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Summary 
 

Wireless sensor networks are data-centric networks that have direct interaction 

with physical environment. In these networks, micro-sensors collaborate to feed the 

network administrator with desired information related to the monitored physical 

environment. In order to extract meaningful information from the network, some sensing 

data need to be stamped along with position information. However, localization is not an 

easy task due to challenges in the sensor networks such as cost, sensor size, resource 

shortage, and energy limitation.  

Hop-count based localization algorithms offer a feasible solution despite these 

network constraints. Positioning based on hop-count is simple and distributed. In multi-

hop sensor networks, the distance progressed by a broadcast is almost equivalent to the 

transmission range of the transmitting node. Thus, counting the minimum number of 

packet broadcast, i.e., hop-counts, between two nodes can be used to approximate the 

distance between the two communicating nodes. Besides, sensors usually have low 

mobility. During the period between hop-counts are disseminated and hop-counts are 

obtained by each node, the node positions do not change considerably. Thus, the linear 

relationship between hop-count and distance is consistent over time. Therefore, hop-count 

technique is suitable for localization in multi-hop and low-mobility wireless sensor 

networks.  However, there are issues to be solved before they can be applied extensively 

in different sensor network scenarios. 

We identify two potential issues with conventional hop-count localization 

algorithms. Firstly, localization accuracy is not guaranteed for non-uniform and sparse 
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networks. Localization are usually designed based on the assumption that the network 

distribution is uniform and dense. In such scenario, the distance progressed by one hop 

(i.e., hop-distance) can be associated with a constant range. However, in non-uniform 

networks, if constant hop-distance is used, the accuracy of distance estimation tends to 

degrade. This is because the actual hop-distance tends to be variable from one hop to 

another hop. We call this first issue as density issue.  

Secondly, error in distance estimation tends to accumulate with the increase of 

hop-counts. By advancing one hop, the actual progressed distance is either less than or 

equal to transmission range. This disparity is accumulated with the increase of hop-count. 

Besides, with the increase of propagation path length, the probability of achieving a 

straight and direct end-to-end propagation path decreases. A winding path tends to 

accumulate more hop-counts. Thus, a node that is positioned far from a reference point 

tends to accumulate more errors. This issue is called path length issue in this thesis. 

Realizing that these two issues have not received much research attention, a novel 

Density-aware Hop-count Localization (DHL) algorithm is proposed. In our algorithm, the 

distance advanced by each hop is not necessarily linearly proportional to one hop-count. 

Instead, a range ratio parameter, which is based on the surrounding density of a 

transmitting node, is used to estimate the hop-distance from the node. This effectively 

reduces distance overestimation. In addition, a ‘Confidence Level’ is associated with each 

estimated distance. If more hop-counts is accumulated in hop-count propagation, the 

corresponding estimated distance is associated with a lower confidence rating. Then, a 

node can select the estimated distances with high confidence levels to compute its position 

by method like triangulation [31]. 
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Chapter 1   Introduction 

 
1.1 Localization Challenges in Wireless Sensor Networks 

In ad hoc wireless sensor networks [1][9][12][13], hundreds or thousands of tiny 

sensors are scattered randomly over an area to perform coordinated surveillance or to 

monitor environmental phenomenon [7], such as temperature, humidity, pressure and 

many others. In many cases, in order to extract meaningful information, gathering 

sensing data alone is not sufficient; this collected data needs to be complemented with 

position information. For example, position information is essential in acquiring the 

origins of events, to assist querying of sensors, to discover network coverage and to track 

target movements. However, the inherent characteristics of wireless sensor networks 

make acquiring this position information a challenging issue.  

Position estimation in wireless sensor networks is not an easy task due to network 

constraints like lack of infrastructure, cost, form factor, limited computation and 

communication capabilities, and finite energy supply. In designing a localization 

algorithm, some influencing factors need to be taken into consideration. A localization 

algorithm should be (a) distributed (i.e., does not rely on some powerful nodes to do 

centralized computation), (b) self-organizing (i.e., does not rely on preinstalled 

infrastructure or set up), (c) robust (i.e., tolerant to network dynamisms like node failure), 

(d) energy-efficient (i.e., does not incur large computation and communication 

overheads), and (e) scalable (i.e., practical for large number of nodes). Given these design 

objectives, hop-count based localization fits into the picture since it meets these 

requirements. Thus, hop-count based localization can offer a feasible solution to wireless 
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sensor networks. However, there are issues that need to be resolved before hop-count 

based localization can be applied widely in the ad hoc sensor networks.  

For conventional hop-count based localization, the major concern comes from the 

need for a dense and uniformly distributed network (i.e., each node has high and similar 

number of neighbors). If this network requirement is fulfilled, distance propagated by one 

hop is consistent and approximately equals to transmission range. Thus, hop-counts can 

be used to gauge the distance between two nodes. However, in a sparse or non-uniformly 

distributed network, the distance progressed by each propagation is not consistent. Thus, 

the relationship of hop-count being linearly mapped to progressed distance is not always 

true in sparse or non-uniform networks. In this thesis, the problem in localization caused 

by non-uniform node distribution is referred to as density issue. To address this issue, it 

calls for the consideration for density awareness in hop-count based localization.  

Second issue of concern is error accumulation over long propagation path 

(henceforth referred to as path length issue). Error accumulates when hop-count is 

incremented over multiple hops. This error arises because each hop-distance is 

considered as equivalent to one transmission range, but commonly, the actual hop-

distance is less than that, i.e., the distance advanced by propagating one hop is not exactly 

equivalent to one transmission range. Over a long propagation path, the disparity 

accumulates and the cumulative error becomes increasingly significant. Besides, the 

probability of finding a straight and direct propagation path over a long path diminishes. 

A winding path tends to accumulate more unnecessary hop-counts than a direct path.  

Consequently, a sensor node that is positioned far from a reference point tends to pile up 

more errors. 
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In addressing these two primary issues, our algorithm has two phases. The first 

phase, Density-aware Phase, deals with density issue where the algorithm strives to 

integrate density-awareness while propagating hop-counts throughout the network. The 

hop-count increment incorporates the parameter of local density, i.e., a sensor node’s 

connectivity per unit transmission coverage. The second phase, Path length-aware Phase, 

deals with path length issue where each estimated distance is associated with a 

confidence rating. When a node computes its position using methodologies like 

triangulation, it selects those estimated distances with high confidence, i.e., distances that 

are computed from less hop-counts.    

The driving design factor of the algorithm is to address the two above mentioned 

issues and to deliver reliable estimated positions to sensor nodes in sparse and non-

uniform networks.  

 

1.2   Conventions Used in Thesis 

To ease explanation, some variables are represented in specific terminologies or 

annotations in this thesis. This section explains and clarifies the meaning of these 

representations and symbols. 

Localization may be defined as the process of determining an object’s position 

relative to a particular coordinate system. It can also be regarded as the process of 

discovering spatial relationship among objects. Localization has also been referred to as 

locationing, positioning, location estimation, position estimation, location discovery and 

position discovery in the literature.   
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In wireless sensor networks, localization can leverage on a few specific nodes 

with a priori known positions, henceforth known as reference nodes, to jump-start the 

position discovery process. These nodes are readily equipped with location information at 

the beginning of network deployment. The location information can be pre-programmed 

or pre-coded into the memory of these nodes. Alternatively, special hardware can be 

attached to the nodes. Another method is to place the reference nodes deliberately at 

specific positions. Reference nodes are also known as beacons [35][37], GPS nodes, seed 

nodes [26], landmarks [27][29], or anchors [34] in the literature.  

The rest of the nodes that do not have a priori knowledge of their locations are 

simply known as “sensor nodes”, “sensors” or “nodes”. The sensor nodes can compute 

their positions with respect to the reference nodes in a certain global coordinate system or 

an independent relative coordinate system.  

To characterize a network, the following annotations are used in algorithm 

description. 

• Hop-counts, HC 

• Number of neighbors of a node, Nngbr 

• Radio transmission range of a node, R 

• Total number of nodes in the network, N 

• Total number of reference nodes in the network, K 

 

1.3   Objectives and Contributions 

  Wireless sensor networks are data-centric networks. In these networks, sensors 

collaboratively feed the network administrator with desired information related to the 



 5

monitored environment. In order to extract meaningful information from the network, 

some sensing data need to be stamped along with position information. However, 

traditional localization algorithms do not provide straightforward solutions due to 

constraints such as cost, sensor size, resource shortage, and energy limitation. Hop-count 

based localization algorithm offers a feasible solution despite these network constraints; 

however, there are issues to be solved before hop-count localization can be applied 

extensively in different network scenarios. 

The principal objective of this work is to develop a hop-count based localization 

algorithm that is capable of providing position estimations to nodes in ad hoc wireless 

sensor networks even though the node distribution is non-uniform or the node density is 

low [39]. Also, we seek to reduce errors in position estimation introduced by long 

propagation path [40]. Besides achieving these main goals, we seek to develop a 

localization algorithm that fulfills the criteria of being simple, distributed, robust and 

energy-efficient.  

The main contribution of our work [39][40] is to identify two potential issues that 

have not received substantial research attention but have great impacts on conventional 

hop-count based localization algorithms that are designed for ad hoc sensor networks. 

The issues are listed as follows: 

 (i) Density issue: Localization accuracy is not guaranteed for non-uniform and 

sparse networks;  

(ii) Path length issue: Cumulative error in distance estimation becomes significant 

for long hop-count propagation path (especially common in large networks with small 

number of reference nodes). 
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We develop a localization algorithm [39][40] that provides better position 

estimation for sensor nodes when the node distribution is sparse or non-uniform. We also 

improve the accuracy of position estimation for sensor nodes that are located far away 

from the reference nodes.  

 

1.4   Scope and Outline  

The rest of the thesis is organized as follows. Chapter 2 covers the introductory 

background of wireless sensor networks and localization algorithms that are commonly 

used in ad hoc networks. Some common position computation methodologies are also 

explained. Chapter 3 analyzes localization issues caused by non-uniform node 

distribution and long hop-count propagation path. It reviews the factors that can cause 

non-uniformity in network distribution. It also investigates the impacts of network non-

uniformity and long path on localization accuracy. It presents and explains the Density-

aware Hop-count Localization (DHL) algorithm that has been developed.  Subsequently, 

Chapter 4 reports and interprets the experimentation performed to verify the algorithm 

presented in Chapter 3. Chapter 5 concludes the work with discussions on possible future 

works.  
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Chapter 2    Background and Related Works 

This chapter gives an introductory background on ad hoc wireless sensor 

networks and related works on localization. Section 2.1 discusses the applications of 

sensor networks as well as the differences between sensor networks and ad hoc networks. 

Section 2.2 provides an overview of localization in wireless sensor networks, examines 

the constraints related to localization algorithm design, as well as studies the common 

techniques used in position computation. Subsequently, Section 2.3 includes a study on 

conventional localization schemes in wireless sensor networks.  Some of the prominent 

and representative works are presented. The last part of this chapter coves some 

theoretical methods to compute sensor positions. 

 

2.1    Wireless Sensor Networks 

The maturing of microelectromechanical systems (MEMS), integration of digital 

circuitry, and wireless communication technology have contributed to the emergence of 

wireless sensor networks [1][9][12][13]. These underlying advancements in technology 

have made it possible to design small, inexpensive and autonomous smart sensors, e.g. 

Smart Dust [3], which are capable of wireless communication. A collection of these 

sensors can collaborate and perform much larger missions by distributed sensing.  

Wireless sensor networks are task-based networks that hold the promise in the 

area of continuous unmanned surveillance and monitoring. Hundreds or thousands of 

sensors form a wireless network to perform coordinated tasks. Wireless sensor networks 

in hazardous environments such as remote terrain, disaster areas, toxic regions and 
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battlefields are particularly useful. Applications include toxic leak detection, outdoor 

surveillance, intrusion detection, target tracking, search and rescue, obtaining micro-level 

information and many others. The sensing data can include the readings of surrounding 

temperature, humidity, light, airflow, pressure, etc. Then, the collected sensing data is 

transported back hop-by-hop to the sink node, where the network information is retrieved.  

Some unique features distinguish a wireless sensor network from an ad hoc 

wireless network. Firstly, it is a sensor and actuator-based network that usually has direct 

interaction with physical environment. An assigned task is accomplished by collaborative 

effort of a group of sensors. These sensors are small, cheap, and untethered. They have 

modest computation and communication capabilities, as well as limited energy supply. 

Comparatively, an ad hoc network usually comprises of devices like handheld, laptop, etc 

that are larger in size, better in computation capability, improved energy supply and more 

costly. Besides, ad hoc devices usually have human users instead of having interaction 

with physical environment. In addition, the number of nodes deployed in a sensor 

network can be several orders of magnitude higher than an ad hoc network. The topology 

of a wireless sensor network changes due to node failure while that of an ad hoc network 

changes due to node mobility. Once deployed, the network operates unattended with 

minimal external management or configuration. 

After a general discussion of wireless sensor network, a more specific aspect of 

wireless sensor network, i.e., localization, is presented next. 
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2.2    Localization in wireless sensor networks 

Localization may be defined as the problem of determining the spatial 

relationship among nodes in a specific coordinate system that can be a global coordinate 

system or an independent local coordinate system. Localization is fundamental to 

wireless sensor networks since the usefulness of sensing data is inherently associated 

with the location where the data is derived from in the physical world. However, 

localization in wireless sensor networks poses significant design challenges. 

From the perspective of the volume of sensors to be deployed, it is prohibitive for 

a network administrator to place each sensor node individually at its intended position. In 

many cases, wireless sensor nodes are expected to be deployed in an ad hoc manner. One 

common method is to airdrop and scatter the sensor nodes over an unknown region. With 

ad hoc deployment, one is unable to arrange or predefine the positions of the sensors 

beforehand. Therefore, some robust localization algorithms need to be devised for 

wireless sensor networks. 

Some existing localization systems such as Global Positioning System (GPS) [31] 

can be embedded in wireless devices. However, GPS is unable to meet the constraints in 

wireless sensor networks in terms of cost and operational requirements, i.e., low cost and 

low energy consumption. In the following section, applications that demand localization 

information are discussed. 

 

2.2.1    Applications of Localization in Wireless Sensor Networks 

Spatial localization is of paramount importance to wireless sensor networks 

applications. The location information is useful for target velocity computation, data 
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aggregation, sensor query, origins of events identification, and position-based routing. 

Some examples of application are elaborated below. 

In habitat monitoring [7], location information is essential in determining a 

target’s velocity. Whenever a target enters a sensor’s detection range, the sink node is 

updated. The sensor updates the sink node with the target detection time as well as the 

sensor’s own physical location. The sink node is then able to compute the target velocity 

by knowing how rapidly the target reaches different points in the network.  

In a network with vast number of nodes, localization can be employed to 

substantially reduce the overheads of data forwarding to sink node. Data aggregation [20] 

is used to combine redundant data, thus reducing the volume of data sent back to the sink 

node. This can effectively reduce the network power consumption caused by 

broadcasting. Intermediate nodes require sensors’ location to decide which data that are 

derived from different nodes can be combined. This is because the intermediate nodes 

need to identify the sets of data collected in the same vicinity since these data have higher 

probability of being similar. 

In addition, with localization capability, sensors are able to decide whether they 

should respond to a query. For example, in a network employing Directed Diffusion [19], 

when an attribute-value query “Location = Region χ ” is broadcasted, all nodes with 

matching location are expected to respond to the query and take subsequent actions. If 

sensors fail to respond due to false location information, this can lead to the failure of a 

critical mission.  

Location information also plays a significant part in assisting position-based ad 

hoc routing protocols, such as GPSR [21] and LAR [22]. The next forwarding node is 
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selected based on its position so that a packet can be sent to the intended destination node 

by as few hops as possible. This type of routing protocol routes a packet based on a 

node’s geographical position instead of its node ID or other factors. This significantly 

reduces energy consumption and communication overheads.  

Another example of the applications of location information is to identify the 

origin of an event. This is particularly useful in disaster rescue and relief operations, for 

example, the sensors can help to provide the location of an earthquake victim buried 

underneath the rubble. Thus, each sensor should possess localization capability to provide 

the desired location information whenever necessary. 

 

2.2.2    Localization Constraints in Wireless Sensor Networks 

Since sensors are usually unattended after deployment, localization algorithms 

should be robust and function with minimum configuration even when there are network 

constraints. Some significant network constraints are discussed below.    

The major challenge in localization of wireless sensor networks is to deal with 

stringent constraint on energy supply. Usually, the battery energy of a sensor is not 

replenished once depleted. Thus, the battery energy should be preserved and a 

localization algorithm should minimize energy consumption. Depending on specific 

applications of a sensor network, sometimes coarse location estimation is sufficient. In 

this case, the algorithm should not be too complex at the expense of energy resources to 

obtain location to fine precision. Another alternative is to obtain coarse location 

information initially and then apply some refinement methods to reduce the error in 

location estimation. 
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Also, a sensor node may have modest communication and computation 

capabilities. The limited transmission power enables a node to communicate only within 

a short range. The limited processing power may prohibit a node from handling complex 

computation. Thus, an algorithm for a sensor network should be simple to implement. 

Localization algorithm should not incur high cost since the sensors are supposed 

to be inexpensive and disposable. Besides, form factor should also be taken into 

consideration since miniaturization of sensor nodes has become an inevitable trend. This 

instantly precludes the installation of expensive, complex and bulky hardware. Currently, 

GPS [31] is not a suitable solution due to cost and energy consumption concerns.  

Due to the unpredictable nature of physical environment, a localization algorithm 

should not be tightly coupled to particular environmental conditions. Instead, it should be 

applicable in different environments or network setting.  

Another constraint to deal with is the radio range irregularity and asymmetric 

wireless link. Currently, ranging techniques do not offer reliable measurement. The 

accuracy of range measurement largely depends on the condition of transmission medium 

and surrounding environment. Depending on whether range measurement is needed, there 

are two broad classes of localization algorithm, i.e., range-based (e.g.  [6],[30],[36]) and 

range-free localization (e.g. [17],[27],[34]). Range-based localization requires point-to-

point distance to be known and these algorithms always make the assumption that the 

distance can be determined via methods like Time-of-Arrival (ToA) or Received Signal 

Strength Indicator (RSSI). The accuracy of range-based localization algorithms largely 

depends on the accuracy of range estimation techniques. Comparatively, range-free 
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localization algorithms may provide a coarser estimation but are not affected by the 

current ranging technology.      

In short, a robust localization system should be able to provide good location 

estimation despite the above mentioned constraints like finite energy supply, limited 

communication and computation resources, cost, and unreliable range estimation 

techniques. Thus, a localization algorithm should be distributed, simple, and scalable. 

 

   2.2.3    Localization Techniques in Wireless Sensor Networks 

Position computation methodologies typically require distance or angle 

measurement between a node and a set of reference nodes in order to discover the node’s 

specific location. In conventional wireless networks, these distance or angle 

measurements can be determined by techniques such as Time of Arrival (ToA), Time 

Difference of Arrival (TDoA), Angle of Arrival (AoA) and Received Signal Strength 

Indicator (RSSI). However, none of these techniques fit wireless sensor networks 

perfectly due to the inherent network constraints. The merits and drawbacks of these 

techniques are discussed below. 

The ToA technique is capable of estimating the distance between two nodes by 

measuring the time taken by a signal with known speed to travel from a sending node to 

a receiving node. However, synchronization between these two communicating nodes is 

required to compute the time lapsed between signal transmission and reception. 

Synchronization among nodes could consume a lot of network’s scarce power and 

bandwidth resources. One example that makes use of TOA is the GPS system [31]. GPS 

requires costly and energy-consuming devices to precisely synchronize a node with the 
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satellite’s clock. Like TOA technology, TDOA also relies on extensive hardware. In 

wireless sensor network, nodes are usually separated with short distances, ToA or TDoA 

requires a signal that has slower propagation speed than radio signal, such as ultrasound, 

to measure the time-of-flight. However, sensor nodes need to be installed with specific 

hardware to receive the ultrasound signals. A range estimation algorithm using this 

technique is proposed by Girod and Estrin [15]. 

To detect AoA, costly and bulky detecting component such as a directional 

antenna or an array of antennas needs to be attached to the sensors to measure the angle 

at which a signal arrives. It is not viable since sensors are small in size, disposable and 

low cost. Another drawback of this technique is the possibility of error introduced by 

multipath reflections. A localization example using AoA is a scheme proposed by 

Niculecu and Nath  [28]. 

The RSSI technique is capable of translating signal strength into distance 

estimation since radio signal attenuates exponentially with distance. However, RSSI 

measurement may not be reliable due to problems such as multi-path fading, background 

interference, shadowing and irregular signal propagation characteristic.  Some 

researchers propose to use averaging, smoothing and other techniques to reduce the 

ranging error. An example of localization based on RSSI is RADAR [2]. 

The drawbacks of these techniques have motivated researchers to come up with 

new techniques that fit well with wireless sensor networks, and one of these is the hop-

count technique. The special multi-hop nature of sensor network and the vast quantity of 

low-mobility sensors are two major factors that enable the use of the hop-count technique.  
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Hop-count based localization is a range-free technique. It does not require the 

knowledge of absolute distance between two neighboring nodes, making it simple and 

appealing.  Hop-count based localization is a distributed algorithm that exploits the 

inherent multi-hop feature of sensor networks. There is no requirement for special 

hardware installation or infrastructure setup to implement hop-count localization. Hop-

counts can be easily obtained by network broadcasting. Since hop-count is the only 

essential information in distance estimation, the packet size is small and consistent. Each 

node only needs to communicate with its local neighbors. Some well-known hop-count 

based localization schemes in wireless ad hoc networks are Ad Hoc Positioning (APS) 

[27][29], Robust Positioning [34] and N-hop multilateration [36].   

 

2.3    Related Works 

There are many works done for localization in wireless and mobile networks. An 

analysis by Tseng et al. [38] reviews the importance and applications of location 

awareness in ad hoc wireless mobile networks. In another study, Hightower and Borriello 

[18] survey the existing research in location system for mobile computing applications. 

Some localization approaches require a single and centralized node to solve the 

location discovery problem. For example, in the approach proposed by Doherty et al. [10], 

a set of geometric constraints are formed based on nodes connectivity. The constraints are 

solved using convex optimization by a single powerful node. In some other research 

proposals, particular set-up is required. For example, in GPS-less system by Bulusu et al. 

[4], reference nodes are required to be placed in a regular mesh pattern and separated by a 

constant distance. In comparison, hop-count based localization is capable of offering 
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simple and distributed localization solution in wireless sensor networks. In the following 

sections, some prominent and representative localization works that make use of hop-

count techniques are discussed in details. 

 

2.3.1    Ad hoc Positioning System (APS) 

Niculescu and Nath [27][29] propose a distance-vector based ad hoc localization 

algorithm, Ad Hoc Positioning System (APS). This algorithm uses hop-by-hop 

propagation capability of the network to forward distance information from the reference 

nodes (RN). There are four methods in measuring the distance from the reference nodes, 

i.e., DV-Hop, DV-Distance, Euclidean, and DV-Coordinate.  Among these four methods, 

DV-Hop is the only method that uses hop-count information without requiring range or 

angle measurements. 

DV-Hop comprises of three stages. In the first stage, the flooding process enables 

each node to obtain hop-counts from reference nodes. The process starts with the 

broadcast from one of the reference nodes, RNi. Nodes that hear the broadcast discover 

that they are within one hop distance from RNi. Thus, they maintain a hop-count, 
iRNHC  

=1 from RNi and then forward this hop-count value to their neighbors. Their neighbors 

then increment and forward the hop-counts to their subsequent one-hop neighbors. The 

process is repeated successively. If the newly received hop-count is larger than a 

previously received value, a node simply discards the received packet. This process 

continues until all the RNs have broadcasted and each node has obtained minimum hop-

counts from at least three reference nodes.  
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 In the second stage, after each reference node (Xi, Yi), accumulates hop-counts 

from all other reference nodes,
jRNHC , (where j=1, ..., K, j ≠ i, and K is the total number 

of reference nodes), it computes average distance per hop-count, Davg. This Davg is the 

average size of each hop. Davg can be calculated since the locations of each of the other 

reference nodes (Xj, Yj) are known. 

avgD = Kjij
HC

YYXX

jRN

jiji ....1,,
)()( 22

=≠
−+−

∑
∑                                         (2.1) 

  In the third stage, each of the RNs distributes its computed Davg through 

controlled flooding. This means that once a node gets and forwards a Davg, it will ignore 

the subsequent ones. Thus, most nodes will receive only one Davg, and usually from the 

closest reference node. Subsequently, each node translates hop-counts to distances by 

computing the product of Davg and HC. These estimated distances from three or more 

non-collinear reference nodes can be used to compute a node’s physical location by 

methods such as triangulation [31]. In terms of transmission overheads for DV-Hop, the 

total transmission overheads can be computed by the total number of transmissions in the 

first and the third stage.  

DV-Hop is a simple method. It is independent of errors caused by inter-node 

range estimation. However, according to the authors [27][29], “it only works for isotropic 

networks, that is, when the properties of the graph are the same in all directions”. In 

dealing with non-uniform networks, the authors have proposed another method, namely 

the Euclidean method. This method is based on geometry computation. Fig. 2.1 illustrates 

how a node A estimates its distance to reference node, node L, by using Euclidean 

method. Initially, node A measures ranges to its two neighbors, nodes B and C. Then it 



 18

learns the distances BC, BL and CL by communicating with these two neighbors. Thus, a 

quadrilateral ABCL is formed. Since the length of all the sides and one of the diagonals, 

BC, are known, node A is able to compute the second diagonal AL, which is the distance 

between node A and the reference node, or node L.  

However, according to the localization comparisons conducted by Langendoen 

and Reijers [24], the Euclidean method has a few issues to address. First, a node has 

uncertainty in choosing between two possible solutions in location (i.e., position A and 

A’ in Fig. 2,1). Besides, two neighbors with estimated distance (i.e., node B and node C 

in Fig. 2.1) to a reference node are needed in computing a location, thus making many 

nodes unable to compute their locations in a network with low connectivity. Also, the 

Euclidean method is highly dependent on the accuracy of range estimation. Therefore, 

alternative algorithms should be devised for sparse and non-uniform networks. 

 

 

 
Fig 2.1   Euclidean method. 
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2.3.2    Robust Positioning  

  A robust and fully distributed positioning algorithm, Robust Positioning [34], is 

proposed to estimate the locations of the sensor nodes in ad hoc wireless networks. The 

Robust Positioning algorithm is split into two phases: Hop-Terrain and Refinement 

phases. Hop-Terrain algorithm roughly estimates the positions of the nodes for further 

refinement in the second phase. The Hop-Terrain phase is similar to DV-Hop, where hop-

counts and average hop-distance are propagated by two floodings throughout the network 

until, ideally, all the nodes in the network have the information from all the reference 

nodes in the network. The nodes compute their position using triangulation to obtain 

coarse positions.  

In the Refinement phase, each node repeats the triangulation calculation, but this 

time they use their one-hop neighbors as the new reference nodes. In this phase, each 

node obtains the estimated positions and the ranges computed from the Hop-Terrain 

phase from each of its neighbors. Then, the nodes perform triangulation repeatedly to 

determine their new positions. This is an iterative process in which position broadcast and 

triangulation are repeated until certain stopping criterion is met.  

However, the Refinement phase has a few drawbacks. Error propagates fast 

throughout the network. Firstly, an error introduced by a node would have been 

propagated to every node in the network by d iterations, where d is the network diameter 

in hop-counts.  Secondly, it is a priori not unknown under what conditions the refinement 

will converge and how accurate the final solution is. Thirdly, according to a localization 

quantitative study [24], the accuracy of this refinement is highly dependent on the 

estimated range between neighbors. Robust Positioning also suggests that if a node has 
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low confidence in its estimated location (for example, when it has low number of 

neighbors and it suspects that its estimation may not be accurate), it may be filtered out 

from the iterations. Since some neighbors are not involved in the iterative computation, it 

results in low percentage of nodes for which a position is determined [24]. 

 

2.3.3   Ad Hoc Localization System (AHLoS) 

Three multilateration methods are proposed in AHLoS [35][36], i.e., atomic 

multilateration, iterative multilateration and collaborative multilateration. The selection 

of which method to be used by a node depends on the distance between the node and 

reference nodes and also the number of reference nodes in the network. If a node has 

three or more reference nodes as immediate neighbors, it uses simple triangulation, i.e., 

atomic multilateration, to determine its position. This can be done since the reference 

nodes are within one hop and thus the distances from the reference nodes can be 

measured directly by ranging techniques such as RSSI or ultrasound.  

After atomic multilateration is carried out, iterative multilateration can be used to 

estimate the positions of nodes that do not have three or more reference nodes as 

immediate neighbors. In other words, iterative multilateration is a continuation of atomic 

multilateration. After atomic multilateration is applied, the nodes that have computed 

their positions are upgraded to reference nodes status. This allows the rest of the nodes to 

estimate their positions using these newly upgraded reference nodes.  Despite the 

simplicity, iterative multilateration requires high reference node ratio in the network such 

that large fraction of nodes have at least three immediate reference node neighbors to 

enable every node in the network to compute its position.  
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Collaborative multilateration (also known as N-hop multilateration primitive [36]) 

is used if the reference node ratio in the network is low. Nodes collaborate with each 

other to propagate and accumulate range measurement over multiple hops. Then, the 

nodes estimate their positions using Min-Max technique (explained in Section 2.4.1). 

Two computation models, i.e., centralized and distributed, are proposed. The distributed 

computation model induces lower computation latency compared to the centralized 

model and thus it is more suitable for resource-constrained networks.  

AHLoS has some setbacks. Iterative multilateration requires large number of 

reference nodes in the network. The multilateration computation cannot proceed if the 

number of reference nodes is low. Furthermore, error introduced by a node can be 

propagated easily throughout the network in iterative multilateration, and AHLoS is also 

sensitive to the accuracy of inter-node range estimation. 

 

2.3.4   Gradient and Multilateration 

Nagpal et al. [26] propose a similar hop-count localization technique by using a 

set of ‘seed’ sensors that are preprogrammed with position information. A gradient 

process, which is similar to flooding, is initiated so that each node can obtain minimum 

hop-counts from the seeds. The network density is assumed to be high and uniform. 

Multilateration is used to compute a node’s position.  

A refinement method, local averaging, is suggested; where each sensor collects 

its neighboring hop-count values and computes an average of itself and neighbors’ 

values. However, this method is only suitable for evenly spaced sensors [26]. 
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2.3.5   Mobility-enhanced Localization 

Lim and Rao [25] improve the accuracy of hop-count localization by using mobile 

nodes to do averaging and correction. They show that by intentionally introducing a small 

group of mobile nodes to a network that initially comprises of only static nodes, the 

estimation accuracy is increased. Works from Sichitiu and Ramadurai [37], and Pathirana 

et al. [32] also utilize the mobility of reference nodes to compute node localization, and 

in comparisons, their works are based on Received Signal Strength Indicator (RSSI) 

range estimation instead of using hop-counts. 

 

2.3.6   Other Works Affected by Density Issue 

According to Cho and Chandrakasan [8], sensor density can range from a few to a 

few hundred in a region that is less than 10m in diameter. Cerpa et al. [7] point out that in 

habitat monitoring, the number of sensors can be 25 to 100 per region. This implies that 

node density is not uniform in the whole network. A region can have many times more or 

less sensors than the other regions in a sensor network. Therefore, the impact of non-

uniform node density should be taken into consideration in hop-count localization. 

Node density also affects power management, network connectivity management, 

and data aggregation. Intanagonwiwat et al. [20] propose a data-centric routing with in-

network data aggregation mechanism so that information dissemination is energy-

efficient. In a high density network, they state that the greedy-tree aggregation approach 

achieves more significant energy savings (up to 45%) than the opportunistic aggregation. 

Ganesan et al. [14] propose using multipath routing in wireless sensor networks to 

increase resilience to node failure. They discover that at high node density, the 
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maintenance overhead of two-disjoint paths is nearly an order of magnitude higher than 

braid path. On the other hand, at low node density, they find that path construction 

sometimes fails to find an alternate path. The Geographical Adaptive Fidelity (GAF) 

algorithm [41] conserves energy by identifying nodes that are equivalent from a routing 

perspective and turning off unnecessary nodes. The results from GAF suggests that 

network lifetime increases proportionally with node density, where a four-fold increase in 

node density can lead to network lifetime increases by 3 to 6 times. Bulusu et al. [5] 

improves localization quality by placement of new reference nodes at low node density 

and rotating functionality among redundant reference nodes at high node density. Thus, 

node density is an interesting issue not only in localization, but also in other areas in 

sensor networks. 

 

2.4    Position Computation Methodologies 

To determine a node’s specific location within a coordinate system, some position 

computation methodologies are needed. The complexity of localization computation with 

distance estimated is analyzed theoretically in [11]. Two techniques used to solve for 

unknown locations are explained below.  

 

2.4.1    Triangulation 

Triangulation [31] is a computation technique used to locate nodes within a 

coordinate system. A node’s location is uniquely identified when at least three reference 

nodes are associated with it in a two-dimensional space, or at least four reference nodes 

in a three-dimensional space. Triangulation can be computed by a node when distances or 
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angles from reference nodes are known. The algorithm in this thesis makes use of one 

form of triangulation, known as lateration, in which only the distances from reference 

nodes are considered. The computation is explained below. 

After an arbitrary node with position (u,v) obtains estimated distances, d1, …, dK, 

from K number of RNs which have corresponding positions of (X1,Y1),…,(XK,YK), the 

following equations are derived: 
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The solution of the above matrix, U = (ATA)-1ATb, can be obtained by using a 

standard least-squares approach [16]. Using triangulation, an object is uniquely 

positioned when distances from at least three non-collinear reference nodes are known in 

a two-dimensional space.  

To illustrate how a node p, computes its position using triangulation technique, 

consider a two-dimensional space with three reference nodes, RN1, RN2, and RN3 (Fig. 

2.2). After p obtains its first distance from RN1, d1, it can deduce that its possible location 

is a point on the circumference of the circle of radius d1 centered at RN1. The second 

distance from RN2, d2, reduces the possible locations of p to two, which are the two 

intersection points of the two circles, centered at RN1 and RN2 respectively. With the 

knowledge of third distance from RN3, d3, the position of p is confirmed, which is the 

point where the three circles intersect exactly.  

This concept can be extended to a three-dimensional space if there is at least one 

more reference node. From the first known distance, p can conclude that it is a point on 

the surface of the sphere of radius d1 centered at RN1. The second distance reduces the 

 

 
Fig 2.2   Position computation using Lateration. 
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possibilities to a circle, which is on a two-dimensional plane. Then, the third and forth 

distances would finally determine the position of p, as explained in the two-dimensional 

case above.  

 

2.4.2    Min-Max 

Another position computation technique which is simpler but provides coarser 

solution is Min-Max operation. After an arbitrary node, p, obtains estimated distances, 

d1, …, dm, from the reference nodes 1, …, m, bounding boxes that enclose the circles 

originating from each reference node with radii of d1, …, dm, are constructed (Fig. 2.3). 

The four edges of a bounding box from a reference node i can be created by adding and 

subtracting the estimated distance di from reference node position (Xi, Yi), as shown 

below. 

Top edge       =>    ii dY + ;  

Bottom edge =>    ii dY − ;  

Left edge       =>   ii dX − ;  

Right edge     =>   ii dX + ; 

Then, the intersection of the bounding boxes is determined by taking the 

maximum of all coordinate minimums and the minimum of all coordinate maximums. 

Top edge      => min ),,( 11 mm dYdY ++ L  

Bottom edge => max ),,( 11 mm dYdY −− L  

Left edge      => max ),,( 11 mm dXdX −− L  

Right edge    => min ),,( 11 mm dXdX ++ L  
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The estimated position of the node is set to the intersection of this small bounding 

box. The estimated coordinates are the average values from the four corner coordinates. 

 

2.5   Conclusion 

In Chapter 2, introductory background of ad hoc wireless sensor networks, 

localization schemes and mathematical computation methodologies are reviewed. In the 

following chapter, the issues our algorithm addresses are discussed and our algorithm is 

presented. 

 
 

 

 

 

 

 

 
Fig. 2.3  Position computation using Min-Max operation. 
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Chapter 3   Density-aware Hop-count Localization 

(DHL) Algorithm 
 

The problem of localization, i.e., determining where a node is physically located in 

a particular coordinate system, is crucial for many applications in wireless sensor 

networks. Yet, the inherent network constraints pose challenges to the design of robust 

localization algorithms. As discussed in Chapter 1, two potential issues in conventional 

hop-count localization algorithms are identified: (a) density issue; and (b) path-length 

issue. In this thesis, the main goals of our algorithm are to address these two issues and to 

provide a localization solution that is suitable for sparse and non-uniform ad hoc wireless 

sensor networks.  

In the subsequent sections, we discuss how the abovementioned issues arise in 

wireless sensor networks. Section 3.1 presents an overview of the issues being addressed 

and the algorithm being proposed. Section 3.1.1 and Section 3.1.2 investigates density 

issue and path-length issue respectively. Section 3.1.3 discusses Density-aware Hop-

count Location (DHL) algorithm in details. Subsequently, Section 3.2 describes the 

method to determine parameters in DHL whereas Section 3.3 presents the complexity of 

communication overheads in DHL. Lastly, Section 3.4 concludes Chapter 3. 

 

3.1    Density-aware Hop-Count Localization (DHL) Algorithm 

In the Density-aware Hop-count Localization (DHL) [39][40] algorithm, the 

sensor network is assumed to be fully connected and there is no node partition. The 

sensors have moderately low mobility. Due to broadcast nature of wireless channel, each 
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node is assumed to know the number of its neighbors after a network is deployed. An 

omni-directional radio propagation model and a 2D network model that is extendable to 

3D are assumed. The radio range of the sensors is denoted by R.  

In our network model, there exists a total of N sensors, of which only K sensors 

(where 0<K<N), known as reference nodes/sensors, are equipped with position 

information while the rest of the nodes seek to discover their positions through multi-hop 

communication. Two nodes can communicate if their distance is less than R, where R is 

the radio range (which varies with the transmission power and technology used). Local 

density is defined as the number of neighboring nodes per unit transmission area. For 

simplicity, the number of neighboring nodes or local connectivity, c, is used to estimate 

the density surrounding a node. We also define the incremented distance by traveling a 

hop as hop-distance. 

 We describe in detail the two issues of concern, i.e., density issue and path length 

issue, below before presenting the details of the algorithm.  

 

3. 1.1   Density Issue 

3.1.1.1   Factors of Density Variation 

Most sensor networks are deployed outdoors. Thus, the sensor distribution can be 

affected by various factors, as elaborated below. 

 

a) Method of deployment and terrain contour 

The number of sensors to be deployed in a wireless sensor network can be 

substantial; a network may be composed of hundreds or thousands of nodes. Thus, 
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manual deployment is not a simple task and sensors are more commonly deployed in ad 

hoc fashion, via means like air drop or artillery launch. However, using ad hoc 

deployment, sensor distribution tends to be affected by terrain contour. For instance, 

sensors tend to accumulate at the bottom of a slope or hilly terrain, thus, causing node 

density to be higher at the bottom than at the peak of a slope. Ad hoc deployment and 

terrain contour makes it difficult to decide accurately the location and orientation of each 

sensor node. 

 

b) Hostile environment 

Environmental obstacles can prevent nodes from being placed at certain intended 

locations in order to create a uniform network. Thus, it is not easy to ensure uniformity in 

node distribution. Even if nodes can be impeccably placed at the beginning of network 

deployment, hostile environment or unpredicted weather can alter a node’s position or 

cause it to malfunction. For example, sensors can be swept away by strong current, 

corroded by harsh chemical solution, moved away by animals or damaged by the enemies. 

Thus, network density and sensor distribution can be easily altered.  

 

c) Network dynamism 

Over time, the battery power of a sensor may have dwindled to a level where the 

node can no longer be active at all times. In a worse case, the energy of a sensor is 

depleted and it is no longer functioning. Also, a node may move out of transmission 

range of the other nodes. Due to network dynamism, nodes may switch between active 
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and sleep modes, enter functional or breakdown states, join or leave a network from time 

to time. Therefore, node density is not consistent throughout a sensor network lifetime. 

 

3.1.1.2   Euclidean Distance and Range Ratio 

Assume an arbitrary reference node, Pi, i=1,…,K, is deployed at a point (Xi ,Yi ). 

For an arbitrary sensor Sj at (uj,vj), j=1,…,N-K, we denote the Euclidean distance between 

them as d(Pi, Sj)= 22 )()( jiji vYuX −+− . We define the Euclidean path as a path consisting of the 

minimum number of hops, m, to propagate a packet from Pi to Sj, i.e., where d(Pi, Sj) = 

mR (Fig. 3.1a). If sensor deployment is very dense and uniform (Fig. 3.1b), a path 

approximating the Euclidean path can be constructed, and Sj is able to approximate its 

distance from Pi by d(Pi, Sj) ≈ m(λR), where m is the minimum hop-count and λ is the 

average  range ratio; λR is also the average hop-distance (i.e., distance per hop).  

However, in a non-uniform network (Fig. 3.1c), the variance of hop-distance is 

high, causing d(Pi, Sj) ≈ µ1R+ µ2R+…+ µmR, where m is the minimum hops and µ is the 

range ratio (0<µ≤1). µ is a function of an intermediate node’s local density (i.e., 

connectivity/πR2) since hop-distance depends on the availability of the next node close to 

the transmission range and at the direction of propagation, i.e., µ=f(D), where D is local 

density.  

 

Figure 3. 1 (a) Euclidean distance, (b) uniform network, (c) non-uniform network 
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In Fig. 3.2, when a network is dense and uniform, using hop-count parameter, the 

estimated distance between an arbitrary node can be approximated accurately. For 

example, in Case 0, the distance between the reference node and destination node is 

approximated by “2×R”. The estimation gives close approximation to the actual distance. 

However, if the node density is sparse, three cases can arise that can cause over-

estimation of the actual distance.  The following three cases illustrate how distance 

overestimation happens. 

a) Case 1 

If the next forwarding node is not located sufficiently close to the transmission 

boundary, the distance traversed for each hop does not equate to the propagation range 

(Fig. 3.2a). Thus, more hops are taken in order to propagate the packet to the intended 

node. 

b) Case 2 

The next forwarding node is located on the boundary of the transmission range. 

However, the end-to-end path taken is not straight (Fig. 3.2b). The winding and twisted 

path taken accumulates more hop-counts. 

c) Case 3 

This is a hybrid case of the previous two cases (Fig. 3.2c). Some of the 

forwarding nodes are not close to the transmission boundary. In addition to that, end-to-

end forwarding path is not straight. Case 3 usually causes greater distance over-

estimation compared to Case 1 and Case 2. 
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Thus, it can be summarized that in a sparse network, the actual distance for each 

hop is less than R since the probability of finding a point close to the boundary in the 

direction of travel diminishes. In other words, the probability of having sufficient nodes 

constituting straight and short paths in hop-count propagation directions decreases. The 

variation of hop-distance is directly affected by the degree of uniformity of node 

distribution. 

  

As discussed in Section 2.3.1, DV-Hop uses average distance per hop-count, Davg, 

as a correction. The purpose of using Davg is to reduce distance over-estimation when the 

network is sparse and uniform. When the node density is high, the probability of having a 

straight and short hop-count propagation path is high. In this case, DV-Hop shows highly 

Fig. 3.2  Comparison of distance over-estimation due to (a) Case 1, (b) Case 2, and (c) Case 3. 
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accurate estimation (Fig. 3.3a). If the number of nodes in the network is smaller, but the 

overall node distribution is still uniform, Davg is computed as a smaller value to account 

for the decreased distance per hop-count (Fig. 3.3b). This is because the propagation path 

tends to be a winding one, thus the distance traversed in each hop is shorter. In this case, 

using Davg as a correction also shows good estimation (Fig. 3.3b).  However, this is not 

the case when a network has a mix of dense and sparse regions, i.e., non-uniform node 

distribution. Using DV-Hop shows degraded performance (Fig. 3.3c). This is because the 

distance traversed for each hop is no longer consistent. The distance per hop is generally 

greater in dense regions and generally shorter in sparse regions.  

DV-Hop points out that its drawback is that localization only gives good 

performance if the network is isotropic, that is, when the properties of the graph are the 

same in all directions [27][29]. In fact, Langendoen and Reijers[24] who conducted 

comparisons of distributed localization algorithms stated that “a drawback of DV-Hop is 

that it fails for highly irregular network topologies, where the variance in actual hop-

distance is very large”. 

Fig.3.3 Estimated distance from RN1 by DV-Hop in a (a) uniform and high density network, (b) 

uniform and low density network, (c) non-uniform network.  
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In actual physical deployment, the node distribution in wireless sensor networks is 

unpredictable; thus, we face the challenge of devising hop-count localization that can 

accommodate networks with non-uniform distribution. In view of this, density-awareness 

is an issue worth exploring to extend the implementation of hop-count based localization 

to non-uniform networks. 

  Thus, we propose to incorporate density awareness and assign hop-distance 

dynamically based on a node’s local density. 

 

3. 1.2   Path Length Issue 

A downside of distance summation using hop-count localization is that estimation 

error accumulates when hop-count is incremented over multiple hops. This cumulative 

error becomes increasingly significant with the increase of hop-counts. It happens 

especially for large networks with few reference nodes where long propagation paths tend 

to take place. 

For each hop, the actual traversed distance is either less than or equal to 

transmission range, R. This difference between actual progressed distance and 

transmission radius is accumulated with the increase of hop-counts. Therefore, the 

distance estimation error tends to increase with hop-counts. 

In reality, an estimated hop-distance, L, is imprecise and the uncertainty should be 

reflected in the expression, i.e., L ± ε, where ε is the maximum error. If Sj is m hops from 

Pi, its estimated distance is m(L ± ε), i.e., mR[λ ± ε/R] (uniform networks) or 

[ ]∑ ±
m

ii RR /εµ  (non-uniform networks). From the two equations, when R is infinitely 
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large and sensors are within hearing range from one another, the error is negligible, but 

this is infeasible since the transmission power of sensors is limited. However, error can 

be reduced if the distance is associated with fewer hops. To further improve the 

performance of our scheme, path-length is taken into account in DHL, where an 

estimated distance computed from a comparatively fewer number of hops m is given a 

higher confidence rating. 

Realizing that there is room for improvement in dealing with the density and long 

path issues, our algorithm introduces density-awareness to adjust hop-count in non-

uniform networks [39] and path-length awareness [40] to reduce errors in large networks 

with low reference node density. Hop-distance is adjusted based on a node’s surrounding 

density whereas distances computed from large hop-count are identified as potentially 

having larger errors, and thus given a lower confidence level.  

Thus, the distance between a reference node and an arbitrary node is not easily 

approximated accurately due to high variance of hop-distance and accumulated error. 

Therefore, we require a novel algorithm to handle this density issue in sensor localization. 

Next, we explain our DHL algorithm in the following section. 

 

3. 1.3   Main Algorithm 

Unlike conventional hop-count localization algorithms, DHL [39][40] does not 

require network-wide uniformity. Within a network, some regions may have higher or 

lower density. This type of non-uniform node distribution is more often encountered in 

actual network scenarios. The neighbors of a node are assumed to be distributed 

randomly around the node. 
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 We define the incremented distance by traveling a hop as hop-distance. 

Depending on local connectivity, we classify the node density into a few categories and 

each category has a corresponding range ratio. Range ratio, µ, represents the ratio of 

expected hop-distance to the transmission range for a particular local density. The 

algorithm strives to integrate density-awareness when propagating hop-counts throughout 

the network. Range ratio is a function of local density, i.e., a sensor node’s connectivity 

per unit transmission coverage. 

Due to the broadcast nature of wireless channels, Sj is assumed to know its local 

density after a network is deployed. A network manager predefines a set of density 

categories, e.g., low, medium, high, etc, and each category covers a certain range of local 

density.  A sensor, Sj, deduces the category it falls into based on its local density. Each 

category is mapped to a corresponding range ratio µ that reflects the ratio of transmission 

range a packet most probably advances if forwarded to the next hop.  The selection of 

number of density categories is a tradeoff between accuracy and overhead. Increasing the 

number of categories can increase the accuracy of expected hop-distance, but at the 

expense of higher number of exchanged messages. The flow of the algorithm is described 

below and the methods to determine the range ratio and confidence level are described in 

the next section.  

We perform a one-time computation, as follows: 

Step A: Pi broadcasts a set of tuples, consisting of {ID(Pi), Position(Pi), Total Hops to Pi , 

Total Range Ratio to Pi }, i.e.,{ID, (Xi,Yi), ∑ki=0, ∑µi=0}.  

Step B: Sj stores {ID, (Xi,Yi), (∑ki)+1, (∑µi)+µ}and forwards the information. 

Step C: Sj estimates distance to Pi by Li=(∑µi)×R.  
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Step D: If Sj subsequently receives packet with smaller ∑ki or ∑µi, it repeats Step B to C. 

Step E: Sj associates Li with a low or high confidence rating, as described in the next 

section.  When sufficient number of distances from the reference nodes is received, Si 

will perform triangulation.  Where possible, only Li associated with high confidence 

Σκ Σµ

Σκ 
< Σκ?

Σµ 
< Σµ?

Σκ = Σκ+1
Σµ = Σµ+µ

 =Σµ 

 

Fig.3.4 Flow chart showing the states a node enters in DHL 
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rating will be used. 

 Flow chart shown in Fig. 3.4 gives a detailed description the states a sensor enters 

and also the actions the sensor performs in DHL. 

 The algorithm is basically divided into two phases. The purpose of the first phase, 

Density-aware Phase (Step A to D), is to enable individual nodes to share hop-count 

information collaboratively in order to determine their distances from individual 

reference nodes. The hop-count information incorporates density information so that it 

provides more accurate distance estimation. In the second phase, Path-Length aware 

Phase (Step E), a node determines the confidence level for each estimated distance and 

decides if the distance should be used in position computation using triangulation. The 

first phase uses a node’s local density information to address the density issue, whereas 

the second phase assigns confidence level to address the path length issue. 

In Step A, a reference node broadcasts information that consists of its ID, its 

position, total number of hop-counts from itself and total range ratio to itself. Immediate 

neighbors that hear the broadcast discover that they are within one hop from the reference 

node. Thus, in Step B, the total number of hop-count from the reference node is 

incremented by one. The range ratio, µ , is estimated individually based on the receiving 

node’s surrounding density. Subsequently the receiving node forwards the information 

that consists of the reference node ID, reference node position, the new total hop-count 

and the new total range ratio. In Step C, a receiving node estimates its distance from the 

reference node by computing the product of total range ratio and transmission range. The 

rest of the nodes repeat the same procedure, i.e., increment received hop-count and range 

ratio and then forward the information. If a node subsequently receives hop-count 
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information that gives smaller total number of hop-count, it discards the old stored values 

and repeats Step B to Step C. The frequency of repeating Step B to Step C mainly depends 

on the uniformity of the network. In a non-uniform network, a node has higher tendency 

to receive different total range ratio from time to time, thus causing a new round of range 

ratio re-adjustment and re-broadcast.   

 In Step E, each estimated distance is associated with a ‘Confidence level’ whose 

value is in the range of [0,1]. The confidence level is inversely proportional to the 

number of hop-counts from a reference node. This is because comparing actual hop-

distance and transmission range, the actual hop-distance can be equal to or less than the 

transmission range. If a localization algorithm assumes that hop-distance is equivalent to 

one transmission range, the shortfall from transmission range becomes estimation error. 

Thus, localization error accumulates with increasing hop-counts. Also, the chance that a 

propagation path is straight and direct decreases as path length becomes longer. A 

winding path tends to accumulate more unnecessary hop-counts than a direct path.  

Consequently, a sensor node that is positioned far from a reference point tends to 

accumulate more errors. After assigning the confidence level, a node can select only 

those estimated distances with high confidence and ignore those with low confidence in 

position computation by methods such as triangulation [31]. 

We illustrate the difference in computing hop-distance between DHL and a 

general hop-count localization algorithm that does not make use of local density 

information (DV-Hop [27][29]) in Fig 3.5. As shown in the figure, if hop-count is 

propagated from reference node RN1 to reference node RN2 through regions with 

different densities (a high density region, followed by a low density region and another 
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high density region), for DV-Hop, increasing hop-distance by an average distance does 

not show good performance. In contrast, applying DHL, hop-distance is increased by 

greater extent in dense region and lesser extent in sparse region. This gives better 

distance estimation. In this example, the hop-distance traveled in a dense region is the 

distance between RN1 and node 2, DRN1-2  whereas the hop-distance traveled in sparse 

region is ½DRN1-2. By using range ratio, when the density is low, each hop traversed is not 

necessarily equivalent to one hop-count. Thus, distance overestimation in sparse regions 

in the network is accounted for. 

 

3. 2   Determination of Range Ratio and Confidence Level  

Fig. 3.6 illustrates how hop-distance is affected by high and low local density.  In 

the diagram, a node, Na, propagates hop-count packets to an arbitrary node, Nc, that is 

multi-hop away via the shortest path. They are separated by a distance D1+D2. To 

propagate as close as possible in absolute distance to Nc at the next hop, D1 should be 

 

Fig. 3.5  Comparison of (a) actual distance from RN1, (b) estimated distance from RN1 by DV-

Hop, (c) estimated distance from RN1 by DHL. 
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maximized. Thus, hop-distance can be represented by D1, i.e., maximum distance 

traversed such that it is closer to node Nc in a hop. If the local density of Na is higher (Fig. 

3.6a), the hop-distance, D1, tends to be larger compared to the hop distance, D2, when the 

local density is lower (Fig. 3.6b). Thus, range ratios are used to reflect the ratio of hop-

distance to the transmission radius and its value is larger if a node’s local density is 

higher. In the ideal case where the local density is infinite, the range ratio has a value of 

one. 

 

We now describe how we determine the range ratio to be used in our scheme.  

Range ratio as a function of local connectivity, c, has been derived in [23].  Using a 

continuous function to determine the range ratio can result in unlimited density categories 

and immense transmission overhead. If densities are divided into n categories, a node at 

m hops from a reference node can potentially receive n+(n-1)(m-2) different accumulated 

range ratios, triggering more packet forwarding. We decided to take a more heuristic 

 

 

Fig.3.6 Hop-distance due to (a) high local density, (b) low local density 



 43

approach by investigating the relationship between local connectivity and range ratio 

through simulations (Section 4.2). To create a network of connectivity c, a total of 

cA/(πR2) nodes are created randomly, where A is the network area. We define “accuracy” 

as the percentage of nodes with estimated locations that are within one transmission 

range from their actual locations.   From the results, we decided to use three main 

categories with three corresponding optimum range ratio (Table 3.1). 

We next describe the way we determine the confidence level to use.  Assuming 

network diameter is x, a distance computed from more than 
R
x  hops is unlikely to 

approximate a Euclidean path and thus can be associated with low confidence level. 

Since a node requires at least three (four) reference nodes to perform triangulation for 2D 

(3D) networks, it assigns hop counts from the three (four) nearest reference nodes with 

high confidence.  A confidence threshold can be determined within the range of y and 

R
x to select hop counts with high reliability, where y is the largest hop counts from among 

the three (four) nearest reference nodes. For simplicity, a node can assign hop counts 

from other reference nodes with high confidence if they are less than )(
2
1 y

R
x

+ .  Only hop 

counts from reference nodes with high confidence levels will be used in the triangulation. 

TABLE 3.1 
RANGE RATIO FOR DIFFERENT DENSITY CATEGORIES 

Categories Local Density Range Ratio 

Low Density 
 

1-6 µ l=0.6 

Medium Density 7-12 µ m=0.7 

High Density 
 

>12 µ h=0.8 
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3.3    Communication Overheads  

Generally, conventional hop-count localization requires two separate flooding 

stages, i.e., one for (a) Hop-Count Accumulation, and another one for (b) Correction. In 

the Hop-Count Accumulation flooding stage, hop-count information is disseminated from 

each reference node to, ideally, all the nodes in the network so that each node has a 

coarse estimation of its position. In the second Correction stage, the flooding can be used 

to spread information that enhances the estimation accuracy. For example, DV-Hop 

[27][29] broadcast average hop-distance to every node in the network through controlled 

flooding, Robust Positioning [34] disseminates each node’s coarse position for 

subsequent iterative triangulation computations, and Gradient and Multilateration [26] 

broadcasts each node’s coarse position for local averaging. However, network-wide 

flooding is an expensive process since it involves every node in the network. Since each 

node is involved in storing and forwarding the information, a lot of energy is consumed 

for computation and communication. Flooding also causes scaling problems.  The 

overhead increases linearly with the number of nodes and reference nodes ratio in the 

network. While increasing reference nodes ratio in the network aids in increasing the 

localization accuracy, it also tends to increase communication overheads between nodes. 

Some algorithms propose using Time-to-Live (TTL) to limit the number of hop-

count propagation [27], so that transmission overhead is reduced. This method can be 

used only if the reference nodes ratio in the network is high. Otherwise, a large fraction 

of nodes in the network may not be able to receive sufficient information to compute 

their positions. Flood limit parameter is another proposal to reduce communication 
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overhead. A node stops forwarding once it has received hop-count information from 

“flood limit” [24] number of reference nodes. However, if reference nodes initiate hop-

count broadcasting at different times, a node may receive information from reference 

nodes that are further away and stop forwarding once the “flood limit” number of 

reference nodes has been reached. Thus, the node is unable to take advantage of hop-

count information from nearer reference nodes that initiate the flooding later. As 

explained in Section 3.2, distances computed from smaller hop-counts tend to have better 

accuracy. 

In comparison, DHL has less concern of reference nodes ratio and flooding 

initiation time. DHL combines the correction process in the hop-count accumulation 

stage to account for the localization errors caused by density variation. When hop-count 

is accumulated in the flooding process, the correction by range ratio is applied 

simultaneously to all the nodes in the network. Therefore, we do not require a separate 

flooding stage to forward the correction.  

This combination approach effectively helps to reduce the number of transmitted 

messages, conserve network energy, and reduce the time consumed in computing a 

node’s position. Comparing the first flooding stage, DHL has slightly more packet 

transmissions due to more hop-count adjustment. However, since DHL eliminates the 

second flooding stage, the total number of packets transmitted by DHL is less than that 

required by conventional hop-count localization.  
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3.4 Conclusion 

In this chapter, the two issues in conventional hop-count localization algorithms, 

i.e., density issue and path-length issue, are discussed. Our algorithm, Density-aware 

Hop-count Localization (DHL), which addresses these two issues, is presented. In the 

following chapter, verification and experimentation results are given, where the 

performance of DHL is compared against DV-Hop by simulations. 
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Chapter 4   Simulation Results 

4.1 Simulator Program  

To evaluate and analyze the performance of DHL, we conducted simulations 

using a discrete event-driven simulator written in C language. The discrete-event 

simulator initializes the entire simulation by reading the network parameters and creating 

the appropriate network size, number of nodes and number of reference nodes. The 

simulator consists of a single event-list managed by a scheduler function. A broadcast 

from a reference node is designated as an event. A broadcast from a reference node 

triggers hop-count packet forwarding process in the network. The hop-count packet is 

incremented and forwarded by each node in the network. Each re-broadcast is an event, 

and thus, a sequence of events is generated. Each event is associated with a processing 

time. This time designates when the event should take place. These events are queued 

into a list to be processed when the virtual simulator time reaches the specific processing 

time. 

To manage the list of events (sending and receiving of hop-count packets), the 

discrete-event scheduler maintains a data structure. This data structure is essentially a 

time-ordered queue of events. Any event occurring is queued into the list. Some events 

may trigger additional events that will subsequently be added to the queue according to 

the time it is supposed to occur. The discrete-event scheduler basically inserts each event 

into the queue, and then processes the queue in temporal order. When it processes an 

event, it also updates the simulation clock accordingly.  
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  After every node has obtained the hop-count information (Density hop-counts, 

and Normal hop-counts), a node, Nk, computes its estimated distance from each reference 

node, RNj, by  

RDHCd
jj RNkRNk ×= −− ,            (4.1) 

where j=1, ..., m, (m is the total number of reference nodes in the network), 
jRNkd − is the 

distance between node Nk and RNj, and 
jRNkDHC −  is the accumulated Density Hop-

Counts between node Nk and RNj.  

Using the estimated distance, a simple triangulation is used to obtain the 

estimated position of node Nk, i.e., (
~~

, kk vu ) so that the solution is as close as possible to 

the actual position (uk, vk).  The basic idea is to solve the following set of equations 

between a node and each reference node, i.e., 

2
2~2~

kRNkRNkRN jjj
dvYuX −=






 −+






 − ,           (4.2) 

where (
jj RNRN YX , ) is the coordinate of RNj , where j=1, ..., m and ( ), kk vu is the 

coordinate of node Nk. 

Then, a least mean square method is used. Equations for j = 2 to m are subtracted 

by the equation for j =1, thus, the following set of equation is obtained, 

)(
2
1)()( 222222

~~

11111 kRNkRNRNRNRNRNkRNRNkRNRN jjjjj
ddYXYXvYYuXX −− −+−−+=−+− ,                        

(4.3) 
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where j = 2 to m. Subsequently, Eqn. 4.3 is represented by A
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Then, the following equation is solved by using pseudo-inverse of matrix. 
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Position accuracy is then computed by comparing the obtained position (
~~

, kk vu ) 

and the actual position (uk, vk). Distance accuracy is also computed by comparing the 

estimated distance and the actual distance from RNj where j=1, ..., m. 

 

4.2   Range Ratio Determination 

First, simulations are conducted to investigate how localization accuracy is 

affected by range ratio for a uniform network of α local density. If on average each node 

has α neighbors and by incrementing received hop-count by a constant range ratio, we 

determined the percentage of nodes with estimated locations within the accuracy of less 
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than one transmission range, R, from their actual locations. We evaluated each simulation 

scenario over 50 trials for a network of 50×50m2 area and 5m transmission range; range 

ratio is increased by 0.1 at each step from 0.1 to 0.9. Simulations are conducted for local 

densities 6 and above since networks start showing severe partitioning for local density 

less than 6.  

Fig. 4.1 shows the accuracy results of using different range ratio for average local 

densities from 6 to 20. Simulation results show that for a network with average local 

density of 6, if each node increments its received hop-count by a range ratio of 0.6, the 

localization accuracy is the highest compared to the use of any other values of range 

ratio. Similarly, for local density 7 and 12, the optimum range ratio found from the 

simulations is 0.7. Simulation results for local density between 7 and 12 also show 

similar trend, i.e., the highest accuracy is achieved when range ratio is 0.7. For local 

 

Fig. 4.1   Localization accuracy vs. range ratio for variable local densities. 
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density 13 and 20, the optimum range ratio is 0.8 and similarly for the cases when local 

density is between 13 and 20.  

The results from the simulations serve as a guide for our selection of local 

densities and the corresponding range ratio for low, medium and high density categories 

(Table 4.1).  

If a node has local density of 6 or below, we regard it as having low density. This 

is because from the simulations, networks are not fully connected if local density is less 

than 6. The optimum range ratio for local density 6 is assigned to a value of 0.6 from the 

results shown in Fig. 4.1.  

For sensor networks, a local density of 10 is generally perceived as common. 

Thus, local density close to 10 is regarded as medium density. From the simulations, 

local density of 7 to 12 shares the same optimum range ratio, i.e., 0.7, in the simulations. 

Thus, they are assigned to the same density category, i.e., medium density. Local density 

higher than 12 is assigned to the high density category. The assigned range ratio for this 

category, 0.8, is chosen based on the optimum weight in Fig. 4.1.  

 

4.3   Non-Uniform Network Simulations 

Subsequently, simulations are conducted to compare localization accuracy 

TABLE 4.1 
RANGE RATIO FOR DIFFERENT DENSITY CATEGORIES 

Categories Local Density Range ratio 

Low Density 
 

1-6 µl =0.6 

Medium Density 7-12 µm =0.7 

High Density 
 

>12 µh =0.8 
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between DV-Hop and DHL in a non-uniform network. The objective is to examine 

whether the introduction of density-awareness can improve the accuracy of hop-count 

localization in non-uniform networks.  

We observe that the degree of non-uniformity of a network can be affected by 

three factors, i.e., (a) the number of regions with different local density from their 

surrounding regions, (b) the local density of each of these regions, and (c) the area of 

each of these regions. For example, suppose that a network has k number of regions 

which have different average local density from their surrounding regions, where the 

corresponding local density and the areas are L={L1, L2, …, Lk},  and A={A1,A2, …, Ak}, 

respectively. The degree of the network non-uniformity increases if k increases, standard 

deviation of L increases, or standard deviation of A decreases. In other words, degree of 

non-uniformity increases if the number of regions with different connectivity increases, 

the difference in connectivity becomes wider, or the area among the regions becomes 

more equal. If two areas with different connectivity have very dissimilar size, i.e., one is 

 

 
 

Fig. 4.2  Simulation setting for overheads comparison. 
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infinitely larger than the other; the non-uniformity caused by the small area becomes 

insignificant. 

In our simulations, the number of regions with different local density from their 

surrounding regions is selected as 4, i.e., Region I to Region IV, and the area of each the 

region is equal, i.e., A1=A2=A3=A4 (Fig. 4.2). The network size is 50 × 50m2 and the 

transmission range is 5m. A total of 10 reference nodes is placed randomly in the 

network. 

To create non-uniformity in local density, a total of 500 nodes are deployed 

randomly with Density Ratio (DR) for the four regions, DRI:DRII:DRIII:DRIV, 3:1:3:1. In 

such a deployment, Region I and Region III have three times more nodes than Region II 

and Region IV. For DHL, range ratios are assigned according to Table 4.1, i.e., 

(Wl,Wm,Wh) = (0.6,0.7,0.8). 

 

4.3.1   Distance Accuracy with Density-awareness  

We evaluated Phase 1 of DHL, i.e., updating hop-counts with range ratio based on 

a node’s local density. The simulation scenario is tested with 50 trials. Distance error, δd, 

is computed as a ratio of the “difference between a node’s estimated distance, Le, and 

actual distance, La” to the “transmission range, R”. In other words, the computed error 

represents the deviation of the estimated distance relative to a node’s transmission range, 

%100×
−

=
R

LL ae
dδ .                                                                                                     (4.1) 

Fig. 4.3 compares the accuracy in distance estimation between DV-Hop and DHL. 

The figure illustrates the percentage of estimated distances with errors from “shorter than 
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actual distance by 2R” (-200%R) to “longer than actual distance by 2R” (200%R). Each 

bar represents 20% width, i.e., the distance error is shown from “-200% to -180%”, “-

180% to -160%”, and so on. 

The results show that more distances are estimated with less error using DHL. 

From Fig. 4.3, using DHL, almost 82% of estimated distances have less than 60%R error 

(-60% to 60%R from Fig. 4.3) whereas around 71% distances estimated from DV-Hop 

achieves the same. Besides, DV-Hop has more distances estimated with greater than 

100%R error than DHL, i.e., 12.6% as compared to 6%.  

DV-Hop can cause both distance underestimation and overestimation with almost 

equal probability (Fig. 4.3). This is because the hop-distance is computed as an average 

value from the hop-counts accumulated along paths between reference nodes. A path can 

pass through a few regions with different densities, thus the distance progressed with 

 
 

 
 

Fig. 4.3   Distance error distribution. 
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each hop tends to be different from one another. It results in high variance in the actual 

hop-distances. Using an average hop-distance value, an estimated distance could easily 

be shorter or longer than the actual distance. For example, in Fig. 3.3c, if the shown hop-

count propagation path is the shortest from RN1 to RN2 and vice versa, using DV-Hop, 

Node 2 would underestimate its distance from RN1, but overestimate its distance from 

RN2. The same happens to Node 3 to Node 8, but with different degree of deviation. In 

comparison, DHL has lesser tendency to underestimate the estimated distance. Fig. 4.3 

shows that DHL causes almost no estimated distance with less than -100%R errors.  

Besides distance error distribution, a comparison between distance error and hop-

counts is also plotted in Fig. 4.4. In this figure, absolute distance error is used.  From the 

figure, it can be deduced that distances with larger errors are mostly associated with 

larger hop-counts. DHL manages to reduce distance errors when the hop-counts increase. 

 

 

Fig. 4.4   Distance Error vs. Hop-counts.  
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4.3.2   Position Accuracy with Density-awareness 

Better distance estimation may not be sufficient to indicate better estimated 

positions. This is because in triangulation computation [31], calculating a node’s position 

in two dimensional network  requires estimated distances from at least three non-collinear 

RNs. One badly estimated distance can adversely affect the final estimated position. 

Therefore, estimated positions are also computed using lateration, which is a form of 

triangulation, and the position accuracy comparison between DV-Hop and DHL is shown 

in Fig. 4.5.  

Position error, δp, is computed as a ratio of the “difference between a node’s 

actual position (u, v) and estimated position (
~~

,vu ) ” to the “transmission range, R”, as 

shown in Eqn. 4.2. In other words, the computed error represents the deviation of the 

estimated positions relative to a node’s transmission range.  

 

 
 

Fig. 4.5  Cumulative Error Distribution – Effect of Density awareness. 
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 The results show that using DHL, 80% of the nodes managed to estimate their 

locations within one transmission range from the actual locations. Comparatively, using 

DV-Hop, only around 60% of the nodes managed to accomplish the same results. In the 

non-uniform network (Fig. 4.2), the average local density in Region I and Region III is 

approximately 23 whereas the average local density in Region II and Region IV is about 

7. Thus, the difference in local density is about 3.3 (CI/CII = CIII/CIV = 23/7). In other 

words, nodes in Region I and Region III have higher local density, i.e., around three 

times more neighbors, than those in Region II and Region IV. According to Table 4.1, 

nodes in Region I and Region III have high local density whereas nodes in Region II and 

IV have medium local density. As they are in different density categories, DHL treats 

them differently in the hop-count computation.  

Nodes in Region I and Region III are expected to advance each hop with larger 

hop-distance, and thus, are assigned higher range ratio by DHL. Conversely, nodes in 

Region II and Region IV which have sparser density are assigned lower range ratio. In 

contrast, DV-Hop increases each hop by one and uses average hop-distance in estimating 

the distances of a node from RNs. By taking into account the impacts of network non-

uniformity, DHL’s accuracy in the distance estimation of each node from the reference 

nodes is higher compared to DV-Hop. Therefore, after triangulation, the estimated 

positions of most nodes are also closer to the actual positions.   
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4.3.3   Position Accuracy with Confidence Level (CL)  

Fig. 4.6 shows the cumulative error distribution when confidence level (CL) is 

associated with estimated distances. In DV-Hop-CL, after a node computes its distance 

by computing “HC ×  Davg”, it only selects distances with high confidence level for 

triangulation. Similarly, in DHL-CL, after a node computes its distance by computing 

“∑ × RW ”, only distances with high confidence level are used in triangulation. In this 

simulation, if the accumulated hop-count is less than ten, it is associated with high 

confidence.  

When estimated distances with low CL are ignored in position computation using 

lateration, the results (Fig. 4.6) show that DHL-CL performs better than DHL while DV-

Hop-CL performs better than DV-Hop. Among these four schemes, DHL-CL achieves 

the highest accuracy, with the most number of nodes (83%) managing to estimate their 

 
 

 

Fig. 4.6   Cumulative Error Distribution -Effect of Confidence Level (CL). 
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positions to the accuracy of less than one transmission range from their actual locations, 

compared to DHL (78%), DV-Hop-CL (72%) and DV-Hop (63%). It shows that density-

awareness coupled with “Confidence Level” achieves the best results among these four 

schemes. 

When a propagation path is long, more errors tend to be accumulated; this is more 

evident especially in the case when the propagation path passes through sparse regions in 

the network. The propagation path is less likely to be direct, straight and the shortest, thus 

accumulating more extra hop-counts. Besides, the actual distance per hop is either less 

than or equal to one transmission range. This difference is negligible if the propagation 

path is short; however, error accumulates and becomes significant when the propagation 

path is long. Thus, for a node that is further in hop-counts from a particular reference 

node, the corresponding estimated distances tend to have higher errors. Consequently, 

putting higher confidence in distance acquired from smaller hop-counts in the position 

computation process can help to improve localization accuracy. 
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4.3.4   Geographic Error Distribution  

Another useful way to investigate error distribution is to take into account 

individual node’s geographical location. Fig. 4.7 and Fig. 4.8 give detailed looks at the 

distribution of position error as a function of individual nodes’ physical locations in the 

square network area of 50m×50m.  

Comparing Fig. 4.7 and Fig. 4.8, DV-Hop localization error is higher than DHL 

localization. The range of DV-Hop error distribution is approximately 100%R for most of 

the interior nodes whereas a small portion of nodes at edges have localization error up to 

approximately 300%R. In contrast, localization error for most of the interior nodes of 

DHL hovers around 50%R while a small percentage of nodes at edges has up to around 

250%R error. This shows that DHL has better performance than DV-Hop for nodes 

 

Fig. 4.7   Geographic Error Distribution - DV-Hop 
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scattered around anywhere in the network. The observation also shows that both DV-Hop 

and DHL shares a common phenomenon, whereby the nodes near the network edges and 

corners are susceptible to higher localization error compared to those located near the 

center of the network. We illustrate how this phenomenon can arise in Fig. 4.9 and Fig. 

4.10. 

Fig. 4.9 shows two propagation paths from a reference node located at a corner of 

the network to another node located at the network edge (Path 1) and at the network 

center (Path 2) respectively. The figure shows that the first path tends to follow a longer 

route compared to the second path. This is mainly because areas along the network 

boundary tend to have lower concentration of intermediate nodes such that the probability 

of locating a next propagating node that is close to the transmission range and in the 

direction of propagation is much lower compared to areas at the network center. We 

 

Fig. 4.8   Geographic Error Distribution - DHL. 
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illustrate the possible forwarding transmission area in Fig. 4.10. In order to propagate a 

packet in the forward direction, a node at the network center can forward to any node 

located in the shaded area (Fig. 4.10a), preferably to those near the transmission range. 

However, for a node located along the network edge (Fig. 4.10b), the shaded area is 

reduced by half since no intermediate node is available outside the network region. 

Strategically placing reference nodes near the network edges so that most nodes at edges 

can have direct communication with reference nodes could be a good future study topic 

to reduce the impact of such phenomenon. 

   

4.4   Random Network Simulations 

The performance of DV-Hop and DHL are also compared in random networks. In 

 

Fig. 4.10   Forward propagation area for (a) a node at network center, (b) a node at network edge 

 

 

Fig. 4.9   Propagation paths along a network edge (Path 1), and towards network center (Path 2)
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random network scenario, nodes are positioned randomly throughout the network. In this 

case, the nodes are scattered quite uniformly where each node has approximately the 

same number of neighbors. The network does not have any particular regions with higher 

or lower node density. The total number of nodes being scattered in the network is 

increased from 500 to 700. The network size is 50×50m2 and the transmission range is 

5m. A total of 10 reference nodes are placed randomly in the network. From the 

simulation results (Fig. 4.11), we found that both schemes manage to locate large 

percentage of nodes to high accuracy and the accuracy achieved by both schemes is quite 

comparable. This is because in random networks where nodes are distributed uniformly, 

 

 
 

Fig. 4.11   Cumulative Error Distribution – Random Networks. 
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average hop-distance computed by DV-Hop shows good approximation to the actual hop-

distance. Besides, DHL is also capable of achieving comparable results with the use of 

range ratio. 

 

4.5    Overhead Comparisons 

Packet transmission overheads for both DV-Hop and DHL are compared in non-

uniform and random networks. The total number of nodes in the network is increased 

from 500 to 900 to investigate how packet transmission overheads change with the 

increase of total nodes. In non-uniform network setting, four reference nodes are placed 

as shown in Fig. 4.2. The reference nodes are close to the network boundary and 

surrounded by randomly placed nodes in all directions. Thus, the area of transmission is 

circular and the density surrounding a reference node is affected mainly by its 

connectivity. In the random network setting, nodes are randomly scattered throughout the 

network. The overhead comparison results for this non-uniform networks are shown in 

Fig. 4.12(a) while the results for random networks are shown in Fig. 4.12(b). 

The reason DV-Hop incurs higher number of packet transmissions is due to an 

additional Correction flooding stage. The scheme floods the network twice. The first 

flooding involves accumulating hop-counts and the second flooding involves spreading 

computed Davg, average distance per hop-count. In comparison, DHL integrates the 

correction with the hop-count accumulation stage. Thus, it eliminates any additional 

flooding stage. This effectively reduces the time needed for a node to compute its 

locations, and thus reduces the response time for location-related queries. Although DHL 

involves more frequent hop-count adjustment in the hop-count accumulation stage, the 
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total number of transmission is still less than DV-Hop as DHL uses only one flooding 

stage. Since most sensors have limited power supply, energy efficiency is an important 

factor in algorithm design. By maintaining lower packet transmission overheads, DHL 

helps to reduce power consumption, and thus achieves better energy efficiency.  

 

 
                 (a) 

 
 

 
(b) 

Fig. 4.12   Overhead comparison for (a) non-uniform network, and (b) random networks.
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4.6    Discussion of DHL Issues 

4.6.1    Local Density Representation 

The current representation of local density is based on a node’s connectivity, or 

the number of neighboring nodes. However, this representation may not be appropriate 

for nodes that do not have circular transmission coverage, e.g., nodes that are located near 

the network boundary or nodes that use directional antenna. For these nodes, their 

neighboring nodes are not randomly placed in all directions surrounding them, but 

located at particular angles. Thus, even though a node has a large number of neighboring 

nodes, these neighbors are not helpful in forwarding a packet to particular directions. 

Therefore, the proportional relationship between local density and hop-distance is no 

longer true. Some alternative theoretical methods in defining local density are needed for 

nodes without circular coverage. The definition of local density should take into 

consideration the area and the angle of transmission coverage. 

 

4.6.2    Range Ratio Assignment 

The current values of range ratio are selected based on experimentation results. 

Kleinrock and Silvester [23] have independently conducted theoretical analysis on 

optimum connectivity for wireless networks. Part of their analysis is related to finding the 

effective distance traversed per hop for multi-hop wireless networks. Using their analysis, 

a node can compute its hop-distance on-the-fly based on its local density. However, their 

analysis is based on the assumptions of Poisson node distribution and short distance 
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between source and destination nodes. This may not be true in all network scenarios. The 

analysis from Xue and Kumar [42] contrasts with the studies by Kleinrock and Silverster 

which recommended some “magic numbers” of nearest neighbors to maintain network-

wide connectivity. Instead, Xue and Kumar show that in a network with n randomly 

placed nodes, each node should be connected to Θ (log n) nearest neighbors in order to 

avoid network partitioning. In this scenario, the number of neighbors a node maintains 

could vary with time depending on how frequently the total number of nodes in the 

network changes. Therefore, further studies can be conducted to determine the number of 

links a node is connected to at a particular time. Besides, methods to assign range ratio 

when the connectivity of a node varies with time should also be studied. 

If nodes are not classified into density categories but they are allowed to compute 

its own hop-distance based on individual local density (i.e., unlimited density categories), 

the total transmission overhead will be substantial. The frequency of hop-counts re-

adjustment will be high since a node tends to receive a new minimum hop-count from 

time to time and subsequently triggers another round of broadcasting.  

As the number of density categories increases, the range ratio that a node 

computes has high chances to be different from that computed by its neighbors. For 

example, in the case when there are only two density categories, a node has fifty percent 

chances that its range ratio is different from its neighbors. When the number of density 

categories increase to ten, the probability increases to ninety percent.  Thus, the 

accumulated hop-counts between nodes tend to be different from each other. In any case 

when hop-counts are different for two neighboring nodes, the node that has higher hop-
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counts may need to re-compute its hop-counts and retransmit. Thus, the frequency of 

hop-count adjustment and message exchanges is high.  

 

4.6.3 Node Mobility 

The current experimentations and simulations are conducted for static nodes. This 

is because the nodes in the target network, i.e., wireless sensor network, are commonly 

associated with low mobility. In mobile networks, modifications or enhancement can be 

added into the algorithm. A mobile node can obtain hop-counts from its new neighbors to 

compute triangulation. Alternatively, a node can obtain the estimated positions from its 

new neighbors and compute an average value. In this way, a mobile node is able to 

compute new positions with minimum communication signaling. 

If the reference nodes are mobile, they can assist in localization refinement. This 

is because their positions can act as new reference points to the nodes in close proximity. 

Thus, after triangulation, a node usually is able to estimate its position with better 

approximation.  

 

4.7   Conclusion 

In this chapter, experimental results are presented and discussed. Firstly, the 

impacts of the two issues, i.e., sparse nodes issue and long path issue, are investigated. 

Then, range ratios for DHL are determined, followed by accuracy comparison between 

DHL and DV-Hop in non-uniform networks. Communication overheads are also 

evaluated. The results show that DHL achieves better distance and position estimation in 
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non-uniform networks, with less transmission overheads. In the next chapter, a brief 

summary of our work is described and conclusion is given.  
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Chapter 5    Conclusion and Future Works 

5.1   Conclusion 

In this thesis, we described a self-configuring localization algorithm, Density-

aware Hop-count Localization (DHL). The design motivation is to address two issues: (a) 

sparse nodes issue, where localization accuracy drops at low local density; and (b) long 

path issue, where distance error accumulates with hop-counts. To address the non-

uniform node distribution issue, a novel concept of density-based hop-count update is 

developed. We identify density as an important parameter in characterizing hop-distance, 

thus, we proposed an algorithm for self-localization based on node density. We also 

evaluated and demonstrated the effectiveness of our solutions.  

Our design is driven by a major goal, i.e., to improve localization accuracy in 

sparse and non-uniform networks. DHL makes use of the multi-hop feature of ad hoc 

sensor networks to estimate distances with respect to some known location nodes. 

Propagated hop-count is incremented with range ratio, which is the ratio of progressed 

distance with respect to transmission range. A node that obtains distances from more than 

three reference nodes only select distances computed from small hop-counts in 

triangulation. These distances are associated with high confidence level since error tends 

to increase with hop-counts. 

Simulations showed that when a network has non-uniform node distribution, the 

introduction of density-awareness is able to improve DV-Hop localization accuracy while 

incurring lower packet transmission overheads. The confidence associated with estimated 

distances improved the accuracy further in non-uniform networks. In random networks 
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that have rather uniform distribution, DHL managed to achieve comparable accuracy as 

DV-Hop while maintaining lower packet transmission overheads.  

 

5.2   Future Works 

Based on the assignment of three density categories and the corresponding range 

ratios, we are able to achieve better location estimation accuracy while maintaining lower 

overheads compared to conventional schemes in non-uniform networks. As the achieved 

improvement may not be optimum in all cases, a possible extension to DHL is to analyze 

the impact of range ratios on other network settings, for example by varying the degree of 

network non-uniformity. Analysis can be conducted to explore the effect of the number 

of density categories on localization accuracy and transmission overheads. Besides, other 

than local density, factors such as propagation direction, which can affect hop-distance, 

can also be explored to enhance localization accuracy.  

DHL issues that have been discussed in the previous chapter, i.e., local density 

representation, range ratio representation and node mobility can be explored further to 

improve the algorithm. Analysis can be performed to define local density for nodes that 

do not have circular coverage, for example for nodes that are located near the network 

edges or nodes that use directional antenna. Further theoretical and experimental studies 

can be conducted to map the relationship between range ratio and local density. If the 

local density for a node varies with time, the range ratio should also be adjusted when 

local density changes. The current algorithm is suitable for sensor networks that have 

static or low mobility nodes, but further studies need to be done for networks that 

comprise of highly mobile nodes in which the network density changes rapidly. 
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We can also look into placement strategies of reference nodes. From the 

simulations showing geographical error distribution in the previous chapter, nodes close 

to network edges and corners tend to have higher location estimation error due to low 

concentration of reference nodes. This issue can be tackled by strategically placing the 

reference nodes such that the nodes are able to have unhindered communication paths 

with the reference nodes.  

 

In conclusion, a novel density-aware and path length-aware localization algorithm, 

i.e., DHL, has been presented for unevenly distributed sensor networks that potentially 

have long propagation paths. Further studies can be performed to enhance the algorithm 

so that it may be applied in different network scenarios.  
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