace(Σ)/d and Σ is the sample covariance matrix.

h = σn
−1
d+4

(
4

d + 2

) 1
d+4

(2.4)

Once the estimation of parameters for radial basis layer is finished, the remaining

task of estimating output layer weights w = [w0, ..., wM ]T is essentially a linear regres-

sion problem in Eq. (2.5), where i-th row of matrix Φ is the radial basis output vector

for i-th input.

y = Φw (2.5)

The MSE can be written as

MSE(w) =
1
n

(y − Φw)T (y − Φw)

Differentiating w.r.t. w we get the normal equations
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ΦT (y − Φw) = 0

If ΦT Φ is nonsingular, then the unique solution is given by

ŵ = (ΦT Φ)−1ΦTy = Φ+y (2.6)

where Φ+ denotes pseudo-inverse (ΦT Φ)−1ΦT for clarity.

2.4 Data Fusion in RBF Network

Spatial information, spatial autocorrelation in particular, can be incorporated into RBF

network at three levels: input fusion, hidden fusion and output fusion. Input fusion is

tried in [91] for regular lattice data and we adapt it to irregular lattice data. Besides,

we push spatial information further into RBF network by fusing the output from hidden

and output layers.

2.4.1 Input Fusion

Input fusion replaces each input with the weighted average of its neighbors and feeds

the new input to a conventional RBF network. In [91], the weighting coefficient for each

neighbor can be computed for spatial regular lattice data. However, the data used in

our experiments are measurement for irregular lattice sites (e.g., counties) where neither

the number nor the relative position of neighbors is fixed. We first average all neighbors

with Wy, then by treating the result ȳi (i-th element of Wy) as the only virtual neighbor

for each site si, we can compute the correlation coefficient β between yi and ȳi in Eq.

(2.7). Instead of the traditional 1-0 neural network targets, correlation-generated targets

have been used in the speech recognition system to achieve better performance [131].

Similarly, the new fused input vector ẋ can be constructed by fusing the original input
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xi with the average of its neighbors x̄i, as shown in Eq. (2.8), where X = [x1, ...,xn],

x̄i is the i-th column of XW T , ρ is the coefficient linking xi and its virtual neighbor x̄i

and we set ρ = β in this case.

β =
Cov(y, ȳ)

σyσȳ
(2.7)

ẋi ≡ xi + ρx̄i

1 + ρ
(2.8)

2.4.2 Hidden Fusion

Hidden fusion refers to incorporating spatial autocorrelation into the output Φ from

hidden radial basis layer by modifying the linear combination in Eq. (2.5). We devise

two modifications: hidden fusion 1 (HF1) and hidden fusion 2 (HF2). Given in Eq.

(2.9), HF1 can be interpreted as y is a linear combination of the prediction by its own

attributes and by its neighbors. ρ is initially set to β obtained in Eq. (2.7) and kept

fixed. With (I + ρW )Φ replacing Φ in the original regression in Eq. (2.5), HF1’s least

square solution is given in Eq. (2.10).

y = Φw + ρWΦw (2.9)

= [(I + ρW )Φ]w

ŵ = [(I + ρW )Φ]+y (2.10)

As shown in Eq. (2.11), HF2 is obtained from HF1 in Eq. (2.9) by replacing Φw

on its right-hand side with y, i.e., the prediction replaced by the true value. It can be

written as a linear regression in Eq. (2.12) where (I − ρW )−1Φ plays the role of Φ in

the original regression in Eq. (2.5). The corresponding least square solution is given in

Eq. (2.13).
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y = Φw + ρWy (2.11)

y = [(I − ρW )−1Φ]w (2.12)

ŵ = [(I − ρW )−1Φ]+y (2.13)

For datasets whose sizes are much larger than their dimensions, usually the formed

hidden layer size of RBF network (i.e., the number of radial basis centers) is larger than

the input layer size(i.e., data dimension), and the hidden layer actually plays a role of

nonlinearly transforming the input data to a higher dimensional space. Thus hidden

fusion can be regarded as autoregression performed on the projected data in the high

dimensional space. Let ŷr = ΦΦ+y denote the prediction by conventional RBF network,

and ŷf = ΘΘ+y denote the prediction by HF2, where Θ = (I − ρW )−1Φ. Then the

difference in MSE between a conventional RBF network and the corresponding HF2 is

given by

1
n

(‖y − ŷr‖2 − ‖y − ŷf‖2) =
1
n
yT (ΘΘ+ − ΦΦ+)y

Apparently, if ΘΘ+ − ΦΦ+ is positive definite, HF2 always achieves smaller MSE.

For highly correlated Wy and y, it is possible to make yT (ΘΘ+ − ΦΦ+)y positive by

varying ρ, as demonstrated in later experiments.

2.4.3 Output Fusion

Output fusion is just opposite input fusion. Instead of substituting the input with the

weighted average of neighbors, we can train a conventional RBF network on the original

input as usual and then fuse the output with the average of neighbors. It is similar to

the post-processing in spatial contextual classification after pixel-wise classification is
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finished. Formally, the new prediction ˙̂y by output fusion is given in Eq. (2.14), where

ŷ = Φŵ denotes the prediction by a conventional RBF network, ŵ is given in Eq. (2.6),

and ρ is again set to β obtained in Eq. (2.7) and kept fixed.

˙̂y ≡ ŷ + ρW ŷ
1 + ρ

(2.14)

The new MSE is

1
n
‖y − ˙̂y‖2 =

1
n(1 + ρ)2

‖(1 + ρ)y − (I + ρW )ŷ‖2

2.5 Experimental Evaluation

2.5.1 Demographic Datasets

We evaluate various fusion on three real demographic datasets, crime [6], election [102]

and house price [54, 41], all available at [90]. In the crime dataset, household income and

house values in 49 neighborhoods in Columbus Ohio, USA, are treated as explanatory

attributes to predict crime rate, which is shown in Fig. 2.4(a). In the election dataset,

income, home ownership and population with college degrees in 3107 counties are used

to predict the voting rate for 1980 USA presidential election, which is shown in Fig.

2.5(a). In house price dataset, 12 attributes, such as nitric oxides concentration, crime

rate, index of accessibility to radial highways, are used to predict median values of

owner-occupied homes of 506 towns in Boston area, which is shown in Fig. 2.5(c). It

can be seen that all of them generally show positive spatial dependence. Spatial trend is

also obvious. As illustrated in the crime dataset, for instance, high crime rate sites are

clustered in the central area while low crime rate sites are scattered in the surrounding

areas.



CHAPTER 2. SPATIAL REGRESSION USING RBF NETWORKS 18

20 30 40 50
20

30

40

50

60
b: HF2,ρ=0 (RBF)

20 30 40 50
20

30

40

50

60
c: HF2,ρ=0.7602

20 30 40 50
20

30

40

50

60
d: HF2,ρ=1

20 30 40 50
20

30

40

50

60
e: HF2,ρ=2

0 0.5 1 1.5 2
50

100

150

200
f: MSE vs ρ

ρ

M
S

E

0 

20

40

60

20 30 40 50
20

30

40

50

60

longitude

la
tit

u
d

e

a: crime

Figure 2.4: Crime data (a), its prediction (b-e) and the corresponding MSE (f) by HF2
with various ρ.
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Table 2.1: MSE of conventional RBF network and various fusions.

RBF IF HF1 HF2 OF
crime 114 ± 0.79 92 ± 2.99 92 ± 1.65 84 ± 3.71 105 ± 1.10
election(10−3) 5.7 ± 0.19 5.9 ± 0.28 5.3 ± 0.13 5.1 ± 0.08 5.7 ± 0.13
house(10−3) 142.8 ± 4.7 146.2 ± 4.6 124 ± 5.1 103.3 ± 5.1 135.3 ± 5.1

2.5.2 Fusion Comparison

Experiments show that the width in Eq. (2.4) always gives the best or comparable to

best results, so we only report its results. The numbers of centers, 5 for crime, 100 for

election and 30 for house price, are obtained with cross validation on conventional RBF

networks and they are also applied in other fusions. For each dataset, there are two sets

of centers, one for input fusion and the other for hidden/output fusion and conventional

RBF networks.

In principle, for the test set, we must use the data for the same area but in a

different year, which are unfortunately unavailable. Neither can we use cross validation

by partitioning the training set into N subsets, for one site’s neighbor, which is needed

in various fusions, may be in another subset. Thus we can only compare various models

on the same training set. For fair comparison, we generate 10 sets of centers using

K-means algorithm with random initialization and early stop. The average results and

their deviations are reported in Table 2.1, where RBF, IF, HF1, HF2, and OF stand for

conventional RBF network, input fusion, hidden fusion 1, hidden fusion 2 and output

fusion, respectively. Compared to conventional RBF networks, incorporating spatial

autocorrelation by fusion at different levels generally reduces MSE with varying success.

Fusing output from hidden layer gives better results than those of fusing data at two

ends: raw input and final output. HF2 achieves the most significant MSE reduction on

all datasets.
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Table 2.2: Spatial correlation coefficient β of y and various ŷ.

true RBF IF HF1 HF2 OF
crime 0.7602 0.5098 0.8597 0.8186 0.8789 0.8399

election 0.7575 0.6856 0.8341 0.8671 0.9308 0.9045
house 0.7778 0.3332 0.4259 0.7184 0.8829 0.7319

2.5.3 Effect of Coefficient ρ

So far, in all fusions we have set the coefficient ρ = β, the spatial autocorrelation

coefficient about the true value y. It is interesting to check the autocorrelation coefficient

for various prediction ŷ. The new autocorrelation is still obtained with Eq. (2.7)

where y is replaced by ŷ and the results are listed in Table 2.2. Compared to the

spatial autocorrelation of the true value, the prediction by conventional RBF networks

yields lower autocorrelation. On the other hand, all fusions generally lead to higher

autocorrelation in their prediction, except for the house data where only HF2 leads to

higher autocorrelation.

Because the highest autocorrelation is achieved by HF2, which also achieves the

lowest MSE, a natural question arises if performance of HF2 can be improved further

by varying ρ in Eq. (2.11), especially by increasing it. In contrast to multi-layer feed-

forward networks which require the costly error back-propagation, the major advantage

of RBF networks is its quick training. In particular, the parameters of linear output

layer can be solved analytically to minimize MSE, which is only feasible with a fixed ρ.

Otherwise, ρ also needs to be estimated jointly with w using computationally expensive

techniques such as Monte Carlo sampling. So it is crucial to see if we can find an optimal

value for ρ.

We try a wide range [0, 2] for ρ and illustrate the results in Fig. 2.4(b-f) for crime

data and in Fig. 2.5(b,d) for election and house price data, respectively. Note that
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when ρ = 0 in Eq. (2.11), HF2 is reduced to conventional RBF networks. Generally,

ignoring (ρ = 0) and over-emphasizing (ρ = 2) spatial autocorrelation both lead to poor

results. The former loses the spatial continuity by allowing very different sites close to

one another, e.g., a few high and low crime sites are mixed together in the central area

in Fig. 2.4(b). The latter usually outputs blurred result, e.g., all sites in Fig. 2.4(e)

receive moderate or low values. As shown in Fig. 2.4(f) and Fig. 2.5(b,d), for all three

datasets, MSE keeps decreasing as ρ grows within [0, 1] and it achieves the lowest value

around ρ = 1. Once ρ exceeds 1, MSE soon increases sharply at a larger rate than its

previous decreasing rate.

Suppose that the parameters of radial basis layer are fixed and the relationship

between the target y and its corresponding (M + 1)-D (augmented with constant 1)

output vector φ from the hidden layer is

y = φTw + ε

where error ε ∼ N(0, σ2) is independent from φ. Under this model, the least square

estimates to the training data of size n are unbiased and the expected prediction error

(average over everything) is approximately σ2(1+ M+1
n ) [56]. However, this model means

that y is conditionally independent given φ (ultimately determined by the original input

x), which is invalid in the case of spatial data due to spatial constraint. A general model

of spatial data is that data = trend + dependence + error [20]. Only after removing trend

and dependence can we assume that the residual error is independent. Therefore it is

more appropriate to describe the relationship between y and φ with HF2’s model in Eq.

(2.15), where φTw represents spatial trend and ρWyy (Wy denotes the corresponding

row in W ) represents spatial dependence.
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y = φTw + ρWyy + ε (2.15)

2.6 Summary

Like other machine learning methods, conventional RBF networks for regression assume

iid and ignore spatial information. In this chapter, we investigated various possibili-

ties of incorporating spatial autocorrelation into RBF networks at input, hidden and

output layers by fusing data belonging to the same neighborhood in the spatial space.

Experiments on three real datasets show hidden fusion, HF2, always gives the best re-

sults over conventional RBF networks and other fusions. However, like total ignorance

of spatial information in conventional RBF networks, over-emphasizing it also leads to

poor results. Experiments suggest that the optimal value is around 1 for the coefficient

ρ, which is used in HF2 to linearly combine the output from the hidden layer for each

site with its neighbors.



Chapter 3

SPATIAL CLUSTERING WITH
A HYBRID EM APPROACH

3.1 Introduction

Geo-spatial data often exhibit positive autocorrelation in that nearby sites tend to have

similar characteristics and thus exhibit spatial continuity. In remote sensing images,

close pixels usually belong to the same land cover type: soil, forest, etc. Similarly,

in clustering geo-spatial data (spatial clustering for short), in addition to the object

similarity in the normal attribute space, similarity in the spatial space needs to be con-

sidered and objects assigned to the same cluster should also be close to one another in

the spatial space. In this chapter, using mixture models, we propose a Hybrid Expecta-

tion Maximization (HEM) approach to spatial clustering, which combines EM algorithm

[21] and Neighborhood EM algorithm (NEM) [4].

The chapter outline is as follows. In the remainder of this section, we formalize the

spatial clustering problem. Section 3.2 gives a literature review on related work. Basics

of EM and an entropy-based view are introduced in Section 3.3, followed by NEM

introduced in Section 3.4. We present our HEM approach in Section 3.5. Experimental

evaluation is reported in Section 3.6 where real datasets are used for demonstration and

comparison. Finally Section 3.7 concludes this chapter with a summary .

23
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3.1.1 Problem Formulation

The goal of spatial clustering is to partition data into groups or clusters so that pairwise

dissimilarity, in both attribute space and spatial space, between those assigned to the

same cluster tends to be smaller than those in different clusters. Clustering is also

referred to as unsupervised classification in that no prior information may be available,

either on the number of clusters or what the cluster labels are. Spatial clustering can

be formulated as follows:

• Given

1. A spatial framework of n sites,S = {si}n
i=1. We assume that neighbor

relationN is given by a binary contiguity matrix W whose W (i, j) = 1 iff

(si, sj) ∈ N and W (i, j) = 0 otherwise.

2. Associated with each si, there is a d-D feature vector of explanatory attributes

xi ≡ x(si) ∈ �d.

• Find

A many-to-one mapping f : {xi}n
i=1 → {1, ...,K}.

• Objective

Each object xi has a true class label yi ∈ {1, ...,K}. The ultimate goal is to

maximize similarity between clustering and classification based on true class la-

bels. In practice, because the class information is unavailable during learning, the

objective is to optimize some criterion function such as likelihood.

• Constraint

Spatial autocorrelation exists, i.e., (xi, yi) of site si may not be independent of the
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corresponding values of nearby spatial sites. It is more appropriate to model the

distribution of yi as P (yi | xi, {yj : sj ∈ N(si)}).

3.2 Related Work

Most clustering methods in the literature treat each object as a point in the high

dimensional space and do not distinguish spatial attributes from normal attributes.

Mainly developed in the database field, they can be divided into the following cate-

gories: partition/distance-based [82, 100], density-based [25, 5, 60], distribution-based

[129], hierarchy-based [133, 45, 80], grid-based [2, 116, 126].

For spatial clustering, some methods only handle 2-D spatial attributes [27] and

deal with problems like obstacles which are unique in spatial clustering [123]. Others

incorporate spatial information in the clustering process, which have been reviewed

in the previous chapter. Our approach HEM comes in the category of modifying a

criterion function that includes spatial constraints. HEM aims to optimize the penalized

likelihood, which is composed of a spatial penalty term and the likelihood, the original

criterion for EM.

Clustering using mixture models with EM can be regarded as a soft K-means algo-

rithm in that the output is posterior probability rather than hard classification. It does

not account for spatial information and usually cannot give satisfactory performance on

spatial data. NEM extends EM by adding a spatial penalty term in the criterion, but

this makes it need more iterations in each E-step.

3.3 Basics of EM

3.3.1 Original EM

A finite mixture model of K components has the form in Eq. (3.1), where fk(x|θk)

is k-th component’s probability density function (pdf) with parameters θk, πk is k-th
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component’s prior probability with constraint
∑K

k=1 πk = 1 to make f(x|Φ) a legal pdf.

Φ denotes the set of all parameters and in the case of Gaussian mixture we use here, it

includes {πk,µk,Σk}K
k=1. Given a set of data {xi}n

i=1, the sample log likelihood function

is defined in Eq. 3.2 where independence among data is implied.

f(x|Φ) =
K∑

k=1

πkfk(x|θk) (3.1)

L(Φ) =
n∑

i=1

ln

[
K∑

k=1

πkfk(xi|θk)

]
(3.2)

In general, it is impossible to solve ∂L/∂Φ = 0 for maximum likelihood estimation.

EM algorithm tries to iteratively maximize L in the context of missing data where each

x is now augmented with a missing value y ∈ {1, ...,K} indicating which component

it comes from, i.e., p(x|y = k) = fk(x|θk). It agrees with an earlier suggestion of

an indirectly solvable maximum likelihood approach proposed in [23]. For Gaussian

mixture problem, its convergence and advantages over other algorithms are discussed in

[128]. Essentially, it produces a sequence of estimate {Φt}, from an initial estimate Φ0

and consists of two steps:

• E-step: Evaluate Q, the conditional expectation of log likelihood of the complete

data {x, y} in Eq. 3.3, where EP [·] denotes the expectation w.r.t. the distribution

P over y and in this case we set P (y) = PΦt−1(y) ≡ P (y|x,Φt−1).

Q(Φ,Φt−1) ≡ EP [ln(P ({x, y}|Φ))] (3.3)

= EPΦt−1 [ln(P ({x, y}|Φ))]

• M-step: Set Φt = argmaxΦQ(Φ,Φt−1). M-step can be obtained in closed form.
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3.3.2 Entropy-Based View

In M-step, EM directly maximizes Q instead of L, i.e., Q(Φt,Φt−1) ≥ Q(Φt−1,Φt−1).

Now we prove L(Φt) ≥ L(Φt−1) from an entropy-based viewpoint, highlighting the

relationship between Q and L. Q can be written as

Q(Φ,Φt−1) =
n∑

i=1

K∑
k=1

PΦt−1(yi = k)ln(P (xi, yi = k|Φ))

=
n∑

i=1

K∑
k=1

PΦt−1(yi = k)ln(πkfk(xi|θk))

=
n∑

i=1

K∑
k=1

PΦt−1(yi = k)ln(f(xi|Φ)PΦ(yi = k))

= L(Φ) −
n∑

i=1

K∑
k=1

PΦt−1(yi = k)ln (1/PΦ(yi = k)) (3.4)

= L(Φ) −
n∑

i=1

K∑
k=1

PΦt−1(yi = k)ln
(

1
PΦt−1(yi = k)

PΦt−1(yi = k)
PΦ(yi = k)

)

= L(Φ) −
n∑

i=1

[H(PΦt−1(yi)) + D(PΦt−1(yi)‖PΦ(yi))] (3.5)

In Eq. (3.5) H(PΦt−1(yi)) is the entropy of the distribution PΦt−1(yi) and D(PΦt−1(yi)‖PΦ(yi))

is the Kullback-Liebler distance [87] between two distributions PΦt−1(yi) and PΦ(yi). It

is easy to show that L(Φt) ≥ L(Φt−1) with either Eq. (3.4) or Eq. (3.5) by noting the

following theorems in information and coding theory [93]. For all yi,
∑K

k=1 PΦt−1(yi =

k)ln (1/PΦ(yi = k)) on the right-hand side of Eq. (3.4), which may be called cross en-

tropy between PΦt−1 and PΦ, is minimized by setting PΦ = PΦt−1 . Similarly, in Eq.

(3.5), D(PΦt−1(yi)‖PΦ(yi)) is always non-negative. It equals zero iff PΦ = PΦt−1.

Following [98], other variants of EM such as incremental and sparse ones that par-

tially implement E-step, can be justified in terms of a function F defined in Eq. (3.6),

where P denotes a set of distributions {P (yi)} and H(P ) denotes
∑n

i=1 H(P (yi)).
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F (P ,Φ) ≡ EP [ln(P ({x, y}|Φ))] + H(P ) (3.6)

= −D(P‖PΦ) + L(Φ) (3.7)

By setting P = PΦt−1 in Eq. (3.6) and noting that EPΦt−1 [ln(P ({x, y}|Φ))] =

Q(Φ,Φt−1), we can easily derive Eq. 3.7 from Eq. 3.5. Then EM is equivalent to

the following two steps that alternately maximize F w.r.t. its two parameters, starting

with an initial estimate (P 0
,Φ0).

• E-step: Set P
t = argmaxP F (P ,Φt−1). It can be shown that F is maximized by

P
t = PΦt−1 . In that case, F (PΦt−1 ,Φt−1) = L(Φt−1), which is obvious from Eq.

3.7.

• M-step: Set Φt = argmaxΦF (P t
,Φ). It is exactly the same as M-step in EM,

because H(P ) does not depend on Φ.

3.4 Neighborhood EM

3.4.1 Basics of NEM

To incorporate spatial information, we can add a penalty term to F that consists of

P (y) for all sites. The general idea is that the penalty term will be maximized if

nearby sites have similar P (y). A number of penalty terms are tried in our experiments,

including sum of squared error, cross entropy, Kullback-Liebler distance, dot product.

Experiments show dot product achieves the best results in terms of clustering quality and

convergence. Proposed in NEM [4], it is defined in Eq. (3.8), where P ik denotesP (yi =

k) and P(yi) in Eq. (3.9) denotes a column vector [P i1, ..., P iK ]. Actually, the matrix

formed by [P(y1), ...,P(yn)] can be regarded as a fuzzy classification matrix [57]. In

NEM, the new criterion to be maximized is in Eq. (3.10) where β > 0 is a fixed
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coefficient.

G(P ) ≡ 1
2

n∑
i=1

n∑
j=1

K∑
k=1

W (i, j)P ikP jk (3.8)

=
1
2

n∑
i=1

n∑
j=1

W (i, j)P(yi) ·P(yj) (3.9)

U(P ,Φ) ≡ F (P ,Φ) + βG(P ) (3.10)

Similar to F , U can be maximized by alternately estimating its two parameters.

With P fixed, M-step can be solved analytically. In E-step where Φ is fixed, if U is

maximized at P
∗, then ∂U ′/∂P ik = 0 at P

∗, where U ′ is the Lagrangian of U taking

into account the constraints on P . Solving it for P ik yields Eq. (3.11), which can be

organized as P
∗ = O(P ∗) to include all parameters in P

∗. It is proven in [4] that under

certain conditions, the sequence produced by P
m = O(Pm−1) will converge to a fixed

point to maximize U . Hence P
∗
ik can be regarded as dot product again between the

estimation from its own x and the estimation from its neighbors.

P
∗
ik =

πkfk(xi|θk)exp
(
β
∑n

j=1 W (i, j)P ∗
jk

)
∑K

l=1 πlfl(xi|θl)exp
(
β
∑n

j=1 W (i, j)P ∗
jl

) (3.11)

3.4.2 Softmax Function

Let us analyze in more detail the distribution P (yi|N(si)) provided by neighbors, which

undergoes two-phase smoothing in Eq. (3.11). The first smoothing is realized by sum-

ming up over neighbors, i.e., P (yi = k|N(si)) ∝ ∑n
j=1 W (i, j)P jk. Then, to make it a

legal probability, we smooth it again with softmax function, which, defined in Eq. (3.12),

transfers an input vector [p1, ..., pK ] into an output vector with elements in [0, 1]. The

resulting P (y|N(si)) through summing over neighbors and subsequent softmax transfer

has the form in Eq. (3.13).
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softmaxβ(pk) ≡ exp(βpk)∑K
l=1 exp(βpl)

(3.12)

P (yi = k|N(si)) =
exp

(
β
∑n

j=1 W (i, j)P jk

)
∑K

l=1 exp
(
β
∑n

j=1 W (i, j)P jl

) (3.13)

The default value of β in softmax function is one so that the vector elements’ size

relations are usually intact after transfer. The authors of NEM also recommend setting

β ∈ [0.5, 1]. However, if β takes on a value greater than one, the size relations may change

too, depending on the size relation of the original input. This is evident from the fact

that for two positive values pk and pl, after transfer, their ratio becomes exp(β(pk−pl)).

Roughly speaking, there are two situations, as demonstrated in Fig. 3.1, where we

suppose that there are four neighbors and
∑K

k=1 pk = 4. As shown in Fig. 3.1(a), if

P (yi|N(si)) is very stable, that is, the mixture model fits the data quite well and there is

a winner pk much larger than all the others, setting β ∈ [0.5, 1] would generally smooth

P (yi = k|N(si)) while setting β > 1 may over-emphasize the winner. On the other

hand, as shown in Fig. 3.1(e), if [p1, ..., pK ] is not stable or even close to uniform, we

may need to set β > 1 to magnify the impact of neighbors and strengthen the winner.

3.5 Hybrid EM

EM is not appropriate for spatial clustering because it does not account for spatial infor-

mation. In contrast, although NEM incorporates spatial information, it requires more

iterations in each E-step where more computation is performed to combine estimates

from neighbors.

To avoid additional computation and still achieve satisfactory results on spatial

data, we propose HEM, which is based on the following observation. In early passes of

EM when L grows rapidly, U also grows and clustering performance increases too. U



CHAPTER 3. SPATIAL CLUSTERING WITH A HYBRID EM APPROACH 31

1 2 3 4
0

0.5

1

1.5

2
a: stable

1 2 3 4
0

0.1

0.2

0.3

0.4
b:β=0.5

1 2 3 4
0

0.2

0.4

0.6

0.8
c:β=1

1 2 3 4
0

0.2

0.4

0.6

0.8

1
d:β=3

1 2 3 4
0

0.5

1

1.5
e: uniform

1 2 3 4
0

0.1

0.2

0.3

0.4
f:β=0.5

1 2 3 4
0

0.1

0.2

0.3

0.4
g:β=1

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5
h:β=3

Figure 3.1: A stable input distribution (a) and its output by softmax function with
different β (b-d). A uniform input distribution (e) and its output by softmax function
with different β (f-h).

begins to decrease when the growth of L slows down and EM begins to converge. Such

phenomenon seldom happens in NEM where clustering performance generally increases

with U . This motivates us to train first using EM and turn to NEM only when U begins

to decrease. Furthermore, empirical results show that we need to run E-step only once

in NEM. An intuitive explanation could be that initial training with EM provides a

good starting point for NEM. Such hybrid training enables our algorithm to involve

much less computation than NEM and still keep U never decreasing.

We define site si as a kernel site if its largest P (y) comes from the same class

as all its neighbors’ do. That is, ∃k,∀sj ∈ {si}
⋃

N(si), P jk = maxl{P jl}. For early

training we employ a selective hard variant (winner-take-all) of EM that stands midway

between K-means and EM. After E-step of EM, we transform P (y) for kernel sites into

a hard distribution where all values receive zero probability except one value that is

the winner (largest) in P (y). The motivation is that in spatial clustering, if spatial

continuity exists, which is often the case, most sites would be surrounded by sites from

the same class. Therefore, if the mixture model fits the data quite well and one site
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and all its neighbors have been classified into the same class, this classification would

probably be correct. Of course, such an EM variant cannot, in general, converge to the

unconstrained maximum of F , even after finding Φ that maximizes F in the subsequent

M-step. Nevertheless, there are computational advantages to using this variant in early

training until convergence and switching to another variant that is able to find the

unconstrained maximum [18]. After all, if we know which component data come from,

ideally we should use data for that component only.

When such a selective hard EM cannot increase U any longer, we can fix P for kernel

sites and need not to re-estimate them, since we have more confidence in the present

classification of kernel sites. As demonstrated later, with proper implementation, the

computation in every pass in later NEM can be saved even more by |Sf |/n, where Sf

denotes the set of fixed sites and n is the total data size.

In detail, with pre-specified β and m (m is the number of iterations of E-step in

NEM and set to 1 in our algorithm), HEM is carried out as follows with U as criterion

function, starting with initial estimate (P 0
,Φ0).

1. Selective Hard EM

(a) E-step:

i. Set P
t = argmaxP F (P ,Φt−1), i.e., ∀i, k

P
t
ik =

πt−1
k fk(xi|θt−1

k )∑K
l=1 πt−1

l fl(xi|θt−1
l )

ii. Transform P
t into a hard distribution for those kernel sites, i.e., for kernel

site si, set P
t
ik = 1 if P

t
ik = maxlP

t
il and set P

t
ik = 0 otherwise.

(b) M-step: Set Φt = argmaxΦF (P t
,Φ).
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(c) Check: If U t ≤ U t−1, go to the next step with (P t−1
,Φt−1), otherwise go

back to E-step in EM.

2. Fix(optional)

Fix P (binary at present) for those kernel sites Sf . We no long update P (yi), si ∈

Sf .

3. NEM

(a) E-step: Set P
t = argmaxP U(P ,Φt−1) by applying Eq. (3.11) m = 1 times.

If fixing option is used, then apply Eq. (3.11) just for those P (yi) whose

si �∈ Sf .

(b) M-step: Set Φt = argmaxΦU(P t
,Φ). This step is exactly the same as the

M-step in EM.

We have another option on when to turn. Instead of monitoring U , we can check

G after E-step in EM and turn to NEM if G decreases, for G depends only on P and

M-step does not change it. This would make the training turn earlier to NEM, for

the increase in F may cancel the decrease in G and thus still keeps U growing. After

training, xi is assigned to the class k with the maximum posterior P ik.

3.5.1 Selective Hardening

Hardening P for those kernel sites can be justified if we decompose U as U =
∑n

i=1 Ui(P i,Φ)

and Ui(P i,Φ) has the following form

Ui(P i,Φ) ≡ EP i
[ln(P ({xi, yi}|Φ))] + H(Pi) + βG(P i)

=
K∑

k=1

P ikln(πkfk(xi|θk)) + H(Pi) +
1
2
β

∑
sj∈N(si)

P(yi) ·P(yj)
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Suppose that before hardening, the largest P (y) of the kernel site si and all its

neighbors come from class k, we can derive the change in Ui after hardening as the

following equation

∑
l �=k

P illn(
πkfk(xi|θk)
πkfk(xi|θk)

) − H(Pi) +
1
2
β

∑
sj∈N(si)

∑
l �=k

P il(P jk − P jl) (3.14)

If the mixture model fits the data quite well, usually P (yi) would not be far away

from PΦ(yi) and this implies that PΦ(yi = k) = maxl{PΦ(yi = l)}, so every term in the

first summation of Eq. 3.14 is positive. Apparently, the third summation is also positive.

Because hard distribution’s entropy is zero, the only negative term is the second term

−H(Pi). Considering si is a kernel site, its P (y) must be quite stable, which means its

H(Pi) is small. Therefore, after hardening, Ui would probably grow or at least would

not decrease much.

3.5.2 Sufficient Statistics

After fixing and switching to NEM, those fixed sites’ P (y) are no longer updated in

E-step of NEM, so the computational complexity in E-step is proportional to n − |Sf |.

However, if we perform M-step the usual way to update Φ,

µt
k =

∑n
i=1 P

t
ikxi∑n

i=1 P
t
ik

Σt
k =

∑n
i=1 P

t
ik(xi − µt

k)(xi − µt
k)

T∑n
i=1 P

t
ik

=
∑n

i=1 P
t
ikxixi

T∑n
i=1 P

t
ik

− µt
kµ

t
k
T

πt
k =

∑n
i=1 P

t
ik

n

we can see that every site is still visited once. To circumvent this problem, we can

use sufficient statistics. Let a vector of sufficient statistics for (xi, yi) be
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ssi ≡ {δ(yi, k), δ(yi, k)xi, δ(yi, k)xixi
T }K

k=1

where δ(yi, k) = 1 if yi = k and δ(yi, k) = 0 otherwise. Let ss ≡ ∑n
i=1 ssi. The

standard EM can be implemented as follows:

• E-step: Set sst = EP [ss] with P = PΦt−1 . In detail, with sst
i = EPΦt−1 (yi)[ssi], set

sst =
∑n

i=1 sst
i.

• M-step: Given sst, set Φt to Φ that maximizes likelihood.

Similarly, with P (y) fixed for sites sj in Sf and ssf =
∑

sj∈Sf
ssj also fixed, the NEM

part in HEM can be implemented as follows, where E-step takes time proportional to

the size of sites unfixed and M-step takes constant time that is independent of data size.

• E-step: Set sst
j = sst−1

j for sj ∈ Sf . For si �∈ Sf , set sst
i = EP (yi)

[ssi], where P (yi)

is obtained with Eq. 3.11. Set sst = ssf +
∑

i�∈Sf
sst

i −
∑

i�∈Sf
sst−1

i .

• M-step: Given sst, set Φt to Φ that maximizes likelihood. In detail, suppose

sst = {n0
k, n

1
k, n

2
k}K

k=1, then, ∀k,

µt
k =

n1
k

n0
k

Σt
k =

n2
k

n0
k

− µt
kµ

t
k
T

πt
k =

n0
k

n

3.6 Experimental Evaluation

3.6.1 Performance Criteria

Let us first take a look at the time complexity of the various EM-style algorithms intro-

duced so far. Every pass consists of E-step and M-step. All have the same complexity
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in M-step, O(nK), except HEM with fixing, whose complexity in later NEM is reduced

to O((n − |Sf |)K). As for E-step complexity, EM is O(nK), NEM is O(mn2K) (m is

the number of iterations of E-step in NEM), HEM is O(nK) in selective hard EM and

O(n2K) in later NEM. The fastest is EM, closely followed by HEM, and NEM is the

worst.

If every site has a true class label, although they are unavailable during training,

they can be used to evaluate the final clustering quality. Let C, Y ∈ {1, ...,K} denote

the true class label and the cluster label, respectively. Clustering quality is measured

with conditional entropy H(C|Y ) defined in Eq. (3.15), which can be interpreted as

the remaining information in C after knowing Y . Entropy-based criteria have been

successfully used in various learning systems, such as node impurity for attribute selec-

tion in decision tree [16, 105], and mutual information for discretizing input vector in

hybrid speech recognition systems combining discrete hidden Markov model and neural

network [108, 99]. In the extreme, it equals zero if their distributions are the same, i.e.,

all data from a particular class are grouped to exactly one cluster and all data in any

single cluster are from the same class. We also use a more intuitive measure, error rate,

which is commonly used in classification and can be regarded as a simplified conditional

entropy in terms of coding. Using error rate, all data in each cluster that do not belong

to the majority class of that cluster are no longer differentiated and we use one bit to

encode them. For those belonging to the majority class, we assign zero bit. Therefore,

error rate can be written in Eq. (3.16), where c(k) denotes the majority class label in

cluster k.
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H(C|Y ) =
K∑

k=1

P (Y = k)

[
K∑

c=1

P (C = c|Y = k)ln
(

1
P (C = c|Y = k)

)]
(3.15)

E(C|Y ) =
K∑

k=1

P (Y = k)

[
K∑

c=1

P (C = c|Y = k) × (1 − δ(c(k), c))

]
(3.16)

3.6.2 Satimage Data

We compare HEM with EM and NEM on a real land cover dataset, Satimage, which

is available at the UCI repository [97]. It consists of the four multi-spectral values of

pixels in 3 × 3 neighborhoods in a satellite image for an area of agricultural land in

Australia. The central pixel’s class label from a six soil type set { red soil, cotton crop,

grey soil, damp grey soil, vegetation stubble, very damp grey soil } is also provided. We

only use four values for the central pixel. Because the dataset is given in random order

and there is no spatial location, we synthesize their spatial coordinates by deleting the

first 19 instances from the first class in the training set and allocate the remaining 4416

instances in a 64 × 69 grid.

4-neighborhood (up, down, left, right) is used in construction of W . The degree of

spatial autocorrelation can be measured with Moran’s contiguity ratio [20] for continuous

attributes. For discrete attributes like soil types, we propose to use Eq. (3.17), where

y denotes the true class label. In the case of regular lattice data like images, it just

computes the fraction of edges shared by the pixels from the same class.

r =

∑n
i=1

∑n
j=1 W (i, j)δ(yi, yj)∑n

i=1

∑n
j=1 W (i, j)

(3.17)

To emphasize spatial autocorrelation, we generate two images SAT1 and SAT2 in

Fig. 3.2(a,b) with high contiguity ratio 0.9626 and 0.8858, respectively. In SAT1, all

data from the same class are connected within a single block. In SAT2, each class is
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a: SAT1 b: SAT2

Figure 3.2: Satimage data with site’s location synthesized. The contiguity ratios for
(a)SAT1 and (b)SAT2 are 0.9626 and 0.8858, respectively

divided into several blocks. Within the block, data are randomly positioned.

For Gaussian mixture, we generate 10 sets of random initialization. In detail, 10

sets of centers are randomly drawn from the dataset and we partition the data into

six groups based on the distance to the centers. Each component’s parameters are

estimated from a single group. Most of runs converge within 50 passes. To select β,

we test NEM with β = 0.25, 0.5, 1. Experiments show best results are obtained with

β = 1 but more iterations are needed in E-step. For SAT1, about 30/10 iterations are

needed with β = 1/0.5. For SAT2, about 10/3 iterations are needed with β = 1/0.5.

Table 3.1 gives the average results recorded at maximum L for EM, and maximum U

for NEM and HEM, where HEM/HEMf denotes HEM without/with fixing option. For

clarity, we report −L and −U so that all criteria in the tables are to be minimized.

For comparison, we also list the results under supervised mode where each component’s

parameters are estimated with all data from a single class.

We can see that the entropy and error generally decrease as −U , rather than −L,

decreases. Although the lowest −L is achieved by EM, its entropy and error are the

worst. This means that for spatial data with high spatial autocorrelation, clustering

quality depends not on L, but on U which incorporates the spatial penalty term. As

expected, NEM and HEM give better results on SAT1 than on SAT2, for the former’s
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Table 3.1: Clustering performance on Satimage data.+SAT1 and ∗SAT2.

SAT1 SAT2
supervised EM NEM HEM HEMf NEM HEM HEMf

entropy 0.5121 0.6320 0.5391 0.5176 0.5276 0.5635 0.5530 0.5520
error 0.1508 0.2315 0.2039 0.1919 0.1974 0.2142 0.2057 0.2057

−U(104) 5.1884+ 5.1406+ 5.1029 5.0807 5.0908 5.1416 5.1108 5.1119
5.2274∗ 5.1717∗

−L(104) 5.8128 5.7711 5.8207 5.7945 5.7974 5.8141 5.7822 5.7823

contiguity ratio is higher and hence fits our assumption more.

HEM without fixing slightly beats HEM with fixing on both datasets, probably

because (1) we cannot guarantee that all kernel sites in the fixing set receive right

classification, and (2) with some fixed sites, NEM cannot perform unconstrained search

as it does originally. So the advantage of HEM with fixing in this case seems to be

the computational cost it saves, for 48%/37% sites are fixed on the turn to NEM for

SAT1/SAT2, which means that in the later NEM part, every pass needs about half

computation as its counterpart does in HEM without fixing.

For SAT1/SAT2, HEM makes the switch to NEM after about 24/26 passes and

slightly outperforms standard NEM in terms of all criteria after convergence. Relatively,

the lead is more evident on U than on entropy and error, because of the different

form of posterior they use. For many P (y), U uses their original soft forms that are

different between HEM and NEM. After hardening, however, the binary forms, which

are used by entropy and error, become the same. Two typical runs are depicted in

Fig. 3.3(a-c) for SAT1, and in Fig. 3.3(d-f) for SAT2. The figures show that NEM

initially converges faster than HEM, because NEM directly minimizes −U while HEM

minimizes −F . However, this faster speed comes with a cost, for NEM needs about

30/10 times computation in every pass for SAT1/SAT2 as HEM does. If fixing option
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Figure 3.3: Two runs for Satimage data. (a-c) for SAT1 and (d-f) for SAT2.

is used in HEM, then after switching, this ratio nearly doubles. After about 30 passes,

HEM generally catches up with NEM and converges later to a better or close solution

to NEM.

To see if one iteration of E-step of NEM is really enough in HEM, we perform a series

of experiments by varying the number of iterations of E-step of NEM. The average results

of 10 runs are shown in Table 3.2. Note that 30/10 is the number of iterations of E-step

we used in standard NEM. Although the computational cost has been increased by an

order of magnitude, we can see that the improvement is not significant, especially in

error rate and U .

3.6.3 House Price Data

We also evaluate HEM on the Boston house price dataset, which has been used for re-

gression in the previous chapter. To cluster the dataset, we use 12 explanatory variables,

such as nitric oxides concentration, crime rate, index of accessibility to radial highways,

average number of rooms per dwelling. The clustering performance is evaluated with
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Table 3.2: Clustering performance on Satimage data by HEM with varying number of
iterations of E-step.

SAT1 SAT2
#E-step 1 10 20 30 1 5 10
entropy 0.5176 0.5095 0.5089 0.5087 0.5530 0.5472 0.5468
error 0.1919 0.1869 0.1868 0.1867 0.2057 0.2032 0.2028

−U(104) 5.0807 5.0746 5.0730 5.0727 5.1108 5.1091 5.1091
−L(104) 5.7945 5.7976 5.7990 5.7994 5.7822 5.7830 5.7830

the target variable, median values of owner-occupied homes, which is expected to have

a small spread in each cluster. The house values of 506 towns in Boston area are shown

again in Fig. 3.4(a). Their histogram is plotted in Fig. 3.4(b), which we can roughly

model with a mixture of two components.

Using Gaussian mixture of two components, we evaluate β at 0.5,1,2, and finally

set it to 1. 20 iterations are needed by E-step of NEM. Because the target variable is

continuous, we cannot apply Eq. (3.15, 3.16) to compute conditional entropy or error

rate and we only report −U and −L. The average results of 10 runs are given in Table

3.3. One can see that NEM performance is slightly worse than EM in terms of U . But

HEM still gives the best result. Two sample clustering results are shown in Fig. 3.4(c,d)

for NEM and HEM, respectively. We can see that HEM yields a clustering with even

stronger spatial continuity than that of HEM, which is also confirmed by its average U

value. For this data, HEM makes the turn to NEM after about 7 passes. Although 75%

sites are fixed in HEM with fixing, it leads to the same result as that without fixing.

We also test HEM with different number of iterations of E-step, such as 5,10,15,20. All

of them lead to results very close to standard HEM, i.e., with one iteration of E-step.
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Figure 3.4: (a) shows house price distribution in 506 towns in Boston area. The corre-
sponding histogram is plotted in (b). Two sample clustering results are shown in (c,d)
for NEM and HEM, respectively.

Table 3.3: Clustering performance on house price data.

EM NEM HEM
−U(104) 1.2580 1.2675 1.2572
−L(104) 1.3942 1.4014 1.3946
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3.6.4 Bacteria Image

Finally, we compare HEM and NEM on an image segmentation problem to extract

bacteria from background. In detail, as shown in Fig. 3.5(a), an extracted bacteria

image of 40 × 40 is to be divided into four regions: dark region of the bacterium itself,

bright region immediately surrounding the bacterium, less bright region farther away

from the bacterium and grey background. The left and right boundary between the

bacterium and its surrounding bright region is really very fuzzy. Due to the conflicting

and mixing impact from both sides, the intensity of these border pixels are close to the

grey background. Also note that in the right upper corner, there is a bright area, due

to another bacterium in the original image.

With Gaussian mixture of four components, the best results of 10 runs are illustrated

in Fig. 3.5(b-f). As shown in Fig. 3.5(b), since EM does not consider spatial information,

its output is rather fragmented. In particular, it fails to smooth the bacterium border

area, where most pixels are classified as less bright or grey, rather than dark or bright.

For NEM, first we test β = 0.5, 1, 2. With β = 0.5, we obtain results similar to EM,

which means spatial information has not been emphasized enough. With β = 1, 2, we

obtain results like Fig. 3.5(c). Although all clusters are connected ones, the bacterium

border area is still misclassified as less bright. The reason is that the impact of its

neighbors in the dark and bright regions is still very weak and the distribution offered

by neighbors is unstable or close to uniform. As shown in Fig. 3.1(e-h), to change the

winners from marginal winners to powerful winners and hence magnify the neighbors’

correct impact, we need a large β. With β = 3 and 20 iterations of E-step, NEM

produces the clustering in Fig. 3.5(d), where dark and bright regions successfully grow

from both side of the border area and finally meet each other by completely occupying

the border area.
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a: bacteria b: EM c: NEM, β=1

d: NEM, β=3 e: HEM without fixing, β=3 f: HEM with fixing, β=3
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Figure 3.5: Clustering results for bacteria image. Original image (a) and various clus-
tering results by EM (b), NEM (c-d) and HEM (e-f).

With β = 3 and no fixing, HEM generates the clustering in Fig. 3.5(e), which is

very similar to NEM. Once fixing option is employed, however, HEM results in the

clustering in Fig. 3.5(e) where the grey class dominates the bacterium border area,

though about 60% pixels are fixed on the turn and thus 60% computation is saved in

later NEM. Compared to HEM with fixing, we can see that although those border pixels

are misclassified as grey on the turn in HEM without fixing, due to a large β, they are

converted to dark or bright in later NEM. Detailed results are reported in Table 3.4,

which indicates that HEM(without fixing) leads to a much lower −U than HEMf (with

fixing) does. It suggest that we should not use fixing option when the mixture model

does not fit the data very well or the border area is very fuzzy.
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Table 3.4: Clustering performance on bacteria image.

EM NEM HEM HEMf
−U(103) 1.238 −0.712 -0.705 -0.471
−L(103) 7.325 7.351 7.353 7.438

3.7 Summary

Spatial clustering requires consideration of spatial information and this makes EM al-

gorithm that maximizes likelihood alone inappropriate. Although NEM algorithm in-

corporates a spatial penalty term, it needs much more iterations in every E-step. To

incorporate spatial information while avoiding much additional computation, we pro-

posed an HEM approach that combines EM and NEM. Early training is performed via a

selective hard EM till the penalized likelihood criterion no longer increases. Then train-

ing is turned to NEM that runs only one iteration of E-step and plays a role of finer

tuning. Thus spatial information is incorporated throughout HEM and the computa-

tional complexity is also retained similar to EM. Empirical results show that a few more

passes are needed in HEM to converge after switching to NEM and the final clustering

quality is close to or slightly better than standard NEM.



Chapter 4

CONSENSUS CLUSTERING
WITH ENTROPY-BASED
CRITERIA

4.1 Introduction

In this chapter, at a higher level we continue to study clustering, consensus clustering.

Instead of a set of objects, the input here is a set of partitions of those objects. The

goal is to produce a single consolidated partition that is as close as possible to that

given set of partitions. For this purpose, two problems need to be answered. (1) How

to measure distance between partitions? (2) Given a set of partitions, how to search for

the consolidated one?

In the following sections we address these two problems. In detail, we first give

motivation and problem formulation in the rest of this section. Related work and ba-

sics of entropy are reviewed in Sections 4.2 and 4.3, respectively. Section 4.4 gives a

distribution-based view of clustering, thus paving the way for the entropy-based defi-

nition of clustering distance, which is developed in Section 4.5. Section 4.6 discusses

approaches for the global optimal clustering. Section 4.7 demonstrates the properties

and applications of the local optimal candidate. The combined clustering by global

search methods is evaluated in Section 4.8. Finally we summarize this chapter in Sec-

46
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tion 4.9.

4.1.1 Motivation

Given a set of N data indexed with {1, 2, ..., N}, with a prespecified number of clusters

K < N , the aim of clustering is to assign each datum to one and exactly one cluster.

The assignment can be characterized by a many-to-one mapping, k = C(i), which

assigns datum i to the k-th cluster. Among all these distinct clusterings, one seeks an

optimal clustering C∗ to achieve the required goal. Such goals can be usually quantized

by a cost function such as between/within cluster scatter. Unfortunately, one cannot

exhaust all possible clusterings to find the optimal one, because the number of different

clusterings, S(N,K) = 1
K!

∑K
k=1 (−1)K−k(K

k

)
kN , grows very fast [69]. For example,

S(10, 4) = 34105, S(19, 4) ≈ 1010. So practical clustering algorithms only examine a

very small fraction of all possible clusterings, with the goal to identify a small subset

that is likely to contain the optimal, or at least the sub-optimal clustering.

Seeking more robust clusterings is the primary motivation of our work. As introduced

above, clustering is a difficult problem and has been extensively studied by statistics,

database and machine learning communities. Most algorithms work with numeric data

[2, 45, 128, 133], but there is some work on clustering categorical data [51, 46, 37]. For

clustering large data sets, some important approaches include [2, 25, 60, 133, 80, 116,

100]. The problem is challenging. High dimensionality [1, 2], data sparsity [1, 45] and

noise [2, 85, 15] make clustering a harder problem. Although a number of clustering

methods have been proposed, none of them are universal enough to perform equally

well in all cases [134]. Differences in assumptions and contexts in different communities

have made the transfer of useful generic concepts and methodologies slow to occur [72].

Since almost all clustering algorithms can only find a sub-optimal solution in practice,

a natural question arises if we can obtain a better one by combining outcomes from
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different clustering algorithms. Similar problems are studied extensively in multiple

classifier systems, where the classifier’s performance can be evaluated using the training

set with known class labels. In the case of clustering, however, we have to evaluate

obtained clusterings in an unsupervised way, since we don’t know the true clustering.

Distributed clustering is another motivation of our work. In practice, due to some

reasons such as privacy, the whole dataset may be partitioned, possibly with overlap,

and each part is allocated in a different site. For example, every site contains all data but

with a fraction of all attributes, that is, it stores a particular view of the original data.

The clustering method has to cluster data in this subspace. This is called attribute-

distributed clustering and the usefulness of having multiple views of data for better

clustering is addressed in [74, 78, 94]. With one candidate clustering from each site, we

need to combine them to form a consolidated one, which is expected to be better than

any candidate.

4.1.2 Problem Formulation

From the motivation above, we can extract the problem formulation of consensus clus-

tering as follows:

• Given

A set of M candidate partitions of a common set of objects {x1, ..., xN}, Φ =

{Xm}M
m=1. Let Z denote the set of natural numbers. We assume partition Xm ∈

ZN , that is, Xm takes the form like (1, 1, 1, 2, 2, 3, ...), the first three objects in

cluster 1, the next two objects in cluster 2, etc.

• Find

A combining function f : ZNM → ZN , i.e., f maps each partition set Φ to

another partition.
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• Objective

If there is no information about the true clustering or the relative importance of

the individual candidates, then a reasonable goal is to seek one that is closest to the

candidate set. If there exists a true clustering (unavailable during the combining

process), naturally we hope that its distance to f(Φ) as short as possible, at least

shorter than those to the candidate partitions.

• Constraint

We are not allowed to access the original objects {x1, ..., xN} or the clustering

processes that produced the candidate partitions. Each object has been repre-

sented by the cluster labels assigned to it in the candidate partitions.

4.2 Related Work

4.2.1 Multiple Classifier Systems

Clustering can be regarded as an unsupervised classification problem. For its coun-

terpart of supervised classification, there is an extensive body of work on combining

multiple classifiers (or regressors) [115, 22, 39]. In fact, a related problem of multiple

rankings dates back to 1785. Historical remarks are given in [95] for the theory, called re-

lational data analysis, that relates Condorcet’s solution of 1785 to the ranking problem.

Among many combining techniques, boosting, in particular, has been extensively stud-

ied [114, 32, 34, 33] ever since the early 1990’s. The key ideas include: (1) each classifier

learns a newly weighted dataset with weight proportional to the difficulty of correctly

classifying that object by previous classifiers, and (2) every classifier’s performance is

used to weigh its contribution to the final classification.

Because we do not know the true clustering, several problems arise in boost-clustering.

One is how to assign the weight to data. Without any knowledge about the quality of
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the obtained partitions, we can only assume that they are equally good and hence assign

large weight to those data over which they disagree most. For instance, for any object

we can find the cluster it belongs to in every partition, and measure the disagreement

with the Jaccard coefficient [69], namely, the size ratio of those clusters’ intersection over

their union. Another problem is how to combine the candidate clusterings to form the

final one. A less demanding problem is to find the best candidate among all candidates.

We can choose one with the best cost function value if they are obtained by optimizing

the same cost function, but it becomes less obvious otherwise. To make matters worse,

some clustering algorithms, such as DBSCAN [25] and Random Walks [53], have no

explicit cost functions. Under the assumption that every candidate is rather good, the

best candidate could probably be the one agreed most by the whole set. So we may

evaluate the degree of agreement for each candidate by measuring its average distance

to all others and find the centroid candidate with the smallest distance.

4.2.2 Multi-Clustering

There is similar work on multi-clustering, constrained to the same type of clustering

algorithms. That is, multiple clusterings are created and evaluated as intermediate steps

in the process of attaining a single, higher quality clustering. For instance, methods are

examined for iteratively improving an initial set of hierarchical clustering solutions [30].

In [29], a method is presented to obtain multiple approximate K-means solutions in main

memory after making a single pass through a database. In the following we examine

some recent methods in more detail.

Multi-clustering fusion methods are presented in [31, 36]. Evidence is accumulated

based on combining intermediate results from an iterative clustering algorithm (e.g.,

K-means) with a much larger number K than the final anticipated answer. Each of

K clusters of the new run is assigned to one of the previous run, resulting in a cluster
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renumbering process. It enables us to update a co-occurrence matrix that records the

membership degrees of data to clusters. Hence the effect of the multiple and fine-

level clusterings leads to a more robust similarity indicator, which is reminiscent of

the classical shared nearest neighbors measure [73]. Finally the single-link clustering is

employed to recursively merges two closest clusters till some predefined criteria are met,

where closeness is again based on the co-occurrence matrix. In [35], a boost-clustering

algorithm is proposed to exploit the general principles of boosting. At each boosting

iteration, a new training set is created using weighted random sampling from the original

dataset and a simple clustering algorithm is applied to provide a new data partitioning.

The final clustering solution is produced by aggregating the multiple clustering results

through weighted voting.

Here consensus clustering refers to a more general problem. We just combine any

given set of clusterings to produce a consolidated one without accessing the original data

or any clustering algorithms that generated them. Neither do we impose any constraint

on them.

4.2.3 Clustering Validity Criteria

Another related topic is clustering validity criteria. They can be classified into three

categories: internal, external and relative [69]. Recent reviews are given in [49, 50, 43].

Internal criteria formulate quality as a function of the given data and/or similari-

ties. For instance, popular evaluation criteria for compactness (within cluster scatter)

include sum of squared error, which is used in standard K-means for spherical data.

For separation (between cluster scatter), one can use min-cut criterion, which uses the

sum of edge weights across clusters for graph partitioning. When using internal criteria,

clustering becomes an optimization problem, and the clustering method can evaluate

its own performance and tune its results accordingly.
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On the other hand, external criteria impose quality by additional and external infor-

mation, such as class labels, which is not given to the clustering methods. Considering

the final judge is the human, if the true classification is known, it should be used to

grade the obtained clustering. For example, by assigning all data in each cluster to the

majority class of that cluster, misclassification rate can be computed against the true

class labels.

Internal and external criteria are mainly based on statistical tests and their major

drawback is their high computational cost. Moreover, the optimization approaches based

on them aim at measuring the degree to which a data set confirms an a-priori specified

scheme. As for the relative criteria, the basic idea is the evaluation of a clustering by

comparing it to other clustering schemes, produced by the same algorithm but with

different parameter values, such as the number of clusters K. In detail, with a suitable

validity index q, for each value of K within a prespecified range, the clustering algorithm

is run many times, using different set of values for the other parameters of the algorithm

(e.g. different initial conditions). The best value of q obtained by each K is plotted as

a function of K. We then search for a local significant change in q, which appears as a

knee in the plot and it is an indication of the number of clusters underlying the dataset.

4.2.4 Distances in Clustering

Some clustering algorithms use only proximity matrices. That is, they do not access

the original objects and all they need is the distance between every two objects. The

computation of distance between objects usually involves the underlying distance mea-

sure for every attribute that characterizes objects. There is much work in the literature

focusing on proposing or comparing such distance measures [69, 82, 42, 43]. However,

little is done for comparing distinct clusterings without a common explicit cost func-

tion. Proposed for comparing true partition and the obtained clustering, Rand Index
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[68] computes the fraction of all pairs of data that they agree on, that is, if the pair is

assigned to the same cluster or not. Apparently, we can use one minus Rand Index as

a distance measure, which equals zero iff two clusterings are identical and equals one iff

two clusterings treat every pair of data differently, i.e., if the pair is assigned to the same

cluster in one clustering, it must be assigned to distinct clusters in the other. To find the

optimal clustering with the smallest average distance to a set of candidate clusterings,

we can connect every pair of data with an edge whose weight is equal to the number

of candidates that assign them to the same cluster and iteratively cut those edges with

small weights. We will elaborate on this idea later in the chapter.

4.3 Basics of Entropy

Since we concentrate on clustering where each cluster can be labeled a discrete value,

we only consider discrete random variables. Let X and Y be two discrete random

variables that take on distinct values x1, ..., xn and y1, ..., ym, respectively. Denoted by

H(X), the entropy of X defined below represents the amount of surprise, uncertainty

or information in X [93, 111]. For clarity, p(xi) ≡ P (X = xi) and it is assumed that

pln(1/p) = 0 when p = 0. H(X) is maximized when all of p(xi) are equal.

H(X) =
n∑

i=1

p(xi)ln(1/p(xi))

Similarly, the entropy of joint distribution P (X,Y ), or joint entropy, is defined as

H(X,Y ) =
∑

i

∑
j

p(xi, yj)ln(1/p(xi, yj))

with the property
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max{H(X),H(Y )} ≤ H(X,Y ) ≤ H(X) + H(Y ) (4.1)

The average of uncertainty remaining in X after knowing Y , called conditional en-

tropy, is defined as

H(X|Y ) =
∑

j

p(yj)H(X|Y = yj)

=
∑

j

p(yj)
∑

i

p(xi|yj)ln(1/p(xi|yj))

It can be proved that

H(X,Y ) = H(Y ) + H(X|Y ) (4.2)

which can be interpreted as the uncertainty of X and Y is equal to the uncertainty

of Y plus the average uncertainty remaining in X after knowing Y . Besides, it can be

shown that

H(X) ≥ H(X|Y )

where the equality holds iff X and Y are independent.

4.4 Distribution-Based View of Clustering

For a particular clustering represented by X, each group of data can be labeled by a

distinct value xi the random variable X takes on. Hence we can denote the resulting

n clusters by {x1, ..., xn}, with P (X = xi) interpreted as the fraction of data in cluster

xi. Given two clusterings X ∈ {xi}n
i=1 and Y ∈ {yj}m

j=1, we can define a new joint
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Table 4.1: Two partitions X and Y .

partition X Y

cluster x1 x2 y1 y2

elements {1, 2} {3, 4} {1} {2, 3, 4}
probability 2/4 2/4 1/4 3/4

Table 4.2: Joint partition (X,Y ).

joint cluster (x1, y1) (x1, y2) (x2, y1) (x2, y2)
elements {1} {2} {} {3, 4}

probability 1/4 1/4 0/4 2/4

clustering, denoted by (X,Y ), where each of nm clusters is uniquely labeled by a pair

(xi, yj) and P (X = xi, Y = yj) interpreted as the fraction of data in the intersection of

clusters xi and yj. Similarly, conditional clustering (Y |X) refers to a set of n clusterings

{(Y |X = xi)}n
i=1, each of which partitions the data of cluster xi into m groups according

to y. Each final group, labeled (yj|xi), consists of data in the intersection of clusters xi

and yj . P (Y = yj|X = xi) is interpreted as the fraction of data of cluster xi that reside

in yj.

Let us see an example. Given a dataset of four elements {1, 2, 3, 4} and two partitions

X and Y , which are shown in Table 4.1. That is, clustering X partitions the dataset into

two clusters {1, 2} and {3, 4}. Clustering Y partitions the dataset into two clusters {1}

and {2, 3, 4}. Then the joint clustering (X,Y ) partitions the dataset into four clusters,

which is shown in Table 4.2. Actually there are only three clusters, because cluster

(x2, y1) is empty. As shown in Table 4.3, (X|Y ) contains two conditional clusterings

(X|y1) and X|y2). Note that clusters (yj |xi) and (xi, yj) contain the same set of data but

their probabilities p(yj|xi) and p(xi, yj) are different. With these distributions at hand,

we can compute the corresponding entropies, such as H(X),H(X,Y ) and H(Y |X).

We say two clusterings are independent if their respective distributions are indepen-
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Table 4.3: (Y |X) contains two conditional partitions (Y |x1) and (Y |x2).

conditional partition (Y |x1) (Y |x2)
conditional cluster (y1|x1) (y2|x1) (y1|x2) (y2|x2)

elements {1} {2} {} {3, 4}
probability 1/2 1/2 0/2 2/2

dent, i.e., P (X,Y ) = P (X)P (Y ). For instance, clusterings X and Y defined above

are not independent, because p(x1, y1) �= p(x1)p(y1). Let partition Z contain two

clusters z1 = {1, 3}, z2 = {2, 4}, and singleton partition W contain only one cluster

w1 = {1, 2, 3, 4}. We can see that X and Z are independent, since ∀xi, zj , p(xi, zj) =

p(xi)p(zj). X and W are also independent, since ∀xi, wj , p(xi, wj) = p(xi)p(wj) = 1/2.

4.5 Entropy-Based Clustering Distance

4.5.1 Definition

Using conditional entropy, we propose the following metric to measure distance between

two clusterings X and Y on the same dataset

d(X,Y ) ≡ H(X|Y ) + H(Y |X) (4.3)

= 2H(X,Y ) − H(X) − H(Y ) (4.4)

where Eq. (4.4) can be derived from Eq. (4.2). Suppose X is the true clustering,

then H(X|Y ) measures Y ’s within cluster scatter by computing the entropy of the

distribution of each cluster of Y in X. If Y ’s within cluster scatter is small, each of its

clusters must be contained at most in a couple of clusters of X, which means H(X|Y )

is small. Similarly, H(Y |X) is related to Y ’s between cluster scatter. If clusters in Y

are well separated, each of X’s compact clusters must be contained at most in a couple

of clusters of Y , which means H(Y |X) is small.
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With such a clustering distance definition, we can define the average distance from

a partition X to a set of M candidate partitions Φ = {Xm}M
m=1 as

D(X,Φ) ≡ 1
M

M∑
m=1

d(X,Xm)

A smaller value of D(X,Φ) means a higher degree that X is agreed by Φ. When we

examine partitions within this set, we can find the local optimal/centroid clustering X∗
l ,

defined as the one (within this set) that has the smallest distance, i.e.,

X∗
l ≡ argminX∈ΦD(X,Φ)

If this constraint is dropped, we can search for the global optimal/centroid clustering

X∗
g over all possible clusterings X, i.e.,

X∗
g ≡ argminXD(X,Φ)

Now we are able to compare different clusterings regardless of their cost functions.

If the obtained candidate clusterings produced by different methods are rather good,

then the quality of each clustering is inversely proportional to its average distance to

all candidates. Thus we can develop a weighted version of Rand Index-based optimal

clustering. That is, instead of equating the weight of edge linking two points to the

number of candidates that assign them to the same cluster, it is now equated to a

weighted sum. Therefore, if two points are assigned to the same cluster only by a couple

of best candidates, they may still remain in the same cluster in the final clustering.

4.5.2 Properties

This symmetric distance satisfies
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0 ≤ d(X,Y ) ≤ H(X) + H(Y ) (4.5)

which is detailed as follows:

• It is minimized to zero iff X = Y .

• It is maximized to H(X) + H(Y ) iff X and Y are independent.

• In any other cases, the result is between 0 and H(X) + H(Y ).

Let us elaborate a little bit on the two extreme partitions. For a dataset of size N ,

denote by I1 the singleton partition (i.e., one big cluster containing all data), and by IN

the finest partition consisting of singleton clusters (i.e., one object per cluster). For any

partition X, we have 0 = H(I1) ≤ H(X) ≤ H(IN ) = lnN and they can be associated

with the points/arcs in a set of concentric circles each of which consists of partitions

with equal entropy. I1, which is independent of any other partition X, lies in the center,

since any other partition lies in the circle with radius d(X, I1) = H(X). IN corresponds

to the whole outmost circle, for d(X, I1) + d(X, IN ) = d(IN , I1) = H(IN ).

A distance function [43] must satisfy (1) ∀X,Y, d(X,Y ) = d(Y,X), and (2) ∀X, d(X,X) =

dmin. Based on the analysis above, we can see that clustering distance defined above

is a legal distance function. In addition, to be a metric distance function [43], it must

also fulfill (1) ∀X,Y, d(X,Y ) = 0 ⇒ X = Y , and (2) the triangle inequality, that is,

∀X,Y,Z,

d(Y,Z) ≤ d(X,Y ) + d(X,Z) (4.6)

Obviously, (1) is met by the clustering distance. (2) is proved in Appendix A.



CHAPTER 4. CONSENSUS CLUSTERING WITH ENTROPY-BASED CRITERIA59

Table 4.4: All five partitions for a dataset of three objects.

partition A B C D E

clusters {1}, {2, 3} {2}, {1, 3} {3}, {1, 2} {1, 2, 3} {1}, {2}, {3}

Figure 4.1: Distances among five partitions.

4.5.3 An Illustrative Example

Given a set of candidate partitions, we can find the local optimal candidate and search

for the global optimal partition. With a simple dataset of three objects indexed with

1,2,3, we illustrate that the global optimum is not necessarily in that candidate set. For

this dataset, there are a total of five partitions, as listed in Table 4.4. As shown in

Fig. 4.1, all partitions can be visualized with two concentric circles, where partition D

is located at the center, partitions A,B and C are represented by three equally spaced

points at distance 0.92 in the inner circle with radius 0.64, partition E corresponds to

the whole outer circle with radius 1.1 and at distance 0.46 from A/B/C. If the candidate

set consists of A,B and E, the local optimum is E, which is also the global optimum.

If C replaces E in the candidate set, however, the global optimum is still E that is no

longer in the candidate set.

4.5.4 Normalized Distances

At times we need a normalized distance function with range in [0, 1] and this can be

obtained in several ways. The simplest one is dn0(X,Y ) defined in Eq. (4.7) and

dn0(X,Y ) ≤ 1 can be proved as follows. If H(X) + H(Y ) ≤ lnN , then from Eq. (4.5),

we have d(X,Y ) ≤ lnN and hence dn0(X,Y ) ≤ 1. If H(X) + H(Y ) > lnN , from Eq.
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(4.4) and the fact that H(X,Y ) ≤ lnN , we have H(X|Y ) + H(Y |X) ≤ lnN and hence

dn0(X,Y ) ≤ 1.

dn0(X,Y ) ≡ H(X|Y ) + H(Y |X)
lnN

(4.7)

dn1(X,Y ) ≡ 1
2

[
H(X|Y )
H(X)

+
H(Y |X)
H(Y )

]
(4.8)

dn2(X,Y ) ≡ H(X|Y ) + H(Y |X)
H(X) + H(Y )

(4.9)

The original distance d(X,Y ) is upper bounded by H(X) + H(Y ), which generally

grows as the number of clusters increases. So it may favor those with a small number of

clusters. Although dn0(X,Y ) preserves the triangle inequality, it inherits the weakness

of d(X,Y ) and does not change relative ranking. That is, ∀X,Y,Z,W, d(X,Y ) >

d(Z,W ) ⇔ dn0(X,Y ) > dn0(Z,W ). We use 0 in subscript in dn0 to show that it is a

trivial normalization. Besides, it will be far less than 1 for many pairs, for lnN is only

reachable by the finest partition. It may not be a serious problem for the experiments

carried out later, for all candidates have the same number of clusters prespecified equal

to the number of true classes and their individual entropies may not vary much. But it is

a different story if we apply different clustering algorithms that may output candidates

with different number of clusters.

To make distance between a pair relatively independent of their individual entropies,

two alternatives are defined in Eqs. (4.8, 4.9). For consistency, we assume that 0/0 = 0.

It is not hard to show that the former is less than or equal to the latter. Both equal

0 iff X = Y and 1 iff X and Y are independent, regardless of their individual entropy

sizes. However, it is unknown if triangle inequality holds for them.

With these normalized distances, the corresponding distances from a partition to

a set of candidate clusterings can be similarly defined. For instance, Dn2(X, {Xm})
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denotes such a distance based on pairwise distance dn2

4.6 Toward the Global Optimum

Why stop at the local optimum? If the local optimum exhibits some desirable properties,

the global optimum may possess even better properties. However, the first problem is

how to search for it.

4.6.1 Simple Case

Given two clusterings X and Y , for any clustering Z, we have d(X,Y ) ≤ d(Z,X) +

d(Z, Y ). Obviously, the equality holds if X and Y are independent and Z represents

one big cluster containing all data. If X and Y are not independent, which is often the

case, we find that the equality holds when Z = (X,Y ), that is, Z is the joint clustering

by X and Y , because

d((X,Y ),X) + d((X,Y ), Y )

= [2H(X,Y ) − H(X,Y ) − H(X)] + [2H(X,Y ) − H(X,Y ) − H(Y )]

= H(Y |X) + H(X|Y )

= d(X,Y )

We conclude that for two clusterings X and Y , there are at least three clusterings, X,

Y and (X,Y ), that have the smallest average distance to them. Similarly, such a relation

can be extended to more than two clusterings, as illustrated in Figure 4.2, where, in line

with Euclidean planar geometry, every point represents a clustering and a mid-point in a

line segment means that its sum of distance to the two end points is equal to the distance

between these two end points. For example, d((X,Y,Z), (X,Y )) + d((X,Y,Z), Z) =
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Figure 4.2: Distance relations among individual clusterings and their joint clusterings.

d((X,Y ), Z). Notice, however, there are other equality relations that contradict Euclid-

ean planar geometry, such as d((X,Y,Z), (X,Y ))+d((X,Y,Z), (Y,Z)) = d((X,Y ), (Y,Z)).

Nevertheless, it becomes much more complicated when we seek a clustering with

the smallest distance to a set of three candidate clusterings or more. Of course there

are a great number of greedy search techniques that can be tried to yield a reasonable

solution, including simulated annealing and genetic algorithms. For large datasets,

however, they are impractical due to the prohibitive computational costs. Next we

present two combining methods that search for a solution compatible to the candidate

set in a general sense. That is, they do not explicitly check the distance to the candidate

set.

4.6.2 Rand Index-Based Graph Partitioning

Rand Index considers pairwise relation of objects, that is, if two objects are assigned

to the same cluster or not. Thus, for a clustering that partitions N objects, an N × N

similarity matrix S can be constructed, with entry (i, j) equal to 1 when objects i and

j are assigned to the same cluster, 0 otherwise. We can generalize this idea to M

candidate clusterings Φ = {Hm}M
m=1. In this case, an N ×N matrix S can be similarly

constructed, with entry (i, j) equal to the fraction of clusterings that assign objects i

and j to the same cluster. That is, S(i, j) =
∑M

m=1 Hm(i, j)/M , with Hm(i, j) = 1 if

objects i and j are assigned together in clustering Hm, 0 otherwise.
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We can see that all candidates in Φ are treated equally in computing S, since Hm

will contribute 1 in the summation of S(i, j) if objects i and j are assigned together in

Hm. Using distance D(normalized ones), we can also develop a weighted version. First

we set the weight wm for Hm as the similarity between Hm and Φ, which is obtained

with additive inversion, wm = 1 − D(Hm,Φ). Then the weighted version is obtained

with S(i, j) =
∑M

m=1 wmHm(i, j)/M .

With pairwise similarity matrix S, we can recluster objects using some reasonable

similarity-based clustering method. METIS [81], a graph partitioning algorithm, is

employed for its robust and scalable properties, where objects/similarities correspond

to vertices/edge-weights in the graph. It tries to minimize the sum of weights of cut

edges.

For example, suppose we have M = 3 clusterings H i, i = 1, 2, 3, that partition

N = 8 objects into K = 3 clusters, Their cluster labeling representations are given by

Eq. (4.10). Then the unweighted (or equal weight) similarity matrix S is given by Eq.

4.11. Because all three distance types, n0, n1 and n2 yield weighted similarity matrices

very similar to the unweighted, METIS produces the same cluster labeling as H1 for all

of them.

v1 v2 v3 v4 v5 v6 v7 v8

H1 1 1 1 2 2 3 3 3

H2 2 2 2 2 3 3 1 1

H3 1 1 2 2 3 3 3 3

(4.10)
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S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0.67 0.33 0 0 0 0

1 1 0.67 0.33 0 0 0 0

0.67 0.67 1 0.67 0 0 0 0

0.33 0.33 0.67 1 0.33 0 0 0

0 0 0 0.33 1 0.67 0.33 0.33

0 0 0 0 0.67 1 0.67 0.67

0 0 0 0 0.33 0.67 1 1

0 0 0 0 0.33 0.67 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.11)

4.6.3 Joint-Cluster Graph Partitioning

In the above method, only pairwise relation is considered and we still recluster at the

resolution of the original data. Why not consider higher order relation of multiple

objects?

Given Φ = {Hm}M
m=1, we have a new weighted sample that comprises

∏M
m=1 |Hm|

(|Hm| denotes the number of clusters in Hm) joint-clusters in the joint clustering

(
H1, ...,HM

)
. If the candidates are similar, many joint-clusters will be empty and the

sample size will be far less than
∏M

m=1 |Hm|. As stated before, every joint-cluster x can

be denoted by
(
h1

x1
, ..., hM

xM

)
, one cluster hm

xm
(xm denotes the cluster label) from each

candidate Hm. The weight is just the number of objects in that joint-cluster. Note that

each such joint-cluster is a maximal group of objects that are completely contained in a

cluster in every candidate. Since all candidates agree that all objects in the joint-cluster

must stay together, we can recluster at the resolution of joint-clusters.

To use METIS, what remains is to determine similarity S(x, y) between two joint-

clusters x =
(
h1

x1
, ..., hM

xM

)
and y =

(
h1

y1
, ..., hM

yM

)
. We propose below the cluster-wise
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measure, where |x⋃ y| is the total number of objects in x and y, |hm
xm

| is the number of

objects in cluster hm
xm

of candidate Hm.

For the example in Eq. (4.10), out of 33 joint-clusters, only six are non-empty:

jc1 = {v1, v2}, jci = {vi+1}, i = 2, ..., 5, jc6 = {v7, v8}. The similarity matrix for them

is given by Eq. (4.12). METIS produces cluster labeling (3, 3, 3, 2, 1, 1, 1, 1).

S(x, y) ≡ 1
M

M∑
m=1

s(hm
xm

, hm
ym

)

s(hm
xm

, hm
ym

) ≡

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 xm �= ym, since Hm does not assign them together,

|x y|
|hm

xm
| xm = ym, since Hm assigns them together.

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0.58 0.25 0 0 0

0.58 1 0.5 0 0 0

0.25 0.5 1 0.33 0 0

0 0 0.33 1 0.5 0.25

0 0 0 0.5 1 0.58

0 0 0 0.25 0.58 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4.12)

4.7 Experimental Evaluation: the Local Optimal Candi-
date

In this section, we demonstrate the properties and applications of the local optimal

candidate with both artificial and real datasets.

4.7.1 Randomized Candidates

We devise a set of experiments to compare the true clustering and the local optimal

candidate, where candidates are randomized versions of the true clustering. In detail, at
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each noise level ε ∈ [0, 1], suppose we have a hypothetical true partition T with N = 500

data grouped into K = 5 clusters. Each object is labeled a random value from the

uniform distribution from 1, ...,K, but cluster sizes remain fixed at (50, 100, 200, 50, 100)

respectively, That is, 50 data are labeled 1, 100 data 2, etc. Then each of 10 candidate

clusterings is generated by (1) randomly selecting a fraction ε of the data, and (2)

replacing their cluster labels with random values from the uniform distribution from

1, ...,K.

Now with T , the set Φ of 10 candidates, and the local optimal candidate X∗
l (w.r.t.

Φ) at hand, the following measures are computed. First we can compute D(X,Φ),X =

T,X∗
l , where subscript ni (i = 0, 1, 2) in Dni is dropped for brevity. Note that at low

noise levels, T is (close to) the global optimal partition X∗
g , so this is also a comparison

of global vs. local in terms of the distance to Φ. Second, d(X∗
l , T ) (subscript is also

dropped) is computed, which is hoped to be small in practice. For comparison, a random

partition R is generated by assigning each object with a random value from the uniform

distribution from 1, ...,K. Its distances to Φ and T are also computed as a baseline.

These results are illustrated in Fig. 4.3 for 101 noise levels ε equally spaced in [0, 1].

At each level, a new set of T , Φ and R is generated. The first, second and third rows

correspond to the normalized distances n0, n1 and n2, respectively. As shown in Fig.

4.3(a,d,g), D(T,Φ) < D(X∗
l ,Φ) at low noise levels, e.g., ε < 0.7. The difference in D at

very small ε is just the one between X∗
g and X∗

l , since T ≈ X∗
g then. When noise level

ε > 0.7, D(T,Φ) > D(X∗
l ,Φ), since at this time candidates in Φ have so many randomly

replaced cluster labels that they share little information with T . The same reason leads

to the increasing d(T,X∗
l ) in Fig. 4.3(b, e, h).

In both Figs. 4.3(a) and (b), the maximum distance is around 0.5. At very high

noise level ε ≈ 1, all candidates in Φ are randomly generated, just the same way R is
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Figure 4.3: The left column shows distances to the candidate set Φ at different noise level
ε. The corresponding distances to the true clustering T are illustrated in the middle
column. The correlation coefficients ρ are plotted in the right column. From top to
bottom, the three rows use distance types n0, n1 and n2, respectively.

generated. So the distance Dn0(R,Φ) is close to the pairwise distance dn0(R,X) when

R and X are independent. In spite of this independence, their distance can only get

as high as half one, which indicates that lnN may be too loose as the denominator in

the definition of dn0. On the other hand, the other two normalized distances n1 and n2

achieve a maximal value of about one at ε ≈ 1, which is desired at independence.

We claim that the local optimum from a set of good candidates is a wise choice

of approximator to the true clustering. This is based on the assumption that for any

clustering, its distance to that set and its distance to the true clustering are positively

correlated. To show this point, in the above experiments we also compute correlation

coefficient between two samples at various ε. In detail, at each ε, a new set of 100

random clusterings {R′
i}100

i=1 are generated like R. Their distances to the candidate set

Φ are stored in one sample and the corresponding distances to the true partition T
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are stored in the other sample. Then the correlation coefficient ρ(D(R′,Φ), d(R′, T ))

between these two samples are computed, as illustrated in Fig. 4.3(c, f, i). One can

see that positive ρ is obtained nearly at all ε. As expected, ρ decreases as ε increases,

for larger ε means candidates in Φ show less resemblance to T and thus they are less

qualified as good candidates. When ε ≈ 1, the candidates in Φ are nearly independent

of T , so it is desired that ρ(D(R′,Φ), d(R′, T )) ≈ 0. We can see that ρ is still generally

positive for n0 at this time. As for n1 and n2, it oscillates around zero, which is more

desirable.

4.7.2 Candidates from the Full Space

Perhaps these entropy-based metrics can be most useful when we, without any additional

knowledge, need to select a best one from a set of candidate partitions. It enables us to

find the local optimum that probably will not be too bad, regardless of the data structure

and the corresponding true clustering criteria. This is reminiscent of the PAC model

(Probably Approximately Correct) [124] in the field of computational learning theory.

Now we evaluate the local optimal candidate in the full space, that is, all candidate

clusterings are obtained using all attributes.

Spherical Data

We demonstrate this assertion with 500 2-D spherical data. As shown in Fig. 4.4, they

are generated with five bivariate normal distributions, 100 each, with common diagonal

covariance matrix σ2I and means (0, 0), (10, 0), (5, 5), (0, 10) and (10, 10). In this case,

Bayes classifier [23] essentially assigns data to the class with the closest mean. This is

just like standard K-means algorithm [69] does with squared Euclidean distance, except

that the true class means are replaced with estimated ones. Setting the number of

clusters to five, we run K-means algorithm with initial centers randomly drawn from



CHAPTER 4. CONSENSUS CLUSTERING WITH ENTROPY-BASED CRITERIA69

−5 0 5 10 15
−5

0

5

10

15
a: σ=1

−5 0 5 10 15
−5

0

5

10

15
b: σ=1.5

−5 0 5 10 15 20
−10

0

10

20
c: σ=2

−10 −5 0 5 10 15 20
−10

0

10

20
d: σ=3

Figure 4.4: Data generated by five normal distributions with common covariance matrix
σ2I.

data.

Similar ideas on combining multiple sets of cluster centers obtained by using K-

means with different initializations appear in [14]. Here the input to our problem is

sets of cluster labelings rather than class centers. To avoid the same outcomes, we

iteratively run K-means algorithm until five distinct partitions are generated. Then

they are ranked in terms of ascending order of distance to the true clustering. That

is, if the local optimal candidate is selected with Dni(X,Φ), the ranking is based on

dni(X,T ), where X denotes the candidate, Φ the candidate set, T the true clustering.

The above experiment is repeated 100 times and the results are reported in Table

4.5. It can be seen that the local optimum will probably be top-ranked at σ = 1. This

confidence declines as σ increases, for the overlap between individual classes gets more

significant, as shown in Fig. 4.4(c,d). When σ = 3, the overlap is so considerable, espe-

cially for the central class, that it makes little sense to partition data into five clusters.

As shown in Table 4.5, however, the heaviest frequency consistently concentrates on the
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Table 4.5: Frequencies of X∗
l ’s ranks on the spherical data for full space clustering.

n0 n1 n2
σ 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th
1 91 7 0 1 1 93 6 0 1 0 93 6 0 1 0

1.5 52 33 11 3 1 52 33 11 3 1 52 33 11 3 1
2 17 41 19 18 5 18 41 19 18 4 18 41 19 18 4
3 34 29 23 7 7 35 27 25 7 6 35 27 25 7 6

first or second rank for X∗
l , even at σ = 3.

Real Data

We also check these distance functions on three labeled real datasets available on the

UCI repository: iris (150 data in three classes), Cleveland heart disease (303 data in two

classes collected by Dr. Robert Detrano), and image segmentation (2100 data in seven

classes). This time we employ EM with Gaussian mixture. After the unsupervised

training, we classify data in each mixture component to the majority class of that

component. For the first two datasets, original data is used. For the image data,

because the error rate on the original data with EM is about 0.6, we transform them

with principal component analysis [76] and only retain the first five components that

contribute more than one percent of the total variance. After the transform, error rate

is reduced to about 0.4.

In each experiment, we run EM with random initialization to produce five distinct

partitions. Then we check the local optimum X∗
l ’s rank in terms of ascending order of

the distance to the true classification D(X,T ). This experiment is repeated 100 times

and the frequencies of ranks are given by Table 4.6 for the three normalized distances

n0, n1 and n2. The average error rates of fitted Gaussian mixture are about 0.1 for

iris, 0.3 for heart, and 0.4 for image. Since Gaussian mixture fits the iris data very

well, probably the five candidate partitions tightly center around the true classification,
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Table 4.6: Frequencies of X∗
l ’s ranks on the three real datasets for full space clustering.

n0 n1 n2
1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th 1st 2nd 3rd 4th 5th

iris 81 10 0 4 5 81 11 0 5 3 81 11 0 5 3
heart 27 35 21 10 7 32 32 21 11 4 32 32 21 11 4
image 46 32 11 10 1 41 35 12 11 1 44 32 13 10 1

which makes the local optimum closer than others to the true classification most of

times. When it comes to the heart and image data, considering the relatively high error

rate and variance of the outcomes, it is hard to tell the internal relative position among

the candidates. In spite of this, the sample frequency distribution is still apparently

skew in that the first two ranks contribute more than half occurences.

4.7.3 Candidates from Subspaces

We have seen that the local optimal clustering is likely to be a good choice in the full

space. What about attribute-distributed clustering when every candidate clustering is

obtained in a subspace? In this case, the requirement of distinct candidates is dropped.

Actually they are unlikely to be identical, since each on a different subspace.

For the artificial data, we simulate 500 4-D data with five Gaussian distributions,

100 each, with the common diagonal covariance matrix 0.12I, and means (0, 0, 0, 0),

(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), respectively. Four candidate clusterings are

obtained with K-means in four different subspaces respectively, as shown in the first row

of Table 4.7. From the four candidates, we check the ranks of the local optimal candidate

X∗
l in terms of ascending order of distance to the true clustering. This experiment is

repeated 100 times, each with a new dataset.

For the real data, we still use those three datasets, iris, heart and image. Again, four

candidate clusterings are obtained with EM, each on a different subspace, as shown in
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Table 4.7: Subspaces for candidate clusterings.

#dim sub 1 sub 2 sub 3 sub 4
Gaussian 4 1,2,3 2,3,4 3,4,1 4,1,2

iris 4 1,2,3 2,3,4 3,4,1 4,1,2
heart 13 1,2,3 4,5,6 7,8,9 10,11,12
image 5 1,2,3 2,3,4 3,4,5 4,5,1

Table 4.8: Frequencies of X∗
l ’s ranks for subspace clustering.

n0 n1 n2
1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Gaussian 57 25 18 0 56 26 17 1 57 25 17 1
iris 47 45 0 8 47 44 0 9 47 45 0 8

heart 87 10 1 2 33 66 1 0 25 74 1 0
image 95 4 1 0 96 3 0 1 94 4 2 0

Table 4.7. For the image data, the full space still refers to the five principal components.

We repeat the experiment 100 times and record the frequencies of the local optimal

candidate’s ranks.

The results for the three normalized distance types n0, n1 and n2 are given in Tables

4.8, where Gaussian refers to the artificial Gaussian data. We can see that the heaviest

frequency always concentrates on the first or second rank.

4.8 Experimental Evaluation: The Combined Clustering

In the following experiments, the two graph partitioning-based global search methods,

Weighted Rand index-based Graph Partitioning (WRGP) and Joint-Cluster Graph Par-

titioning (JCGP), achieve varying success in combining candidate clusterings from either

full space or subspace. Because METIS tries to produce the balanced partition (all clus-

ters are of equal size), we only consider clustering of this type. Let us take a look at

the worst time complexity for them. Suppose we have M candidate clusterings, each

partitioning a set of N data into K clusters. Assuming linear complexity for graph
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partitioning algorithms like METIS, then the major computation is spent in construct-

ing similarity matrix, which is O(KMN2) for WGRI and O(KM(KM )2) for JCHP.

As we will see later, the more similar those candidates get, the fewer the non-empty

joint-clusters we will have, which is the actual similarity matrix size in JCHP.

4.8.1 Randomized Candidates

First we repeat the experiment of randomized candidates with the only change that

the true clustering T is balanced (each of five clusters contains 100 objects). At each

noise level, WRGP and JCGP are applied to the candidate set Φ to produce a new

combined clustering, whose distances to Φ and T are recorded and plotted in Fig. 4.5.

For clarity, the unweighted generalized Rand Index is not shown, which is slightly worst

than WRGP. WRGP with distance n2 is not shown either, which is very similar to that

with n1.

We can see that both methods achieve success in this example. In terms of distance

to Φ (Fig. 4.5(a,d)), at about ε < 0.7, both methods tightly follow T , giving a smaller

distance than the local optimal candidate X∗
l . When ε > 0.7 and candidates in Φ

show little resemblance to T , both methods tightly follow X∗
l , giving a smaller distance

than T . In terms of distance to T (Fig. 4.5(b,d)), both methods achieve a smaller

distance than X∗
l . The figures show that the difference between these two methods is

not significant. A closer look indicates that at low noise levels (candidates are closer

to the true clustering), JCGP slightly beats WRGP. The reverse happens at high noise

levels. Table 4.9 gives some statistics over all three distance types (n0, n1, n2). For

instance, the second row indicates that over noise levels [0, 0.5], 71% of the time JCGP’s

distance to the candidate set, D(X,Φ), is less than or equal to WRGP’s.
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Figure 4.5: The left column shows distances to the candidate set Φ from the true
clustering T , local optimal candidate X∗

l , JCGP (denoted by J) and WRGP (denoted
by W) at different noise level ε. The corresponding distances to T from X∗

l , JCGP, and
WRGP are illustrated in the right column. The top and bottom rows use distance types
n0 and n1, respectively.

Table 4.9: Probabilities that HJGP yields a smaller distance than WRGP.

distance noise level probability
D(X,Φ) [0, 1] 0.64
D(X,Φ) [0, 0.5] 0.71
d(X,T ) [0, 1] 0.63
d(X,T ) [0, 0.5] 0.85
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Table 4.10: Subspaces for candidate clusterings.

data # dim sub 1 sub 2 sub 3 sub 4
S1, S2 4 1,2 2,3 3,4 4,1

iris 4 1:3 2:4 3,4,1 4,1,2
heart1 13 1:3 4:6 7:9 10:12
heart2 13 1:7 3:9 5:11 7:13

4.8.2 Candidates from Subspaces

From now on, because distance types n1 and n2 always yield similar results, we only

report the results of n0 and n1.

For attribute-distributed clustering, we generate 100 4-D data from each of five

Gaussian distributions with the common diagonal covariance matrix σ2I and means

(0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), respectively. Two datasets are

generated, one with σ = 0.1 and the other with σ = 0.3. We refer to the former as S1

and the latter S2. K-means can easily find the true classification in the full space for

S1, but not S2. Four candidate clusterings are obtained with K-means in four different

subspaces respectively, as shown in the first row of Table 4.10. For convenience, we use

i : j to denote i, i + 1, ..., j − 1, j. WRGP and JCGP are applied to the candidate set to

produce the combined clusterings. For the real data, we use two datasets, iris and heart.

Again, four candidate clusterings are obtained with EM, each on a different subspace,

as shown in Table 4.10. Two sets of subspaces are tried for the heart data.

The above experiments are run 10 times and the median distance values are given

in Tables 4.11 and 4.12 for JCPG, WRGP, the local optimal candidate X∗
l , and the

local worst candidate X+
l (whose distance to Φ is the largest). One can see that both

JCGP and WRGP perform best on S1 and S2 in terms of d(X,T ). The improvement

on D(X,Φ) is less significant on these two datasets. For the iris data, although both

JCGP and WRGP lead to a smaller d(X,T ) than X∗
l , they lead a higher D(X,Φ). For
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Table 4.11: The median distance values for subspace clustering with distance type n0.

d(X,T ) D(X,Φ)
JCGP WRGP X∗

l X+
l JCGP WRGP X∗

l X+
l

S1 0.0032 0 0.1939 0.2083 0.2085 0.2054 0.2455 0.2523
S2 0.1937 0.1865 0.2942 0.2932 0.2755 0.2740 0.2802 0.2867
iris 0.0759 0.0639 0.1183 0.2225 0.1121 0.1082 0.1047 0.1423

heart1 0.2243 0.1968 0.1941 0.1992 0.1768 0.1642 0.1410 0.1592
heart2 0.1940 0.1999 0.1941 0.1704 0.1101 0.1381 0.0916 0.1437

Table 4.12: The median distance values for subspace clustering with distance type n1.

d(X,T ) D(X,Φ)
JCGP WRGP X∗

l X+
l JCGP WRGP X∗

l X+
l

S1 0.0061 0 0.4055 0.4239 0.4050 0.4001 0.4873 0.4962
S2 0.3742 0.3525 0.5710 0.5676 0.5349 0.5261 0.5477 0.5621
iris 0.1732 0.1377 0.2188 0.5327 0.2691 0.2590 0.2537 0.3523

heart1 0.9566 0.8131 0.8212 0.9994 0.8039 0.7394 0.7211 0.7442
heart2 0.9808 0.8521 0.9994 0.7705 0.5467 0.6715 0.4773 0.7120

the two heart datasets, the only improvement is that WRGP yields a smaller distance

d(X,T ) than X∗
l with distance type n1 on data heart1. In general, compared to JCGP,

WRGP always leads to a better or comparable result. However, as for computational

complexity, the similarity matrix size is much smaller for JCGP (equal to the number

of non-empty joint-clusters), which is given in Table 4.13. Note that the corresponding

size for WRGP is just the data size.

Discussion

Let us explore the underlying reasons in more detail using the results with distance type

n1 in Table 4.12, since n1 is less sensitive to individual entropies.

Table 4.13: The average number of joint-clusters in JCGP.

data S1 S2 iris heart1 heart2
# joint-clusters 50 100 12 8 16
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First, with the results of the two heart datasets, we show that the quality (i.e.,

d(X,T )) of the combined clustering depends on the distance of the candidates to the

true clustering. In data heart1, the majority of candidates have a smaller distance

d(X,T ) (d(X∗
l , T ) = 0.1941) than the minority of candidates (d(X+

l , T ) = 0.1992).

Since both methods try to find the centroid clustering compatible to the majority of

candidates, the combined clustering has a smaller distance d(X,T ) than X+
l , though

not necessarily than X∗
l . It is a different story when it comes to data heart2, where

the majority of candidates have a larger distance d(X,T ) (d(X∗
l , T ) = 0.9994) than

the minority of candidates (d(X+
l , T ) = 0.7705). In this case, both methods lead to a

clustering that has a larger distance d(X,T ) than X+
l .

Second, with the results of data S1 and iris, we show that the candidate’s relative

position to the true clustering is another more important factor determining the quality

of the combined clustering. Comparing d(X,T ) of the candidates for these two datasets,

one can see that S1’s candidates are not better than those of iris, especially for X∗
l .

However, great success is achieved by both methods on S1, rather than on iris. Why?

Because S1 provides the ideal situation for the combining methods, i.e., all attributes are

independent from one another and their contribution to the clustering in the full space

is also independent. In this case, as shown in Fig. 4.6(a), the candidates from different

subspaces would evenly center around the true clustering and they are complementary

to one another in the combining process. S1’s four candidate clusterings are shown in

Figs. 4.7(a-d), where they are projected to the first two principal components directions

obtained from the full space. Note that each cluster of candidates is marked with the

marker of the corresponding true cluster in the full space with which it shares most

objects. It is possible that more than one cluster of the candidate are mapped to the

same true cluster, e.g., only four markers are used for five clusters in Fig. 4.7(a). In each
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Figure 4.6: Both (a) and (b) show a true clustering T , and a set of four candidate
clusterings {C1, C2, C3, C4} for which C∗ is the centroid. Although the average distance
to T is larger for candidates in (a) than those in (b), their centroid C∗ is closer to T
than the counterpart in (b).

Table 4.14: The median distance values for full space clustering with distance type n0.

d(X,T ) D(X,Φ)
JCGP WRGP X∗

l X+
l JCGP WRGP X∗

l X+
l

S2 0.1272 0.1291 0.1780 0.1949 0.0841 0.0896 0.0897 0.1455
iris 0.0764 0.0742 0.0864 0.0965 0.0330 0.0562 0.0276 0.0924

heart 0.1847 0.1824 0.1825 0.1941 0.0885 0.0870 0.0853 0.1499

subspace a different subset of original clusters can be correctly identified. As shown in

Fig. 4.7(e,f), combining them by either method gives the exact true clustering, which

is also obtainable by K-means in the full space.

4.8.3 Candidates from the Full Space

We also evaluate the combining methods when candidate are from the full space. We

don’t use Gaussian data S1, because it is too easy for K-means to find the true clustering

in the full space. We use the other three datasets, Gaussian data S2, iris and heart. K-

means/EM is used on data S2/(iris,heart) to generate a set of 10 candidate clusterings,

to which JCGP and WRGP are applied to produce a combined new clustering. This

experiment is repeated 10 times and the median distance values are given by Tables

4.14 and 4.15.

In terms of D(X,Φ), both methods lead to a smaller distance than X∗
l only on data

S2. They fail on data iris and heart. In terms of d(X,T ) that is our ultimate goal, both

methods succeed on data S2 and iris. On data heart, only WRGP leads to a slightly
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Figure 4.7: Four candidate clusterings (a-d) are from four subspaces. They are plotted
in the space of the first two principal components obtained from the full space. Both
JCGP (e) and WRGP (f) give the true clustering.

Table 4.15: The median distance values for full space clustering with distance type n1.

d(X,T ) D(X,Φ)
JCGP WRGP X∗

l X+
l JCGP WRGP X∗

l X+
l

S2 0.2457 0.2479 0.2880 0.3808 0.1639 0.1726 0.1989 0.2864
iris 0.1775 0.1692 0.1975 0.2223 0.0773 0.1288 0.0648 0.2138

heart 0.7630 0.7536 0.7575 0.9994 0.3761 0.3749 0.3646 0.7642
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smaller distance than X∗
l . Compared to the case of subspace clustering, candidates’

relative positions to the true clustering in the full space are more complicated. Thus

it is more difficult to predict the performance of the combined clustering by the two

methods. However, on all datasets, X∗
l is always closer to T than X+

l , which suggests

X∗
l is less sensitive to the variation of candidates than the combined clustering.

4.9 Summary

In this chapter we addressed two basic problems in consensus clustering. First we

proposed a series of entropy-based distance measures for comparing clusterings. It only

involves set intersection operation and is independent of the data type and structure

in question, since the input to our problem is a set of cluster labelings, rather than

the original data themselves. We showed that they satisfy some of basic properties a

legal distance function requires. Given a set of candidate clusterings, they enable us to

find the local centroid candidate defined as the one with the smallest average distance

to them. We also discussed search methods for the global centroid clustering. Under

certain conditions, the centroid clustering will probably be closer to the true partition

than other candidates. This assertion was demonstrated on both artificial and real

datasets, with candidate clustering either from full space or subspace.

It is important to note that the key factor in the success of our combining methods

is the relative positions of candidate clusterings w.r.t. the true clustering. Analogous to

the requirement of the powerful but diverse classifiers in multiple classifier system, we

hope that all candidate clusterings are not too bad and center evenly around the true

clustering. When this constraint is dropped, there is no guarantee that the combined

clustering will get closer to the true clustering, though probably the local centroid

candidate would still be at least middle-ranked.



Chapter 5

FINDING PATTERN-BASED
OUTLIERS

5.1 Introduction

In this chapter, we turn our attention away from finding clusters for the majority of

the data to outlier detection that targets those exceptional data whose pattern is rare

and different from the general pattern shown by the majority of the data. We illustrate

that besides high density clustering, there is another pattern, low density regularity.

Thus, there are two kinds of corresponding outliers w.r.t. them. Then we propose two

techniques, one used to identify the two patterns, the other used to detect outliers w.r.t.

them.

The chapter is organized as follows. In the rest of this section we give motivation

and problem formulation. Related work is reviewed in Section 5.2. In Section 5.3 ,

first we show two patterns, high density clustering and low density regularity. Then,

under assumption of uniform distribution inside clusters, we propose a technique to

identify these two patterns based on the volume of the sphere. Also based on this

random variable, we develop in Section 5.4 an approach to detecting local outliers with

its sample variance. After discussing some formal evaluation criteria in Section 5.5, we

report experimental results in Section 5.6 on both synthetic and real datasets. Section

5.7 concludes this chapter with a summary.

81
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5.1.1 Motivation

In contrast to traditional clustering aiming to find general pattern for the majority of

data, outlier detection targets the finding of rare pattern for the minority of the data

whose behavior is very exceptional compared to other data. Although the meaning of

outlier seems straightforward to many people, there is no universally accepted formal

definition and only some intuitive interpretations are available in the literature. A well-

known definition of outlier was given by Hawkins [58] who defined it as an observation

which deviates so much from other observations as to arouse suspicions that it was

generated by a different mechanism. A similar definition also appeared in Barnett

and Lewis’s book [7] which stated that an outlier is an observation that appears to be

inconsistent with the remainder of that set of data. Beckman and Cook [9] also gave

an alternative definition of outlier as a contaminant or a discordant observation, where

a discordant observation refers to any observation that appears surprising or discrepant

to the investigator, and a contaminant is any observation that is not a realization from

the target distribution.

Using the above general definitions, we always imply some pattern w.r.t. which

we declare some data points are outliers. This pattern is followed by the global/local

majority of the data and is breached by the outliers. In detail, it is embodied by ‘other

observations ’in Hawkins’s definition, by ‘the remainder of that set of data’ in Barnett

and Lewis’s definition, and is the synonym of ‘the target distribution’ in Beckman and

Cook’s definition.

Although outliers are often treated as noise or error in many operations, such as

clustering, and discarded, they may have potential causes and bear useful information

that cannot be mined from other data that reside deeply inside clusters. It is not un-

usual that one man’s noise is another one’s signal. After identifying possible outliers,
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we may go further to study the underlying reasons why they happen and this knowledge

may be profitable. For instance, outliers may be produced by an incorrect assumption

of distribution. In such situations, further investigation for outliers can lead to a more

appropriate statistical model, which, in turn, leads to a more appropriate statistical

inference. Occasionally, the presence of outliers indicates more information than being

assumed. This is often true in exploratory data analysis, for at least three structures,

cluster, complete spatial random (Poisson) process and regular spacing are often simul-

taneously present in the data. So in a way, finding outliers is at least as important as

finding general patterns like clustering structure. Outlier detection has already found

practical application including discovering crime in e-commerce, discovering computer

intrusion, detecting credit card fraud, etc.

There are many similar problems in other fields. For instance, in association rule

mining, an outlier is an interesting rule and the outlier factor is the interestingness. The

rule’s interestingness can be measured in terms of its unexpectedness, i.e., how much

it changes the current belief of the whole system of all mined rules so far [92, 119]. In

pattern classification, data from rare classes can be regarded as outliers [1]. The outlier

factor is associated with the increase in the error rate after introducing it, i.e., how

much it defies the current constructed classifier based on those data from major classes.

5.1.2 Problem Formulation

Now we give the formal formulation of outlier detecting problem. Given a labeled dataset

partitioned as outliers and non-outliers, the problem of detecting outliers is essentially

an unsupervised 2-class classification problem with class labels unknown to the classifier.

• Given

A dataset X = {(xi, ωi)}n
i=1, where xi ∈ �d and ωi ∈ {ωo(outlier), ωn(non-outlier)}.
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• Find

A mapping function f : X → �+, i.e., f maps each data point to a positive value

regarded as the outlier factor, the degree of outlyingness.

• Objective

∀xi,xj , ωi = ωo
∧

ωj = ωn ⇒ f(xi) > f(xj), i.e., any outlier’s factor must be

greater than all non-outliers’ factors.

• Constraint

Class labels {ωi}n
i=1 are unknown to the learner.

If the ranking of outliers is available, a more demanding requirement would be that

if an outlier is known to be more outlying than another outlier, its outlier factor by f

must be greater than another’s.

5.2 Related Work

Most outlier detection techniques handle outliers where all attributes of the object are

treated equally, i.e., each object with d continuous attributes is regarded as a point

in �d. In the rest of this chapter, we will sometimes use word like object, data point

and event interchangeably, provided no ambiguity occurs. Generally speaking, outlier

detection techniques can be divided into the following categories: distribution-based,

depth-based, distance-based and density-based.

Distribution-based methods often handle one dimensional data and are mainly devel-

oped in the statistical field [7]. They assume a statistical distribution such as Gaussian

and try to fit the data to the model by estimating the parameters such as mean and

variance from the data. They vary in terms of type of distribution, number of outliers

to be identified and type of outliers. Then they employ a test based on the distrib-
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ution property to identify outliers w.r.t. this distribution. For a dataset of n values,

{xi : i = 1...n}, let µ̂ denote sample mean and σ̂ sample standard deviation, then the

z-score of a point x is z(x) ≡ (x − µ̂)/σ̂. For data from Gaussian like distributions,

z(x) ∼ N(0, 1), and one popular test labels x outlier if its absolute z-score exceeds 3,

i.e., |z(x)| > 3. Obviously, this test targets those points on the distribution tail. [130]

gave an online approach, using Gaussian mixture to model the data. As new datum

is read, the model is modified to maximize likelihood and the new datum’s outlying-

ness is measured in terms of difference between the new and the original distribution.

In reality, prior knowledge about the distribution of the dataset is not always avail-

able. Furthermore, it is hard to justify model selection in advance, e.g., Gaussian over

exponential.

Depth-based approaches [113, 75] employ computational geometry to compute dif-

ferent layers of convex hulls and declare those objects in the outer layer as outliers.

However, they suffer from the dimensionality curse and cannot cope with large dimen-

sion [24].

The remaining two categories are capable of dealing with multi-dimensional data

and are mainly developed in the database community recently. They are closely related

to the corresponding clustering algorithms that try to find the general pattern followed

by the majority of the data. In fact, given a clustering algorithm with a function to

measure its clustering quality, a naive algorithm for calculating outlier factor can assign

each point a value that equals the absolute difference between the original clustering

quality and the new clustering quality after removing that point. Further consideration

will also include the clustering complexity, e.g., number of clusters. This is related to

finding the best model fitted to the data with the criterion of minimum description

length, where clustering quality corresponds to the likelihood of the data and clustering
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complexity corresponds to the model complexity.

Distance-based techniques distinguish points which are likely to be outliers from

others based on the number of points in their neighborhood. They do not assume any

prior distribution of the data and limit the counting of points to the neighborhood of

each point. These properties make them suitable for finding outliers in large datasets.

Corresponding to clustering algorithms that find convex clusters [82, 100], one well-

known technique is DB(p, d)-outlier [85], where a point in a dataset T is an outlier if

at least p fraction of points in T lie greater than distance d from it. A special case of

DB(p, d)-outlier is proposed in [106], where the distance to the k-th nearest neighbor is

used to rank the outlyingness. The strength of this definition includes simplicity and

capture of the basic meaning of Hawkins’ definition. However, it cannot handle data

with different local densities and hence can only find global outliers. Besides, the user’s

parameters, such as p, d, k, are hard to determine beforehand.

Density-based approaches focus on the local density comparison only with the imme-

diate neighbors. They come in two classes, subspace and full space. Sometimes, a point

could reside in a low density region only in a subspace, which is obtained by projecting

the original full space onto one of its subsets. Corresponding to clustering algorithms

capable of finding clusters in subspace [2], [1] considered such situations and searched

for all possible subspaces where there are regions with much lower density than the rest

of the subspace. All points in those low density regions are declared as outliers. [84] also

considered subspace and tried to explain why a point is outlying in terms of intensional

knowledge by finding the minimal subspace where it is outlying for the first time.

5.2.1 Local Outlier Factor

Because we mainly compare our approach against local outlier factor (LOF) [15], we

introduce it here in some detail. Corresponding to clustering algorithms capable of
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finding arbitrary shape clusters [25, 5] in the full space, Breunig et al. [15] proposed the

notion of LOF, which measures the degree of outlyingness, based on the difference in

the local density of a point and its k nearest neighbors. Generally speaking, DB(p, d)-

outlier can only find global outliers that lie far away from all spherical clusters. As

demonstrated in [15], DB(p, d)-outlier cannot detect local outliers w.r.t. a neighboring

dense cluster in presence of another very sparse cluster. The reason is that although the

local density of the outlier can be lower than those inside the neighboring high density

cluster, it may be comparable to those inside the sparse (low density) cluster. However

parameters are tuned in DB(p, d)-outlier, to successfully predict the true outlier, a large

portion of points in the sparse cluster will also be classified as outliers. LOF solves this

problem by thinking locally, i.e., comparing local density of the outlier only with those of

its neighboring points. Essentially LOF consists of three definitions in Eqs. (5.1,5.2,5.3).

Eq. (5.1) defines the reachability distance of an object p w.r.t. another object o, denoted

by rdk(p, o), where dk(o) denotes the distance from o to its k-th nearest neighbor and

d(p, o) denotes the distance from p to o. Local reachability density of p, denoted by

lrdk(p), is defined in Eq. (5.2), where Nk(p) denotes k-th order neighborhood of p. For

those p close to o, i.e., dk(o) > d(p, o), the usage of reachability distance instead of

pure distance smooths lrdk(p) by making o’s contribution the same, i.e., always using

dk(o) instead of d(p, o). LOF of p w.r.t.k is defined in Eq. (5.3) as the average ratio

of its neighbor’s density over p’s density. If points inside the cluster are approximately

uniformly distributed, their local reachability density will be similar and hence their

LOF will be close to 1. For an outlier outside the cluster, its local reachability density

will be lower than those of its neighbors inside the cluster and its LOF will be higher

than 1. So LOF ranks points in descending order of their LOF and those on the top are

declared as local outliers.
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rdk(p, o) ≡ max{dk(o), d(p, o)} (5.1)

lrdk(p) ≡ |Nk(p)|∑
o∈Nk(p) rdk(p, o)

(5.2)

LOFk(p) ≡
∑

o∈Nk(p) lrdk(o)/lrdk(p)

|Nk(p)| (5.3)

The weakness of LOF is that it cannot detect outliers whose local density is higher,

not lower, than those inside the neighboring pattern. Such a pattern may consist of a

set of regularly spaced points that have lower densities than their neighboring outliers.

The introduction of the outlier significantly breaks the regularity and increases the local

densities.

5.3 Patterns Based on Complete Spatial Randomness

5.3.1 Complete Spatial Randomness

As we mentioned above, whenever we declare a data point an outlier, we always imply

some pattern w.r.t. which it is outlying. According to Webster’s dictionary, a pattern

is ‘a natural or chance configuration, or a reliable sample of traits, acts, tendencies, or

other observable characteristics’. Extremely speaking, anything can be a pattern, or

show some kind of pattern, to be more exact. For example, a point x ∈ �d can define a

pattern with itself, i.e., any point y ∈ �d follows this pattern if y = x and otherwise it is

an outlier. Complete Spatial Randomness (csr) refers to a lack of structure in the spatial

point process, where events (points regarded as realization of events) are uniformly

distributed in the study region A ⊂ �d. For any sub-region B ⊂ A, the probability

that it contains at least one event is equal to the ratio of its volume over the total

volume, i.e., |B|/|A|, where | · | denotes volume. This probability is independent from

B’s location and shape. This kind of spatial point process is also called homogeneous

Poisson process, because the number of events in B follows a Poisson distribution and
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the intensity is the same everywhere in the study region. Formally, if ds denotes an

infinitesimal region located at s, N(B) denotes the number of events in B ⊂ �d, then a

point process is a homogeneous Poisson process provided the following conditions hold

[20]:

1.

lim
|ds|→0

1 − P (N(ds) = 0)
|ds| = lim

|ds|→0

P (N(ds) = 1)
|ds| = λ

where λ is the intensity (density) of the process and it is the same for all s ∈ �d. If

it is replaced by λ(s), i.e., a function of s and could vary, then the process becomes

an inhomogeneous Poisson process.

2. N(ds1), ..., N(dsm) are statistically independent for any disjoint sequence of re-

gions ds1, ..., dsm.

N(B) can be approximated with a binomial distribution with parameters n =

|B|/|ds|, p = λ|ds|. As |ds| → 0, N(B) converges to a Poisson distribution with mean

lim|ds|→0 np = λ|B|. Apparently it does not depend on B’s location and shape. Further-

more, given N(B) = n, n evens are independently and identically uniform distributed

over B. For any two disjoint regions B1 and B2, N(B1) and N(B2) are independently

Poisson distributed. A particular realization of a homogeneous Poisson process with

N(B) = 100 and |B| = 10× 10 is given in Fig. 5.1(a). Note that it may seem clustered

to untrained eyes due to its inherent randomness. If we strictly place those points with

equal interval, it forms another structure called regular spacing.

5.3.2 Clustering and Regularity

A cluster with arbitrary shape can be defined as a set of points with similar densities that

are significantly higher than those of points in its immediate surrounding area. Both
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Figure 5.1: (a-c) illustrate three structures respectively, complete spatial randomness,
clustering and regularity. (d) shows their ratios vs k.

homogeneous and inhomogeneous Poisson processes have been used for cluster analysis

in classification of remote sensing images [107]. Such a cluster has two properties [25]:

maximum and connectivity. It is maximal in that any extension to it by including

neighboring additional points will lead to a significant decrease in overall density. It is

connective in that for any two points belonging to the cluster, there is a path linking

them which consists only of the cluster points. Two clusters C1 and C2 are shown in

the lower left and upper right corners of Fig. 5.1(b), where C1 has 20 points uniformly

distributed in a 1 × 1 area and C2 has 80 points uniformly distributed in a 2 × 2

area. Compared to csr, clustering means that points tend to attract one another and

consequently, the average nearest neighbor distance is smaller than that of csr.

Fig. 5.1(c) illustrates 100 points regularly spaced with approximately 1 intervals

in both horizontal and vertical directions. Note that we add Gaussian noise with zero

mean and small deviation (σ = 0.01), after positioning points at constant 1 intervals.
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In spite of the Gaussian noise, the difference between it and csr in Fig. 5.1(a) is still

obvious. In a way, regular spacing can be regarded as a special cluster in that the points

are distributed so uniformly that it shows too little randomness. Compared to csr,

regularity means that points tend to push one another. As a result, the nearest neighbor

distance is approximately the same for all points and is larger than its counterpart in

csr. Besides, for each point and some small j (e.g., j = 4 in Fig. 5.1(c)), its k-th (k ≤ j)

nearest neighbor distances are usually also the same.

In addition to csr, clustering and regularity, with inhomogeneous Poisson process at

hand, any pattern (distribution) can be described, as long as we can divide study area

into enough sub-areas each of which can be modeled by csr. For instance, points from

Gaussian distribution can be partitioned into subsets each of which is a contour in terms

of pdf. Over each contour, points follow csr.

5.3.3 Identifying Clustering and Regularity

Let Vk denote the random variable of the hyper-sphere volume centered at a randomly

chosen point in B ⊂ �d, with radius equal to the distance to its k-th nearest neighboring

object. Note that it does not matter whether there is an event (object) happening at

that point location. Imagine we inflate a sphere centered at that point by increasing

the radius, as more and more nearby objects get enclosed, Vk is the volume of the

sphere reaching the k-th object. By assuming the distribution of the objects follows

csr (homogeneous Poisson process) with constant intensity λ, the random variable Vk

actually has a gamma distribution with parameter (k, λ), i.e., Vk ∼ Γ(k, λ) [111]. If the

randomly chosen point above is replaced by a randomly chosen object, the distribution

of the corresponding random variable remains the same, specified by its pdf in Eq. (5.4)

(Γ(·) is the Gamma function), together with expectation and variance given by Eq.

(5.5).
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f(vk) ≡ λe−λvk(λvk)k−1

Γ(k)
(5.4)

E(Vk) =
k

λ
, Var(Vk) =

k

λ2
(5.5)

Based on the expectation, we propose a technique to identify the data structure

by telling us whether it is csr, clustering or regularity. Furthermore, in the case of

clustering with csr inside each cluster, it can tell the minimum cluster size. Given a

dataset {xi ∈ �d}n
i=1, after collecting the volume Vk = πd/2Rd

k/Γ(1 + d/2) (Rk is the

distance to the k-th nearest neighbor) for each datum and estimating the total intensity

λ, we compute the ratio of the expectation of Vk over the observed one (averaging Vk

for all data) and compare this ratio to 1, as in Eq. (5.6).

R(k) ≡ k/λ
1
n

∑n
i=1 Vk

(5.6)

R(k) ≈ k/λ
1
n

∑m
j=1

njk
λj

(5.7)

The ratio R is obtained at multiple k. Then we can draw a figure of R versus k and

identify the structure based on the following three properties:

1. If R is approximately close to 1 at all k, the data structure is csr.

2. If R is significantly less than 1 at small k, e.g., k = 1, 2, the pattern is regularity.

Because the nearest neighbor distance of regularity is larger than csr, such relation

also holds for the volume.

3. If R is significantly greater than 1 at many k, especially at small ones, the pattern

is clustering. The reason is that its nearest neighbor distances are smaller than

csr, which also leads to smaller volume at small k. Besides, if there are multiple
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clusters, R will initially remain nearly constant as k grows, and drop sharply when

k reaches the minimum cluster size.

The ratio R for three datasets in Fig. 5.1(a,b,c) is illustrated in Fig. 5.1(d) with

λ̂ = 100/(10 × 10). As expected, R for csr in Fig. 5.1(a) is close to 1 for all k. For

regularity in Fig. 5.1(c), R is significantly smaller than 1 at k = 1, 2 and close to 1

at k = 3. It means that under csr, the average distance to the 3rd nearest neighbor is

close to 1. For clustering in Fig. 5.1(b), R’s curve is relatively flat as k < 20, and drops

radically at k = 20, the smaller cluster C1’s size. The reason is that at k = 20, the 20-th

nearest neighbor of every point in C1 is in C2, which means their Vk no longer follows

Γ(k = 20, λ = 20/(1 × 1)). Generally, suppose the dataset consists of m disjointed

clusters {Cj(nj , λj)}m
j=1, where nj and λj are the j-th cluster size and intensity, and

n1 ≤ ... ≤ nm. Under csr inside every cluster, we can approximate the sample mean

of Vk, the denominator in Eq. (5.6), with the denominator in Eq. (5.7). That is,

replacing the sum of Vk in every cluster with the expected value. Consequently, R in

Eq. (5.7) is independent of k and remains constant till the replacement is no longer

valid at k = n1 when the k-th nearest neighbor of every point in C1 is no longer in C1

and the corresponding Vk no longer follows Γ(k, λ1).

5.4 Detecting Pattern-Based Outliers

A data point could be outlying w.r.t. a nearby high density pattern cluster because

its own density is relatively low. This case is shown in Fig. 5.2(a), where there are

two clusters, one dense C1 and a sparse one C2. Densities illustrated in Fig. 5.2(b) are

obtained with a Gaussian kernel function f(x) =
∑n

i=1 exp(−d2(x, xi)/(2σ2)), where

σ = 1 and d(x, y) denotes the Euclidean distance between x and y. Point O2 is a global

outlier because its density is lower than both clusters and it can be detected by both
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Figure 5.2: (a-c) illustrate cluster-based outliers, their density, and LOF (k = 2). (d-f)
show regularity-based outliers, their density, and LOF (k = 1, ..., 10).

DB-outlier and LOF. Point O1 is a local outlier w.r.t. C1 because its density is lower

than C1 but comparable to C2. Only LOF can detect it, as shown in Fig. 5.2(c). On

the other hand, a data point could also be outlying w.r.t. a nearby low density pattern

regularity, because its own density is relatively higher than neighboring points belonging

to the regularity. This situation is shown in Fig. 5.2(d) where two outliers, O1 and O2,

have densities higher than most of points of the pattern, a 3 × 3 grid of nine points,

as demonstrated in Fig. 5.2(e) with the same kernel function. Fig. 5.2(f) proves that

LOF cannot detect them by making their outlier factors simultaneously higher than all

regularity points. In fact, R2’s LOF is consistently higher than that of both at all k

except k = 2 where R1 takes the lead.

Combining the two situations, we can conclude that a data point may be outlying
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because its density is lower (higher) than a nearby high (low) density pattern. In other

words, it is outlying because its density is different from those of most of neighbors

belonging to the pattern. At this time the sample variance of Rk and consequently Vk is

expected to be high. This observation leads to our approach to detecting local outliers

based on Variance Of Volume (VOV). First, we formally define the k-th nearest neighbor

distance dk(x) and the k-th order neighborhood Nk(x) in case of multiple data at the

same distance to the current query data point. For a dataset X = {xi}n
i=1, dk(xi) is the

distance d(xi, x) from xi to another data point x ∈ X with the following two conditions:

1. |{x : x ∈ X − {xi}, d(xi, x) ≤ dk(xi)}| ≥ k,

2. |{x : x ∈ X − {xi}, d(xi, x) < dk(xi)}| < k.

Consequently, Nk(xi) ≡ {x : x ∈ X,x �= xi, d(xi, x) ≤ dk(xi)}. Then, our local

outlier factor VOV can be computed as follows.

1. For each data point xi, i = 1...n, retrieve its k-th neighborhood Nk(xi). For each

data point x ∈ xi ∪ Nk(xi), compute Vk, the hyper-sphere volume centered at it

with radius equal to dk(x), the distance to the k-th nearest neighbors.

2. Compute the sample variance of Vk and assign it as the VOV outlier factor to xi.

The resulting formal definition of VOV is given by Eq. (5.8), with N+
k (xi) ≡ xi ∪

Nk(xi).

Vk(xi) ≡
∑

x∈N+
k (xi)

Vk(x)

|N+
k (xi)|

V OV (xi) ≡ S2(xi) =

∑
x∈N+

k (xi)
(Vk(x) − Vk(x))2

|N+
k (xi)| − 1

(5.8)
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5.4.1 Properties of VOV

The sample variance S2 is itself a random variable. For data belonging to the pattern,

it is preferred that E(S2) be smaller than those of outliers. Besides, Var(S2) is also

preferred small, which is achieved by usage of reachability distance instead of pure

distance in LOF. If the pattern is regularity, it is easy to see that for some appropriately

chosen small k, VOV is 0 for pattern points (approximately 0 if data are approximately

regularly spaced). If the pattern is clustering, for simplicity, we assume |N+
k (xi)| = k+1,

since for high dimensional data in reality, it is rare that multiple data stand at the same

distance from another data point. In this case, for cluster (csr inside with intensity λ)

points, E(S2) = k/λ2. If k is relatively large, gamma distribution can be approximated

by Gaussian distribution and it can be shown that λ2S2 follows a chi-squared distribution

χ2
k with k degrees of freedom [111], so Var(S2) ≈ 2k/λ4.

From S2’s expectation and variance, we can see that k cannot be large. On the other

hand, k cannot be too small. Suppose there are two outliers closest to each other, then

their VOV are both 0 at k = 1. A method to choose k is based on the figure of ratio vs

k in Eq. (5.6), where we use it to identify patterns. Based on that figure, we can find

the minimum cluster size and therefore, k can be chosen at a value a little less than the

minimum cluster size but still larger than the outlier cluster size, if multiple outliers

really lie together. At that value k, for cluster points, their k-th nearest neighbors are

still in the same cluster and hence Vk still follows a gamma distribution. For outliers,

their k-th nearest neighbors are expected to lie in the nearby clusters and Vk does not

follow a gamma distribution, Otherwise, those outliers themselves form a cluster of size

k + 1 and it is not reasonable to regard them as outliers.

The remaining problem is how to estimate the total intensity or equivalently, how

to estimate the volume of bounding region that encloses the dataset. Ideally, we should
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compute the convex hull whose computation is complex and costs O(nlogn), where n

is the data size[24]. Because what we care is not the precise value of the ratio and the

intensity (λ̂ is fixed in Eq. (5.6)), but how the ratio changes, i.e., the minimum cluster

size k at which the ratio drops sharply. We can approximate it by selecting the minimum

of the volume of the isothetic rectangle and the encompassing sphere [83], both of which

can be computed in O(n). The former is just a hyper-rectangle orthogonal to the axes,

with the j-th side length being the difference between the maximum and the minimum

of j-th attribute over n data. The latter is the hyper-sphere centered at the midpoint

of the main diagonal of the rectangle with radius equal to the half diagonal length.

As for time complexity, VOV is similar to LOF and takes O(n × (kNN + k)) time,

where kNN denotes the time for a k nearest neighbors query. The dominant part,

O(n × kNN), is spent in collecting Vk and it depends on the particular implementation

of k nearest neighbors query, e.g., [48, 112, 10]. The remaining part O(nk) is used for

computing the sample variance of Vk.

5.5 Evaluation Criteria

The criteria evaluating outlier detection approaches can be divided into two parts: effi-

ciency and effectiveness. Good efficiency means the technique should be applicable not

only to small databases of just a few thousand objects, but also to even larger databases

with millions of objects. Time complexity of VOV is similar to LOF and its computation

can be divided into two steps. In the first step, VOV needs to retrieve the k-th order

neighborhood Nk(x) for each data point x together with their k-th nearest neighbor

distances. The running time of this step mainly depends on the time for a k nearest

neighbors query. In the second step, VOV computes the sample variance of the cor-

responding volume derived from the distance (radius) for each data point’s augmented
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k-th order neighborhood N+
k (x) (including itself) and it takes time O(n).

As for effectiveness, considering that the final user is human, a good approach should

require as few input parameters from the user as possible. Besides, these parameters

should have intuitive meaning (such as k) and thus make it easy for the user to deter-

mine. Ideally, a good approach will automatically detect the various patterns and the

corresponding outliers.

At this time, we should discuss some formal criteria. Given a labeled dataset par-

titioned as D = DO ∪ DN ,DO ∩ DN = ∅ where DO and DN denote outliers and

non-outliers respectively, for any outlier detection method M(θ) where θ denotes its

parameter vector to be determined, we say M(θ) is consistent with D if we can find

some particular estimate (values)θ̂ for θ such that M(θ̂) can correctly partition D [96].

Apparently, we prefer a method M that is consistent with more labeled datasets, as

long as that labeling is reasonable. For method comparison, M1(θ1) is said to be more

general than M2(θ2) w.r.t. an unlabeled dataset D if for any partition of D with which

M2(θ2) is consistent, M1(θ1) is also consistent with that partition. Naturally, we favor

a more general method. Similarly, many concepts in computational learning theory can

also be applied here. For instance, we say M(θ) shatters an unlabeled dataset D if for

any 2-class partition of D, we can always find some θ̂ such that M(θ̂) is consistent with

that partition of D. Thus we can define M ’s VC-dimension as the maximum size of D

that can be shattered by M . VC-dimension describes the complexity or flexibility of M .

However, high VC-dimension is not always preferred, for among the 2|D| partitions of

D, many are illogical, e.g., |DO| = |D| − 1, |DN | = 1. So a practical requirement for M

may be that it can detect a finite number of fixed patterns and allow the user to specify

in advance the patterns on which he/she hopes the detected outliers will be based.
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Figure 5.3: (a) shows a dataset with both cluster and regularity-based outliers. Its
density and VOV (k = 2) are illustrated in (b,c) respectively.

5.6 Experimental Evaluation

We test our VOV on both synthetic data and real data. On the former, we show that

with appropriately chosen k, VOV can simultaneously detect local outliers w.r.t. high

density cluster and low density regularity. On the latter, we compare VOV against LOF

on three datasets from the UCI repository.

5.6.1 Synthetic Data

A dataset is illustrated in Fig. 5.3(a) with a cluster in the top right corner and a

regularity in the bottom left corner. In addition, there are three outliers, including a

global outlier O1, a local cluster-based outlier O2 and a local regularity-based outlier

O3. The density with Gaussian kernel is shown in Fig. 5.3(b) and their VOV outlier

factors are shown in Fig. 5.3(c) with k = 2. We can see VOV successfully separates

outliers from pattern points and consequently is consistent with this labeled dataset.

Pattern point R(1, 1) has the largest VOV over pattern points and this is reasonable,

because its density is greatly increased by the presence of the neighboring outlier O3.

Detailed VOV values of outliers and R are shown in Table 5.1.
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Table 5.1: VOV of outliers Oi and R.

O1 O2 O3 R

52.6379 0.5779 0.0842 0.0632

5.6.2 Real Data

We choose from the UCI repository three datasets, ionosphere, Wisconsin diagnostic

breast cancer and Pima Indians diabetes, which vary a lot in data size and dimension.

All of them are of binary class, and we select all data from the majority class as non-

outliers and select the first m data in the original order from the minority class as

outliers such that in the resulting dataset the ratio of non-outliers over outliers is 9 : 1.

First, we draw the figure of ratio vs k in Figs. 5.4(a,d,g). Compared to the corre-

sponding csr with the same bounding region, we can see this ratio is far lower than 1,

i.e., the average k nearest neighbor distances are much larger than those under csr. This

confirms the assertion of sparsity of high dimensional data in [1]. For ionosphere data,

the maximum ratio is achieved at k = 7. For the other two, the ratio keeps decreasing.

So we choose k = 3, 7 for subsequent comparison.

After choosing k, both VOV and LOF provide a ranking of data in decreasing outlier

factor. We can choose top 100p% data T (p), compare them to the true outliers O (those

10%) by computing recall |T (p) ∩ O|/|O| and precision |T (p) ∩ O|/|T (p)|. In this case,

a larger recall also means a larger precision and we illustrate recall in Fig. 5.4. The

larger the recall, the better. To compare VOV and LOF, we concentrate on two aspects.

The first aspect is recall at small p, because it is the common practice in reality that

we usually select some top predicted outliers for further investigation. Furthermore,

the smaller p is, the more important the corresponding recall. The other aspect is the

minimum of p at which VOV and LOF achieve full(100%) recall. From these two aspects,
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Figure 5.4: (a) shows the ratio for ionosphere. Its LOF vs VOV is plotted in (b) for
k = 3 and (c) for k = 7. The corresponding values for cancer and diabetes are shown in
the middle and bottom rows, respectively.

we can see that VOV is consistently and significantly better than LOF on ionosphere

and cancer data, which implies these two datasets coincide with our definition of outliers

and assumption of csr inside clusters. As for diabetes data, our assumption is probably

no longer valid; however, VOV is still much better than LOF on the recall of small p.

VOV is consistently better than LOF at k = 3 and is slightly overtaken by LOF at

p ∈ [0.6, 0.8] with k = 7. These key values are shown in Table 5.2, including recall at

small p around 0.1 and the minimum p at which VOV(LOF) achieves 100% recall.

To further analyze the prediction set, we divide T (p) into three subsets: intersection

of true positive (T (p) ∩ O) between LOF and VOV, difference of true positive, and

false positive (T (p) − O). Roughly speaking, true positive intersection includes those

cluster-based outliers both LOF and VOV are able to detect. True positive difference

of VOV can be interpreted by those regularity-based outliers that LOF fails to detect.

The fraction of these three subsets at four values of p is shown in Fig. 5.5. We can see
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Table 5.2: VOV vs LOF on the three datasets.

k = 3 k = 7
ionosphere: p 0.10 0.20 0.38 0.98 0.10 0.15 0.20 0.52

LOF 0.68 0.84 0.96 1.00 0.64 0.80 0.88 1.00
VOV 0.88 0.96 1.00 1.00 0.84 0.96 1.00 1.00

cancer: p 0.10 0.20 0.65 0.98 0.10 0.15 0.20 0.52
LOF 0.33 0.56 0.77 1.00 0.38 0.54 0.82 1.00
VOV 0.74 0.90 1.00 1.00 0.72 0.92 1.00 1.00

diabetes: p 0.10 0.20 0.30 0.90 0.10 0.20 0.96 1.00
LOF 0.15 0.20 0.33 1.00 0.13 0.22 0.96 1.00
VOV 0.20 0.40 0.53 1.00 0.25 0.47 1.00 1.00

that at all p LOF fails to capture some true outliers discovered by VOV. As p increases

to 0.15, however, almost all true outliers predicted by LOF are also found by VOV.

In addition, since in �d the sphere volume Vk is derived from the radius Rk as

Vk = πd/2

Γ(1+d/2)R
d
k = CRd

k, we can obtain Rk’s density, expectation and variance, e.g.,

E(Rk) = (Γ(k + 1/d)/(k − 1)!)(λC)−1/d. Similarly, we can utilize the sample variance

of Rk to measure outlyingness. Experimental results on the three datasets show it is

slightly worse than that with Vk but still significantly better than LOF.

5.7 Summary

In this chapter, we first illustrated that there are at least two patterns, high density

cluster and low density regularity. Therefore, there are two kinds of corresponding

outliers w.r.t. them. Under assumption of csr inside clusters, we proposed a technique

to identify them, based on the volume of the sphere centered at each data point with

radius equal to its k-th nearest neighbor distance. Also based on the sample variance of

this random variable, we developed a VOV approach to detecting outliers. Experimental

results show our approach can simultaneously detect outliers w.r.t. both patterns and

is better than LOF in terms of recall on the three real datasets from the UCI repository.
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Figure 5.5: Comparison of makeup of prediction by LOF (left bar) and VOV (right bar).
TP∩, TP− and FP denote intersection of true positive, difference in true positive and
false positive, respectively.

One weakness of VOV is that its expectation for cluster points still depends on λ

and it is expected that VOV for points inside very sparse (small λ) could be higher than

a local outlier w.r.t. a dense cluster. A possible remedy to remove λ is to divide it with

squared sample mean, i.e., S2/Vk
2, since E(S2) = k/λ2 and E(Vk) = k/λ. However,

this is only valid for cluster points and it is hard to interprete the sample mean in

presence of outliers. Experiments show it leads to much poorer performance on the

three real datasets. In a way, it confirms again the assertion of [1] that in the sparse

high dimensional space, outliers from rare classes usually lie in regions of even lower

densities.



Chapter 6

CONCLUSION AND FUTURE
WORK

6.1 Major Results

This thesis has made several contributions to spatial data analysis, which are summa-

rized below.

In Chapter 2, we proposed hidden fusion in radial basis function (RBF) networks

for spatial regression. Assuming independent and identical distribution and ignoring

spatial information, conventional RBF networks usually fail to give satisfactory results

on spatial data. In contrast to input fusion, we pushed spatial autocorrelation further

into RBF networks by fusing output from hidden and output layers. Empirical studies

demonstrated the advantage of hidden fusion over others in terms of regression quality,

MSE. Furthermore, compared to conventional RBF networks, hidden fusion does not

entail much extra computation.

In Chapter 3, we developed a hybrid expectation-maximization (HEM) approach for

spatial clustering using Gaussian mixture. The goal is to incorporate spatial information

while avoiding much additional computation incurred by neighborhood EM (NEM) for

E-step. In HEM, early training is performed via a selective hard EM till the penalized

likelihood criterion no longer increases. Then training is turned to NEM, which runs

only one iteration of E-step. Thus spatial information is incorporated throughout HEM,

104
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which makes it achieve clustering results better than EM and comparable to NEM. Its

complexity is retained between EM and NEM.

In Chapter 4, we continued to study clustering, but at a higher level. Consensus

clustering aims to combine a given set of multiple partitions into a single consolidated

partition that is closet to them. First we proposed a series of entropy-based functions for

measuring distance among partitions. Then we developed two search methods for the

global optimal partition based on similarity-based graph partitioning. Given a candidate

set of partitions, the centroid partition will be probably top/middle-ranked in terms of

distance to the true partition, which we demonstrated on a variety of datasets.

In Chapter 5, we turned our attention from the majority of the data to the rare out-

liers who cannot be assigned to any cluster. Most algorithms target those outliers with

exceptionally low density, compared to nearby clusters of higher density. We showed that

besides high density clustering, there is another pattern, low density regularity. Thus,

there are at least two kinds of corresponding outliers w.r.t. them. We proposed two

techniques, one used to identify the two patterns and the other used to simultaneously

detect outliers w.r.t. them.

6.2 Future Work

6.2.1 Spatial Regression Using RBF Networks

Several issues are worth further study in spatial regression using RBF networks. One

concerns the performance criterion. We employed MSE where all sites receive equal

weight in the summation. In our RBF network model with data fusion, every site’s

prediction is actually a combination based on its own input and the prediction from

its neighbors. Naturally we hope that the prediction is more accurate at those sites

with more neighbors, since they contribute more often in others’ prediction. So it may
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be more appropriate to use a weighted least square criterion (y − Φw)T A(y − Φw),

where A could be a diagonal matrix with i-th diagonal element proportional to site si’s

neighborhood size.

In HF2 ρ appears only once as the weighting coefficient for the virtual neighbor

Wy and results in lower MSE compared to conventional RBF networks. To improve

performance further, we may try other types of hidden fusion, say, introducing a second

weighting coefficient for Φw, which leads to y = (1 − ρ)Φw + ρWy.

Finally, there are other candidate places where spatial information can be pushed

into RBF networks. For instance, the center selection, which is achieved with K-means

in our work, plays a vital role in regression performance and different clustering tech-

niques apparently would give different results [17]. However, they are all performed

in the attribute space and no spatial information is taken into account. A reasonable

anticipation is that data belong to the same center are also close in the spatial space,

provided spatial continuity exits. A more ambitious requirement is that the center label

can tell more about the dependent variable. This can be done by optimizing mutual

information I((Y, S),M) or conditional entropy H(Y, S|M), where M denotes the un-

known center label whose distribution needs to be estimated, Y denotes the dependent

variable and S denotes the spatial location. To make computation feasible, Y needs to

be discretized and S needs to be clustered, which poses additional challenges.

6.2.2 Spatial Clustering with HEM

There are several research directions of improving HEM for spatial clustering. First,

as in most EM style algorithms, the final result of HEM depends on initialization.

An online version of EM is introduced in [132] and its performance is invariant to

initialization. However, it is impossible to directly apply that algorithm to our problem,

for the penalty term cannot be factorized as likelihood. Second, it is worth trying other
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penalty terms, such as the derivative of likelihood. The general requirement is that

it should embody spatial information without entailing much trouble in optimizing the

penalized new criterion. Finally, as in NEM, choosing penalty term coefficient β remains

a main difficulty and it is highly desirable if we can automatically determine its optimal

value. This value may be chosen independently for each site by automatically weighting

its relative importance.

6.2.3 Online Approaches

The algorithms proposed in Chapters 2 and 3 to train mixture models for spatial re-

gression and clustering are batch-based, that is, we need to feed all the data into the

models simultaneously before the training can take place. For some real world appli-

cations, such complete and detailed information may be difficult and expensive, if not

impossible to obtain. Take the election data for example. It is nearly impossible to

take a nation-wide census within a very short time in a large country, so the results

usually come sequentially and we may need to train the model with only partial data.

Another scenario is that with a constructed model for a previous year, we need to train

the model for a new year whose data are not quite different from the old ones, because

econometric data generally vary slowly. In both, with only batch-based algorithms at

hand, we can only discard the old model and train all over again with the new data,

which is obviously uneconomical.

Such situations make it necessary to develop online approaches that are capable

of dealing with sequential or real-time data. The general idea is to deemphasize the

past data as new data come and, instead of discarding the old model, refine the model

based on learned experiences and the new data. Such learning is closely related to

the recurrent network with feedback loops [127] and reinforcement learning [77] with

indirect and delayed rewards. Both are mainly developed for temporal learning, that is,
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learning a sequence of data that is one dimensional in time. As Markov random fields

generalizes the one dimensional Markov model/chain, to learn spatial data sequentially,

we need to extend those algorithms from recurrent networks and reinforcement learning.

6.2.4 Consensus Clustering

There are two research directions for consensus clustering. One concerns the clustering

distance function. All distances we developed in Chapter 4 are based on d(X,Y ) =

H(X|Y )+H(Y |X), which is a special case of d(X,Y ) = αH(X|Y )+(1−α)H(Y |X) when

α = 0.5. If we know that some candidates are better than others, in computing distance

to this set, it may be more appropriate to use different values for α to emphasize those

better ones. We can also use different values to weigh d(X,Xm) in D(X, {Xm}M
m=1).

The other direction is about search methods, which are discussed in some detail

below.

At the resolution level of joint-clusters, some strategies for hierarchical clustering

are readily available, e.g., agglomerative (bottom-up) and divisive (top-down). The ag-

glomerative clustering starts at the bottom of clusters in
(
H1, ...,HM

)
and at each level

recursively merges two selected clusters that leads to decrease in distance. Intuitively,

we should first try those pairs that have non-empty intersection in some dimension, e.g.,

cluster (h1
1, h

2
1) and cluster (h1

1, h
2
2) intersects in dimension H1. The divisive clustering

starts at the top of one big cluster and at each level recursively splits one of existing

clusters into two new clusters to decrease the distance. Like the induction of decision

tree, for example, we can select an attribute-value pair (Hm, hm) to split the cluster into

two, depending on the new objects’ m-th attributes. The advantage of these hierarchical

methods is that they provide a chance to explicitly check the objective function. The

disadvantage is the computational cost, which may not be a problem for a set of similar

candidates.
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The above joint-cluster is a special case of micro-cluster. With a predetermined

threshold ε, a micro-cluster refers to any subset of data that are assigned to the same

cluster by at least a fraction ε of candidate clusterings. Thus a joint-cluster is a micro-

cluster with full support 1. By treating original data as items and each original cluster

in candidates as a transaction, frequent itemsets can be mined and they are used to

construct a weighted hypergraph. Each frequent itemset is a hyperedge whose weight is

its support, i.e., the fraction of candidate clusterings that assign all data in the itemset

together. Then the hypergraph partitioning algorithm hMETIS [79] can be employed

to partition the constructed hypergraph. Similar idea appears in [51] for clustering

customer transactions in a market basket database. Their goal is to use the result from

hMETIS, a clustering of items, to partition the transactions. The data in their problem

are very different from ours. A customer transaction often contains a small number of

items in contrast to the huge total item size. In our case, a cluster usually contains a

considerable fraction of total data.

If all candidate clusterings have approximately the same number of clusters, we can

assume that there is a one-to-one mapping between clusters in different candidates. The

similarity between two clusters in two different candidates respectively can be computed

with the binary Jaccard coefficient, i.e., the size ratio of their join over their union.

Then the pool of all clusters can be partitioned by METIS. The resulting cluster is

called macro-cluster, because it contains a few original clusters in different candidates.

Some score function is used to assign data to the closest macro-cluster, e.g., using the

number of occurences of data in all original clusters contained in the macro-cluster.

This is similar to multi-clustering fusion methods presented in [31, 36], where evidence

is accumulated based on combining intermediate results from an iterative clustering

algorithm.
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6.2.5 Finding Outliers: An Information Theory Perspective

From information theory perspective, an outlier can be regarded as the one with more

information, surprise, etc. Intuitively, given a dataset D and a new data point x, the

outlier factor of x can be defined as −log(P (x|D)), i.e., it is more outlying (surprising) if

the probability to predict it given D is smaller. Often we assume some class of parametric

distribution h for D and try to estimate P (x|h,D). But h is after all imaginary and it

is hard to verify if it is the true distribution governing the whole population. First, it

is difficult to justify our model selection, say, Gaussian over exponential. Besides, even

within the same class such as Gaussian mixture, it is much harder to determine the

number of components than the parameters inside each component [70]. In other words,

model selection is much harder than parameter estimation. This problem of selection

of the imaginary distribution (model) can be partially circumvented by looking at it

from another perspective of information criteria, such as Akaike’s information criterion

[3], minimum description length (MDL) [8] or stochastic complexity [109]. Generally,

MDL tries to represent an entire class of probability distributions as models by a single

universal representative model so that we are able to imitate the behavior of any model

in the class. Information contained by a dataset can be measured in terms of the code

length and the outlier factor can be measured in terms of the increase in the code length

after incorporating this new data point. Although this principle seems simple, it offers

a fundamental change in the way we model data, for we need not assume that they are

from an imagined distribution. According to this program, the problems of modeling

and inference no longer has to be estimating any true data generating distribution on

which we base the inference, but to search for good models for the data, where the

goodness is measured in terms of code length.

Therefore, if we want to find a universal approach to detecting all kinds of outliers
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with some theoretical justification, information theory is a good starting point. But is

it too ambitious? In a way, all work involved in pattern recognition, machine learning

and even statistics is nothing more than summarizing and modeling data and making

statistical inference. Perhaps it is more practical to first construct approaches for each

pattern separately. This is supported by Vapnik’s philosophy in his milestone book on

statistical learning theory [125]: ‘If you possess a restricted amount of information for

solving some problem, try to solve the problem directly and never solve a more general

problem as an intermediate step. It is possible that the available information is sufficient

for a direct solution but is insufficient for solving a more general intermediate problem.’
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Appendix A

Proof of Triangle Inequality

We give two proofs, the first purely based on inequality manipulation, the second using

decomposition with more descriptive flavor.

A.1 Proof by Manipulation

Triangle inequality in Eq. (4.6) is equivalent to

d(Y,Z) − d(X,Y ) − d(X,Z) ≤ 0

⇔ H(Y,Z) − H(X,Z) − (H(X,Y ) − H(X)) ≤ 0 (A.1)

⇔ (H(Y,Z) − H(Z)) − (H(X,Z) − H(Z)) − (H(X,Y ) − H(X)) ≤ 0

⇔ H(Y |Z) − H(X|Z) − H(Y |X) ≤ 0 (A.2)

where Eq. (A.1) is derived using Eq. (4.4). Before proving Eq. (A.2), we need the

following lemma: ∀x > 0, lnx ≤ x − 1, with equality only at x = 1. Its proof is very

simple by comparing derivatives.

Assuming X,Y and Z can take on values in {xi}, {yj} and {zk}, respectively, we

have
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H(Y |Z) − H(X|Z) − H(Y |X)

= −
∑

k

∑
j

p(zk)p(yj|zk)lnp(yj |zk) +
∑

k

∑
i

p(zk)p(xi|zk)lnp(xi|zk)

+
∑

i

∑
j

p(xi)p(yj|xi)lnp(yj|xi)

= −
∑

k

∑
j

p(yj, zk)lnp(yj|zk) +
∑

k

∑
i

p(xi, zk)lnp(xi|zk) +
∑

i

∑
j

p(xi, yj)lnp(yj|xi)

= −
∑

i

∑
j

∑
k

p(xi, yj , zk)lnp(yj|zk) +
∑

i

∑
j

∑
k

p(xi, yj, zk)lnp(xi|zk)

+
∑

i

∑
j

∑
k

p(xi, yj , zk)lnp(yj|xi)

=
∑

i

∑
j

∑
k

p(xi, yj , zk)ln
[
p(xi|zk)p(yj|xi)

p(yj |zk)

]

≤
∑

i

∑
j

∑
k

p(xi, yj , zk)
[
p(xi|zk)p(yj |xi)

p(yj|zk)
− 1
]

=
∑

i

∑
j

∑
k

p(zk)p(yj |zk)p(xi|yj , zk)
p(xi|zk)p(yj|xi)

p(yj |zk)
− 1

=
∑

i

∑
j

∑
k

p(zk)p(xi|yj, zk)p(xi|zk)p(yj |xi) − 1

=
∑

i

∑
j

∑
k

p(xi|yj , zk)p(xi, zk)p(yj |xi) − 1

≤
∑

i

∑
j

∑
k

p(xi, zk)p(yj|xi) − 1

=
∑

i

∑
j

p(xi)p(yj|xi) − 1

=
∑

i

∑
j

p(xi, yj) − 1

= 0

A.2 Proof by Decomposition

Triangle inequality in Eq. (4.6) is equivalent to

H(X) + H(Y,Z) ≤ H(X,Y ) + H(X,Z) (A.3)

If X is a single cluster or H(X) = 0, then H(X,Y ) = H(Y ) and H(X,Z) = H(Z).
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Figure A.1: Data of cluster xi (p(xi) = 1/5) in clustering X are distributed into two
clusters in clustering Y and three clusters in clustering Z, respectively.

From Eq. (4.1) we have Eq. (A.3) is true in this case.

If X contains more than one cluster, again we assume X,Y and Z take on values

in {xi′}, {yj} and {zk}, respectively. First we restrict our discussion on one particular

cluster xi with an illustrative example in Fig. A.1, where data in xi (p(xi) = 1/5) are

distributed into two clusters in Y and three clusters in Z, respectively. When restricted

to cluster xi of X, we can decompose H(X) as

H(X) =
∑
i′

p(xi′)ln[1/p(xi′)] = ... +
ln5
5

+ ...

Note that ln5
5 is the summand corresponding to cluster xi, which can be denoted by

H(X)|X=xi . Similarly, other terms in Eq. (A.3) can be decomposed as

H(Y,Z) ≤ H(X,Y,Z) =
∑
i′

⎡
⎣∑

j,k

p(xi′ , yj , zk)ln[1/p(xi′ , yj, zk)]

⎤
⎦ = ... +

ln20
5

+ ...

H(X,Y ) =
∑
i′

⎡
⎣∑

j

p(xi′ , yj)ln[1/p(xi′ , yj)]

⎤
⎦ = ... +

ln10
5

+ ...

H(X,Z) =
∑
i′

[∑
k

p(xi′ , zk)ln[1/p(xi′ , zk)]

]
= ... + (

ln10
10

+
ln20
10

) + ...

It is easy to check that when X = xi Eq. (A.3) is true for the corresponding

components, namely
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[H(X) + H(X,Y,Z)]|X=xi ≤ [H(X,Y ) + H(X,Z)]|X=xi (A.4)

since the left side is equal to 2ln5
5 + 2ln2

5 and the right side is equal to 2ln5
5 + ln2

2 . Eq.

(A.3) is proved if we can prove the above relation for every component for the general

case. Suppose that the cluster xi in X under examination has probability p(xi) = 1/a.

Then the corresponding components in every term of Eq. (A.3) can be written as

H(X)|X=xi =
lna

a

H(Y,Z)|X=xi ≤ H(X,Y,Z)|X=xi =
∑

l

qlln(
1
ql

),
∑

l

ql =
1
a

H(X,Y )|X=xi =
∑
m

rmln(
1

rm
),
∑
m

rm =
1
a

H(X,Z)|X=xi =
∑
n

snln(
1
sn

),
∑
n

sn =
1
a

where we use {ql}, {rm} and {sn} to denote the distribution of data of xi in other

clusterings. For instance, in the above example in Fig. A.1, {sn} = {1/20, 1/10, 1/20}.

By adding 21
a ln1

a to both sides of Eq. (A.4) for the general case, we have

[H(X) + H(X,Y,Z)]|X=xi + 2
1
a
ln

1
a

[H(X,Y ) + H(X,Z)]|X=xi + 2
1
a
ln

1
a

=
lna

a
+
∑

l

qlln
1
ql

+ 2
1
a
ln

1
a

=
∑
m

rmln
1

rm
+
∑

n

snln
1
sn

+ 2
1
a
ln

1
a

=
∑

l

qlln
1

aql
=
∑
m

rmln
1

arm
+
∑

n

snln
1

asn

=
1
a

∑
l

aqlln
1

aql
=

1
a

(∑
m

armln
1

arm
+
∑

n

asnln
1

asn

)

Note that
∑

n asn = 1 and hence
∑

n asnln 1
asn

is the entropy of a certain distribu-

tion. In fact this distribution is none other than the conditional distribution/clustering

(Z|X = xi). For instance, in the above example in Fig. A.1, {asn} = {1/4, 1/2, 1/4}.
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Similarly,
∑

m armln 1
arm

and
∑

l aqlln 1
aql

correspond to (Y |X = xi) and (Y,Z|X = xi),

respectively. For the example in Fig. A.1, these entropies are H(Y |X = xi) =

ln2,H(Z|X = xi) = 3
2 ln2,H(Y,Z|X = xi) = 2ln2. Therefore, from Eq. (4.1), we

have

∑
l

aqlln
1

aql
≤
∑
m

armln
1

arm
+
∑
n

asnln
1

asn

which means that Eq. (A.4) is true. Similarly, it is also true for every other cluster

of X and thus Eq. (A.3) is proved.


